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The current Special Issue entitled “Advances in Structural Mechanics Modeled with
FEM” aims to collect several numerical investigations and analyses focused on the use of
the Finite Element Method (FEM). The undeniable spread of this methodology in the recent
decades is due to the recent improvements of high computational resources and the large-
scale deployment of increasingly powerful computers, which have allowed to develop
numerical approaches related to various applications. This situation has represented the
key aspect that led to the birth of this Special Issue.

It is well known that many structural and physical problems are not suitable to be
solved analytically. Therefore, appropriate numerical methods have to be developed to
get approximate but accurate solutions. Precisely, one of the most typical approaches that
can be employed to this aim is the Finite Element Method, which is characterized by very
good accuracy and reliability. In addition, it can be easily implemented to deal with several
applications in many engineering fields. In fact, it is easy to find numerical analyses solved
by means of the FEM in civil, mechanical, and aerospace engineering.

The Guest Editors would like to emphasize their enormous gratitude to the Editors-in-
Chief of Materials for the fantastic opportunity to manage this Special Issue. Likewise, all
the authors coming from many different countries who contributed to the success of the
present Special Issue are gratefully acknowledged for their papers characterized by very
high quality. The reviewers should be also mentioned for their support, providing acute
observations which undoubtedly improved the submitted manuscripts. Finally, the Section
Managing Editor, Ms. Floria Liu, is acknowledged for accurately and constantly managing
the editorial process.

The success of this venture is proved by the twelve papers collected and published in
just over a year and a half. A brief review of these papers is presented below to highlight
the multidisciplinary and the quality of these researches.

A two-node beam element was developed to analyze the static bending of functionally
graded (FG) beams by Nguyen et al. [1]. The quasi-3D beam theory which the formulation
is based on allowed to avoid the shear-looking issue without selective or reduced inte-
gration. A power-law expression was introduced to characterize the graded mechanical
properties of the structures. Many parametric tests were illustrated to emphasize the effect
of the graded features on the bending response.

A finite element model was developed by Zhang et al. [2] to investigate the gas
flow properties in the coal seam. The starting point of their research was the fact that
coal is characterized by a large number of fractures, whose spatial distribution patterns
may follow some macroscopic statistical laws. Therefore, they described the coal seam

Materials 2021, 14, 780. https://doi.org/10.3390/ma14040780 https://www.mdpi.com/journal/materials
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as a two-dimensional stochastic fracture network introducing various fracture geometric
parameters to represent a fracture. The paper proved that the permeability of the coal seam
is emphasized with the increase of fracture density, length, aperture.

The natural frequencies of sandwich plates were analyzed in the paper by
Bacciocchi et al. [3] by using a finite element formulation based on the Reissner-Mindlin
theory including the zig-zag effect. The plates were made of a damaged isotropic soft-core
and two external orthotropic skins reinforced by randomly oriented Carbon nanotubes.
A three-phase method combining the Eshelby–Mori–Tanaka scheme and the Halpin–Tsai
approach was developed to evaluate the overall mechanical features of the composites.
Various parametric investigations were carried out to highlight several effects on the
dynamic response.

The fracture process of soda-lime glass under impact loading was investigated numer-
ically in the paper by Li and Wei [4], establishing a rate-dependent cohesive zone model
implemented in a commercial finite element code. The accuracy of the fracture model was
enhanced by taking into account the strain rate effect and the tensile-shear mixed mode
fracture. The paper proved that the rate-dependent cohesive zone model was more able to
describe the impact failure features of a monolithic glass plate if compared to a cohesive
zone model without the inclusion of the strain rate. The effects of strain rate sensitivity
coefficient, mesh size and impact velocity were also discussed in the research.

Gilewski and Pełczyński developed a four-noded finite element for the analysis of
thick plates made of (FG) materials [5]. A coordinate change based on NURBS functions
was used to describe arbitrarily shaped domains. Full coupling of the membrane and
bending states was included in the formulation, which was embedded in a commercial
finite element code. A good convergence characterized their finite element in dealing with
the analysis of nonhomogeneous FG plates.

The finite bending of prismatic hyperelastic solids was investigated in the paper
by Falope et al. [6] taking into account the anticlastic effect. The corresponding finite
element formulation was developed and the numerical results were compared with the
ones obtained analytically. The theoretical framework was fully nonlinear, assuming finite
displacements and deformations. Analogously, the constitutive law was based on the
Mooney–Rivlin nonlinear model for rubberlike materials. The analyses aimed at discussing
the Eulerian slenderness and the compactness index of the beam cross section, which were
involved in the definition of the Searle parameter for bent solids.

Gnoli et al. [7] discussed the validity of commercial finite element codes that imple-
ment the classical isotropic beam model for studying some equivalent composite configu-
rations. A simple approach to deal with composite beams as isotropic configurations was
developed by removing those complexities related to the modelling of composite materials
when 2D and 3D finite element approaches were used. To this aim, the stiffness matrix of
the equivalent isotropic beam was computed by means of an analytical approach valid for
various laminated configurations used in typical engineering applications.

Dunaj et al. [8] focused their research on the development of a methodology able to
model the natural frequencies, mode shapes, and receptance functions of machine tool steel
welded frames filled with strongly heterogeneous polymer concrete, by employing low-
dimensional models based on the rigid finite elements method (RigFEM). The numerical
solutions were validated with respect to the experimental results, highlighting the accuracy
of the proposed approach in terms of relative error.

Masonry structures in the plane stress state were the main topic of the paper by Bilko
and Małyszko [9]. In particular, their work dealt with orthotropic masonry at the material
level and presented the implementation of a continuum structural model for the analysis in
a finite element code. The mathematical elastoplasticity theory represented the theoretical
framework for developing the constitutive relations, assuming small displacements and
deformations. The authors proposed a generalization of the Hoffman orthotropic failure
criterion in the plane stress state.
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The study by Ito et al. [10] aimed at evaluating the internal stresses in marble slabs
experiencing bowing phenomenon due to thermal loading, taking into account the true
deformed shape in continuum media and defining the stress–strain relationship in the
hypothesis of finite displacements. The results obtained by means of a finite element based
procedure proved that that transient heat flux should induce higher stresses than just
applying greater gradients of temperature in steady flux, which could clarify the larger
decohesion through width occurring in bowing tests. They emphasized that previous
published results concerning the mechanical behavior of bowing based on classical beam
theories could turn out to be inadequate when the internal stresses were computed.

The paper by Rothe et al. [11] highlighted the enormous potentialities of additive
manufacturing, especially as far as the advanced acoustic design measures like Acoustic
Black Holes are concerned. They specified that the continuous alignment of the mechanical
impedance could be accomplished by means of the layer-wise material deposition by
setting different filling patterns and levels of filling which characterized the technique. To
this aim, experimental tests were carried out considering several configurations in order
to identify the material parameters in dependency on the frequency and the thickness. A
3D finite element model was developed for the parameter fitting, proving the reliability of
their results.

Finally, Mathern and Yang presented a modeling strategy and many practical rec-
ommendations for the finite element analysis in nonlinear regime of reinforced concrete
(RC) structures based on parametric studies of critical modeling choices [12]. The aim of
the paper was the reliable prediction of flexural responses of RC elements, focusing on
cracking behavior and crushing failure. These aspects should be taken into account when
more complex cases are modeled, such as RC beams bonded with fiber reinforced polymer
laminates. Their results were validated by means of experimental tests, as well.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In this paper, a 2-node beam element is developed based on Quasi-3D beam theory
and mixed formulation for static bending of functionally graded (FG) beams. The transverse
shear strains and stresses of the proposed beam element are parabolic distributions through the
thickness of the beam and the transverse shear stresses on the top and bottom surfaces of the
beam vanish. The proposed beam element is free of shear-looking without selective or reduced
integration. The material properties of the functionally graded beam are assumed to vary according
to the power-law index of the volume fraction of the constituents through the thickness of the beam.
The numerical results of this study are compared with published results to illustrate the accuracy
and convenience rate of the new beam element. The influence of some parametrics on the bending
behavior of FGM beams is investigated.

Keywords: beam element; Quasi-3D; static bending; functionally graded beam

1. Introduction

Functionally graded (FG) materials (FGM) are one of the advanced composites. In which the
material properties of FGM vary continuously through one or more directions. A typical, the material
properties of an FGM beam, plate and shell varies continuously through the thickness direction. Due
to their advantages, the FGMs have used widely in many fields such as civil, aerospace, automobile,
engineering, nuclear power plants and so on [1,2]. Since then, many scientists have been focused
on the mechanical analysis of FG beams, plates and shells. In which, they used several theories and
methods, for instance, analytical and numerical methods based on Euler-Bernoulli theory, Timoshenko
theory or first-order shear deformation theory (FSDT), higher-order shear deformation theory (HSDT),
Quasi-3D theory and Carrera Unified Formulation (CUF).

Sankar [3] developed an elasticity solution to analyze a simply supported FG beam subjected to
transverse distribution loading. In his work, Sankar developed new beam theory which was similar
to the Euler-Bernoulli beam theory. Zenkour [4] analyzed an exponentially graded thick rectangular
plate using both 2-D and 3-D elasticity solutions. Zhong et al. [5] analyzed a cantilever FG beam using
a general two-dimensional solution. The free vibration and buckling analysis of FG beams under
mechanical and thermal loads were investigated by Trinh et al. [6] using the analytical method based
on the state space approach and higher-order beam theory.

The Euler-Bernoulli beam theory ignores the shear deformation so that it provides an acceptable
solution for thin beams only; this model requires a C1 continuity for a compatible displacement

Materials 2019, 12, 2198; doi:10.3390/ma12132198 www.mdpi.com/journal/materials5
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formulation. Kien [7] used the Euler-Bernoulli beam model to analyze large displacement behaviors of
tapered cantilever FG beams by the finite element method. Lee et al. [8] applied Euler-Bernoulli beam
theory for free vibration analysis of FG beam using an exact transfer matrix expression.

Due to the shear deformation effects are more obvious in thick beams and plates, so the FSDT can
be used in these cases. On the other hand, it requires only C0 continuity for the deflection. One of the
shortcomings of the FSDT is the transverse shear strain distributes in an inaccurate and it does not
satisfy the stress-free boundary conditions at the top and bottom surfaces of the structures, so this
model requires a shear correction factor. Menaa et al. [9] used the energy equivalence principle to
derive a general expression for the static shear correction coefficients in FG beams. Modal analysis
of FG beams with shear correction function was studied by Murin et al. [10]. Nguyen et al. [11]
employed FSDT for static and free vibration of axially loaded FG beams. Nam et al. [12] investigated
the mechanical behaviors of variable thickness FG beam using modified FSDT. Due to the simplicity
and effectiveness of FSDT, many scientists have applied FSDT to analyze plates and beams, and it is
still being improved to achieve higher accuracy.

The shear correction coefficients can be removed by using HSDT, which have been developed
by many scientists. In this model, the transverse shear strain varies parabolically through the height
of the structures, and the transverse shear stresses at the top and bottom surfaces of the structures
are neglected so that it need not any shear correction coefficients. Shi [13] proposed a new simple
third-order shear deformation theory (TSDT) to analyze static bending of rectangular plates. Kadoli et
al. [14] used HSDT for static bending analysis of FG beams. Benatta et al. [15] studied static bending of
FG short beam involving the effects of warping and shear deformation. Li et al. [16] investigated static
bending and dynamic response of FG beams using HSDT. Thai et al. [17] applied various HSDT to
analyze static bending and free vibration of FG beams. Refined shear deformation was applied for
static bending and vibration analysis of FG beams by Vo et al. [18]. Tinh et al. [19] used finite element
method (FEM) and a new TSDT for mechanical response analysis of heated FGM plates.

Both FSDT and HSDT ignore the effect of the thickness stretching, which is noticeable in thick
beams and plates. A number of Quasi-3D theories have been developed, in which the effects of shear
deformation and thickness stretching were included. Vo et al. [20] used a Quasi-3D theory with only
four unknown components to investigate the static behavior of FG beams and FG sandwich beams.
Neves et al. [21,22] and Hebali [23] developed a Quasi-3D theory with sinusoidal shear function
and hyperbolic shear deformation theory to analyze the static bending and free vibration of FG
plates. Mantari et al. [24] studied static bending of advanced composite plates using a generalized
hybrid Quasi-3D shear deformation theory. Mantari et al. [25] used a four-unknown Quasi-3D shear
deformation theory for analysis of advanced composite plates. Thai et al. [26] presented a Quasi-3D
hyperbolic shear deformation theory for analysis FG plates. Fang et al. [27] applied Quasi-3D theory
and isogeometric analysis to study thick porous beams. Nguyen et al. [28] and Yu et al. [29] used
Quasi-3D theory and isogeometric analysis to investigate FG microplates and two-directional FG
microbeams. Farzam-Rad et al. [30] applied Quasi-3D theory and isogeometric analysis to study
FG plates based on the physical neutral surface. Tran et al. [31] employed a Quasi-3D model with
six-variable for static analysis of laminated composite plate using isogeometric analysis. The most
outstanding of Quasi-3D theory is applicable to analyze thick plates and beams where the normal
deformation effect is significant.

Carrera [32] developed Unified Formulation (CUF), which produces any refined theories for many
structures such as beams, plates, and shells. Cerrera et al. [33] applied CUF for free vibration finite
element analysis of beams with a uniform section. Cerrera et al. [34] employed CUF for studying
micropolar beams using an analytical method. The 1D CUF theories were applied to analyze FG beams
using FEM by Giunta et al. [35] and Filippi et al. [36].

However, in HSDT and Quasi-3D theory, the displacement field is considered by the existence of
the higher order derivative of the deflection of transverse. So that it involves the development of a C1

continuity element, which can cause difficulty to originate the second derivative of deformation in
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FEM. To overcome these continuity issues, Hermite interpolation functions with C1 elements and some
C0 approximations have been adopted. Chakraborty et al. [37] developed a new beam element based
on the FSDT and an exact solution of the static part of the governing differential equations for analysis
of FGM structures. Nguyen et al. [38] applied the Timoshenko beam model and FEM for dynamic
response of bi-directional FG beams subjected to moving load. Khan et al. [39] investigated the static
bending and free vibration of FG beams using FEM. Heyliger [40] developed a higher order beam finite
element for bending and vibration of beams. Kapuria et al. [41] studied bending behavior and free
vibration response of layered FG beams using a third order zigzag theory and FEM. Based on refined
shear deformation theory, Vo et al. [42] developed a finite element model to analyze free vibration and
buckling of FG sandwich beams. Moallemi-Oreh et al. [43] used FEM for stability and free vibration
analysis of the Timoshenko beam. Pascon [44] analyzed FG beams with variable Poisson’s ratio
using FEM. Yarasca et al. [45] studied FG sandwich beams using Hermite-Lagrangian finite element
formulation. The use of higher-order shape function will cost much computation effort in comparison
with linear shape function. Furthermore, the linear shape function is simpler in formulation and
transformation than higher-order shape function. However, plate and beam element using linear shape
function are mainly developed based on FSDT and HSDT. To author’s knowledge, there is currently no
beam element using linear shape function based on a Quasi-3D theory. Therefore, the development of
a beam element using linear shape function based on a Quasi-3D theory is necessary.

This paper presents a new beam element based on Quasi-3D theory, which only requires C0 shape
functions. The organization of this study is as follows. Firstly, Section 2 defines the model and material
properties of FG beams. In Section 3, the governing equations of FG beams based on Quasi-3D theory
are given. The finite element formulations of the proposed beam element are presented in Section 4.
In Section 5, some example problems are carried out to show the convergence and accurate rate of
new beam element in comparison with published data. Then, the static bending behaviors of FG
beams using the proposed beam element are studied. The influences of the distribution of materials
properties, length-to-thickness ratio, boundary conditions and effect of normal strain are investigated.
Finally, in the conclusion section, some remarks on the proposed beam element are given.

2. Functionally Graded Material

Consider an FG beam as shown in Figure 1, the length of the beam is L, the width of the beam is b,
and the thickness of the beam is h. The Young’s modulus varies continuously through the thickness of
the beams with a power law distribution [19,20]:

E(z) = Em + (Ec − Em)
( z

h
+

1
2

)p
(1)

in which subscript m denotes the metallic component and c denotes the ceramic component, Em, Ec are
respectively Young’s modulus of the metal and ceramic, p is the power-law index. In this study, the
Poisson’s ratios ν of both components are assumed to be constant and equal.

L

z y

h
x

Figure 1. The FG beam model.
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3. Governing Equations

The displacements of a point of the beam are expressed by{
u(x, z) = u(x) + f1(z)β(x) + f2(z)α(x)
w(x, z) = w(x) + g(z)ϕ(x)

(2)

The functions f1(z), f2(z) are given by Shi [13]

f1(z) =
5
4

(
z− 4z3

3h2

)
; f2(z) = − z

4
+

5z3

3h2 ; g(z) = f ′1(z) (3)

The strain field is obtained as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
εx = u,x + f1(z)β,x + f2(z)α,x

εz = g′(z)ϕ
γxz = w,x + f ′1ϕ,x + f ′1(z)β+ f2′(z)α

(4)

in which the symbol (,) means the derivatives with respect to the quantity following it and the symbol
(′) means the derivatives with respect to z direction.

Rewrite the strain components in the short form as follows

ε = ε0 + f1ε1 + f2ε2 + g′ε3 (5)

where

ε0 =

{
u,x

0

}
, ε1 =

{
β,x

0

}
, ε2 =

{
α,x

0

}
, ε3 =

{
0
ϕ

}
(6)

Rewrite the transverse shear strain γxz as follows

γxz = f ′1(γ0 + γ1) + f ′2γ2 , γ0 = ϕ,x , γ1 = w,x + β , γ2 = w,x + α (7)

The transverse shear strain is assumed to have a quadratic distribution across the thickness of
the beam. In addition, the transverse shear strain equals to zero at the top and bottom surfaces of the
beam. These conditions lead to

γ2 = w,x + α = 0
γxz = f ′1(z)(γ0 + γ1)

(8)

The constitutive relations between the stress field and the strain field are expressed as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
σx

σz

τxz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
C11 C13 0
C13 C33 0
0 0 C55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
εx

εz

γxz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9)

In this study, Young’s modulus E of FGM is a function of the coordinate, whereas, the Poisson’s ratio is
assumed to be constant and equal, the coefficients Cij vary with the position according to the following
formulas [17]

C11 = C33 =
E(z)

1− ν2 , C13 = νC11, C55 =
E(z)

2(1 + ν)
(10)

Equation (9) may be rewritten in the short form as

σ = Dε = D
(
ε0 + f1ε1 + f2ε2 + g′ε3

)
, τxz = f ′1Gγxz (11)

where

D =
E(z)

1− ν2

[
1 ν
ν 1

]
, G = C55 =

E(z)
2(1 + ν)

(12)

8
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4. Finite Element Formulation

The expression of the strain energy of the beam is

Π =
1
2

∫
V

(
εT.σ+ γxz.τxz

)
dV (13)

The expression of the variation of strain energy can be calculated as follows

δΠ =

∫
V

⎧⎪⎪⎨⎪⎪⎩
[
δε0 + f1δε1 + f2δε2 + g′δε3

]T
.D

(
ε0 + f1ε1 + f2ε2 + g′ε3

)
+δ(γ0 + γ1). f1′.G. f ′1.(γ0 + γ1)

⎫⎪⎪⎬⎪⎪⎭dV (14)

After integrating Equation (14) over the beam section and rewriting it in the matrix form, the
variation of the strain energy can be computed as

δΠ =

∫
L

(
δωTR + δγT

01T01
)
dx (15)

where R and T01 are given by

R = b
∫
z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D f1D f2D g′D

f1D f 2
1 D f1 f2D f1g′D

f2D f1 f2D f 2
2 D f2g′D

g′D g′ f1D g′ f2D g′g′D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε0

ε1

ε2

ε3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dz ,

T01 = b
∫
z

f ′1τdz =b
∫
z

(
f ′1
)2

Gγ01dz

(16)

and

δω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δε0

δε1

δε2

δε3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , δγ01 = δϕ,x + δw,x + δβ (17)

where

δε0 =

{
δu,x

0

}
, δε1 =

{
δβ,x

0

}
, δε2 =

{
δα,x

0

}
, δε3 =

{
0
δϕ

}
(18)

As consequence, Equation (16) can be rewritten as

R = Hω ; T01 = Hsγ01 (19)

where

H = b
∫
z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D f1D f2D g′D

f1D f 2
1 D f1 f2D f1g′D

f2D f1 f2D f 2
2 D f2g′D

g′D g′ f1D g′ f2D g′g′D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dz (20)

Hs = b
∫
z

(
f ′1
)2

Gdz (21)

In the current work, a two-node beam element is considered, each node includes five degrees of
freedom. The vector of displacement of node i-th is

{di} =
[

ui wi ϕi βi αi
]T

(22)

9
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The nodal displacement vector of the proposed beam element, U, is defined by

U =
[

u1 w1 ϕ1 β1 α1 u2 w2 ϕ2 β2 α2
]T

(23)

The isoparametric geometry on two nodes of new beam element and the nodal variables are
given by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = N1x1 + N2x2 u = N1u1 + N2u2

w = N1w1 + N2w2 ϕ = N1ϕ1 + N2ϕ2

β = N1β1 + N2β2 α = N1α1 + N2α2

(24)

For the mixed finite element formulation, the authors approve a quadratic interpolation for α, β
with parameters αm, βm and a constant shear resultant T01, which will be eliminated later.

α = N1α1 + N2α2 + Nmαm

β = N1β1 + N2β2 + Nmβm
(25)

T01 = T0 − F(x), δT01 = δT0, F(x) =

x∫
0

q(s)ds (26)

in which, the shape functions N1, N2 and Nm are defined as follows

N1 = 1−ξ
2 , N2 = 1+ξ

2 , Nm = N1N2 = 1−ξ2

4 (27)

where
ξ =

2x− L
L

, dξ =
2
L

dx, dx =
L
2

dξ (28)

The first equation in Equation (8) is imposed in integral form as following

L∫
0

γ2dx =

L∫
0

(w,x + α)dx = 0 (29)

Substitute α and w from Equations (24) and (25) into Equation (29), the parameter αm can be
deduced as

αm =
6
L

(
w1 −w2 − L

2
(α1 + α2)

)
= B f 0U (30)

where
B f 0 =

[
0 6

L 0 0 −3 0 −6
L 0 0 −3

]
(31)

Substitute Equations (24) and (30), into Equation (17), the strain variation vector, δω, can be
obtained as

δω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δε0

δε1

δε2

δε3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (32)

δε0 =

{
δu,x

0

}
, δε1 =

{
δβ,x

0

}
, δε2 =

{
δα,x

0

}
, δε3 =

{
0
δϕ

}
(33)

Using Equation (30), the variable α becomes

α =
∑

Niαi + Nmαm =
∑

Niαi + Nm
(
B f 0U

)
(34)

10
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Then

δε2 =

{
δα,x

0

}
=

{ ∑
Ni,xδαi

0

}
+

{
Nm,xB f 0δU

0

}
(35)

Using Equations (33) and (35), the strain variation Equation (32) can be expressed as follows

δω = BδU =
(
Bm f + B f

)
δU (36)

where
Bm f =

[
B1

m f B2
m f

]
(37)

B1
m f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,x 0 0 0 0
0 0 0 0 0
0 0 0 N1,x 0
0 0 0 0 0
0 0 0 0 N1,x
0 0 0 0 0
0 0 0 0 0
0 0 N1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×10

01×10

01×10

01×10

Nm,xB f 0
01×10

01×10

01×10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(38)

The shear strain variation δγ01 can be obtained as

δγ01 = δϕ,x + δw,x + δβ (39)

Rewrite Equation (39) into the matrix form as below

δγ01 = BsδU (40)

where
Bs =

[
0 N1,x N1,x N1 0 0 N2,x N2,x N2 0

]
(41)

Using Equation (25) the strain fields δε, δγ01 become

δω = BδU + Bmδβm , Bm =
[

0 0 Nm,x 0 0 0 0 0
]T

(42)

δγ01 = BsδU + Nmδβm (43)

The variation of strain energy Equation (15) becomes

δΠ =

L∫
0

(
δωTR + δγ01T01 + δT01

(
γ01 − T01

Hs

))
dx (44)

Substituting T01 = T0 − F , δT01 = δT0 into Equation (44) we get

δΠ =

L∫
0

(
δωTR + δγ01(T0 − F) + δT0

(
γ01 − T0 − F

Hs

))
dx (45)

δΠ =
L∫

0

(
δUTBTHBU + δUTBTHBmβm+

δβmBT
βmHBU + δβmBT

βmHBβmβm+

δUTBs
TT0 − δUTBs

TF + δβm
TNmT0 − δβm

TNmF+
δT0BsU + δT0Nmβm − δT0

1
Hs

T0 − δT0
−1
Hs

F
)
dx

(46)
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Rewritten Equation (46) in the matrix form

δΠ =

L∫
0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[
δUT δT0 δβm

] ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kuu KuT Kuβ

KT
uT KTT KTβ

KT
uβ KTβ Kββ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

U
T0

βm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fu

fT
fβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭dx (47)

where Kuu, KuT, Kuβ, KTT, KTβ, Kββ, fu, fT and fβ are calculated as follows

Kuu =

1∫
−1

BTHB
L
2

dξ =

1∫
−1

(
Bm f + B f

)T
H
(
Bm f + B f

)L
2

dξ (48)

KuT =

1∫
−1

BT
s

L
2

dξ (49)

Kuβ =

1∫
−1

BTHBβm
L
2

dξ (50)

KTT = −
1∫
−1

1
Hs

L
2

dξ (51)

KTβ =

1∫
−1

Nm
L
2

dξ (52)

Kββ =

1∫
−1

BT
βmHBβm

L
2

dξ (53)

fu =

L∫
0

NT
wqdx +

L∫
0

BT
s Fdx (54)

fT =
−1
Hs

L∫
0

F(x)dx (55)

fβ =

L∫
0

Nm(x)F(x)dx (56)

where
Nw =

[
0 N1 0 0 0 0 N2 0 0 0

]
(57)

The parameter T0 and rotation βm are then removed in two steps as below.
Step 1: eliminate rotation parameter βm

βm =
1

Kββ

(
fb −KT

uβU−KTβT0
)

(58)
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Substitute Equation (58) into Equation (47), we get

δΠ =

L∫
0

{[
δUT δT0

]([ K11 K12

KT
12 K22

][
U
T0

]
−

[
f1

f2

])}
dx (59)

where K11, K12, K22, f1 and f2 are expressed as

K11 = Kuu −KuβK−1
ββKT

uβ (60)

K12 = KuT −KuβK−1
ββKTβ (61)

K22 = KTT −KTβK−1
ββKTβ (62)

f1 = fu −KuβK−1
ββ fβ (63)

f2 = fT −KTβK−1
ββ fβ (64)

Step 2: eliminate the stress resultant constant T0

T0 = K−1
22

(
f2 −KT

12U
)

(65)

Substitute Equation (65) into Equation (59), the expression of the variation of strain energy is
manifested as

δΠ = δUT
(
K11 −K12K−1

22 KT
12

)
U− δUT

(
f1 −K12K−1

22 f2
)

(66)

The stiffness matrix of new beam element K is now calculated as

K = K11 −K12K−1
22 KT

12 (67)

The nodal load vector of the beam element is expressed as

f = f1 −K12K−1
22 f2 (68)

5. Numerical Results and Discussion

5.1. Convergence Study

In this subsection, some examples are given to determine the convergence rate of the proposed
beam element. A homogeneous beam with the width b = 1 m, Young’s modulus E = 29000 Pa,
Poisson’s ratio ν = 0.3 as in the work of Heyliger [40] is considered here.

Firstly, a cantilever beam subject to a concentrated load P = 100 N at the free end side is
considered. Secondly, a simply supported beam under a uniform load q = 10 N/m is investigated.
The numerical results for some cases of L/h ratios and number of elements are shown in Tables 1 and 2.
The numerical results are compared with results of Heyliger [40] using two-node beam C1 continuous
formulation element based on HSDT. The comparison shows that the new beam element has an
excellent convergence rate. Although the new proposed beam element uses linear shape functions, it
has a better convergence rate than that of the beam element using higher-order shape function, thus it
costs less effort and time of computation.

13
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Table 1. Comparison of maximum displacement for cantilever beams.

Length Height Source
Number of Elements

N = 2 N = 4 N = 8 N = 16

160 12 [40] 30.838 32.368 32.742 32.823
Present 31.566 32.191 32.509 32.666

80 [40] 3.9234 4.1105 4.1506 4.1567
Present 3.9987 4.0772 4.1160 4.1317

40 [40] 0.52266 0.54249 0.54540 0.54588
Present 0.52608 0.53570 0.53907 0.53880

12 [40] 0.023551 0.023741 0.023874 0.023931
Present 0.022902 0.022347 0.021967 0.021840

160 1 [40] 52968.0 55616.0 56278.0 56444.0
Present 54302.8 55380.8 55931.1 56206.2

80 [40] 6621.8 6952.9 7035.6 7056.3
Present 6788.5 6923.3 6992.0 7026.4

40 [40] 828.15 869.53 879.87 882.44
Present 848.88 865.73 874.33 878.62

12 [40] 22.513 23.627 23.897 23.953
Present 23.036 23.492 23.723 23.836

Table 2. Comparison of maximum displacement for simply supported beams.

Length Height Source
Number of Elements

N = 2 N = 4 N = 8 N = 16

160 12 [40] 19.779 20.529 20.691 20.717
Present 20.692 20.690 20.690 20.690

80 [40] 1.3011 1.3415 1.3478 1.3486
Present 1.3425 1.3422 1.3421 1.3421

40 [40] 0.096033 0.097481 0.097670 0.097703
Present 0.096067 0.096060 0.096022 0.096018

12 [40] 0.0022234 0.0022206 0.0022204 0.0022204
Present 0.0018828 0.0019482 0.0019524 0.0019523

160 1 [40] 33549.0 34873.0 35205.0 35287.0
Present 35302.9 35302.9 35302.9 35302.9

80 [40] 2097.7 2180.4 2201.1 2206.3
Present 2207.0 2207.0 2207.0 2207.0

40 [40] 131.31 136.49 137.77 138.08
Present 138.09 138.09 138.09 138.09

12 [40] 1.0860 1.1267 1.1351 1.1364
Present 1.1347 1.1346 1.1346 1.1346

5.2. Validation Study

Continuously, to confirm the accuracy of the proposed beam element, the static bending of an FG
beam subjected to a uniform load q is investigated. The FG beams made of two components, which
are Aluminum and Alumina. The material properties of Aluminum and Alumina are Em = 70 GPa,
Ec = 380 GPa, νm = 0.3, νc = 0.3. Two cases of slenderness ratios L/h = 5 and L/h = 20 of the FG
beams are considered. The displacements and stresses are calculated in the normalized form as.

For simply-simply (SS) and clamped-clamped (CC) supported beams

w∗ = 100Emh3

qL4
w
(L

2
, 0

)
(69)
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For clamped-free (CF) supported beams

w∗ = 100Emh3

qL4
w(L, 0) (70)

For axial, normal and shear stresses

σ∗x =
h

qL
σx

(
L
2

,
h
2

)
, σ∗z =

h
qL
σz

(
L
2

,
h
2

)
, σ∗xz =

h
qL
σxz(0, 0) (71)

The numerical results of dimensionless vertical displacement, normal stress and axial stress of
FG beam using proposed beam are compared with the results of Li et al. [16] and Vo et al. [20] using
analytical and finite element methods, which are given in Tables 3–7. The results in these tables
show that the solutions from the present theory are very close with the results from HSDT of Li et
al. [16] and Quasi-3D solutions of Vo [20] for different values of the power-law index, aspect ratio, and
boundary conditions.

Table 3. The maximum nondimensional vertical displacement of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Li et al. [16] = 0 3.1657 6.2599 8.0602 9.7802 10.8979
Vo [20] (Navier) � 0 3.1397 6.1338 7.8606 9.6037 10.7578
Vo [20] (FEM) � 0 3.1397 6.1334 7.8598 9.6030 10.7572

Present � 0 3.1388 6.1316 7.8570 9.5992 10.7526

20 Li et al. [16] = 0 2.8962 5.8049 7.4415 8.8151 9.6879
Vo [20] (Navier) � 0 2.8947 5.7201 7.2805 8.6479 9.5749
Vo [20] (FEM) � 0 2.8947 5.7197 7.2797 8.6471 9.5743

Present � 0 2.8938 5.7179 7.2770 8.6435 9.5698

Table 4. The nondimensional normal stress of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Vo [20] (Navier) � 0 0.1352 0.0670 0.0925 0.0180 −0.0181
Vo [20] (FEM) � 0 0.1352 0.0672 0.0927 0.0183 −0.0179

Present � 0 0.1351 0.0669 0.0924 0.0179 −0.0183

20 Vo [20] (Navier) � 0 0.0337 −0.5880 −0.6269 −1.1698 −1.5572
Vo [20] (FEM) � 0 0.0338 −0.5874 −0.6261 −1.1690 −1.5560

Present � 0 0.0337 −0.5880 −0.6270 −1.1696 −1.5570

Table 5. The nondimensional axial stress of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Li et al. [16] = 0 3.8020 5.8837 6.8812 8.1030 9.7063
Vo [20] (Navier) � 0 3.8005 5.8812 6.8818 8.1140 9.7164
Vo [20] (FEM) � 0 3.8020 5.8840 6.8860 8.1190 9.7220

Present � 0 3.7994 5.8793 6.8792 8.1101 9.7108

20 Li et al. [16] = 0 15.0130 23.2054 27.0989 31.8112 38.1372
Vo [20] (Navier) � 0 15.0125 23.2046 27.0988 31.8137 38.1395
Vo [20] (FEM) � 0 15.0200 23.2200 27.1100 31.8300 38.1600

Present � 0 15.0079 23.1970 27.0884 31.7987 38.1176
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Table 6. The nondimensional shear stress of FG SS beams.

L/h Source σz p=0 p=1 p=2 p=5 p=10

5 Li et al. [16] = 0 0.7500 0.7500 0.6787 0.5790 0.6436
Vo [20] (Navier) � 0 0.7233 0.7233 0.6622 0.5840 0.6396
Vo [20] (FEM) � 0 0.7291 0.7291 0.6661 0.5873 0.6439

Present � 0 0.7233 0.7233 0.6622 0.5839 0.6396

20 Li et al. [16] = 0 0.7500 0.7500 0.6787 0.5790 0.6436
Vo [20] (Navier) � 0 0.7432 0.7432 0.6809 0.6010 0.6583
Vo [20] (FEM) � 0 0.7466 0.7466 0.6776 0.6036 0.6675

Present � 0 0.7454 0.7457 0.6828 0.6022 0.6595

Table 7. The maximum nondimensional vertical displacement of FG CC and CF beams.

L/h
Boundary
Condition

Source p=0 p=1 p=2 p=5 p=10

5 CC Vo [20] 0.8327 1.5722 2.0489 2.6929 3.1058
Present 0.8367 1.5787 2.0568 2.7039 3.1193

CF Vo [20] 28.5524 56.2002 71.7295 86.1201 95.7582
Present 28.5743 56.2359 71.7607 86.1492 95.7903

20 CC Vo [20] 0.5894 1.1613 1.4811 1.7731 1.9694
Present 0.5894 1.1612 1.4806 1.7726 1.9689

CF Vo [20] 27.6217 54.6285 69.5266 82.4836 91.2606
Present 27.6087 54.6051 69.4911 82.4327 91.1965

Figure 2 displays the comparison of the distribution of vertical displacement along with the depth
of the FG beam with different values of the power-law index. It can be observed that the vertical
displacements are variable across the thickness of the beam and they are in good agreement with
published results of Li et al. [16] and Vo [20].

Figure 2. The comparison of the nondimensional transverse displacement w∗(L/2, z) across the depth
of FG SS beams subjected to a uniform load with L/h = 5.
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The distributions of shear stress and axial stress along the depth of FG beam are compared with
results of Li et al. [16] and Vo et al. [20] as in Figures 3 and 4. According to Figure 3, the shear stress
distribution is parabolic along with the thickness and asymmetric for the FG beams. From Figure 4,
the axial stress variation is not linear across the thickness of the FG beam, and its variation is linear
across the thickness for isotropic (full ceramic or full metal) beams only. In general, the values of the
axial stress do not equal to zeros at the mid-plane of the FG beams. Both shear stress variation and
axial stress variation through the thickness of the FG beam using the proposed beam element are in
remarkable agreement with those of Vo [20] using Quasi-3D theory.

According to the comparison, the results of the proposed beam element are very close actual
adjacent to the Li et al. [16] and Vo et al. [20] solutions. Therefore, the new beam element can be applied
to analyze FG beams.

 

 

Figure 3. The comparison of the nondimensional shear stress τ∗xz across the depth of FG SS beams
subjected to a uniform load for different values of p with L/h = 5.
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Figure 4. The comparison of the nondimensional axial stress σ∗x across the depth of FG SS beams
subjected to a uniform load for different values of p with L/h = 5.

5.3. Static Behaviour of FG Beams

In this subsection, an FG beam which is produced of Aluminum and Zirconium dioxide (Al/ZrO2)
under uniform distribution load q is investigated using proposed beam element. Various power-law
indexes, slenderness ratios and boundary conditions are considered. The material properties of Al
are Em = 70 GPa, νm = 0.3, and the material properties of ZrO2 are Ec = 200 GPa, νc = 0.3. The
non-dimensional formulas are applied as follows

w∗ = 100h3Em

qL4
w,σx∗ = h

qL
σx,σz∗ = h

qL
σz,σxz∗ = h

qL
σxz. (72)

In this study, some cases of boundary conditions are considered.
For the simply-simply supported (SS) beam: u = w = 0 at x = 0, L;
For the clamped-clamped supported (CC) beam: u = w = α = β = 0 at x = 0, L;
For the clamped-simple supported (CS) beam: u = w = α = β = 0 at x = 0, and u = w = 0 at

x = L;
For the clamped-free supported (CF) beam: u = w = α = β = 0 at x = 0.
The numerical results for bending behaviors of FG beams under uniform load are shown in

Tables 8–11 and Figures 5 and 6. Table 8 and Figure 5 shows the nondimensional maximum vertical
displacement of FG beams for some cases of boundary conditions, power-law index and different
values of the length-to-height ratio. To show more clearly the effect of the power-law index and
slenderness ratio, Figure 6 shows the dependence of nondimensional maximum vertical displacement
of FG beams on the continuous transformation of the power-law index and slenderness ratio. It shows
that the deflection of FG beams increases when increasing the power-law index. This can be explained
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that increasing the value of the power-law index leads to an increase in the component of metal in FGM,
so that the FG beam becomes more flexible. Furthermore, it can be observed that the nondimensional
maximum vertical displacement depends not only on the power law index, slenderness ratio but
also boundary conditions, which is more pronounced for CC and CS beams than SS and CF beams
Furthermore, it can be observed that the nondimensional maximum vertical displacement depends
on power-law distribution index, boundary conditions and the length-to-thickness ratio. In addition,
boundary conditions have more strongly effects on the deflection of CC and CS beams than those of SS
and CF beams.

Table 8. Nondimensional maximum vertical displacement of FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 5.9637 5.5917 5.4983 5.4684
1 9.4520 8.9008 8.7625 8.7182
2 10.8090 10.1178 9.9444 9.8888
5 12.1559 11.2427 11.0136 10.9402
10 13.1998 12.1936 11.9411 11.8602

CC 0 1.5898 1.2166 1.1200 1.0877
1 2.4783 1.9253 1.7823 1.7344
2 2.8903 2.2046 2.0270 1.9676
5 3.3827 2.4869 2.2545 2.1770
10 3.6885 2.7014 2.4453 2.3599

CS 0 2.8431 2.4121 2.3013 2.2650
1 4.4681 3.8293 3.6651 3.6114
2 5.1625 4.3680 4.1635 4.0966
5 5.9291 4.8883 4.6201 4.5323
10 6.4522 5.3055 5.0099 4.9132

CF 0 54.2912 52.8297 52.4566 52.3199
1 86.3563 84.1912 83.6384 83.4359
2 98.2871 95.5870 94.8959 94.6463
5 109.4815 105.9308 105.0199 104.6959
10 118.7523 114.8445 113.8429 113.4858

Table 9. Nondimensional axial stress σ∗x(L/2, h/2) of FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 3.7994 7.5229 15.0080 74.9791
1 5.1277 10.1431 20.2300 101.0602
2 5.6251 11.1138 22.1592 110.6870
5 6.3879 12.6061 25.1275 125.5017
10 7.2947 14.4105 28.7315 143.5145

CC 0 1.3158 2.5271 5.0069 24.9844
1 1.7824 3.4099 6.7496 33.6740
2 1.9604 3.7389 7.3948 36.8820
5 2.2314 4.2440 8.3871 41.8189
10 2.5409 4.8479 9.5884 47.8209

CS 0 1.9797 3.7881 7.4945 37.3702
1 2.6694 5.1069 10.1027 50.3710
2 2.9383 5.6014 11.0697 55.1718
5 3.3561 6.3638 12.5573 62.5539
10 3.8300 7.2728 14.3568 71.5291

CF 0 −3.7207 −7.5172 −15.0722 −75.4217
1 −5.0080 −10.1282 −20.3126 −101.6530
2 −5.4757 −11.0879 −22.2441 −111.3295
5 −6.1993 −12.5682 −25.2212 −126.2416
10 −7.0995 −14.3779 −28.8453 −144.3695
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Table 10. Nondimensional shear stress σ∗xz(0, 0) of the FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 0.7233 0.7370 0.7454 0.8112
1 0.7233 0.7370 0.7455 0.8143
2 0.6857 0.6989 0.7068 0.7660
5 0.6513 0.6640 0.6714 0.7199
10 0.6821 0.6954 0.7031 0.7536

CC 0 0.3330 0.1316 −0.2769 −4.4717
1 0.3322 0.1283 −0.2900 −4.7991
2 0.3060 0.1198 −0.2567 −4.1445
5 0.2809 0.1137 −0.2160 −3.3285
10 0.2937 0.1179 −0.2275 −3.4354

CS 0 0.3727 0.0596 −0.5617 −6.8939
1 0.3710 0.0544 −0.5814 −7.3858
2 0.3419 0.0525 −0.5203 −6.3910
5 0.3148 0.0542 −0.4483 −5.1543
10 0.3290 0.0550 −0.4717 −5.3222

CF 0 −0.2182 −1.5237 −4.0538 −29.8114
1 −0.2231 −1.5435 −4.1329 −31.7882
2 −0.2098 −1.4184 −3.7546 −27.6572
5 −0.1921 −1.2813 −3.3351 −22.5588
10 −0.2071 −1.3524 −3.5048 −23.3207

Table 11. Nondimensional normal stress σ∗z(L/2, h/2) of FG beams subjected to a uniform load.

Boundary Condition p L/h = 5 L/h = 10 L/h = 20 L/h = 100

SS 0 0.1351 0.0675 0.0337 0.0065
1 0.0499 −0.2005 −0.5512 −2.9963
2 0.0389 −0.2557 −0.6781 −3.6571
5 0.0375 −0.3064 −0.8035 −4.3225
10 0.0788 −0.2659 −0.7435 −4.0561

CC 0 0.1351 0.0675 0.0337 0.0065
1 0.1501 −0.0001 −0.1504 −0.9923
2 0.1611 −0.0112 −0.1890 −1.2118
5 0.1820 −0.0174 −0.2255 −1.4326
10 0.2145 0.0055 −0.2008 −1.3429

CS 0 0.1342 0.0657 0.0300 −0.0121
1 0.1217 −0.0535 −0.2554 −1.5158
2 0.1265 −0.0760 −0.3165 −1.8471
5 0.1405 −0.0942 −0.3763 −2.1831
10 0.1752 −0.0674 −0.3438 −2.0545

CF 0 0.1314 0.0601 0.0189 −0.0678
1 0.3459 0.3915 0.6329 2.9244
2 0.4008 0.4682 0.7696 3.5814
5 0.4653 0.5492 0.9077 4.2336
10 0.4791 0.5346 0.8575 3.9489
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(a) 

 
(b) 

 
(c) (d) 

Figure 5. Nondimensional maximum transverse deflection w∗max depends on the power-law index and
length-to-thickness ratio of FG beams subjected to a uniform load, (a) SS beams, (b) CC beams, (c) CS
beams and (d) CF beams.

 
(a) 

 
(b) 

Figure 6. Cont.

21



Materials 2019, 12, 2198

 
(c) (d) 

Figure 6. Nondimensional maximum transverse deflection w∗max as a function of the power-law index
and length-to-thickness ratio of FG beams subjected to a uniform load, (a) SS beams, (b) CC beams,
(c) CS beams and (d) CF beams.

Table 9 shows the nondimensional axial stress σ∗x(L/2, h/2) of FG beams subjected to a uniform
load depends on some parameters and boundary conditions. Table 7 and Figure 7 present the
distributions of nondimensional axial stress along with the depth of the SS and CC FG beams for
different values of the power-law distribution index. The most significant aspect of this figure is that
the axial stress distribution of FG beams is much more different from those of isotropic beams. As seen
from Table 7 and Figure 7, the axial stress variation is not linear along with the thickness of the FG
beams, the tensile stresses at the top are maximum. The values of the axial stresses do not equal to
zeros at the mid-plane of the FG beams. This indicates that the neutral plane of the FG beams does not
appear at the mid-plane, it is near the top face of the FG beams. This can be explained by the variation
of the modulus of elasticity across the depth of the FG beams.

 

(a) 

 

(b) 

Figure 7. Nondimensional axial stress σ∗x(L/2, z) through the thickness of FG beams subjected to a
uniform load with L/h = 5, (a) SS beams and (b) CC beams.

The non-dimensional shear stress distributions across the thickness of the beams made of FGM
with different values of the power-law distribution index and some cases of boundary conditions are
presented in Figure 8. The shear stresses of the full ceramic (isotropic) beams are symmetric about
the mid-plane of the beams. In addition, the shear stress distributions are greatly influenced by the
power-law index. In addition, Figure 8 shows the great dependence of the shear stress distribution on
the power-law index.
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(a) 

 
(b) 

Figure 8. Nondimensional shear stress τ∗xz(0, z) across the depth of FG beams subjected to a uniform
load with L/h = 5, (a) SS beams and (b) CC beams.

The non-dimensional normal stresses of the FG beams under uniform distribution load are shown
in Table 11, which highlight the effect of thickness stretching on bending behaviors of FG beam from
Quasi-3D theory. Due to the thickness stretching effect, the vertical displacement obtained from present
Quasi-3D theory is smaller than those of HSDT and FSDT.

The variation of the vertical displacement through the thickness of the FG beam for SS and CC
boundary conditions are shown in Figure 9. According to Figure 9, the difference among the present
Quasi-3D theory and other HSDT or FSDT is meaningful for thickness stretching. In this present
Quasi-3D theory, the vertical displacement is not constant through the thickness of the beams as in
HSDT and FSDT.

 
(a) (b) 

Figure 9. The distribution across the thickness of nondimensional vertical displacement of FG beam
subjected to a uniform load with L/h = 5, (a) SS beams and (b) CC beams.

Finally, to show more obviously the influence of normal deformation on the deflection of FG
beams, we suggest the deflection ratio which is well-defined as the fraction of transverse displacement
obtained by present Quasi-3D beam theory to that calculated by HSDT. The effect of normal deformation
on the deflection of SS and CC supported FG beams is exhibited in Figure 10 for different values of
power-law distribution index and slenderness ratio. Figure 10 shows that the deflection ratio is almost
smaller than unity. It shows that the deflection will be decreased when the normal deformation effect
is included. In the case of CC beams, there is a range of power-law index and slenderness ratio that
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causes the deflection ratio to be greater than unity, which represents that the normal deformation has
more affect strongly than bending and shear deformation in this case.

 
(a) (b) 

Figure 10. The deflection ratio of FG beams subjected to uniform load, (a) SS beams and (b) CC beams.

6. Conclusions

In this paper, a new efficient Quasi-3D beam element was developed for static bending analysis of
FG beams. Using mixed formulation, only C0 continuous shape functions are required for finite element
formulation of the new beam element. In addition, the new beam element presents the excellent results
of displacement and stress even for a coarse mesh. Therefore, the proposed beam element costs less
effort and time of computation than those using higher order shape functions, consequently, it can
be widely applied for complex structural analysis. The shear stresses vary parabolically across the
thickness of the FG beam, and equal to zeros at two free surfaces of beams, so it does not need any
shear correction factors. The new beam element includes shear deformation and normal deformation.
Effect of normal deformation is significant, and it should be considered in the static bending analysis
of FG beams, especially for medium and very thick FG beams. The numerical results of the FG beams
using the proposed beam element are in good agreement with other published results. The new beam
element is accurate and efficient for bending behavior of FG beams. The influences of some parameters
such as the power-law distribution index and length-to-thickness ratio are investigated.
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Abstract: Coal contains a large number of fractures, whose characteristics are difficult to describe in
detail, while their spatial distribution patterns may follow some macroscopic statistical laws. In this
paper, several fracture geometric parameters (FGPs) were used to describe a fracture, and the coal
seam was represented by a two-dimensional stochastic fracture network (SFN) which was generated
and processed through a series of methods in MATLAB. Then, the processed SFN image was able
to be imported into COMSOL Multiphysics and converted to a computational domain through the
image function. In this way, the influences of different FGPs and their distribution patterns on
the permeability of the coal seam were studied, and a finite element model to investigate gas flow
properties in the coal seam was carried out. The results show that the permeability of the coal seam
increased with the rising of fracture density, length, aperture, and with the decrease of the angle
between the fracture orientation and the gas pressure gradient. It has also been found that large-sized
fractures have a more significant contribution to coal reservoir permeability. Additionally, a numerical
simulation of CBM extraction was carried out to show the potential of the proposed approach in
the application of tackling practical engineering problems. According to the results, not only the
connectivity of fractures but also variations of gas pressure and velocity can be displayed explicitly,
which is consistent well with the actual situation.

Keywords: Monte Carlo method; coalbed methane; stochastic fracture network; fracture geometric
parameters; dual-porosity and dual-permeability media; finite element method

1. Introduction

Coal is a kind of porous medium with many fractures formed in it after a long-term geological
process. The existence of these weak structures has a great influence on the flow of coalbed methane
(CBM) that can not only lead to mine hazards but also provide a substantial source of energy in both
industry and households [1–3]. Therefore, it is of great significance to investigate the characteristics
of fractures and their internal gas flow properties for both CBM exploitation and gas outburst
prevention [4,5].

In terms of the investigation of flow in porous media, Darcy’s law was the earliest linear seepage
model to emerge [6,7]. Since its emergence, numerous experiments and theoretical investigations on
gas flow and transport properties in various porous media have been performed and reported for
single-phase, multiphase, saturated, and partially saturated domains [8–10]. However, because of
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the complex structure of porous media and the limitations of considering real geological conditions,
conventional experiments and theoretical achievements fail in describing the uncertainties of flow
and transport properties in porous media. For example, the continuous equivalent model averages
the permeability of reservoirs and overlooks the influence stemming from the discontinuity caused
by fractures [11,12]. This model is similar to the “black box” and its central problem is to solve the
permeability tensor. Obviously, it is not suitable for capturing some important mechanical behaviors
of fractured rocks, especially when some large-sized fractures exist. Barenblatt et al. have proposed
the dual medium model, though it is not suitable to describe the flow behavior of fractures [13].

With the increasingly used computer and simulation methods, many researchers have modeled
porous media using a discrete fracture network (DFN), which generally contains three categories
(geological-mapping-based DFN, geomechanically grown DFN, and stochastic fracture network
(SFN)) [14]. A DFN has advantages in the discretization of fracture networks and preservation of the
relationships between fractures and fracture sets compared to the extensively used lattice Boltzmann
method (LBM) in which fractures are discretized into cells or edges [15]. Geological-mapping-based
DFN illustrates fracture patterns from limited exposure of outcrops, boreholes, or tunnels [16].
Geomechanically grown DFN can reproduce natural fractures through a DFN simulator based on
paleostress conditions [17]. SFN is a simple and convenient DFN model generated from statistical
data of fracture network characteristics which applies various scale fractures [18]. Fracture network
characteristics can be described by FGPs, which basically comprise fracture density, length, aperture,
and orientation. These FGPs all have an obvious impact on the porosity and permeability of the whole
fracture structure [19–21]. However, due to the complexity of the stress environment, formation history,
and lithotype, the distribution patterns of FGPs in various areas and buried depths are different and
cannot be characterized by in situ observations or some conventional laboratory approaches including
nuclear magnetic resonance and mercury intrusion porosimetry. Micron computed tomography
scanning technology and scanning electron microscopy have limitations in the description of large-scale
fracture systems and the determination of fractures’ connectivity features [2,22]. Seismological surveys
may be able to assess and image large-scale structures but the current technology can hardly detect
widely-spreading medium and small fractures due to the resolution limit [23]. In contrast, SFN
modelling, as a probabilistic realization of a fracture network based on the theory of random processes
like the Monte Carlo method [24,25], provides an efficient way to generate fracture networks containing
differently distributed FGPs derived from field observations and measurements [26–32]. To date, SFN
modelling has been used in many fields such as civil, mining, enhanced geothermal systems, and water
resource engineering [33–40].

In the present work, even though the coal matrix is regarded as a homogeneous body with fixed
porosity and permeability, SFN is used to describe the fracture system of the coal seam, which can
reflect the relationships between fractures and describe the heterogeneity of the coal seam in a statistical
sense. Coming to the topic of this paper, although previous researchers have made great contributions
to solve engineering problems using the SFN model, few studies have directly combined it with
numerical simulation software to investigate engineering problems. The intention of this paper is
twofold. Firstly, a coal seam is represented by a two-dimensional SFN image. The pixels in the picture
represent fractures or the matrix and the image resolution determines the accuracy of the fracture size
(the higher the resolution is, the smaller the size of the fracture which can be generated). Secondly, a
finite element analysis of gas flow in the coal seam is carried out in COMSOL Multiphysics 5.4 on the
basis that an SFN image has been transformed to a computational domain. In this way, the temporal
and spatial distribution of gas velocity and pressure is able to be reflected more intuitively, which
provides a more efficient method to study the flow characteristics of CBM.

2. The CBM Industry with a Worldwide View

As a kind of unconventional natural gas, CBM has been exploited in about 30 countries, and
among them, the U.S. is the first and most successful country in CBM exploitation, with the largest
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production in the world throughout the given period shown in Figure 1b and the second largest
estimated CBM resources, which are at 49.2 Tcm, as shown in Figure 1a. According to the line graph
in Figure 1b, the U.S. saw a considerable increase in CBM production within the period 1989 to 2008.
However, after its production peaked at 55.67 Bcm in 2008, the figure had fallen to 28.88 Bcm by 2016.
This phenomenon may stem from three areas: the government provided effective policy support at
first, which greatly stimulated the commercial production of CBM; later, the average daily production
of single wells continued to decrease, which resulted in the economic benefits declining; and falling
natural gas prices led to a sharp drop in investment. The development history of the U.S. CBM industry
has important reference significance for other countries, including China.

  
(a) (b) 

Figure 1. (a) The bar chart compares the five highest ranking countries in terms of estimated coalbed
methane (CBM) resources. (b) The line graph shows CBM production of these five countries from 1989 to
2016, 2000 to 2015, 2000 to 2014, 2000 to 2014, and 2010 to 2014, respectively. Source: International Energy
Agency https://www.iea.org/ugforum/ugd/, U.S. Energy Information Administration, Washington,
DC https://www.eia.gov/dnav/ng/ng_prod_coalbed_s1_a.htm and National Development and Reform
Commission http://www.ndrc.gov.cn/zcfb/zcfbghwb/201112/t20111231_585486.html.

With considerable CBM resources estimated at almost 37 Tcm, as shown in Figure 1a, China has
great potential for CBM exploitation. Although it has started to exploit CBM commercially relatively
late, production statistical data shows that Chinese CBM production has increased significantly from 1
Bcm in 2000 to 20 Bcm in 2015, which reflects a similar trend to the U.S.’s figures in the early years, as
shown in Figure 1b. Compared to the large integrated network of CBM pipelines in the U.S., Australia,
and Canada, commercial utilization of CBM in China is localized with most production coming from
high-rank coals in the Ordos or Qinshui basins [41]. In terms of the geological conditions, Chinese CBM
reservoirs generally reflect low permeability (under 1 × 10−3 μm2), low gas pressure, low resource
abundance (under 1.3 × 108 m3/km2) and great buried depth (over 600 m) compared with the U.S.’s
CBM reservoir conditions (permeability over 2 × 10−3 μm2, resource abundance over 2 × 108 m3/km2,
and buried depth under 500 m) [42]. With these challenges faced with the development of the Chinese
CBM industry, it is of great importance to have a good understanding of CBM occurrence conditions
(especially pores and fractures within reservoirs, which have fundamental impacts on gas transport).

3. SFN Reconstruction and Processing

In this section, the basic theory for SFN generation, SFN image processing, and the techniques
adopted for transforming an SFN image into a computational domain are presented.
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3.1. Basic Theory and Method of SFN Reconstruction

The Monte Carlo method, which is known as a statistical simulation method, is based on the
large number theorem and the central limit theorem. The basic idea is that when the problem is the
probability of a random event, the probability of the random event is estimated by the frequency of
the occurrence of this event by some "experimental" method or some digital features of the random
variable. The main means of the Monte Carlo method is to use random numbers to carry out statistical
tests and produce random numbers that follow a certain distribution function, which basically contains
two steps:

(1) The linear congruence method is used to generate uniformly distributed random numbers in
[0,1] interval [22], i.e., {

xi+1 = (axi + c)mod(m)

ξi+1 =
xi+1

m
(1)

where xi+1 is a random variable corresponding to a random number ξi+1; a is a multiplier; c is the
increment; m is a modulus; mod(m) represents the remainder of the modulus; the subscript i is an
integer; and the initial value is zero.

(2) The obtained uniformly distributed random numbers are used to generate other random
numbers that are subject to different distributions based on statistical data (averages and standard
variances of FGPs).

Taking normal distribution as an example, the probability density function is expressed as

f (x) =
1√
2πσ

e−
(x−μ)2

2σ2 ,−∞ < x < +∞ (2)

Furthermore, the probability distribution function can be derived as

F(x) =
∫ x

−∞
f (t)dt =

1√
2πσ

∫ x

−∞
e

1
2 (

t− t−2

σ
)dt (3)

The random number of normal distribution can be obtained as

x = μx + σx
√
−2 ln ξ cos(2πξ) (4)

where x is a random number which is subject to normal distribution; and ξ is a random number of
uniform distribution in the [0,1] interval.

