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Preface to ”Geometric Analysis of Nonlinear Partial

Differential Equations”

The origin of the geometrical theory of the differential equation can be traced back to the

scientific heritage of Sophus Lie, the great Norwegian mathematician of the 19th century. Forgotten

for almost 100 years, it was revived in the work of modern scientists, of whom Lev Ovsyannikov

and Alexandre Vinogradov should be mentioned first of all. The theory received new attention and

consideration during the 1960s during the “solitonic boom”, when the theory of integrable systems

with an infinite number of degrees of freedom was created and coined.

Essentially, the geometrical approach to differential equations consists in understanding them as

submanifolds (smooth or with singularities) in jet spaces. Such an interpretation allows one to apply

powerful methods of modern differential geometry and homological algebra and to look at numerous

classical problems from a completely new and unorthodox viewpoint. In particular, it provided a

rigorous basis for extremely important concepts such as symmetries, conservation laws, equivalence

and differential invariants. Moreover, inside this conceptual scheme, one obtains efficient methods to

compute the necessary invariants (both geometrical and algebraic) of differential equations.

The current collection contains twelve papers published in the Special Issue Analysis of

Nonlinear Partial Differential Equations of the Symmetry journal and may serve as an illustration of

some modern applications of the geometrical methods of partial differential equations. It comprises

miscellaneous topics of the local and nonlocal geometry of differential equations and applications of

the corresponding methods in hydrodynamics, symplectic geometry, optimal investment theory, etc.

Valentin Lychagin, Joseph Krasilshchik

Editors
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Abstract: This work is about the use of some classical spectral collocation methods as well as with the
new software system Chebfun in order to compute the eigenpairs of some high order Sturm–Liouville
eigenproblems. The analysis is divided into two distinct directions. For problems with clamped
boundary conditions, we use the preconditioning of the spectral collocation differentiation matrices
and for hinged end boundary conditions the equation is transformed into a second order system and
then the conventional ChC is applied. A challenging set of “hard” benchmark problems, for which
usual numerical methods (FD, FE, shooting, etc.) encounter difficulties or even fail, are analyzed
in order to evaluate the qualities and drawbacks of spectral methods. In order to separate “good”
and “bad” (spurious) eigenvalues, we estimate the drift of the set of eigenvalues of interest with
respect to the order of approximation N. This drift gives us a very precise indication of the accuracy
with which the eigenvalues are computed, i.e., an automatic estimation and error control of the
eigenvalue error. Two MATLAB codes models for spectral collocation (ChC and SiC) and another
for Chebfun are provided. They outperform the old codes used so far and can be easily modified to
solve other problems.

Keywords: Sturm–Liouville; clamped; hinged boundary condition; spectral collocation; Chebfun;
chebop; eigenpairs; preconditioning; drift; error control

MSC: 34B09; 34B40; 34L16; 65L15; 65L20; 65L60; 65L70

1. Introduction

Due to the spectacular evolution of advanced programming environments, a special
curiosity arose in the numerical analysis of a classical problem, that of accurate solving
of high order SL eigenproblems. It seems that quantum mechanics is the richest source
of self-adjoint problems, while non-self-adjoint problems arise in hydrodynamic and
magnetohydrodynamic stability theory (see for instance [1] and the vast literature quoted
there). The need to compute accurately and efficiently a large set of eigenvalues and
eigenfunctions, including those of high index, is now an utmost task.

Our main interest here is to evaluate the capabilities of the new Chebfun package as
well as those of conventional spectral methods in meeting these requirements. The latter
work in the classical mode, i.e., “discretize-then-solve”. On the contrary, the Chebfun spirit
consists in the continuous mode, i.e., “solve-then-discretize” (see [2] p. 302).

The effort expended by both classes of methods is also of real interest. It can be
assessed in terms of the ease of implementation of the methods as well as in terms of
computer resources required to achieve a specified accuracy.

Some FORTRAN software packages have been designed over time to solve various
regular and singular SL problems. These seem to be the first attempts to solve numerically
(automatically) eigenvalue problems.The most important would be SLEDGE [3,4], the
NAG’s code SL02F [5,6], SLEIGN and SLEIGN2 [7,8], and later MATSLISE. The SLDRIVER
interactive package supports exploration of a set of SL problems with the first four pre-
viously mentioned packages. The SLEDGE, SL02F, SLEIGN2, and NAG’s D02KDF are

Symmetry 2021, 13, 385. https://doi.org/10.3390/sym13030385 https://www.mdpi.com/journal/symmetry
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“automatic” for eigenvalues and not for eigenfunctions. They have built in error estimation
and from that they achieve error control. They adjust the accuracy of the discretization so
that the delivered eigenvalue has estimated error below a user-supplied tolerance.

Essentially, the numerical method used in these software packages replaces the coeffi-
cients in the equation by a step function approximation. Their most important drawback
remains the impossibility to compute the eigenfunctions and a slow convergence in case of
some singular eigenproblems.

The MATSLISE code introduced in [9] can solve some Schrödinger eigenvalue prob-
lems by a constant perturbation method of a higher order. Very recently, this code has been
improved (see [10]) but it remains for Schrödinger issues which are outside the scope of
this paper.

There is also a class of semi-analytical methods which includes the variational iteration
method, the homotopy perturbation method, homotopy analysis method, and Adomian
decomposition (see for instance [11]) for solving eigenvalue problems. Their accuracy is far
from what spectral collocation methods can provide.

In [12], the authors set up an ambitious method based on the Lie group method along
with the Magnus expansion in order to solve any order of SL problem with arbitrary
boundary conditions.

We believe that spectral collocation methods can contribute to the systematic clarifi-
cation of some still open issues related to the numeric aspects of SL problems. The most
important aspect is how many computed eigenpairs (eigenvalues and eigenfunctions) can
we trust when solving a high order SL? This is the outstanding, not completely resolved
research issue, we want to address in this paper.

Thus, we will argue that generally Chebfun would provide a greater flexibility in solv-
ing various differential problems than the classical spectral methods. This fact is fully true
for regular problems. A Chebfun code contains a few lines in which the differential operator
is defined along with the boundary conditions and then a subroutine to solve the algebraic
eigenproblem. It provides useful information on the optimal order of approximation of
eigenvectors and the degree to which the boundary conditions have been satisfied.

Unfortunately, in the presence of various singularities or for problems of higher
order than 4, the maximum order of approximation of the unknowns can be reached
(N ≥ 4000) and then Chebfun issues a message that warns about the possible inaccuracy of
the results provided.

Alternative use of conventional spectral collocation methods generally helps to over-
come this difficulty.

As a matter of fact, in order to resolve a singularity on one end of the integration
interval, Chebfun uses only the truncation of the domain. Classical spectral methods can
also use this method, but it is not recommended because much more sophisticated methods
are at hand in this case. For singular points at finite distances (mainly origin) we will use
the so-called removing technique of independent boundary conditions (see for a review of this
technique our monograph [13] p. 91). The boundary conditions at infinity can be enforced
using basis functions that asymptotically satisfy these conditions (Laguerre, Hermite, sinc).

A Chebfun code and two MATLAB codes, one for ChC and another for the SiC method,
are provided in order to exemplify. With minor modifications they could be fairly useful
for various numerical experiments. These codes are very easy to implement, efficient, and
reliable. All our numerical experiments have been carried out using MATLAB R2020a on
an Intel (R) Xeon (R) CPU E5-1650 0 @ 3.20 GHz.

The main purpose of this paper was to argue that Chebfun, along with the spectral
collocation methods, can be a very feasible alternative to the above software packages
regarding accuracy, robustness as well as simplicity of implementation. In addition, these
methods can calculate exactly the “ whole” set of eigenvectors approximating eigenfunc-
tions and provide automatic estimation and control of the eigenvalue error. For self-adjoint
problems, checking the orthonormality of computed eigenvectors gives us valuable infor-
mation on the accuracy of the calculation of these vectors.
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The structure of this work is as follows. In Section 2, we recall some specific issues
for the regular as well as singular Sturm–Liouville eigenproblems. In Section 3, we review
briefly the conventional ChC method as well as Chebfun, the relative drift of a set of
eigenvalues and the preconditioning of Chebyshev differentiation matrices. Section 4 is
the core part of our study. By analyzing one set of hinged problems and another one of
clamped problems, we want to evaluate the applicability of the two classes of methods as
well as their performances in terms of the accuracy of the outcomes they produce. There
is also a subsection that contains problems equipped with boundary conditions that are
a mixture of these two types, clamped and hinged. We end up with Section 5 devoted to
conclusions and open problems.

2. 2nd-Order Sturm–Liouville Eigenproblems

The 2nd-order SL equation reads

(−1)n
(

pn(x)u(n)
)(n)

+(−1)n−1
(

pn−1(x)u(n−1)
)(n−1)

+. . .

+(p2(x)u′′)′′ − (p1(x)u′)′ = λu(x), a < x < b, n ∈ N, n ≥ 2,

along with separated, (self-adjoint) boundary conditions. We shall assume that all coeffi-
cient functions are real valued. The technical conditions for the problem to be non singular
are: the interval (a; b) is finite; the coefficient functions pk, 0 < k < n− 1, the weight w and
1/pn are in L1(a, b); and the essential infima of pn and w are both positive. Under these
assumptions, the eigenvalues are bounded below (see for instance [14]).

The eigenvalues can be ordered in the usual form: λ0 ≤ λ1 ≤ λ2 ≤ ..., such that
limk→∞ λk = +∞. In this sequence, each eigenvalue has multiplicity at most n (so k+ n > k
for all k). The restriction on the multiplicity arises from the fact that for each λ there are at
most n linearly independent solutions of the differential equation satisfying either of the
endpoint conditions which we shall consider below.

Some of the problems we deal with are also found in the monographic paper [15].
It contains over 50 challenging examples from mathematical physics and applied mathe-
matics along with a summary of SL theory, differential operators, Hilbert function spaces,
classification of interval endpoints, and boundary condition functions.

3. Chebfun vs. Conventional Spectral Collocation

3.1. Chebfun

For details on Chebfun we refer to [2,16–18]. The Chebfun system, in object-oriented
MATLAB, contains algorithms which amount to spectral collocation methods on Cheby-
shev grids of automatically determined resolution. This is the main difference compared to
conventional spectral methods in which the resolution (order of approximation) is imposed
almost arbitrarily. Its properties are briefly summarized in [17]. In [16] the authors explain
that chebops are the fundamental Chebfun tools for solving ordinary, partial differential or
integral equations.

The implementation of chebops combines the numerical analysis idea of spectral
collocation with the computer science idea of lazy or delayed evaluation of the associated
spectral discretization matrices. The grammar of chebops along with a lot of illustrative
examples is displayed in the above quoted papers as well as in the text [2]. Thus, one can
get a suggestive image of what they can do working with Chebfun.

Moreover, in ([16] p. 12) the authors explain clearly how the Chebfun works, i.e., it
solves the eigenproblem for two different orders of approximation, automatically chooses a
reference eigenvalue and checks the convergence of the process. At the same time, it warns
about the possible failures due to the high non-normality of the analyzed operator (matrix).

Actually, we want to show in this paper that Chebfun along with chebops can do
much more, i.e., can accurately solve high order SL problems.

3
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3.2. Spectral Collocation Methods

Spectral methods have been shown to provide exponential convergence for a large
variety of problems, generally with smooth solutions, and are often preferred [19]. In
all spectral collocation methods designed so far, we have used the collocation differenti-
ation matrices from the seminal paper [20]. We preferred this MATLAB differentiation
suite for the accuracy, efficiency as well as for the ingenious way of introducing various
boundary conditions.

In order to impose (enforce) the boundary conditions we have used the boundary
bordering, which is a simplified variant of the above mentioned removing technique of
independent boundary conditions, as well as the basis recombination. We have used the first
technique in the large majority of our papers except [21] where the latter technique has been
employed. In the last quoted paper a modified ChT method based on basis recombination
has been used in order to solve an Orr-Sommerfeld problem with an eigenparameter
dependent boundary condition.

Once eigenvectors are calculated in physical space they are transposed into the space
of coefficients using FCT. In this way, it is possible to estimate the way in which their
coefficients decrease.

3.3. The Drift of Eigenvalues

Two techniques are used in order to eliminate the “bad” eigenvalues as well as to
estimate the stability (accuracy) of ChC or Chebfun computations. The first one is the drift,
with respect to the order of approximation or the scaling factor, of a set of eigenvalues of
interest. The second one is based on the check of the eigenvectors’ orthogonality.

In other words, we want to separate the “good” eigenvalues from the “bad” ones, i.e.,
inaccurate eigenvalues. An obvious way to achieve this goal is to compare the eigenvalues
computed for different orders of some parameters such as the approximation order (cut-
off parameter) N or the scaling factor (length of integration interval). Only those whose
difference or “resolution-dependent drift” is “small” can be believed. In this connection, in
the paper [22], the so called absolute (ordinal) drift with respect to the order of approximation
has been introduced. We extend this definition in our recent paper [23] and will use it
without repeating it here.

Whenever the exact eigenvalues of a problem are known, the relative drift is reduced
to the relative error.

At this point, the following observation is extremely important. In the highly cited
monograph [24], the author makes a subtle analysis of spectral methods in solving linear
eigenproblems. Among others, he states the so called Boyd’s Eigenvalues Rule-of-Thumb

in which he notices that in solving such a problem with a spectral method using (N + 1)
terms in the truncated spectral series, the lowest N/2 eigenvalues are usually accurate to
within a few percent, while the larger N/2 numerical eigenvalues differ from those of the
differential equation by such large amounts as to be useless.

3.4. Preconditioning

To simplify the introduction of a preconditioner, we use the differential operator

L(n)(u) :=
dnu
dxn , x ∈ (−1, 1), (1)

subject to clamped boundary conditions

u(μ)(−1) = 0, 0 ≤ μ ≤ ln, (2)

and
u(ν)(1) = 0, 0 ≤ ν ≤ rn, (3)

where n > 1, ln, and rn are positive integers such that rn + ln + 2 = n.

4
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It is well known that for general collocation points the first order differentiation matrix
has a condition number of order N2 and the second order differentiation matrix has a
condition number of order N4 as N → ∞. We comment on the preconditioner introduced
in [25]. These authors show that the preconditioning matrix

D := diag
(
(1 + xk)

lk+1(1− xk)
rk+1

)
, 2 ≤ k ≤ N − 1,

applied to ChC as well as to Chebfun discretization L
(n)
ChCor Cheb f un of differential operator

L(n), produces matrices DL
(n)
ChCor Cheb f un of an inferior condition number, namely Nn.

4. Numerical Experiments

4.1. Hinged Ends or Simply Supported Boundary Conditions
4.1.1. The Viola’s Eigenproblem-Revisited

Let us consider now the so called Viola’s eigenproblem. It is encountered in porous
stability problems (see [1], Chapter 9) and reads

d2

dx2

[
(1− θx)3 d2u

dx2

]
= λ(1− θx)u, x ∈ (0, 1), 0 ≤ θ < 1,

u(0) = u′′(0) = u(1) = u′′(1).
(4)

It is singular as θ → 1− in accordance with the definition introduced in Section 2.
By straightforward variational arguments, we have shown in ([13] p. 50) that the

lowest eigenvalue is positive. In this text, we have solved the above problem by ChC using
the so called D2 strategy which involves the change of variables

v := (1− θx)3 d2u
dx2 .

The main deficiency of this strategy is the fact that it produces a lot of numerical
spurious eigenvalues (at infinity).

In spite of this, we succeeded in stating the conjecture according to which λ1(θ), the lowest
eigenvalue of the problem (4), approaches 1 as θ → 1−.

Now, taking advantage of Chebfun we solve directly problem (4). Thus, the depen-
dence of the lowest eigenvalue of the problem (4), computed by Chebfun, on the parameter
θ is depicted in Figure 1. Actually, we have obtained

λ1(0.98765) = 8.775218471808549e− 01,

which only partly confirms the above conjecture.

0 0.2 0.4 0.6 0.8 1

θ

0

20

40

60

80

100

λ
1
(θ

)

Figure 1. The dependence of the lowest eigenvalue of the Viola’s eigenproblem (4), computed by
Chebfun, on the parameter θ.
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As a validation issue for our computations we have obtained the known value

λ1(0.0) = π4,

within an approximation of a thousand.
For the highest computable value of parameter θ, we display in Figure 2 the first four

eigenvectors of problem (4) and in Figure 3 the Chebyshev coefficients of these eigenvectors.
We have to mention that the singularity in the right end x = 1 becomes more promi-

nent as the θ tends to 1. This is confirmed by increasing the degree of the Chebfun
approximation. For instance, when θ := 0 only a 25 degree Chebyshev polynomial uses it
and when θ := 0.98765 the degree of approximation grows to more than 80 (see Figure 3).
It is also worth mentioning that only for θ growing very close to 1 a truncation of the
domain along with the use of the option splitting have been necessary when Chebfun
has been used.

0 0.5 1
x

0

0.5

1

1.5

u 1

0 0.5 1
x

-2

0

2

u 2

0 0.5 1
x

-2

0

2

u 3

0 0.5 1
x

-2

0

2

u 4

Figure 2. From upper left to lower right we display the first four eigenvectors of the Viola’s eigen-
problem (4) computed by Chebfun with θ = 0.98765.
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Figure 3. The Chebyshev coefficients of the first four eigenvectors of the Viola’s eigenproblem (4)
computed by Chebfun with θ = 0.98765. A very narrow rounding-off plateau can be seen.

We have to observe that the problem (4) has been solved by compound matrix method
in [26] for θ < 0.9. The author asserts that other methods have to be used in order to
resolve the singularity in this problem. We hope that the above analysis sheds some light
in this direction.
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4.1.2. The Bénard Stability Problem

A simplified form of the Bénard stability problem supplied with self-adjoint boundary
conditions reads (see for instance [14,27])

u(vi) − (2ν + 3)u(iv) +
(
ν2 + 4ν + 3

)
u′′ − (ν2 + 2ν + 2

)
u = λu(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0.
(5)

The constant ν is regarded as a parameter which typically can take the values

ν±j := −
(

1 + j2π2
)
±
(

1 + j2π2
)−1/2

, j = 1, 2, . . . .

All our attempts to solve this problem using Chebfun have failed, so we have resorted
to the old D2 strategy.

Thus, we rewrite problem (5) as a homogeneous Dirichlet one attached to a second
order differential system, namely

u′′ = v(x), x ∈ (0, 1),
v′′ = w(x),

w′′ − (2ν + 3)w +
(
ν2 + 4ν + 3

)
v− (ν2 + 2ν + 2

)
u = λu(x),

u = v = w = 0 in x = 0 and x = 1.

(6)

Now we apply to each line the ChC discretization. It leads to the generalized and
singular eigenpencil

(A, B), (7)

where the block matrices are defined by

A :=

⎛⎝ 4D̃(2) I Z
Z 4D̃(2) I

−(ν2 + 2ν + 2
)

I
(
ν2 + 4ν + 3

)
I 4D̃(2) − (2ν + 3)I

⎞⎠,

and

B :=

⎛⎝ Z Z Z
Z Z Z
I Z Z

⎞⎠.

The factor 4 in front of D̃(2) comes from the shift of interval (0, 1) to the canonical
Chebyshev interval [−1, 1] and the matrix D̃(2) signifies the second order Chebyshev
differentiation matrix with the homogeneous Dirichlet boundary conditions enforced.
The matrices I and Z stand respectively for the identity and zeros matrices of the same
dimension as D̃(2).

The following short MATLAB code has been used to solve (6):

N=256; % order of approximation

nu=-(1+4*(pi^2))-sqrt(1+4*(pi^2)); % parameter \nu

[x,D]=chebdif(N,2); D2=D(2:N-1,2:N-1,2); % differentiation matrices

I=eye(size(D2)); Z=zeros(size(D2));

A=[ 4*D2 -I Z; Z 4*D2 -I; -(nu^2+2*nu+2)*I (nu^2+4*nu+3)*I 4*D2-(2*nu+3)*I];

B=[Z Z Z; Z Z Z; I Z Z]; % block matrices in pencil

k = 8 ; % number of computed eigs

E=eigs( @(x)(A\(B*x)), size(A,1),k, ’SM’) % Arnoldi method

When the order of approximation is N, both matrices in (7) have order 3× (N − 1).
This tripling of the dimensions of the matrices involved is not a major disadvantage. On

7



Symmetry 2021, 13, 385

the contrary, if we use Henrici’s number as a measure of normality (see for instance our
text [13] pp. 22–23), we see from the inequality

Henrici(A) = 0.300293 < Henrici
(

D̃(2)
)
= 0.395205,

that matrix A is more normal than D̃(2).
In our previous paper [28], we have analyzed various methods to solve singular

eigenproblems attached to pencils of the form (7). For the problem at hand we have
used the Arnoldi method with the MATLAB sequence eigs(A−1B) and with the above
code obtained the eigenvalue reported in Table 1. It is very clear that for the values of
ν considered, the block matrix A is non singular and the block matrix B is singular and
independent of ν.

It is extremely important to point out that for the first two values of the parameter
ν in Table 1 our results are very close to those reported in [14]. For the other parameter
values this no longer happens. A similar situation occurs even for the second eigenvalue.
Then, to decide over the accuracy of our outcomes, we resorted to drift. The relative
drift, with respect to the order of approximation N, of the first forty eigenvalues when
ν := −(1 + π2) − (1 + π2)−1/2 is displayed in Figure 4. It suggests that the first two
eigenvalues are computed with an accuracy of at least 10−12 and the first forty with an
accuracy of at least 10−2. This leads us to believe that we have produced much better
approximations for these eigenvalues than those reported in [14] as well as [27]. Actually,
in [14] the authors use the SLEUTH code and accept that “it is clear that the code is not
very accurate on this problem”.
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Figure 4. The relative drift of the first forty eigenvalues of Bénard problem is displayed when
ν := −(1 + π2)− (1 + π2)−1/2-red dotted line when N1 := 256 and N2 := 128 and green circled line
when N1 := 64 and N2 := 128.
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Table 1. The first two eigenvalues of Bénard problem (5) for various ν computed by D2 strategy along with ChC.

ν λ0(ν) λ1(ν) λ0(ν) according to [14]

−(1 + π2) −1.000000000102923e + 00 −3.548769279033568e + 04 −1.000005
−(1 + 4π2) −1.000000009534114e + 00 −9.530184561696226e + 03 −1.0001

−(1 + π2)− (1 + π2)−1/2 −1.191482998363510e + 02 −2.802486989002433e + 04 −1× 10−7

−(1 + 4π2)− (1 + 4π2)−1/2 −1.639502291744172e + 03 −1.406538196754713e + 04 −3× 10−5

4.1.3. A Self-Adjoint Eighth-Order Problem

The eigenproblem of the highest order we consider in this paper is the following

u(8)(x) = λu(x), 0 < x < 1,
u(0) = u′′(0) = u(4)(0) = u(6)(0) = u(1) = u′′(1) = u(4)(1) = u(6)(1) = 0,

(8)

with exact eigenvalues λk = (kπ)8, k = 1, 2, . . . .
All our attempts to solve this problem with Chebfun have failed. The abortion message

referred to the extremely small conditioning of the eight order Chebyshev collocation
differentiation matrix (of the order 10−40).

Instead, the D2 strategy along with ChC worked well and produced vectors from
Figure 5.
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Figure 5. From upper left to lower right we display the first four eigenvectors of problem (8)
computed by ChC along with D2 method when the order of approximation has been N := 256.

In order to estimate the error with which the eigenvalues were calculated, we display
in Figure 6b the relative drift of the first twelve eigenvalues for different approximation
orders. As a result that we know the exact eigenvalues, we also display the relative
errors. It is very clear that the first eigenvalue is computed with better accuracy than 10−12.
Unfortunately, this means a lower performance by three decimals than that of Magnus
expansion reported in Table 10 from [12].

Moreover, this means that we cannot trust more than twelve eigenvalues for this problem.
It is clear that ChC along with the D2 method have the potential to find the first

eigenvalues of an SL problem of arbitrary (even) order with good accuracy. In addition
to the Magnus method, this strategy calculates its eigenfunctions (eigenvectors) with
reasonable accuracy as can be seen in Figure 6a. We use FCT to compute the Chebyshev
coefficients of the eigenvectors.
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Figure 6. (a) The Chebyshev coefficients of the first four vectors of the problem (8) computed by FCT
(fast Chebyshev transform). (b) The relative drift of the first twelve eigenvalues to problem (8), red
dotted line N1 := 96, N2 := 200, green stared line N1 := 128, N2 := 200, and magenta circled line
N1 := 200, N2 := exact.

4.2. Clamped Boundary Conditions
4.2.1. A Fourth Order Problem with a Third Derivative Term

With this first example we have to highlight the importance of preconditioning in
improving the accuracy of Chebfun. In the papers [25,29], as well as in the monograph [30],
the following eigenproblem is carefully studied. It consists of the fourth order differen-
tial equation

u(iv) + Ru′′′ = su′′, x ∈ (−1, 1), R ∈ R, (9)

supplied with the clamped boundary conditions

u(±1) = u′(±1) = 0. (10)

The eigencondition for this problem is(
R2 + 4s

)1/2
[

cosh(R)− cosh
(

R2 + 4s
)1/2

]
+ 2s sinh

(
R2 + 4s

)1/2
= 0. (11)

Problems similar to this appear, for example, in linearized stability analysis in fluid
dynamics. In [29], the authors noticed spurious eigenvalues when the problem (9) and (10)
is solved by ChT method. These spurious eigenvalues appears in the right-half plane
suggesting physical instabilities that do not exist.

We have solved the problems (9) and (10) by Chebfun with and without precondition-
ing. The numerical outcomes are displayed in Table 2. Boldfaced digits in the computed
eigenvalues show the extent of agreement with the exact values. Thus, it is very clear that
preconditioning Chebfun can considerably improve its accuracy.

Table 2. First two eigenvalues of problems (9) and (10).

i λi Chebfun λi Preconditioned Chebfun λi Solution to (11)

1 −9.870154876048822e + 00 −9.869604528925013e + 00 −9.8696044
2 −2.019216607051227e + 01 −2.019072837497370e + 01 −20.1907286

10
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4.2.2. A Fourth Order Eigenproblem from Spherical Geometry

In [29], the authors consider the eigenproblem

D(D− s)u = 0, 0 < r1 < r2, r1 > 0,
u(r1) = u(r2) = u′(r1) = u′(r2) = 0,

(12)

where the operator D is defined by

D(u) := u′′ + 2
r

u′ − l(l + 1)
r2 ,

and l is a positive integer. They solve this problem by a modified ChT method in order to
avoid spurious eigenvalues. We have solved this problem by ChC and obtained for the fist
two eigenvalues the numerical values

s1 = −3.947819275687863e + 01, s2 = −8.076297512888706e + 01,

which agree up to the fourth decimal with the the true values (determined from the
eigencondition.

The first four vectors to problem (12) computed by Chebfun are depicted in Figure 7a.
It is visible that they satisfy the boundary conditions. Their Chebyshev coefficients are
displayed Figure 7b. About the first twenty coefficients of the first four eigenvectors
decrease just as abruptly and smoothly.
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Figure 7. (a) The first four eigenvectors to problem (12) computed by Chebfun. (b) The coefficients of
first four eigenvectors to problem (12).

4.2.3. A Set of Sixth Order Eigenproblems

In [31], the authors consider the following sixth order eigenproblems

u(vi)(x) = λu(j)(x), u(±1) = u′(±1) = u′′(±1) = 0, j = 0, 2, 4, (13)

and introduce an extremely simple modification to the ChT method which eliminates the
spurious eigenvalues when such high order eigenproblems are solved.

We have tried to solve problem (13) with j := 4 by Chebfun but all our attempts failed
due to the very small conditioning of matrix involved, i.e., around O

(
10−40). The situation

became much better with the preconditioner introduced in Section 3.4.
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Thus, the first four eigenvectors along with their Chebyshev coefficients are depicted
in Figure 8. As it is apparent from the lower panel of this figure the coefficients of degree up
to 30 drop sharply to an absolute value below 10−10 and then slowly decrease to machine
accuracy. This happens at an degree around 120.

The eigenvalues computed by Chebfun agree up to the first three digits with those
provided in ([25] p. 405).
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Figure 8. The first four eigenvectors of problem (13) with j := 4, computed by Chebfun, are reported
in the the upper panels and their Chebyshev coefficients are displayed in the lower panel.

4.3. Problems with Mixed Boundary Conditions
4.3.1. The Free Lateral Vibration of a Uniform Clamped–Hinged Beam

The fourth order eigenproblem

u(iv)(x) = λu(x), 0 < x < 1, u(0) = u′(0) = u(1) = u′′(1) = 0, (14)

is considered in [32] and is solved by a non conventional spectral collocation method. In
this paper, the author shows that the eigenvalues satisfy the transcendental equation

tanh 4√
λ = tan 4√

λ. (15)

It is extremely important to observe that neither preconditioning nor D2 strategy can
handle the mixture of boundary conditions in (14). Thus, this problem tests how well the
Chebfun can cope with various boundary conditions.

As the eigenvalues computed from (15) are compared with those obtained by Magnus
expansion in [12], we report in Table 3 the latter eigenvalues compared with those provided
by Chebfun. A coincidence of at least three decimals can be observed.
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Table 3. The first five eigenvalues to problem (14) computed by Chebfun and compared with those
provided by Magnus expansion.

j λj Chebfun λj According to [12]

1 2.377373239875730e + 02 2.377210675300e + 02
2 2.496524908617440e + 03 2.496487437860e + 03
3 1.086783642364734e + 04 1.086758221697e + 04
4 3.177977410414838e + 04 3.178009645380e + 04
5 7.400167551416633e + 04 7.400084934040e + 04

The first four eigenvectors to problem (14) computed by Chebfun are displayed in
Figure 9. It is perfectly visible that they satisfy the boundary conditions assumed in
this problem.
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Figure 9. From upper left to lower right we display the first four eigenvectors to problem (14)
computed by Chebfun.

The Chebyshev coefficients of the first four eigenvectors to problem (14) computed by
Chebfun are displayed in Figure 10. They decrease smoothly to somewhere around 10−12

which is an argument in favor of the accuracy of numerical results.
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Figure 10. In a log-linear plot we display the Chebyshev coefficients of the first four eigenvectors to
problem (14) computed by Chebfun.
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4.3.2. A Fourth Order Eigenproblem with Higher Order Boundary Conditions

In order to show again the Chebfun versatility in introducing boundary conditions,
we consider the following problem called the cantilevered beam in Euler–Bernouilli theory
(see for instance [33]). The equation simply reads

u(iv) = β4u, x ∈ (0, π), (16)

and is equipped with the following boundary conditions

u(0) = 0, u′(0) = 0,
u′′(π) = 0, u′′′(π) = 0.

(17)

The first two boundary conditions state that the beam is clamped in 0 and the last two
state that the bean is free in the right hand end. The eigenvalues β satisfy the eigencondition

cosh(βπ)cos(βπ) + 1 = 0. (18)

Actually, the problems (16) and (17) are self-adjoint. Without going into details, we
will notice that the first eigenvalue of this eigenproblem is the solution of the minimiza-
tion problem

β4 = min
v∈V

∫ π
0 (v′′)2dx∫ π

0 v2dx
,

where, roughly, V is a space of continuous functions satisfying the boundary conditions in
(17). This Ritz formulation, as well as a weak (variational) formulation can be obtained by
multiplying the equation with a function v from V and a double integration by parts.

Again, these boundary conditions are not treatable by preconditioning or D2 strategy.
The following simple and short Chebfun code solves the problems (16) and (17).

% Cantilevered beam in Euler-Bernouilli theory

dom=[0,pi];x=chebfun(’x’,dom); % the domain

L = chebop(dom);

L.op = @(x,y) diff(y,4); % the operator

L.lbc = @(y)[y; diff(y,1)]; % fixed b. c.

L.rbc = @(y)[diff(y,2); diff(y,3)];% free b. c.

[U,D]=eigs(L,40,’SM’); % first six eigs.

% Sorted eigenpairs (eigenvalues and eigenvectors)

D=diag(D); [t,o]=sort(D); D=D(o); disp((D.^(1/4)))

U=U(:,o);

In Table 4, the first four eigenvalues computed by Chebfun and by Magnus expansion
are reported. A satisfactory agreement is observed.

Table 4. The first four eigenvalues of problems (16) and (17) computed by Chebfun compared with
numerical solutions to Equation (18).

j βj by Chebfun βj Exact Solutions of (18)

1 5.967718563107258e− 01 0.59686
2 1.494163617547652e + 00 1.49418
3 2.500244462376521e + 00 2.50025
4 3.499990154542449e + 00 3.49999

The first four eigenvectors are displayed in Figure 11a and their Chebyshev coeffi-
cients are displayed in the same figure panel b. It is clear that Chebfun uses Chebyshev
polynomials of slightly lower degree than 20 and from this level only a sharply decreasing
rounding-off plateau follows.
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Figure 11. (a) The first four eigenvectors of problem (16) and (17) computed by Chebfun. (b) The
absolute values of Chebyshev coefficients of these vectors are displayed in a log-linear plot.

The first four eigenvectors approximating the eigenfunctions are in very good agree-
ment with those exposed in literature. Using the definition of the scalar product of two
vectors u and v, namely u′ ∗ v, we can easily check the orthonormality of eigenvectors.

The curves in Figure 12 clearly show that the eigenvectors of this problem computed
by Chebfun are orthonormal.
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Figure 12. In a log-linear plot we display the scalar products u′1 ∗ uj—red dotted line, u′3 ∗ uj—blue
dotted line, u′5 ∗ uj—green dotted line and u′10 ∗ uj—magenta dotted line, j := 1, 2, . . . , 50 when the
eigenproblem (16) and (17) is solved by Chebfun.

4.3.3. The Harmonic Oscillator and Its Second and Third Powers

We wanted to test our strategy on a problem whose differential equation exhibits
stiffness in at least part of the range. Thus, along with the well known harmonic oscillator
operator

h(u) := −u′′ + x2u, x ∈ (−∞, ∞)

we will consider its second and third powers, namely

h2(u) = u(iv) − 2
(

x2u′
)′

+
(

x4 − 2
)

u, x ∈ (−∞, ∞),
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and

h3(u) = −u(vi) +
(

3x2u′′
)′′

+
((

8− 3x4
)

u′
)′

+
(

x6 − 14x2
)

u, x ∈ (−∞, ∞).

Actually we want to solve the fourth order eigenvalue problem for h2(u), namely

h2(u) = λu, (19)

and the sixth order eigenvalue problem

h3(u) = λu, (20)

corresponding to the cube of the harmonic oscillator operator. The eigenvalues of the
harmonic oscillator are λk = (2k + 1), k = 0, 1, 2, . . . , and those of h2 and h3 are the second
and the third powers, respectively of λk. According to the definition for classification of SL
problems, given in this Section 2, the eigenproblems (19) and (20) are singular.

We have to observe that no boundary conditions are needed because the problem is of
limit-point type [15]: the requirement that the eigenfunctions be square integrable suffices
as a boundary condition. In [14] the problem (20) is solved by a SLEUTH code along with
domain truncation. Actually the authors truncate this problem to the interval (−100, 100),
and impose the simplest boundary conditions u = u′ = u′′ = 0 at x = ±100. Along with
these boundary conditions the eigenproblem becomes self-adjoint.

The first four eigenvectors of the cube of harmonic oscillator computed by SiC are
displayed in the upper panels of Figure 13. Their sinc coefficients are displayed in the
lower panel of the same figure. Roughly speaking, it guarantees us an accuracy of at least
10−12 in the computation of these eigenvectors.
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Figure 13. A zoom in on the first four eigenvectors of the cube of harmonic oscillator (20) computed
by SiC is displayed in the upper panels and the sinc coefficients of eigenvectors are reported in the
lower panel.
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SiC computes the integers λk with an accuracy of at least six digits.
The relative drift, with respect to N, of the first 250 eigenvalues of the cube of harmonic

oscillator computed by SiC are displayed in Figure 14a). It tells us that the first 200
eigenvalues are “good" within an accuracy of approximately 10−2. It also means the
“highest” confirmation of Boyd’s Eigenvalues Rule-of-Thumb (see Section 3.3).
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Figure 14. (a)The relative drift of the first 250 eigenvalues of the cube of harmonic oscillator computed
by SiC. Red stared line compares the exact values with the eigenvalues computed with N := 400 and
the circled green line compares the latter eigenvalues with those computed when in SiC N := 500. In
both cases, the scaling factor h equals 0.1. (b) The orthonormality of the first 250 eigenvectors, i.e.,
the scalar products, u′1 ∗ uj red dotted line, u′10 ∗ uj blue dotted line, u′50 ∗ uj green dotted line and
u′100 ∗ uj magenta dotted line, j := 1, 2, . . . , 250.

Trying to explain this spectacular phenomenon we cannot forget the fact that the
derivation matrices of SiC are symmetric. This leads to normal matrices (operators) whose
eigenpairs are properly computable.

If we compare this result with Table 10 from [14], where the best accuracy in com-
puting of the first eigenvalue is 10−2, we can speak of a total superiority of SiC method
over SLEUTH.

In Figure 14b, we display the scalar product of some eigenvectors. They prove that
the SiC computed eigenvectors are orthonormal. This means that we can trust at least the
first 200 eigenpairs computed by SiC. The following few lines of MATLAB compute the
above eigenpairs:

% The sinc differentiation matrices [Weideman & Reddy]

N=400;M=6;h=0.1;

%Orders of approximation and differentiation and scaling factor

[x, D] = sincdif(N, M, h); D1=D(:,:,1);D2=D(:,:,2);D6=D(:,:,6);

% The cube of the "harmonic oscillator" operator

L=-D6+D2*(3*diag(x.^2)*D2)+D1*(diag(8-3*(x.^4))*D1)+diag(x.^6-14*(x.^2));

% Finding eigenpairs of L

[U,S]=eigs(L,250,0); S=diag(S); [t,o]=sort(S); S=S(o);

Unfortunately, Chebfun along with domain truncation fails in solving the sixth order
problem (20) with or without preconditioning. Actually, a warning concerning the very
bad conditioning of the matrix is issued.

However, Chebfun behaves fairly well in solving the fourth order problem (19), i.e.,
computes the corresponding integers with the same accuracy as SiC. We have solved the
Equation (19) on the truncated interval (−X, X) for various X along with the boundary
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conditions u(±X) = u′(±X) = 0. The Chebyshev coefficients of the first four eigenvectors
of eigenproblem (19) computed by Chebfun are displayed in Figure 15a). An important
aspect must be highlighted, namely the first about 1000 polynomial coefficients decrease
steeply and smoothly to about 10−14 after which up to the order of 2500 follows a wide
rounding-off plateau.This is the polynomial of the highest degree that Chebfun has used in
our numerical experiments. The curves in Figure 15b) show the orthonormality of Chebfun
eigenvectors.
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Figure 15. (a) We display the Chebyshev coefficients of the first four eigenvectors of eigenproblem
(19); red dotted line-first vector, green stared line-second, blue circles-third and magenta diamonds-
fourth vector. (b) In a log-linear plot we display the scalar products u′1 ∗ uj—red dotted line, u′3 ∗ uj—
blue dotted line, u′5 ∗ uj—green dotted line and u′10 ∗ uj—magenta dotted line, j := 1, 2, . . . , 200 when
the eigenproblem (19) is solved by Chebfun.

The relative drift with respect to the length of integration interval X of the first 250
eigenvalues to problem (19), when it is solved by Chebfun, is displayed in Figure 16.
It means that the numerical stability is lost for larger X than 100 and a set of small eigenval-
ues can be computed with an accuracy better than 10−9.
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Figure 16. The relative drift (errors) with respect to X of the first 250 eigenvalues of second order
harmonic oscillator operator h2.

5. Conclusions and Open Problems

After analyzing these challenging problems, some firm conclusions can be drawn.
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First of all, Chebfun can easily handle any type of boundary condition. This is a signif-
icant advantage. Thus, for fourth order eigenproblems, the direct application of Chebfun
is versatile in handling various high order boundary conditions and produces reliable
outcomes. Furthermore, for problems with clamped boundary conditions both methods,
Chebfun as well as ChC, improve their results with two, three decimals by preconditioning.

For sixth order eigenproblems, the Chebfun situation is not so encouraging. Its
direct application is very uncertain. Matrices whose conditioning order drops to 10−40

appear, which most often lead to inaccurate results. For problems of this order or more,
subjected to hinged boundary conditions, the reduction to second-order systems and then
the application of the ChC method is the best strategy. In this way, we managed to establish
a conjecture for the Viola’s problem regarding its lowest eigenvalue.

For fourth order problems on the real line Chebfun along with the truncation of the
domain worked fairly well as was the case with the second power harmonic oscillator. As
an absolute novelty, we have established in this case the numerical stability with respect to
the length of the integration interval. Instead, for the sixth order eigenproblems on the real
line, the SiC method remains the unique feasible alternative.

In fact, this method is the best in the sense that we can trust the first half of computed
eigenpairs. To our knowledge, no software package has reached this performance so far.

An open problem remains for finding preconditioning methods for the case of hinged
boundary conditions or some other types of boundary conditions.

This paper comes shortly after when in another one (see [23]) we have approached,
with the same two classes of methods, singular Schröedinger eigenproblems. In this sit-
uation we can appreciate that ChC along with Chebfun are a better alternative in some
respects to other existing methods for a very wide range of eigenproblems. Both compute
eigenvectors (approximating eigenfunctions) and by drift estimation demonstrate numer-
ical stability. In addition, the drift with respect to N shows the degree of accuracy up to
which a set of eigenvalues is computed. The situation when both types of methods can be
applied to the same problem is the ideal one and the one that produces the safest results.
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Abbreviations

The following abbreviations are used in this manuscript:

ChC Chebyshev collocation method
ChT Chebyshev tau method
D2 strategy to reduce a 2nd-order equation to a second order system
FCT fast Chebyshev transform
FD finite difference method
FE finite element method
MATSLISE a MATLAB package for the numerical solution of SL and Schröedinger equations
SiC sinc spectral collocation
SL Sturm–Liouville
SLEDGE Sturm–Liouville estimates determined by global errors
SLEUTH Sturm–Liouville Eigenvalues using Theta Matrices
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Abstract: A smooth map γ in the symplectic space R2n is Lagrangian if γ, γx, . . ., γ
(2n−1)
x are linearly

independent and the span of γ, γx, . . . , γ
(n−1)
x is a Lagrangian subspace of R2n. In this paper, we

(i) construct a complete set of differential invariants for Lagrangian curves in R2n with respect to the
symplectic group Sp(2n), (ii) construct two hierarchies of commuting Hamiltonian Lagrangian curve
flows of C-type and A-type, (iii) show that the differential invariants of solutions of Lagrangian curve
flows of C-type and A-type are solutions of the Drinfeld-Sokolov’s Ĉ(1)

n -KdV flows and Â(2)
2n−1-KdV

flows respectively, (iv) construct Darboux transforms, Permutability formulas, and scaling transforms,
and give an algorithm to construct explicit soliton solutions, (v) give bi-Hamiltonian structures and
commuting conservation laws for these curve flows.

Keywords: Lagrangian curve flows; KdV type hierarchies; Darboux transforms

1. Introduction

The modern theory of soliton equations dates from the famous numerical compu-
tation of the interaction of solitary waves of the Korteweg-de Vries (KdV) equation by
Zabusky and Kruskal [1] in 1965. In 1967, Gardner, Green, Kruskal, and Miura [2] ap-
plied the Gelfand-Levitan’s inverse scattering transform of the one-dimensional linear
Schrödinger operator to solve the Cauchy problem for rapidly decaying initial data for the
KdV equation. In 1968, Lax [3] introduced the Lax-pair for KdV. Zakharov and Faddeev [4]
gave a Hamiltonian formulation of KdV, and proved that KdV is completely integrable by
finding action-angle variables. Zakharov and Shabat [5] found a Lax pair of 2× 2 first order
differential operators for the non-linear Schrödinger equation (NLS), Adler-Kostant-Symes
gave a method to construct completely integrable Hamiltonian systems using splitting of
Lie algebras (cf. [6–9]), Kupershmidt-Wilson [10] constructed n× n modified KdV (mKdV)
using a loop algebra, and finally Drinfeld-Sokolov [11] gave a general method to construct
soliton hierarchies from affine Kac-Moody algebras. In particular, soliton equations have
many remarkable properties including: a Lax pair, infinite families of explicit soliton
solutions, Bäcklund and Darboux transformations that generate new solutions from a
given one by solving a first order system, a permutability formula to superpose solutions,
a rational loop group action, a scattering theory and an inverse scattering transform to
solve the Cauchy problem, a bi-Hamiltonian structure, and infinitely many commuting
Hamiltonians. For more detail and references, we refer readers to the following books and
survey articles: [11–18].

Soliton equations are also found in classical differential geometry: the sine-Gordon
equation (SGE) arose first through the theory of surfaces of negative constant Gauss curvature
in R3, and the reduced 3-wave equation can be found in Darboux’s work [19] on triply
orthogonal coordinate systems of R3. These equations were rediscovered later independently
of their geometric history. The main contribution of the classical geometers lies in their
methods for constructing explicit solutions of these equations from geometric transformations.

There are many classes of submanifolds in space forms and symmetric spaces whose
Gauss-Codazzi equations are soliton equations. For example, the Gauss-Codazzi equations

Symmetry 2021, 13, 298. https://doi.org/10.3390/sym13020298 https://www.mdpi.com/journal/symmetry
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for the following classes of submanifolds are soliton equations: n-dimensional submani-
folds of constant sectional curvature −1 in in R2n−1 (cf. [20,21]), isometric immersions of
space forms in space forms (cf. [22,23]), flat Lagrangian submanifolds in R2n [24], confor-
mally flat submanifolds in spheres [25], and isothermic submanifolds in Rn (cf. [26–28]).
For a survey of submanifold geometry and related soliton equations see [29].

Next we discuss how curve flows appeared in soliton theory. In 1906, da Rios, a
student of Levi-Civita, wrote a master’s thesis, in which he modeled the movement of a
thin vortex by the motion of a curve propagating in R3 along its binormal with curvature
as speed, i.e.,

γt = kb.

This is the vortex filament equation (VFE). It was much later, in 1971, that Hasimoto
showed in [30] the equivalence of VFE with the NLS,

qt = i(qxx + 2|q|2q).

In fact, if γ(x, t) is a solution of VFE, then there exists a function θ(t) such that

q(x, t) = k(x, t) exp(i(θ(t)−
∫ x

−∞
τ(s, t)ds))

is a solution of the NLS, where k, τ are the curvature and torsion of the curve. This corre-
spondence between the VFE and NLS given above uses the Frenet frame. If we use the
parallel normal frame, then the correspondence can be stated as follows: If γ is a solution
of the VFE, then there exists an orthonormal moving frame g = (e1, e2, e3) : R2 → SO(3)
such that

g−1gx =

⎛⎝ 0 −k1 −k2
k1 0 0
k2 0 0

⎞⎠,

and q = k1 + ik2 is a solution of the NLS, where e1(·, t) is tangent to the curve γ(·, t), e2(·, t)
and e3(·, t) are parallel normal fields along γ(·, t), and k1(·, t) and k2(·, t) are the principal
curvatures along e2(·, t) and e3(·, t) respectively. Since the NLS is a soliton equation, we can
use techniques in soliton theory to study geometric and Hamiltonian aspects of the VFE.

The NLS admits an so(3) valued Lax pair with phase space C∞(R, V), where

V =

⎧⎨⎩
⎛⎝ 0 −k1 −k2

k1 0 0
k2 0 0

⎞⎠ ∣∣∣∣ k1, k2 ∈ R

⎫⎬⎭.

Please note that the differential invariants constructed from the parallel frames for
curves in R3 lie in C∞(R, V). Hence a good way to construct integrable curve flows on
a homogeneous space M = G · p0 = G/H is to find a class of curves in G/H, which has
a moving frame g : R → G so that γ = g · p0, g−1gx gives a complete set of differential
invariants, and g−1gx lies in the phase space of a soliton equation. A more detailed
discussion of how to use this scheme to construct integrable curve flows can be found
in [31].

There are many recent works on integrable geometric curve flows in homogeneous
spaces. For example, Langer-Perline studied Poisson structures and local geometric in-
variants of the VFE in [32,33], and constructed curve flows that relate to Fordy-Kulish
NLS type hierarchies associated with Hermitian symmetric spaces in [34]. Doliwa-Santini
constructed curve flows in R2 and R3 that give the mKdV and NLS respectively in [35].
Ferapontov gave hydro-dynamic type curve flows on homogeneous isoparametric hyper-
surfaces in sphere in [36]. Yasui-Sasaki studied the integrability of the VFE in [37]. Chou-Qu
constructed integrable curve flows in affine plane in [38] and integrable curve flows in
the plane for all Klein geometries in [39]. Anco constructed integrable curve flows on the
symmetric space U

K in [40]. Sanders-Wang studied curve flows in Rn whose curvatures
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are solutions of the vector mKdV in [41]. Terng-Thorbergsson constructed curve flows
on Adjoint orbits of a compact Lie group G that relate to the n-wave equation associated
with G in [42], Terng-Uhlenbeck explained the relation between the Schrödinger flow on
compact Hermitian symmetric space and the Fordy-Kulish NLS system and wrote down a
bi-Hamiltonian structure, geometric conservation laws, and commuting curve flows in [43]
for the Schrödinger flows. Terng constructed Darboux transforms and explicit soliton
solutions of the Airy curve flow in Rn in [44]. Mari Beffa gave natural Poisson structures on
semi-simple homogeneous spaces and discussed their relations to integrable curve flows
in [45,46]. Readers are referred to these papers for more references.

Drinfeld and Sokolov in [11] associated with each affine Kac-Moody algebra Ĝ a
hierarchy of soliton equations of KdV type, which will be called the Ĝ-KdV hierarchy. It was
proved in [11] that the KdV hierarchy is the Â(1)

1 -KdV hierarchy and the Gelfand-Dickey

hierarchy is the Â(1)
n−1-KdV hierarchy.

There are recent works on integrable curve flows on flat spaces whose differential in-
variants satisfy the Ĝ-KdV hierarchies. The first example was given by Pinkall, who in [47]
constructed a hierarchy of central affine curve flows on R2 invariant under the group
SL(2,R) and showed that their differential invariant (the central affine curvature) satisfies
the KdV hierarchy. Calini-Ivey-Mari Beffa in [48] (for n = 3) and Terng and Wu in [49]
(for general n) constructed a hierarchy of curve flows on the affine space Rn invariant under
SL(n,R) whose differential invariants satisfy the Â(1)

n−1-KdV hierarchies. Terng and Wu
also constructed in [50] two hierarchies of curve flows on Rn+1,n, whose differential invari-
ants under the group O(n + 1, n) are solutions of the B̂(1)

n -KdV and Â(2)
2n -KdV hierarchies

respectively. In this paper, we construct two hierarchies of curve flows on the symplectic
space R2n whose differential invariants under the symplectic group are solutions of the
Ĉ(1)

n -KdV and the Â(2)
2n−1-KdV hierarchies respectively.

We need to set up some more notations before we explain our results. Let R2n be the
symplectic space with the symplectic form

ω(X, Y) = XtSnY, where Sn =
2n

∑
i=1

(−1)i+1ei,2n+1−i, (1)

Sp(2n) = {g ∈ GL(2n,R) | gtSng = Sn} the group of linear isomorphisms of R2n that
preserves w, and

sp(2n) = {A ∈ sl(2n) | AtSn + Sn A = 0}
the Lie algebra of Sp(2n). A linear subspace V of R2n is isotropic if ω(x, y) = 0 for all
x, y ∈ V. A maximal isotropic subspace has dimension n, and is called Lagrangian. The
action of Sp(2n) on the space of Lagrangian subspaces of R2n defined by g · V = gV
is transitive.

Definition 1. A smooth map γ : R→ R2n is a Lagrangian curve if

(i) γ(s), γs(s), . . . , γ
(2n−1)
s (s) are linearly independent for all s ∈ R,

(1) the span of γ(s), . . . , γ
(n−1)
s (s) is a Lagrangian subspace of R2n for all s ∈ R,

where γ
(i)
s = diγ

ds .

We show that if γ : R → R2n is Lagrangian then there exists a unique orientation
preserving parameter x = x(s) such that ω(γ

(n)
x , γ

(n−1)
x ) = (−1)n. We call such parameter

the Lagrangian parameter for γ.
Let

M2n =
{

γ ∈ R2n | γ is Lagrangian, ω(γ
(n)
s , γ

(n−1)
s ) = (−1)n

}
.

Vn = ⊕n
i=1Ren+1−i,n+i, where⊕ is the direct sum.
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We prove that given γ ∈ M2n, there exists a unique g = (g1, . . . , g2n) : R→ Sp(2n)
such that gi = γ

(i−1)
x for 1 ≤ i ≤ n + 1 and

g−1gx = b + u

for some u = ∑n
i=1 uien+1−i,n+i ∈ C∞(R, Vn), where

b =
n−1

∑
i=1

ei+1,i. (2)

We call this g the Lagrangian moving frame and u = ∑n
i=1 uien+1−i,n+i the Lagrangian

curvature along γ.
It is easy to see that

γ(x) = (1, x,
x2

2!
, · · · ,

x2n−1

(2n− 1)!
)t

is inM2n with Lagrangian frame g(x) = exp(bx) and zero Lagrangian curvature.

Definition 2. The Lagrangian curvature map

Ψ : M2n → C∞(R, Vn),

is defined by Ψ(γ) = u, where u is the Lagrangian curvature of γ ∈ M2n.

It follows from the theory of existence and uniqueness of solutions of ordinary differen-
tial equations that the Lagrangian curvatures form a complete set of differential invariants
for curves inM2n.

A Lagrangian curve flow is an evolution equation onM2n, i.e., the flow preserves the
Lagrangian parameter. Such flow can be written in the form γt = gξ(u) so that gξ(u)
is tangent to M2n at γ, where g(·, t) and u(·, t) are the Lagrangian moving frame and
Lagrangian curvature along γ(·, t) and ξ(u) is a R2n×1 valued differential polynomial of u
in x variable.

Please note that when n = 1, we have sp(2) = sl(2,R), ω(X, Y) = det(X, Y), the
Lagrangian parameter, frame, curvature are the central affine parameter, frame, central
affine curvature on R2 under the group SL(2,R), and the Lagrangian curve flows on R2

are the central affine curve flows studied in [47] (see also in [51,52]). For example,

γt =
ux

4
γ− u

2
γx

is a Lagrangian flow on R2 and its Lagrangian curvature u satisfies the KdV,

ut =
1
4
(uxxx − 6uux).

In this paper, we construct two hierarchies of Lagrangian curve flows on R2n whose La-
grangian curvatures are solutions of the Ĉ(1)

n -KdV and Â(2)
2n−1-KdV hierarchies respectively.

In particular, we obtain the following results:

(1) We construct a sequence of commuting Lagrangian curve flows of C-type and A-type
respectively onM2n such that the third flows are

γt = − 3
4n

(u1)xγ− 3
2n

u1γx + γxxx, (3)

γt = − 3
2n− 1

u1γx + γxxx (4)
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respectively, where u1 is the first Lagrangian curvature.
(2) The Lagrangian curvature map Ψ maps the space of solutions of Lagrangian curve

flows of C-type (A-type resp.) modulo Sp(2n) bijectively onto the space of solutions
of Ĉ(1)

n -KdV (Â(2)
2n−1-KdV resp.) flows. For example, the Lagrangian curvatures u1, u2

of a solution γ of (3) and (4) satisfy the third Ĉ(1)
2 -KdV flow{

(u1)t = − 5
4 u(3)

1 + 3u′2 +
3
4 u1u′1,

(u2)t = − 3
8 u(5)

1 + u(3)
2 + 3

8 (u1u(3)
1 + u′1u′′1 )− 3

4 u1u′2.
(5)

and the third Â(2)
3 -KdV flow{

(u1)t = 3(u2)x,
(u2)t = (u2)xxx − (u1u2)x

(6)

respectively.
(3) A bi-Hamiltonian structure and commuting conservation laws for Lagrangian curve

flows of C- and A-types are given. For example, the curve flows (3) and (4) are
Hamiltonian flows for functionals

F̂3(γ) =
∮

u2 +
2n− 3

4n
u2

1dx

Ĥ3(γ) =
∮

u2 +
n− 2

2n− 1
u2

1dx

respectively onM2n with respect to the second Hamiltonian structure, where u is the
Lagrangian curvature of γ.

(4) We construct Darboux transforms (DTs), Permutability formulas, scaling transforms,
and give an algorithm to compute explicit soliton solutions of these flows.

This paper is organized as follows: We construct Lagrangian moving frames in
Section 2, and review the constructions of the Ĉ(1)

n -KdV and Â(2)
2n−1-KdV hierarchies in

Section 3. Lagrangian curve flows of C- and A- types and the evolutions of their La-
grangian curvatures are given in Section 4. In Section 5, we construct Darboux transforms
(DTs) and a Permutability formula for the Ĉ(1)

n -KdV and for the Lagrangian curve flows of
C-type. DTs for the A case and its Permutability formula are given in Section 6. The scaling
transforms are given in Section 7. Bi-Hamiltonian structures and commuting conserved
functionals are given in Section 8. We give an outline of a method for constructing inte-
grable curve flows whose differential invariants satisfy the Ĝ(1)-KdV hierarchy for general
simple real non-compact Lie algebra G and give some open problems in the last section.

2. Lagrangian Moving Frame

In this section, we prove the existence of Lagrangian parameter and construct the
Lagrangian moving frame and curvatures for Lagrangian curves (cf. Definition 1).

Proposition 1. If γ : R → R2n is a Lagrangian curve, then there exists a unique Lagrangian
parameter x = x(s), i.e., ω(γ

(n)
x , γ

(n−1)
x ) = (−1)n.

Proof. If ω(γ
(n)
s , γ

(n−1)
s ) is zero at s0, then it follows from ω(γ

(i)
s , γ

(j)
s ) = 0 for all 0 ≤

i, j ≤ n− 1 that ω(γ
(n)
s , γ

(i)
s ) = 0 at s0. Hence γ(s0), γs(s0), . . ., γ

(n)
s (s0) span an (n + 1)-

dimension isotropic subspace. However, the maximal dimension of an isotropic subspace
is n, a contradiction. Hence ω(γ

(n)
s , γ

(n−1))
s ) never vanishes. Choose x = x(s) such that

(dx
ds )

2n−1 = (−1)nω(γ
(n)
s , γ

(n−1)
s ).
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Theorem 1. If γ ∈ M2n, then there exists a unique Lagrangian moving frame g along γ, i.e.,
g−1gx = b + ∑n

i=1 uien+1−i,n+i for some u1, . . . , un, where b is defined by (2).

