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The study of the transition from a laminar to a turbulent flow is as old as the study of turbulence
itself. Since the seminal pipe flow experiments of O. Reynolds at the end of the XIXth century, it is
understood that turbulent velocity fluctuations do not emerge in a regular way. Instead they appear via
intermittent bursts of activity in an otherwise laminar environment [1]. A series of experiments carried
out in the last century have demonstrated, in most incompressible fluid flows occurring near solid
walls, the existence of a transitional range at the onset of the turbulent regime. This specific parameter
range corresponding to low velocities has been labelled by hydraulic engineers the “uncertainty
zone” because of the difficulty to perform either deterministic nor statistical prediction of the flow.
Only around the end of the XXth century did researchers begin to understand that laminar-turbulent
intermittency features a higher degree of organization, in the statistical sense, than previously thought.
Yet, technical limitations as well as finite-size effects have made rigorous investigation notoriously
difficult because of the different length scales and timescales involved.

The last decade has witnessed a quickly growing number of decisive contributions, made possible
by the huge progress in computational power, in experimental measurements and in visualization
techniques. Theoretical progress, notably due to an exciting analogy with the thermodynamical
formalism of phase transitions, has motivated most of these recent advancements [2]. It is now well
established that the transitional range, parameterized by the so-called Reynolds number proportional
to the fluid velocity, features a regime of laminar-turbulent patterning. It has been advanced for
several decades that the lower transitional range features a continuous transition belonging to the
universality class of directed percolation. The hydrodynamical and statistical organization of these
coherent structures considered individually remain however not well understood. Finally, there are
open issues about to how universal these results are, given the variety of different fluid flow cases.

The goal of the present special issue is to give an up-to-date overview of this cross-disciplinary
topic. It contains nine original research articles written by specialists from the most active research
teams in the field.

No less than three detailed experimental investigations of the transitional regime of Taylor-Couette
and plane channel flow are part of this special issue. The study by K. Avila and B. Hof [3] establishes
with minimal finite-size effects that the turbulent fraction evolves continuously with the Reynolds
number, rather than discontinuously as often believed. The two experimental investigations of channel
flow by J. Liu et al. [4] and by M. Agrawal et al. [5] contain a rich and complementary database on
friction fluctuations in channel flow.

A series of careful direct numerical studies explore the dynamics of individual coherent structures
at the onset of turbulence, in possible connection with the directed percolation regime expected
theoretically. Morimatsu and Tsukahara [6] focus on the mechanisms leading localized turbulent
structures in annular Couette-Poiseuille flow to split into two. Takeda et al. [7] verify the existence
of a critical range of annular Couette flow using artificial extensions of numerical domains. X. Xiao
and B. Song [8] focus on the dynamics of localized turbulent bands at the onset of turbulence in plane
channel flow.

The upper transitional range of channel flow features clear oblique patterns, as investigated
numerically by P. Kashyap et al. [9]. They demonstrate there an unusual link across the transitional and
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full-fledged turbulent regime via high-order statistics of the wall shear stress. Low-order modelling
covering all these intermittent sub-regimes of plane channel flows is also considered in the contribution
by P. Manneville and M. Shimizu, based on the simple concept of cellular automata [10].

Eventually, the special issue includes an original extension of the intermittency concepts to
pulsatile flows by D. Feldmann et al. [11]. Possible applications to cardiovascular diseases up a new
line of research in connection to biological applications.

This special issue is meant to represent a snapshot of the field at the beginning of this new decade.
It aims at fostering interaction and debates, and not at all to close possible debates. Overall, the
associated articles represent a timely perspective of the current research in hydrodynamics as well as,
more generically, in complexity science. They suggest that the field of intermittent hydrodynamics has
now reached the age of maturity.
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Abstract: In many basic shear flows, such as pipe, Couette, and channel flow, turbulence does not
arise from an instability of the laminar state, and both dynamical states co-exist. With decreasing
flow speed (i.e., decreasing Reynolds number) the fraction of fluid in laminar motion increases while
turbulence recedes and eventually the entire flow relaminarizes. The first step towards understanding
the nature of this transition is to determine if the phase change is of either first or second order. In
the former case, the turbulent fraction would drop discontinuously to zero as the Reynolds number
decreases while in the latter the process would be continuous. For Couette flow, the flow between
two parallel plates, earlier studies suggest a discontinuous scenario. In the present study we realize a
Couette flow between two concentric cylinders which allows studies to be carried out in large aspect
ratios and for extensive observation times. The presented measurements show that the transition in
this circular Couette geometry is continuous suggesting that former studies were limited by finite
size effects. A further characterization of this transition, in particular its relation to the directed
percolation universality class, requires even larger system sizes than presently available.

Keywords: phase transition; Couette flow; lifetimes

1. Introduction

In shear flows, turbulence tends to first appear in spatially localized patches that are interspersed
by quiescent, laminar regions, a phenomenon commonly referred to as spatio-temporal intermittency.
The resulting flow pattern chaotically changes in time and unless the entire flow relaminarises, it
never settles to a steady state. One of the earliest reports of laminar turbulent intermittency dates
back to Osborne Reynolds and his study of pipe flow [1]. The corresponding turbulent “flashes”
or “puffs” are quasi-one-dimensional, meaning that they tend to fill out the radial-azimuthal pipe
cross-section, whilst being localized in the streamwise direction [2]. Puffs have a well defined mean
length; however, their spacing and hence the size of the laminar gaps is irregular and continuously
changes. The resulting overall flow pattern can be accurately modeled as one dimensional [3]. In flows
that are extended in two spatial dimensions, but strongly confined in the third (such as channel and
Couette flows), turbulence forms elongated stripes [4–7]. Here turbulence fills the wall normal gap
and is localized in the extended streamwise and spanwise directions. The resulting laminar-turbulent
intermittent stripe pattern can be regarded as quasi-two-dimensional.

In quasi-one- and two-dimensional cases alike, individual patches of turbulence have finite
lifetimes and eventually decay. Early propositions that individual turbulent patches (or turbulence in
small domains) become sustained at a critical point [8–11] turned out to be incorrect. Despite their
often long lifetimes individual patches remain transient and eventually decay following a memoryless
process [12–16]. In line with other contact processes such as directed percolation [17] and coupled map
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lattices [18,19] and as pointed out in the context of shear flows [20,21] spatial proliferation of active sites
can give rise to a phase transition to sustained turbulence. Specifically it has been demonstrated for
pipe flow [22,23] that turbulence becomes sustained via a contact process where individual localized
patches remain transient but can seed new patches before they decay. Also puff splitting has been
found to be a memoryless process, a circumstance that allowed to determine the critical point for pipe
flow as the balance point between lifetimes and splitting rates [23].

A key remaining question regarding the onset of turbulence, for both one-dimensional and
two-dimensional cases alike, is whether the transition is of first or second order (in the context of
contact processes and phase transitions in statistical physics, see [24]). In a second-order phase
transition, the turbulent fraction decreases continuously to zero as the Reynolds number is decreased
toward the critical point, whereas in a first-order phase transition the turbulent fraction jumps from a
finite value to zero at the critical point. Hence first-order transitions are referred to as discontinuous
and second-order transitions as continuous. In both cases, however, the laminar flow is linearly stable
and because of the hysteresis the flow must be initialized with turbulence to measure the transition.
While for pipe flow the transition is presumed continuous [3], this so far could not be shown explicitly
due to the excessive time scales that prohibit to reach a statistical steady state sufficiently close to the
critical point [25]. In a circular Couette experiment of large azimuthal and small axial aspect ratio,
where flow patterns like in pipe flow can only evolve in one spatial dimension, the transition has been
shown to be continuous [26] and to fall into the directed percolation (DP) universality class.

In an earlier study Bottin and Chatté [8] characterized the transition to turbulence in an
experimental study of planar Couette flow in a moderately large aspect-ratio (190d × 35d in the
streamwise and spanwise direction, where d is the gap). In this two dimensional setting, the turbulent
fraction was about 30% close to the onset of sustained turbulence and dropped dramatically to
zero (laminar flow) as the Reynolds number was reduced. The authors suggested that the onset of
turbulence in plane Couette flow corresponds to first-order phase transition. Duguet et al. [27] did
direct numerical simulations of a larger system (400d × 178d), but with substantially shorter observation
times (2× 104 advective time units), and reported similar results. More recently, Chantry et al. [28]
examined numerically the onset of turbulence in Waleffe flow. In contrast to Couette flow, in this
case stress-free boundary conditions are applied at the walls and the flow is driven by a sinusoidal
body force. The choice of boundary conditions greatly reduces computational cost and allowed direct
numerical simulations of a very large aspect-ratio system (1280d × 1280d) for very long observation
times (exceeding 2× 106 advective time units). Their simulations compellingly show that transition
in this simple model system falls in the universality class of two-dimensional directed percolation.
While suggestive, it nevertheless remains unclear if for quasi-two-dimensional Couette type flows the
transition is either of first or second order. For a recent review of the flow patterns and dynamics of
wall-bounded flows extended in two directions, see Tuckerman et al. [7].

In Taylor–Couette flow between two counter-rotating cylinders, the flow dynamics is qualitatively
similar to plane Couette flows [4,5,16,29,30] provided that the laminar velocity profile is linearly stable.
Indeed, in the narrow-gap limit η = ri/ro → 1 , where ri and ro are the radii of the inner and outer
cylinders, Taylor–Couette flow turns into rotating plane Couette flow [31]. For fully turbulent flows,
the dynamics of Taylor–Couette flow converges to that of rotating plane Couette flow already for
moderately small gaps η ≥ 0.9 [32]. By contrast, the dynamics of transition for exactly counter-rotating
cylinders is alike that of plane Couette flow only for very narrow gaps η ≥ 0.993 [33]; for larger gaps
the linear centrifugal (Rayleigh) instability occurs at lower Reynolds number than the subcritical
transition. We note that a new linear instability of counter-rotating Taylor–Couette flow was recently
discovered [34], however this instability occurs for extremely high Reynolds numbers (for η > 0.9,
|Reo|>108, where Reo is the Reynolds number of the outer cylinder) and disappears in the narrow
gap limit. This instability is far away in parameter space of the experiments performed here, with
Reo = O

(
103
)
. In Figure 1 we show a regime diagram of counter-rotating Taylor–Couette flow of radius

ratio of η = 0.98. In the infinite-cylinders case, the onset of Taylor vortices is at Rei = 292 when the
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outer cylinder does not rotate (Reo = 0). For increasing counter-rotation of the outer cylinder, the
linear stability threshold rises to higher Rei and the stability boundary previously measured with
our experimental setup [35] is in excellent quantitative agreement with the linear stability analysis
of the infinite-cylinder case (solid line in Figure 1), and to a lesser extent also with the experimental
measurements of Prigent and Dauchot [36]. For moderately strong counter-rotation (Reo < −800),
turbulence can be triggered via finite amplitude perturbations well below the linear instability. Such
perturbations occurred naturally in the experimental setup of Prigent and Dauchot [36], whereas in
our setup a progressively growing band of hysteresis between the onset of linear instability and the
decay of sub-critical turbulence can be observed.

Figure 1. Stability diagram of counter-rotating Taylor–Couette flow with radius ratio η = 0.98 and
stationary lids, Relids = 0. The solid line shows the linear stability boundary in the infinite–cylinder
case. As the the Reynolds number of the outer cylinder (Reo) is decreased, the linear instability of
the laminar, circular Couette flow is shifted to higher Reynolds number of the inner cylinder (Rei).
The empty symbols denote our experimental measurements of the onset of instability, obtained by
increasing Rei at fixed Reo, which we reported previously in [35]. Subcritical turbulence in the form of
turbulent stripes and spots is found in the shaded region starting at Reo ≈ −800; the full symbols mark
the relaminarization of subcritical turbulence and were obtained by decreasing Rei at fixed Reo, in order
to detect hysteresis. In this paper, the subcritical transition at Reo = −1000 is analyzed in more detail
(statistically) to shed light on the nature of this phase transition to turbulence. For comparison the data
of Prigent et al. and coworkers (diamonds) [5,36,37] for a similar radius ratio η are shown, indicating
the sensitivity of the flow to finite amplitude perturbations.

In Avila and Hof [35], the critical Reynolds number for self-sustained turbulence was measured
by quasi-statically decreasing Rei in steps of 1 min. This measurement procedure is suited to obtain
a rough estimate of the transition border, but does not take into account the stochastic nature of
turbulence decay. Measurements of the lifetimes statistics are required here, as previously performed
in a small aspect ratio Taylor–Couette flow (55d × 34d) [16]. Compared to all previous quasi-two
dimensional Couette or Taylor–Couette experiments, our system’s streamwise-spanwise area is at
least 12 times larger (311d × 263d), see Table 1. This allows us to study the nature of the turbulence
transition with a reduced influence of finite-size effects. We show that lifetimes are exponentially
distributed below the critical point and that the increase of the turbulent fraction beyond the critical
point is continuous and therefore of second order.

5
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Table 1. Summary of experiments (first four rows) and direct numerical simulations (last four rows) of
plane Couette and Taylor–Couette flows in the sub-critical regime. Only published works in which
lifetimes were determined statistically and/or the turbulent fraction close to onset was measured are
listed. The systems investigated by Lemoult et al. [26] and Shi et al. [38] are quasi-one-dimensional
(strongly confined in the spanwise direction). In their experiments and DNS the minimum measurable
turbulent fraction is constrained by the streamwise length (instead of the area).

Reference System
Streamwise
Length

Spanwise Length Area

Bottin and Chatté
[8] pCf (η = 1) 190d 35d 6650d2

Borrero et al. [16] TCf (η = 0.9) 55d 34d 1870d2

Lemoult et al. [26] TCf (η = 0.998) 2750d 8d ———
This work TCf (η = 0.98) 311d 263d 81,793d2

Duguet et al. [27] pCf (η = 1) 400d 178d 71,200d2

Shi et al. [26] TCf (η = 0.993) 480d 5d ———
Lemoult et al. [26] TCf (η = 0.993) 960d 5d ———
Chantry et al. [28] Waleffe flow 1280d 1280d 1,638,400d2

2. Experimental Methods

The Taylor–Couette experiment used in this study consists of two concentric cylinders with
radii ri = (110.25± 0.025) mm and ro = (112.53± 0.05) mm leading to a radius ratio η = 0.98 and an
azimuthal length of 311 gap width d = ro − ri = 2.28 mm. The Reynolds number of the inner (outer)
cylinder with angular velocity ωi (ωo) is defined as Rei = ωirid/ν (Reo = ωorod/ν), where ν is the
kinematic viscosity of the working fluid. The azimuthal direction is in our system the streamwise
direction and is naturally periodic (in contrast to Couette flow experiments); this eliminates end effects
in the streamwise direction. The axial (spanwise) direction is bounded by the axial lids and has a length
of 263d. The lids can be rotated independently of the cylinders. Their Reynolds number is based on
the radius of the outer cylinder (Relid = ωlidrod/ν). In many Taylor–Couette experiments, the lids are
attached to the outer cylinder to reduce the Ekman pumping, see, e.g., [16,39–41]. For example, spiral
patterns are less influenced by the axial lids, when the lids co-rotate with the outer cylinder, than when
they are stationary [42]. The effect of axial boundary conditions was investigated systematically in
experiments [43] and in simulations [44], that showed that rotating the lids at angular speeds between
the inner and outer cylinder leads to laminar flows closest to circular Couette flow. For our setup and
selected parameter regime, Relids = −800 minimized end effects, but the spatio-temporal dynamics
was identical for lids attached to the outer cylinder Relids = −1000, and for stationary lids Relids = 0,
because of the large height-to-gap aspect ratio. Rotating the lids merely led to a slight stabilization of
the laminar flow and hence to a small shift of the onset of turbulence to slightly higher Rei.

The viscosity of the working fluid silicone oil was determined by measuring the onset of Taylor
vortices for stationary outer cylinder as the inner cylinder rotation was increased. Specifically, the
value of the viscosity was selected to match the critical inner Reynolds number obtained with a linear
stability analysis of laminar, circular Couette flow between infinite cylinders (Rei,c = 292 at Reo = 0 ).
The accuracy of this method and of our experiment is verified in the excellent agreement obtained with
the linear stability results throughout the counter-rotating regime. In particular, the discrepancy is less
than 1% in Rei when comparing the experimentally measured and the theoretical stability curves. For
the visualization of the flow the working fluid silicone oil was seeded with aluminium platelets.

The turbulent fraction was determined by analyzing the images from a high speed camera used
to monitor the flow. The flow was seeded with highly reflective aluminum platelets (Eckart, Effect
Pigments, STAPA WM Chromal V/80 Aluminum) in a concentration below 1% in weight (and volume).
In turbulent flows these tracers are randomly oriented and reflect light efficiently. Turbulent flow
patches appear therefore brighter than laminar regions. In our image processing code we use this
difference in the light intensity to distinguish laminar from turbulent regions by thresholding. The
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turbulent fraction is calculated at each instant of time in the spatio-temporal diagrams (see, e.g.,
Figure 2) as axial length covered by turbulent flow in comparison to the axial length of the field of
view. Further details of the image analysis are provided in [35]. Videos were typically recorded with
80 Hz and the resolution in the axial direction was 1920 pixels and in the azimuthal direction between
5 and 1080 pixels, from which only 3 were used for the generation of the spatio-temporal diagrams and
hence the quantitative analysis. The measurements shown in this paper consist of three independent
sets of experiments with slightly different viscosities and different field of views of the camera, each of
them optimized for the specific analysis. For the measurements shown in Figures 1 and 3, the working
fluid silicon oil has a viscosity of ν = (4.65± 0.02)cSt. The field of view of the camera in Figure 3 was
(50d × 80d), corresponding to about 10% of the total area and was located 46d above the lower lid.
For the measurements in Figures 4 and 5 the viscosity was ν = (4.55± 0.02)cSt and the field of view
consisted of a line of 3 pixel width and an axial length of 245d, which started 5d above the lower lid.
For the measurements in Figures 6 and 7 the viscosity was ν = (4.41± 0.02)cSt and the field of view
was (5d× 170d) and started 25d above the lower lid. More details of the setup and the image analysis
and processing that are omitted here can be found in [35].

Figure 2. (a,c) Spati-temporal dynamics of two selected lifetime measurements at Rei = 530, Relids = −800.
(b,d) Corresponding instantaneous (black solid line) and averaged (red thick line) turbulent fraction.
The average turbulent fraction is calculated in windows of about 9 s (moving-average technique)
to illustrate the long-time dynamics and is used to detect the relaminarization of the flow. The left
green line marks the time of the reduction in Rei and the right green line the decay of turbulence. The
determined lifetime corresponds to the time interval between the two green lines.

7
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Figure 3. Snapshots of typical flow patterns in counter-rotating Taylor–Couette flow. (a) The linear
instability arises in the counter-rotating regime in the form of laminar spirals (snapshot taken at
Rei = 560, Reo = −700). (b) Laminar spirals can coexist with turbulent spots frequently decaying and
arising, or they can aligne into stripes, as shown here (Rei = 700, Reo = −700). (c) Laminar-turbulent
intermittency in the form of subcritical turbulent stripes (Rei = 600, Reo = −1000). (d) For decreasing
Rei the regions of laminar flow around the turbulent stripes increase in area (Rei = 540, Reo = −1000).
The field of view corresponds here to about 10% of the total system size area. The axial lids are
stationary in all snapshots (Relids = 0). All snapshots were taken in the statistically steady regime.

Figure 4. Spatio-temporal dynamics of subcritical turbulence Relids = −800 (a) and Reo = −1000
(b) following a reduction in Rei. Turbulent stripes dominate the dynamics at Rei = 630, prior to an
abrupt reduction to Rei = 530 (green line). The turbulent fraction decreases immediately after the
reduction in Rei, but it takes about 20 s for the flow to adjust into a (metastable) statistically steady
state. The long-time dynamics of these two cases are is displayed in Figure 2a,b, respectively. The axial
direction is in dimensionless units (i.e., normalized with the gap width d).

8
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Figure 5. Lifetime statistics at Reo = −1000 and Relids = −800. Shown is the survival probability of
turbulence (in a logarithmic scale) as a function of time for several Rei, as indicated in the legend. The
symbols denote individual measurements, which are sorted in increasing survival time to construct the
survival probability function. In all cases, the initial condition was a turbulent flow at Rei = 630 and
the rotation of the cylinder was suddenly changed to the desired Rei.

Figure 6. Excerpt of the spatio-temporal dynamics of turbulent stripes (Reo = −1000 and Relids = 0)
above the critical point for the onset of sustained turbulence. (a) Rei = 525, (b) Rei = 532.
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Figure 7. Second-order phase transition in counter-rotating Taylor–Couette flow (Reo = −1000 and
Relids = 0). The turbulent fraction increases smoothly from a minimum of 7% at Rei = 525 up
to 60% at Rei = 600. The error bars indicate a 1% deviation in Rei, which estimated from the
discrepancy between linear stability analysis and experiment in Figure 1. The black line is a fit of the

form T f = a
(
Rei −Rei,c

)βDP
, with βDP = 0.583, to the data points in the vicinity of the critical point

(524 < Rei < 540). The fit parameters are a = 0.0667 and Rei,c = 524.1. Below the critical point (grey
region), turbulence is transient.

3. Results

The experiments reported in this work were performed at Reo = −1000 as indicated by the red
line in Figure 1. The dynamics obtained at this selected Reo is representative for the subcritical regime
and hence also for other Reo.

3.1. Lifetimes of Turbulent Stripes and Spots

For the lifetimes measurements, the speed of the lids was held constant at Relids = −800. The
system was perturbed by rapidly accelerating the speed of the inner cylinder to Rei = 630. This excited
at first a linear instability in the form of laminar spirals (see Figure 3a), which quickly evolved into an
intermittent pattern of laminar-turbulent stripes (see Figure 3b). The flow was then given sufficient
time to reach a statistical steady state pattern. The camera started to record the flow pattern 20 s before
Rei was abruptly reduced to one of the six values indicated in the legend of Figure 5. The flow was
continuously recorded until it relaminarised. Rather independently of the Rei, the turbulent fraction
typically dropped monotonically within the first 20 s, as the flow adapted to the new Rei. Two examples
of the corresponding spatio-temporal dynamics are shown in Figure 4, where the green line indicates
the change of the Rei in time. Despite the apparently similar dynamics, the long time behavior of
these two cases is very different, leading to different lifetimes, see Figure 2. The complete decay of
turbulence was systematically detected by determining the time at which the moving average of the
turbulent fraction dropped permanently below a threshold.

During most of the runtime, the axial extent of the turbulent stripes was shorter than the cylinder
length. The stripes moved in the axial and azimuthal direction exhibited a rich dynamics, including
growth, shrinkage, splitting, merging and decay. Interactions with the axial lids occurred frequently.
Specifically, the decay occurred often close to the lids. We thus believe that end effects are likely to
influence the turbulent dynamics despite the large axial aspect ratio of our setup.

10



Entropy 2021, 23, 58

The probability of survival of turbulence as a function of time is shown in Figure 5. For the two
lowest Rei investigated the lifetimes are all shorter than 20 s, which corresponds to the time in which the
(averaged) turbulent fraction continuously decreases without developing intrinsic dynamics. Therefore
it is unclear wether the corresponding lifetimes are exponentially distributed or not in these two
cases. A similar behavior was observed for the decay of puffs in pipe flow at low Re [14] in which the
distribution deviated from an exponential one. However, in our measurements the distributions still
seems to be exponential and for Rei > 507 the probability follows P(t) = 1− exp[(t− t0)/τ , with the
equilibration time t0≈ 20 s and τ the characteristic lifetime. This indicates that the decay of turbulence
in this regime is a memoryless process, as reported for spatially extended plane Couette flow [8],
quasi-one-dimensional [26,38] and moderate aspect-ratio [16] Taylor–Couette flows, and also for pipe
flow [14] and quasi-one-dimensional channel flow [45].

3.2. Second-Order Phase Transition

In this section we present measurements of the turbulent fraction above the critical point. The
measurement procedure was as in the previous section, with the exception that the recording started
after a few minutes in order to ensure that the flow reached steady state conditions at the Rei of interest.
Since turbulence was sustained in these measurements, the recording time was set from 90 s at the
largest Rei to 15 min at Rei = 525 (corresponding to 1.4× 106 advective units), which was the lowest
Rei at which turbulence was sustained. In general, the observation time was increased, as the critical
point was approached (in order to account for the expected critical slowing down). Note that the lids
were stationary in these experiments (as for the results shown in Figure 1), which slightly stabilized
turbulence when compared to the lifetime measurements with rotating lids discussed in the previous
section; with stationary lids turbulence was sustained for Rei ≥ 525, whereas with rotating lids transient
turbulence was found up to Rei = 532.

As shown in Figure 6a, the spatio-temporal dynamics of turbulent patterns at Rei = 525 is very
rich. Oftentimes a single turbulent stripe spanning the whole system in the axial direction was observed.
This then receded and eventually split into two or more arms, one of which would survive and extend
to fill the system axially again. Only a slight increase of Rei to 532 was sufficient to almost triple the
turbulent fraction, which is reflected by the persistence of more than two turbulent spiral arms (in
average) as shown in Figure 6b.