Four distribution functions in Table 1 and four FGPs of SFN (density (ρ), fracture length (l),
fracture aperture (d), and fracture direction (θ)) have been investigated in this paper. A single fracture
is represented by a straight line in SFN. The center coordinates of a fracture are (x0, y0) and center
points of all fractures are uniformly distributed in an SFN. By using Equation (5), the starting point and
endpoint coordinates of a fracture can be obtained. In addition, the number of fractures is determined
by fracture density, and the fracture orientation is defined by the angle from the X-axis rotated along
counter clockwise to the fracture. In this way, SFNs can be reconstructed.{

x = x0 ± ( l
2 ) cosθ

y = y0 ± ( l
2 ) sinθ

(5)
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Table 1. The probability density functions and corresponding random variables used in this work.

Distribution Probability Density Function Random Variable

Uniform f (x) = 1
b−a (a ≤ x ≤ b) xr = (b− a)ξ+ a

Normal f (x) = 1√
2πσ

e−
(x−μ)2

2σ2 xr =
√

12
n

(
n∑

i=1
ξi − n

2

)
σ+ μ

Exponential f (x) = 1
μ e−(x/μ)(x > 0) xr = −μ ln(1− ξ)

Lognormal f (x) = 1√
2πσx

e− 1
2 (

ln x−μ
σ )

2

(x > 0) xr = e

√
12
n (

n∑
i=1
ξi− n

2 )σ+μ

3.2. SFN Image Processing

For the sake of simplicity and to show the efficient use of such an SNF model in a numerical
simulation, the simulations were restricted to two-dimensional images in the present study. A series
of images representing fracture structures were obtained and processed through MATLAB 2016b for
reconstructing the coal reservoir. Figure 2a represents an SFN which has been processed for frame
removing, grey processing, binarization, and color reversion. The white regions depict fractures and
the black regions depict the coal matrix. Figure 2b processed by image function defines a continuous
computational domain for CBM flow simulation in COMSOL. Similarly, based on these steps, other
SFN images were processed to obtain different computational domains.

(a) (b) 

Figure 2. The process of transforming a stochastic fracture network (SFN) image to a computational
domain: (a) a stochastic fracture image generated and processed in MATLAB; (b) the same image
which has been imported into COMSOL through the image function.

3.3. Image function

The image function makes it possible to import an image to COMSOL and map the image’s RGB
data to a scalar (single channel) function output value. By default the function’s output uses the
mapping (R+G+B)/3. An image is defined on a two-dimensional domain, and we typically describe
the image function using spatial coordinates: im(x,y). According to Section 3.2, we made all the images
binarized, so im(x,y) = 0 or 1. If the area on the image represents the coal matrix (the red area in
Figure 2b), im(x,y) = 0, and where im(x, y) = 1 this represents fractures (the blue area in Figure 2b).
Therefore, the porosity and permeability of an SFN can be divided into two parts by the image
function using

ϕ =
(
ϕ f −ϕm

)
× im(x, y) + ϕm (6)

K =
(
K f −Km

)
× im(x, y) + Km (7)

where ϕ is the porosity of the SFN; ϕm is the porosity of the coal matrix; ϕf is the fracture porosity; and
K is the permeability of the SFN. Km is the permeability of the coal matrix and Kf is the permeability
of fracture.
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4. Numerical Simulation of Gas Flow in the Coal Seam

The basic assumptions, computational geometry, governing equations, and numerical techniques
adopted for investigating the influence of different FGPs on the permeability of the SFN are presented
in this section.

4.1. Basic Assumptions

In this study, the following basic assumptions were made:

(1) The coal seam is represented by an SFN and treated as a dual-porosity reservoir that is composed
of fractures and the coal matrix.

(2) FGPs consist of density, length, aperture, and orientation.
(3) The flow in the coal seam is a single phase and saturated Darcy flow.
(4) Gas absorption is described by the Langmuir law.
(5) Coupling effects of multiple physical fields are ignored.

4.2. Fracture Flow Model

Numerous investigations including theoretical analyses and numerical modeling about the flow
behavior in fractured rocks have been conducted with various rocks. Researchers have normally
assumed laminar flow in a single fracture with two fracture surfaces. According to the Navier-Stokes
equation, the average flow rate through a plane void can be calculated. It has been found that flow
transmissivity is proportional to the cube of the fracture aperture, which also known as the “cubic flow
equation” [43], i.e.,

q = − b3

12μ
dP
dx

(8)

where q is the flow rate of a fracture at a unit height in the Z direction (Figure 3); b is the fracture
aperture; and μ is the fluid dynamic viscosity.

 

l
b

h

X

Z

Y

Figure 3. Diagram of a 3D fracture in coal.

As shown in Figure 3, when the height of the fracture is h, the flow rate Q of the total rock cross
section can be described as

Q = hq = −Aϕ f b2

12μ
dP
dx

= −K f A

μ
dP
dx

(9)

where A is the area of the rock cross section.
Then the permeability of the fracture becomes:

K f =
ϕ f b2

12
(10)

In this work, b is the average value of the fracture aperture in the SFN and ϕf is defined by the
ratio of pixels representing fractures to total pixels.
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4.3. Governing Equations and Boundary Conditions

Based on the basic assumptions of the SFN model and ignoring gas adsorption, the continuity
equation of gas flow in the coal seam can be expressed as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇·
(
ρgV

)
= 0

V = −K
μ∇P

ρg =
MgP
RT

(11)

where ρg is the gas density; V is the gas velocity; μ is the dynamic viscosity of gas; P is the gas pressure;
Mg is molar mass of gas [kg/mol]; R is the gas constant [J/(mol·K)]; and T is the temperature of the coal
seam.

By substituting Equations (7) and (10) into Equation (11), the gas flow equation can be derived as:

∇·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
MgP
RT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
Km

(
ϕ f b2

12Km
− 1

)
im(x, y) + Km

μ
∇P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 (12)

The geometry of the fracture network and boundary conditions are shown in Figure 4. This
geometry was imported from the processed image, with dimensions along the X and Y axes being both
15 m. The gas flow is pressure driven with a constant pressure gradient maintained from the inlet to
the outlet.

Figure 4. The representative computational geometries used for the numerical study. All dimensions
are in meters.

4.4. Numerical Simulation Results

Based on the boundary conditions (Figure 4), combined with the parameters in Table 2, the
distribution features of gas pressure and velocity in the SFN were obtained through steady flow
computation in COMSOL, as shown in Figure 5. The gas pressure was seen to gradually decrease from
the inlet to the outlet, and the gas velocity in the fractures was much greater than that in the matrix.
Subsequently, the average value of the gas velocity at the outlet of the fracture network was able to be
obtained by integral and averaging (Figure 5b).
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Table 2. Parameters used for simulation.

Parameter Value

Gas dynamic viscosity (μ) 11.067 [Pa.s]
Matrix permeability (km) 0.02 [mD]

Matrix porosity (ϕm) 0.01
Gas pressure of inlet (P1) 1 [MPa]

Gas pressure of outlet (P2) 0 [MPa]
Coal seam temperature (T) 310 [K]

 
(a) 

 
(b) 

Figure 5. Numerical simulation results: (a) the spatial distribution features of gas pressure in the SFN;
(b) the distribution of the gas velocity in the whole network attached with gas velocity at the outlet of
the SFN.

5. Parametric Study

In this section, the purpose was to compare the permeability of different fracture networks without
obtaining their values. According to Darcy’s law of gas seepage in porous media (Equation (14)), the
permeability (K) is proportional to gas velocity (V) when all the other parameters are fixed. Hence, the
permeability was able to be compared by the variation of mean gas velocities obtained from velocity
curves like Figure 5b.

K =
2QPαμL

A(P2
1 − P2

2)
=

2VPαμL

P2
1 − P2

2

(13)
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where Pα is the standard atmospheric pressure and L represents the distance between the gas inlet and
the outlet in the direction of the gas pressure gradient.

To investigate the influences of FGPs on the permeability of the coal seam, a parametric study
was performed by varying every parameter and calculating the corresponding mean gas velocity at
the outlet of the SFN. The reference values of the FGPs are listed in Table 3. In this part, several groups
of SFN images are described in each subsection and the influences of fracture density, length, aperture,
and orientation on the permeability of the SFN are discussed respectively on the basis of making all
the FGPs subject to normal distribution. Additionally, impacts caused by the distribution of FGPs and
the combination of differently scaled fractures are studied. Every group of SFNs contains three SFN
images generated with all the same FGPs, and the average value of three simulation outcomes is taken
as a reference quantity.

Table 3. Reference values of fracture geometric parameters (FGPs).

Density (m−2)

Orientation (◦) Length (m) Aperture (m)

Mean
Standard
Deviation

Mean
Standard
Deviation

Mean
Standard
Deviation

3.2 10/100 3◦ 2.3 0.1 0.03 0.002

5.1. Influence of Fracture Density on CBM Flow

To find out the influence of fracture density on the permeability of the coal seam, other FGPs
have been kept the same as in Table 3. The mean gas velocity at the outlet of the SFNs generated
with different densities has been compared (Figure 6). It is easy to see that the connected region
increased obviously with the rising of the fracture density, which is more conducive to the flow of
gas. The increasing gas velocity indicates that the permeability of the coal seam increased with greater
fracture density.

 

Figure 6. Relationship between the density of fractures and the mean velocity of gas.

5.2. Influence of Fracture Length on CBM Flow

To investigate the influence of fracture length on the permeability of the SFN, the mean velocity of
gas at the outlet of the SFNs was compared by making the fracture length vary from 1.5 m to 3 m, as
shown in Figure 7, and keeping the other FGPs the same as that in Table 3. As shown in the graph, gas
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velocity increased gradually with the rising of the fracture length, which indicates that longer fracture
length can result in the increase of a reservoir’s permeability.

 

l

l

l

l

Figure 7. Relationship between the fracture length and the mean velocity of methane at the outlet.

5.3. Influence of Fracture Aperture on CBM Flow

By choosing different values of fracture aperture and the same other parameters shown in Table 3,
the influence of fracture aperture on the permeability of coal seam was investigated. According to
Figure 8, gas velocity rose considerably with the increase of the fracture aperture. This result from a side
illustrates that the permeability of the coal seam will increase as the fracture aperture becomes larger.

 

b

b

b

b

Figure 8. Relationship between the fracture aperture and the mean velocity of methane at the outlet.

As Figures 7 and 8 depict, gas velocity rose by approximately 5 × 10−6 m/s as the fracture length
increased from 1.5 m to 3 m. However, gas velocity rose by almost 7 × 10−6 m/s as the fracture aperture
increased from 0.01 m to 0.09 m. Thus, it can be concluded that the fracture aperture has a more
obvious effect on permeability than fracture length.
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5.4. Influence of Fracture Orientation on CBM Flow

Considering the symmetry of the SFN surface, it was feasible to choose fracture direction angles
of 10◦, 30◦, 50◦, 70◦, and 90◦ for the investigation. By making FGPs the same as that in Table 3 except
for the orientation, the mean velocity of gas at the outlet of SFNs with different fracture orientations
was compared (Figure 9).

 

Figure 9. Relationship between fracture orientation and the mean velocity of methane at the outlet.

The change of fracture orientation can be seen to not affect the flow capacity of the fracture
network, but it does change the direction of the gas flow. In the context of the present work, the
fracture orientation means the angle between the gas flow direction and the pressure gradient. As
shown in Figure 9, gas velocity decreased gradually with the increase in fracture direction angle, which
illustrates that the permeability of SFN became smaller.

5.5. Influence of Fracture Size on CBM Flow

According to long-term field and laboratory measurements and statistics of a newly exposed coal
face and collected coal samples, Fu et al. [44] proposed a comprehensive classification method of coal
seam fractures through statistical analysis of the fractures’ morphological characteristics. Fracture
size is divided into four grades: large fractures, middle fractures, small fractures, and micro fracture
(Table 4).

Table 4. Classification of coal fracture size.

Fracture Size Fracture Aperture (mm) Length (m) Density (m−1)

Large (L) >100 >10 1~10
Middle (M) 10~100 1~10 10~100

Small (S) 5~15 0.01~1 10~200
Micro (Mi) <10 0.01~0.1 20~500

In this work, seven groups of SFNs with different combinations of differently scaled fractures
have been researched. The fracture densities of the SFNs were all 1.6 m−2 and the other FGPs were
determined according to Table 4. Through numerical computation, gas velocities of each group SFN
were obtained (Figure 10). It is clearly shown that the larger proportion of larger scale fractures in
the SFN corresponded to greater gas flow velocity, which indicates that large scale fractures make a
dominating contribution to the permeability of the coal seam.
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Figure 10. Relationship between the combination of different fractures and the mean gas velocities at
the outlets of the SFNs.

5.6. Influence of Distribution Patterns of FGPs on CBM Flow

The distribution patterns of FGPs are reflected by distribution functions. Generally, distribution
patterns of different FGPs are not the same in the real case. In this paper, uniform distribution, normal
distribution, lognormal distribution, and exponential distribution were selected to study the influence
of different distribution patterns of FGPs on the permeability of the SFN, which correspond to four
groups of SFNs, with all the FGPs being set to follow one distribution function (Figure 11). The fracture
density SFNs were all 3.2 m−2, with the other FGPs kept the same as that in Table 3.

 

Figure 11. Comparison of gas velocities when FGPs are differently distributed.

The gas velocity curve (Figure 11) shows that when the FGPs were exponentially distributed, the
gas velocity was the largest, with lognormal distribution followed by normal distribution, and with
gas velocity being the smallest when the value of the FGPs was uniformly distributed.

In order to illustrate this result, a comparison of four probability density plots with the same mean
and variance of fracture length is taken as an example. As shown in Figure 12, normal distribution is
symmetric around the point x = μ, which is at the same time the mean of the distribution. Lognormal
distribution is a positive skew distribution with its peak shifted to the left and a long tail to the right
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side of the mean. When the standard deviation is small, lognormal distribution is shown to be very
close to normal distribution in the short term; however, lognormal distribution has more values of
fracture length distributed upward in the long run. For uniform distribution, the probability density
is constant within two boundaries and the value range of the fracture length is smaller compared
with the normal distribution. Relatively speaking, the probability density change of the exponentially
distributed fracture length is small, and the variable values are more widely distributed than that in
the lognormal distribution. Therefore, combined with the conclusion of the previous subsection, the
result of Figure 11 can be well supported.

 

Figure 12. The probability density distributions of fracture length with μ = 2.3 m; σ = 0.1 m.

6. CBM Extraction Simulation Based on SFN Modeling

In order to test the application in solving practical engineering problems through the proposed
approach, an SFN image with four scales of fractures was generated to represent the coal seam
(Figure 13a). Based on Section 4, a CBM extraction numerical simulation with consideration of gas
adsorption and desorption was carried out in this part. Boundary conditions and initial conditions
adopted in the simulation are shown in Figure 13b.

  
(a) (b) 

Figure 13. (a) The SFN generated for the gas extraction simulation; (b) the same image which has
been imported into COMSOL and for which a mesh containing 28,676 elements has been generated in
the computational domain. Boundary conditions and initial conditions have also been indicated in
the figure.
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In practical engineering applications, the data of FGPs are collected by field and laboratory
measurements and then the probability density functions are determined according to the fitting of
the data. For the sake of simplicity, we determined that the fracture lengths all obey a lognormal
distribution; the direction angles of the large and middle fractures obey a lognormal distribution;
the direction angles of the small and micro fractures obey an exponential distribution; and fracture
apertures at all scales follow a normal distribution. The specific values of the FGPs are shown in
Table 5. The numerical simulation parameters in COMSOL have been derived from Table 6.

Table 5. FGPs for coalbed reconstruction.

Fractures
Density

(m−2)

Orientation (◦) Length (m) Aperture (m)

Mean
Standard
Deviation

Mean
Standard
Deviation

Mean
Standard
Deviation

Large 0.03 45/135 3 11 0.5 0.11 0.01
Middle 1 45/135 3 2.3 0.1 0.03 0.002
Small 30 45 - 0.4 0.05 0.005 0
Micro 100 45 - 0.06 0.01 0.001 0

Table 6. Computational parameters in simulation.

Parameter Value

Gas density under standard conditions (ρgs) 0.716 [kg/m3]
Langmuir pressure constant (PL) 3.034 [MPa]
Langmuir volume constant (VL) 0.036 [m3/kg]

Density of coal skeleton (ρs) 1370 [kg/m3]

6.1. Governing Equations and Parameters

CBM content in the reservoir consisted of absorbed gas and free gas, which is defined as [45]

mg =
MgP
RT
ϕ f + ρgsρs

VLP
PL + P

(14)

where ρgs is the density of the gas under standard conditions; ρs is the coal skeleton density; VL is the
Langmuir volume constant; and PL is the Langmuir pressure constant.

Under the influence of the gas concentration and pressure gradient, the gas in the matrix is shown
to migrate into fractures. On the basis of mass conservation, Equation (15) is able to be obtained, i.e.,

∂mg

∂t
+ ∇ ·

(
ρgV

)
= 0 (15)

Substituting Equations (7), (10), and (14) into Equation (15), the gas migration equation in the coal
seam can be written as

∂
∂t

{ VLP
PL+Pρsρgs

}
+ ∂
∂t

(
ϕ f

Mg
RT P

)
+∇ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
Mg

⎛⎜⎜⎜⎜⎝ ϕ f b2

12Km −1

⎞⎟⎟⎟⎟⎠im(x,y)Km+MgKm

μRT P∇P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0
(16)

6.2. Simulation Results Analysis

Figure 14 gives information about the spatial and temporal distributions of gas pressure in the
coal seam at four points at the times 0, 10, 20, and 30 h. It is apparent that the gas pressure around
the borehole gradually decreased with time. The pressure decreased quickly near the borehole and
the decrease became slower as it moved away from the borehole. This phenomenon resulted in the
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pressure drop funnel forming around the borehole, which can also be observed in the line graph.
Figure 15 illustrates the gas velocity distribution in the coalbed at different times. It is noticeable
that the gas velocity in fractures was much larger than that in matrix. Gas velocity increased from
T = 0 h to T = 10 h and then decreased with the gas pressure becoming small. Additionally, the area
where the gas velocity changed obviously got larger first and then became smaller. The simulation
results show the characteristics of CBM flow during the process of gas extraction, which indicates that
SFN images combined with finite element analysis have great potential in the application of tackling
engineering problems.

Figure 14. Gas pressure distribution around the borehole at different times.
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Figure 15. Gas velocity distribution around the borehole at different times.

7. Conclusions

Traditionally, pore-fracture scale simulations are conducted using the lattice Boltzmann method.
However, in this work a relatively simple technique to show CBM migration through finite element
analysis, which is based on 2D SFN modeling and image function, has been proposed, in which the
dual-porosity medium coalbed is represented by an SFN image which can be generated by a self-built
program in MATLAB. Influences of different FGPs and their distributions on the permeability of SFN
were analyzed and a CBM extraction simulation in COMSOL was carried out. Although some limits,
such as generating SFNs without taking other FGPs like tortuosity and roughness into consideration,
difficulty in combining large scale fractures with nanoscale pores, and the absence of multi-field
coupling effects analysis, still exist, the proposed method provides an efficient way to research CBM
flow properties in the coal seam, which has great potential not only for gas-induced hazard prevention
but also CBM industry development. According to the present study, the following conclusions can
be drawn:

(1) Based on the Monte Carlo method, SFNs with different FGPs were able to be generated, with
the simulation results showing that the permeability of SFN increases with larger values of density,
length, and aperture, and smaller values of the angle between the fractures and gas pressure gradient.
The fracture aperture has a larger influence on permeability than fracture length according to the
variation range of gas velocity and the value of FGPs (Figures 7 and 8).

(2) The contribution order of different scales of fractures to the coal reservoir permeability from
large to small is: large-size fractures, middle-size fractures, small-size fractures, and micro fractures,
which also confirms the first conclusion because larger fracture size is shown to correspond to larger
trace length and aperture.

(3) The impacts on reservoir permeability of FGP distribution were examined. On the condition
that the values of all FGPs are kept the same, permeability ranking of SFNs from large to small is SFN
with exponentially distributed FGPs, with lognormally distributed FGPs, with normally distributed
FGPs, and with uniformly distributed FGPs.

(4) The gas extraction simulation can reflect CBM flow properties at each stage of the entire
extraction process, including the temporal and spatial variations of gas velocity and pressure, the
differences of gas velocity and pressure between fractures and coal matrix, and the gradually formed
gas pressure drop cone.
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Abstract: The paper aims to investigate the natural frequencies of sandwich plates by means of a
Finite Element (FE) formulation based on the Reissner-Mindlin Zig-zag (RMZ) theory. The structures
are made of a damaged isotropic soft-core and two external stiffer orthotropic face-sheets. These
skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are
reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included
in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and
on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of
the composite material. A non-uniform distribution of the reinforcing fibers is assumed along the
thickness of the skin and is modeled analytically by means of peculiar expressions given as a function
of the thickness coordinate. Several parametric analyses are carried out to investigate the mechanical
behavior of these multi-layered structures depending on the damage features, through-the-thickness
distribution of the straight fibers, stacking sequence, and mass fraction of the constituents. Some final
remarks are presented to provide useful observations and design criteria.

Keywords: three-phase composite materials; Finite Element modeling; sandwich plates; zig-zag
theory; carbon nanotubes; free vibrations

1. Introduction

Since its early development and the publication of the first research papers [1–6], the Finite
Element (FE) method has shown its potentiality in solving easily and accurately many structural
problems which could not be solved analytically. Nowadays, this feature is even more emphasized
by the great and continuous technological advancements reached in computer sciences in terms of
available computational resources. As highlighted in the books which can be certainly considered as
milestones in the development of the FE method [7–13], the easy implementation and the possibility
to reduce complex continuous problems into simpler discrete ones has encouraged its rapid spread
among many researchers and engineers [14–20].
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In the current paper, the FE technique is implemented in a computational code to solve the
free vibration analysis of three-layered sandwich plates with a damaged soft-core and non-uniform
mechanical properties. In particular, the structures are made by an isotropic core that undergoes a
progressive uniform damage, which is modeled as a decay of the mechanical properties expressed
in terms of engineering constants. The damage model is the one illustrated in the book by Lemaitre
and Chaboche [21], and it is representative of the formation of microcracks and discontinuities within
the considered medium. Since these defects are uniformly distributed and affect the central layer of
the plates independently from the direction, this phenomenon is known as “isotropic damage” and
it is fully described by a scalar parameter. Further details concerning the phenomenological aspects
related to the damage of materials can be found in the book by Reddy and Miravete [22], whereas
some structural applications which investigate the effect of damage are illustrated in [23–33].

The soft-core of the structures is surrounded and strengthened by two external sinks (or face-sheets),
which are stiffer and thinner than the central layer. These plies are made of a polymer matrix which
contains randomly oriented Carbon nanotubes (CNTs) and keeps together straight Carbon fibers.
The role of the matrix in composite materials is clearly illustrated in the books by Vinson [34], Jones [35],
Reddy [36], and Barbero [37]. These works should be taken into account as complete references for
the analysis and modelling of composite materials. As highlighted in the papers [38,39], the matrix
is reinforced at different levels. At the nano-scale, the CNTs provide the matrix with additional
stiffness [40–49]. The single fiber of Carbon nanotube (CNT) is modeled as a transversely isotropic
cylinder as suggested by Odegard et al. [50] and it assumed to be randomly oriented in the matrix,
following the approach developed in the paper by Shi et al. [51]. The Eshelby-Mori-Tanaka scheme is
applied at this level to evaluate the mechanical properties of this enriched matrix [52,53], which has
isotropic features due to the random orientation of CNTs [54]. On the other hand, the reinforcing phase
at the micro-scale is given by oriented straight fibers. The semi-empirical Halpin-Tsai homogenization
procedure [55–57], which is based on the use of the Hill’s elastic moduli [58,59], is employed at this level
to obtain an accurate estimation of the overall mechanical features of the composite skins. Therefore,
a multi-phase approach has been developed to this aim [60–63].

The development of micromechanics theories able to evaluate the mechanical features of
fiber-reinforced composites has always fascinated many researchers, as illustrated in a complete
manner by Chamis and Sendeckyj [64]. For completeness purposes, it should be recalled that different
methods can be found in the literature as alternatives to the Halpin-Tsai semi-empirical homogenization
procedure, such as self- consistent models [65,66], variational methodologies [67,68], and techniques
based on the mechanics of materials [69–71]. Further details can be found also in the papers [72,73].

With respect to previous contributions, the straight fibers are graded in the thickness direction.
In other words, the volume fraction distribution of the reinforcing fibers is non-uniform along the
thickness of the sinks. This approach is typically applied in the class of granular composites, also
known as Functionally Graded (FG) materials, to characterize the gradual variation of isotropic
constituents [74–80]. On the other hand, in this research the graded constituent is represented by
the orthotropic reinforcing fibers, which can be also arbitrarily oriented in the planar direction.
A power-law function is used to characterize the through-the-thickness variation of their volume
fraction. FG materials are typically used as constituents in plates and shells [81–86], beams [87,88],
micro- and nano-structures [89–91].

Thus, it should be noted that the plates are characterized by noticeable differences in terms of
mechanical properties at the layer interfaces. For this reason, a suitable structural model must be
introduced to describe accurately their mechanical behavior. As clearly highlighted in the papers
by Carrera [92–96], laminated and sandwich structures are characterized by a piece-wise continuous
displacement field along the thickness direction. The differences in terms of transverse deformability
among the layers give rise to a change in the slope of the displacement components between two adjacent
layers. This outcome is known as zig-zag effect. As specified in [97–99], this effect is well-captured by
Layer-Wise (LW) models, in which the degrees of freedom are assumed as independent parameters
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along each layer. Nevertheless, this approach is quite onerous in terms of computational resources.
Effective and accurate solutions can be obtained more easily by introducing the Murakami’s function in
the displacement fields of Equivalent Single Layers (ESL) models, in which all the degrees of freedom
are defined within the reference surface of the structure independently from the number of layers.
The Murakami’s function, in fact, is able to capture the zig-zag effect in an accurate manner without
increasing excessively the computations [100]. In general, classical models for laminated structures,
such as the well-known Reissner-Mindlin (RM) theory, are not able to take into account this effect.
Nevertheless, these theories could be also enhanced by adding the Murakami’s function in their
kinematic models. The results that can be obtained are accurate and the computational cost is reduced,
if compared to the one that characterizes higher-order ESL or LW models [92]. Therefore, in the present
paper the in-plane displacement field of the RM model is enriched by the Murakami’s function in
order to capture the effective behavior of sandwich plates with damaged soft-core and non-uniform
mechanical properties. It should be mentioned that further details concerning Zig-zag theories can be
found in the review paper by Carrera [94].

Finally, a brief description of the research outline is presented. The geometric and
mechanical characterization of the plates are illustrated after this introduction in Section 2.
In particular, the multi-phase approach including the Eshelby-Mori-Tanaka scheme and the Halpin-Tsai
homogenization procedure is described to provide the mechanical properties of the skin. In the same
Section, the damage model is introduced for the isotropic soft-core. On the other hand, Section 3 is
focused on the theoretical aspects of the Reissner-Mindlin Zig-zag (RMZ) theory. The corresponding FE
model is developed, and the fundamental system of equations is deducted by means of the Hamilton’s
principle [36,101]. The results of the numerical applications are presented in Section 4. Here, the effect
of the Murakami’s function is discussed by means of the comparison between the RM and RMZ
approaches, and the proposed model is validated as well. Then, several applications are illustrated to
investigate the effects of the progressive damage, the non-uniform distribution of the fiber volume
fraction, the in-plane fiber orientation, and the material properties on the natural frequencies of the
structures and on their corresponding mode shapes. Finally, the matrix form of the fundamental
operators required in the governing equations are defined in Appendix A.

2. Geometric and Mechanical Characterization

The paper is focused on the vibrational behavior of laminated sandwich plates with an inner
damaged soft-core. The plates under consideration are characterized by a planar size given by the
lengths of their sides Lx, Ly, in which x, y denote the principal directions of the local reference system.
The extension along the coordinate z is specified by the overall thickness h of the composite structures,
which is given by h = 2hs + hc, where hs stands for the thickness of the external face-sheets and hc is
the thickness of the core. Thus, the plates consist in three layers, in which the external ones are made of
orthotropic materials and have the same thickness whereas the central one is isotropic. The upper and
lower thickness coordinates of the generic k-th ply are denoted by zk+1, zk, respectively. The geometric
features of a plate element are shown in Figure 1.

The mechanical characterization of the k-th layer is carried out in terms of the engineering constants
of the orthotropic material, which are the Young’s moduli E(k)

11 , E(k)
22 , the shear moduli G(k)

12 , G(k)
13 , G(k)

23 ,

and the Poisson’s ratio ν(k)12 . As far as the isotropic core is concerned (k = 2), only two independents

parameters are needed, which are the Young’s modulus E(k) = E(k)
11 = E(k)

22 and the Poisson’s ratio

ν(k) = ν
(k)
12 , whereas its shear modulus G(k) = G(k)

12 = G(k)
13 = G(k)

23 is given by:

G(k) =
E(k)

2
(
1 + ν(k)

) . (1)
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In the following sections, the evaluation of these engineering constants is discussed for both the
external layers and the soft-core. It should be specified that a perfect bonding is assumed between two
adjacent layers in the proposed model.

Figure 1. Geometric features of a laminated sandwich plate with an inner damaged soft-core.

2.1. Mechanical Properties of the Face-Sheets

A multiscale approach is employed to evaluate the overall mechanical properties of the three-phase
composite face-sheets [38,39]. These layers are made of fiber-reinforced materials, which means that a
polymer matrix (epoxy resin) is strengthened by oriented straight fibers (Carbon fibers). The third
constituent is given by randomly oriented Carbon nanotubes (CNTs), which are inserted in the matrix
and are used to further increase its mechanical features. The overall properties are computed by means
of a two-step approach. Firstly, the Eshelby-Mori-Tanaka scheme is applied to obtain the properties of
the epoxy resin including CNTs [52,53]. At this stage, the composite turns out to be isotropic due to the
fact that the nanoparticles are randomly oriented, as illustrated in the paper by Shi et al. [51]. Then,
the Halpin-Tsai approach is applied to combine the features of the enriched matrix with the properties
of the reinforcing straight fibers [55–57].

At the nano-scale level, the single fiber of CNT is modeled as a linear-elastic, transversely isotropic
and homogeneous cylindrical solid, as proposed in the paper by Odegard et al. [50]. Its mechanical
properties are described by five parameters, which are the Hill’s elastic moduli [58,59], defined as
kC, lC, mC, nC, pC. Its density ρC is required to compute the volume fraction of CNTs VC as follows:

VC =

(
ρC

wCρM
− ρC

ρM
+ 1

)−1

, (2)

where ρM represents the density of the polymer matrix, whereas wC stands for the mass fraction of
CNTs. A uniform distribution of CNTs is assumed in each layer along the thickness direction. It should
be recalled that the matrix volume fraction is given by VM = 1−VC. The polymer matrix is isotropic,
and it is fully characterized by its Young’s modulus EM and Poisson’s ratio νM. In the following, its
bulk modulus KM and shear modulus GM are required in order to apply the Eshelby-Mori-Tanaka
approach [52,53]. The following definitions are needed for this purpose:

KM =
EM

3(1− 2νM)
, GM =

EM

2(1 + νM)
. (3)
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These quantities are noticeably affected by the presence of randomly oriented CNTs. As illustrated
in the paper by Shi et al. [51], if the agglomeration of CNTs is neglected, the bulk modulus K∗M and the
shear modulus G∗M of the enriched matrix are given by:

K∗M = KM +
VC(δC − 3KMαC)

3(VM + VCαC)
, G∗M = GM +

VC(ηC − 2GMβC)

2(VM + VCβC)
, (4)

where the following quantities, which can be computed by defining the Hill’s elastic moduli of CNTs,
are introduced:

αC =
3(KM+GM)+kC+lC

3(GM+kC)
,

βC = 1
5

(
4GM+2kC+lC

3(GM+kC)
+ 4GM

GM+pC
+

2(GM(6KM+8GM))
GM(3KM+GM)+mC(3KM+7GM)

)
,

δC = 1
3

(
nC + 2lC +

(2kC+lC)(3KM+GM−lC)
GM+kC

)
,

ηC = 1
5

(
2
3 (nC − lC) +

8GMpC
GM+pC

+
2(kC−lC)(2GM+lC)

3(GM+kC)
+

8mCGM(3KM+4GM)
3KM(mC+GM)+GPM(7mC+GM)

)
.

(5)

Finally, the evaluation of K∗M and G∗M allows to compute the Young’s modulus E∗M and the Poisson’s
ratio ν∗M of the polymer matrix enriched by CNTs:

E∗M =
9K∗MG∗M

3K∗M + G∗M
, ν∗M =

3K∗M − 2G∗M
6K∗M + 2G∗M

, (6)

whereas its density is given by:
ρ∗M = (ρC − ρM)VC + ρM. (7)

The mechanical properties of a single CNT fiber in terms of its Hill’s elastic moduli, as well as its
density, are listed in Table 1. Such properties are valid for a single-walled Carbon nanotube with 10 as
chiral index and armchair structure. Further details about the mechanical characterization of CNT can
be found in [38].

Table 1. Mechanical properties of a single CNT fiber.

Hill’s Elastic Moduli Density

kC = 271 GPa

ρC = 1400 kg/m3
lC = 88 GPa
mC = 17 GPa

nC = 1089 GPa
pC = 442 GPa

In order to apply the Halpin-Tsai approach that allows to compute the overall mechanical
properties of the composite given by this enriched matrix including straight Carbon fibers, the Hill’s
elastic moduli of the matrix k∗M, l∗M, m∗M, n∗M, p∗M are needed. For this purpose, the following definitions
are introduced:

k∗M =
E∗M

2(1+ν∗M)(1−2ν∗M)
, l∗M = 2ν∗Mk∗M, m∗M =

(
1− 2ν∗M

)
k∗M,

n∗M = 2
(
1− ν∗M

)
k∗M, p∗M =

(
1− 2ν∗M

)
k∗M.

(8)

Analogously, the Hill’s elastic moduli of the Carbon fibers kF, lF, mF, nF, pF are required.
The reinforcing fibers are assumed as transversely isotropic and their mechanical properties are
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given by the corresponding Young’s moduli EF
11, EF

22, shear modulus GF
12 and Poisson’s ratios νF

12, νF
23.

Once these quantities are known, the Hill’s elastic moduli can be easily evaluated:

kF =
EF

22
2(1−νF

23−2νF
21ν

F
12)

, lF = 2νF
12kF, mF =

1−νF
23−2νF

21ν
F
12

1+νF
23

kF,

nF = 2
(
1− νF

23

)EF
11

EF
22

kF, pF = GF
12,

(9)

where νF
21 = EF

22ν
F
12/EF

11. As shown in the previous step, the density of the fibers ρF is required to
compute the reference value of the corresponding volume fraction ṼF, once their mass fraction wF

is defined

ṼF =

(
ρF

wFρ∗M
− ρF

ρ∗M
+ 1

)−1

. (10)

Such constant quantity can be multiplied by a peculiar function f (k)(z) which depends on the
thickness coordinate z. Consequently, the volume fraction distribution of the fibers VF is given by
VF = VF(z) = ṼF f (k)(z) and it is clearly non-uniform along the thickness of the face-sheets.

In the current paper, two different functions f (k)(z) are introduced to specify the volume fraction
distribution VF. It should be noted that they can be chosen arbitrarily in the two face-sheets of the
sandwich structures under consideration. Power-law functions are used to this aim and the definitions
of f (k)(z) are specified below:

f (k) =

⎧⎪⎪⎨⎪⎪⎩ f (k)1 (z) =
( z−zk

zk+1−zk

)α
f (k)2 (z) =

( zk+1−z
zk+1−zk

)α (11)

where α represents the arbitrary exponent of the distributions. As shown in Figure 2, several
configurations can be obtained according to the value given to α ∈ [0,∞]. It should be noted that the
extreme values of α, which correspond to the constant values f (k) = 0, f (k) = 1, are able to characterize
a uniform distributions of the fiber along the thickness or their absence (as a consequence, the polymer
matrix is the only constituent of the layer).

(a) (b) 

Figure 2. Through-the-thickness representation of the function f (k) employed to characterize the
volume fraction distribution of the fibers in the k-th layer of the plate, for increasing values of the

exponent α: (a) f (k)1 ; (b) f (k)2 .
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At this point, the Halpin-Tsai approach can be applied to obtain the Hill’s elastic moduli of the
composite layers, which are denoted by k, l, m, n, p:

k =
k∗M(kF+m∗M)V∗M+kF(k∗M+m∗M)VF

(kF+m∗M)V∗M+(k∗M+m∗M)VF
,

l = VFlF + V∗Ml∗M +
lF−l∗M
kF−k∗M

(
k−VFkF −V∗Mk∗M

)
,

m = m∗M
2VFmF(k∗M+m∗M)+2V∗MmFm∗M+V∗Mk∗M(mF+m∗M)
2VFm∗M(k∗M+m∗M)+2V∗MmFm∗M+V∗Mk∗M(mF+m∗M)

,

n = VFnF + V∗Mn∗M +
(

lF−l∗M
kF−k∗M

)2(
k−VFkF −V∗Mk∗M

)
,

p =
(pF+p∗M)p∗MV∗M+2pFp∗MVF

(pF+p∗M)V∗M+2p∗MVF
,

(12)

being V∗M = 1 − VF. The engineering constants of these layers can be evaluated according to the
following definitions:

E(k)
11 = n− l2

k
, E(k)

22 =
4m

(
kn− l2

)
kn− l2 + mn

, ν
(k)
12 =

l
2k

, G(k)
12 = G(k)

13 = p, G(k)
23 = m . (13)

The introduction of the function f (k)(z) in the definition of VF causes the dependency on the
thickness coordinate z of each engineering constant specified in Equation (13). Therefore, one gets
E(k)

11 (z), E(k)
22 (z), ν

(k)
12 (z), G(k)

12 (z), G(k)
13 (z) and G(k)

23 (z), for k = 1, 3. Finally, the density of the composite
face-sheets is given by:

ρ(k) =
(
ρF − ρ∗M

)
VF + ρ

∗
M . (14)

In the following, the same constituents are used in the external layers assuming also the same
values of the mass fractions of both CNTs and fibers. The relation ν(k)21 = E(k)

22 ν
(k)
12 /E(k)

11 is also required

to compute the Poisson’s ratio ν(k)21 . As emphasized in the introduction and illustrated in the paper [38],
different approaches and homogenization techniques could be used to the same aim. For instance,
the rule of the mixture represents the most exploited methodology.

2.2. Mechanical Properties of the Damaged Matrix

The core of the sandwich structures considered in the paper is made of the same polymer matrix
used in the face-sheets. Nevertheless, a damage model is introduced to provide an analytical description
of an irreversible rheological process that causes the decay of the mechanical properties, in terms of
engineering constants. An isotropic damage is considered in the following, which is fully characterized
by a scalar D as illustrated in the book by Lemaitre and Chaboche [21]. The elastic modulus of the
damaged material is given by:

E(k) = (1−D)EM (15)

for k = 2, in which EM is the original value of matrix Young’s modulus, for 0 ≤ D < 1 It is clear that
D = 0 identifies a virgin material, whereas a fully damaged material is characterized by D = 1. Having
in mind relation (1), the shear modulus is subjected to the same damage. On the contrary, the Poisson’s
ratio ν(k) = νM and the density ρ(k) = ρM of the core (k = 2) are kept constant. Finally, it should be
specified that the damage does not depend on the spatial coordinates and affects uniformly the core.
For conciseness purposes, the mechanical properties of the undamaged epoxy resin and the Carbon
fibers are summarized in Table 2.
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Table 2. Mechanical properties of the layer constituents.

Constituent Young’s Moduli Shear Moduli Poisson’s Ratios Density

Carbon fibers
EF

11 = 230 GPa GF
12 = 50 GPa νF

12 = 0.20
ρF = 1800 kg/m3

EF
22 = 15 GPa νF

23 = 0.25

Epoxy resin EM = 3.27 GPa − νM = 0.38 ρM = 1200 kg/m3

3. Finite Element Model Based on A First-Order Zig-Zag Plate Theory

A linear theory is used to model the mechanical behavior of sandwich plates with an inner
soft-core. With respect to the well-known Reissner-Mindlin (RM) theory, the in-plane expansion is
enriched by two more degrees of freedom, which are able to capture the zig-zag effect [92–96]. Here,
the corresponding (FE) formulation is presented. The displacement field for the generic e-th element is
given by:

U(e)
x (x, y, z, t) = u(e)

x (x, y, t) + zφ(e)x (x, y, t) + Fz(z)ψ
(e)
x (x, y, t)

U(e)
y (x, y, z, t) = u(e)

y (x, y, t) + zφ(e)y (x, y, t) + Fz(z)ψ
(e)
y (x, y, t)

U(e)
z (x, y, z, t) = u(e)

z (x, y, t)

(16)

in which the three-dimensional displacement components are denoted by U(e)
x , U(e)

y , U(e)
z . The spatial

coordinates of the plate are given by x, y, z, as shown in Figure 1, whereas t is the time variable.
The zig-zag effect is modeled by means of the Murakami’s function Fz(z) defined below for a
multilayered structure:

Fz = (−1)k 2z
zk+1 − zk

− zk+1 + zk

zk+1 − zk
(17)

where k identifies the generic layer. This function allows to introduce a discontinuity in the slope of the
three-dimensional displacements Ux

(e), Uy
(e) along the thickness direction at each layer interface. Its

meaning is well-described in the papers by Carrera [94]. It should be noted that the current model
is characterized by seven degrees of freedom per node, two more than the classical RM approach.
In particular, u(e)

x , u(e)
y , u(e)

z represent the translational displacements along x, y, z, φ(e)x ,φ(e)y are the

rotations about the principal axes y, x respectively, whereas ψ(e)x ,ψ(e)y denote the magnitude of the
zig-zag effect. A nine-node quadratic rectangular element is used to develop the FE formulation
and each degrees of freedom is approximated by means of Lagrange interpolating functions Ni, for
i = 1, . . . , 9. The node numbering is illustrated in Figure 3.

φ

φ

φ φ

ψ ψ

φ φ ψ ψ

Figure 3. Discrete element: Node numbering and natural coordinates.

54



Materials 2019, 12, 2444

Due to this approximation, the degrees of freedom can be written as a function of the corresponding
nodal displacements u(e)

x,i , u(e)
y,i , u(e)

z,i ,φ(e)x,i ,φ(e)y,i ,ψ(e)x,i ,ψ(e)y,i :

u(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
x,i (t) = Nu

(e)
x

u(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
y,i (t) = Nu

(e)
y

u(e)
z (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
z,i (t) = Nu

(e)
z

φ
(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)x,i (t) = Nφ
(e)
x

φ
(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)y,i (t) = Nφ
(e)
y

ψ
(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)ψ(e)x,i (t) = Nψ
(e)
x

ψ
(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)ψ(e)y,i (t) = Nψ
(e)
x

(18)

where N =
[

N1 · · · N9
]

is the vector of the Lagrange interpolating functions. Analogously,
the nodal displacements are defined in vector form as follows:

u
(e)
x =

[
u(e)

x,1 · · · u(e)
x,9

]T
, u

(e)
y =

[
u(e)

y,1 · · · u(e)
y,9

]T
, u

(e)
z =

[
u(e)

z,1 · · · u(e)
z,9

]T
,

φ
(e)
x =

[
φ
(e)
x,1 · · · φ(e)x,9

]T
, φ

(e)
y =

[
φ
(e)
y,1 · · · φ(e)y,9

]T
,

ψ
(e)
x =

[
ψ
(e)
x,1 · · · ψ(e)x,9

]T
, ψ

(e)
x =

[
ψ
(e)
y,1 · · · ψ(e)y,9

]T
.

(19)

This notation is useful to define the vector u(e) which includes all the nodal degrees of freedom:

u(e) =
[

u
(e)
x u

(e)
y u

(e)
z φ

(e)
x φ

(e)
y ψ

(e)
x ψ

(e)
y

]T
(20)

The interpolating functions Ni assume the well-known definitions presented in the book by
Reddy [11]. These polynomials are conveniently expressed as functions of the natural coordinates ξ, η,
with ξ, η ∈ [−1, 1], introduced in the so-called master element (or parent element) depicted in Figure 3.
Thus, the interpolating functions become Ni = Ni(ξ, η).

The Lagrange functions Ni are also employed to define the geometric shape of each element.
According to the principles of an isoparametric formulation, the coordinates x(e), y(e) within the generic
e-th element can be defined as follows:

x(e) =
9∑

i=1

Ni(ξ, η)x
(e)
i , y(e) =

9∑
i=1

Ni(ξ, η)y(e)i (21)

in which the i-th node of the element under consideration is identified by the couple of nodal coordinates
x(e)i , y(e)i . Such coordinates are included in the corresponding vectors x(e), y(e), which assume the
following aspects:

xe =
[

x(e)1 · · · x(e)9

]T
, ye =

[
y(e)1 · · · y(e)9

]T
. (22)

The isoparametric formulation allows to move easily all the computations in the parent space.
To this aim, the Jacobian matrix J is required to perform the coordinate change. In order to define
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this matrix, the derivates of the interpolating functions with respect to the natural coordinates ξ, η are
needed and are collected in the corresponding vectors Bξ, Bη defined below:

Bξ =
[
∂N1
∂ξ · · · N9

∂ξ

]
, Bξ =

[
∂N1
∂η · · · N9

∂η

]
. (23)

At this point, the Jacobian matrix J can be introduced as specified in [11]:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∂x
(e)

∂ξ
∂y(e)

∂ξ
∂x(e)
∂η

∂y(e)

∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9∑
i=1

x(e)i
∂Ni
∂ξ

9∑
i=1

y(e)i
∂Ni
∂ξ

9∑
i=1

x(e)i
∂Ni
∂η

9∑
i=1

y(e)i
∂Ni
∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ Bξx

(e) Bξy
(e)

Bηx
(e) Bηy

(e)

⎤⎥⎥⎥⎥⎦. (24)

Assuming that the determinant of the Jacobian matrix is positive, the matrix J can be inverted.
Since in the following only regular rectangular elements are considered, this assumption is always
satisfied and the matrix J−1 is admissible and can be used to compute the derivatives of the interpolating
functions in the physical domain defined by the coordinates x, y. The following relation is needed for
this purpose: [

Bx
By

]
= J−1

⎡⎢⎢⎢⎢⎣ Bξ
Bη

⎤⎥⎥⎥⎥⎦ (25)

where Bx and Bx collect the derivatives of the shape functions with respect to x and y, respectively.
These operators are required to define the compatibility equations of the RMZ model. In particular,
the three-dimensional strain components for a rectangular plate can be obtained by means of the
elasticity equations applied to the displacement fields (16) and assume the following definitions for the
e-th element:

ε
(e)
xx =

∂U(e)
x
∂x =

∂u(e)x
∂x + z∂φ

(e)
x
∂x + Fz

∂ψ
(e)
x
∂x = ε

0(e)
x + zk0(e)

x + Fzε1
x = Bxu

(e)
x + zBxφ

(e)
x + FzBxψ

(e)
x

ε
(e)
yy =

∂U(e)
y
∂y =

∂u(e)y
∂y + z

∂φ
(e)
y
∂y + Fz

∂ψ
(e)
y
∂y = ε

0(e)
y + zk0(e)

y + Fzε1
y = Byu

(e)
y + zByφ

(e)
y + FzByψ

(e)
y

γ
(e)
xy =

∂U(e)
y
∂x +

∂U(e)
x
∂y =

∂u(e)y
∂x +

∂u(e)x
∂y + z

(
∂φ

(e)
y
∂x +

∂φ
(e)
x
∂y

)
+ Fz

(
∂ψ

(e)
y
∂x +

∂ψ
(e)
x
∂y

)
=

= γ
0(e)
xy + zk0(e)

xy + Fzγ
1(e)
xy = Bxu

(e)
y + Byu

(e)
x + z

(
Bxφ

(e)
y + Byφ

(e)
x

)
+ Fz

(
Bxψ

(e)
y + Byψ

(e)
x

)
γ
(e)
xz =

∂U(e)
z
∂x +

∂U(e)
x
∂z =

∂u(e)z
∂x + φ

(e)
x + ∂Fz

∂z ψ
(e)
x = γ

0(e)
xz + ∂Fz

∂z γ
1(e)
xz = Bxu

(e)
z + Nφ

(e)
x + ∂Fz

∂z Nψ
(e)
x

γ
(e)
yz =

∂U(e)
z
∂y +

∂U(e)
y
∂z =

∂u(e)z
∂y + φ

(e)
y + ∂Fz

∂z ψ
(e)
y = γ

0(e)
yz + ∂Fz

∂z γ
1(e)
yz = Byu

(e)
z + Nφ

(e)
y + ∂Fz

∂z Nψ
(e)
y ,

(26)

where ε(e)xx , ε(e)yy ,γ(e)xy are the membrane strains, and γ(e)xz ,γ(e)yz are the transverse shear strains. It should

be observed that the normal strain along the thickness direction ε(e)zz is omitted since the plane-strain
assumption entails that ε(e)zz = 0. The generalized strains related to the plate middle surface can be
easily defined from relations (26). The superscript “0” denotes those quantities that are included also
in the well-known RM theory, whereas the terms related to the zig-zag effect are identified by the
superscript “1”. In particular, it should be noted that ε0(e)

x , ε0(e)
y ,γ0(e)

xy are the well-known membrane

strains, k0(e)
x , k0(e)

y , k0(e)
xy the bending and twisting curvatures, and γ0(e)

xz ,γ0(e)
yz the shear strains, which are

also defined in the RM theory [36].
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The constitutive equations are now used to characterize the stress components in the k-th layer of
the laminate. The following definitions imply that the plane-stress assumption σk(e)

zz = 0 is assumed by
hypothesis, whereas the other stress components are given by:

σ
k(e)
xx = Q

(k)
11 ε

(e)
xx + Q

(k)
12 ε

(e)
yy + Q

(k)
16 γ

(e)
xy

σ
k(e)
yy = Q

(k)
12 ε

(e)
xx + Q

(k)
22 ε

(e)
yy + Q

(k)
26 γ

(e)
xy

τ
k(e)
xy = Q

(k)
16 ε

(e)
xx + Q

(k)
26 ε

(e)
yy + Q

(k)
66 γ

(e)
xy

τ
k(e)
xz = Q

(k)
44 γ

(e)
xz + Q

(k)
45 γ

(e)
yz

τ
k(e)
yz = Q

(k)
45 γ

(e)
xz + Q

(k)
55 γ

(e)
yz

(27)

in which Q
(k)
i j denotes the stiffnesses of the k-th orthotropic layer evaluated in the geometric reference

system. These parameters have the same meaning in each finite element, since the mechanical
properties of the structure do not vary in the plate middle surface. Their well-known definition, which
depends on the parameters Q(k)

i j expressed as a function of the engineering constants of the k-layer
defined below, can be found in the book by Reddy [36]:

Q(k)
11 =

E(k)
11

1−ν(k)12 ν
(k)
21

, Q(k)
22 =

E(k)
22

1−ν(k)12 ν
(k)
21

, Q(k)
12 =

ν
(k)
12 E(k)

22

1−ν(k)12 ν
(k)
21

, Q(k)
66 = G(k)

12 , Q(k)
44 = G(k)

13 , Q(k)
55 = G(k)

23 . (28)

Quantities in (28) for k = 1, 3 depend on the thickness coordinate z, since the reinforcing fibers of
the face-sheets are characterized by a non-uniform distribution in this direction. Each orthotropic layer
can be also characterized by an arbitrary orientation θ(k). The notation

(
θ(1)/core/θ(3)

)
is used in the

next Sections to specify the orientations of the reinforcing fibers in the face-sheets and the consequent
lamination scheme. Conventionally, in the above notation the layer numbering always starts from the
bottom surface of the plate.

At this point, the Hamilton’s variational principle should be applied to obtain the governing
equations for the dynamic problem under consideration [36,101]. If t1, t2 specify the boundary values
of the considered time interval, the variational principle assumes the following aspect within the e-th
discrete element:

t2∫
t1

(
δK(e) − δΦ(e)

)
dt = 0 (29)

where δK(e) is the variation of the kinetic energy, whereas δΦ(e) represents the variation of the elastic
strain energy. The kinetic energy of the sandwich structure δK(e) is given by:

δK(e) = −
3∑

k=1

∫
x

∫
y

zk+1∫
zk

ρ(k)
(
δU(e)

x
..
U

(e)
x + δU(e)

y
..
U

(e)
y + δU(e)

y
..
U

(e)
y

)
dxdydz (30)

where the double-dot notation specifies the second-order derivatives with respect to the time variable.
On the other hand, the elastic strain energy δΦ(e) is defined as follows:

δΦ(e) =
3∑

k=1

∫
x

∫
y

zk+1∫
zk

(
σ

k(e)
xx δε

(e)
xx + σ

k(e)
yy δε

(e)
yy + τ

k(e)
xy δγ

(e)
xy + τ

k(e)
xz δγ

(e)
xz + τ

k(e)
yz δγ

(e)
yz

)
dxdydz (31)

The proper mathematical manipulations of the elastic strain energy provide the definitions of the
stress resultants as the through-the-thickness integrals of the stress components. The stress resultants
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can be written in matrix form by means of the following relations, which provide their definitions as a
function of the generalized strain components introduced before:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N0(e)
x

N0(e)
y

N0(e)
xy

M0(e)
x

M0(e)
y

M0(e)
xy

T0(e)
x

T0(e)
y

N1(e)
x

N1(e)
y

N1(e)
xy

T1(e)
x

T1(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16 0 0 F11 F12 F16 0 0
A12 A22 A26 B12 B22 B26 0 0 F12 F22 F26 0 0
A16 A26 A66 B16 B26 B66 0 0 F16 F26 F66 0 0
B11 B12 B16 D11 D12 D16 0 0 G11 G12 G16 0 0
B12 B22 B26 D12 D22 D26 0 0 G12 G22 G26 0 0
B16 B26 B66 D16 D26 D66 0 0 G16 G26 G66 0 0
0 0 0 0 0 0 κA44 κA45 0 0 0 κH44 κH45

0 0 0 0 0 0 κA45 κA55 0 0 0 κH45 κH55

F11 F12 F16 G11 G12 G16 0 0 L11 L12 L16 0 0
F12 F22 F26 G12 G22 G26 0 0 L12 L22 L26 0 0
F16 F26 F66 G16 G26 G66 0 0 L16 L26 L66 0 0
0 0 0 0 0 0 κH44 κH45 0 0 0 κP44 κP45

0 0 0 0 0 0 κH45 κH55 0 0 0 κP45 κP55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
0(e)
x

ε
0(e)
y

γ
0(e)
xy

k0(e)
x

k0(e)
y

k0(e)
xy

γ
0(e)
xz

γ
0(e)
yz

ε
1(e)
x

ε
1(e)
y

γ
1(e)
xy

γ
1(e)
xz

γ
1(e)
yz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

The superscripts “0” and “1” have the same meaning discussed previously. In particular,
N0(e)

x , N0(e)
y , N0(e)

xy are the membrane forces, M0(e)
x , M0(e)

y , M0(e)
xy the bending and twisting moments,

and T0(e)
x , T0(e)

y the shear forces, which are included also in the RM theory [11]. The other terms are
related to the zig-zag effect. The elements of the constitutive operator in (32) are now discussed. Firstly,
the following terms appear also in the RM model and have the same meaning [11]:

Aij =
3∑

k=1

zk+1∫
zk

Q
(k)
i j dz, Bij =

3∑
k=1

zk+1∫
zk

zQ
(k)
i j dz, Dij =

3∑
k=1

zk+1∫
zk

z2Q
(k)
i j dz. (33)

On the other hand, the stress resultants related to the zig-zag effect require the following definitions,
which include the Murakami’s function and its derivative with respect to the thickness coordinate:

Fij =
3∑

k=1

zk+1∫
zk

FzQ
(k)
i j dz, Gij =

3∑
k=1

zk+1∫
zk

zFzQ
(k)
i j dz, Hij =

3∑
k=1

zk+1∫
zk

∂Fz
∂z Q

(k)
i j dz,

Lij =
3∑

k=1

zk+1∫
zk

F2
zQ

(k)
i j dz, Pij =

3∑
k=1

zk+1∫
zk

(
∂Fz
∂z

)2
Q
(k)
i j dz.

(34)

It should be specified that the integrals in (33)–(34) are computed numerically since the stiffnesses

Q
(k)
i j can be arbitrary functions of z, due to the dependency on the thickness coordinate introduced by

relation (11). Finally, it is important to specify that the shear forces need the shear correction factor κ.
The value of 5/6 is used to this aim.

The system of dynamic equations for the problem under consideration represents the main result
of the application of the Hamilton’s principle. The fundamental equation for the generic element e is
given by:

K(e)u(e) + M(e)
¨

u

(e)

= 0 (35)
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where K(e) is the element stiffness matrix, M(e) the element mass matrix, and
¨

u

(e)

the vector of the
second-order time derivatives of the element degrees of freedom included in u(e). The fundamental
operators K(e) assumes the following definitions:

K(e) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K11 · · · · · · K17

...
. . .

...
...

. . .
...

K71 · · · · · · K77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

On the other hand, the mass matrix M(e) is given by:

M(e) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M11 · · · · · · M17

...
. . .

...
...

. . .
...

M71 · · · · · · M77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (37)

The matrices Ki j and Mi j, for i, j = 1, . . . , 7 are defined in the Appendix A. In particular,
the following inertia terms are required to compute the mass matrix:

I0 =
3∑

k=1

zk+1∫
zk

ρ(k)dz, I1 =
3∑

k=1

zk+1∫
zk

zρ(k)dz, I2 =
3∑

k=1

zk+1∫
zk

z2ρ(k)dz,

I3 =
3∑

k=1

zk+1∫
zk

Fzρ(k)dz, I4 =
3∑

k=1

zk+1∫
zk

zFzρ(k)dz, I5 =
3∑

k=1

zk+1∫
zk

F2
zρ

(k)dz.
(38)

It can be easily observed that the terms I0, I1, I2 are included also in the RM theory. On the other
hand, the parameters I3, I4, I5 are linked to the zig-zag effect and include the Murakami’s function.
It should be specified that these integrals are computed numerically, since the density ρ(k), for k = 1, 3,
is an arbitrary function of the thickness coordinate.