Proof. Let u1 = (−1)n−1ω(γ
(n+1)
x , γ

(n)
x ), and gn+2 = γ

(n+1)
x − u1γ

(n−1)
x . We derive gi’s

and ui’s by the recursive formula:

uj = (−1)n−jω((gn+j)x, gn+j) = (−1)n−jω(dn+j
x γ, gn+j), 2 ≤ j ≤ n− 1,

gn+j+1 = dxgn+j − ujγ
(n−j)
x , 2 ≤ j ≤ n− 1,

un = ω((g2n)x, g2n).

Then g = (γ, . . . , γ
(n)
x , gn+2, . . . , g2n) satisfies g−1gx = b + u, i.e., g is a Lagrangian

moving frame along γ.

Example 1. For n = 1, we have ω(X, Y) = det(X, Y), thus γ ∈ M2 if and only if det(γ, γx) =
1. So the Lagrangian parameter is the central affine parameter, the Lagrangian frame along γ is
g = (γ, γx) is the central affine moving frame along γ, and the Lagrangian curvature is the central
affine curvature. Moreover,

g−1gx =

(
0 u1
1 0

)
.

Example 2. The Lagrangian frame g = (γ, γx, γxx, g4) along γ ∈ M4 satisfies

g−1gx =

⎛⎜⎜⎝
0 0 0 u2
1 0 u1 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠,

where

u1 = −ω(γ
(3)
x , γxx), u2 = ω((g4)x, g4) = ω(γ

(4)
x , γ), g4 = γ

(3)
x − u1γx.

It follows from the Existence and Uniqueness of ordinary differential equations that
{u1, · · · , un} forms a complete set of local differential invariants for γ ∈ M2n under the
Sp(2n)-action. So we have the following:

Proposition 2. The Lagrangian curvature map Ψ : M2n → C∞(R, Vn) defined by Definition 2
is onto and Ψ−1(u) is a Sp(2n)-orbit.

Example 3. A Lagrangian curve in R2n with zero Lagrangian curvature is of the form:

γ = c0(1, x,
x2

2
, · · · ,

x2n−1

(2n− 1)!
)t, c0 ∈ Sp(2n).

3. The Ĉ(1)
n -KdV and the Â(2)

2n−1-KdV Hierarchies

In this section, we review the constructions of the Ĉ(1)
n -, Â(2)

2n−1-, Ĉ(1)
n -KdV, and Â(2)

2n−1-
KdV hierarchies and derive some elementary properties of these hierarchies (cf. [11,53]).

3.1. The Ĉ(1)
n -KdV Hierarchy

A splitting of a Lie algebra L is a pair of Lie subalgebras L+,L− such that L =
L+ ⊕L− as linear subspaces (but not as subalgebras). For ξ ∈ L, we write

ξ = ξ+ + ξ−, where ξ+ ∈ L+, ξ− ∈ L−.
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A vacuum sequence is a linearly independent, commuting sequence {Jj | j ≥ 1} in L+.
Let

Sp(2n,C) = {A ∈ GL(2n,C) | AtSn A = Sn},

and sp(2n,C) its Lie algebra. Then sp(2n) is a real form of sp(2n,C) defined by the
involution τ(A) = Ā.

Let

Ĉ(1)
n :=

{
A = ∑

i
Aiλ

i | Ai ∈ sp(2n)

}
,

(Ĉ(1)
n )+ =

{
∑
i≥0

Aiλ
i ∈ Ĉ(1)

n

}
, (Ĉ(1)

n )− =

{
∑
i<0

Aiλ
i ∈ Ĉ(1)

n

}
.

Then ((Ĉ(1)
n )+, (Ĉ(1)

n )−) is a splitting of Ĉ(1)
n .

Please note that ξ(λ) = ∑i ξiλ
i is in Ĉ(1)

n if and only if ξ satisfy the sp(2n)-reality
condition, i.e.,

ξ(λ)tSn + Snξ(λ) = 0, ξ(λ̄) = ξ(λ).

A meromorphic map f : C→ SL(2n,C) is said to satisfy the Sp(2n)-reality condition if

f (λ)tSn f (λ) = Sn, f (λ̄) = f (λ). (7)

For ξ(λ) = ∑i ξiλ
i, we have

ξ+(λ) = ∑
i≥0

ξiλ
i, ξ−(λ) = ∑

i<0
ξiλ

i.

Let B+
n and N+

n denote the subgroups of upper, strictly upper triangular matrices in
Sp(2n) respectively, and B+

n ,N+
n the corresponding Lie subalgebras of sp(2n).

Set

J =
2n−1

∑
i=1

ei+1,i + e1,2nλ = b + e1,2nλ ∈ (Ĉ(1)
n )+.

Then

Ji = (bt)n−iλ + bi, 1 ≤ i ≤ 2n− 1, (8)

J2n = λI2n. (9)

It is easy to check that J2j−1 is in (Ĉ(1)
n )+, but J2j is not. So {J2j−1 | j ≥ 1} is a vacuum

sequence. Note that
[J, (Ĉ(1)

n )−]+ = B+
n .

Next we use the general method given in [53] to construct the Ĉ(1)
n -hierarchy generated

by the vacuum sequence {J2j−1 | j ≥ 1}. First a direct computation gives the following
known results:

Theorem 2 ([49,53]). Given q ∈ C∞(R,B+
n ), then there exists a unique

P(q, λ) = ∑
i≤1

P1,i(q)λi

in Ĉ(1)
n satisfying {

[∂x + J + q, P(q, λ)] = 0,
P2n(q, λ) = λI2n.

(10)
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Moreover, P1,i(q) can be computed recursively by equating the coefficients of λi in (10) and
they are polynomials in u and x-derivatives of u (i.e., a differential polynomial in u).

Please note that if operators A, B commute, then A and Bj also commute. Hence it
follows from the first equation of (10) that we have

[∂x + J + q, P2j−1(q, λ)] = 0. (11)

Write the power series

P2j−1(q, λ) = ∑
i

P2j−1,i(q)λi. (12)

We compare coefficient of λi of (11) to obtain

[∂x + b + q, P2j−1,i(q)] = [P2j−1,i−1(q), e1,2n], (13)

which implies that the left hand side lies in B+
n . So

qt2j−1 = [∂x + b + q, P2j−1,0(q)], j ≥ 1. (14)

defines a flow on C∞(R,B+
n ). We call (14) the (2j− 1)-th Ĉ(1)

n -flow.
We need the following well-known elementary result to explain the Lax pair:

Proposition 3. Let G be the Lie algebra of G, and A, B : R2 → G smooth maps. Then the following
statements are equivalent:

(1) the linear system {
gx = gA,
gt = gB

is solvable for g : R2 → G,
(2) A, B satisfy

At = Bx + [A, B] = [∂x + A, B],

(3) [∂x + A, ∂t + B] = 0.

Proposition 4. The following statements are equivalent for smooth q : R2 → B+
n :

(1) q is a solution of (14),
(2) the following linear system is solvable for h : R2 → Sp(2n),{

h−1hx = b + q,
h−1ht = P2j−1,0(q).

(15)

(3) the following linear system is solvable for F(x, t, λ) ∈ SL(2n,C),⎧⎪⎨⎪⎩
Fx = F(J + q),
Ft = F(P2j−1(q, λ))+,
F(x, t, λ)tSnF(x, t, λ) = Sn, F(x, t, λ̄) = F(x, t, λ).

(16)

The last equation says that F(x, t, λ) satisfies the Sp(2n)-reality condition (7) in λ.

Proof. Equation (13) implies that the coefficients of λi for i > 0 of

[∂x + J + q, ∂t + (P2j−1(q, λ))+]
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are zero. The constant term is [∂x + b + q, ∂t + P2j−1,0(q)]. This proves that [∂x + J +
q, ∂t + (P2j−1(q, λ))+] = 0 is equivalent to [∂x + b + q, ∂t + P2j−1,0(q)] = 0. It follows from
Proposition 3 that (2) and (3) are equivalent.

Equation (14) can be written as

(b + q)t = (P2j−1,0(q))x + [b + q, P2j−1,0(q)].

It follows from Proposition 3 that (1) and (2) are equivalent.

The group C∞(R, N+
n ) acts on C∞(R,B+

n ) by gauge transformation,

f (∂x + b + q) f−1 = ∂x + b + f ∗ q (17)

for f ∈ C∞(R, N+
n ) and q ∈ C∞(R,B+

n ), where

f ∗ q = f (b + q) f−1 − fx f−1 − b. (18)

The following Proposition shows that C∞(R, Vn) is a cross-section of this gauge action.

Proposition 5. Given q ∈ C∞(R,B+
n ), then there exist a unique 
 ∈ C∞(R, N+

n ) and u =

∑n
i=1 uien+1−i,n+i in C∞(R, Vn) such that


(∂x + J + q)
−1 = ∂x + J + u. (19)

In particular, u = 
 ∗ q.

Proof. Let Gj = ⊕2n−j
i=1 Rei,i+j, G−j = ⊕2n−j

i=1 Rei+j,i for 0 ≤ j ≤ 2n − 1. Equation (19)
implies that


(J + q)−
x = (J + u)
. (20)

Proposition is proved by equating components of Gj of (20) for |j| ≤ 2n− 1.

It can be checked by the same method for the Â(1)
n -hierarchy (cf. [53]) that flow (14) is

invariant under the C∞(R, N+
n )-action. So given u ∈ C∞(R, Vn) and j ≥ 1, there exists a

unique N+
n -valued differential polynomial ηj(u) satisfying

[∂x + J + u, (P(u)2j−1)+ − ηj(u)] ∈ C∞(R, Vn). (21)

The induced quotient flow of (14) on the cross-section C∞(R, Vn) is obtained by
projecting (14) down along gauge orbits. So the induced quotient flow on C∞(R, Vn) is

ut2j−1 = [∂ + J + u, P2j−1,0(u)− ηj(u)]. (22)

The above equation is the (2j− 1)-th Ĉ(1)
n -KdV flow.

As a consequence of the construction, we have the following.

Proposition 6. The following statements are equivalent for smooth u : R2 → Vn:

(i) u is a solution of (22),
(ii) [∂x + J + u, ∂t + (P2j−1(u, λ))+ − ηj(u)] = 0.
(iii) The following linear system is solvable for g : R2 → Sp(2n),{

g−1gx = b + u,
g−1gt = P2j−1,0(u)− ηj(u).

(23)
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(iv) The following linear system is solvable for E(x, t, λ) ∈ SL(2n,C) for all parameter λ ∈ C,⎧⎪⎨⎪⎩
Ex = E(J + u),
Et = E((P2j−1(u, λ))+ − ηj(u)),
E(x, t, λ)tSnE(x, t, λ) = Sn, E(x, t, λ̄) = E(x, t, λ).

(24)

Example 4. The third Ĉ(1)
1 -KdV flow is the KdV for q = u1:

qt =
1
4
(qxxx − 6qqx).

Example 5. The third Ĉ(1)
2 -KdV flow

The Ĉ(1)
2 -KdV flows are for u = u1e23 + u2e14. We compare coefficients of λi in (10) to

compute P1,i(q). Then P2j−1,i(q) can be computed from P1,k(q)’s. We obtain the first few terms
of P3(q, λ):

P3,1(u) =

⎛⎜⎜⎝
0 1 0 − 3

4 u1
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠,

P3,0(u) =

⎛⎜⎜⎜⎝
− 3

8 u′1 u2 − 3
8 u′′1 u′2 − 3

8 (u1)
(3)
x ξ

1
4 u1 − 1

8 u′1 − 1
2 u′′1 + u2 +

1
4 u2

1 −u′2 +
3
8 (u1)

(3)
x

0 1
4 u1

1
8 u′1 u2 − 3

8 u′′1
1 0 1

4 u1
3
8 u′1

⎞⎟⎟⎟⎠, where

ξ = −3
8
(u1)

(4)
x + u′′2 +

3
8

u1u′′1 −
3
4

u1u2.

Therefore the third Ĉ(1)
2 -KdV flow is (5).

3.2. The Â(2)
2n−1-KdV Hierarchy (n ≥ 2)

Let κ be the involution of sl(2n,C) defined by

κ(X) = −SnXtS−1
n ,

where Sn is as in (1). Then the fixed point set of κ is sp(2n,C) and the −1 eigen-space of κ
in sl(2n) is

P2n = {ξ ∈ sl(2n) | ξ = SnξtS−1
n }.

Let

Â(2)
2n−1 =

{
A(λ) = ∑

i≤m0

Aiλ
i | Ai ∈ sl(2n,R), κ(A(−λ)) = A(λ)

}
,

and

(Â(2)
2n−1)+ =

{
∑
i≥0

Aiλ
i ∈ Â(2)

2n−1

}
, (Â(2)

2n−1)− =

{
∑
i<0

Aiλ
i ∈ Â(2)

2n−1

}
.

Then ((Â(2)
2n−1)+, (Â(2)

2n−1)−) is a splitting of Â(2)
2n−1.

Please note that the following are equivalent for A(λ) = ∑i Aiλ
i:

(1) A ∈ Â(2)
2n−1,

(2) A2i ∈ sp(2n) and A2i+1 ∈ P2n for all i,
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(3) A satisfies
−Sn A(−λ)tS−1

n = A(λ), A(λ̄) = A(λ).

Set
β =

1
2
(e1,2n−1 + e2,2n). (25)

JB =
1
2
(e1,2n−1 + e2,2n)λ +

2n−1

∑
i=1

ei+1,i = βλ + b.

Please note that J2i−1
B ∈ (Â(2)

2n−1)+ and

J2n
B = λJB.

Then {J2j−1
B | j ≥ 1} is a vacuum sequence in (Â(2)

2n−1)+.

Next we use the general method given in [53] to construct the Â(2)
2n−1-hierarchy gener-

ated by {J2j−1
B | j ≥ 1}. Similarly, we have the following:

Theorem 3. Given q ∈ C∞(R,B+
n ) and j ∈ Z, then there exists a unique

Q(q, λ) = ∑
i≤1

Q1,i(q)λi ∈ Â(2)
2n−1

satisfying {
[∂x + JB + q, Q(q, λ)] = 0,
Q2n(q, λ) = λQ(q, λ).

(26)

Moreover, Q1,i(q)’s are polynomial differentials in q and derivatives of q and can be computed
recursively by equating the coefficient of λi of (26).

Proof. It was proved in [11] that given any ξ = ∑i≤i0 ξiλ
i ∈ sl(2n,R), there exists unique

diagonal matrices hi such that
ξ = ∑

j≤2n(i0+1)
hi J j,

where J = b + e1,2nλ.
Given permutation s in S2n and h = diag(h1, . . . , h2n), let

hs = diag(hs(1), . . . , hs(2n)).

Let θ ∈ S2n be the cyclic permutation defined by θ(1) = 2n, and θ(i) = i − 1 for
2 ≤ i ≤ 2n. A simple computation implies that

Jh = hθ J, Jih = hθi
Ji. (27)

Please note that

1
2
(e1,2n−1 + e2n) = diag(

1
2

,
1
2

, 0, . . . , 0)J2.

q =
2n

∑
i=1

ki Ji−2n,

where q = (qij) and ki are diagonal matrices defined by

ki = diag(q1,2n−i+1, q2,2n−i+2, . . . , qi,2n, 0, . . . , 0).
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Write

Q(q, λ) = diag(
1
2

,
1
2

, 0, . . . , 0)J2 + diag(0, 1, . . . , 1)J + ∑
j≤0

hj J j,

We compare the coefficients of J j’s of both sides of each equation in (26) and use (27)
to solve hj uniquely as differential polynomial of q. This gives the formula for Q(q, λ).
We plug in Formulas (8) and (9) to obtain Q1,j(q)’s.

The first equation of (26) implies that

[∂x + JB + q, Q2j−1(q, λ)] = 0. (28)

Write Q2j−1(q, λ) as a power series in λ,

Q2j−1(q, λ) = ∑
i

Q2j−1,i(q)λi. (29)

We compare the coefficient of λi of (28) to obtain

[∂x + b + q, Q2j−1,i(q)] = [Q2j−1,i−1(q), β], (30)

where β is defined by (25). So the left hand side of (30) is B+
n -valued and

qt2j−1 = [∂x + b + q, Q2j−1,0(q)], j ≥ 1, (31)

is a flow on C∞(R,B+
n ). This is the (2j− 1)-th flow in the Â(2)

2n−1-hierarchy.
We use the same proof of Proposition 4 to obtain the following:

Proposition 7. The following statements are equivalent for smooth q : R2 → B+
n :

(i) q is a solution of (31).
(ii) The following linear system is solvable for smooth g : R2 → Sp(2n),{

g−1gx = b + q,
g−1gt = Q2j−1,0(u).

(32)

(iii) The following linear system is solvable for F(x, t, λ) ∈ SL(2n,C) for all parameter λ ∈ C,⎧⎪⎨⎪⎩
Fx = F(JB + q),
Ft = F((Q2j−1(u, λ))+,
F(x, t, λ)tSnF(x, t,−λ) = Sn, F(x, t, λ̄) = F(x, t, λ).

It follows from Proposition 5 that there exist a unique 
 ∈ C∞(R, N+
n ) and u ∈

C∞(R, Vn) such that u = 
 ∗ q. So given u ∈ C∞(R, Vn) and j ≥ 1, there exists a unique
ξ j(u) ∈ C∞(R,N+

n ) such that

[∂x + b + u, Q2j−1,0(u)− ξ j(u)] ∈ C∞(R, Vn). (33)

The (2j− 1)-th Â(2)
2n−1-KdV flow is the following flow on C∞(R, Vn):

ut2j−1 = [∂x + b + u, Q2j−1,0(u)− ξ j(u)]. (34)

Proposition 8. The following statements are equivalent for smooth u : R2 → Vn:

(i) u is a solution of (34).
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(ii) The following linear system is solvable for g : R2 → Sp(2n),{
g−1gx = b + u,
g−1gt = Q2j−1,0(u)− ξ j(u).

(35)

(iii) The following linear system is solvable for E(x, t, λ) ∈ SL(2n,C) for all λ ∈ C,⎧⎪⎨⎪⎩
Ex = E(JB + u),
Et = E(Q2j−1(u, λ))+ − ξ j(u)),
E(x, t, λ)tSnE(x, t,−λ) = Sn, E(x, t, λ̄) = E(x, t, λ).

Example 6. We use (26) to compute Q1,i(u), then use these to compute Q3,0(u). A direct compu-
tation implies that the third Â(2)

3 -KdV flow is (6).

Definition 3. F(x, t, λ) (E(x, t, λ) resp.) is a frame of a solution q : R2 → B+
n of (14) (u : R2 →

Vn of (22) resp.) if F(x, t, λ) (E(x, t, λ) resp.) is holomorphic for all λ ∈ C and satisfies the linear
system (16) ((24) resp.). Frames for solutions of (31) and (34) are defined similarly.

It follows from the constructions of the Ĉ(1)
n -KdV and Â(2)

2n−1-KdV flows that we have
the following.

Proposition 9.

(1) Let F(x, t, λ) be a frame of a solution q : R2 → B+
n of (14) ((31) resp.), and the unique


 : R2 → N+
n such that u := 
 ∗ q is Vn-valued (as in Proposition 5). Then u is a solution

of (22) ((34) resp.) and E(x, t, λ) = F(x, t, λ)
−1(x, t) is a frame of u, where ∗ is the gauge
action defined by (18) or equivalently (17).

(2) Let E be a solution u : R2 → Vn of (22) ((34) resp.), and 
 : R2 → N+
n satisfying


t
−1 = ηj(u) (
t
−1 = ξ j(u) resp.), where ηj(u) (ξ j(u) resp.) is defined by (21) ( (33)
resp.). Then q := 
−1 ∗ u is a solution of (14) ((31) resp.) and F = E
 is a frame of q.

4. Lagrangian Curve Flows on R2n

In this section, we

(i) give a description of the tangent space ofM2n at γ and show that it is isomorphic to
C∞(R,Rn),

(ii) construct two hierarchies of Lagrangian curve flows whose curvatures satisfy the

Ĉ(1)
n -KdV and the Â(2)

2n−1-KdV flows respectively.

Henceforth in this paper we set

e1 = (1, 0, . . . , 0)t ∈ R2n.

Theorem 4. Let g and u denote the Lagrangian frame and Lagrangian curvature along γ ∈ M2n,
and Ψ : M2n → C∞(R, Vn) the Lagrangian curvature map. Then

dΨγ(δγ) = [∂x + b + u, g−1δg], (36)

where b = ∑2n−1
i=1 ei+1,i. Moreover,

(1) C : R→ sp(2n) satisfies
[∂x + b + u, C] ∈ C∞(R, Vn). (37)

if and only if gCe1 is tangent toM2n at γ,
(2) if ξ is tangent toM2n at γ then there exists a unique smooth C : R→ sp(2n) satisfying (37)

such that ξ = gCe1.
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Proof. A direct computation gives (36) (cf. [49]).
Suppose δγ is tangent to M2n at γ. By (36), dΨγ(δγ) = [∂ + b + u, g−1δg] is in Vn.

So C := g−1δg satisfies (37).
Suppose C satisfies (37). Let ηi denote the i-th column of gC. Please note that ξ is

tangent toM2n at γ if and only if{
ω(ξ

(i)
x , γ

(j)
x ) + ω(γ

(i)
x , ξ

(j)
x ) = 0, 1 ≤ i, j ≤ n− 1,

ω(ξ
(n−1)
x , γ

(n)
x ) + ω(γ

(n−1)
x , ξ

(n)
x ) = 0.

(38)

To prove η1 satisfies (38), we let ρ = [∂x + b + u, C]. Then

(gC)x = gxC + gCx = gC(b + u) + gρ.

Since ρ ∈ Vn, ηi = (η1)
(i−1)
x for 1 ≤ i ≤ n + 1. By

(gC)tSng + gtSngC = CtgtSng + gtSngC = CtSn + SnC = 0,

so η1 satisfies (38).

By (14) and (33), we see that both P2j−1,0(u)− ηj(u) and Q2j−1,0(u)− ξ j(u) satisfy (37).
So it follows from Theorem 4 that

γt = g(P2j−1,0(u)− ηj(u))e1, γt = g(Q2j−1,0(u)− ξ j(u))e1

are flows onM2n. Since ηj(u) and ξ j(u) are all strictly upper triangular, we have

ηj(u)e1 = ξ j(u)e1 = ζ j(u)e1 = 0.

Hence we have the following.

Proposition 10. Let g and u be the Lagrangian moving frame and Lagrangian curvature along
γ ∈ M2n respectively. Then

γt = g(P2j−1,0(u)− ηj(u))e1 = gP2j−1,0(u)e1, (39)

γt = g(Q2j−1,0(u)− ξ j(u))e1 = gQ2j−1,0(u)e1, (40)

are Lagrangian curve flows on M2n, where P2j−1,0(u), Q2j−1,0(u), ηj(u), and ξ j(u) are given
by (12), (29), (21), and (33) respectively.

We call (39) and (40) the (2j − 1)-th Lagrangian curve flow on M2n of C-type and A-
type respectively.

Example 7. Lagrangian curve flows of C-type

(i) When n = 1, sp(2) = sl(2,R), the symplectic form ω(ξ, η) defined by (1) is det(ξ, η),
γ ∈ M2 if and only if γ satisfies det(γ, γx) = 1, and the Lagrangian parameter, moving
frame, and curvature for γ ∈ M2 are the central affine parameter, moving frame and curvature
respectively. The third Ĉ(1)

1 -KdV is the KdV,

qt =
1
4
(qxxx − 6qqx). (41)

The third Lagrangian curve flow of C-type onM2 is

γt =
1
4
(u1)xγ− 1

2
u1γx, (42)
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which is the third central affine curve flow on the affine plane (cf. [47]). Moreover, if γ is a
solution of (42), then its Lagrangian curvature is a solution of the KdV (41).

(ii) Let g = (γ, γx, γxx, g4) be the Lagrangian moving frame of γ ∈ M4, and u1, u2 the
Lagrangian curvatures as in Example 2. From Example 5, we see that the first column of
P3,0(u) is

(−3
8
(u1)x,

1
4

u1, 0, 1)t.

So the third Lagrangian curve flow of C-type onM4 is

γt = −3
8
(u1)xγ +

1
4

u1γx + g4,

where g4 is the fourth column of the Lagrangian frame of γ. This is the curve flow (3) for
n = 2 because g4 = γxxx − u1γx (given in Example 2).
Similar computation implies that the first column of P5,0(u) is

(− 5
32

(u1)
(3)
x +

3
8
(u2)x +

5
32

u1(u1)x,
1

16
(u1)

(2)
x − 1

4
u2 − 3

32
u2

1,
1
8
(u1)x,−1

4
u1)

t.

Hence the fifth Lagrangian curve flow of C-type onM4 is

γx = (− 5
32

(u1)
(3)
x +

3
8
(u2)x +

5
32

u1(u1)x)γ

+ (
1
16

(u1)
(2)
x − 1

4
u2 − 3

32
u2

1)γx +
1
8
(u1)xγxx − 1

4
u1g4.

(iii) We use Equation (10) to compute P1,i(u) and the first column of P3,0(u) for general n.
Then we see that the third Lagrangian curve flow of C-type onM2n for n ≥ 3 is (3).

Example 8. Lagrangian curve flows of A-type

We use the algorithm given in Theorem 3 to compute Q1,i(u). Then we use these Q1,i(u)’s to
compute Qi,0(u). Then we obtain the following:

(i) The third Lagrangian curve flow of A-type onM4 is

γt = γ
(3)
x − u1γx. (43)

The fifth Lagrangian curve flow of A-type onM4 is

γt = (−5
3
(u2)x − 1

9
(u1)

(3)
x +

1
6

u1(u1)x)γ− 1
9
(6u2 + (u1)

(2)
x + u2

1)γx

+
1
3
(u1)xγxx − 2

3
u1g4.

(ii) The third Lagrangian curve flow of A-type onM2n(n ≥ 2) is (4). Since γ
(3)
x = u1γx + g4,

(4) becomes (43) when n = 2.

Theorem 4 (1) states that gξ is tangent to M2n at γ if and only if there is a C satis-
fying (37) and ξ = Ce1. So to get a better description of the tangent space of M2n at γ,
we need to understand properties of C that satisfies (37).

Theorem 5. Let u ∈ C∞(R, Vn) and v = ∑n
i=1 vien+i,n+1−i : R → Vt

n a smooth map. Let π0 :
sp(2n)→ Vt

n be the linear projection onto Vt
n defined by

π0(y) =
n

∑
i=1

yn+i,n+1−ien+i,n+1−i, y = (yij). (44)
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If C = (Cij) : R→ sp(2n) satisfies

[∂x + b + q, C] ∈ C∞(R, Vn), π0(C) = v, (45)

then we have the following:

(i) There exists differential polynomial φij(u, v) that is linear in v such that Cij = φij(u, v) for
all 1 ≤ i, j ≤ 2n, and φn+i,n+1−i(u, v) = vi for 1 ≤ i ≤ 2n.

(ii) φ2i,1(u, v) = vi + φi for 1 ≤ i ≤ n, where φi’s are differential polynomials in u, vi+1, · · · , vn.
(iii) There exist differential polynomials h2i+1 for 0 ≤ i ≤ n− 1 such that

C2i+1,1 = h2i+1(u, C2i+2,1, · · · , C2n,1).

(iv) Ci,j’s are differential polynomials of u, C21, · · · , C2n,1.

Conversely, given u ∈ C∞(R, Vn) and v ∈ C∞(R, Vt
n), define C = (Cij) by Cij = φij(u, v)

for 1 ≤ i, j ≤ 2n. Then C satisfies (45).

Proof. Let Gi = span{ej,i+j | 1 ≤ i + j ≤ 2n}. For ξ ∈ sp(2n), we use ξGi to denote the
Gi-component of ξ with respect to sp(2n) = ⊕2n−1

i=1−2nGi, and write C = ∑2n−1
i=1−2n Ci, Ci ∈ Gi.

Set [∂x + b + u, C] = ∑n
i=1 ηien+1−i,n+i. Then

(Ci)x + [b, Ci+1] + [u, C]Gi =

{
ηjen+1−j,n+j, i = 2j− 1,
0, else.

(46)

We prove (i) by induction. When i = 1− 2n, we have C2n,1 = vn. From (C1−2n)x +
[b, C2−2n] = 0, we get C2n−1,1 = −C2n,2 = − 1

2 (vn)x. For j < 0, ad(b) : G2j → G2j−1 is a bi-
jection, and dim(ad(b)(G2j+1)) = dim(G2j) = dim(G2j+1)− 1. Then by (46) and induction,
Cj (j < 0) are differential polynomials in u, vi and the linear system (46) implies (ii).

Please note that ad(b) : G0 → G−1 is bijection, and [u, C]G−1 depends only in u, v1, · · · , vn.
Hence C0 can be solved uniquely from Ci, i < 0. This proves (iii).

For j > 0, ad(b) : G2j+1 → G2j is a bijection. Hence G2j+1 is a differential polynomial in G2j.
In addition, ad(b) : G2j+2 → G2i+1 is an injection and dim(ad(b)(G2j+2)) = dim(G2j+1)− 1.
Then by induction, Cj (j > 0) are differential polynomials in u, v1, · · · , vn. This proves
(i). Moreover, from the argument, we see that ηi’s are differential polynomials in u and
v1, · · · , vn.

Statement (iv) is a consequence of (i) and (ii).
The proof of (i) to (iv) implies that the converse is also true.

Corollary 1. Let u and g be the Lagrangian curvature and frame of γ ∈ M2n. Then TγM2n is
the set of all gξ, where ξ = (ξ1, . . . , ξ2n)

t satisfies ξ2i+1 = h2i+1(u, ξ2i+2, · · · , ξ2n) and h2i+1
is given in Proposition 5. In particular, the tangent space of M2n at γ ∈ M2n is isomorphic
to C∞(R,Rn).

Proof. It follows from Theorem 4 (1) and Proposition 5 (iv).

Corollary 2. Given C1, C2 : R→ sp(2n) satisfying (37), then we have the following:

(1) If the first columns of C1 and C2 are the same, then C1 = C2.
(2) If π0(C1) = π0(C2), then C1 = C2, where π0 is the projection defined by (44).

Proof. (1) follows from Proposition 5 (iv), and (2) follows from Proposition 5 (i).

It follows from Proposition 5 (i) that we have the following:

Corollary 3. Given smooth u : R→ Vn and v : R→ Vt
n, there exists a unique C : R→ sp(2n)

satisfying (45) and entries of C are polynomial differentials of u, v and linear in v.
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The above Corollary leads us to define a natural linear differential operator Pu de-
fined below.

Definition 4. Given u ∈ C∞(R, Vn), let

Pu : C∞(R, Vt
n)→ C∞(R, sp(2n))

be the linear differential operator defined by Pu(v) = the unique C ∈ C∞(R, sp(2n)) satisfies (45).

It follows from the definition of Pu and Theorem 5 that we have the following:

Proposition 11. Let u ∈ C∞(R, Vn). Then

(i) C satisfies (37) if and only if C = Pu(v) for some v ∈ C∞(R, Vt
n).

(ii) If C satisfies (37), then C = Pu(π0(C)).

Example 9. Let u = u1e23 + u2e14 ∈ C∞(S1, V2), and ξ = ξ1e32 + ξ2e41 ∈ C∞(S1, Vt
2). We use

the algorithm given in the proof of Proposition 5 to obtain:

Pu(ξ) =

⎛⎜⎜⎝
− 1

2 (ξ
′′′
2 + 3ξ ′1 − u1ξ ′2) C12 C13 C14

1
2 ξ ′′2 + ξ1 − 1

2 ξ ′1 C23 −C13
− 1

2 ξ ′2 ξ1
1
2 ξ ′1 C12

ξ2
1
2 ξ ′2

1
2 ξ ′′2 + ξ1

1
2 (ξ

′′′
2 + 3ξ ′1 − u1ξ ′2)

⎞⎟⎟⎠,

and

C12 = −1
2

ξ
(4)
2 − 3

2
ξ ′′1 +

1
2
(u1ξ ′2)′ + u2ξ2,

C23 = −1
2

ξ
(4)
2 − 2ξ ′′1 +

1
2
(u1ξ ′2)′ + u2ξ2 + u1ξ1,

C13 = −1
2

ξ
(5)
2 − 3

2
ξ
(3)
1 +

1
2
(u1ξ ′2)′′ + (u2ξ2)

′ + 1
2

u2ξ ′2,

C14 = −1
2

ξ
(6)
2 − 3

2
ξ
(4)
1 +

1
2
(u1ξ ′2)(3) +

1
2

u1ξ
(4)
2 + (u2ξ2)

′′ + u2ξ ′′2 +
1
2

u′2ξ ′2

+ u2ξ1 +
3
2

u1ξ ′′1 −
1
2

u1(u1ξ ′2)′ − u1u2ξ2.

Example 10 (Tangent space of M4 at γ). Let u = u1e23 + u2e14 and g = (γ, γ′, γ′′, g4) be
the Lagrangian curvature and frame along γ as in Example 2, where g4 = γ′′′ − u1γ′. It follows
from Corollary 1 and Proposition 11 that the tangent space ofM4 at γ is

{gPu(ξ)e1 | ξ ∈ C∞(R, Vt
n)}.

We use the formula of Pu(ξ) given in Example 9. Set η1 = 1
2 ξ ′′2 + ξ1 and η2 = ξ2. Then we

have ξ1 = η1 − 1
2 η′′2 and ξ2 = η2. So the first column of Pu(ξ) is

(
1
4

η′′′2 −
3
2

η′1 +
1
2

u1η′2, η1,−1
2

η′2, η2)
t.

Hence the tangent space ofM4 at γ is the space of

(
1
4

η′′′2 −
3
2

η′1 +
1
2

u1η′2)γ + η1γx − 1
2

η′2γxx + η2g4,

where η1, η2 are smooth functions.
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Proposition 12. Let u ∈ C∞(R, Vn), P2j−1,0(u), Q2j−1,0(u), ξ j(u), ηj(u) as in (12), (29), (21), (33)
respectively. Then

Pu(π0(P2j−1,0(u))) = P2j−1,0(u)− ηj(u),

Pu(π0(Q2j−1,0(u))) = Q2j−1,0(u)− ξ j(u),

and the (2j− 1)-th Ĉ(1)
n -KdV and Â(2)

2n−1-KdV flows can be written respectively as

ut = [∂x + b + u, Pu(π0(P2j−1,0(u)))],

ut = [∂x + b + u, Pu(π0(Q2j−1,0(u)))].

Proof. It follows from (21) and (34) that both P2j−1,0(u) − ηj(u) and Q2j−1,0(u) − ξ j(u)
satisfies [∂x + b + q, C] is Vn-valued. Proposition follows from Proposition 11 (ii).

Theorem 6.

(i) If γ ∈ M2n is a solution of the (2j− 1)-th Lagrangian curve flow (39) of C-type ((40) of

A-type resp.), then its Lagrangian curvature u is a solution of the (2j− 1)-th Ĉ(1)
n -KdV flow

(22) (Â(2)
2n−1-KdV flow (34) resp.).

(ii) Let u ∈ C∞(R2, Vn) be a solution of (22) ((34) resp.), and g : R2 → Sp(2n) a solution
of (23) ((35) resp.). Then γ(x, t) := g(x, t)e1 is solution of the (2j− 1)-th isotropic curve
flow of C-type (39) (A-type (40) resp.) with Lagrangian curvature u(·, t) and Lagrangian
moving frame g(·, t).

(iii) Let q be a solution of the (2j− 1)-th Ĉ(1)
n -flow (14) (Â(2)

2n−1-flow (31) resp.), and g : R2 →
Sp(2n) a solution of (15) ((32) resp.). Then γ(x, t) = g(x, t)e1 is a solution of the (2j− 1)-th
Lagrangian curve flow (39) of C-type ((4) of A-type resp).

Proof. We claim that Z := g−1gt satisfies (37). Since g−1gx = b + u with u ∈ Vn, a direct
computation implies that

y := (g−1gx)t = −Z(b + u)− g−1gxt (47)

is Vn-valued. By (47), we obtain

Zx + [b + u, Z] = −g−1gxg−1gt + g−1gxt = y,

which is Vn-valued. So Z satisfies (37). By definition of ηj(u), P2j−1(u)− ηj(u) also satis-
fies (37). The first column of gZe1 is γt, which is P2j−1(u)e1. Since ηj(u) is strictly upper
triangular, the first column of P2j−1(u)− ηj(u) is also P2j−1(u)e1. It follows from Corollary 2
that Z = P2j−1(u)− ηj(u). Hence we have proved g satisfies (23). By Proposition 6, u is a
solution of (22). This proves (i).

Since g−1gx = b + u, g(·, t) is the Lagrangian frame along γ = ge1. So γt = gte1 =
g(P2j−1(u)− ηj(u))e1 = gP2j−1(u)e1. This proves (ii). (iii) is proved similarly.

Remark 1. We use the same proof as in [49] for the n-dimensional central affine curve flow to show
that solutions of the Cauchy problem of (22) give solutions of the Cauchy problem for Lagrangian
curve flow (39) with both rapidly decaying and periodic initial data. Similar results hold for the
Lagrangian curve flows (34) and (40).

5. Darboux Transforms for the Ĉ(1)
n -Hierarchy

In this section, we use the loop group factorization method given in [54] to construct
Darboux transformations for the Ĉ(1)

n -, Ĉ(1)
n -KdV, and the Lagrangian curve flows of C-

type. We also give a Permutability formula for these Darboux transforms. To use this
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method, we need to identify the loop groups, find simple rational elements, and write
down formulas for the factorizations.

Let (Ĉ(1)
n )+ denote the group of holomorphic maps f : C→ GL(2n,C) satisfying the

Sp(2n)-reality condition (7), i.e.,

f (λ̄) = f (λ), f (λ)tSn f (λ) = Sn,

and RĈ
(1)
n the group of rational maps f : C → GL(2n,C) satisfying (7) and f (∞) = I.

Then the Lie algebras of (Ĉ(1)
n )+ and RĈ

(1)
n are contained in (Ĉ(1)

n )+ and (Ĉ(1)
n )− respectively.

Next Proposition gives the uniqueness of factorization.

Proposition 13. Let f1, g1 ∈ (Ĉ
(1)
n )+, and f2, g2 ∈ RĈ

(1)
n . If f1 f2 = g1g2, then f1 = g1 and

f2 = g2.

Proof. Let h := g−1
1 f1 = g2 f−1

2 . Then h is both holomorphic for λ ∈ C and at λ = ∞. So h
is constant. However, at λ = ∞, h = I. Therefore, h ≡ I.

The following result was proved in [54] for soliton hierarchies constructed from a
splitting of loop algebras. So it works for both the Ĉ(1)

n - and Â(2)
2n−1-hierarchies given in

Section 3.

Theorem 7 ([54]). Let F(x, t, λ) be a frame of a solution q of (14) ((31) resp.) and g ∈ RĈ
(1)
n .

Then there exists an open neighborhood O of (0, 0) such that we can factor

g(λ)F(x, t, λ) = F̃(x, t, λ)g̃(x, t, λ)

with F̃(x, t, ·) in (Ĉ(1)
n )+ and g̃(x, t, ·) ∈ RĈ

(1)
n for all (x, t) ∈ O. Moreover, write

g̃(x, t, λ) = I + g−1(x, t)λ−1 + g−2(x, t)λ−2 + · · · .

Then q̃ = q + [g−1, β] is a new solution of (14) ((31) resp.) and F̃ is a frame of q̃, where
β = e1,2n (β = 1

2 (e1,2n−1 + e2,2n) resp.).

Theorem 8. Let g • q denote the solution of (14) ((31) resp.) constructed from the frame F(x, t, λ)

of solution q of (14) ((31) resp.) satisfying F(0, 0, λ) = I. Then g • q defines an action of RĈ(1)
n on

the space of solutions of (14) ((31) resp.).

Proof. It suffices to prove that (g f ) • q = g • ( f • q) for f , g ∈ RĈ
(1)
n . Assume that

f (λ)F(x, t, λ) = F1(x, t, λ) f̃ (x, t, λ),

g(λ)F1(x, t, λ) = F̃(x, t, λ)g̃(x, t, λ),

where f̃ (x, t, ·), g̃(x, t, ·) are in RĈ
(1)
n and F1(x, t, λ) F̃(x, t, λ) are holomorphic for λ ∈ C.

It follows from Theorem 7 that we have

f • q = q + [ f̃−1, β],

g • ( f • q) = f • q + [g̃−1, β] = q + [ f̃−1 + g̃−1, β]

are solutions of (14), where

f̃ (x, t, λ) = I + f̃−1(x, t)λ−1 + f̃−2(x, t)λ−2 + · · · ,

g̃(x, t, λ) = I + g̃−1(x, t)λ−1 + g̃−2(x, t)λ−2 + · · · .
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To obtain (g f ) • q, we factor

(g f )F = g( f F) = g(F1 f̃ ) = (gF1) f̃ = (F̃g̃) f̃ = F̃(g̃ f̃ ).

Since f̃ (x, t, ·) and g̃(x, t, ·) are in RĈ
(1)
n , g̃ f̃ is in RĈ

(1)
n . Please note that the coefficient

of λ−1 of g̃ f̃ is f̃−1 + g̃−1. Hence it follows from Theorem 7 that we have

(g f ) • q = q + [β, f̃−1 + g̃−1].

So we have proved that (g f ) • q = g • ( f • q).

Given a linear subspace V of R2n, let

V⊥ = {y ∈ R2n | ω(ξ, y) = 0 for all ξ ∈ V}.

Lemma 1. Let R2n = V1 ⊕ V2 be a direct sum of linear subspaces, and π the projection of R2n

onto V1 along V2. Then we have ω(πX, Y) = ω(X, πsY), where

πs = S−1
n πtSn

is a projection of R2n onto V⊥2 regarding R2n = V⊥2 ⊕V⊥1 .

Proof. Please note that

ω(π(X), Y) = XtπtSnY = ω(X, S−1
n πtSn(Y)) = ω(X, πsY),

where ω is the symplectic form defined by (1).
If ω(πsX, Y) = 0 for all X ∈ R2n, then ω(X, πY) = 0. Hence (Im(πs))⊥ ⊂ Ker(π) = V2,

which implies Im(πs) = V⊥2 .
On the other hand, if Y ∈ Ker(πs), then ω(πX, Y) = ω(X, πsY) = 0 for any X ∈ R2n.

So Y ∈ V⊥1 , which implies Ker(πs) = V⊥1 .

We use Lemma 1 and a direct computation to get:

Lemma 2.

(1) A linear subspace of R2n is Lagrangian if and only if V⊥ = V.
(2) Let π be a projection of R2n. Then

Imπ and Kerπ are Lagrangian subspaces, (48)

if and only if
πs = I2n − π. (49)

Given α ∈ R \ 0 and a projection π of R2n, let

kα,π(λ) = I +
2α

λ− α
(I− π). (50)

A direct computation implies that

k−1
α,π(λ) = I− 2α

λ + α
(I− π). (51)

Lemma 3. Given α ∈ R \ 0, if π is a projection of R2n satisfying (48) then

kt
α,π(λ)Snkα,π(λ) =

λ + α

λ− α
Sn. (52)
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Proof. Lemmas 1 and 2 (2) implies that S−1
n πtSn = I− π. So we have I− πt = SnπS−1

n .
Then a direct computation gives (52).

Lemma 4. Let α ∈ R \ 0, π a projection satisfying (48), and f : C→ GL(2n,C) a meromorphic
map, holomorphic at λ = α,−α, and f satisfying the Sp(2n)-reality condition (7). Let Ṽ1 =
f (α)−1(Imπ), and Ṽ2 = f (−α)−1(Kerπ). Assume that Ṽ1 ∩ Ṽ2 = {0}. Let π̃ be the projection
onto Ṽ1 along Ṽ2. Then

(1) Ṽ1 and Ṽ2 are Lagrangian subspaces,
(2) f̃ := kα,π f k−1

α,π̃ is holomorphic at λ = α,−α and satisfies the Sp(2n)-reality condition (7).

Proof. Since f satisfies the Sp(2n)-reality condition, f (r) ∈ Sp(2n) for all r ∈ R. Hence
f (r)−1(Vi) is again a Lagrangian subspace. This proves (i).

By (51), we have

f̃ (λ) = (I +
2α

λ− α
(I− π)) f (λ)(I− 2α

λ + α
(I− π̃)).

Please note that f̃ has a simple pole at λ = α and the residue of f̃ at λ = α is
2α(I− π) f (α)π̃, which is zero because

(I− π) f (α)Imπ̃ = (I− π) f (α) f (α)−1(Imπ) = (I− π)(Imπ) = 0.

Similarly, f̃ has a simple pole at λ = −α and its residue is 2απ f (−α)(I− π̃), which is
again zero because its image is

π f (−α)Kerπ̃ = π f (−α) f (−α)−1(Kerπ) = 0.

This proves f̃ is holomorphic at λ = α,−α.
It follows from (52) that k−1

α,π = λ−α
λ+α (kα,π)s. Since f satisfies f (λ)−1 = ( f (λ))s, a direct

computation shows that f̃−1 = f̃s. Hence f̃ satisfies (7).

Theorem 9 (Darboux transform for the Ĉ(1)
n -flow (14)).

Let c ∈ Sp(2n) be a constant, F(x, t, λ) the frame of a solution q of (14) satisfying F(0, 0, λ) =
c, α ∈ R\{0}, and π a projection of R2n satisfying (48). Let

Ṽ1(x, t) = F−1(x, t, α)(Imπ), Ṽ2(x, t) = F−1(x, t,−α)(Kerπ).

Then

(1) Ṽi(x, t) are Lagrangian subspaces for all (x, t) ∈ R2,
(2) there is an open subsetO of (0, 0) in R2 such that R2n = Ṽ1(x, t)⊕ Ṽ2(x, t) for all (x, t) ∈ O,
(3) let π̃(x, t) be the projection of R2n onto Ṽ1(x, t) along Ṽ2(x, t), and

F̃(x, t, λ) = kα,π F(x, t, λ)k−1
α,π̃(x,t)(λ), (53)

then
q̃ = q + 2α[e1,2n, π̃] (54)

is a new solution of (14) and F̃ is a frame for q̃.

In particular, we have
kα,π • q = q + 2α[e1,2n, π̃] (55)

if F is chosen so that F(0, 0, λ) = I.

Proof. Let V1 = Imπ, and V2 = Kerπ. By assumption, V1, V2 are Lagrangian. Since
F(x, t, λ) satisfies the Sp(2n) reality condition (7) and α,−α ∈ R, (1) follows.
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By assumption, V1 ∩V2 = {0}. Please note that Ṽ1(0, 0) = F(0, 0, α)−1(V1) = c−1(V1)
and Ṽ2(0, 0) = c−1V2. So (c−1V1)∩ (c−1V2) = {0}. Since O = {(x, t) | Ṽ1(x, t)∩ Ṽ2(x, t) =
{0}} is an open subset of R2 and (0, 0) ∈ O, (2) follows.

(3) follows from Lemma 4 and Theorem 7.

Theorem 9 can be reformulated as follows:

Theorem 10. Let q be a solution of (14), λ ∈ R \ 0, and Dq,λ the following linear system

Dq,λ

{
yx = −(e1,2nλ + b + q)y,
yt = −(P2j−1(q, λ))+y.

(56)

Then (56) is solvable. Moreover, let {v1, . . . , v2n} be a basis of R2n such that the span of
v1, . . . , vn and the span of vn+1, . . . , v2n are Lagrangian subspaces. Let yi be the solution of
Dq,α with initial data yi(0, 0) = vi, and yn+i the solution of Dq,−α with yn+i(0, 0) = vn+i
for 1 ≤ i ≤ n. Let Ṽ1(x, t) be the span of y1(x, t), . . . , yn(x, t), and Ṽ2(x, t) the span of
yn+1(x, t), . . . , y2n(x, t). Then

(1) Ṽi(x, t) is Lagrangian for all (x, t) ∈ R2 and i = 1, 2,
(2) there is an open subset O of (0, 0) such that Ṽ1(x, t) ∩ Ṽ2(x, t) = 0 for all (x, t) ∈ O,
(3) q̃ defined by (54) is a solution of (14) defined on O, where π̃ is the projection onto Ṽ1(x, t)

along Ṽ2(x, t).

Remark 2 (Bäcklund transformations for the Ĉ(1)
n -flow).

Let q, q̃, F, F̃ be as in Theorem 9. Then we have{
F−1Fx = J + q,
F−1Ft = B(q, λ),

{
F̃−1 F̃x = J + q̃,
F̃−1 F̃t = B(q̃, λ),

(57)

where B(q, λ) = (P2j−1(q, λ))+. Let k̃(x, t) = kα,π̃(x,t). Then it follows from (57) and (53) that
we have {

k̃(J + q)− k̃x = (J + q̃)k̃,
k̃B(q, λ)− k̃t = B(q̃, λ)k̃.

(58)

Equate the residues of (58) at λ = α to get

(BT)q,λ

{
π̃x = [αe1,2n − b− q, π̃]− 2α[e1,2n, π̃]π̃,
π̃t = B(q + 2α[e1,2n, π̃], α)(I − π̃)− (I − π̃)B(q, α),

which is the Bäcklund transformation for the Ĉ(1)
n -flow. Moreover,

(1) (BT)q,λ is solvable for π̃ if and only if q is a solution of the Ĉ(1)
n -flow,

(2) if π0 is a projection satisfies (49), then the solution π̃ of (BT)q,α with initial data π̃(0, 0) = π0

also satisfies (49) and q̃ defined by (54) is also a solution of the Ĉ(1)
n -flow. In fact, q̃ = kα,π • q.

The following DTs for (22) is a consequence of Proposition 9 and Theorem 9.

Theorem 11 (DT for Ĉ(1)
n -KdV).

Let E be a frame of a solution u of (22), kα,π as in Lemma 3, 
 : R2 → N+
n satisfying


t
−1 = ηj(u), and q = 
−1 ∗ u. Let

Ṽi(x, t) = 
−1(x, t)E−1(x, t, αi)(Vi)
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for i = 1, 2, and π̃(x, t) the projection onto Ṽ1(x, t) along Ṽ2(x, t). Let q̃ be defined by (54),

̃ : R2 → N+

n the unique map such that ũ = 
̃ ∗ q̃ is Vn valued. Then ũ is a solution of (22) and

Ẽ(x, t, λ) = kα,π(λ)E(x, t, λ)
(x, t)k̃−1
α,π̃(x,t)(λ)
̃−1(x, t)

is a frame of ũ, where ∗ is defined by (18).

As a consequence of Theorems 9 and 6 (iii), we have

Theorem 12 (DT for Lagrangian curve flow of C-type).

Let γ be a solution of the Lagrangian curve flow (39), and g(·, t) and u(·, t) the Lagrangian
frame and curvature along γ(·, t). Let E be the frame of the solution u of (22) satisfying E(0, 0, λ) =
g(0, 0). Let 
, kα,π , and π̃ be as in Theorem 11. Then

γ̃ = (2π − I)g
(2π̃ − I)e1

is a new solution of (39).

Example 11. [1-soliton solutions of C-type]

First, we apply Theorem 9 to the trivial solution q = 0 of the third Ĉ(1)
2 -flow to construct

1-soliton solutions and their corresponding frames. Then we use Theorem 11 to construct solutions
of the third Ĉ(1)

2 -KdV flow (5). In the end, we apply Theorem 12 to get explicit solutions of the third
Lagrangian curve flow of C-type on R4:

γt = −3
8
(u1)xγ +

1
4

u1γx + g4 = −3
8
(u1)xγ− 3

4
uxγx + γxxx.

Please note that
F(x, t, λ) = exp(Jx + J3t)

is a frame of the solution q = 0 of the third Ĉ(1)
2 -flow. We use λ = z4 to write down F(x, t, λ) in

terms of known functions,

F(x, t, z4) =
1
4

⎛⎜⎜⎝
m1(x, t, z) zm2(x, t, z) z2m3(x, t, z), z3m4(x, t, z)

1
z m4(x, t, z) m1(x, t, z) zm2(x, t, z) z2m3(x, t, z)
1
z2 m3(x, t, z) 1

z m4(x, t, z) m1(x, t, z) zm2(x, t, z)
1
z3 m2(x, t, z) 1

z2 m3(x, t, z) 1
z m4(x, t, z) m1(x, t, z)

⎞⎟⎟⎠,

where ⎛⎜⎜⎝
m1(x, t, z)
m2(x, t, z)
m3(x, t, z)
m4(x, t, z)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

ezx+z3t

ei(zx−z3t)

e−(zx+z5t)

e−i(zx−z3t)

⎞⎟⎟⎟⎠.

(Although the entries of F(x, t, z3) involves zi in the denominators, use power series expansion
and a simple computation to see that they are holomorphic at z = 0).

Next we apply DTs for the third Ĉ(1)
2 -flow to the trivial solution q = 0 and z = 1. Let π be

the projection onto V1 along V2, where

V1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
1
0

⎞⎟⎟⎠,

⎛⎜⎜⎝
1
0
−1
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, V2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0
1
0
1

⎞⎟⎟⎠,

⎛⎜⎜⎝
0
1
0
−1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭.
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Then π̃ is the projection onto Ṽ1 along Ṽ2, where

Ṽ1 = E(x, t, 1)−1V1 = span{p1, p2}

= span

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

cosh(x + t)
− sinh(x + t)
cosh(x + t)
− sinh(x + t)

⎞⎟⎟⎠,

⎛⎜⎜⎝
cos(x− t)
− sin(x− t)
− cos(x− t)

sin(x− t)

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭,

Ṽ2 = E(x, t, 1)−1V1 = span{p3, p4}

= span

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

sinh(x + t)
cosh(x + t)
sinh(x + t)
cosh(x + t)

⎞⎟⎟⎠,

⎛⎜⎜⎝
− sin(x− t)
cos(x− t)
sin(x− t)
− cos(x− t)

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭.

From a direct computation, we have

π̃(x, t) =
(

p̃1, p̃2, 0, 0
)(

p̃1, p̃2, p̃3, p̃4
)−1

=
1
2

(
1√
y1

p̃1, (1 + y2
y3
) p̃2, 0, y2

y3
p̃2

)⎛⎜⎜⎜⎝
1√
y1

p̃t
1

p̃t
2

0
p̃t

4

⎞⎟⎟⎟⎠,

where

y1 = cosh(2(x + t)),

y2 = sin(2(x− t)),

y3 = (1− sin(2(x− t)))(1 +
1
2

sin(4(x− t))).

Applying (54), we can get a solution of the third Ĉ(1)
2 -flow,

q̃ = q1(e11 − e44) + q2(e12 + 434) + q3(e13 − e24) + q4e14.

Using the algorithm in the proof of Proposition 5, we get a new solution of (5),

ũ = 
 ∗ q = ũ1e23 + u2e14,

where

ũ1 = 3q′1 + 2q2 + q2
1,

ũ2 = (q1)
(3)
x + q′′2 + q′3 + q4 + 2q1q3 − q2

2 − q′1q2 + q1q′2 + q1q′′1 .

We use Theorem 12, and the formula for π̃, and a direct computation to see that

γ̃(x, t) =

⎛⎜⎜⎝
1 0 0 0
−x −1 0 0
1
2 x2 x 1 0

−( 1
6 x3 + t) − 1

2 x2 −x −1

⎞⎟⎟⎠
⎛⎜⎜⎝

ξ1
ξ2
ξ3
ξ4

⎞⎟⎟⎠
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is a solution of the third Lagrangian curve flow of C-type onM4, where

ξ1 =
1
y1

cosh2(x + t) + (1 +
y2

y3
) cos2(x− t)− y2

2y3
sin(2(x− t))− 1,

ξ2 = −1
4
(cosh(2(x + t)) + (1 +

y2

y3
) sin(2(x− t))− 2

y2

y3
sin2(x− t)),

ξ3 =
1
2
(

1
y1

cosh2(x + t)− (1 +
y2

y3
) cos2(x− t) +

1
2

y2

y3
sin(2(x− t))),

ξ4 = −1
4
(cosh(2(x + t))− (1 +

y2

y3
) sin(2(x− t)) + 2

y2

y3
sin2(x− t)).

Next we give a Permutability formula for DTs of the Ĉ(1)
n flows. The following Lemma

follows from Lemma 4.

Lemma 5. Let α1, α2 be distinct real constants, π1, π2 projections of R2n satisfying (48), and τ1, τ2
projections defined by{

Im(τ1) = kα2,π2(α1)Im(π1), Ker(τ1) = kα2,π2(−α1)Ker(π1),
Im(τ2) = kα1,π1(α2)Im(π2), Ker(τ2) = kα1,π1(−α2)Ker(π2).

Then τ1, τ2 satisfy (48) and

kα2,τ2 kα1,π1 = kα1,τ1 kα2,π2 .

It follows from Lemma 5 and Theorems 8 and 9 that we have

Theorem 13 (Permutability Formula for the Ĉ(1)
n -flows).

Let F(x, t, λ) be the frame of the solution q of the (2j− 1)-th Ĉ(1)
n -flow (14) with F(0, 0, λ) =

I2n, αi, πi, τi for i = 1, 2 as in Lemma 5. Then we have the following:

(1) Let Ṽi = F(x, t, αi)
−1(Imπi), and W̃i = F(x, t,−αi)

−1(Kerπi), π̃i the projection onto Ṽi
along W̃i for i = 1, 2. Then

q1 := kα1,π1 • q = q + 2α1[e1,2n, π̃1],

q2 := kα2,π2 • q = q + 2α2[e1,2n, π̃2].

(2) kα2,τ2 • (kα1,π1 • q) = kα1,τ1 • (kα2,π2 • q).
(3) Let τ̃1(x, t), τ̃2(x, t) be the projections defined by

Im(τ̃1) = kα2,π̃2(α1)Im(π̃1), Ker(τ̃1) = kα2,π̃2(−α1)Ker(π̃1),

Im(τ̃2) = kα1,π̃1(α2)Im(π̃2), Ker(τ̃2) = kα1,π̃1(−α2)Ker(π̃2).

Then we have

q12 := kα2,τ2 • (kα1,π1 • q) = kα1,τ1 • (kα2,π2 • q)

= q1 + 2α2[e1,2n, τ̃2] = q2 + 2α1[e1,2n, τ̃1].

In particular, q12 can be obtained algebraically from π̃1 and π̃2.

The Permutability Theorem 13 gives an algebraic formula for constructing k-solitons
and their frames from k 1-solitons for the Ĉ(1)

n -flow. If F̃ is a frame of the k-soliton solution
q̃ of Ĉ(1)

n -flow, then γ̃ = F̃(x, t, 0)e1 is a k-soliton solution of the Lagrangian curve flow of
C-type and its Lagrangian curvature ũ is a k-soliton of the Ĉ(1)

n -KdV flow.
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6. Darboux Transforms for the Â(2)
2n−1-Hierarchy

In this section, we construct Darboux transformations for the Â(2)
2n−1, Â(2)

2n−1-KdV,
and the Lagrangian curve flows of A type. We also give a Permutability formula for these
Darboux transforms.