The retrieved turbulent fractions from all measurements are plotted in Figure 7. The minimum
measured turbulent fraction is about five times smaller than in previous plane Couette experiments [8],
and the maximum observation time in advective units is about 30% longer. The turbulent fraction
increases continuously with increasing Rei from its minimum value of about 7% (Rei = 525) to more
than 50%, suggesting a second-order phase transition. The scaling of the turbulent fraction in the
vicinity of the critical point is consistent with that expected from directed percolation in two dimensions,
T f = a(Rei −Rei,c)

β, where β = 0.583, Rei,c is the critical Reynolds number and a is a proportionality
constant. A least-square fit of this function to the data close to the critical point (524 < Rei < 540)
yields a = 0.0667 and Rei,c = 524.1 and approximates very well the data (see the black line in Figure 7).
However, measurements closer to the critical point (including a direct determination of the critical
point itself) would be necessary to test the robustness and accuracy of this fit. For example, if the
function above is fitted with a free exponent, then a = 0.0493, Rei,c = 523.5 and β = 0.703 is obtained.
Finally, we stress that our system is too small to accurately determine critical exponents. Studies of
quasi-one-dimensional Couette flow [26] and of quasi-two-dimensional Waleffe flow [28] show that
determining the critical exponents requires a considerably larger system size. Indeed the observed
interactions of the stripes with the axially bounding lids demonstrate that the the axial aspect ratio
may be insufficient to probe the question of whether transition to turbulence in quasi-two-dimensional
Couette flow falls into the directed percolation universality class.
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4. Discussion

We investigated transient turbulence and the transition to sustained turbulence in a
high-radius-ratio Taylor–Couette experiment. The presented lifetime measurements confirm the
transient nature of turbulent stripes and show that their decay is memoryless in agreement with the
study by Borrero et al. [16] for a smaller Taylor–Couette setup and more generally with transitional
turbulence in other shear flows. At lower Reynolds numbers the lifetimes are shorter than the
equilibrium time of the flow to adapt to the reduction in Reynolds number, but distributions remain
exponential unlike in pipe flow where at low Reynolds numbers the tails deviated from exponential [14].
Our system area is more than 10 times larger than previous Couette and Taylor–Couette experiments,
which enables us to approach the critical point much closer without suffering from finite size effects.
Whereas such studies in smaller aspect ratio Couette flow had suggested a discontinuous drop
form considerably larger turbulent fractions in our case the scaling is continuous, consistent with
a second-order phase transition. Our observation of a continuous phase transition is also in line
with recent studies of Waleffe flow [28] and of channel flow (see Figure 9a of [46]). An even closer
approach to the critical point also leads to a sudden drop in turbulent fraction in the present case. As
the critical point is approached length scales diverge and once typical laminar gap sizes exceed the
system size the flow relaminarizes. Finite size effects can therefore be mistaken for a discontinuous
transition. To resolve this question and to potentially obtain critical exponents, would require an even
larger system size which sets a challenge for future experiments. Because of the long laminar gaps
separating stripes in the vicinity of the critical point, and of the results of simulations and experiments
of quasi-one-dimensional Couette flow [26,38] and Waleffe flow [28], we estimate that order of 1000
gap width are needed in the azimuthal and axial directions to probe for scale invariant flow patterns
sufficiently close to the critical point. Such a study would however require cylinders manufactured to
considerably higher precision than the already very precise ones used in the present study.
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Abstract: The transitional regime of plane channel flow is investigated above the transitional point
below which turbulence is not sustained, using direct numerical simulation in large domains.
Statistics of laminar-turbulent spatio-temporal intermittency are reported. The geometry of the pattern
is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in
this regime, with a comparison to experiments. High-order statistics of the local and instantaneous
bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of
the two former quantities have non-trivial shapes, characterized by a large kurtosis and/or skewness.
Interestingly, we observe a strong linear correlation between their kurtosis and their skewness
squared, which is usually reported at much higher Reynolds number in the fully turbulent regime.

Keywords: transition to turbulence; spatio-temporal intermittency; channel flow

1. Introduction

Laminar and turbulent flows are two different regimes encountered sometimes at the same
parameters for a given geometry. In many flows they are in competition from the point of view of the
state space. Shear flows next to solid walls however show this surprisingly robust property that both
laminar and turbulent regions coexist spatially on very long time scales, when the laminar state is
locally stable. This phenomenon, called ’laminar-turbulent intermittency’ is well known in circular
pipe flow since the days of O. Reynolds [1] and has lead recently to a burst of interest, a review of
which is provided in Reference [2]. Such laminar-turbulent flows have been identified and partly
characterized in Taylor-Couette flow [3,4] and in plane Couette flow [4–6]. They also have been
identified in other set-ups involving curvature [7–9] or stabilizing effects [10]. The transitional regimes
of plane Poiseuille flow, the flow between two fixed parallel plates driven by a fixed pressure gradient,
have not received as much attention although this flow is the archetype of wall-bounded turbulent
flows. Although this flow is frequently cited as an example of flow developing a linear instability
(under the form of Tollmien–Schlichtling waves) [11], coherent structures typical of laminar-turbulent
coexistence have been frequently reported in channel flow well below the linear instability threshold
and a series of experimental and cutting-edge numerical studies in the 1980s and 1990s have focused
on the development of spots [12–16]. Sustained intermittent regimes have not been identified as such
before the mid-2000s, when Tsukahara [17] reported large-scale coherent structures from numerics in
larger numerical domains. Like their counterpart in Couette flows, these structures display obliqueness
with respect to the mean flow direction and a complicated long-time dynamics. The dynamics at onset
in particular have remained mysterious [18] and, although this is currently debated, could follow
a scenario different from the directed percolation one proposed for Couette flow. [9,19,20]. In recent
years, the so-called transitional regime of plane channel flow has attracted renewed attention after new
experimental studies. Although the works in Refs [21–23] focused on the minimal transition amplitude
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for spot development, other studies [24–29] focused on the sustained intermittent regimes and their
statistical quantification.

Experimentally the finite length of the channel sets a limitation to most statistical approaches.
Numerical simulation in large domains combined with periodic boundary conditions is a
well-established way to overcome such limitations. Surprisingly, despite a large number of numerical
studies of transitional channel flow, investigation of spatio-temporal intermittency in large enough
domains has not been possible before the availability of massive computational resources. Owing to
recent numerical studies [30–32], there is currently a good consensus about a few facts concerning the
transitional regime: laminar-turbulent bands with competing orientations emerge progressively as the
Reynolds number is reduced below Reτ « 100, and their mean wavelength increases as the Reynolds
number is decreased. At even lower flow rate the bands turn into isolated spots with ballistic dynamics
rather than forming a seemingly robust stripe pattern [33–35]. The global centerline Reynolds number
for the disappearance of the stripes is close to 660 [18,27]. However, many questions remain open.
The most sensible theoretical issues revolve around the (still open) question of the universality class
of the transition process (see Reference [18]), the role of the large-scale flows [23,25,36,37] in the
sustainment of the stripes, or the mutual way different stripes interact together.

There is also a lack of quantitative data about the patterning regime itself. The present special issue
is an opportunity to document the geometric characteristics of the stripe patterns in unconstrained
settings. Moreover, there is an ongoing philosophical question about whether traces of spatio-temporal
intermittency can be found in the fully turbulent regimes commonly reported at higher Reynolds
numbers. In the present paper, using numerical simulation in large domains, we focus on three specific
points hitherto undocumented: the angular distribution of turbulent stripes, the statistics of the laminar
gaps between them, and high-order statistics of the local and instantaneous bulk velocity, wall shear
stress and turbulent kinetic energy. The outline of the paper is as follows: Section 2 introduces the
numerical methodology with the relevant definitions. The geometrical statistics of the stripe angles
are presented in Section 3.1. The statistics of a few global quantities are presented in Sections 3.2–3.4.
A discussion of the results is made in Section 4 with the conclusions and outlooks in Section 5.

2. Materials and Methods

The present section is devoted to the methodology used for the numerical simulation of
pressure-driven plane channel flow. The flow is governed by the incompressible Navier Stokes
equations. Channel flow is described here using the Cartesian coordinates x,y,z, respectively the
streamwise, wall-normal and spanwise coordinates. The velocity field upx, y, z, tq is decomposed into
the steady laminar base flow solution Upyq “ pUx, 0, 0q and a perturbation field u1px, y, z, tq. Similarly,
the pressure field is decomposed as ppx, y, z, tq “ xG ` p1px, y, z, tq. The equation governing the steady
base flow for an incompressible fluid with constant density ρ and kinematic viscosity ν is given by

ν
B2Ux

By2 “ 1
ρ

G (1)

with G a constant. Together with the no-slip condition at the walls Equation (1) yields the analytic
Poiseuille solution Ux91 ´ py{hq2. The equation governing the perturbation field involves the base
flow and reads

Bu1
Bt

` u1 ¨ ∇u1 ` U ¨ ∇u1 ` u1 ¨ ∇U “ ´ 1
ρ
∇p1 ` ν∇2u1 (2)

The channel geometry is formally infinitely extended, yet in the numerical representation it is
given by its extent Lx ˆ 2h ˆ Lz as in Figure 1, with stationary walls at y “ ˘h and periodic boundary
conditions in x and z.
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Figure 1. Schematic of the numerical domain with the laminar base flow profile (red).

The flow is driven by the imposed pressure gradient G assumed negative. The spanwise pressure
gradient is explicitly constrained to be null. The centerline velocity ucl of the laminar base profile
with the same pressure gradient is chosen as the velocity scale (U) and the half gap h of the channel
is chosen as the lengthscale used for non-dimensionalization. Time is hence expressed in units of
h{U. In these units the laminar velocity profile is given by Ux̊ py˚q “ 1 ´ y2˚. From Chapter 3 onwards
only dimensionless quantities will be used and the ˚ notation will be dropped from there on. Primed
quantities denote perturbations to the base flow while non-primed quantities involve the full velocity
field, including the laminar base flow.

In the following we shall consider, both locally and temporally fluctuating quantities, as well
as their time and space averages. We denote by 〈‚〉 the space (x, z) average and s‚—the time average.
Space-time averages are indicated by Ď〈¨〉. More explicitly the space-average operator is defined as the
discrete average over the grid points, and the time average is the discrete average sum over the total
number of snapshots in the steady regime.

Different velocity scales characterize the flow. One such scale is the centerline velocity ucl of
the corresponding laminar flow with the same value of G. Another one is the total streamwise flow
through the channel, Ub “ Ě〈ub〉, where

ubpx, z, tq “ 2
h

ż h

´h
uxdy (3)

is the so-called local bulk flow. Finally, the friction velocity is defined as Uτ “ p Ď〈τ〉{ρq 1
2 , where

τ “ pτt ` τbq {2 ą 0, with τt and τb the net shear stress on the top and the bottom wall, respectively
given by:

τt,bpx, z, tq “ ˘μ
Bux

By

ˇ̌̌
ˇ
t,b

(4)

where μ “ ρν is the dynamic viscosity of the fluid. The three Reynolds numbers arising from these
velocity scales are Recl “ uclh{ν, Reb “ Ubh{ν and Reτ “ Uτh{ν. For the laminar base flow, they
are inter-related as Re2

τ “ 3Reb “ 2Recl . Imposing a pressure gradient G < 0 translates into a fixed
average shear stress Ď〈τ〉 on the walls which sets an imposed value of Reτ “ ReG

τ to stress that this is
the control parameter.

Direct numerical simulation (DNS) of Equation (2) is carried out using the open source, parallel
solver called Channelflow [38,39] written in C++. It is based on a Fourier–Chebychev discretization in
space and a 3rd order semi-implicit backward difference scheme for timestepping. It makes use of the
2{3 dealiasing rule for the nonlinear terms. An influence matrix method is used to ensure the no-slip
boundary condition at the walls. The numerical resolution is specified in terms of the spatial grid
points pNx, Ny, Nzq which translates into a maximum of pNx{2 ` 1, Nz{2 ` 1q Fourier wavenumbers
and Ny Chebychev modes. Please note that the definitions of Nx and Nz take into account the
aliasing modes. The domain sizes used in this study, expressed in units of h, are Lx “ 2Lz “ 250
for 55 ă ReG

τ ď 100 and Lx “ 2Lz “ 500 for 39 ď ReG
τ ď 55. The local numerical resolution used is

Nx{Lx “ Nz{p2Lzq “ 4.096 and Ny “ 65, comparable to that used in Reference [34]. The simulation
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follows an “adiabatic descent”: a first simulation is carried out at sufficiently high value of ReG
τ , known

to display space-filling turbulence. After the stationary turbulent regime is reached, ReG
τ is lowered

and the simulation advanced further in time. This step-by-step reduction has been performed down
to ReG

τ “ 39. The initial condition for the first simulation is a random distribution of localized seeds
of the kind described in Reference [40]. The time required T to reach a stationary regime gradually
increases as ReG

τ is decreased. As an order of magnitude, for ReG
τ “ 100, T « 1500, while for ReG

τ “ 50,
T « 3000. Statistics are computed, after excluding such transients, from time series of lengths up to
2 ˆ 104 time units.

3. Results

The entire adiabatic descent is shown using a space-time diagram of the crossflow energy shown
in Figure 2a

Ec f “ 1
2

ż
pu2

y ` u2
zqdy (5)

evaluated at an arbitrary value of z (here z “ Lz{2). The space variable is expressed in a frame
moving in the streamwise direction with the mean bulk velocity UbpGq for that particular value of
ReG

τ . Since ReG
τ is lowered over the course of time, this allows one to capture the different flow regimes

preceding full relaminarization. The intensity of turbulence, measured here by the value of Ec f , is seen
to gradually increase as ReG

τ is lowered. At high ReG
τ , the so-called featureless turbulence occupies the

full domain, as shown in Figure 2b at ReG
τ “ 100 using isocontours of τ1px, zq “ τpx, zq ´ τlam. As ReG

τ

is lowered, turbulence self-organizes into the recognizable pattern regime [17] shown in Figure 2c
for ReG

τ “ 80. As ReG
τ is further reduced the turbulent zones become sparser (see Figure 2d for

ReG
τ “ 60). The spatially localized turbulent regions emerge as narrow stripes throughout the process

of decreasing ReG
τ while the gaps between them constantly increase in size. The emerging patterns

never feature an array of strictly parallel stripes like in former computational approaches [19,31,41],
instead they feature competing orientations as in pCf [4], see Figure 2b–d. In this regime the pattern
travels with a streamwise convection velocity slightly slower than UbpGq. Within the quasi-laminar
gaps, Ec f reaches very low values, at least an order of magnitude less than in the core of the turbulent
stripes. The lower ReG

τ , the lower these values. Below ReG
τ “ 50 the stripe pattern eventually breaks

up to form independent turbulent bands of finite length, all parallel to each other [34], as shown in
Figure 2e for ReG

τ “ 40. The new resulting pattern as a whole shows negligible spanwise advection,
while it propagates in x with a velocity close to Ě〈ub〉 [42]. The independent turbulent bands show
enhanced motility in both directions x and z. This motion relative to the frame of reference causes the
tilt of the stripes seen in Figure 2a for ReG

τ ą 50 as well as the apparent increase of thickness.
In pipe flow it was noted recently [43] that the emergence of spatial localization does not imply

the proximity to the transitional point (below which turbulence is not sustained) as long as the statistics
about the size of the laminar gaps fail at displaying power-laws tails. The laminar gaps are estimated as
the streamwise distance lx between local maxima of τ (values lower than 〈τ〉` σpτq, with σ the standard
deviation, have been discarded). The cumulative distribution (CDF) of the laminar gap size is shown
in Figure 3 in lin-log coordinates. For all values of Reτ shown, it shows an exponential tails and no
algebraic part. Exponential distributions are a hallmark of spatio-temporal intermittency, unlike critical
phenomena which are characterized by algebraic/power law related to the scale invariance property.
The entire regime of channel flow for 39 ď ReG

τ ď 100 can be described as being spatiotemporally
intermittent, and is hence far above any critical point. Please note that the critical point of pPf is
estimated to approximately Recl “ 660 [18] i.e., ReG

τ « 36 and falls outside the range of parameters
investigated here.
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Figure 2. (a) Space-time diagram of Ec f px ´ UbpGq t, tq for z “ Lz{2 during the adiabatic descent
protocol, in a frame travelling in the x-direction at the mean bulk velocity UbpGq. Vertical axis: time
with corresponding values of ReG

τ values indicated. (b–e) isocontours of τ1px, zq for ReG
τ “ 100, 80, 60, 40.
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Figure 3. CDF of laminar gap size for ReG
τ “ 80, 60, 50, 40.

3.1. Angular Statistics of Turbulent Bands

The self-organization of turbulence into long band–like structures, oriented with an angle with
respect to the streamwise direction, is depicted in Figure 2. The (signed) angle is computed using two
different methodologies. As in Duguet et al. [36] in the case of pCf, the local y–integrated velocity field is
found to be parallel to the bands. The same holds for pPf, as is visible in Figure 4a,c for ReG

τ “ 60 and
40, respectively. Please note that unlike Couette flow, pPf features advection with a non-zero mean bulk
velocity. Hence the local velocity field is here computed by removing this mean advection velocity. A first
estimation of the local and instantaneous band angle is therefore computed following Equation (6):

θLpx, z, tq “ tan´1
„ ş

u1
z dy ´ 〈ş u1

z dy〉ş
u1

x dy ´ 〈ş u1
x dy〉

j
(6)

The second estimation is obtained from Fourier analysis and computed from Equation (7), following
Reference [44] :

θFptq “ tan´1pλz{λxq (7)

where λ “ 2π{k, with k being the leading non-zero wavenumber identified from the power spectra
(excluding the kx “ kz “ 0 mode). The Fourier spectrum is computed for the quantity τpx, z, tq, but
similar results have been observed for other observables such as Ec f px, z, tq and Ev “ p1{2q ş

u2
y dy.

The angles can be read directly from the Fourier spectra in polar coordinates, see Figure 4b,d for the
same values of ReG

τ “ 60 and 40, respectively. The mean angles Ě〈θL〉 and sθF are then computed by
respectively space-time-averaging and time averaging the data obtained from Equation (6) and (7).

The variation of the mean (signed) angles with ReG
τ , computed using the two methods, is shown

in Figure 5a, where the indices 1, 2 stand for the two band orientations. Both methods provide identical
results. The variation of the (unsigned) angle of the band denoted by θ, computed as θ “ Ě|θF| is shown
in Figure 5b. It is found that the mean angle θ of the bands remains approximately constant with
θ “ 25˝ ˘ 2.5˝ in the range of values 60 ď ReG

τ ď 90 and increases for lower value of ReG
τ ă 60. In the

patterning regime, i.e., for ReG
τ ě 50, the angle of the bands is found to be distributed symmetrically

with respect to zero, as a consequence of the natural symmetry z Ð ´z of the flow. For lower ReG
τ these

quasi-regular patterns break down into individual localized structures analogous to individual puffs
in cylindrical pipe flow. As the pattern dissolves, one single band orientation ends up dominating the
dynamics as shown by Shimizu and Manneville [34] for a similar domain size. The angle θ further
increases as the regular pattern deteriorates, with θmax « 40 at ReG

τ “ 39. Previous studies [18,27] have
documented that the angle of the bands approach 45˝ close to the onset of transition. The present
investigation agrees well with these studies (Figure 5b) while covering a wider range in Reynolds
number, highlighting the difference between the puff regime for which θ « 40 ´ 45˝, and the patterning
regime for which θ is almost half this value (see also Figure 2).
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(a) (b)

(c) (d)
Figure 4. (a,c) Isocontours of τ1 with the local velocity indicated by the normalized velocity
vectors, at ReG

τ “ 60, 40, respectively; (b,d) Instantaneous Fourier spectrum in polar coordinates
for (a,b), respectively.

(a) (b)
Figure 5. (a) Variation of the mean (signed) angle of the turbulent bands with ReG

τ , computed from the
Fourier spectra ( ĎθF1 , ĎθF2 ) and the mean (signed) angle of the local velocity ( Ę〈θL1 〉 , Ę〈θL2 〉) (b) Variation
of the mean unsigned band angle θ along with the data from Reference [27,30].

Figure 4c shows that across a band, the local large-scale velocity changes orientation [41].
This property is used to sort out the local maxima of τ (higher than 〈τ〉 ` σpτq) as belonging to
one band with a particular inclination. This allows one to define the respective streamwise and
spanwise inter-stripe distances lx and lz between bands of the same orientation. Figure 6a,b displaysĚ〈lx〉 and Ě〈lz〉 for orientations 1 and 2, respectively, as a function of ReG

τ . Both increase when decreasing
ReG

τ . They vary in parallel in the patterning regime, hence the quasi-constant angle θ of the bands.
When only one band orientation survives, one observes that the increase in θ amounts to the saturation
of Ě〈lx〉1, while Ě〈lz〉1 keeps increasing.
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(a) (b)
Figure 6. (a,b) Space-time-averaged inter-stripe streamwise Ě〈lx〉1,2 (blue) and spanwise Ě〈lz〉1,2 (red)
distances for bands of orientations 1 and 2, respectively.

3.2. Global Variables: Moody Diagram

The mean velocity profile Ę〈ux̀
〉

is defined as the average of ux over x,z and t, expressed in
units of uτ . It is shown in Figure 7 as a function of y` “ yuτ{ν and compared with the classical
DNS data by Kim et al. [45] obtained at higher ReG

τ “ 180. The whole figure is similar to figures 3
and 10 in Reference [17,46], respectively. As expected for the present low values of ReG

τ , the velocity
field matches the linearized profile ux̀ “ y` next to the wall but does not develop a logarithmic
dependence with respect to y`.

Figure 7. Mean flow profile ux̀ py`q for ReG
τ from 100 down to 39. Blue: law of the wall ux̀ “ y`,

red: logarithmic law of the wall ux̀ “ 2.5 logpy`q ` 5.5, black: DNS by Kim, Moin and Moser from
Reference [45].

At a global level of description, the laminar and turbulent flow are traditionally represented in
the classical Moody diagram in which the Fanning friction factor Cf defined as the ratio between the
pressure drop along the channel length and the kinetic energy per unit volume based on the mean
bulk velocity Ub “ Ě〈ub〉,

Cf “ |Δp|
1{2 ρU2

b

h
Lx

“
Ď〈τ〉

1{2 ρU2
b

“ 2 ReG
τ

2

Re2
b

, (8)

is traditionally plotted versus Reb as shown with plain symbols in Figure 8. Another way to express
Cf is to use inner units, in which case Cf “ 2{pu`

b q2, with u`
b “ ub{uτ . Cf is then linked only to the

integral of the mean profile displayed in Figure 7.
For the laminar flow, the dependence of Cf vs. Reb is analytically given by C flam “ 6{Reb (blue

continuous line). In the featureless turbulent regime, it is known empirically as the Blasius’ friction
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law scaling ĚReb
´1{4 (red continuous line). For intermediate values of Reb, Cf clearly deviates from the

turbulent branch, and remains far from the laminar value [47]. Here we notice, in agreement with [30]
and [34] that Cf « 0.01 remains essentially constant in this transitional regime. What is remarkable
is that this regime of constant Cf coincides with the patterning regime observed for 50 ď ReG

τ ď 90,
corresponding to 690 ď Reb ď 1225, as if the respective amount of turbulent and laminar domains was
precisely ensuring Cf “ cst. As the pattern fractures, Cf increases and approaches the laminar curve.
We note that the observation of this property requires large computational domains to be observed,
which explains why it had not been noticed until recently, even in experiments.

Figure 8. Friction coefficient Cf vs. Reb, with horizontal and vertical error bars indicating the
fluctuations these quantities would inherit from that of the field ub (see text for details).

Given the complex spatio-temporal dynamics in the transitional regime, the bulk velocity ub is
expected to strongly fluctuate both in space and time. We also report in Figure 8, how these fluctuations
would translate on Reb and Cf , if the latter were computed using the locally fluctuating field ub instead
of its mean value Ub. These fluctuations are significant (up to 10–15%) and suggest to further explore
them, which is the topic of the next section and the main focus of the present work.

3.3. Joint Probability Distribution of Reτ and Reb

Reynolds numbers such as Reτ and Reb are traditionally seen as global parameters characterizing the
flow. They are defined based on velocity scales obtained from space-time average. It is straightforward
to extend these definitions to the local fields Rebpx, z, tq “ ubpx, z, tqh{ν and Reτ “ uτpx, z, tqh{ν, with
uτpx, z, tq “ pτpx, z, tq{ρq1{2. Please note that with this definition, Ğ〈Reτ〉 is not strictly equal to the
imposed ReG

τ , because of the nonlinear relation between Reτ and τ.
Investigation of the entire transitional regime is provided through a two-dimensional state portrait

(Reb ´ Reτ) constructed from this local definition of the Reynolds number. The joint probability density
distribution is constructed in this state space with the space-time data for different ReG

τ . The state space
for ReG

τ “ 100, 80, 60, 40 is shown in Figure 9. The continuous blue and red lines again correspond to
the scalings known analytically for the laminar flow, and empirically for featureless turbulent flows for
high enough Reynolds numbers. As expected the most probable values of Reb and Reτ , follow the same
trend as their global counterpart: they match the continuous curve in the featureless turbulent regime,
and progressively depart from it to move towards the laminar branch at the lowest ReG

τ explored here.
More interesting are the distributions. First, we observe that the relative fluctuations are significantly
larger for Reτ than for Reb, the difference being larger for the larger ReG

τ . Secondly the distributions are
not simple Gaussians. Even in the featureless turbulent regime, the marginal distribution of Reτ is
already relatively skewed (Figure 9(a3)).
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Figure 9. pa1q pb1q pc1q pd1q Joint probability distribution of the quantities Reb and Reτ for ReG
τ “ 100, 80,

60, 40 together with their marginal distribution shown in lin-log scale for Reb in pa2q pb2q pc2q pd2q and
for Reτ in pa3q pb3q pc3q pd3q with the mean value indicated by a vertical/horizontal black line.

As ReG
τ is reduced, the overall width of the distribution decreases, but the shape of the marginal

distributions of Reτ differs more and more from a Gaussian. More specifically, although the distribution
remains unimodal, we note that the marginal distribution of Reτ is more and more skewed. We also
note that the right wing of the distribution is not convex anymore. To further quantify these
observations, a systematic analysis of the moments of this distribution is conducted in the next section.