The fundamental Equation (35) is valid for each discrete subdomain at the element level.
The well-known assembly procedure is required to obtain the corresponding global system of
equations. This approach allows to enforce automatically the displacement continuity at the element
interfaces. Therefore, a C0 compatibility requirement is satisfied in the current approach. Once the
global matrices are obtained, the fundamental system of equations assumes the following aspect:

Ku + M
¨
u = 0 (39)

in which K, M are the global stiffness and mass matrices, respectively. The degrees of freedom of the
whole structure are collected in the vector u. The nodal displacements are listed following the scheme
specified by the dashed line in Figure 4, where an example of a discrete plate domain is also depicted.
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Figure 4. Discrete domain, identification of the elements and node numbering.

If NP denotes the number of nodes, the model is characterized by Ndo f s = 7NP as number of
degrees of freedom. Consequently, the vector u can be written as follows:

u =

[
ux,1 · · · ux,NP

1→NP

uy,1 · · · uy,NP
NP+1→2NP

uz,1 · · · uz,NP
2NP+1→3NP

φx,1 · · · φx,NP
3NP+1→4NP

φy,1 · · · φy,NP
4NP+1→5NP

ψx,1 · · · ψx,NP
5NP+1→6NP

ψy,1 · · · ψy,NP
6NP+1→7NP

]T

.
(40)

The second-order time derivatives of these quantities are collected in the vector
¨
u following the

same scheme. Finally, it should be recalled that the size of the fundamental operators K, M is given by
Ndo f s ×Ndo f s. The discrete system can be solved once the proper boundary conditions along the edges
of the domain are enforced. In the present paper, since only fully clamped plates are considered, all the
nodal displacements related to the boundary edges are all equal to zero.

3.1. Numerical Computation of the Fundamental Matrices

The Gauss-Legendre quadrature rule is employed to compute the fundamental matrices K, M.
By definition, the integral of a generic function G(x, y) defined in a two-dimensional domain can be
evaluated as follows: ∫

x

∫
y

G(x, y)dxdy =

1∫
−1

1∫
−1

G(ξ, η)detJdξdη (41)

in which the determinant of the Jacobian matrix detJ is introduced. Therefore, the integral is computed
in the parent space in which the reference system is given by natural coordinates ξ, η. From the
numerical point of view, this integral can be converted into the following weighted linear sum:

1∫
−1

1∫
−1

G(ξ, η)detJdξdη ≈
M∑

I=1

N∑
J=1

G
(
ξI, ηJ

)
detJ|ξI ,ηJ

WIWJ (42)

where WI, WJ are the weighting coefficients, whereas ξI, ηJ are the points in which the integral is
computed. These nodes are the roots of Legendre polynomials [11]. The full integration is performed
considering 9 evaluation points, whereas the reduced one is carried out in four points only. The position
of these nodes is shown in Figure 3. It should be specified that the reduced integration is employed only
to compute the elements of the stiffness matrix related to the shear forces in order to avoid the shear
locking issue [11]. The analytical values of the weighting coefficients for each root of the Legendre
polynomials can be found in the book by Reddy [11].

60



Materials 2019, 12, 2444

3.2. Evaluation of the Natural Frequencies

The free vibration analysis is based on a generalized eigenvalue problem from the analytical
point of view. In particular, the following relation allows to compute the circular frequencies ω of the
structures under consideration: (

K−ω2M
)
d = 0 (43)

where the modal amplitudes are collected in the vector d. Once relation (43) is solved, the natural
frequencies f measured in Hz can be easily computed as f = ω/2π.

4. Numerical Applications

The numerical applications presented in this Section aim to evaluate the natural frequencies of
several fully clamped sandwich plates. The geometric features are the same in each computation.
In particular, a square domain defined by Lx = Ly = 2.5 m is considered. The thickness of the external
layers is hs = 0.02 m, whereas the soft-core is defined by hc = 0.06 m. Each structure is subdivided into
100 finite elements as far as the discrete domain is concerned.

Firstly, the validity of the current approach based on the RMZ model is proved and compared
with the results that could be obtained by means of the well-known RM theory. To this aim,
a three-dimensional FE model is built through a commercial code. Secondly, the model is also
validated with respect to the application of non-uniform distributions of the reinforcing fibers along
the plate thickness. For this purpose, the results are compared with the ones available in the
literature. Then, several parametric investigations are presented to discuss the effects of the damage,
the through-the-thickness distributions of the reinforcing fibers, the lamination scheme and the in-plane
orientation of the fibers, the mechanical properties of fibers and CNTs on the vibrational response.

4.1. Influence of the Murakami’s Function and Validation of the RMZ

The first test aims to prove the need of the Murakami’s function when the mechanical behavior
of sandwich structures with an inner soft-core must be analyzed. In this application, the core is
made by a virgin material (D = 0) and the fibers are uniformly placed along the thickness of the
external face-sheets. The mechanical characterization is fully accomplished by setting wC = 0.05 and
wF = 0.80. The natural frequencies are obtained by using the RM and the RMZ models, for three
different lamination schemes. The same structures are investigated by means of a three-dimensional
FE commercial code (twenty-node brick elements), denoted by 3D-FE in the following. The software
Strand7 is employed for this purpose. The first ten natural frequencies for the sandwich plate with
an inner soft-core under consideration are shown in Table 3, where the percentage differences (%diff)
of the RMZ and RM solutions with respect to the 3D-FE results are also highlighted. The following
aspects can be observed:

• The RMZ theory provides natural frequencies that are close to the results given by the reference
solution (3D-FE). In fact, the maximum percentage difference is about 5% for higher modes. This
difference is satisfactory having in mind the approximation introduced by a two-dimensional
ESL theory;

• The computational cost is very different. In particular, the number of degrees of freedom in the
3D-FE model is ten times the one needed by the RMZ theory to obtain similar values;

• The RM model is not adequate to evaluate the natural frequencies of a sandwich soft-core
structure, as it can be observed by the percentage differences with respect to the reference solution.
The number of degrees of freedom in this circumstance is even lower if compared to the other
models, but the computational saving cannot justify the poor approximation of the solution.
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Table 3. First ten natural frequencies of a sandwich plate with an inner soft-core for three different
lamination schemes: comparison with the 3D-FE solution.

Mode
3D-FE

Ndofs=29673
RMZ

Ndofs=3087
RM

Ndofs=2205
%diff

(RMZ)
%diff
(RM)

Lamination scheme: (0◦/core/0◦)
1 142.126 137.126 169.127 3.52% 19.00%
2 195.625 189.516 224.819 3.12% 14.92%
3 289.303 280.546 324.708 3.03% 12.24%
4 303.824 288.429 408.390 5.07% 34.42%
5 346.073 329.618 453.375 4.75% 31.01%
6 414.415 401.529 463.476 3.11% 11.84%
7 421.211 402.429 533.774 4.46% 26.72%
8 498.657 469.706 635.351 5.81% 27.41%
9 527.513 504.420 650.839 4.38% 23.38%
10 534.573 505.028 678.379 5.53% 26.90%

Lamination scheme: (30◦/core/45◦)
1 129.776 125.889 147.134 2.99% 13.38%
2 211.140 203.739 244.133 3.51% 15.63%
3 265.283 253.703 327.302 4.37% 23.38%
4 299.738 288.099 354.309 3.88% 18.21%
5 371.903 354.527 462.224 4.67% 24.29%
6 398.033 381.561 476.960 4.14% 19.83%
7 426.714 404.619 562.840 5.18% 31.90%
8 483.191 459.287 616.601 4.95% 27.61%
9 506.505 484.458 616.724 4.35% 21.76%
10 541.210 512.228 704.809 5.36% 30.23%

Lamination scheme: (−45◦/core/45◦)
1 107.180 105.297 112.930 1.76% 5.36%
2 206.687 201.053 225.234 2.73% 8.97%
3 206.687 201.516 225.234 2.50% 8.97%
4 290.914 281.838 322.709 3.12% 10.93%
5 346.351 334.314 392.846 3.48% 13.42%
6 348.741 337.043 395.240 3.35% 13.33%
7 419.280 403.125 479.272 3.85% 14.31%
8 419.280 404.002 479.272 3.64% 14.31%
9 515.903 494.071 608.811 4.23% 18.01%
10 515.903 496.715 608.811 3.72% 18.01%

4.2. Validation of the Model with Respect to Non-Uniform Distributions of the Reinforcing Fibers

The current approach is validated also with respect to the application of non-uniform distribution
of the reinforcing fibers in the thickness direction. In the paper by Lei et al. [71], a fully clamped
square plate, characterized by the aspect ratio Lx/h = 10, is analyzed by means of the kp-Ritz
method. The structure is made of an epoxy resin (EM = 2.1 GPa, νM = 0.34, ρM = 1150 kg/m3)
reinforced by aligned fibers of CNTs. This configuration can be modeled as a two-phase composite,
in which the Carbon fibers are characterized by the following mechanical properties EF

11 = 5.6466 TPa,
EF

22 = 7.0800 TPa, GF
12 = 1.9445 TPa, νF

12 = 0.175, ρF = 1400 kg/m3. It should be noted that the
approach presented in this paper can be used to evaluate the overall mechanical properties of this
structure by neglecting the effect of the randomly oriented CNT particles scattered in the matrix.
In other words, one gets E∗M = EM, ν∗M = νM and ρ∗M = ρM. On the other hand, the aligned CNTs
assume the same role of the straight fibers. Equation (10) is employed to obtain the value of wF which
provides the constant ṼF = 0.11 specified in the reference paper.

In order to validate the current methodology, the plate is made of two orthotropic layers of
equal thickness (no soft-core is included), characterized by non-uniform distributions of the CNT
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fibers. “Case 1” is obtained by f (1)1 , f (2)2 with α = 1, whereas “Case 2” is given by f (1)2 , f (2)1 with α = 1.
The frequencies are presented in Table 4 in dimensionless form as

� = ω
L2

x
h

√
ρM

EM
(44)

in which ω denotes the circular frequencies. As specified in the previous sections, the Halpin-Tsai
(HT) model is applied for the mechanical characterization of the structure. Nevertheless, the reference
solutions are obtained by means of the rule of the mixture (MIX). The same approach has been used in
the paper by Bacciocchi and Tarantino [39] for similar purposes. Therefore, only in the next application
these two models (MIX and HT) are considered for the sake of comparison. Small differences are
obtained depending on the homogenization procedure used in the computation.

Table 4. Comparison of the frequency parameter � for a two phase fully clamped plate.

Mode
Lei et al. [71]

(kp-Ritz)
Lei et al. [71]

(Commercial FE)
RMZ
(MIX)

RMZ
(HT)

Case 1

1 16.667 16.707 16.671 17.383
2 22.138 22.253 22.098 23.381
3 32.237 32.378 32.211 33.630
4 32.424 32.857 32.242 34.397
5 35.674 35.809 35.652 37.437
6 37.367 37.447 37.403 40.615

Case 2

1 18.045 18.083 18.055 19.071
2 23.498 23.606 23.448 25.152
3 33.915 34.338 33.712 36.116
4 34.361 34.467 34.324 36.449
5 37.367 37.447 37.403 39.892
6 37.693 37.786 37.637 40.616

It should be emphasized that the current application does not aim to investigate the effect of
the homogenization method but only the comparison with the reference solution of the frequency
parameter. As it can be noted from the results shown in Table 4, a good agreement is observed with the
reference solution, especially if the rule of the mixture is employed as it could be expected. In the same
table, the FE results provided by a commercial code are also presented. Finally, it should be specified
that the RMZ theory is considered as far as the theoretical model of the present solutions is concerned.

4.3. Effect of Damage

The same geometric and mechanical configurations are analyzed also in this paragraph.
Nevertheless, the soft-core of the structures is affected by a decay of the mechanical properties
and the effect of an increasing damage parameter D ∈ [0, 1] on the natural frequencies is discussed.
For each lamination scheme, four different through-the-thickness distributions of the reinforcing
fibers in the face-sheets are investigated, including the uniform one. “Scheme 1” denotes the uniform
distribution of the fibers; “Scheme 2” is obtained by setting f (1)2 = f (3)2 with α = 1; “Scheme 3” is

accomplished by using f (1)2 , f (3)1 with α = 1; finally, “Scheme 4” has the same functions of the previous
one, assuming α = 2. These configurations are graphically depicted in Figure 5. The volume fraction
distribution of the fibers in the core is clearly equal to zero.

63



Materials 2019, 12, 2444

(a) (b) 

(c) (d) 

Figure 5. Through-the-thickness representation of the volume fraction distribution VF for several
schemes: (a) Scheme 1; (b) Scheme 2; (c) Scheme 3; (d) Scheme 4.

The results are presented in Figure 6, where it can be observed that the first natural frequency for
each configuration depends noticeably on the parameter D. The following aspects should be noted,
as well:

• The decrease of the frequency is clearly caused by the corresponding stiffness reduction of the
structures. This expected tendency models accurately the physical behavior of structures with a
lower value of stiffness. In fact, by increasing the value of D up to the unity (fully damaged core),
the frequency would tend to zero;

• The same behavior is obtained for each volume fraction distribution, but the maximum value of
the first frequency that can be reached depends on the through-the-thickness distributions of VF

(Figure 5);
• These aspects can be noted for each lamination scheme. Nevertheless, depending on the in-plane

fiber orientation, the value of the first frequency could change. In addition, a peculiar choice of
lamination scheme could reduce the influence of the through-the-thickness distributions of the
volume fraction VF, since the curves related to the various schemes are less detached;

• Finally, similar graphs could be obtained also for higher frequencies.
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(a) (b) 

 
(c) 

Figure 6. Variation of the first natural frequency f1 [Hz] for sandwich plates with a damaged soft-core
due to an increasing damage D, for three different lamination schemes: (a) (0◦/core/0◦); (b) (30◦
/core/45◦); (c) (−45◦ /core/45◦).

4.4. Influence of the Exponent of the Through-the-Thickness Distribution of the Fiber Volume Fraction

The current application deals with the effect of the exponent α that characterizes the
through-the-thickness distribution of VF. For this purpose, the Scheme 2 and Scheme 3 of the
previous test are considered. Nevertheless, different configurations are obtained since α ∈ [0,∞], as it
can be seen from Figure 2.

The geometry of the sandwich plate is kept constant and three laminations schemes are considered:
(0◦/core/0◦), (30◦/core/45◦) and (−45◦/core/45◦). A damaged core is modeled by setting D = 0.5.
It should be recalled that the same values of the mass fraction of both CNTs and fibers (respectively
wC = 0.05 and wF = 0.80) are employed. The proper choice of the exponent α allows to obtain also the
following extreme cases. For α = 0, the reinforcing fibers are uniformly distributed, and the Scheme
1 of the previous application is accomplished. On the other hand, if α tends to infinity, it is easy to
verify that VF = 0 and the face-sheets are made of an undamaged polymer matrix enforced only by
CNTs. In this circumstance, the stiffness of the structure reaches its minimum value. In terms of natural
frequencies, the results are included between these two boundary cases. The variation of the first three
natural frequencies is depicted in Figure 7. The following features can be observed:

• Similar behaviors are obtained for the three lamination schemes under investigation. For lower
values of α, the corresponding curves are detached and the natural frequencies that can be obtained
assume different values depending on the fiber orientation. By increasing the exponent α, the effect
of the fibers decreases since VF draws near zero and the frequencies tends asymptotically to the
same value;
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• The initial choice of the through-the-thickness distribution of VF (Scheme 2 or Scheme 3) affects
the variation of the natural frequencies. In particular, this variation is faster for Scheme 2. In fact,
the slopes of the related curves are steeper, whereas the frequency variation for Scheme 3 is a little
bit more gradual;

• The biggest variation of frequencies is reached for lower values of α. The decrease of the value of
natural frequencies for α > 20 is negligible.

 

 

 
(a) (b) 

Figure 7. Variation of the first three natural frequencies f1, f2, f3 [Hz] for sandwich plates with a
damaged soft-core due to an increasing value of the exponent α of the through-the-thickness distribution
of the fiber volume fraction, for two different schemes: (a) Scheme 2; (b) Scheme 3.

4.5. Effect of the In-Plane Fiber Orientation

A damaged sandwich plate with D = 0.25 is considered in the following application. The geometric
features are kept constant with respect to the previous tests, whereas the engineering constants of the
face-sheets can be computed assuming wC = 0.05 and wF = 0.80. A non-uniform distribution of the
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reinforcing fiber is defined according to the functions that describe Scheme 3, with α = 0.5. The aim
of this numerical application is to show the dependency of the natural frequencies on the in-plane
fiber orientation. Therefore, several configurations are analyzed according to the value of an angular
parameter θ. The variation of the first three natural frequencies is depicted in Figure 8 for various
lamination schemes depending on θ. The graphs in Figure 8 prove the following results:

• As expected, the orientation of the fibers affects the dynamic response of the composite structures
under consideration;

• If symmetric angle-ply or cross-ply laminates, as well as antisymmetric configurations, are
considered, which are denoted by (θ/core/θ) and (−θ/core/θ), the extreme values of frequencies
can be obtained for θ = 0

◦
, 45

◦
, 90

◦
. In addition, a symmetrical behavior is obtained after reaching

the value of θ = 45
◦
;

• This regular and symmetric behavior is lost if a laminate with a general stacking sequence, such
as the last two lamination schemes, is analyzed.

 

Figure 8. Variation of the first three natural frequencies f1, f2, f3 [Hz] for a sandwich plates with a
damaged soft-core for several lamination schemes depending on the angle parameter θ which defines
the in-plane fiber orientation.

4.6. Influence of the Material Properties

Finally, this last application aims to discuss the effects of the CNT mass fraction wC and the
fiber mass fraction wF on the structural response. The same geometric features are considered in this
circumstance, assuming D = 0.75 as damage parameters. The through-the-thickness distribution of
the reinforcing fibers VF are defined by the functions used in Scheme 3 (Figure 5) by setting α = 4.
The lamination scheme is given by (30◦/core/45◦). Firstly, the effect of wC is investigated, by keeping
constant the value of wF = 0.80, in the interval wC ∈ [0, 0.40].

It should be recalled that the polymer matrix is strengthened by only straight fibers if wC = 0.
Then, the opposite situation is taken into account. The variation of wF ∈ [0.40, 0.80] is studied for
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a fixed value of wC = 0.05. The results are shown in Figure 9 for the first five natural frequencies.
The following observations can be deduced:

• The influence of the CNT mass fraction wC is greater than the corresponding variation of the fiber
mass fraction wF;

• For a small increase of wC next to zero, the variation in terms of natural frequencies that can be
obtained is relevant and the behavior is non-linear;

• On the other hand, bigger increases of wF do not produce the same variation of natural frequencies.
The behavior is linear in this case.

 
(a) (b) 

Figure 9. Variation of the first five natural frequencies fn [Hz], for n = 1, . . . , 5, of sandwich plates with
a damaged soft-core for varying mechanical properties of the constituents: (a) Variation of CNT mass
fraction; (b) Variation of fiber mass fraction.

4.7. Discussion on the Mode Shapes

Finally, a brief discussion on the dependency of the previous parameters on the mode shapes is
presented. For this purpose, the same geometric features of the previous tests are considered. As far as
the mechanical properties of the constituents are concerned, the plate is characterized by wC = 0.05
and wF = 0.80. Several configurations are analyzed in order to investigate the effect of the stacking
sequence, of the damage and of the exponent of the through-the-thickness distribution of the fibers.
The Scheme 3 depicted in Figure 5 is considered here, but similar results in terms of mode shapes could
be obtained also with the other schemes. The cases under considerations are summarized in Table 5 for
conciseness purposes.

Table 5. Mechanical configurations investigated to show the variation of the mode shapes due to the
stacking sequence, the damage parameter and the exponent of the reinforcing fiber distribution.

Case
Stacking
Sequence

Damage
D

Exponent
α

1 (0◦/core/0◦) 0.00 1
2 (0◦/core/0◦) 0.50 1
3 (0◦/core/0◦) 0.50 12
4 (30◦/core/45◦) 0.00 1
5 (30◦/core/45◦) 0.50 1
6 (30◦/core/45◦) 0.50 4
7 (30◦/core/45◦) 0.50 12

The contour plots of the first five mode shapes related to the corresponding natural frequencies are
shown in Figure 10 for the seven cases introduced in Table 5. The examples analyzed in this paragraph
allow to deduce the following considerations:
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• In general, the increase of the damage parameter D does not cause any variation of the mode shapes;
• The mode shapes are highly affected by the orientation of the reinforcing fibers and by the stacking

sequence. This aspect can be noted by comparing the same configurations in terms of D and α,
but characterized by different lamination schemes (Case 1 and Case 4, for instance);

• As stated in the previous paragraphs, the increase of the exponent α reduces the influence of
the reinforcing straight fibers. Therefore, the anisotropic behavior of a laminate with a general
stacking sequence can be decreased. For example, the mode shapes of Case 7 tend to the ones
related to Case 3 for α = 12, even if they are characterized by different fiber orientations;

• The presence of a thicker isotropic core is predominant in the modal amplitudes and only noticeably
variations of these mechanical parameters can define some changes in the mode shapes.

f1 f2 f3 f4 f5 

     
(a) 

     
(b) 

     
(c) 

     
(d) 

     
(e) 

     
(f) 

     
(g) 

Figure 10. First five mode shapes of the mechanical configurations defined in Table 4: (a) Case 1;
(b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5; (f) Case 6; (g) Case 7.
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5. Conclusions

A set of numerical investigations has been presented to describe the mechanical behavior of
laminated sandwich plates with a damaged soft-core. The FE formulation has been developed by using
a nine-node quadratic rectangular Lagrange element, whereas the theoretical model for laminated
plates based on the Reissner-Mindlin model has been enriched by introducing the Murakami’s
function. As a consequence, a FE plate theory with 7 degrees of freedom per node has been presented.
The external face-sheets are made of composite materials: The polymer matrix has been strengthened
by randomly oriented CNTs and oriented straight fibers. Their mechanical characterization has been
carried out by using a three-phase model, which include the Eshelby-Mori-Tanaka scheme and the
Halpin-Tsai approach. Several parametric tests have been performed to analyze the effect of the damage,
the through-the-thickness distribution of the reinforcing fibers, the orientation of the fibers, the stacking
sequence, and the mechanical features. The main achievements of the paper are summarized below:

• The use of the Murakami’s function is required to capture the effective mechanical behavior of
sandwich structures with an inner soft-core. This aspect is very important especially if a FE
commercial code is employed. In fact, it should be recalled that this function is not embedded in
plate/shell formulations. Therefore, the results that can be obtained in these circumstances could
be inaccurate, unless a 3D-FE modelling is pursued. Nevertheless, this approach is onerous in
terms of computational time and resources;

• A non-uniform distribution of the fibers along the thickness of the face-sheets could be employed to
model the effective distribution of the reinforcing phase that could occur during the manufacturing
process or during the structural life. This research prove that the mechanical response is affected
by this parameter;

• A progressive damage in the core causes a corresponding decrease of the natural frequencies,
which becomes faster and faster for higher values of damages. The reinforcing layers could
recover this situation. If a three-phase composite material is employed to this aim, the design of
such layers could be carried out taking into account two parameters, which are the mass fractions
of both CNTs and fibers. Nevertheless, a small increase of the CNT mass fraction can cause a
quicker and more remarkable variation of the fundamental frequency with respect to the one that
could be obtained by controlling the mass fraction of the straight fibers;

• The optimal structural response can be also obtained by choosing accurately the in-plane orientation
of the straight fibers. The stacking sequence, in fact, affects the value of the natural frequencies, as
well as of the mode shapes.

These comments should be taken into account during the analysis of the mechanical behavior of
sandwich structures subjected to a progressive damage, as well as during the process manufacturing if
an optimal design has to be pursued.
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Appendix A

The submatrices K
(e)
i j , for i, j = 1, . . . , 7, which appear in the element stiffness matrix K(e) defined in

(36), can be computed using the following definitions. The submatrices are presented below row-by-row

K11 =
∫
x

∫
y

(
BT

x

(
A11Bx + A16By

)
+ BT

y

(
A16Bx + A66By

))
dxdy

K12 =
∫
x

∫
y

(
BT

x

(
A12By + A16Bx

)
+ BT

y

(
A26By + A66Bx

))
dxdy

K13 = 0
K14 =

∫
x

∫
y

(
BT

x

(
B11Bx + B16By

)
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y

(
B16Bx + B66By

))
dxdy

K15 =
∫
x

∫
y

(
BT

x

(
B12By + B16Bx

)
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y

(
B26By + B66Bx

))
dxdy

K16 =
∫
x

∫
y

(
BT

x

(
F11Bx + F16By

)
+ BT

y

(
F16Bx + F66By

))
dxdy

K17 =
∫
x

∫
y

(
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x

(
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)
+ BT

y

(
F26By + F66Bx

))
dxdy

(A1)
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∫
x

∫
y

(
BT

y

(
A22By + A26Bx

)
+ BT

x

(
A26By + A66Bx

))
dxdy

K23 = 0
K24 =

∫
x

∫
y

(
BT

y

(
B12Bx + B26By

)
+ BT

x

(
B16Bx + B66By

))
dxdy

K25 =
∫
x

∫
y

(
BT

y

(
B22By + B26Bx

)
+ BT

x

(
B26By + B66Bx

))
dxdy

K26 =
∫
x

∫
y

(
BT

y

(
F12Bx + F26By

)
+ BT

x

(
F16Bx + F66By

))
dxdy

K27 =
∫
x

∫
y

(
BT

y

(
F22By + F26Bx

)
+ BT

x

(
F26By + F66Bx

))
dxdy

(A2)
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Analogously, the submatrices M
(e)
i j , for i, j = 1, . . . , 7, which appear in the element mass matrix

M(e) introduced in (37), are defined below. The submatrices are presented row-by-row as in the
previous case
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M41 = MT
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∫
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N
T
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The null submatrices (M(e)
i j = 0) are omitted in definitions (A8)–(A14). The full integration scheme

is always used to compute the elements of the mass matrix.
It can be easily noted from definitions (A1)–(A14) that the stiffness and mass matrices are both

symmetrical operators, thus K
(e)
i j = K

(e)
ji , M

(e)
i j = M

(e)
ji . It should be recalled that the same definitions

K
(e)
i j , M

(e)
i j are valid also for the well-known RM theory, for i, j = 1, . . . , 5.
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Abstract: In this paper, rate-dependent cohesive zone model was established to numerical simulate
the fracture process of soda-lime glass under impact loading. Soda-lime glass is widely used in
architecture and automobile industry due to its transparency. To improve the accuracy of fracture
simulation of soda-lime glass under impact loading, strain rate effect was taken into consideration
and a rate-dependent cohesive zone model was established. Tensile-shear mixed mode fracture was
also taken account. The rate-dependent cohesive zone model was implemented in the commercial
finite element code ABAQUS/Explicit with the user subroutine VUMAT. The fracture behavior of
a monolithic glass plate impacted by a hemispherical impactor was simulated. The simulation
results demonstrated that the rate-dependent cohesive zone model is more suitable to describe the
impact failure characteristics of a monolithic glass plate, compared to cohesive zone model without
consideration of strain rate. Moreover, the effect of the strain rate sensitivity coefficient C, the mesh
size of glass plate and the impact velocity on the fracture characteristics were studied.

Keywords: soda-lime glass; cohesive zone model; rate-dependent; impact loading

1. Introduction

Because of its good transparency, soda-lime glass is often used in window panes and curtain wall
systems in modern buildings. However, soda lime glass is threatened by extreme loads such as impact
loading and blast loading. Under these extreme conditions, due to brittleness, soda-lime glass may
suddenly crack, fragment, or even shatter. For example, statistics shows that windborne debris as a
major contributor to glass damage when encountering typhoon weather [1]. The study of soda-lime
glass materials under impact loading is vital. For this reason, it is necessary to investigate the cracking
mechanism of glass window panes.

In recent years, a large number of experimental [2–11], analytic [12–16], and numerical [17–44]
studies have been devoted to the fracture of soda lime glass. Nie and Chen [2–5] conducted SHPB
experiments to study the effect of the shear stress, mechanical confinement, and temperature on the
strength of glass under dynamic loading. Daryadel et al. [6] investigate the influence of the surface
flaw on the strength. Johnson et al. [7] and Zhang et al. [9–11] reveals that the compressive strength
of soda-lime glass is rate-dependent. Further research shows that not only the compressive strength
but also the tensile strength could increase with the increase of strain rate [8,11]. Ji and Dharani [15]
developed analytic approaches to simulate the damage probability in laminated glass subjected to
low velocity small missile impacts. Dharani et al. [14] proposed a two-parameter Weibull distribution
to characterize the cumulative probability of inner glass ply breakage. Zhou et al. [13] proposed an
empirical formula to calculate the average fragment size. Overend et al. [12] delivered a general crack
growth model based on established statistical failure theory and linear elastic fracture mechanics.
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Nurhuda et al. [16] put forward a model to estimation of strengths in large annealed glass panels
which contain widely spaced flaws. A large amount of numerical method is proposed to simulate
the cracking process of soda-lime glass. For example, André et al. [39] and Braun et al. [40] adopt the
discrete element method (DEM) to conduct the simulation. However, finite element method (FEM)
is the most commonly used method. The discontinuity modeling is the most important part when
FEM is adopted to the fracture simulation of the soda-lime glass. Element delete method (EDM) is the
most common way to model the discontinuity. For instance, Bois et al. [41] simulate an impact of a
sphere into a glass plate using an element delete method. Liu et al. [22] adopted EDM to investigate
the energy absorption process of windshield under different impact speeds and angles. Extended finite
element method (XFEM) [23–26] is also applied to the fracture simulation of soda-lime glass.

Cohesive zone model (CZM) has been found widely used in the cracking process
simulation [27–38,44]. Barenblatt [31] and Dugdale [32] were the first to proposed the CZM. After
that, application of CZM in the simulation of cracking of glass is more and more widespread.
Repetto et al. [28] simulated the dynamic fracture and fragmentation of glass rod under impact loading
with CZM. A mixed-mode formula is proposed to combined the tensile and shear cracking mode [29].
Intrinsic and extrinsic [30,34–37] cohesive zone models were used to simulate the cracking process of
laminated glass.

So far, however, there has been little discussion about the rate-dependent cohesive zone model
applied to the failure process of soda-lime glass. However, as the experimental results [8–11] showed
that the strength of soda-lime glass could increase with the increase of strain rate. As a result, to
ensure the accuracy, a rate-dependent CZM in fracture simulation of soda-lime glass is important
and necessary.

The aim of this study is to improve the accuracy of fracture simulation of glass by employing a
rate-dependent CZM. The overall structure of the study takes the form of five sections, including this
introductory chapter. Section 2 begins by laying out the theoretical methodology of the rate-dependent
cohesive zone model. In Section 3, simulation results are presented, including a successful validation
against experimental results of a drop-weight test with monolithic glass plate. Besides, the effects of the
strain rate sensitivity coefficient C, mesh size and impact velocity are investigated in Sections 4.1–4.3,
respectively. Finally, the conclusions are drawn in Section 5.

2. Rate-Dependent Cohesive Zone Model

2.1. Traction–separation Law

To study the cracking process of soda-lime glass plate under impact loading, the rate-dependent
cohesive zone model is employed to simulate the discontinuity in the finite element model. Cohesive
zone model assumes that there is a small cohesive zone behind the crack tip, as shown in Figure 1
In the cohesive zone model, there is a mathematical relationship between the separation δ and traction
t, as shown in Equation (1). This mathematical relationship is called traction–separation law (TSL).

t = f (δ) (1)

A rate-dependent traction–separation law is employed in this research, and its normal law is
showed in the Figure 2. The tensile stiffness of the cohesive zone will be degraded when the normal
separation δn exceeds to a critical value, δ0

n under quasi-static or δ0
n,dyna under dynamic for example.

As the separation continues to increase to the maximum normal separation (δf
n under quasi-static and

δf
n,dyna under dynamic), the tensile stiffness decreases to 0 completely, which indicates the formation

of macro cracks. The energy required to form a new crack is called fracture energy. The dissipated
energy (G) due to failure is equal to the integration of f (δn) and δn. Therefore, the normal fracture
energy release rate in Figure 2 is equal to the area enclosed by the traction–separation curve and δn

axis. The normal penalty stiffness Kn is the slope of the curve in the undamaged stage.
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Figure 1. Schematic diagram of cohesive model.

G

T n

Kn G

Figure 2. Rate-dependent traction–separation law in normal direction.

Similar to the normal traction–separation law, the shear traction–separation law is defined by a
linear relationship between shear traction (τs) and the shear separation (δs), as shown in Figure 3. The
shear stiffness of the cohesive zone will be degraded when the shear separation δs exceeds to a critical
value, δ0

s under quasi-static or δ0
s,dyna under dynamic for example. As the separation continues to

increase to the maximum shear separation δf
s (under quasi-static and δf

s,dyna under dynamic), the shear
stiffness decreases to 0 completely, which indicates the formation of macro cracks. The dissipated
energy (G) due to failure is equal to the integration of f (δs) and δs. Therefore, the shear fracture energy
release rate in Figure 2 is equal to the area enclosed by the traction–separation curve and δs axis.
The shear penalty stiffness Ks is the slope of the curve in the undamaged stage.

Under dynamic loading, the soda-lime glass is rate dependent [8,10,11]. In JH-2 constitutive
model, Holmquist et al. [7] suggested the DIF (dynamic increment factor) should be formulated in
Equation (2).

DIF = 1.0 + C ln(
.
ε) (2)

where the C is the strain rate sensitivity coefficient.
Therefore, the dynamic strength could be expressed by the Equations (3) and (4).

σdyna = DIFσstatic (3)

τdyna = DIFτstatic (4)

The maximum normal separation δf
n and the maximum shear separation δf

s under quasi-static
could be calculated by the critical energy divided by stress. By multiplying DIF, we could obtain the
dynamic maximum separation δf

n,dyna and δf
s,dyna, respectively, as shown in Equations (5) and (6).

δf
n,dyna =

2Gc
n

σstatic
DIF (5)
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δf
s,dyna =

2Gc
s

τstatic
DIF (6)

The dynamic critical energy could be calculated by Equations (7) and (8), according to its definition.

Gc
n,dyna= 2σdynaδ

f
n,dyna (7)

Gc
s,dyna= 2τdynaδ

f
s,dyna (8)

s

K

s

K

 
Figure 3. Rate-dependent TSL for shear direction.

2.2. Mixed-Mode Failure

The mode mix of the deformation fields in the cohesive zone quantify the relative proportions
of normal and shear deformation. Under impact loading, mixed-mode cracking is very common. In
mixed-mode failure, the maximum separation until failure δf

m is expressed by Equation (9).

δf
m =

2Gc
m

σ0
m

(9)

where the Gc
m is mixed-mode critical failure energy, calculated by the Benzeggagh–Kenane fracture

criterion [45]. The Gc
m could be calculated by Equation (10). In Equation (9), the σ0

m is the mixed-mode
separation corresponding the damage initiation, which could be calculated by Equation (11) [29].

Gc
m= Gc

n,dyna + (Gc
s,dyna −Gc

n,dyna)(
β2

1 + β2 )

η

(10)

σ0
m = Knδ

0
s,dynaδ

0
n,dyna

√√√√√ 1 + β2(
δ0

s,dyna

)2
+

(
β2δ0

n,dyna

)2 (11)

where β = δs
δn

. δ0
n,dyna and δ0

s,dyna are initial damage separations under single failure mode, which could
be calculated by Equations (12) and (13).

δ0
n,dyna =

σdyna

Kn
(12)

δ0
s,dyna =

τdyna

Ks
(13)

where Kn and Ks are the penalty stiffness of normal and shear mode, respectively.
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Under mixed-mode failure, the damage is defined as

D =
δf

m

(
δmax

m − δ0
m

)
δmax

m

(
δf

m − δ0
m

) (14)

where the δmax
m refers to the maximum value of the effective separation δm attained during the loading

history. δm could be expressed by

δm =

√〈
δn

〉2 + (δs)
2 (15)

where δn and δs are the immediate normal and shear separation, respectively, and <x> is the Macauley
operator, which could be defined as

〈x〉 =
{

0, x < 0
x, x > 0

(16)

3. Simulation Results and Experimental Validation

3.1. Set Up of Experimental Test

Pauw [46] conducted drop-weight test with a monolithic glass specimen, which is a circular
soda-lime glass plate with a radius of 50 mm and a thickness of 4 mm. The impactor is a steel cylinder
with a 10 mm radius ending in a spherical tip [46]. If the boundary of the fixed plate is too rigid,
it is easy to lead to stress concentration, which causes the plate to failure prematurely. Therefore,
soft cushions are placed around the upper and lower parts of the plate. The cushions are annular,
with a thickness of 3 mm, an inner radius of 46 mm and an outer radius of 54 mm. The schematic
diagram of the experimental device is shown in Figure 4. Due to the symmetry, only one-quarter
model is showed, and the model is symmetrical about the plane of x0y and y0z.

Figure 4. Schematic diagram of basic test device.

During the test, the acceleration time history curve of the punch is recorded by the sensor. The
drop height of weight is 200 mm, and the velocity of contact plate is 1.98 m/s. The punch mass is 6.84 kg.
The theoretical impact kinetic energy can be calculated as 13407.7 mJ by the equation Ek =

1
2 mv2.

3.2. Finite Element Model

Eight solid node elements are employed to discrete the soda-lime glass plate. The element size
of glass plate is 0.7 mm × 0.7 mm. The mesh model is showed in the Figure 5. Due to the symmetry,
only one-quarter model is showed. Because the location of cracks cannot be predicted, zero thickness
cohesive elements are inserted between every two solid elements.

81



Materials 2020, 13, 749

  

(a) (b) 

Figure 5. One-quarter mesh model of the plate (a) solid element mesh; (b) cohesive element mesh.

The frictionless hard contact is defined between the impactor and plate, and between the plate and
the soft cushion, and between the soft cushion and the rigid clamper. The rigid clamper is fully fitted
in translational and rotational degrees of freedom of x-, y-, and z-axis. The boundary conditions of the
glass plate and the soft cushion are free. The initial velocity of impactor is 1.98 m/s, which is consistent
with the experimental test. Symmetric boundary conditions are set on all symmetric surfaces.

Due to their stiffness is a lot larger than other parts, rigid bodies are employed to model impactor
and the clamper. The material of soft cushion is polypropylene and a linear elastic constitutive model
is adopted in simulation. Wedge element is used to mesh the impactor. If the size of wedge element is
too large, there would be a loss of mass, which could result in the loss of kinetic energy. Table 1 depicts
the errors corresponding to different mesh size of impactor. As could be seen in Table 1, the error will
become larger when the mesh size of impactor increase. In order to ensure the accuracy, the wedge
element size should be controlled lower than 2 mm. In this study, the element size of impactor near the
impact area is set to 0.7 mm × 0.7 mm × 0.7 mm, whereas the other area is 2 mm × 2 mm × 2 mm.

Table 1. Relationship between the mesh size of impactor and the kinetic energy

Mesh Size of Impactor (mm) Kinetic Energy (mJ) Error (%)

1 13382.3 0.19
2 13277.1 0.97
3 12922.2 3.62
4 12864.9 4.05

3.3. Result Analysis

3.3.1. Elastic Result

To verify the accuracy of the FE model, including boundary conditions and so on, a simulation
with elastic model is conducted. The constants of elastic model are shown in Table 2. Figure 6 shows
the acceleration time curves of impactor. Compared to the experimental test results, the simulation
result is a bit higher but keep the similar pattern. The reflection of stress wave on the boundary
leads to the fluctuation of the curve, which could be found both in the experimental result and the
simulation result.

Table 2. Constants of the linear elastic model for glass and polypropylene

Material Density (kg/m3) Young’s Modulus (GPa) Poisson’s Ratio

Soda-lime glass 2530 73 0.3
Polypropylene 1000 2 0.3
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Figure 6. Acceleration-time curves of impactor.

3.3.2. Rate-Dependent CZM Results

Table 3 depicts the constants of rate-dependent cohesive zone model adopted in this study. In
this section, numerical simulations are carried out with the rate-dependent CZM. In the simulation,
cohesive element will be removed if damage is equal to 1. The rate-dependent cohesive zone model was
implemented in the commercial finite element code ABAQUS/Explicit with the user subroutine VUMAT.

Table 3. Constants of rate-dependent cohesive zone model.

Properties Reference Parameters

σstatic 60 MPa [25,37]
τstatic 250 MPa [25,37]

Gc
n 0.01 mJ/mm2 [25]

Gc
s 0.05 mJ/mm2 [25]

Kn 1.8 × 106 MPa/mm [37]
Ks 6.25 × 106 MPa/mm [37]
C 0.03

Figure 7 shows the simulation result conducted with rate-dependent cohesive zone model.
The fracture mode of the simulation result agrees well with the experimental result. In the simulation
result, the impact area of the plate is found obvious smash. Circle crack is found near the impact area,
which thoroughly penetrated the thickness of the plate. Therefore, lots of fragments are formed. In the
experimental test results, circle of cracks is also could be found, which results in a large area of vacancy.
This phenomenon has also been well simulated in numerical test. In addition, in the experimental test,
radial cracks appeared in the plate, which penetrated the whole plate and extended to the edge of
the plate. The numerical results have the same crack pattern. To sum up, it can be concluded that the
rate-dependent cohesive zone model can accurately simulate the fracture mode of the impact failure of
the soda-lime glass plate.

After treated by the image processing method, we could obtain the front view of Figure 7, as shown
in Figure 8. The numerical test results are symmetrical. However, due to the irregular microcracks on
the surface of the glass plate in the laboratory test, the results of the laboratory test are not symmetrical.
In Figure 8a, because of the symmetry, the cracks are regular. The fragments in Figure 8a in the middle
are approximately triangular, and the maximum size of the fragment is 25.0 mm. The maximum size
of the fragment obtained in the experimental test is about 25.2 mm. Therefore, we could conclude that
the rate-dependent cohesive zone model could accurately calculate the size of the fragments under
impact loading.
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(a) (b) 

Figure 7. Comparison of the numerical test result and laboratory test result. (a) Numerical result; (b)
experimental result [46].

 
 

(a) (b) 

Figure 8. Comparison of the size of fragments. (a) Numerical result; (b) experimental result [46].

Figure 9 depicts the velocity-time curves of impactor. Between 0.0 ms and 0.2 ms, the curve of
experimental test, simulation result with rate-dependent CZM and simulation result with CZM agree
well. However, after 0.2 ms, the velocity obtained by CZM is obvious lower than the experimental
results. The simulation result conducted with rate-dependent CZM is able to predict the velocity well
as shown in Figure 9.

Figure 10 shows the fracture process of the glass plate. As could be seen in the Figure 10a,
the radial cracks are the first to appear. After that, inner circle cracks could be found in the impact
area, as shown in Figure 10c. Outer circle cracks are found at around 2.0 ms. At this moment, all the
cracks are formed basically. We could infer that the formation of radial cracks is mainly because of the
discontinuity of angular velocity. The formation of inner circle cracks is because of the punch shear,
whereas the formation of outer circle cracks is because of the bending.
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Figure 9. Velocity–time curves of impactor.

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 10. Failure process of the plate (a) 0.5 ms; (b) 1.0 ms; (c) 2.0 ms; (d) 2.5 ms; (e) 4.0 ms; (f) 5.0 ms.

4. Parametric Studies

4.1. Strain Rate Sensitivity Coefficient C

In Equation (2), we employed a strain rate sensitivity coefficient C to consider the effect of strain
rate on the fracture strength. Five numerical tests are carried out in this section, in order to study
the effect of C on the cracking pattern. The numerical results are shown in Figure 11. In Figure 11a,
the coefficient C is 0, which indicates that the strength of glass is rate independent. It could be found in
Figure 11a that the fracture gathers near the impact area, which is inconsistent with the actual situation
shown in Figure 7b. In Figure 11b, most of the energy dissipation is gather near the impact point as
well even though the strain rate effect is put into consideration. When the coefficient C is 0.02, we
could see that the outer circle crack is obvious. The crack pattern when C = 0.03 is the most consistent
with the experimental result. The strain rate effect forms a shielding zone in the region with high strain
rate, which makes the energy propagate outward. However, when C = 0.04, the strength of soda-lime
glass becomes too high making the fracture area too small compared with Figure 11d. We could also
find that the number of small fragments when C = 0.04 is obviously less than that in Figure 11d. This
can also be attributed to the strength of the glass is too high when C = 0.04.
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(a) (b) (c) 

  

 

(d) (e)  

Figure 11. Effect of C on the results (a) C = 0.00; (b) C = 0.01; (c) C = 0.02; (d) C = 0.03; (e) C = 0.04.

4.2. Mesh Size

Two different mesh is conducted in this section, including a fine mesh with element size of 0.7 mm
and a coarse mesh with element size of 2 mm. The results are shown in Figure 12. The crack pattern of
glass plate is similar. Radial cracks and circle crack can be found in both of numerical result. Fewer
small fragments are found in the coarse mesh result. However, the large fragments of both the two
results show agreement. We could conclude that the rate-dependent cohesive zone model has little
dependence on the mesh size.

  
(a) (b) 

Figure 12. Effect of mesh size on the results. (a) Fine mesh; (b) coarse mesh.

4.3. Impact Velocity

Figure 13 depicts the numerical results conducted with 5 different impact velocity. When the
velocity is 0.50 m/s and 1.00 m/s, no outer circle cracks could be found in the result, as the Figure 13a,b
shown. As the velocity increase, the outer circle cracks appear when velocity is 1.98 m/s, 3.00 m/s and
4.00 m/s. Thus, we can conclude that more kinetic energy is needed to form a circular crack compared
with a radial crack.
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(a) (b) (c) 

  

 

(d) (e)  

Figure 13. Effect of initial velocity on the results (a) v0 = 0.50 m/s; (b) v0 = 1.00 m/s; (c) v0 = 1.98 m/s;
(d) v0 = 3.00 m/s; (e) v0 = 4.00 m/s.

5. Conclusions

In this paper, we have established a rate-dependent cohesive zone model for the fracture simulation
of soda-lime glass plate. A monolithic glass plate is simulated in this paper conducted with the
rate-dependent CZM and the simulation has been validated by the experimental results. Finally,
parametric studies are carried out. The main conclusions found of this research are as follows:

(1) Soda-lime glass is a rate dependent material. It is necessary to consider the rate dependence of
glass when simulating fracture under impact loading. The numerical simulation results show
that the rate-dependent CZM considering the strain rate is more accurate.

(2) The rate-dependent CZM is applied to the finite element simulation by VUMAT. In the
rate-dependent CZM, the maximum traction and the maximum separation are rate dependent,
which results in that the cohesive element dissipate more energy when it is damaged. The strain
rate effect forms a shielding zone in the region with high strain rate, which makes the energy
propagate outward.

(3) The rate-dependent cohesive zone model has little dependence on the mesh size. Furthermore,
more kinetic energy is needed to form a circular crack compared with a radial crack.
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Abstract: A four-noded finite element of a moderately thick plate made of functionally graded
material (FGM) is presented. The base element is rectangular and can be extended to any shape
using a transformation based on NURBS functions. The proposed 2D shape functions are consistent
with the physical interpretation and describe the states of element displacement caused by unit
displacements of nodes. These functions depend on the FGM’s material parameters and are called
material-oriented. The shape function matrix is based on a superposition displacement field of two
plate strips with 1D exact shape functions. A characteristic feature of the proposed formulation is full
coupling of the membrane and bending states in the plate. The analytical form of the stiffness matrix
and the nodal load vector was obtained, which leads to the numerical efficiency of the formulation.
The element has been incorporated into Abaqus software with the use of Maple program. The finite
element shows good convergence properties for different FGM models in the transverse direction to
the middle plane of the plate. During derivation of the 2D plate element the formally exact 1D finite
element for transverse nonhomogeneous FGM plate strip was developed.

Keywords: finite element; FGM; plate; material-oriented shape functions; NURBS

1. Introduction

Functionally graded materials (FGMs) belong to a class of innovative materials with varying
properties over a changing dimension [1,2]. The materials both occur in nature and can be obtained
in an artificial way. A good example of an FGM found in nature is bamboo wood [1,2]. Due to
the natural fiber distribution in the stem cross-section, it has high bending strength under natural
loads. The beginnings of conscious creation of artificial FGMs should be dated to the beginning of
the 1980s, with applications for the construction of thermal shields with unprecedented parameters.
FGM eliminates the sharp interfaces existing in composite materials, replacing them with a gradient
interface to produce a smooth transition from one material to the next.

There are different kinds of fabrication processes for producing functionally graded materials.
Thin FGM sections are produced by physical or chemical vapor depositions, plasma spraying,
self-propagating high temperature synthesis, etc. Volume FGM members are produced using powder
metallurgy technique, centrifugal casting method, solid freedom fabrication technology, etc. Further
details can be found in the literature [1,2].

Applications of functionally graded materials are quite wide, from aerospace, energy and
automobile, through mechanical and civil engineering, to medicine, sport, sensors and optoelectronic
fields. As the fabrication process is improved, the overall process cost is reduced, hence expanding the
applications of FGM.

Plate structures are an important area of FGM applications. It is possible to build effective
two-dimensional theories in which material variation in the transverse direction is usually assumed.
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Shear deformable as well as thin plate theories are to be applied. An overview of important papers in
this field and the derivation of the equations of the first and higher order theories can be found in [3].
The scope of obtaining effective solutions by means of analytical methods is very limited (see [3]). It is
necessary to use computational methods, among which the finite element method [4] dominates.

In the standard FEM model, the functional variability of material coefficients is represented in
the elasticity matrix, which appears in the formulas for the finite element stiffness matrix. Shape
functions are usually polynomial, with varying numbers of nodes and various techniques for improving
formulation properties. A synthetic description of the most important models, together with citations
of representative papers, is presented below.

Formulation within three-dimensional theory was applied to static analysis of thick or moderately
thick rectangular plates [5] (eight-node brick element), to circular plates on elastic foundation [6] as
well as for vibration analysis [7] (8- and 20-node isoparametric elements). Gradation of the finite
elements’ elastic properties can be also used in the 3D formulation.

Various two-dimensional theories with the influence of shear deformation are the most common
approach. Usually the first-order formulations are applied.

Rectangular finite elements with linear shape functions were used for static analysis,
piezothermoelastic dynamics [8], active deflection/vibration control [9] and free vibrations [10].
Eight-node rectangular elements were applied for nonlinear free flexural vibrations [11] and piezo-
electric fiber reinforcement [12]. The enhanced strain formulation to avoid the locking effects in
eight-node elements was proposed in [13] for structural stability and dynamics problems. The elements
can be successfully implemented in the Abaqus package [14].

Triangular plate finite elements with the discrete shear gap improvement were analyzed in [15,16]
for static and free vibration problems.

Axi-symmetric plate finite elements within buckling, vibration and thermal analysis were proposed
in [17].

Nine-node quadrilateral finite element was proposed for higher order shear deformation theory
for static and free vibration analysis in [18] and was extended for large amplitude problems in [19].
Modified discrete Kirchhoff four-node quadrilateral element was used for the third-order theory for
skew plates in [20].

An example of the application of C-1 continuity finite element formulated for classical thin FGM
plate theory and applied for natural frequency analysis can be found in [21].

Isogeometric finite element formulation with NURBS-based shape functions was presented in [22]
for static, vibrations, buckling and flutter as well as in [23] for thermal buckling.

The finite element formulation can be also applied for FGM shell structures and FGM
beams—see [24–28] as representative papers.

A variety of finite element formulations applied for FGM plates seems to be a sign that the
development of an element suitable for the analysis is still an open problem. This was an inspiration
for the proposal of the present paper. The common problems with FE formulations based on standard
polynomial shape functions are shear locking (connected to the parasitic shear) and zero energy
modes. Analogous problems occur in FGM modeling using FEM. In addition, standard polynomial
approximation assumes decoupling of approximated displacement fields. This is not consistent
with the physical interpretation of the shape function in FGM boards, which should describe the
displacement fields caused by unit displacement of nodes and should be coupled. In the matrices of
shape functions proposed in the work, we observe full displacement of displacement fields.

The proposed elements are free from zero energy modes. Earlier studies of homogeneous plates
with similar physical shape functions [29] did not show shear locking even for very thin plates.
This phenomenon was also not observed in the FGM model proposed in this paper. The new finite
elements are based on the physical interpretation of the shape functions, according to which they
describe the distribution of finite element displacements caused by unit displacement of nodes.
Naturally, such distributions should depend on the physical properties of the element. This approach
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was proposed for the statics of homogeneous plate bending in [30] and generalized in [29,31,32] for
other types of structures. The proposed base element is rectangular with fully coupled displacement
fields (membrane and bending conditions), which are based on analytical solutions regarding plate
strips constructed of material with any FGM properties. The developed finite element was incorporated
into the Abaqus system with UEL element user subroutine (using Maple program procedures) and
its convergence was tested. The basic four-node rectangular finite element can be extended to any
shape via parametric transformation based on NURBS functions [33]. During the development of the
rectangular element, a formally accurate finite element for plate strip was created.

2. FGM plate Finite Elements

The subject under consideration is a rectangular four-noded finite element of dimensions 2a × 2b
and thickness h in nondimensional coordinate system ξ = x−xe

a , η = y−ye
b . The element is presented in

Figure 1.

 
Figure 1. Four-noded rectangular plate element.

Generalized displacements of membrane and bending states as well as natural nodal displacements
are defined as

u =
{
u, v, w,ϕx,ϕy

}
(1)

q= {q1,q2,q3,q4

}
, (2)

qi =
{
ui, vi,ϕxi,ϕyi

}
, i = 1, 2, 3, 4 (3)

Shape function matrix (u = Nq) is proposed in the form

N = [N1N2N3N4], (4)

Ni = (ξ, η) ==
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(5)

The matrix (Equation (5)) is consistent with physical interpretation of the shape function, according
to which it describes the distribution of finite element displacements caused by unit displacement of
nodes. This approach is an extension of the concept proposed for the statics of homogeneous plates [29]
and for other types of structures [30,31]. Fully coupled displacement fields for membrane and bending
states can be observed. The proposed shape matrix is an overlay of one-variable distributions of
displacements of two crossed plate strips (Figure 2) with imposed boundary displacements.

f̂ = f̂ (ξ), ˆ̂f = ˆ̂f (η) (6)
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Figure 2. Crossed plate strips.

One-variable displacement fields are related to the FGM plate strips (Figure 2). If the first-order
plate theory with shear deformation is used [3], the following six-level set of differential equations
with physical boundary conditions is to be considered (for the x direction as the example):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0
1
a2

d2

dξ2 0 −A1
1
a2

d2

dξ2

0 −B0
1
a2

d2

dξ2 B0
1
a

d
dξ

−A1
1
a2

d2

dξ2 B0
1
a

d
dξ A2

1
a2

d2

dξ2 − B0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
w
ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−p
−q
−m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

where

Ai =
Eo

1− v2

h
2∫

−h
2

[
P(z) · zi

]
dz, B0 =

5
6

1− ν
2

A0, i = 0, 1, 2, (8)

and p, q and m are load components. Coefficients Ai and B0 depend on the adopted FGM distribution
represented for isotropic transverse nonhomogeneous material by the Young’s modulus E0, Poisson’s
ratio ν and function P(z). In the above system of equations, one can observe a coupling of the membrane
and bending states in the FGM panel. A similar system of equations for a moderately thick beam made
of FGM was considered in the paper [26].

Solution of the homogeneous equations can be used to obtain exact shape functions for the strip,
as follows:

u(ξ) = C5 + C6ξ+
3A1

A0a
C4ξ

2, (9)

w(ξ) = C1 + C2ξ+ C3ξ
2 + C4ξ

3, (10)

φ(ξ) =
1
a

⎡⎢⎢⎢⎢⎣C2 + 2C3ξ+ 3C4(ξ
2 +

2A2

B0a2 −
2A2

1

A0B0a2 )

⎤⎥⎥⎥⎥⎦ (11)

Two 1D displacement vectors û = (ξ) and ˆ̂u = (η) for plate strips (Figure 2) are defined as

û = (ξ) =
{
u(ξ), w(ξ),ϕx(ξ)

}
, ˆ̂u = (η) =

{
v(η), w(η),ϕy(η)

}
(12)

Formally exact shape function matrices can be developed for each plate strip:

û = (ξ) = N̂(ξ) · q̂e, ˆ̂u = (η) = ˆ̂N(η) · ˆ̂qe (13)

with natural boundary parameters at each end:

q̂e= {u1, w1,ϕx1, u2, w2,ϕx2
}
, ˆ̂qe= {v1, w1,ϕy1, v2, w2,ϕy2

}
(14)

The 1D shape function matrices can be expressed in the form

N̂ =
[

N̂1(ξ) N̂2(ξ)
]
, ˆ̂N =

[
ˆ̂N1(η)

ˆ̂N2(η)
]

(15)
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N̂
i
(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
N̂i

11(ξ) N̂i
12(ξ) N̂i

13(ξ)

0 N̂i
22(ξ) N̂i

23(ξ)

0 N̂i
32(ξ) N̂i

33(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, ˆ̂N
i
(η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ˆ̂N

i
11(η)

ˆ̂N
i
12(η)

ˆ̂N
i
13(η)

0 ˆ̂N
i
22(η)

ˆ̂N
i
23(η)

0 ˆ̂N
i
32(η)

ˆ̂N
i
33(η)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

where
N̂i

11(ξ) =
1
2 (1 + ξiξ),

N̂i
12(ξ) =

3
4

ξiA1B0a(1−ξ2)
3A0A2+A0B0a2−3A2

1
,

N̂i
13(ξ) =

3
4

A1B0a2(ξ2−1)
3A0A2+A0B0a2−3A2

1
,

N̂i
22(ξ) =

1
2 + 1

2

(
1 + 1

2
A0B0a2(1−ξ2)

3A0A2+A0B0a2−3A2
1

)
ξiξ,

N̂i
23(ξ) =

1
4

(
A0B0a3ξ

3A0A2+A0B0a2−3A2
1
+ aξi

)
(ξ2 − 1),

N̂i
32(ξ) =

3
4

ξiA0B0a(1−ξ2)

3A0A2+A0B0a2−3A2
1

N̂i
33(ξ) =

1
2

(
ξiξ+

3
2

A0B0a2(ξ2−1)
3A0A2+A0B0a2−3A2

1
+ 1

)
.