Let (Â(2)
2n−1)+ denote the group of holomorphic maps f : C→ SL(2n+ 1,C) satisfying

the reality condition (7), i.e.,

f (λ̄) = f (λ), f (−λ)tSn f (λ) = Sn, (59)

and RÂ
(2)
2n−1 the group of rational maps f : C → SL(2n + 1,C) satisfying (7) with

f (∞) = I. Then the Lie algebras of (Â(2)
2n−1)+ and RÂ

(2)
2n−1 are subalgebras of (Â(2)

2n−1)+ and

(Â(2)
2n−1)− respectively.

Please note that the second condition of (59) is equivalent to

f−1(λ) = f (−λ)s,

where As = S−1
n AtSn.

Please note that the restriction of the symplectic form w to a linear subspace V of R2n

is non-degenerate if and only if R2n = V ⊕V⊥.

Lemma 6. Let π be a projection. Then Ker(π) = (Im(π))⊥ if and only if

π = πs. (60)

Lemma 7. Let π be a projection of R2n satisfying (60), and α ∈ R\{0}. Then kα,π defined by (50)
is in RÂ

(2)
2n−1.

Lemma 8. Let α ∈ R \ 0, π a projection satisfying (60), and f : C→ GL(2n,C) a meromorphic
map, holomorphic at λ = α and λ = −α, and satisfying (59). Let Ṽ = f (α)−1(V), where
V = Imπ. Then

(1) Ṽ⊥ = f (−α)−1(V⊥),
(2) assume that Ṽ ∩ Ṽ⊥ = 0, let π̃ be the projection onto Ṽ along Ṽ⊥, then

f̃ = kα,π f k−1
α,π̃

is holomorphic at λ = α,−α and satisfies (59).

Proof. Set V = Imπ. If Y ∈ Ṽ⊥, then

0 = ω( f (α)−1V, Y) = ω( f (−α)sV, Y) = ω(V, f (−α)Y).

Hence f−1(−α)Y ∈ V⊥, which implies that f−1(−α)(Ṽ⊥) ⊂ V⊥. Since they have the
same dimension, f−1(−α)(Ṽ⊥) = V⊥. This proves (1).

By (51), we have

f̃ (λ) = (I +
2α

λ− α
(I− π)) f (λ)(I− 2α

λ + α
(I− π̃)).

Please note that f̃ has a simple pole at λ = α and λ = −α. The residue of f̃ at λ = α
is 2α(I− π) f (α)π̃, which is zero because Im( f (α)π̃) = f (α)(Ṽ) = V and Ker(I− π) = V.
The residue of f̃ at λ = −α is −2απ f (−α)(I− π̃), which is zero because π f (−α)Ṽ⊥ =
πV⊥ = 0. Hence f̃ is holomorphic at λ = α,−α. Since both f and kα,π satisfies (59), f̃
satisfies (59).
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Using Lemma 8, Theorem 7 and a proof similar to the proof of Theorem 9, we obtain
the following:

Theorem 14 (DT for the Â(2)
2n−1-hierarchy).

Let c ∈ Sp(2n) be a constant, and F(x, t, λ) be the frame of a solution q of the (2j− 1)-th
Â(2)

2n−1-flow (31) with F(0, 0, λ) = c, and π a projection satisfying (60). Given α ∈ R\{0}, let

Ṽ(x, t) = F(x, t, α)−1(V), where V = Imπ.

Then

(1) there exists an open neighborhood O of (0, 0) in R2 such that R2n = Ṽ(x, t)⊕ Ṽ(x, t)⊥ for
all (x, t) ∈ R2,

(2) let π̃(x, t) be the projection onto Ṽ(x, t) along Ṽ⊥(x, t), then

q̃ = q + α[e1,2n−1 + e2,2n, π̃] (61)

is a solution of (31) defined on O and

F̃(x, t, λ) = kα,π(λ)F(x, t, λ)k−1
α,π̃(x,t)(λ)

is a frame of q̃.

In particular, if F satisfies F(0, 0, λ) = I2n, then we have

kα,π • q = q + α[e1,2n−1 + e2,2n, π̃]. (62)

Theorem 14 can be reformulated as follows:

Theorem 15. Let q be a solution of (31), λ ∈ R \ 0, and Bq,λ the following linear system

Bq,λ

{
yx = −(βλ + b + q)y,
yt = −(Q2j−1(q, λ))+y,

(63)

where β = 1
2 (e1,2n−1 + e2,2n). Then we have the following:

(1) (63) is solvable.
(2) Let {v1, . . . , v2n} be a basis of R2n such that w(vi, vn+j) = 0 for all 1 ≤ i, j ≤ n. Let yi

be the solution of Dq,α with initial data yi(0, 0) = vi, and yn+i the solution of Dq,−α

with yn+i(0, 0) = vn+i for 1 ≤ i ≤ n. Let Ṽ1(x, t) be the span of y1(x, t), . . . , yn(x, t),
and Ṽ2(x, t) the span of yn+1(x, t), . . . , y2n(x, t). Then

(a) Ṽ2(x, t) = Ṽ1(x, t)⊥ for all (x, t) ∈ R2 and i = 1, 2,
(b) there is an open subset O of (0, 0) such that Ṽ1(x, t) ∩ Ṽ2(x, t) = 0,
(c) q̃ defined by (61) is a solution of (31) defined on O, where π̃ is the projection onto

Ṽ1(x, t) along Ṽ2(x, t).

Bäcklund transformations for the Â(2)
2n−1-flows are obtained in the similar way as for

the Ĉ(1)
n -flows.
As a consequence of Proposition 9 and Theorem 14, we obtain the following:

Theorem 16 (DT for Â(2)
2n−1-KdV (33)).

Let E be a frame of a solution u of (34), 
 : R2 → N+
n a solution of 
t
−1 = ξ j(u),

and q = 
−1 ∗ u, where ξ j(u) is defined by (33). Let π be a projection satisfying (60), and kα,π

defined by (50), and Ṽ(x, t) = 
−1(x, t)E−1(x, t, α)(Imπ). Then

(1) there exists an open subset containing (0, 0) such that R2n = Ṽ(x, t)⊕ Ṽ⊥(x, t),
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(2) let π̃(x, t) denote the projection onto Ṽ(x, t) along Ṽ(x, t)⊥, q̃ defined by (61), and 
̃ :
R2 → N+

n such that 
̃ ∗ q̃ is Vn-valued. Then ũ = 
̃ ∗ q̃ is a new solution of (34) and

Ẽ = kα,πE
k−1
α,π̃
̃−1

is a frame of ũ.

Theorems 14 and 6 (iii) give the following:

Theorem 17 (DT for Lagrangian curve flows of A-type).

Let γ be a solution of the Lagrangian curve flow (40) of A-type, and g(·, t), u(·, t) the
Lagrangian frame and Lagrangian curvature along γ(·, t). Let E be the frame of the solution u
of (31) satisfying E(0, 0, λ) = g(0, 0). Let
, α, π, π̃ be as in Theorem 16. Then

γ̃ = (2π − I)g
(2π̃ − I)e1

is a new solution of (40) and its Lagrangian curvature ũ is a solution of (31).

Example 12. 1-soliton solutions of A-type

Please note that u = 0 is the trivial solution of the third Â(2)
2n−1-flow with frame F(x, t, λ) =

exp(xJB(λ) + tJ3
B(λ)). By Theorem 6 (iii),

γ(x, t) = F(x, t, 0)e1 = exp(bx + b3t)e1

is the Lagrangian curve flow (39) with zero Lagrangian curvature and

g(x, t) = exp(bx + b3t)

as its Lagrangian frame.
Please note that the linear system Bq,λ given by (63) for q = 0 is

B0,λ

{
yx = −JBy,
yt = −J3

By.

Since
J2n
B = λJB, (J3

B)
2n = λ3 J3

B,

the solution of B0,λ for any given initial data can be written down explicitly. Hence Theorem 15
gives an algorithm to compute explicit formula for 1-solitons q̃ and its frame for the third Â(2)

2n−1-
flow. Theorem 17 gives the corresponding 1-soliton solution γ̃ of the third Lagrangian curve flow of
A-type and the Lagrangian curvature ũ of γ̃ is a 1-soliton solution of the third Â(2)

2n−1-KdV flow.

Next we give the Permutability formula. First it follows from Lemma 8 that we have
the following:

Lemma 9. Let α1, α2 ∈ R\{0} such that |α1| �= |α2|, and πi projections of R2n satisfying
Kerπi = (Imπi)

⊥. Then Ṽ1 = kα2,π2(α1)(Imπ1) and Ṽ2 = kα1,π1(α2)(Imπ2) are non-
degenerate, and

kα1,τ1 kα2,π2 = kα2,τ2 kα1,π1 ,

where τi is the projection onto Ṽi along Ṽ⊥i for i = 1, 2.

Similarly, Lemma 9, Theorems 8 and 14 give the following:

Theorem 18. [Permutability for DTs of the Â(2)
2n−1-flow]
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Let αi, πi, τi be as in Lemma 9 for i = 1, 2. Let F be the frame of a solution q of the (2j− 1)-th
Â(2)

2n−1-flow with F(0, 0, λ) = I, Ṽi(x, t) = F(x, t, αi)
−1(Imπi), and π̃i(x, t) the projection onto

Ṽi(x, t) along Ṽi(x, t)⊥. Let W̃1 = kα2,π̃2(α1)(Imπ̃1), W̃2 = kα1,π̃1(α2)(Imπ̃2), and τ̃i be the
projection onto,W̃i along W̃⊥

i . Then we have

qi := kαi ,πi • q = q + αi[β, π̃], i = 1, 2,

kα1,τ1 • (kα2,π2 • q) = kα2,τ2 • (kα1,π1 • q),

q12 := kα1,τ1 • (kα2,π2 • q) = q1 + α2[β, τ̃2] = q2 + α1[β, τ̃1],

where β = e1,2n−1 + e2,2n.

The Permutability Theorem 18 gives an algebraic formula to construct k-solitons of
the (2j − 1)-th Â(2)

2n−1-flow and their frames from k 1-solitons of the (2j − 1)-th Â(2)
2n−1-

flow. If F̃ is a frame of the k-soliton solution q̃ of Â(2)
2n−1-flow, then γ̃ = F̃(x, t, 0)e1 is a

k-soliton solution of the Lagrangian curve flow of A-type and its Lagrangian curvature ũ is
a k-soliton of the Â(2)

2n−1-KdV flow.

7. Scaling Transforms

In this section, we construct scaling transforms and give relations between DTs and
scaling transforms for the Ĉ(1)

n -flows and Â(2)
2n−1-flows.

Theorem 19. Let αi, πi, τi as in Lemma 5 (9 resp.), and F(x, t, λ) the frame of the solution q of the
(2j− 1)-th Ĉ(1)

n -flow (14) (Â(2)
2n−1-flow (31) resp.) with F(0, 0, λ) = I2n+1. Let r ∈ R \ {0}, and

Γ(r) = diag(1, r, . . . , r2n−1). (64)

Then

(1) (r � q)(x, t) = rΓ(r)−1q(rx, r2j−1t)Γ(r) is a solution of the (2j − 1)-th Ĉ(1)
n -flow (the

Â(2)
2n−1-flow resp.),

(2) for the Ĉ(1)
n case,

(r� F)(x, t, λ) := Γ(r)−1F(rx, r2j−1t, r−2nλ)Γ(r)

is the frame of the solution r� q of the Ĉ(1)
n -flow (14),

(3) for the Â(2)
2n−1-case,

(r� F)(x, t, λ) := Γ(r)−1F(rx, r2j−1t, r−(2n−1)λ)Γ(r)

is the frame of the solution r� q of the Â(2)
2n−1-flow (31).

Proof. First we prove the Theorem for the Ĉ(1)
n -flows. Set F̂(x, t, λ) = Γ(r)−1F(rx, r2j−1t,

r−2nλ). Please note that

rΓ(r)−1(e1,2nr−2nλ + b)Γ(r) = e1,2nλ + b = J(λ). (65)

Since F is a frame of q, F−1Fx = J + q. direct computation implies that

F̂−1 F̂x = J + rq(rx, r2j−1t, r−2nλ).

Let P(x, t, λ) = P(q(x, t), λ) be the solution of (10). So Px + [J + q, P] = 0. Set

P̂(x, t, λ) = rΓ(r)−1P(q(rx, r2j−1t), r−2nλ)Γ(r).
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We use (65) and a direct computation to see that

P̂x + [J + r� q, P̂] = 0.

This shows that P̂ = P(r� q, λ). A direct computation implies that

F̂−1 F̂t = Γ(r)−1(r2j−1P2j−1(rx, r2j−1t, r−2nλ)+Γ(r))

= Γ(r)−1(rP(rx, r2j−1t, r−2nλ))
2j−1
+ Γ(r) = (P̂2j−1)+

= (P2j−1(r� q, λ))+.

It follows from Proposition 4 that r� q is a solution of (14) and F̂ is a frame of r� q.
This proves (1) and (2) for the Ĉ(1)

n -hierarchy.
Similar proof gives (1) and (3) for the Â(2)

2n−1-hierarchy.

It follows from Theorem 19 (2) and Theorem 6 (iii) that we have the following:

Corollary 4. Let c ∈ R \ 0, and γ a solution of the (2j− 1)-th Lagrangian curve flow of C-type
or A-type. Then

(c� γ)(x, t) := Γ(c)γ(cx, ct)

is again a solution, where Γ(c) is defined by (64).

In particular, let γ̃ be the solution of the third Lagrangian curve flow on M4 con-
structed in Example 11. Then c� γ̃ is also a solution for all c ∈ R \ 0.

Corollary 5. Let u = ∑n
i=1 uien+1−i,n+i be a solution of the (2j − 1)-th Ĉ(1)

n -KdV flow (22)

(Â(2)
2n−1-KdV flow (34) resp.), r ∈ R\{0}, Γ(r) as in (7). Then we have the following:

(1) r� u = ∑n
i=1 r2iui(rx, r2j−1t)en+1−i,n−i is a solution of the (2j− 1)-th Ĉ(1)

n -KdV flow (22)

(Â(2)
2n−1-KdV flow (34) resp.).

(2) If E(x, t, λ) is a frame of the solution u of (22), then

(r� E)(x, t, λ) := Γ(r)−1E(rx, r2j−1t, r−2nλ)Γ(r)

is a frame of r� u.
(3) If E(x, t, λ) is a frame of the solution u of (34), then

(r� E)(x, t, λ) := Γ(r)−1E(rx, r2j−1t, r−(2n−1)λ)Γ(r)

is a frame of r� u.

Corollary 6. r � u defines an action of the multiplicative group R+ on the space of solutions
of (22) ((34) resp.).

Next we give a relation between the scaling transforms and Darboux transforms.
First we need a Lemma.

Lemma 10. Let r ∈ R \ 0, Γ(r) defined by (64), and As = S−1
n AtSn as before. Then

(1) Γ(r)s = r2n+1Γ(r)−1,
(2) let π be a projection of R2n, and π̂ = Γ(r)πΓ(r)−1, then

(a) if πs = π, then π̂s = π̂,
(b) if πs = I− π, then π̂s = I− π̂.

Proof. It is clear that Γ(r)SnΓ(r) = r2n+1Sn, which gives (1). (2) follows from (1).
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It follows from Lemma 10, the formulas for r� q in Theorem 19 and (55), (62) that we
have the following.

Theorem 20. Let r, α ∈ R \ 0, Γ(r) as in (64), π a projection of R2n, and π̂ = Γ(r)πΓ(r)−1.

(1) If q is a solution of the (2j− 1)-th Ĉ(1)
n -flow (14) and π satisfies πs = I− π, then

kr−2n ,π̂ • q = r−1 � (k1,π • (r� q)).

(2) If q is a solution of the (2j− 1)-th Â(2)
2n−1-flow (31) and π satisfies πs = π, then

kr−(2n−1) ,π̂ • q = r−1 � (k1,π • (r� q)).

8. Bi-Hamiltonian Structure

The existence of a bi-Hamiltonian structure and using it to generate the hierarchy are
two of the well-known properties for soliton hierarchies (cf. [11,55,56]). In this section,
we use the linear operator Pu defined in Definition 4 to write down the bi-Hamiltonian
structure for the Ĉ(1)

n -KdV and Â(2)
2n−1-KdV. The pull back of this bi-Hamiltonian structure

to M2n via the Lagrangian curvature map Ψ gives the bi-Hamiltonian structure for the
Lagrangian curve flows of C and A-type.

Let
〈ξ, η〉 =

∮
tr(ξη)dx

denote the standard L2 inner product on C∞(S1, sl(2n,R)).
The bi-Hamiltonian structure on C∞(S1,B+

n ) for the Ĉ(1)
n and Â(2)

2n−1 hierarchies given
in [11] is

{F1, F2}∧1 (q) = 〈[β,∇F1(q)],∇F2(q)〉, (66)

{F1, F2}∧2 (q) = 〈[∂x + b + q,∇F1(q)],∇F2(q)〉, (67)

where

β =

{
e1,2n, for Ĉ(1)

n ,
1
2 (e1,2n−1 + e2,2n), for Â(2)

2n−1.
(68)

Using the same proof as in [49], we see that the bi-Hamiltonian structure is invariant
under the gauge action of the group C∞(S1, N+

n ), i.e., if F1, F2 are invariant under the gauge
action, then {F1, F2}∧i is also invariant for i = 1, 2. Since C∞(S1, Vn) is the orbit space of
this gauge action, we can identify functionals F on C∞(S1, Vn) with invariant functionals F̂
on C∞(S1,B+

n ), where
F̂(
 ∗ u) = F(u).

Hence

{F1, F2}i(u) = {F̂1, F̂2}∧i (u)

are Poisson structures on C∞(S1, Vn) for i = 1, 2.
Given a functional F : C∞(S1, Vn) → R, let ∇F(u) be the unique map from S1 →

Vt
n satisfying

dFu(v) = 〈∇F(u), v〉 =
∮

tr(∇F(u)v)dx

for all v ∈ C∞(S1, Vn).
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Again we use the same proof as in [49,50] to write { , }i in terms of the linear opera-
tor Pu:

{F1, F2}1(u) = 〈[β, Pu(∇F1(u))], Pu(∇F2(u))〉,
{F1, F2}2(u) = 〈[∂x + b + u, Pu(∇F1(u))], Pu(∇F2(u))〉,

where β is given by (68) These give a bi-Hamiltonian structure for the Ĉ(1)
n -KdV flows.

The first bracket is always zero and { , }2 is a Poisson structure for the Â(2)
2n−1-hierarchy.

There is a standard way (cf. [56]) to generate a sequence of compatible invariant Poisson
structures { , }∧j , j ≥ 1 on C∞(S1,B+

n ). It can be checked that the induced structure

{ , }2i+1 on C∞(S1, Vn) is always zero for the Â(2)
2n−1-KdV hierarchy, but { , }2i are non-trivial

Poisson structure. So ({ , }2, { , }4) gives a bi-Hamiltonian structure for the Â(2)
2n−1-KdV

flows. Since the formulas are tedious and do not give us useful information, we omit the
discussion of { , }4 for the Â(2)

2n−1-KdV hierarchy.
Since [∂x + b+u, Pu(∇F1(u))] is in C∞(S1, Vn) and π0(Pu(∇F2(u)) = ∇F2(u), we have

{F1, F2}2(u) = 〈[∂x + b + u, Pu(∇F1(u))],∇F2(u)〉.

So the Hamiltonian flow for a functional F with respect to { , }2 is

ut = [∂x + b + u, Pu(∇F(u))].

The following results can be proved by a similar computation as in [49] for the Â(1)
n -

KdV hierarchy:

Theorem 21. Set

F2j−1(u) = −
∮

tr(P2j−1,−1(u)e1,2n)dx,

H2j−1(u) = −1
2

∮
tr(Q2j−1,−1(u)(e1,2n+1 + e2,2n))dx.

Then we have

∇F2j−1(u) = π0(P2j−1,0(u)), ∇H2j−1(u) = π0(Q2j−1,0(u)),

where π0 is the projection onto Vt
n defined by (44). Moreover, we also have:

(i) The Hamiltonian equation for F2j−1 (H2j−1 resp.) with respect to { , }2 is the (2j− 1)-th

Ĉ(1)
n -KdV (Â(2)

2n−1-KdV resp.) flow for j ≥ 1.

(ii) The Hamiltonian equation for F2(n+j)−1 with respect to { , }1 is the (2j− 1)-th Ĉ(1)
n -KdV

flow for j > n.

Remark 3. The bi-Hamiltonian structure on C∞(S1, V1) for the Ĉ(1)
1 -KdV hierarchy is the stan-

dard bi-Hamiltonian structure for the KdV hierarchy (cf. [52]).

Example 13. Bi-Hamiltonian structure for the Ĉ(1)
2 -KdV hierarchy
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Let u = u1e23 + u2e14, ξ = ξ1e32 + ξ2e41, η = η1e32 + η2e41, C = (Cij) = Pu(ξ),
and D = (Dij) = Pu(η). We use Example 9 to write down the following Hamiltonian structures:

{F1, F2}1(u) = 〈[e14, C], D〉
=
∮
(3ξ ′′′2 + 4ξ ′1 − u1ξ ′2)η2 + 4ξ ′2η1 + u1ξ2η′2dx,

=
∮
(3ξ ′′′2 + 4ξ ′1 − 2u1ξ ′2 − u′1ξ2)η2 + 4ξ ′2η1dx,

{F1, F2}2(u) = 〈[∂x + b + u, C], D〉
=
∮
(C′14 − 2u2C11)η2 + (C′23 + 2C13 + u1ξ ′1)η1dx,

where Cij’s are written in terms of ξ1 and ξ2 as in Example 9.

Example 14. Conservation laws for the Ĉ(1)
n -KdV hierarchy

Let
f2j−1(u) = tr(P2j−1,−1(u)e1,2n)

denote the density of F2j−1.

(1) For n = 2, we have

f1 = u1, f3 = u2 +
1
8

u2
1, f5 = − 1

32
u3

1 + u1u2 − 3
32

u1u′′1 .

(2) For general n, the first two densities of conservation laws are

f1 = u1, f3 = u2 +
2n− 3

4n
u2

1.

Example 15. Conservation laws for the Â(2)
2n−1-KdV hierarchy

Let
h2j−1(u) =

1
2

tr(Q2j−1,−1(u)(e1,2n+1 + e2,2n)).

(1) For n = 2, we have

h1 = u1, h3 = u2, h5 =
1
3
(

2
3

u1(u1)xx − 4u1u2 − 4
9

u3
1).

(2) For general n, the first two densities of conservation laws are

h1 = u1, h3 = u2 +
n− 2

2n− 1
u2

1.

Example 16. Hamiltonian flows for F3 and H3
A simple computation implies that ∇F3(u) = 1

4 u1e32 + e41, where u = u1e23 + u2e14.
We use notations and formulas as in Example 9 to compute Pu(∇F3(u)) and obtain

C11 = −3
8

u′1, C13 = −3
8
(u1)

(3)
x + u′2,

C14 = −3
8
(u1)

(4)
x + (u2)xx +

3
8

u1(u1)xx − 3
4

u1u2,

C23 = −1
2
(u1)xx + u2 +

1
4

u2
1.

The Hamiltonian flow of F3 with respect to { , }2 is

ut = [∂x + b + u, Pu(∇F3(u))]. (69)
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We use the formula for Pu(∇F3(u)) to compute directly and see that (69) is the following
system for u1, u2, {

(u1)t = C′23 + 2C13 +
1
4 u1u′1,

(u2)t = C′14 − 2u2C11.

Substitute Cij into the above equation to see that it is (5).
Similarly, we use the same notations and formulas as in Example 9 to compute Pu(∇H3(u)).

Here ∇H3(u) = e32. We see thatbe

C11 = 0, C13 = u′2, C14 = u′′2 − u1u2, C23 = u2.

So the Hamiltonian flow for H3 with respect to { , }2 written in terms of u1, u2 is (6).

Remark 4. We use the pullback { , }∧i of the Poisson structures { , }i on C∞(S1, Vn) by the
Lagrangian curvature map Ψ for i = 1, 2, to get a bi-Hamiltonian structure on M2n. In other
words, given a functional Fi on C∞(S1, Vn), let

F̂ = F ◦Ψ : M2n → R

be functionals onM2n. Then

{F̂, Ĝ}∧i (γ) = {F, G}i(Ψ(γ)), i = 1, 2

are the pullback bi-Hamiltonian onM2n. As a consequence of Theorem 21, we have the following:

(1) The Lagrangian curve flow (39) and (40) are Hamiltonian flows for the Hamiltonians

F̂2j−1 := F2j−1 ◦Ψ, Ĥ2j−1(u) := H2j−1 ◦Ψ

with respect to { , }∧2 respectively.
(2) The Lagrangian curve flows of C-type (A-type resp.) are commuting Hamiltonian flows

onM2n.

9. Review and Open Problems

In this section, we give an outline of the construction of Ĝ(1)-KdV hierarchy (cf. [11,53]),
explain the key steps needed in constructing curve flows whose differential invariants
satisfy the Ĝ(1)-KdV, and give some open problems.

Let G be a non-compact, real simple Lie group, G its Lie algebra, and

Ĝ(1) = L(G) = { ∑
i≤n0

ξiλ
i | n0 an integer, ξi ∈ G}.

Let
Ĝ(1)
+ = {∑

i≥0
ξiλ

i ∈ L(G)}, Ĝ(1)
− = {∑

i<0
ξiλ

i ∈ L(G)}.

Then (Ĝ(1)
+ , Ĝ(1)

− ) is a splitting of Ĝ(1).
Let {α1, . . . , αn} be a simple root system of G , and B+,B−,N+ the Borel subalgebras of

G of non-negative roots, non-positive roots, and positive roots respectively. Let B+, B−, N+

be connected subgroups of G with Lie algebras B+,B−,N+ respectively. Let

J = βλ + b, (70)

where b = −∑n
i=1 αi and β is the highest root.
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The construction of Ĉ(1)
n -hierarchy in Section 3 works for Ĝ(1) except that the generat-

ing function P(q, λ) in Proposition 2 should satisfy{
[∂x + b + q, S(q, λ)] = 0,
m(S(q, λ)) = 0,

(71)

where m is the minimal polynomial of J defined by (70).
Assume that there is a sequence of increasing positive integers {nj | j ≥ 1} such that

Jnj lies in Ĝ(1)
+ for all j ≥ 1. Write

Snj(q, λ) = ∑
i

Snj ,i(q)λ
i.

Then the nj-th flow in the Ĝ(1)-hierarchy is

qt = [∂x + b + q, Snj ,0(q)] (72)

for q : R2 → B+.
Using the same kind of proofs for the Ĉ(1)

n -hierarchy, we obtain the following proper-
ties of the Ĝ(1)-hierarchy:

(i) The existence of a Lax pair, [∂x + J + q, ∂t + (Snj(q, λ))+] = 0 for (72).
(ii) The Ĝ(1)-flows are invariant under the gauge action of C∞(R, N+) on C∞(R,B+).
(iii) If we find a linear subspace V of G such that C∞(R, V) is a cross-section of the

gauge action of C∞(R, N+) on C∞(R,B+). Then we can push down the Ĝ(1)-flows to
the cross-section C∞(R, V) along gauge orbits and obtain a Ĝ(1)-KdV hierarchy on
C∞(R, V). Moreover, there exists a polynomial differentials ξ j(u) such that the nj-th
flow in the Ĝ(1)-KdV hierarchy is

ut = [∂x + b + u, Snj ,0(u)− ξ j(u)]. (73)

The Ĝ(1)-KdV hierarchies constructed from two different cross- sections are not the
same but are gauge equivalent.

(iv) The bi-Hamiltonian structure ({ , }∧1 , { , }∧2 ) on C∞(R,B+) is given by (66), (67).
(v) The Poisson structures { , }∧1 and { , }∧2 are invariant under the gauge group action.

So there is an induced bi-Hamiltonian structure on C∞(S1, V) for the Ĝ(1)-KdV hierar-
chy, which will be denoted by ({ , }1, { , }2).

(vi) Fnj(q) = −
∮
(Snj ,−1(q)β)dx is the Hamiltonian for the nj-th flow with respect to { , }∧2 .

Although properties (i)–(vi) can be proved in a unified way for any Ĝ(1), the following
results need to be proved case by case depending on G:

(1) Find a linear subspace V such that C∞(R, V) is a cross-section of the gauge action of
C∞(R, N+) on C∞(R,B+).

(2) Suppose G is a subalgebra of gl(n) and C∞(R, V) is a cross-section of the gauge action.
We consider the following class of curves in Rn:

M = {ge1 | g ∈ C∞(R, G) satisfying g−1gx = b + u,

for some u ∈ C∞(R, V)}.

Find geometric properties of curves inM that characterize γ ∈ M (so g is the moving
frame and u is the differential invariant of γ under the group G). For example, for
the Ĉ(1)

n case, it is easy to see that if γ ∈ M, then γ is Lagrangian (see Definition 1).
Conversely, if γ is Lagrangian then g ∈ M.

(3) Identify the tangent space ofM at γ.
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(4) Show that
γt = gSnj ,0(u)e1 (74)

is a flow onM, i.e., the right hand side is tangent toM.
(5) Show that if γ(x, t) is a solution of (74), then the differential invariants u(·, t) satisfies

the Ĝ(1)-KdV flow (73). This also gives a natural interpretation of the Ĝ(1)-KdV.
(6) Write down the formula for the induced bi-Hamiltonian structure for the Ĝ(1)-KdV hierarchy.
(7) We pull back the bi-Hamiltonian structure on C∞(S1, V) toM via the curvature map

Ψ : M→ C∞(S1, V) defined by Ψ(γ) = u the differential invariant of γ. Then soliton
properties of Ĝ(1)-KdV can be also pulled back to the curve flows (74) onM.

(8) Prove an analogue of Theorem 5, i.e., if C : R → G satisfies [∂x + b + u, C] ∈
C∞(R, V), then

(a) C is determined by Ce1,
(b) C is determined by the projection of C onto Vt, where u ∈ C∞(R, V).

We need this result to give a precise description of the tangent space ofM at γ and to
write down the formula for the induced bi-Hamiltonian structure on C∞(R, V) for
the Ĝ(1)-KdV hierarchy.

(9) To construct Darboux transforms, we need to find rational maps g : R → GC sat-
isfies g(λ̄) = g(λ) with minimal number of poles and work out the factorization
formula explicitly.

Let σ be an involution of G , and K, P the 1,−1 eigenspaces of σ. The Ĝ(2)-hierarchy is
constructed from the splitting (Ĝ(2)

+ , Ĝ(2)
− ) of Ĝ(2), where

Ĝ(2) = {ξ(λ) = ∑
i

ξiλ
i | ξ(λ̄) = ξ(λ), σ(ξ(−λ)) = ξ(λ)},

Ĝ(2)
+ = Ĝ(2) ∩ Ĝ(1)

+ , Ĝ(2)
− = Ĝ(2) ∩ Ĝ(1)

− .

Assume that there is a simple root system of G so that β ∈ P and b ∈ K. Then
C∞(R,K ∩ B+) is invariant under the Ĝ(1)-hierarchy. The Ĝ(2)-hierarchy is the restriction
of the Ĝ(1)-hierarchy to C∞(R,K ∩ B+). Most properties of the Ĝ(1)-hierarchy hold for the
Ĝ(2)-hierarchy except the bi- Hamiltonian structure { , }∧1 is zero on C∞(S1,K ∩ B+). To
obtain the other Poisson structure, we need to review briefly a general method to construct
a sequence of compatible Poisson structures from a bi-Hamiltonian structure: Let Ξi denote
the Poisson operator for { , }∧i on C∞(R,B+), i.e., (Ξi)q : C∞(S1,B−) → C∞(S1,B+) is
defined by

{F1, F2}∧i (q) = 〈(Ξ1)q(∇F1(q)),∇F2(q)〉
for i = 1, 2. It is known (cf. [55,56]) that

{F1, F2}∧j (q) = 〈(Ξj)q(∇F1(q)),∇F2(q)〉

is again a Poisson structure and are compatible, where

Ξj := Ξ2(Ξ−1
1 Ξ2)

j−2.

It can be checked that Ξ2i+1 = 0 on C∞(S1,K ∩ B+), and Ξ2i is a Poisson structure
for the Ĝ(2)-hierarchy for all i ≥ 1. So ({ , }∧2 , { , }∧4 ) is a bi-Hamiltonian structure for
the Ĝ(2)-hierarchy and it induces a bi-Hamiltonian structure ({ , }2, { , }4) for the Ĝ(2)-
KdV hierarchy.

Finally we give a list of open problems:

� Find integrable curve flows on R2n,1 whose differential invariants satisfy the

B̂(1)
n -KdV flows.

� Find integrable curve flows on Rk,2n−k whose differential invariants satisfy the

D̂(1)
n -KdV flows.
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� Find integrable curve flows on R2n whose differential invariants satisfy the

D̂(2)
n -KdV flows.

� Find integrable curve flows on R8 whose differential invariants satisfy the

D̂(3)
4 -KdV flows.

� Find integrable curve flows on R7 whose differential invariants satisfy the

Ĝ(1)
2 -KdV flows.

� Calini and Ivey constructed finite gap solutions for the VFE in [57]. It would be
interesting to construct finite-gap solutions for central affine curve flows, isotropic
curve flows, and Lagrangian curve flows.

� The Gauss-Codazzi equations of submanifolds occurring in soliton theory are often
given by the first level flows of the soliton hierarchy, i.e., the commuting flows gener-
ated by degree one (in λ) elements in the vacuum sequence. It would be interesting to
see whether the flows of the Ĝ(1)-KdV hierarchy generated by degree one elements
in the vacuum sequence also arise as the Gauss-Codazzi equations for some class
of submanifolds.
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Abstract: The first analysis of media with internal structure were done by the Cosserat brothers.
Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water.
In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid
molecules and propose some kind of Navier–Stokes equations for their description. Examples of
such media are water, ozone, carbon dioxide and hydrogen cyanide.

Keywords: Navier–Stokes equations; media with inner structures; plane molecules; water; Levi–
Civita connections

1. Introduction

It was the Cosserat brothers, [1], who first analyzed media formed by “rigid microele-
ments”, and G. Birkhoff [2] who noted that the classical Navier–Stokes equations give us
uncomplete descriptions of water flows (see also [3]). In papers [4,5] the authors gave a
general approach to dynamics of media having some inner structure and proposed some
generalizations of the Euler and Navier–Stokes equations.

In this paper, we consider the dynamics of media formed by chiral, planar and rigid
molecules (we call them CPR-molecules) molecules and propose some kind of Navier–
Stokes equations for their description. Recall that a molecule is called planar if it is formed
by atoms lying in the same plane and it is chiral and rigid if its symmetry group belongs to
SO(3). Hence, we consider a molecule as a rigid body on an oriented plane, the mechanical
properties of which are specified by the tensor of inertia.

2. The Configuration Space of a CPR-Molecule

We will assume that all CPR-molecules under consideration have the trivial point
symmetry group. Then a position of such a CPR-molecule is defined, up to rotations, by an
oriented plane in the three-dimensional space, passing through of the center of mass of
the molecule, or by the unit vector perpendicular to this plane or by a point on the unit
sphere S2.

Such molecules include, for example, molecules of ortho-water, i.e., molecules of water
with different spins of hydrogen atoms [6].

Let a ∈ S2 be a fixed point and let TaS2 be the tangent space to the sphere at the point a.
The position of a CPR molecule on the oriented plane is uniquely determined by a rotation,
and therefore, by a point on the unit circle on the tangent space TaS2.

Thus, the configuration space of a planar molecule with a fixed center of mass is the
circle bundle of the tangent bundle for the unit two-dimensional sphere. For our goal it is
more convenient to use the cotangent bundle T∗a S2 instead of the tangent one. We denote

Symmetry 2021, 13, 288. https://doi.org/10.3390/sym13020288 https://www.mdpi.com/journal/symmetry
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the circle bundle of the cotangent bundle by N and it will be the configuration space of
the molecule.

Let us introduce local coordinates on the configuration space. The position of a rigid
body in the space is determined by the position of its center of mass and angular parameters
(the Euler angles) showing its position relative to the center of mass. Let us choose a
Cartesian coordinate system x, y, z in the space R3 so that its axes coincide with the principal
axes of inertia tensor of the molecule. The metric tensor has the form g = dx2 + dy2 + dz2,
and the Lie algebra so(3) can be represented by the triple of vector fields on R3:

X = z
∂

∂y
− y

∂

∂z
, Y = x

∂

∂z
− z

∂

∂z
, Z = y

∂

∂x
− x

∂

∂y
, (1)

corresponding to the rotations around the axes OX, OY, OZ respectively.
In spherical coordinates φ, ψ, r in R3:

x = r cos ψ sin φ, y = r sin ψ sin φ, z = r cos φ,

where
φ = arccos

( z
r

)
, ψ = arctan

( y
x

)
, r =

√
x2 + y2 + z2,

vector fields (1) will take the following form:

RX = sin ψ
∂

∂φ
+ cot φ cos ψ

∂

∂ψ
, RY = − cos ψ

∂

∂φ
+ cot φ sin ψ

∂

∂ψ
, RZ = − ∂

∂ψ

respectively, and the metric tensor takes the form

g = r2
(

dφ2 + sin2 φ dψ2
)

in spherical coordinates. The metric g generates the invariant tensor field (the inverse metric)

g−1 =
1
r2

(
∂2

φ +
1

sin2 φ
∂2

ψ

)
.

which defines the metric on the cotangent bundle T∗a R3. The metric g−1 induces the metric

g−1
1 = ∂2

φ +
1

sin2 φ
∂2

ψ

on the cotangent bundle T∗a S2 of a sphere of unit radius r = 1.
Let q1 = φ, q2 = ψ, p1, p2 be the canonical coordinates on the cotangent bundle

T∗a S2, and
Ω = dq1 ∧ dp1 + dq2 ∧ dp2

be the structure differential 2-form that defines the symplectic structure on T∗a S2.
Then the Hamiltonian, corresponding to the metric g−1

1 , has the form

H = p2
1 +

1
sin2 q1

p2
2.

The Hamiltonians of the vector fields RX , RY, RZ are

HX = p1 sin q2 + p2 cot q1 cos q2, HY = −p1 cos q2 + p2 cot q1 sin q2, HZ = −p2
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respectively, and therefore, corresponding Hamiltonian vector fields are

X1 = sin q2
∂

∂q1
+ cot q1 cos q2

∂

∂q2
+ p2

cos q2

sin2 q1

∂

∂p1
− (p1 cos q2 − p2 cot q1 sin q2)

∂

∂p2
,

X2 =− cos q2
∂

∂q1
+ cot q1 sin q2

∂

∂q2
+ p2

sin q2

sin2 q1

∂

∂p1
− (p1 sin q2 + p2 cot q1 cos q2)

∂

∂p2
,

X3 =− ∂

∂q2
.

Thus, we have the representation of the Lie algebra so(3) by Hamiltonian vector fields
X1, X2, X3 with the commutation relations:

[X1, X2] = X3, [X1, X3] = −X2, [X2, X3] = X1.

It is easy to see these fields are tangential to N: X1(H) = X2(H) = X3(H) = 0.
Thus the motion of a molecule relative to its center of mass corresponds to the motion

of a point on the level surface N. We take q1, q2 and

q3 = arctan
(

p2

p1 sin q1

)
.

as local coordinates on the configuration space N = {H = 1}.

3. Metric and Levi–Civita Connection, Associated with a CPR-Molecule

The restrictions of the vector fields X1, X2, X3 on the level surface N are

E1 = sin q2
∂

∂q1
+ cot q1 cos q2

∂

∂q2
− cos q2

sin q1

∂

∂q3
,

E2 =− cos q2
∂

∂q1
+ cot q1 sin q2

∂

∂q2
− sin q2

sin q1

∂

∂q3
,

E3 =− ∂

∂q2

respectively.
Any motion of a CPR-molecule around the center of mass occurs along the trajectory

of vector fields, which are linear combinations of vector fields E1, E2, E3.
The basis dual to E1, E2, E3 is formed by the differential 1-forms

Ω1 = sin q2dq1 − cos q2 sin q1dq3,

Ω2 =− cos q2dq1 − sin q2 sin q1dq3,

Ω3 =− dq2 − cos q1dq3,

such that the Maurer–Cartan relations hold:

dΩ1 = −Ω2 ∧Ω3, dΩ2 = Ω1 ∧Ω3, dΩ3 = −Ω1 ∧Ω2.

The vector fields E1, E2, E3 and the differential 1-forms Ω1, Ω2, Ω3 give us the base
(over R) in the space of left-invariant vector fields and correspondingly left invariant
differential 1-forms on the configuration space. Moreover, any left invariant tensor on N is
a linear combination of tensor products of these vector fields and differential 1-forms with
constant coefficients.
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Let Λ be the inertial tensor of a molecule. It can be consid ered as a positive self adjoint
operator acting on the Lie algebra so(3). Let positive numbers λ1, λ2, λ3 be eigenvalues of
Λ. The inertia tensor defines the metric tensor on the Lie algebra so(3):

gλ =
1
2

(
λ1Ω2

1 + λ2Ω2
2 + λ3Ω2

3

)
,

where Ω2
i are the symmetric squares of the 1-forms. The inertia tensor has the following

coordinate representation:

gλ =(λ1 sin2 q2 + λ2 cos2 q2)dq2
1 + λ3dq2

2

+ (λ1 sin2 q1 cos2 q2 + λ2 sin2 q1 sin2 q2 + λ3 cos2 q1)dq2
3

+ 2(λ2 − λ1) sin(q2) cos q2 sin q1dq1 · dq3

+ 2λ3 cos q1dq2 · dq3.

Here the dot ·means the operation of symmetric multiplication.
Let ∇λ be the Levi–Civita connection [7] associated with the metric gλ and ∇λ

i be the
covariant derivative along vector field Ei. Then

∇λ
i (Ej) = ∑

k
Γk

ijEk,

where Γk
ij are the Christoffel symbols. Direct calculations show that

Γ3
12 =

λ− λ1

λ3
, Γ3

21 = −λ− λ2

λ3
,

Γ1
23 =

λ− λ2

λ1
, Γ1

32 = −λ− λ3

λ1
,

Γ2
31 =

λ− λ3

λ2
, Γ2

13 = −λ− λ1

λ2
. (2)

where
λ =

λ1 + λ2 + λ3

2
.

All other Christoffel symbols equal to zero.

4. Metric Associated with the Media

Let R3 be the 3-dimensional Euclidian space, endowed with the standard metric
tensor g. Consider a medium, formed by CPR-molecules filling a region D ⊂ R3. The
configuration space for this type of media is the SO(3)-bundle π : Φ −→ D, where
Φ = N × D.

The group SO(3) acts in the natural way on fibers of the projection π and we will
continue to use notation E1, E2, E3 for the induced vertical vector fields on Φ. These fields
form the basis in the module of vertical vector fields on Φ, and accordingly differential
1-forms Ω1, Ω2, Ω3 define the dual basis in the space of differential forms on N.

The medium is also characterized by a SO(3)-connection in the bundle π, (see [4,5]).
We call this connection the media connection and denote it by ∇μ. The media connection
allows us to compare molecules at different points of the region D.

The connection∇μ depends on the properties of the medium and establishes a relation
between the translational motion of the molecule and its motion relative to the center of
mass. Such a relation can be caused, for example, by physical inhomogeneity of space or
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by the presence of effects on the environment. Let us show how it can be defined (see [5]).
The connection form ω we will consider as a matrix

ω =

∥∥∥∥∥∥
0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

∥∥∥∥∥∥
where ω1, ω2, ω3 are differential 1-forms on D. In other words, connection∇μ shows that a
molecule is subject to rotation along vector (ω1(X)E1 + ω2(X)E2 + ω3(X)E3) on the angle

ϕ =
√

ω1(X)2 + ω2(X)2 + ω3(X)2

when we transport it on the vector X in D.
Let (x1, x2, x3) be the standard Euclidian coordinates on D and (∂1, ∂2, ∂3) and (d1, d2, d3)

be the corresponding frame and coframe respectively. Here ∂i =
∂

∂xi
and di = dxi. In these

coordinates we have

ω =

∥∥∥∥∥∥
0 −ω31 ω21

ω31 0 −ω11
−ω21 ω11 0

∥∥∥∥∥∥d1 +

∥∥∥∥∥∥
0 −ω32 ω22

ω32 0 −ω12
−ω22 ω12 0

∥∥∥∥∥∥d2 +

∥∥∥∥∥∥
0 −ω33 ω23

ω33 0 −ω13
−ω23 ω13 0

∥∥∥∥∥∥d3.

This connection allows us to split tangent spaces TbΦ into the direct sum

TbΦ = Vb
⊕

Hb,

where Vb is the vertical part with basis E1,b, E2,b, E3,b, and the horizontal space Hb is gener-
ated by the following vector fields:

∂1 −ω11E1 −ω21E2 −ω31E3,

∂2 −ω12E1 −ω22E2 −ω32E3,

∂3 −ω13E1 −ω23E2 −ω33E3.

The horizontal distribution

H : Φ � b −→ Hb ⊂ TbΦ

could be also defined as the kernel of the following system of differential 1-forms on Φ:

θ1 =Ω1 + ω11d1 + ω12d2 + ω13d3,

θ2 =Ω2 + ω21d1 + ω22d2 + ω23d3,

θ3 =Ω3 + ω31d1 + ω32d2 + ω33d3.

Define a metric gμ on the manifold Φ as a direct sum of the metric gλ on the vertical
space V and the standard metric g0 = dx2

1 + dx2
2 + dx2

3 on the horizontal space H:

gμ =
1
2

3

∑
i=1

(
λiΩ2

i + d2
i

)
.

Note that the frame (E1, E2, E3, ∂1 − ω(∂1), ∂2 − ω(∂2), ∂3 − ω(∂3)) and the coframe
(Ω1, Ω2, Ω3, d1, d2, d3) are dual and their elements are pairwise orthogonal with respect to
the metric gμ.

5. Levi–Civita Connection Associated with the Homogeneous Media

A media is said to be homogeneous if components of the connection form ω and the
inertia tensor Λ are constants. Below we consider only homogeneous media.
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Let ∇ be the Levi–Civita connection on the configuration space Φ associated with the
metric gμ.

For basic vector fields Ei and ∂j, where i, j = 1, 2, 3, we have the following commuta-
tion relations:

[∂i, ∂j] = [∂i, Ej] = 0, [E1, E2] = E3, [E1, E3] = −E2, [E2, E3] = E1. (3)

Therefore, the Levi–Civita connection ∇ on the configuration space Φ associated with
the metric gμ and homogeneous media has the form wherein the non trivial Christoffel
symbols are given by Formula (2).

The operator of the covariant differential d∇ associated with the Levi–Civita connec-
tion acts on the basis vectors as follows:

d∇(∂i) = 0 (i = 1, 2, 3),

d∇(E1) =Γ2
31E2 ⊗Ω3 + Γ3

21E3 ⊗Ω2,

d∇(E2) =Γ1
32E1 ⊗Ω3 + Γ3

12E3 ⊗Ω1,

d∇(E3) =Γ1
23E1 ⊗Ω2 + Γ2

13E2 ⊗Ω1,

and on the basic differential 1-forms:

d∇(di) = 0 (i = 1, 2, 3).

d∇(Ω1) =− Γ1
32Ω2 ⊗Ω3 − Γ1

23Ω3 ⊗Ω2;

d∇(Ω2) =− Γ2
31Ω1 ⊗Ω3 − Γ2

13Ω3 ⊗Ω1;

d∇(Ω3) =− Γ3
21Ω1 ⊗Ω2 − Γ3

12Ω2 ⊗Ω1.

6. Thermodynamic State of Media

The motion of the medium will be described by the trajectories of vector fields on the
configuration space, which preserve the bundle π : Φ −→ D,

U =
3

∑
i=1

(Xi(t, x)∂i + Yi(t, x, q)Ei).

The tensor Δ = d∇U is called the rate of deformation tensor [4]. Following [5,8],
this tensor bears an enormous thermodynamic quantity. Using properties of covariant
derivative we get:

Δ =
3

∑
i,j=1

(
∂j(Xi)∂i ⊗ dj + ∂j(Yi)Ei ⊗ dj + Ej(Yi)Ei ⊗Ωj

)
+

3

∑
i=1

Yid∇(Ei).

The matrix corresponding to the tensor Δ has the block structure:

Δ =

∥∥∥∥ ΔH 0
ΔHV ΔV

∥∥∥∥
where

ΔH =

∥∥∥∥∥∥
∂1(X1) ∂2(X1) ∂3(X1)
∂1(X2) ∂2(X2) ∂3(X1)
∂1(X3) ∂2(X3) ∂3(X1)

∥∥∥∥∥∥, ΔHV =

∥∥∥∥∥∥
∂1(Y1) ∂2(Y1) ∂3(Y1)
∂1(Y2) ∂2(Y2) ∂3(Y2)
∂1(Y3) ∂2(Y3) ∂3(Y3)

∥∥∥∥∥∥,

ΔV =

∥∥∥∥∥∥
E1(Y1) E2(Y1) + Γ1

23Y3 E3(Y1) + Γ1
32Y2

E1(Y2) + Γ2
13Y3 E2(Y2) E3(Y2) + Γ2

31Y1
E1(Y3) + Γ3

12Y2 E2(Y3) + Γ3
21Y1 E3(Y3)

∥∥∥∥∥∥.
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The metric tensor gμ defines the canonical isomorphism between vector fields and
differential 1-forms on Φ: a vector field X on Φ is associated with the differential 1-form
X� on Φ and vice versa: with any differential 1-form ω on Φ we can associate the vector
field ω�. We have

E�
i = λiΩi, Ω�

i =
1
λi

Ei, ∂�i = di, d�i = ∂i i = 1, 2, 3.

For fields of endomorphisms we put (X⊗ω)� = ω� ⊗ X�. Then we have:

Δ� =
3

∑
i,j=1

(
∂j(Xi)∂j ⊗ di + λi∂j(Yi)∂j ⊗Ωi +

λi
λj

Ej(Yi)Ej ⊗Ωi

)
+

3

∑
i=1

Yid�∇(Ei),

where

d�∇(E1) =
λ2

λ3
Γ2

31E3 ⊗Ω2 +
λ3

λ2
Γ3

21E2 ⊗Ω3,

d�∇(E2) =
λ1

λ3
Γ1

32E3 ⊗Ω1 +
λ3

λ1
Γ3

12E1 ⊗Ω3,

d�∇(E3) =
λ1

λ2
Γ1

23E2 ⊗Ω1 +
λ2

λ1
Γ2

13E1 ⊗Ω2.

Let σ be a stress tensor which can be considered as a field of endomorphisms on the
tangent bundle. Let σ� be field of endomorphisms on the tangent bundle TΦ dual to σ. The
following differential 1-form

ψ = ds− 1
T
(dε− Tr(σ�dΔ)− ξdρ)

defines the contact structure on the thermodynamic phase space of medium

Ψ = R5 × End(T∗Φ)× End(TΦ)

with coordinates s, T, ε, ξ, ρ, σ, Δ. Here ρ, s, ε are the densities of the media, entropy and
inner energy respectively, T and ξ are temperature and chemical potential respectively
(see [4,9]). Since dim End(T∗Φ) = dim End(TΦ) = 9 we get dim Ψ = 23. Legendrian
manifolds L we call thermodynamic states of the media, in given case dim L = 11.

Consider only those thermodynamic states for which T, ρ, Δ can be selected as coordinates.
Let h = ε− Ts be the density of Helmholtz free energy. Then we have the following

description of the Legendrian manifold:

s = hT , σ = hΔ, ξ = hρ.

In this case when the media is Newtonian and satisfies the Hooke law, the Helmholtz
free energy is a quadratic function of Δ and has the form [4]:

h =
1
2

(
a1Tr(Δ2) + a2Tr(ΔΔ�) + a3(TrΔ)2 + a4(Tr(ΔΠ))2 + a5Tr(Δ�ΔΠ) + a6Tr(ΔΔ�Π)

)
+ b1Tr(Δ) + b2Tr(ΔΠ) + c,

where Π is the projector to the vertical component and a1, . . . , a6, b1, b2, c are some functions
of ρ, T.

In this case the stress tensor has the form

σ = a1Δ� + a2Δ + (a3Tr(Δ) + b1) + (a4Tr(ΔΠ) + b2)Π + a5ΔΠ + a6ΠΔ.
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7. Divergence of Operator Fields

In order to write the momentum conservation law, we need a notation of the diver-
gence of the endomorphism field on Φ (see [4]). The covariant differential of an endo-
morphism field A ∈ TΦ⊗ T∗Φ is the tensor field d∇A ∈ TΦ⊗ T∗Φ⊗ T∗Φ. Taking the
contraction, the first and third indices of this tensor, we get the differential 1-form which is
called the divergence of the operator field A:

divA = c1,3(d∇A).

For decomposable fields A = X⊗ω, where X is a vector field and ω is a differential
1-form, the divergence operator can be calculated by the following formula:

div(X⊗ω) = (divX)ω +∇X(ω). (4)

Note that
div( f X⊗ω) = f div(X⊗ω) + X( f )ω.

The following formula gives an explicit form of the divergence operator. If the operator
has the form

A =
3

∑
i,j=1

(
aij∂i ⊗ dj + bijEi ⊗Ωj

)
,

then

divA =
3

∑
i,j=1

∂i(aij)dj + ∑
σ∈S3

(
Eσ(2)

(
bσ(2)σ(1)

)
− Γσ(3)

σ(2)σ(1)bσ(2)σ(3)

)
Ωσ(1). (5)

Here aij, bij are functions on Φ.
For endomorphisms that are linear combinations of tensors ∂i ⊗Ωj and Ei ⊗ dj, the

divergence is zero.

8. Conservation Laws

8.1. The Momentum Conservation Law

Let
d
dt

=
∂

∂t
+∇U

be a material derivative; then [4] the momentum conservation law, or Navier–Stocks equa-
tion, takes the form

ρ
dU
dt

= (divσ)� + F,

or, equivalently,

ρ

(
∂U
∂t

+∇U(U)

)
= (divσ)� + F. (6)

Here F is a density of exterior volume forces.
Let us calculate the covariant derivative ∇U(U). We have

∇U(U) =
3

∑
j=1

(
Xj∇∂j

(U) + Yj∇Ej(U)
)
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and

∇∂i
(∂j) = ∇∂i

(Ej) = 0,

∇Ei (∂j) = ∇Ei (Ei) = 0,

∇E1(E2) = Γ3
12E3, ∇E1(E3) = Γ2

13E2,

∇E2(E1) = Γ3
21E3, ∇E2(E3) = Γ1

23E1,

∇E3(E1) = Γ2
31E2, ∇E3(E2) = Γ1

32E1.

Therefore,

∇∂j
(U) =

3

∑
i=1

∂j(Xi)∂i + ∂j(Yi)Ei, j = 1, 2, 3;

∇E1(U) =E1(Y1)E1 + (E1(Y2) + Γ2
13Y3)E2 + (E1(Y3) + Γ3

12Y2)E3

∇E2(U) =(E2(Y1) + Γ1
23Y3)E1 + E2(Y2)E2 + (E2(Y3) + Γ3

21Y1)E3,

∇E3(U) =(E3(Y1) + Γ1
32Y2)E1 + (E3(Y2) + Γ2

31Y1)E2 + E3(Y3)E3,

and

∇U(U) =
3

∑
i,j=1

(
Xj∂j(Xi)∂i + (Xj∂j(Yi) + YjEj(Yi))Ei

)
+ (Γ1

23 + Γ1
32)Y2Y3E1 + (Γ2

13 + Γ2
31)Y1Y3E2 + (Γ3

12 + Γ3
21)Y1Y2E3

Moreover, we have

∇∂i
(dj) = ∇∂i

(Ωj) = ∇Ei (dj) = ∇Ei (Ωi) = 0 i, j = 1, 2, 3;

∇E1(Ω2) = −Γ2
13Ω3, ∇E1(Ω3) = −Γ3

12Ω2,

∇E2(Ω1) = −Γ1
23Ω3, ∇E2(Ω3) = −Γ3

21Ω1,

∇E3(Ω1) = −Γ1
32Ω2, ∇E3(Ω2) = −Γ2

31Ω1.

The momentum conservation law takes the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
∂t(Xi) +

3
∑

j=1
Xj∂j(Xi)

)
= ((divσ)� + F)di

i = 1, 2, 3;

ρ

(
∂t(Y1) +

3
∑

j=1

(
Xj∂j(Y1) + YjEj(Y1)

)
+ (Γ1

23 + Γ1
32)Y2Y3

)
= ((divσ)� + F)Ω1 ;

ρ

(
∂t(Y2) +

3
∑

j=1

(
Xj∂j(Y2) + YjEj(Y2)

)
+ (Γ2

13 + Γ2
31)Y1Y3

)
= ((divσ)� + F)Ω2 ;

ρ

(
∂t(Y3) +

3
∑

j=1

(
Xj∂j(Y3) + YjEj(Y3)

)
+ (Γ3

12 + Γ3
21)Y1Y2

)
= ((divσ)� + F)Ω3 ;

(7)

where ((divσ)� + F)ω is the coefficient of the right-hand side of (6) at the differential 1-form
ω. The divergence div can be found by Formula (5). We do not give explicit formulas due
to their cumbersomeness.

Equation (7) is the Navier–Stokes equation for the CPR-molecular medium.
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8.2. The Mass Conservation Law

The mass conservation law has the form

∂ρ

∂t
+ U(ρ) + ρ divU = 0,

where

divU = Tr(d∇U) = Tr Δ =
3

∑
i=1

(
∂Xi
∂xi

+ Ei(Yi)

)
.

The coordinate representation of this equation is as follows:

∂ρ

∂t
+

3

∑
i=1

(
Xi

∂ρ

∂xi
+ YiEi(ρ)

)
+ ρ

3

∑
i=1

(
∂Xi
∂xi

+ Ei(Yi)

)
= 0. (8)

8.3. The Energy Conservation Law

We suppose that there are no internal energy sources in the media. Then the conserva-
tion law of energy has the form (see [5])

∂ε

∂t
+ εdiv(U)− div(χ grad(T)) + Tr(σ�Δ) = 0. (9)

Here χ ∈ EndTΦ is the thermal conductivity of the medium.
Equations (7)–(9), and the equation of thermodynamic states of the media

s = hT , σ = hΔ, ξ = hρ

describe the motion and thermodynamics of the CPR-molecular medium.
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Keywords: Korteweg–de Vries–Burgers equation; cylindrical and spherical waves; saw-tooth solu-
tions; periodic boundary conditions; head shock wave

MSC: 35Q53; 35B36

1. Introduction

The well known Korteweg–de Vries (KdV)–Burgers equation for flat waves is of
the form

ut = −2uux + ε2uxx + δuxxx. (1)

Its cylindrical and spherical analogues are

ut +
1
2t

u = −2uux + ε2uxx + δuxxx. (2)

and
ut +

1
t

u = −2uux + ε2uxx + δuxxx. (3)

respectively, see [1,2].
The behavior of solutions of the Korteweg–de Vries (KdV) and KdV–Burgers equations

was intensively studied for about fifty years. However, these equations remain subjects
of various recent studies, mostly in the case of flat waves in one spatial dimension [3–7].
However, cylindrical and spherical waves have a variety of applications (e.g., waves
generated by a downhole vibrator), and are studied much less.