3.4. Higher-Order Statistics

The higher-order statistics of Reτ , Reb and Ec f are presented in this section. For any field
A “ Apx, z, tq, we compute the spatio-temporal average m “ Ě〈A〉, the variance σ2 “ Ğ〈pA ´ mq2〉 and
the kth standardized higher-order moment Ğ〈pA ´ mqk

〉{σk (for k ě 3).
Their mean values of Reb and Reτ (Figure 10a) simply follow the trends described above for the

most probable value of the distribution, connecting the turbulent and the laminar branch, when ReG
τ

decreases. Away from the turbulent and laminar branches Reτ is linearly related to Reb, in agreement
with the observation of a constant Cf . The standard deviation σ (Figure 10b) for Reτ and Reb decrease
together with ReG

τ . This decreasing trend agrees well with the experimental wall shear stress data
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reported in Reference [29]. The standard deviation for Ec f is found to increase with decreasing ReG
τ ,

matching the trend reported in Reference [34].
The variation of the 3rd and 4th moments m3 and m4, i.e., the Skewness (S) and Kurtosis (K),

versus ReG
τ for the observable Reτ and Ec f is shown in Figure 10c. These moments exhibit a strongly

increasing trend with reducing ReG
τ for both quantities. This similarity in behavior leads to K9S2

as shown in Figure 10e. This correlation between the third and fourth statistical moments was first
noted in Reference [48] for the fluctuating velocity in turbulent boundary layers at high Reynolds
number. In the transitional regime, the same relationship has been found to hold in the experiments
of Agrawal et al. [29] from wall shear stress data. We therefore confirm this yet-to-be-understood
extension of a high Reynolds number scaling down to the spatio-temporal intermittent regime.
Furthermore, we observe that the same scaling also holds for the turbulent kinetic energy Ec f
(Figure 10e). In contrast it does not apply to Reb (inset of Figure 10e). The reason is that while
the Kurtosis follows the same trend as for the two other observables, (Figure 10d), the skewness shows
a markedly different behavior: it is non-monotonous, changes sign twice and exhibit a maximum in
the core of the spatio-temporal intermittent regime.

(a) (b)

(c) (d)
Figure 10. Cont.

25



Entropy 2020, 22, 1001

(e)
Figure 10. (a) Mean values (xm) of Reb and Reτ . (b) Variation of the Standard deviation (σ) of Reτ

(red), Reb (green), Ec f (blue) (indicated in the legend) vs. ReG
τ . The σpRebq and σpReτq are scaled as

indicated in the legend in order make them comparable. (c) Variation of Skewness (y-axis on left, filled
symbols) and kurtosis (right y-axis, open symbols) vs. ReG

τ for the observables Reτ (red) and Ec f (blue)
(d) Variation of Skewness (left y-axis on the left, filled symbol) and kurtosis (y-axis on right, open
symbols) vs. ReG

τ for the observable Reb (green). (e) Kurtosis vs. squared skewness for Reτ (red), Reb
(green, inset), Ec f (blue).

4. Discussion

The present simulations of the transitional regime of pPf confirm and extend previously
documented knowledge, such as the constancy of Cf in the patterning regime and the variation
of the band orientations close to the transition point.

The statistical analysis of the distribution of laminar gaps reveals that the distributions are
exponentially tailed over the entire parameter range 39 ď ReG

τ ď 100, demonstrating that even the
value ReG

τ “ 39 remains away from any sort of critical regime, which would be marked by algebraic
distributions. This is consistent with the existing estimation of the location of the transitional critical
point Recl « 660 [18,27], which translates to ReG

τ « 36. The entire patterning regime should thus be
seen as bona fide spatio-temporal intermittency, with the critical behavior and transition point being
relegated to values of ReG

τ ă 39. Exploring the statistics of the flow closer to the critical point would
require even larger domains and longer observation times. Such an investigation is outside the scope
of the current study.

The orientation of the bands in the patterning regime for 60 ď ReG
τ ď 90 (1800 ď Recl ď 4050) is

essentially constant, with an angle θ “ 25˝ ˘ 2.5˝. This validates the choice of θ “ 24˝ as a suitable
value in the numerical approach of Tuckerman et al. [5,31,32], where slender computational domains
are tilted at a chosen value of the angle. However, this angle of 24˝ no longer fits the mean orientation
of the independent turbulent bands in the lower range ReG

τ ď 60 (Recl ď 1800), where the orientation
of the bands increases by a factor close to two, with θ « 40˝ for ReG

τ “ 39.
We confirm the observation of a constant Cf in the patterning regime, which also impliesĞ〈Reτ〉 „ Ğ〈Reb〉, as reflected in Figure 10a. This constant value of Cf in the transitional regimes further

enforces the long lasting analogy with first order phase transitions [49], for which the thermodynamic
parameter conjugated to the order parameter remains constant while the system evolves from one
homogeneous phase to the other, when a suitable control parameter is varied. At the mean-field level,
a trademark of phase coexistence, is then the presence of a bimodal distribution of the order parameter
in the coexistence regime. Capturing this bi-modality is however known as being a challenge, even in
simulations of standard equilibrium systems: first, not all protocols allow for observing the phase
coexistence; second, the order parameter must be coarse-grained on appropriate length-scales as
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compared to the correlation lengths such that non-mean-field effect do not dominate [50]. More than
often, the bi-modality of the order parameter distribution is replaced by a mere concavity and a large
kurtosis. If the two phases have very different fluctuations, as is the case here, one also expects a strong
skewness of the distribution. Our observations extend the analogy, already reported at the level of the
mean observable, to their fluctuations. However, a lot remain to be done to further exploit this analogy,
in particular by making more precise what the relevant order and control parameters are. Let us stress
that whether the analogy with a first order transition is valid or not, it does not preclude the dynamics
at the spinodals from obeying a critical scenario, such as directed percolation close to the laminar
phase spinodal [51] and a modulated instability of the turbulent flow close to the turbulent one [4].

Finally, the statistical moments showcased here demonstrate a correlation between the skewness
and the kurtosis of both Reτ and Ec f . Such a correlation, observed in both the transitional regime
and higher Reynolds number turbulence but originally developed for the latter only [48], suggests a
universal turbulent character, beyond the mere distinction transitional/featureless.

5. Conclusions

The transitional regime of pPf has been investigated numerically in large periodic domains.
The transitional regime is composed of two sub-regimes each demarcated by a distinct behavior.
The patterning regime is characterized, for 50 ď ReG

τ ď 90, by a constant value of Cf « 0.01 and by a
propagation downstream at approximately the mean bulk velocity ă ub ą. For lower ReG

τ all the way
down to the critical point close to ReG

τ ď 36, independent turbulent bands define a regime analogous
to the puff regime of cylindrical pipe flow. The patterns are shown to exhibit a near constant angle of
inclination θ “ 25˝ ˘ 2.5˝ for 60 ď ReG

τ ď 90, which increases with reducing ReG
τ . Both sub-regimes

can be classified as spatiotemporally intermittent, as demonstrated by the exponential tails of the
distribution of laminar gaps. The statistics of the local fields τ and ub reinforce the feeling that a fruitful
analogy with first order phase transitions could be developed, but the later remains to be made more
precise and exploited.

Author Contributions: Conceptualization, Y.D. and O.D.; methodology, P.V.K., Y.D. and O.D.; data curation,
P.V.K.; original draft preparation, Y.D. and P.V.K.; visualization, P.V.K.; supervision, Y.D. and O.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This study was made possible using computational resources from IDRIS (Institut du
Développement et des Ressources en Informatique Scientifique) and the support of its staff. We would like
to acknowledge and thank the entire team of channelflow.ch for building the code and making it open source.
The authors would also like to thank Takahiro Tsukahara, Kazuki Takeda, Jalel Chergui, Florian Reetz, Rob Poole,
Rishav Agrawal, Laurette S. Tuckerman, and Sebastian Gomé for valuable discussions and technical input.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reynolds, O., III. An experimental investigation of the circumstances which determine whether the motion
of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 1883,
35, 84–99.

2. Tuckerman, L.S.; Chantry, M.; Barkley, D. Patterns in Wall-Bounded Shear Flows. Annu. Rev. Fluid Mech.
2020, 52, 343–367. [CrossRef]

3. Coles, D. Transition in circular Couette flow. J. Fluid Mech. 1965, 21, 385–425. [CrossRef]
4. Prigent, A.; Grégoire, G.; Chaté, H.; Dauchot, O.; van Saarloos, W. Large-scale finite-wavelength modulation

within turbulent shear flows. Phys. Rev. Lett. 2002, 89, 014501. [CrossRef]
5. Barkley, D.; Tuckerman, L.S. Computational study of turbulent laminar patterns in Couette flow.

Phys. Rev. Lett. 2005, 94, 014502. [CrossRef]
6. Duguet, Y.; Schlatter, P.; Henningson, D.S. Formation of turbulent patterns near the onset of transition in

plane Couette flow. J. Fluid Mech. 2010, 650, 119–129. [CrossRef]

27



Entropy 2020, 22, 1001

7. Cros, A.; Le Gal, P. Spatiotemporal intermittency in the torsional Couette flow between a rotating and
a stationary disk. Phys. Fluids 2002, 14, 3755–3765. [CrossRef]

8. Ishida, T.; Duguet, Y.; Tsukahara, T. Transitional structures in annular Poiseuille flow depending on radius
ratio. J. Fluid Mech. 2016, 794. [CrossRef]

9. Kunii, K.; Ishida, T.; Duguet, Y.; Tsukahara, T. Laminar-turbulent coexistence in annular Couette flow.
J. Fluid Mech. 2019, 879, 579–603. [CrossRef]

10. Brethouwer, G.; Duguet, Y.; Schlatter, P. Turbulent-laminar coexistence in wall flows with Coriolis, buoyancy
or Lorentz forces. J. Fluid Mech. 2012, 704, 137. [CrossRef]

11. Orszag, S.A. Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 1971, 50, 689–703.
[CrossRef]

12. Carlson, D.R.; Widnall, S.E.; Peeters, M.F. A flow-visualization study of transition in plane Poiseuille flow.
J. Fluid Mech. 1982, 121, 487–505. [CrossRef]

13. Alavyoon, F.; Henningson, D.S.; Alfredsson, P.H. Turbulent spots in plane Poiseuille flow–flow visualization.
Phys. Fluids 1986, 29, 1328–1331. [CrossRef]

14. Henningson, D.S.; Alfredsson, P.H. The wave structure of turbulent spots in plane Poiseuille flow.
J. Fluid Mech. 1987, 178, 405–421. [CrossRef]

15. Li, F.; Widnall, S.E. Wave patterns in plane Poiseuille flow created by concentrated disturbances. J. Fluid Mech.
1989, 208, 639–656. [CrossRef]

16. Henningson, D.S.; Kim, J. On turbulent spots in plane Poiseuille flow. J. Fluid Mech. 1991, 228, 183–205.
[CrossRef]

17. Tsukahara, T.; Seki, Y.; Kawamura, H.; Tochio, D. DNS of turbulent channel flow at very low Reynolds
Numbers. In TSFP Digital Library Online; Begel House Inc.: Danbury, CT, USA, 2005; pp. 935–940.

18. Tao, J.; Eckhardt, B.; Xiong, X. Extended localized structures and the onset of turbulence in channel flow.
Phys. Rev. Fluids 2018, 3, 011902. [CrossRef]

19. Lemoult, G.; Shi, L.; Avila, K.; Jalikop, S.V.; Avila, M.; Hof, B. Directed percolation phase transition to
sustained turbulence in Couette flow. Nat. Phys. 2016, 12, 254–258. [CrossRef]

20. Chantry, M.; Tuckerman, L.S.; Barkley, D. Universal continuous transition to turbulence in a planar shear
flow. J. Fluid Mech. 2017, 824. [CrossRef]

21. Lemoult, G.; Aider, J.L.; Wesfreid, J.E. Experimental scaling law for the subcritical transition to turbulence in
plane Poiseuille flow. Phys. Rev. E 2012, 85, 025303. [CrossRef]

22. Lemoult, G.; Aider, J.L.; Wesfreid, J.E. Turbulent spots in a channel: Large-scale flow and self-sustainability.
J. Fluid Mech. 2013, 731. [CrossRef]

23. Lemoult, G.; Gumowski, K.; Aider, J.L.; Wesfreid, J.E. Turbulent spots in channel flow: An experimental
study. Eur. Phys. J. E 2014, 37, 25. [CrossRef] [PubMed]

24. Hashimoto, S.; Hasobe, A.; Tsukahara, T.; Kawaguchi, Y.; Kawamura, H. An experimental study on
turbulent-stripe structure in transitional channel flow. In Proceedings of the Sixth International Symposium
on Turbulence, Heat and Mass Transfer, Rome, Italy, 14–18 September 2009; p. 10

25. Seki, D.; Matsubara, M. Experimental investigation of relaminarizing and transitional channel flows.
Phys. Fluids 2012, 24, 124102. [CrossRef]

26. Sano, M.; Tamai, K. A universal transition to turbulence in channel flow. Nat. Phys. 2016, 12, 249. [CrossRef]
27. Paranjape, C. Onset of Turbulence in Plane Poiseuille Flow. Ph.D. Thesis, IST Austria, Klosterneuburg,

Austria, 2019.
28. Whalley, R.; Dennis, D.; Graham, M.; Poole, R. An experimental investigation into spatiotemporal

intermittencies in turbulent channel flow close to transition. Exp. Fluids 2019, 60, 102. [CrossRef]
29. Agrawal, R.; Ng, H.C.H.; Dennis, D.J.; Poole, R.J. Investigating channel flow using wall shear stress signals

at transitional Reynolds numbers. Int. J. Heat Fluid Flow 2020, 82, 108525. [CrossRef]
30. Xiong, X.; Tao, J.; Chen, S.; Brandt, L. Turbulent bands in plane-Poiseuille flow at moderate Reynolds

Numbers. Phys. Fluids 2015, 27, 041702. [CrossRef]
31. Tuckerman, L.S.; Kreilos, T.; Schrobsdorff, H.; Schneider, T.M.; Gibson, J.F. Turbulent-laminar patterns in

plane Poiseuille flow. Phys. Fluids 2014, 26, 114103. [CrossRef]
32. Gomé, S.; Tuckerman, L.S.; Barkley, D. Statistical transition to turbulence in plane channel flow. arXiv 2020,

arXiv:2002.07435.

28



Entropy 2020, 22, 1001

33. Kanazawa, T. Lifetime and Growing Process of Localized Turbulence in Plane Channel Flow. Ph.D. Thesis,
Osaka University, Osaka, Japan, 2018. [CrossRef]

34. Shimizu, M.; Manneville, P. Bifurcations to turbulence in transitional channel flow. Phys. Rev. Fluids 2019,
4, 113903. [CrossRef]

35. Xiao, X.; Song, B. The growth mechanism of turbulent bands in channel flow at low Reynolds numbers.
J. Fluid Mech. 2020, 883. [CrossRef]

36. Duguet, Y.; Schlatter, P. Oblique laminar-turbulent interfaces in plane shear flows. Phys. Rev. Lett. 2013,
110, 034502. [CrossRef] [PubMed]

37. Couliou, M.; Monchaux, R. Large-scale flows in transitional plane Couette flow: A key ingredient of the spot
growth mechanism. Phys. Fluids 2015, 27, 034101. [CrossRef]

38. Gibson, J.F. Channelflow: A spectral Navier-Stokes simulator in C++. Tech. Rep. (U. New Hampshire, 2012).
Available online: www.channelflow.org (accessed on 7 September 2020).

39. Gibson, J.; Reetz, F.; Azimi, S.; Ferraro, A.; Kreilos, T.; Schrobsdorff, H.; Farano, N.; Yesil, A.F.; Schütz, S.S.;
Culpo, M.; et al. Channelflow2.0. Unpublished Work. 2020. Available online: www.channelflow.ch
(accessed on 7 September 2020).

40. Lundbladh, A.; Johansson, A.V. Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech.
1991, 229, 499–516. [CrossRef]

41. Paranjape, C.S.; Duguet, Y.; Hof, B. Oblique stripe solutions of channel flow. J. Fluid Mech. 2020, 897.
[CrossRef]

42. Fukudome, K.; Iida, O. Large-scale flow structure in turbulent Poiseuille flows at low-Reynolds Numbers.
J. Fluid Sci. Technol. 2012, 7, 181–195. [CrossRef]

43. Vasudevan, M.; Hof, B. The critical point of the transition to turbulence in pipe flow. J. Fluid Mech. 2018, 839.
[CrossRef]

44. Barkley, D.; Tuckerman, L.S. Mean flow of turbulent–laminar patterns in plane Couette flow. J. Fluid Mech.
2007, 576, 109–137. [CrossRef]

45. Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number.
J. Fluid Mech. 1987, 177, 133–166. [CrossRef]

46. Tsukahara, T. Transition to/from turbulence in subcritical flows between two infinite parallel plates.
In Proceedings of the Korea-Japan CFD Workshop 2010, POSCO International Center, Pohang, Korea,
19 November 2010; pp. 296–306.

47. Dean, R.B. Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional
rectangular duct flow. J. Fluids Eng. 1978. [CrossRef]
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Abstract: Recent direct numerical simulations (DNS) and experiments in turbulent channel flow
have found intermittent low- and high-drag events in Newtonian fluid flows, at Reτ = uτh/ν

between 70 and 100, where uτ , h and ν are the friction velocity, channel half-height and
kinematic viscosity, respectively. These intervals of low-drag and high-drag have been termed
“hibernating” and “hyperactive”, respectively, and in this paper, a further investigation of these
intermittent events is conducted using experimental and numerical techniques. For experiments,
simultaneous measurements of wall shear stress and velocity are carried out in a channel flow facility
using hot-film anemometry (HFA) and laser Doppler velocimetry (LDV), respectively, for Reτ between
70 and 250. For numerical simulations, DNS of a channel flow is performed in an extended domain
at Reτ = 70 and 85. These intermittent events are selected by carrying out conditional sampling of the
wall shear stress data based on a combined threshold magnitude and time-duration criteria. The use
of three different scalings (so-called outer, inner and mixed) for the time-duration criterion for the
conditional events is explored. It is found that if the time-duration criterion is kept constant in inner
units, the frequency of occurrence of these conditional events remain insensitive to Reynolds number.
There exists an exponential distribution of frequency of occurrence of the conditional events with
respect to their duration, implying a potentially memoryless process. An explanation for the presence
of a spike (or dip) in the ensemble-averaged wall shear stress data before and after the low-drag (or
high-drag) events is investigated. During the low-drag events, the conditionally-averaged streamwise
velocities get closer to Virk’s maximum drag reduction (MDR) asymptote, near the wall, for all
Reynolds numbers studied. Reynolds shear stress (RSS) characteristics during these conditional
events are investigated for Reτ = 70 and 85. Except very close to the wall, the conditionally-averaged
RSS is higher than the time-averaged value during the low-drag events.

Keywords: hibernating turbulence; hot-film anemometry; turbulence; channel flow

1. Introduction

In the past few decades, the understanding of near-wall coherent structures has been greatly
improved via the discovery of travelling-wave (TW) solutions [1]. These TW solutions were first
obtained by Nagata [2] for plane Couette flow. They are non-trivial invariant solutions to the
Navier–Stokes equation and are also sometimes called “exact coherent states (ECS)”. Later, Waleffe [3,4]
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found ECS solutions for plane channel flow. The spatial structure of these solutions is similar to the
commonly observed structure of near-wall turbulence: mean flow with counter-rotating streamwise
vortices and alternating low- and high-speed streaks. Most of these ECS solutions are observed
to occur in pairs at a saddle-node bifurcation point, arising at a finite value of Reynolds number.
The upper branch solution has a higher fluctuation amplitude and higher drag than the lower branch
solution [2–5].

One way to investigate the complex turbulent dynamics using TW solutions is to employ “minimal
flow units”. The minimal flow units or MFU denotes the smallest computational domain where
turbulence can persist [6] at a given Reynolds number. Jiménez and Moin [6] observed a cyclic and
intermittent behaviour of the fluctuations of all important quantities while employing MFU to study
plane channel flow. They also observed a rapid increase in the fluctuations and wall shear stress
during the “active” part of the cycle. Later, Hamilton et al. [7] and Jiménez and Pinelli [8] further
studied this cycle and observed that during the time when the wall shear stress is near its lowest values
the streamwise variation of the flow is also reduced. The presence of intermittency in Newtonian
turbulent flow has also been investigated earlier by McComb [9]. Xi and Graham [10] carried out DNS
in an MFU for low Reynolds number, Reτ = uτh/ν = 85 for both Newtonian and viscoelastic flows.
Here, uτ , h and ν are the friction velocity, channel half-height and kinematic viscosity, respectively.
They observed that even in the limit of Newtonian flows, there are the moments of “low-drag” or
“hibernating” turbulence, which display many similar features to MDR (a phenomenon generally
associated with the polymer additives). They coined the nomenclature of a “hibernating” state
when the flow was drag-reducing and resembles MDR, and “active” state for the rest of the flow.
The major flow characteristics observed during hibernation were only weak streamwise vorticity and
three-dimensionality, and lower than average wall shear stress. The frequency of these events increases
with increasing viscoelasticity, although the events remain unchanged, i.e., they display similar flow
properties as MDR. The connection between the polymeric drag reduction in turbulent flows and
transition to turbulence in Newtonian flows has also been discussed earlier by Dubief et al. [11].

Xi and Graham [12] further investigated this phenomenon to provide detailed characteristics of
active and hibernating turbulence in Newtonian and viscoelastic flows. They defined hibernation
when the area-averaged wall shear stress was below 90% of the mean for a dimensionless time duration
of Δt∗ = Δtuτ/h � 3.5, where Δt represents the dimensional time duration. Park and Graham [13]
carried out DNS for MFU in a channel flow geometry, close to transition. They obtained five families of
ECS solutions, which they denoted as the “P1, P2, P3, P4 and P5” solutions. Out of these five families
of solutions, “P4” solution shows the most interesting behaviour. For the upper branch solutions,
the velocity profile approaches the classic von Kármán log-law, while for the lower branch solutions
the velocity profile approaches the Virk’s MDR asymptote. They suggested that most of the time the
turbulent trajectories remain at the upper-branch state (or the “active” state) with few excursions to the
lower-branch state (or the hibernating state). This result provided a further verification that there are
intervals of low-drag in Newtonian flows when the mean velocity profile is close to Virk’s MDR profile
as previously observed by Xi and Graham [10,12]. The existence of such solutions for Newtonian flows
has a potential application in drag reduction, which makes it a practically significant field of research.

One major characteristic of wall-bounded turbulent flows is the so-called bursting process,
which is an abrupt breaking of a low-speed streak as it moves away from the wall [14].
Itano and Toh [15] investigated the bursting process for channel flow at Reτ = 130 by computing
TW solutions in a MFU using a shooting method. They observed that the bursting process is linked
to the instability of the TW solution. Park et al. [16] studied the connection between the bursting
process and the ECS solutions in minimal channel flow for 75 ≤ Reτ ≤ 115. They focussed on the P4
family of ECS solutions, as identified earlier by Park and Graham [13]. To detect a hibernating event
they used the criteria that the area-averaged wall shear stress should go below 90% of the mean wall
shear stress and stays there for a duration of ΔtUcl,lam/h > 65, where Ucl,lam is the laminar centerline
velocity. This time-duration corresponds to Δt∗ > 3 for Reτ = 85. They defined bursting events based
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on an increase in the volume-averaged energy dissipation rate by 50% of its standard deviation for
a duration of ΔtUcl,lam/h > 15. They observed that many of the low-drag or hibernating events are
followed by strong turbulent bursts. Based on this observation, they divided the turbulent bursts into
two categories: weak and strong bursts, and suggested that the strong bursts are the ones which are
always preceded by a hibernating event. They also investigated the possible link between the turbulent
bursts and the instability of the P4-lower branch solution. Very similar trajectories were observed for
the strong bursts and the lower branch of the P4 solution, which provides further evidence that the
turbulent bursts are directly related to the instability of the ECS.

Initially, the investigation of these low-drag events was conducted in minimal channels,
and therefore the need was to study this phenomenon for fully turbulent flow in extended
domains. The relation between the minimal channels and flow in large domains was studied
by Jiménez et al. [17] and Flores and Jiménez [18]. They suggested that the flow dynamics in
minimal channels have many features that are representative of fully turbulent flows. It has also
been seen that some of these solutions are highly localised and display the nontrivial flow only
for a small region of an extended domain, whereas the rest of the flow remains laminar [19–21].
Kushwaha et al. [22] carried out an investigation into these low-drag events in an extended domain
for channel flow at three Reynolds numbers, Reτ = 70, 85 and 100. The computational domain,
in wall (or inner) units, was L+

x ≈ 3000 and L+
z ≈ 800 long in the streamwise and spanwise directions,

respectively. They carried out a temporal and spatial analysis for extended domains and compared the
results between the two. Regions or events of both low- and high-drag events were investigated in large
domains, unlike previous MFU studies where the focus was primarily on low-drag events. To study
the temporal intermittency, they employed the following criteria to detect low-drag (hibernating) or
high-drag (hyperactive) events: the instantaneous wall shear stress (τw) should remain below 90% or
above 110% of time-averaged value for a time duration of Δt∗ = Δtuτ/h = 3 for low or high drag
events, respectively. For studying the velocity characteristics during these low- and high-drag intervals
in the flow, a conditional sampling technique was employed. They observed that, although the
temporal and spatial analyses are independent of each other, the characteristics of low- and high-drag
events obtained using these two methods were very similar. They found that for Reτ between 70 and
100, the regions of low-drag in an extended domain show similar conditional mean velocity profiles as
obtained from temporal interval of low-drag in minimal channels for y+ = yuτ/ν < 30, where y is
the wall-normal distance. This showed that the spatiotemporal intermittency observed in extended
channel flow is related to the temporal intermittency in a minimal channel.

Whalley et al. [23,24] carried out an experimental investigation of the low- and high-drag events
in a plane channel flow at three Reynolds numbers, Reτ = 70, 85 and 100. Instantaneous velocity,
wall shear stress and flow structure measurements were conducted using laser Doppler velocimetry
(LDV), hot-film anemometry (HFA) and stereoscopic particle image velocimetry (SPIV), respectively.
They employed the same criteria as Kushwaha et al. [22] to detect the low-drag events, but for the
high-drag events, the criteria were slightly relaxed in order to obtain more events, as the high-drag
events were found to occur at a lower frequency than the low-drag events. Instantaneous velocity
and wall shear stress measurements were made at the same streamwise/spanwise location, enabling
conditional sampling of the velocity data to be carried out. The conditionally averaged streamwise
velocity and wall shear stress were found to be highly correlated until y+ ≈ 40 and a resemblance
was observed between the conditionally sampled mean velocity profiles for y+ � 40 and the lower
branch of the P4 ECS solution as observed earlier in minimal channels [13]. They also observed that
the fraction of time spent in hibernation (low-drag) decreases with increasing Reynolds number for
70 < Reτ < 100.