(17)

The shape functions for the second direction are analogous. They can be obtained from Equation
(17) by exchanging variables ξ→ η, a→ b . The functions (Equation (17)) strongly depend on the
parameters of FGM, so the formulation is named “material-oriented”.

Following the above formulation, the formally exact stiffness matrix as well as the load vector for
two line-noded, 6 d.o.f. (horizontal displacements, vertical displacements and rotations) plate strip
finite element can be expressed in the form (for the ξ direction as an example)

Ke =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 0 k13 −k11 0 −k13

0 k22 ak22 0 −k22 ak22

k13 ak22 k33 −k13 −ak22 k36

−k11 0 −k13 k11 0 k13

0 −k22 −ak22 0 k22 −ak22

−k13 ak22 k36 k13 −ak22 k33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

k11 = A0
2a ,

k13 = −A1
2a ,

k22 =
3B0(A0A2−A2

1)
2a[−3(A2

1−A0A2)+a2A0B0]
,

k33 =
−3A2

1(A2+a2B0)+A0A2(3A2+4a2B0)
2a[−3(A2

1−A0A2)+a2A0B0]
,

k36 =
3A2

1(A2−a2B0)−A0A2(3A2−2a2B0)
2a[−3(A2

1−A0A2)+a2A0B0]
,

(19)

Qe = pa

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
− aA1B0
−3A2

1+A0+(3A2+a2B0)

− a2A1B0
−3A2

1+A0+(3A2+a2B0)

1
− aA1B0
−3A2

1+A0+(3A2+a2B0)

− a2A1B0
−3A2

1+A0+(3A2+a2B0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ qa

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
3 a
0
1
− 1

3 a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ma

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
− aA0B0
−3A2

1+A0+(3A2+a2B0)

− −3A2
1+3A1A2

−3A2
1+A0+(3A2+a2B0)

0
− aA0B0
−3A2

1+A0+(3A2+a2B0)

− −3A2
1+3A1A2

−3A2
1+A0+(3A2+a2B0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

The results to be obtained within the above formulation are formally exact and no convergence
study is necessary.
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The strain matrix for the rectangular finite element can be expressed as

B = [B1B2B3B4], Bi = DNi, (21)

where

D =

[
D1 0
0 D2

]
, D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
a
∂
∂ξ 0
0 1

b
∂
∂η

1
b
∂
∂η

1
a
∂
∂ξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
a
∂
∂ξ 0

0 0 − 1
b
∂
∂η

0 − 1
b
∂
∂η − 1

a
∂
∂ξ

1
a
∂
∂ξ −1 0

1
b
∂
∂η 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

The stiffness matrix and load vector can be received in the standard FEM procedure as follows:

Ke = ab

1∫
−1

1∫
−1

BTEBdξdη, (23)

Qe = ab

1∫
−1

1∫
−1

NTpdξdη, (24)

where elasticity matrix is expressed as

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1 E2 0
ET

2 E3 0
0 0 E4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (25)

E1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A0 vA0 0
vA0 A0 0

0 0 1−v
2 A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, E2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A1 vA1 0
vA1 A1 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (26)

E3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A2 νA2 0
νA2 A2 0

0 0 1−ν
2 A2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, E4 =

[
B0 0
0 B0

]
, (27)

and
p =

{
px, py, pz, mx, my

}
(28)

is the load vector for the panel.
The analytical form of stiffness matrix can be obtained with the use of Maple software—the

expressions are relatively long and exceed the limitations of the present paper.
The analytical form of the load vector can be expressed as

Qe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Qe

1
Qe

2
Qe

3
Qe

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (29)
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Qe
i = pxab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0

aA1B0
3A0A2+A0B0a2−3A2

1
ξi

− a2A1B0
3A0A2+A0B0a2−3A2

1

− 1
3

abA1B0
3A0A2+A0B0a2−3A2

1
ξiηi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ pyab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

bA1B0
3A0A2+A0B0a2−3A2

1
ηi

− 1
3

abA1B0
3A0A2+A0B0a2−3A2

1
ξiηi

− a2A1B0
3A0A2+A0B0a2−3A2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ pzab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
− aξi

3

− bηi
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

+mxab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

aA0B0
3A0A2+A0B0a2−3A2

1
ξi

− a2A0B0
3A0A2+A0B0a2−3A2

1

− 1
3

abA0B0
3A0A2+A0B0a2−3A2

1
ξiηi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ myab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

bA1B0
3A0A2+A0B0a2−3A2

1
ηi

− 1
3

abA1B0
3A0A2+A0B0a2−3A2

1
ξiηi

− a2A1B0
3A0A2+A0B0a2−3A2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

The rectangular finite element with material-oriented shape functions satisfy rigid body motion,
constant strain and ellipticity conditions [4,30].

The proposed finite element was introduced to the Abaqus system using the UEL element user
subroutine (see [34,35] for details). The UEL procedure is written in FORTRAN. The stiffness matrix is
entered into the code from Maple Software for Mathematica using the command Fortran (K, optimize,
resultname = “AMATRX”) [36] using Equations (18–20) or (21–30).

For the purpose of the present paper, the analysis is limited to the isotropic plates with functional
transverse gradation of Young’s modulus (E, E0) and mass density (ρ,ρ0):

E(z) = E0 · P(z), v = const., ρ(z) = ρ0 · P(z). (31)

Three FGM distributions (Equations (32–34)) were taken into consideration:

P(z) = 1 + 4
z2

h2γ, (32)

P(z)= (η−1)(
z
h
+

1
2

)n
+ 1, η =

Pt

Pb
, (33)

P(z) =
δ/π

δ2 +
(

z
h − ξ0

)2 + 1, (34)

where γ, Pt, Pb, n, δ, ξ0 are constant parameters to model various FGM distributions. Here, “t”
represents the top of the plate, “b” represents the bottom of the plate, E0 = Eb, ρ0 = ρb.

Examples of functions P(z) along thickness of the plate are presented in Figure 3.

   
15γ =  (32) 4, 2, 1t bn P P= = =  (33) 00.02, 0.4δ ξ= =  (34) 

Figure 3. Selected transverse nonhomogeneous materials of the plate.

97



Materials 2020, 13, 803

Light color represents material with a higher intensity of material properties.
The functions described by Equations (32) and (33) are normally used to describe FGMs.

The function described by Equation (34) is original and can be used to describe plates with reinforced
mats glued in.

3. Numerical Examples

The proposed finite element was adapted to the Abaqus software. To verify the finite element,
several examples were made. Some of the examples made for convergence check are presented below.
Square plates are considered (simply supported and clamped—Figure 4) with the following data:
dimensions L × L, thickness h = L/10, Young’s modulus E0, Poisson’s ratio ν = 0.25, concentrated
force P.

 

Figure 4. Plates taken for convergence analysis: simply supported and clamped with concentrated
load in the middle.

In Figures 5 and 6 convergence results are shown for the maximum vertical deflection in the
middle of the plates.

Model 1a is a transverse homogeneous plate (for γ = 0 according to Equation (32)). Model 1b
is a transverse inhomogeneous plate according to Equation (32) for γ = 15. Model 2 is a transverse
inhomogeneous plate according to Equation (33) for n = 4, Pt = Pb. Model 3 is a transverse
inhomogeneous plate according to Equation (34) for δ = 0.02, ξ0 = 0.4.

One can observe that each example is characterized by a good rate of convergence for all models.
The influence of the FGM model applied in comparison to the homogeneous plate is visible.

The considerable differences result from the adopted calculation parameters in the functions described
by Equations (32)–(34). These parameters describe strong material variation—hence the differences
compared to a homogeneous material. The rectangular element shows correct convergence.

Validation of the proposed model in the scope of FGM was carried out by comparison with
the analytical solution available in the literature—the benchmark presented in the [37] was selected.
A comparison regarding the maximum displacement of a simply supported plate subjected to uniform
loading for the material model (Equation (33)) is shown in Table 1.

The numerical solution for homogeneous plates (k = 0 and k = infinity) is consistent with the
analytical solution [37] in the range of five significant digits. For other parameters of n, the proposed
finite element gives slightly less than analytical results at a level of 1%–3% error.

It is worth noting that the solution in the field of cylindrical bending using Equations (18) and (20)
is formally accurate for any FGM.
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Figure 5. Convergence graphs for simply supported plate (multiplier PL2

E0h3 ).
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Figure 6. Convergence graphs for clamped plate (multiplier PL2

E0h3 ).
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Table 1. Comparison of the FEM results with analytical solutions [37] for a simply supported
square plate (L × L, h/L = 1/10) with uniformly distributed load q. Material model (Equation (33)),
Et = 380GPa, Eb = 70GPa .

~
w = 10 Eth3

qL4 w(A
2 , B

2 )

n 0 1 2 3 5 10 Infinity

Analytical solution [37] 0.4665 0.9421 1.2228 1.3530 1.4647 1.6054 2.5328

Present study 0.4665 0.9280 1.1903 1.3124 1.4202 1.5692 2.5328

4. Free-Form Plate Finite Element—the Use of NURBS Functions

An extension of the proposed finite element for unrestricted shape (Figure 7—examples with four
and six nodes) can be done by coordinate system transformation with the use of NURBS functions [33]:

x =
N∑

i=1

Fi(ξ, η)xi,y =
N∑

i=1

Fi(ξ, η)yi, (35)

where Fi(ξ, η), i = 1, . . . , N, are NURBS functions.

Figure 7. Example of free-form element shapes.

The formulation within description of geometry is close to superparametric [4]. Only four nodes
are used in every element for representation of displacement fields (according to Equation (5)), as well
as N nodes for description of a free-form element geometry.

The Jacobi and inverse Jacobi matrices can be obtained:

J =

⎡⎢⎢⎢⎢⎢⎣ ∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

∂Fi
∂ξ xi

N∑
i=1

∂Fi
∂ξ yi

N∑
i=1

∂Fi
∂η xi

N∑
i=1

∂Fi
∂η yi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (36)

J−1 =

⎡⎢⎢⎢⎢⎢⎣ ∂ξ∂x ∂η
∂x

∂ξ
∂y

∂η
∂y

⎤⎥⎥⎥⎥⎥⎦ = 1
J

⎡⎢⎢⎢⎢⎢⎣ ∂y
∂η −∂y

∂ξ

− ∂x∂η ∂x
∂ξ

⎤⎥⎥⎥⎥⎥⎦ = [
J−1
11 J−1

12
J−1
21 J−1

22

]
. (37)

where J is the Jacobian of this transformation

J =
∂x
∂ξ

∂y
∂η
− ∂x
∂η

∂y
∂ξ

(38)

Now, one can calculate derivatives necessary for development of the strain matrix:

∂(. . .)

∂x
=
∂(. . .)

∂ξ
J−1
11 +

∂(. . .)

∂η
J−1
12 ,

∂(. . .)

∂y
=
∂(. . .)

∂ξ
J−1
21 +

∂(. . .)

∂η
J−1
22 , (39)
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Parameters a and b, necessary for the strain matrix, are average values of the element dimensions.
The strain matrix can be expressed in the form

B = [ B1 B2 B3 B4 ], Bi = DNi (40)

The above formulae provide a way to calculate the stiffness matrix and the load vector of
an element:

Ke =
�
Fe

BTEBdFe =

1∫
−1

1∫
−1

BT(ξ, η)EB(ξ, η) J dξdη, (41)

Qe =
�
Fe

NTPdFe =

1∫
−1

1∫
−1

NTPJ dξdη, (42)

where E is the elasticity matrix and P is the external load vector.
Following the above procedure, the limitation of the rectangular shape of the proposed finite

element can be avoided.

5. Conclusions

The paper proposes a four-noded finite element of a moderately thick plate made of FGM.
The base element is rectangular and can be extended to any shape using a transformation based on
NURBS functions.

The shape functions in the considered elements are consistent with the physical interpretation and
describe the states of element displacement caused by unit displacements of nodes. These functions
depend on the FGM’s material parameters and are called material-oriented. A characteristic feature of
the proposed formulation is full coupling of the membrane and bending states in the plate and the
dependence of the shape functions on the FGM model.

The finite element meets the conditions of rigid body motion and constant strain as well as the
elliptical condition. No spurious zero-energy modes were identified.

The analytical form of the stiffness matrix and the nodal load vector was obtained, which leads to
the numerical efficiency of the formulation. The element has been incorporated into Abaqus software
with the use of Maple program.

The finite element with material-oriented shape functions shows good convergence properties
for different FGM models in the transverse direction to the middle plane of the plate. The element
is free from locking effects. Examples have been completed to compare the FEM solution with the
analytical solution. Basic examples were used to demonstrate the convergence and correctness of the
proposed model. The results are promising as a base for modeling more complex plates built of FGMs
with various distribution of the properties over the thickness.

During derivation of the 2D plate element, the formally exact 1D finite element for a transverse
nonhomogeneous FGM plate strip was developed.
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Abstract: A theoretical model concerning the finite bending of a prismatic hyperelastic solid has
been recently proposed. Such a model provides the 3D kinematics and the stress field, taking into
account the anticlastic effects arising in the transverse cross sections also. That model has been used
later to extend the Elastica in the framework of finite elasticity. In the present work, Finite Element
(FE) analyses of some basic structural systems subjected to finite bending have been carried out and
the results have been compared with those provided by the theoretical model performed previously.
In the theoretical formulation, the governing equation is the nonlinear local relationship between
the bending moment and the curvature of the longitudinal axis of the bent beam. Such a relation
has been provided in dimensionless form as a function of the Mooney–Rivlin constitutive constants
and two kinematic dimensionless parameters termed Eulerian slenderness and compactness index
of the cross section. Such parameters take relevance as they are involved in the well-known Searle
parameter for bent solids. Two significant study cases have been investigated in detail. The results
point out that the theoretical model leads to reliable results provided that the Eulerian slenderness
and the compactness index of the cross sections do not exceed fixed threshold values.

Keywords: Finite elements; finite bending; 3D elasticity; Eulerian slenderness; compactness index;
Searle parameter; Elastica

1. Introduction

The nonlinear bending theory of elastic bodies has attracted a lot of interest because of its relevance
in many physical and engineering applications. As an example, in the past decades, the diffusion of
robotic technologies has demanded the precise knowledge of the mechanical response of technological
components subjected to large bending.

The soft robots [1], i.e., robots based on extremely compliant components, are used to produce
pneumatic robots [2], to simulate artificial systems [3], animals [4], human hands [5] and other gripper
devices [6]. For these kinds of high-tech applications, the mechanical role of the external load is played
by the light [7], humidity [8] or electricity [9] to drive motion.

In the aforementioned and many other applications, the theory of elastic bending allows predicting
strains and stresses in the deformed solid. For situations in which the displacement and strains are
small, the classical linearized elasticity theory provides reliable results. In such a framework, a certain
number of closed-form solutions are available for beams [10], shells and plates [11,12] under different
loading and boundary conditions. A few closed-form solutions can be found also for the 3D elastic
bodies, with special reference to symmetric layouts [13,14].
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However, linear elasticity cannot be used to properly assess the mechanical response of bodies
that exhibit large displacements and/or strains, like, for example, tentacle action or hand closure
in soft robots. For these and other contexts the finite elasticity is much more appropriate than the
linearized theory.

From a mathematical standpoint, a large number of challenging insights are involved in the
finite theory. Nevertheless, also in the framework of nonlinear elasticity, a certain number of
analytical solutions in the context of homogeneous deformations are available for some basic layouts,
like prismatic bodies under axial dead loads [15–18] or shear loads [19].

Concerning finite bending, various studies can be found in Literature [20–22]. Such studies are
typically approached through the semi-inverse method: Some geometrical assumptions about the
kinematics allows obtaining the displacement field, which is definitely assessed by solving a boundary
value problem provided by the equilibrium conditions. However, all the aforementioned works have
been carried out by assuming plane strain or plane stress conditions, thus reducing the problem of the
finite bending of solids to a 2D problem.

Recently, the Rivlin formulation [20] has been extended to a 3D framework by taking into account
also the anticlastic deformation arising in the transverse cross sections of the solid subjected to
uniform bending [23]. Later, the analysis has been extended to beams subjected to variable bending
moment [24,25]. In that study, a nonlinear relation between the bending moment and the curvature of
the longitudinal axis has been found for a compressible Mooney–Rivlin material. As a matter of fact,
this relation represents a generalization of the well known Elastica [26] in the context of finite elasticity.

In the present work, based on the theoretical formulation reported in [23,24], some study cases
are analytically investigated. In particular, the applications consist of a clamped beam subjected to
a couple or a shear force acting at its free end. The nonlinear relation between the bending moment
and the curvature of the longitudinal axis is written in a dimensionless form, thus highlighting the
relevance of the Eulerian slenderness together with a second dimensionless parameter, which stands
for the compactness of the transverse cross sections. Such parameters are coupled into the well known
Searle parameter [27,28]. The theoretical results in terms of displacements of the longitudinal axis,
stretch and stress distributions within the cross sections are compared with the results provided by
Finite Element (FE) simulations. The comparison allows assessing the reliability of the theoretical
model to predict accurately the mechanical response of beams under large bending based on fixed
threshold values of the governing parameters.

The paper is organized as follows: In Section 2 a brief remark about the theoretical model [23]
is provided, with particular emphasis on the basic assumptions concerning the kinematics. The
governing equation in terms of moment-curvature relationship is then provided in dimensionless
form based on the definition of the Eulerian slenderness and the compactness index of the cross
sections. The main results obtained by the theoretical model and the FE simulations are compared in
Section 3 through the investigation of two study cases. In that Section, the role played by the Eulerian
slenderness and the compactness of the cross sections is discussed in detail and relevant threshold
values of the governing parameters are found. Finally, conclusions are drawn in Section 4.

2. The Theoretical Model for the Finite Bending of Solids

2.1. Remarks on the Theoretical Model

In the present Section the basic assumptions of the theoretical model are briefly recalled [23].
Let us consider a prismatic body of length L, width B and height H, placed in a Cartesian reference
system {O, X, Y, Z}. The solid is uniformly bent around the X-axis by imposing a prescribed rotation
angle 2α0 = L/R0 at the end cross sections, as sketched in Figure 1.
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Figure 1. Prismatic hyperelastic solid under bending: Kinematic parameters, anticlastic surface and
deformed configuration of the cross section.

Hereinafter R0 denotes the radius of curvature of the centroidal line (X = 0, Y = 0) in the
ZY-plane, which is constant along the longitudinal Z-axis, see Figure 1. The kinematics is such to
distinguish the centroidal line from the longitudinal neutral fibre (X = 0, Y = QM : λZ = 1) and from
the transverse neutral plane (Y = QN : λX = λY = 1, being λJ the stretch along the J-axis).

The kinematics is based on the following three basic hypotheses [23]:

1. the longitudinal fibres, parallel to Z-axis, after bending are deformed into arcs of circumferences
(blue curves in Figure 1). As reported above, the longitudinal radius of curvature of the deformed
centroidal fibre is denoted as R0, whereas the longitudinal fibre with unitary transverse stretches
(λX = λY = 1) is characterized by the longitudinal radius of curvature R;

2. during bending, transverse cross sections belonging to XY planes preserve their planarity and
exhibit the same deformation;

3. solid transverse fibres, parallel to X-axis, after bending are deformed into arcs of circumferences
(red curves in Figure 1). The transversal fibre with unitary transverse stretches (λX = λY = 1),
is characterized by the anticlastic (or transverse) radius if curvature r.

Therefore, conversely to existing models on the 2D finite bending [20–22], in the theoretical
formulation proposed in [23] a complete 3D description of the kinematics is provided. Due to bending,
both the longitudinal and anticlastic curvatures of each fibre of the solid are considered. As a result, all
components of the strain and stress fields are provided.

The second hypothesis is widespread in the framework of the linearized beam theory and it is
known as Euler–Bernoulli assumption. As shown in [29,30], such an assumption is still valid at large
displacements and strains. It is remarked that the proposed formulation neglects the deformation
induced by shearing or axial loads.

From the third hypothesis about the anticlastic radius of curvature, it follows the invariance of
the transverse stretch λX and λY with respect to (w.r.t.) the X-variable. However, as shown in the
following, such an assumption depends on the governing parameters.

Let us define βC = B/H as the compactness index of the cross sections. As already pointed out
by Lamb [28] and experimentally by Searle [27], the cross sections of an elastic bent solid exhibit a
variable curvature along the solid width. Such a variation increases in the neighborhood of the corners
of the cross section.

The equilibrium condition, as shown in [23], is exactly fulfilled for the centroidal fiber in terms of
local equilibrium equations, whilst it is satisfied in average at the boundaries. Therefore, moving away
from the centroidal fiber, the equilibrium fulfillment loses its accuracy, but with negligible errors in the
case of slender solids with compact cross sections [24].
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The concept of slenderness can be referred to the Lagrangian or Eulerian configurations. In the
classical beam theory [10], the Lagrangian slenderness is defined as the ratio βLS = L/ max(B, H) [10].
Generally, a beam can be considered slender if βLS ≥ 10 regardless the magnitude of strain or
displacement fields involved in the deformation process (a definition of Eulerian slenderness βES will
be provided in Section 2.2 based on the nonlinear moment-curvature relationship, showing that the
bending problem is governed by two parameters: βES and βC).

In the following we consider a hyperelastic prismatic solid characterized by a stored energy
density function ωMR, here assumed according to that of a compressible Mooney–Rivlin (MR)
material [31] . The stored energy density function of an isotropic material is expressed as a function of
the invariants I1, I2, I3 of the right Cauchy–Green strain tensor C = FT F as follows (for any details in
terms of symbols and notation the Reader is referred to [23]):

ωMR(I1, I2, I3) = a(I1 − 3) + b(I2 − 3) + c(I3 − 1)− (a + 2 b + c) ln(I3), (1)

with

I1 = λ2
X + λ2

Y + λ2
Z, I2 = λ2

Xλ2
Y + λ2

Xλ2
Z + λ2

Yλ2
Z, I3 = λ2

Xλ2
Yλ2

Z,

where a, b and c denote the constitutive MR parameters.
Kinematics, equilibrium conditions and constitutive law allows assessing the displacement field

s(X, Y, Z) = u i + v j + w k as [23]

s =

⎡⎢⎢⎢⎣
−X + r e−

X+QN
r sin X

r

−Y − R − QN +
[

R + r
(

1 − e−
Y+QN

r cos X
r

)]
cos Z

R0

−Z +
[

R + r
(

1 − e−
Y+QN

r cos X
r

)]
sin Z

R0

⎤⎥⎥⎥⎦ , (2)

which is completely known once the following nonlinear system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r
[

R2
0(a + 2b)− aR2 + c

(
R2 + R2

0

)]
− 2R

[
R2

0(a + 3b) + c
(

R2 + R2
0

)]
= 0

R0 − R = r
(

1 − cos
B
2r

)
QN = r log

(
cosh

H
2r

) . (3)

It is remarked that Equation (3)1 follows by imposing the equilibrium condition, Div TR = 0, along
the Y and Z directions. Equation (3)2 is obtained by imposing that the lateral surface of the bent solid
is unloaded, i.e., the Piola-Kirchhoff stress vector, tR = TRn, must be 0 on the contour of each cross
section (n is the outward unit normal). Finally Equation (3)3 comes from a simplifying assumption
about stretch λY along Y direction (for details, see [23]). Therefore system (3) is solved in the unknown
kinematic parameters R, r and QN, and then the principal stretches can be evaluated as the roots of
the diagonal components of the right Cauchy-Green strain tensor [23]

λX = λY = e−
QN+Y

r , λZ =
r(1 − e−

QN+Y
r cos X

r ) + R
R0

. (4)

Once the displacement field (2) is known, both the (first) Piola–Kirchhoff TR and Cauchy T stress
tensors can be readily obtained as (for details about the expression of the Piola–Kirchhoff stress tensor,
see Equations (30) and (56) of [23]. Analogous expressions for the Piola–Kirchhoff stress tensor are
given also in [21,31])

TR = R S, T = (F∗)−1 TR, (5)
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where symbol (∗) stands for the cofactor and tensors RT = R−1 and S turn out to be

[R] =

⎡⎢⎣ cos X
r − sin X

r 0
cos Z

R0
sin X

r cos X
r cos Z

R0
− sin Z

R0

sin X
r sin Z

R0
cos X

r sin Z
R0

cos Z
R0

⎤⎥⎦ , [S] =

⎡⎢⎣S 0 0
0 S 0
0 0 SZ

⎤⎥⎦ ,

with

S = 2e−
3(QN+Y)

r

[
−(a + 2b + c)e

4(QN+Y)
r + ae

2(QN+Y)
r + b

]
+

2e−
5(QN+Y)

r

[
be

2(QN+Y)
r + c

] [
(r + R)e

QN+Y
r − r cos X

r

]2

R2
0

,

SZ =
2e−

5(QN+Y)
r

[
(r + R)e

QN+Y
r − r cos X

r

]
R0

⎧⎪⎨⎪⎩ae
4(QN+Y)

r + 2be
2(QN+Y)

r + c − R2
0(a + 2b + c)e

6(QN+Y)
r[

(r + R)e
QN+Y

r − r cos X
r

]2

⎫⎪⎬⎪⎭ .

Relations (1-5) will be used in Section 3 to compare the FE results with the theoretical predictions
in terms of deformed configurations and stretch and stress distributions within the cross section.

2.2. Generalization to Variable Bending Moment

The theoretical model [23] was extended to the cases of nonuniform bending of slender beams
in [24] (in [24], the deformed configuration of the centroidal fibre is described by the curvilinear abscissa
s as sketched in Figure 2. Therefore, both the bending moment and the radii of curvature R and r turn
out to be functions of the deformed beam axis, i.e., mx = mx(s), R0 = R0(s) and r = r(s). Likewise [24],
here R0 is referred to the longitudinal neutral fibre corresponding to Y = 0, for which λZ = 1. In
other words, the simplifications R0 = R and QN = 0 assumed in [24] is adopted here. Therefore, in
the present work, the longitudinal axis of the beam corresponds to the fibre at X = 0, Y = 0, Z = Z).
In particular, the nonlinear relation between the internal bending moment (moment due to the Eulerian
stress T3 over the transverse cross section [24]) and the longitudinal radius of curvature R0 is given as

mx(s) =
EMR IX
R0(s)

+
10
3

[
6B2

R0(s)H

]3 2

∑
i=1

gi + O(R−5
0 ), (6)

where s is the curvilinear coordinate along the deformed configuration of the longitudinal axis,
IX = BH3/12 is the second moment of inertia of the (undeformed) cross section and

gi =
H2(i+2)

B2i+1 EMR,i ,

are parameters in which EMR,i are defined as follows:

EMR,1 = 5νMR {a(6νMR + 3) + b[4νMR(5 − 2νMR) + 6] + c[2νMR(7 − 6νMR) + 3]} ,

EMR,2 = 3
{

4ν3
MR(8b + 23c)− ν2

MR(7a + 62b + 79c)− 9νMR(a + 2b + c)− 6(a + 2b + c)
}

.

It is worth nothing that the transition from finite to linearized elastic theory reported in [23] has
led to some relations between the MR constitutive parameters and the usual elastic moduli, i.e., the
Young modulus EMR and Poisson ratio νMR, according to

EMR =
4(a + b)(a + 4b + 3c)

a + 3b + 2c
, νMR =

b + c
a + 3b + 2c

. (7)

In order to investigate the reliability of the theoretical model varying the geometry of the beam,
let us rewrite Equation (6) in the following dimensionless form:
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mx(s) = β−1
ES

{
1 − β−2

ES
4EMR

{
β2

C

{
νMR

3
a(6νMR + 3) + b[4νMR(5 − 2νMR) + 6] + c[2νMR(7 − 6νMR) + 3]

}
+

4ν3
MR(8b + 23c)− ν2

MR(7a + 62b + 79c)− 9νMR(a + 2b + c)− 6(a + 2b + c)
5

}}
+ O(β−5

ES ),

= β−1
ES

[
1 +

N

∑
n=1

β−2n
ES (ρn0 + ρnβ2

C)

]
+ O(β

−(2N+3)
ES ), (8)

in which mx(s) = 12mx(s)/EMRBH2 denotes the dimensionless bending moment, whilst βES =

R0/H is the Eulerian slenderness which, together with the compactness index βC = B/H, governs
the problem. Parameters ρn0 and ρn involves only the constitutive parameters. The form of such
parameters for N = 2 turns out to be

ρ10 =
4(8b + 23c)ν3

MR − (7a + 62b + 79c)ν2
MR − 9(a + 2b + c)νMR − 6(a + 2b + c)
5

,

ρ1 =
νMR{(6νMR + 3)a + [4νMR(5 − 2νMR) + 6]b + [2νMR(7 − 6νMR) + 3]c}

3
,

ρ20 =
1

840

[
2(166b + 1441c)ν5

MR − (31a + 1382b + 4891c)ν4
MR − 135(a + 2b + c)ν3

MR−

390(a + 2b + c)ν2
MR − 450(a + 2b + c)νMR − 180(a + 2b + c)

]
,

ρ2 =
νMR

240

[
− 8(10b + 39c)ν4

MR + 2(15a + 190b + 343c)ν3
MR+

75(a + 2b + c)ν2
MR + 120(a + 2b + c)νMR + 60(a + 2b + c)

]
.

Relation (8) represents the series expansion of Equation (3.1) of [32] w.r.t. the Eulerian slenderness,
thus highlighting the relevance of such a parameter. The Equation (8) truncated at the leading order
term, namely β−1

ES , can be interpreted as the Elastica extended to the context of finite elasticity.
It is worth noticing that, in the Lamb theory for shells [28], that Author observed that “for

sufficiently small curvatures, i.e., so long as R is large compared to B2/H the shell profile is close to a
paraboloid”. He found that this situation is encountered for low values of the dimensionless parameter
4
√

3/4(1 − νMR)B/
√

R0H, being νMR the Poisson ratio. As this parameter increases, nonuniform
curvature occurs in the cross sections, especially in the neighboring of the corners. Later, based on
the Lamb work, Searle [27] experimentally observed that for a high value of the so-called Searle
parameter β (it is β2 = B2/R0H), the variation of the deformation field in the transverse cross sections
significantly increases. In particular, for high values of β the profile of the cross sections of a bent plate
is characterized by an almost flat region in the inner part of the cross section and low values of the
anticlastic radius close to the corners. This effect gives rise to the “curl effect”. The condition β = 20
was experimentally inferred by Searle in [27] as a threshold value to distinguish among bodies with
compact cross sections (beams) and plates.

Based on the above positions, a straightforward relation between the Searle parameter and
the Eulerian slenderness can be established by means of the compactness index βC according to
β2 = β2

C/βES. As shown in the following, the reliability of the theoretical model to properly describe
the mechanical behavior of beams under large bending depends on both the parameters βES and βC.

2.3. The Numerical Procedure

The implementation of the theoretical procedure consists of two main steps: The determination
of the deformed axis of the beam by means of Equation (8), which is solved iteratively, and then the
assessment of the deformed configuration of the beam axis. This allows the complete description of
the 3D kinematics of the bent beam, accounting for the deformation of the transverse cross sections.
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It is remarked that, according to [24], in the present work, R0 is the radius of curvature of the
longitudinal neutral fibre X = 0, Y = 0 (therefore R = R0 and QN = 0).

The theoretical model is here implemented for two study cases: A cantilever beam subjected to
constant (first study case) and variable (second study case) bending moment. Let us denote with n the
number of discretizations of the beam axis, and with s(j)

i the ith node at the iteration jth. Each element
(the elements are here assumed equispaced for simplicity, i.e., Δs = L/n = ‖si+1 − si‖) preserves its
original length during deformation, as sketched in Figure 2.

Figure 2. Discretization of the beam axis: Location of nodes at different iterations.

The iteration number corresponding to the achievement of the convergence criterion is denoted
by N.

Therefore, starting form a prescribed guess solution (tipically, the solution provided by the
linearized theory), the radius of curvature R0 of the longitudinal axis of the beam is known at a given
node s(j)

i through relation (6). Once the radius of curvature is known, the curvature χ0(s) = 1/R0(s),
provides the rotation θ(s) at each node as

θ(s(j)
i ) = θ(s(j)

1 ) +
Δs
2

i

∑
k=2

[
χ(s(j)

k ) + χ(s(j)
k−1)

]
, (9)

and then the displacement field follows according to:

v(s(j)
i ) = v(s(j)

1 )− Δs
2

i

∑
k=2

[
sin θ

(j)
k−1 + sin θ

(j)
k

]
, (10)

w(s(j)
i ) = w(s(j)

1 )− Δs
2

i

∑
k=2

[
2 − cos θ

(j)
k−1 − cos θ

(j)
k

]
. (11)

Summing up, the present approach is based on the 1D solution of the governing Equation (8),
followed by the determination of the displacement field of the transverse cross sections. In detail, the
numerical procedure used in Section 3 consists of the following steps:

• starting from a trial solution corresponding to the linearized theory, the bending moment mx(s
(1)
i )

is obtained at the first iteration;
• for each node, Equation (6) is solved in the unknown radius of curvature R0(s

(1)
i );

• then, the rotation and displacements fields are assessed from (9)–(11) for each node, providing
the Eulerian coordinates of the beam axis, i.e., [z(2)i , y(2)i ] = [Zi + w(s(1)i ), Yi + v(s(1)i )];

• two convergence criteria have been adopted: The relative error between two subsequent iterations
in terms of displacement norm and the potential energy;

• in case of not convergent results, the deformed configuration (not convergent) is used as guest
solution for assessing a further bending moment distribution, mx(s

(2)
i ). Therefore, the iterative

procedure restarts from the second issue since both the convergence criteria are reached.
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Given the elastic potential energy Π at iteration j-th defined as

Π(j)(s(j), θ(j)) =
Δs
2

n+1

∑
i=1

χ(s(j)
i )m(s(j)

i )− μ

⎧⎨⎩M0 θ(s(j)
n+1), study case 1

F0 w(s(j)
n+1), study case 2,

the relative errors between subsequent iterations in terms of energy and the displacement norms are
defined as

εΠ(j) =
Π(j) − Π(j−1)

Π(j)
, εs(j) =

‖s(j)‖ − ‖s(j−1)‖
‖s(j)‖ ,

the solution at the iteration Nth is convergent if the following criterion holds true:

max
{

εΠ(N) , ε‖s(N)‖
}
< 10−8. (12)

3. Study Cases

Two study cases are considered here: A clamped beam subjected to a bending couple (case A1

sketched in Figure 3a) and a clamped beam subjected to a dead shear force (case A2 shown in Figure 3b)
acting at the free end.

(a) A1. (b) A2.

Figure 3. Sketch of the study cases: Reference and deformed configurations provided by the FE
solution.

For each application, three subcases related to three different sizes of the cross section have been
considered according to Table 1. Note that both the thickness and length have been fixed, varying the
width of the cross sections only.
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Table 1. Dimensionless geometric parameters related the investigated subcases: H =10 [mm], βC =

B/H and βLS = L/ max(B, H).

Subcases (a) (b) (c)

βC 1 2 5
βLS 15 7.5 3

In the following, notation A2(c) stands for study case A2 with the cross section geometries
corresponding to the subcase (c) and so on.

Subcase (a) represents a slender beam with square compact cross section, which properly fulfills
the theoretical hypotheses. Subcase (b) represents an intermediate situation of a beam weakly slender,
βLS < 10, with a flat cross section (βC = 2). To emphasize the effect induced by loss of slenderness, the
subcase (c) resembling a plate (βLS = 3 and βC = 5) is considered also.

The following MR constitutive parameters have been adopted: a = 1, b = 0.05 and
c = 2.256 [MPa] according to [32].

The external loads, M0 and F0 for cases A1 and A2 respectively, incremented by the load multiplier
μ, are such to induce for μ = 1 a deflection at the free end of L/100 according to the linearized theory.

For both the study cases, the theoretical model has been implemented by subdividing the
longitudinal axis into 100 equispaced elements. The FE simulations involve high computational effort
owing to the nonlinear nature of the problem. However, the FE solution provides higher accuracy
in terms of equilibrium fulfillment w.r.t. the theoretical formulation, for which the equilibrium has
been imposed in the weak form (it is remarked that in the theoretical formulation the equilibrium is
satisfied exactly for the sole centroidal fiber).

Conversely to the theoretical model, the FE model accounts for the effect of both the axial or shear
load on the deformation field. In other words, the theoretical formulation takes into account only the
bending effects induced by the axial or shear forces. In the FE models, the external loads have been
simulated indirectly by applying prescribed displacements in order to optimize the achievement of
convergence. Therefore, prescribed rotation (case A1) or transverse displacement (case A2) have been
imparted at the final cross section and to its centroid, respectively. As a consequence, a comparison
between the theoretical predictions and FE solutions will be performed in terms of stress resultants
over the cross sections. The principal stretch and stress distributions within the beam cross section will
be discussed in the following sections.

3.1. Cantilever Beam Subjected to a Couple at Its Free End (Case A1)

3.1.1. Theoretical Solution

A cantilever beam subjected to an external couple M0 = μEMR IX/50L acting at the free end, as
sketched in Figure 4, is investigated in the present section. The values assumed by the load multiplier μ

have been set according to Figure 4a. Due to the loading condition, the beam is subjected to a constant
bending moment M0 along its longitudinal axis.

The bending moment distribution w.r.t. the beam axis is obtained as mx(si) = M0, then the radius
of curvature and rotation of the longitudinal axis are achieved by using relations (6)–(9). Finally, the
deformed configuration is determined by using Equations (10) and (11) (see Figure 4b).

In order to investigate the effects of bending inside the cross section, stretches and stresses have
been computed using Equations (2)–(5).
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Figure 4. Study case A1: Cantilever beam subjected to an external couple acting at its free end.
(a) Deformed configuration of the longitudinal axis: Theoretical model (continuous lines) and FE model
(dashed lines); (b) 3D skecth of the deformed configurations obtained by the theoretical solution.

3.1.2. The FE Model Solution

The FE simulations have been carried out by using COMSOL Multiphysics® v 5.5 software. The
non-linear structural mechanics modules of the FE code allows simulating hyperelastic materials. The
parametric approach of the FE code makes it possible to define the elastic strain energy function also
for compressible materials. Therefore, the MR store energy function (1) has been directly implemented
as a function of the principal invariants of the Cauchy-Green strain tensors.

Three FE models (see Figure 3) in agreement with the geometries listed in Table 1, have been
modelled by using 4-nodes tetrahedron elements. In this way, each subcase is characterized by 131,282,
211,251 and 308,667 finite brick elements. The compressible MR law (1) is adopted in the FE simulation
to compute the (second) Piola Kirchhoff stress tensor T2nd

R = ∂ωMR/∂E with E = (C − I)/2, being
C = FTF the right Cauchy-Green strain tensor and I the identity tensor.

Various tests about the optimal FE mesh have been required in order to obtain displacements
at the centroid of the end cross section less than 1% w.r.t. more refined (but more time consuming)
meshes.

The clamped end has been reproduced by restraining the out of plane displacement component
for each node, namely w(X, Y, 0) = 0. In addition, the centroidal node at the clamped end has been
fully restrained, i.e., s(0, 0, 0) = 0. At the free end, the external couple has been reproduced by
imposing a prescribed rotation along the X axis. Then, the problem has been handled by increasing
step-by-step the prescribed rotation and evaluating a posteriori the corresponding bending moment
resultant over the cross section.

3.1.3. Results and Comparison

The deformed configurations of the longitudinal axis are plotted in Figure 4a for different values
of the of load multiplier μ. The growth of load multiplier μ is such to induce the beam rolling up on
itself, with the simultaneous increase of the beam curvatures.

A first comparison between theoretical predictions and FE results is performed in terms of
the bending moment at Z = L. In the FE simulations, the bending moment has been assessed by
integrating the elementary moments due to the Cauchy stress T3 w.r.t. the x axis over the deformed
cross section.
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As reported in Table 2, the relative error of the FE results w.r.t. the theoretical predictions, denoted
as εr,M0(L), assumes lower values in correspondence of moderate loads. Indeed, it changes in sign as
the load multiplier increases starting from μ = 10.

Table 2. Study case A1: Relative error on the bending moment εr,mx(L), Searle parameter β2 =

B2/R0H = β2
C/βES and weight of the fifth-order truncated term in Equation (8).

Load Subcases

Mult. (a) (b) (c)

μ εr,mx(L) β2 ρ20 + ρ2β2
C εr,mx(L) β2 ρ20 + ρ2β2

C εr,mx(L) β2 ρ20 + ρ2β2
C

10 −3.1 × 10−3 0.01 1.6 × 10−9 −5.7 × 10−3 0.05 −1.2 × 10−4 2.8 × 10−1 0.33 2.1 × 101

50 −2.4 × 10−3 0.07 9.8 × 10−7 −5.5 × 10−3 0.27 −8. × 10−2 2.7 × 10−1 1.68 5.4 × 102

100 2. × 10−4 0.13 1.5 × 10−5 −3.9 × 10−3 0.53 −1.7 2.6 × 10−1 3.49 2.3 × 103

200 1.3 × 10−2 0.26 2.3 × 10−4 5.6 × 10−4 1.07 5.3 × 101 2.3 × 10−1 19.32 7.1 × 104

300 2.5 × 10−2 0.38 1. × 10−3 6.5 × 10−3 1.62 7.4 × 101 2.3 × 10−1 20.35 7.9 × 104

800 1.6 × 10−1 0.87 2.3 × 10−2 5.8 × 10−2 4.71 3.1 × 102 3.6 × 10−1 24.17 1.1 × 105

Both the Eulerian slenderness and the compactness of the cross section, represented here through
the parameters βES and βC, affect the reliability of the theoretical model. To highlight this aspect,
the values assumed by the Searle parameter β2 have been listed in Table 2 for each subcase and load
increment. In addition, in the same table the values of the fifth-order term in Equation (8), namely
ρ20 + ρ2β2

C, have been reported also. Since the calculations have been carried out by truncating the
moment-curvature relationship (8) to the third-order term, the evaluation of term ρ20 + ρ2β2

C allows
assessing the approximation of the performed analysis.

The Searle parameters, here written as the product of the Eulerian slenderness (which varies
with the load multiplier) and the compactness of the cross sections (which is independent of the load
multiplier), increases as the load multiplier increases due to the decrease of βES.

Note that the growth of the Eulerian slenderness decreases the relevance of the high order terms in
relation (6). In particular, terms ρ20 + ρ2β2

C listed in Table 2 put in light the relevance of the higher-order
terms w.r.t. the first one in the moment-curvature expression. The comparison between theoretical
predictions and FE results allows assessing the reliability of the theoretical formulation varying the
parameters βES and βC.

Results provided by the theoretical model and the FE simulations, in terms of principal stretch
distributions inside the cross section at Z = 0 for μ = 100, are shown in Figure 5. The contour plots
represent the theoretical results whereas the FE solutions are represented with solid isolines with
boxed values. The same contour range has been used for representing the principal stretches.

Moving from compact to flat cross sections, i.e., as βC increases (from left to right in Figure 5), the
gap between the FE and theoretical results increases. The FE results indicate that as βC increases the
principal stretches variability w.r.t. the X axis (namely, along the cross section width) takes relevance.
On the other hand, the comparison reported in Figure 5 highlights the reliability of the theoretical
model to predict the kinematics of the bent beam since, in that case, the Searle parameter assumes low
values, being β2 < 0.5.

For small values of the Searle parameter, the theoretical and FE solutions in terms of transverse
stretch λX are almost indistinguishable. In general, the theoretical solution is more reliable in the region
close to the core of the cross section, where the theoretical formulation exactly fulfills the equilibrium
condition, see Figures 5a,b,d,e,g,h. The gap between the theoretical and FE results slightly increases
for the transverse principal stretch λY w.r.t. stretch λX .

Conversely, rough theoretical predictions in terms of stretch occur for subcase A1(c) because
of the relevant value assumed by the Searle parameter (β2 = 3.49). In order to highlight the effect
induced by loss of Eulerian slenderness on the reliability of the theoretical model, Figure 6 shows the
increase of the gap between the principal stretches λX provided by the theoretical formulation and the
FE simulations for subcase A1(b).
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(a) λX subcase (a) (b) λX subcase (b) (c) λX subcase (c)

(d) λY subcase (a) (e) λY subcase (b) (f) λY subase (c)

(g) λZ subcase (a) (h) λZ subcase (b) (i) λZ subcase (c)

Figure 5. Study case A1 at load increment 3 (μ = 100): Comparison in terms of stretches provided by
the theoretical model (contour plot) and the FE solution (solid isolines with boxed value).

(a) μ = 10 with β2 = 0.05 (b) μ = 50 with β2 = 0.27 (c) μ = 100 with β2 = 0.53

(d) μ = 200 with β2 = 1.07 (e) μ = 300 with β2 = 1.62 (f) μ = 800 with β2 = 4.71

Figure 6. Study case A1(b): Transversal principal stretch λX . Theoretical model (contour plot) and FE
simulation (solid isolines with boxed value) for each value of the load multiplier and related values of
the Searle parameter.

Figure 6 clearly shows that around the third and fourth load increment a significant gap between
the analytical and numerical solutions is encountered.

Another source of mismatch between the theoretical predictions and the FE solutions lies in the
approximated nature of the moment-curvature relation (6). It must be remarked that the higher-order
terms in the governing equation assume values comparable or greater than the leading order term.
Such aspect will be investigated indetail in a forthcoming work.

The distribution of the principal stretch λZ within the cross section is displayed in Figure 5g–i.
As expected, the isolines are almost equispaced in agreement with the Euler–Bernoulli beam theory,
as confirmed also by the FE results. However, as the slenderness decreases (from left to right in
Figures 5), the gap between analytical and numerical isolines increases. Note also that the longitudinal
neutral fiber for which λZ = 1 is not horizontal, but it resembles an arc of circumference.
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The distribution of the Eulerian stresses inside the cross sections is shown in Figure 7 for μ = 100.
Differently from Figure 5, for sake of graphical representation each contour plot of Figure 7 is provided
with a proper contour legend owing to the wide range assumed by stresses.

As the compactness index βC increases (from case A1(a) to case A1(c)), the FE model highlights
a sensible change in the distribution of the internal stresses due to “plate effects”, neglected in the
theoretical formulation. The FE results indicate that, for βC < 0.5, the transverse principal stresses T1

and T2, assume values two or three orders lower than that of the principal stress T3, Figure 7a,b,d,e.
Note also that, for case A1(c), the transverse stress T1 is, in average, higher than that for cases A1(a) and
A1(b). However, despite the discordance between theoretical and numerical predictions, it is shown that
the theoretical model reproduces a main stress T3 of the same order of those provided by FE simulations.

(a) T1 case A1(a) (b) T1 case A1(b) (c) T1 case A1(c)

(d) T2 case A1(a) (e) T2 case A1(b) (f) T2 case A1(c)

(g) T3 case A1(a) (h) T3 case A1(b) (i) T3 case A1(c)

Figure 7. Study case A1(b) at load increment 3 (μ = 100): Stresses comparison [MPa] between the
theoretical model (contour plot) and FE model (isolines with boxed value).

3.2. Cantilever Subjected to a Shear Force Acting at Its Free end (Case A2)

3.2.1. Theoretical Solution

The study case A2, related to a cantilever subjected to a transverse shear force acting at its free end
is investigated in the present Section. A dead shear load F0 = 3EIμ /100L2 is applied and incremented
according to the load multipliers reported in Figure 8a. In that figure the theoretical model (solid lines)
and FE solutions (dashed lines) are compared in terms of deformed configurations (see Figure 8b).

Conversely to case A1, here the bending moment varies along the longitudinal axis of the beam
and it depends on the deformed configuration. Furthermore, in the deformed configuration the
shearing dead load produces also axial stresses, see Figure 8a. It is remarked that the theoretical model
neglects the effects induced by shear and axial loads on the strain field.

As reported above, the theoretical model is implemented starting with the guess solution
corresponding to the solution provided by the linearized elasticity. Once the deformed configuration is
known, the bending moment follows from the equilibrium. Then, the obtained bending moment at each
node is plugged into relation (6), whose solution provides the longitudinal radius of curvature and, in
turn, the rotation and displacements fields according to Equations (9)–(11). At this point, the algorithm
restarts until the obtained solution converges according to the criterion given in Equation (12).
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Figure 8. Study case A2: Cantilever beam subjected to a transverse dead load acting at its free end.
(a) Deformed configuration of the longitudinal axis: Theoretical model (continuous lines) and FE model
(dashed lines); (b) 3D skecth of the deformed configurations obtained by the theoretical solution.

As expected, the convergence rate decreases as the load multiplier increases, as confirmed by the
iteration number required to reach the convergence, namely N = 13, 20, 40, 55, 84 and 205, for each
load increment, respectively, and it is not significantly affected by the beam geometry.

3.2.2. The FE Solution

The deformed configurations provided by FE simulations are shown in Figure 3b. The geometries
listed in Table 1 have been simulated by using 4-nodes tetrahedron elements. Such subcases are
characterized by 130569, 212161 and 284231 number of FEs.

Conversely to the study case A1, the cross section at Z = 0 has been fully restrained (namely
s(X, Y, 0) = 0) to mitigate the noise induced by a single concentrated reactive force at the clamped end.
Moreover, the comparison between the theoretical and FE predictions has been performed at Z = 2B
(the value of 2B has been taken here as an extinction length equals to 2 max{B, H}.).

Like the previous study case, the external load is simulated by applying a displacement.
In particular, the prescribed displacement values v(0, 0, L) corresponding to the load increments
considered in the theoretical model are listed in Table 3.

Table 3. Prescribed displacements −v(0, 0, L) adopted in the FE simulations.

Load Multiplier μ 20 50 100 150 200 300

Subcases
(a) 19.643 45.230 73.921 90.333 100.303 111.447
(b) 19.646 45.263 74.039 90.521 100.536 111.737
(c) 19.666 45.494 74.917 91.970 102.423 115.291

As already observed, the FE models account for the deformations induced by both the axial and
shear loads also. In order to quantify such contributes, the following two dimensionless measures of
deformation can be introduced

ΔL =
1
L

∫ L

0
λZ(0, 0, Z) dZ − 1, (13)

Δγ =
2

BHL

∫
B

√
|CYZ(X, Y, Z)| dV. (14)
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Such quantities, representative of the deformation induced by the axial and shear stresses,
have been been reported in Figure 9 varying the load multiplier.

A2(a)
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A2(c)

0 20 50 100 150 200 300
0

1

2

3

4

5

6

Load multiplier

L
[‰]

(a) Length variation.

A2(a) A2(b) A2(c)
Jourawski

formula

A2
T(b)

0 20 50 100 150 200 300
0

5

10

15

20

Load multiplier

[%]
(b) Shear deformation.

Figure 9. Effects of axial and shear deformations about study case A2.

The axial elongation ΔL (13) highlights the length variation associated whit the axial component
of the external force. Such a variation turns out to be very small, also for high values of the load
multiplier, as shown in Figure 9a. This contribution exhibits a different nonlinear growth with the load
multiplier varying the subcases. It follows that the geometry of the beams significantly influences the
value of ΔL for βC > 1.

The (global) measure of the shear deformation (14) can be interpreted, according to the linearized
elasticity, as average engineering shear strain in the YZ-planes and it quantifies the sliding occurring in
the planes of the cross sections. The amount of shear Δγ contributes negligibly to the rotation θ of the
cross section. Based on Figure 9b, it could seem that Δγ be much more relevant than ΔL. Nonetheless,
the maximum value of Δγ turns out to be only 7% of the final angle of rotation of the cross section due
to bending, which is θ(L) = −73◦.

In Figure 9b AT
2 (b) denotes a further subcase for which it has been assumed H = 20 mm and

B = 10 mm. The average contribution of the shear strain seems to be almost independent of the
geometry of the beam cross section, as predicted by linearized elasticity. Indeed, according to the well
known Jourawski formula [33] in the framework of linearized elasticity, one has

τYZ(Y, L) =
F0SX(Y)

IXB
, (15)

in which τYZ is the shear stress, F0 the external shear force acting at a given beam cross section and
SX(Y) is the first order moment w.r.t. the X axis of the part of the cross section overlaying the fibre
at distance Y form the X axis. Therefore, by assuming CYZ ∼= γYZ it follows that CYZ ∼= τYZ/G, with
G = E/2(1 + ν). Considering the values of the shear load F0 reported in Figure 8a and applying the
Jourawski formula one finds

γYZ = μ
3(ν + 1)

400

(
H
L

)2
= kμ. (16)

Therefore, Equation (16) does not depend explicitly by the width B of the cross section. Conversely,
γYZ significantly depends on the heigth H of the cross section, as confirmed by curve of Figure 9b
related to case AT

2 (b).
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3.2.3. Results and Comparison

For each load increment of case A2, the deformed configurations of the longitudinal axis of the
bent beam are reported in Figure 8a. In that figure, solid lines represent the analytical predictions whilst
dashed lines reproduce the FE results. A sketch of the 3D configurations is provided in Figure 8b.

The relative errors of the FE results w.r.t. the theoretical predictions in terms of resultant of the
shear stresses are listed in Table 4.

Table 4. Study case A2: Relative error on the shear resultant εr,F0(L), Searle parameter β2 = B2/R0H =

β2
C/βES and weight of the fifth-order truncated term ρ20 + ρ2β2

C in Equation (8).

Load Subcases

Mult. (a) (b) (c)

μ εr,F0(L) β2 ρ20 + ρ2β2
C εr,F0(L) β2 ρ20 + ρ2β2

C εr,F0(L) β2 ρ20 + ρ2β2
C

20 −4. × 10−3 0.02 1.4 × 10−8 −1.3 × 10−2 0.08 −5.2 × 10−4 −5. × 10−2 0.22 9.4
50 −7.7 × 10−3 0.05 4.3 × 10−7 −3.2 × 10−2 0.18 −1.6 × 10−2 −1.4 × 10−1 0.51 4.9 × 101

100 −1.6 × 10−2 0.09 4. × 10−6 −7.8 × 10−2 0.31 −1.5 × 10−1 −3.9 × 10−1 0.81 1.3 × 102

150 −2.4 × 10−2 0.12 1.2 × 10−5 −1.3 × 10−1 0.39 −4.1 × 10−1 −7.2 × 10−1 0.96 1.8 × 102

200 −2.9 × 10−2 0.14 2.2 × 10−5 −1.7 × 10−1 0.45 −7.5 × 10−1 −1.1 1.01 2. × 102

300 −3.1 × 10−2 0.18 4.7 × 10−5 −2.5 × 10−1 0.52 −1.5 −2.2 1.09 2.3 × 102

As for the previous case, the relative errors concerning the reactive force provided by the FE
solution and the theoretical model keeping fixed the displacement v(0, 0, L) start from negative
values that increase as the load multiplier increase. This means that the theoretical model provides
stiffer response w.r.t. the numerical ones. Indeed the FE solutions accounts for the shear and axial
compliance also.

The discussion provided in Section 3.1.3 about the reliability of the theoretical model based on
the Searle parameter holds also for the case of variable bending moment, as the study case at hand.
Indeed, the comparison provided in Figure 10 in terms of stretches displays good agreement between
theoretical and numerical predictions for low values of the Searle parameter, see Table 4. In detail, for
β2 ≤ 0.5 the analytical formulation provides extremely accurate results.

(a) λX case A2(a) (b) λX case A2(b) (c) λX case A2(c)

(d) λY case A2(a) (e) λY case A2(b) (f) λY case A2(c)

(g) λZ case A2(a) (h) λZ case A2(b) (i) λZ case A2(c)

Figure 10. Study case A2 at increment 3 (μ = 100): Comparison in terms of stretches provided by the
theoretical model (contour plot) and the FE solution (solid isolines with boxed value).
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Note that for the study case A2, the values of the Eulerian slenderness are lower than those related
to case A1, as listed in Table 2. It means that, despite of the large values of the displacements, the
parameter βES = H/R0, is smaller. Conversely to case A1, in case A2 the bending moment at the
clamped side increases slowly as the load multiplier increases owing to the reduction of the external
load arm.

For subcases A2(a) and A2(b), for which β2 < 0.5 (see Table 4), the theoretical and numerical
results in terms of stretch distributions within the cross section agree well, as shown in Figure 10. For
these cases, as shown in Figures 10a,b,d,e,h,g the theoretical model is able to grasp both the stretches
magnitude and their distribution within the cross section. In particular, for case A2(a) the stretches
predicted by the theoretical formulation and those provided by the FE code are almost coincident.

Moving from the subcase (a) to subcase (c) the analytical model reduces its accuracy, leading to an
underestimation of the stretches as compared with those furnished by the FE simulations. However,
since β2 < 0.5 (cases A2(a) and A2(b) of Figure 10), the theoretical model preserves its reliability to
predict the stretches. For the subcase A2(c), for which β2 = 0.81, the theoretical formulation loses its
reliability, as confirmed by Figures 10c,f,i.

As the compactness index βC increases (from left to right in Figure 11), the FE results show that
the transverse principal stress T2 becomes comparable w.r.t. principal stress T3.

(a) T1 case A2(a) (b) T1 case A2(b) (c) T1 case A2(c)

(d) T2 case A2(a) (e) T2 case A2(b) (f) T2 case A2(c)

(g) T3 case A2(a) (h) T3 case A2(b) (i) T3 case A2(c)

Figure 11. Study case A2 at increment 3 (μ = 100): Stresses comparison [MPa] between the theoretical
model (contour plot) and FE model (isolines with boxed value).

As already observed, conversely to the FE solution, the reliability of the theoretical formulation
sensibly depends on the geometry of the cross sections. Indeed, for subcases in which β2 < 0.5 (see
Figure 11c,f), the analytical formulation loses its accuracy to predict stretches and stresses. Moreover,
the FE solution indicates that stress T1 assumes negligible values w.r.t. the other principal stresses.
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In particular, the principal stress T1 is about one or two orders lower than T2, and three orders lower
than T3 when βC < 0.5.

As expected, the principal stress T3 is accurately predicted by the theoretical model when β2 < 0.5,
as displayed in Figures 11f,h,i.

4. Conclusions

The finite bending of a homogeneous hyperelastic beam made of a compressible Mooney–Rivlin
material has been investigated here. Two study cases have been analyzed in detail: A cantilever
subjected to a prescribed couple and a cantilever subjected to an external shear load acting at its free
end. For each study case, the main analytical results provided by the theoretical model [23] have been
compared with those obtained by FE simulations.