We consider the initial value boundary problem (IVBP) for the KdV–Burgers equation
on a finite interval:

u(x, 0) = f (x), u(a, t) = l(t), u(b, t) = L(t), ux(b, t) = R(t), x ∈ [a, b]. (4)

Symmetry 2021, 13, 220. https://doi.org/10.3390/sym13020220 https://www.mdpi.com/journal/symmetry
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In the case δ = 0 (that is, for the Burgers equation), it becomes

u(x, 0) = f (x), u(a, t) = l(t), u(b, t) = R(t), x ∈ [a, b]. (5)

The case of the boundary conditions u(a, t) = A sin(ωt), u(b, t) = 0 and the related
asymptotics are of a special interest here. For numerical modeling we use x ∈ [0, b] instead
of R+ for appropriately large b.

For the flat wave Burgers equation (δ = 0) the resulting asymptotic profile looks
like a periodical chain of shock fronts with a decreasing amplitude (weak breaks or
sawtooth waves). If dispersion is non-zero, each wavefront ends with high-frequency
micro-oscillations. Further from the oscillator, shock fronts become decaying smooth quasi-
periodic oscillations. After the oscillations cease, the wave develops as a constant height
and velocity shock. It almost coincides with a traveling wave solution (TWS) of the Burgers
equation [8,9].

A traveling wave solution is the solution of the form u = u(x + Vt). Such a solution
travels with a constant velocity V along the x−axis, unchanged in its form. The well-
known examples are solitons for KdV, shock waves for the Burgers equation. For the
existence of TWS for all values of the parameter V it is necessary that an equation has
Galillean symmetry.

In the case δ = 0, the Burgers equation has traveling wave solutions, vanishing
at x → +∞. They are given by the formula [10]

uB(x, t) =
V
2

[
1− tanh

(
V

2ε2 (x−Vt + s)
)]

; (6)

it is used below.
Our aim is to obtain a similar description of a long-time asymptote for cylindrical

and spherical waves with periodic boundary conditions. We demonstrate that, in the case
of the above IVBP, the perturbation of the equilibrium state for Equations (2) and (3)
ultimately takes a form similar to this shock.

This paper is organized as follows. In Section 2, we demonstrate graphs of our numer-
ical experiments for cylindrical/spherical Burgers/KdV–Burgers equations for different
combinations to show their the common patterns. In particular we demonstrate that,
after the oscillation cease, a solution becomes a monotonic convex line terminated by
a head shock.

In Section 3, we find symmetries to Equations (2) and (3). No Galilean symme-
try is found, so no real TWS exists. Then equations are brought to a conservation law
form, which is later used to obtain rough estimates for the median parameters of the
solution. This rough estimate becomes exact for constant boundary conditions, and
in Section 4, a very close asymptote for said solution is found in self-similar or homothetic
form u = u(x/t).

Yet, at the head shock this asymptotic is unsatisfactory. This head shock moves in un-
changed form and with numerically equal velocity and amplitude—exactly as the Burgers
traveling wave solution does. In Section 5, using a simple combination of a self-similar
approximation and the Burgers traveling wave solution, we obtain the compact closed form
approximation. It coincides with a solution in its monotonic part; and this approximation
correctly represents the median of the solution in its oscillating part. The quality of the
approximation is verified numerically. Connection between the velocity of the solution’s
head shock and the median value at the start is obtained.

In the section “Conclusions” we formulate main result and discuss the remaining
open questions.

2. Typical Examples

Here we demonstrate typical graphs for cylindrical and spherical Burgers waves
(see Figures 1 and 2) and for cylindrical and spherical KdV–Burgers (Figures 3 and 4).
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We obtained these graphs using the Maple PDETools package. The mode of operation used
was the default Euler method, which is a centered implicit scheme.

Figure 1. Cylindrical Burgers. ε = 0.1, Left: u0 = sin t, t = 150. Right: u0 = sin 10t, t = 200.

Figure 2. Spherical Burgers , u0 = sin t. Left: ε = 0.1, t = 150. Right: ε2 = 0.3, t = 150.

Figure 3. Cylindrical KdV–Burgars. Left: u0 = sin t, t = 300, ε = 0.1, δ = 0.001. Right: u0 = 3 sin t, t = 100, ε = 0.1,
δ = 0.001.
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Figure 4. Spherical KdV–Burgers, u0 = sin t. Left: t = 300, ε = 0.1, δ = 0.001. Right: u ↔ −u, t = 300, ε2 = 0.02, δ = 0.001,
ε2 = 0.2

The solution usually starts with a periodical chain of shock fronts with decreasing
amplitudes (sawtooth waves). This weak breaks/sawtooth profile is inherent to periodic
waves in dissipative media. Sawtooth waves, their decay, amplitudes, width, etc., were
intensively studied in 1970 (see [1,2]) and later. One can also see a common pattern,
previously not described, emerging on these figures. After the decay of initial oscillations,
graphs become monotonic declining convex lines, terminated by a shock. Recall that for flat
waves this monotonic part almost coincides with a constant height traveling wave solution
of Burgers equation [7]. The new feature of convex declining lines is caused by the space
divergence. We obtain an analytical description of this pattern below.

3. Symmetries and Conservation Laws

3.1. Symmetries

Since cylindrical and spherical equations explicitly depend on time, their stock of sym-
metries is scarce. For the algorithm of symmetry calculations, see [11]. We found that
the algebras of classical symmetries are generated by the following vector fields:

X =
∂

∂x
, Y = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
, Z =

√
t

∂

∂x
+

1
4
√

t
∂

∂u
, W = ln(t)

∂

∂x
+

1
2t

∂

∂u
.

This list does not contain the Galilean symmetry, so no real traveling wave solu-
tion exists.

In particular, symmetry algebra for:

• Cylindrical Burgers is generated by X, Y, Z;
• Cylindrical KdV–Burgers is generated by X, Z;
• Spherical Burgers is generated by X, Y, W;
• Spherical KdV–Burgers is generated by X, W.

3.2. Conservation Laws

First rewrite Equations (1)–(3) into an appropriate conservation law form

[tn · u]t = [tn · (−u2 + ε2ux + δuxx)]x, (7)

where n = 0, 1/2, 1 for flat, cylindrical and spherical cases, respectively.
Hence, for solutions of the above equations we have∮

∂D
tn · [u dx + (ε2ux − u2 + δuxx) dt] = 0, (8)
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where D is a rectangle
{0 ≤ x ≤ L, 0 ≤ t ≤ T}.

While bearing in mind the initial value/boundary conditions u(x, 0) = u(+∞, t) = 0,
for L = +∞ the integrals read

0∫
+∞

Tnu(x, T) dx +

0∫
T

tn(ε2ux(0, t)− u2(0, t) + δuxx(0, t)) dt = 0.

Thus

+∞∫
0

u(x, T) dx =
1

Tn

T∫
0

tn(−ε2ux(0, t) + u2(0, t)− δuxx(0, t)) dt. (9)

Subsequently

1
T

+∞∫
0

u(x, T) dx =
1
T

T∫
0

1
Tn tn(−ε2ux(0, t) + u2(0, t)− δuxx(0, t)) dt. (10)

The right-hand side of Equation (10) can be computed in some simple cases or estimated.
For instance, assume that ε2ux(0, t) + δuxx(0, t) is negligible compared to u2(0, t). Then

1
T

+∞∫
0

u(x, T) dx ≈ 1
T

T∫
0

1
Tn tn(u2(0, t)) dt =

1
T

T∫
0

1
Tn tn(A sin2(ωt)) dt. (11)

It follows that

n = 0 ⇒ lim
T→∞

1
T

T∫
0

A2 sin2(ωt) dt == A2

2 ;

n = 1
2 ⇒ lim

T→∞
1
T

T∫
0

1

T
1
2

t
1
2 (A sin2(ωt) dt = A2

3 ;

n = 1 ⇒ lim
T→∞

1
T

T∫
0

1
T t(A2 sin2(ωt) dt = A2

4 .

Another example of exact estimation of right-hand side of Equation (10) is the case
of constant boundary conditions.

Consider boundary condition u(0, t) = M. The graphs of solution are shown in Figure 5,
left (compare their rates of decay caused solely by the spacial dimensions.)

For the resulting compression wave ux(0, t) = 0, the right-hand side of Equation (10) equals

1
T

T∫
0

M2

Tn tn dt =
M2

n + 1
(12)

As the Figures 1–4 show, for a periodic boundary condition, after the decay of initial
oscillations, graphs become monotonic convex lines. These convex lines break at x = V · T
and at the height V. These monotonic lines are similar to the graphs of constant-boundary
solutions; see Figure 5.
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Figure 5. Constant boundary solutions to the Burgers equation, ε = 0.1, t = 200. Left: solid line—cylindrical; dotted
line—spherical. Right: A trace of movement to the right of the spherical solution at moments t = 37.5 · k, k = 1 . . . 6.

4. Self-Similar Approximations To Solutions

By observing the solution’s graphs, one can clearly see (e.g., on Figure 5, right) that
the monotonic part and its head shock develops as a homothetic transformation of the
initial configuration (by t as a homothety parameter). Hence, we seek solutions in the
self-similar form, u(x, t) = y( x

t ). By substituting it into Equations (1)–(3), we get the
equation:

− y′ x
t2 +

ny
t

=
2yy′

t
+

ε2y′′

t2 +
δy′′′

t3 , (13)

or

− ξy′ + ny = 2yy′ + ε2y′′

t
+

δy′′′

t2 , (14)

for y = y(ξ) and n = 0, 1/2, 1. For sufficiently large t we may omit last two terms.
It follows that appropriate solutions of these truncated ordinary differential equations are
given by

u1(x, t) = C1, C1 ∈ R, n = 0, for flat waves equation;

u2(x, t) = −2 +
√

C2ξ + 4
C2

, C2 ∈ R, n =
1
2

, for cylindrical and

u3(x, t) = exp
(

LambertW
(
− ξ

2
e−

C3
2

)
+

C3

2

)
, C3 ∈ R, n = 1 for spherical equation.

(The Lambert W function, also called the omega function or product logarithm,
is a multivalued function, namely, the branches of the inverse relation of the function
f (w) = wew, where w is any complex number.

For each integer k there is one branch, denoted by Wk(z), which is a complex-valued
function of one complex argument. W0 is known as the principal branch. When dealing
with real numbers the W0 = LambertW function satisfies LambertW(x) · eLambertW(x) =
x. The Lambert W function, introduced in 1758, has numerous applications in solving
equations, mathematical physics, statistics, etc.; for more detail, see [12].)

Let V be the velocity of the signal propagation in the medium. Since at the head
shock we have x = Vt and u = V, we obtain the condition for finding Ci. It is y(V) = V.
It follows then that

C1 = V, C2 = − 3
V

, C3 = ln(V) +
1
2

.
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For flat waves, it corresponds to a traveling wave solution of the classical Burg-
ers equation.

For the cylindrical waves, the monotonic part is given by

u2 =
1
3

(
2V + V

√
4− 3x

Vt

)
;

and for spherical waves

u3 = V
√

e exp
(

LambertW
(
− x

2Vt
√

e

))
.

Note that
u2|x=0 =

4V
3

and u3|x=0 = V
√

e ≈ 1.65V. (15)

These formulas show that the velocity is proportional to the value of a constant
boundary solution at x = 0.

The corresponding graphs visually coincide with the graphs obtained by numerical
modeling; for instance, see a comparison to the solution (at t = 100) for the problem

ut = 0.01uxx − 2uux − u/t, u(0, t) = 1, u(75, t) = 0, u(x, 0) = 0 (16)

in Figure 6, left.

Figure 6. Left: solid line—solution to Equation (16); dotted line—its u3 approximation. Right: solid line—solution to
spherical KdV, x → −x, ε2 = 0.02, δ = 0.002; dotted line—its ũ3 approximation; both at t = 200.

5. Median Approximation

Yet, the monotonic part of the periodic boundary solution ends with a breaking, which
travels with a constant velocity and amplitude, very much like the head of the Burgers’
traveling wave solution (Equation (6)). A rather natural idea is to truncate a self-similar
solution, multiplying it by a (normalized) formula for the Burgers TWS. Namely, put

• For the cylindrical waves take

ũ2 =
1
2
[1− tanh(

V
ε2 (x−Vt))] · 1

3

(
2V + V

√
4− 3x

Vt

)
; (17)

75



Symmetry 2021, 13, 220

• For spherical waves,

ũ3 =
1
2
[1− tanh(

V
ε2 (x−Vt))] ·V√e exp

(
LambertW

(
− x

2Vt
√

e

))
. (18)

This construction produces an approximation of astonishing accuracy (see Figure 6, right
and Figure 7); these graphs correspond to the spherical KdV–Burgers problem (it comes
from Equation) (3) after the change x → −x.

ut = 0.02uxx + 2uux − u/t− 0.002uxxx, u(0, t) = sin t, u(10, t) = 0, u(x, 0) = 0. (19)

Figure 7. Solid line—solution to spherical KdV, x → −x, ε2 = 0.02, δ = 0.002, dotted line—its ũ3 approximation; both
at t = 400.

Moreover, it is evident that the graphs of ũ2, ũ3 neatly represent the median lines
of the approximated solutions over their whole ranges. By median we mean

M(x) = (2πn/ω)−1
∫ 2πn/ω

0
u(x, t) dt, n ∈ N, n � 1 (u(0, t) = sin ωt).

Let us assess the quality of ũ2, ũ3 approximations numerically.
Evaluate the trapezoid area under ũ2, ũ3 graphs:

• For the cylindrical equation

∫ Vt

0

[
[1− tanh( V

ε2 (x−Vt))]
2

1
3

(
2V + V

√
4− 3x

Vt

)]
dx =

32
27

V2t;

• For the spherical equation

∫ Vt

0

[
[1− tanh( V

ε2 (x−Vt))]
2

V
√

e exp
(

LambertW
( −x

2Vt
√

e

))]
dx =

V2t · e
2

.

Hence, the mean value of the left-hand side of (10) can be estimated as follows.

1
T

+∞∫
0

u(x, T) dx =
1
T

VT∫
0

u(x, T) dx ≈
{ 32

27 V2 in cylindrical case;
V2·e

2 in spherical case,
(20)
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This mean value can be also evaluated numerically. In the case illustrated by Figure 1
the direct numerical evaluation of the integral differs from the estimation (20) by 1%.
It confirms the quality of the approximation.

For constant-boundary waves, it follows from Equation (12) that

M2

n + 1
=

{ 32
27 V2 in cylindrical case;
V2·e

2 in spherical case;
(21)

see Equation (12); of course this result coincides with Equation (15). Hence, the mean value
M of an arbitrary solution at the start of oscillations (or in a vicinity of the oscillator) is
linearly linked to the velocity of the head shock.

However, to find this mean value for an arbitrary border condition is a tricky task,
because the integrands ux and uxx of the right-hand side of Equation (10) have numerous
breaks. Still, one may get an (admittedly rough) estimation for M using Equations (11)
and (21). It follows that

M2

n + 1
≈ A2

k
, k = 2, 3, 4 (22)

for flat, cylindrical and spherical cases. In all these cases it results in M ≈ A
√

2
2 ≈ 0.71A.

Numerical experiments also show (e.g., see Figure 3) that for the u|x=0 = A sin(t)
boundary condition such a value is M ≈ A · a, where a ≈ 0.467 is the mean value for
1 · sin(t) condition. That is, M depends on A almost linearly.

Note that this value may be obtained via the velocity V of the head shock, which, in
turn, can be measured with great accuracy by the distance passed by the head shock after a
sufficiently long time.

6. Conclusions

In this paper, we studied the pattern formation in periodic boundary solutions of spher-
ical and cylindrical KdV–Burgers equations. Such a solution usually starts with a periodical
chain of shock fronts with a decreasing amplitude. When oscillations decay and cease,
a solution proceeds as a monotonic convex line that ends with a head shock. This last
pattern was not described previously and it is the main subject of the paper.

We obtained simple explicit formulas describing the monotonic part of the solution
and its head break. These approximate formulas have great accuracy. Moreover, their
graphs neatly represent the median lines of the approximated solutions on their entire
ranges. (By median line we mean the level around which the periodical oscillations occur).

To obtain these approximations we used self-similar solutions of the dissipationless
and dispersionless KdV–Burgers equation and a traveling wave solution of the flat Burgers
equation. Formulas depend on only one parameter: either on the velocity of the signal
propagation or on the median value of the solution in the vicinity of the periodic boundary.

Some open questions remain. Our approximations are very good for the one-parameter
class of constant boundary solutions. The existence of a one-parameter family of solutions
points to the existence of a suitable symmetry, but the classical symmetry analysis was,
so far, unhelpful. Conservation laws allows us to assess the value of the approximation’s
parameter using the boundary condition, but the resulting estimation is rough.

Funding: This work was partially supported by the Russian Basic Research Foundation grant
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Abbreviations

The following abbreviations are used in this manuscript:

KdV Korteweg–de Vries
IVBP Initial value|boundary problem
TWS Traveling wave solution
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Abstract: It is generally known that Lie symmetries of differential equations can lead to a reduction
of the governing equation(s), lead to exact solutions of these equations and, in the best case scenario,
lead to a linearization of the original equation. In this paper, we consider a model from optimal
investment theory where we show the governing equation possesses an extensive contact symmetry
and, through this, we show it is linearizable. Several exact solutions are provided including a solution
to a particular terminal value problem.

Keywords: contact symmetry; optimal investment theory; linearization; exact solutions

1. Introduction

Nonlinear partial differential equations (NLPDEs) play an integral part in describ-
ing the world around us. They can be found in the fields of nonlinear diffusion, wave
propagation, Mathematical Biology, ray optics, solid mechanics, and financial mathematics
to name just a few (see, for example, refs. [1–5] and the references within). However,
obtaining exact solutions of these equations is usually a difficult task and techniques for
obtaining solutions is a current area of research. One popular technique are symmetry
methods probably due to the fact that the method is rather algorithmic and thus computer
algebra systems such as Maple and Mathematica can be used. Symmetry methods have been
extensively used in a number of fields, and we refer the reader to the books by Arrigo [6],
Bluman et al. [7,8], Bordag [9], Cantwell [10], Cherniha et al. [11], and Olver [12] .

In this paper, we are interested in a model from optimal investment theory. Consider
an investment portfolio consisting of n + 1 assets. Let the first asset be a bond and the next
n assets be stocks, all of which are traded continuously. In the simplest case where n = 1,
the value of the portfolio, u(t, x), for time t and investment amount x, one model presented
by see Yong [13] is the NPDE

ut + rxux − (b− r)u2
x

2σuxx
= 0, (1)

or
(ut + rxux)uxx − θu2

x = 0. (2)

where θ = b−r
2σ and the variables r, b, σ represent the interest rate, appreciation rate, and

volatility, respectively, and are assumed constant with σ > 0 and b− r > 0.
A classical symmetry analysis was performed by Yang and Xu [14] who were able to

show that (2) admitted the symmetry generator

Γ = T
∂

∂t
+ X

∂

∂x
+ U

∂

∂u
, (3)

where

T = c1,

X = c2x + c3ert,

U = c4u + c5,

(4)

Symmetry 2021, 13, 217. https://doi.org/10.3390/sym13020217 https://www.mdpi.com/journal/symmetry
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where ci, i = 1...5 are arbitrary constants. Through their analysis, they were able to exploit
several of these symmetries to obtain a number of reductions and, in some cases, construct
exact solutions. It is natural to ask whether (2) admits symmetries that are more general
than Lie point symmetries. In this paper, we consider contact symmetries of (2), and we will
show that, in fact, (2) admits a rather large contact symmetry which leads to its linearization.
In addition to recovering known solutions, we will obtain new exact solutions. We also
solve a particular terminal value problem.

2. Contact Symmetries

In this section, we construct contact symmetries of (2). If we denote this original
NLPDE by Δ so

Δ = (ut + rxux)uxx − θu2
x = 0, (5)

then contact symmetries are given by

Γ(2)Δ|Δ=0 = 0, (6)

where the infinitesimal generator Γ is

Γ = U
∂

∂u
, (7)

where U = U(t, x, u, ut, ux); the first and second extensions of the generator are

Γ(1) = Γ + DtU
∂

∂ut
+ DxU

∂

∂ux
,

Γ(2) = Γ(1) + D2
t U

∂

∂utt
+ DtDxU

∂

∂utx
+ D2

xU
∂

∂uxx
,

(8)

where the operators Dt and Dx are

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ uttt

∂

∂utt
+ uttx

∂

∂utx
+ utxx

∂

∂uxx
· · ·

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ uttx

∂

∂utt
+ utxx

∂

∂utx
+ uxxx

∂

∂uxx
· · · .

(9)

This leads to the set of determining equations

Uutut = 0,

θu2
xUutux + (rxux + ut)Uxut + ux(rxux + ut)Uuut = 0,

(ut + rxux)
2Uxx + 2ux(ut + rxux)

2Uxu + u2
x(ut + rxux)

2Uuu +

2θu2
x(ut + rxux)Uxux + 2θu3

x(ut + 2rxux)Uuux+

θ2u4
xUuxux − θux(2ut + rxux)Ux − rθu3

xUux + θu2
xUt = 0.

(10)

Although somewhat a laborious calculation, we find the solution of (10) to be
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U = F(t, ux) + c1ut + c2xux + c3(xux − u)

+ c4

(
− xux − u

2θ
ln ux +

t
2θ

((θ − r)xux + (θ + r)u)
)

+ c5

(
tut − 1

4θ
((θ − r)xux + (θ + r)u) ln ux +

(θ + r)2

4θ
t(xux − u)

)
(11)

+ c6

(
t2ut +

xux − u
4θ

ln2 ux − t
2θ

((θ − r)xux + (θ + r)u) ln ux

+

(
(r + θ)2t2 − 2θt

4θ

)
(xux − u)

)
where ci, i = 1...6 are arbitrary constants and the function F(t, ux) satisfies

θu2
xFuxux − ruxFux + Ft = 0. (12)

Equation (12) is linear and possesses an infinite number of solutions, which means that
there are an infinite number of symmetries to (2). Furthermore, since there is a particular
function F in (11) that satisfies a linear PDE, this suggests that (2) can be transformed to a
linear PDE (Bluman and Kumei [15]). As both t and ux are independent variables in (12),
this indicates that maybe we should use these as new independent variables.

3. A Linearization

Since the symmetry obtained in the last section contains an arbitrary function that
satisfies a linear PDE, this suggests that the original PDE is linearizable. Introducing the
new variables

t = T, x = UX , u = XUX −U, (13)

where U = U(T, X), derivatives transform as

ut = −UT , ux = X, uxx =
1

UXX
, (14)

and (2) becomes

θX2UXX − rXUX + UT = 0, (15)

which is exactly (12). Interestingly enough, (15) looks remarkably similar to the Black–Scholes–
Merton equation [16,17], which is known to be mappable to the linear heat equation ([16,18]),
so it should come as no surprise that the same is true for (15). However, it would make
the contact transformation (13) more complicated and, thus, we will not pursue this line
any further.

In the next section, we obtain simple exact solutions of (2) in addition to exploiting
Lie symmetries of the linearized Equation (15) to obtain additional solutions.

4. Exact Solutions

We have shown that the nonlinear PDE

(ut + rxux)uxx − θu2
x = 0 (16)

can be transformed to the linear PDE

θX2UXX − rXUX + UT = 0 (17)

via the transformation
t = T, x = UX , u = XUX −U. (18)
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We are now in a position to obtain a number of exact solutions to (16). For exam-
ple, (17) admits separable solutions of the form

U = F(T)G(X) (19)

where F and G satisfies

F′ − kF = 0, (20a)

θX2G′′ − rXG′ + kG = 0 (20b)

where k is a separation constant. Equation (20a) is easily solved giving

F = F0ekT (21)

for some arbitrary constant F0. Equation (20b) possesses solutions of the form Xm, where
m is a solution of

θm2 − (r + θ)m + k = 0. (22)

For example, if k = sm (where s is some constant), then the solution of (22) is

m1 = 0, m2 =
r + θ − s

θ
, (23)

leading to the exact solution

U = c1 + c2XmemT , m =
r + θ − s

θ
(24)

Passing (24) through the transformation (18) (resetting the constants c1 and c2) gives

u = c1 + c2eα(st−ln x), α = r+θ−1
1−r , (25)

which recovers the exact solution presented by Yang and Xu [14] by choosing c1 = 0, c2 = 1
and s = 1.

As a second example, if k = r, then, from (22), we obtain m = 1, r/θ ( �= 1) and we
obtain the solution to (20b) as

G = g1X + g2Xr/θ (26)

and the general solution to (17)

U =
(

g1X + g2Xr/θ
)

erT . (27)

Passing (27) through the transformation (18) leads to the exact solution

u = a
(

x + bert) r
r−θ e−

rθ
r−θ t (28)

of (16), which we believe to be new. In the cases where r = θ, the solution of (20b) is

G = g1X + g2X ln X (29)

and the general solution to (17)

U = (c1X + c2X ln X)erT . (30)

Passing (30) through the transformation (18) leads to the exact solution

u = c1ert+c2xe−rt
, (31)

82



Symmetry 2021, 13, 217

which was given in [14] in the case of r = θ.
Of course, other choices of m that satisfy (22) would lead to exact solutions of (16)

which we will not pursue here.
We also note that symmetries of (17) can be used to generate new solutions of (17),

which could lead to new solutions of (16). It is well known (Broadbridge and Arrigo [19])
that, if (17) possesses symmetries with the generator

Γ = Σ
∂

∂T
+ Φ

∂

∂X
+ (ΞU + Q(T, X))

∂

∂U
, (32)

where Σ, Φ, and Ξ have some particular forms and Q satisfies the original PDE (17),
then, if one has one seed solution, say U = U0(T, X), then additional solutions can be
obtained from

Q = Σ
∂U0

∂T
+ Φ

∂U0

∂X
− ΞU0 (33)

For example, (17) admits the symmetry generator (32) where Σ, Φ, and Ξ are given by

Σ = c1 + 2c2T + c3T2

Φ = ((c2 + c3T) ln X + c4 + c5T)X

Ξ =

(
c3

4θ
ln2 X +

(c2 + c3T)(r + θ) + c5

2θ
ln X

+
(r + θ)2(2c2 + c3T)T + 2c5(r + θ)T

4θ
− c3T

2
+ c6

)
U

(34)

where ci, i = 1...6 are arbitrary constants.
One particularly simple solution of (17) is

U = 1. (35)

From (33), we obtain the solution

Q = −
(

c3

4θ
ln2 X +

(c2 + c3T)(r + θ) + c5

2θ
ln X

+
(r + θ)2(2c2 + c3T)T + 2c5(r + θ)T

4θ
− c3T

2
+ c6

)
.

(36)

Passing (36) through the transformation (18) leads to a solution that is parametric
in its nature (which we do not list here); however, setting c3 = 0, we obtain (omitting
translational constants)

u =
(r + θ)(c2(r + θ) + c5)

2θ
t− c2(r + θ) + c5

θ
ln x (37)

which we believe is new. Of course, other seed solutions could lead to an abundance of
exact solutions to (17) which, in turn, would lead to exact solutions to (16).

5. A Particular Terminal Value Problem

A particular problem of interest is one that is given in Koleva and Vulkow [20], which
is to solve (2) subject to the terminal condition

u(x, t∗) = 1− e−μx. (38)

Here, we introduce a slight variation of (18)

t = T + t∗, x =
UX
μ

, u = XUX −U + 1. (39)
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Under this transformation, the PDE (2) still transforms to (17); however, the terminal
condition (38) turns into the initial condition

U(X, 0) = X− X ln X. (40)

At this point, we exploit the symmetries obtained in the previous section. With these
symmetries, we associate an invariant surface condition

ΣUT + ΦUX = ΞU, (41)

where Σ, Φ and Ξ are given in (34). From (40) and (17), we obtain the initial conditions

UX(X, 0) = − ln X, UT(X, 0) = θX− rX ln X. (42)

Requiring that (40) and (42) satisfy (41) on the boundary T = 0 gives

c3 = 0, c4 = (θ − r)c1 − c2, c5 = (θ − r)c2, c6 = θc1, (43)

where c1 and c2 are arbitrary. Here, we choose c1 = 1, c2 = 0, leading to the invariant
surface condition

UT + (θ − r)XUX = θU. (44)

This is easily solved giving

U = eθT F(ln X + (r− θ)T). (45)

Imposing the initial condition (40) on the solution (45) gives

F(ln X) = X− X ln X, (46)

and, if we let λ = ln X, we obtain

F(λ) = (1− λ)eλ (47)

and, from (45), we obtain

U = X(1− ln X + (θ − r)T)erT (48)

and one can indeed verify that (48) does satisfy (17) and (42). As the final step, we pass (48)
through the transformation (39), leading to

u = 1− e−θ(t∗−t)−μxer(t∗−t)
, (49)

which satisfies the original PDE (2) and the terminal condition (38).

6. Conclusions

It is well known that classical Lie symmetries can lead to a reduction of a given PDE
and sometimes lead to exact solutions of the equation. The best case scenario, albeit rare,
indicates that the original equation is linearizable. In this paper, we constructed the contact
symmetries of a model from an optimal investment theory, which led to a linearization of
the given PDE. Several exact solutions were obtained. The symmetries of the linearized
equation were also considered where an additional exact solution was obtained in addition
to solving a particular terminal value problem.
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Abstract: Quotients of partial differential equations are discussed. The quotient equation for the
Euler system describing a one-dimensional gas flow on a space curve is found. An example of
using the quotient to solve the Euler system is given. Using virial expansion of the Planck potential,
we reduce the quotient equation to a series of systems of ordinary differential equations (ODEs).
Possible solutions of the ODE system are discussed.

Keywords: Euler equation; quotient equation
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1. Introduction

In this paper, we continue the study of the Euler equation describing gas flows on
space curves in a constant gravity field. Symmetry algebras and differential invariant fields,
as well as their dependence on thermodynamic state equations and the form of a space
curve, were considered in [1]. Here, we find a quotient PDE for the Euler equation and
show its role in solving the original equation.

Recall that the system of PDEs describing such flows is the following:⎧⎪⎨⎪⎩
ρ(ut + uua) = −pa − ρgh′,
ρt + (ρu)a = 0,

ρθ(st + usa)− kθaa = 0,

(1)

where u(t, a) is the flow velocity, p(t, a), ρ(t, a), s(t, a), and θ(t, a) are the pressure, density,
specific entropy, and temperature of the fluid, respectively, k is the constant thermal
conductivity, g is the gravitational acceleration, and h(a) is the z-component of a naturally
parametrized space curve.

System (1) is incomplete, i.e., it has two more unknown functions than equations. In
the present paper, we put aside the question of classification of possible thermodynamic
relations, since it was described in detail in [1]. We assume that these relations are given
either in the forms p = P(ρ, θ) and s = S(ρ, θ), or in terms of the Planck potential [2]. In
particular, we consider the ideal gas equation.

This paper is organized as follows. In Section 2, the notion of PDE quotients is
discussed. In Section 3, we recall the symmetry algebra and differential invariants for the
Euler system. In Section 4, we find the quotient for the Euler equation and discuss possible
symmetries and solutions.

All calculations for this paper were performed with the DifferentialGeometry package
in Maple. The corresponding Maple files can be found on the webpage http://d-omega.
org/appendices/.

Symmetry 2021, 13, 186. https://doi.org/10.3390/sym13020186 https://www.mdpi.com/journal/symmetry
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2. PDE Quotients

2.1. Algebraic Structures in PDE Geometry

Let π : E(π) → M be a smooth bundle over a manifold M and let πk : Jk(π) → M,
k = 0, 1, . . . , be the k-jet bundles of sections of the bundle π. To simplify the notations, we
use Jk instead of Jk(π).

Depending on dim π, the jet geometry [3] is defined by the following pseudogroups.

1. If dim π = 1, it is defined by the pseudogroup Cont(π) of the local contact transfor-
mations of the manifold J1.

2. For dim π ≥ 2, the jet geometry is defined by the pseudogroup Point(π) of the local
point transformations, i.e., local diffeomorphisms of the manifold J0.

It is also known that the prolongations of these pseudogroups to the jet bundles
exhaust all Lie transformations, i.e., local diffeomorphisms of jet spaces that preserve the
Cartan distributions (see, for example, [3]).

Moreover, bundles πk,k−1 : Jk → Jk−1 (k ≥ 2 when dim π ≥ 2, and k ≥ 3 when dim π = 1)
have affine structures, which are invariant with respect to the Lie transformations, and prolongations
of the pseudogroups Cont(π) or Point(π) are given by rational functions of ui

σ in the stan-
dard jet coordinates

(
x, ui

σ

)
.

The last statement means that, in the case of dim π ≥ 2, the fibers Jk,0
θ of the projections

πk,0 : Jk → J0 at a point θ ∈ J0 are algebraic manifolds, and the stationary subgroup
Pointθ(π) ⊂ Point(π) gives us birational isomorphisms of the manifold.

In the case of dim π = 1, the fibers Jk,1
θ of the projections πk,1 : Jk → J1 at a point

θ ∈ J1 are algebraic manifolds too, and the stationary subgroup Contθ(π) ⊂ Cont(π) gives
us birational isomorphisms of the manifold.

Following this picture, we say that a differential equation Ek ⊂ Jk is algebraic if fibers
Ek,θ of the projections πk,0 : Ek → J0 are algebraic manifolds when dim π ≥ 2, or πk,1 : Ek → J1

when dim π = 1.
All differential equations here are assumed to be formally integrable; then, the prolon-

gations E (l)k = Ek+l ⊂ Jk+l of an algebraic equation Ek ⊂ Jk are algebraic, too.
By a symmetry algebra of an algebraic differential equation, we mean the Lie algebra

Sym(Ek) of point vector fields if dim π ≥ 2 or contact vector fields if dim π = 1 that act
transitively on J0 in the case of dim π ≥ 2 or J1 in the case of dim π = 1. Moreover, the
stationary sub-algebra Symθ(Ek) where θ ∈ J0 or θ ∈ J1 produces actions of algebraic Lie
algebras on algebraic manifolds El,θ for all l ≥ k.

2.2. The Rosenlicht Theorem

Let B be an algebraic manifold, i.e., an irreducible variety without singularities over
a field of characteristic zero, let G be an algebraic group, and let G × B → B be an
algebraic action.

Denote byF (B) the field of rational functions on the manifold B, and, byF (B)G ⊂ F (B),
denote the field of rational G-invariants on B.

We say that an orbit Gb ⊂ B is regular (as well as a point b itself) if there are m =
codim Gb G-invariants x1, . . . , xm such that their differentials are linearly independent at
the points of the orbit.

Let B0 = B \ Sing be the set of all regular points and let Q(B) = B0/G be the set of all
regular orbits.

The Rosenlicht theorem [4] states that B0 is open and dense in B.
Moreover, if the above invariants x1, . . . , xm are considered as local coordinates on

the quotient Q(B) at the point Gb ∈ Q(B), then on the intersections of the coordinate
charts, the coordinates are connected by rational functions. In other words, Q(B) is an
algebraic manifold of the dimension m = codim Gb, and the rational map κ : B0 → Q(B)
of algebraic manifolds gives us the field isomorphism F (B)G = π∗(F (Q(B))).

To apply this theorem to algebraic differential equations, we should reformulate it for
the case of Lie algebras.
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Let B be an algebraic manifold and let g be a Lie sub-algebra of the Lie algebra of the
vector fields on B.

We say that g is an algebraic Lie algebra if there is an algebraic action of an algebraic
group G on B such that g coincides with the image of Lie algebra Lie(G) under this action.

By an algebraic closure g̃ of a Lie algebra g, we mean the intersection of all algebraic
Lie algebras that contain g.

Example 1. Let B = R; then, Lie algebra

g = sl2 = 〈∂x, x ∂x, x2∂x〉

is algebraic because it corresponds to the projective action of the algebraic group SL2(R).

Example 2. Let B = S1 × S1 be a torus and g = 〈∂φ + λ∂ψ〉, where φ and ψ are the angles,
λ ∈ R. Then, g is algebraic if and only if λ ∈ Q. Otherwise, g̃ = 〈∂φ, ∂ψ〉. A similar situation
occurs in the case of B = R2 and

g = 〈x ∂x + λy ∂y〉,
where g̃ = g if λ ∈ Q, and g̃ = 〈x∂x, y∂y〉 otherwise.

The Rosenlicht theorem is also true for algebraic Lie algebras or for their algebraic
closure in the case of general Lie algebras.

Let us be given a Lie algebra g of vector fields on an algebraic manifold B and let g̃ ⊃ g

be its algebraic closure. Then, the field F (B)g of rational g-invariants has a transcendence
degree equal to the codimension of regular g̃-orbits, and it is also equal to the dimension of
the quotient algebraic manifold Q(B).

2.3. Quotients of Algebraic Differential Equations

Let g be an algebraic symmetry Lie algebra of an algebraic formally integrable dif-
ferential equation Ek, and let El be the (l − k)-th prolongations of Ek. Then, all equations
El ⊂ Jl are algebraic, and we have the tower of algebraic bundles:

Ek ←− Ek+1 ←− · · · ←− El ←− El+1 ←− · · · .

Let E0
l ⊂ El be the set of strongly regular points and let Ql(E) be the set of all strongly

regular g-orbits, where, by a strongly regular point (and orbit), we mean such points of El
that are regular with respect to g-action and whose projections on El−1 are regular, too.

Then, as we have seen, Ql(E) are algebraic manifolds, and the projections κl : E0
l →

Ql(E) are rational maps such that the fields F (Ql(E)) (the field of rational functions on
Ql(E)), and F (E0

l )
g (the field of rational functions on E0

l ), which are g-invariants (rational
differential invariants), coincide: κ∗l (F (Ql(E))) = F (E0

l )
g.

The g-action preserves the Cartan distributions C(El) on the equations, and therefore,
projections κl define distributions C(Ql) on the quotients Ql(E).

Finally, we get the tower of algebraic bundles of the quotients

Qk(E)
πk+1,k←− Qk+1(E)←− · · · ←− Ql(E)

πl+1,l←− Ql+1(E)←− · · ·

such that the projection of the distribution C(Ql) belongs to C(Ql−1(E)).
2.4. Tresse Derivatives

Let ω ∈ Ω1(Jk) be a differential 1-form on a k-jet manifold. Then, the class

ωh = π∗k+1,k(ω) mod Ann Ck+1,

is called a horizontal part of ω.
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In the standard jet coordinates (x, uj
σ), the horizontal part has the following representation:

ω = ∑
i

aidxi + ∑
|σ|≤k
j≤m

aj
σduj

σ =⇒ ωh = ∑
i

aidxi + ∑
|σ|≤k

j≤m, i≤n

aj
σuj

σ+1i
dxi,

where n = dim M and m = dim π.
As a particular case of this construction, we get the total differential f ∈ C∞(Jk) =⇒

d̂ f = (d f )h, or, in the standard jet coordinates,

d̂ f = ∑
i≤n

d f
dxi

dxi,

where
d

dxi
=

∂

∂xi
+ ∑

j,σ
uj

σ+1i

∂

∂uj
σ

are the total derivations.
It is important to observe that the operation of taking a horizontal part, as well as the

total differential, is invariant with respect to the point and contact transformations.
We say that functions f1, . . . , fn ∈ C∞(Jk) are in general position on a domain D if

d̂ f1 ∧ · · · ∧ d̂ fn �= 0

on this domain.
Let f be a smooth function on this domain; then, we get decomposition in D:

d̂ f = ∑
i≤n

Fi d̂ fi,

where Fi are smooth functions on the domain π−1
k+1,k(D) ⊂ Jk+1.

We call them Tresse derivatives [5] and denote them by

d f
d fi

.

As we have seen, the operation of taking a horizontal part, as well as the total differ-
ential, is invariant with respect to the point and contact transformations.

Therefore, we have the following.

Proposition 1. Let f1, . . . , fn be g-invariants of order ≤ k that are in general position. Then, for
any g-invariant f of order ≤ k, the Tresse derivatives d f

d fi
are g-invariants of order ≤ k + 1.

2.5. The Lie–Tresse Theorem

Theorem 1. [6] Let Ek ⊂ Jk be a formally integrable algebraic differential equation and let g be an al-
gebraic symmetry Lie algebra. Then, there are rational differential g-invariants a1, . . . , an, b1, . . . , bN

of order ≤ l such that the field of all rational differential g-invariants is generated by rational func-
tions of these invariants and their Tresse derivatives d|α|bj

daα .

We call invariants a1, . . . , an, b1, . . . , bN Lie–Tresse coordinates.
It is noteworthy that, in contrast to algebraic invariants, for which we have the alge-

braic operations only, in the case of differential invariants, we have additional operations,
i.e., Tresse derivatives, that allow us to get really new invariants.

Syzygies, in the case of differential invariants, provide us with new differential equa-
tions that we call quotient equations.
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From the geometrical point of view, the above theorem states that there is a level l and
a domain D ⊂ Q(E) where the invariants ai and bj can be considered as local coordinates,
and the preimage of D in the tower

Ql(E)
πl+1,l←− Ql+1(E)←− · · · ←− Qr(E) πr+1,r←− Qr+1(E)←− · · · (2)

is just an infinitely prolonged differential equation given by the syzygy.
For this reason, we call the quotient tower (2) an algebraic diffiety.

2.6. Relations between Differential Equations and Their Quotients

1. Let u = f (x) be a solution of differential equation E and let ai( f ) and bj( f ) be values
of the invariants ai and bj on the section f . Then, locally, bj( f ) = Bj(a( f )), and
therefore, bj = Bj(a) is the solution of the quotient equation.

2. The above construction is local. In general, the correspondence between solutions
is valid on the level of generalized solutions, i.e., on the level of integral manifolds
of the Cartan distributions. In addition, the correspondence will lead us to integral
manifolds with singularities.

3. Now let bj = Bj(a) be a solution of the quotient equation. Then, considering equations
bj − Bj(a) = 0 as a differential constraint for the equation E, we get a finite-type
equation E ∩ {bj − Bj(a) = 0

}
with a solution that is a g-orbit of a solution of E.

4. Symmetries of the quotient equation are Bäcklund-type transformations of the original
equation E.

Example 3. The Lie algebra of the projective transformations of the line M = R, g = sl2 =
〈∂x, x∂x, x2∂x〉 has the following generators in rational differential invariants for the sl2-action
on functions: 〈

a = u0, b =
u3

u3
1
− 3u2

2
2u4

1
,

db
da

=
u4

u4
1
− 6

u2u3

u5
1

+ 6
u3

2
u6

1
, . . .

〉
.

Let

F

(
u0,

u3

u3
1
− 3u2

2
2u4

1
,

u4

u4
1
− 6

u2u3

u5
1

+ 6
u3

2
u6

1

)
= 0

be a fourth-order sl2-invariant equation.
Then, the quotient equation has the first order:

F
(

a, b,
db
da

)
= 0.

Example 4. The Lie algebra g = 〈∂x, ∂y〉 of translations of the plane has the following Lie–Tresse
coordinates for the g-action on functions:

a1 = u1,0, a2 = u0,1, b = u0,0, c = u1,1.

Then,

b1,0 = δ−1(u1,0u0,2 − u0,1u1,1), b0,1 = δ−1(u0,1u2,0 − u1,0u1,1),

c1,0 = δ−1(u0,2u2,1 − u1,1u1,2), c0,1 = δ−1(u2,0u1,2 − u1,1u2,1),

where δ = u2,0u0,2 − u2
1,1 is a Hessian determinant, and the syzygy is

c2(b2
1,0b0,2 − 2b1,0b0,1b1,1 + b2

0,1b2,0) + c(b1,0b0,1 − a1b0,1b2,0 − a2b1,0b0,2+

b1,1(a1b1,0 + a2b0,1)− a1a2b1,1 − b1,0b0,1(a1c1,0 + a2c0,1) = 0.
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Thus, the quotient of an equation u1,1 = C(u1,0, u0,1) is the last equation for b(u1,0, u0,1),
where letter C stands for c.

3. Euler Equations on a Curve

In this section, we briefly recall the necessary results obtained in [1].
Consideration of flows of an inviscid medium on a space curve M = {x = f (a), y =

g(a), z = λa} in a field of constant gravitational force leads to the system⎧⎪⎨⎪⎩
ρ(ut + uua) = −pa − ρgλ,

ρt + (ρu)a = 0,

ρθ(st + usa)− kθaa = 0,

(3)

where p and s are expressed in terms of Planck potential [2] Φ(ρ, θ):

p(ρ, θ) = −Rρ2θΦρ, s(ρ, θ) = R(Φ + θΦθ),

where R is the universal gas constant.
To describe this Lie algebra, we consider a Lie algebra g of point symmetries of the

PDE system (3).
Let ϑ : g→ h be the following Lie algebra’s homomorphism

ϑ : X �→ X(ρ)∂ρ + X(s)∂s + X(p)∂p + X(θ)∂θ ,

where h is a Lie algebra generated by vector fields that act on the thermodynamic values p,
ρ, s, and θ.

It was demonstrated [1] that if h(a) = λa, the Lie algebra g of point symmetries of the
system (1) is generated by the vector fields

X1 = ∂t, X2 = ∂p, X3 = ∂s,

X4 = θ ∂θ , X5 = p ∂p + ρ ∂ρ − s ∂s,

X6 = ∂a, X7 = t ∂a + ∂u,

X8 = t ∂t + 2a ∂a + u ∂u − 2ρ ∂ρ − s ∂s,

X9 =

(
t2

2
+

a
λg

)
∂a +

(
t +

u
λg

)
∂u − 2ρ

λg
∂ρ.

The pure thermodynamic part ht of the symmetry algebra is generated by the vector fields

Y1 = ∂p, Y2 = ∂s, Y3 = θ ∂θ ,

Y4 = p ∂p, Y5 = ρ ∂ρ, Y6 = s ∂s.

Thus, the Euler system has a Lie algebra of point symmetries ϑ−1(ht).
It has been shown in [1] that, for h(a) = const, h(a) = λa, and h(a) = λa2, the basis

differential invariants are

J1 = ρ, J2 = θ, J3 = ua, J4 = ρa, J5 = θa, J6 = θt + uθa

and the basis invariant derivatives are

d
dt

+ u
d
da

,
d
da

.

4. Quotient Equation

Choosing J1 and J2 as Lie–Tresse coordinates (x, y) and

K(x, y) = J3, L(x, y) = J4, M(x, y) = J5, N(x, y) = J6
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as unknown functions, respectively, we get the quotient equation for (3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rxy(xK(Φx + yΦxy)− N(2Φy + yΦyy)) + LMx + MMy = 0,

xKMx − NMy + LNx + M(Ny − K) = 0,

xMKy − xKLx + xLKx + 2KL + NLy = 0,

RxyL(ΦxxxL2 + 2Φxxy ML + Φxyy M2)+

RL(xyLLx + xyMLy + 2xLM + 3yL2)Φxx+

RL(xyLMx + M(xyMy + 2xM + 3yL))Φxy+

LR(2yLLx + 2yMLy + xLMx + M(xMy + 3L))Φx+

xK2Lx − KNLy − (xKM + LN)Ky − 3LK2 = 0

(4)

Direct computations show that the system (4) has no symmetries if the function Φ is
arbitrary. Nevertheless, it is possible to find symmetries for some classes of Φ. Some of
these cases are listed below.

Proposition 2. If the system (4) admits a symmetry of the form

α1x∂x + (α2y + α3)∂y − α2K∂K +
1
2
(3α1 − 2α2 − α4)L∂L +

1
2
(α1 − α4)M∂M,

then the function Φ is of the form

Φ(x, y) = C5

∫
(α2y + α3)

− α4
α2

y2 dy +
C4x

α4
α1
−1

y
+

C3y + C2

y
+

C1

xy
,

where C1, . . . C5 are constants.

Proposition 3. If the system (4) admits a symmetry of the form

x
∂

∂x
+ α2y

∂

∂y
− α2K

∂

∂K
+

1
2
(3− 2α2 − α4)L

∂

∂L
+

1
2
(1− α4)M

∂

∂M
,

then the function Φ is the following

Φ(x, y) = C5 +
C4

y
+ C3y

α4
α2
−1

+
C2

xy
+

C1xα4−1

y
,

where C1, . . . C5 are constants.

Particular solutions of (4) for some special classes of the function Φ can be found.
For example, consider the Planck potential for the ideal gas model:

Φ(x, y) =
n
2

ln y− ln x, (5)

where n is the number of freedom degrees of a gas particle.
Then, for simplicity, let N = K = 0, then these are some of the solutions for L and M:

1. L = 0, M = f (x).

2. L = c1x
y , f (M)x

M
c1 = y.

3. L = c3x
(ln x−c2)

c1

(−c5 ln y+c4
c1

y−c1
−1
)c1

, M = c3y(−c5 ln y+c4)
(ln x−c2)

c1 (− ln x+c2)c5

(−c5 ln y+c4
c1

y−1/c1
)c1

.

Here, c1, . . . , c5 are constants and f (x) is an arbitrary function.

93



Symmetry 2021, 13, 186

Let us illustrate how we can solve the original Euler PDE system using its quotient.
To this end, we consider the system (3) for ideal gas together with the solution (for example,
N = K = L = 0, M = x), which is equivalent to a finite-type system:{

θaa = 0, ρt = 0, ρa = 0, Rρθa + ρ(gλ + ut) = 0,

θa = ρ, ua = 0, θt + uθa = 0.

Solving the latter, we get

ρ = ρ0, u = u0 − (λg− Rρ0)t, θ =
(Rρ0 + gλ)ρ0t2

2
+ ρ0(a− u0t) + θ0,

where ρ0, u0, θ0 are arbitrary constants.

Virial Expansion

Another approach we can take is to exploit the fact that it is often possible to consider
the Planck potential Φ in the form of virial expansion:

Φ(x, y) =
n
2

ln y− ln x−
∞

∑
i=1

xi

i
Ai(y).

Then, we can find solutions of the system (4) in the form of power series of x:

K(x, y) = xdK ∑
k=0

Kk(y)xk, L(x, y) = xdL ∑
k=0

Lk(y)xk,

M(x, y) = xdM ∑
k=0

Mk(y)xk, N(x, y) = xdN ∑
k=0

Nk(y)xk,

where dK, dL, dM, and dN are the integer constants that should be chosen such that (4) can
be expanded as a power series of x. It can be shown that dK = 1, dL = 2, dM = 1, and
dN = 1. Hence, the zeroth-order term of this expansion is a system of ordinary differential
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(K0M0 + N0L0)K′0 + (RyL0M0 + K0N0)L′0 + 2RL0M0M′
0+

L0(RyL2
0 + 2RL0M0 + K2

0) = 0,

M0K′0 + N0L′0 + K0L0 = 0,

M0N′0 − N0M′
0 + N0L0 = 0,

M0M′
0 − RyK0 + M0L0 − Rn

2
N0 = 0.

(6)
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The first-order term of the expansion is a system of linear ordinary differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M0M1)
′ + M0L1 + 2M1L0 + RyA′1(2N0 − yK0)−

RyK0 A1 − R
2
(nN1 + 2yK1) + Ry2N0 A′′1 = 0,

M0N′1 − N1M′
0 + M1N′0 − N0M′

1 + M1K0 + N0L1 + 2N1L0 = 0,

M0K′1 + M1K′0 + N0L′1 + N1L′0 + 2L0K1 = 0,

(N0L0 + K0M0)K′1 + (RyM0L0 + K0N0)L′1 + RL0M0M′
1+

(RyL0L′0 + RL0M′
0 + K0K′0 + 3RL2

0)M1+

(L0K0)
′N1 + (M0K′0 + N0L′0 + K0L0)K1+

(4RL0M0 + 4RyL2
0 + N0K′0 + RM0M′

0 + RyL0M0)L1+

4RyL2
0(L0 A1 + A′1M0) + RyA′′1 L0M2

0+

RyA′1M0M′
0L0 + 2RyL0L′0M0 A1 + 4RL2

0M0 A1+

2RA′1M2
0 L0 + RL0M0M′

0 A1 = 0.

(7)

The solutions of (6) must be substituted into (7); thus, we obtain more simple differen-
tial equations for the functions K1, L1, M1, and N1. Repeating this process, we can obtain
any number of terms in the expansions of the functions K, L, M, and N.

5. Conclusions

In this paper, we gave a brief recollection of the notion of quotient equations. Using previous
results regarding invariants of the Euler system in a space, we found its quotient. We
found that the quotient has an infinitesimal symmetry for special cases of the thermody-
namical state of a medium. We proposed a method for solving the quotient by means of
virial expansion of the Planck potential and by reducing it to series of systems of ordinary
differential equations.
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1. Introduction

Isothermic surfaces have a very long history. They have been first introduced by
Lamé in studies on stationary heat flows (described by the Laplace equation), in the
broader context of triply ortogonal systems of coordinates [1]. Then, the main progress
towards the theory of isothermic surfaces was done by Bertrand [2], who was first to
notice that “in any triply isothermic (in physical sense) orthogonal system in E3 any
coordinate surface admits conformal curvature parameterization” [3]. Transformations
of isothemic surfaces, studied by Darboux and Bianchi [4,5], strongly suggested that the
related system of nonlinear partial differential equations (see (2) below) is integrable in the
sense of the soliton theory [6] and, indeed, such modern formulation of this problem was
found [7], which started new developments in this field [8–12]. It is worthwhile to mention
that isothermic immersions are invariant with respect to conformal transformations of
the ambient space and can be naturally described in terms of conformal geometry (then
Darboux transformations correspond to Ribaucour congruences [13]). Studies on isothermic
surfaces are still active, see, e.g., [14–19]. In this paper we develop an approach based on
using Clifford algebras and Spin groups [20,21] (different from the approach of [12,22]). We
re-derive the construction of “multisoliton” surfaces by iterated Darboux transformation.
In particular, we present detailed computation of the two-fold Darboux transform.

2. Isothermic Surfaces in R3

Isothermic surfaces (or, more precisely, isothermic immersions) are characterized
as surfaces immersed in E3 with curvature lines admitting conformal parameterization.
It means that there exist coordinates (u, v) in which the isothermic immersion has the
following fundamental forms:

I = e2ϑ(du2 + dv2) ,

I I = e2ϑ(k1du2 + k2dv2) ,
(1)

Symmetry 2021, 13, 148. https://doi.org/10.3390/sym13010148 https://www.mdpi.com/journal/symmetry
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where ϑ, k1, k2 are functions of u, v, which have to satisfy the following system of nonlinear
partial differential equations known as Gauss–Mainardi–Codazzi equations:

ϑ,uu +ϑ,vv +k1k2e2ϑ = 0 ,

k2,u +(k2 − k1)ϑ,u = 0 ,

k1,v +(k1 − k2)ϑ,v = 0 ,

(2)

where comma denotes partial derivtive. Geometrically, k1 and k2 are principal curvatures,
and their product k1k2 yields the Gaussian curvature. The above nonlinear system can be
obtained (see [7]) as compatibility conditions for the following linear problem (or Lax pair):

Ψ,u = 1
2 e1(−ϑ,v e2 + k1eϑe3 + λ sinh ϑe4 + λ cosh ϑe5)Ψ ,

Ψ,v = 1
2 e2(−ϑ,u e1 + k2eϑe3 + λ cosh ϑe4 + λ sinh ϑe5)Ψ ,

(3)

where e1, . . . , e5 are 4× 4 complex matrices (for their exact form see [7] or [23]) that satisfy
the relations

e2
1 = e2

2 = e2
3 = e2

4 = −e2
5 = 1 , ejek = −ekej (j �= k) . (4)

We point out that using a suitable extension of the famous Sym formula (see, e.g., [24])
we can reconstruct the radius vector of the isothermic surface implicitly determined by the
fundamental forms (1), for more details see Section 4 and Theorem 1.

3. Clifford Algebras

The matrices e1, . . . , e5 satisfying (4) can be interpreted as elements of a Clifford
algebra, see below. Their exact matrix form is not needed. From technical point of view,
it is even easier to use Clifford numbers instead of particular matrix representations [21].

We recall the definition of a Clifford algebra generated by vectors of a Euclidean
or pseudo-Euclidean inner product space. Let V be a vector space endowed with a
non-degenerate (but not necessarily positive definite) quadratic form Q, see, e.g., [25,26].
If Q is positive definite (the Euclidean case), then Q(v) is the square of the length of v.
The associated bilinear form (scalar product) will be denoted by brackets. In particular,
Q(v) ≡ 〈v | v〉. The Clifford algebra C(V, Q) is generated by products (“Clifford products”)
of vectors (elements of V). The Clifford product is defined by the following relation:

vw + wv = 2〈v | w〉1 (5)

where 1 denotes the unit of the Clifford algebra.
Let {e1, . . . , en} be an orthonormal basis of V, i.e., 〈ej | ek〉 = 0 for j �= k, and

〈ek | ek〉 = ±1. The dimension of the Clifford algebra is 2n. Its standard basis consists of

1, ek, ejk (j < k), eiejek (i < j < k), . . .

If the signature of Q is (m, p) (i.e., among e1, . . . , en there are m vectors such that
e2

j = 1 and p vectors such that e2
j = −1, and m + p = n), then we denote C(V, Q) ≡ Cm,p.

The Clifford group (or Lipschitz group) Γ(V, Q) is the multiplicative group (with
respect to the Clifford product) generated by the non-isotropic vectors (we recall that
w ∈ V is isotropic (or null) vector if 〈w | w〉 = 0 ). The spinor norm of an element
X ∈ Γ(V, Q) is defined as

N(X) := β(X)X , (6)
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where β is a reversion, i.e., β(v1v2 . . . vM) = vMvM−1 . . . v2v1. One can easily see that the
spinor norm of a vector is its scalar square, N(v) = 〈v | v〉, and for any element of Γ(V, Q)
we have

N(v1v2 . . . vM) = 〈v1 | v1〉〈v2 | v2〉 . . . 〈vM | vM〉 . (7)

The group Pin(V, Q) is a subgroup of Γ(V, Q) consisting of elements X such that
N2(X) = ±1 (i.e., Γ(V, Q) contains products of unit vectors), and the group Spin(V, Q)
(a subgroup of Pin(V, Q)) consists of products of even number of unit vectors [26].