Recently, Pereira et al. [25] carried out DNS in channel flow of domain size,
Lx × Ly × Lz = 8 πh × 2 h × 1.5 πh at Reτ between 69.26 and 180 for Newtonian flow, and at
Reτ0 = 180 for drag-reducing flow (65% drag reduction). The flow was identified as hibernating if
the spatially-averaged wall shear stress was lower than 95% of its time-averaged value and no time
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criteria were used (unlike previous studies where a minimum time duration was also used to detect
a hibernating event, for example, in [16,22,24]). They demonstrated that the transition to turbulence
in Newtonian flows shares various common features to the polymer induced drag reduction in
turbulent flows.

Until now, these low- and high-drag events are investigated for 70 ≤ Reτ ≤ 100, and therefore
a natural question arises as to what are the characteristics of these events in the so-called fully-turbulent
flow regime (often associated with a threshold value of Reτ ≥ 180 [26]). The Reynolds shear stress
characteristics during these events has been studied using the DNS in MFUs [12,13], yet there is no
relevant experimental data or numerical data in extended domains available. In this paper, the low-
and high-drag intermittencies are investigated using experimental and numerical techniques to answer
these fundamental questions. The experiments are conducted in a channel flow facility using wall
shear stress and velocity measurements. Recently, Agrawal et al. [27] observed that the flow in the
present channel consists only of turbulent events beyond Reτ ≈ 67 and that significant Reynolds
number dependence of the skewness and flatness of wall shear stress fluctuations starts to disappear
by Reτ 	 73 − 79. Based on these results, in this work, the intermittences associated with the turbulent
flow are investigated for Reτ ≥ 70. An experimental study is made for Reynolds number up to
Reτ = 250, to probe the characteristics of these events for fully-turbulent channel flow. To study the
Reynolds shear stress for Reτ = 70 and 85, experimental as well numerical techniques are employed.

2. Experimental Set-Up

In this study, a channel flow facility at the University of Liverpool has been utilised to carry out
the experimental investigation. The same facility has been used earlier by Whalley et al. [23,24] and
Agrawal et al. [27,28,29], and is shown here in Figure 1. The channel-flow facility is a rectangular duct
consisting of 6 stainless steel modules and a test section. The test section is connected downstream of
five stainless steel modules. Each module is of length 1.2 m and the test section has a length of 0.25 m.
The width (w) and half-height (h) of the duct are 0.298 m and 0.0125 m, respectively, giving an aspect
ratio (w/2h) of 11.92. The modules are constructed in such a manner as to ensure a hydraulically
smooth transition between the modules.

Figure 1. Schematic of channel-flow flow facility (not to scale).

The working fluid is stored in a stainless steel header tank of capacity about 500 L. A Mono type
E101 progressive cavity pump is used to circulate the fluid via the tank in a closed loop. The flow loop
also consists of an additional mixing loop which provides an opportunity for having lower flow rates.
Three pulsation dampers are situated just after the pump, which helps in damping any pulsations in
the flow before entering the channel. A Promass Coriolis flow meter is installed in the return loop
to measure the mass flow rate (ṁ) of the fluid. This enables the bulk velocity (Ub) to be determined
by the relation Ub = ṁ/(ρA), where A is the cross-sectional area of the channel and ρ is the density
of the working fluid. A platinum resistance thermometer (PRT) is present in the last module of the
channel which is used to measure the temperature of the working fluid. The PRT is powered by
an Agilent 34,970 A switch unit, which provides temperature readings with a resolution of 0.01 ◦C.
Throughout this study, only Newtonian fluids are used as working fluids. These are water–glycerol
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mixtures of different concentrations where glycerol is used to increase the viscosity to get to lower
Reynolds number. For example, while studying the flow for Reτ ≥ 180, water is used as the working
fluid and while studying low Reynolds number flow (Reτ = 70), a 65% : 35% by weight glycerol–water
mixture is used as the working fluid. The density of the working fluid is measured using an Anton
Paar DMA 35 N density meter. The shear viscosity of the working fluid is measured using an Anton
Paar MCR 302 rheometer. A cone and plate geometry is employed to measure shear viscosity for shear
rate (γ̇, s−1) ranging from 10−2 to 102.

Pressure-drop measurements are conducted using a Druck LPX-9381 low-differential pressure
transducer, which has a working range of 5 kPa with an accuracy of ±5 Pa. A Baratron differential
pressure transducer made by MKS is used to regularly calibrate the Druck pressure transducer.
Instantaneous wall shear stress and velocity measurements are carried out using a hot-film anemometry
(HFA) system and a laser Doppler velocimetry (LDV) system, respectively, in the test section. The side-
and top-walls of the test section are made of borosilicate glass to provide optical access for the LDV
measurements. A Dantec FiberFlow laser system is employed for velocity measurements which
uses a 300 mW argon-ion continuous wave laser. Up to two component velocity measurements have
been carried out thus requiring two pairs of laser beams of different wavelengths: blue (488 nm)
and green (515.5 nm). A Bragg cell is utilised to resolve the directional ambiguity of the velocity of
seeding particles by giving a frequency shift of 40 MHz to one of the laser beams. The laser beams are
emitted using a transmitting optics (or laser head) which provides a beam separation of 51.5 mm and a
focal length of 160 mm in air. The crossing of two beams of the same colour creates a measurement
volume of 24 μm diameter and 150 μm length in air. The transmitting optics is placed on a traverse
which allows movement of the measurement volume in all three directions. For the seeding particles,
generally, natural particles present in the working fluid (for example, supply water) are found to be
sufficient to obtain a good data rate. In cases where the natural seeding particles are found to be low,
for example, when the working fluid has a high concentration of glycerol, Timiron Supersilk MP-1005,
having an average size of 5 μm, are added to the working fluid. In this study, both single component
and two-component velocity measurements have been carried out. In the case of two-component
velocity measurements, the data are acquired in co-incident mode. This mode samples both velocity
components of the same seeding particle simultaneously in the measurement volume. The LDV is
operated in a forward-scatter mode and the typical data rate is around 100–500 Hz. The light scattered
from the seeding particle enters the photodetector (receiving optics) which splits the laser beams based
on the wavelengths. The laser beams then pass to the photomultiplier tubes (PMTs) which sends
the Doppler frequencies to the flow processor, burst spectrum analyzer (BSA)-F50, made by Dantec
Dynamics. The signals are converted to the corresponding velocity signals using the inbuilt signal
processors in the flow processor.

Calculation of RSS requires simultaneous measurements of streamwise and wall-normal velocities,
but the wall-normal velocity measurements cannot be made close to the bottom wall because of the
cut-off of the laser beams [30], and therefore some modifications to the transmitting optics of the LDV
set-up are made. The first modification is to rotate the laser head by 45◦ about the spanwise axis to get
closer to the bottom wall, similarly to as previously done by Melling and Whitelaw [31], Walker and
Tiederman [32] and Günther et al. [33]. Streamwise (U) and wall-normal (V) velocity components are
recovered based on the coordinate transformation equation, as shown below.

[
U
V

]
=

[
cos 45◦ sin 45◦

− sin 45◦ cos 45◦

] [
U1

U2

]
. (1)

Here, U1 and U2 are the velocity components measured by blue and green beams, respectively.
This modification makes the minimum vertical height where the measurement of the wall-normal
velocity component can be made reduced by a factor of 1/

√
2. Next, an external LD1613-N-BK7

biconcave lens, made by Thorlabs, is placed in front of the laser head to increase the focal length of
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the laser beams. This lens has a diameter of 25.4 mm and a focal length of 100 mm. Increasing the
focal length enables the measurement volume to go further into the test section from the side-wall.
Therefore, if the aim is to measure at the same spanwise location in the test section, the laser head
needs to be moved further back from the side-wall. This modification enables the laser beams to be
closer to each other when they enter through the side-wall. The measurement volume can get closer
to the bottom wall as the laser beams get closer to each other. Thus, the two-component velocity
measurements can be carried out closer to the bottom-wall after the addition of a biconcave lens.
The lens is connected on a lens mount which is attached to an optical post. The optical post is then
attached to the traverse of the transmitting optics. Therefore, the entire lens system can be traversed
with the transmitting optics. It is important that both pairs of laser beams are aligned properly to the
external lens. This alignment is checked based on the high data rate of the LDV signal in co-incident
mode and validating the time-averaged RSS profile against available DNS data at the same Reynolds
number. By making these two modifications, the two-component velocity measurements can be
conducted for y/h ≥ 0.3 at a spanwise location of z/h = 5 in the channel-flow facility.

In this study, constant temperature anemometry (CTA) is employed for measuring the
instantaneous wall shear stress by utilising the commercially available 55R48 glue-on hot-films probes
(made by Dantec Dynamics). The hot-film sensor has a physical spanwise length (Δz) of 0.9 mm.
In inner units, this corresponds to Δz+ = 18 for Reτ = 250. In this study, the effect of measurement
resolution issues due to sensor sizes are thought to be negligible as Ligrani and Bradshaw [34]
considered a sensor length of about Δz+ � 20 − 25 to be acceptable to make well-resolved turbulence
measurements. In order to attach the sensor to the channel wall, removable Delrin plugs are designed
and fabricated inhouse. The hot-film probes are glued on these plugs and these plugs are then inserted
into the bottom wall of the test section. We ensure that the hot-films are flush with the bottom wall
of the test section. A detailed description of the mounting process for the hot-film probes in the
present channel has been provided in Agrawal [35]. The probe is powered by a Dantec StreamLine
Pro velocimetry system. The bridge ratio and the overheat ratio of the anemometer are set at 10
and 1.1, respectively. The typical frequency response of the anemometer, against the square-wave
generator is found to be around 10–30 kHz, which is generally considered sufficient for turbulence
measurements [36]. The output voltage signal from the anemometer is then digitized using a 14-Bit
USB6009 Multifunction A/D converter, made by National Instruments. After A/D converter, the signal
is acquired using the CTA application software, StreamWare Pro, installed on the computer. In the
case of simultaneous measurements of velocity and wall shear stress, the digitised voltage is sampled
by the BSA flow processor which helps in the acquisition of time-synchronised velocity and wall
shear stress data. The voltage output signals from the anemometer is converted to instantaneous
wall shear stress signals using calibration against the mean pressure-drop obtained from the pressure
transducer. The same procedure for the hot-film calibration as discussed in Agrawal et al. [27,28] has
been conducted here.

In CTA, all the changes in the fluctuations in voltage output from the anemometer should be
representative of fluctuations in the flow. Therefore, any change in voltage output due to thermal and
non-thermal drifts need to be minimised. To minimise the thermal drift, an open-loop copper cooling
coil is added to the overhead tank and the main supply water is used to control the temperature of
the working fluid. Using this set-up, the temperature of the working fluid could be controlled
to the precision of ±0.01 ◦C for the entire experimental run of the day (typically about 6–8 h).
Non-thermal drifts are also observed which are generally caused due to the contamination of the
hot-films [37]. A novel nonlinear regression technique, as discussed in Agrawal et al. [28], has been
employed to recover the wall shear stress signals from the drifted voltage signal.

Experiments are conducted for five Reynolds numbers: Reτ = 70, 85, 120, 180 and 250 and for each
Reynolds number, wall shear stress and velocity data are acquired simultaneously in the measurement
test section using HFA and LDV, respectively, at a location of z/h = 5 and x/h = 496. As discussed
in Agrawal et al. [27], the spanwise location of z/h = 5 is observed to be devoid of side-wall effects.
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Velocity acquisition is realised at various wall-normal locations, where each wall-normal location is
sampled for 2 h at a typical data rate of around 300–400 Hz. Table 1 shows the Reynolds numbers,
corresponding wall-normal locations studied and the parameters measured in this work. For Reτ = 70
and 85, both streamwise and wall-normal velocity components are measured simultaneously with the
wall shear stress. These particular measurements have been conducted to study the RSS behaviour
during the low- and high-drag events. For other Reynolds numbers, due to experimental limitations,
only streamwise velocity measurements have been executed along with the wall shear stress because
the near peak region of the RSS could not be measured for higher Reynolds numbers as this moves
physically closer to the wall at higher Reynolds numbers where the LDV beams lose optical access.

Table 1. Reynolds numbers and various wall-normal locations studied. Parameters measured for each
Reynolds numbers are also shown.

Reτ y+ Parameters

70 21, 24, 28, 32, 35, 40, 46, 51, 60, 68 τw, U, V

85 26, 31, 36, 32, 41, 47, 54, 61, 76, 85 τw, U, V

120 22, 26, 30, 37, 46, 59, 71, 85, 103 τw, U

180 24, 30, 38, 48, 60, 75, 98, 128, 157 τw, U

250 35, 45, 58, 74, 94, 118, 143, 171, 202, 242 τw, U

The procedure described by Kline and McClintock [38] has been employed here to conduct
an uncertainty analysis of the measured and calculated variables. The employed channel-flow facility
is carefully machined to provide negligible relative uncertainties (~0.15%) in the channel dimensions
(w and h) and the length between the pressure tappings, l. The pressure transducer has an accuracy
of ±5 Pa, and therefore the relative uncertainty in the mean wall shear stress is Δτw/τw = 1–3%.
The density meter has a quoted accuracy of ±1 kg/m3. This gives a relative uncertainty in the density
of the working fluid of Δρ/ρ = 0.09%. The relative uncertainty in the viscosity (μ) measurement of
the working fluid using the rheometer is Δμ/μ = 2%. The relative uncertainty in the friction velocity
(uτ =

√
τw/ρ) is Δuτ/uτ = 0.5–1.5%. This gives an uncertainty in the friction Reynolds number

(Reτ = uτh/ν) measurement of ΔReτ/Reτ = 2–2.5%. The major sources of error in LDV data are due
to velocity gradient broadening, velocity bias effect or fringe distortion [39]. These combined effects,
in general, give the relative uncertainties in the mean velocity of 2–3% and the turbulent intensities
of 4–6%. In inner units, the relative uncertainties in the mean velocities and turbulent intensities are
ΔU+/U+ = 2–3.5% and Δuv+/uv+ = 4–7%. Here, u and v represent streamwise velocity fluctuation
and wall-normal velocity fluctuation, respectively. The LDV transmitting optics traverse has a precision
of 0.001 mm, providing a relative uncertainty in the wall-normal position (y) measurement, close to the
wall (y = 0.5 mm), to be Δy/y = 0.2%. In inner units, at this wall-normal location, y+ has an uncertainty
of Δy+/y+ = 2–2.5%.

In this study, two different ways of averaging the measured variables are carried out:
time-averaging and conditional-averaging. To differentiate between these two averages the following
nomenclature are used: an overbar indicates a time-averaged quantity (e.g., U), and an overbar with
an L or H superscripts indicates the conditionally-averaged quantity for low- and high-drag events
(e.g., UL, UH), respectively. Similarly, friction velocities are calculated using two different wall shear
stress: time-averaged wall shear stress (uτ) and conditionally-averaged wall shear stress (uτ

L, uτ
H).

Based on these definitions of the friction velocities, the wall-normal locations are also normalised in
three different ways: y+ = yuτ/ν, y+L = yuτ

L/ν and y+H = yuτ
H/ν.

3. Numerical Procedure

We consider an incompressible Newtonian fluid in the plane Poiseuille (channel) geometry,
driven by a constant volumetric flux Q. The x, y and z coordinates are aligned with the streamwise,
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wall-normal and spanwise directions, respectively. Periodic boundary conditions are imposed in
the x and z directions with fundamental periods Lx and Lz, and a no-slip boundary condition is
imposed at the walls y = ±h, where h = Ly/2 is the half-channel height. The laminar centreline
velocity for a given volumetric flux is given as Ucl,lam = (3/4)Q/h. Using the half-height h of the
channel and the laminar centreline velocity Ucl,lam as the characteristic length and velocity scales,
respectively, the non-dimensionalised Navier–Stokes equations are given as

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u = −∇p + 1/(Rec)∇2u. (3)

Here, we define the Reynolds number for the given laminar centreline velocity as Rec = Ucl,lamh/ν,
where ν is the kinematic viscosity of the fluid. Characteristic inner scales are the friction velocity
uτ =

√
(τw/ρ) and the near-wall length scale, or wall unit, δν = ν/uτ , where ρ is the fluid density

and τw is the time- and area-averaged wall shear stress. Quantities non-dimensionalised by the
inner scales are denoted with a superscript ‘+’. The friction Reynolds number is then defined as
Reτ = uτh/ν = h/δν. For the current simulations, friction Reynolds numbers of Reτ = 70 and 85
are considered. Simulations are performed using the open source code ChannelFlow written and
maintained by Gibson [40]. We focus on a domain of Lx × Ly × Lz = 13.64 πh × 2 h × 3.64 πh.
These dimensions correspond to L+

x × L+
z ≈ 3000 × 800 for Reτ = 70, and L+

x × L+
z ≈ 3640 ×

970 for Reτ = 85. A numerical grid system is generated on Nx × Ny × Nz (in x, y, and z)
meshes, where a Fourier–Chebyshev–Fourier spectral spatial discretisation is applied to all variables.
A resolution of (Nx, Ny, Nz) = (196, 73, 164) is used for both Reynolds numbers. The numerical grid
spacing in the streamwise and spanwise direction are Δx+min ≈ 15.3 (18.6) and Δz+min ≈ 4.9(5.9) for
Reτ = 70 and (Reτ = 85) cases. The nonuniform Chebyshev spacing used in the wall-normal direction
results in Δy+min ≈ 0.07 (0.08) at the wall and Δy+max ≈3.0 (3.7) at the channel centre for Reτ = 70
and (Reτ = 85) cases. For the computation time, 50 × 103 strain times (> 25Rec) is chosen to attain
meaningful statistics.

The present experiment provides temporal information for the flow, and therefore for
a comparison of the DNS and experimental data, temporal information from the DNS data is extracted.
To obtain reliable statistics, nine wall locations are chosen at the wall on the top and on the bottom
walls of the computational domain. These locations are selected in such a way that each spatial location
is not correlated with the others [22]. The streamwise/spanwise spatial locations correspond to the
combinations of three x+ locations and three z+ locations: x+ ≈ 505, 1500 and 2495; z+ ≈ 151, 400 and
649 for Reτ = 70, and x+ ≈ 613, 1820 and 3027; z+ ≈ 183, 485 and 787 for Reτ = 85. The instantaneous
wall shear stress is obtained by using the streamwise velocity gradient information at y+ ≈ 1,
although no difference in its value was observed between y+ ≈ 1 and lower y+ locations.

4. Identifying Low- and High-Drag Events

Figure 2a shows the PDF (probability density function) of wall shear stress fluctuations (τ′
w)

obtained at Reτ = 180 using experiments. The PDF of wall shear stress has a longer positive tail
which means that the PDF is positively skewed. This shows that some of the positive fluctuations
have much larger magnitude than the negative fluctuations. In the present study, the wall shear stress
is representative of the skin-friction drag. Previously, Gomit et al. [41] used the PDF of wall shear
stress to divide low- and high-wall shear stress events in a turbulent boundary layer. They divided
the PDF into four quartiles, where each quartile contains one-fourth of the realisations. In this study,
to define the low- and high-drag “events”, two significant parameters are considered: the magnitude
of the wall shear stress fluctuations and the duration of time the fluctuations stay below or above the
time-averaged value.
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Figure 2. (a) PDF of wall shear stress fluctuations for Reτ = 180 obtained using experiments.
Blue dashed lines represent the threshold criteria for the low- and high-drag events, i.e., τw/τw < 0.9
and τw/τw > 1.1, respectively. (b) Distribution of negative and positive wall shear stress fluctuations
per hour for Reτ = 180 obtained using experiments. The black dotted lines cover the region of low-drag
events based on the criteria: τw/τw < 0.9 and Δt+cr = 200 and the black dashed lines cover the region of
high-drag events based on the criteria: τw/τw > 1.1 and Δt+cr = 200.

The PDF of wall shear stress fluctuations, as shown in Figure 2a, provides statistical information
about the magnitude of the fluctuations but information regarding the time-duration of the fluctuations
cannot be inferred. Therefore, it is necessary to find a way to visualise all the positive and negative
fluctuations as a function of the magnitude and time-duration. This is carried out by calculating the
distribution of all the fluctuations (τ′

w) about the time-averaged value (τw) with their corresponding
time durations (Δt). Figure 2b shows this distribution for Reτ = 180. Here, inner scaling (u2

τ/ν) is used
to scale the time-duration of the negative and positive wall shear stress fluctuations. The strength of
the wall shear stress fluctuations is given by τ′

w/τw. The number of these fluctuations is higher for the
lower strengths and lower time-durations.

In this study, to detect a low-drag or a high-drag event, a magnitude threshold criterion and
a time duration criterion are employed on the wall shear stress signals. For the threshold criteria,
values less than 0.9τw for the low-drag events and greater than 1.1τw for the high-drag events have
been typically employed previously by Kushwaha et al. [22]. Whalley et al. [24] used the same
threshold criteria for the low-drag events, but for the high-drag events they employed a less stringent
criteria of greater than 1.05τw, in order to obtain more data points to carry out the statistical analysis.
In the present study, the same values for the threshold criteria as used by Kushwaha et al. [22] are
employed to detect the conditional events; however, the effect of varying the threshold criteria will also
be discussed. For the time-duration criteria, Kushwaha et al. [22] and Whalley et al. [23,24] employed
a mixed scaling (Δt∗ = Δtuτ/h) to detect conditional events in channel flows. They typically used
Δt∗ = 3 as the time-duration criterion while discussing the sensitivity of the value of the time-duration
criterion on the conditional quantities. Unlike these previous studies, in the present investigation,
an inner scaling is used for the time-duration criterion for the conditional events: Δt+ = 200 is used
as the minimum time-duration to detect conditional events. The reasons for, and implications of,
choosing this scaling will be discussed in detail in the next section. The effect of varying the length
of the time-duration criterion on the conditional quantities will be discussed in Section 6. To further
understand the definition of these conditional events, examples of instantaneous wall shear stress
signals meeting the above-mentioned criteria for the low-drag and the high-drag events are shown
in Figure 3. This figure shows the instantaneous normalised wall shear stress during the low-drag
(Figure 3a) and the high-drag (Figure 3b) events. In Figure 3, the acquisition time of the wall shear
stress is shifted such that t+ = 0 indicates the beginning of a low- or a high-drag event. Each event is
shown to act longer than the minimum time duration (for “low-drag” ~230 units and for “high-drag”
~320 units).

39



Entropy 2020, 22, 1126

-200 -100 0 100 200 300 400 500 600

0.5

1

1.5

2

-200 -100 0 100 200 300 400 500 600

0.5

1

1.5

2

Figure 3. Time history of normalised wall shear stress at Reτ = 180 during (a) a low-drag and
(b) a high-drag event obtained using experiments. Blue solid lines highlight the low-drag and the
high-drag events in panels (a,b), respectively. Black dotted lines show mean value of normalised
wall shear stress τw/τw = 1. Black dashed lines show τw/τw = 0.9 and τw/τw = 1.1 in panels (a,b),
respectively. Red dashed line indicates the time-duration criteria of Δt+cr = 200. In panels (a,b), t+ is
shifted such that t+ = 0 indicates the beginning of a conditional event.

5. Time Spent in Low- and High-Drag Events

Here we study the effect of three different scalings, i.e., inner scaling, mixed scaling and outer
scaling for the time-duration criteria to detect a conditional event. Outer scaling is simply ΔtUb/h.

Inner scaling (Δt+ = Δt u2
τ

ν ) and the mixed scaling (Δt∗ = Δt uτ
h ) are related by the following relation.

Δt+ = ReτΔt∗. (4)

From Equation (4), it can be observed that with increasing Reynolds numbers, the Δt+ value increases
for the same Δt∗ value. Whalley et al. [24] studied the fraction of time spent in low- and high-drag
events with changing Reynolds numbers where the time-duration criterion was kept constant in mixed
scaling. They observed that with increasing Reynolds number between 70 ≤ Reτ ≤ 100, the fraction
of time spent in low-drag events decreases by approximately 500% while increasing the Reτ from
70 to 100. The effect of other scalings has not been considered previously.

The fraction of time spent in the conditional events is investigated for Reτ = 70, 85, 120, 180 and
250 using all three scalings. For Reτ = 70, Δtuτ/h = 3 corresponds to about tu2

τ/ν = 200 and tUb/h = 42.
Based on this information, three values are chosen for each scaling to study the effect of Reynolds
number on the fraction of time spent in the conditional events. For the mixed scaling, Δtuτ/h = 1, 2
and 3, for outer scaling, tUb/h = 15, 30 and 45, and for the inner scaling, tu2

τ/ν = 100, 200 and 300
are used. For the low-drag events the threshold criterion is kept constant as τw/τw < 0.9 and for the
high-drag events the threshold criterion is kept constant as τw/τw > 1.1.

Figure 4 shows the fraction of time spent in low- and high-drag for different Reynolds numbers
and the time-duration criteria. Results are shown for both the experimental as well as DNS data.
It can be observed that the fraction of time spent in low-drag or high-drag decreases with increasing
Reynolds numbers when mixed or outer scaling is used for the time duration criteria. This is similar
to the result obtained using the mixed scaling for the time-duration criteria by Whalley et al. [24].
However, the fraction of time spent in the conditional events remains almost independent of the
Reynolds number for 70 ≤ Reτ ≤ 250 for the experimental data, when the time-duration criteria is
kept constant in inner units. DNS data shows a qualitatively consistent behaviour (i.e., show a similar
trend for all three scalings) in the fraction of the conditional events compared to the experimental data
although for a smaller range of Reynolds numbers. One possibility for the differences observed between
DNS and experiments here is that these very rare low- or high-drag events involve flow structures
that are much longer in the streamwise direction than usual, and that a domain size that is adequate
for the vast majority of the turbulent dynamics might not be long enough to quantitatively capture
the frequency of these rare events. Alternatively, subtle differences caused by the finite aspect ratio of
the experimental set-up in comparison to the periodic boundary conditions used in the simulations,
or the inherent uncertainties associated with the calibration of the hot-film signals maybe the cause of
these differences. Based on this observation, inner scaling is chosen for the time-duration criteria in the
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remainder of this paper. Figure 4e,f also shows that increasing the value of the time-duration criteria
(100 ≤ Δtu2

τ/ν ≤ 300) decreases the fraction of time spent in these conditional events. The fraction of
time spent in the intervals of low-drag is found to be greater than the intervals of high-drag for the
same values of the time-duration criteria for 100 ≤ Δtu2

τ/ν ≤ 300, and where the threshold criteria is
kept the same in terms of the magnitude (τw/τw < 0.9 for the low-drag events and τw/τw > 1.1 for the
high-drag events).
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Figure 4. Reynolds number variation of fraction of time spent in low-drag events with using (a) mixed
scaling, (c) outer scaling and (e) inner scaling for the time-duration criteria. Reynolds number variation
of fraction of time spent in high-drag events with using (b) mixed scaling, (d) outer scaling and (f) inner
scaling for the time-duration criteria. Open symbols represent the experimental data and filled symbols
represent the DNS data. The threshold criteria to detect a low- and high-drag event are τw/τw < 0.9
and τw/τw > 1.1, respectively. Note that the y-axis is not the same between low- and high-drag data.
Error bars obtained by dividing the sample size into two halves and calculating the respective fraction
are found to be within the size of the symbols and are therefore removed to avoid cluttering of data.
Dotted lines in panels (e,f) highlight the average value of fraction (%) for 70 ≤ Reτ ≤ 250 at different
values of Δtu2

τ/ν obtained using experiments.