The governing Equation (6), has been rearranged here in dimensionless form, allow identifying
two dimensionless governing parameters here termed Eulerian slenderness βES = R0/H and an index
about the compactness of the cross section, i.e., βC = B/H. Such parameters are involved in the Searle
parameter β [27,28] according to the expression β2 = β2

C/βES.
The comparison between the theoretical and numerical predictions in terms of the deformed

configurations of the bent body together with stretch and stress distributions within the cross section,
has been provided and discussed. Such comparison allows assessing the accuracy of the theoretical
model to predict the mechanical response of beams under large bending. It is shown that the analytical
model provides accurate results provided that the following conditions about the governing parameters
hold true: βC < 0.5 and β2 < 0.5 (namely, βES < 0.125).

Once the aforementioned threshold values are overcome, the deformed configuration of the cross
sections differs from an arc of circumference as hypothesized in the theoretical formulation. This fact
is due to relevant transverse deformations according to the theory of elastic plates.

The study cases here considered allows confirming the negligible effects of the shear and axial
loads compared with the bending effects. Furthermore, the present study allows validating the
simplifying hypotheses involved in the theoretical formulation [23] also for beams subjected to variable
bending moment.

The obtained moment-curvature relationship extends the classical Elastica to the framework of
finite elasticity. In a forthcoming work, the authors will compare the results provided by Equation (8)
with those furnished by the Elastica with the aid of experimental tests on rubber-like materials.
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Abstract: The current work presents a study on hollow cylinder composite beams, since hollow
cylinder cross-sections are one of the principal geometry in many engineering fields. In particular,
the present study considers the use of these profiles for scaffold design in offshore engineering.
Composite beams cannot be treated as isotropic ones due to couplings mainly present among traction,
torsion, bending and shear coefficients. This research aims to present a simple approach to study
composite beams as they behave like isotropic ones by removing most complexities related to
composite material design (e.g., avoid the use of 2D and 3D finite element modeling). The work
aims to obtain the stiffness matrix of the equivalent beam through an analytical approach which
is valid for most of the laminated composite configurations present in engineering applications.
The 3D Euler–Bernoulli beam theory is considered for obtaining the correspondent isotropic elastic
coefficients. The outcomes show that negligible errors occur for some equivalent composite
configurations by allowing designers to continue using commercial finite element codes that
implement the classical isotropic beam model.

Keywords: pultruded beams; effective stiffness matrix; FRP; hollow circular beams; finite
element method

1. Introduction

Hollow cylinders are one of the most common elements in offshore engineering, e.g., risers, pipes
and generally used for scaffolding systems. Among vast materials to produce these kinds of elements,
all of them have one mutual defect which is an important factor in an offshore environment; that is
corrosion. The most common material used in offshore structures is steel, which although it is stiff
and light (compared to reinforced concrete) but it can be easily corroded, which makes maintenance
activities very expensive. On the other hand, plastics, a non-environmentally friendly material, can be
in this context environmental-friendly. This is due to the fact that fewer materials are involved due to
less frequent maintenance, thus, less resources. Steel structural elements should be changed frequently
in an offshore environment to maintain offshore structural integrity. Steel is used also in onshore civil
applications when being lightweight is an important prerequisite at the design phase. One of the
plastics’ problem is the low stiffness and strength compared to steel. To overcome this problem fibers
can be added in order to make the so-called Fiber Reinforced Plastics (FRPs). FRPs can be produced by
different methods which leads to different stiffness and strength. However, composite materials do
not behave like well-known isotropic ones. Therefore over the years, several methodologies have been
utilized to analyze composite materials and structures simply and accurately.

Regarding hollow circular cross-sections, the stress distribution of anisotropic configurations has
been led by Lekhnitskii [1] which was a starting point for further investigations by other scientists and
engineers. Based on this, Jolicoer and Cardou [2] studied hollow cylinders under bending, tensile and
torsions. The hollow cylinders behavior under hygrothermal and mechanical loads was investigated
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by Kollar et al. [3,4]. They followed displacement-based approach in their works, as well as Bhaskar
and Varadan [5], Xia et al. [6,7], Calhoglu et al. [8] and Bakian et al. [9]. Verijenko et al. [10] studied
the behavior of laminated cylinder under internal and external pressures. Roque and Ferreira [11]
studied plates and shell deformation by means of Reddy’s theory. Salahifar and Mohareb [12] studied
shell cylinders under harmonic forces. Laminated tubes were also considered by Tarn et al. [13] to
present a state space approach to torsion, extension, bending, shearing and pressure. Bai et al. [14]
investigated the buckling behavior of thermoplastic pipes under combined bending and tension loads.
Derisi et al. [15] and Shadmehri et al. [16] studied the composite tubes under bending. Effect of
pressure, shear and torsion on anisotropic materials was analyzed by Ting [17,18]. Dynamic axial
compression on thin wall circular tubes was investigated by Uchikawa et al. [19]. Non-classical effect
on hollow cylinders was studied by Silvestre [20] which led us to present a formula on generalized
beam theory. Kardomateas [21] investigated orthotropic shells under internal and external pressure.
Wang et al. [22] presented a study on compressive behaviors of FRP tubular beams. In addition, other
works [23–27] have been presented on the investigation of different laminated composites subjected to
several loadings. Different investigations have been done on multi-layered hollow cylinders [28,29].
Khalili et al. [30] analyzed the dynamic behavior of multilayered composite plates. Experimental
data and laboratory tests were provided by Ascione et al. [31], Boscato and Russo [32], Philippidis
and Vassilopoulos [33] and Quadrino et al. [34] to analyze the behavior of composite laminates.
Ascione et al. [31] presented a bearing design formula, Boscato and Russo [32] presented dynamic
parameters, Philippidis and Vassilopoulos [33] presented the effect of off-axis loading o fatigue and
static behavior, whereas Quadrino et al. [34] investigated the local behavior of commercial I-shaped
tubes. Furthermore, Madenci et al. [35] used both experimental and theoretical data to investigate
the effect of flexure and Xin et al. [36] in-plane compression and shear on GFRPs. Experimental
studies also have been done by Mayookh et al. [37] on the flexural creep of unidirectional bars and by
Zhang et al. [38] on correlation between mechanical properties of FRPs. A homogeneous approach was
considered by Sun and Li [39] to investigate the load-deformation of thick laminate and Sun et al. [40]
to study the stress analysis of hollow cylinders. Other current applications of FRP tubular profiles
have been presented in for retaining walls [41], column jacketing [42] and reinforcement of concrete
slabs [43].

Homogenization is a method to investigate the macroscopic behavior of a material by considering
a replacement of that material to an equivalent homogeneous one [44–46]. Thick hollow beams were
investigated by Kim and White [47]. In addition, Yildiz and Sarikanat [48] used finite element analysis
to investigate the material properties of multilayered hollow composites; whereas, Ferreira [49] used
global meshless approximation to analyze them. Yazdani Sarvestani et al. [50] investigated the thick
orthotropic cantilever under transverse loading and the effect of shear on stress distributions of thick
composites [51]. Theory on governing equations of anisotropic thin-walled members was presented by
Berdichevski et al. [52]. Kollar and Pluzsik [53] studied thin-walled composite beams and presented a
theory to calculate the stiffness matrix of closed sections. Jung and Lee [54] investigated thin-walled
I-beam composites. Lateral buckling of thin-walled composites was investigated by Lee [55]. Dynamic
response of FRPs have been investigated by Boscato [56]. Corotational method was used by de
Miranda et al. [57] and Ruggerini et al. [58] to investigate post-buckling and non-linear GBT buckling
analysis, respectively.

Lately, Babamohammadi et al. [59] presented research based on a homogenization method of
composite beams which lead to a simple design procedure of frame structures made of FRP beams. The
present research develops further and expands such previous work by including an in-depth analysis
of the mechanical behavior of hollow composite beams with several standards and not-standard
lamination schemes as well as critical discussion and remarks on possible applications of the present
methodology for practical engineering purposes.
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2. Motivation

The mechanical behavior of isotropic beams is well-known in engineering practices and it is
used for designing any kind of frame structure. However, if the beam is made up of fiber-reinforced
composites its behavior cannot be attributed to one of the isotropic materials.

Stiffness matrices of hollow cylindrical composite structures can be determined by employing a
finite element program. In this work, ABAQUS software [60] has been utilized for hollow profiles of
4 mm thickness which is the standard dimension of scaffolding beam components. Several stacking
sequences are analyzed with different arrangements of the reinforcing fibers to investigate different
coupling effects given by the composite configuration in comparison with the classical isotropic model.

The stiffness matrix of a two-node Euler–Bernoulli isotropic beam with compact cross-section,
in the 3D space, has six degrees of freedom per node as 12 × 12 matrix [K] = ki,j for i, j = 1, 2, . . . , 12.
However, it is not necessary to define 144 parameters. If the cross-section is compact and with a
double-symmetry (as in the present case) it is sufficient to compute six indipendent parameters. Below
definitions of the stiffness matrix components are given.

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1,1 0 0 0 k1,5 0 k1,7 0 0 0 k1,11 0
k2,2 0 k2,4 0 0 0 k2,8 0 k2,10 0 0

k3,3 0 0 0 0 0 k3,9 0 0 0
k4,4 0 0 0 k4,8 0 k4,10 0 0

k5,5 0 k5,7 0 0 0 k5,11 0
k6,6 0 0 0 0 0 k6,12

k7,7 0 0 0 k7,11 0
k8,8 0 k8,10 0 0

k9,9 0 0 0
k10,10 0 0

k11,11 0
sym k12,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

that can be written in compact matrix form as

[K] =

⎡⎢⎢⎢⎣
[k1] [k2] −[k1] [k2]

[k3] [k2] [k4]

[k1] −[k2]

sym [k3]

⎤⎥⎥⎥⎦ (2)

where

[k1] =

⎡⎢⎣
12EI

L3 0 0
0 12EI

L3 0
0 0 EA

L

⎤⎥⎦ , [k2] =

⎡⎢⎣ 0 6EI
L2 0

− 6EI
L2 0 0

0 0 0

⎤⎥⎦
[k3] =

⎡⎢⎣
4EI

L 0 0
0 4EI

L 0
0 0 GJ

L

⎤⎥⎦ , [k4] =

⎡⎢⎣
2EI

L 0 0
0 2EI

L 0
0 0 −GJ

L

⎤⎥⎦ .

(3)

E, G are classical elastic properties and A, I, L are cross-section area, the moment of inertia and
length of the beam. Definitions for the sitffness components ki,j for i, j = 1, 2, . . . , 12 in Equation (1) are
straightforwardly given by comparison with definitions in Equation (3). It is clear that for isotropic
beams only six parameters are sufficient to define the whole stiffness matrix of the beam.

As far as structures made of composite materials are concerned, there are still no relations
available that define the stiffness matrix within a specific theoretical framework. However, it can
be demonstrated that orthotropic beams (with fibers parallel to the beam’s principal axis) have the
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same nonzero elements in the stiffness matrix as the equivalent isotropic one. Thus, if homogenized
mechanical properties can be carried out for composites hollow beams the approach for isotropic beams
can be transferred to composite configurations. In this regard, a study was carried out by Reddy [61]
wherein the bending, vibration and buckling plate problems of laminated composite plates were
compared by increasing the number of plies in cross- and angle-ply configurations. Reddy showed that
by increasing number of laminae in cross-ply orientation, the mechanical behavior of the plate tends to
be equivalent to the same plate in orthotropic configuration (e.g., single-ply with orientation 0). When
angle-ply plates are studied, the mechanical characteristic is asymptotic to behavior between (45–45)
and (45–45) s and does not change when the number of layers is large.

The latter has been generalized to hollow circular beams in order to see if such asymptotic
behavior could be used to simply model these beams as equivalent isotropic or orthotropic ones.

3. Theoretical Background

Taking the studies of Reddy [61] on laminated composite plates as a reference, in the following,
sections cross- and angle-ply laminated hollow circular beams are investigated. The geometric and
mechanical properties considered are listed in Table 1. Note that geometric properties selected are
the ones typical of beams used in scaffolding systems. Optimization of cross-section properties is
not analyzed because out of the scope of the present work. Mechanical properties taken here are
typical engineering constants of Carbon FRP (CFRP). This study is not limited to this geometry
and/or mechanical properties but aims to present a generalized framework that is able to work in
every context.

Table 1. Geometric and mechanical properties.

Geometric Mechanical

Average radius 27 mm E1 145,849.69 MPa
Length 1000 mm E2 11,030 MPa
Laminate thickness 4 mm (Fixed) ν12 0.28
Layer thickness Variable G12 6209.89 MPa
Area 678.58 mm2 G13 6209.89 MPa
Polar inertia 497,400 mm4 G23 3860.5 MPa
Inertia 248,774.1516 mm4

The stiffness matrix of the composite beam has been computed using ABAQUS as described in [59]
using a 3D shell model and laminated shell elements of first-order (Mindlin theory). The cylindrical
geometry is restrained at the two ends through rigid links which simulate the two end nodes of the
equivalent beam. Stiffness matrix components (following the structure given by Equation (2)) are
determined by setting alternatively one unitary displacement and by retrieving the corresponding
boundary forces. For each unitary displacement, a stiffness matrix row is carried out. Since the
equivalent beam has two nodes with 6 degrees of freedom each, the stiffness matrix result to be
12 × 12. In addition, equivalent elastic properties via an analytical cross-section homogenization by
Sun et al. [40] is also considered. The present methodology is based on the ensemble of the latter.
Interested readers are asked to refer to the cited works for further details on such procedures that are
not reported below for the sake of conciseness.

3.1. Cross-Ply Laminates

A typical circular hollow profile with cross-ply configuration is depicted in Figure 1. The stiffness
matrix of composite beams with a different number of plies is presented below with geometric and
mechanical properties listed in Table 1. Configurations are alternatively symmetric and antisymmetric
(with the only exception of the first two which are (0) and (90)). All the nonzero stiffness matrix
components are compared with the same given by an orthotropic configuration (0). Figure 2a–e
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display such comparison and a summary in terms of relative error is depicted in Figure 2f where the
error tends to be −40% by increasing the number of plies.

Clearly, the global trend of all stiffness constants deviates from the initial orthotropic behavior
and becomes stable when 3 or 4 layers are considered. Thus, it can be established that the study
of Reddy [61] for cross-ply plates does not apply to hollow circular cylinders but it is closer to the
behavior of the angle-ply plates. In detail, it can be noted that k1,1, k3,3, k1,5 and k4,4, decrease until
reaching an almost constant value. Specifically, symmetrical configurations reach this value from
above, whereas the others from the bottom. The variation in torsional stiffness k6,6 is negligible since it
does not deviate from the initial configuration, thus torsional stiffness does not improve by introducing
more cross-ply layers. In conclusion, it is possible to confirm that by increasing the number of layers in
a cross-ply lamination scheme, keeping a constant thickness, about 40% loss of stiffness is generated,
while the torsional stiffness remains almost constant.

Figure 1. Cross-ply laminates.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. Stiffness trends with respect to the number of plies (a–e) and relative error with respect to an
orthotropic configuration (f).

The validity of the finite element model is tested by comparing it with the results of the analytical
approach by Sun et al. [40] which provides homogenized modulus of elasticity Ez and tangential
modulus Gθz for a composite cross-section in planar strain. For instance, by purging the stiffnesses k3,3

(axial stiffness) and k6,6 (torsional stiffness) computed with ABAQUS by L/A and L/J an equivalent
elastic and shear moduli can be retrieved. It is recalled that k3,3 = EA/L and k6,6 = GJ/L for isotropic
Euler–Bernoulli beam with compact cross-section as shown in Equation (3). The values obtained by
both methods are shown in Figure 3 where they almost coincide. This demonstrates that ABAQUS
and Sun et al. [40] method give the same results for the axial and torsional stiffnesses k3,3 and k6,6.
Even though the two models have a different mathematical background they provide the same result
because axial and torsional stiffnesses do not depend on beam slenderness as shear and bending
behaviors do. ABAQUS model is introduced because Sun et al. [40] method does not carry out shear
stiffness and it is not able to predict accurately bending behavior of composite beams [59]. Therefore
one of the aims of the present work is to reply to this problem.

(a) (b)

Figure 3. Equivalent moduli using ABAQUS and Sun et al. [40] approach: (a) normal Ez; (b) shear Gθz.

For the sake of conciseness, variation with respect to different mechanical or geometric properties
is not reported. However, it has been observed by the authors that by varying the mechanical properties
or geometric ratios (e.g., E1, A and L) the results presented below are not affected (more details can be
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found in [62]). Thus, the data given represent a general FRP hollow beam and this study can be easily
adapted to different materials or geometry.

3.2. Angle-Ply Laminates

Angle-ply lamination (±45/ . . . ) is used for structures that have to resist mainly against torsion
or internal pressure. A typical configuration is depicted in Figure 4. The same geometric properties of
the previous case are considered in the following and the number of plies is increased starting from
the single-ply (45). Trends of the stiffness values for each configuration are assessed. Considering a
constant thickness of 4 mm, Figure 5 shows the plots of the stiffness matrix coefficients and the relative
error with respect to the scheme of initial lamination (45).

By examining the graphs obtained (Figure 5) it is possible to remark that compared to the cross-ply
configuration, the stiffnesses k1,1, k1,5 and k4,4, tend to increase to a constant value regardless of the
lamination scheme, whether symmetrical or not. The axial stiffness k3,3 approximately keeps a constant
value. For the torsional stiffness k6,6, a substantial increase is noted. Since the angle of the reinforcing
fibers differs from the longitudinal (0) and transverse (90) directions, coupling stiffnesses appear
due to shear-bending (k1,4) and axial-torsional (k3,6). This agrees with Reddy’s studies on angle-ply
reinforced plates: the structural strength has an asymptotic behavior by increasing the number of
plies in the stacking sequence. In conclusion, with reference to Figure 5h it is possible to observe a
variation of about 40% of the stiffness values k1,1, k1,5 and k4,4 analogous to the previous cross-ply case,
whereas k3,3 has approximately a constant trend, practically is characterized by zero relative error. It is
remarked that coupling stiffnesses k1,4 and k3,6 tend to zero by increasing the number of plies (100% of
relative error with respect to (45) configuration). Thus, for these stacking sequences, the composite
tends to have an orthotropic behavior with very small couplings.

Figure 4. Angle-ply laminates.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 5. Stiffness trends with respect to number of plies (a–g) and relative error with respect to
orthotropic configuration (h).

Analogously to the previous section a comparison between ABAQUS and an analytical
formulation [40] is performed for angle-ply configurations. Stiffness terms k3,3 and k6,6 are carried out
via ABAQUS and purged by multiplication of L/A and L/J, respectively in order to derive Ez and
Gθz. Such comparison is represented in Figure 6. It can be observed that both methods give the same
results in terms of k3,3 and k6,6 as in the cross-ply case presented in the previous section.
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(a) (b)

Figure 6. Equivalent moduli using ABAQUS and Sun et al. [40] approach: (a) normal Ez; (b) shear Gθz.

In conclusion, the present ABAQUS model is able to approximate accurately the homogenized normal
Ez and shear Gθz moduli by considering axial k3,3 and torsional k6,6 stiffness components, respectively.

4. Beam Slenderness Effect

As aforementioned, shear and bending stiffness depend on beam slenderness and they are not
predicted accurately by Sun et al. [40] method. Therefore, the aim of the present section is to show such
behaviors for several laminates. The geometry of the cross-section is kept constant and beam length
is increased from 1 to 5 m. For cross-(0/90/ . . . ) and angle-ply (±45/ . . . ) laminations the number
of plies is increased as in the previous section. Moreover, quasi-isotropic configuration (0/±45/90)s

is taken into consideration as well as other particular stacking sequences taken from the literature.
Main stiffness components are represented in a dimensionless form with respect to the correspondent
stiffness component given by the Euler–Bernoulli theory. For instance shear stiffness k1,1 is multiplied
by L3/(12Ez I), bending stiffness k4,4 by L/(4Ez I), shear-bending stiffness k1,5 by L2/(6Ez I), axial
stiffness k3,3 by L/Ez A and torsional stiffness k6,6 by L/(Gθz J). In addition, the extra shear-bending
term k4,11 which is not classical is compared to its main stiffness contribution on the main diagonal
k4,4. The homogenized moduli Ez and Gθz are computed by inverting axial and torsional stiffnesses,
respectively, as shown in the previous section.

4.1. Cross-Ply Laminates

Results obtained are depicted in Figure 7 where, as expected, axial k3,3 and torsional k6,6 rigidity
do not depend on beam slenderness. In addition, as already expected no bending coupling is observed,
thus k4,11 = 0. Moreover, the Ez and Gθz values coincide with the ones given by Sun et al. [40]
formulation. On the contrary shear k1,1, bending k4,4 and shear-bending k1,5 moduli tend to follow
classical formulas (e.g., k1,1 = 12Ez I/L3, k4,4 = 4Ez I/L) only for large slenderness. In particular, there
is a more accelerated trend for symmetrical configurations.

It should be remarked that the calculation of the stiffness matrix by using classical formulas varies
with beam slenderness. This error leads to lower stiffness and consequently, it should be considered in
the design phase by the introduction of a correction factor. For symmetric lamination schemes and
with slenderness values L/h > 30–35 the error is less than 5%.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Stiffness coefficients (a) k1,1 L3

12Ez I , (b) k4,4 L
4Ez I , (c) k1,5 L2

6Ez I , (d) k3,3 L
Ez A , (e) k6,6 L

Gθz J and (f) k4,11/k4,4 as a
function of slenderness L/h for cross-ply laminates.

4.2. Angle-Ply Laminates

For the angle-ply configurations (±45/. . . ) the values compared between the stiffnesses generated
by ABAQUS and the Euler–Bernoulli theory for isotropic materials were depicted in Figure 8. For the
present configuration, as in the previous cross-ply one, the axial k3,3 and torsional k6,6 stiffness does
not depend on the slenderness and the equivalent stiffness carried out are close to the ones obtained
via Sun et al. [40] approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Stiffness coefficients (a) k1,1 L3

12Ez I , (b) k4,4 L
4Ez I , (c) k1,5 L2

6Ez I , (d) k3,3 L
Ez A , (e) k6,6 L

Gθz J and (f) k4,11/k4,4 as a
function of slenderness L/h for angle-ply laminates.

By considering shear and bending stiffnesses k1,1, k4,4 and k1,5 the difference between the (45)
laminate and the others can be easily noted. The single-ply configuration has approximately 30%
of error with respect to classical formulas. By increasing the number of plies, on the contrary, the
computed values are in agreement with the classical values if they were made of an equivalent isotropic
material where the average error is below 2%. Antisymmetric lamination schemes have better behavior
by excluding the scheme (±45) which shows a slightly higher stiffness (about 1%) than the reference
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ones. It is remarked that the angle-ply (±45/ . . . ) configuration has a very small variation with respect
to beam slenderness. On the contrary, a large variation was observed for the cross-ply cases.

Finally, the angle-ply configuration (±45/ . . . ) has an extra coupling between bending moments
(k4,11) that is not present in the cross-ply configurations. This coupling tends to decrease by increasing
the beam slenderness. Compared to the main bending stiffness k4,4, this is minimal and can be
considered negligible, except for the first lamination scheme (45) which has a difference of about 5%,
consequently, they can be neglected for design purposes. The scheme (45) is feasible but not used
in applications as it generates delamination and durability problems of the composite. Usually, the
laminations are composed of several crossed layers, it is therefore legitimate, given the proposed
results, to neglect the component k4,11 in practical applications.

4.3. Quasi-Isotropic Configuration

Quasi-isotropic laminates are made of three or more orthotropic plies of identical thickness and
material. The stack considers for each ply +θ a corresponding one with −θ over the middle surface
arranged with the same sequence order as depicted in Figure 9. In order to obtain an element with
good shear, bending, traction and torsion properties a quasi-isotropic configuration with a combination
of cross-(0/90/ . . . ) and angle-ply (±45/ . . . ) has been considered as (0/±45/90)s. The main feature
of this typology is that the coupling stiffnesses k1,4 and k3,6 are zero. These laminates are widely used
in practical applications, because they offer homogeneous stiffness and strength in all directions, and
also have a good performance against crack propagation.

Figure 9. Quasi-isotropic laminate.

Stiffness components are carried out for various beam lengths considering the same geometric
section and mechanical properties of the previous stacking sequences. The variations of the stiffness
values with respect to the classical stiffnesses calculated as if an equivalent isotropic material with
E = Ez is considered. Ez is calculated with Sun’s approach or by inverting the main component of
axial stiffness k3,3 given by the stiffness matrix by the ABAQUS model.

It is also observed that this configuration has values close to the calculated stiffness as if it was
a homogenized isotropic material. As a matter of fact, stiffnesses k1,1, k4,4 and k1,5 are all below 3%
compared to the reference values. Furthermore, as the slenderness increases, this error decreases until
it reaches a constant value of less than 1%.

The homogenized elastic Ez and shear Gθz moduli are obtained from axial k3,3 and torsional k6,6

stiffnesses by multiplying them by A/L and J/L, respectively. Thus, the ratios between k3,3 and k6,6

and the same calculated via Sun et al. [40] procedure are the same.
It has been shown also for the quasi-isotropic configuration (0/±45/90)s, that stiffness ratios are

almost constant with respect to the beam slenderness. In the current configuration, the stiffness due
to the coupling between the moments (k4,11) tends to increase until it reaches a constant value as the
element’s slenderness increases; the values generated with respect to the bending stiffness (k4,4) are,
however, minimal and negligible (see Figure 10).
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Figure 10. Stiffness coefficients k1,1 L3

12Ez I , k4,4 L
4Ez I , k1,5 L2

6Ez I , k3,3 L
Ez A , k6,6 L

Gθz J and k4,11/k4,4 as a function of slenderness
L/h for quasi-isotropic laminate.

4.4. Bouligand Laminates

In this section, analyses are carried out by using bio-inspired Bouligand lay-ups of 5◦ at each
subsequent layer as presented by Mencattelli and Pinho [63] on laminated plates with ultra-thin
thickness. It has been shown that by reducing the variation of the angles between the layers (e.g., the
pitch Δθ) to the values that imitate the natural microstructure, it is possible to obtain at the same time
a strong increase in the energy dissipated and in the maximum load-bearing capacity.

Bouligand unit considers rotation of 180◦ inside each unit, however, 1/4 of a Bouligand unit has
been considered here as the main unit. Thus, the following configurations and nomenclature will
be used.

• L.1 ≡ (0/5/ . . . /40/45)s

• L.2 ≡ (0/5/ . . . /85/90)s

• L.3 ≡ (0/5/ . . . /85/90/ − 85/ . . . / − 5/0)4

• L.4 ≡ (0/5/ . . . /85/90/ − 85/ . . . / − 5/0)2s

A graphical representation of the four sequences considered are given in Figure 11. L.1 and L.2
are 1/4 and 1/2 of a Bouligand unit, respectively. L.3 and L.4 are an antisymmetric and a symmetry
scheme inspired by Mencattelli and Pinho [63], respectively.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. (a) L.1 laminate, (b) L.2 laminate, (c) L.3 laminate and (d) L.4 laminate.

By keeping the same geometric section and mechanical properties of the previous cases, the
following analyses are carried out on element lengths from 1 to 5 m. In order to correctly isolate the
effect of the pitch angle of the reinforcement fibers Δθ, Mencattelli and Pinho [63] have decided to
eliminate the couplings in the stiffness matrix by creating symmetric laminates. Therefore, L.4 adopts
a symmetrical lamination scheme consisting of 2 symmetric modules (each module is defined by a
complete set of the fiber angles, or 360◦) with 146 layers in total:

(0/5/ . . . /85/90/ − 85/ . . . / − 5/0/5/ . . . /85/90/ − 85/ . . . / − 5/0)s =

= (0/5/ . . . /85/90/ − 85/ . . . / − 5/0)2s
(4)

Stiffness variation as a function of the slenderness with respect to the classical stiffness relations
are depicted in Figure 12. By using a symmetrical lamination scheme, in addition to the cancellation
of the coupling stiffnesses, the variation between the stiffnesses k1,1, k4,4, k1,5, k3,3 and k6,6 is further
reduced with respect to the classical definitions. Likewise in this case, the relationship between the
coupling stiffness k4,11 and the bending stiffness k4,4 is negligible.

By comparing the obtained results, it is shown that the substantial differences between the selected
lamination schemes are caused by the coupling stiffnesses k1,4, k3,6 and k4,11. These coupling terms have
higher values for laminates with few layers, even if symmetrical, and will tend to fade out by increasing
the number of layers, thus tend to a balanced configuration. Although the first two configurations
(L.1, L.2) are symmetrical, fairly pronounced coupling stiffnesses are generated. The validation of this
behavior has been done through the Sun [40] model according to which coupling values are generated
which are also different from zero and high between tension and torsion. Regarding Figure 13, it
is possible to note that the laminate L.4 studied by Mencattelli and Pinho [63] has average axial,
shear and bending stiffness values, high torsional and zero coupling stiffness values with respect to
the others. For this reason, L.4 has been selected for the following comparisons with respect to the
others presented.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Stiffness coefficients as a function of slenderness for L.1, L.2, L.3 and L.4 (a) k1,1 L3

12Ez I , (b) k4,4 L
4Ez I ,

(c) k1,5 L2

6Ez I , (d) k3,3 L
Ez A , (e) k6,6 L

Gθz J and stiffness ratio (f) k4,11/k4,4 for Bouligand laminates.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Cont.
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(g) (h)

Figure 13. Stiffness components (a–h) of the considered Bouligand laminates for L = 1 m.

5. Comparison

Following the analyses carried out, an overall view is given on the behavior of the various
lamination schemes, evaluating the variation of the stiffnesses of the laminates with respect to the
orthotropic scheme (0) and the coupling stiffnesses based on their relevance with respect to the
correspondent main stiffness on the main diagonal of the stiffness matrix.

Figure 14 shows the comparison for the main stiffnesses involved in the present study with respect
to the reference (0) configuration. Note that angle-ply configurations have the highest stiffnesses
compared to the others, but they also have shear-bending coupling k1,4, k4,11 
= 0 and traction-torsion
coupling k3,6 
= 0. Whereas, quasi-isotropic and L.4 configurations show negligible couplings and
lower stiffness values analogous to angle-ply configurations. From the obtained results the following
comments arise:

• All the stiffnesses tends to have a constant value by increasing beam slenderness.
• The orthotropic scheme (0) is very efficient if subjected to shear, axial and bending actions, but

not for torsional ones. However, it has a significant variation while increasing slenderness.
Furthermore, it suffers from delamination, because the fibers being all parallel, tend to form a
preferential fracture plane.

• The angle-ply scheme (±45)5 works conversely with respect to the orthotropic configuration (0).
It has high torsional stiffness, but low axial, shear and bending ones. For the present configuration,
the shear-bending coupling is negligible. It is possible to use Sun et al. [40] formulae to
homogenize equivalent properties because its properties do not depend on the beam slenderness.

• The angle-ply scheme (±30)5 represents an intermediate solution between the orthotropic (0)
and the angle-ply (±45)5 configurations. It has a lower axial, shear and bending stiffness of
50–60% approximately and torsional stiffness of 80% with respect to (0). The present stack, as
well as (±45)5, has very low shear-bending coupling stiffness values which can be neglected and
invariability of stiffness constants with respect to slenderness.

• The quasi-isotropic laminate (0/±45/90)s has stiffness values similar to the laminate (±30)5,
except for the torsional stiffness which decreases by approximately 30%. Being a quasi-isotropic
laminate, it has a negligible shear-bending coupling stiffness. In this case, the constants of the
stiffness matrix vary slightly with increasing slenderness.

• The L.4 laminate, studied by Mencattelli and Pinho [63], with the only exception of the orthotropic
configuration (0), presents slightly higher values for axial, shear and bending stiffnesses, but
lower values for torsional stiffness with respect to the others. Coupling effects are minimal, and a
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very small dependency on the beam slenderness for the main stiffness components k1,1, k4,4, k1,5,
k3,3 and k6,6 is observed.

In conclusion, the best axial, shear and bending properties are achieved by the configuration (0)
however such selection has very small torsional stiffness and low durability and reliability. Therefore,
quasi-isotropic and L.4 configurations are suggested for having good mechanical performances
in almost all conditions. These configurations do not present coupling terms so they can be
easily characterized.

(a) (b)

(c) (d)

(e) (f)

Figure 14. Cont.
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(g) (h)

Figure 14. Comparison among stiffness components (a–h) for angle-ply, quasi-isotropic and L.4
laminates with L = 1 m respect to the orthotropic scheme (0).

6. Laminates with Highly Positive and Negative Poisson Values

In the previous section, the most common composite materials such as fiberglass/epoxy or
graphite/epoxy have been considered. Such composites have a stiffness ratio E1/E2 = 8–16.
In particular, the material considered in the previous analyses is characterized by E1/E2 ≈ 13
(see Table 1). However, there is another class of highly orthotropic composite materials which are
defined by E1/E2 = 5000–50, 000 while using RP6410 or RP6442 as a polyurethane matrix, depending
on the volume fraction of the fibers. Mechanical properties of these two constituents are listed in
Table 2. The equivalent orthotropic coefficients for the present laminates are given in Table 3 which
shows a stiffness ratio of approximately 42,800 and 10,530 respectively. Peculiarities and features of
these laminates applied to flat plates have been described by Peel [64].

Table 2. Mechanical properties of laminates with high stiffness ratio [64].

Materials E [MPa] ε [%]

RP6410 1.65 3.30
RP6442 7.00 5.25
Graphite 276,000 -

Table 3. Mechanical properties of: Graphite/RP6410 and Graphite/RP6442 [64].

E1 [MPa] E2 [MPa] ν12 = ν13 ν23 G12 = G13 = G23 [MPa]

Graphite/RP6410 120,000 2.85 0.41 0.502 0.949
Graphite/RP6442 126,600 12.02 0.41 0.504 4

This high stiffness ratio allows having a laminate with a high positive or negative engineering
Poisson ratio of νxy. A high Poisson is given by a balanced lamination and a negative Poisson is given
by a symmetrical scheme. According to the studies by Peel [64], unbalanced lamination schemes [θ/α]s
have very small (highly negative) Poisson ratios. In particular, the laminate (15/5)s (represented in
Figure 15) has a Poisson ratio of about −34 for the Graphite/RP6410 material. Its engineering constants
are listed in Table 4 alongside with those defined by the CFRP material.
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Table 4. Engineering constants for (15/5)s using material from Table 2 and CFRP using material from
Table 1.

Graphite/RP6410 CFRP

Ex 4498.23 MPa Ex 94,509.78 MPa
Ey 3.02 MPa Ey 11,234.40 MPa
νxy −34.04 νxy 0.342
νyx −0.023 νyx 0.041
Gxy 23.33 MPa Gxy 7395.17 MPa

Figure 15. The (15/5)s laminate.

The stiffness coefficients are carried out below for the materials listed in Table 4. The comparison
between the two types of material is addressed on the same tubular profile of the previous cases. The
coefficients of the stiffness matrix are evaluated and their variations with respect to beam slenderness
are show in Figure 16. Both configurations have a small variation with respect to beam slenderness.
The main difference is observed in the values of the stiffness coefficients k1,1, k4,4 and k1,5 that compared
to the same stiffnesses calculated by Euler–Bernoulli theory using homogenization a difference of
approximately 90% in the case of Graphite/RP6410 and approximately 30% in the case of CFRP occurs.
Regarding the coupling coefficients, both materials have significant values due to the unbalanced
lamination scheme. In particular, Graphite/RP6410 will have lower coupling values due to the poor
resistance in the transverse direction of the material, but by observing Figure 16f, a higher effect than
the k4,11 given by CFRP.

In the following, four configurations investigated numerically and experimentally by Peel [64]
are used for studying the stiffness of tubular profiles. Stiffness ratios and equivalent Poisson ratios
are listed in Table 5. The sequences are (152/302)s with negative Poisson ratio (NP1 and NP2) and
(±15/±30)s with a high Poisson ratio (HP1 and HP2). The enumeration 1 and 2 identifies the material
used Graphite/RP6410 and Graphite/RP6442, respectively. The same nomenclature is used in Figure 17.
The analysis was carried out by dividing the combinations according to the lamination schemes and
comparing the two materials.

The laminate (152/302)s (NP1 and NP2) and (±15/±30)s (HP1 and HP2) are presented in
Figure 18. The results for (152/302)s obtained were expected also considering the same given in
Figure 16 where a smaller Poisson ratio was considered. The error given for the shear and bending
behavior is approximately 98% on the contrary traction and torsion work well as in all the previous
cases. Regarding the influence of the coupling coefficient k4,11 with respect to the bending stiffness k4,4,
both materials behave in the same way, that is, tends to decrease by increasing beam slenderness. Such
ratio goes from a value of about 40% (L/h = 12.24) to 10% (L/h = 86.21) so it cannot be neglected.

A further comparison can be made with the previous lamination scheme (15/5)s presented in
the Figure 16, which, observing the Graphite/RP6410, is characterized by a minor error towards the
calculation of the stiffness coefficients with the Euler–Bernoulli formulation, but by a much greater
influence of the coupling stiffness k4,11, by about double.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Stiffness coefficients as a function of slenderness for (15/5)s (a–e) and stiffness ratio
k4,11/k4,4 (f).

Table 5. Stacking sequencies presented by Peel [64] stiffness and equivalent Poisson ratios.

Laminates Material E1/E2 νxy

NP1 (152/302)s Graphite/RP6410 42,800 −6.38
HP1 (±15/ ± 30)s Graphite/RP6410 42,800 3.73
NP2 (152/302)s Graphite/RP6442 10,530 −6.15
HP2 (±15/ ± 30)s Graphite/RP6442 10,530 3.72
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(a) (b)

Figure 17. (a) The (152/302)s laminate, (b) (±15/±30)s laminate.

The laminate (±15/ ± 30)s (HP1 and HP2) is made up of highly orthotropic composite materials
and a balanced lamination scheme. Assessment is depicted in the Figure 18. Compared to the previous
laminate with a negative Poisson ratio, the balanced laminates generate stiffness values that are close
to those obtained with the Euler–Bernoulli formulation for an isotropic material. This is expected by
any balanced laminate, even in the case of highly orthotropic composite materials. The values of the
coupling stiffnesses are negligible as a matter of fact k4,11/k4,4 is almost zero.

(a) (b)

(c) (d)

Figure 18. Cont.

146



Materials 2020, 13, 2069

(e) (f)

Figure 18. Stiffness coefficients as a function of slenderness for (152/302)s and (±15/ ± 30)s (a–e) and
stiffness ratio k4,11/k4,4 (f).

7. Validity and Limitations

After investigating several lamination schemes with standard and high stiffness ratios (E1/E2)
according to beam slenderness and by comparing it to an equivalent homogenized isotropic
Euler–Bernoulli beam model, the following remarks can be reported:

• cross-ply laminates, except laminate (90) have lower values, approximately 10% for L = 1 m and
highly variable as a function of slenderness with respect to the equivalent orthotropic model;

• (45) scheme has lower values than the reference of about 30% and invariant with respect to beam
slenderness;

• (30) and (±30/30) scheme have lower values than the reference of about 55% and 5%, respectively,
and they are invariant with respect to beam slenderness;

• unbalanced laminates with a fiber pitch angle of Δθ = 5◦, L.1 and L.2 have values lower than the
reference of approximately 30% and 25%, respectively;

• (15/5)s scheme has lower values than the reference of approximately 30% for the CFRP
configuration and 90% for the Graphite/RP6410;

• (152/302)s scheme has values very large errors of about 100% and it is invariant with respect to
beam slenderness.

If cross-ply laminates are not considered, it is possible to observe that the calculation of the
coefficients of the stiffness matrix is possible by using isotropic definitions of the Euler–Bernoulli
theory (Equation (3) for balanced laminates and for angle-ply (±α/ . . . ) ones. It is remarked that
angle-ply must have more than one ply in the stack, because as they increase the number of plies they
tend to behave approximately as balanced with negligible coupling stiffness values.

The problem arises when cross-ply are also considered, because for low slenderness values,
although balanced, they have stiffness values that deviate of about 10% from those defined from
Euler–Bernoulli’s theory.

In order to analyze the couplings which might occur in the present laminates, the ABAQUS shell
model is considered as a reference. Composite plate/shell Mindlin theory considers at the constitutive
level the matrices [A], [B] and [D] which represent the membrane, the bending-membrane coupling,
and the bending stiffness matrices, respectively.

147



Materials 2020, 13, 2069

It is well-known that the membrane-bending stiffness matrix ([B]) is zero for symmetric laminates
and it is not zero for antisymmetric cross-ply (in particular B11 = −B22 applies) and angle-ply (in
particular B16 
= B26 
= 0 applies) configurations. Since both symmetric and antisymmetric schemes
present errors with respect to the reference configuration, it is clear that such behavior is not due to only
the membrane-bending coupling matrix [B]. In other words, balanced laminates have A1,6 = A2,6 = 0
as well as cross-ply, however the latter presents larger errors in the definitions of k1,1, k4,4 and k1,5 with
respect to the same computed with balanced laminates.

A condition that allows using the analytical model of Sun et al. [40] and subsequently calculate
the stiffness of the various beams via the Euler–Bernoulli theory for isotropic materials is sought.
The authors investigated the following stiffness ratios A1,6/A6,6 A2,6/A6,6, A1,6/A1,1, A1,6/A2,2,
D1,6/D6,6,D2,6/D6,6, D1,6/D1,1, D1,6/D2,2. Differences among laminates and their configurations
are mainly given by the presence of normal-shear couplings Aij and Dij when ij = 16 or 26. In
particular, it is relevant to analyze the ratio between the latter with the main stiffness terms when
ij = 11, 22 or 66. For the sake of conciseness, not all various combinations are reported, because only a
few results are important to the present problem. Among the aforementioned list of ratios the only
ones that result to be relevant were A1,6/A6,6 and A2,6/A6,6 (depicted in Figure 19). Such ratios are
considered when the trend was similar to the correspondent error in the stiffness matrix components.
To this aim, the variation of the error for k1,1 has been taken as a reference for a beam of L = 1 m and
reported in Figure 20. Extensive details and plots regarding such ratios can be found in [62].

Among the ratios considered, leaving aside the cross-ply laminates, the one that has a trend
similar to the error of k1,1 is A1,6/A6,6. This is why a deeper investigation is provided to determine the
validity of the stiffness calculation k1,1 with the Euler–Bernoulli theory. Therefore, angle-ply laminates
with lamination scheme of the type (α/ − α/α) with the orientation of the laminae α defined with
a difference of 2.5◦ between plies are considered. In this way, it would be possible to determine
the minimum orientation angle of the laminates for which the calculation of the stiffness with the
Euler–Bernoulli formulas for an isotropic material is correct. The analysis was carried out by analyzing
the stiffness coefficients Qij which represent the variables of Aij since the thickness of each ply is
assumed constant.

A1,6

A6,6
=

∑3
k=1

∫ ζk+1
ζk

Q(k)
1,6 dζ

∑3
k=1

∫ ζk+1
ζk

Q(k)
6,6 dζ

=
2Q(α)

1,6
1
3 − Q(−α)

1,6
1
3

3Q(±α)
6,6

1
3

=
Q1,6

3Q6,6
(5)

The lamination schemes analyzed and the values obtained are represented in Figure 21a. It is
expected to find a trend for k1,1 according to the value depicted in Figure 21a. In other words, the
laminate (±5/5) should present an error in the calculation of the stiffness with the Euler–Bernoulli
theory similar or slightly greater than the laminate (±30/30). On the contrary, Figure 21b shows that
error on k1,1 decreases by increasing α. It can be concluded that the error committed while stiffness is
calculated using the Euler–Bernoulli theory is not a function of the ratio Q1,6/(3Q6,6). Moreover, such
a problem might be due to not uniform torsional and cross-section distortion effects which cannot
be evaluated with the present model and must be verified via 3D modeling or higher-order beam
formulation. However, the present methodology can be accurately utilized for angle-ply configurations
when α > 30◦.
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(a) (b)

Figure 19. Ratios (a) A1,6/A6,6 and (b) A2,6/A6,6 for different laminates.
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(a) (b)

Figure 20. Percentage of error computing k1,1 with the present methodology: (a) overall error; (b) the
plot limited up to 5% of error.
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(a)

(b)

Figure 21. Trend by increasing α for laminates (α/ − α/α) of: (a) Q1,6/(3Q6,6); (b) error on k1,1.

8. Conclusions

In conclusion, it has been verified by increasing the number of plies in cross- and angle-ply
configurations that hollow circular beam behavior does not tend to be like the one of an orthotropic
model (0).

Subsequently, an analytical method is proposed for the calculation of the stiffness matrix
components ki,j for i, j = 1, 2, . . . , 12 of an equivalent 3D Euler–Bernoulli beam model. The present
method resulted to be a valid alternative for investigating composite hollow beams in a simplified
manner without the need for complex 3D shell modeling. The methodology demonstrated to work
well for balanced laminates with A1,6/A6,6 < 50% which corresponds to an error < 5% on the shear
and bending stiffness components. By accurately analyzing angle-ply (±α/α) configurations it has
been demonstrated that a condition on the ply angle is α > 12.5◦ in order to have acceptable results.

On the contrary, the condition A1,6/A6,6 < 50% is not valid for cross-ply, that have A1,6 = 0
and they present an error around 15% for small slenderness. These errors might be due to some
non-uniform cross-section torsional effects that cannot be predicted with the present modeling.

A balanced bio-inspired Bouligand-type laminate has been observed to be a good candidate for
the present approach because other than being completely defined by the present analytical procedure
such scheme demonstrated to have high ductility, dissipated energy, and high load-carrying capability.
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The present method is valid also for investigating hollow beams with orthotropic materials with
high stiffness ratio E1/E2 that have a high Poisson ratio, which corresponds to a balanced laminate. On
the contrary, symmetric laminates with the same materials that have a negative Poisson ratio cannot
be modeled accurately (because their lamination scheme is not balanced).
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Abstract: At the stage of designing a special machine tool, it is necessary to analyze many variants of
structural solutions of frames and load-bearing systems and to choose the best solution in terms of
dynamic properties, in particular considering its resistance to chatter. For this reason, it is preferred to
adopt a low-dimensional calculation model, which allows the user to reduce the necessary calculation
time while maintaining a high accuracy. The paper presents the methodology of modeling the natural
frequencies, mode shapes, and receptance functions of machine tool steel welded frames filled with
strongly heterogenous polymer concrete, using low-dimensional models developed by the rigid finite
elements method (RigFEM). In the presented study, a RigFEM model of a simple steel beam filled
with polymer concrete and a frame composed of such beams were built. Then, the dynamic properties
obtained on the basis of the developed RigFEM models were compared with the experimental
results and the 1D and 3D finite element models (FEM) in terms of accuracy and dimensionality.
As a result of the experimental verification, the full structural compliance of the RigFEM models
(for beam and frame) was obtained, which was manifested by the agreement of the mode shapes.
Additionally, experimental verification showed a high accuracy of the RigFEM models, obtaining for
the beam model a relative error for natural frequencies of less than 4% and on average 2.2%, and for
the frame model at a level not exceeding 11% and on average 5.5%. Comparing the RigFEM and FEM
models, it was found that the RigFEM models have a slightly worse accuracy, with a dimensionality
significantly reduced by 95% for the beam and 99.8% for the frame.

Keywords: rigid finite element method; composite; steel-polymer concrete; machine tool;
multibody system

1. Introduction

One of the alternative technologies for manufacturing frames forming machine tool support
systems is the technology of welding steel bodies. The basic components of such bodies are hollow
steel profiles made of sheet metal or solid rolled profiles. Those profiles can be filled with a specially
selected composite material whose task it is to increase the dissipation of vibration. Then, such a body
is a hybrid body and it can effectively compete with cast iron body technology.

The use of hybrid body technologies (i.e., those resulting from the combination of different
materials in order to exploit their properties synergically) in machine tool load-bearing systems
manufactured individually or in small batches can provide specific benefits in terms of a significant
reduction in the design time, particularly in terms of the calculations needed to shape their structure and
the desired static and dynamic properties [1]. It is particularly important to shape the desired resistance
of the designed machine tool frame to chatter [2–7]. The problems related to the design and modeling
of frames of technological machines include a significant number of issues, which translate into a rich
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scientific literature. Analyzing the review publications on the currently proposed solutions, a large
variety in their design can be noticed [8–14]. The static and dynamic properties of composite machine
tool load-bearing systems are most often assessed using the finite element model (FEM) [15–22].

In [23], the authors present a structural solution of a gantry milling machine tool bed composed of
a welded steel frame filled with polymer concrete. This solution was aimed at improving the dynamic
properties of the machine tool. In relation to the fact that the required stiffness of the body was ensured
by the welded frame and its good damping properties were provided primarily by the filling material,
six different structural variants were proposed. The subsequent variants differed in the wall thickness
of the steel frame and, consequently, in the volume of the filled internal spaces of the elements forming
the frame. To assess the impact of the changes in the wall thickness of the static stiffness, natural
frequencies, and mode shapes, the finite element models of the proposed variants were analyzed using
the Ansys 6.0 software. The results of the model calculations were compared with the experimental
ones, both for the values of the estimated loss factor and the natural frequencies; the relative errors
were obtained at the level of up to 20%.

In [24], the authors present a solution for the construction of the column body of the milling
machine, consisting of a cast iron frame, concrete, and elastomeric material, aimed at improving the
damping properties of the structure. The body design process was supported by the analysis of its
FEM model. The experimental verification of the results of the FEM modeling showed discrepancies in
the values of natural frequencies at a level not exceeding 2.3% of the relative error.

In [25], the authors discuss a solution consisting of replacing the steel body elements of a
table milling machine with composite parts made of aluminum, steel, polymer concrete, and carbon
fibre-based composites. The models were built using the ANSYS software. Cubic elements characterized
by eight nodes (SOLID45) were used to discretize the aluminum, steel, and polymer concrete parts.
A layered version of the mentioned finite element (SOLID46) was used for the discretization of the parts
made of the carbon fibre-based composite. A modal analysis of the body constraint in the places of
foundation of the actual structure was carried out for the constructed model. By verifying the obtained
results of modeling with the experimental data, discrepancies in the values of natural frequencies were
obtained at a level of up to 28%.

In [26], the authors present a solution consisting of replacing a cast iron vertical milling center
column with a steel-reinforced polymer concrete structure. The purpose of the presented research was
to increase the damping capacity of the structure while ensuring the required rigidity. The authors,
using FEM, conducted an analysis of the structure deformations for seven body variants differing in
their arrangement and reinforcement method. A similar approach is presented in [27], replacing the
cast iron base of the milling center with a steel-reinforced epoxy granite structure.

In [28], the authors present an enhancement of the static and dynamic characteristics of a
micro-lathe bed by the use of alternate form designs and composite material (epoxy granite and
nettle polyester). Using the finite element method, the authors analyze six design variants differing
in rib configurations. Based on the performed analysis, the best solution in terms of bending and
torsional stiffness was selected. However, the authors of the papers [26–28] do not provide the results
of the experimental verification of the developed finite element models of the hybrid machine tool
body elements.

The prognostic value of the results of the calculations made in the design phase will depend
directly on the accuracy of the mapping of the static and dynamic properties of the designed body
by the calculation model. Since calculations are usually performed for many considered structural
solution variants—i.e., they are repeated many times—it is advisable to adopt a design model that is
as simple as possible and as complex as necessary. This can be achieved by the rigid finite element
model [29], which, compared to the currently most widely used finite element model, has a much
smaller number of degrees of freedom, which can significantly reduce the calculation time [30,31].

According to the latest contribution [32], a strongly heterogenous material, such as the polymer
concrete analyzed, can be modeled using a linear-elastic isotropic model of material, if present in
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a steel-polymer concrete beam. Moreover, it is possible to develop a reliable analytical model of a
composite steel-polymer concrete beam using a homogeneous beam model with an equivalent bending
stiffness and equivalent mass per unit length of the beam. The presented study takes this a step further
and proposes a modeling methodology that deals with the problem of modeling steel beams and
complex, spatial, steel-welded frames filled with strongly heterogenous material, while maintaining a
low dimensionality of the model. The main novelty of the presented study is establishing the model of
the composite, steel-polymer concrete beam using the rigid finite element method. The model is built
by aggregating matrices describing the inertia and stiffness of the steel outer and polymer concrete
filling. The proposed approach differs from the one presented so far in the literature, where mainly
the finite element method is used to model the dynamic properties of complex composite structures;
in order to reduce the dimensions of the established models, model order reduction methods are
used. The presented paper contains the results of comparative studies to determine whether the rigid
finite element method can be effectively used in modeling and calculating the dynamic properties—
i.e., the natural frequencies, mode shapes, and frequency response functions—of steel structures filled
with a highly heterogenous polymer concrete.

The structure of the article is as follows: in Section 2, the steel-polymer concrete beam and frame
concepts are described. Next, a static test to determine the properties of the polymer concrete analyzed
and a dynamic test to determine the natural frequencies, mode shapes, and frequency response
functions are presented. Then, finite element models of both the structural component (beam) and
main frame of the vertical lathe are presented. Finally, in Section 3 rigid finite element models are
established and compared with the finite element model and experimental results. Section 4 contains
the discussion of the presented results. In Section 5, the main conclusions are presented.

2. Materials and Methods

2.1. Steel-Polymer Concrete Frame

The frame considered in this paper was made of commercial steel profiles with a square hollow
section. The individual profiles (basic structural components) were welded, creating a spatial structure
which provides the construction with the required stiffness. After the steel frame was welded,
the insides of the profiles were filled with polymer concrete. The use of polymer concrete was intended
to increase the damping properties of the welded steel frame. Moreover, filling a steel profile with
polymer concrete causes a local increase in the stiffness and inertia of the frame. Therefore, the proper,
intentional placement of polymer concrete enables the shaping of the dynamic properties of the
machine frame. More precisely, the proper distribution of the polymer concrete causes a change in
the structure and parameters of the mass-spring-damping system, which is a model reflection of the
machine tool, thus changing its dynamic properties. The basic structural component (beam) and frame
analyzed are shown in Figure 1.

The basic structural component under consideration consisted of a steel profile with section
dimensions of 50 mm × 50 mm, a wall thickness of 2 mm, and a length of 1000 mm filled with polymer
concrete. The frame analyzed consisted of basic structural components and steel plates connected by
welded joints.

The applied polymer concrete consisted of epoxy resin and a mineral filling of various granulations.
Considering the grain size as the dividing criteria, the mineral fillings can be grouped into the following
categories: (i) ash, (ii) a fine fraction (mainly sand) of grain size 0.25–2 mm, (iii) a medium fraction
of grain size 2–10 mm, and (iv) a coarse fraction of grain size 8–16 mm. The coarse (iv) and medium
(iii) fractions mainly consisted of irregularly shaped gravel. The mass percentage of the individual
components of the polymer concrete applied is shown in Table 1 [32].
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Figure 1. Steel-polymer concrete structure: (a) beam, (b) steel-polymer concrete frame of vertical lathe.

Table 1. Composition of the applied polymer concrete filling (mass percentage).

Component
Epoxy
Resin

Ash
Fine Fraction
(0.25–2 mm)

Medium Fraction
(2–10 mm)

Coarse Fraction
(8–16 mm)

Percentage share of
component weight 15% 1% 19% 15% 50%

2.2. Static Tests of Polymer Concrete

To determine the material properties required for the RigFEM modeling—i.e., the Young’s modulus
and Poisson ratio—static tests were performed using Instron 8850 (Instron, Norwood, MA, USA).
The samples (cuboidal samples of steel—50 mm × 50 mm × 110 mm; polymer concrete—45 mm ×
45 mm × 110 mm) were conditioned for 72 h in an air-conditioned laboratory at a temperature of 23 ◦C
and relative humidity of 50%. The detailed procedure was presented in [32]. Table 2 contains the
material data determined from the static test and the loss factor determined by the impulse test.

Table 2. Material properties.

Parameter Steel Polymer Concrete

Young’s modulus E 210 ± 5 GPa 16.8 ± 0.2 GPa

Poisson’s ratio ν 0.28 ± 0.03 0.20 ± 0.05

Density ρ 7487 ± 35 kg/m3 2118 ± 6 kg/m3

2.3. Dynamic Experimental Tests of the Basic Structural Component and Frame

Dynamic tests were performed in the form of an impact test using Siemens TestLab—Desktop
Advance 2019.1 (Siemens, Munich, Germany) software and Scadas Mobile Vibco (Siemens, Munich,
Germany) hardware. Excitation was carried out using a PCB 086C01 (PCB Piezotronics, Depew, New
York, NY, USA) modal hammer in two perpendicular axes in the case of the beam analyzed and in
three perpendicular axes in the case of the frame analyzed. The response measurement was carried
out using three-axis PCB 356A01 ICP (PCB Piezotronics, Depew, New York, NY, USA) accelerometers
at 56 points in the case of the beam and 260 points in the case of the frame. Double impacts or the
overload of any channel result in the automatic rejection of measurement. The measurement points’
arrangement is shown in Figure 2. The tested beam was suspended on steel cables to approximate
free-free boundary conditions, while the frame was founded according to the real operating conditions.
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Figure 2. Measurement points’ arrangement for (a) beam and (b) frame.

The selected signal acquisition parameters are presented in Table 3.

Table 3. Parameters of signal acquisition.

Parameter Value

Sampling rate 4096 Hz
Frequency resolution 0.5 Hz

Signal acquisition time 2 s
Frequency response function estimator H1

Number of averages 10
Scaling of the frequency response function global

As a result of the experiment, 112 frequency response functions for the beam and 780 for the
frame were determined using the H1 type of FRF estimator. The modal model was estimated using the
Polymax algorithm [33] with default values of tolerance on frequency, 1%; damping, 2%; and mode
shapes vector, 5%. Before the final interpretation, the models were validated using an modal assurance
criterion (MAC) indicator. The detailed procedure for the beam was presented in [32] and for the frame
in [34].

Then, using a half-power method (Figure 3c), the value of the loss factors for steel and steel-polymer
concrete beams were determined. First, the frequency response functions between the points indicated
in Figure 3a were determined. Those points were selected on the basis of the modal analysis in such a
way that they were not in the nodes of the experimental mode shapes. Next, the values of the loss factor
for steel and the equivalent loss factor for the composite steel-polymer concrete beam were determined
as a weighted arithmetic mean, giving weight to the individual coefficients η corresponding to the
resonance amplitude for which they were determined. The idea of the described method is presented
in Figure 3b; the values of the loss factors determined are presented in Table 4.