4. Spin-Valued Lax Pairs

Our approach to the construction of Darboux transformation consists of two steps.
First, we characterize the structure of the Lax pair. Second, we are looking for a transforma-
tion preserving the structure [27].

The structure of the Lax pair is characterized by the dependence on λ (e.g., divisor
of poles) [6,28], reduction group (loop group) [29] and, possibly, by other invariants of
Darboux transformations, like linear and multilinear constraints on coefficients of the
Laurent expansion around poles [30].

In this section we present the characterization of the Lax pair (3), see [20,31]. First of
all, we consider Clifford numbers instead of matrices. Then, we notice that both matrices
of this Lax pair are Clifford bi-vectors linear in λ such that

Ψ,μ = UμΨ , Uμ =
1
2

eμ(λaμ + bμ) (μ = 1, 2) (8)

where Ψ = Ψ(u, v), Ψ,1≡ Ψ,u, Ψ,2≡ Ψ,v, aμ = aμ(u, v) ∈ W, bμ = bμ(u, v) ∈ V, V and
W are real vector spaces, V is spanned by e1, e2 and e3, and W is spanned by e4 and e5.
We assume relations (4), which means that form now on the quadratic form Q, defined on
V ⊕W, is assumed to have signature (4, 1).

The compatibility conditions for the linear system (8) imply that a1 and a2 form an
orthogonal basis in W. We can confine ourselves to the particular case (3) without loss of
the generality. Indeed, both linear problems are equivalent up to a re-parameterization of
independent variables and a discrete transformation in the space W.

The form (8) of the spectral problem can be described in terms of some group con-
straints (“reduction group”, compare [27,29]). First, Uμ are linear combinations of Clifford
bi-vectors. In other words, Uμ take values in the Lie algebra of the group Spin(V ⊕W, Q).
In principle, Ψ could be a spinor, but here and in the sequel we assume that it is an element
of the Clifford algebra. Without loss of the generality we can confine ourselves to solutions
Ψ ∈ Γ(V, Q). The next observation is βββ(Uμ) = −Uμ.

Lemma 1. If βββ(Uμ) = −Uμ (for μ = 1, 2), and Ψ satisfies Ψ,μ = UμΨ, then

N(Ψ) ≡ Ψβββ(Ψ) = const , (9)

Proof. It is sufficient to differentiate N(Ψ):

(N(Ψ)),μ = Ψ,μ βββ(Ψ) + Ψβββ(Ψ,μ ) = (Uμ + βββ(Uμ))N(Ψ) = 0 , (10)

where one has to remember that N(Ψ) is a scalar, so it commutes with any elements.

Therefore, Ψ ∈ Spin(V ⊕W, Q) (for any u, v) provided that Ψ is Spin-valued at some
initial point (u0, v0). In an analogous way one can show the following loop group condi-
tions:

Ψ(−λ) = e4e5Ψ(λ)e4e5 , Ψ(λ) = Ψ(λ) (11)

(where the bar denotes complex conjugate and, by definition, ej = ej). They follow from

e4e5Uμ(λ) = Uμ(−λ)e4e5 , Uμ(λ) = Uμ(λ̄) . (12)
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The properties βββ(Uμ) = −Uμ and (12) hold for the Lax pair (8), which can be easily
verified using commutation relations (4).

The Sym-Tafel formula F = 2Ψ−1Ψ,λ [24], evaluated in λ = 0, yields a surface
immersed into the 6-dimensional space spanned by bi-vectors of the form ekeα (k = 1, 2, 3;
α = 4, 5). Projecting this surface on especially chosen 3-dimensional subspaces we obtain
the original isothermic surface as a linear combination of ek(e4 + e5) (k = 1, 2, 3) and its
dual (or Christoffel transform) as a combination of ek(e4 − e5) (k = 1, 2, 3) [23].

Here we present some details of calculations involving Clifford numbers instead
of matrices. They are closely related but not identical to the approach of our earlier
papers [20,23,32].

We use the projection P : C(V ⊕W)→ C(V) defined as a homomorphism of Clifford
algebras such that

P(e4) = P(e5) = 1 . (13)

Note that

P

(
3

∑
j=1

5

∑
α=4

cjαejeα

)
=

3

∑
j=1

(cj4 + cj5)ej (14)

This projection yields an original isothermic surface (the dual surface is a result of
another homomorphism P′, defined by P′(e4) = −P′(e5) = 1).

Theorem 1. We assume that Ψ satisfies the linear system (3) and

F := 2 Ψ−1Ψ,λ
∣∣∣
λ=0

. (15)

Then r := P(F) yields the original isothermic immersion (up to a Euclidean motion), provided
that we identify span{e1, e2, e3} with the space E3.

Proof. The crucial property of the Sym-Tafel formula (15) is a compact form of its derivative
(compare [24]):

F,μ = 2Ψ−1
0 Uμ,λ (0)Ψ0 = Ψ−1

0 eμaμΨ0 , (16)

where Ψ0 := Ψ(0) (i.e., Ψ evaluated at λ = 0), and we use the slightly more general form (8)
of the Lax pair (3). Then

r,μ = eθΨ−1
0 eμΨ0 . (17)

Therefore
Eμ = Ψ−1

0 eμΨ0 (18)

(for μ = 1, 2) form an orthonormal basis in the tangent space and, therefore, the corre-
sponding metric is given by the first equation of (1). Obviously, E3 (defined by (18) for
μ = 3) is orthogonal to E1 and E2; hence, it can be identified with the normal vector.
In order to derive the second fundamental form we differentiate (17). Taking into account
Ψ0,μ = 1

2 eμbμΨ0, we obtain

r,11 = eθ(θ,1 E1 + 〈b1 | e2〉E2 + 〈b1 | e3〉E3) = eθ
(
θ,1 E1 − θ,2 E2 + k1eθE3

)
,

r,12 = eθ(θ,2 E1 − 〈b2 | e1〉E2) = eθ(θ,2 E1 + θ,1 E2) ,

r,21 = eθ(−〈b1 | e2〉E1 + θ,1 E2) = eθ(θ,2 E1 + θ,1 E2) ,

r,22 = eθ(〈b2 | e1〉E1 + θ,2 E2 + 〈b2 | e3〉E3) = eθ
(−θ,1 E1 + θ,2 E2 + k2eθE3

)
.

(19)

Therefore, coefficients of the second fundamental form (given by 〈r,ij| E3〉) yield the
second formula of (1). The proof is completed by applying the Bonnet theorem.
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5. The Darboux-Bäcklund Transformation in the Case of Spin Groups

The Darboux transformation is a gauge-like transformation using the Darboux matrix
D (we will keep using the name “matrix” even for D given in terms of Clifford numbers
without referring to any matrix representation):

Ψ̃ = DΨ, Ψ̃,μ = ŨμΨ̃, Ũμ = D,μ D−1 + DUμD−1 , (20)

provided that Ũμ has the same dependence on dependent variables as Uμ, see, e.g., [6,33].
In Section 4 we have shown that the form (3) can be derived by imposing a set of constraints
on a general linear problem (Uμ are Clifford bi-vectors, linear in λ and belong to the
appropriate loop algebra). Then the Darboux transformation has to preserve this structure,
which means, in particular, that D should belong to the same group as Ψ.

Different methods of constructing the Darboux matrix need different form of
λ-dependence of D (these forms are equivalent up to a λ-dependent scalar factor [30]). In
particular, one can assume D as polynomial in λ (eigenvalues, corresponding to solitons, are
zeros of det D) [34], sum of simple fractions (eigenvalues: poles of D and D−1) [6,29], or a
“realization” (D = N + F(λ− A)−1G) [35,36].

Our motivation for dealing with the case of Spin groups came from yet another
approach [31]. Multiplying (20) by D2(λ) we get

D,μ D + DUμD = ŨμD2 . (21)

It is a crucial point that the right-hand side vanishes for λ+ and λ− such that
D2(λ±) = 0. Then, we obtain a solution of the remaining equation: D(λ±) = ρ±Ψ(λ±)d±
Ψ(λ±)−1, where d± = const, (d±)2 = 0 and ρ± are two scalar functions. Finally, D(λ) is
given as a linear combination of D(λ+) and D(λ−) with coefficients linear in λ [31], which
yields one-soliton Darboux matrix. This approach was extended on the multi-soliton case
for 2× 2 matrix problems [37].

Generalization of this approach on Spin-valued linear problems is quite natural.
Instead of multiplying both sides of (20) by D2 we multiply them by Dβββ(D):

D,μ βββ(D) + DUμβββ(D) = ŨμDβββ(D) . (22)

Note that βββ(D) = D if D is a Clifford vector (which has been usually assumed in
earlier papers, like [31]), and in this case Equation (22) assumes the form (21).

Lemma 2. If an isotropic Clifford vector D′ satisfies Equation (22), and G is any Clifford number
G (not necessarily constant), then D = GD′ satisfies Equation (22) as well.

Proof. Lemma can be shown by straightforward calculation. First, we have

Dβββ(D) = GD′βββ(D′)βββ(G) = G(D′)2βββ(G) = 0 , (23)

so the right-hand side of (22) vanishes. Then

D,μ βββ(D) + DUμβββ(D) = G,μ D′βββ(D′)βββ(G) + G
(

D′,μ βββ(D′) + D′Uμβββ(D′)
)
βββ(G) = 0 , (24)

which ends the proof.

In this paper we confine ourselves to iterations of the simplest Darboux transforma-
tions (defined by D linear in λ). Then we can use the results of [31], where the case of
the Clifford vector (here denoted by D′) was considered, and the following form of the
Darboux transformation was derived:

D′(λ) = λ− λ−
λ+ − λ−

D′(λ+) +
λ− λ+

λ− − λ+
D′(λ−) , (25)
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and D′(λ±) can be expressed as

D′(λ±) = ρ±Ψ(λ±)d±Ψ(λ±)−1 (26)

where ρ± are (arbitrary) scalar functions and d± are constant elements such that d2± = 0.
Reductions (12) impose constraints on λ±, ρ±, and d± (see [31]):

λ+ = iκ , λ− = −iκ (κ ∈ R) , ρ+ = ρ− ≡ ρ ∈ R , d± = κ(p0 ± in0) . (27)

Moreover we denote (compare [21])

p + in := Ψ(iκ)(p0 + in0)Ψ−1(iκ) (28)

We assume
p2

0 = n2
0 = 1

(in the Clifford algebra p2 = 〈p | p〉 etc.). Therefore computing the Clifford square of both
sides of (28) and taking into account that p, p0 anticommute with n, n0 we get p2 = n2.

It is convenient to introduce unit vectors p̂ and n̂

p̂ :=
p√〈p | p〉 , n̂ :=

n√〈n | n〉 , (29)

such that p̂2 = n̂2 = 1. Then the Darboux matrix assumes the form D′(λ) = λn̂ + κ p̂. In
order to get a Spin-valued D we can take, for instance, G = e4, obtaining

D(λ) := e4(λn̂ + κ p̂) (30)

Note that
D(λ)βββ(D(λ)) = λ2 + κ2 (31)

Remark 1. It is important to remember that the obtained Darboux matrix D depends on the
function Ψ (an exact solution of the linear problem (3)) and constant parameters: κ, p0, n0.
The notation D = D[Ψ,κ,p0,n0]

would be very awkward, so in the sequel we omit the dependence on
p0 and n0, writing D = D[Ψ,κ].

Theorem 2. The transformation Ψ̃(λ) = e4(λn̂ + κ p̂)Ψ(λ), where n̂ and p̂ are given by (29) and

p :=
1
2

(
Ψ(iκ)(p0 + in0)Ψ−1(iκ) + Ψ(−iκ)(p0 − in0)Ψ−1(−iκ)

)
n :=

1
2i

(
Ψ(iκ)(p0 + in0)Ψ−1(iκ)−Ψ(−iκ)(p0 − in0)Ψ−1(−iκ)

)
,

(32)

transforms the linear problem (3) into the linear problem of the same form with θ, k1 and k2
replaced by

θ̃ = θ − 2γ ,

k̃1 = e2γ
(
k1 − 2κ〈p | e3〉eθ sinh(θ − γ)

)
,

k̃2 = e2γ
(
k2 − 2κ〈p | e3〉eθ cosh(θ − γ)

)
,

(33)

where γ is a function parameterizing n̂, namely: n̂ = cosh γe4 + sinh γe5.

We omit the proof, which consists in splitting the equation D,μ +DUμ = ŨμD into
a system of equations by equating coefficients by powers of λ and basis elements of the
Clifford algebra.
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Theorem 3. The Darboux transformation for soliton submanifolds (15) reads

F̃ = F +
2
κ

p̂−1n̂ , r̃ = r +
2eγ

κ
p̂ . (34)

Proof. Directly applying the Sym formula we get

F̃ = 2(DΨ)−1(DΨ),λ |λ=0 = 2Ψ−1Ψ,λ |λ=0 + 2Ψ−1
0 (D−1D,λ )|λ=0Ψ0 . (35)

Substituting D,λ = n̂ and D−1(0) = κ−1 p̂−1, we get the first formula of (34). To obtain
the second formula we take into account that p̂2 = 1 and P(n̂) = eγ.

In the context of soliton surfaces the Darboux transformation is often called the
Darboux-Bäcklund transformation [21,31] or the Darboux–Bianchi transformation [23].

6. Iterated Darboux Transformation

The Darboux transformation can be iterated in a natural way. Using the notation
introduced in Remark 1 we have the following sequence of solutions to the considered
linear problem:

Ψ[1](λ) = D[Ψ[0] ,κ1]
(λ)Ψ[0](λ) ,

Ψ[2](λ) = D[Ψ[1] ,κ2]
(λ)Ψ[1](λ) ,

. . . . . . . . . . . . . . . . . ,

Ψ[K](λ) = D[Ψ[K−1] ,κK ]
(λ)Ψ[K−1](λ) .

(36)

The last equation can be rewritten in the following, more explicit, way:

Ψ[K](λ) = D[Ψ[K−1] ,κK ]
(λ)D[Ψ[K−2] ,κK−1]

(λ) . . . D[Ψ[1] ,κ2]
(λ)D[Ψ[0] ,κ1]

(λ)Ψ[0](λ) , (37)

where we have to remember that Ψ[1], Ψ[2], . . . , Ψ[K−1] can (and should) be expressed by
Ψ[0] and constants κ1, . . . , κK−1. Thus we can use a more compact notation:

Ψ[K](λ) = D[K]
[Ψ[0] ,κ1,κ2,...,κK−1]

(λ) , (38)

but the explicit expression for D[K] is extremely complicated. The above notation can be
shortened into the following, more compact, form:

Ψ[1](λ) = D[0]1(λ)Ψ[0](λ) ,

Ψ[2](λ) = D[1]2(λ)Ψ[1](λ) ,

. . . . . . . . . . . . . . . ,

Ψ[K](λ) = D[K−1]K(λ)Ψ[K−1](λ) .

(39)

The index [0] may be often omitted. We have, for example:

Ψ[0](λ) ≡ Ψ(λ) ,

Ψ[1](λ) = D[0]1(λ)Ψ[0](λ) = D(λ)Ψ(λ) = D[1](λ)Ψ[0](λ) ,

Ψ[2](λ) = D[1]2(λ)Ψ[1](λ) = D[1]2(λ)D[0]1(λ)Ψ[0](λ) = D[2](λ)Ψ[0](λ) ,

Ψ[3](λ) = D[2]3(λ)D[1]2(λ)D[0]1(λ)Ψ[0](λ) = D[3](λ)Ψ[0](λ)

(40)

where
D(λ) = D[0]1(λ) = e4(λn̂1 + κ1 p̂1) (41)

103



Symmetry 2021, 13, 148

and p̂j, n̂j are defined by

pj + inj := Ψ(iκj)(p0j + in0j)Ψ−1(iκj) (j ∈ N) . (42)

Theorem 4. Two-fold Darboux transformation of the function Ψ(λ) is given by Ψ[2](λ) =
D[2](λ)Ψ(λ), and D[2] can be expressed by κ1, κ2, p̂1, p̂2, n̂1 and n̂2 in the form explicitly symmetric
with respect to exchange of indices:

D[2](λ) =
C(λ)− (κ2

1 − κ2
2)D[0]1(λ) ∧ D[0]2(λ)

M
, (43)

where D[0]j(λ) = e4(λn̂j + κj p̂j) (j = 1, 2) and

M2 := 4κ2
1κ2

2(cos2 ϕ + cos2 ψ)− 4κ1κ2(κ
2
1 + κ2

2) cos ϕ cos ψ + (κ2
1 − κ2

2)
2 ,

C(λ) := κ1κ2 cos ϕ(2λ2 + κ2
1 + κ2

2)− cos ψ(2κ2
1κ2

2 + λ2(κ2
1 + κ2

2)) .
(44)

Proof. We are going to express in a symmetric form D[2](λ) = D[1]2(λ)D[0]1(λ). Note that

Ψ[1](iκ2) = D[0]1(iκ2)Ψ(iκ2) = e4(iκ2n̂1 + κ1 p̂1)Ψ(iκ2) , (45)

and
(D[0]1(λ))

−1 =
λn̂1 + κ1 p̂1

λ2 + κ2
1

e4 (46)

Then
D[1]2(λ) = e4(λn̂ + κ2 p̂) , (47)

where we still use notation (29), but (within this proof) n and p are associated with the
matrix D[1]2, i.e.,

p + in = Ψ[1](iκ2)(p02 + in02)(Ψ[1](iκ2))
−1 . (48)

Therefore, substituting (45),

p + in = e4(κ1 p̂1 + iκ2n̂1)Ψ(iκ2)(p02 + in02)Ψ(iκ2)
−1

(
κ1 p̂1 + iκ2n̂1

κ2
1 − κ2

2

)
e4 , (49)

which can be rewritten as (compare (29))

p + in =

√
p2

2

κ2
1 − κ2

2
e4(κ1 p̂1 + iκ2n̂1)( p̂2 + in̂2)(κ1 p̂1 + iκ2n̂1)e4 , (50)

or
p + in =

√
p2

2e4(κ1 p̂1 + iκ2n̂1)( p̂2 + in̂2)(κ1 p̂1 + iκ2n̂1)
−1e−1

4 , (51)

which is a similarity transformation and can be interpreted as an orthogonal transformation
in the (complexified) Clifford algebra. Note that for any Clifford vectors v, w we have

vwv−1 = (2〈v | w〉 − wv)v−1 = −w + 2
〈v | w〉
〈v | v〉 v . (52)

Therefore

p + in =
√

p2
2e4

(
2(κ1〈 p̂1 | p̂2〉 − κ2〈n̂1 | n̂2〉)

κ2
1 − κ2

2
(κ1 p̂1 + iκ2n̂1)− ( p̂2 + in̂2)

)
e4 . (53)
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p =

√
p2

2

κ2
1 − κ2

2

(
(2κ2

1〈 p̂1 | p̂2〉 − 2κ1κ2〈n̂1 | n̂2〉) p̂1 − (κ2
1 − κ2

2) p̂2

)
, (54)

n =

√
p2

2

κ2
1 − κ2

2
e4

(
(2κ1κ2〈 p̂1 | p̂2〉 − 2κ2

2〈n̂1 | n̂2〉)n̂1 − (κ2
1 − κ2

2)n̂2

)
. (55)

Now we can easily compute p2, n2 and then p̂, n̂. Let us denote

cos ϕ := 〈 p̂1 | p̂2〉 , cos ψ := 〈n̂1 | n̂2〉 . (56)

Then

p2 = n2 =
p2

2M2

(κ2
1 − κ2

2)
2

(57)

where M2 is computed in the straightforward way (taking into account 〈 p̂j | n̂k〉 = 0):

M2 := 4κ2
1κ2

2(cos2 ϕ + cos2 ψ)− 4κ1κ2(κ
2
1 + κ2

2) cos ϕ cos ψ + (κ2
1 − κ2

2)
2 . (58)

Therefore

p̂ =
κ2

1 − κ2
2

M
√

p2
2

p , n̂ =
κ2

1 − κ2
2

M
√

p2
2

n , (59)

Mp̂ = 2(κ1 cos ϕ− κ2 cos ψ)κ1 p̂1 − (κ2
1 − κ2

2) p̂2 ,

Mn̂ = 2(κ1 cos ϕ− κ2 cos ψ)κ2n̂1 − (κ2
1 − κ2

2)n̂2 .
(60)

Thus

D[1]2(λ) =
2κ2e4(κ1 cos ϕ− κ2 cos ψ)(λn̂1 + κ1 p̂1)

M
− e4(κ

2
1 − κ2

2)(λn̂2 + κ2 p̂2)

M
, (61)

i.e.,

D[1]2(λ) =
2κ2(κ1 cos ϕ− κ2 cos ψ)

M
D[0]1 −

(κ2
1 − κ2

2)

M
D[0]2 . (62)

Now, we can compute D[2] = D[1]2D[0]1:

D[2](λ) =

(
2κ2(κ1 cos ϕ− κ2 cos ψ)

M
D[0]1 −

(κ2
1 − κ2

2)

M
D[0]2

)
D[0]1 . (63)

Using a general property of the Clifford product of vectors

vw = 〈v | w〉+ v ∧ w (64)

(where the wedge denotes the skew product) we get (43).

Corollary 1. The symmetric form of two-fold Darboux transformation can be considered as yet
another proof of Bianchi’s permutability theorem [5].

7. Seed Solutions

In order to produce exact solution by iterating the Darboux transformation we need
some starting point: a seed solution. Below we give two simple examples.
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7.1. The Trivial Background (Plane)

The data ϑ = 0, k1 = k2 = 0 correspond to the trivial background, i.e., to the plane.
The linear system (3) assumes the form

Ψ,u =
1
2

λe1e5Ψ , Ψ,v =
1
2

λe2e4 . (65)

Hence
Ψ = e

1
2 λue1e5 e

1
2 λve2e4 (66)

Finally
2Ψ−1Ψ,λ |λ=0 = ue1e5 + ve2e4 , (67)

Performing the projection (13) we get

r = P(Ψ−1Ψ,λ |λ=0) = ue1 + ve2 , (68)

7.2. Cylinder

One can easily see that ϑ = 0, k2 = 0, k1 ≡ k = const satisfy the system (2). The linear
system (3) assumes the form

Ψ,u = 1
2 λe1e5Ψ ,

Ψ,v = 1
2 e2(λe4 − ke3) .

e1e5 commutes with λe2e4 − ke2e3 and they do not depend on u, v. Therefore Ψ can
be easily computed

Ψ = e
1
2 λue1e5 e

1
2 v(λe2e4−ke2e3) (69)

Then
(λe2e4 − ke2e3)

2 = −(λ2 + k2)

Therefore

Ψ =

(
cosh

λu
2

+ e1e5 sinh
λu
2

)(
cos

v
√

λ2 + k2

2
+

e2(e4λ− e3k)√
λ2 + k2

sin
v
√

λ2 + k2

2

)

Ψ−1(0) = cos
kv
2

+ e2e3 sin
kv
2

Ψ,λ (0) =
1
2

ue1e5

(
cos

kv
2
− e2e3 sin

kv
2

)
+

1
k

e2e4 sin
kv
2

Then

2Ψ−1Ψ,λ |λ=0 = ue1e5 +
2
k

sin
kv
2

cos
kv
2

e2e4 − 2
k

e3e4 sin2 kv
2

Finally, using the projection (13), we get the cylinder immersed in R3

r = ue1 − 1
k

e3 +
1
k
(e3 cos kv + e2 sin kv) (70)

8. Conclusions

We constructed an iterated Darboux transformation for isothermic surfaces using
the Clifford algebra approach. Our main result is a symmetric representation of two-fold
Darboux transformation (Theorem 4). Thus we made some progress in the direction of
constructing symmetric compact formulas for “multi-soliton” isothermic surfaces, what
reduces to transforming Ψ[K] (given by (38)) into a form that is explicitly invariant with
respect to permutations of real eigenvalues κ1, . . . , κK. Another open problem, more chal-
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lenging, is to find analogous formulas in a direct way and with more general set of complex
eigenvalues. We also expect to extend our approach on related multidimensional problems
(see, e.g., [32]).
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Abstract: In this paper, we analyze various types of critical phenomena in one-dimensional gas
flows described by Euler equations. We give a geometrical interpretation of thermodynamics
with a special emphasis on phase transitions. We use ideas from the geometrical theory of partial
differential equations (PDEs), in particular symmetries and differential constraints, to find solutions
to the Euler system. Solutions obtained are multivalued and have singularities of projection to the
plane of independent variables. We analyze the propagation of the shockwave front along with
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1. Introduction

Various types of critical phenomena, such as singularities, discontinuities, wave fronts
and phase transitions, have always been of interest from both mathematical [1–3] and
practical [4] viewpoints. In the context of gases, discontinuous solutions to the Euler
system, describing their motion, are usually treated as shockwaves. In the past decades, such
phenomena have widely been studied (see, e.g., [5] for the case of Chaplygin gases [6,7],
where the weak shocks are considered). It is also worth mentioning the works in [8,9],
where the influence of turbulence on shocks and detonations is emphasized.

This paper can be seen as a natural continuation of the work in [10], where have
considered the case of ideal gas flows. Here, we use the van der Waals model of gases,
which is more complicated and at the same time more interesting from the singularity
theory viewpoint. The van der Waals model is known to be one of the most popular in
the description of phase transitions. Thus, singularities of shockwave type that can be
viewed as in some sense singular solutions to the Euler system are analyzed together
with singularities of purely thermodynamic nature, phase transitions. Our approach to
finding and investigating such phenomena is essentially based on the geometric theory of
PDEs [11–15]. Namely, we find a class of multivalued solutions to the Euler system (see
also [16]), and singularities of their projection to the plane of independent variables are
exactly what drives the appearance of the shockwave [17]. Similar ideas are used in a series
of works [18–20], where multivalued solutions to filtration equations are obtained along
with analysis of shocks. To find such solutions, we use the idea of adding a differential
constraint to the original PDE in such a way that the resulting overdetermined system
of PDEs is compatible [21]. The same concepts were also used by Schneider [22], who
found a general solution to the Hunter–Saxton equation; LY1 [23], who considered the
two-dimensional Euler system; and LY2 [24], who applied this approach to the Khokhlov–
Zabolotskaya equation.

The paper is organized as follows. Section 2 presents the preliminary concepts, where
we describe the necessary concepts from thermodynamics. In Section 3, we analyze a
multivalued solution to Euler equations and its singularities, including shockwaves and
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phase transitions. In the last section, we discuss the results. The essential computations for
this paper were made with the DifferentialGeometry package [25] in Maple.

2. Thermodynamics

In this section, we give necessary concepts from thermodynamics. As shown below,
geometrical interpretation of thermodynamic states allows one to use Arnold’s ideas
from the theory of Legendrian and Lagrangian singularities [1–3], which are crucial in
description of phase transitions. The geometrical approach to thermodynamics was already
initiated by Gibbs [26]. It was further developed, for example, by the authors of [27,28]
and, more recently, by Lychagin [29]. For more detailed analysis regarding the geometrical
methods in thermodynamics, we also refer to [30].

2.1. Legendrian and Lagrangian Manifolds

Consider the contact space
(
R5, θ

)
with coordinates (s, e, ρ, p, T) standing for specific

entropy, specific inner energy, density, pressure and temperature. The contact structure θ is
given by

θ = T−1de− ds− pT−1ρ−2dρ. (1)

Then, a thermodynamic state is a Legendrian manifold L̂ ⊂ (R5, θ
)
, i.e., θ

∣∣
L̂ = 0 and

dim L̂ = 2. From the physical viewpoint, this means that the first law of thermodynamics
holds on L̂. Due to (1), it is natural to choose (e, ρ) as coordinates on L̂. Then, a two-
dimensional manifold L̂ ⊂ (R5, θ

)
is given by

L̂ =

{
s = S(e, ρ), T =

1
Se

, p = −ρ2 Sρ

Se

}
, (2)

where the function S(e, ρ) specifies the dependence of the specific entropy on e and ρ.
Note that determining a Legendrian manifold L̂ by means of (2) requires the knowl-

edge of S(e, ρ), while in experiments one usually obtains relations among pressure, den-
sity and temperature. Thus, we get rid of the specific entropy s by means of projection
π : R5 → R4, π(s, e, ρ, p, T) = (e, ρ, p, T) and consider an immersed Lagrangian manifold
π
(

L̂
)
= L ⊂ (R4, Ω

)
in a symplectic space

(
R4, Ω

)
, where the structure symplectic form

Ω is
Ω = dθ = d(T−1) ∧ de− d(pT−1ρ−2) ∧ dρ.

Then, one can treat thermodynamic state manifolds as Lagrangian manifolds L ⊂ (R4, Ω
)
,

i.e., Ω|L = 0. In coordinates (T, ρ), a thermodynamic Lagrangian manifold L is given by
two functions

L = {p = P(T, ρ), e = E(T, ρ)}. (3)

Since Ω|L = 0, the functions P(T, ρ) and E(T, ρ) are not arbitrary, but are related by

[p− P(T, ρ), e− E(T, ρ)]|L = 0, (4)

where [ f , g] is the Poisson bracket of functions f and g on
(
R4, Ω

)
uniquely defined by

the relation
[ f , g]Ω ∧Ω = d f ∧ dg ∧Ω.

Equation (4) forces the following relation between P(T, ρ) and E(T, ρ): (−ρ−2T−1P)T =
(T−2E)ρ, and therefore the following theorem is valid:

Theorem 1. The Lagrangian manifold L is given by means of the Massieu–Planck potential φ(ρ, T)

p = −ρ2Tφρ, e = T2φT . (5)

Remark 1. Having given the Lagrangian manifold L by means of (3), one can find the entropy
function S(e, ρ) solving the overdetermined system
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T =
1
Se

, p = −ρ2 Sρ

Se

with compatibility condition (4).

2.2. Riemannian Structures, Singularities, Phase Transitions

There is one more important structure arising, as shown in [29], from measurement
approach to thermodynamics. Indeed, if one considers equilibrium thermodynamics as
a theory of measurement of random vectors, whose components are inner energy and
volume v = ρ−1, one drives to the universal quadratic form on (R4, Ω) of signature (2, 2):

κ = d(T−1) · de− ρ−2d(pT−1) · dρ,

where · is the symmetric product of differential forms, and areas on L, where the restriction
κ|L of κ to L is negative, are those where the variance of a random vector (e, v = ρ−1) is
positive [29,31]. Using (5), we get

κ|L = −(2T−1φT + φTT)dT · dT + (2ρ−1φρ + φρρ)dρ · dρ, (6)

and, taking into account (5), we conclude that the condition of positive variance is satisfied
at points on L, where

eT > 0, pρ > 0,

which is known as the condition of the thermodynamic stability.
Let us now explore singularities of Lagrangian manifolds. We are interested in the

singularities of their projection to the plane of intensive variables (p, T), i.e., points where
the form dp ∧ dT degenerates. We assume that extensive variables (e, ρ) may serve as
global coordinates on L, i.e., the form de ∧ dρ is non-degenerate everywhere. The set
where dp ∧ dT = 0 coincides with that where 2ρ−1φρ + φρρ = 0, or, equivalently, where
the from κ|L degenerates. A manifold L turns out to be divided into submanifolds Li,
where both (e, ρ) and (p, T) may serve as coordinates, or, equivalently, the form (6) is
non-degenerate. Such Li are called phases. Additionally, those of Li, where (6) is negative,
are called applicable phases. Thus, we end up with the observation that singularities of
projection of thermodynamic Lagrangian manifolds are related with the theory of phase
transitions. Indeed, by a phase transition of the first order, we mean a jump from one
applicable state to another, governed by the conservation of intensive variables p and T
and specific Gibbs potential

γ = e− Ts + p/ρ,

which in terms of the Massieu–Planck potential is expressed as γ = −T(φ + ρφρ) [30].
Consequently, to find the points of phase transition, one needs to solve the system

p = −ρ2
1Tφρ(T, ρ1), p = −ρ2

2Tφρ(T, ρ2), φ(T, ρ1) + ρ1φρ(T, ρ1) = φ(T, ρ2) + ρ2φρ(T, ρ2), (7)

where p and T are the pressure and temperature of the phase transition and ρ1 and ρ2 are
the densities of gas and liquid phases.

Example 1 (Ideal gas). The simplest example of a gas is an ideal gas model. In this case, the
Legendrian manifold is given by

L̂ =

{
p = RρT, e =

n
2

RT, s = R ln

(
Tn/2

ρ

)}
, (8)

where R is the universal gas constant and n is the degree of freedom. The differential quadratic form
κ|L is

κ|L = −Rn
2

dT2

T2 − Rρ−2dρ2.
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It is negative definite on the entire L̂, and there are neither phase transitions nor singularities
of projection of L̂ to the p− T plane.

Example 2 (van der Waals gas). To define the Legendrian manifold for van der Waals gases, we
use reduced state equations:

L̂ =

{
p =

8Tρ

3− ρ
− 3ρ2, e =

4nT
3
− 3ρ, s = ln

(
T4n/3(3ρ−1 − 1)8/3

)}
. (9)

The differential quadratic form κ|L is

κ|L = − 4n
3T2 dT2 +

6(ρ3 − 6ρ2 − 4T + 9ρ)

ρ2T(ρ− 3)2 dρ2.

In this case, it changes its sign; the manifold L̂ has a singularity of cusp type. The singular set
of L̂, called also caustic, and the curve of phase transition are shown in Figure 1.

(a) (b)

Figure 1. Singularities of the van der Waals Legendrian manifold: caustic (black line) and phase
transition curve (red line) in coordinates (p, T) (a); and the curve of phase transition in (p, ρ, T)
(b). Points of the phase transition curve with the same values of pressure p and temperature T and
different values of density ρ2 > ρ1 correspond to the liquid phase and the gas phase, respectively,
while points between ρ1 and ρ2 correspond to wet steam.

3. Euler Equations

In this paper, we study non-stationary, one-dimensional flows of gases, described by
the following system of differential equations:

• Conservation of momentum:

ρ(ut + uux) = −px (10)

• Conservation of mass:
ρt + (ρu)x = 0 (11)

• Conservation of entropy along the flow:

st + usx = 0 (12)

Here, u(t, x) is the flow velocity, ρ(t, x) is the density of the medium, and s(t, x) is the
specific entropy. System (10)–(12) is incomplete. It becomes complete once extended by
equations of thermodynamic state (2). We are interested in homentropic flows, i.e., those
with s(t, x) = s0. On the one hand, this assumption satisfies (12) identically. On the other
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hand, it allows us to express all the thermodynamic variables in terms of ρ. Indeed, the
entropy s has the following expression in terms of the Massieu–Planck potential φ(T, ρ):
s = φ + TφT [30]. Putting s = s0, we get the equation s0 = φ + TφT , which determines
T(ρ) uniquely, since the derivative of its right-hand side with respect to T is positive due to
the negativity of κ|L. Substituting T(ρ) into (3), one gets p = p(ρ). Thus, we end up with
the following two-component system of PDEs:

ut + uux + A(ρ)ρx = 0, ρt + (ρu)x = 0, (13)

where A(ρ) = p′(ρ)/ρ.
We do not specify the function A(ρ) yet; we do this while solving (13).

3.1. Finding Solutions

To find solutions to system (13), we use the idea of adding a differential constraint to (13),
compatible with the original system. It is worth mentioning that a solution is an integral
manifold of the Cartan distribution on (13) (see [11–13] for details). This geometrical
interpretation of a solution to a PDE allows finding ones in the form of manifolds, which, in
general, may not be globally given by functions. This approach gives rise to investigation
of singularities in a purely geometrical manner, which is shown in this paper.

In general, finding differential constraints is not a trivial problem. However, having
found ones, the problem of finding solutions is reduced to the integration of a completely
integrable Cartan distribution of the resulting compatible overdetermined system. In rgw
case the Cartan distribution has a solvable transversal symmetry algebra, whose dimension
equals the codimension of the Cartan distribution, we are able to get explicit solutions in
quadratures by applying the Lie–Bianchi theorem (for details, see [11–13]).

We look for a differential constraint compatible with (13) in the form of a quasilinear
equation

ux − ρx(α(ρ)u + β(ρ)) = 0, (14)

where functions α(ρ) and β(ρ) are to be determined. We denote system (13) and (14) by E .

Theorem 2. System (13) and (14) is compatible if

α(ρ) = − 1
ρ(C3ρ− 1)

, β(ρ) =
C2

ρ(C3ρ− 1)
, A(ρ) = C1 +

C5

ρ3

(
C3 +

C7

ρ

)C6

, (15)

where Ci are constants.

The proof of Theorem 2 is more technical rather than conceptual. First, we lift system
(13) and (14) to the space of 3-jets J3(R2) by applying total derivatives

Dt = ∂t + ut∂u + ρt∂ρ + utt∂ut + ρtt∂ρt + . . . ,

Dx = ∂x + ux∂u + ρx∂ρ + uxx∂ux + ρxx∂ρx + . . . .

to equations of E the required number of times, consequently. The resulting system
E3 ⊂ J3(R2), consisting of equations only of the third order, contains nine equations for
eight variables of purely third order: uttt, uxxx, utxx, uttx, ρttt, ρxxx, ρtxx and ρttx. Eliminating
them from E3, we get seven relations (six obtained by lifting E to J2(R2) plus one remaining
from eliminations of third-order variables). Again, we eliminate all the variables of the
second order and we get four relations of the first order. Eliminating ux, ut and ρt, we
end up with an expression of the form ρ3

xG(ρ, u) = 0, where G(ρ, u) is a polynomial in
u, whose coefficients are ordinary differential equations (ODEs) on α(ρ), β(ρ) and A(ρ),
solving which we get (15). It is worth stating that these computations are algebraic and
well suited for computer algebra systems.
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Remark 2. Using (8) and (9), one can show that the function A(ρ) = p′(ρ)/ρ given in (15)
corresponds to that of:

• ideal gas in the case of

C1 = C3 = 0, C5 = R
(

1 +
2
n

)
exp
(

2s0

Rn

)
, C6 = −2− 2

n
, C7 = 1;

• van der Waals gas in the case of

C1 = −6, C3 = −1, C5 = 24
(

1 +
2
n

)
exp
(

3s0
4n

)
, C6 = −2− 2

n
, C7 = 3. (16)

The case of ideal gases was thoroughly investigated by LR2 [10]. Here, we are interested in the case
of van der Waals gases.

Summarizing, we have a compatible overdetermined system of PDEs

E = {F1 = ut + uux + A(ρ)ρx = 0, F2 = ρt + (ρu)x = 0, F3 = ux − ρx(α(ρ)u + β(ρ)) = 0} ⊂ J1(R2),

where functions α(ρ), β(ρ) and A(ρ) are specified in (15). This system is a smooth manifold
E in the space of 1-jets J1(R2) of functions on R2. Since dim J1(R2) = 8, and E consists of
three relations on J1(R2), dim E = 5. The dimension of the Cartan distribution CE on E
equals 2, therefore codim CE = 3. Let us choose (t, x, u, ρ, ρx) as internal coordinates on E .
Then, the Cartan distribution CE is generated by differential 1-forms

ω1 = du− uxdx− utdt, (17)

ω2 = dρ− ρxdx− ρtdt, (18)

ω3 = dρx − ρxxdx− ρxtdt, (19)

where ρxx, ρxt, ut, ux, ρt are expressed due to E and its prolongation E2 = {Dt(F1) = 0,
Dt(F2) = 0, Dt(F3) = 0, Dx(F1) = 0, Dx(F2) = 0, Dx(F3) = 0}:

ρxx =
ρ2

x
(
ρ(C3ρ− 1)3 A′ + (C3ρ− 1)2 A + 3C3(C2 − u)2)

(C3ρ− 1)((C2 − u)2 − Aρ(C3ρ− 1)2)
, ρt =

ρx(C3ρu + C2 − 2u)
1− C3ρ

, (20)

ux =
ρx(C2 − u)
ρ(C3ρ− 1)

, ut = −ρx(Aρ(C3ρ− 1) + u(C2 − u))
ρ(C3ρ− 1)

, (21)

ρxt =
ρ2

x
ρ(C3ρ− 1)2(Aρ(C3ρ− 1)2 − (C2 − u)2)

(
ρ2(C3ρ− 1)3(C3ρu + C2 − 2u)A′ +

+ ρA(C3ρ− 1)2(C3ρu + 3C2 − 4u) + (C2 − u)2(3C2
3ρ2u + 3C3ρ(C2 − 2u)− 2C2 + 2u)

)
,

(22)

where A(ρ) is given by (15). We look for integrals of the distribution (17)–(22), which give
us an (implicit) solution to (13) and (14).

Theorem 3. The distribution (17)–(22) is a completely integrable distribution with a three-
dimensional Lie algebra g of transversal infinitesimal symmetries generated by vector fields

X1 = t∂t + x∂x − ρx∂ρx , X2 = ∂t, X3 = ∂x

with brackets [X1, X3] = −X3, [X1, X2] = −X2, [X2, X3] = 0.
The Lie algebra g is solvable, and its sequence of derived algebras is

g = 〈X1, X2, X3〉 ⊃ 〈X2, X3〉 ⊃ 0.

Thus, the Lie–Bianchi theorem [11–13] can be applied to integrate (17)–(22).
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Let us choose another basis 〈κ1,κ2,κ3〉 in CE by the following way:⎛⎝κ1
κ2
κ3

⎞⎠ =

⎛⎝ω1(X1) ω1(X2) ω1(X3)
ω2(X1) ω2(X2) ω2(X3)
ω3(X1) ω3(X2) ω3(X3)

⎞⎠−1⎛⎝ω1
ω2
ω3

⎞⎠.

Due to the structure of the symmetry Lie algebra g, the form κ1 is closed [11,12], and
therefore locally exact, i.e., κ1 = dQ1, where Q1 ∈ C∞(J1), while restrictions κ2|M1 and
κ3|M1 to the manifold M1 = {Q1 = const} are closed and locally exact too. Integrating the
differential 1-form κ1 we observe that variables u, ρ, t, x can be chosen as local coordinates
on M1 and

M1 =

{
ρx =

α1ρ2(C3ρ− 1)
ρA(C3ρ− 1)2 − (C2 − u)2

}
,

where α1 is a constant. Integrating restrictions κ2|M1 and κ3|M1 , we get two more relations
that give us a solution to (13) and (14) implicitly:

t + α2 +
C2 − u

α1ρ
+

C3u
α1

= 0, (23)

and

0 = x + α3 +
1
α1

(
C1 ln ρ− C1C3ρ +

C3u2

2
+

u(C2 − u)
ρ

− C5

(
C3 +

C7
ρ

)C6+1
·

· 2ρ2C2
3 − C2

7(C6 + 1)(C3ρ(C6 + 3)− C6 − 2) + C3C7ρ(C3ρ(C6 + 3)− 2C6 − 2)
(C6 + 1)(C6 + 2)(C6 + 3)C3

7ρ2

)
,

(24)

where we have already substituted A(ρ) from (15), and α2, α3 are constants. The graph of a
multivalued solution for the density is shown in Figure 2. We used substitution (16), where
C5 = 240, n = 3, together with C2 = 1, α1 = 1, α2 = 2, α3 = 1.

Figure 2. Graph of the density in case of n = 3 for time moments t = 0, t = 30.

3.2. Caustics and Shockwaves

We can see that solution given by (23) and (24) is, in general, multivalued. To figure
out where the two-dimensional manifold N given by (23) and (24) has singularities of
projection to the plane of independent variables, one needs to find zeroes of the two-form
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dt ∧ dx. Condition (dt ∧ dx)|N = 0 gives us a curve in the plane R2(t, x) called caustic.
Choosing ρ as a coordinate on the caustic, we get its equations in a parametric form:

x(ρ) = − 1
2α1

(
2C1 ln ρ + C1(C3

3ρ3 − 4ρ2C2
3 + 3C3ρ− 2) + C3C3

2 + 2α1α3

)
±

± C2(C3ρ− 1)2

α1ρ2

√
C1ρ3 + C5

(
C3 +

C7
ρ

)C6

−
C5

(
C3 +

C7
ρ

)C6

2(C6 + 2)(C6 + 3)C3
7α1(C6 + 1)ρ3

·

·
(

C3
3(−4 + C3

7(C
3
6 + 6C2

6 + 11C6 + 6) + (−2C6 − 6)C7)ρ
3 −

− 2C7((2(C3
6 + 6C2

6 + 11C6 + 6))C2
7 + (−C2

6 − 3C6)C7 − C6)C2
3ρ2+

+ C2
7(C6 + 1)((C6 + 3)(5C6 + 12)C7 − 2C6)C3ρ− 2C3

7(C6 + 4)(C6 + 2)(C6 + 1)
)

,

(25)

t(ρ) = −α2 − C2C3

α1
± (C3ρ− 1)2

α1ρ2

√
C1ρ3 + C5

(
C3 +

C7

ρ

)C6

. (26)

To construct a discontinuous solution from the multivalued one given by (23) and (24),
we use the mass conservation law. Equation (11) with the velocity u found from (23) in
terms of t and ρ takes the form:

ρt +

(
ρ

α1ρ(t + α2) + C2

1− C3ρ

)
x
= 0,

and therefore the conservation law is

Θ = ρdx− ρ
α1ρ(t + α2) + C2

1− C3ρ
dt.

Its restriction Θ|N to the manifold N given by (23) and (24) is a closed form, locally
Θ|N = dH, and the potential H(ρ, t) equals

H(ρ, t) =
ρ

2α1(C3ρ− 1)2

(
C1C3

3ρ3 − 4C1C2
3ρ2 + ρ

(
C2

2C2
3 + (2C2(t + α2)α1 + 5C1)C3 + α2

1(t + α2)
2
)
− 2C1

)
−

−
C5

(
C3 +

C7
ρ

)C6

(C6 + 2)α1C2
7(C6 + 1)ρ2

(C3ρ + C7)(C3(1 + (C6 + 2)C7)ρ− (C6 + 1)C7).

The discontinuity line, or a shockwave front, is found from the system of equations

H(ρ1, t) = H(ρ2, t), x(ρ1, t) = x(ρ2, t),

where x(ρ, t) is obtained from (23) and (24) by eliminating u. Caustics along with the
shockwave front are shown in Figure 3. Note that the picture is similar to that in the case
of phase transitions.

The final result here is the expression for the time interval, within which the solution (23)
and (24) is smooth.

Theorem 4. The solution given by (23) and (24) is smooth and unique in the time interval
t ∈ [0, t∗), where

t∗ = 1
α1

(
−C2C3 − α1α2 + (C3 − 3)2

√
C1

27
+ C5(C3 + 3C7)C6

)
,

and in the case of (16), where C5 = 240, n = 3, together with C2 = 1, α1 = 1, α2 = 2, α3 = 1
approximately t∗ = 12.53.
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Figure 3. Caustic (black) and shockwave front (red) for n = 3.

3.3. Phase Transitions

Having a solution, one can remove the phase transition curve from the space of ther-
modynamic variables to R2(t, x). Indeed, on the one hand, we have all the thermodynamic
parameters as functions of (t, x). On the other hand, we have conditions on phase transi-
tions (7) in the space of thermodynamic variables. In combination, they give us a curve
of phase transitions in (t, x) plane. Phase transitions together with the shockwave are
presented in Figure 4. We use substitution (16), where C5 = 240, n = 3, together with
C2 = 1, α1 = 1, α2 = 2, α3 = 1.

Figure 4. Phase transition curve (dash line) and shockwave front (red line).

4. Discussion

In the present work, we analyze critical phenomena in gas flows of purely thermo-
dynamic nature, which are phase transitions and shockwaves arising from singularities
of solutions to the Euler system. To obtain such solutions, we use a differential constraint
compatible with the original system. In this work, it is found in a purely computational
way, and how to get it in a more constructive way seems interesting. One possible way
to find such constraints is using differential invariants. Then, constraints can be found
constructively by solving quotient PDEs (see [32] for details), which was successfully
realized by Schneider [22]. We hope to make use of this method in future research. The
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analysis of phase transitions shows that sometimes shockwaves can be accompanied with
phase transitions, which is shown in Figure 4, since the phase transition curve intersects
the shockwave front, and on the one side of the discontinuity curve we observe a pure gas
phase, while on the other side we can see a wet steam.
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1. Introduction

Differential invariants of various groups play an important role in applications [1–3].
Classical curvatures of submanifolds in Euclidean space arise as differential invariants of the orthogonal
group. The corresponding problem for symplectic spaces was initiated in [4]. Further works in this
direction include [5–10]. In this paper we consider the linear symplectic group action and compute
the corresponding algebra of differential invariants. We will use either the standard representation or
its trivial extension; other actions were also considered in the literature [11] and we comment on the
relations of the above cited works to ours at the conclusion of the paper.

Let V = R2n(x, y) be equipped with the standard symplectic form ω = ∑n
1 dxi ∧ dyi.

Every infinitesimal symplectic transformation of V is given by the Hamiltonian function H ∈ C∞(V)

and has the form XH = ω−1dH, and the Lie bracket of vector fields corresponds to the Poisson bracket
of functions. By the Darboux-Givental theorem, the action of Symp(V, ω) has no local invariants.
However these arise when we restrict to finite-dimensional subalgebras/subgroups. Namely, functions
H quadratic in x, y form a subalgebra isomorphic to sp(2n,R). For functions of degree ≤2 we get the
affine symplectic algebra sp(2n,R)�R2n. We will concentrate on the linear case and compute the
algebra of differential invariants for submanifolds and functions on V.

It turns out that for curves and hypersurfaces one can describe the generators for all n that
we provide, while for the case of dimension and codimension greater than one, this becomes more
complicated. Of those, we consider in details only the case of surfaces in R4. Generators of the algebra
of differential invariants will be presented in the Lie-Tresse form as functions and derivations, and for
lower dimensions, we also compute the differential syzygies. We will mainly discuss the geometric
coordinate-free approach. The explicit formulae are rather large and will be shown in the Appendix A
only for n = 2.

We also consider the space W = R2n+1(x, y, z) equipped with the standard contact form α =

dz−∑n
1 yidxi. Every infinitesimal contact transformation of W is given by the contact Hamiltonian

H ∈ C∞(W) via α(XH) = H, XH(α) = ∂u(H), and the Lie bracket of vector fields corresponds to the
Lagrange bracket of functions. Again, the action of Cont(W, [α]) has no local invariants, however,
these arise when we restrict to finite-dimensional subalgebras/subgroups. Namely, functions H
quadratic in x, y, z with weights w(xi) = 1 = w(yi), w(z) = 2 form a subalgebra isomorphic to
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csp(2n,R). For functions of degree ≤2 we get the affine extension (R ⊕ sp(2n,R)) � heis(2n + 1)
by the Heisenberg algebra. For simplicity, we will concentrate on the action of sp(2n,R), and then
comment how to extend to the conformally symplectic algebra and include the translations.

It is interesting to remark on the computational aspect of the results. There are two approaches
to compute differential invariants. The infinitesimal method is based on the defining Lie equations
and works universally for arbitrary Lie algebras of vector fields. The moving frame method is based
on elimination of group parameters and is dependent on explicit parametrization of the Lie group
(or pseudogroup in infinite-dimensional situation) and its action. In MAPLE, these in turn rely on
pdsolve and eliminate commands or some algorithmically optimized versions of those (via Gröbner
basis or similar). For the problem at hand, we can use both since one can locally parametrize the
group Sp(2n,R) and its linear action. The Lie algebra method works well in dimension 2 (symplectic
case n = 1) and fails further. The Lie group method works well in dimension 3 (contact case n = 1)
and fails further. Computational difficulties obstruct finishing calculations already in dimension 4
with these straightforward approaches. We show, however, how other geometric methods allow to
proceed further.

This paper is partially based on the results of [12], extending and elaborating it in several respects.
Some applications will be briefly discussed at the end of the paper. The paper is organized as follows.
In the next section, we recall the basics. Then, we describe in turn differential invariants of functions,
curves and hypersurfaces in symplectic vector spaces, and also discuss the particular case of surfaces in
R4. Then, we briefly discuss the invariants in contact vector spaces and demonstrate how to compute
differential invariants for conformal and affine extensions from our preceding computations.

We present most computations explicitly. Some large formulae are delegated to the Appendix A,
the other can be found as Supplementary Material in this article.

2. Recollections and Setup

We refer to [13] for details of the jet-formalism, summarizing the essentials here.

2.1. Jets

Let M be a smooth manifold. Two germs at a ∈ M of submanifolds N1, N2 ⊆ M of dimension n
and codimension m are equivalent if they are tangent up to order k at a. The equivalence class [N]ka
is called the k-jet of N at a. Denote Jk

a (M, n) the set of all k-jets at a and Jk(M, n) = ∪a∈M Jk
a (M, n) the

space of k-jets of n-submanifolds. This is a smooth manifold of dimension n + m(n+k
k ) and there are

natural bundle projections πk,l : Jk(M, n) → Jl(M, n) for k > l ≥ 0. Note that J0(M, n) = M and
J1(M, n) = Grn(TM), while πk,k−1 : Jk(M, n)→ Jk−1(M, n) are affine bundles for k > 1.

Since functions f ∈ C∞(M) can be identified with their graphs Σ f ⊂ M×R, the space of k-jets of
functions Jk M is defined as the space of k-jets of hypersurfaces Σ ⊂ M×R transversal to the fibers
of the projection to M. This jet space embeds as an open subset into Jk(M×R, n), where n = dim M
(and m = 1) and so its dimension is n + (n+k

k ).
Sometimes, we denote spaces Jk M and Jk(M, n) simply by Jk. The inverse limit along projections

πk,k−1 yields the space J∞ = lim←− Jk.
In local coordinates (x, y) on M a submanifold N can be written as yj = yj(xi), i = 1, . . . , n,

j = 1, . . . , m. Then the jet-coordinates are given by xi([N]ka) = ai, yj
σ([N]ka) =

∂|σ|yj

∂xσ (a) for a multi-index
σ = (i1, . . . , in) of length |σ| = ∑n

1 is ≤ k.

For the jets of functions u = u(x) we use the jet-coordinates xi([u]ka) = ai, uσ([u]ka) = ∂|σ|u
∂xσ (a).

We sometimes also write u instead of u0, and we often lower indices for the base coordinates, like xi
instead of xi etc, if no summation suffers.
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2.2. Prolongations

A Lie group action on a manifold M is a homomorphism Φ : G → Diff(M). Any g ∈ G determines
a point transformation Φg(a) = g · a, a ∈ M. This induces an action on germs of submanifolds, hence
on jets of submanifolds, namely

Φ(k)
g ([N]ka) = [Φg(N)]kΦg(a).

Similarly, if X is a vector field on M, corresponding to the Lie algebra g = Lie(G), the prolongation
or lift gives a vector field X(k) on Jk. If (x, u) are local coordinates on M (with xi interpreted as
independent and uj as dependent variables) and the vector field is given as X = ai∂xi + bj∂uj , then its
prolongation has the form

X(k) = aiD(k+1)
xi + ∑

|σ|≤k
Dσ(ϕj)∂

uj
σ
,

where ϕ = (ϕ1, . . . , ϕm) and ϕj = bj − aiuj
i is the generating vector-function, Dxi = ∂xi + ∑j,τ uj

τ+1i
∂

uj
τ

is the total derivative, D(k+1)
xi its truncation (restriction to (k + 1)-jets: |τ| ≤ k) and Dσ = Di1

x1 · · · Din
xn

for σ = (i1, . . . , in) is the iterated total derivative.

2.3. Differential Invariants

A differential invariant of order k is a function I on Jk, which is constant on the orbits of Φ(k)

action of G. If the Lie group G is connected this is equivalent to LX(k) I = 0 for all X ∈ g (some care
should be taken with this statement, mostly related to usage of local coordinate charts in jets, see the
first example in [14]).

The space of k-th order differential invariants forms a commutative algebra over R, denoted by
Ak. The injection π∗k+1,k induces the embedding Ak ⊂ Ak+1, and in the inductive limit we get the
algebra of differential invariants A ⊆ C∞(J∞), namely

A = lim−→Ak.

Denote by Ga = {g ∈ G : g · a = a} the stabilizer of a ∈ M. This subgroup of G acts on Jk
a .

The prolonged action of G is called algebraic if the prolongation G(k)
a is an algebraic group acting

algebraically on Jk
a ∀ a ∈ M. For our problem, the action of G on M is almost transitive and algebraic,

so by [14] the invariants I ∈ A can be taken as rational functions in jet-variables uj
σ; moreover they may

be chosen polynomial starting from some jet-order. This will be assumed in what follows.
In our situation A is not finitely generated in the usual sense since the number of independent

invariants is infinite. We will use the Lie–Tresse theorem [14] that guarantees that A is generated by a
finite set of differential invariants and invariant derivations.

Recall that an invariant derivation is such a horizontal (or Cartan) derivation ∇ : A → A
(obtained by a combination of total derivatives) that it commutes with the action of the group: ∀g ∈ G
we have g(k+1)

∗ ∇ = ∇g(k)∗ for k ≥ k0, where k0 is the order of ∇, which can be identified with the
highest order of coefficients in the decomposition ∇ = ∑i ai(x, uj

σ)Dxi . Equivalently we can write
∀X ∈ g: LX(k+1)∇ = ∇LX(k) for k ≥ k0. This implies ∇ : Ak → Ak+1 in the same range.

Invariant derivations form a submodule CDG ⊆ CD(J∞) in the space of all horizontal derivations.
It is a finitely generated A module: any ∇ ∈ CDG has the form ∇ = Ii∇i for a fixed set ∇i and Ii ∈ A.
By ([14] Theorem 21), the number of derivations ∇i is n.

We compose iterated operators ∇J : Ak → Ak+|J| for multi-indices J, and then A is generated by
∇J Ii for a finite set of Ii.

2.4. Counting the Invariants

An important part of our computations is a count of independent differential invariants.
Denote the number of those on the level of k-jets by sk. This number is equal to the transcendence
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degree of the field of differential invariants on Jk (when the elements of Ak are rational functions) and
it coincides with the codimension of G(k) orbit in Jk.

Since in our case G is a (finite-dimensional) Lie group, the action becomes eventually free,
i.e., G(k)

ak = id for sufficiently large k ≥ � and generic ak ∈ Jk cf. [1]. In this case, the orbit is
diffeomorphic to G, in particular sk = dim Jk − dim G for k ≥ �.

The number of ”pure order“ k differential invariants is hk = sk − sk−1, so it becomes

hk = dim Jk − dim Jk−1 = m(n+k−1
k ) for k > �.

The Poincaré function P(z) = ∑∞
k=0 hkzk is rational in all local problems of analysis according to

Arnold’s conjecture [15]. In our case, this P(z) differs from m(1− z)−n by a polynomial reflecting the
action of G.

Note that by the eventual freeness of the action, the algebra A is generated by invariants and
derivations at most from the jet-level �.