A similar observation was also made previously by Whalley et al. [24] while using mixed scaling
for the time-duration criterion.
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Figure 4 shows that the fraction of time spent in the conditional events decreases with increasing
the value of the time-duration criterion. A further investigation of this phenomenon is made by
studying the dependence of the occurrence of conditional events as a function of their durations.
Figure 5 shows the distribution of the occurrence of low- and high-drag events as a function of Δt+

for Reτ = 180. The threshold criteria to detect a low- and high-drag events are τw/τw < 0.9 and
τw/τw > 1.1, respectively. The probability of occurrence of both low- and high-drag events decreases
almost exponentially (as the y-axis is in log scale) with increasing Δt+. For Δt+ � 400, P(Δt+) does
not seem to be well resolved because of the lower occurrence of low- and high-drag events for higher
Δt+, thus leading to lower number of events to carry out the statistical analysis. The distribution of
high-drag events is observed to be different to the distribution of low-drag events. There is a higher
probability of occurrence of high-drag events for lower Δt+ as compared to the low-drag events
and vice versa. The crossover Δt+, where the behaviour of the low- and high-drag events becomes
opposite, is about 60. The decay of the probability of the low- and high-drag events is then fitted with
an exponential relationship for 100 ≤ Δt+ ≤ 300, given by P(Δt+) = Ae−λΔt+ . Here, λ indicates the
rate of decay. The decay rate is calculated for all the Reynolds numbers. Exponential distributions
like this arise in so-called Poisson processes, also called memoryless processes. The exponential
decay implies that the probability of the interval ending between time Δt+ and time Δt+ + d(Δt+) is
independent of Δt+, i.e., the probability of the low- or high-drag intervals ending are independent
of how long they have lasted. Avila et al. [42] observed a similar memoryless process with regards
to puff splitting during transition in a pipe flow. After an initial formation time, the distribution
of puff splitting were exponential and therefore memoryless, thus showing that the probability of
a puff splitting does not depend on its age. Table 2 shows the rate of decay obtained for low- and
high-drag events at various Reynolds numbers. The rate of decay is found to be almost independent
of the Reynolds numbers for both low- and high-drag events, and the λ values are lower for the
low-drag than the high-drag for the 100 ≤ Δt+ ≤ 300. A slight discrepancy is observed for Reτ = 70,
which can be attributed to the presence of transitional effects at this Reynolds number, as discussed
in Agrawal et al. [27]. These results are also consistent with the results shown in Figure 4e,f that the
fraction of the conditional events are almost independent of the Reynolds number and the fraction of
time spent in low-drag events is higher than for the high-drag events. This is the first evidence that
the “low-drag” hibernating turbulent events exist significantly above the Reynolds numbers close to
transition [24] and well into the regime where the flow is usually considered to be “fully-turbulent”,
i.e., Reτ ≥ 180 [26].
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Figure 5. PDF of occurrence of low- and high-drag events as a function of Δt+ for Reτ = 180
where the threshold criteria for low- and high-drag events are τw/τw < 0.9 and τw/τw > 1.1,
respectively. Here, x-axis (Δt+) represents the lifetime or duration of a conditional event.
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Table 2. Rate of decay (λ) of the PDF of occurrence of conditional events for 100 ≤ Δt+ ≤ 300 at
various Reynolds numbers. Numbers in brackets correspond to the R2 value. The threshold criteria for
low- and high-drag events are τ/τw < 0.9 and τ/τw > 1.1, respectively.

Reτ Low-Drag High-Drag

70 0.0192 (0.89) 0.0258 (0.90)

85 0.0181 (0.95) 0.0252 (0.97)

120 0.0185 (0.98) 0.0245 (0.97)

180 0.0185 (0.96) 0.0251 (0.97)

250 0.0183 (0.99) 0.0245 (0.99)

6. Wall Shear Stress Statistics during Conditional Events

To study the statistics of the conditional wall shear stress, the instantaneous wall shear stress
during the low-drag or high-drag events are ensemble-averaged. Figure 6 shows the instantaneous
and ensemble averaged wall shear stress fluctuations during low- and high-drag events for Reτ = 180.
The ensemble averaging is executed in two ways: by shifting all the instantaneous low- and high-drag
events such that t+ = 0 indicates the beginning of a conditional event (shown in Figure 6a,c), and by
shifting all the instantaneous low- and high-drag events such that t+ = 0 indicates the end of
a conditional event (shown in Figure 6b,d). This has been done to study the time evolution of the
ensemble-averaged wall shear stress with respect to the start and the end of a conditional event. It can
be seen that during the low-drag events, the ensemble averaged wall shear stress drops approximately
35% below the time-averaged value. During the high-drag events, the ensemble averaged wall shear
stress rises approximately 45% above the time-averaged value. This figure also highlights that although
the time-duration criteria for the conditional events is Δt+cr = 200, these events can last up to Δt+ ≥ 400.

The effect of the time-duration and magnitude threshold criteria on the conditional wall shear
stress is investigated for Reτ = 180. For the time-duration criterion, Δt+cr is varied between 150 and
250 while keeping the threshold criteria constant as τw/τw < 0.9 and τw/τw > 1.1 for the low-
and high-drag events, respectively. Figure 7a–d shows the ensemble-averaged wall shear stress for
the low- and high-drag events at Reτ = 180 for various time-duration criteria. The figure shows the
ensemble-averaged wall shear stress for the conditional events for both methods of ensemble averaging,
i.e., t+ = 0 indicates either the start or end of a conditional event. The plateau of the ensemble-averaged
wall shear stress during the low- and high-drag events is observed to be insensitive to the time-duration
criteria when varying Δt+ from 150 to 250, but the duration of these conditional events itself becomes
smaller when making the criteria less stringent. A spike in the ensemble-averaged wall shear stress
can be observed near the start and end of the low-drag events and similarly, a dip can be seen near the
start and end of the high-drag events. Analogous results corresponding to the ensemble-averaged wall
shear stress during the low-drag events were also obtained by Kushwaha et al. [22] in channel flow
using DNS for Reτ = 100. They employed mixed scaling (Δt∗ = 2 and 3) as the time-duration criteria
to detect low-drag events. Similar results were obtained for the other Reynolds numbers studied here
and are not shown for brevity.

It can be said that the time-duration criteria, either based on mixed or inner scaling (for the
range studied), does not affect the strength of the low- or high-drag events. For the rest of this
paper, the time-duration criteria for the both low- and high-drag events is fixed at Δt+cr = 200 unless
stated otherwise. Next, the effect of changing the threshold criteria on the conditional wall shear stress
is investigated while keeping the time-duration criterion constant at Δt+cr = 200. The threshold
criteria used for low-drag events are τw/τw < 0.8, τw/τw < 0.9 and τw/τw < 1, and for the
high-drag events are τw/τw > 1, τw/τw > 1.1 and τw/τw > 1.2. The most stringent limits for
the strength in the threshold criteria are chosen based on the availability of a sufficient number of
conditional events to obtain well-resolved ensemble-averaged wall shear stress results. As the threshold
criterion is made more stringent, for the low-drag events (shown in Figure 7e,f), the lower plateau
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of the ensemble-averaged wall shear stress decreases. Similarly, for the high-drag events (shown in
Figure 7g,h), the upper plateau of the ensemble-averaged wall shear stress increases. Similar results
were observed for low-drag events only by Kushwaha et al. [22] at Reτ = 100. The results are shown
only for Reτ = 180 as very similar results were obtained for the other Reynolds numbers studied.

Figure 6. (a,b) Instantaneous normalised wall shear stress (thin grey lines) and ensemble-averaged wall
shear stress (thick black line) during the low-drag events for Reτ = 180 where t+ = 0 indicates (a) start of
a low-drag event and (b) end of a low-drag event. Red line highlights an instantaneous low-drag event
with a duration of Δt+ ≈ 410. Purple line and dashed blue line represent the time-averaged value and
the threshold value of τw/τw < 0.9, respectively. (c,d) Instantaneous normalised wall shear stress (thin
grey lines) and ensemble-averaged wall shear stress (thick black line) during the high-drag events for
Reτ = 180 where t+ = 0 indicates (a) start of a high-drag event and (b) end of a high-drag event. Red line
highlights an instantaneous low-drag event with a duration of Δt+ ≈ 400. Purple line and dashed blue
line represent the time-averaged value and the threshold value of τw/τw > 1.1, respectively.

Interestingly, as can be seen from Figure 7e–h, the spike in the ensemble-averaged wall shear stress
for the low-drag events and dip in the ensemble-averaged wall shear stress for the high-drag events
seems to be less significant with increasingly strict threshold criteria. Kushwaha et al. [22] mentions
that they have no physical explanation for the existence of the spike or dip in the ensemble-averaged
wall shear stress data. To investigate the reason for the spike or dip in the ensemble-averaged data
during the conditional events, two artificially generated time series have been produced where one
signal is Gaussian and the other signal has the same first four moments as the wall shear stress
moments for Reτ = 180 obtained in the present experiment. The Gaussian signal has a rms value
the same as the wall shear stress for Reτ = 180. This has been conducted to understand if the reason
for the spike or the dip is unique to the wall shear stress signals or is merely a statistical artefact of
the conditioning. An equal number of samples (N = 2 × 108) are generated for both of the artificially
generated signals using the inbuilt MATLAB function: “pearsrnd”.
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Figure 7. Ensemble-averaged wall shear stress for various time-duration criteria at Reτ = 180 for (a) start
and (b) end of low-drag events, and (c) start and (d) end of high-drag events. The threshold criteria to
detect a low- and high-drag event are τw /τw < 0.9 and τw /τw > 1.1, respectively. Ensemble-averaged
wall shear stress for various threshold criteria at Reτ = 180 for (e) start and (f) end of low-drag events,
and (g) start and (h) end of high-drag events. The time-duration criteria to detect a low-drag or
a high-drag event is kept constant at Δt+cr = 200.

A comparison of the ensemble averaged data during the conditional events is made between the
two artificially generated signals. The time duration is kept the same as Δt+cr = 200 to detect the low-
and high-drag events. The threshold criteria are varied to study their effect on the ensemble averaged
values. For the low-drag events, the threshold criteria are τw/τw < 0.925, τw/τw < 0.95, τw/τw < 0.975
and τw/τw < 1, and for the high-drag events, the threshold criteria are τw/τw > 1, τw/τw > 1.025,
τw/τw > 1.05 and τw/τw > 1.075. Figure 8 shows the ensemble averaged wall shear stress during
low- and high-drag events obtained from the two artificially generated signals. There is a spike
(and dip) in the ensemble-averaged wall shear stress near the start of the low-drag (and high-drag)
events for both artificially generated signals. The existence of spikes or dips in the ensemble-averaged
data from the artificially-generated signals, even in the limit of a Gaussian signal, suggest that these
are artefacts of the conditional sampling and ensemble averaging and are not unique to the wall
shear stress signals. It is also seen that the spikes (and dips) in the ensemble-averaged data from the
low-drag events (and high-drag events) becomes less significant when making the threshold criteria
more stringent. This further reinforces the idea that these spikes and dips in the ensemble averaged
data are the consequence of the conditional sampling of any time-series signal. Thus, these spikes
or dips cannot be used to identify the onset/footprint of low- or high-drag events. Park et al. [16],
using MFU simulations, observed that many of the low-drag events are followed by strong turbulent
bursts which were detected based on an increase in the volume-averaged energy dissipation rate.
There may exist a relation between these turbulent bursts and spikes in the ensemble-averaged wall
shear stress data after low-drag events which needs further investigation.

45



Entropy 2020, 22, 1126

-100 0 100 200 300 400 500
0.6

0.8

1

1.2

1.4

-30 -25 -20

1.18
1.2

1.22
1.24
1.26

-100 0 100 200 300 400 500
0.6

0.8

1

1.2

1.4

-30 -25 -20

0.78

0.8

0.82

0.84

-100 0 100 200 300 400 500
0.6

0.8

1

1.2

1.4

-30 -25 -20

1.18

1.2

1.22

1.24

-100 0 100 200 300 400 500
0.6

0.8

1

1.2

1.4

-30 -25 -20
0.76

0.78

0.8

0.82

Figure 8. Ensemble-averaged wall shear stress during (a) low-drag events and (b) high-drag events
for the artificially generated wall shear stress signal with same first four moments as one measured
for Reτ = 180. Ensemble-averaged wall shear stress during (c) low-drag events and (d) high-drag
events for a Gaussian signal. The time-duration criteria to detect a low-drag or a high-drag event is
kept constant at Δt+cr = 200. Inset plots show the same data as the main plot but only near the spike or
dip in the ensemble averaged data.

7. Velocity Characteristics during Conditional Events

As mentioned in Section 2, simultaneous measurements of velocity using LDV above the hot-film
are made for various wall-normal locations (shown in Table 1) at every Reynolds numbers studied.
However, the wall-normal velocities were measured only for Reτ = 70 and 85, due to the limited
access of the laser beams for LDV measurements closer to the bottom wall of the channel. Velocity
information is also obtained using DNS in large computation domains (discussed in Section 3) for
Reτ = 70 and 85. In this section, the criteria for conditional events are kept constant at Δt+cr = 200 and
τw/τw < 0.9 for the low-drag events, and Δt+cr = 200 and τw/τw > 1.1 for the high-drag events, unless
stated otherwise. To carry out the conditional sampling of the velocity data, we ensured that there
are a sufficient number of conditional events (∼100) to obtain well-converged results. For the DNS,
the number of high-drag events obtained were quite few in number, between 10 and 20 for both Reτ =
70 and 85. Therefore, the characteristics of only low-drag events are studied for the DNS data, whereas
characteristics of both low-drag and high-drag events are studied using the experimental data.

7.1. Streamwise Velocity

The conditional sampling of the velocity data and their ensemble-averaging is conducted in
a similar manner as has been conducted earlier by Whalley et al. [24] and Kushwaha et al. [22]. For the
low-drag events, the drop in the ensemble averaged velocities is observed to be more significant near
the wall, with the effect disappearing near the centreline. For the high-drag events, an analogous
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behaviour to low-drag events is observed. Figure 9 shows an example of the ensemble averaged
streamwise velocities for various wall-normal locations at Reτ = 180 during the low- and high-drag
events. Here, the ensemble-averaged streamwise velocities (UL, UH) are normalised by uτ . Very similar
results were observed for other Reynolds numbers and therefore are not shown. This behavior of the
ensemble averaged streamwise velocities is similar to those previously obtained by Whalley et al. [24]
and Kushwaha et al. [22] for 70 ≤ Reτ ≤ 100. Therefore, it can be said that the ensemble-averaged
streamwise velocity during the low- and high-drag events, which were previously observed for
70 ≤ Reτ ≤ 100, shows similar characteristics even for the flow in the fully-turbulent regime.
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Figure 9. Ensemble-averaged streamwise velocity for Reτ = 180 during (a) low-drag events and (b)
high-drag events. Here, t+ = 0 indicates the beginning of a low-drag or a high-drag event. The criteria
to detect a low-drag event are Δt+cr = 200 and τw/τw < 0.9, and a high-drag event are Δt+cr = 200 and
τw/τw > 1.1.

Figure 10 shows the unconditional and conditionally-averaged streamwise velocity profiles for
Reτ = 70, 85, 120, 180 and 250 obtained using experiments, and Reτ = 70 and 85 obtained using DNS.
Here, the normalisation of the unconditional velocity and the corresponding wall-normal locations
are carried out using the time-averaged friction velocity (uτ). The conditionally-averaged streamwise
velocities and the corresponding wall-normal locations are normalised by the conditionally-averaged
friction velocities (uτ

L for low-drag and uτ
H for high-drag). Before studying the profiles

during the conditional events, we first focus on the unconditional (time-averaged) profiles.
Experimental and DNS results are in good agreement for Reτ = 70 and 85. The unconditional profile
obtained for Reτ = 180 is also in good agreement with the DNS profile obtained by [26] for Reτ = 180,
and the velocity profiles for Reτ of 180 and 250 approximately collapses on the log-law profile (U+ = 2.5
ln y+ + 5.5) for y+ ≥ 30.

The velocity statistics during the conditional events is investigated in such a way that only the
upper (for high-drag) or lower plateau (for low-drag) of the instantaneous wall shear stress and
velocity are considered for the conditional sampling. This is done to avoid any transient behaviours
(start and end of conditional events) affecting the result. Therefore, only wall shear stress and velocity
data between 30 < t+ < t+end − 30 are used for conditional sampling, where t+end indicates the end of
a low-drag or a high-drag event. For y+ � 10, the unconditional and conditional profiles for Reτ = 70
and 85 obtained using DNS almost collapse on each other. For y+ � 10, the conditionally averaged
velocity profiles are closer to Virk’s MDR asymptote than their time-averaged values (for all the
Reynolds numbers studied). Previously, Kushwaha et al. [22] and Whalley et al. [24] showed that at
70 ≤ Reτ ≤ 100, the low-drag velocity profiles get closer to the Virk’s MDR and the lower-branch of
the nonlinear TW solutions (as obtained by Park and Graham [13]) for similar wall-normal locations,
y+ � 35. Therefore, the present result confirms the validity of this phenomenon for Reynolds numbers
in the fully-turbulent regime. There is a very good agreement between the experimental and DNS
results for the velocity profiles during the low-drag events at Reτ = 70 and 85. For higher wall-normal
locations the conditional velocity profiles start to deviate from Virk’s MDR profile, and for y+ � 100,
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the conditional velocity profiles have a slightly higher slope as compared to the Prandtl-von Kármán
log-law, as seen for Reτ = 180 and 250. For the high-drag events, the conditional velocity profiles are
lower than the unconditional profiles for all the Reynolds numbers.
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Figure 10. Unconditional and conditionally averaged streamwise velocity profiles for Reτ = 70, 85, 120,
180 and 250 during low-drag and high-drag events. All the symbols represent the experimental data.
Here, the conditionally averaged streamwise velocity data is normalised using conditionally averaged
friction velocity. Yellow dotted line represents the Prandtl-von Kármán log-law: U+ = 2.5 ln y+ + 5.5
and the black dash-dotted line represents the lower end of the 95% confidence interval of the Virk’s
MDR asymptote: U+ = 11.4 ln y+ − 18.5 [43]. Black dashed line represents the time-averaged velocity
profile obtained using DNS at Reτ = 180 by Kim et al. [26].

To further investigate the slope of the conditional velocity profiles, the so-called indicator function
is calculated, which is generally used to study the logarithmic dependence of the mean velocity
profile [44]. For the unconditional velocity data, the indicator function is given by: ζ = y+dU+/dy+.
For the conditional velocity data, the indicator functions are given by ζ

L
= y+LdU+L/dy+L and

ζ
H

= y+HdU+H/dy+H for the low- and high-drag events, respectively. The profiles of indicator
function are shown in Figure 11. It can be seen that that for Reτ = 70 and 85, the ζ profiles do not
exhibit a logarithmic dependence. For Reτ = 120, 180 and 250, the ζ profiles approximately collapse
on the value of 1/κ = 2.5 for y+ ≥ 30, thus suggesting a logarithmic dependence. Here, κ is the von
Kármán constant. It is observed from Figure 11a,b that the ζ

L
profiles at all Reynolds numbers are

closer to the Virk’s MDR (1/κ = 11.7) for y+ ≤ 30. For Reτ = 120, 180 and 250, the ζ
L

profiles remain
above the unconditional profiles for y+ ≥ 30, thus showing that the slope of the low-drag velocity
profiles is slightly higher than the unconditional profiles in the log-law region. Figure 11c,d shows that
the ζ

H
profiles at Reτ = 70 and 85, are lower than the ζ profiles (except close to the centreline), with the

effect being more significant for y+ ≤ 30. For Reτ = 120, 180 and 250, the slope of the ζ
H

profiles is
slightly lower than the ζ profiles for all wall-normal locations.
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Figure 11. Unconditional (open circles) and conditionally averaged (closed squares) indicator functions
for (a) Reτ = 70 and 85, and for (b) Reτ = 120, 180 and 250 during low-drag events. Unconditional
(open circles) and conditionally averaged (closed squares) indicator functions for (c) Reτ = 70 and 85,
and for (d) Reτ = 120, 180 and 250 during high-drag events. The criteria to detect a low-drag event
is Δt+cr = 200 and τw/τw < 0.9, and a high-drag event is Δt+cr = 200 and τw/τw > 1.1. Dashed lines
represent 2.5 and dotted lines represent 11.7.

7.2. Similarity between Turbulent Drag Reduction and Low-Drag Events in Newtonian Turbulence

To quantify the “drag reduction” during the low-drag events a percentage decrease in the wall
shear stress, during these low-drag events, is calculated. The comparison with the drag-reduction
literature is carried out only for Reτ = 180 and 250. It is found that the percentage drag reduction is
about 36% for Reτ = 180 and 250 when calculated using Equation (5).

%DR =
τw − τw

L

τw
≈ 36%(Reτ = 180 and 250). (5)

This level of drag reduction is similar to some of the other techniques employed previously to reduce
drag in channel flows. For example, when using polymer additives at low concentration, the low-drag
reduction (LDR) regime is observed [45,46]. A comparison is made with the experimental data
obtained by Warholic et al. [45] at Reh ≈ 20,000 for the case where a drag reduction of about 33% was
observed. Drag reduction due to superhydrophobic surfaces were investigated by Min and Kim [47].
They conducted DNS in a channel flow for Reτ = 180 (for DR = 0) and by using streamwise slip,
they obtained a maximum drag reduction of 29%. Choi et al. [48] implemented DNS in a channel flow
at Reτ = 180 (for DR = 0) to numerically study the effect of blowing and suction on the skin-friction
drag. They employed out-of-phase boundary conditions for the spanwise and wall-normal velocities

49



Entropy 2020, 22, 1126

to simulate the blowing and suction effects on the channel, and obtained a drag reduction of about
26% by applying spanwise control.

In Figure 12, a comparison is shown between the streamwise velocity profiles obtained using
these three techniques for turbulent drag reduction and the conditional streamwise velocity profile
obtained in the present experiment at Reτ = 180 and 250.
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Figure 12. Conditional streamwise velocity profiles for Reτ = 180 and 250 during the low-drag events.
Streamwise velocity profiles, where different drag reduction mechanisms are employed previously:
Warholic et al. [45] used polymeric additive, Min and Kim [47] used hydrophobic surface in the form
of slip-boundary condition for the streamwise direction and Choi et al. [48] applied out-of-phase
boundary condition to the spanwise velocity at the surface. Dashed line represents the Prandtl-von
Kármán log-law: U+ = 2.5 ln y+ + 5.5 and dotted line represents the lower end of the 95% confidence
interval of the Virk’s MDR asymptote: U+ = 11.4 ln y+ − 18.5 [43].

A good agreement can be seen between the conditionally averaged profile for Reτ = 180 and 250
and the profile obtained by Warholic et al. [45] for DR = 33% using polymer additives. The profiles
obtained by Min and Kim [47] and Choi et al. [48], and the present experiment are also in relatively
good agreement with the obvious difference arising due to the lower levels of drag reduction reported
in these cases. One major difference in the result obtained by Min and Kim [47] is that the velocity
profile shifts upwards even closer to the wall which is the consequence of the slip boundary condition.
Therefore, it suggests that for the fully-turbulent flows (Reτ = 180 and 250), the conditional streamwise
velocity for y+ � 20 during the low-drag events mimics the flow as observed during the LDR
phenomenon due to polymer addition or the drag reduction due to spanwise oscillation. For the case of
superhydrophobicity, this similarity between the velocity profiles can be observed approximately in the
log-law region. Thus, if a method could be found to encourage the turbulent state to enter the low-drag
“hibernating” state more often, a significant time-averaged drag reduction would be achievable.

7.3. Reynolds Shear Stress

DNS studies by Park and Graham [13] and Xi and Graham [12], using MFU at Reτ = 85,
showed that the Reynolds shear stress drops to a very low value during the low-drag events. There is
still no information in the prior literature regarding the RSS characteristics, during the conditional
events, from either physical experiments or from DNS in extended domains. For the experiments
(discussed in Section 2), two-component (streamwise and wall-normal) velocity measurements have
been made for Reτ = 70 and 85 to study the behaviour of the Reynolds shear stress during the
conditional events. To carry out the conditional sampling, each wall-normal location is sampled for 2 h
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while simultaneously measuring the wall shear stress using HFA. DNS study is conducted for Reτ = 70
and 85 which provides the streamwise and wall-normal velocity information for various wall-normal
locations (discussed in Section 3).

To calculate the conditional RSS, the streamwise velocity fluctuations and the wall-normal velocity
fluctuations during the conditional events are calculated by subtracting their time-averaged values
from the instantaneous conditional values. Figure 13 shows the ensemble averaged wall-normal
velocities (VL) and ensemble averaged Reynolds shear stress (−uvL). All the quantities are normalised
by the time-averaged friction velocity (uτ). The threshold and time-duration criteria to detect
a low-drag events are τw/τw < 0.9 and Δt+cr = 200, respectively. For y+ < 21, experimental data
are not available and therefore only DNS results are shown. A fairly good agreement between
the experimentally and numerically obtained ensemble-averaged wall-normal velocity and RSS is
observed. From continuity, the time-averaged wall-normal velocity must be zero, as can be observed
from the DNS data. There is a slight discrepancy in the time-averaged values for the experimental
data which is attributed to the error associated with the LDV measurements (discussed in Section 2).
The conditionally averaged wall-normal velocity is higher than the time-averaged value during the
low-drag events.
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Figure 13. Ensemble-averaged wall-normal velocities (a,c,e,g,i) and Reynolds shear stresses (b,d,f,h,j)
obtained using DNS (red solid lines) and experiment (black solid lines) during low-drag events
for Reτ = 70. Here, t+ = 0 indicates start of low-drag events. The time-averaged values for the
corresponding wall-normal locations are shown using red dashed lines (obtained using DNS) and
black dashed lines (obtained using experiment). The criteria to detect a low-drag event is Δt+cr = 200
and τw/τw < 0.9.