Table 4. Loss factors for steel and steel-polymer concrete structure.

Parameter Steel Polymer Concrete

Loss factor η 0.00220 ± 0.00005 -

Equivalent loss factor 0.00480 ± 0.00024
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Figure 3. Method of determining the loss factor based on (a) selected frequency response functions,
(b) weighted arithmetic mean, and (c) half-power method.

2.4. Finite Element Modeling

As indicated in Section 1, in engineering practice, the finite element method (FEM) is most
commonly used to assess the dynamic properties of composite structures. Therefore, finite element
models of the steel-polymer concrete beam and frame under consideration were built and the
corresponding calculations were made.

The beam was modeled according to the method presented in [34], and the steel profile and the
polymer concrete filling were meshed using cubic, isoparametric, eight-noded solid elements (CHEXA)
and isoparametric, wedge, and solid elements with six nodes (CPENTA). A structural mesh was
applied to increase the efficiency of the FEM. The polymer concrete was modeled as a linear-elastic
isotropic material (MAT1) [35]. In total, the model of a single beam was composed of 19,600 elements
and 21,985 degrees of freedom.

Alternatively, the steel-polymer concrete beam was modeled using one-dimensional beam finite
elements (CBAR), formulated on the basis of classical beam theory [35]. The model was built by
aggregating mass and stiffness matrixes representing the steel outer and polymer concrete filling.
In total, the one-dimensional steel-polymer concrete beam model was composed of 40 elements and
126 degrees of freedom.

In the case of the analyzed frame, the model was built according to [34] using the CHEXA and
CPENTA elements. In total, the model of the machine tool frame was composed of 60,584 elements
and 225,384 degrees of freedom. The support was modeled using a beam element (CBAR) with an
equivalent stiffness and damping. The discretization process was performed using Midas NFX 2018 R1
(Midas Information Technology Co. Ltd., Seongnam, Korea) [35,36]. The discretized models are shown
in Figure 4.
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Figure 4. Finite element model (FEM) of a beam discretized using 3D elements (a) and 1D elements (b)
and the model of a frame (c).

3. Rigid Finite Element Modeling

3.1. Rigid Finite Element Model of the Basic Structural Component

In previous research [32], it was proved analytically and experimentally confirmed that it is
possible to build a reliable model of a composite steel-polymer concrete beam using an equivalent
bending stiffness and an equivalent mass per unit length. Adopting the Hamiltonian developed
in [32] and the model assumptions that the contact of the steel profile with the polymer concrete
filling occurs on the entire inner surface of the steel profile and the adhesion forces prevent tangential
movements within the material contact area, the steel-composite beam was modeled using rigid finite
elements characterized by mass and moments of inertia, which were connected to one another using
spring-damping elements [37,38].

According to the adopted assumptions, a steel-polymer concrete beam can be modeled as an
assembly of steel and polymer concrete parts, determining for them the substitute values of inertia,
stiffness, and damping coefficients. Therefore, the matrices describing the inertia, stiffness, and damping
of the model are defined as follows Equations (1)–(3):

M = Mst + Mpc (1)

K = Kst + Kpc (2)

C = Cst + Cpc (3)

where M is the inertia matrix of the rigid finite element, Mst is the inertia matrix of the steel part,
Mpc is the inertia matrix of the polymer concrete part, K is the stiffness coefficient matrix describing
the spring-damping element, Kst is the stiffness matrix describing the steel part, Kpc is the stiffness
matrix describing the polymer concrete part, C is the damping coefficient matrix describing the
spring-damping element, Cst is the damping coefficient matrix for the steel part, and Cpc is the damping
coefficient matrix for the polymer concrete part.

The inertia matrix of a rigid finite element for the beam under consideration is a diagonal matrix
whose form is as follows Equations (4)–(6):

M = diag
(
Mst

1 , Mst
2 , . . . , Mst

6

)
+ diag

(
Mpc

1 , Mpc
2 , . . . , Mpc

6

)
(4)
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whereby:
Mst

1 = Mst
2 = Mst

3 = mst, Mst
4 = Jst

0 , Mst
5 = Jst

2 , Mst
6 = Mst

5 (5)

Mpc
1 = Mpc

2 = Mpc
3 = mpc, Mpc

4 = Mpc
0 , Mpc

5 = Jpc
2 , Mpc

6 = Mpc
5 (6)

where m is the mass of the rigid finite element for the polymer concrete filling (pc) and the steel coating
(st), Jst

0 is the main central moment of inertia for the steel profile, Jpc
0 is the main central moment of

inertia for the polymer concrete filling, Jst
2 is the inertia for the steel profile relative to the X axis, and Jpc

2
is the moment of inertia for the polymer concrete filling relative to the X axis—Figure 3.

The stiffness K matrix of the spring-damping element is defined as follows Equations (7)–(9):

K = diag
(
Kst

1 , Kst
2 , . . . , Kst

6

)
+ diag

(
Kpc

1 , Kpc
2 , . . . , Kpc

6

)
(7)

whereby:

Kst
1 =

EstAst

Δl
, Kst

2 =
GstAst

Δl
, Kst

3 = Kst
2 , Kst

4 =
GstJst

0

Δl
, Kst

5 =
EstJst

2

Δl
, Kst

6 = Kst
5 (8)

Kpc
1 =

EpcApc

Δl
, Kpc

2 =
GpcApc

Δl
, Kpc

3 = Kpc
2 , Kst

4 =
GpcJpc

0

Δl
, Kpc

5 =
EpcJpc

2

Δl
, Kpc

6 = Kpc
5 (9)

where Est is the Young’s module for steel, Epc is the Young’s module for polymer concrete, Ast is the steel
profile sectional area, Apc is the polymer concrete filling sectional area, Gst is the Kirchhoff’s module
for steel, Gpc is the Kirchhoff’s module for polymer concrete, and Δl is the length of the rigid element.

Meanwhile, the damping matrix C of the spring-damping element according to the adopted
complex stiffness model [39,40] takes the following form Equation (10):

C = iη
(
diag

(
Kst

1 , Kst
2 , . . .Kst

6

)
+ diag

(
Kpc

1 , Kpc
2 , . . . , Kpc

6

))
(10)

where i—imaginary unit; η—equivalent loss factor for a steel-polymer concrete beam.
The beam model using the predefined rigid finite elements was built in MSC Adams 2019

(MSC Software, Newport Beach, California, USA) [41]. The division of the beam under consideration
into rigid finite elements and spring-damping elements is shown in Figure 5. The model consisted of
20 rigid finite elements of equal length and 19 spring-damping elements (modeled in MSC Adams
environment using 6 × 6 field elements). The model had 120 degrees of freedom.

rigid elements 
spring-

damper 

elements 

Figure 5. Division of the steel-polymer concrete beam into rigid finite elements.

3.2. Rigid Finite Element Model of the Steel-Polymer Concrete Body

Next, a rigid finite elements model for the steel-polymer concrete frame was built—Figure 6.
The model consisted of 91 rigid finite elements; 76 spring-damping elements describing the stiffness
and damping of the beam elements, defined analogously to the beam model; and 73 spring-damping
elements, describing the stiffness and damping of welded joints between the individual beams. As a
result, the model had 546 degrees of freedom.
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Figure 6. Rigid finite element model of the steel-polymer concrete frame.

3.3. Comparison of the Results of Model Calculations of the Basic Structural Component with the Results of the
Experimental Tests

The results for the RigFEM and FEM models of the beam were compared to the experimental
results. Table 5 compares the values of natural frequencies supplemented by the value of relative error
defined as follows Equation (11):

δ =

∣∣∣∣∣∣ fexp − fmodel

fexp

∣∣∣∣∣∣×100% (11)

where fexp—experimentally determined natural frequency; fmodel—natural frequency determined for
the rigid finite element model (RigFEM) and the finite element model (FEM).

Table 5. Comparison of the natural frequencies between the rigid finite element model (RigFEM),
3D FEM, and 1D FEM and the experimental results for the beam analyzed.

Mode
Number

Experimental
Results

RigFEM
Results

Relative
Error

δRigFEM

3D FEM
Results

Relative
Error

δ3D-FEM

1D FEM
Results

Relative
Error

δ1D-FEM

1 247 Hz 244 Hz ~1% 248 Hz <1% 243 Hz <2%
2 251 Hz 245 Hz ~2% 248 Hz ~1% 243 Hz <2%
3 676 Hz 664 Hz ~2% 685 Hz ~1% 650 Hz ~4%
4 678 Hz 665 Hz ~2% 685Hz ~1% 650 Hz <4%
5 1276 Hz 1224 Hz ~4% 1241 Hz <3% 1184 Hz ~7%
6 1282 Hz 1275 Hz <1% 1326 Hz ~3% 1223 Hz <5
7 1282 Hz 1275 Hz <1% 1326 Hz ~3% 1223 Hz <5

A comparison of the selected mode shapes determined by calculation and experimental studies
is presented in Figure 7. Analyzing the presented comparison in Figure 7, one can see that a mode
shape agreement in the analyzed frequency range was achieved, therefore it can be stated that a full
structural compliance of the model was achieved.
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Figure 7. Selected mode shapes comparison for beam.

Figure 8 contains the frequency response functions comparison for the beam.

Figure 8. Frequency response function comparison for the 50 × 50 beam.

Analyzing the comparison of accelerance functions presented in Figure 8, it can be seen that a
good agreement was achieved for all the models for the first two resonant frequencies both in terms
of amplitude and the resonant frequencies values. For the third resonant frequency, the best fit is
achieved by the RigFEM model; the 1D and 3D FEM models have a poorer accuracy in terms of the
resonant frequency value and the corresponding accelerance amplitude.

Table 6 and Figure 9 compare the results of the calculations made for the RigFEM and FEM models
of a steel-polymer concrete frame with the results of the experimental studies.

Table 6. Comparison of the natural frequencies between the RigFEM and FEM models and the
experimental results of a machine tool body composed of 50 × 50 mm steel beams filled with
polymer concrete.

Mode Number
Experimental

Results
RigFEM
Results

Relative Error
δRigFEM

FEM Results
Relative Error

δFEM

1 431 Hz 472 Hz ~9% 437 Hz <1%
2 791 Hz 825 Hz ~4% 858 Hz <9%
3 928 Hz 926 Hz <1% 936 Hz <1%
4 969 Hz 934 HZ ~4% 957 Hz ~1%
5 1041 Hz 1070 Hz <3% 1032 Hz <1%
6 1151 Hz 1230 Hz <7% 1141 Hz <1%
7 1232 Hz 1372 Hz ~11% 1195 Hz ~3%
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Figure 9. Comparison of the selected mode shapes between the RigFEM, FEM model, and the
experimental results for the machine tool body.

Analyzing the comparison presented in Figure 9, it can be seen that, similar to the beam, a mode
shape agreement for the frame was achieved, therefore it can be stated that a full structural compliance
of the model was achieved.

Figure 10 presents the FRF comparisons at selected points where the spindle is mounted.
Analyzing the comparison presented in Figure 10, it can be seen that the RigFEM model gives

less accurate results compared with FEM model, in particular in the lower frequency range. For the
RigFEM model, the amplitude mapping of the first resonance is inaccurate; a similar phenomenon can
be seen for resonances close to the frequency of 1200 Hz.
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Figure 10. Selected receptance function comparison for the RigFEM, FEM model, and experimental
data between the excitation point and the point where spindle is mounted in the X direction.

4. Discussion

To summarize, it can be concluded that for the RigFEM model of the beam analyzed, the full
structural compliance of the model—i.e., the compliance of the mode shapes—has been achieved in
the frequency range under consideration. The relative error for the natural frequency values for the
RigFEM model did not exceed 4%; on average it was 1.8%. Referring these results to those presented
in [34,36], it can be seen that for the competitive FEM model, the relative error did not exceed 3%—
on average, it was 1.8%. The 3D FEM did not exceed 4%—on average, it was 4.1% (1D FEM). For the
continuous model based on Timoshenko beam theory, the relative error did not exceed 4%—on average,
it was 3.1%. Additionally, for the Euler–Bernoulli beam model of a similar steel-polymer concrete
beam (differing in a steel profile cross-section dimensions—70 × 70 mm) presented in [42], the relative
error for the bending mode shapes did not exceed 13.2%—on average, it was 7.6%. Comparing the
natural frequencies obtained on the basis of the RigFEM beam model with the models described in
the cited works, it can be seen that th eRigFEM model has a slightly lower accuracy than the 3D FEM
model and has a better accuracy than the 1D FEM model and the continuous models, especially the
Euler–Bernoulli model. It should be also noted that for the RigFEM model, an acceptable compatibility
of the frequency response functions for resonant frequencies has been achieved.

Comparing the RigFEM and FEM models, it can be seen that the model developed according to
RigFEM is characterized by a 95% reduction in the number of degrees of freedom in the case of the 3D
model, and 50% in the case of the 1D model. Reducing the number of degrees of freedom directly
shortens the time needed for the calculation, without the need for the model order reduction presented
in [43].

The differences between the RigFEM beam model and the experimental tests can result from the
adopted simplifications—i.e., the use of a small number of rigid finite elements and spring-damper
elements can adversely affect the accuracy of both natural frequency values and frequency response
functions [29]. The adoption of an isotropic, homogenous, linear elastic model of material to represent
heterogenous polymer concrete may also influence the accuracy of the model due to the possible
uneven distribution of the stiffness and mass. However, it should be noted that these assumptions
were made deliberately and with full awareness of their consequences and were intended primarily to
reduce the dimensionality of the model. One way to improve the accuracy of the model may be to use
a model updating algorithm.

It can be also concluded that, similarly to the beam, for the frame, a full structural compliance of
the models was obtained, which was manifested by the compliance of the mode shapes. Comparing
the natural frequency values for the RigFEM model, it can be seen that the relative error did not
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exceed 11%—on average, it was 5.5%. For the FEM model built according to methodology presented
in [34], the relative error did not exceed 9%—on average, it was 2.4%. In addition, a satisfactory
compliance of the frequency response functions was achieved for both the models.

Comparing the models developed in accordance with RigFEM and FEM, it can be seen that the
model developed according to RigFEM is characterized by a 99.8% reduction in the number of degrees
of freedom, directly influencing the time needed for the calculation.

The differences between the RigFEM frame model and the experimental data may result from
similar reasons to the beam model. An additional source of inaccuracy may be the simplified method
of modeling the welded joints, which was implemented using spring-damper elements connecting the
centers of mass of the rigid end elements.

Therefore, it can be concluded that the RigFEM models developed for both a steel-polymer beam
and a frame composed of such beams provide a reliable description of their dynamic properties.
In addition, their small size makes them competitive in relation to the models developed in accordance
with FEM.

5. Conclusions

The literature sources indicate that the finite element method is the most popular in engineering
practice to anticipate the dynamic properties of steel-polymer concrete machine tool frames.
However, using FEM models at an early design stage, when several structural variants need to
be analyzed, can be time-consuming due to their high dimensionality.

Therefore, the presented rigid finite element methodology of modeling composite steel-polymer
concrete structures can be a useful tool to assist engineers in a design decision-making process, owing
to the possibility of developing reliable low-dimensional models.

The obtained results confirmed the initially formulated thesis that the rigid finite element method
can be effectively used in modeling and calculating the dynamic properties (natural frequencies, mode
shapes, and frequency response functions) of both simple steel-polymer beams and complex spatial
concrete frames. The accuracy of predicting the dynamic properties of the steel-polymer concrete
structures for the RigFEM model is only slightly inferior to the FEM model and is fully acceptable.
On the other hand, using RigFEM models with a reduced dimensionality leads to the reduction of time
necessary to perform the calculations, which may be beneficial in the case of multiple repetitions of the
calculations for many different structural variants (when searching for the optimal solution, favor the
RigFEM model over the FEM model).

The main limitation of the presented models is the frequency response function accuracy for
the non-resonant frequencies. However, according to the fact that displacements for non-resonant
frequencies are small in general, the accuracy of the presented method can be considered as satisfactory.

To summarize, the study presents a method of modeling steel-polymer concrete machine tool
frames based on the rigid finite element method. Comparing the RigFEM models with the analytical
and finite element ones, it can be stated that the developed method is an interesting alternative to them.
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Abstract: The use of a continuum structural model for the analysis of masonry structures in the plane
stress state is discussed in this paper. Attention is paid to orthotropic masonry at the material level
and validation of the model after its implementation in a proprietary finite element method (FEM)
system via user-supplied subroutine. The constitutive relations are established in the framework
of the mathematical elastoplasticity theory of small displacements and deformations. Based on
the orthotropic failure criterion that was originally proposed by Hoffman in the spatial stress state,
the model includes a generalization of the criterion in the plane stress. As it is the case for isotropic
quasi-brittle materials, different yield surfaces are considered for tension and compression, which are
both of Hoffman type.

Keywords: orthotropic failure criteria; implementation; finite element; plasticity; masonry

1. Introduction

The mechanical behavior of masonry is subjected to various influencing factors, mostly resulting
from its complicated mesoscopic and microscopic structure and two basic materials used. Therefore,
different modeling approaches are available for the numerical simulation of the mechanical behavior of
masonry structures. Extensive research has been conducted on the development of advanced numerical
modeling and the analysis of historical masonry structures for several decades [1–4]. However,
a macroscopic approach is required for the viable analysis and the prediction of global structural
behavior. The macroscopic composite behavior of masonry can be described assuming a homogeneous
continuum and an anisotropic material with directional properties. This alternative of the constitutive
modeling proved to be promising in two-dimensional problems, especially for models with closed
form of the failure, yield, or limit surface. Some constitutive macro-models that are relied on for the
finite element method (FEM) are widely used in the last decades with a different degree of complexity
and idealizations—from initial models with simply isotropic, linear elastic behavior to advanced
models with non-linear orthotropic behavior that are recently developed in the framework of modern
concepts of continuum damage mechanics.

More considerable interest in the biaxially loaded masonry began more than forty years ago,
in the late seventies of the last century, both by experiments and theory. In general, experiments
were mainly carried out at that time concerning the failure of shear walls. They were usually related
to the proposed failure criterion for the masonry in the plane state of stresses in the representative
form of the particular tests that had to be involved [5,6]. The representative biaxial test for walls built
with any kind of masonry elements was conducted very seldom because of the technical difficulties.
The biaxial test data of Page [7,8] were interpolated in [9] in the form of a failure criterion. The criterion
was written using three failure surfaces in the form of elliptic cones expressed by a second-order
polynomial of stress components in the reference axes coaxial with masonry layers and without any
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reference to the observed distinct failure modes of masonry panels. On the other hand, an important
composite failure criterion which was derived based on the four different failure mechanisms was
proposed in [10]. This criterion was next used in the FEM-based constitutive model in [11].

There have been few attempts to use a single failure surface in constitutive models of masonry
panels because of the non-acceptable fit of experimental values. The general orthotropic failure
criterion of Tsai-Wu [12] was already available for composite materials since 1971. The use of this
criterion for masonry was attempted in [13] in the form of a polynomial function of the second degree
in stresses. A criterion in the form of a double pyramid with a rectangular base and the slope angle
equal to the internal friction angle of the material was assumed in [14]. The non-acceptable fit of
Page’s experimental values resulting from the Hoffman [15] single surface criterion was discussed
in [16], although the criterion itself as a single limit condition is quite flexible and attractive to use.
The phenomenological single-surface constitutive model cannot also distinguish between different
failure modes. In the framework of computational plasticity, the use of a composite yield criterion
containing several failure criteria seems to overcome this drawback. The choice of two failure surfaces,
one for the tension regime and the second one for the compression regime, provides better agreement
with Page’s experimental results. To describe the orthotropic behavior of masonry, two orthotropic
yield criteria were used in [17], where a hydrostatic pressure insensitive material of a Hill-type as the
yield criterion for compression together with a Rankine-type yield criterion for tension were assumed.
The composite criterion containing three failure surfaces, each of them being for tension, compression,
and shear regimes, allows distinguishing between different failure modes [18]. Contours consisting of
a few surfaces are characterized good compatibility with the experimental results—see, e.g., [19,20]
and [18,21]. However, this approach seems to be too demanding a computational task of plasticity.

Concerning masonry inelastic behavior, the closed-form macro-models are more efficient and
suitable for complex structural computations. Some constitutive models that are recently developed in
the framework of modern concepts of continuum damage mechanics are based on the assumption that
the masonry axes of the bed and head joints are also damage principal axes. Usually, scalar damage
parameters are assumed in each direction of the fixed axis, see for instance [14], where two independent
scalar parameters in each direction of the material axis were used and their evolution is described by
the energy-based approach. A similar approach in the framework of computational plasticity was
used in [17], where the principal directions of damage are fixed and aligned with the initial orthotropy
axes and softening/hardening relationships were adopted for the stress–strain diagrams in tension
and compression, with different fracture energies along the axes of each material. The energies were
coupled by a single scalar internal parameter used in the plasticity algorithm to measure simultaneously
the amount of softening/hardening in two material axes. The main drawback of the closed-form
orthotropic macro-models is the identification of the material parameters. To estimate macro-scale
properties from mortar and brick parameters and their bonding, homogenization techniques can
be used, both in elastic as well as plastic behavior, e.g., [22–24]. An alternative option is to transfer
the identification problem to the level of masonry constituents by using multi-scale methods, e.g.,
[18,20,21], or to use methods developed recently for modeling of anisotropic quasi-brittle fracture,
e.g., the so-called phase-field fracture model in the diffusive damage mechanics [25–27].

A continuum damage model in which the orthotropic behavior is simulated using a mapping
relationship between the orthotropic behavior and an auxiliary model has been recently published
in [28]. By using the concept of the mapped stress tensor the problem can be more efficiently solved in
the mapped space and the results can be transported to the real field. Two distinct isotropic failure
criteria are assumed in the mapped space and two stress transformation tensors are adopted. In the
paper, the computational representation of complex failure loci obtained by experiments on orthotropic
masonry is also presented.

This paper discusses an extension of the approach presented in [17]. Although the extension can
be done both in a plane stress state as well as in a spatial stress state, the constitutive model with the
generalization of the Hoffman criterion in a plane stress state is discussed here. Two orthotropic failure
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criteria are used, which are formulated in the framework of the representation theory of orthotropic
tensor functions based on the Hoffman criterion [15]. The use of two Hoffman-type failure criteria as
the yield criteria in the plasticity model seems to be particularly attractive and may give the better fit
of the experimental values [29,30]. The composite masonry is treated as a homogenized orthotropic
continuum. Since the failure criteria are scalar-valued functions of the stress tensor, the invariant
representations of these criteria are dependent only on orthotropic invariants of the stress tensors.
It is also the purpose of the paper to show the possibility of formulating robust numerical algorithms
of the model implementation into a commercial finite element code at the integration point level
using user-defined subroutines. Some tests of the proposed numerical algorithm for an anisotropic
continuum are presented in the paper, both at the single element level and at the structural level and
in the plane stress state.

2. The Orthotropic Hoffman-Type Failure Criteria in an Invariant Form

To model such effects as a marked difference observed between strengths in tension and
compression, Hoffman [15] proposed a fracture criterion for brittle orthotropic materials as an extension
to the Hill yield criterion. The criterion was proposed in the spatial stress state and in the {mi} frame
of reference that coincides with the axes of orthotropy. The criterion was originally described by the
function with nine material constants Ci that are dependent on the three uniaxial tensile strengths Yti
and the three uniaxial compressive strengths Yci, along with the orthotropy directions i and also on
the three shearing strengths kij on the planes of material orthotropy. In the case of the plane stress
state, when the normal vector to the stress plane is coincided with the axis of orthotropy n = m3 = b3

(Figure 1), stress components σ33 = σ31 = σ23 = 0 and the Hoffman criterion:

C1(σ22 − σ33)
2 + C2(σ33 − σ11)

2 + C3(σ11 − σ22)
2+

C4 σ11 + C5 σ22 + C6 σ33 + C7 σ2
23 + C8 σ2

13 + C9 σ2
12 − 1 = 0 ,

(1)

where:
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+

1
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− 1
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+
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,
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1
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,

(2)

takes the following form with the six material constants:

C1(σ22)
2 + C2 (σ11)

2 + C3(σ11 − σ22)
2 + C4 σ11 + C5 σ22 + C9 σ2

12 − 1 = 0 , (3)

where the constants C1 ÷ C3 are dependent on uniaxial strengths Yt3 and Yc3 in the direction
perpendicular to the stress plane.

The theory of tensor functions together with the theorems on their representations has been
recognized to be an efficient mathematical tool for the formulation of constitutive relationships with
both the desirable analytical clarity and required generality.

b
1

b
2

m
1

m
2

n m=
3
=b

3

�

Figure 1. Axes of orthotropy {mi} and a Cartesian system {bi}.

173



Materials 2020, 13, 4064

For some other recent applications of tensor functions see, e.g., [31,32]. It also allows accounting
straightforwardly the invariance requirements of the principle of the space isotropy and the material
symmetries so that the orientation of the material in space does not affect on its constitutive relation.
Using this theory with Boehler’s results [33], we can assume that the orthotropic criterion (3) is a
particular case of the more general scalar-valued orthotropic function of three invariants tr (M1σ),
tr (M2σ), trσ2 of the following form:

f
(

tr (M1σ) , tr (M2σ) , trσ2
)
− 1 = 0 , (4)

where σ is the symmetric plane stress tensor (σ ∈ Ts
2, dimTs

2 = 3) and Mα are the parametric (structural)
tensors defined as:

M1 = m1 ⊗ m1, M2 = m2 ⊗ m2. (5)

The unit vectors mα are the privileged directions of the orthotropic material, so they have to
be perpendicular to each other. The invariants are very useful for the interpretation of the failure
surface in any coordinate systems of the plane stress tensor that are different from the principal axes of
orthotropy. Following the paper [34] or [35], we can choose another set of invariants Kp in the form:

K1 = tr (M1σ) , K2 = tr (M2σ) , K3 = trσ2 − (tr (M1σ))
2 − (tr (M2σ))

2 , (6)

where the symbol “tr” denotes the trace of a second order tensor (tr(AB) = AijBij). The form (6) is
very convenient because in the {mα} axes the invariants are:

K1 = σ11, K2 = σ22, K3 =
(√

2σ12

) 2
. (7)

Using the invariants (7), the criterion (3) can be treated as a particular case of the criterion
proposed in [34] and may be written in the following invariant form:

f (Ki)− 1 = aαKα + bαβKαKβ + cK3 − 1 = 0, (8)

where α, β = 1, 2 , i = 1, 2, 3 and the material constants are defined as:

aα =
1

Ytα
− 1

Ycα
, b11 =

1
Yt1Yc1

, b22 =
1

Yt2Yc2
,

b12 =
1
2

(
1

Yt3Yc3
− 1

Yt1Yc1
− 1

Yt2Yc2

)
, c =

1
2k2

12
.

(9)

Note that in the constant b12 there are again uniaxial strengths Yt3 and Yc3 in the direction
perpendicular to the stress plane.

The criterion (8) can be also written in the following invariant form:

1
2
σ · P ·σ+ p ·σ− 1 = 0 , (10)

where a dot means a double contraction of two tensors, p is the symmetric tensor function of the
second-order:

p = a1M1 + a2M2, (11)

P is the double symmetric tensor function of the fourth-order:

P = 2b11M1 ⊗ M1 + 2b22M2 ⊗ M2 + 2b12 (m1 ⊗ m2 + m2 ⊗ m1) + c (12)
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with the fourth-order tensor :

= 4 N ⊗ N , N =
1
2
(m1 ⊗ m2 + m2 ⊗ m1) . (13)

Several criteria proposed in the literature for orthotropic materials are special cases of the quadratic
limit surface (8), including an elliptic failure surface according to Tsai and Wu [12] and criteria
discussed recently in [30]. However, a phenomenological single-surface model may give an insufficient
description of the mechanical behavior. It does not permit easy identification of failure modes and
thus renders the description of different post-failure mechanisms very difficult. At least two failure
criteria should be taken into consideration, the one for the compression regime and the second for
tension regime. Each of them may be of the form (8) as proposed in [34] where the failure criterion
for orthotropic materials in the spatial stress state is represented by two quadratic functions of the
six invariants of the stress tensor and parametric tensors. It may more accurately describe the failure
data distribution than classical limit surfaces, although it may include fifteen independent material
parameters for the description of failure surfaces. On the other hand, the concept of a smooth
single-surface description seems to be attractive from a numerical point of view and also allows for
modeling of different inelastic behavior by changing size, shape, and location of a quadratic state
function according to the form (8) in orthotropic stress space.

It is possible to propose a generalization of the Hoffman criterion for the orthotropic material in
the plane state of stresses. The determination of the six material parameters in the criterion (3) requires
six strength tests. The five standard tests are uniaxial loading along the axes of orthotropy (two tests
for tension and two for compression) and the shearing test in the plane of stresses. If the test of the
uniform biaxial compression is used for determining the strength Ycc as the sixth test in addition to
conventional tests, we will get the criterion in the invariant form (8) or (10), in which the material
parameter b12 is changed to the form:

b(1)12 =
1

2Y2
cc
− 1

2Yt1Yc1
− 1

2Yt2Yc2
+

1
2Ycc

(
1

Yt1
+

1
Yt2

− 1
Yc1

− 1
Yc2

)
. (14)

If as the additional test we will use the test of the uniform biaxial tension for determining the
strength Ytt, we will get the criterion in the invariant form with the following material parameter b12:

b(2)12 =
1

2Y2
tt
− 1

2Yt1Yc1
− 1

2Yt2Yc2
− 1

2Ytt

(
1

Yt1
+

1
Yt2

− 1
Yc1

− 1
Yc2

)
. (15)

Note that now there are not the uniaxial strengths Yt3 and Yc3 in the material constant b12. Finally,
using two functions of the form (8) or (10), one with the parameter (14) for compression regime
f1(Ki) − 1 = 0 and the second with the parameter (15) for tension regime f2(Ki) − 1 = 0, we can
construct the composite failure criterion in such a way that the following set:

B = B1 ∩ B2 ∧ Bα ≡ {σ ∈ Ts
2 | fα(Ki)− 1 < 0} , (16)

is convex and
fα(Ki)− 1 = a(α)α Kα + b(α)αβ KαKβ + c(α)K3 − 1 = 0, (17)

We can also assume that c(1) = c(2) ≡ c and a(α)α = aα, b(α)αα = bαα for simplification and we then
have the following seven material parameters: the two uniaxial tensile strengths (Ytα > 0), the two
uniaxial compressive strengths (Ycα > 0), the pure shear strength (k12 > 0), the biaxial uniform
compressive strength Ycc > 0 and the biaxial uniform tensile strength Ytt > 0. This procedure is
proposed in the paper [34], although the number of material parameters may be increased to 12 even
though some of them can be used just to adjust failure surfaces to experimental data.
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Figure 2 shows the criterion in the orthotropy axes with the following parameters for material:
simple shear strength k = 0.4 [MPa], vertical compression strength Yc2 = 6.34 [MPa] and vertical tensile
strength Yt1 = 0.31 [MPa] perpendicular to the horizontal joint, compression strength Yc1 = 4.95 [MPa]
and tensile strength Yt2 = 0.14 [MPa] parallel to the horizontal joint, biaxial uniform compression
strength Ycc = 9.0 [MPa] and biaxial uniform tension Ytt = 0.14 [MPa]. Figure 2a shows general
view and Figure 2b cross section of σ12 = 0 (solid line) with contours every 0.2 [MPa] (dashed lines).
Figure 2c shows cross section of σ22 = −6.34 [MPa] (solid line) with parallel contours every 0.81 [MPa]
(dashed lines). Figure 2d shows cross section of σ11 = −4.95 [MPa] (solid line) with parallel contours
every 0.81 [MPa] (dashed lines).
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�122
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Figure 2. Criterion in orthotropy axes: (a) 3D view, (b–d) contours (described in text).

An alternative connection of two surfaces is proposed, different from that used in [34], which is
shown schematically in Figure 3. It allows for shifting a common edge. Figure 3 shows the method for
constructing a boundary surface of the criterion in the normal stress components, in the orthotropy axes
(at zero shear stresses). The surface in the tension range conventionally adopts compressive strength
values Yt

cα greater than twice those for the area of the compression range Yc
cα, that is Yt

cα = 2 Yc
cα. On the

other hand, the surface in the compression range conventionally adopts tensile strength Yc
tα, by making

them the value of compressive strength Yc
cα. It is assumed that they will be two-fold smaller, that is

Yc
tα = 0.5 Yc

cα.
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Figure 3. The proposed criterion and material parameters determining the surfaces.

3. Comparison with the Experimental Results

The composite failure criterion is shown in Figure 4 in the orthotropy axes and in comparison
with one of the most complete sets of experimental data of biaxially loaded masonry that was given by
Page [7,8], who tested 102 panels of half-scale solid clay brick masonry. Tested elements were made
on a scale of 1:2 with dimensions 360 × 360 × 50 [mm]. Tests were differentiated due to the rotation
of the principal stress terms of the horizontal joint (axis of the material). The ratio of the principal
stresses was changed so that the wall was considered in any possible state of stress. The following
values of the parameters are adopted: axial tensile strength along the horizontal joint Yt1 = 0.43 [MPa]
and perpendicular to it Yt2 = 0.32 [MPa], the axial compression strength along the horizontal joint
Yc1 = 8.74 [MPa] and perpendicular to it Yc2 = 8.03 [MPa], the pure shear strength k = 0.33 [MPa],
uniform biaxial tensile strength Ytt = 0.32 [MPa] and compression strength Ycc = 8.38 [MPa]. Good
agreement was found in the shape of the failure surface for principal stresses, which may mean
that the criterion would appear to be sufficiently well validated for further investigations. Finally,
the Rankine–Hill failure criterion [16] is shown in Figure 4 by dashed lines as a comparison to the
proposed criterion.
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Figure 4. Comparison of the proposed criterion with the experimental results of Page [7,8] depending
on the inclination axes of orthotropy relative to the principal axis: (a) φ = 0.0, (b) φ = 22.5, (c) φ = 45.0.
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Another discussed example is the comparison of the proposed failure criterion with the results of
the experimental research from work [36]. The research program was carried out at the ETH Polytechnic
in Zurich. Ganz and Thürliman’s team investigated biaxially loaded wall panels (designated K1–K12)
with dimensions of 1200 × 1200 × 150 [mm3] and with different orientation of material axes to the
principal stress directions. The results of experimental tests [36] are presented in Table 1 excluding
two tests (K5 and K9), which concerned samples of reinforced walls. The second column of the
Table 1 contains the proportion of stresses, while the third column gives the angle by which the system
of material axes has been rotated to the load directions. The ratio of principal stresses allows the
direction of the load path to be determined. The intersection point of the load path direction with the
criterion surface determines the stress state, the components of which are placed in columns 7–9 of
the Table 1. The criterion surfaces are determined by the following parameters [MPa]: for a tension
regime — Yt1 = 0.28, Yt2 = 0.01, Yc1 = 3.74, Yc2 = 15.72, kt = 0.048, Ytt = 0.01 and for a compression
regime — Yt1 = 0.94, Yt2 = 3.81, Yc1 = 1.87, Yc2 = 7.61, kc = 2.868, Ycc = 2.06. The anisotropy ratio
of the compressive strength is Yc2/Yc1 = 4.07 and is related to the arrangement of cores in ceramic

masonry elements. The length of the load vector should be determined as
√

σ2
11 + σ2

22 + 2σ2
12. The last

column of the Table 1 presents the values of the ratios of the length of the vectors resulting from the
experiment and from the initial surfaces of the proposed criterion. The results show good compliance
of the criterion with the experimental results.

Table 1. Comparison of the proposed criterion with the experimental results of [36].

Experimental Numerical
Panel σ1

/
σ2 φ [MPa] [MPa] Exp/Num

[◦] σ11 σ22 τ12 σ11 σ22 τ12 [-]

K1 −0.09 22.5 −0.08 −0.92 0.42 −0.09 −1.04 0.47 0.88
K2 −0.05 22.5 −0.17 −1.42 0.62 −0.17 −1.35 0.59 1.05
K3 0.0 0.0 0.00 −7.63 0.00 0.00 −7.61 0.00 1.01
K4 0.0 90.0 −1.83 0.00 0.00 −1.87 0.00 0.00 0.98
K6 0.0 45.0 −0.32 −0.32 0.32 −0.43 −0.43 0.43 0.74
K7 0.0 22.5 −0.39 −2.25 0.93 −0.37 −2.15 0.89 1.05
K8 0.0 67.5 −0.22 −0.04 0.09 −0.22 −0.04 0.08 1.01

K10 0.33 0.0 −2.11 −6.44 0.00 −2.02 −6.15 0.00 1.05
K11 0.31 22.5 −2.04 −4.49 1.23 −2.02 −4.46 1.22 1.01
K12 0.30 45.0 −2.03 −2.03 1.08 −2.01 −2.01 1.07 1.01

Figure 5a shows the initial surface of the criterion with points marked on the surface, indicating
the stress limits of individual experimental tests conducted by Ganz and Thürliman. Analyzing the
contour lines, it can be seen that most of the safe area is limited by the tensile regime. This is more
clearly seen in Figure 5b,c, in which the plane cross-sections of the criterion are shown. One can see
cross-sections with assigned to them, the values of the ultimate stress obtained from the individual
experimental tests which are marked with diamonds.
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Figure 5. Comparison of the proposed base contour of the failure surface with the experimental results
of Ganz and Thürliman [36]: (a) 3D view, (b) by cross sections of the body with σ22 = const, (c) by cross
sections of the body with σ11 = const.

At the ETH Polytechnic in Zurich, a test program for walls made of concrete, hollow masonry
elements ZSW1-ZSW12 was also carried out [37]. The results of the experimental tests are given in
Table 2, and in Figure 6. Figure 6a shows failure surface of the criterion with the experimental results
of [37]. Figure 6b,c shows cross-sections with planes of the constant normal stress. A position of the
yield stress from experimental tests are marked with diamonds.

Table 2. Comparison of the proposed criterion with the experimental results of [37].

Experimental Calculated
Panel σ1

/
σ2 φ [MPa] [MPa] Exp/Num

[◦] σ11 σ22 τ12 σ11 σ22 τ12 [-]

ZSW1 0.0 0.0 0.00 −9.12 0.00 0.00 −9.21 0.00 0.99
ZSW2 0.14 0.0 −6.12 −0.83 0.00 −6.05 −0.82 0.00 1.01
ZSW4 1.53 0.0 −5.98 −9.13 0.00 −5.58 −8.52 0.00 1.07
ZSW5 0.0 45.0 −3.06 −3.06 3.06 −3.06 −3.06 3.06 1.00
ZSW6 0.22 45.0 −4.60 −4.60 2.93 −4.69 −4.69 2.98 0.98
ZSW7 1.0 45.0 −6.12 −6.12 0.00 −6.36 −6.36 0.00 0.96
ZSW8 0.0 67.5 −2.34 −0.40 0.97 −2.34 −0.40 0.97 1.00
ZSW9 0.0 22.5 −0.97 −5.66 2.35 −0.97 −5.66 2.35 1.00
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Figure 6. Comparison of the proposed criterion with the experimental results of of Lurati [37]: (a) 3D
view, (b) by cross-sections of the body with σ22 = const, (c) by cross-sections of the body with
σ11 = const.

The criterion surfaces are determined by the following parameters [MPa]: for a tension
regime — Yt1 = 0.01, Yt2 = 0.01, Yc1 = 11.52, Yc2 = 18.42, kt = 0.01, Ytt = 0.01 and for a compression
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regime — Yt1 = 2.88, Yt2 = 4.61, Yc1 = 5.76, Yc2 = 9.21, kc = 3.98, Ycc = 6.36. The anisotropy ratio of
the compressive strength is Yc2/Yc1 = 1.60. The material has almost zero tensile strength. As before,

the load vector length was determined for each limit point as
√

σ2
11 + σ2

22 + 2σ2
12. The maximum

difference of vectors resulting from the experiment data and those of the initial surface compared
criterion does not exceed 7 percentage points, which shows a very good agreement of the proposed
model with the experiment results.

4. The Constitutive Relations and Implementation of the Model

The elastic-plastic orthotropic material is considered assuming an additive decomposition of the
strain tensor into the elastic part εe and the plastic part εp. The elastic part is defined by orthotropic
Hooke’s law. The plastic part of the strain tensor is defined by a flow rule associated with the yield
function given by the plasticity (failure) criterion written based on the forms (10) and (17) as:

fα (σ, zα) =
1
2
σ · Pα ·σ+ pα ·σ− Kα (zα) = 0, (18)

where the Kα(zα) are given functions with the real functional value from a closed interval [0, 1]
that describes the type of hardening/softening (Figure 7), zα are internal scalar hardening variables.
The softening behavior is modeled with a smeared approach, where the localized damage is represented
by the scalar, which is related by an equivalent length h to the released energy per unit cracked area,
Gf . The length h should correspond to a dimension of the finite element mesh. As one can see in
Figure 7, different fracture energies are introduced in the model, as additional parameters—the tensile
fracture energy Gf t and the compressive energy Gf c.

In the frame of reference coinciding with the orthotropy axes, we have the following matrix

representations of tensors Pα and pα in the Voigt notations for the plane stress σ ⇒
[
σ11 σ22

√
2σ12

]T
,

(α = t for tension surface, α = c for compression surface):

Pα ⇒ Pα =

⎡⎢⎣2bα
11 2bα

12 0
2bα

21 2bα
22 0

0 0 4cα

⎤⎥⎦, pα ⇒ pα =
[

aα
1 aα

2 0
]
. (19)

For composite criteria, the subscript α also denotes the number of the active surface. Let us first
assume that only one surface is active, which will allow this marking to be omitted. In the framework
of the mathematical theory of the elastic-plastic material a permissible stress state is any state of stresses
for which f ≤ 0. A stress state is called the elastic stress state if f < 0. A plastic state refers to a stress
state at the boundaries of the current elastic region for which f = 0. The plastic part of the strain tensor
is defined by a flow rule associated with the yield function given by the Equation (18). The flow rule
defines the sign (direction) of plastic-strain increment in the following form:

ε̇p = γ
∂ f (σ, z)

∂σ

∣∣∣∣
σ=σT

= γ (P ·σ+ p) ≡ γ r, (20)

where γ > 0 is a plastic multiplier. After applying differentiation to orthotropic Hooke’s elastic law
with the respect to the time and after substituting Equation (20) we obtain:

σ̇ = C · (ε̇− γ r) ≡ Cep · ε̇, (21)

where the elasto-plastic tangent operator Cep can be calculated after the parameter γ is known.
Assuming that

ż = γ(r · r) ≡ γ‖r‖2. (22)
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one can compute from the consistency condition

γ ḟ (σ, z) = 0, γ > 0, (23)

the plastic multiplier

γ =
〈r ·C · ε̇〉

r ·C · r + ∂K/∂z ‖r‖2 , (24)

and the operator Cep in the following form:

Cep = C− (C · r)⊗ (r ·C)
r ·C · r + ∂K/∂z ‖r‖2 . (25)

The double symmetric fourth-order tensor of elastic material constants C in the orthotropic
Hooke’s law can be conveniently defined by the compliance tensor S ≡ C−1, which in the frame of
reference aligned with the orthotropic axes can be written in Voigt notation for the plane stress as

S →

⎡⎢⎣
1

E1
− ν21

E2
0

− ν12
E1

1
E2

0
0 0 1

G12

⎤⎥⎦. (26)

where we have five technical in-plane moduli: E1, E2 are Young’s moduli, G12 is the shear modulus and
ν12, ν21 are Poisson’s ratios (ν12/E1 = ν21/E2). It should be noted that two yield criteria are combined
in the model into a composite yield surface and the intersection of different yield surfaces defines
corners that require special attention in a numerical algorithm according to Koiter’s generalization.

4.1. Implementation into Finite Elements under the Plane Stress Condition

In this subsection, according to the convention adopted in many finite element programs the
components of a symmetric second-order tensor are presented as a single column array, whereas
fourth-order tensors are presented as two-dimensional arrays. The matrix representations of the
tensors are shown in terms of the Cartesian components in the frame coinciding with the materialaxes
of orthotropy.

The constitutive relationship in (21) is in the form of the “highly non-linear” differential equation
which can be solved by the modified Euler method (usually the implicit Euler backward algorithm).
Therefore, it is replaced by the incremental equation of the form:

Δσ = C (Δε − γ r̃) ≡ C̃ep Δε, (27)

where C̃ep is called the operator consistent with the integration algorithm of constitutive relations.
We assume that for each tn ∈ [0, T] the strain increment Δε = εn+1 − εn is known, thus the problem is
strain driven, and we want to compute the stress state σn+1 for tn+1. We assume:

σn+1 = σtrl
n+1 − Δγ Crtrl , (28)

where σtrl
n+1 = C εn+1 is called the trial stress state and rtrl is the gradient of f

(
σtrl

n+1, zn

)
.

The calculation of the multiplier Δγ > 0 and the tensor function r̃ (Equation (27)) is significantly
dependent on the realization of σtrl

n+1. A detailed description of the numerical implementation into
the FEM is given in [38] for the elastic-plastic material with the yield criteria of Huber–Mises–Hencky
(isotropy) and Hill (orthotropy). The most important step is to calculate the multiplier using the
quadratic equation of the variable Δγ. This step is significantly different from the case of the Hill
yield criterion.
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Based on the consistency condition (23) in the algorithmic form:

f
(

σT
n+1, zn+1

)
=

1
2

σT
n+1P σn+1 + pT σn+1 − K (zn+1) = 0, (29)

we obtain after the substitution of (28) into (29) a following quadratic equation (indices
n + 1 suppressed):

A Δγ2 + B Δγ + C = 0, (30)

where:

A = 1
2

(
C rtrl

n+1

)T
P C rtrl

n+1 − ∂2K
∂z2

[(
rtrl

n+1

)T
rtrl

n+1

]2
,

B = −
[

1
2 σtrl

n+1P Crtrl
n+1 +

1
2

(
C rtrl

n+1

)T
P σtrl

n+1 + pTC rtrl
n+1 +

∂K
∂z

(
rtrl

n+1

)T
rtrl

n+1

]
,

C = f trl
(

σtrl
n+1, zn

)
.

(31)

The solution of the Equation (30) is particularly simple if the hardening/softening function K (z)
is the second degree polynomial of the form as shown in the Figure 7. The last part of (30) may
become then equal to the yield function of the trial state f trl . It can be seen that the linearization of the
Equation (30) does not lead to significant errors. Determining the plastic multiplier from the linear
part of Equation (30) in the form Δγ = −B/C does not lead to large errors, although it depends on the
assumed strain increment step length.

z

1

uz
uK

pK=1

f 1

1

t

t

G

h Y�
t

K (z )t t

(a)

mz ultz

2

3

1

z

tz

iK

mK

ultK

pK=1

fc1

1c

G

h Y�

c

K (z )c c

(b)

Figure 7. Degradation of material strength parameters curves adopted in the model: (a) tension regime,
(b) compression regime.

A model based on two criteria complicates the procedure algorithm. If only one of the criteria is
exceeded, e.g., the stresses are reduced to the exceeded surface according to the algorithm (28)–(30),
as for a model based on only one criterion. It remains, to establish which criterion is actually exceeded.

A separate case is exceeding both conditions at the same time:

f trl
1 > 0 ∧ f trl

2 > 0.

This is the case where the point is outside the edge joining both surfaces and requires a
different procedure. A linear combination of gradients has been used here (compare Koiter’s law).
The component of the plastic multiplier is calculated separately for the tensile criterion and for the
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compression criterion. Plastic strains and stress state components at time tn+1 can be determined on
the basis of the formulas:

ε
p
n+1 = ε

p
n + Δγ1 r1,trl

n+1 + Δγ2 r2,trl
n+1,

σn+1 = σtrl
n+1 − Δγ1 C r1,trl

n+1 − Δγ2 C r2,trl
n+1,

Cep = C −
C r1,trl

n+1

(
r1,trl

n+1

)T
CT(

r1,trl
n+1

)T
C r1,trl

n+1 + ∂K1/∂z1

∥∥∥r1,trl
n+1

∥∥∥2 −
C r2,trl

n+1

(
r2,trl

n+1

)T
CT(

r2,trl
n+1

)T
C r2,trl

n+1 + ∂K2/∂z2

∥∥∥r2,trl
n+1

∥∥∥2 .

(32)

After similar transformations as before, the following system of quadratic equations is obtained.{
A1(Δγ1)

2 + B1Δγ1 + C1 + D1(Δγ2)
2 + E1Δγ2 + F1Δγ1Δγ2 = 0

A2(Δγ2)
2 + B2Δγ2 + C2 + D2(Δγ1)

2 + E2Δγ1 + F2Δγ1Δγ2 = 0
, (33)

where some of the coefficients are analogous to the problem with one active surface and are marked
with letters Aα, Bα, Cα (α = 1, 2):

Aα =
1
2

(
Crα,trl

n+1

)T
PαCrα,trl

n+1 − K′′
α,n

[(
rα,trl

n+1

)T
rα,trl

n+1

]2
,

Bα = −1
2

σtrl
n+1PαCrα,trl

n+1 −
1
2

(
Crα,trl

n+1

)T
Pασtrl

n+1 − (pα)
TCrα,trl

n+1 − K′
α,n

(
rα,trl

n+1

)T
rα,trl

n+1,

Cα = f trl
α

(
σtrl

n+1, zα
n

)
. (34)

The remaining coefficients depend on the data related to both boundary surfaces and the formulas
can be expressed as follows:

D1 =
1
2

(
C r2,trl

n+1

)T
P1C r2,trl

n+1, D2 =
1
2

(
C r1,trl

n+1

)T
P2C r1,trl

n+1,

E1 = −1
2

σtrl
n+1P1C r2,trl

n+1 −
1
2

(
C r2,trl

n+1

)T
P1σtrl

n+1 − pT
1 C r2,trl

n+1,

E2 = −1
2

σtrl
n+1P2C r1,trl

n+1 −
1
2

(
C r1,trl

n+1

)T
P2σtrl

n+1 − pT
2 C r1,trl

n+1,

F1 =
(

C r1,trl
n+1

)T
P1C r2,trl

n+1, F2 =
(

C r2,trl
n+1

)T
P2C r1,trl

n+1. (35)

According to the above numerical algorithm, the several models with the failure criterion of
the type (18) has been coded in the programming language FORTRAN and next implemented into a
commercial finite element code DIANA [39]. There are standard Newton–Raphson and Riks algorithms
for the solving nonlinear equilibrium equations in the program. Because of this, implementation of
the model into a finite element code is done at the integration point level by means of user-defined
subroutine USRMAT. The subroutine lets the user specify a general nonlinear material behavior
by updating the state variables over the equilibrium step n → n + 1 within a framework of an
incremental–iterative algorithm of finite element method. Both the return-mapping algorithm allowing
the stresses to be returned to the yield surface and a consistent tangent stiffness operator have been
coded. The implementation of the model is presented both at the single element tests (see Figures 8–12)
and at the structural level test (next section).

4.2. Results of the Single-Element Tests

Tests in the plane stress were performed in the homogeneous stress state and with one
isoparametric continuum finite element (four-node, linear interpolation and Gaussian integration).
The displacement-controlled load diagram is shown in Figure 8. The following material data are
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adopted: the moduli of elasticity in two directions of orthotropy: E1 = E2 = 8 [GPa], the shear modulus:
G12 = 3.478 [GPa], the Poissonś coefficient: ν12 = 0.15, that is, as for the isotropic material. The strength
parameters associated with the initial tensile failure surface of the criterion are: Yc1 = 17, Yc2 = 17,
Yt1 = 0.35, Yt2 = 0.25, Ytt = 0.22, k12 = 0.296 [MPa]. The strength parameters associated with
the compressive surface are: Yc1 = 8.5, Yc2 = 8.5, Yt1 = 8.5, Yt2 = 8.5, Ytt = 8.5, k12 = 4.9 [MPa].
The material parameters are typical for unreinforced walls in terms of the values and the proportion
between them. The strength degradation curves are adopted with two internal scalar parameters: zt for
the tensile softening and zc for the softening during compression (Figure 7). The curves are matched to
set the fracture energies along the first orthotropic material axis as Gf 1 = 54.0 [J/m2] during tension
and as Gf c1 = 20.0 [kJ/m2] during compression.
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Figure 8. Single-element test results. Relationship σ − ε: (a) compression along 1(x) axis, (b) tensile
softening in the direction rotated by an angle θ to the first orthotropy axis.

In the test with the homogeneous deformation field, all eight degrees of freedom in the four-node
finite element were fixed to force the desired linear deformation. To compare the behavior of our model
in the tests, the model of the Rankine–Hill criterion was used, which is standard in the DIANA system
and dedicated to the analysis of masonry structures. The following parameters of the Rankine–Hill
model are adopted: Yc1 = 8.5Y, Yc2 = 8.5Y, β = −1.0, γ = 3.0, Yt1 = 0.35Y, Yt2 = 0.25Y, α = 1.0,
where Y = 1 [MPa] and the tensile fracture energies Gf X = 54.0 [J/m2], Gf Y = 18.0 [J/m2] and the
compressive fracture energies Gf cX = 20.0 [kJ/m2] and Gf cY = 15.0 [kJ/m2]. The algorithm of the
own model was also programmed in MATHEMATICA. As a result, it was possible to control the
correctness of the algorithm and its implementation in both computing environments. Results of the
tests are presented in Figures 9–12.
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Own Criterion Own Criterion Criterion R-H
MATHEMATICA FEM DIANA FEM DIANA

ε11 = 3.85 × 10−5 σ11 [MPa]: 0.315090 0.315090 0.315090
σ22 [MPa]: 0.0472634 0.0472634 0.0472634

ε11 = 3.5 × 10−3 σ11 [MPa]: 0.283159 0.283125 0.130216
σ22 [MPa]: −1.05447 −1.05355 −1.65648
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Figure 9. A homogeneous strain field ε11 > 0 and ε22 = 0 single element test results: (a) symbolic
computation by MATHEMATICA [40], (b) finite element method (FEM) analysis in TNO DIANA [39].

Own Criterion Own Criterion Criterion R-H
MATHEMATICA FEM DIANA FEM DIANA

ε11 = −3.2 × 10−3 σ11 [MPa]: −9.79701 −9.79701 −9.78427
σ22 [MPa]: −4.38814 −4.38809 −4.39655

ε11 = −5.0 × 10−2 σ11 [MPa]: −0.967462 −0.967462 −0.92013
σ22 [MPa]: −0.626954 −0.626954 −0.491048
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Figure 10. A homogeneous strain field ε11 < 0 and ε22 = 0 single element test results: (a) symbolic
computation by MATHEMATICA [40], (b) FEM analysis in TNO DIANA [39].
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Own Criterion Own Criterion Criterion R-H
MATHEMATICA FEM DIANA FEM DIANA

εOwn
11 = 5.25 × 10−5 σ11 [MPa] : 0.276645 0.276645 0.344186

εR−H
11 = 4.2 × 10−5 σ22 [MPa] : 0.171389 0.171389 0.241186

ε11 = 3.5 × 10−3 σ11 [MPa] : 0.0592608 0.0592608 0.0144707
σ22 [MPa] : −0.047245 −0.047245 0.0002711
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Figure 11. A strain field ε11 > 0 and ε22 > 0 single element test results: (a) symbolic computation by
MATHEMATICA [40], (b) FEM analysis in TNO DIANA [39].
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11 = −1.5 × 10−3 σ22 [MPa]: −8.49975 −8.49975 −8.49992

ε11 = −5.0 × 10−2 σ11 [MPa]: −0.850000 −0.850000 −0.850075
σ22 [MPa]: −0.850000 −0.850000 −0.849990
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Figure 12. A strain field ε11 < 0 and ε22 < 0 single element test results: (a) symbolic computation by
MATHEMATICA [40], (b) FEM analysis in TNO DIANA [39].

5. Tests at the Structural Level

Two examples of the proposed constitutive model are briefly presented here as the tests at the
structural level. More information on the tests can be found in the works [41,42].
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The first example is restricted to the numerical simulation of the load capacity tests of masonry
structures in the plane stress state that were conducted experimentally in [43]. In laboratory tests,
two similar wall fragments marked as J2G and J3G were tested, Figure 13. The masonry shear walls
with an opening and the thickness of 10 mm were built from 18 courses of masonry cement-sand
units 210 × 52 × 100 [mm]. The top and bottom courses were fully clamped in steel beams. The wall
is shearing with the horizontal force F under displacement control. The top edge can move with a
horizontal displacement (Figure 13). The wall was first vertically loaded through a steel beam to the
value p = 0.3 kN/m2 that remains constant through the subsequent loading steps of the horizontal
force up to the maximum horizontal displacement of Δ = 16 mm. The beam movement was limited
to the horizontal direction, i.e., the lower and upper edges of the wall were kept parallel. Figure 14
shows the forms of cracks obtained in the tests.

p=0.3MPa

F, 	

(a)

1
0
0
0

7
0

7
0

350 210 430

(b)

Figure 13. Walls tested by Raijmakekers and Vermeltfoort [43]: (a) load scheme for shear
walls, (b) geometry and static sheme for numerical analysis.

Cracks appeared diagonally between the opening and the lower and upper corners of the wall.
In addition, tensile cracks appeared on the outer vertical edges of the wall, on both sides of the opening
at the top of the left pillar and at the bottom of the right pillar, and their development ran from
the outside to the center of the wall. The failure mechanism resulting from the wall tests is shown
schematically in the Figure 14. As can be seen, the kinematics of the system focuses on the movement
of four blocks connected by hinges. Due to the development of the material crushing zone, also marked
in the drawing, the mechanism will activate the compression criterion.

J2G

(a)

J3G

(b)

compression failure

(c)

Figure 14. Experimental crack pattern at failure load [43] (a,b). (c) Mechanism of destruction.

For the numerical simulation of the wall failure using the model based on the own criterion,
a 1989 mesh of four-node flat finite elements with an average side length of 23 [mm] was built.
The values of material parameters used in the numerical simulation are shown in the Table 3. The values
given in the table were adopted on the basis of work [44], where the data were adopted based on the
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results of experimental tests [43], and the supplementary parameters result from the homogenization
procedures and were taken from work [16].

Table 3. Masonry shear wall. Material properties of the model.