2.5. The Equivalence Problem

The generators Ii (1 ≤ i ≤ s), ∇j (1 ≤ j ≤ n) are not independent, i.e., the algebra A is not
freely generated by them, in general. A differential syzygy is a relation among these generators.
Such an expression has the form F(∇J1(Ii1), . . . ,∇Jn(Iit)) = 0, where F is a function of t arguments
and J1, . . . , Jt are multi-indices. Choosing a generating set Fν of differential syzygies, we express

A = 〈Ii ;∇j | Fν〉.

This allows to solve the equivalence problem for submanifolds of functions with respect to G as
follows. Consider the above Lie–Tresse type representation of A. The collection of invariants Ii,∇j(Ii)

(totally r functions) allows to restore the generators, while the relations Fν constrain this collection.
Any submanifold N (for function f given as the graph Σ f # M) canonically lifts to the jet-space J∞:
N � a �→ [N]∞a . We thus map Ψ : N → Rr, Ψ(a) = (Ii([N]∞a ),∇j(Ii)([N]∞a )). Due to differential
syzygies the image is contained in some algebraic subset Q ⊂ Rr. Two generic submanifolds N1, N2

are G-equivalent iff Ψ(N1) = Ψ(N2) as (un-parametrized) subsets.

2.6. Conventions

All differential invariants below are denoted by I with a subscript. The subscript consists of
a number and a letter. The number reflects the order of an invariant, while the letter distinguishes
invariants of the same order. If no letter is given, there is only one new (independent) invariant on the
corresponding jet-space.

The symplectic Hamiltonian vector field in canonical coordinates on V has the form XH =

∑i Hyi ∂xi − Hxi ∂yi . The Poisson bracket given by [X f , Xg] = X{ f ,g} is equal to

{ f , g} =
n

∑
i=1

(
∂ f
∂xi

∂g
∂yi

− ∂ f
∂yi

∂g
∂xi

)
.

A basis of quadratic functions 〈xixj, xiyj, yiyj〉 � f gives a basis of vector fields X f forming sp(2n,R).
This may be extended to csp(2n,R) by adding the homothety ζ = ∑i xi∂xi + yi∂yi that commutes with
sp(2n,R).

The contact Hamiltonian vector field in canonical coordinates on W has the form XH = H∂z +

∑n
1 D(1)

xi (H)∂yi − HyiD(1)
xi = (H − ∑ yi Hyi )∂z + ∑n

1 (Hxi + yi Hz)∂yi − Hyi ∂xi . The Lagrange bracket
given by [X f , Xg] = X[ f ,g] is equal to

[ f , g] =
n

∑
i=1

(
∂ f
∂xi

∂g
∂yi

− ∂g
∂xi

∂ f
∂yi

)
+

n

∑
i=1

yi

(
∂ f
∂z

∂g
∂yi

− ∂g
∂z

∂ f
∂yi

)
+

(
f

∂g
∂z
− g

∂ f
∂z

)
.
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A basis of quadratic functions 〈xixj, xiyj, yiyj〉 � f gives a basis of vector fields X f forming sp(2n,R).
This may be extended to csp(2n,R) by adding the homothety X f = ∑i xi∂xi + yi∂yi + 2z∂z for f =

2z−∑i xiyi that commutes with sp(2n,R).

3. Functions on Symplectic Vector Spaces

The group G = Sp(2n,R) acts almost transitively on V = R2n (one open orbit that complements
the origin), and it is lifted to J0V = V ×R(u) with I0 = u being invariant. The prolonged action has
orbits of codimension 2 on J1V (one more invariant appears) and then the action becomes free on J2V.

An invariant on J1 is due to the invariant 1-form du and the invariant (radial) vector field
ζ = ∑i xi∂xi + yi∂yi : their contraction yields

I1 = du(ζ) =
n

∑
i=1

xiuxi + yiuyi .

3.1. The Case of Dimension 2n = 2

Here V = R2(x, y). To compute differential invariants of order k we solve the equation L
X(k)

i
I = 0,

I ∈ C∞(JkV), for a basis of the Lie algebra sp(2,R) = sl(2,R): X1 = x∂y, X2 = x∂x − y∂y, X3 = y∂x.
For k = 2, in addition to I0 and I1, we get

I2a = x2uxx + 2xyuxy + y2uyy,

I2b = xuyuxx − yuxuyy + (yuy − xux)uxy,

I2c = u2
xuyy − 2uxuyuxy + u2

yuxx.

These invariants are functionally (hence algebraically) independent.
To determine the invariant derivations, we solve its defining PDE. The invariant derivations of

order k = 1 are linear combinations of

∇1 = xDx + yDy, ∇2 = uxDy − uyDx.

Let A denote the algebra of differential invariants, whose elements can be assumed polynomial
in all jet-variables. Since the obtained invariants are quasi-linear in their respective top jet-variables,
and this property is preserved by invariant derivations, the algebra A is generated by them.

To find a more compact description, note that I1 = ∇1(I0) and

I2a = ∇2
1(I0)−∇1(I0), I2b = −∇2∇1(I0).

Thus only I0 and I2c suffice to generate A.
To describe the differential syzygies, note that ∇2(I0) = 0, and the commutator relation is

[∇1,∇2] =
I2b
I1
∇1 +

I2a − I1

I1
∇2.

In addition, when applying∇1,∇2 to I2a, I2b, I2c and using the commutator relation we get five different
invariants of order 3, while there are only four independent 3-jet coordinates. Thus computing the
symbols of the invariants and eliminating those coordinates we obtain the remaining syzygy:

(∇2(I2b) +∇1(I2c))I1 − (3I2a − I1)I2c + 3I2
2b = 0.
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To summarize, define

R1 = ∇2(I0),

R2 = I1[∇1,∇2]− I2b∇1 − (I2a − I1)∇2,

R3 = I1∇2(I2b) + I1∇1(I2c)− (3I2a − I1)I2c + 3I2
2b.

Then, the algebra of differential invariants is given by generators and relations as follows:

A = 〈I0, I2c ; ∇1,∇2 | R1,R2,R3〉.

3.2. Another Approach for n = 1

We act similar to [16].
Note that ∇1 corresponds to the radial vector field ζ and ∇2 = ω−1d̂u, where d̂ is the horizontal

differential (in this case d̂ = dx⊗Dx + dy⊗Dy, so d̂u = ux dx + uy dy). To find further invariants and
derivations we consider the quadratic form

Q2 = d2u = uxxdx2 + 2uxydx dy + uyydy2 ∈ π∗2 S2T∗V.

Lowering the indices with respect to the symplectic form (or partially contracting with ω−1 = ∂x ∧ ∂y)
we get the endomorphism

A = ω−1Q2 = uyy∂x ⊗ dy− uxy∂y ⊗ dy + uxy∂x ⊗ dx− uxx∂y ⊗ dx.

This can be lifted to the Cartan distribution on J∞ and thus applied to horizontal fields:

A∇1 = (xuxy + yuyy)Dx − (xuxx + yuxy)Dy,

A∇2 = (uxuyy − uyuxy)Dx − (uxuxy − uyuxx)Dy.

These are also invariant derivations and they can be expressed through the previous as follows:

A∇1 = − I2b
I1
∇1 − I2a

I1
∇2, A∇2 =

I2c

I1
∇1 +

I2b
I1
∇2.

Note also that I2a = Q2(∇1,∇1), I2b = −Q2(∇1,∇2), I2c = Q2(∇2,∇2), so that we can generate all
the invariants uniformly.

3.3. The General Case

In general dimension 2n we still have the invariant derivations ∇1 corresponding to the radial
field ζ and ∇2 = ω−1Q1 for Q1 = d̂I0. Then, the horizontal field of endomorphisms A = ω−1Q2 for
Q2 = d̂2 I0 generates the rest: the invariant derivations ∇i+2 = Ai∇2 (alternatively ∇i+2 = Ai∇1)
for i = 1, . . . , 2n− 2 are independent (also with ∇1,∇2) on a Zariski open subset in the space of jets.
This gives a complete set of invariant derivations ∇1, . . . ,∇2n.

Taking into account I1 = ∇1(I0) the generating set of invariants can be taken I0 and Iij =

Q2(∇i,∇j). By dimensional count and independence it is enough to restrict to i = 1, 2 and 1 ≤ j ≤ 2n.
We obtain:
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Theorem 1. The algebra of differential invariants of the G-action on J∞(V) is

A = 〈I0, I1i, I2j ; ∇k | Rl〉

for some finite set of differential syzygiesRl .

This is a Lie-Tresse type of generation of A. Note also the following (non-finite) generation of this
algebra. The higher symmetric differentials Qk = dku ∈ π∗k SkT∗V can be contracted with invariant
derivations to get k-th order differential invariants Qk(∇j1 , . . . ,∇jk ). These clearly generate A.

There is an algorithmic way of describing relations (syzygies) between these invariants similar
to ([16], Section 4). We refer for explicit formulae of invariants to [12] for n = 2.

4. Curves in Symplectic Vector Spaces

Locally a curve in R2n is given as u = u(t) for t = x1 and u = (x2, . . . , xn, y1, . . . , yn) in the
canonical coordinates (x1, x2, . . . , xn, y1, . . . , yn) . The corresponding jet-space Jk(V, 1) has coordinates
ul , l ≤ k, where l stands for the l-tuple of t. For instance, J1(V, 1) = R4n−1(t, u, u1). Note that
dim Jk(V, 1) = 2n + k(2n− 1).

4.1. The Case of Dimension 2n = 2

Let us again start with the simplest example V = R2(x, y). The jet-space is Jk(V, 1) =

Rk+2(x, y, y1, . . . , yk). Here G = Sp(2,R) has an open orbit in J1(V, 1), and there is one new differential
invariant in every higher jet-order k.

Let us indicate in this simple case how to verify algebraicity of the action (this easily generalizes

to the other cases and will not be discussed further). The 1-prolonged action of g =

(
a b
c d

)
∈ G is

Φ(1)
g (x, y, y1) =

(
ax + by, cx + dy,

dy1 + c
by1 + a

)
.

Since the action is transitive on J0(V, 1) \ 0 = R2×, choose p = (1, 0) as a generic point. Its stabilizer is

Gp =

{(
1 b
0 1

)}
⊂ G. The action of this on the fiber π−1

1,0 (p) is algebraic: y1 �→ y1
by1+1 .

Thus, the Lie-Tresse theorem [14] applies and the algebra of invariants A can be taken to consist
of rational functions in jet-variables, which are polynomial in jets of order ≥2.

The first differential invariant is easily found from the Lie equation:

I2 =
y2

(xy1 − y)3 .

Similarly, solving the PDE for the coefficients of invariant derivation, we find

∇ =
1

xy1 − y
Dx.

Now by differentiation, we get new differential invariants I3 = ∇I2, I4 = ∇2 I2, etc. Since these are
quasilinear differential operators, they generate the entire algebra. In other words, the algebra of
differential invariants is free:

A = 〈I2 ; ∇〉.
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4.2. The Case of Dimension 2n = 4

Let us use coordinates (t, x, y, z) on V = R4 with the symplectic form ω = dt ∧ dy + dx ∧ dz.
Note that dim Jk(V, 1) = 3k + 4, and the jet-coordinates on Jk are (t, x, y, z, . . . , xk, yk, zk). The action
of G = Sp(4,R) on Jk(V, 1) has orbits of dimensions 4, 7, 9, 10 for k = 0, 1, 2, 3 respectively. Thus the
first differential invariant appears already in jet-order 2, then two more appear in jet-order 3, and then
hk = 3 new invariants in every jet-order k ≥ 4.

The infinitesimal and moving frame methods fail to produce enough invariants here, so we apply
more geometric considerations.

We exploit that G preserves the symplectic form on V, but also the fact that the action is linear,
so the vector space structure of V is preserved as well. In particular, the origin is preserved, so we
can form a vector from the origin to any point p = (t, x, y, z) ∈ J0(V, 1). Denote the corresponding
vector by

v0 = (t, x, y, z) ≡ t∂t + x∂x + y∂y + z∂z.

Consider the space of 1-jets of unparametrized curves J1(V, 1). For a parameterization of the
curve c = (t, x(t), y(t), z(t)) the tangent vector at any point of this curve can be computed as w1 =

D(1)
t = ∂t + x1∂x + y1∂y + z1∂z, which is rescaled v1 = βw1 upon a change of parametrization. To make

v1 invariant we fix β by the condition ω(v0, v1) = 1. This normalization β = 1/(ty1 + xz1 − x1z− y)
gives a canonical horizontal (that is tangent to the curve) vector field, which can be interpreted as an
invariant derivative

∇ =
1

(ty1 + xz1 − x1z− y)
Dt.

The further approach is as follows. On every step there is a freedom associated to a
parameterization of a given curve. Fixing it in a canonical way via evaluation with the symplectic
form, we obtain invariantly defined vectors and henceforth invariants.

On the first step, changing the parameterization c = c(t) to another parameterization c = c(τ)
results in a change of the tangent vector by the chain rule:

dc
dt

=
dτ

dt
dc
dτ

.

This can be written as w1 = k1v1, for dτ/dt = k1. The vector w1, associated with a specific choice of
parameterization, is not canonical but convenient for computations. The above normalization k1 = 1/β

makes v1 a canonical choice.
The change of parameterization on 2-jets gives

d2c
dt2 =

d2c
dτ2

(
dτ

dt

)2
+

dc
dτ

d2τ

dt2 .

Denote v2 = d2c/dτ2, w2 = d2c/dt2 and d2τ/dt2 = k2. The equation becomes

w2 = v2k2
1 + v1k2.

In the parameterization c = c(t) the acceleration is w2 = (0, x2, y2, z2). We solve for v2 as

v2 =
w2 − v1k2

k2
1

.

Then, k2 can be fixed by ω(v0, v2) = 0. This uniquely determines v2, which can now be used to find
the first differential invariant. In fact, I2 = ω(v1, v2) is a differential invariant of order 2. In coordinates

I2 = ω(v1, v2) =
x1z2 − z1x2 + y2

(ty1 + xz1 − zx1 − y)3 .
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There are 2 independent third order invariants by our dimension count. The first can be obtained
as ∇(I2), to find the second we exploit the above normalization method on 3-jets. The change of
parameterization is

d3c
dt3 =

d3c
dτ3

(
dτ

dt

)3
+ 3

d2c
dτ2

dτ

dt
d2τ

dt2 +
dc
dτ

d3τ

dt3 .

Again, rewrite it in simpler notations as

w3 = v3k3
1 + 3k1k2v2 + k3v1.

Here, w3 = (0, x3, y3, z3) and the unknown k3 can be fixed by the condition ω(v0, v3) = 0, where

v3 =
w3 − 3k1k2v2 − k3v1

k3
1

.

This uniquely determines v3, which allows the computation of two new differential invariants:

I3a = ω(v1, v3), I3b = ω(v2, v3).

The invariants I3a and I3b are independent, but I3a can be expressed through∇(I2), so it is not required
in what follows.

Finally, we explore the forth order chain rule

d4c
dt4 =

d4c
dτ4

(
dτ

dt

)4
+ 6

d3c
dτ3

(
dτ

dt

)2 d2τ

dt2 +
d2c
dτ2

(
4

dτ

dt
d3τ

dt3 + 3
(

d2τ

dt2

)2)
+

dc
dτ

d4τ

dt4

that can be written as
w4 = v4k4

1 + 6v3k2
1k2 + v2

(
4k1k3 + 3k2

2

)
+ v1k4

with w4 = (0, x4, y4, z4). Find k4 by ω(v0, v4) = 0. This uniquely determines v4, then the invariants of
order 4 are found by the formulae

I4a = ω(v1, v4), I4b = ω(v2, v4), I4c = ω(v3, v4).

These are independent, but I4a and I4b can be expressed by the invariants of order 3 and the invariant
derivation, so they will not be required in what follows.

This gives the necessary invariants to generate the entire algebra of differential invariants.
To summarize, if we denote I3 = I3b and I4 = I4c, then the algebra of differential invariants is
freely generated as follows

A = 〈I2, I3, I4 ; ∇〉.

The explicit coordinate formulae of invariants are shown in the Appendix A.

4.3. The General Case

In dimension dim V = 2n the following dimensional analysis readily follows from the
normalization procedure developed above.
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Jet-level k dim Jk(V, 1) G-orbit dimension # new invariants hk
0 2n 2n 0
1 4n− 1 2n + (2n− 1) = 4n− 1 0
2 6n− 2 (4n− 1) + (2n− 2) = 6n− 3 1
3 8n− 3 (6n− 3) + (2n− 3) = 8n− 6 2
4 10n− 4 (8n− 6) + (2n− 4) = 10n− 10 3
. . . . . . . . . . . .
k 2n + k(2n− 1) 2(k + 1)n− (k+1

2 ) k− 1
. . . . . . . . . . . .
2n− 1 (2n− 1)2 + 2n (2n+1

2 ) 2n− 2
2n 4n2 ��� stabilized 2n− 1

In particular, the number of pure order k differential invariants is hk = k− 1 for 1 ≤ k ≤ 2n and
hk = 2n− 1 for k > 2n.

If the canonical coordinates in R2n are (t, x, y, z), where x and z and (n− 1)-dimensional vectors,
then the invariant derivation is equal to

∇ =
1

(ty1 − y + xz1 − x1z)
Dt.

We also obtain the first differential invariant of order 2

I2 =
(x1z2 − x2z1 + y2)

(ty1 − y + xz1 − x1z)3 .

Then, we derive the differential invariant ∇(I2) and add to it another differential invariant I3 of order
3. Then, we derive the differential invariants ∇2(I2),∇(I3) and add another differential invariant I4 of
order 4. We continue obtaining new invariants by using the higher order chain rule and normalization
via the symplectic form up to order 2n.

In summary, we obtain 2n − 1 independent differential invariants I2, . . . , I2n of orders
2, . . . , 2n respectively.

Theorem 2. The algebra of differential invariants of the G-action on J∞(V, 1) is freely generated as follows:

A = 〈I2, . . . , I2n ; ∇〉.

5. Hypersurfaces in Symplectic Vector Spaces

Since hypersurfaces in R2 are curves, the first new case come in dimension 4. We consider this
first and then discuss the general case.

5.1. The Case of Dimension 2n = 4.

Let V = R4, denote its canonical coordinates by (x, y, z, u) with ω = dx ∧ dz + dy ∧ du.
Hypersurfaces can be locally identified as graphs u = u(x, y, z) and this gives parametrization of an
open chart in Jk(V, 3). We use the usual jet-coordinates ux, uxx, uyz, etc.

As is the cases above, straightforward computations become harder. Maple is not able to compute
all required invariants and derivations, so we again rely on a more geometric approach. Before going
through the method, we investigate the count of invariants.

The group G = Sp(4,R) acts with an open orbit on J0(V, 3). On the space of 1-jets the dimension
of the orbit is 7 = dim J1(V, 3), hence there are no invariants. The orbit stabilization is reached on
J2(V, 3), where the action is free. The rank of the action is 10 and dim J2(V, 3) = 13, so there are h2 = 3
independent differential invariants. For k > 2, the number of new differential invariants is hk = (k+2

2 ).
In particular, h3 = 10.
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The number of independent invariant derivations is 3, so these and 3 invariants of order 2
generate a total number of 9 invariants of order 3. In addition, commutators of invariant derivations
[∇i,∇j] = Ik

ij∇k give up to 9 more differential invariants of order 3. We will confirm that the totality of
these 18 contain 10 independent invariants of order 3, and hence suffice to generate also the differential
invariants of higher order.

The 0-jet p = (x, y, z, u) ∈ J0(V, 3) can be identified with the vector from the origin to this point,
which we denote by

v0 = (x, y, z, u) ≡ x∂x + y∂y + z∂z + u∂u.

The 1-jet of a hypersurface Σ = {u = u(x, y, z)} can be identified with its tangent space

TpΣ = 〈∂x + ux∂u, ∂y + uy∂u, ∂z + uz∂u〉 = 〈D(1)
x ,D(1)

y ,D(1)
z 〉.

The orthogonal complement to TpΣ with respect to ω is generated by

w1 = ∂y − uz∂x + ux∂z + uy∂u,

that is TpΣ⊥ω = 〈w1〉. The vector w1 is determined up to scale, which we fix via the symplectic form
so: v1 = k1w1 must satisfy ω(v0, v1) = 1. This normalization gives k1 = 1/(xux + yuy + zuz − u),
so the canonical vector v1 is equal to

v1 =
1

xux + yuy + zuz − u
(∂y − uz∂x + ux∂z + uy∂u).

This vector field is tangent to the hypersurface, so it is horizontal and can be rewritten in terms of the
total derivative. This yields the first invariant derivation:

∇1 =
Dy − uzDx + uxDz

xux + yuy + zuz − u
.

Let q = −u + u(x, y, z) be a defining function of the hypersurface Σ = {q = 0}. We have
TpΣ = Ker dq. A change of the defining function q′ = f q of Σ, with f ∈ C∞(V) such that f |Σ �= 0, has
the following effect on the differential: dq′ = q d f + f dq. Therefore at p ∈ Σ we have dpq′ = f (p)dpq
and so TpΣ = Ker dq′.

Next we compute the second symmetric differential d2q of the defining function for Σ. A change
of the defining function q′ = f q has the following effect on the second differential:

d2q′ = d(d( f q)) = d(q d f + f dq) = q d2 f + 2 d f dq + f d2q.

At the points p ∈ Σ this simplifies to

d2
pq′ = 2 dp f dpq + f (p) d2

pq.

Restricting to the tangent space of Σ gives

d2q′
∣∣
TpΣ = f (p)d2q

∣∣
TpΣ.

Thus, the defining differential dq and the quadratic form d2q are defined up to the same scale.
We fix it again via the symplectic form: dpq′ = k2dpq must satisfy dpq′(v0) = 1, i.e., k2 = 1/dq(v0) for
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generic 1-jets. This normalization gives the quadratic form d2q′|TpΣ = k2d2q
∣∣
TpΣ = d2q

∣∣
TpΣ/dq(v0).

In coordinates, with q = −u + u(x, y, z), we get the expression

Q = d2q′
∣∣
TpΣ =

uxxdx2 + 2uxydxdy + 2uxzdxdz + uyydy2 + 2uyzdydz + uzzdz2

xux + yuy + zuz − u
.

The first invariant is then computed by

I2a = Q(v1, v1) =
u2

xuzz − 2uxuzuxz + u2
zuxx + 2uxuyz − 2uzuxy + uyy

(xux + yuy + zuz − u)3 .

Let us summarize the geometric data encoding the 2-jet that we obtained and which are supported
on the 3-dimensional tangent space TpΣ: the invariant vector v1, the symmetric 2-form Q of general
rank, the skew 2-form ω|TpΣ of rank 2 (v1 spans its kernel), and 1-form α = ω(v0, ·). These data
give a canonical splitting of the tangent space TpΣ = 〈v1〉 ⊕ Π, where Π = Ker(α). Indeed,
v1 /∈ Ker(α) because ω(v0, v1) = 1 by the normalization. Using this data, we can construct 2 more
invariant derivations.

Choose a nonzero w3 ∈ Π, Q(v1, w3) = 0. Then, choose w2 ∈ Π, Q(w2, w3) = 0. For generic
2-jet, the vectors w2, w3 are defined up to scale that we fix so: v2 ∈ 〈w2〉, v3 ∈ 〈w3〉 must satisfy
Q(v1, v2) = 1, ω(v2, v3) = 1.

Since v2, v3 ∈ TpΣ are horizontal, they generate two invariant derivations ∇2,∇3. Additionally
we get 2 differential invariants:

I2b = Q(v2, v2), I2c = Q(v3, v3).

A calculation of the rank of the corresponding Jacobi matrix shows that these are independent, and
moreover, that the data generate all differential invariants of order 3. Then, by independence of
∇1,∇2,∇3 all higher order invariants can be derived, so for a finite set of differential syzygies Rl
we get:

A = 〈I2a, I2b, I2c ; ∇1,∇2,∇3 | Rl〉

The coordinate formulae can be found in [12] (note that renumeration v2 ↔ v3 and a different
normalization is taken here).

5.2. The General Case

Now, we consider jets of hypersurfaces Σ ⊂ V = R2n for general n and compute their differential
invariants with respect to G = Sp(2n,R).

By the Lie-Tresse theorem [14] the algebra A can be assumed to consist of rational functions on
J∞(V, 2n− 1), which are polynomial in jet-variables of order ≥ 2.

The dimensional count easily generalizes to give h0 = h1 = 0, h2 = 2n− 1 and hk = (2n−2+k
k ) for

k > 2. There will be 2n− 1 independent invariant derivations ∇j, and as before these together with
second order invariants I2s (1 ≤ s ≤ 2n− 1) and the structure coefficients Ik

ij of the horizontal frame
∇j will suffice to generate all invariants.

We again have the position vector v0, the tangent vector v1 normalized by ω(v0, v1) = 1, and the
quadratic form Q on TpΣ. From this data in a Zariski open set of J2(V, 2n− 1) of generic 2-jets we get
a canonical basis v1, . . . , v2n−1 by normalizing in turn via ω and Q as follows (we repeat steps 0 and 1
that are already performed).

Step 0: TpΣ = 〈v1, . . . , v2n−1〉.
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Step 1: Choose v1 by 〈v1〉 ⊥ω 〈v1, . . . , v2n−1〉, 〈v2, . . . , v2n−1〉 ⊥ω 〈v0〉. Normalize ω(v0, v1) = 1.
Step 2: Choose v2 by 〈v3, . . . , v2n−1〉 ⊥Q 〈v1〉, 〈v2〉 ⊥Q 〈v3, . . . , v2n−1〉. Normalize Q(v1, v2) = 1.
Step 3: Choose v3 by 〈v3〉 ⊥ω 〈v3, . . . , v2n−1〉, 〈v4, . . . , v2n−1〉 ⊥ω 〈v2〉. Normalize ω(v2, v3) = 1.
Step 4: Choose v4 by 〈v5, . . . , v2n−1〉 ⊥Q 〈v3〉, 〈v4〉 ⊥Q 〈v5, . . . , v2n−1〉. Normalize Q(v3, v4) = 1.
Inductively, we get the interchangeable steps as follows.
Step (2r − 1): Choose v2r−1 by 〈v2r−1〉 ⊥ω 〈v2r−1, . . . , v2n−1〉, 〈v2r, . . . , v2n−1〉 ⊥ω 〈v2r−2〉.

Normalize ω(v2r−2, v2r−1) = 1.
Step 2r: Choose v2r by 〈v2r+1, . . . , v2n−1〉 ⊥Q 〈v2r−1〉, 〈v2r〉 ⊥Q 〈v2r+1, . . . , v2n−1〉. Normalize

Q(v2r−1, v2r) = 1.
The procedure stops at step (2n− 1). The frame vi is canonical:

ω−1 = v0 ∧ v1 + v2 ∧ v3 + · · ·+ v2n−2 ∧ v2n−1.

The only non-constant entries of the Gram matrix of Q in the basis vi are diagonal Q(vi, vi) = I2,i for
1 ≤ i < 2n. The Gram matrix consists of (n− 1) diagonal blocks of size 2× 2 and 1 diagonal block of
size 1× 1 as follows:

Q v1 v2 v3 v4 . . . v2n−3 v2n−2 v2n−1

v1 I2,1 1 0 0 . . . 0 0 0
v2 1 I2,2 0 0 . . . 0 0 0
v3 0 0 I2,3 1 . . . 0 0 0
v4 0 0 1 I2,4 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

v2n−3 0 0 0 0 . . . I2,2n−3 1 0
v2n−2 0 0 0 0 . . . 1 I2,2n−2 0
v2n−1 0 0 0 0 . . . 0 0 I2,2n−1

The horizontal vector fields vj correspond to invariant derivations ∇j, 1 ≤ j ≤ 2n − 1.
To summarize, we obtain the following statement.

Theorem 3. For the G-action on J∞(V, 2n− 1) the algebra A is generated by the differential invariants I2,i
and the invariant derivations ∇j, where 1 ≤ i, j ≤ 2n− 1.

6. General Submanifolds in a Symplectic Vector Space

The case of submanifolds of dimension and codimension greater than 1 is more complicated, no
straightforward computations work for G = Sp(2n,R) action on J∞(V, m), V = R2n. Yet, the geometric
methods applied above do generalize, and to illustrate this, we consider the simplest case n = m = 2
and then remark on the general case.

6.1. Surfaces in a Four-Dimensional Symplectic Space

The action has an open orbit in J1(V, 2), but becomes free on the level of 2-jets.
Since dim J2(V, 2) = 14 we get h2 = 4 differential invariants of order 2 and then at every higher
order k > 2 there will be hk = 2(k + 1) new invariants.

There will be two independent invariant derivations. Applying those to four differential invariants
of the second order gives a total of 8 invariants of order 3. A direct computation shows that
these are functionally (hence algebraic) independent. Since h3 = 8 this is enough to generate all
differential invariants.

In this case the algebra A of differential invariants can be chosen to consist of rational functions
that are polynomial in jets-variables of order >2.

Having done the counting, we can proceed with the geometric approach. Choose canonical
coordinates (t, s, x, y) on V = (R4, ω). Locally surfaces in V are given as Σ = {x = x(s, t), y = y(s, t)}.
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Here s, t will be treated as independent and x, y as dependent variables, whence the coordinates on
J∞(V, 2).

The 0-jet p = (t, s, x, y) ∈ J0 can be identified with the vector to that point from the origin
v0 = t∂t + s∂s + x∂x + y∂y.The 1-jet can be identified with the tangent space

TpΣ = 〈D(1)
t ,D(1)

s 〉 = 〈∂t + xt∂x + yt∂y, ∂s + xs∂x + ys∂y〉.

Equivalently, if the surface is described by Σ = { f = 0, g = 0} with f = x− x(t, s) and g = y− y(t, s),
then TpΣ = Ann(dp f , dpg), where dp f = dx− xtdt− xsds and dpg = dy− ytdt− ysds.

The restriction of ω to TpΣ has rank 2 on generic 1-jets, so TpΣ is a symplectic subspace of
dimension 2 and TpV = TpΣ⊕ TpΣ⊥ω.

Denote by π1 : TpV → TpΣ and π2 : TpV → TpΣ⊥ω the natural projections with respect
to this decomposition. Further for v ∈ TpV denote v = v‖ + v⊥, where v‖ = π1(v) ∈ TpΣ and
v⊥ = π2(v) ∈ TpΣ⊥ω.

Thus, 1-jet [Σ]1p is entirely encoded by (TpΣ, ω|TpΣ, v‖0) and (TpΣ⊥ω, ω|TpΣ⊥ω , v⊥0 ). Note also that

Ann(TpΣ) is identified with TpΣ⊥ω by the symplectic form ω.
Moving on to 2-jets there is more structure on the tangent space. The defining functions f , g can be

changed to F = α f + βg, G = γ f + δg, where α, β, γ, δ are arbitrary functions that satisfy αδ− βγ �= 0
along Σ. Then Σ = {F = 0, G = 0} and the tangent space can be described as the annihilator of the
differentials of the new defining functions at p ∈ Σ:

dpF = α(p)dp f + β(p)dpg,

dpG = γ(p)dp f + δ(p)dpg.

Next, compute the second symmetric differential of f , g and restrict to TpΣ. Doing the same for F, G
results in

d2
pF = α(p)d2

p f + β(p)d2
pg,

d2
pG = γ(p)d2

p f + δ(p)d2
pg.

This gives a 2-dimensional spaceQ = 〈d2
p f |TpΣ, d2

pg|TpΣ〉 = 〈d2
pF|TpΣ, d2

pG|TpΣ〉 of quadratic forms, and
the above formulae show that there is a natural isomorphism between Ann(TpΣ) ⊂ T∗p V and Q. Our
goal is to find a canonical basis Q1, Q2 in this space.

Let Q1 ∈ Q be given by the condition Q1(v
‖
0, v‖0) = 0. This ensures that Q1 has a Lorentzian

signature or is degenerate, and for a generic 2-jet we get that Q1 is non-degenerate. The vector v‖0
becomes null-like vector for Q1 that is yet defined up to scale. A Lorentzian metric on the plane has
two independent null-like vectors and this gives a way to fix Q1 and a vector w‖ ∈ TpΣ complementary

to v‖0 as follows:

ω(v‖0, w‖) = 1, Q1(w‖, w‖) = 0, Q1(v
‖
0, w‖) = 1.

Note that this does not involve square roots, but only linear algebra. Indeed, the first condition fixes
the second null-like vector up to change w‖ �→ w‖ + kv‖0. The second condition fixes k and the last
normalizes Q1.

The quadratic form Q1 corresponds to a 1-form σ1 ∈ Ann(TpΣ) such that the symmetric
differential of an extension of σ1 to a section of Ann(TΣ), restricted to TpΣ equals Q1 = dsym

p σ1.
Then, fix w⊥ ∈ TpΣ⊥ω uniquely by the conditions σ1(w⊥) = 0, ω(v⊥0 , w⊥) = 1 (for a generic 2-jet
σ1(v⊥0 ) �= 0).

Then, define σ2 ∈ Ann(TpΣ) by the conditions σ2(v⊥0 ) = 0, σ2(w⊥) = 1. This gives a unique
1-form independent of σ1. It in turn corresponds to a quadratic form Q2 = dsym

p σ2.
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The remaining evaluations yield differential invariants

I2a = σ1(v⊥0 ), I2b = Q2(v
‖
0, v‖0), I2c = Q2(v

‖
0, w‖), I2d = Q2(w‖, w‖).

The vectors v‖0 and w‖ are tangent vectors to Σ (horizontal) so they correspond to the invariant
derivations ∇1,∇2 and we conclude:

Theorem 4. For the G-action on J∞(V, 2) the algebra A is generated by the differential invariants
I2a, I2b, I2c, I2d and invariant derivations ∇1,∇2.

The explicit form of these generators in jet-coordinates can be found in [12].

6.2. A Remark about the General Case

In general, it is easy to check that G = Sp(2n,R) acts with one open orbit in J1(V, m), V = R2n,
so there are no first order invariants. However, there are always second order invariants. Their number
is at least dim J2(V, m)− n(2n + 1), but this can be non-positive for m % n.

Thus, combining the ideas on differentials and quadratic forms with ω-orthogonal complements,
one can get some of the invariants. If they are not sufficient, third and higher symmetric powers dr f of
the defining functions f should be explored.

From the investigated cases, we cannot observe a pattern and hence cannot universally describe
all differential invariants of G = Sp(2n,R) action on J∞(V, m), V = R2n.

7. Note on Extension of the Group

One can also consider invariants of functions and submanifolds in symplectic V = R2n with
respect to conformal symplectic group CSp(2n,R) = Sp(2n,R)× R+, the affine symplectic group
ASp(2n,R) = Sp(2n,R)�R2n and affine conformal symplectic group ACSp(2n,R) = CSp(2n,R)�
R2n. Denote a group in this list by H.

Since our G is a subgroup of H, the algebras of differential invariants AH for each of the cases
are subalgebras in the algebra AG that we previously computed (enhanced notations should be
self-evident). One imposes the homogeneity assumption or translation-invariance or both on a general
combination of invariants.

Let us discuss how to do this in all three cases. For brevity of exposition, we restrict to the case
n = 1 (functions and curves on symplectic plane), the general case is similar.

7.1. Conformal Symplectic Group Action: Functions

Consider functions on the conformal symplectic plane, H = CSp(2n,R). For n = 1 observe
H # GL(2,R). We recall the invariants from Section 3.1 and note that all of them are homogeneous
with respect to scaling ξ = x∂x + y∂y, corresponding to the center of h = gl(2,R). Restricting to
invariants and derivations of weight 0 we obtain the algebra of differential h-invariants.

The invariants I0, I1 have weight 0, and the invariants I2a, I2b, I2c have weights 0,−2,−4
respectively. Therefore, for the new algebra AH there are two independent invariants of order ≤1 and
two additional invariants of order 2, namely I0, I1, I2a and I′2b = I−2

2b I2c in the notations of Section 3.1.
The invariant derivations are ∇1,∇2 of weights 0,−2 respectively. Therefore we obtain two

invariant derivations with respect to h: ∇1 and ∇′2 = I−1
2b ∇2.

Now a straightforward verification shows that∇1(I2a),∇1(I′2b),∇′2(I2a),∇′2(I′2b) are independent
in 3-jets, which implies that the algebra AH of differential invariants is generated by I0, I′2b and ∇1,∇′2.
Note that I1 = ∇1(I0) and I2a = ∇1(I1)− I1.

To complete the picture, here are the differential syzygies: ∇′2(I0) = 0, ∇′2(I1) = −1 and

[∇1,∇′2] =
1
I1
∇1 +

( I2a

I1
+∇′2(I2a)

)
∇′2.
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Denote these byR1,R2,R3. There is also a forth order differential syzygyR4:

∇′2(I3a) +
1

2I′2b
∇′2(I3b)− 1

2I′2b
∇1(I3c)− 1

2I2
1 I′2b

[
(I′2b I3b − 3I3b I3c − I3c)I2

1

+
((
(3I3b + 4)I2a − 5I3a

)
I′2b − 4I2a I3c − 4I3b − 4

)
I1 + 6I2

2a I′2b − 6I2a

]
= 0,

where I3a = ∇1(I2a), I3b = ∇′2(I2a), I3c = ∇1(I′2b) and I3d = ∇′2(I′2b). With this we obtain a complete
description of the algebra of differential H-invariants:

AH = 〈I0, I′2b ; ∇1,∇′2 | R1,R2,R3,R4〉.

7.2. Conformal Symplectic Group Action: Curves

Now, we discuss differential invariants of curves with respect to the same H as in Section 7.1.
Consider the invariants from Section 4.1 and note that all of them are homogeneous with respect to
scaling ξ = x∂x + y∂y, corresponding to the center of h. Again, we have to restrict to invariants and
derivations of weight 0 to describe the algebra AH .

The invariant I2 has weight −4 and the derivation ∇ weight −2. Thus the derived invariants
Ik+2 = ∇k(I2) have weights −2(k + 2) for k ≥ 0. In particular, I′3 = I2

3 /I3
2 has weight 0 and similar for

∇′ = I2 I−1
3 ∇ in the notations of Section 4.1. Therefore, these freely generate the algebra of differential

H-invariants:

AH = 〈I′3 ; ∇′〉.

7.3. Affine Symplectic Group Action: Functions

Consider differential invariants of functions on the affine symplectic plane, H = ASp(2n,R). For
n = 1 observe H = SAff(2,R). We recall the generating invariants from Section 3.1, and note that they
indeed depend explicitly on x, y except for I0 and I2c.

To single out invariants in AG that are x, y-independent eliminate x, y from the system {I1 =

c1, I2a = c2, I2b = c3} to get a translation-invariant polynomial on J2 that depends parametrically
on c1, c2, c3. Taking the coefficients of this expression with respect to those parameters, we obtain
the invariants I2c and I′2 = uxxuyy − u2

xy = Hess(u). Then substituting the obtained expressions for
x, y into the invariant derivative ∇1 and simplifying modulo the obtained invariants (note that ∇2 is
already H-invariant) we get new invariant derivative

∇′1 = (uxuyy − uyuxy)Dx − (uxuxy − uyuxx)Dy.

Note that ∇′1(I0) = I2c so the latter generator can be omitted. The commutator of invariant
derivations is

[∇′1,∇2] = −∇2(I2c)

I2c
∇′1 +

(∇′1(I2c)

I2c
− 2I′2

)
∇2.
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Denote this relation and the relation∇2(I0) = 0 byR1,R2. Note that∇′1(I0) is a second order invariant,
and application of ∇′1,∇2 to it and I′2 gives four third-order invariants. Further differentiation gives
six fourth-order invariants, whence the syzyzyR3:

− I2c∇2(I3b) +∇′1(I3c) + I′2∇2(I3d)

− 1
I2c

[
12I′22 I2

2c − 10I′2 I2c I3c + 3I′2 I2
3d + 3I2

2c I3a − 3I2c I3b I3d + 3I2
3c

]
= 0,

where I3a = ∇′1(I′2), I3b = ∇2(I′2), I3c = ∇′1(I2c) and I3d = ∇2(I2c). Therefore the algebra of differential
H-invariants is

AH = 〈I0, I′2 ; ∇′1,∇2 | R1,R2,R3〉.

7.4. Affine Symplectic Group Action: Curves

Now, we discuss the case of curves on the conformal symplectic plane, with the same H as in
Section 7.3. Consider the invariants from Section 4.1 and note that Ik+2 = ∇k I2 are not translationally
invariant. However, using the elimination of parameters trick as above we arrive to micro-local
differential invariant and invariant derivation

I′4 = 3
√

y2(3y−2
2 y4 − 5y−3

2 y2
3), ∇′ = 1

3
√

y2
Dx.

In other words, these are invariants with respect to h but not with respect to H. Indeed, by the global
Lie-Tresse theorem [14] we know that the invariants should be rational. To get generators we therefore
pass to

I′′4 = (I′4)
3 and ∇′′ = I′4∇′.

Consequently these freely generate the algebra of differential H-invariants:

AH = 〈I′′4 ; ∇′′〉.

7.5. Affine Conformal Symplectic Group Action: Functions

Let us discuss differential invariants of functions on the affine conformal symplectic plane,
H = ACSp(2n,R). For n = 1 observe H = Aff(2,R). We can combine the approaches of the previous
two sections, for instance by taking the affine symplectic differential invariants and restricting to those
of weight 0 with respect to the scaling by the center action.

Referring to the notations of Section 7.3 we get that the weights of I0, I′2 are 0,−4, while that of
∇′1,∇2 are −4,−2 respectively. Therefore, the algebra of differential invariants AH is generated by the
invariant derivations

∇′′1 =
1
I′2
∇′, ∇′′2 =

I′2
∇2(I′2)

∇2

and the differential invariants (derived invariants ∇′′1 I0, (∇′′1 )2 I0, ∇′′2∇′′1 I0 are omitted)

I0, I′′3a =
∇′1(I′2)
(I′2)2 , I′′3b =

(∇2 I′2)2

(I′2)3 .
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Denote byRl the unknown differential syzygies. Then the algebra of differential invariants is

AH = 〈I0, I′′3a, I′′3b ; ∇′′1 ,∇′′2 | Rl〉.

7.6. Affine Conformal Symplectic Group Action: Curves

Similarly for the case of curves on the conformal symplectic plane, with the same H as in
Section 7.5, we get in the notations of Section 7.4 that the weights of I′′4 is −4 and that of ∇′′ is −2.
Therefore, the algebra of differential invariants AH is generated by

I5 =
(∇′′ I′′4 )2

(I′′4 )3 and ∇′′′ = I′′4
∇′′(I′′4 )

∇′′.

In fact, it is a free differential algebra

AH = 〈I5 ; ∇′′′〉.

8. Differential Invariants in Contact Spaces

Let W be a contact space that is a contactification of the symplectic vector space V. In coordinates,
W = R2n+1(x, y, z) is equipped with the contact form α = dz− y dx such that its differential dα =

dx ∧ dy descends to the symplectic form on V = R2n(x, y).
As the equivalence group, we take either G = Sp(2n,R) lifted to an action on W from the

standard linear action on V, or its central extension Ĝ = CSp(2n,R) corresponding to the scaling
(x, y, z) �→ (λx, λy, λ2z). (One can also consider the affine extensions, as was done in Section 7 but we
skip doing this.)

Note that the group G does not have an open orbit on W because I0 = 2z− xy is an invariant.
This gives a way to carry over the results on the algebra of differential invariants in V to that in
W (for both functions and submanifolds; note that the formulae from the symplectic case enter
through a change of variables, which is due to the lift of Hamiltonian vector fields XH to contact
Hamiltonian fields).

Then, we can single out the subalgebra AĜ ⊂ AG as the space of functions of weight 0 with
respect to the scaling above (or its infinitesimal field). In particular, as I0 has weight 2, it is not a scaling
invariant, and in fact, the action of Ĝ on W is almost transitive.

Below, we demonstrate this two-stage computation in the simplest case n = 1. Note that the
action of Ĝ = GL(2,R) ⊃ G = SL(2,R) on W = R3(x, y, z) has the formula

ΦA(x, y, z) =
(
ax + by, cx + dy, (ad− bc)(z− 1

2 xy) + 1
2 (ax + by)(cx + dy)

)
.

with A =

(
a b
c d

)
∈ Ĝ. This explicit parametrization is a base for an application of the moving frame

method, which involves normalization of the group parameters via elimination. (This was already
exploited in Sections 7.3 and 7.4.) This algorithm (we refer for details to [1]; an elaborated version of
it, the method of equivariant moving frame, was further developed in the works by Peter Olver and
co-authors) allows to carry the computations below; however, for n > 1 it would meet the complexity
issues. Yet, the method we propose works for arbitrary n > 1 as a straightforward generalization.
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8.1. Differential Invariants: Curves

We begin with the group G = Sp(2,R) = SL(2,R). Its action on W has a base invariant

I0 = 2z− xy.

The curves will be represented as y = y(x), z = z(x) and the projection to R2(x, y) restores the
symplectic action. We note that invariants from Section 4.1 are still G-invariants in the contact action,
and we will use them:

I2a =
y2

(xy1 − y)3 , ∇ =
1

xy1 − y
Dx.

Differential invariants of order ≤ 2 are generated by I0, I1 = ∇(I0), I2a and I2b = ∇(I1). Of course,
in Lie-Tresse generating set we omit the derived invariants I1, I2b, namely

AG = 〈I0, I2a ; ∇〉.

However these derived invariants are useful in generating the algebra of Ĝ-invariants. Indeed,
with respect to the action of the center ξ = x∂x + y∂y + 2z∂z, the weights of I0, I1, I2a, I2b are 2, 0,−4,−2
and the weight of ∇ is −2. Thus, in order to obtain Ĝ-invariants we pass to weight 0 combinations
(I1 is already invariant)

I′2a = I2
0 I2a, I′2b = I0 I2b, ∇′ = I0∇.

Explicitly after simplifications I1 �→ 1
2 (I1 + 1), I′2b �→ 1

2 I′2b we get:

I1 =
z1 − y

xy1 − y
, ∇′ = 2z− xy

xy1 − y
Dx,

I′2a =
(2z− xy)2

(xy1 − y)3 y2,

I′2b =
2z− xy

(xy1 − y)3

(
x(y− z1)y2 − (xy1 − y)(y1 − z2)

)
.

The count of invariants is h0 = 0, h1 = 1 and hk = 2 for k ≥ 2. We conclude:

Theorem 5. The algebra of differential invariants of the Ĝ-action on J∞(W, 1) is freely generated as follows:

AĜ = 〈I1, I′2a ; ∇′〉.

8.2. Differential Invariants: Surfaces

Now we consider the action of G and Ĝ on surfaces given as z = z(x, y). Since projection
to R2(x, y) gives the symplectic plane, the G-computations can be derived from Section 3.1 with
substitution u = 2z− xy. This gives us the following differential invariants and invariant derivations
with respect to G:

I0 = 2z− xy, ∇1 = xDx + yDy, ∇2 = (x− 2zy)Dx + (2zx − y)Dy,
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and with the notations I1 = 1
2∇1(I0), I2a = ∇1(I1)− I1, I2b = − 1

2 (∇2(I1) + I2a − I1) the following
first and second order invariants

I1 = xzx + yzy − xy,

I2a = x2zxx + 2xyzxy + y2zyy − xy,

I2b = x(zy − x)zxx − yzxzyy + (y(zy − x)− xzx)zxy + xzx,

I2c = z2
xzyy − 2zx(zy − x)zxy + (zy − x)2zxx + zx(zy − x).

Now to obtain Ĝ-invariants note that I0, I1, I2a, I2b, I2c all have weight 2 with respect to ξ, while ∇1,∇2

are already invariant. Thus the invariants are

I′1 = I−1
0 I1, I′2a = I−1

0 I2a, I′2b = I−1
0 I2b, I′2c = I−1

0 I2c.

We have:
I′2a = ∇1(I′1) + 2(I′1)

2 − I′1, I′2b = −1
2
∇1(I′1)−

1
2
∇2(I′1)− (I′1)

2 + I′1,

so these can be omitted from the list of generators.
The count of Ĝ-invariants is h0 = 0, h1 = 1 and hk = k + 1 for k ≥ 2.
Applying the derivations to the generating invariants and counting the relations, we find that

beside the commutation relation

[∇1,∇2] +
∇2(I′1)

I′1
∇1 −

(∇1(I′1)
I′1

+ 2(I′1 − 1)
)
∇2 = 0

there is one more relation generating the module of differential syzygies

∇2
1(I′1) + 2∇1∇2(I′1) +∇2

2(I′1)− 4∇1(I′2c)

− 3(I′1)
−1(∇1(I′1)

2 + 2∇1(I′1)∇2(I′1)− 4∇1(I′1)I′2c +∇2(I′1)
2)

− 2(I′1 − 1)
(
3∇1(I′1) + 4∇2(I′1)− 8I′2c

)− 4I′1(I′1 − 1)(2I′1 − 1) = 0.

Denote these syzygies byR1 andR2.
Let us summarize the results.

Theorem 6. The algebra of differential invariants of the Ĝ-action on J∞(W, 2) is generated as follows:

AĜ = 〈I′1, I′2c ; ∇1,∇2 | R1,R2〉.

8.3. Differential Invariants: Functions

Skipping the intermediate computation with the group G let us directly pass to the description
of invariants on J∞(W) with respect to the group Ĝ. Fix the coordinates as follows: W = R3(x, y, z)
with the contact form α = dz− y dx as before, J0 = W ×R(u) and for the jet-coordinates we use the
numbered multi-index notations uσ.

The count of the number of differential invariants is as follows: h0 = 1, h1 = 2 and hk = (k+2
2 ) for

k ≥ 2.
The zero and first order invariants are

I0 = u, I1a = (xy− 2z)u3, I1b = xu1 + y(u2 + xu3).
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Next we obtain the invariant derivations

∇1 = xDx + yDy + 2zDz,

∇2 = (xy− 2z)Dz,

∇3 = (xu3 + u2)(xy− 2z)Dx − u1(xy− 2z)Dy − xu1(xy− 2z)Dz.

Note that I1a = ∇2(I0), I1b = (∇1 + ∇2)(I0) and ∇3(I0) = 0. The latter is the first differential
syzygy, denoted

R1 = ∇3(I0).

Second order differential invariants ∇i(I1a),∇i(I1b) contain only 5 independent. We find the
remaining 1 differential invariant via the the method of moving frames and get

Second Order Differential Invariants

I2a = y2u2,2 + y(4zu2,3 + 2xu1,2 + u2) + 4z2u3,3

+z(4xu1,3 + 4u3) + x(xu1,1 + u1)

I2b = (xy− 2z)(yu2,3 + 2zu3,3 + xu1,3 + 2u3)

I2c = −(xy− 2z)(x2(u1u1,3 − u3u1,1) + x(u1(yu2,3 + 2zu3,3 + u3 + u1,2)

−yu3u1,2 − 2zu3u1,3 − u2u1,1) + u1(yu2,2 + 2zu2,3)

−u2(yu1,2 + 2zu1,3))

I2d = (xy− 2z)(−2u3 + (xy− 2z)u3,3)

I2e = −(xy− 2z)(x2y(u1u3,3 − u3u1,3) + x(y(u1u2,3 − u2
3 − u2u1,3)

+u1(−2zu3,3 − u3) + 2zu3u1,3)− yu2u3 − 2z(u1u2,3 − u2u1,3))

I2 f = x4y2u2
1u3,3 − 2x4y2u1u3u1,3 + x4y2u2

3u1,1 + 2x3y2u2
1u2,3

−x3y2u1u2
3 − 2x3y2u1u3u1,2 − 2x3y2u1u2u1,3 + 2x3y2u2u3u1,1

−4x3yzu2
1u3,3 + 8x3yzu1u3u1,3 − 4x3yzu2

3u1,1 + x2y2u2
1u2,2

−x2y2u1u2u3 − 2x2y2u1u2u1,2 + x2y2u2
2u1,1 − 8x2yzu2

1u2,3

+4x2yzu1u2
3 + 8x2yzu1u3u1,2 + 8x2yzu1u2u1,3 − 8x2yzu2u3u1,1

+4x2z2u2
1u3,3 − 8x2z2u1u3u1,3 + 4x2z2u2

3u1,1 − 4xyzu2
1u2,2

+4xyzu1u2u3 + 8xyzu1u2u1,2 − 4xyzu2
2u1,1 + 8xz2u2

1u2,3

−4xz2u1u2
3 − 8xz2u1u3u1,2 − 8xz2u1u2u1,3 + 8xz2u2u3u1,1

+4z2u2
1u2,2 − 4z2u1u2u3 − 8z2u1u2u1,2 + 4z2u2

2u1,1

Note that I2a, I2b, I2c, I2d, I2e can be expressed through I0, I1a, I1b and invariant derivations.
Thus they need not enter the set of generators.

All the differential syzygies coming from the commutators are

R2 = [∇1,∇2],

R3 = (I1a + I1b)[∇1,∇3] + I2c(∇1 +∇2)− (I2a + I2b)∇3,

R4 = (I1a + I1b)[∇2,∇3]− (I1b(I1a + I1b)− I2e)∇1 + (I1a(I1a + I1b) + I2e)∇2

− (I2b + I2d − 2(I1a + I1b))∇3.
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The remaining differential syzygies are found by the symbolic method: find a relation between the
symbols of differentiated invariants, get a linear combination of lower order and express it through the
invariants established earlier.

R5 = (I1a + I1b)(∇3(I2b)−∇1(I2e))− (I2c − I2e)I2b + I2a I2e − I2c I2d,

R6 = (I1a + I1b)(∇3(I2c)−∇1(I2 f ))− 3I2
2c − (I2

1a + I1a I1b + 3I2e)I2c + 3I2 f (I2a + I2b),

R7 = (I1a + I1b)(−∇3(I2e) +∇2(I2 f ))− I4
1b − 4I1a I3

1b − (5I2
1a + 2I2c)I2

1b

− (2I3
1a + (2I2c − 3I2e)I1a + 4I2 f )I1b + 3I2e I2

1a + 4I2 f I1a + 3I2
2e

+ 3I2c I2e − 3I2 f (I2b + I2d).

Theorem 7. The algebra of differential invariants of the Ĝ-action on J∞(W) is generated as follows:

AĜ = 〈I0, I2 f ; ∇1,∇2,∇3 | Ri = 0, i = 1 . . . 7〉.

9. Conclusions

In this paper, we computed the algebra of differential invariants for various geometric objects on
symplectic spaces with several choices of the equivalence group and touched upon a relation between
the invariants of the pair (group, subgroup) action.

For most of the text we worked with the linear symplectic group, but we demonstrated how to
extend the results for conformal symplectic and affine symplectic groups, treated in other publications.
Some of the objects were also investigated by different authors, namely jets of curves [5,10] and
hypersurfaces [9], yet the technique and the description of the algebras are quite distinct. Surfaces in
four-dimensional symplectic space were also studied in [6–8], but they considered Lagrangian surfaces
while our focus was on symplectic (generic) submanifolds.

Other geometric objects appeared in [11], which intersects with our work by studying functions
on the symplectic spaces. Again the approaches differ significantly: in [11] the infinite number of
generators were computed (with a nontrivial change of variables) while our method uses the Lie-Tresse
finite type presentation of the algebra (in the original jet-coordinates). This latter allows, in particular,
to solve the equivalence problem via a finite-dimensional signature variety.

The work [11] also described invariants in the adjoint bundle, and one can consider other
geometric spaces on which the symplectic group acts. For instance, [17] was devoted to four-fold
surfaces in 6-dimensional Lagrangian Grassmanian, satisfying the integrability condition. It would be
worth characterizing those via symplectic invariants.

Finally note that one can approach the equivalence problem of geometric objects via discretizations,
with more algebraic methods, see [18].
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Appendix A. Differential Invariants of Curves in 4-Dimensions

Here are explicit expressions of the differential invariants of curves x = x(t), y = y(t), z = z(t),
as derived in Section 4.2. These as well as other long formulae resulting from our calculations can be
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found in Supplementary Materials. Below γ = 1/(ty1 + xz1 − x1z− y) is the factor of Dt in∇. The jet
notations are xt = x1, xtt = x2, xttt = x3 etc, likewise for y and z.