The ensemble averaged streamwise velocities have already been shown previously in Section 7.1.
Based on the conditionally-averaged streamwise and wall-normal velocities, it can be said that the
low-drag events form a subset of so-called Q2 events, i.e., u < 0 and v > 0. Figure 14 shows the
ensemble-averaged wall-normal velocity and RSS during the high-drag events for y+ = 21 and 40.
The ensemble averaged wall-normal velocity is lower than the time-averaged wall-normal velocity
whereas the ensemble averaged RSS is unchanged. Again, based on the conditionally-averaged
streamwise and wall-normal velocities, it can be said that the high-drag events form a subset of Q4
events, i.e., u > 0 and v < 0. This behaviour will be further investigated in the following discussions.
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Figure 14. Ensemble-averaged wall-normal velocities (a,c) and Reynolds shear stresses (b,d) obtained
using experiment during high-drag events for Reτ = 70. Here, t+ = 0 indicates start of high-drag
events. The time-averaged values for the corresponding wall-normal locations are shown using red
dashed lines (obtained using experiment). The criteria to detect a high-drag event is Δt+cr = 200 and
τw/τw > 1.1.

The unconditional and conditionally-averaged RSS profiles, obtained for these two Reynolds
numbers, shown in Figure 15. A good agreement can be observed between the experimental and
DNS unconditional profiles. The conditionally-averaged data are normalised using uτ

2, are shown in
Figure 15a,b, for low- and high-drag events, respectively. For the low-drag case, both experimental
and DNS results are shown, and for high-drag case only experimental results are shown. A good
agreement is observed between the conditionally averaged profiles obtained using experiments
and DNS, with a slight discrepancy observed for the Reτ = 85 results. As seen in Figure 15a,
the conditionally averaged profiles have slightly lower values than the unconditional profiles for
y+ � 10. For y+ � 10 the conditionally averaged profiles are higher than the unconditional profiles
with the effect being more significant for y+ between 20 and 40. For the high-drag case, as seen in
Figure 15b, the conditionally-averaged RSS profiles almost collapse onto the unconditional profiles
for all the wall-normal locations measured. This result suggests that the Reynolds shear stress is
more affected by the low-drag events compared to the high-drag events. A sensitivity check has been
executed to study the effect of changing the criteria for conditional events on the conditional RSS
profiles for Reτ = 70. No significant dependence of the RSS profiles is observed for the different values
of criteria studied here.

A quadrant analysis is conducted to calculate the contribution to the Reynolds shear stress from
various turbulent events [49]. In quadrant analysis, the Reynolds shear stress is divided into four
quadrants based on the signs of the streamwise and wall-normal velocity fluctuations: Q1 (+u, +v),
Q2 (−u, +v), Q3 (−u, −v) and Q4 (+u, −v). The Q2 and Q4 events are generally related to the
ejection and sweep events, respectively [49]. Here, the normalisation of both unconditional and
conditional velocity fluctuations is based on the time-averaged friction velocity (uτ). For unconditional
velocity fluctuations, the time-averaged velocities are subtracted from the instantaneous velocities,
and for the conditional velocity fluctuations, the time-averaged velocities are subtracted from the
instantaneous conditional velocities during the low- or high-drag events. Figure 16a,d shows the
jpdfs (joint probability density functions) of the unconditional streamwise and wall-normal velocity
fluctuations for Reτ = 70 obtained using the experiment (at y+ = 24) and DNS (at y+ = 25). The shape
of the unconditional jpdfs are roughly elliptical with their major axes tilted in the direction of Q2 and
Q4 motions. During the low-drag events the jpdf shifts towards the Q2 quadrant, whereas during the
high-drag events the jpdf shifts towards the Q4 quadrant.
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Figure 15. (a) Unconditional and conditionally averaged RSS profiles for Reτ = 70 and 85 during
low-drag events. (b) Unconditional and conditionally averaged RSS profiles for Reτ = 70 and 85 during
high-drag events.
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Figure 16. Unconditional (a), low-drag (b) and high-drag (c) jpdfs of streamwise and wall-normal
velocity fluctuations for y+ = 24 at Reτ = 70 using experiments. Unconditional (d) and low-drag
(e) jpdfs of streamwise and wall-normal velocity fluctuations for y+ = 25 at Reτ = 70 using DNS.
Unconditional and conditional velocity fluctuations are normalised using the time-averaged uτ .

This observation is consistent with the previous results where it is shown that during the
low-drag events the ensemble-averaged streamwise decreases and wall-normal velocities increases for
y+ ≈ 20–40, whereas the opposite is true for high-drag events.
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Figure 17a,b shows the unconditional and conditional (low-drag) profiles of contribution from the
various quadrants in the Reynolds shear stress for Reτ = 70 and Reτ = 85, respectively. Figure 16b,d
shows the joint distribution of streamwise and wall-normal velocity fluctuations during the low-drag
events for Reτ = 70, obtained using experiments (at y+ = 24) and DNS (at y+ = 25), respectively.
Figure 16c shows the joint distribution during the high-drag events for Reτ = 70 at y+ = 24,
obtained using experiments. A good qualitative agreement is observed between the experimental and
DNS results for the unconditional data. It can be seen that the major contributors to the Reynolds
shear stress are the Q2 and Q4 motions, which explains the reason for the tilted shape of the jpdf
shown in Figure 16a,d. These two quadrants are considered to be responsible for the turbulence
production [50,51]. It is also observed that the Q4 motions or the “sweep” type motions are the most
dominant motions for y+ � 20 and for the higher wall-normal locations Q2 motions or the “ejection”
type motions are the most dominant. For the low-drag case, the Q2 events contribute more than
the other quadrants for all the wall-normal locations at both Reτ = 70 and 85. Another interesting
observation is that the Q4 events contribution decreases to a very low value during these low-drag
events. This further reinforces the hypothesis that the low-drag events are composed of low-streamwise
speed and upwash motions. There is a good qualitative and also fairly good quantitative (for
y+ � 30–40) agreement between the experimental and DNS results. The discrepancies between the
experimental and DNS data in the conditional data are aligned with their unconditional values,
which suggests that these slight variations are the result of noise in the measurement rather than
different physical observations.
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Figure 17. (a) Contribution to −uv from different quadrants for the unconditional case and during the
low-drag events for (a) Reτ = 70 and (b) Reτ = 85. The criteria to detect a low-drag event is Δt+cr = 200
and τw/τw < 0.9. Thin black dashed line represents a constant value of zero.

The observation from the quadrant contributions is consistent with the previous numerical
findings by Kushwaha et al. [22] where it is shown that the low-wall shear stress events are
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associated with counter-rotating streamwise vortex pairs transferring momentum away from the
wall. Park et al. [16] showed in MFU simulations that the low-drag event is the precursor to a strong
bursting event which is again consistent with the present result. The low-speed fluid moves away from
the wall (ejection process) during these low-drag events which ultimately undergo a bursting process.
The ejection and bursting processes are well studied in the past in regards to the low-speed streaks
moving away from the wall and bursting in the buffer layer region (for more details, see in [52,53]).
Adrian et al. [54] provided a hairpin vortex model in an effort to unify the various previous findings
related to the coherent structures observed in the turbulent boundary layer. It was stated that the
hairpin vortex originates from the wall inducing a region of low speed between two legs of the vortex
which then lifts up by ejection process. The present work suggests that the low wall shear stress
events are representative of low-speed regions which are generally observed between the legs of the
hairpin vortices in wall-bounded turbulent flows [54,55]. Although it should be noted that the present
work employs a different criterion to detect these low-drag events (τw/τw < 0.9 and Δt+ > 200) and
therefore these conditional events form only a subset of the low-speed streaks/events observed in the
past [55].

Results for the high-drag events are shown in Figure 18a,b for Reτ = 70 and 85, respectively. It can
be observed that during the high-drag events, the Q4 events are the significant contributor to the
Reynolds shear stress. This is again expected based on the ensemble-averaged data, i.e., high-drag
events are composed of high-speed and downwash motions for y+ ≥ 20.
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Figure 18. (a) Contribution to −uv from different quadrants for the unconditional case and during the
high-drag events for (a) Reτ = 70 and (b) Reτ = 85. The criteria to detect a high-drag event is Δt+cr = 200
and τw/τw < 0.9. Thin black dashed line represents a constant value of zero.

8. Summary

An investigation into the intermittencies associated with the low- and high-drag events
in turbulent channel flow has been conducted using experiments and DNS. For experiments,
simultaneous measurements of streamwise velocity and wall shear stress are carried out to detect
and characterise these intermittencies for Reτ between 70 and 250. DNS is carried out in a large
computational box for Reτ = 70 and 85. The fraction of time spent in the intervals of low- and
high-drag is found to be roughly independent of the Reynolds number for 70 ≤ Reτ ≤ 250 when the
criteria for minimum time-duration is kept constant in inner units. The low- and high-drag events
exhibit an exponential distribution of the frequency of their occurrence when studied as a function
of the duration of their intervals. It is found that even for artificially constructed signals (up to the
limit of Gaussian signal), there is a presence of spikes and dips in the ensemble-averaged data, if the
same criteria is applied as used to detect a low- or high-drag event in the wall shear stress signals.
This suggests that these spikes (or dips) might be the consequence of the conditional averaging of
a time series data.
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Streamwise velocity profiles, conditionally sampled during the low-drag events, get closer to
Virk’s MDR profile and the lower-branch of the nonlinear TW solutions for y+ ≈ 20–35 at all studied
Reynolds numbers. For 120 ≤ Reτ ≤ 250, in the log-law region, the conditional velocity profile is
higher than the unconditional velocity profile with the slope of the profile higher during the low-drag
events. Similarly, the conditional velocity profile is lower than the unconditional velocity profile
with the slope of the profile being slightly lower during the high-drag events. A comparison of the
conditional streamwise velocity profiles at Reτ = 180 and 250 with other drag reduction techniques
is made. A good agreement between the profiles in the log-law region is observed. For Reτ = 70 and
85, in addition to the streamwise velocity, wall-normal velocity is also measured to investigate the
behaviour of RSS. There is found to be an increase in the conditionally averaged RSS for y+ � 10 during
the low-drag events. This is observed to be due to a significant increase in the turbulence-generating
Q2 motions during these low-drag events. The high-drag events are found to be associated with the
Q4 events, although the RSS during these events remain fairly similar to the unconditional profile for
y+ � 20.
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Abstract: The intermittent distribution of localized turbulent structures is a key feature of the
subcritical transitions in channel flows, which are studied in this paper with a wind channel and
theoretical modeling. Entrance disturbances are introduced by small beads, and localized turbulent
patches can be triggered at low Reynolds numbers (Re). High turbulence intensity represents strong
ability of perturbation spread, and a maximum turbulence intensity is found for every test case
as Re ≥ 950, where the turbulence fraction increases abruptly with Re. Skewness can reflect the
velocity defects of localized turbulent patches and is revealed to become negative when Re is as
low as about 660. It is shown that the third-order moments of the midplane streamwise velocities
have minima, while the corresponding forth-order moments have maxima during the transition.
These kinematic extremes and different variation scenarios of the friction coefficient during the
transition are explained with an intermittent structure model, where the robust localized turbulent
structure is simplified as a turbulence unit, a structure whose statistical properties are only weak
functions of the Reynolds number.

Keywords: subcritical transition; channel flow; turbulence fraction; moment

1. Introduction

Plane Poiseuille flow (PPF), the flow driven by a pressure gradient between two parallel plates,
displays a parabolic velocity profile at its laminar state and becomes linearly unstable when the
Reynolds number is larger than the critical value, Rec = 5772 [1]. The Reynolds number (Re) is defined as
1.5U∗bh∗/ν∗, where U∗b is the bulk velocity, h∗ is the half-channel height, and ν∗ is the kinematic viscosity
of the fluid. In practice, PPF may become turbulent at much lower Reynolds numbers than Rec due
to the subcritical transition, where the finite-amplitude disturbances are necessary and the nonlinear
effect cannot be ignored [2–4]. Davies and White [5] measured the friction coefficient of PPF with
different aspect ratios of the cross-sections in a wide range of Reynolds numbers. It was shown that
the critical Reynolds number of the subcritical transition increases with the ratio between the entrance
length and the channel height, and it remains at 667.5 when the entrance length is larger than 108h.
Patel and Head [6] found experimentally that PPF remained laminar as Re < 1035, and intermittent
bursts occurred as 1035 < Re < 1350. Later experiments by Nishioka and Asai [7] confirmed that the
turbulent state could hardly be sustained as Re < 1000. Based on flow visualizations, Carlson et al. [8]
found that the orifice jet on the wall can trigger turbulent spots when Re is about 1000, and when
Re < 840, the turbulent spots cannot be formed completely and decay eventually. Later experimental,
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theoretical and numerical works were mainly focused on the turbulent spots as Re > 1000 [9–14].
According to the experiments of Alavyoon, et al. [15], the complete spot cannot be triggered by orifice
jet if Re < 1100. Recently, turbulent stripes or bands were revealed by numerical simulations for
Re ≥ 1070 [16,17] and were observed by flow visualizations [18]. It was found experimentally that the
turbulent bands would break as Re < 1275, and the flow remained stable and laminar at Re = 975 [19].

Based on numerical simulations within a tilted long and narrow domain, Tuckerman found
turbulent band structures as Re > 850 [20]. By applying entrance disturbances and flow visualization
techniques, Sano and Tamai [21] obtained the turbulence fraction at a range of Reynolds numbers
and defined a threshold of 830 for the transition by fitting the data with the Directed Percolation (DP)
model. According to their experimental data, however, the turbulence fractions are not zero as Re < 830.
Recent numerical simulations revealed that the DP power law is retrieved only when Re is above
924, and relaminarization will occur in the long-time limit as Re < 700 [22]. Numerical simulations in
large domains showed that localized turbulent bands can be obtained when Re is reduced to 720 [23].
Further numerical investigations illustrated that the isolated turbulent band, a single banded coherent
structure surrounded by a large laminar region, can obliquely extend at moderate Reynolds numbers
but will decay eventually as Re < 665 [24]. This threshold Reynolds number, in fact, agrees with the
experimental observation by Davies and White [5]. It is tested that the periodic turbulent band can
sustain as Re< 750, though band breaking and band reconnection may occur [25]. Recently, the turbulent
bands were observed at Re = 750 by flow visualization [26], and the mean growth rate of turbulence
fraction was found to become positive at Re ≈ 650 [27,28]. Therefore, in the literature, there have been
discrepancies on the threshold Reynolds number for sustained turbulence in channel flows.

Besides the turbulence fraction, other statistical parameters are studied as well for the transitional
channel flows. Turbulence intensities at the channel center are measured and are found to increase
rapidly around Re = 1050, reach a peak at Re = 1140, and then gradually decrease with increasing Re [29].
The intermittent low- and high-drag events are investigated numerically and experimentally [30–32],
and it is found that the conditionally averaged Reynolds shear stress is higher than the mean value
during the low-drag events [33]. Based on simulations of channel flows with constant pressure
gradients, a linear correlation for the wall shear stress is observed between its kurtosis and its skewness
squared [34]. It is known that high-order moments of velocity derivatives are important to understand
the non-Gaussian behavior of turbulence [35], and the intermittency is a key concept to develop
turbulence model for the transitions of incompressible, supersonic, and hypersonic boundary layer
flows [36]. However, the study on the relation between the turbulence fraction and the high order
moments of velocities in the transitional channel flows is still rudimental.

In this paper, a wind channel with a large width-to-height ratio is used to study the subcritical
transition of PPF, and its configuration is introduced in Section 2. In Section 3, it is revealed that the
turbulence intensity and the kurtosis of midplane streamwise velocity reach their maxima while the
skewness has a negative minimum during the transition. Furthermore, an intermittent structure model
is constructed to describe the velocity features of localized turbulent structures and derive theoretically
the high-order moments of midplane velocity and the friction coefficient, which are shown to be
consistent with the experimental data. In Section 4, conclusions are presented.

2. Experimental Apparatus and Methods

2.1. Wind Channel

The open-circuit wind channel used in the experiment is shown in Figure 1. The length, width,
and height 2h* of the working section are 4.5, 1.0, and 0.01 m, respectively. The flow is driven by three
centrifugal fans with 1.5 kW induction motors, and the midplane velocity in the working section is
controlled by a frequency converter to vary between 0.4 and 28 m·s−1. In order to isolate the vibration
noise generated by the centrifugal fans, a soft connection is attached just in front of the expansion
section. A perforated screen and 5 stainless-steel screens are mounted near the honeycomb layer to
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stabilize the flow and decrease the turbulence intensity. Two contractions with the contraction ratios of
4:1 and 9:1 are used to further reduce the turbulence intensity to a level less than 0.2%.

Figure 1. Sketch of the wind channel. (a) The components of the wind channel: (1) centrifugal fan,
(2) soft connection, (3) fine damping screen, (4) expansion section, (5) perforated screen, (6) honeycomb,
(7) screen, (8) first contraction, (9) second contraction, (10) first working section (steel), and (11) second
working section (tempered glass). Unit of length, mm; (b) 3D drawing of the wind channel.

The channel walls of the first working section are polished to achieve a surface roughness less than
15 μm and are supported by steel frames, to avoid deflection. According to the finite element analyses,
the maximum deflection of the whole test section is less than 3.7 μm. The second part is a transparent
test section with a length of 0.5 m, granting optical access to the Particle Image Velocimetry (PIV) setup.
Two 10-mm-thick side walls are sandwiched between the top and the bottom walls, and the error of
channel height in the working section is less than 0.01 mm. In all experiments, the ambient temperature
variation is less than 2 degrees centigrade. For non-dimensionalization, the half channel height h* and
the time averaged velocity at the midplane U∗c are chosen as the characteristic length and velocity,
respectively, and the dimensionless parameters have no superscript. For laminar flows, Uc = 1.5Ub.
The origin of the coordinates lies at the entrance center of the working section, and the dimensionless
x, y, and z represent the streamwise, the wall-normal, and the spanwise directions, respectively.

2.2. Experimental Methods and Validations

Eighteen static pressure holes with 0.5 mm diameter are drilled on the lower wall along the
line z = 0 with an interval of l = 200 mm, and the first hole is located at 300 mm from the entrance
of the working section. Consequently, the pressure gradient along the streamwise direction can be
monitored by using micro differential pressure transducers (Alpha M168, range: 0~25 Pa, accuracy:
±0.25% FS). A low-noise hot-wire anemometer (HWA, Dantec StreamLine Pro.) with 3 channels is
used to measure the velocity with a relative error less than 1.5%. The stainless-steel probe stem is
mounted on a two-dimensional traversing mechanism with a positioning resolution of 5 μm. In order
to minimize the interference, the probes are inserted through the outlet of the working section.

We checked that, except the region very close to the entrance, the streamwise pressure gradients
remained constant at low Reynolds numbers and agreed with the theoretical values for laminar PPF
as reflected by the friction coefficients, which are discussed in Section 3.1. As shown in Figure 2a,
the uniform distribution of, U∗c, in the spanwise direction indicates that the velocity field in the central
part of the cross-section is hardly affected by the sidewalls. When the flow is laminar at Re = 1096, it is
shown in Figure 2b that the velocity profiles at five different spanwise positions agree well with the
theoretical parabolic distribution. When Re is increased to 7543, the time averaged velocity profiles are
all close to the 1/8 power law curve, confirming that the sidewall effect is still negligible in the central
region. Without the entrance artificial disturbances, it is checked that the flow can remain laminar for
Re up to 3500, and hence the present setup is appropriate to study the subcritical transition of PPF.
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Figure 2. Streamwise velocities measured at x = 780. (a) Spanwise distributions of the time averaged
velocity in the midplane U∗c, and (b) the time averaged velocity profiles at different spanwise positions.
The measurements of Reference [33] are added in (b) as references.

Nine plastic beads evenly spaced with an interval of 100 mm along a thin iron wire are placed
at the centerline of channel inlet to introduce entrance disturbances. Different bead diameters, D*,
and wire diameters, d*, are used in four cases and are listed in Table 1.

Table 1. Dimensions of the entrance disturbances.

Baseline Case_1 Case_2 Case_3

D* (mm) / 8 6 8
D*/h* / 1.6 1.2 1.6

d* (mm) / 0.2 0.2 1.5
d*/h* / 0.04 0.04 0.3

3. Results and Discussions

3.1. Friction Coefficient

The friction coefficient C f = 8
(
h∗ dP∗

dx∗
)
/
(
9ρ∗U∗2b

)
is measured at different Reynolds numbers,

with different entrance disturbances, where dP∗/dx∗ is the mean pressure gradient calculated based on
the pressure difference between x = 660 and 740, and the bulk velocity, U∗b, is obtained from the mean
velocity profile. C f is calculated for every 10-s sample, and the averaged C f for 20 samples (totally
104~105 time units at the transition stage) are shown in Figure 3, where the error bars represent the
standard deviation. It is shown that when Re < 600 or there are no entrance artificial disturbances
(Baseline), the present experimental data agree well with the laminar value C f = 4/Re. The previous
results [5,6,22,24] are shown as well for references. When Re is greater than 1750, C f data for different
entrance disturbance cases tend to agree with the “optimum log-law” labeled by the dashed line for

developed turbulence, where Re =
√

2
C f

exp
[
0.41
(√

8
9C f
− 2.4

)]
[22,37]. During 950 < Re < 1010, C f in

three disturbed cases increases abruptly, reflecting a strong development of turbulence. As shown in
the inset of Figure 3b, such an abrupt increase of C f occurs as well in the previous direct numerical
simulations, where the turbulent band split occurs, i.e., parallel split to form a new band parallel to
the original one and transverse split to sprout new branch (as shown by Figure 6 of Reference [24]).
Recent systematical simulations [22] revealed that the transition from “one-sided” (all localized
turbulent bands point to the same direction) to “two-sided” (the bands may grow in different directions)
propagations takes place at Re ≈ 924. By simulations in tilted slender domains, a critical Reynolds
number is defined as 950, where the statistically estimated mean lifetimes for band decay and splitting
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coincide with each other [38]. All of these numerical results explain, to some degree, why C f increases
abruptly as Re > 950.

Figure 3. (a) The friction coefficient, Cf, as a function of Re. The previous experimental and numerical
data are illustrated in (b) for references.

3.2. Turbulence Intensity and Pressure Turbulence Intensity

The time series of the streamwise velocity, U, obtained at the midplane by HWA are just straight
lines superimposed by background noise at low Reynolds numbers, e.g., Re = 652 in Figure 4a.
When a turbulent band or spot passes through the measuring point, the time series show a velocity
defect, i.e., the midplane streamwise velocity decreases first along with the time, then oscillates strongly
with high frequencies before increasing abruptly to recover its laminar level. The velocity fields of
the spots and turbulent bands are measured by PIV, and their consistencies with the direct numerical
simulations are confirmed and shown in [39]. The present study mainly focuses on the statistical
kinematic and dynamic properties of the transitional flow. It is shown in Figure 4d that the widths and
amplitudes of the velocity defects are comparable for different entrance disturbances and different
Reynolds numbers, indicating that the statistical properties of localized structures are weak functions
of Re and external disturbances during the transition. Such a streamwise velocity defect appears more
and more frequently with the increase of Re, as shown in Figure 4.

 

Figure 4. Cont.
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Figure 4. The time series of velocity, U, measured at (x, z) = (780, 0) for (a) Case_1, (b) Case_2,
and (c) Case_3. Typical signals of localized turbulent structures for different cases at different Re and
turbulence fraction, FT, are shown in (d).

The development of turbulence may be described by the turbulence intensity of streamwise

velocity Iu =
〈
u2
〉1/2

=
〈
(U −Uc)

2
〉1/2

at the midplane (y = 0) and the pressure turbulence intensity
IP = Prms/(dP/dx) − [Prms/(dP/dx)]r, where 〈 〉means the time averaged quantity, and the subscripts
r and rms represent a reference value and the root mean square. In this paper, [Prms/(dP/dx)]r is the
value at Re = 600, corresponding to a laminar flow with background noise. When Re is smaller than
850, IP remains a small value and is almost independent of the entrance disturbances, the downstream
position, and the Reynolds number as shown in Figure 5a. When Re is larger than 850, IP of Case_1
increases obviously and reaches a peak at about Re = 950 before decreasing. The corresponding Re of
IP peaks for Case_2 and Case_3 is around 980 and 1020, respectively. In the right column of Figure 5,
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it is shown that the turbulence intensity, Iu, has peak values at the same Re as IP for all three cases.
The existence of these peaks is explained in Section 3.5, with an intermittent structure model.

Figure 5. Pressure turbulence intensity, IP (left column), and turbulence intensity, Iu (right column)
measured at different locations. (a,b), (c,d), and (e,f) are for Case_1, Case_2, and Case_3, respectively.

3.3. Skewness and Kurtosis

Though IP and Iu reflect the mean levels of fluctuation amplitudes or strengths, they cannot describe

the intermittency and asymmetry of the signals. In this subsection, the skewness S(u) =
〈
u3
〉
/
〈
u2
〉3/2

is calculated based on the streamwise fluctuation velocity, u, measured at the midplane, representing

the asymmetric distribution of the velocity. The kurtosis or flatness F(u) =
〈
u4
〉
/
〈
u2
〉2

is computed as
well, reflecting the intermittency and the deviation from the random distribution. At low Reynolds
numbers, the laminar velocity signal mixed with the background white noise conforms to the normal
distribution, and hence S(u) = 0 and F(u) = 3. When the localized turbulent spots or bands emerge
intermittently in the flow, the velocity defects appear, leading to a negative skewness and a positive
flatness, e.g., Re < 700 for Case_1 shown in Figure 6, while the corresponding turbulence intensity
(Figure 5) and the friction coefficient (Figure 3) remain nearly unchanged. Specially, it is shown in
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Figure 6 that the skewness and the kurtosis reach a minimum and a maximum during the transition,
respectively, and the corresponding underlying mechanisms are discussed in Section 3.5.