Elastic Moduli

E11 E22 ν12 G12
[MPa] [MPa] − [MPa]
7520 3960 0.09 1460

Uniaxial, Biaxial and Shear Strengths in the Orthotropic Axes [MPa]

Yα
c1 Yα

c2 Yα
t1 Yα

t2 Yαα k12
Compression α = c 5.25 3.75 2.625 1.825 3.0 0.45

Tension α = t 11.0 7.5 0.35 0.25 0.30 0.30

Fracture energies in J/m2 Gf c1 = 2350 Gf t1 = 43.3

The comparison between numerical and experimental load–displacement diagrams, for wall
J2G and J3G, is given in Figure 15. Apart from own calculation, results obtained by Pelá in [44]
are also shown. Good agreement is found in the elastic range and satisfactory agreement in the
inelastic range, although slightly worse in terms of the load capacity than the results obtained in [44].
The maximum divergence is around 17%. It is possible to better match the results of the experiment,
however it requires additional calculations and time-consuming calibration of strength parameters
and fracture energies. The behavior of the wall at the horizontal displacement Δ = 12 mm is depicted
in Figures 16 and 17 in terms of the maximum and minimum principal plastic strains, respectively.
Both tensile and compressive failure zones are captured by the model. This indicates that the wall
deformability and the general mechanism of its destruction are correctly reflected.

0 2 4 6 161412108

10

20

30

40

50

60

0

[mm]

[kN]

	

F

proposed criterion

PELA 2009

experimental test J2G

experimental test J3G

Figure 15. Horizontal load–horizontal displacement diagrams.

Figure 16 shows the principal plastic strains ε
p
1 obtained from own simulations. They can be

interpreted as the distribution of material failure zones as a result of exceeding the criterion in tension.
These are also zones of development of cracks in the structure. Figure 16a shows the strain results in
the form of maps plotted on a deformed finite element mesh. For a better effect, the deformation has
been scaled 10 times.
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Figure 16. Maps of maximum principal plastic strain at Δ = 12 mm: (a) crack (tensile) zones,
(b) directions of the tensile strain.
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Figure 17. Maps of minimum principal plastic strain at Δ = 12 mm: (a) compressive failure zones,
(b) directions of the compressive strain.

In Figure 16b, the results in the vector form were superimposed on the mesh, wich allows to
compare the length of the strain and the direction. Figure 17a shows the principal plastic deformations
ε

p
3, which in Figure 17b are shown in vector form. Areas with large ε

p
3 strains can be interpreted as

zones of material failure due to possible material crushing.
In the second example, the behavior of the masonry infill wall that is built within a reinforced

concrete frame is numerically simulated (Figure 18). The wall was experimentally tested in [45].
The frame and the wall were first subjected to the vertical loads P2 = 97.8 kN and P3 = 48.9 kN that
remain constant through the subsequent loading steps of the horizontal force P1 up to the failure.

For the numerical analyses 4-noded quadrilaterals, linear plane stress, and continuum elements
are utilized. The subsequent loading steps of the horizontal force up to the maximum horizontal
displacement Δ = 20 mm were analyzed under a displacement control. The material properties of the
model are given in Table 4. The comparison between numerical and experimental load–displacement
diagrams is given in Figure 19. The low initial vertical load combined with the confinement provided
by the reinforced concrete frame yields extremely ductile behavior.

In Figure 20, a crack zone is plotted as the map of the tensile principal plastic strain. A good
agreement is found with respect to the calculated collapse load value. The model gives the response
that is close to the experimental equilibrium path. At the ultimate stage, a well-defined failure
mechanism is formed with a final diagonal shear band going from one corner of the specimen to
the other.
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Table 4. Characteristics of materials for orthotropic model of masonry.

Elastic Moduli

E11, MPa E22, MPa ν12 = ν21 G12

[MPa] [MPa] [-] [MPa]

13,790 13,790 0.16 3480

Characteristics of the Strength Surface in MPa

Yα
c1 Yα

c2 Yα
t1 Yα

t2 Yαα kα
12

Compression (α = c) 20.7 20.7 20.7 20.7 23.00 5.0

Tension (α = c) 40.0 40.0 1.38 1.38 1.2 0.5

Fracture energies in J/m2 Gf c1 = 350 Gf t1 = 16.7

The precise localization of cracks can also be achieved using models based on a smeared crack
approach [46,47], fracture-based models with advanced crack tracking techniques [44] or by using
micro-modeling [16]. To the evaluation of historic buildings for dynamic actions methods based on
ultimate load-bearing capacity are used. Especially in combination with the monitoring based on
operational modal analysis (OMA) techniques, it is becoming a popular practice [48]. An alternative
may also be the relatively young topic of multi-scale modeling [49] or to describe diffuse cracks
a gradient-enhanced damage model based on nonlocal displacements and the extended finite element
method (XFEM) for sharp cracks [50,51]. However, if we compare the numerical result presented here
with the failure mechanisms shown in Figures 16 and 20, we find a good agreement and confirm the
ability of our own model to correctly reflect the behavior of the structure.

6. Conclusions

The mechanical behavior of the continuum material model can be described using constitutive
relations based on the theory of tensor functions. This theory, together with the theorems on the
representation of tensor functions, constitute an effective mathematical tool for the formulation of
constitutive relations of the orthotropic material. The invariance requirements of the isotropy of space
and the orthotropic symmetry of materials are easily considered, so that the orientation of the material
in space does not affect its constitutive relation. It is possible to obtain the analytical transparency as
well as to maintain the required universalism of constitutive equations, see, e.g., [30]. The composite
orthotropic failure criterion of the proposed model is constructed from two square scalar functions that
are dependent on three orthotropic invariants of the plane stress tensor. In general, the criterion needs
to have the twelve material parameters to define the failure surface. However, in practice, only seven
of them are used that are obtained from the appropriate uniaxial, biaxial and shear strength tests.
The criterion is an example of the orthotropic failure criteria, which can be treated as a generalization
of the well-known Hoffman failure criterion that is often used for brittle orthotropic materials in which
compressive strengths and tensile strengths are significantly different.

The numerical tests confirm correctness of the implementation and the ability of the models to
reproduce failure modes in the structural tests in certain situations. They also show that it is possible
to incorporate strain softening into the proposed class of models with a single yield surface. At present,
the implementation of the other models within the framework of multisurface plasticity is being tested.
Although for the multisurface plasticity the intersection of the different yield surfaces defines corners
that require special attention in a numerical algorithm, it has the advantage of engaging different
hardening laws for each surface, which might be more physically realistic due to the distinction of
tension and compression regimes. The choice of a hardening parameter is not crucial because the
available experimental data are scarce.

The commercial version of Diana with the so-called user-supplied subroutine mechanism can
be used as the development environment for computational materials research. We have used the
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user-supplied subroutine USRMAT to implement new material models for continuum spatial and plane
stress elements. The new models can be applied to a variety of structural problems, to single element
tests but also to simulate physical experiments, using different elements types and using standard
features of the program such as advanced solution procedures, for instance indirect displacement
control with full Newton–Raphson. Also, the use of the post-processing capabilities of the program
is an advantage, although the post-processing of the user-defined status variables might be more
user-friendly.
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Abstract: Bowing is a pathology known by the deformation experienced in some external covering
systems in ornamental stones, especially in marble, and thermal action is one of the key factors that
lead to this degradation. Previous studies presented remarkable contributions about the mechanical
behavior of bowing but they were based on classical beam’s theory and improper assumptions might
mislead the evaluation of internal stresses. This study proposes to evaluate internal stresses in
bowing due to thermal loading considering the true deformed shape in continuum media. Finite
displacement concepts are proposed to calculate stress-strain relationship and comparison with linear
elastic theory is also addressed. Internal stresses not predictable in the Euler-Bernoulli beam were
found in parametric analyses. Moreover, the numerical analysis accomplished in this paper indicates
that transient heat flux should induce higher stresses than just considering higher gradients of
temperature in steady flux which could explain the larger decohesion through width in bowing tests.

Keywords: geometric nonlinearity; FEM; thermoelasticity; bowing; transient heat flux

1. Introduction

Nonlinear mechanics theory has once been strictly applied in special problems in engineering,
such as aeronautical and mechanical fields, due to higher computational effort and accuracy required
in those analyses. Other areas have used small strain approach because it could well represent the great
majority of problems adopting simplified hypotheses. However, the advances in technology have
allowed widespread uses of nonlinear models in some areas where small strain was predominant, such
as geotechnical and rock engineering, where assumption of small deformations, in deep underground
excavation or landslides, might not be respected anymore [1–4].

In accordance with this trend it is proposed in this work to evaluate the effect of geometric
nonlinearity and internal stress development in a specific problem in rock mechanics known as bowing.
It can be defined as a pathology that affects some kind of marbles and causes permanent deformation
due to weathering of these ornamental stones when used in external environment. In ventilated façade
the deformation of marble slabs might reach large displacement easily noticed visually (see [5,6]) and
similar decay might be responsible to deteriorate some sculptures in marble.

Thermal load due to sunlight exposure was found as an important factor to contribute to
this degradation and previous studies of bowing in marble were mainly focused to understand
the micromechanical phenomenon trying to simulate the intergranular decohesion due to anisotropic
thermal expansion of calcite grains. Royer-Carfagni [7] presented an initial discussion about induced
shear stresses by thermal actions in a chessboard like mineralogical arrangement. After that,
Weiss et al. [8] improved that analysis using finite element analysis (FEA) to evaluate the stress
distribution in microscale using the contours of calcite grains from a thin section image. One of the first
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attempts to represent the macrophenomenon was proposed by Ferrero et al. [9], improved later by
Ferrero et al. [10]. These works presented models to predict the macromechanical behavior through
linear elastic fracture mechanics considering the Euller–Bernoulli beam theory.

Beam’s theories, such those used in previous studies, presume deformed shape which will fit to
equilibrium equations. For instance, in Euler-Bernoulli beam the orthogonality of planes in relation
to neutral axis in reference and deformed configuration are assumed, i.e., according to this theory
the material is infinitely rigid to distortion by shear stresses. Linear and third order approaches
considering shear strain were proposed by Timoshenko and Reddy [11] to consider this effect in thick
beams; nonetheless, deformation is still imposed by these hypotheses.

Since the thermal gradient in a ventilated façade is relatively small to generate great internal
stresses if were compared to those in thermal machines (turbines, diesel engines, etc.) it is proposed
to evaluate the problem considering a more refined solution. A different approach could be solving
the differential equations of equilibrium respecting the constitutive relationship and compatibility,
which means that the equilibrium in deformed shape will occur according to the displacement field
that minimizes the total potential energy, just as predicted in variational theorems. Advantages
over previous studies are based on the true deformed shape since no restriction to deformation is
previously imposed.

Inexact solution considering linear elasticity could also be reviewed to get more accurate solution;
hence it is proposed to evaluate the problem via FEA considering geometric nonlinearity. Different
ways could be chosen to approach the problem, such as, Cosserat continuum, true (logarithmic) strain
or corotational formulation [12,13]. Herein will be considered the updated Lagrangian formulation
using polar decomposition to overcome the approximations assumed in linear elastic theory. Nonlinear
concepts are applied to evaluate transient thermal loads in marble slabs and a MATLAB code was
implemented to compute the development of internal stresses via finite element method (FEM),
including pre and post processing analyses. The formulation herein proposed presents relevant
contribution not only to the understanding of bowing in marble slabs but also in other fields, for
instance, the influence of nonlinear thermoelasticity in thin membranes [14,15] since the consideration
of thermal stresses at micro and nanoscale, respectively, is important to understand the behavior of
these materials.

2. Review of Bowing

Despite the fact that degradation of ornamental stones has long been studied in cultural heritage
field mainly focused on preservation of monuments, historical heritages and statues [16–20], bowing
was identified just few decades ago and has degraded some specific kinds of ornamental stones in
short periods. Several types of marbles and limestones from different countries were affected by this
degradation process, although it affects the most calcitic marble. White Carrara marble is an example
of ornamental stone affected and the one more frequent in literature about this subject. It comes
from the Alpi-Apuane complex formed by metamorphic processes in limestone deposits and can be
considered a monomineralic rock composed mainly by calcite.

Many efforts were made to understand this complex phenomenon but still remains some open
questions about it. The major research projects about this theme were MARA [21] and TEAM [22]
which produced good insight into this problem. Some hypotheses proposed by Winkler [23] were
verified in laboratory tests, such as the influence of thermal anisotropy and the microstructure, while
other aspects are not yet quite understood.

One of the most known cases was verified at the Finland Hall’s façade in which bowing affected
the external covering system twice. According to Gelk et al. [24], the first time the panels were composed
by white Carrara marble fixed at vertical joints by dowels and the largest ones were 140 cm length
and 3 cm thickness. Just some years later the deflection of bowed panels reached up to 5 cm inward
relative to the façade (concave). In the renewal façade, though, bowing occurred outward (convex).
Similar problems were also verified in other buildings spread in Europe and North America [22].
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Siegesmund et al. [6] verified correlation between height of the buildings and deflection of bowed
slabs, even if it were not possible to apply for general cases.

Thermal anisotropy of calcite grains has been considered as one of the major causes responsible to
contribute to this degradation since that mineral is the primary component of limestones and marbles.
Calcite belongs to the hexagonal crystal family and the thermal expansion coefficients aligned with
these optical axes present antagonist behavior. When a calcite grain is submitted to heating load it
tends to expand in C-axis direction, but contracts in A-axis direction, which generates internal stresses
during heating-cooling cycles.

Gelk et al. [25] verified that cyclic thermal loading could cause some deformation on marble
specimens, nonetheless, it is extremely influenced by humidity. Plastic deformation rate is
larger at the first cycles and decreases. In dry environments the residual deformation stabilizes
after some heating-cooling cycles. On the other hand, in those marble specimens tested in wet
environment, the residual deformation could increase continuously. Similar results were found by
Koch and Siegesmund [26], Rodriguez-Gordillo and Saez-Perez [27], Luque et al. [28] and others.
Bellopede et al. [29] verified that artificial weathering could be used to represent the natural one in
accelerated way. These authors also verified that the decohesion of calcite grains increases from the less
to the more weathered faces, which agrees with deformed shapes of weathered marbles.

Correlation between microstructure and bowing were also found in previous studies. Regular
structures (granoblastic texture) tend to bow more than irregular (xenoblastic) ones. Influence of
locked-in stresses due to metamorphic process, exploitation procedures, external forces applied by
supporting anchorage systems can also be cited as contribution factors.

3. Fundamentals

Typical problems in rock engineering are usually dealt with engineering strain because rocks are
assumed as brittle materials and small deformations are expected previous failure. Engineering strain,
or small strain, assumes some linearities to approach stress-strain relationship, however, cases in which
deformation becomes non infinitesimal are not so uncommon. Limitation previously imposed by small
strain might lead to inexact evaluation when the hypothesis of infinitesimal deformation no longer
occurs, or refined approach is required.

Even considering the small gradient of temperature between internal and external faces in
ventilated façades studies have shown the importance of these induced stresses in bowing. For
this reason, it is proposed to study the problem using nonlinear concepts, which take into account
the continuous deformation of a body and due to corrections at each step even large deformations can
be assessed.

3.1. Finite Displacement Concepts

In continuum mechanics the deformation gradient (F) is used to express the current configuration
in relation to a reference state. There are several ways to represent this tensor and a useful one
to understand it could be in terms of principal stretches and principal directions as presented in
Equation (1), in which λ represents the stretch in each principal direction. Due to polar decomposition
it can be decomposed as the product of a pure rotational (R) and a pure stretch tensor (U or V). Right
polar decomposition considers that stretch of fibers occurs first and then rotation tensor is applied; in
the left polar decomposition the order of deformation is changed.

F =
3∑

i=1

λiei,x ⊗ ei,X (1)

Green–Lagrange strain is defined as the quadratic changing of a fiber prior to its rotation and can
be expressed in terms of deformation gradient as given by Equation (2). Since the stretches are rotated,
it can be used in problems of finite deformation without the approximation assumed in small strain
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theory [30]. Substituting F by the product of right polar decomposition in Equation (2) one can get to
Equation (3) which proves that rotation does not affect this strain measure.

2 ε = FTF− I (2)

2 ε = (RU)TRU− I = UT
(
RTR

)
U− I = U2 − I (3)

The energetic conjugate of Green strain is the 2nd Piola–Kirchhoff stress tensor. It does not
have direct physical interpretation such as Cauchy stresses because it considers stresses acting on
the reference configuration rotated to the current state, but it can be related with real stress as given in
Equation (4) [30]:

S = |F| F−1 σ F−T (4)

Since these stress-strain measures are energetic conjugate pairs, the product of these tensors
produces a scalar quantity, energy per volume, such as the integration using Cauchy stress and real
strain tensors, as indicated by Equation (5). It must be pointed out that the left-hand side is integrated
over the reference configuration, i.e., known shape, and the other is related with the deformed shape.∫

Ω0

S δεdΩ0 =

∫
Ω
σ δεdΩ (5)

3.2. Constitutive Model

As described in the previous section, the correlation between deformation due to weathering
and the influence of some factors which induce bowing are known, but the real mechanisms are not
yet fully understood. Internal stresses developed by thermal gradient have shown as an important
factor acting on bowing, thus, it will be the object of this study. Since the purpose of this work remains
on the evaluation of induced strains it is proposed a 2-D solid formulation in plane strain state with
homogeneous characteristics.

According to theory of elasticity no stress should be induced in a continuous homogeneous
isotropic material subject to uniform temperature increasing. Nonetheless, gradient of temperature
occurring in the inner part of a body would induce stress due to differential strain [31–33]. In such
analysis the total strain could be decomposed in thermal and mechanical strain, in which the last one
would be responsible for induce internal stresses. Then, the total strain is given by:

ε = εθ + εmec (6)

Assuming St. Venant-Kirchhoff nonlinear material, internal stresses in bowing could be calculated
via the constitutive stress-strain relationship written in Equation (7):

S = C εmec = C (ε− εθ) (7)

where

C = A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1− ν′ ν 0
ν′ 1− ν′ 0
0 0 1

2 − ν′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, A =
E′

(1− 2ν)(1 + ν)
, E′ = E

1− ν2 and ν′ = ν

1− ν

For sake of simplicity, one considers a coarse discretization of a slab laid on the ground subject to
sunlight exposure on the external face, as illustrated in Figure 1. In this example the deformation will
be limited only to y direction and uniform increase of temperature inside each element is assumed.
According to classical elastic theory, for a generic material with positive thermal expansion coefficient,
the right-hand side should present larger expansion than the other. However, due to compatibility,
the displacements of pairs 3A–3B and 4A–4B must coincide, therefore, shear stresses on this interface
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should induce compressive stress at the upper element and tensile stresses at the lower. It is clear that
the shear stress along the interface must not be constant once it should be zero at the boundary (nodes
3 and 4) and at the symmetry plane. The same concept can be applied to a more refined mesh and to
other directions.

Figure 1. Idealization of the deformation due to thermal loading in continuum media.

In continuum media the stress-strain relationship could be solved for a displacement field which
satisfies the equilibrium, compatibility and constitutive relationship by the principle of virtual work.
Considering that only mechanical strain should induce stresses in the body, the variation of total
potential energy can be described as presented in Equation (8), and the equivalent internal and external
works as follow in Equations (9) and (10), respectively.

δΠ =

∫
Ω0

δεv
TC (ε− εθ)dΩ0 −

∫
Ω0

δuT
v fBdΩ0 −

∫
Γ0

δuT
v fSdΓ0 (8)

δWint =

∫
Ω0

δεv
TC εdΩ0 (9)

δWext =

∫
Ω0

δEv
TC (εresidual)dΩ0 +

∫
Ω0

δuT
v fBdΩ0 +

∫
Γ0

δuT
v fSdΓ0 (10)

4. Numerical Implementation

Using the discretization via FEM, the displacement field in a continuum media is described by
interpolation of nodal displacement according to specifics shape functions:

u =
∑

Ni(ξ, η) ũ (11)

Deformation gradient and the Green strain tensor are given by [34]:

FIJ = δiI +
∂ui
∂XI

(12)
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εIJ = 0.5
(
δiI
∂ui
∂XJ

+ δiJ
∂ui
∂XI

+
∂ui
∂XI

∂ui
∂XJ

)
(13)

where δiI and δiJ are Kronecker delta
Finite strain equations are solved similarly as in small strain problems but considering the reference

configuration instead. Through Newton–Raphson procedure, the variation of internal work is calculated
by increments of displacements that minimize the variation of total energy, then, the new value is
updated from previous step:

δδWt+Δt
int = δWt

ext − δWt
int (14)

δWt+Δt
int = δWt

int + δδW
t+Δt
int (15)

4.1. Discretization of Equivalent Internal Work

Variation of equivalent internal work can be described as:

δWint =

∫
Ω0

SIJδεIJdΩ0 (16)

where the variation of Green strain is given by:

δεIJ = 0.5
(
∂δui
∂XI

FiJ +
∂δui
∂XJ

FiI

)
(17)

Increments of internal work is given by linearization of Equation (16) through directional
derivatives in displacement direction:

δδWi =

∫
δεIJδSIJdΩ0 +

∫
δδεIJSIJdΩ0 (18)

At the first step, initial guess for increment of nodal displacements is set as zero, therefore, nonlinear
terms (KII and KIII) would not change tangent stiffness matrix and both (linear and nonlinear) could be
calculated at the same way (KI). Difference between linear and nonlinear approaches appears at the next
incremental steps of Newton–Raphson procedure. According to de Borst et al. [35], the geometric term
(KIII) is important because it considers numerical instability due to geometry changes.

[KI + KII + KIII ]̃u
t+Δt = δWt

ext,i − δWt
int,i (19)

4.2. Discretization of Equivalent External Work

Since the variation of equivalent external work is function of temperature it was necessary to
calculate the temperature field through Fourier’s law. It was considered heat flow in 1-D direction
with fixed boundary conditions (Equation (20)):

∂θ
∂t

=
∂2θ

∂x2 (20)

Dimensionless functions were assumed as solution to previous equation, then, the dimensionless
Fourier’s law could be written as presented in Equation (22):

Θ =
θ(x, t)
θ0

, χ =
x

X0
and T =

α t
X02 (21)

∂Θ
∂T

=
∂2Θ
∂χ2 (22)
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Using the concept of separation of variables and assuming that each function will individually
satisfy the boundary condition, it is possible to rewrite a multivariable function as a sum of the product
of these functions. Then, the dimensionless temperature function could be rewritten as:

Θ(T,χ) =
∑

ciTi(T)χi(χ) (23)

Substituting Equation (23) into Equation (22) one gets that each individual equation is related as:

.
Tiχi = Ti

..
χi (24)

Previous equality could be represented by a constant value as given in Equation (25) just
rearranging Equation (24), since dimensionless time function is not related with dimensionless position
function and vice-versa: .

Ti
Ti

=

..
χi
χi

= −M2
i (25)

Equations (26) and (27) can be assumed as solutions that satisfy Equation (25):

Ti = Cie−M2
i T (26)

χi = Ai cos(Miχ) + Bi sin(Miχ) (27)

Substituting Equations (26) and (27) into Equation (23) and applying the boundary restraint
conditions for a nontrivial solution one can find the first unknown coefficient:

Θ(T,χ) =
∑

e−M2
i T[A′i cos(Miχ) + B′i sin(Miχ)] (28)

Θ(T = 0,χ = 0) = 0→ A′i = 0 (29)

sin(Mi·1) = 0→Mi = n·π (30)

The other coefficient can be calculated considering the boundary conditions at initial configuration:

Θ(T = 0,χ) =
∑

B′i sin(Miχ) (31)

∫ 1

0
Θ(T = 0,χ) sin

(
Mjχ

)
dχ = B′i

∫ 1

0
sin(Miχ) sin

(
M jχ

)
dχ = B′i X0

2
(32)

B′i = 2
X0

∫ 1

0
Θ(T = 0,χ) sin

(
M jχ

)
dχ (33)

Accordingly, the temperature could be calculated at each integration point just recalling Equation
(21). Considering known the temperature distribution at each time t, the deformation gradient due to
thermal expansion could be calculated as:

Fθ = α·Δθ·I + I (34)

and the equivalent external work can be represented as function only of the thermal actions since
isostatic condition is considered in this study:

δWe =

∫
δεIJS(θ)IJdΩ0 (35)
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5. Validation and Discussion

In the first part of this section it is presented the verification of numerical formulation with
analytical solutions to verify the accuracy, then comparison with results in literature are proposed.
The validation tests were accomplished in two steps, one to evaluate the convergence of the nonlinear
model and other to verify the numerical formulation of thermal loading. The flowchart used to code
the MATLAB program is presented in Appendix A.

The nonlinear model was verified considering mechanical loads applied on a beam. Since finite
displacements are assumed, the external loads used in this example are not constant, as indicated in
Equation (8), because they will vary according to geometry changes. A way to solve them could be
expressing the follower loads in terms of parametric variables which will be updated according to
the current geometry, as indicated in Equation (36). The linearization of these surface forces must also
be considered when the tangent stiffness matrix is calculated, as explained by Bonet and Wood [36].

An example with a built-in beam with bending moment applied at the end is now considered.
Since the bending moment is constant along the beam, rotated Cauchy stresses (recall Equation (4))
must remain invariant in perpendicular sections along this beam, as indicated in Figure 2.

δWext =

∫
Nap

(
∂x
∂ξ
× e3

)
dξ (36)

Figure 2. Normal stress induced by bending moment applied at the end of a built-in beam.

Henceforth the numerical formulation of thermal stresses is considered. Thermal stresses in
unrestrained slab could be calculated adding the thermal component to the Airy stress function [37,38]
which, in rectangular slab in plane strain analysis, could be given by Equation (37). Since the slab is
free to expand no stress is expected at the borders; hence the first term of Equation (37) corresponds to
suppression of internal stresses generated due to thermal expansion (second term). The third term is
related with equilibrium since asymmetric thermal distribution could result in eccentric load.

σ = − E
1− ναT +

1
2b

∫ b

−b

E
1− ναTdx +

3x
2b3

∫ b

−b

E
1− ναTxdx (37)

In these analyses the transient heat flux was considered with fixed boundaries conditions.
The temperature on the external face was assumed as 50 ◦C along the whole surface, for the internal
side it was assumed 20 ◦C. Thermal and mechanical properties of marble were assumed the same used
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in Ferrero et al., [9], as indicated in Figure 3. Transient heat flow was calculated to four elapsed times
(5 s, 10 s, 25 s and 50 s) and good correlation was achieved between linear and analytical solution, as
presented in Figure 4.

Figure 3. Model used in validation test.

Figure 4. Comparison between analytical and numerical (linear) solution for several elapsed times. (t
= 5 s, t = 10 s, t = 25 s, t = 50 s).

Pescara’s Building
Ferrero et al. [9] monitored the temperature of the internal and external face of a ventilated façade

at the Pescara’s building during six days in 2007. An automatic system recorded the temperatures at
each 15 min. The highest gradient of temperature was 4.7 ◦C which induced about 0.04 MPa in tensile
stresses according to that model. Similar analyses were performed using the formulation presented in
this work for several elapsed times to evaluate the differences between that model and the numerical
approach herein proposed.

In Figures 5–7 are presented the thermal stresses for each analysis. Normal stress distributions
were considered at the symmetric planes and the shear stresses were represented in two orthogonal
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planes. The results show that internal stress distribution is different from the one usually found in
classical beam theories, in which the traction and compression stresses belong to opposite sides of
the neutral axis. Nevertheless, considering the theoretical formulation presented in the previous
section it would be expected to find such a distribution because the fibers on the external face, where
the thermal expansion is greater, would try to expand but they will be constrained by the adjacent
fibers in which the thermal deformations are smaller. Then, the external fibers should be under
compression and those on the left side would be under tensile stresses. Symmetric behavior is expected
on the left-hand side.

Figure 5. Comparison between linear and nonlinear numerical analysis of δyy: (a) Representation of
a generic normal stress distribution (b) linear analysis (c) nonlinear analysis.
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Figure 6. Comparison between linear and nonlinear numerical analysis of 2δxy: (a) representation of
a generic shear stress distribution, (b,d): linear analysis, (c,e): nonlinear analysis.

205



Materials 2020, 13, 4367

Figure 7. Comparison between linear and nonlinear numerical analysis of δxx: (a) representation of
a generic normal stress distribution (b) linear analysis (c) nonlinear analysis.

It must be noted that internal stresses are greater at the initial instant of the transient regime
and they reduce until it becomes constant in stationary condition. The results are consistent with
those expected if the shape of the internal temperature curve in transient regime is considered. At
the beginning only those fibers close to the right-hand side are deformed by thermal expansion, thus,
greater amount of stress will be induced to counterpoise these unbalanced loads. Nonetheless, when
the transient gradient approaches to stationary condition these unbalanced loads reduce. The greater
stresses developed in transient analysis at the beginning could explain why the intergranular decohesion
in thermal treated marble is higher close to the exposed surface, as identified by Bellopede et al. [29].
This phenomenon can also be related with the increase of bowing with the height of buildings related
by Siegesmund et al. [6], since the thermal exchanges could increase according to elevation due to
wind action.
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Shear stresses and normal stresses in x direction were concentrated at the ends of the slab. Similar
results were found by Carpinteri and Paggi [39] in nonhomogeneous beams using the classical beam’s
theory, however, in that formulation shear stresses tend to infinity when they approach the boundaries.
In the numerical formulation proposed in this study the shear stresses at the boundaries in simply
supported slabs tend to zero.

The shear stress distribution is consistent with the theory of long thin beams, in which most
of its length follow a strain profile almost translation-symmetric. At the slab edges, in which
the translation-symmetry cited does not hold, there are other bidimensional deformation modes,
which dissipates the energy induced by thermal strains in a more efficient way. These edge
deformation modes explain why the stress calculated by the finite element method does not fit
exactly to the analytical solution.

In transient condition the difference between stress distribution in linear and nonlinear analysis is
minimal, just as expected due to the magnitude of the deformation. However, for stationary condition,
the internal stresses completely vanish over the entire body in linear analysis just as expected by
the analytical solution if one recalls Equation (36) considering linear distribution of temperature though
width. Although, in nonlinear analysis, residual stresses still remain, as indicated in Figure 8.

Figure 8. Evaluation of normal stress distribution (σyy) in steady heat flux (t → ∞): (a) linear
(b) nonlinear.

6. Conclusions

This paper presents a numerical formulation to evaluate stresses in nonlinear thermoelastic
materials. According to our model transient thermal analysis has proven to induce higher levels of
stress at the beginning, i.e., at the early stages of the transient heat flux higher stresses were developed to
balance the locally differential strains. These results are important to understand bowing phenomenon
because transient heat flux continuously occurs in ventilated façades due to the variation of insolation
and thermal exchanges between marble slabs and external environment (due to rain, wind, etc.).
Therefore, even the small gradients of temperature through width can be harmful in long-term and it
help to explain why the intergranular decohesion is more intense at the exposed face. The nonlinear
analysis also identified remaining stresses in the slab even in stationary thermal flow. Moreover, shear
stresses appear at the ends of the body, hence, for short beams or greater loads, more sophisticated
models should be considered.
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List of Symbols

A constant
b slab width
B constant
C constitutive elastic matrix
ei,x orthonormal basis in the deformed configuration
ei,X orthonormal basis in the reference configuration
E Young modulus
F deformation gradient
I identity tensor
K stiffness matrix
M constant
N shape function relative to node i
p pressure load function
R rotation tensor
S second Piola-Kirchhoff stress tensor
t current time
T dimensionless time function
U right Cauchy-Green tensor
V left Cauchy-Green tensor
u displacement vector
ũ nodal displacement
Wext external virtual work
Wint internal virtual work
x coordinates in current configuration
X Coordinates in reference configuration
α thermal expansion coefficient
δ Kronecker delta
δ directional derivative
ε engineering strain tensor
ε Green strain tensor
εθ strain tensor due to thermal action
εmec strain tensor due to mechanical action
Π total potential energy
θ temperature function
Θ dimensionless temperature function
λ eigenvalues of the tensor U
ν Poisson ratio
σ Cauchy stress tensor
τ shear stress
Ω current configuration
Ω0 reference configuration
(·)θ relative to the thermal actions
χ dimensionless position function

Appendix A

Workflow
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Figure A1. Procedure used to evaluate thermal stresses in marble slabs.
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Abstract: One possibility in order to manufacture products with very few restrictions in design
freedom is additive manufacturing. For advanced acoustic design measures like Acoustic Black
Holes (ABH), the layer-wise material deposition allows the continuous alignment of the mechanical
impedance by different filling patterns and degrees of filling. In order to explore the full design
potential, mechanical models are indispensable. In dependency on process parameters, the resulting
homogenized material parameters vary. In previous investigations, especially for ABH structures,
a dependency of the material parameters on the structure’s thickness can be observed. In this
contribution, beams of different thicknesses are investigated experimentally and numerically in order
to identify the material parameters in dependency on the frequency and the thickness. The focused
material is polyactic acid (PLA). A parameter fitting is conducted by use of a 3D finite element model
and it’s reduced version in a Krylov subspace. The results yield homogenized material parameters
for the PLA stack as a function of frequency and thickness. An increasing Young’s modulus with
increasing frequency and increasing thickness is observed. This observed effect has considerable
influence and has not been considered so far. With the received parameters, more reliable results can
be obtained.

Keywords: acoustic black holes; acoustic-oriented design; additive manufacturing; finite element
method; vibroacoustics; material parameter identification; model order reduction

1. Introduction

The development of new measures to reduce noise in our environment is an im-
portant contribution to comfort and from a health point of view. New advanced design
measures are needed to achieve these objectives. This is accompanies the challenge of using
unconventional manufacturing processes and providing mechanical models for reliable
simulations. This paper aims to contribute to this by new insights on material parameters.

The possibilities of integrating acoustic measures and other properties are often limited
due to the given manufacturing constraints of conventional processes. With the help of
additive manufacturing (AM), completely new possibilities open up. In this contribution,
the additive manufacturing process material extrusion (MEX) is focused upon. If AM is used
to produce structures with integrated acoustic measures or functions, design restrictions are
significantly reduced. Due to the layer-wise build-up of the parts, AM allows almost every
design, even a fully integrated measure. Furthermore, multiple materials can be applied
directly during the manufacturing process, e.g., as additional damping material. However,
mechanical models or assumptions based on experience with standard materials such as
steel and aluminium are no longer sufficient. The step-wise build-up leads to anisotropies
and inhomogeneities, which have to be considered depending on the individual task.

In literature, contributions exists in which the use of AM for generating structures
that influence airborne and structure-borne sound is described. For example, 3D-printed

Materials 2021, 14, 168. https://doi.org/10.3390/ma14010168 https://www.mdpi.com/journal/materials

213



Materials 2021, 14, 168

tailored absorbers. Setaki et al. [1] design absorber duct lengths in such a way that the
sound travelling through them receives a phase shift of 180◦ due to the different lengths
and interferes destructively. Ring and Langer [2] link the geometric parameters of lat-
tice structures with the resulting BIOT parameters. This allows the microstructure to be
designed to achieve a specific absorber behavior. For the measures influencing structure-
borne sound, new possibilities arise, e.g., for the method of Acoustic Black Holes (ABH).
Here the production process is one of the biggest challenges [3]. The required thickness
reduction of the structure is usually achieved with the help of milling cutters afterwards,
which generates a high effort and high costs [3]. In addition, there are many restrictions
regarding the placement of the ABHs and their design. Since this method reduces weight
and at the same time improves the acoustic properties, it may be possible to overcome
the major conflict of objectives between lightweight design and acoustics. The ABH are
therefore the focus of this study as an exemplary application.

The ABH effect, first described in 1988 by Mironov [4], can be utilized in thin structures
bearing structure-borne sound to focus the radiation critical bending waves in an area
where they can be damped very efficiently. For this purpose, the thickness of the plate-like
structures must be reduced according to a polynomial shape function. As a result of the
smooth adaptation of the mechanical impedance, the amplitudes of the bending waves
increase while the propagation speed decreases—an optimal area for an application of
passive damping measures is formed. In 2000, Krylov published a combination of shaped
area with a local damping measure and named it an Acoustic Black Hole [5].

A review of the literature since then reveals that most of the studies deal with
homogeneous metal structures. Many investigations were carried out experimentally
on generic plate structures [6–8]. There are also few studies on industrial examples,
e.g., turbine blades [9] and an engine cover [10]. In addition to measurements, several nu-
merical investigations were carried out [11–14]. However, composites and sandwich struc-
tures were also investigated with their higher design freedom. Bowyer et al. inserted an
ABH exclusively into the glass fiber cover layers, in 2012 [15]. In 2017, Dorn et al. extended this
approach and integrated an ABH into the sandwich core [16]. Blech et. al. showed how this
can be used in an aircraft structure [17]. Further studies on carbon and glass fiber compos-
ites can be found in [18,19]. In their papers, Zhao and Prasad [20] as well as Pelat et al. [21]
provide a very good overview of the current state of ABHs and their applications.

The application of AM technologies with the highest design freedom compared to
the above mentioned manufacturing techniques for design and manufacturing ABHs has
successfully been demonstrated by Rothe et al. [22,23]. Even complex tube structures
which act as ABHs for fluids can be produced [24]. In Figure 1 an example of an additive
manufactured ABH beam with and without additional damping material is shown. The
effect of the additional damping material can even be enhanced if it is designed as a
constraint layer damping [25]. Such constraining layers can also be designed very efficiently
by AM, e.g., by fully integrated ABHs.

Figure 1. Tip of Acoustic Black Holes (ABH) beam with (right) and without (left) additional damping material.

Chong et al. [26] give an overview of the possibilities of how ABHs can be integrated
into additive manufactured structures. They additionally show experiments and simu-
lations on additively manufactured beams, but always assuming a constant modulus of
elasticity over the frequency range. In [23], a need for frequency and thickness-dependent
material parameters arise. Especially when modeling ABHs, regions of different thick-
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nessess of the base material are obtained (as shown in Figure 1 on the left). Studies in [27]
assume that a varying Young’s modulus and loss factor results depending on the thick-
ness of the sample on which the homogenization is performed. A suitable and efficient
procedure is required to identify these homogenized linear elastic parameters, which are
difficult to determine due to anisotropy and strong dependencies on geometry and process
parameters [27]. For this purpose, a methodological procedure is proposed in this article
and demonstrated on additively manufactured beam structures. To the authors’ knowledge,
the determination and consideration of the dependencies of the material parameters on
the thickness have not been considered so far and offer a new approach for more reliable
vibroacoustic simulations of additively manufactured structures.

In order to investigate the influence of the printed thickness, beams of different
thicknesses are manufactured. Subsequently, these are characterized vibroacoustically
by laser-scanning vibrometry and compared with numerical results. For efficiency rea-
sons, the numerical models are transformed into reduced models and used for parameter
study. The aim is to determine the homogenized parameters as a function of frequency
and thickness.

2. Additive Manufacturing

AM provides a vast potential for the realization of graded properties, for instance,
regarding bending stiffness and, thus, for the incorporation of passive damping mea-
sures such as ABHs due to the provision of enhanced design freedom compared to other
manufacturing technologies, e.g., milling or casting. This freedom in design allows the
manufacturing of complex shapes or a combination of multiple materials in order to achieve
the required mechanical properties. One of the most commonly used AM technologies
offering processing multiple materials in one part, without an additional joining process is
needed, is MEX also referred to as fused deposition modeling [28,29]. Besides prototyping,
MEX is also established in manufacturing of functional parts and end-use products [30].
This AM technology uses thermoplastic polymers as feedstock material. The material
is plasticized and directed in an extrusion unit in order to build up the part’s geometry
in lines or layers. A great variety of thermoplastic polymers and also thermoplastic elas-
tomers and fiber-reinforced materials are available [28]. Because of its ease of processing
and good mechanical properties, especially the resulting stiffness, polylactic acid (PLA) is
one of the most frequently used materials for material extrusion and, thus, focused on in
this contribution.

With AM, the creation of complex shapes is not limited to external geometries in
order to achieve locally variable bending stiffness. The internal structure of a part can
also be influenced, for instance, by using lattice structures with variable wall thickness,
different raster angle orientations or integrated damping structures by using a combination
of a stiff and a flexible material [28,31,32]. As the mechanical properties of additively man-
ufactured parts arise during the manufacturing process, they are significantly determined
by the geometry and the selected process parameters in comparison to conventional manu-
facturing processes [29]. In addition to process parameters, the anisotropy in mechanical
properties of additively manufactured parts is also influenced by machine-specific factors
such as the heated build platform or the leveling (distance between the nozzle and the build
platform) [27,33]. On the one hand, this process- and machine-related anisotropy enhances
the design freedom for a local adjustment of the mechanical properties. On the other hand,
the modeling of additively manufactured structures is more challenging regarding the
identification and quantification of the influencing factors that have to be considered.

In order to increase the complexity of the considered ABH systems step by step,
simple beam structures made of one material without ABH and additional damping
material are manufactured first (represented by the specimen at the front in Figure 2).
Afterwards, they are vibroacoustically characterized and their homogenized material
parameters are determined.
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Figure 2. Overview of beam specimens with different system complexity: simple beam structure made of PLA (front),
beam structure with an ABH made of PLA (center), and beam structure with an ABH made of PLA with an additional
damping treatment made of an thermoplastic polyurethane (back).

In Rothe et al. [23,27] it is shown that even at this step simple homogenization models
are no longer sufficient. In addition to the frequency dependence of the material parameters,
a dependency on the thickness respectively the number of layers can be observed.

In Figure 2 are also shown further exemplary complexity steps for the application
of ABH. In the center the consideration of an ABH shape to weaken the cross-section is
presented. The next complexity step (back) would be the consideration of a second material
to locally increase the damping (here in white: NinjaFlex® (thermoplastic polyurethane,
TPU) from NinjaTek).

A valid dynamic simulation of such additively manufactured structures is only pos-
sible with material descriptions that consider both frequency and thickness dependence.
This is the focus of the investigations in this paper, where a procedure for the identifica-
tion of material parameters is presented. It is the necessary step towards the next level
of complexity.

The chosen material for manufacturing the test specimens used for parameter identifi-
cation are PLA from DAS FILAMENT (Emskirchen, Germany). The used process parameter
set is shown in Table 1. The flow rate was set to 105 % in order to increase stiffness due to a
minimized internal void fraction. The other parameters have been selected according to the
recommendations of the material manufacturer. For the manufacturing, a X400 by German
RepRap GmbH (Feldkirchen, Germany) with a dual extruder system and a nozzle diameter
of 0.4 mm is used. All specimens were manufactured at the same ambient temperature
(23 ± 1 ◦C) and relative humidity (45–50 %) and the feedstock materials are dried before
processing in order to ensure similar manufacturing conditions.

Table 1. Utilized process parameters for manufacturing of the test specimens.

Material PLA

Temperature Build Platform 60 ◦C
Temperature Nozzle 215 ◦C
Layer Thickness 0.0002 m
Raster Angle ±45◦
Perimeter Shells 2
Flow Rate 105%
Infill Percentage 100%
Extrusion Width 0.0004 m
Extrusion Speed 0.05 m/s
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3. Experimental Investigation

The experimental investigations on beam structures provide the necessary data basis
for the subsequent numerical studies. In the following, it is explained which samples are to
be studied and which experimental setup is to be chosen. Finally, the results are discussed.

3.1. Setup and Specimens

Three different types of beam samples of the same length are produced under the
conditions described in Section 2 with three different thicknesses but a constant thickness
over the length. These are used for fitting the material parameters and for studying the
influence of thickness. The samples are exemplary shown in Figure 3.

Figure 3. Overview of investigated specimen of three different thicknesses (6 mm, 3 mm, 1 mm).

Each beam type is manufactured twice to get an idea of the repetitive uncertainties in
vibroacoustic behavior that may arise from manufacturing imperfections. This results in
six samples with the properties summarized in Table 2.

Table 2. Known geometrical and material data of specimens.

Specimen Length (m) Width (m) Thickness (m) Mass (kg) Effective Density (kg/m3)

Beam_6a 0.200 0.020 0.0063 0.03081 1222.6
Beam_6b 0.200 0.020 0.0062 0.03067 1236.7
Beam_3a 0.200 0.020 0.0032 0.01613 1260.2
Beam_3b 0.200 0.020 0.0033 0.01643 1244.7
Beam_1a 0.200 0.020 0.0012 0.00588 1225.0
Beam_1b 0.200 0.020 0.0012 0.00579 1206.3

In order to minimize external influences on the vibration behavior of the beams,
they are characterized contactless by means of a laser scanning vibrometer. For this purpose,
the samples are mounted eccentrically in the longitudinal direction (off-set of 0.02 m from
longitudinal center) on an electrodynamic shaker in order to excite as many bending
modes as possible in the considered frequency range. The surface velocities are measured.
Simultaneously, the excitation force is recorded with a force sensor mounted directly at the
force transmission point between shaker and beam. The setup is illustrated in Figure 4.

Due to the dark and highly light-absorbing PLA, the surfaces of the beams are sprayed
with a reflection spray so that measurement with the laser vibrometer is possible. This
can be seen as a grey top coat on the samples in Figures 3 and 4. The examined frequency
range is defined between 0 and 6000 Hz, so that several bending eigenfrequencies can also
be identified for the thicker beam samples. A measuring point grid of 4× 39 (=156) points
is selected for all measurements.
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Figure 4. Experimental setup with 6 mm beam mounted on electrodynamic shaker.

Test measurements show that PLA already has high inherent damping, compared to
steel and aluminum. The broadband excitation and measurement of the entire frequency
range lead to noise in the higher frequency range and overloads at lower frequencies.
For this reason, the frequency range is subdivided into smaller frequency sections of
1000 Hz. Each of these frequency ranges is excited and measured separately. The resulting
frequency response of the beam over the entire frequency range is subsequently combined.
The individual frequency sections and the signal types used are summarized in Table 3.

Table 3. Overview of frequency boundaries and signal type for separately excited and investigated
frequency ranges.

Frequency Range (Hz) Signal Type

0–1000 Pseudo Random
1000–2000 Sweep
2000–3000 Sweep
3000–4000 Sweep
4000–6000 Sweep

3.2. Material Parameter Identification for Static Case

In order to determine the flexural modulus of the additively manufactured samples
test specimens for the bending test are manufactured according to DIN EN ISO 178 by
using the process parameters shown in Table 1. The dimensions of the specimens are set to
80 × 10 × 4 mm3 and the span is selected to be 64 mm. In Figure 5 the test setup with the
beam specimen between the supports and the compression fin is schematically illustrated.

The specimens are tested with a speed of 2 mm/min. The results of the bending
test are shown in Table 4. In addition to the values determined for the flexural modulus,
the standard deviation is specified. It is to be expected that the flexural modulus will
change with increasing frequency. The determined static value of the flexural modulus
provides an orientation value between the 3 mm and 6 mm beam at 0 Hz for the fitting of
the frequency-dependent modules using numerical simulations.
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Figure 5. Schematic setup of the three-point bending test with dimensions (in mm).

Table 4. Flexural modulus (static) of PLA according to DIN EN ISO 178.

Material PLA

Flexural modulus 3196.75 × 106 N/m2

Standard deviation 68.98 × 106 N/m2

3.3. Results

In this section the experimental results are presented and compared. To compare a
quantity independent of the force excitation and equivalent to an energy quantity, the mean
squared admittance h2 is calculated according to Equation (1).

h2( f ) = 10 log10

⎛⎜⎝Np

∑
i=1

( |vi( f )|
|Fi( f )|

)2

Np

⎞⎟⎠dB (1)

In Equation (1), vi are the velocities of each surface point i and Fi the exciting force.
These parameters are frequency-dependent, which also results in a h2 value dependent on
frequency f . Np is the number of surface points.

In Figures 6–8, the experimentally determined frequency responses functions h2( f )
of the different beam types are shown. In the diagrams, a comparison of the frequency
response of two beams with similar thickness is shown, respectively. In the lower frequency
range up to approximately 500 Hz, deviations between the curves can hardly be detected.
In the higher frequencies, some deviations in the position of the peaks and the height
are visible. Reasons are assumed in the manufacturing process and in the experimental
data collection. Again, this illustrates the sensitivity of the frequency response of addi-
tively manufactured structures to process parameters and points out the necessity of a
suitable procedure for material parameter identification. However, the differences of the
curves seem not as significant as completely different homogenized material parameters
are expected.
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Figure 6. Experimental results of 6 mm beam measurements (Beam_6a, Beam_6b).
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Figure 7. Experimental results of 3 mm beam measurements (Beam_3a, Beam_3b).
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Figure 8. Experimental results of 1 mm beam measurements (Beam_1a, Beam_1b).
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4. Parameter Study by Numerical Investigation

A mechanical model is built and numerically solved in Section 4.1 in order to predict
the dynamic behavior of the beams. For each beam, a parameter study is conducted in
Section 4.2 to yield the best fitting parameters in the frame of linear elasticity and structural
damping for the different thicknesses.

4.1. Mechanical Model and Numerical Solution

The major focus of this work is laid on a potential layer-effect within additively
manufactured structures with varied thickness t as required by typical ABHs. Layer-effect
means that elastic material parameters (here: Young’s modulus and loss factor) may
change in dependency on the number of printed layers within the manufacturing process.
The studies are explicitly limited to the base material of such structures which is PLA in this
case. If the PLA material is thicker, different heat inputs are expected which may influence
the modeling parameters to be chosen. With that background in mind, the beams are
modeled by a 3D continuum with three translational degrees of freedom (dof). This way,
the model is extendible to a layer-wise investigation (of the base PLA material only) in
future work and a damping measure within the ABH area can be added easily. Linearity is
assumed as the measurements show small deflections. Based on experiences, half the
mass of the force sensor (mSensor = 2 × 0.012 kg) is considered as concentrated mass at the
excitation point.

A structured mesh by 27-node hexahedrons with quadratic ansatzfunctions (La-
grangian type) is applied to the 3D continuum and solved in the frequency domain with a
frequency step size of Δ f = 20 Hz using the institute’s in-house implementation elPaSo [34].
A convergence study is conducted for each beam thickness (1, 3 and 6 mm) in the higher
frequency range (4000–6000 Hz). As a criterion, the maximum error of the mean squared
admittance Δh2 (Equation (1)) at all frequency steps fi must be smaller than 0.1 dB. Under
this assumption, it is expected that the material parameters are identified exactly enough
in the frame of the engineering task.

By preliminary studies in [27] and the static bending test in Section 3, an estimation of
the minimum flexural modulus (Young’s modulus is called a flexural modulus as bending
waves are dominant in the structures applied here.) for PLA is known. These values are
round down to E0 = 3 × 109 N/m2 in order to receive a conservative mesh size by the
convergence study. Applying E0 to the three thickness setups t = {1, 3, 6}mm, the mesh
size is reduced systematically, until Δh2 is smaller than 0.1 dB. In Figure 9, the maximum
error is plotted in dependency on the mesh size. The chosen mesh size for each beam is
further marked in the figure. Finally, this results in FE models with 12 k, 24 k and 48 k dof
for the 6, 3 and 1 mm beam, respectively. The mesh is shown above Figure 9.

For the FE meshes applied for the convergence study in Figure 9, two elements
(five nodes) over the thickness have been applied. In Figure 10, a comparison with three
elements (seven nodes) over the thickness is plotted.

The curves do not show significant differences, hence, the mesh sizes as shown in
Figure 9 are applied for the parameter fitting and two elements over the beam’s thickness
are considered in the model. The convergence study is a crucial basis for the parame-
ter fitting in Section 4.2 as the authors want to exclude any significant side effects like
numerical errors.

In order to speed up the parameter study itself, a reduced-order model (ROM) is
derived on the basis of the full order model (FOM). For the model order reduction (MOR)
process, a first-order Krylov subspace method based on moment matching is used, since the
system is proportionally damped [35]. As mentioned in [35], the obtained ROM is valid for
variation of the Rayleigh damping coefficients and therefore also valid for a variation of the
flexural modulus, which is just a linear factor for the stiffness matrix. Multi-point moment
matching is applied to construct a global basis, which yields a small error over the entire
frequency domain [36]. One expansion point is set every 1000 Hz (including 0 Hz and
6000 Hz) while the matched moments are increased until the maximum error Δh2 is smaller
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than 0.1 dB. A Gramm–Schmidt orthogonalization is conducted at each step to construct
an orthonormal basis and perform a vector-wise deflation strategy. For the convergence
tests of the ROM, a frequency step size of Δ f = 20 Hz is chosen. The loss factor is set
to a conservative value of η = 0.001. In Table 5, the resulting necessary moments are
documented—the number of matched moments is kept equal for all seven development
points. The parameter fitting is conducted using the ROM while the final results are again
computed by the FOM.

Table 5. Number of matched moments in the reduced-order model (ROM) in order to ensure a
maximum Δh2 < 0.1 dB for the parameter identification.

Model Moments Matched

6 mm beam 2
3 mm beam 3
1 mm beam 5
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Figure 9. Maximum error in dependency on mesh sizes for each beam specimen with two elements over the beam’s
thickness (chosen mesh size marked with circle).
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Figure 10. Comparison of h2 for two elements (dashed line) and three elements (marks) in thickness direction for each beam.
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4.2. Parameter Identification

As mentioned above, the parameter space is discretized and studied entirely. For E
and η, the ranges are set according to Table 6.

Table 6. Parameter space including assumed constants.

Parameter Unit Range Delta

Flexural modulus E N/m2 1.5 × 109–6.0 × 109 0.06 × 109

Loss factor η 0.005–0.15 0.005
Density ρ kg/m3 constant (see Table 2)
Poisson’s ratio ν constant (0.35)

For the identification of optimal parameters, two criteria are applied comparing the
experimental curve h2

α and the numerical curves of h2
β. The first criterion δ1 is the sum

of errors in dB at each frequency sampling points i of the total points Nf according to
Equation (2). The optimal response is assumed to be the one leading to min(δ1).

δ1 =

Nf

∑
i=1

∣∣∣h2
β,i − h2

α,i

∣∣∣ (2)

As second criterion, Frequency Response Assurance Criterion (FRAC) is applied
comparing two frequency responses by scalar multiplication and normalization. A FRAC
value of 1 identifies curves with identical course. The absolute level is ignored by FRAC.
In Equation (3), the criterion is defined according to [37] and adopted for the application
here. The energy quantity h2 is directly taken for FRAC with Hα/β = 10 h2/10.

FRAC =

(
Hα( f )T · Hβ( f )

)2

(Hα( f )T · Hα( f ))
(

Hβ( f )T · Hβ( f )
) . (3)

4.2.1. Frequency-Independent Parameters

As the first step, constant parameters E and η are applied to the entire frequency
range. As criterion, δ1 is applied. In Figure 11, the results are shown for all six specimens
separately. For each beam, a best-fitting combination of constant E and constant η can be
identified which are marked, respectively.

In Table 7, the resulting parameter combinations are listed. A large variation of the
resulting constant parameter combinations can be clearly seen which may be a result by
the thickness difference or process parameters in general. However, slight tendencies in
dependence on the thickness can be observed. With decreasing thickness, the homogenized
flexural modulus E and the homogenized loss factor η seem to be decreased as well.

Table 7. Frequency-independent identified parameter combinations with minimum δ1.

Specimen Thickness (m) Flexural Modulus (N/m2) Loss Factor

Beam_6a 0.0063 4.20 × 109 0.090
Beam_6b 0.0062 4.44 × 109 0.095
Beam_3a 0.0032 4.38 × 109 0.080
Beam_3b 0.0033 3.96 × 109 0.060
Beam_1a 0.0012 3.42 × 109 0.055
Beam_1b 0.0012 3.24 × 109 0.065
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Figure 11. δ1 contour plot for each specimen with identified optima under variation of E and η (frequency-independent,
constant values).

4.2.2. Frequency-Dependent Parameters

The frequency-independent material parameters for each specimen (Table 7) are set as
basis for the frequency-dependent material parameter identification for E. This means for
the following parameter study, a constant η is continuously applied for each beam. Similar
to the previous studies, E is varied, but now, FRAC is applied as the criterion. Every 500 Hz,
a sectionwise FRAC is determined using a range of ±500 Hz. For each sample point (every
500 Hz), the maximum FRAC value is assumed to indicate the best-fitting flexural modulus.
Discontinuities in E( f ) are suppressed in the identification process by allowing only a
maximum difference of 0.6 ×109 N/m2 from one sample to the next. The motivation is to
avoid non-physical jumps. Finally, the contour plots in Figure 12 are created which show
the FRAC distribution over frequency and flexural modulus. The identified values are
marked by the +. On the first view, the procedure works quite well with the exception
of Beam_1a and Beam_3a. For these specimens, the identified values are not laying on
a recognizable curve as FRAC is indicating several best-fitting flexural moduli for one
frequency sample.

However, in Figures 13–15, the identified data points are plotted for each beam thick-
ness, respectively. By use of the data points, a linear curve fit is applied in order to receive
a practicable mean curve. For Beam_6a and Beam_6b, the two resulting curves are quite
similar which indicates a robust manufacturing and identification process. For Beam_3a/b
and Beam_1a/b, the two curve are different. According to Figure 12, some outliers and the
explanation above may be reasons for this deviation.
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Figure 12. FRAC contour plot for each specimen with identified optima under variation of E (frequency-dependent, constant
value for η).
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Figure 13. Identified flexural moduli by Figure 12 for Beam_6a/b with fitted linear curve.

The identification process could be improved by a more robust application of the
criterion, for instance by a consideration of several dof as intended by [37]. This way,
deflection shapes may be matched better and flexural moduli matching different peaks in
the h2 curve are excluded inherently. Keeping the problems by the identification process
in mind, nevertheless an increasing flexural modulus can be observed with increasing
frequency for all three thicknesses and all six specimens. Furthermore, the authors exclude
a significantly high error due to the measurement setup, as Figures 7 and 8 show a quite
well agreement of the two specimen’s h2 curves, respectively.
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Figure 14. Identified flexural moduli by Figure 12 for Beam_3a/b with fitted linear curve.
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Figure 15. Identified flexural moduli by Figure 12 for Beam_1a/b with fitted linear curve.

Finally, all sampling points by Figure 12 are used for a fitting per thickness. In Figure 16,
the overall fitted linear curves (a) and the distribution of E in dependency on frequency and
thickness (b) are shown. For the contour plot (b), a piecewise cubic interpolation including
extrapolation is applied for the thickness-dimension. Differently, a linear fitting as shown in
Figure 16a is applied for the frequency dimension. As motivated in Section 1, a dependency
of the flexural modulus on the additively manufactured thickness can be clearly observed.
Generally speaking, the flexural modulus decreases with the decreased thickness of the
structure. For 0 Hz, the range is between 1.9 × 109 N/m2 and 3.7 × 109 N/m2 which is
about twice the value due to a 6 times thicker beam. The sensitivity reduces comparing
the 3 mm beam and the 6 mm beam which indicates a non-linear behavior of the flexural
modulus in dependency on the thickness. For ABH structures, besides the usual stiffness
reduction by a lowered thickness, an additional effect can be expected by the manufacturing
process itself. Considering this effect in mechanical models, a more precise and reliable
prediction may be the result.