Differential invariants that together with ∇ generate A
I2 = γ3(x1z2 − z1x2 + y2)

I3b = −γ6(tx1y2z3 − tx1y3z2 − tx2y1z3 + tx2y3z1 + tx3y1z2 − tx3y2z1

−xy2z3 + xy3z2 + x2yz3 − x2y3z− x3yz2 + x3y2z)

I4c = −γ10(t3x1y2
1y3z4 − t3x1y2

1y4z3 − 3t3x1y1y2
2z4 + 4t3x1y1y2y3z3

+3t3x1y1y2y4z2 − 4t3x1y1y2
3z2 + 3t3x1y3

2z3 − 3t3x1y2
2y3z2 + 3t3x2y2

1y2z4

−4t3x2y2
1y3z3 − 3t3x2y1y2

2z3 − 3t3x2y1y2y4z1 + 4t3x2y1y2
3z1

+3t3x2y2
2y3z1 − t3x3y3

1z4 + 4t3x3y2
1y3z2 + t3x3y2

1y4z1 + 3t3x3y1y2
2z2

−4t3x3y1y2y3z1 − 3t3x3y3
2z1 + t3x4y3

1z3 − 3t3x4y2
1y2z2 − t3x4y2

1y3z1

+3t3x4y1y2
2z1 − 3t2xx1y1y2z2z4 + 4t2xx1y1y2z2

3 + 2t2xx1y1y3z1z4

−4t2xx1y1y3z2z3 − 2t2xx1y1y4z1z3 + 3t2xx1y1y4z2
2 − 3t2xx1y2

2z1z4

+6t2xx1y2
2z2z3 + 4t2xx1y2y3z1z3 − 6t2xx1y2y3z2

2 + 3t2xx1y2y4z1z2

−4t2xx1y2
3z1z2 + 3t2xx2y2

1z2z4 − 4t2xx2y2
1z2

3 + 3t2xx2y1y2z1z4

−6t2xx2y1y2z2z3 − 3t2xx2y1y4z1z2 + 6t2xx2y2y3z1z2 − 3t2xx2y2y4z2
1

+4t2xx2y2
3z2

1 − 2t2xx3y2
1z1z4 + 4t2xx3y2

1z2z3 − 4t2xx3y1y2z1z3

+6t2xx3y1y2z2
2 + 4t2xx3y1y3z1z2 + 2t2xx3y1y4z2

1 − 6t2xx3y2
2z1z2

−4t2xx3y2y3z2
1 + 2t2xx4y2

1z1z3 − 3t2xx4y2
1z2

2 − 2t2xx4y1y3z2
1

+3t2xx4y2
2z2

1 − 2t2x2
1y1y3zz4 + 2t2x2

1y1y4zz3 + 3t2x2
1y2

2zz4

−4t2x2
1y2y3zz3 − 3t2x2

1y2y4zz2 + 4t2x2
1y2

3zz2 + 4t2x1x2y1y3zz3

−3t2x1x2y1y4zz2 − 6t2x1x2y2
2zz3 + 6t2x1x2y2y3zz2 + 3t2x1x2y2y4zz1

−4t2x1x2y2
3zz1 + 2t2x1x3y2

1zz4 − 4t2x1x3y1y2zz3 − 2t2x1x3y1y4zz1

+4t2x1x3y2y3zz1 − 2t2x1x4y2
1zz3 + 3t2x1x4y1y2zz2 + 2t2x1x4y1y3zz1

−3t2x1x4y2
2zz1 − 3t2x2

2y2
1zz4 + 6t2x2

2y1y2zz3 + 3t2x2
2y1y4zz1

−6t2x2
2y2y3zz1 + 4t2x2x3y2

1zz3 − 6t2x2x3y1y2zz2 − 4t2x2x3y1y3zz1

+6t2x2x3y2
2zz1 + 3t2x2x4y2

1zz2 − 3t2x2x4y1y2zz1 − 4t2x2
3y2

1zz2

+4t2x2
3y1y2zz1 − 3tx2x1y2z1z2z4 + 4tx2x1y2z1z2

3 + 3tx2x1y2z2
2z3

+tx2x1y3z2
1z4 − 4tx2x1y3z1z2z3 − 3tx2x1y3z3

2 − tx2x1y4z2
1z3

+3tx2x1y4z1z2
2 + 3tx2x2y1z1z2z4 − 4tx2x2y1z1z2

3 − 3tx2x2y1z2
2z3

+4tx2x2y3z2
1z3 + 3tx2x2y3z1z2

2 − 3tx2x2y4z2
1z2 − tx2x3y1z2

1z4

+4tx2x3y1z1z2z3 + 3tx2x3y1z3
2 − 4tx2x3y2z2

1z3 − 3tx2x3y2z1z2
2 + tx2x3y4z3

1
+tx2x4y1z2

1z3 − 3tx2x4y1z1z2
2 + 3tx2x4y2z2

1z2 − tx2x4y3z3
1 + 3txx2

1y2zz2z4

−4txx2
1y2zz2

3 − 2txx2
1y3zz1z4 + 4txx2

1y3zz2z3 + 2txx2
1y4zz1z3 − 3txx2

1y4zz2
2

−3txx1x2y1zz2z4 + 4txx1x2y1zz2
3 + 3txx1x2y2zz1z4 − 6txx1x2y2zz2z3

−4txx1x2y3zz1z3 + 6txx1x2y3zz2
2 + 2txx1x3y1zz1z4 − 4txx1x3y1zz2z3

+4txx1x3y3zz1z2 − 2txx1x3y4zz2
1 − 2txx1x4y1zz1z3 + 3txx1x4y1zz2

2
−3txx1x4y2zz1z2 + 2txx1x4y3zz2

1 − 3txx2
2y1zz1z4 + 6txx2

2y1zz2z3

−6txx2
2y3zz1z2 + 3txx2

2y4zz2
1 + 4txx2x3y1zz1z3 − 6txx2x3y1zz2

2
+6txx2x3y2zz1z2 − 4txx2x3y3zz2

1 + 3txx2x4y1zz1z2 − 3txx2x4y2zz2
1

−4txx2
3y1zz1z2 + 4txx2

3y2zz2
1 + tx3

1y3z2z4 − tx3
1y4z2z3 − 3tx2

1x2y2z2z4

+3tx2
1x2y4z2z2 − tx2

1x3y1z2z4 + 4tx2
1x3y2z2z3 − 4tx2

1x3y3z2z2 + tx2
1x3y4z2z1

+tx2
1x4y1z2z3 − tx2

1x4y3z2z1 + 3tx1x2
2y1z2z4 + 3tx1x2

2y2z2z3 − 3tx1x2
2y3z2z2

−3tx1x2
2y4z2z1 − 4tx1x2x3y1z2z3 + 4tx1x2x3y3z2z1 − 3tx1x2x4y1z2z2

+3tx1x2x4y2z2z1 + 4tx1x2
3y1z2z2 − 4tx1x2

3y2z2z1 − 3tx3
2y1z2z3 + 3tx3

2y3z2z1

+3tx2
2x3y1z2z2 − 3tx2

2x3y2z2z1 − t2xy2
1y3z4 + t2xy2

1y4z3 + 3t2xy1y2
2z4

−4t2xy1y2y3z3 − 3t2xy1y2y4z2 + 4t2xy1y2
3z2 − 3t2xy3

2z3 + 3t2xy2
2y3z2

−2t2x1yy1y3z4 + 2t2x1yy1y4z3 + 3t2x1yy2
2z4 − 4t2x1yy2y3z3 − 3t2x1yy2y4z2
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+4t2x1yy2
3z2 − 6t2x2yy1y2z4 + 8t2x2yy1y3z3 + 3t2x2yy2

2z3 + 3t2x2yy2y4z1

−4t2x2yy2
3z1 + 3t2x2y1y2y4z− 4t2x2y1y2

3z− 3t2x2y2
2y3z + 3t2x3yy2

1z4

−8t2x3yy1y3z2 − 2t2x3yy1y4z1 − 3t2x3yy2
2z2 + 4t2x3yy2y3z1

−t2x3y2
1y4z + 4t2x3y1y2y3z + 3t2x3y3

2z− 3t2x4yy2
1z3 + 6t2x4yy1y2z2

+2t2x4yy1y3z1 − 3t2x4yy2
2z1 + t2x4y2

1y3z− 3t2x4y1y2
2z + 3tx2y1y2z2z4

−4tx2y1y2z2
3 − 2tx2y1y3z1z4 + 4tx2y1y3z2z3 + 2tx2y1y4z1z3 − 3tx2y1y4z2

2
+3tx2y2

2z1z4 − 6tx2y2
2z2z3 − 4tx2y2y3z1z3 + 6tx2y2y3z2

2 − 3tx2y2y4z1z2

+4tx2y2
3z1z2 + 3txx1yy2z2z4 − 4txx1yy2z2

3 − 2txx1yy3z1z4 + 4txx1yy3z2z3

+2txx1yy4z1z3 − 3txx1yy4z2
2 + 2txx1y1y3zz4 − 2txx1y1y4zz3 − 3txx1y2

2zz4

+4txx1y2y3zz3 + 3txx1y2y4zz2 − 4txx1y2
3zz2 − 6txx2yy1z2z4 + 8txx2yy1z2

3
−3txx2yy2z1z4 + 6txx2yy2z2z3 + 3txx2yy4z1z2 − 3txx2y1y2zz4 − 4txx2y1y3zz3

+6txx2y1y4zz2 + 6txx2y2
2zz3 − 12txx2y2y3zz2 + 3txx2y2y4zz1 − 4txx2y2

3zz1

+4txx3yy1z1z4 − 8txx3yy1z2z3 + 4txx3yy2z1z3 − 6txx3yy2z2
2 − 4txx3yy3z1z2

−2txx3yy4z2
1 + 8txx3y1y2zz3 − 4txx3y1y3zz2 − 2txx3y1y4zz1 + 6txx3y2

2zz2

+4txx3y2y3zz1 − 4txx4yy1z1z3 + 6txx4yy1z2
2 + 2txx4yy3z2

1 − 3txx4y1y2zz2

+2txx4y1y3zz1 − 3txx4y2
2zz1 + 2tx2

1yy3zz4 − 2tx2
1yy4zz3 − 4tx1x2yy3zz3

+3tx1x2yy4zz2 − 3tx1x2y2y4z2 + 4tx1x2y2
3z2 − 4tx1x3yy1zz4 + 4tx1x3yy2zz3

+2tx1x3yy4zz1 + 2tx1x3y1y4z2 − 4tx1x3y2y3z2 + 4tx1x4yy1zz3 − 3tx1x4yy2zz2

−2tx1x4yy3zz1 − 2tx1x4y1y3z2 + 3tx1x4y2
2z2 + 6tx2

2yy1zz4 − 6tx2
2yy2zz3

−3tx2
2yy4zz1 − 3tx2

2y1y4z2 + 6tx2
2y2y3z2 − 8tx2x3yy1zz3 + 6tx2x3yy2zz2

+4tx2x3yy3zz1 + 4tx2x3y1y3z2 − 6tx2x3y2
2z2 − 6tx2x4yy1zz2 + 3tx2x4yy2zz1

+3tx2x4y1y2z2 + 8tx2
3yy1zz2 − 4tx2

3yy2zz1 − 4tx2
3y1y2z2 + 3x3y2z1z2z4

−4x3y2z1z2
3 − 3x3y2z2

2z3 − x3y3z2
1z4 + 4x3y3z1z2z3 + 3x3y3z3

2 + x3y4z2
1z3

−3x3y4z1z2
2 − 3x2x1y2zz2z4 + 4x2x1y2zz2

3 + 2x2x1y3zz1z4 − 4x2x1y3zz2z3

−2x2x1y4zz1z3 + 3x2x1y4zz2
2 − 3x2x2yz1z2z4 + 4x2x2yz1z2

3 + 3x2x2yz2
2z3

−3x2x2y2zz1z4 + 6x2x2y2zz2z3 − 4x2x2y3zz1z3 − 9x2x2y3zz2
2 + 6x2x2y4zz1z2

+x2x3yz2
1z4 − 4x2x3yz1z2z3 − 3x2x3yz3

2 + 8x2x3y2zz1z3 + 3x2x3y2zz2
2

−4x2x3y3zz1z2 − x2x3y4zz2
1 − x2x4yz2

1z3 + 3x2x4yz1z2
2 − 3x2x4y2zz1z2

+x2x4y3zz2
1 − xx2

1y3z2z4 + xx2
1y4z2z3 + 3xx1x2yzz2z4 − 4xx1x2yzz2

3
+3xx1x2y2z2z4 + 4xx1x2y3z2z3 − 6xx1x2y4z2z2 − 2xx1x3yzz1z4

+4xx1x3yzz2z3 − 8xx1x3y2z2z3 + 4xx1x3y3z2z2 + 2xx1x3y4z2z1

+2xx1x4yzz1z3 − 3xx1x4yzz2
2 + 3xx1x4y2z2z2 − 2xx1x4y3z2z1

+3xx2
2yzz1z4 − 6xx2

2yzz2z3 − 3xx2
2y2z2z3 + 9xx2

2y3z2z2 − 3xx2
2y4z2z1

−4xx2x3yzz1z3 + 6xx2x3yzz2
2 − 6xx2x3y2z2z2 + 4xx2x3y3z2z1

−3xx2x4yzz1z2 + 3xx2x4y2z2z1 + 4xx2
3yzz1z2 − 4xx2

3y2z2z1 + x2
1x3yz2z4

−x2
1x3y4z3 − x2

1x4yz2z3 + x2
1x4y3z3 − 3x1x2

2yz2z4 + 3x1x2
2y4z3

+4x1x2x3yz2z3 − 4x1x2x3y3z3 + 3x1x2x4yz2z2 − 3x1x2x4y2z3 − 4x1x2
3yz2z2

+4x1x2
3y2z3 + 3x3

2yz2z3 − 3x3
2y3z3 − 3x2

2x3yz2z2 + 3x2
2x3y2z3

+2txyy1y3z4 − 2txyy1y4z3 − 3txyy2
2z4 + 4txyy2y3z3 + 3txyy2y4z2

−4txyy2
3z2 + tx1y2y3z4 − tx1y2y4z3 + 3tx2y2y2z4 − 4tx2y2y3z3

−3tx2yy2y4z + 4tx2yy2
3z− 3tx3y2y1z4 + 4tx3y2y3z2 + tx3y2y4z1z

+2tx3yy1y4z− 4tx3yy2y3 + 3tx4y2y1z3 − 3tx4y2y2z2 − tx4y2y3z1

−2tx4yy1y3z + 3tx4yy2
2z− 3x2yy2z2z4 + 4x2yy2z2

3 + 2x2yy3z1z4

−4x2yy3z2z3 − 2x2yy4z1z3 + 3x2yy4z2
2 − 2xx1yy3zz4 + 2xx1yy4zz3

+3xx2y2z2z4 − 4xx2y2z2
3 + 3xx2yy2zz4 + 4xx2yy3zz3 − 6xx2yy4zz2

−2xx3y2z1z4 + 4xx3y2z2z3 − 8xx3yy2zz3 + 4xx3yy3zz2 + 2xx3yy4zz1

+2xx4y2z1z3 − 3xx4y2z2
2 + 3xx4yy2zz2 − 2xx4yy3zz1 + 2x1x3y2zz4

−2x1x3yy4z2 − 2x1x4y2zz3 + 2x1x4yy3z2 − 3x2
2y2zz4 + 3x2

2yy4z2

+4x2x3y2zz3 − 4x2x3yy3z2 + 3x2x4y2zz2 − 3x2x4yy2z2 − 4x2
3y2zz2

+4x2
3yy2z2 − xy2y3z4 + xy2y4z3 + x3y3z4 − x3y2y4z− x4y3z3 + x4y2y3z).
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1. Introduction

The classical invariant theory [1–3] investigates polynomial invariants of linear actions of a Lie
group G on a vector space V, i.e., describes the algebra (S V∗)G. For instance, the case of binary forms
corresponds to G = SL(2,C) and V = C2; equivalently for G = GL(2,C) one studies instead the
algebra of relative invariants. The covariants correspond to invariants in the tensor product V ⊗W for
another representation W. Changing to the Cartesian product V ×W leads to joint invariants of G.

In this paper, we discuss joint invariants corresponding to the (diagonal) action of G on the
iterated Cartesian product V×m for increasing number of copies m ∈ N. We will focus on the case
G = Sp(2n,R), V = R2n and discuss the conformal G = CSp(2n,R) = Sp(2n,R)× R+ and affine
G = ASp(2n,R) = Sp(2n,R)�R2n versions later.

This corresponds to invariants of m-tuples of points in V, i.e., finite ordered subsets. By the
Hilbert-Mumford [1] and Rosenlicht [4] theorems, the algebra of polynomial invariants (for the
semi-simple G) or the field of rational invariants (in all other cases considered) can be interpreted as
the space of functions on the quotient space V×m/G.

For G = Sp(2n,C) the algebra of invariants is known [5]. Generators and relations (syzygies) are
described in the first and the second fundamental theorems, respectively. We review this in Theorem 1
(real version), and complement by explicit examples of free resolutions of the algebra. In addition,
we describe the field of rational invariants.

We also discuss invariants with respect to the group G = Sp(2n,R) × Sm, in which case
considerably less is known. Another generalization we consider is the field of invariants for the
conformal symplectic Lie group G = CSp(2n,R) on the contact space.

When approaching invariants of infinite sets, like curves or domains with smooth boundary,
the theory of joint invariants is not directly applicable and the equivalence problem is solved via
differential invariants [6]. In the case of a group G and a space V as above this problem was solved
in [7]. We claim that the differential invariants from this reference can be obtained in a proper limit of
joint invariants, i.e., via a certain discretization and quasiclassical limit, and demonstrate it explicitly
in several cases.

In this paper, we focus on discussion of various interrelations of joint invariants. In particular,
at the conclusion we note that joint invariants can be applied to the equivalence problem of binary
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forms. Since these have been studied also via differential invariants [2,8] a further link to the above
symplectic discretization is possible.

The relation to binary forms mentioned above is based on the Sylvester theorem [9], which in
turn can be extended to more general Waring decompositions, important in algebraic geometry [10].
Our computations should carry over to the general case. This note is partially based on the results
of [11], generalized and elaborated in several respects.

2. Recollection: Invariants

We briefly recall the basics of invariant theory, referring to [3,12] for more details.
Let G be a Lie group acting on a manifold V. A point x ∈ V is regular if a neighborhood of the

orbit G · x is fibred by G-orbits. A point x ∈ V is weakly regular, if its (not necessary G-invariant)
neighborhood is foliated by the orbits of the Lie algebra g = Lie(G). In general, the action can lack
regular points, but a generic point is weakly regular. For algebraic actions a Zariski open set of points
is regular.

2.1. Smooth Invariants

If G and V are only smooth (and non-compact), there is little one can do to guarantee regularity a
priori. An alternative is to look for local invariants, i.e., functions I = I(x) in a neighborhood U ⊂ V
such that I(x) = I(g · x) as long as x ∈ U and g ∈ G satisfy g · x ∈ U.

The standard method to search for such I is by elimination of group parameters, namely by
computing quasi-transversals [3] or using normalization and moving frame [2]. Another way is to
solve the linear PDE system Lξ(I) = 0 for ξ ∈ g = Lie(G).

Given the space of invariants {I} one can extend U ⊂ V and address regularity. In our case the
invariants are easy to compute and we do not rely on any of these methods; however instead we
describe the algebra and the field of invariants depending on specification of the type of functions I.

2.2. Polynomial Invariants

If G is semi-simple and V is linear, then by the Hilbert-Mumford theorem generic orbits can
be separated by polynomial invariants I ∈ (S V∗)G, where S V∗ = ⊕∞

k=0SkV∗ is the algebra of
homogeneous polynomials on V. With a choice of linear coordinates x = (x1, ..., xn) on V we identify
S V∗ = R[x].

Moreover, by the Hilbert basis theorem, the algebra of polynomial invariants AG = (S V∗)G is
Noetherian, i.e., finitely generated by some a = (a1, . . . , as), aj = aj(x) ∈ AG.

Denote byR = R[a] the free commutative R-algebra generated by a. It forms a free module F0

over itself. AG is also anR-module with surjectiveR-homomorphism φ0 : F0 → AG, φ0(aj) = aj(x).
The first syzygy module S1 = Ker(φ0) fits the exact sequence

0 → S1 → F0 → AG → 0.

A syzygy is an element of S1, i.e., a relation r = r(a) between the generators of AG of the form
∑k

p=1 rip ajp = 0, rip ∈ R.
The module S1 is Noetherian, i.e., finitely generated by some b = (b1, . . . , bt). Denote the

free R-module generated by b by F1 = R[b]. The natural homomorphism φ1 : F1 → S1 ⊂ F0,
φ1(bj) = bj(a), defines the second syzygy module S2 = Ker(φ1), and we can continue obtaining
S2 ⊂ F2 = R[c], etc. This yields the exact sequence ofR-modules:

. . .
φ3−→ F2

φ2−→ F1
φ1−→ F0

φ0−→ AG → 0.

The Hilbert syzygy theorem states that q-th module of syzygies Sq is free for q ≥ s = #a.
In particular, the minimal free resolution exists and has length ≤ s, see [13].
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To emphasize the generating sets, we depict free resolutions as follows:

R[x] ⊃ AG ← R[a]← R[b]← R[c]← · · · ← 0.

2.3. Rational Invariants

If G is algebraic, in particular reductive, then by the Rosenlicht theorem [4] generic orbits can
be separated by rational invariants I ∈ FG. Here R(x) is the field of rational functions on V and
FG = R(x)G.

Let d be the transcendence degree of FG. This means that there exist (a1, . . . , ad) = ā, aj ∈ FG,
such that FG is an algebraic extension of R(ā). Then either FG = R(a) for a = ā or FG is generated
by a set a ⊃ ā, which by the primitive element theorem can be assumed of cardinality s = #a = d + 1,
i.e., a = (a1, . . . , ad, ad+1). In the latter case there is one algebraic relation on a. Please note that d ≤ n
because R(ā) ⊂ R(x).

We adopt the following convention for depicting this:

R(x) ⊃ FG
alg⊃ R(ā)

d⊃ R.

2.4. Our Setup

If the Lie group G acts effectively on V, then for some q it acts freely on V×q, and hence on all
V×m for m ≥ q. The number of rational invariants separating a generic orbit in V×m is equal to the
codimension of the orbit.

It turns out that knowing all those invariants I on V×q is enough to generate the invariants on V×m

for m > q. Indeed, let πi1,...,iq : V×m → V×q be the projection to the factors (i1, . . . , iq). Then the union
of π∗i1,...,iq I for I from the field FG(V×q) gives the generating set of the field FG(V×m), and similarly
for the algebra of invariants.

Below we denote Am
G = AG(V×m) and Fm

G = FG(V×m).

2.5. The Equivalence Problem

For a semi-simple Lie group G the field FG is obtained from the ring AG by localization
(field of fractions): FG = F(AG). Hence we discuss a solution to the equivalence problem through
rational invariants.

Let I1, . . . , Is be a generating set of invariants of the action of G on V×q. If s = d + 1, this set of
generators is subject to an algebraic condition, which constrains the generators to an algebraic set
Σ ⊂ Rs. If s = d then Σ = Rd. This Σ is the signature space, cf. [14].

Now the q-tuple of points X = (x1, . . . , xq) is mapped to I1(X), . . . , Is(X) ∈ Σ. Denote this map
by Ψ. Two generic configurations of points X′, X′′ ∈ V×q are G-equivalent iff their signatures coincide
Ψ(X′) = Ψ(X′′).

3. Invariants on Symplectic Vector Spaces

Let V = R2n(x1, . . . , xn, y1, . . . , yn) be equipped with the standard symplectic form
ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. The group G = Sp(2n,R) acts almost transitively on V, preserving

the origin O. Thus, there are no continuous invariants of the action, F 1
G = R. The first invariant occurs

already for two copies of V. Namely for a pair of points Ai, Aj ∈ V the double symplectic area of the
triangle OAi Aj is

aij = ω(OAi, OAj) = xiyj − xjyi =
n

∑
k=1

xk
i yk

j − xk
j yk

i .
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3.1. The Case n = 1

Consider at first the case of dimension 2, where V = R2(x, y), ω = dx ∧ dy. The invariant
a12 = x1y2 − x2y1 on V × V generates pairwise invariants aij on V×m for m ≥ 2 induced through
the pull-back of the projection πi,j : V×m → V ×V to the corresponding factors. Below we describe
minimal free resolutions of Am

G for m ≥ 2.

3.1.1. V ×V

Here the algebra is generated by one element, whence the resolution:

R[x1, x2, y1, y2] ⊃ A2
G ← R[a12]← 0

In other words, A2
G # R := R[a12]. Please note that F 2

G = R(a12).

3.1.2. V× 3 = V ×V ×V

Here the action is free on the level of m = 3 copies of V and we get 3 = dim V×3 − dim G
independent invariants a12, a13, a23. They generate the entire algebra, and we get the following
minimal free resolution:

R[x1, x2, x3, y1, y2, y3] ⊃ A3
G ← R[a12, a13, a23]← 0

Once again, A3
G # R := R[a12, a13, a23]. Also F 3

G = R(a12, a13, a23).

3.1.3. V× 4

Here dim V×4 = 8, dim G = 3 and we have 6 invariants a = {aij : 1 ≤ i < j ≤ 4}. To obtain
a relation, we try eliminating the variables x1, x2, x3, x4, y1, y2, y3, y4, but this fails with the standard
MAPLE command. Yet, using the transitivity of the G-action we fix A1 at (1, 0) and A2 at (0, a12),
and then obtain the only relation

b1234 := a12a34 − a13a24 + a14a23 = 0

that we identify as the Plücker relation. Thus, the first syzygy is a module over R := R[a] with one
generator, hence the minimal free resolution is:

R[x, y] ⊃ A4
G ← R[a12, a13, a14, a23, a24, a34]← R[b1234]← 0.

For the field of rational invariants one of the generators is superfluous, for instance we can resolve the
relation b1234 = 0 for a34 = (a13a24 − a14a23)/a12, and get

R(x1, x2, x3, x4, y1, y2, y3, y4) ⊃ F 4
G # R(a12, a13, a14, a23, a24)

5⊃ R

3.1.4. V× 5

The algebra of invariants A5
G is generated by a = {aij : 1 ≤ i < j ≤ 5}. This time the number of

generators is 10, while codimension of the orbit is 10− 3 = 7. Using the same method we obtain that
the first syzygy module is generated by the Plücker relations

bijkl := aijakl − aikajl + ail ajk = 0.

We have 5 of those: b = {bijkl : 1 ≤ i < j < k < l ≤ 5}. Thus, there should be relations among
relations, or equivalently second syzygies. If F0 = R[a] =: R and F1 = R[b] then this module is
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S2 = Ker(φ1 : F1 → S1 ⊂ F0). Using elimination of parameters, we find that S2 is generated by
c = {ci : 1 ≤ i ≤ 5} with

ci :=
5

∑
j=1

(−1)jaijb1... ǰ...5.

For instance, c1 = a12b1345 − a13b1245 + a14b1235 − a15b1234. Then we look for relations between the
generators c of S2, defining the third syzygy module S3. It is generated by one element

d := (a23a45 − a24a35 + a25a34)c1 + (−a13a45 + a14a35 − a15a34)c2

+ (a12a45 − a14a25 + a15a24)c3 + (−a12a35 + a13a25 − a15a23)c4

+ (a12a34 − a13a24 + a14a23)c5 = 0.

Thus, the minimal free resolution of A5
G is (note that here, as well as in our other examples, the length

of the resolution is smaller than what the Hilbert theorem predicts):

R[x, y] ⊃ A5
G ← R[a]← R[b]← R[c]← R[d]← 0.

As before, to generate the field of rational invariants, we express superfluous generators in
terms of the others using the first syzygies. Specifically, we express a34, a35, a45 from the relations
b1234, b1235, b1245; the other 2 syzygies follow from the higher syzygies. Removing these generators,
we obtain a set of 7 independent generators ā = a \ {a34, a35, a45} whence

R(x, y) ⊃ F 5
G # R(ā)

7⊃ R.

3.1.5. General V× m

The previous arguments generalize straightforwardly to conclude that Am
G is generated

by a = {aij : 1 ≤ i < j ≤ m}. The first syzygy module is generated by the Plücker relations
b = {bijkl : 1 ≤ i < j < k < l ≤ m}. In other words we have:

Am
G = 〈a | b〉.

Similarly, the field of rational invariants is generated by a, yet all of them except for
a1j, a2j can be expressed (rationally) through the rest via the Plücker relations b12kl . Denote
ā := {a12, a13, . . . , a1m, a23, . . . , a2m}, #ā = 2m− 3. Then we get for m ≥ 2:

R(x, p) ⊃ Fm
G # R(ā)

2m−3⊃ R.

3.2. The General Case: Algebra of Polynomial Invariants

Minimal free resolutions can be computed in many examples for n ≥ 1. However, in what follows
we restrict our attention to describing generators/relations of Am

G .
Let us count the number of local smooth invariants. The action of G on V is almost

transitive, so the stabilizer of a nonzero point A1 has dim GA1 = (2n+1
2 ) − 2n = (2n

2 ). For a
generic A2 there is only one invariant a12 (the orbit has codimension 1) and the stabilizer of
A2 in GA1 has dim GA1,A2 = (2n

2 )− (2n− 1) = (2n−1
2 ). For a generic A3 there are two more new

invariants a13, a23 (the orbit has codimension 2 + 1 = 3) and the stabilizer of A3 in GA1,A2 has
dim GA1,A2,A3 = (2n−1

2 )− (2n− 2) = (2n−2
2 ). By the same reason for k ≤ 2n the stabilizer of a generic

k-tuple of points A1, . . . , Ak has dim GA1,...,Ak = (2n−k+1
2 ). Finally, for k = 2n the stabilizer of generic

A1, . . . , A2n is trivial.
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Thus, we get the expected number of invariants aij. For m ≤ 2n + 1 there are no relations between
them, and the first comes at m = 2n + 2. These can be obtained by successively studying cases of
increasing n resulting in the Pfaffian relation:

bi1i2...i2n+1i2n+2 := Pf(aipiq)1≤p,q≤2n+2 = 0.

Recall that the Pfaffian of a skew-symmetric operator S on V with respect to ω is
Pf(S) = volω(Se1, . . . , Se2n) for any symplectic basis ei of V. The properties of the Pfaffian are:
Pf(S)2 = det(S), Pf(TSTt) = det(T)Pf(S). For n = 1 we get

b1234 = Pf

⎛⎜⎜⎜⎝
0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞⎟⎟⎟⎠ = a12a34 − a13a24 + a14a23.

Similarly, for n = 2 we get

b123456 =a12a34a56 − a12a35a46 + a12a36a45 − a13a24a56 + a13a25a46 − a13a26a45+

a14a23a56 − a14a25a36 + a14a26a35 − a15a23a46 + a15a24a36 − a15a26a34+

a16a23a45 − a16a24a35 + a16a25a34 = 0.

Denote b = {bi1i2...i2n+1i2n+2 : 1 ≤ i1 < i2 < · · · < i2n+1 < i2n+2 ≤ m}.

Theorem 1. The algebra of G-invariants is generated by a with syzygies b:

Am
G = 〈a | b〉.

Proof. Let us first prove that the invariants aij generate the field Fm
G of rational invariants for m = 2n.

We use the symplectic analog of Gram-Schmidt normalization: given points A1, . . . , A2n in general
position, we normalize them using G = Sp(2n,R) as follows.

Let e1, . . . , e2n be a symplectic basis of V, i.e., ω(e2k−1, e2k) = 1 and ω(ei, ej) = 0 else. At first
A1 can be mapped to the vector e1. The point A2 can be mapped to the line Re2, and because of
ω(OA1, OA2) = a12 it is mapped to the vector a12e2. Next in mapping A3 we have two constraints
ω(OA1, OA3) = a13, ω(OA2, OA3) = a23, and the point can be mapped to the space spanned by
e1, e2, e3 satisfying those constraints. Continuing like this, we arrive to the following matrix with
columns OAi: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 − a23
a12

− a24
a12

. . . − a2,2n−1
a12

− a2,2n
a12

0 a12 a13 a14 . . . a1,2n−1 a1,2n
0 0 1 0 . . . ∗ ∗
0 0 0 b1234

a12

... ∗ ∗
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 a2n−1,2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where b1234 = a12a34 − a13a24 + a14a23 (this does not vanish in general if n > 1) and by ∗ we denote
some rational expressions in aij that do not fit the table.

If m < 2n then only the first m columns of this matrix have to be kept. If m > 2n then the remaining
points A2n+1, . . . , Am have all their coordinates invariant as the stabilizer of the first 2n points is trivial.
Thus, the invariants are expressed rationally in aij.

To obtain polynomial invariants one clears the denominators in these rational expressions, and so
Am

G is generated by a as well.
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Now the Pfaffian of the skew-symmetric matrix (aij)2k×2k is the square root of the determinant of
the Gram matrix of the vectors OAi, 1 ≤ i ≤ k, with respect to ω. If we take k = n + 1 then the vectors
are linearly dependent and therefore the Pfaffian vanishes. Thus, b are syzygies among the generators
a. That they form a complete set follows from the same normalization procedure as above.

Remark 1. Theorem 1 is basically known: H. Weyl described the generators a as the first fundamental theorem;
his second fundamental theorem gives not only the syzygy denoted above by b, but also several different Pfaffians
of larger sizes. Namely he lists in ([5], VI.1) the syzygies bi1...i2n+2k := Pf(aipiq)1≤p,q≤2n+2k = 0, 1 ≤ k ≤ n.
Those however are abundant. For instance, in the simplest case n = 2

b12345678 = a12b345678 − a13b245678 + a14b235678 − a15b234678 + a16b234578 − a17b234568 + a18b234567.

In general, the larger Pfaffians can be expressed via the smallest through the expansion by minors [15] (this fact
was also noticed in [16]). Here is the corresponding Pfaffian identity (below we denote S2n+1 = {σ ∈ S2n+2 :
σ(1) = 1})

bi1i2...i2n+1i2n+2 =
1
n! ∑

σ∈S2n+1

(−1)sgn(σ)ai1iσ(2)biσ(3) ...iσ(2n+2)
.

In ([3], §9.5) another set of syzygies was added: qi1...i4n+2 = det(ais ,it+2n+1)
2n+1
s,t=1 = 0. These are also

abundant, and should be excluded. For instance, for n = 1 we get

q123456 = a12b3456 − a34b1256 + a35b1246 − a36b1245.

3.3. The General Case: Field of Rational Invariants

Since G is simple, the field of rational invariants is the field of fractions of the algebra of polynomial
invariants: Fm

G = F(Am
G). To obtain its basis one can use the syzygies bi1...i2n+2 = 0 to express all

invariants through ā = {aij : 1 ≤ i ≤ 2n; i < j ≤ m}.
This can be done rationally (with b1...2n �≡ 0 in the denominator), for instance for n = 2 we can

express a56 from the syzygy b123456 = 0 as follows:

a56 = (a12a35a46 − a12a36a45 − a13a25a46 + a13a26a45 + a14a25a36 − a14a26a35 + a15a23a46

− a15a24a36 + a15a26a34 − a16a23a45 + a16a24a35 − a16a25a34)/(a12a34 − a13a24 + a14a23).

In general, we have #ā = 2nm− n(2n + 1) for m ≥ 2n, in summary:

R(x, y) ⊃ Fm
G # R(ā)

d(m,n)⊃ R,

where

d(m, n) =

{
2nm− n(2n + 1) for m ≥ 2n
(m

2 ) for m ≤ 2n.

4. Variation on the Group and Space

Let us consider inclusion of symmetrization, scaling and translations to the transformation group
G. We also discuss contactization of the action.
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4.1. Symmetric Joint Invariants

Invariants of the extended group Ĝ = Sp(2n,R)× Sm on V×m are equivalent to G-invariants
on configurations of unordered sets of points V×m/Sm (which is an orbifold). Denote the algebra of
polynomial Ĝ-invariants on V×m by Sm

G ⊂ Am
G . The projection π : Am

G → Sm
G is given by

π( f ) =
1

m! ∑
σ∈Sm

σ · f .

As a Noetherian algebra Sm
G is finitely generated, yet it is not easy to establish its generating set

explicitly. All linear terms average to zero, π(aij) = 0, but there are several invariant quadratic terms
in terms of the homogeneous decomposition Am

G = ⊕∞
k=0Am

k .
For example, for n = 1, m = 4 we have A4

0 = R, A4
1 = R6 = 〈a12, a13, a14, a23, a24, a34〉, A4

2 = R20

(21 monomials aijakl modulo 1 Plücker relation), etc. Then π(A4
0) = R, π(A4

1) = 0, and π(A4
2) = R2

has generators

6π(a2
12) = a2

12 + a2
13 + a2

14 + a2
23 + a2

24 + a2
34,

12π(a12a13) = a12a13 + a12a14 + a13a14 − a12a23 − a12a24 + a23a24

+ a13a23 − a13a34 − a23a34 + a14a24 + a14a34 + a24a34.

Theorem 2. The field of symmetric rational invariants Fm
G = π(Fm

G ) is the field of fractions Fm
G = F(Sm

G ) and
its transcendence degree is d(m, n).

Proof. This follows from general theorems ([17], §2.5) and discussion in Section 2.

The last statement can be made more constructive: Let � numerate indices (ij) of the basis ā of
Fm

G as in Section 3.3, 1 ≤ � ≤ d = d(m, n). One can check that qk = π(∏�≤k a2
�) are algebraically

independent. Thus, denoting q = (q1, . . . , qd) we obtain the presentation

R(x, y) ⊃ Fm
G

alg⊃ R(q)
d(m,n)⊃ R.

Here is an algorithm to obtain generators of Sm
G .

Proposition 1. Fix an order on generators aij of Am
G, and induce the total lexicographic order on monomials

aσ ∈ R = R[a]. Let Σ be the Gröbner basis of the R-ideal generated by π(aσ). Then elements π(aσ),
contributing to Σ, generate Sm

G = π(Am
G).

Proof. Please note that the algorithm proceeds in total degree of aσ until the Gröbner basis stabilizes.
That the involved π(aσ) generate Sm

G as an algebra (initially they generate the idealR · π(Am
G) ⊂ Am

G)
follows from the same argument as in the proof of Hilbert’s theorem on invariants [1]. (The above π is
the Reynolds operator used there.)

Let us illustrate how this works in the first nontrivial case m = 3, for any n.
In this case, the graded components of S3

G = π(A3
G) have the following dimensions: dimS3

0 = 1,
dimS3

1 = 0, dimS3
2 = 2, dimS3

3 = 1, dimS3
4 = 4, dimS3

5 = 2, dimS3
6 = 7, etc., encoded into the

Poincaré series

P3
S (z) = 1 + 2z2 + z3 + 4z4 + 2z5 + 7z6 + 4z7 + 10z8 + 7z9 + . . . =

1 + z4

(1− z2)2(1− z3)
.
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For the monomial order a12 > a13 > a23 the invariants

I2a = 3π(a2
12) = a2

12 + a2
13 + a2

23, I2b = 3π(a12a13) = a12a13 − a12a23 + a13a23,

I3 = 6π(a2
12a13) = a2

12(a13 + a23)− a2
23(a12 + a13) + a2

13(a12 − a23),

I4 = 3π(a2
12a2

13) = a2
12a2

13 + a2
12a2

23 + a2
13a2

23

generate a Gröbner basis of the ideal R · π(Am
G) with the leading monomials of the corresponding

Gröbner basis equal: a2
12, a12a13, a3

13, a12a3
23, a2

13a2
23, a13a3

23, a4
23.

The Gröbner basis also gives the following syzygy R8:

(4I2
2a + 4I2a I2b + 3I2

2b)I2
2b − (8I2

2a + 4I2a I2b + 14I2
2b)I4 + 4(I2a − 2I2b)I2

3 + 27I2
4 = 0.

In other words, S3
G = 〈I2a, I2b, I3, I4 | R8〉. We also derive a presentation of the field of rational invariants

(2 : 1 means quadratic extension)

R(x, y) ⊃ F3
G

2:1⊃ R(I2a, I2b, I3)
3⊃ R.

4.2. Conformal and Affine Symplectic Groups

For the group G1 = CSp(2n,R) = Sp(2n,R)×R+ the scaling makes the invariants aij relative,
yet of the same weight, so their ratios [a12 : a13 : · · · : am−1,m] or simply the invariants Iij =

aij
a12

are
absolute invariants. These generate the field of invariants of transcendence degree d(m, n)− 1.

For the group G2 = ASp(2n,R) = Sp(2n,R)�R2n the translations do not preserve the origin O
and this makes aij non-invariant. However due to the formula 2ω(A1 A2 A3) = a12 + a23− a13 (or more
symmetrically: a12 + a23 + a31), with the proper orientation of the triangle A1 A2 A3, we easily recover
the absolute invariants aij + ajk + aki.

Alternatively, using the translational freedom, we can move the point A1 to the origin O. Then its
stabilizer in G2 is G = Sp(2n,R) and we compute the invariants of (m− 1) tuples of points A2, . . . , Am

as before. In particular they generate the field of invariants of transcendence degree d(m− 1, n).

4.3. Invariants in the Contact Space

Infinitesimal symmetries of the contact structure Π = Ker(α), α = du − y dx in the contact
space M = R2n+1(x, y, u), where x = (x1, . . . , xn), y = (y1, . . . , yn), are given by the contact vector
field XH with the generating function H = H(x, y, u). Taking quadratic functions H with weights
w(x) = 1, w(y) = 1, w(u) = 2 results in the conformally symplectic Lie algebra, which integrates
to the conformally symplectic group G1 = CSp(2n,R) (taking H of degree ≤ 2 results in the affine
extension of it by the Heisenberg group).

Alternatively, one considers the natural lift of the linear action of G = Sp(2n,R) on V = R2n to
the contactization M and makes a central extension of it. We will discuss the invariants of this action.
Please note that this action is no longer linear, so the invariants cannot be taken to be polynomial,
but can be assumed rational.

4.3.1. The Case n = 1

In the 3-dimensional case the group G1 = GL(2,R) acts on M = R3(x, y, u) as follows:

G1 � g =

(
α β

γ δ

)
: (x, y, u) �→ (αx + βy, γx + δy, f (x, y, u)),

where f (x, y, u) = (αδ− βγ)
(

u− xy
2

)
+

(αx + βy)(γx + δy)
2

.
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This action is almost transitive (no invariants); however there are singular orbits and a relative
invariant R = xy− 2u. Extending the action to multiple copies of M, i.e., considering the diagonal
action of G1 on M×m, results in m copies of this relative invariant, but also in the lifted invariants from
various V×2:

Rk = xkyk − 2uk (1 ≤ k ≤ m), Rij = xiyj − xjyi (1 ≤ i < j ≤ m).

These are all relative invariants of the same weight, therefore their ratios are absolute invariants:

Tk =
Rk
Rm

(1 ≤ k < m), Tij =
Rij

Rm
(1 ≤ i < j ≤ m).

Since uk enter only Rk there are no relations involving those, and the relations on Tij are the same as
for aij, namely they are Plücker relations (since those are homogeneous, they are satisfied by both
Rij and Tij). As previously, we can use them to eliminate all invariants except for T̄ = {Tk, T1i, T2i}:

Tkl =
T1kT2l − T1lT2k

T12
, 3 ≤ k < l ≤ m.

The field of rational invariants for m > 1 is then described as follows:

R(x, y, u) ⊃ Fm
G1
# R(T̄)

3m−4⊃ R.

4.3.2. The General Case

In general, we also have no invariants on M and the following relative invariants on M×m

Rk = xkyk − 2uk (1 ≤ k ≤ m), Rij = xiyj − xjyi (1 ≤ i < j ≤ m)

resulting in absolute invariants Tk, Tij given by the same formulae. Again, using the Pfaffian relations
we can rationally eliminate superfluous generators, and denote the resulting set by T̄ = {Tk, Tij : 1 ≤
k < m, i < j ≤ m, 1 ≤ i ≤ 2n}. This set is independent and contains d̄(m, n) elements, where

d̄(m, n) =

{
(2n + 1)m− n(2n + 1)− 1 for m ≥ 2n
(m

2 ) + m− 1 = (m+1
2 )− 1 for m ≤ 2n.

This d̄(m, n) is thus the transcendence degree of the field of rational invariants:

R(x, y, u) ⊃ Fm
G1
# R(T̄)

d̄(m,n)⊃ R.

5. From Joint to Differential Invariants

When we pass from finite to continuous objects the equivalence problem is solved through
differential invariants. In [7] this was done for submanifolds and functions with respect to our groups
G. After briefly recalling the results, we will demonstrate how to perform the discretization in several
different cases.

5.1. Jets of Curves in Symplectic Vector Spaces

Locally a curve in R2n is given as u = u(t) for t = x1 and u = (x2, . . . , xn, y1, . . . , yn) in the
canonical coordinates (x1, x2, . . . , xn, y1, . . . , yn), ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. The corresponding
jet-space J∞(V, 1) has coordinates t, u, ut, utt, . . . , and Jk is the truncation of it. For instance, J1(V, 1) =
R4n−1(t, u, ut). Please note that dim Jk(V, 1) = 2n + k(2n− 1).
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In the case of dimension 2n = 2, the jet-space is Jk(V, 1) = Rk+2(x, y, yx, . . . , yx..x). Here G =

Sp(2,R) has an open orbit in J1(V, 1), and the first differential invariant is of order 2:

I2 =
yxx

(xyx − y)3 .

There is also an invariant derivation (Dx is the total derivative with respect to x)

∇ =
1

xyx − y
Dx.

By differentiation we get new differential invariants I3 = ∇I2, I4 = ∇2 I2, etc. The entire algebra of
differential invariants is free:

AG = 〈I2 ; ∇〉.
In the general case we denote the canonical coordinates on V = R2n by (t, x, y, z), where x and z

and (n− 1)-dimensional vectors. G = Sp(2n,R) acts on J∞(V, 1). The invariant derivation is equal to

∇ =
1

(tyt − y + xzt − xtz)
Dt.

and the first differential invariant of order 2 is

I2 =
xtztt − xttzt + ytt

(tyt − y + xzt − xtz)3 .

There is one invariant I3 of order 3 independent of I2,∇(I2), one invariant I4 of order 4 independent of
I2,∇(I2), I3,∇2(I2),∇(I3), and so on up to order 2n. Then the algebra of differential invariants of G is
freely generated ([7], §4) so:

AG = 〈I2, I3, . . . , I2n ; ∇〉.

5.2. Symplectic Discretization

Consider first the case n = 1 with coordinates (x, y) on V = R2. Let Ai = (xi, yi), i = 0, 1, 2,
be three close points lying on the curve y = y(x). We assume A1 is in between A0, A2 and omit indices
for its coordinates, i.e., A1 = (x, y).

Let x0 = x − δ and x2 = x + ε. Denote also y′ = y′(x), y′′ = y′′(x), etc. Then from the Taylor
formula we have:

y0 = y− δy′ + 1
2 δ2y′′ − 1

6 δ3y′′′ + o(δ3),

y2 = y + εy′ + 1
2 ε2y′′ + 1

6 ε3y′′′ + o(ε3).

Therefore, the symplectic invariants aij = xiyj − xjyi are:

a12 = ε(xy′ − y) + 1
2 ε2xy′′ + 1

6 ε3xy′′′ + o(ε3),

a01 = δ(xy′ − y)− 1
2 δ2xy′′ + 1

6 δ3xy′′′ + o(δ3),

a02 = (ε + δ)(xy′ − y) + 1
2 (ε

2 − δ2)xy′′

+ 1
6 (ε

3 + δ3)xy′′′ − 1
2 (ε + δ)εδy′′ + o((|δ|+ |ε|)3).

This implies:
a01 − a02 + a12

a01a02a12
=

1
2

y′′

(xy′ − y)3 + o(|δ|+ |ε|).
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Thus, we can extract the invariant exploiting no distance (like ε = δ) but only the topology (ε, δ → 0)
and the symplectic area. This works in any dimension n, and using the coordinates from the previous
subsection we get

lim
A0,A2→A1

Areaω(A0 A1 A2)

Areaω(OA0 A1)Areaω(OA0 A2)Areaω(OA1 A2)
=

2(xtztt − xttzt + ytt)

(tyt − y + xzt − xtz)3 = 2I2.

Similarly, we obtain the invariant derivation (it uses only two points and hence is of the first order)

lim
A0→A1

−−−→
A0 A1

Areaω(OA0 A1)
=

2Dt

(tyt − y + xzt − xtz)
= 2∇.

The other generators I3, I4, . . . (important for n > 1) can be obtained by a higher order discretization,
but the formulae become more involved.

5.3. Contact Discretization

Now we use joint invariants to obtain differential invariants of curves in contact 3-space
W = R3(x, y, u) with respect to the group G = GL(2,R), acting as in §4.3. The curves will be
given as y = y(x), u = u(x) and their jet-space is Jk(W, 1) = R2k+3(x, y, u, yx, ux, . . . , yx..x, ux..x).
The differential invariants are generated in the Lie–Tresse sense ([7], §8.1) as

AG = 〈I1, I2 ; ∇〉.

where

I1 =
ux − y
xyx − y

, I2 =
(xy− 2u)2

(xyx − y)3 yxx , ∇ =
xy− 2u
xyx − y

Dx.

Instead of exploiting the absolute rational invariants Ti, Tij we will work with the relative
polynomial invariants Ri, Rij from Section 4.3. To get absolute invariants we will then have to pass to
weight zero combinations.

Consider three close points Âi = (xi, yi, ui), i = 0, 1, 2, lying on the curve. We again omit indices
for the middle point, so x0 = x− δ, x1 = x and x2 = x + ε. Using the Taylor decomposition as in the
preceding subsection, we obtain

R1 = xy− 2u, R0 − R1 = δ(2u′ − y− xy′) + o(δ),

R01 = δ(xy′ − y) + o(δ), R02 = (ε + δ)(xy′ − y) + o(|ε|+ |δ|),
R12 = ε(xy′ − y) + o(ε), R01 + R12 − R02 = 1

2 εδ(ε + δ)y′′ + o((|ε|+ |δ|)3)

as well as −−−→
A0 A1 = δ(∂x + y′∂y + u′∂y) + o(δ).

Passing to jet-notations, we obtain the limit formulae for basic differential invariants:

I1 = lim
A0→A1

R0 − R1

2R01
+

1
2
= lim

A0→A1

T0 − 1 + T01

2T01
,

1
2

I2 = lim
A0,A2→A1

R2
1(R01 + R12 − R12)

R01R02R12
= lim

A0,A2→A1

T01 + T12 − T12

T01T02T12
,

∇ = lim
A0→A1

R1

R01

−−−→
A0 A1 = lim

A0→A1

−−−→
A0 A1

T01
.

These formulae straightforwardly generalize to invariants of jets of curves in contact manifolds
of dimension 2n + 1, n > 1, in which case there are also other generators obtained by higher
order discretizations.
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5.4. Functions and Other Examples

Let us discuss invariants of jets of functions on the symplectic plane. The action of
G = Sp(2,R) on J0V = V × R(u) # R3(x, y, u), with I0 = u invariant, prolongs to J∞(V) =

R∞(x, y, u, ux, uy, uxx, uxy, uyy, . . . ). Please note that functions can be identified as surfaces in J0V
through their graphs.

For any finite set of points Âk = (xk, yk, uk) the values uk are invariant, and the other invariants
aij are obtained from the projections Ak = (xk, yk). In this way we get the basic first order invariant
(as before we omit indices x1 = x, y1 = y, u1 = y for the reference point A1 in the right-hand side)

I1 = lim
A0,A2→A1

a01(u1 − u2) + a12(u1 − u0)

a01 − a02 + a12
= xux + yuy

as well as two invariant derivations

∇1 =
−−→
OA1 = xDx + yDy, ∇2 = lim

A0→A1

I1

a01

−−−→
A0 A1 − u1 − u0

a01

−−→
OA1 = uxDy − uyDx.

To obtain the second order invariant I2c = u2
xuyy − 2uxuyuxy + u2

yuxx let A0 belong to the line
through A1 in the direction ∇2 (this constraint reduces the second order formula to depend on only
two points), i.e., A0 = (x + εuy, y− εux), A1 = (x, y). Then u0 − u1 = ε2

2 I2c + o(ε2), a01 = εI1 and
letting ε → 0 we obtain

lim
A0→A1

A0 A1‖∇2

u0 − u1

a2
01

=
I2c

2I2
1

.

In the same way we get I2a = x2uxx + 2xyuxy + y2uyy and I2b = xuyuxx − yuxuyy + (yuy − xux)uxy.
These however are not required as the algebra of differential invariants is generated as follows ([7],
§3.1) for some differential syzygiesRi:

AG = 〈I0, I2c ; ∇1,∇2 | R1,R2,R3〉.

Similarly, one can consider surfaces in the contact 3-space (with the same coordinates x, y, u but
different lift of Sp(2,R) extended to GL(2,R)) and higher-dimensional cases. The idea of discretization
of differential invariants applies to other problems treated in [7].

6. Relation to Binary and Higher Order Forms

According to the Sylvester theorem [9] a general binary form p ∈ C[x, y] of odd degree 2m− 1
with complex coefficients can be written as

p(x, y) =
m

∑
i=1

(αix + βiy)2m−1.

This decomposition is determined up to permutation of linear factors and independent multiplication
of each of them by a (2m− 1)-th root of unity.

In other words, we have the branched cover of order km = (2m− 1)mm!

×m(C2)→ S2m−1C2

and the deck group of this cover is Sm �Z×m
2m−1.

Please note that in the real case, due to uniqueness of the odd root of unity, the corresponding
cover over an open subset of the base

×m(R2)→ S2m−1R2
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has the deck group Sm.
With this approach the invariants of real binary forms are precisely the joint symmetric invariants

studied in this paper, and for complex forms one must additionally quotient by Z×m
2m−1, which is

equivalent to passing from aij to a2m−1
ij and other invariant combinations (example for m = 4:

a3
12a2

13a2
14a2

23a2
24a3

34) and subsequently averaging by the map π.
Other approaches to classification of binary forms, most importantly through differential

invariants [2,8], can be related to this via symplectic discretization.

Remark 2. Please note that the standard "root cover" C2m → S2m−1C2:

(a0, a1, . . . , a2m−1) �→ (p0, p1, . . . , p2m−1),
2m−1

∑
i=0

pixiy2m−i−1 = a0

2m−1

∏
i=1

(x− aiy)

has order (2m− 1)! < km. Polynomial SL(2,C)-invariants of binary forms with this approach correspond to
functions on the orbifold C2m/S2m.

The above idea extends further to ternary and higher valence forms (see [18] for the differential
invariants approach and [19] for an approach using joint differential invariants) with the Waring
decompositions [10] as the cover, but here the group G is no longer symplectic. We expect all the ideas
of the present paper to generalize to the linear and affine actions of other reductive groups G.
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Abstract: In his 1892 paper, L. Bianchi noticed, among other things, that quite simple transformations
of the formulas that describe the Bäcklund transformation of the sine-Gordon equation lead to what is
called a nonlocal conservation law in modern language. Using the techniques of differential coverings,
we show that this observation is of a quite general nature. We describe the procedures to construct such
conservation laws and present a number of illustrative examples.
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1. Introduction

In [1], L. Bianchi, dealing with the celebrated Bäcklund auto-transformation (I changed the
original notation slightly)

∂(u− w)

∂x
= sin(u + w),

∂(u + w)

∂y
= sin(u− w) (1)

for the sine-Gordon equation
∂2(2u)
∂x∂y

= sin(2u) (2)

in the course of intermediate computations (see ([1], p. 10)) notices that the function

ψ = ln
∂u
∂C

,

where C is an arbitrary constant on which the solution u may depend, enjoys the relations

∂ψ

∂x
= cos(u + w),

∂ψ

∂y
= cos(u− w).

Reformulated in modern language, this means that the 1-form

ω = cos(u + w) dx + cos(u− w) dy

is a nonlocal conservation law for Equation (1).
It became clear much later, some 100 years after the publication of [1], that nonlocal conservation

laws are important invariants of PDEs and are used in numerous applications, e.g.,: numerical
methods [2,3], sociological models [4,5], integrable systems [6], electrodynamics [7,8], mechanics [9–11],
etc.

Symmetry 2020, 12, 1760; doi:10.3390/sym12111760 www.mdpi.com/journal/symmetry163
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Actually, Bianchi’s observation is of a very general nature and this is shown below.
In Section 2, I shortly introduce the basic constructions in nonlocal geometry of PDEs,

i.e., the theory of differential coverings, [12]. Section 3 contains an interpretation of the result by
L. Bianchi in the most general setting. In Section 4, a number of examples is discussed.

Everywhere below we use the notation F (·) for the R-algebra of smooth functions, D(·) for the
Lie algebra of vector fields, and Λ∗(·) = ⊕k≥0Λk(·) for the exterior algebra of differential forms.

2. Preliminaries

Following [13], we deal with infinite prolongations E ⊂ J∞(π) of smooth submanifolds in Jk(π),
where π : E → M is a smooth locally trivial vector bundle over a smooth manifold M, dim M = n,
rank π = m. These E are differential equations for us. Solutions of E are graphs of infinite jets that lie
in E . In particular, E = J∞(π) is the tautological equation 0 = 0.

The bundle π∞ : E → M is endowed with a natural flat connection C : D(M)→ D(E ) called the
Cartan connection. Flatness of C means that C[X,Y] = [CX, CY] for all X, Y ∈ D(M). The distribution
on E spanned by the fields of the form CX (the Cartan distribution) is Frobenius integrable. We denote
it by C ⊂ D(E ) as well.

A (higher infinitesimal) symmetry of E is a π∞-vertical vector field S ∈ D(E ) such that [X, C ] ⊂ C .
Consider the submodule Λk

h(E ) generated by the forms π∗∞(θ), θ ∈ Λk(M). Elements ω ∈ Λk
h(E )

are called horizontal k-forms. Generalizing slightly the action of the Cartan connection, one can apply
it to the de Rham differential d : Λk(M)→ Λk+1(M) and obtain the horizontal de Rham complex

0 �� F (E ) �� . . . �� Λk
h(E )

dh �� Λk+1
h (E ) �� . . . �� Λn

h(E ) �� 0

on E . Elements of its (n− 1)st cohomology group Hn−1
h (E ) are called conservation laws of E . We always

assume E to be differentially connected which means that H0
h(E ) = R.

Remark 1. The concept of a differentially connected equation reflects Vinogradov’s correspondence
principle [14], (p. 195): when ‘secondary dimension’ (dimension of the Cartan distribution) Dim → 0,
the objects of PDE geometry degenerate to their counterparts in geometry of finite-dimensional manifolds.
Following this principle, we informally have

lim
Dim→0

Hi
h(E ) = Hi

dR(M).

Since H0
dR(M) is responsible for topological connectedness of M, the group H0

h(E ) stands for differential one.

Coordinates. Consider a trivialization of π with local coordinates x1, . . . , xn in U ⊂ M and u1, . . . , um

in the fibers of π|U . Then in π−1
∞ (U ) ⊂ J∞(π) the adapted coordinates ui

σ arise and the Cartan
connection is determined by the total derivatives

C :
∂

∂xi �→ Di =
∂

∂xi + ∑
j,σ

uj
σi

∂

∂uj
σ

.

Let F = (F1, . . . , Fr), where Fj are smooth functions on Jk(π). The the infinite prolongation of the locus

{ z ∈ Jk(π) | F1(z) = · · · = Fr(z) = 0 } ⊂ Jk(π)

is defined by the system

E = EF = { z ∈ J∞(π) | Dσ(Fj)(z) = 0, j = 1, . . . , r, |σ| ≥ 0 },
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where Dσ denotes the composition of the total derivatives corresponding to the multi-index σ. The
total derivatives, as well as all differential operators in total derivatives, can be restricted to infinite
prolongations and we preserve the same notation for these restrictions. Given an E , we always choose
internal local coordinates in it for subsequent computations. To restrict an operator to E is to express
this operator in terms of internal coordinates.

Any symmetry of E is an evolutionary vector field

Eϕ = ∑ Dσ(ϕj)
∂

∂uj
σ

(summation on internal coordinates), where the functions ϕ1, . . . , ϕm ∈ F (E ) satisfy the system

∑
σ,α

∂Fj

∂uα
σ

Dσ(ϕα) = 0, j = 1, . . . , r.

A horizontal (n− 1)-form

ω = ∑
i

ai dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

defines a conservation law of E if

∑
i
(−1)i+1Di(ai) = 0.