Figure 6. (a) Skewness and (b) kurtosis of the streamwise velocity measured at (x, y, z) = (780, 0, 0) for
different disturbance cases and Reynolds numbers.

The transition process is triggered by the entrance disturbances, the abundant vortex structures
shed from the beads placed at the inlet. It has been shown that, at ReD = 3700 (based on the free-stream
velocity and the sphere diameter D), the turbulence intensity, Iu, along the wake centerline of a sphere
quickly reduces to 0.05 at x/D = 12 [40]. Based on the centerline velocities measured for Re = 600~1200,
the corresponding ReD for the present inlet beads can be estimated to be 720~1920. Considering that
the working section is 500D~666D long, the strong turbulence intensity, Iu, around 0.1, as shown in
Figure 5, should be caused by the localized turbulent patches triggered by the remnants of the bead
wakes rather than the remnants themselves. According to Figure 6, the Reynolds number intervals
where the skewness and the kurtosis deviate from the normal distribution are [660,960], [780,1000],
and [910,1060] for Case_1, Case_2, and Case_3, respectively. It is interesting to note that the upper limits
of these Re intervals are close to the corresponding peak Res for IP and Iu shown in Figure 5. The lower
limits indicate the onset of turbulence, and the minimum lower limit of tested cases is about 660,
which is consistent with the threshold determined numerically for the oblique turbulent bands [24,25]
and the value obtained by flow visualization [27]. In numerical simulations, the computation may last
long enough, e.g., ~104 time units, to observe the transient growth and eventual decay of the patterns
near the critical state, while, in experiments, the channel length is limited and the traveling turbulent
patches may grow transiently but have no time to experience the final decay. This factor may cause
a mild underestimate of the threshold value in experiments. It is shown in the insets of Figure 6 that,
when Re > 1100 and FT is close to 1, the skewness and the kurtosis of streamwise velocity continue
to evolve, deviating from 0 and 3 (the values for white Gaussian noise) and remain at about −0.5
and 3.5 after Re > 1750, respectively, the values for fully developed turbulence [41]. Consequently,
the threshold for fully developed turbulence may be defined as Re ≈ 1750.

3.4. Turbulence Fraction

An important parameter to describe the pattern evolution and intermittency during the subcritical
transition is the turbulence fraction, FT, whose determination relies on the identification of the
boundaries between the laminar and the turbulent regions. Different from the previous experiments,
where FT was mostly calculated based on flow visualization images, in this paper, the time series of
velocity are used to define FT as FT =

∑
tT/tTotal, where tT and tTotal are the turbulent period and the

total sampling time, respectively. As shown in Figure 7a, the time series of the midplane streamwise
velocity includes many velocity defects, which correspond to the traveling localized turbulent patches
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and include high-frequency components, as illustrated by the wavelet power spectrum shown in
Figure 7b. Consequently, high-pass filtering is used to extract these components, as shown in Figure 7c,
whose time intervals are defined as the turbulent period, tT. Different cutoff frequencies, fc, are tested,
and the corresponding FT values vary in the same trend, as shown in Figure 8a, though a higher fc
leads to a lower FT. By comparing Figure 7a,c, the cutoff frequency of 45 Hz is found to capture the
turbulent periods reasonably well, and hence is used in the following analyses.

Figure 7. (a) The time series of streamwise velocity U measured at (Re, x, y, z) = (935, 780, 0, 0) for Case_1
and (b) its wavelet power spectrum. (c) The high-frequency component, u′, after high-pass filtering of
the signal shown in (a). Localized turbulent patches are marked with shadowed areas in (a,c).

 
Figure 8. (a) FT calculated with different cutoff frequencies, f ∗c , for Case_1, and (b) data calculated with
f ∗c = 45 Hz for different entrance disturbances. Inset of (b): the growth steepness σ versus Re.

FT shown in Figure 8 is computed from the midplane streamwise velocity signals sampled at
six locations, i.e., (x, z) = (700, −40), (700, −20), (700, 0), (780, −40), (780, −20), and (780, 0). Each time
series lasts 2000 s (105~106 time units at the transition stage), and the error bar represents the standard
deviation. As Re < 850, the localized patches are far from each other, as shown in Figure 4, and FT

increases slowly with Re and is less than 0.1 for all three cases. When Re is larger than 1050, the localized
turbulent structures almost occupy the whole flow field and are arranged nearly side by side, as shown
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by the case of Re = 1155 in Figure 4b, and hence FT is close to 1, as shown in Figure 8. The growth
steepness σ = dFT/dRe is calculated and is found to reach its maxima (as shown in the inset of
Figure 8b) at Re = 950, 975, and 1005 for Case_1, Case_2, and Case_3, respectively, where FT is around
0.6. It is interesting to note that the Reynolds numbers of the σ peaks are almost the same as those
of the IP and Iu peaks shown in Figure 5, confirming the intrinsic relation between the turbulence
intensity and the growth steepness of the turbulence fraction.

According to Table 1, the beads’ diameters are different for Case_1 and Case_2, representing
different localized disturbance intensities, and the wire diameter of Case_3 is about one order larger
than that of Case 1, denoting different entrance disturbance forms, i.e., the entrance disturbances of
Case_3 are more uniform in the spanwise direction due to the vortex shedding of the thicker wire.
As shown in Figure 8b, FT data for different entrance disturbances vary in the same manner but do
not collapse with each other as 850 < Re < 1050, reflecting the sensitivity of transition to the external
forcing, and the reason lies in several aspects. Firstly, FT data collapse will occur when FT is a single
valued function of Re, e.g., at laminar state or the equilibrium state, which is found to be retrieved only
as Re > 924 in long-term simulations [22]. In other words, when the upstream or initial disturbances
are different, FT may be different from case to case as Re < 924 even for simulations with the same
computational configurations, e.g., domain size and mode numbers. Secondly, in reality, the lengths of
experimental channels are finite, and at moderate Reynolds numbers, the turbulent structures may
have no enough time to spread completely before leaving the outlet. Consequently, FT will depend on
the entrance disturbances. Thirdly, the effectiveness to trigger the transition are different for different
types of perturbations. The turbulence fractions obtained based on flow visualization by Sano and
Tamai [21] are shown in Figure 8b, as well, and are different from the present data: FT does not increase
with Re as Re > 1000 but maintain at about 0.7. In Sano and Tamai’s experiments, turbulent flow was
excited in a buffer box by a grid and injected from the inlet, and hence the entrance perturbations
occupied the span of the channel and are different from the localized disturbances used in this paper.
In addition, different approaches applied to identify the laminar–turbulent boundaries and different
data (e.g., the two-dimensional images of flow visualization and the one-dimensional velocity series
measured by HWA) may lead to different FT values, as well.

3.5. Intermittent Structure Model

In order to understand the peaks and valleys of turbulence intensity and high-order moments
during the transition, an intermittent structure model is constructed as follows. For convenience,
the characteristic velocity is chosen as 1.5U∗b instead of U∗c in this subsection. The velocity during
the turbulent period is decomposed into two parts: the turbulent mean velocity, UT, representing
the behavior of low-frequency and large-scale structures, and the turbulent perturbation velocity,
uT (relative to UT), denoting the high-frequency and small-scale components. U = UT + uT, and it
is assumed that uT satisfies Gaussian distribution, i.e., the time averaged values 〈uT〉 = 0,

〈
u3

T

〉
= 0,

and
〈
u4

T

〉
= 3
〈
u2

T

〉2
, but its temporal and spatial distribution is strongly asymmetric and aperiodic just

like the measured velocity (gray curve) shown in Figure 9a. Assuming that UT and
〈
u2

T

〉
are the same

for all localized turbulent patches in a given case and FT is known, it can be derived that the mean
velocity Uc = U0 − FT(U0 −UT) and the fluctuation velocity relative to Uc is as follows:

u = U −Uc =

{
FT(U0 −UT), laminar periods,
(U0 −UT)(FT − 1) + uT, turbulent periods.

(1)
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Figure 9. (a) The simplified velocity signal (thick solid line) of the intermittent structure model at
midplane, and the time averaged (b) U0 −UT and (c)

〈
u2

T

〉
sampled at the midplane during the turbulent

periods. A measured midplane velocity signal is shown in (a) by the gray curve for a reference.

Consequently, the turbulence intensity and the high-order moments can be derived as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Iu =

√〈u2〉
Uc

=

√
FT(1−FT)(U0−UT)

2+〈uT2〉FT

U0−FT(U0−UT)〈
u3
〉
= 3FT(U0 −UT)

〈
uT

2
〉
(FT − 1) − FT(U0 −UT)

3
(
2FT

2 − 3FT + 1
)

〈
u4
〉
= FT(1− FT)

(
1− 3FT + 3FT

2
)
(U0 −UT)

4 + 3FT
〈
uT

2
〉2

+ 6FT
〈
uT

2
〉
(FT − 1)2(U0 −UT)

2

(2)

UT is estimated by the mean value of low-pass filtered midplane velocity during the turbulent
periods at each Re, and the cutoff frequency, fc, used for the filtering is the same as those used for
calculating FT. It is shown in Figure 9 that U0 −UT increases with FT, while the variance

〈
u2

T

〉
increases

first then decreases with the growth of FT, reflecting the fact that the localized turbulent structures are
influenced to some degree by the entrance disturbances, FT, and then Re. U0 −UT and

〈
u2

T

〉
may be

fitted as follows:

U0 −UT = 0.06
(
1 + F4

T

)
,
〈
u2

T

〉
= 0.0026 + 0.01

(
FT − 0.64F7

T

)
, (3)

which are shown in Figure 9b,c as solid curves.
According to the previous studies [42], the characteristics of localized turbulent bands, e.g.,

the band’s tilt angle, width, and convection velocity, do not change much during the transition.
Similar properties are shown in Figure 4d, as well: The midplane velocity defects of localized turbulent
structures are similar and not very sensitive to the Reynolds number, the entrance disturbances, and the
turbulence fractions. Therefore, these localized turbulent structures may be simplified to a unified
structure, whose statistical dimensionless properties are independent of time, FT, and the initial or
upstream disturbances. This unified structure is referred as turbulence unit hereafter. Consequently,
U0 −UT and u2

T are chosen for mature structures and are set as the values when FT reaches 1, and then
Equation (3) is simplified as follows:

U0 −UT = 0.12,
〈
u2

T

〉
= 0.006. (4)

For all three test cases, it is shown in Figure 10a–i by the solid lines that the main features
of the second-, third-, and forth-order moments predicted by the model are consistent acceptably
with the experimental results when the relations between FT and Re shown in Figure 8b are applied.
The variance of the midplane streamwise velocity

〈
u2
〉

is FT(1− FT)(U0 −UT)
2 +
〈
uT

2
〉
FT, where the

contribution of fluctuations (the second term) increases with FT, while the first term increases first and
then decreases with FT due to the fact that the mean velocity, Uc, leaves U0 for UT, leading to a peak
value of

〈
u2
〉
. Consequently, there exist peak values of Iu and

〈
u4
〉

during the transition. Furthermore,
when FT is close to 1 and the flow field is nearly fully occupied by the localized turbulent structures,
Uc is almost as low as UT, and

〈
u2
〉

and
〈
u3
〉

are close to
〈
uT

2
〉

and
〈
uT

3
〉
, respectively. Therefore, at the
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late transition stage,
〈
u3
〉

should be close to zero again, and then there must exist a minimum
〈
u3
〉

during the transition. Similarly, the asymptotic values for Iu and
〈
u4
〉

should be finite (
√〈

uT2〉/UT and

3
〈
uT

2
〉2

in the model), just as shown by the experimental data in Figure 10. The consistencies of the
model curves with the experimental data indicate that, not only the turbulence fraction, but also the
characteristics of localized structures is required in order to describe properly the statistical properties
of transitional flows.

Figure 10. Turbulence intensity (a–c), the third (d–f) and the fourth (g–i) order moments of the midplane
velocity, and the friction coefficient (j–l) for different disturbance cases. The symbols of different cases
shown in (a–i) are experimental data measured at (x, y, z) = (780, 0, 0), and Cf symbols shown in
(j–l) are the same as those shown in Figure 3a. The solid curves are the results of the intermittent
structure model.

Recently, it is found that, for a channel flow with constant pressure gradient, the kurtosis
of the bulk velocity, which fluctuates during the transition and is represented by Reb in the
simulations [34], increases abruptly as the Reynolds number decreases to the threshold value. However,
the kurtosis obtained in experiments is close to zero near the onset of turbulence, as shown in
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Figure 6. This discrepancy may be explained to some degree with the present model. Considering that,
in simulations, the velocities in the laminar periods are as clean as the present model and have no
background random noise, an inevitable factor in experiments, then when FT is close to 0,

〈
u4
〉
∼ FT

while
〈
u2
〉2 ∼ FT

2 according to Equation (2), and hence the kurtosis will increase sharply.
Next, we use this model to study the dynamic property. Considering a turbulence unit with

volume, V, mean velocity, UT(y), and mean pressure, PT, the perturbation velocities are uT, vT, and wT,
and then the volume averaged friction coefficient is obtained from the mean x-momentum equation:

C f T = − 2
V

∫
∂PT

∂x
dV = − 2

ReV

∫
d2UT

dy2 dV +
2
V

∫ ⎡⎢⎢⎢⎢⎢⎢⎣
∂
〈
u2

T

〉
∂x

+
∂〈uTwT〉
∂z

⎤⎥⎥⎥⎥⎥⎥⎦dV. (5)

Note that
∫ 1
−1
∂〈uTvT〉
∂y dy = 0. Since the velocity fluctuations are strongly asymmetric and there is

nearly a velocity discontinuity at the later edge of time series (upstream edge) of the structure and
the present model (Figure 9a), the Reynolds stresses, e.g.,

〈
u2

T

〉
, are different at the upstream and

the downstream edges of the turbulence unit. In fact, the Reynolds stresses of a localized turbulent
band are aperiodic in both the streamwise and the spanwise directions, as shown by the disturbance
velocity structures in Figure 2b of Reference [23], due to its oblique manner. Since the transition
occurs at relatively high Reynolds numbers and the properties of turbulence unit are assumed to be

weak functions of Re, − 2
ReV

∫ d2UT
dy2 dV may be expanded with 1/Re as 4

Re − 2
Re

(
A0 + A1

1
Re + A2

1
Re2 + . . .

)
,

where 4
Re corresponds to the laminar state, and the constants Ai represent the contribution of mean

flow modification. Similarly, the Reynolds stress term (the second term on the right hand side of
Equation (5)) is expanded as B0 + B1

1
Re + B2

1
Re2 + . . ., where the constants Bi reflect the aperiodicity of

the Reynolds stress. Consequently, Equation (5) can be expressed as follows:

C f T = B0 +
1

Re
(4− 2A0 + B1) +

1
Re2

(B2 − 2A1) + . . . = B +
A
Re

+ O
( 1

Re2

)
, (6)

where A and B are constants for the turbulence unit. For a transitional flow with a turbulence fraction,
FT, the total friction coefficient can be obtained as follows, after ignoring the higher orders terms in
Equation (6):

C f = (1− FT)
4

Re
+ C f TFT =

(
1− FT +

A
4

FT

) 4
Re

+ FTB. (7)

It is shown in Figure 10j–l and that Equation (7) describes well the variations of C f data for
different entrance disturbance cases when the measured relation between FT and Re are applied. A and
B are determined by fitting the data between Re = 1300 and 2000 as 0.78 and 0.00426, respectively.

At the initial and middle stages of transition, C f may have different variation scenarios. If the
external disturbances are not effective to trigger the turbulent patches and the transition starts at
high Reynolds numbers,

(
1− FT + A

4 FT
)

4
Re may become smaller than FTB after a short Re range,

and then there will be a stage where C f increases with FT and Re, as shown in Figure 10. Note that

A < 4 and
(
1− FT + A

4 FT
)

4
Re decreases with the increase of FT and Re. Consequently, there will be

a maximum of C f during the transition as illustrated by the present data shown in Figure 10l and the
data of Patel and Head [6] shown in Figure 10k. If the transition begins at low Reynolds numbers,
the variation of

(
1− FT + A

4 FT
)

4
Re may be comparable with that of FTB. Depending on the variation

feature of FT, the stage of C f growth may be short or even disappear, and a C f plateau may appear,
where C f remains nearly constant in a finite range of Re. The C f plateaus were observed in the
previous numerical simulations [22,24,34] and are shown in Figure 10k for references. According to
Equation (7), provided that the decrease of

(
1− FT + A

4 FT
)

4
Re is balanced by the rise of FTB, C f will

keep constant, though this constant value may be different for different entrance or initial disturbances,
domain sizes, and computational periods. At the late stage of transition, FT tends to 1, and C f is close
to A/Re + B according to Equation (7) and then decreases with Re. The dashed lines in Figure 10j–l,
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Re =
√

2
C f

exp
[
0.41
(√

8
9C f
− 2.4

)]
, represent the fully developed turbulence [22,37], where the Reynolds

stresses are assumed to be uniform in the streamwise direction. According to the experiments, FT is
close to 1 as Re > 1100, but C f still deviates from the dashed line as Re < 1750, indicating a moderately
developed turbulent state. By extrapolating A/Re + B to the laminar value 4/Re, as shown by the
dot-dash line in Figure 10l, we get Re= 756, corresponding to an asymptotic threshold for the moderately
developed turbulence.

4. Conclusions

In this paper, the subcritical transition of channel flow is studied experimentally and theoretically.
A pressure turbulence intensity is defined to describe the pressure fluctuations, and it is found that
both the pressure and the velocity turbulence intensities reach maxima at the same Reynolds number
during the transition, where the turbulence fraction is about 0.6 and both the friction coefficient and
the turbulence fraction increase abruptly with Re. The velocity defect of localized turbulent structure
leads to a negative skewness, and for all tested cases, the smallest Re where the skewness of the
midplane velocity starts to be negative is about 660. Since the onset of turbulence depends on not
only the intensities but also the forms of initial or upstream disturbances, the high-order moments of
fluctuations are better markers for the start of transition than the turbulence intensity or fluctuation
kinetic energy, and hence should be considered in the future transition control strategies.

According to the experimental data, there exist maxima of the turbulence intensity and the
forth-order moment of the midplane streamwise velocity and a negative minimum for the third-order
moment. At the late stage of transition, the third-order moment decreases to a low level, and the
turbulence intensity and the forth-order moment remain finite values. These phenomena are explained
with an intermittent structure model, where the robust localized turbulent structure is simplified as
a turbulence unit. In addition, different variation behaviors of the friction coefficient are explained
by this model, as well, mainly in terms of the turbulence fraction and the aperiodic distribution of
Reynolds stress in the localized turbulent structures, and the latter factor should be considered in the
future transition modelling.
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Abstract: Channel flow turbulence exhibits interesting spatiotemporal complexities at transitional
Reynolds numbers. In this paper, we investigated some aspects of the kinematics and dynamics of
fully localized turbulent bands in large flow domains. We discussed the recent advancement in the
understanding of the wave-generation at the downstream end of fully localized bands. Based on
the discussion, we proposed a possible mechanism for the tilt direction selection. We measured the
propagation speed of the downstream end and the advection speed of the low-speed streaks in the bulk
of turbulent bands at various Reynolds numbers. Instead of measuring the tilt angle by treating an entire
band as a tilted object as in prior studies, we proposed that, from the point of view of the formation
and growth of turbulent bands, the tilt angle should be determined by the relative speed between the
downstream end and the streaks in the bulk. We obtained a good agreement between our calculation of
the tilt angle and the reported results in the literature at relatively low Reynolds numbers.

Keywords: turbulent bands; obliqueness; advection speed; wave generation; inflectional instability

1. Introduction

Much below the linear critical Reynolds number of the parabolic channel flow, transition to turbulence
can occur under finite-amplitude perturbations, i.e., via a subcritical transition. Numerous studies have
established that turbulence takes the form of discrete turbulent bands that are oblique to the streamwise
direction, interspersed with laminar flow, at transitional Reynolds numbers [1–10]. Similar banded
turbulent structures have also been observed in other quasi-two-dimensional flows, i.e., systems with one
confined dimension and two extended dimensions, such as plane Couette [11–13], Taylor Couette [14,15],
annular pipe [16] and Wallefe flows [17]. Therefore, the coexistence of laminar and turbulent states in the
form of banded turbulent structures is a common feature of turbulence at transitional Reynolds numbers
of a broad variety of shear flows. Recent investigations into these structures have greatly advanced the
understanding of the subcritical transition in these flows [10,18]. In the following discussion, for channel
flow, the streamwise, wall-normal and spanwise directions are denoted as x, y and z, respectively, time
is denoted as t and the half-channel-height as h. The flow is assumed driven by a constant volume flux
and the Reynolds number is defined as Re = Uch

ν , where Uc is the centerline velocity of the unperturbed
parabolic flow and ν the kinematic viscosity of the fluid.

The first observation and many numerical studies of turbulent bands in channel flow were performed
by numerical simulations in relatively small computational domains, either normal or tilted, in which
the structure, kinematics and dynamics of turbulent bands are rather restrained [1,2,4,19,20]. Particularly,
narrow tilted domains force turbulent bands to be parallel to the narrow edge, which practically assumes
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infinitely long bands in combination with periodic boundary conditions. Nevertheless, this greatly reduces
the computational cost and allows studying the kinematics and dynamics of bands over large time
scales [9,20] and offers conveniences for studying the mean flow and wavelength of the band pattern [4,10].
In a domain tilted by 24◦, Tuckerman et al. [4] reported that turbulent bands propagate approximately at
the bulk speed of the flow, with a slight decreasing trend with the Reynolds number (the speed crosses the
bulk speed at Re 	 1100). In a similar approach as Avila et al. [21] for pipe flow and Shi et al. [22] for plane
Couette flow, Gomé et al. [20] also showed finite lifetime and splitting nature of bands and determined
the on-set of sustained turbulence in channel flow to be at Re ≈ 950 by balancing the super-exponential
decay and splitting processes, in a domain also tilted by 24◦. The subcritical transition to turbulence
in plane Couette flow in tilted domains has been concluded to fall in the universality class of directed
percolation [23] and the work of Gomé et al. [20] seems to suggest the same transition scenario in channel
flow. However, the imposed tilt angle of the domain seems to affect the statistical results. For example,
the simulations in a domain tilted by 45◦ [9] showed very different lifetimes of bands from the results of
Gomé et al. [20]. Specifically, the former reported that turbulent bands are sustained at Re > 620, whereas
the latter suggested that in fact the lifetime stays finite and is below 200 time units at Re < 700. The effect
of the imposed tilt angle has not been thoroughly investigated. Besides, the usual narrow tilted domain
only allows multiple bands to form parallel band pattern, i.e., bands are forced to take the same orientation.

Large domains pose a lesser restriction on turbulent bands. In recent years, a few studies have been
dedicated to turbulent bands in large normal domains in experiments [3,9] and simulations [5–8,24,25]. If
the domain is large enough, given a proper localized perturbation, turbulence elongates obliquely with
respect to the streamwise direction and forms a fully localized band (localized both in its length direction
and in its width direction). The existence of the two ends of the band adds further complexity to the
flow. Paranjape [9] reported in experiment that at Re < 660, a turbulent band shrinks and will decay so
that the flow will relaminarize in the end, because the growth at the downstream end (referred to as the
head hereafter) is slower than the decay at the upstream end (referred to as the tail hereafter). At higher
Reynolds numbers, a turbulent band becomes sustained because the growth at the head outperforms the
decay at the tail and will grow in length. Numerical studies [6,7,24] agree with the experiments. Therefore,
it has been confirmed that the growth of a band is unidirectional, driven by the head [7–9,24]. Because
streaks decay at the tail and are generated at the head, an individual band undergoes a spanwise shift as a
whole, aside from being advected in the streamwise direction. Shimizu and Manneville [8] mentioned that
the spanwise drift speed is 0.1 and Xiao and Song [24] reported a close value of 0.08. Noticing the periodic
streak generation at the head, Kanazawa [7] and Xiao and Song [24], respectively, proposed mechanisms
behind the wave generation at the head, which are discussed in more detail below.

In fact, it was found that the length of a band does not grow infinitely. The length ‘at equilibrium’ of a
band at Re = 660 was shown to be about 300 h and the length seems to increase with Re [7]. As the length
is sufficiently large, the fast decay of the tail limits the growth, and splitting may occur with a daughter
band nucleated. At relatively low Reynolds numbers, the splitting is longitudinal, i.e., the daughter
band is parallel to the mother band. As Reynolds number increases (Re � 800), transverse splitting (or
branching) can also occur, nucleating daughter bands with the opposite tilt direction such that the flow
pattern becomes two-sided (the criss-cross pattern) [8,9]. However, the study of the splitting of bands and
the underlying mechanism is still rare.

In the presence of multiple bands, given that bands have a spanwise shift speed as a whole and can
grow in length, close bands with opposite orientations may collide. Even parallel bands, when located
sufficiently close to each other, were shown to interact also [6,8]. The dynamics of individual bands and
the interaction between bands determine the pattern that bands can form and therefore, determine the
statistical aspect of the transition to turbulence [8]. Using unprecedented large domain and simulating
up to very large times (up to O(105) time units), Shimizu and Manneville [8] showed that turbulent
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bands can only form one-sided (parallel) pattern at low Reynolds numbers (Re � 924), breaking the
spanwise symmetry, which is restored only at higher Reynolds numbers. Directed percolation was found
to reasonably well describe the transition process toward featureless turbulence at further higher Reynolds
numbers, as also proposed by Sano and Tamai [26] in experiments. Interestingly, the one-sided pattern of
turbulent bands at lowest Reynolds numbers seems to justify the use of tilted domain in which bands are
forced to be parallel, although the tilt angle was shown about 40◦–45◦ below Re 	 900 [6–9] rather than
24◦ as used in some studies [4,20].

Although a great advancement in the understanding of turbulent bands has been made in recent
studies, many problems even for individual turbulent bands have not been well understood, for example
the mechanisms underlying the growth of bands at the head and the decay at the tail, the tilt angle selection
and the self-sustaining mechanism of the bulk of turbulent bands. We discuss some of these problems in
this paper.