In the second step, the loss factors η are identified by the use of the frequency-
dependent flexural moduli. For each significant peak in the experimental curve, the
frequency range around (±10%) is investigated with a Δ f = 1 Hz. By optical checks and
manual adjustment, the loss factors are adapted in a way that the peak levels fit. An
automatized routine using δ1 as the criterion is hardly realizable as a slight shift in frequency
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lead to high differences though the amplitude of close peaks might be similar. This means
the results shown in Figure 17 may give only tendencies.
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Figure 16. Overall fitted (a) linear curves for the three different manufactured thicknesses and (b) flexural modulus in
dependency on frequency and thickness.

From 2000 Hz, similar loss factors between 0.02 and 0.06 are yielded by all six beams,
independent of their thickness. The tendency of all curves shows a slight decrease towards
higher frequencies. Below 2000 Hz, a spreading of the values are visible in dependency on
thickness. This spreading cannot be identified to be systematic. For example, for both of
the 3 mm beams, the homogenized η is increasing up to 0.1 towards lower frequencies.

In opposite, η shows a maximum for both 6 mm beams at around 1500 Hz. This be-
havior has not been expected and may be assigned to unknown effects based on the
micro-structure. Due to the manufacturing process, the layers might act similar to a con-
straint layer damping. However, at this stage this cannot be further emphasized as only
two 6 mm beams are available. In addition, the experimental setup might significantly
influence some of the peaks.
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Figure 17. Identified loss factors η for all six specimens in dependency on frequency f .

4.3. Final Results

The identified frequency-dependent material parameters by Section 4.2 are applied to
each beam specimen and solved with Δ f = 20 Hz. For each specimen, the corresponding
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fitting curve by Figures 13–15 are considered. In Figure 18, h2 is plotted in comparison with
the experiment for each specimen, respectively. The results show a quite good agreement for
Beam_6a/b, but with decreasing thickness (Beam_3 and Beam_1) the agreement gets worse.
Thinner beams are expected to show higher sensitivities to the manufacturing process and
the material parameter identification. Nevertheless, the tendency of a decreased flexural
modulus with decreased thickness seems to be appropriate for the problem.
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Figure 18. Experimental and numerical response of each specimen with frequency-dependent material parameters E and η.
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5. Conclusions

The aim of the paper is to provide a procedure to identify material parameters of
additively manufactured structures for robust and reliable dynamic simulations. AM pro-
vides great design freedom but at the same time makes valid mechanical modeling more
challenging. As an illustrative example, the procedure is shown in the context of 3D-printed
ABHs by using material extrusion. As ABH structures require a continuously adapted
thickness profile, the dependency of homogenized material parameters on the thickness of
additively manufactured beam structures is studied.

A dependency of Young’s modulus and the loss factor on frequency and thickness can
be observed based on the parameter fitting of the 3D model. The homogenized Young’s
modulus is decreased with a decreased thickness of the printed structure. Quantitatively,
a doubling of the value can be identified due to a change from 1 mm to 3 mm thickness.
A change from 3 mm to 6 mm induces a slight change which is no longer systematically.
It is assumed that the flexural modulus converges with the thickness as the heat input
becomes more homogeneous. The main findings can be summarized as follows:

• dependence of homogenized material parameter (Young’s modulus, loss factor) on
frequency and thickness

• Young’s modulus decreases significantly with decreasing thickness

In order to improve the material parameter identification, further studies should
focus on an improved criterion comparing the responses and the deflection shapes and
an investigation of the inherent uncertainties by measurements and the manufacturing
process. For this purpose, a larger number of samples should be analyzed. This way,
mechanical models considering uncertain parameters may be applied for a robust design
process of additively manufactured structures.

The method presented here is also universally applicable to other additive manu-
factured materials. Due to the combination with the model order reduction, even more
complex fittings can be handled. In this way, it is possible to use the manifold possibilities
of AM to optimize the performance of acoustic measures.
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Abbreviations

The following abbreviations are used in this manuscript:

3D Three-dimensional
ABH Acoustic Black Hole
AM Additive manufacturing
δ1 First error criterion
dof degrees of freedom

E
Young’s modulus
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elPaSo Elementary parallel solver (in-house code)
η Loss factor
f Frequency
F Exciting Force
FOM Full order model
FRAC Frequency Response Assurance Criterion
h2 Mean squared admittance
H Frequency response function
MEX Material extrusion
MOR Model order reduction
MSA Mean squared admittance
Nf Number of frequency points
Np Number of surface points
ν Poisson’s ratio
PLA Polyactic acid
� Density
ROM Reduced order model
t Thickness of beam specimens
TPU Thermoplastic polyurethane
v Surface velocity
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Abstract: Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized
by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior
involving concrete cracking in tension and crushing in compression, practitioners make different
choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations,
assigning the bond between the concrete and the steel reinforcement, and solving problems related
to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common
modeling choices critically and develop a robust modeling strategy with consistency, reliability,
and comparability. This paper proposes a modeling strategy and practical recommendations for
the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices.
The proposed modeling strategy aims at providing reliable predictions of flexural responses of
RC members with a focus on concrete cracking behavior and crushing failure, which serve as
the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced
polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed
modeling strategy is comprehensively described with a focus on the critical modeling issues for
RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in
four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP
(CFRP) laminate in its soffit. The simulated results agree well with experimental measurements
regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and
CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations
presented herein are applicable to the nonlinear FE analysis of RC structures in general.

Keywords: reinforced concrete; finite element analysis; crack band; strain localization; post-peak
softening; viscoplastic regularization; convergence; mesh sensitivity; bond–slip; flexural behavior

1. Introduction

Finite element (FE) analysis is effective for investigating the nonlinear behavior of
reinforced concrete (RC) structures and performing parametric studies at lower costs than
experimental tests. The nonlinear FE analysis of RC members has been extensively reported,
and good agreement is often achieved between numerical and experimental results [1–3].
However, the comparison and application of the existing FE models are difficult owing to
the differences in the adopted modeling strategies, which involve a considerable number of
options, e.g., regarding the concrete constitutive models, critical parameters, bond between
the concrete and the steel reinforcement, and numerical analysis procedures. Nonlinear FE
analyses for blind predictions of the ultimate capacity and cracking of simple RC structural
members have been associated with large uncertainty [4,5].
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The major challenges in the nonlinear FE analysis of RC structures include the follow-
ing: (1) defining the concrete tensile and compressive behaviors with the proper considera-
tion of the strain localization in fracture zones [6], (2) efficiently assigning proper bond–slip
behavior between the concrete and the steel reinforcement [2], (3) solving convergence
difficulties commonly observed in the modeling of concrete with high nonlinearity [7,8],
and (4) the misinterpretation of the processing logic of the FE software in the derivation
and definition of input data. These challenges, which are described in detail below, render
nonlinear FE analyses of RC complex and time-consuming; thus, such nonlinear analyses
are rarely performed by practicing engineers.

Concrete cracking in tension: The cracking of tensile concrete is usually modeled by
either discrete or smeared crack approach in practical FE analyses. In the discrete crack
approach, physical cracks are modeled as displacement discontinuities in a concrete con-
tinuum. Although it allows the precise prediction of localized deformation at cracks,
the discrete crack approach requires pre-defining tensile fracture zones when the finite
element is generated. However, the position of the cracks is not known beforehand for
most structural analyses. To overcome this limitation, automated re-meshing techniques
are required to adapt the configuration of finite elements in accordance with the propa-
gating cracks [9,10]. Although recent research has been devoted to developing discrete
crack models allowing arbitrary crack initiation and propagation (e.g., the extended FE
method [11]), the sophisticated modeling methods are not suitable for practical application
by engineering practitioners. The ease of application motivates the wide use of the smeared
crack approach in practical FE analyses. In the smeared crack approach, a crack width is
transformed into an equivalent cracking strain smearing over a certain length (referred to
as the “smeared length” in this paper). The numerical results correspond to reality only if
the widths of the simulated fracture process zones (i.e., the cracking regions) are equal to
the assumed smeared length [6,12,13]. To assure the reliability of the numerical results, the
smeared length should be properly determined and incorporated into the definition of the
constitutive law of concrete in tension.

Concrete crushing in compression: The constitutive model for concrete in uniaxial com-
pression is usually provided as a stress–strain relationship in design codes, e.g., Model
Codes [14,15] and ACI 318 [16]. However, such as a compressive strain, i.e., the “mean
strain” obtained by smearing the measured deformation over the length of the standard
test specimen, cannot describe the local strain-softening behavior in the critical fracture
damaged zone of concrete. Studies since the 1980s [17–19] have investigated the effects of
the strain localization on deriving the concrete compressive constitutive models. The chal-
lenge faced when considering the strain localization in FE analyses is that the actual size of
simulated fracture zones is not known in advance, but it must be determined and used to
modify the constitutive model of concrete as input data for the FE analyses. Zandi Han-
jari et al. [20] modified the post-peak branch of the stress–strain relationship proposed by
Thorenfeldt et al. [21], assuming that concrete crushing occurred in one row of concrete
elements in the FE analyses of RC members. To properly define the concrete compressive
behavior and reliably predict the capacity of RC members governed by concrete crushing,
it is necessary to (1) clarify the principle of modifying the concrete compressive constitutive
model with consideration of the strain localization and (2) develop a practical approach for
determining the size of the fracture zones.

Bond–slip behavior between concrete and steel reinforcement: In the nonlinear FE analyses
of RC structures, the definition of the bond–slip behavior between the concrete and the
steel reinforcement is critical for the accurate prediction of the structural responses, crack
patterns, and crack widths [2,3]. However, there is a lack of guidelines and different
methods are used in the literature to assign the steel-concrete interaction, requiring different
input data and workarounds to overcome implementation difficulties, which are often
not described in detail [22,23]. Therefore, it is important for the research community to
evaluate the existing approaches [2,24,25] for assigning the bond–slip behavior and to
develop new approaches involving simple application procedures.
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Convergence difficulties: The softening behavior and stiffness degradation of cracking or
crushing concrete cause severe convergence difficulties in the static analysis of concrete [8,
26]. Instead of solving the problem in static analyses, researchers implemented dynamic
analysis procedures adopting implicit [7] or explicit [1] integration methods. However, such
a dynamic approach requires additional effort to carefully select, e.g., the time integration
algorithm, loading scheme, loading time, damping ratio, and time increment size, to
achieve a good balance between minimizing the inertial forces (for a better approximation
of the static problem) and reducing the computational time (by using a shorter time to
model the static event in an accelerated manner). Therefore, it remains important to
develop a simple solution strategy to perform the static analysis procedure with a high
convergence rate.

Misinterpretation: Misinterpretation refers to the users’ misunderstanding of the pro-
cessing logic of FE software packages. Misinterpretation may cause the incorrect definition
of input data, which may lead to errors in numerical results or aborted analyses [27].
For instance, in nonlinear FE analyses of concrete structures, the definition of the post-peak
softening behavior of concrete constitutive laws or the stiffness degradation of damaged
concrete is not straightforward. Furthermore, such analyses require to assign a lot of input
data and to make a great number of modeling choices, which are rarely reported in a very
detailed way in the literature. This is explained by the fact that such details do not consti-
tute the focus of the investigation and are usually software specific. Nevertheless, if the
approach for obtaining critical input data is not reported, it can undermine the reliability
and reproducibility of the FE analyses.

In light of these challenges, the objective of this study was to develop a robust and
reliable modeling strategy to capture the tensile cracking and compressive crushing behav-
ior of RC structures associated with low computational costs and ease of implementation,
based on the well-established constitutive relations from fib Model Codes [14,15]. The strat-
egy was implemented to simulate the flexural behavior of an RC beam as reference and
another identical RC beam strengthened with an externally bonded carbon-reinforced
polymer (CFRP) laminate; both beams were tested in four-point bending until failure.
Modeling of crack opening after the reinforcement yielding stage and ultimate concrete
crushing were carefully studied on the reference beam to ensure a reliable basis for the
modeling of the strengthened beam. The nonlinear FE analyses presented herein were
performed using the concrete damaged plasticity (CDP) model implemented in the com-
mercial software ABAQUS [26], as it is widely used in both academia and industry to
analyze RC structures [28–32]. The focus of this paper was to provide reliable, practical,
and computationally cost-efficient implementation guidelines for nonlinear FE analyses of
concrete structures, which can be used as a basis for more complex cases and support the
application of nonlinear analyses to real-world engineering problems, e.g., for load-bearing
assessment, strengthening assessment, structural health monitoring, and damage identi-
fication of building and civil engineering structures. For instance, the use of externally
bonded FRP laminates for strengthening and rehabilitation of concrete or masonry struc-
tural members [33–35] has emerged as an effective technique and found strong interest
in both research and practice, which supported the consideration of such a case in this
work. The experimental setup is shown in Section 2. In Section 3, the modeling procedures
and recommendations for overcoming the aforementioned challenges are presented in
detail. In Section 4, the proposed modeling strategy is demonstrated, and modeling choices
are validated by parametric studies considering the reference RC beam. In Section 5, the
numerical results of the reference beam are compared with the experimental measurements
regarding load-deformation relationship, cracking, flexural failure due to concrete crushing,
and CFRP debonding initiated by intermediate cracks.

2. Experimental Test

The RC members modeled in the present FE study included two slender RC beams
subjected to four-point bending in the laboratory, see Figure 1a. The RC beams were cast
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at a workshop using C35/45 concrete. One beam served as reference; the other one, with
identical dimensions, was strengthened with an externally bonded CFRP laminate on
the tensile side of the beam. The cross-sectional dimensions of the beams are shown in
Figure 1b, including main steel rebars, shear reinforcement, and externally bonded CFRP
plate (for the strengthened beam only). A two-component epoxy adhesive (StoPox SK41,
StoCretec GmbH, Kriftel, Germany) was applied to bond the CFRP plate; whose layer
design thickness was 1 mm. Mechanical properties of the above-mentioned materials used
for the FE analyses are listed in Table 1: the elastic modulus Ec, compressive strength fc,
and tensile strength fct of concrete C35/45 at the age of 287 days were estimated according
to Eurocode 2 [36]; the Poisson’s ratio of concrete νc was defined according to Model Code
2010 [15]; the elastic modulus Es, yield strength fsy, ultimate strength fsu, and ultimate
strain εsu of steel reinforcement were measured by laboratory tests on bars with a diameter
of 16 mm (Φ16) according to ASTM A615 [37]; the elastic modulus Ef and ultimate tensile
strain εfu of the CFRP plate were measured according to standard tensile tests as reported
in [38]; the elastic modulus Ea, tensile strength fa, and Poisson’s ratio νa of the epoxy
adhesive were reported in [39].

Figure 1. (a) Reinforced concrete (RC) beams subjected to four-point bending tests until failure (unit: mm); (b) cross-sectional
dimension of the RC beams (with a carbon-reinforced polymer (CFRP) plate for the strengthened beam only).

Table 1. Material properties of concrete, steel rebars, CFRP plate, and cured epoxy adhesive.

Concrete C35/45 Steel Rebars B500C CFRP Plate Adhesive

Ec 36.9 GPa Es 201 GPa Ef 214 GPa Ea 7.1 GPa
fc 51.1 MPa fsy 510 MPa εfu 12.7‰ fa 34 MPa
fct 3.6 MPa fsu 617 MPa – – νa 0.3
νc 0.2 εsu 12.0% – – – –

In the four-point bending tests, the beams were simply supported on two movable
steel supports, giving an effective span of 4.2 m. The steel support at each end consisted
of two identical steel plates (170 × 30 × 200 mm3) and one steel cylinder roller (diameter
of 50 mm and length of 200 mm). External loading was applied via two synchronized
hydraulic jacks using displacement control. The foot of each hydraulic jack rested on a
steel plate (50 × 50 × 200 mm3) to distribute the load to the RC beam. The beams were
loaded to failure. In the reference beam, flexural failure after yielding of the reinforcement
was governed by concrete crushing in the compressive side of the beam; the failure of
the strengthened beam was due to premature debonding of the CFRP plate initiated by
intermediate flexural cracks.

During the test, strain gauges and linear variable differential transducers (LVDTs) were
used to monitor the beam specimens. Two strain gauges were installed at the midspan
cross-section on the tensile steel reinforcement, and three LVDTs were used to obtain
the net deflection at the midspan, as shown in Figure 1. Cracks in the RC beams were
monitored during the test; the crack widths were measured at the height of the tensile
steel reinforcement using a digital handheld microscope (AM4115ZT, Dino-Lite Europe,
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Almere, The Netherlands) at load levels of 15, 30, 45, 55 (reference beam only), and 70 kN
(strengthened beam only).

3. FE Modeling Strategy

The proposed modeling strategy is discussed in detail, in this section, with special
focus on proper modeling of RC considering strain-softening in fracture zones and bond–
slip between steel reinforcement and concrete to ensure the reliable prediction of cracking
and crushing. The strategy is adapted to the modeling of the RC beams introduced in
Section 2. However, common critical issues in the nonlinear FE modeling of RC structures
are addressed in a general manner, which makes these recommendations applicable to
other types of RC beam and frame structures. The nonlinear FE analyses were conducted
using the commercial FE package ABAQUS/CAE, version 6.14 [26].

Considering that the beam geometry and the test configuration were symmetric about
the midspan, only one half of the RC beam was modeled in the current FE analyses to
reduce the computational cost. The vertical load acting on the beam was defined as a
boundary condition in the FE model, inducing a vertical displacement on the top of the
steel plate between the load and the beam. The interaction between the steel plate and the
beam was set as surface-to-surface contact, which defined the interfacial constraints in the
normal direction (i.e., “hard” contact) and friction in the tangential direction. The coefficient
of tangential friction was assumed to be 0.57 according to a previous recommendation [40].
The same contact settings were used at the interfaces between the beam and steel support.
On the bottom side of the movable steel support, boundary conditions were defined at the
middle point to constrain the degree of freedom in the vertical direction but allow trans-
lation in the horizontal direction. The concrete beam, steel plate under the loading point,
and movable steel support were modeled with 2D shell, discretized into structured meshes,
and assigned with element type CPS4 (4-node plane stress quadrilateral elements with
four integration points). Steel reinforcement and CFRP plate, modeled as one-dimensional
(1D) wire, were assigned with truss (T2D2) and beam (B21) elements, respectively. Material
properties of the concrete, steel reinforcement, and CFRP were defined according to the
values in Table 1. Details about the modeling of concrete, the interaction at the concrete and
steel reinforcement interface and the concrete and CFRP plate interface, and the numerical
solution strategy are described below according to the proposed modeling strategy.

3.1. Modeling of Concrete

The concrete material is defined in the CDP model implemented in ABAQUS [26],
including the definition of the concrete plasticity, the tensile behavior, the compressive
behavior, and the damage evolution of the stiffness.

3.1.1. Concrete Plasticity

The concrete plasticity parameters to be defined in the CDP model include (1) dilation
angle ϕ and eccentricity factor ε related to the flow potential given by the Drucker–Prager
hyperbolic function; (2) factors σb0/σc0 and Kc related to the yield surface based on the
function presented by Lubliner et al. [41] with the modifications proposed by Lee and
Fenves [42] to account for the evolution of strength in tension and compression; and (3)
the viscosity parameter μ to introduce viscoplastic regularization. The values of these
parameters defined in the reference FE model are presented in Table 2. Default values of ε,
σb0/σc0, and Kc are assigned according to the design manual of ABAQUS [26]; the values
of ϕ and μ are defined based on the validation discussed in Sections 4.1 and 4.2.

Table 2. Plasticity parameters defined in the concrete damaged plasticity (CDP) model.

Categories Plastic Flow Potential Yield Surface Viscosity Parameter

Parameters ϕ ε σb0/σc0 Kc μ
Values 35◦ 0.1 1.16 2/3 1 × 10−6
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3.1.2. Concrete Tensile Behavior

The tensile behavior of concrete is characterized by a linear elastic stress–strain rela-
tionship before the concrete reaches the tensile strength fct (Figure 2a) and a bilinear stress
σt-crack width w relationship for the post-peak softening behavior according to Model
Code 2010 [15]. The Model Code relationship, as shown in Figure 2b, is determined by
the tensile strength fct and the fracture energy GF. The fracture energy GF describes the
amount of energy required to propagate a tensile crack of unit area; for normal-strength
concrete, GF (in N/m or J/m2) can be estimated using Equation (1) according to Mode
Code 2010 [15]:

GF = 73 f c
0.18, (1)

where fc represents the mean compressive strength of concrete in MPa.
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t

t

fct

0.2fct

GF /fct 5GF /fct

t

w

fct
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Figure 2. Constitutive models for concrete in tension: (a) linear elastic stress–strain relationship for uncracked concrete;
(b) bilinear tensile stress–crack width relationship according to Model Code 2010 [15]; (c) exponential tensile stress–crack
width relationship proposed by Hordijk [43].

To validate the adopted concrete tensile behavior, the effects of different modeling
choices on the numerical results were investigated and are discussed in Section 4.3. This in-
cluded (1) a comparison between the bilinear Model Code relation and another commonly
used post-peak softening model, i.e., the exponential descending σt-w relation (Figure 2c)
proposed by Hordijk [43], and (2) parametric studies of the assumed tensile strength fct
and fracture energy GF. The Hordijk σt-w relation is expressed by Equation (2):

σt

fct
=

[
1 +

(
c1

w
wcr

)3
]

e−c2
w

wcr − w
wcr

(
1 + c3

1

)
e−c2 , (2)

where, c1 = 3.0, c2 = 6.93, wcr = 5.136 GF
fct

.
Smeared crack method: To simulate the cracks in concrete, the CDP model adopted in the

present FE study employs the smeared crack method, where the cracking concrete is treated
as a continuum and a physical crack opening wcr is characterized as an equivalent cracking
strain εcr smearing over a certain length (the smeared length ls). Thus, the post-peak tensile
behavior defined in the CDP model complies with stress–cracking strain relationship, which
is converted from the selected stress–crack width model given εcr = wcr/ls. The numerical
results correspond to reality only if the width of the simulated fracture process zone lF
is equal to the assumed smeared length ls. As indicated by Equation (3), the inelastic
deformation δ(σ) of cracking concrete at a certain stress level σ is not dependent on the
assumed ls but determined by the selected stress–crack width relation in the present
FE analyses.

δ(σ) = lFεcr(σ) = lF
wcr(σ)

ls
= {lF = ls} = wcr(σ). (3)

Crack band approach: To define the smeared length ls in accordance with the size of
the simulated fracture zone lF, the crack band approach—a simple technique for practical
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engineering computations—is adopted. In this approach, it is assumed that the strain-
softening of cracking concrete is localized into a clear band of elements running across the
concrete mesh and thus forming a “crack band.” Thus, the size of the simulated fracture
zone lF becomes the width of the crack band hb, and hb can be estimated and assigned to
the smeared length ls to adjust the strain-softening behavior of the concrete in the post-peak
regime [6]. The crack band approach, which is widely applicable and utilized in many FE
packages, is based on pioneering studies performed in the 1980s [12,13,44,45]. Theoretically,
the width of crack bands hb is a function of not only the element topology, e.g., the type,
shape, size, and integration scheme, but also the crack band orientation [6]. However,
the width of crack bands hb implemented in common FE packages, e.g., ABAQUS [26], is
simply estimated as the square root of the element area (for two-dimensional elements)
or the cubic root of the element volume (for three-dimensional elements). This simplified
estimation may induce substantial error and mesh sensitivity for elements with large aspect
ratios. It is recommended to use elements having aspect ratios close to 1 (e.g., square or
cubic elements) to reduce the mesh sensitivity [26]. Even for square or cubic elements,
there may be errors if the crack band is not aligned with the mesh line. For instance, for a
two-dimensional mesh of square elements with side length a, it is reasonable to estimate the
band width hb =

√
A = a automatically in ABAQUS only if the crack band is parallel to

the element sides. If the crack band runs along the element diagonal, the appropriate width
of the band is hb =

√
2a =

√
2A instead of hb =

√
A. Accordingly, when using the crack

band approach in FE modeling, it is recommended to define the post-peak tensile behavior
of concrete by the input data of the stress–cracking strain relationship, which allows users
to evaluate and determine the crack band width hb. For a detailed discussion regarding the
estimation of the crack band width with consideration of the element topology and crack
band orientation, readers are referred to [12,46,47].

In the present FE analyses, the crack bands developed in the concrete mesh mainly
ran parallel to the mesh lines, owing to the predominant bending effect on the beam. Thus,
the crack band width hb was determined as the width of square-shaped concrete elements
for deriving the stress–cracking strain input data.

3.1.3. Concrete Compressive Behavior

For the FE analysis of RC beams in bending, the concrete compressive behavior is
widely defined according to a stress–strain relationship obtained from uniaxial compression
tests of standard concrete cylinders. However, the strain in the standard compressive test
is the “mean” strain obtained by smearing the measured displacement over the total length
of the specimen. Considering that the compressive failure of concrete is initiated by a local
shear band formed in one of the fracture zones and the post-peak deformation mainly arises
from such a local zone, the “mean” strain naturally underestimates the strain in the critical
fracture zone. If the post-peak deformation is expressed by the mean strain, the strain-
softening curve tends to depend on the geometry of the specimen [17,18]—the descent
of the post-peak branch is faster for a longer specimen. For instance, the compressive
stress–strain relationship provided in Model Codes [14,48] is reasonably accurate for a
concrete specimen length of approximately 200 mm.

In the present FE study, the relationship based on Model Code 1990 [14] and Model
Code 2010 [15] is selected as the reference constitutive model for concrete in compression.
Model Code 1990 provides the part of the descending branch with strains exceeding the
concrete ultimate/limit strain εc,lim. To highlight the differences among existing constitutive
models for concrete compressive behavior and the impacts of these differences on the
predicted ultimate crushing failure of the concrete beam, two other commonly used models
are also studied for comparison (see Section 4.5): the Thorenfeldt relationship and the Saenz
relationship. As shown in Table 3, the Thorenfeldt relationship is based on previous studies
by Tomaszewicz [49] and Thorenfeldt et al. [21], with the modifications proposed by Collins
and Porasz in CEB Bulletin 193 [50]. The Saenz relationship includes modifications [51]
based on a previous discussion of the compressive stress–strain equation [52].
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Table 3. Three commonly used constitutive models for concrete in compression.

Model Code
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(
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) where n = 0.80 + fc
17

k =

⎧⎨⎩
1, 0 < εc < εc1

0.67 +
fc

62
, εc > εc1

Note: Eci = Ec represents the initial tangent modulus, Ec1 = fc/εc1 represents the secant modulus from the origin to the peak compressive
stress, εc1 = 1.60( fc/10 MPa)0.25/1000 represents the strain corresponding to the peak compressive stress [48,53], and εc,lim represents the
ultimate compressive strain of the concrete.

To obtain reliable predictions of the ultimate capacity and the crushing failure of
the beam in flexural loading, the post-peak strain localization should be considered in
the definition of the constitutive law. The original constitutive model based on the mean
strain—mainly the post-peak softening branch—must be modified to better describe the
localized strain softening in the critical fracture zone with a reasonable size. The assumed
size should be verified according to the size of the simulated crushing zone.

Modified compressive behavior considering strain localization: The procedure for modifying
the post-peak branch is presented in Figure 3. If the stress–mean strain relationship and
the length L of the tested specimen are known, the increased post-peak deformation δ|cs

c1
can be obtained from the stress–strain relationship using Equation (4):

δ|cs
c1 = L(εcs − εc1), (4)

where, εc1 and εcs represent the strains (mean strains smeared over the whole specimen) cor-
responding to the concrete compressive strength fc and the stress level σcs in the softening
branch, respectively.

L
Lcr

Figure 3. Modification of the post-peak softening branch of the constitutive model for concrete in
compression originally expressed by the mean strain smearing over the whole length of specimen L
to consider the strain localization in the critical fracture zone with the length of Lcr.

Considering the strain localization, instead of using Equation (4), the increased de-
formation after the peak stress δ|cs

c1 is reached can be calculated using Equation (5), taking
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into account the strain-softening in the fracture zone with the length of Lcr and the elastic
unloading due to the reduction in the compressive stress from the peak stress fc to σcs:

δ|cs
c1 = (L − Lcr)

(
εel

cs − εel
c1
)
+ Lcr

[(
εel

cs + εin
cs.loc

)− (
εel

c1 + εin
c1
)]

= L
(
εel

cs − εel
c1
)
+

Lcr
(
εin

cs.loc − εin
c1
)
,

(5)

where, εel
cs − εel

c1 represents the change in elastic strain due to the stress reduction from fc
to σcs in the post-peak regime, εin

cs.loc represents the inelastic strain localized in the critical
fracture process zone, and εin

c1 represents the inelastic strain at peak stress.
The transitivity between Equations (4) and (5) implies that,

L(εcs − εc1) = L
(

εel
cs − εel

c1

)
+ Lcr

(
εin

cs.loc − εin
c1

)
, (6)

which can be rewritten as,

εin
cs.loc =

L
Lcr

(
εin

cs − εin
c1

)
+ εin

c1. (7)

The scaling rule for determining the localized inelastic strain εin
cs.loc in the critical

fracture zone is expressed by Equation (7), as shown in Figure 3.
Identifying the size of crushing zone: The modification of the post-peak strain-softening

behavior also requires a proper assumption of the size of the critical fracture zone Lcr,
which should be validated according to the size of the simulated crushing zone in the FE
analysis. Herein, an iterative procedure is proposed for identifying the value of Lcr via a
reasonable approach. As indicated by the flowchart of Figure 4, the assumed value Lcr.input
used to modify the post-peak branch of the compressive behavior as input data should be
verified according to the observed length Lcr.output of the simulated crushing zone in the
numerical result. Lcr.output can be visualized by contour plots highlighting the regions with
compressive strains larger than εc,lim.

 

Lcr.input Lcr

Lcr

Lcr.output

Lcr.input

Lcr.input Lcr

Lcr.input

Lcr.input

Lcr.input

Lcr.output Lcr.input

Set Lcr Lcr.input

Lcr.output Lcr.input Lcr.output Lcr.input

Figure 4. Proposed iterative procedure for identifying the reasonable length Lcr of the critical fracture zone.

As the reference constitutive model adopted in the present FE analysis, the Model Code
relation is reasonably accurate for specimens with a length of approximately 200 mm [14],
providing a fair benchmark to modify the post-peak branch with the specified length
L = 200 mm according to the scaling rule in Figure 3. The reasonable length of the critical
fracture zone is identified as Lcr = 100 mm via the proposed iterative procedure shown in
Figure 4. Details regarding the identification of Lcr are presented in Section 4.5.
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3.1.4. Concrete Damage Evolution

In the adopted CDP model, the concrete damage evolution is characterized by the
degradation of the material stiffness (i.e., the elastic modulus of concrete) in the post-
peak regime of the constitutive law. Figure 5 presents a generic stress–strain relationship
(Equation (8)) for concrete in uniaxial tension or compression:

ε(σ) = εel(σ) + εin(σ) =
σ

Ec0
+ εin(σ), (8)

where εel(σ), εin(σ), and ε(σ) represents the elastic, inelastic, and total strains, respectively,
at a given stress σ; the inelastic strain is εin(σ) = 0 when σ < σy (the inelastic strain εin
is commonly referred to as the cracking strain εcr in the description of concrete in tension).
Ec0 represents the initial elastic modulus of undamaged concrete.

Figure 5. Damage evolution and degradation of the material stiffness beyond the peak stress
of concrete.

Considering the damage evolution beyond the peak stress, the initial elastic strain
εel(σ) in Figure 5 changes to ε̃el(σ) owing to the degradation of the elastic modulus from
Ec0 to Ecs according to Equation (9).

Ecs = Ec0(1 − d), (9)

where, d is the damage factor to be defined for characterizing the damage evolution.
In the present FE analyses, the damage model proposed by Lubliner et al. [41] is

adopted, which assumes that in the post-peak regime, the degraded material stiffness
is proportional to the residual cohesion of the material. Considering that the material
cohesion can be correlated to the stress state, this leads to:

Ecs

Ec0
=

c
cmax

=
σ

f
, (10)

where c and cmax represent the material cohesion in the yield criteria corresponding to the
stress level σ and peak stress f , respectively. For concrete, f represents the concrete tensile
strength fct or compressive strength fc.

Substituting Equation (10) into Equation (9) yields the damage variable, as follows:

d = 1 − σ

f
. (11)

Importantly, the defined damage variable must satisfy the condition that the equiva-
lent plastic strain ε̃pl should not decrease as the damage variable increases.
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3.2. Modeling of Steel Reinforcement

The steel reinforcement, including the longitudinal reinforcing bars and the transverse
stirrups, is modeled as a one-dimensional wire, to which the element type truss is assigned.
The material properties of the steel reinforcement are defined according to the results of
standard tensile tests performed in the laboratory. Figure 6 shows the tensile stress–strain
relationship defined for the steel reinforcement in the FE analyses, which is characterized
by the elastic modulus Es = 201 GPa, the yielding stress fsy = 510 MPa, the ultimate
tensile strength fsu = 617 MPa, the ultimate strain εsu = 12.0%, and the rupture strain
εsmax = 15.6%.

Figure 6. Tensile behavior defined for the steel reinforcement.

3.3. Interaction between Concrete and Steel Reinforcement

The proper modeling of the bond–slip behavior between the concrete and the em-
bedded steel reinforcement is critical for obtaining clear discrete crack bands in the sim-
ulated beam model and reasonable flexural responses after the cracking point. In the
present FE analyses, the bond between the longitudinal reinforcement and the concrete
was assumed to be in good condition, and the bond–slip relationship according to Model
Code 2010 [15] is adopted. The Model Code bond–slip relationship is shown in Figure 7,
where τb.max = 17.9 MPa, τb.f = 0.4τb.max, s1 = 1.0 mm, s2 = 2.0 mm, and s3 = 5.0 mm.
The interaction between the stirrups and the concrete was modeled as embedded, assuming
a perfect bond with no relative slip (a simplification with negligible effects).

b

s

Figure 7. Bond–slip relation between the (longitudinal) steel reinforcement and the concrete in good
bond condition according to Model Code 2010 [15].

To implement the bond–slip behavior in the FE model, the use of connectors to build
the node-to-node bond is proposed as a reference method. Another commonly applied
method using cohesive elements [2,54] is implemented for comparison. These two methods
are referred to as the connector method and the cohesive method, and corresponding
schemes are presented in Figure 8. An intermediary part is created as a copy of the
steel reinforcement wire but with a significantly lower material stiffness (e.g., 0.1% of
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Es). The intermediary part is embedded (i.e., nodes are fully constrained) in the concrete
continuum at the position of the steel reinforcement. The real steel reinforcement wire
is connected to the intermediary part instead of the concrete continuum, using either
connectors or cohesive elements. The chosen bond–slip relationship is finally assigned to
the connectors or cohesive elements. The main benefit of introducing such an additional
intermediary part is that the interaction properties assigned to the connectors or cohesive
elements are not affected by the mesh refinement of the concrete continuum.

Figure 8. Illustration of the bond between the steel reinforcement and the concrete built using the
connector method or cohesive method.

3.3.1. Node-to-Node Connector Method

In the connector method, the bond–slip interaction is created using connectors (type:
translator) between the nodes of the steel reinforcement and the nodes of the concrete.
This method is adopted in the FE analyses as the reference modeling choice to assign the
bond–slip behavior. To facilitate the assignment of node-to-node connectors, a Python script
is developed to automatically implement multiple wire features between the neighboring
nodes of the reinforcement and concrete. These wires can be efficiently defined using a
suitable type of connector called translator, which allows uniaxial translation only in the
direction of the steel reinforcement between the connected nodes. Considering that the
bond–slip behavior is realized by discrete node-to-node connections, the bond force Vb,
rather than the bond stress τb, should be derived to define the bond at a given relative slip
s between the steel reinforcement and the concrete, as indicated by Equation (12). When
the connector method is used, for obtaining an accurate simulation of the nodal bond
forces and crack widths, the connector spacing (and the length of the steel reinforcement
elements) should not exceed the size of the concrete elements.

Vb = τbCssconn, (12)

where, Cs represents the total circumference of the steel reinforcement, and sconn represents
the distance between two neighboring node-to-node connectors.

3.3.2. Surface-to-Surface Cohesive Method

The cohesive method in ABAQUS can model the interfacial bond behavior in either
cohesive-contact or cohesive-element approach. The cohesive-contact approach defines the
cohesive behavior as part of a contact model with zero interface thickness. For instance,
this approach is used in [24,25] to efficiently define multiple interfacial responses in Mode
I and Mode II. As an alternative, the cohesive-element approach utilizes cohesive elements
to model the bond interface with a finite thickness; thus the interfacial response is charac-
terized by the constitutive behavior assigned to the cohesive elements [2]. The cohesive-
element approach allows to easily track damage evolution in the interface and visualize
the bond failure by removing the damaged cohesive elements. This is critical to capture
the debonding process of the CFRP plate in the current study (see Section 3.4). Therefore,
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the cohesive-element approach is also used here for modeling the steel-concrete interaction
in order to compare it with the proposed node-to-node connector method. The layer of
cohesive elements has a negligible thickness (1 μm in the current FE models) between the
steel reinforcement wire and the concrete continuum. The constitutive response of cohesive
elements was defined to represent the bond stress–relative slip relationship in Figure 7;
damage evolution was introduced to characterize the nonlinear response of softening and
degradation of elasticity.

3.4. Interaction between CFRP Plate and Concrete

In the modeling of the CFRP-strengthened beam, the bond between the CFRP plate and
the concrete was modeled in the cohesive-element approach, as described in Section 3.3.2,
in order to capture the debonding process induced by intermediate cracks. The 1 mm-thick
adhesive layer was modeled with cohesive elements. The constitutive response of the
cohesive elements was defined to represent the bond–slip model proposed by Lu et al. [55],
see Figure 9.

s

Figure 9. Bond–slip model assigned between the CFRP plate and concrete.

3.5. Numerical Solution Strategy

The static analysis procedure is used for the reference FE model to solve the nonlinear
response of the RC beam subjected to monotonic loading. To overcome severe conver-
gence difficulties in the static analysis [8,26], the technique of viscoplastic regularization is
implemented and recommended (see Section 4.2). As an alternative to the static method,
numerical analyses can be performed in a dynamic procedure adopting an implicit or
explicit solution method. In Section 4.7, the dynamic analysis approach based on the
implicit Hilber–Hughes–Taylor–α solution method proposed by Chen et al. (2015) [7] is
implemented in comparison with the static analysis solution for validation.

4. Validation of Modeling Choices and Parametric Studies

According to the proposed modeling strategy, the modeling choices adopted in the
reference FE model were validated and analyzed via multiple groups of parametric studies.
Additionally, through the parametric studies, the effects of available modeling alternatives
were investigated, and the impacts of essential parameters were quantified.

4.1. Dilation Angles

The dilation angle—one of the parameters defining the concrete plasticity—should
be positive and in the range of 0◦–56.3◦. Malm (2009) [8] performed a parametric study
of the dilation angle in FE analyses of an RC beam subjected to a four-point bending
test. The results indicated that a dilation angle between 30◦ and 40◦ yielded converging
load–deflection curves having a good agreement with the experimental flexural behavior.
Jankowiak and Lodygowski (2005) [56] performed flexural tests on RC concrete beams in a
laboratory to identify the reasonable value of the dilation angle required in the CDP model.
A dilation angle of ϕ = 38◦ (and ε = 1.0) resulted in the best fit between the simulated
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flow potential surface and the experimental results of concrete beams ( fct = 2.8 MPa and
fc = 50 MPa). Therefore, in the proposed reference FE model, the dilation angle ϕ was set
as 35◦. This value was also used in previous studies of RC beams [2,8,57].

Additionally, a parametric study was performed in the present study to investigate
the effects of the dilation angle on the numerical results. Figure 10 shows the bending
responses for different dilation angles. The FE results indicated that ϕ = 35◦ was a
suitable choice providing fast convergence and a reasonable response comparable to the
experimental result. 35◦ ≤ ϕ ≤ 45◦ appeared to be a reasonable range, as the predicted
load–deflection curves converged to a similar flexural response and closely matched the
experimental response. However, a value lower (ϕ = 25◦) or higher (ϕ = 55◦) than this
range likely caused underestimation of the concrete resistance to crushing failure, leading
to failure (maximum load) at a smaller deflection. According to this parametric study and
the results of previous studies [2,8,57], the dilation angle of ϕ = 35◦ was validated and
recommended for the modeling of similar slender concrete beams subjected to bending.

Figure 10. Load–midspan deflection relations for different dilation angles ranging from 15◦ to 55◦.

4.2. Viscosity Parameter

As mentioned in Section 3.1.1, the viscosity parameter can be prescribed for viscoplas-
tic regularization in the FE analysis to overcome the severe convergence difficulties in
nonlinear concrete problems using the static analysis procedure [26,58]. The viscoplasticity
introduced by μ permits stresses to be outside of the yield surface, improving the conver-
gence rate for the damaged concrete in the strain-softening regime. The default setting is
μ = 0, indicating that no viscoplastic regularization is introduced.

To appropriately introduce the viscoplastic regularization without compromising
the results, it is important to define an appropriate value of the viscosity parameter μ,
which is theoretically smaller than the characteristic increment in the step of the nonlinear
solution [26]. According to the checking of the automatically divided size of increments in
the loading step, a parametric study of the viscosity parameter was performed (in the range
of 10−3–10−9 with a tenfold decrease) to identify the reasonable value for the reference
FE model. The simulated load–deflection curves and crack patterns are shown in Figure
11, indicating the following: (1) a μ value that is too large (e.g., μ = 10−3 or 10−4) tends
to reduce the accuracy of the numerical results, leading to overestimation of the bending
response of the beam and the inability to obtain clear crack patterns with localized crack
bands; (2) a μ value that is too small (e.g., μ = 10−8 or 10−9), although not affecting
the simulated flexural behavior, can reduce the convergence rate and even abort the
analysis owing to convergence difficulties; and (3) the suitable μ range appears to be 10−5–
10−7. Within such a range, the FE analyses not only effectively overcome the convergence
problems arising from concrete cracking and crushing but also yield converging results
with negligible differences regarding the load–deflection curves and the crack patterns.
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Figure 11. Numerical results: (a) load–midspan deflection relations; (b) crack patterns in the RC
beam given the viscosity parameter μ ranging from 10−3 to 10−9.

According to the parametric study, the value of the viscosity parameter was selected as
10−6 in the reference FE model. The use of the viscoplastic regularization technique to solve
the convergence problems in the static analysis procedure is highly recommended. How-
ever, the viscosity parameter for a specific model should be carefully selected according to
parametric studies.

4.3. Concrete Tensile Behavior

The concrete tensile behavior is mainly characterized by the concrete tensile strength
fct, the fracture energy GF, and the post-peak behavior (i.e., the shape of strain-softening
curve after fct is reached). Considering the uncertainty of the parameters (i.e., fct and GF)
and the differences among the available post-peak constitutive models (see Figure 12), the
modeling choices adopted for the reference FE model were validated through parametric
studies of their impacts on the flexural responses (Figure 13) and cracking patterns.

Figure 12. Concrete tensile behaviors considering (a) the uncertainty of the fracture energy GF, (b) pre-cracking at a lower
tensile strength fct, and (c) the differences among post-peak softening models, e.g., between Model Code 2010 [15] and
Hordijk [43].

Figure 13. Numerical results for the load–midspan deflection relations obtained in the parametric studies on the modeling
choices for (a) the fracture energy GF, (b) the tensile strength fct, and (c) the post-peak softening behavior.
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Although the fracture energy GF in the reference model was defined as 148 N/m
according to Equation (1), the parametric study covered the wide range of 100–200 N/m
for the concrete material with a strength of fc = 51.1 MPa, according to fib Bulletin 42 [48].
The concrete tensile strength fct = 3.6 MPa was defined in the reference model, and lower
tensile strengths were assumed in the parametric study to investigate their effects, con-
sidering that cracks were observed before the testing date. In the parametric study of the
post-peak softening behaviors, the commonly used stress–crack opening model proposed
by Hordijk [43] was implemented and compared with the bilinear softening model adopted
in the reference FE model according to Model Code 2010 [15]. The numerical results for the
load–deflection curves (Figure 13) and crack patterns were reviewed. The results indicated
that in general, the modeling choices for the three variables had negligible effects on the
simulated load–deflection curves and cracking patterns, with the following exceptions:
(1) there was a small difference in the first load drop after the cracking point, and (2) the
number of cracks decreased from 8 to 7 when fct was reduced to 2.4 MPa.

4.4. Mesh Sensitivity Analysis

As discussed in Section 3.1.2, the crack band approach was implemented to address
the sensitivity of the numerical results to the concrete element sizes when the smeared crack
method was applied to model cracks in the concrete continuum. Therefore, it was necessary
to perform a mesh sensitivity analysis to verify the size-independence of the simulated
results. As shown in Figure 14, the concrete continuum of each model was discretized
into square elements with sizes (i.e., side lengths) ranging from 10 to 40 mm. Clearly, the
simulated load–deflection curves were not sensitive to the mesh discretization. With regard
to the accuracy and computational efficiency, the element size of 20 mm (20 × 20 in
Figure 14) appeared to be suitable for the reference FE model, as (1) the element size of
10 mm required a longer computational time and (2) mesh sizes of >30 mm (e.g., 40 × 40
in Figure 14) resulted in a smaller number of cracks and led to the underestimation of
the resistance to crushing failure in the concrete compressive zone, as the height of the
compressive zone after the yielding of the steel reinforcement was less than 40 mm.

Figure 14. (a) Load–midspan deflection relations and (b) crack patterns for concrete element sizes of 10, 20, 30, and 40 mm.

4.5. Strain-Softening Behavior of Concrete in Compression

In the modeling of the concrete compressive behavior, it is important to (1) consider
the strain localization in the critical fracture zone and (2) accordingly modify the post-
peak strain-softening behavior of the concrete in compression with the verified size of the
crushing zone Lcr.

As mentioned in Section 3.1.3, the stress–strain models characterized by the mean
strain tend to be size-dependent in the post-peak regime and cannot account for the strain lo-
calization in the fracture zone. For instance, the commonly used stress–strain relationships
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in Table 3 have different post-peak softening branches, as shown in Figure 15a. The dif-
ferences in the softening behaviors significantly affect the simulated flexural responses,
particularly in the ultimate state, as shown in Figure 15b. Thus, properly modifying the
softening behavior is necessary for accurately simulating the flexural failure of beams
governed by concrete crushing.

Figure 15. (a) Stress–strain models—Model Code [14,15], Thorenfeldt [21], and Saenz [51]—for the concrete compressive
behavior with different post-peak softening branches; (b) load–deflection curves for FE analyses based on the stress–strain
models without modification.

The iterative procedure proposed in Figure 4 was followed to determine the actual
length of the critical crushing zone Lcr for the reference FE model. Figure 16a presents the
Model Code relation, including the original post-peak branch (Lcr.input = 200 mm) and
modified post-peak branches given an Lcr.input of 40–100 mm. Given the iterative assump-
tion of Lcr.input to modify the compressive behavior, the simulated flexural responses are
shown in Figure 16b. The contour plot in Figure 16d shows the field output of strains within
the constant-moment region of the beam model, where the concrete crushing zones are
represented by the black areas with compressive-strain values > εc,lim. The lengths of the
simulated crushing zones Lcr.output (in the compressive direction) were evaluated and com-
pared with the assumed length Lcr.input in each analysis, as shown in Figure 16c. When the
size of the critical crushing zone was assumed to be 100 mm (Lcr.input = 100 mm), the
assumption was verified by the simulated crushing zone (Lcr.output = 100 mm). Therefore,
in the reference FE model, the actual length of the critical fracture zone (i.e., compressive
crushing zone) was selected as Lcr = 100 mm, and this value was used to modify the
post-peak strain-softening behavior of the concrete in compression.

4.6. Bond between Steel Reinforcement and Concrete

The modeling choices to be validated for the bond between the steel reinforcement
and the surrounding concrete include the method of assigning the bond and the bond–slip
relationship.

The proposed connector method for assigning the steel-concrete bond was imple-
mented in the reference model and compared with the cohesive-element method for
validation. The numerical results for the flexural responses and crack patterns are shown in
Figure 17a, indicating that the proposed connector method can provide comparable results
to the cohesive method. No obvious difference was observed in the computational time
between these two bond methods.
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Figure 16. (a) Concrete compressive behavior based on the Model Code relation with the modified post-peak strain-softening
branches given different Lcr.input values ranging from 40–200 mm; (b) simulated load–deflection relations corresponding to
each value of Lcr.input; (c) comparison of the assumed Lcr.input and the observed size of the critical crushing zone Lcr.output

for each FE analysis (represented by a circle); (d) contour plot of the beam models within the constant-moment region for
visualizing the crushing zones and evaluating Lcr.output given different values of Lcr.input.

Figure 17. Comparisons of (a) methods for assigning the steel-concrete bond and (b) bond–slip behaviors based on the
numerical results for the load–deflection relations and crack patterns.

The effects of the bond–slip behaviors (perfect, good, and poor bonds) on the flexural
behavior and crack pattern in the FE analyses were investigated. In a perfect bond, all the
degrees of freedom of the reinforcement nodes were constrained to the nearby concrete
nodes, and there was no relative slip. The good and poor bond behaviors refer to the
two bond–slip relationships provided in Model Code 2010 [15] corresponding to “good”
and “other” bond condition, respectively. As shown in Figure 17b, a comparison of the
flexural responses revealed that a weaker bond (poor bond) caused the earlier occurrence
of flexural failure due to concrete crushing, whereas the perfect bond led to a stronger
response after the cracking point. The significant differences in the crack patterns indicate
that selecting a suitable bond stress–slip relation is critical for the accurate simulation of
cracks, e.g., a poor bond relation led to the underestimation of the number of cracks. Thus,
the Model Code relationship for good condition (good bond) is a better option than the
one for poor bond in order to deliver flexural responses and crack patterns comparable to
the experimental observations.
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4.7. Static and Dynamic Analysis Procedures

The static analysis procedure (aided by the viscoplastic regularization technique) was
defined in the reference FE model. It was compared with an FE model using dynamic
implicit analysis based on the approach proposed by Chen et al. [7] for validation. In the dy-
namic analysis, critical choices and parameters included (1) ramp loading scheme, (2) load
time t0 = 180T1, where T1 = 0.033 s is the period of the fundamental vibration mode of
the beam found from an eigenvalue analysis of the FE model period, (3) viscous damp-
ing ratio ξ = 0.05, and (4) time increment size as T1/100. The corresponding numerical
results are presented in Figure 18, which shows well-matched flexural responses until the
maximum load of 62 kN with a deflection of 67 mm. The two methods predicted the same
number of cracks and similar crack distributions, although there were minor differences in
the positions of the cracks formed in the shear region. Thus, the static analysis procedure
adopted in the reference FE model was validated, as the predicted flexural response and
crack pattern were similar to those obtained via the dynamic approach.

Figure 18. Comparison of the solution strategies between the static general analysis and the dynamic
implicit analysis for the load–deflection relations and crack patterns.

5. Comparison of FE Predictions with Experimental Results

The FE models of the reference RC beam and the CFRP-strengthened beam followed
the modeling strategy introduced in Section 3 and adopted the reference modeling choices
for RC validated in Section 4. The numerical results of the reference beam were compared
with the experimental measurements to examine the reliability of the predicted flexural
response, crack pattern, crack widths, and ultimate failure due to concrete crushing. The ac-
curate simulation of the reference beam laid the foundation for simulating the critical
failure of CFRP debonding initiated by intermediate flexural cracks. The FE analysis of the
CFRP-strengthened beam was chosen to show the applicability of the proposed modeling
strategy for RC members with additional complexity.

5.1. Reference RC Beam

The flexural responses are expressed as load–deflection behaviors in Figure 19. In gen-
eral, the load–deflection curve obtained from FE analysis matched the experimental mea-
surements; however, there were small differences in the cracking point and the ultimate
failure governed by concrete crushing. The weaker response measured in the cracking stage
of the experimental test was attributed to minor cracks present in the RC beam before the
test because of the concrete shrinkage and unexpected loading during the transportation
from the workshop to the laboratory. In the ultimate state, the FE analysis predicted that
the flexural failure would be initiated at a maximum load of 62.5 kN (midspan deflection
of 68 mm), whereas the loading process in the experimental test stopped (at 65.0 kN) when
concrete crushing was observed at the deflection of 79 mm. Although the FE analysis
slightly underestimated the ultimate capacity of the flexural failure, the degradation of the
flexural response was simulated well without convergence problems.
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Figure 19. Load–deflection curves of the reference RC beam from experimental measurements (EXP)
and FE analysis (FE).

Crack patterns and crack widths: The crack pattern documented at the load of 55 kN (the
last measurement round) is shown in Figure 20c. Although the FE analysis predicted one
less crack in half of the constant-moment region, the simulated crack pattern, in general,
was comparable to the distribution of cracks in the experimental test.

Figure 20. Comparison of cracks formed in the reference RC beam at the load of 55 kN regarding (a) crack pattern; (b) crack
widths in the constant moment region (EXP: experimental results, FE: numerical results); (c) crack widths compared in
box-and-whisker plots and (d) assembled photos depicting the crack pattern after the flexural test.

The experimental and numerical results of crack widths within the constant moment
region are presented in Figure 20a and compared in box-and-whisker plots in Figure
20b depicting the quartiles, the variability, the median and mean values of the datasets.
The boxplot of the crack widths at the load of 55 kN indicated that the mean and median
values were similar between the experimental and numerical results, although there was
larger variability in the experimentally measured crack widths. After reaching 55 kN, no
new cracks occurred until the end of loading period; Figure 20d depicts the crack pattern
on the beam after the flexural test.

5.2. CFRP-Strengthened RC Beam

Reliable prediction of the fast-growing crack openings after the yield point is crucial,
as it is the foundation of advanced modeling with a focus on the consequential issues
triggered by the opening of cracks. This was demonstrated by the modeling of the CFRP-
strengthened beam; numerical results of the strengthened beam were compared to the
experimental measurements with respect to its flexural response, concrete cracking, and
CFRP debonding.
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Flexural behavior and CFRP debonding: The flexural responses of the CFRP-strengthened
beam are depicted with load–deflection curves in Figure 21a. To be highlighted, the
FE analysis predicted the debonding of CFRP plate induced by intermediate cracks (IC
debonding) at a maximum load of 104 kN (deflection 44 mm), which matched well with the
experimental observation of IC debonding at 105 kN (deflection 45 mm). The development
of IC debonding captured in the numerical simulation is shown in Figure 21b, including
the initiation at the intermediate flexural crack and the evolution visualized by the removal
of fully damaged adhesive (modeled as cohesive elements).

Figure 21. (a) Comparison of the flexural responses between experimental measurements (EXP) and numerical results (FE)
and (b) intermediate cracks (IC) debonding of CFRP plate simulated in the FE analysis.

Crack patterns and cracks widths: Reliable prediction of the IC debonding is highly
dependent on the accurate simulation of cracks in the RC beam based on proper modeling
options. Crack pattern and crack widths in the FE analysis were checked with the exper-
imental measurements at different load levels. For example, Figure 22a–c demonstrates
the cracks experimentally measured at the load of 70 kN (the last measurement round) in
comparison to the numerical results at the same load. After 70 kN, no new cracks occurred
until the end of loading period; Figure 22d depicts the crack pattern on the beam after the
flexural test.

Figure 22. Comparison of cracks formed in the CFRP-strengthened RC beam at the load of 70 kN regarding (a) crack
pattern; (b) crack widths in the constant moment region (EXP: experimental results, FE: numerical results); (c) crack widths
compared in box-and-whisker plots and (d) assembled photos depicting the crack pattern after the flexural test.

As shown in Figure 22c, localized crack bands were formed and distributed in a clear
pattern, which was comparable to the experimental observation. Crack openings in the
constant moment region are shown in Figure 22a–b; the crack widths less than 0.1 mm
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are corresponding to the measurement of two minor cracks on each side of the beam.
Although the crack widths measured in the experiment showed larger variability than the
simulated ones, both the median and the mean value of the experimental measurements
were well captured in the numerical simulation. The reliable simulation of crack openings
laid the foundation for capturing the IC debonding of CFRP in Figure 21.

6. Summary and Conclusions

In this paper, a robust modeling strategy for reliable nonlinear FE analyses of RC
structures was proposed. The modeling choices adopted for the reference FE model were
validated through parametric studies and comparisons with other commonly used options;
the effects of these choices on the numerical results were investigated. The contributions of
this study are summarized as follows:

• Consistent approaches for deriving and defining the stress–strain relationships for
concrete in tension and compression with consideration of the damage evolution and
strain localization in the fracture zones of cracking and crushing concrete, respectively,
were comprehensively described;

• Principles and recommendations for appropriately determining crack band width in
structurally meshed concrete continuum to adjust the tensile stress–strain relationships
were discussed and proved effective in avoiding the mesh sensitivity problem;

• An iterative implementation procedure was proposed to modify the concrete com-
pressive stress–strain relationship in the post-peak regime according to the verified
size of the crushing zone for considering the strain-localization effect;

• A simple and robust method was proposed for assigning the steel-concrete reinforce-
ment interaction in ABAQUS using node-to-node connectors, and its accuracy was
confirmed via a comparison with the commonly used method based on cohesive
elements;

• Viscoplastic regularization using a properly defined viscosity parameter exhibited the
capability to overcome the convergence difficulties encountered in the simulation of
cracking or crushing concrete and thus significantly reduced the computational time;

• The proposed modeling strategy, as exemplified through the FE analyses of a refer-
ence RC beam, provided a reliable simulation of nonlinear responses including the
development of cracks and resistance to concrete crushing. The ability to capture
these effects on this simple case laid the foundation for the accurate modeling of CFRP
debonding induced by intermediate flexural cracks in the strengthened beam, which
provided an example of modeling RC structures with additional complexity.

Most of the recommendations presented in this paper for the nonlinear concrete
model are general and applicable to FE analyses of other quasi-brittle material models with
different FE software. The proposed modeling strategies can be directly used to model RC
beam and frame structures with different dimensions, loading configuration, and boundary
conditions. The current study also paves the way to FE analyses with higher degrees of
complexity.
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