We are interested in nontrivial conservation laws, i.e., such that ω is not exact.
Finally, E is differentially connected if the only solutions of the system

D1( f ) = · · · = Dn( f ) = 0, f ∈ F (E ),

are constants.
Consider now a locally trivial bundle τ : Ẽ → E such that there exists a flat connection C̃ in

π∞ ◦ τ : Ẽ → M. Following [12], we say that τ is a (differential) covering over E if one has

τ∗(C̃X) = CX

for any vector field X ∈ D(M). Objects existing on Ẽ are nonlocal for E : e.g., symmetries of Ẽ are
nonlocal symmetries of E , conservation laws of Ẽ are nonlocal conservation laws of E , etc. A derivation
S : F (E )→ F (Ẽ ) is called a nonlocal shadow if the diagram

F (E )
CX ��

S
��

F (E )

S
��

F (Ẽ )
C̃X �� F (Ẽ )

is commutative for any X ∈ D(M). In particular, any symmetry of the equation E , as well as
restrictions S̃

∣∣
F (E ) of nonlocal symmetries may be considered as shadows. A nonlocal symmetry is

said to be invisible if its shadow S̃
∣∣
F (E ) vanishes.
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A covering τ is said to be irreducible if Ẽ is differentially connected. Two coverings are equivalent
if there exists a diffeomorphism g : Ẽ1 → Ẽ2 such that the diagrams

Ẽ1
g

��

τ1
��

Ẽ2

τ2
��

E ,

D(Ẽ1)
g∗

�� D(Ẽ2)

D(M)

C̃1

��

C̃2

��

are commutative. Note also that for any two coverings their Whitney product is naturally defined.
A covering is called linear if τ is a vector bundle and the action of vector fields C̃X preserves the
subspace of fiber-wise linear functions in F (Ẽ ).

In the case of 2D equations, there exists a fundamental relation between special type of coverings
over E and conservation laws of the latter. Let τ be a covering of rank l < ∞. We say that τ is an
Abelian covering if there exist l independent conservation laws [ωi] ∈ H1

h(E ), i = 1, . . . , l, such that the
forms τ∗(ωi) are exact. Then equivalence classes of such coverings are in one-to-one correspondence
with l-dimensional R-subspaces in H1

h(E ).

Coordinates. Choose a trivialization of the covering τ and let w1, . . . , wl , . . . be coordinates in fibers
(the are called nonlocal variables). Then the covering structure is given by the extended total derivatives

D̃i = Di + Xi, i = 1, . . . , n,

where
Xi = ∑

α

Xα
i

∂

∂wα

are τ-vertical vector fields (nonlocal tails) enjoying the condition

Di(Xj)− Dj(Xi) + [Xi, Xj] = 0, i < j. (3)

Here Di(Xj) denotes the action of Di on coefficients of Xj. Relations (3) (flatness of C̃ ) amount to the
fact that the manifold Ẽ endowed with the distribution C̃ coincides with the infinite prolongation of
the overdetermined system

∂wα

∂xi = Xα
i ,

which is compatible modulo E .
Irreducible coverings are those for which the system of vector fields D̃1, . . . , D̃n has no nontrivial

integrals. If τ̄ is another covering with the nonlocal tails X̄i = ∑ X̄β
i ∂/∂w̄β, then the Whitney product

τ ⊕ τ̄ of τ and τ̄ is given by

D̃i = Di + ∑
α

Xα
i

∂

∂wα
+ ∑

β

X̄β
i

∂

∂w̄β
.

A covering is Abelian if the coefficients Xα
i are independent of nonlocal variables wj. If n = 2 and

ωα = Xα
1 dx1 + Xα

2 dx2, α = 1, . . . , l, are conservation laws of E then the corresponding Abelian covering
is given by the system

∂wα

∂xi = Xα
i , i = 1, 2, α = 1, . . . , l,

or
D̃i = Di + ∑

α

Xα
i

∂

∂wα
.

Vice versa, if such a covering is given, then one can construct the corresponding conservation law.
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The horizontal de Rham differential on Ẽ is d̃h = ∑i dxi ∧ D̃i. A covering is linear if

Xα
i = ∑

β

Xα
i,βwβ, (4)

where Xα
i,β ∈ F (E ).

Remark 2. Denote by Xi the F (E )-valued matrix (Xα
i,β) that appears in (4). Then Equation (3) may be

rewritten as
Di(Xj)− Dj(Xi) + [Xi, Xj] = 0.

for linear coverings. Thus, a linear covering defines a zero-curvature representation for E and vice versa.

A nonlocal symmetry in τ is a vector field

Sϕ,ψ = ∑ D̃σ(ϕj)
∂

∂uj
σ

+ ∑ ψα ∂

∂wα
,

where the vector functions ϕ = (ϕ1, . . . , ϕm) and ψ = (ψ1, . . . , ψα, . . . ) on Ẽ satisfy the system of
equations

∑
∂Fj

∂uj
σ

D̃σ(ϕj) = 0, (5)

D̃i(ψ
α) = ∑

∂Xα
i

∂uj
σ

D̃σ(ϕj) + ∑
∂Xα

i
∂wβ

ψβ. (6)

Nonlocal shadows are the derivations

Ẽϕ = ∑ D̃σ(ϕj)
∂

∂uj
σ

,

where ϕ satisfies Equation (5), invisible symmetries are

S0,ψ = ∑ ψα ∂

∂wα
,

where ψ satisfies

D̃i(ψ
α) = ∑

∂Xα
i

∂wβ
ψβ. (7)

In what follows, we use the notation τI : Ẽ I → Ẽ for the covering defined by Equation (7).

Remark 3. Equation (7) defines a linear covering over Ẽ . Due to Remark 2, we see that for any non-Abelian
covering we obtain in such a way a nonlocal zero-curvature representation with the matrices Xi = (∂Xα

i /∂wβ).

Remark 4. The covering τI : Ẽ I → Ẽ is the vertical part of the tangent covering t : T Ẽ → Ẽ , see the
definition in [15].

3. The Main Result

From now on we consider two-dimensional scalar equations with the independent variables x
and y. We shall show that any such an equation that admits an irreducible covering possesses a
(nonlocal) conservation law.
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Example 1. Let us revisit the Bianchi example discussed in the beginning of the paper. Equation (1) define
a one-dimensional non-Abelian covering τ : Ẽ = E × R → E over the sine-Gordon Equation (2) with the
nonlocal variable w. Then the defining Equation (7) for invisible symmetries in this covering are

∂ψ

∂x
= − cos(u + w)ψ,

∂ψ

∂y
= − cos(u− w)ψ.

This is a one-dimensional linear covering over Ẽ which is equivalent to the Abelian covering

∂ψ̄

∂x
= − cos(u + w),

∂ψ̄

∂y
= − cos(u− w),

where ψ̄ = ln ψ. Thus, we obtain the nonlocal conservation law

ω = − cos(u + w) dx− cos(u− w) dy

of the sine-Gordon equation.

The next result shows that Bianchi’s observation is of a quite general nature.

Proposition 1. Let τ : Ẽ → E be a one-dimensional non-Abelian covering over E . Then, if τ is irreducible,
τI : Ẽ I → Ẽ defines a nontrivial conservation law of the equation Ẽ (and, consequently, of E too).

Proof. Consider the total derivatives

DI
x = D̃x +

∂X
∂w

ψ
∂

∂ψ
= Dx + X

∂

∂w
+

∂X
∂w

ψ
∂

∂ψ

DI
y = D̃y +

∂Y
∂w

ψ
∂

∂ψ
= Dy + Y

∂

∂w
+

∂Y
∂w

ψ
∂

∂ψ

on E I and assume that a ∈ F (Ẽ ) is a common nontrivial integral of these fields:

DI
x(a) = DI

y(a) = 0, a �= const . (8)

Choose a point in E I and assume that the formal series

a0 + a1ψ + · · ·+ ajψ
j + . . . , aj ∈ F (Ẽ ), (9)

converges to a in a neighborhood of this point. Substituting relations (9) to (8) and equating coefficients
at the same powers of ψ, we get

D̃x(aj) + j
∂X
∂w

aj = 0, D̃y(aj) + j
∂Y
∂w

aj = 0, j = 0, 1, . . . ,

and, since τ is irreducible, this implies that a0 = k0 = const and

D̃x(aj)

aj
= j

D̃x(a1)

a1
,

D̃y(aj)

aj
= j

D̃y(a1)

a1
.

Hence, aj = kj(a1)
j, j > 0. Substituting these relations to (9), we see that a = a(θ), where θ = a1ψ,

a1 ∈ F (E ). Then Equation (8) take the form

ȧψ

(
D̃x(a1) +

∂X
∂w

)
= 0, ȧψ

(
D̃y(a1) +

∂Y
∂w

)
= 0, ȧ =

da
dθ

.
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Thus
∂X
∂w

= −D̃x(a1),
∂Y
∂w

= −D̃y(a1)

and the function w + a1 is a nontrivial integral of D̃x and D̃y. Contradiction.
Finally, repeating the scheme of Example 1, we pass to the equivalent covering by setting ψ̄ = ln ψ

and obtain the nontrivial conservation law

ω =
∂X
∂w

dx +
∂Y
∂w

dy

on E I.

Indeed, Bianchi’s result has a further generalization. To formulate the latter, let us say that a
covering τ : Ẽ → E is strongly non-Abelian if for any nontrivial conservation law ω of the equation E

its lift τ∗(ω) to the manifold Ẽ is nontrivial as well. Now, a straightforward generalization of
Proposition 1 is

Proposition 2. Let τ : Ẽ → E be an irreducible covering over a differentially connected equation. Then τ is a
strongly non-Abelian covering if and only if the covering τI is irreducible.

We shall now need the following construction. Let τ : Ẽ → E be a linear covering. Consider
the fiber-wise projectivization τP : Ẽ P → E of the vector bundle τ. Denote by p : Ẽ → E P the natural
projection. Then, obviously, the projection p∗(C̃ ) is well defined and is an n-dimensional integrable
distribution on E P. Thus, we obtain the following commutative diagram of coverings

Ẽ
p

��

τ
��

E P

τP
		

E ,

where rank(p) = 1 and rank(τP) = rank(τ)− 1.

Proposition 3. Let τ : Ẽ → E be an irredicible covering. Then the covering τP is irreducible as well.

Coordinates. Let rank(τ) = l > 1 and

wα
xi =

l

∑
β=1

Xα
i,βwβ, i = 1, . . . , n, α = 1, . . . , l, (10)

be the defining equations of the covering τ, see Equation (4). Choose an affine chart in the fibers of τP.
To this end, assume for example that wl �= 0 and set

w̄α =
wα

wl , l = 1, . . . , l − 1,

in the domain under consideration. Then from Equation (10) it follows that the system

w̄α
xi = Xα

i,l − Xl
i,l w̄

α +
l−1

∑
β=1

Xα
i,βw̄β − w̄α

l−1

∑
β=1

Xl
i,βw̄β, i = 1, . . . , n, α = 1, . . . , l − 1.

locally provides the defining equation for the covering τP.
We are now ready to state and prove the main result.
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Theorem 1. Assume that a differentially connected two-dimensional equation E admits a nontrivial covering
τ : Ẽ → E of finite rank. Then it possesses at least one nontrivial (nonlocal) conservation law.

Proof. Actually, the proof is a description of a procedure that allows one to construct the desired
conservation law.

Note first that we may assume the covering τ to be irreducible. Indeed, otherwise the space Ẽ

is foliated by maximal integral manifolds of the distribution C̃ . Let l0 denote the codimension of the
generic leaf and l = rank(τ). Then

• l > l0, because τ is a nontrivial covering;
• the integral leaves project to E surjectively, because E is a differentially connected equation.

This means that in vicinity of a generic point we can consider τ as an l0-parametric family of irreducible
coverings whose rank is r = l − l0 > 0. Let us choose one of them and denote it by τ0 : E0 → E .

If τ0 is not strongly non-Abelian, then this would mean that E possesses at least one nontrivial
conservation law and we have nothing to prove further. Assume now that the covering τ0 is strongly
non-Abelian. Then due to Proposition 2 the linear covering τI

0 is irreducible and by Proposition 3

its projectivization τ1 = (τI
0)

P possesses the same property and rank(τ1) = r − 1. Repeating the
construction, we arrive to the diagram

E I
0

p

��

τI
0





. . . E I
r−2

p

��

τI
r−2

��E E0
τ0�� (E I

0 )
P
= E1

τ1=(τI
0)

P
�� . . .�� (E I

r−2)
P
= Er−1,

τr−1=(τI
r−2)

P
��

where rank(τi) = l − i. Thus, in r− 1 steps at most we shall arrive to a one-dimensional irreducible
covering and find ourselves in the situation of Proposition 1 and this finishes the proof.

4. Examples

Let us discuss several illustrative examples.

Example 2. Consider the Korteweg-de Vries equation in the form

ut = uux + uxxx (11)

and the well known Miura transformation [16]

u = wx − 1
6

w2.

The last formula is a part of the defining equations for the non-Abelian covering

wx = u +
1
6

w2,

wt = uxx +
1
3

wux +
1
3

u2 +
1

18
w2u,

the covering equation being

wt = wxxx − 1
6

w2wx,
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i.e., the modified KdV equation. Then the corresponding covering τI is defined by the system

ψx =
1
3

wψ,

ψt =
1
3

(
ux +

1
3

wu
)

ψ

that, after relabeling ψ �→ 3 ln ψ gives us the nonlocal conservation law

ω = w dx +

(
ux +

1
3

wu
)

dt

of the KdV equation.

Example 3. The well known Lax pair, see [17], for the KdV equation may be rewritten in terms of zero-curvature
representation

Dx(T)− Dt(X) + [X, T] = 0.

The (2× 2) matrices X and T become much simpler if we present the equation in the form

ut = 6uux − uxxx.

In this case, they are

X =

(
0 1

u− λ 0

)
, T =

( −ux 2(u + 2λ)

2u2 − uxx + 2λu− 4λ2 ux

)
,

λ ∈ R being a real parameter. As it follows from Remark 2, this amounts to existence of the two-dimensional
linear covering τ given by the system

w1,x = w2,

w1,t = −uxw1 + 2(u + 2λ)w2,

w2,x = (u− λ)w1,

w2,t = (2u2 − uxx + 2λu− 4λ2)w1 + uxw2.

Let us choose for the affine chart the domain w2 �= 0 and set ψ = w1/w2. Then the covering τP is described by
the system

ψx = 1− (u− λ)ψ,

ψt = 2(u + 2λ)− 2uxψ− (2u2 − uxx + 2λu− 4λ2)ψ2,

while τ1 = (τP)
I is given by

ψ̃x = (λ− u)ψ̃,

ψ̃t = −2
(
ux + (2u2 − uxx + 2λu− 4λ2)ψ

)
ψ̃.

Thus, we obtain the conservation law

ω = (λ− u) dx− 2
(
ux + (2u2 − uxx + 2λu− 4λ2)ψ

)
dt

that depends on the nonlocal variable ψ.
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Example 4. Consider the potential KdV equation in the form

ut = 3u2
x + uxxx

Its Bäcklund auto-transformation is associated to the covering τ

wx = λ− ux − 1
2
(w− u)2,

wt = 2λ2 − 2λux − u2
x − uxxx + 2uxx(w− u)− (λ + ux)(w− u)2,

where λ ∈ R, see [18]. Then the covering τI is

ψx = −(w− u)ψ,

ψt = 2
(
uxxψ− (λ + ux)(w− u)

)
ψ,

which leads to the nonlocal conservation law

ω = −(w− u) dx + 2
(
uxxψ− (λ + ux)(w− u)

)
dt

of the potential KdV equation.

Example 5. The Gauss-Mainardi-Codazzi equations read

uxy =
g− f h
sin u

, fy = gx +
h− g cos u

sin u
ux, gy = hx − f − g cos u

sin u
uy, (12)

see [19]. This is an under-determined system, and imposing additional conditions on the unknown functions u,
f , g, and h one obtains equations that describe various types of surfaces in R2, cf. [20]. System (12) always
admits the following C-valued zero-curvature representation

Dx(Y)− Dy(X) + [X, Y] = 0

with the matrices

X =
i
2

⎛⎜⎝ ux
eiu f − g

sin u
e−iu f − g

sin u
−ux

⎞⎟⎠ , Y =
i
2

⎛⎜⎝ 0
eiug− h

sin u
e−iug− h

sin u
0

⎞⎟⎠
The corresponding two-dimensional linear covering τ is defined by the system

w1
x = uxw1 +

eiu f − g
sin u

w2,

w1
y =

eiug− h
sin u

w2,

w2
x =

e−iu f − g
sin u

w1 − uxw2,

w2
y =

e−iug− h
sin u

w1.

Hence, the covering τP in the domain w2 �= 0 is

ψx =
eiu f − g

sin u
+ 2uxψ− e−iu f − g

sin u
ψ2, ψy =

eiug− h
sin u

− e−iug− h
sin u

ψ2.

Thus, the covering (τP)
I, given by

ψ̃x = 2
(

ux − e−iu f − g
sin u

ψ

)
ψ̃, ψ̃y = −2

e−iug− h
sin u

ψψ̃,
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defines the nonlocal conservation law

ω =

(
ux − e−iu f − g

sin u
ψ

)
dx− e−iug− h

sin u
ψ dy

of the Gauss-Mainardi-Codazzi equations.

Example 6. The last example shows that the above described techniques fail for infinite-dimensional coverings
(such coverings are typical for equations of dimension greater than two).

Consider the equation
uyy = utx + uyuxx − uxuxy

that arises in the theory of integrable hydrodynamical chains, see [21]. This equation admits the covering τ with
the nonlocal variables wi, i = 0, 1, . . . , that enjoy the defining relations

w0
t + uyw1

x = 0, w0
y + uxw1

x = 0,

wi
x = wi+1, i ≥ 0,

wi
t + Di

x(uyw1
x) = 0, wi

y + Di
x(uxw1

x) = 0, i ≥ 1.

see [22]. This is a linear covering, but its projectivization does not lead to construction of conservation laws.

5. Discussion

We described a procedure that allows one to associate, in an algorithmic way, with any nontrivial
finite-dimensional covering over a differentially connected equation a nonlocal conservation law.
Nevertheless, this method fails in the case of infinite-dimensional coverings. It is unclear, at the
moment at least, whether this is an immanent property of such coverings or a disadvantage of the
method. I hope to clarify this in future research.
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Abstract: A geometrical formulation for adjoint-symmetries as one-forms is studied for general
partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning
of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this
formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are
shown to have another geometrical formulation given by one-forms that are invariant under the flow
generated by the system on the solution space. This result is generalized to systems of evolution
equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up
to a functional multiplier of a normal one-form associated with the constraint equations. All of the
results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.

Keywords: adjoint-symmetry; one-form; symmetry; vector field; geometrical formulation

1. Introduction

Symmetries are a fundamental coordinate-free structure of a partial differential equation (PDE).
In geometrical terms, an infinitesimal symmetry is an evolutionary (vertical) vector field that is tangent
to the solution space of a PDE, where the components of the vector field are the solutions of the
linearization of the PDE on its solution space (see, e.g., [1–4]).

Knowledge of the symmetries of a PDE can be used to map given solutions into other solutions,
find invariant solutions, detect and find mappings in a target class of PDEs, detect integrability, and find
conservation laws through Noether’s theorem when a PDE has a variational (Lagrangian) structure.

Solutions of the adjoint linearization of a PDE on its solution space are known as
adjoint-symmetries. This terminology was first introduced and explored for ordinary differential
equations (ODEs) in [5–8] and then generalized to PDEs in [9,10] (see [11] for a recent overview
for PDEs). When a PDE lacks a variation structure, then its adjoint-symmetries will differ from
its symmetries.

Knowledge of the adjoint-symmetries of a PDE can be used for several purposes just as symmetries
can. Specifically, solutions of the PDE can be found analogously to the invariant surface condition
associated with a symmetry; mappings into a target class of PDEs can be detected and found
analogously to characterizing the symmetry structure of the target class; integrability can be detected
analogously to the existence of higher order symmetries; and conservation laws can be determined
analogously to symmetries that satisfy a variational condition. In particular, the counterpart of
variational symmetries for a general PDE is provided by multipliers, which are well known to be
adjoint-symmetries that satisfy a Euler–Lagrange condition.

Symmetry 2020, 12, 1547; doi:10.3390/sym12091547 www.mdpi.com/journal/symmetry175
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However, a simple geometrical meaning (apart from abstract formulations) for adjoint-symmetries
has yet to be developed in general for PDEs. Several significant new steps toward this goal will be
taken in the present paper.

Firstly, for general PDE systems, adjoint-symmetries will be shown to correspond to evolutionary
(vertical) one-forms that functionally vanish on the solution space of the system. This formulation has
two interesting applications. It will provide a geometrical derivation of a well-known formula that
generates a conservation law from a pair consisting of a symmetry and an adjoint-symmetry [9,12].
It also will yield three different actions of symmetries on adjoint-symmetries from Cartan’s formula
for the Lie derivative, providing a geometrical formulation of some recent work that used an algebraic
viewpoint [13].

Secondly, for evolution systems, these adjoint-symmetry one-forms will be shown to have the
structure of a Lie derivative of a simpler underlying one-form, utilizing the flow generated by
the system. As a result, adjoint-symmetries of evolution systems will geometrically correspond
to one-forms that are invariant under the flow on the solution space of the system. This directly
generalizes the geometrical meaning of adjoint-symmetries known for ODEs [8].

Thirdly, a bridge between the preceding results for general PDE systems and evolution systems
will be developed by considering evolution systems with spatial constraints. These systems are
ubiquitous in applied mathematics and mathematical physics, for example: Maxwell’s equations,
incompressible fluid equations, magnetohydrodynamical equations, and Einstein’s equations. For such
systems, invariance of the adjoint-symmetry one-form under the constrained flow will be shown to
hold up to a functional multiple of the normal one-form associated with the constraint equations.

Throughout, the approach will be concrete, rather than abstract, so that the results can be
readily understood and applied to specific PDE systems of interest in applied mathematics and
mathematical physics.

The rest of the paper is organized as follows. Section 2 discusses the evolutionary form of
vector fields and its counterpart for one-forms in the mathematical framework of calculus in jet
space, which will underlie all of the main results. Section 3 reviews the geometrical formulation of
symmetries and presents the counterpart geometrical formulation of adjoint-symmetries. In addition,
some examples of adjoint-symmetries of physically interesting PDE systems are discussed. Section 4
gives the two applications of adjoint-symmetry one-forms. Section 5 develops the main results for
adjoint-symmetries of evolution systems and extends these results to constrained evolution systems.
Some concluding remarks are made in Section 6.

2. Vector Fields, One-Form Fields, and Their Evolutionary Form

To begin, some essential tools [3,11,14] from calculus in jet space will be reviewed. This will set
the stage for a discussion of the evolutionary form of vector fields and its counterpart for one-forms,
as needed for the main results in the subsequent sections.

Independent variables are denoted xi, i = 1, . . . , n, and dependent variables are denoted uα,
α = 1, . . . , m. Derivative variables are indicated by subscripts employing a multi-index notation:
I = {i1, . . . , iN}, uα

I = uα
i1···iN

:= ∂xi1 · · · ∂xiN uα, |I| = N; I = ∅, uα
I := uα, |I| = 0. Some useful notation

is as follows: ∂ku will denote the set {uα
I }|I|=k of all derivative variables of order k ≥ 0; u(k) will denote

the set {uα
I }0≤|I|≤k of all derivative variables of all orders up to k ≥ 0. The summation convention of

summing over any repeated (multi-)index in an expression is used throughout.
Jet space is the coordinate space J = (xi, uα, uα

j , . . .). A smooth function uα = φα(x) : Rn → Rm

determines a point in J: at any xi = (x0)
i; the values (u0)

α := φα(x0) and the derivative values
(u0)

α
J := ∂j1 · · · ∂jN φα(x0) for all orders N ≥ 1 give a map,

uα = φα(x)
x0→ ((x0)

i, (u0)
α, (u0)

α
j , . . .) ∈ J. (1)
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In jet space, the primitive geometric objects consist of partial derivatives ∂xi , ∂uα
J
, and differentials

dxi, duα
J . They are related by duality (hooking) relations:

∂xi&dxj = δ
j
i , (2)

∂uα
I
&duβ

J = δ
β
α δI

J . (3)

It will be useful to also introduce the geometric contact one-forms:

Θα
I = duα

I − uα
Iidxi. (4)

Under the evaluation map (1), the pull back of a contact one-form vanishes.
Total derivatives are given by Di = ∂xi + uα

i J∂uα
J
, which corresponds to the chain rule under

the evaluation map (1). Higher total derivatives are defined by DJ = Dj1 · · ·DjN , J = {j1, . . . , jN},
|J| = N. For J = ∅, D∅ = id is the identity operator, where |∅| = 0. In particular, DJuα = uα

J ,
and DJduα = duα

J .

A differential function is a function f (x, u(k)) defined on a finite jet space J(k) =

(xi, uα, uα
j , . . . , uα

j1···jk ) of order k ≥ 0. The Frechet derivative of a differential function f is given by

f ′ = fuα
I
DI (5)

which acts on (differential) functions Fα. The adjoint-Frechet derivative of a differential function f is
given by

( f ′∗)α = (−1)|I|DI fuα
I

(6)

which acts on (differential) functions F, where the right-hand side is viewed as a composition
of operators.

The Frechet second-derivative is given by

f ′′(F1, F2) = f
uα

I uβ
J
(DI Fα

1 )(DJ Fβ
2 ). (7)

This expression is symmetric in the pair of functions (Fα
1 , Fα

2 ).
The commutator of two differential functions f1 and f2 is given by [ f1, f2] = f ′2( f1)− f ′1( f2).
The Euler operator (variational derivative) is given by

Euα = (−1)|I|DI∂uα
I
. (8)

It characterizes total divergence expressions: Euα( f ) = 0 holds identically iff f = DiFi for some
differential vector function Fi(x, u(k)). The product rule takes the form:

Euα( f1 f2) = f ′1
∗( f2)α + f ′2∗( f1)α. (9)

The higher Euler operators
EI

uα = (I
J)(−1)|J|DJ∂uα

I J
(10)

characterize higher order total derivative expressions: EI
uα( f ) = 0 holds identically iff f =

Di1 · · ·Di|I|F
i1...i|I| for some differential tensor function Fi1...i|I|(x, u(k)).

The Frechet derivative is related to the Euler operator by:

f ′(F) = FαEuα( f ) + DiΓi(F; f ), Γi(F; f ) = (DJ Fα)Euα
i J
( f ). (11)
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The Frechet derivative and its adjoint are related by

F2 f ′(F1)− Fα
1 f ′∗(F2)α = DiΨi(F1, F2; f ), Ψi(F1, F2; f ) = (DKF2)(DJ Fα

1 )EK
uα

i J
( f ). (12)

Evolutionary Vector Fields and One-Form Fields

A vector field in jet space is defined as the geometric object,

Pi∂xi + Pα
I ∂uα

I
(13)

whose components are differential functions. Similarly, a one-form field in jet space is defined as the
geometric object,

Qidxi + QI
αduα

I (14)

whose components are differential functions. Total derivatives Di = ∂xi + uα
iI∂uα

I
represent trivial

vector fields that annihilate contact one-forms: Di&Θα
J = 0.

Geometric counterparts of partial derivatives ∂uα
J

are evolutionary (vertical) differentials duα
J ,

where d is the evolutionary version of d: d2 = 0, dxi = 0. They satisfy the duality (hooking) relation:

∂uα
I
&duβ

J = δ
β
α δI

J . (15)

An evolutionary (vertical) vector field is the geometric object

Pα
I ∂uα

I
(16)

whose components are differential functions. Every vector field X = Pi∂xi + Pα
I ∂uα

I
has a unique

evolutionary form X̂ = X − PiDi = P̂α
I ∂uα

I
given by the components P̂α

I = Pα
I − Piuα

iI . Its dual
counterpart is an evolutionary (vertical) one-form field,

QI
αduα

I (17)

whose components are differential functions.
For later developments, it will be useful to define the functional pairing relation,

〈Pα
I ∂uα

I
, QI

αduα
I 〉 =

∫
Pα

I QI
α dx (18)

between evolutionary vector fields and evolutionary one-form fields. In the local form, this pairing is
given by the expression:

Pα
I QI

α mod total D. (19)

Two evolutionary one-forms will be considered functionally equivalent iff their pairings with an
arbitrary evolutionary vector field agree,

〈Pα
I ∂uα

I
, Q1

J
βduβ

J 〉 = 〈Pα
I ∂uα

I
, Q2

J
βduβ

J 〉, (20)

or in the local form,

Pα
I (Q1

I
α −Q2

I
α) = 0 mod total D. (21)

The functional equivalence of one-forms is closely related to the notion of functional one-forms in
the variational bi-complex. See [3] for details.
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3. Geometric Formulation of Symmetries and Adjoint-Symmetries

Consider a general PDE system of order N consisting of M equations,

GA(x, u(N)) = 0, A = 1, . . . , M (22)

where xi, i = 1, . . . , n, are the independent variables and uα, α = 1, . . . , m, are the dependent variables.
The space of formal solutions uα(x) of the PDE system will be denoted E .

There are many equivalent starting points for the formulation of infinitesimal symmetries. For the
present purpose, the most useful one is given by evolutionary vector fields and utilizes only the Frechet
derivative. A symmetry is a vector field,

XP = Pα(x, u(k))∂uα (23)

whose component functions Pα(x, u(k)) are non-singular on E and satisfy the linearization of the PDE
system on E ,

(prXPGA)|E = G′(P)A|E = 0. (24)

This is the symmetry determining equation, and the functions Pα are called the characteristic of
the symmetry.

In this setting, an adjoint-symmetry consists of functions QA(x, u(l)) that are non-singular on E and
that satisfy the adjoint linearization of the PDE system on E ,

G′∗(Q)α|E = 0. (25)

This is the adjoint-symmetry determining equation.
In particular, the two determining equations (24) and (25) are formal adjoints of each other.

They coincide only in two cases: either G′ = G′∗, which is the necessary and sufficient condition
for a PDE system to be a Euler–Lagrange equation (namely, possess a variational structure) [1,3,11];
or G′ = −G′∗, which is the necessary and sufficient condition for a PDE system to be a linear,
constant-coefficient system of odd order [10].

Since Pα has the geometrical status as the components of the vector field (23), a natural question
is whether QA has any status given by the components of some other geometrical object [11,12].

It will be useful to work with a coordinate-free description of the PDE system (22) in
jet space. Such a system of equations (G1(x, u(N)), . . . , GM(x, u(N))) = 0 describes a set
of M surfaces in the finite space J(N)(x, u, ∂u, . . . , ∂Nu). Total derivatives of these equations,
(DI G1(x, u(N)), . . . , DI GM(x, u(N))) = 0, correspondingly describe sets of surfaces in the higher
derivative finite spaces J(N+|I|)(x, u, ∂u, . . . , ∂N+|I|u). Altogether, the set comprised by the equations
and the derivative equations for all orders |I| ≥ 0 corresponds to an infinite set of surfaces in jet space,
which can be identified with the solution space E .

As is well known, symmetry vector fields geometrically describe tangent vector fields with respect
to E . To see this explicitly, first consider the identities:

dGA = (GA)uα
I
duα

I , (26)

G′(P)A = prXPGA = prXP&dGA. (27)

Now, observe that dGA is the normal one-form to the surfaces GA = 0. The symmetry determining
equation (24) then shows that the prolonged vector field prXP is annihilated by the normal one-form
and hence is tangent to these surfaces iff XP is a symmetry of the PDE system.

This normal one-form (26) provides a natural way to associate a one-form to an adjoint-symmetry via:

�Q = QA(x, u(l))dGA. (28)

179



Symmetry 2020, 12, 1547

A functionally equivalent one-form is obtained through integration by parts:

QAdGA = QA(GA)′(du) = G′∗(Q)αduα mod total D. (29)

Evaluating this one-form on the solution space E then gives

�Q|E = 0 mod total D. (30)

Thus, a one-form �Q functionally vanishes on the surfaces E iff its components QA are an
adjoint-symmetry.

This establishes a main geometrical result.

Theorem 1. Adjoint-symmetries describe evolutionary one-forms QAdGA that functionally vanish on the
solution space E of a PDE system (22).

These developments have used evolutionary (vertical) vector fields and evolutionary one-forms.
It is straightforward to reformulate everything in terms of full vector fields and full one-forms.

First, consider the normal one-form

dGA = (GA)xi dxi + (GA)′(du)

= (GA)′(Θ) + ((GA)xi + (GA)′(ui))dxi

= (GA)′(Θ) + DiGAdxi

(31)

which yields the relation
dGA|E = (GA)′(Θ)|E . (32)

Then, observe:
QAdGA|E = QA(GA)′(Θ)|E

= (GA)′∗(QA)α|EΘα mod total D.
(33)

As a consequence, QAdGA|E vanishes mod total D iff QA satisfies the adjoint-symmetry determining
Equation (25). Moreover, the determining equation itself can be expressed directly in terms of the
one-form QAdGA|E by EΘα(QAdGA)|E = (GA)′∗(QA)|E = 0.

Proposition 1. The adjoint-symmetry determining Equation (25) can be expressed geometrically as:

EΘα(QAdGA)|E = 0. (34)

Examples of Adjoint-Symmetries

To illustrate the results, some examples of PDEs that possess non-trivial adjoint-symmetries will
be given.

The Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0 (35)

for shallow water waves is an example of an evolutionary wave equation. Its symmetries X = P∂u are
the solutions of the determining equation

G′(P)|E = (DtP + Dx(uP) + D3
xP)|E = 0, (36)

with G′ = Dt + Dxu + D3
x being the Frechet derivative of the KdV equation, where P is a non-singular

function of t, x, u, and derivatives of u on the space of KdV solutions E . The determining equation for
adjoint-symmetries � = QG′(du) is the adjoint equation
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G′∗(Q)|E = (−DtQ− uDxQ− D3
xQ)|E = 0, (37)

where Q is a non-singular function of t, x, u, and derivatives of u on E .
KdV adjoint-symmetries up to first-order Q(t, x, u, ut, ux) are given by [9] the span of

Q(1) = 1, Q(2) = u, Q(3) = tu− x. (38)

The first two are part of a hierarchy of higher order adjoint-symmetries generated by a recursion
operator R = D2

x +
1
3 u + 1

3 D−1
x uDx applied to Q = u. The third one along with all of the ones

in the hierarchy are related to symmetries of the KdV equation through the Hamiltonian operator
H = Dx. If a linear combination of the lowest order adjoint-symmetries is used like an invariant
surface condition, c1 + c2(tu− x) + c3u = 0, then this yields u = (c2x − c1)/(c2t + c3), which is a
similarity solution of the KdV equation.

An example of a non-evolutionary equation is,

Δφt + φxΔφy − φyΔφx = 0 (39)

which governs the vorticity Ω = Δφ for incompressible inviscid fluid flow in two spatial dimensions,
where the fluid velocity has the components �v = (−φy, φx). The symmetries X = P∂φ of this equation
are the solutions of the determining equation,

G′(P)|E = (DtΔP + φxDyΔP + ΔφyDxP− φyDxΔP− ΔφxDyP)|E = 0, (40)

where P is a non-singular function of t, x, y, φ, and derivatives of φ on the space of vorticity solutions
E , with G′ = DtΔ + φxDyΔ + ΔφyDx − φyDxΔ− ΔφxDy being the Frechet derivative of the vorticity
equation given in terms of the total Laplacian operator Δ = D2

x + D2
y. The determining equation for

adjoint-symmetries � = QG′(dφ) is the adjoint equation,

G′∗(Q)|E = −(DtΔQ + DyΔ(φxQ) + Dx(ΔφyQ)− DxΔ(φyQ)− Dy(ΔφxQ)|E = 0, (41)

where Q is a non-singular function of t, x, y, φ, and derivatives of φ on E .
The first-order adjoint-symmetries Q(t, x, y, φ, φt, φx, φy) are given by [13] the span of,

Q(1) = x2 + y2, Q(2) = φ, Q(3) = f (t), Q(4) = x f (t), Q(5) = y f (t), (42)

where f (t) is an arbitrary smooth function. If a linear combination of these adjoint-symmetries is used
like an invariant surface condition, c1(x2 + y2) + c2φ + c3 f (t) + c4x f (t) + c5y f (t) = 0, then taking
c2 = −1 gives φ = c1(x2 + y2) + (c3 + c4x + c5y) f (t), which is a constant vorticity solution, with Ω =

2c1 and �v = (−2c1y + c5 f (t), 2c1x + c4 f (t)).
Maxwell’s equations in free space are an example of an evolution system with spatial constraints:

�Et −∇× �B = 0, �Bt +∇× �E = 0, ∇ · �E = ∇ · �B = 0 (43)

(in relativistic units with the speed of light set to one). The symmetries X = �PE · ∂�E + �PB · ∂�B of this
system are the solutions of the determining equations

G′
(
�PE

�PB

) ∣∣∣∣
E
=

⎛⎜⎜⎜⎝
(Dt�PE −∇× �PB)|E
(Dt�PB +∇× �PE)|E

(∇ · �PE)|E
(∇ · �PB)|E

⎞⎟⎟⎟⎠ = 0, (44)
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where �PE and �PB are non-singular vector functions of t, x, y, z, �E, �B, and derivatives of �E, �B on the space

of Maxwell solutions E , with G′ =

⎛⎜⎜⎜⎝
Dt −∇×
∇× Dt

∇· 0
0 ∇·

⎞⎟⎟⎟⎠ being the Frechet derivative of the system in terms

of the total derivative operator ∇ = (Dx, Dy, Dz). The determining equation for adjoint-symmetries

� =
(
�QE �QB QE QB

)
G′
(

d�E
d�B

)
is the adjoint equation

G′∗
(
�QE �QB QE QB

) ∣∣∣E =

(
(−Dt�QE +∇× �QB −∇QE)|E
(−Dt�QB −∇× �QE −∇QB)|E

)
= 0, (45)

where the vectors �QE, �QB, and the scalars QE, QB, are non-singular functions of t, x, y, z, �E, �B,
and derivatives of �E, �B on E . Note that the adjoint ∗ here includes a matrix transpose applied to the
row matrix comprising the adjoint-symmetry vector and scalar functions.

Because Maxwell’s equations are a linear system and contain constraints, it possesses three types of
adjoint-symmetries [15,16]: elementary adjoint-symmetries such that �QE, �QB, QE, QB are functions only
of t, x, y, z; gauge adjoint-symmetries given by �QE = ∇χE, �QB = ∇χB, QE = −Dtχ

E, QB = −Dtχ
B

in terms of scalars χE and χB that are arbitrary non-singular functions of t, x, y, z, �E, �B, and derivatives
of �E, �B on E ; and a hierarchy of linear adjoint-symmetries. The linear adjoint-symmetries of zeroth
order are given by the span of

�QE = �ξ × �B + ζ�E, �QB = −�ξ × �E + ζ�B, QE = �ξ · �E, QB = �ξ · �B (46)

and
�QE = �ξ × �E− ζ�B, �QB = �ξ × �B + ζ�E, QE = −�ξ · �B, QB = �ξ · �E (47)

where
�ξ =�a0 +�a1 ×�x +�a2t + a3�x + a4t�x + (�a5 ·�x)�x− 1

2�a5(�x ·�x + t2),

ζ = a0 +�a2 ·�x + a3t + 1
2 a4(�x ·�x + t2) + (�a5 ·�x)t,

(48)

in terms of arbitrary constant scalars a0, a3, a4 and arbitrary constant vectors�a0,�a1,�a2,�a5, with �x =

(x, y, z). The pair (�ξ, ζ) represents a conformal Killing vector in Minkowski space R3,1.
These two zeroth-order adjoint-symmetries are related by the duality symmetry (�E,�B) →

(�B,−�E). The linear first-order adjoint-symmetries are more complicated and involve conformal
Killing–Yano tensors. All higher order adjoint-symmetries can be obtained from the zeroth and
first-order adjoint-symmetries by taking Lie derivatives with respect to conformal Killing vectors.
Their explicit description can be found in [15,16]. An unexplored question is whether the lowest
order adjoint-symmetries can be used like an invariant surface condition to produce solutions of
Maxwell’s equations.

4. Some Applications

Two geometrical applications of Theorem 1 will be presented. The first application is a
geometrical derivation of a well-known formula that generates a conservation law from a pair
consisting of a symmetry and an adjoint-symmetry. This derivation will use the functional pairing (18).
The second application is a geometrical derivation of three actions of symmetries on adjoint-symmetries.
These symmetry actions have been obtained in recent work using an algebraic point of view [13].
They will be shown here to arise from Cartan’s formula for the Lie derivative of an adjoint-symmetry
one-form (28).
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It will be useful to work with the determining equations for symmetries and adjoint-symmetries
off of the solution space E of a given PDE system (22). More precisely, the determining equations will
be expressed in the full jet space containing E .

Remark 1. A PDE system (22) will be assumed to be regular [11], so that Hadamard’s lemma holds: a differential
function f satisfies f |E = 0 iff f = R f (G), where R f is a linear differential operator whose coefficients are
non-singular on E .

Consequently, for symmetries, G′(P)A|E = 0 holds iff

G′(P)A = RP(G)A, (49)

and likewise for adjoint-symmetries, G′∗(Q)α|E = 0 holds iff

G′∗(Q)α = RQ(G)α, (50)

where RP and RQ are linear differential operators whose coefficients are non-singular on E .

4.1. Conservation Laws from Symmetries and Adjoint-Symmetries

The functional pairing (18) between a symmetry vector field (23) and an adjoint-symmetry
one-form (28) is given by,

〈prXP, �Q〉 = 〈prPα∂uα , QAdGA〉 =
∫

QAG′(P)A dx (51)

from identity (27). This pairing in local form (19) is the expression,

QAG′(P)A mod total D. (52)

There are two different ways to evaluate it.
First, since XP is a symmetry, QAG′(P)A = QARP(G)A. Second, since �Q is an adjoint-symmetry,

QAG′(P)A = G′∗(Q)αPα + DiΨi(P, Q)G = PαRQ(G)α + DiΨi(P, Q; G), where

Ψi(P, Q; G) = (DKQA)(DJ Pα)EK
uα

i J
(GA). (53)

Hence, on E , QAG′(P)A|E = DiΨi(P, Q)G|E = 0, which is equivalent to 〈prXP, �Q〉|E = 0.
This establishes the following conservation law.

Theorem 2. Vanishing of the functional pairing (51) for any symmetry (23) and any adjoint-symmetry (28)
corresponds to a conservation law

DiΨi(P, Q; G)|E = 0 (54)

holding for the PDE system GA = 0, where the conserved current Ψi(P, Q; G) is given by expression (53).

4.2. Action of symmetries on adjoint-symmetries

For any PDE system (22), its set of adjoint-symmetries is a linear space, and as shown in [13],
symmetries of the PDE system have three different actions on this space.

The primary symmetry action can be derived from the Lie derivative of an adjoint-symmetry
one-form with respect to a symmetry vector field.

Proposition 2. If �Q is an adjoint-symmetry one-form (28), namely �Q|E = 0 (mod total D), then its Lie
derivative with respect to any symmetry vector XP = Pα∂uα yields an adjoint-symmetry one-form,
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LXP �Q|E = �SP(Q)|E = 0 (mod total D) (55)

where
SP(Q)A = Q′(P)A + R∗P(Q)A (56)

are its components.

Here and throughout, RP and RQ are the linear differential operators determined by Equations (49)
and (50). The adjoints of these operators are denoted R∗P and R∗Q.

Proof. Recall that the Lie derivative has the following properties: it acts as a derivation; it commutes
with the differential d; it reduces to the Frechet derivative when acting on a differential function.

By the use of these properties,

LXP �Q = LXP(QAdGA)

= (LXP QA)dGA + QALXP(dGA)

= Q′(P)AdGA + QAd(G′(P)A)

= Q′(P)AdGA + QAd(RP(G)A).

(57)

The last term can be simplified on E : QAd(RP(G)A)|E = QARP(dG)A|E = R∗P(Q)AdGA (mod total D).
This yields

LXP �Q|E = ((Q′(P)A + R∗P(Q)A)dGA)|E (mod total D) , (58)

completing the derivation.

There is an elegant formula, due to Cartan, for the Lie derivative in terms of the operations d and
& . This formula gives rise to two additional symmetry actions.

Theorem 3. The terms in Cartan’s formula

LXP �Q = d(prXP&�Q) + prXP& (d�Q) (59)

evaluated on E each yield an action of symmetries on adjoint symmetries. The action produced by the Lie
derivative term has the components (56), and the actions produced by the differential term and the hook term
respectively have the components

S1 P(Q) = R∗P(Q)A − R∗Q(P)A, (60)

S2 P(Q) = Q′(P)A + R∗Q(P)A. (61)

Proof. Consider the first term on right-hand side in the formula (59). It can be evaluated in two
different ways. Firstly, prXP& (QAdGA) = QAG′(P)A = QARP(G)A yields

d(prXP& (QAdGA))|E = d(QARP(G)A)|E = (QARP(dGA))|E = (R∗P(Q)AdGA)|E . (62)

Secondly, QAdGA = RQ(G)αΘα + QA(DiGA)dxi (mod total D) gives prXP& (QAdGA) =

prXP& (RQ(G)αΘα + QA(DiGA)dxi (mod total D) ) = RQ(G)αPα (mod total D). This yields

d(prXP& (QAdGA))|E = d(RQ(G)αPα (mod total D) )|E
= (RQ(dG)αPα (mod total D) )|E
= (R∗Q(P)AdGA (mod total D) )|E .

(63)
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Then, equating expressions (62) and (63) leads to the result:

((R∗P(Q)A − R∗Q(P)A)dGA)|E = 0 (mod total D)|E . (64)

This equation shows that the symmetry action (60) produces an adjoint-symmetry.
Now, consider the second term on the right-hand side in formula (59). Similarly to the first term,

it can be evaluated in two different ways. Firstly, d�Q = dQA ∧ dGA yields

prXP& (dQA ∧ dGA) = Q′(P)AdGA − G′(P)AdQA = Q′(P)AdGA − RP(G)AdQA. (65)

Hence, on E ,
(prXP& (dQA ∧ dGA))|E = (Q′(P)AdGA)|E . (66)

Secondly, d�Q = d(RQ(G)αΘα + QA(DiGA)dxi) (mod total D) gives

d�Q|E = (RQ(dG)α ∧Θα + QA(DidGA) ∧ dxi)|E (mod total D) . (67)

This yields
(prXP& (RQ(dG)α ∧Θα + QA(DidGA) ∧ dxi))|E
= (RQ(G′(P))αΘα − PαRQ(dG)α + QA(DiG′(P)A)dxi)|E
= −(R∗Q(P)AdGA)|E (mod total D).

(68)

Equating expressions (66) and (68) then gives the equation

((Q′(P)A + R∗Q(P)A)dGA)|E = 0 (mod total D)|E , (69)

showing that the symmetry action (61) produces an adjoint-symmetry.

Observe that the three actions (56), (60) and (61) are related by:

S1 P(Q) + S2 P(Q) = SP(Q). (70)

Each action is a mapping on the linear space of adjoint-symmetries QA. The algebraic properties of
these actions can be found in [13].

5. Geometrical Adjoint-Symmetries of Evolution Equations

A general system of evolution equations of order N has the form

uα
t = gα(x, u, ∂xu, . . . , ∂N

x u) (71)

where t is the time variable, xi, i = 1, . . . , n, are now the space variables, and uα, α = 1, . . . , m, are the
dependent variables. The space of formal solutions uα(t, x) of the system will be denoted E .

The developments for general PDE systems can be specialized to evolution systems, with Gα =

uα
t − gα via identifying the indices A = α (M = m). On E , since uα

t can be eliminated through
the evolution equations, the components of symmetries and adjoint-symmetries can be assumed to
contain only uα and its spatial derivatives in addition to t and xi. Hereafter, multi-indices will refer to
spatial derivatives.

A symmetry is thereby an evolutionary vector field,

XP = Pα(t, x, ∂xu, . . . , ∂k
xu)∂uα (72)

satisfying the linearization of the evolution system on E :

(prXP(uα
t − gα))|E = (DtPα − g′(P)α)|E = 0. (73)
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Off of E , DtPα = (Pt + P′(g))α + P′(G)α, whereby RP = P′. Consequently, the symmetry determining
equation (73) can be expressed simply as:

(Pt + [g, P])α = 0. (74)

The determining equation for adjoint-symmetries Qα(t, x, ∂xu, . . . , ∂l
xu) is given by the adjoint

linearization of the evolution system on E :

(−DtQ− g′∗(Q))α|E = 0. (75)

Similar to the symmetry case, here, RQ = −Q′ off of E , and the adjoint-symmetry determining equation
simply becomes

(Qt + Q′(g) + g′∗(Q))α = 0. (76)

These two determining equations have a geometrical formulation given by a Lie derivative
defined in terms of a flow arising from the evolution system, similar to the situation for ODEs [8].
Specifically, observe that Dtuα|E = gα, and hence, Dt f |E = ft + f ′(g) for any differential function f .
This motivates introducing the flow vector field,

Y = ∂t + gα∂uα (77)

which is related to the total time derivative by prolongation,

prY = Dt|E = ∂t + (DI gα)∂uα
I
. (78)

Associated with this flow vector field is the Lie derivative

Lt := LprY (79)

which acts on differential functions by Lt f = prY( f ) = Dt f |E . On evolutionary vector fields (72),
this Lie derivative acts in the standard way as a commutator:

LtprXP = pr((prY(P)− prXP(g))α∂uα)

= pr((Pt + P′(g)− g′(P))α∂uα)

= pr((Pt + [g, P])α∂uα).

(80)

Thus, the symmetry determining equation (74) can be formulated as the vanishing of the Lie derivative
expression (80). This establishes the following well-known geometrical result.

Proposition 3. A symmetry of an evolution system (71) is an evolutionary vector field (72) that is invariant
under the associated flow (79).

In particular, the resulting Lie-derivative vector field

LtXP = (Pt + [g, P])α∂uα (81)

vanishes iff the functions Pα are the components of a symmetry.
A similar characterization will now be given for adjoint-symmetries, based on viewing the adjoint

relation between the determining equations (74) and (76) as a duality relation between vectors and
one-forms.

Introduce the evolutionary one-form:

ωQ = Qα(t, x, ∂xu, . . . , ∂l
xu)duα. (82)
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Its Lie derivative is given by

LtωQ = (LtQα)duα + QαLt(duα)

= (Qt + Q′(g))αduα + Qαd(Ltuα)

= (Qt + Q′(g))αduα + Qαdgα

= (Qt + Q′(g) + g′∗(Q))αduα (mod total D).

(83)

This shows that the adjoint-symmetry determining equation (76) can be formulated as the functional
vanishing of the Lie derivative expression (83).

Theorem 4. An adjoint-symmetry of an evolution system (71) is an evolutionary one-form (82) that is
functionally invariant under the associated flow (79).

In particular, the resulting Lie-derivative one-form

LtωQ = (Qt + Q′(g) + g′∗(Q))αduα (mod total D) (84)

functionally vanishes iff the functions Qα are the components of an adjoint-symmetry.
This one-form (84) is functionally equivalent to the adjoint-symmetry one-form (28) introduced for a
general PDE system. To see the relationship in detail, observe that:

�Q = QαdGα = Qαd(uα
t − gα)

= Qα(Dt(duα)− g′(du)α)

= −(DtQα + g′∗(Q)α)duα (mod total D)

= −LtωQ (mod total D).

(85)

An interesting question is how to extend this relationship to more general PDE systems.

Evolution Equations with Spatial Constraints

A wide generalization of evolution systems occurring in applied mathematics and mathematical
physics is given by systems comprised of evolution equations with spatial constraints. Some notable
examples are Maxwell’s equations, incompressible fluid equations, magnetohydrodynamical equations,
and Einstein’s equations.

The constraints in such systems in general consist of spatial equations

CΥ(x, u, ∂xu, . . . , ∂N′
x u) = 0, Υ = 1, . . . , M′ (86)

that are compatible with the evolution equation (71). Compatibility means that the time derivative of
the constraints vanishes on the solution space E of the whole system, (DtCΥ)|E = 0. For systems that
are regular [11], Hadamard’s lemma implies that the system obeys a differential identity,

DtCΥ = C′(G)Υ +D(C)Υ (87)

where Gα = uα
t − gα denotes the evolution equation (71), and where D is a linear differential spatial

operator whose coefficients are non-singular on E . Equivalently, the constraints must obey the identity
C′(g)Υ = D(C)Υ. A comparison of the differential order of each side of this identity shows that D is of
the same order N as the evolution equations, namely:

D = ∑
0≤|I|≤N

RI Υ
ΛDI . (88)
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The full system consists of n + M′ equations Gα = 0, CΥ = 0. Note that, in the previous
notation (22), (Gα, CΥ) = (GA) with A = (α, Υ).

The symmetry determining equation is given by the linearization of the full system on E , which is
comprised by the evolution part (73) and the constraint part

(prXPCΥ)|E = C′(P)Υ|E = 0. (89)

Off of E , C′(P)Υ = RC(C)Υ, where RC is a linear differential spatial operator whose coefficients are
non-singular on E . Hence, the determining equations (73) and (89) can be stated as:

(Pt + [g, P])α|EC = 0, C′(P)Υ|EC = 0 (90)

where EC denotes the solution space of the spatial constraint equation (86).
The adjoint-symmetry determining equation is given by the adjoint linearization of the full system

on E , which comprises evolution terms and additional constraint terms:

(−DtQ− g′∗(Q) + C′∗(q))α|E = 0. (91)

Here, the components of an adjoint-symmetry consist of

(Qα(t, x, ∂xu, . . . , ∂l
xu), qΥ(t, x, ∂xu, . . . , ∂l′

x u)) (92)

with Qα being associated with the evolution equations as before, while qΥ is associated with the
constraint equations. Similar to the symmetry case, the determining equation can be stated as:

(Qt + Q′(g) + g′∗(Q)− C′∗(q))α|EC = 0. (93)

These determining equations for symmetries and adjoint-symmetries have a geometrical
formulation in terms of a constrained flow (77), generalizing the previous formulation for evolution
systems as follows.

Theorem 5. A symmetry of a constrained evolution system (71) and (86) is an evolutionary vector field (72)
that is invariant under the associated constrained flow (79) and that preserves the constraints.

The proof of this result is simply the observation that, first, the determining Equation (89)
corresponds to the constraints being preserved, and second, the Lie derivative of the symmetry
vector field (81) along the flow vanishes on the constraint solution space.

Theorem 6. An adjoint-symmetry of a constrained evolution system (71) and (86) is an evolutionary
one-form (82) that is functionally invariant under the associated constrained flow (79), up to a functional
multiple of the normal one-form dCΥ arising from the constraints.

The proof is given by the earlier computation (84) for the Lie derivative of the adjoint-symmetry
one-form. This computation shows that the adjoint-symmetry determining Equation (93) now can be
expressed as:

LtωQ|EC = (C′∗(q)αduα)|EC = (qΥdCΥ)|EC (mod total D) (94)

where dCΥ is the normal one-form given by the constraints viewed as surfaces in jet space.
The Lie-derivative one-form (94) is functionally equivalent to the adjoint-symmetry one-form (28)

introduced for a general PDE system. In the present notation, the full system of evolution and
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constraint equations (71) and (86) consists of (Gα, CΥ) = 0, and the corresponding one-form associated
with this system is given by �Q,q = QαdGα + qΥdCΥ. Now, using the relation (85), observe that:

�Q,q = qΥdCΥ −LtωQ (mod total D). (95)

There is a class of adjoint-symmetries arising from the summed product of arbitrary functions
χΥ(t, x) and the components of the the differential identity (87). This yields, after integration by parts,

0 = χΥ(DtCΥ − C′(G)Υ −D(C)Υ)

= Dt(χΥCΥ) + DiΨi(χ, G; C)− DiΦi(χ, C; R)− (Dtχ +D∗(χ))ΥCΥ − C′∗(χ)αGα
(96)

where Φi(χ, C; R) = ∑0≤|I|≤N−1(−1)|J|DJ(χΥRiI Υ
Λ)DI/JCΛ from expression (88). Hence,

Dt(χΥCΥ) + Di(Ψi(χ, G; C)−Φi(χ, C; R)) = C′∗(χ)αGα + (Dtχ +D∗(χ))ΥCΥ (97)

has the form of a conservation law off E , with (C′∗(χ)α, (Dtχ +D∗(χ))Υ) being the multiplier. As is
well known, every multiplier for a regular PDE system is an adjoint-symmetry [1,3,11,17,18]. This can
be proven here by applying the Euler operator Euα and using its product rule. Consequently,

Qα = C′∗(χ)α, qΥ = (Dtχ +D∗(χ))Υ (98)

are components of an adjoint-symmetry, involving the arbitrary functions χΥ(t, x).
Such adjoint-symmetries are a counterpart of gauge symmetries, and accordingly are called
gauge adjoint-symmetries [11].

The corresponding gauge adjoint-symmetry one-form is given by

ωχ = C′∗(χ)αduα = χΥdCΥ (mod total D) (99)

and satisfies the geometrical relation

Ltωχ|EC = ((Dtχ +D∗(χ))ΥdCΥ)|EC (mod total D). (100)

This establishes the following geometrical result.

Theorem 7. A gauge adjoint-symmetry (98) is functionally equivalent to a normal one-form ωχ associated
with the constraint equation (86). Under the evolution flow, it is mapped into another normal one-form.

The preceding developments for general systems of evolution equations with spatial constraints
have used the classical notion of symmetries and adjoint-symmetries. It would be interesting to extend
the formulation and the results by considering a notion of conditional symmetries and corresponding
conditional adjoint-symmetries based on the spatial constraints.

Specifically, on the solution space of the full system, consider a symmetry given by an evolutionary
vector field (72) that satisfies

(Pt + [g, P])α|EC = 0 (101)

where EC denotes the solution space of the spatial constraint Equation (86). Such conditional
symmetries (101) differ from classical symmetries (90) by relaxing the condition that the constraints
are preserved. Their natural adjoint counterpart is given by an evolutionary one-form (82) satisfying

(Qt + Q′(g) + g′∗(Q))α|EC = 0. (102)

which is the adjoint of the determining Equation (101). Such conditional adjoint-symmetries (102)
differ from classical adjoint-symmetries (93) by excluding the terms arising from the spatial constraints.
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This notion of conditional symmetries and adjoint-symmetries is more general than the classical
notion because the conditional determining equations hold on EC instead of the whole jet space.

6. Concluding Remarks

The main results showing how adjoint-symmetries correspond to evolutionary one-forms with
certain geometrical properties provides a first step towards giving a fully geometrical interpretation
for adjoint-symmetries. In particular, for systems of evolution equations, adjoint-symmetries can be
geometrically described as one-forms that are invariant under the flow generated by the system on the
solution space. This interesting result has a straightforward generalization to systems of evolution
equations with spatial constraints. Consequently, the results presented here are applicable to all PDE
systems of interest in applied mathematics and mathematical physics.

One direction for future work will be to translate and generalize these results into the abstract
geometrical setting of secondary calculus [2,19] developed by Vinogradov and Krasil’shchik and
their co-workers.

It will also be interesting to fully develop the use of adjoint-symmetries in the study of specific
PDE systems, as outlined in the Introduction: finding exact solutions, detecting and finding mappings
into a target class of PDEs, and detecting integrability, which are the counterparts of some important
uses of symmetries. Another use of adjoint-symmetries, which has been introduced very recently [20],
is for finding pre-symplectic operators.
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