2. The Head

2.1. Propagation Speed of the Head

Firstly, we investigated the advection speed of the head. It has been reported that the head of a
turbulent band, which is always located at the downstream end, propagates in both streamwise and
spanwise directions [6,8,24]. The spanwise motion can be in either positive or negative spanwise direction
and the specific direction is correlated with the orientation of the band (see Figure 1). The head of the
upper band moves downward (in negative spanwise direction) while that of the lower band moves
upward, given their opposite orientations. Bands with similar orientation as the upper one are referred
to as right-going bands, and those with the opposite orientation are referred to as left-going bands. This
correlation can be intuitively understood because the head continually generates turbulence by invading
laminar flow region on one side. We revisit this point in Section 2.2. Xiao and Song [24] measured the
speeds at Re = 750 by tracking the head and reported a streamwise speed of cx = 0.85 and a spanwise
speed of cz = 0.1 (absolute value).

Figure 1. Turbulent bands with different orientations at Re = 750. (a,b) The streamwise direction is in the
positive x direction and z denotes the spanwise direction. Streamwise velocity fluctuations in the x-z cut
plane at y = −0.5 are plotted as the colormap with blue representing low speeds and red representing high
speeds compared to the basic flow. The two panels are separated by 320 time units.
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To investigate the Re-dependence of the speeds and also for calculating the tilt angle of turbulent
bands in Section 4, we measured the speeds in the low Reynolds number regime ranging from Re = 670,
which is nearly the lowest Reynolds number for sustained bands, to Re = 1050 at which frequent splitting
and branching of bands were reported to occur [8,9]. For this study, the Reynolds numbers, domain sizes
and resolutions are listed in Table 1. It has been shown that, at Re = 660, a band can continuously grow up
to the length of approximately 300 h [7]. The length can be much larger at higher Reynolds numbers [7,8].
The domain sizes used in our study are not large enough for the band to reach the length ‘at equilibrium’,
rather we only require the domain size to offer sufficiently long time for the head to reach its characteristic
propagation speed. The simulation was stopped when the head and tail were too close to each other and
started to interact due to the periodic boundary conditions. Xiao and Song [24] already showed that the
speed of the head of turbulent bands at Re = 750 is not affected by the domain size by comparing the
speeds measured in domains with Lx = Lz = 120 h and Lx = Lz = 320 h.

Table 1. The Reynolds number Re, domain size Lx and Lz, number of wall-normal grid point N and the
ratio between h and the grid spacing in x and z directions, Δx and Δz, respectively.

Re Lx × Lz N h/Δx h/Δz

670 120 h × 120 h 72 4.3 6.4
750 120 h × 120 h 72 4.3 6.4
850 160 h × 160 h 72 4.8 6.4
950 160 h × 160 h 72 4.8 6.4

1050 240 h × 240 h 72 4.8 6.4

At each Reynolds number, we generated a fully localized turbulent band directly at low Reynolds
numbers using the method proposed by Song and Xiao [25]. After the band has sufficiently developed,
the head was tracked over a time window of O(500) time units and the average speed was calculated
based on the position and time separation. The results in Figure 2 show that both the streamwise and
spanwise speeds stay nearly constant for all Reynolds numbers investigated, at 0.85 and 0.1, respectively.
Besides, the speeds were shown to be rather stable, i.e., only fluctuate slightly in time around the respective
averaged values for Re = 750 [24], which is also the case for other Reynolds numbers in this study.
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Figure 2. The streamwise (circles) and spanwise (triangles) speed of the head of turbulent bands at various
Reynolds numbers. Note that it is the absolute value of the spanwise speed plotted given that the speed can
take either positive or negative values. The two solid lines at 0.85 and 0.1 are plotted to guide the eyes. The
experimental measurement of the spanwise speed [9] is plotted as the dashed-circle line for comparison.
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In experiments, Paranjape [9] showed that the spanwise speed of the head slowly decreases from
0.085 at Re 	 700 to 0.08 when the Reynolds number is increased to Re 	 850 (see the dashed-circle line in
Figure 2). Besides, Paranjape [9] reported a streamwise speed of the entire band of about 0.75 between
Re = 670 and 900, but did not report the streamwise speed of the head. They also reported the speeds
between Re = 600 and 670, in which regime we could not obtain a sustained turbulent band in our DNS.
It can be seen that our spanwise speed is systematically larger than the experimental measurement [9]
(see Figure 2). The difference could possibly be attributed to the periodic boundary condition used in our
numerical simulations, although Xiao and Song [24] mentioned that the Lx = Lz = 120 h box gives the
same speed as that given by the Lx = Lz = 320 h box at Re = 750. It may equally be attributed to the
side-wall effect in experiments. Simulations in much larger periodic boxes or in a channel with side walls
are needed to confirm about this point. Nevertheless, the two sets of speeds are close to each other.

2.2. Wave Generation at the Head and the Tilt Direction of the Band

In this section, firstly we discuss about some recent studies on the dynamics of the head. Therefore,
a part of the results shown below is not original. It has been noticed that the head drives the growth
of turbulent bands by continually generating waves, in the form of alternating high- and low-speed
streaks and arrays of vortices, while moving into the adjacent laminar region [7–9,24]. Figure 3 shows
the wave-like structure of the head. Contours of streamwise velocity fluctuation are plotted in the x-z
plane at y = −0.8 (close to the wall, see Figure 3a), at y = −0.5 (Figure 3b) and in the mid-plane y = 0
(see Figure 3c). It can be seen that the flow is characterized by high-speed streaks close to the wall. In the
mid-plane, the flow is characterized by low-speed streaks in the bulk, which almost merge and form
a connected low-speed region, and is characterized by a high speed region at the head (see the yellow
spot in Figure 3c). At y = −0.5, the flow exhibits wave-like alternating low and high-speed streaks.
The large-scale (compared with the wave-like streaky structures) flow in the neighborhood of the head
manifests a circulation (see [6,24]), which is counter-clockwise for a right-going band as shown. Duguet
and Schlatter [27] proposed a mechanism for the formation of large-scale flow around turbulent bands
in plane-shear flows. Their theory applies to the large-scale flow associated with the bulk region of the
band and describes the band as the advection of small-scale structures (streaks) by the large-scale flow.
However, they did not explicitly study the large-scale flow at the head.

Figure 3. Large-scale circulation flow in the neighborhood of the head. Streamwise velocity is plotted as
the colormap in the x-z cut plane at: y = −0.8 (a); y = −0.5 (b); and y = 0 (c). In each panel, the in-plane
velocities are plotted as vectors. The dotted rectangle (size 6 h × 10 h) marks approximately the area where
the first visible wave that is continually generated at the head in the frame of reference co-moving with
the head.
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The dotted rectangle in Figure 3 marks the approximate region in which the first visible high speed
streak is periodically generated. The vector plot of the in-plane velocities shows that, at y = −0.5
(see Figure 3b), the vectors in the rectangle overall point to the positive z direction, and, at y = 0
(see Figure 3c), the vectors overall point to the negative z direction. This hints that there should be an
inflection in the spanwise velocity profile in this region, which may be inflectionally unstable. Based on
this observation, Xiao and Song [24] investigated the local mean flow at the head and attributed the wave
generation at the head to an inflectional instability associated with the modified local mean flow. For the
ease of discussion, we measured the averaged velocity profiles at the head again in a different region and for
a different turbulent band compared to those reported in [24] (see Figure 4). Both streamwise and spanwise
velocity profile (the parabolic base flow is not included) show inflection. These profiles are measured at a
right-going band similar to the upper one in Figure 1 and the one shown in Figure 3. Figure 4b shows the
unstable region in the wavenumer plane (the region enclosed by the bold line) and Figure 4c shows the
streaky flow pattern of the most unstable disturbance (see also [24,25]). It can be seen that these streaks
are tilted about the streamwise direction and the tilt direction is the same as the waves that can be seen
at the head of right-going bands in Figures 1 and 3. Besides, the most unstable wave move downward,
i.e., in the negative spanwise direction (see the arrow), just as the head of the right-going band. By the
symmetry of channel flow about the x-y plane, it can be inferred that the velocity profiles at the head of a
left-going band will be similar to those shown in Figure 4d, with the sign of the spanwise velocity changed.
We performed a similar linear analysis here and show the unstable region in the wavenumber plane in
Figure 4e and the most unstable disturbance in Figure 4f. Clearly, we can see a spanwise symmetry in
the distribution of eigenvalues and in the flow pattern by comparing to Figure 4b,c. The waves shown in
Figure 4f are tilted in the opposite direction compared with the waves in Figure 4c and move in the positive
spanwise direction, which is consistent with the structure and kinematics of the head of a left-going band.
In a word, linear stability analysis gives qualitatively similar flow structures and kinematics as that of the
head. The nonlinear development of disturbances was shown to give similar flow structures as those at
the head [24]. Therefore, Xiao and Song [24] proposed that the growth of turbulent bands is driven by the
inflectional instability locally at the head. Further, Song and Xiao [25] performed a non-modal analysis
of the inflectional velocity profiles and showed an Orr-mechanism via which disturbances can achieve
a fast growth in energy at the early stage (by a factor of 100 within about 15 time units for Re = 750).
Subsequently, the modal instability takes part and starts to dominate the growth at later points of time.
The linear instability together with the fast non-normal growth at the early stage are able to result in a fast
growth of the unstable waves at the head. Reaching a certain amplitude, the waves become turbulent when
nonlinearity sets in and subsequently evolve inside the bulk of the band in the form of streaks and vortices.

Based on these discussions, here we propose that the moving direction and the tilt direction of a band
are probably determined by what type of local flow is formed when a localized perturbation is introduced:
One similar to that shown in Figure 4a generates a right-going band and one similar to that shown in
Figure 4d generates a left-going band. In fact, the technique proposed by Song and Xiao [25], with which
we generated the bands in Figure 1, is based on this mechanism. The key of the technique is to impose a
localized body force that moves with the speed of the head and induces a locally inflectional flow. It can
offer a control on the tilt direction of the generated bands because it offers a control on the spanwise
velocity profile (to be similar to either the one in Figure 4a or the one in Figure 4c) and on the moving
direction of the force. The efficacy of the technique in turn supports that some key characteristics of a band
are determined by the local inflectional mean flow at the head.
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Figure 4. Linear instability of the modified velocity profile at the head that is spatially and temporally
averaged in the rectangle shown in Figure 3b: left-going bands (a–c); and right-going bands (d,e). (a,d)
Velocity profiles. Wall-normal component is very small and neglected; (b,d) The maximum eigenvalue
in the wave number plane, in which α is the streamwise wave number and β the spanwise wavenumber.
The bold line marks the neutral stability curve; (c,f) Contours of streamwise velocity of the most unstable
disturbances at the cut plane y = −0.5. Red and blue colors represent high speed and low speed regions,
respectively. The arrows show the direction of the spanwise wave speed. Similar analysis for the modified
velocity profiles averaged in different regions were reported in [24,25].

Although the linear instability, as well as the non-normality, associated with the local mean flow seem
to be the mechanism underlying the wave generation and growth of turbulent bands, how this inflectional
local mean flow is formed and sustained is still not sufficiently understood. Tao et al. [6] observed that,
when the computational domain is too small, a band may interact with its periodic image and decay.
Based on this observation, they proposed that the sustainment of a turbulent band relies on the secondary
large-scale flow surrounding the band, and a close neighbor may affect this large-scale flow and eliminate
the band. Given that a turbulent band is driven by the head, this observation seems to imply that the
head of a band is sustained by the large-scale flow, see Figure 3. However, Kanazawa [7] proposed a
completely different scenario. They added a damping term to the Navier–Stokes equations, using which
they suppressed the formation of the body of a band and isolated the head, and observed that the head can
be self-sustained as a nonlinear periodic orbit. This periodic orbit is characterized by an array of streaks
and vortex tubes that resemble the flow structure at the head. Because the band does not form under
the damping, the large-scale flow is also absent, although there is still a local circulation flow associated
with the localized periodic orbit itself. This seems to contradict the conclusion of Tao et al. [6] that a band
relies on the large-scale flow surrounding the band. Further, Kanazawa [7] studied the bifurcation of the
periodic orbit in the damped system and reported a saddle-node bifurcation that gives rise to the periodic
orbit. Below the saddle-node bifurcation point, no such exact coherent structures exist. Therefore, the
authors proposed that this self-sustained periodic orbit and the subsequent bifurcations to torus and chaos
is responsible for the formation and sustaining mechanism of turbulent bands. However, they failed to
obtain a periodic orbit and reproduce the bifurcations as the damping parameter vanishes, i.e., in the

81



Entropy 2020, 22, 1167

Navier–Stokes equations without an artificial damping. Obtaining such a periodic solution may finally
elucidate the appearance and self-sustaining mechanism of fully localized turbulent bands [7].

Kanazawa [7] did not show why and how exactly this periodic orbit generates wave-like streaks or
vortices, rather, only described them as the characteristics of the periodic orbit. In fact, the inflectional
instability proposed by Xiao and Song [24] may be related to this periodic orbit. The possible connection is
that the circulation associated with the periodic orbit may be locally inflectional and responsible for the
wave generation. The inflectional profiles of Xiao and Song [24] are just temporal-spatial averages at the
head and only depend on y. The averaging leaves out the streamwise and spanwise dependence of the
real local flow at the head; therefore, Xiao and Song [24] pointed out that this may be why their stability
analysis cannot quantitatively capture some characteristics of the waves at the head, such as the value of
the tilt angle of the waves with respect to the streamwise direction. The analysis of this three-dimensional
periodic orbit may be needed to more quantitatively understand the dynamics of the head.

3. The Bulk

The bulk of a turbulent band is defined as the elongated part that is sufficiently far from the head and
tail, which does not significantly vary on large-scale and can be considered to be at an ‘equilibrium state’.

3.1. The Flow Structure

Many studies have noticed the wave-like form of the bulk of turbulent bands [6,7,9,24], i.e., regularly
aligned and distributed streaks along the band. In Figure 5a, the streamwise velocity fluctuations are
plotted as the colormap in the x-z plane at y = −0.5 (blue color shows low speed and red shows high
speed region). Low-speed streaks (blue) are nearly parallel to the streamwise direction and show nearly
a periodic pattern. On the upstream edge, high-speed streaks (red) can be observed but do not show
a strong periodic pattern as the low-speed streaks. It should be noted that the tilt angle, with respect
to the streamwise direction, of the steaks in the bulk is significantly lower than that at the head. Both
low speed and high-speed streaks are nearly parallel to the streamwise direction. However, it still can
be noticed that these two groups of streaks exhibit opposite tilt directions. The four dashed lines mark
the positions of four cut planes perpendicular to the wall, in which streamwise velocity fluctuations are
plotted to visualize the structure of the band in the wall-normal direction (see Figure 5b–e). A two-layer
structure can be observed, which can be expected from the symmetry of the base flow about the channel
center-plane. Each layer consists of staggered high- and low-speed streaks, and, in each layer, high-speed
streaks are located near the wall and low-speed streaks near the channel center-plane. Figure 5e and the
part between s = 20 and 50 in Figure 5d show that, on the upstream, high-speed streaks are the dominate
structures. On the downstream, low-speed streaks dominate (see Figure 5b and the part between s = 0
and 20 in Figure 5c). In between, high-speed and low-speed streaks are comparable (see the part between
s = 20 and 50 in Figure 5c and between s = 0 and 20 in Figure 5d), and this is the most energetic and
turbulent region.

Xiao and Song [24] showed that the generated streaks move away from the head in the frame of
reference co-moving with the head, and that streaks decay at the tail of the band. To show this process
explicitly, we selected a low-speed streak and tracked it (see Figure 6). The tracking lasted for hundreds
of time units until the streak reaches the tail of the band, without a significant change in the shape of
the streak.
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Figure 5. (a) Streamwise velocity fluctuations of a band at Re = 750 plotted in the x-z plane at y = −0.5.
The four dashed lines mark the positions of four cut planes perpendicular to the wall, in which streamwise
velocity fluctuations are plotted in (b–e). The s-axis goes from top-left to bottom-right along the lines. The
two arrows, at s = 10 and 40, respectively, show the sequence of (b–e). The length in y direction is stretched
by a factor of 3.

(a) t=600 (b) t=680 (c) t=760 (d) t=840

Figure 6. Tracking of a low-speed streak (enclosed by a parallelogram) at Re = 750 in the frame of reference
co-moving with the head. (a) t = 600; (b) t = 680; (c) t = 760; (d) t = 840.

3.2. Advection Speed of the Streaks inside the Bulk

Next, we quantitatively studied the advection speed of the streaks. The advection speed can be
estimated by tracking an individual low-speed streak, as shown in Figure 6. Alternatively, it is possible
to measure the speed of an array of streaks as a whole. We adopted the latter approach. We used the
velocity data on the cut plane of y = −0.5, which well cuts through the streaks and offers a nearly optimal
visualization of the flow pattern (see Figure 5). Nevertheless, a cut plane close to the wall, which would
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cut through high-speed streaks that are located close to the wall (see Figure 5), is equally applicable. We
used the Structural Similarity Index Measure (SSIM) method [28] from image processing, which accesses
the similarity between two images based on luminance, contrast and structure of the images. The method
is detailed in Section 6.

The advection speed of low-speed streaks for a few Reynolds numbers are shown in Figure 7. The
results show that, in the low Reynolds number regime between 670 and 1050, the streamwise advection
speed slowly decreases from 0.68 to 0.63, whereas the spanwise speed seems to stay nearly constant at
around 0.07. Note that the streamwise speed is very close to the bulk speed of the flow, which is 0.67.
In fact, in Figure 6, the parallelogram was moved at the speeds we measured in this way and very well
tracked the streak over hundreds of time units. Paranjape [9] reported that the phase speeds of the exact
nonlinear traveling wave solution they obtained at Re = 720 are cx = 0.77 and cz = 0.06, which are close to
our results, suggesting a strong connection between their traveling wave solution and turbulent bands.
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Figure 7. Advection speed of the low-speed streaks at a few Reynolds numbers. The spanwise speeds are
cz = 0.068, 0.076, 0.069, 0.071 and 0.068, and the streamwise speeds are cx = 0.68, 0.66, 0.65, 0.65 and 0.63,
for Re = 670, 750, 850, 950 and 1050, respectively.

4. Tilt Angle of Turbulent Bands

The tilt angle of turbulent bands at Re < 1000 was reported in experiments by Paranjape [9]. Their
measurements showed that the angle stays nearly constant close to 45◦ below Re 	 900 and decreases to
approximately 30◦ above Re = 950. The decreasing trend was also reported by Shimizu and Manneville [8].
A few numerical studies also reported the tilt angle at some Reynolds numbers; for example, Kanazawa [7]
reported 41◦ at Re = 660, Tao et al. [6] reported approximately 40◦ at Re = 700 and Xiao and Song [24]
reported an angle of about 39◦ at Re = 750, which are lower than but close to the experimental results
of Paranjape [9]. The small difference may be attributed to the periodic boundary condition used in
simulations and to the specific methods of quantifying the tilt angle.

However, the mechanism underlying the tilt angle selection is still not well-understood. Prior studies
simply measured the tilt angle by considering the entire band as a tilted object based on image processing
or in similar manners [6,9]. Differently, here we propose that the tilt angle should be more fundamentally
determined by the propagation speed of the head and the advection speed of the streaks inside the bulk.
More specifically, the speed of the streaks inside the bulk relative to the head should determine the tilt
angle of the band. Based on our measurements shown in Figures 2 and 7, we calculated the tilt angle of
the band as

θ = arctan
|cz,streak − cz,head|
|cx,streak − cx,head| . (1)
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The result is shown in Figure 8. Our calculations agree well with the experimental result of
Paranjape [9] below Re 	 900. However, at Re = 1050, our calculation appears to be much higher
than their measurement: our calculation gives 37◦ for Re = 1050, whereas it was estimated to be around
30◦ in experiments. Nevertheless, our calculation gives the decreasing trend in the tilt angle as Re is
increased to around Re = 1000 and above.
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Figure 8. The tilt angle of turbulent bands, calculated with Equation (1), at a few Reynolds numbers. The
experimental measurements of Paranjape [9] are plotted as the dashed-triangle line for comparison.

The possible reason for the significant difference between our calculation and the experimental
measurements at Re = 1050 can possibly be understood by inspecting the structure of the band as Re
increases (see Figure 9). We can see that, at Re = 670, the band has a well-defined banded structure,
i.e., the width (e.g., the streamwise extension) of the band does not significantly change along the band
(see Figure 9a). At Re = 950, the tail of the band seems to broaden and the width of the band may
not be constant along the length direction any more (see Figure 9b). Further at Re = 1050, the band
significantly delocalizes: The bulk broadens gradually towards the tail and part of the band turns into
an extended turbulent area (see Figure 9c). By image processing the entire band, as in the measurements
of Paranjape [9] and Tao et al. [6], the calculated tilt angle at Re = 1050 will certainly be smaller than our
calculation that is only based on the information of the low-speed streaks and the head. This disagreement
will be small at low Reynolds numbers when turbulence is well-banded.

(c)(b)(a)
0.3

Figure 9. Turbulent bands at: Re = 670 (a); Re = 950 (b); and Re = 1050 (c).
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The agreement between our calculation and the reported speeds in the literature supports our
speculation that the tilt angle of the band is determined jointly by the propagation speed of the head and
the advection speed of the streaks inside the bulk. However, what mechanism determines the advection
speed of the streaks is still to be investigated. A quantitative study of the large-scale flow may give a hint
to the advection of the streaks [9,27,29,30].

It should be noted that the two ends of turbulent bands may not exist in relatively small normal periodic
domains or narrow tilted domains, therefore, seemingly our formulation of the tilt angle (Equation (1)) does
not apply. In those cases, it is not clear what mechanism determines the tilt angle of turbulent bands. Our
speculation is that the tilt angle may be indefinite and is strongly affected by the specific domain selection if
the head does not exist. This might explain, for the same Reynolds number, why turbulent bands can exist
in tilted domains with very different tilt angles [4,9,20] and why the nonlinear traveling wave solutions that
Paranjape et al. [19] obtained can exist in a broad tilt-angle range from 20◦ to 70◦.

5. Discussion

The wave generation at the head, the tilt direction, the advection of the head, the streaks inside
turbulent bands and the tilt angle of the band are discussed and investigated in this paper. The inflectional-
instability argument of Xiao and Song [24] for the wave generation at the head and its potential relationship
with the localized periodic-orbit theory of Kanazawa [7] are discussed. Based on the discussion, we propose
that the tilt direction should probably be determined by the local inflectional spanwise velocity profile
generated/introduced by the initial perturbation. The opposite tilt directions are rooted in the mirror
symmetry of the spanwise velocity component. Besides, we measured the propagation speed of the head
and the advection speed of the low-speed streaks in the bulk of turbulent bands at low Reynolds numbers
up to Re = 1050. We found that the head propagates at constant speeds of cx = 0.85 and cz = 0.1 (absolute
value) at all Reynolds numbers investigated. The low-speed streaks are advected roughly at the speed of
the bulk speed in the streamwise direction with a slight decreasing trend as the Reynolds number increases,
and the spanwise advection speed is nearly constant at approximately 0.07. Prior studies measured the
tilt angle by treating the band as a tilted object [6,9]; alternatively, we here propose that the tilt angle of
turbulent bands should be determined by the kinematics of the head and the streaks generated at the head.
Specifically, the tilt angle can be calculated using the relative speed between the streaks in the bulk and
the head, and, at least for Re � 900, we obtained a good agreement with the experimental measurements
of Paranjape [9]. We also speculate that the tilt angle of a band may be indefinite and system-dependent if
the head does not exist as in narrow tilted domains and relatively small normal domains.

A few problems remain poorly understood and should be investigated in order to further understand
the transition in channel flow.

• The sustaining mechanism of the wave-generating head. The formation and sustainment of the locally
inflectional flow at the head, whether or not the head is locally self-sustained and the relationship
between the head and the large-scale flow are still not clear. If the head is indeed locally self-sustained
and independent of the bulk, as proposed by Kanazawa [7], how the flow can be locally excited to
this periodic orbit is also not clear. This problem is relevant to the generation and control of turbulent
bands at low Reynolds numbers.

• The mechanism underlying the advection speed of the head. Xiao and Song [24] speculated that
the speeds are possibly determined by the speeds of the unstable waves resulting from the local
inflectional instability. They reported a close spanwise speed of the most unstable wave for Re = 750,
which is about 0.1 and is close to the actual spanwise of the head (see Figure 2). However, the
streamwise speed of the most unstable wave is roughly 0.55 (can be calculated from the eigenvalues
and wavenumbers associated with the most unstable wave reported by them) and is significantly
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lower than the values shown in Figure 2, which is about 0.85. This discrepancy may be attributed to
the over-simplification of the local mean flow at the head by temporal and spatial averaging in their
linear stability analysis, as well as by the region selection for the averaging. A possibility to elucidate
the mechanism underlying the advection speed is to investigate the speed of the periodic orbit of
Kanazawa [7].

• The mechanism underlying the self-sustainment and advection speed of the streaks. Paranjape et al. [19]
obtained exact traveling wave solutions that have some key characteristics of turbulent bands and
identified the solutions as the precursors of turbulent bands. Further, for these solutions, they speculated
that the streaks are sustained by the tilting effect of the large-scale flow, instead of the self-sustaining
process of wall turbulence at high Reynolds numbers in which sinuous streaks break down, generating
streamwise vortices, and are regenerated by streamwise vortices [31,32]. The same mechanism may
also apply to turbulent bands. In our simulations, we indeed observed that streaks in the bulk
are long-lived and move with a characteristic speed without a clear breakdown and regeneration.
Duguet and Schlatter [27] described turbulent bands in plane shear flows as the advection of small-scale
structures (streaks and vortices) by the large-scale flow, which also seems to suggest the important role
of the advection by the large-scale flow in the sustainment of the streaks.

• The mechanism underlying the decay of streaks at the tail as well as the splitting and branching of
turbulent bands. At relatively higher Reynolds numbers, a band may also nucleate a band with the
opposite tilt direction [8,9]. The splitting scenario, at least partially, determines the flow pattern.

6. Materials and Methods

For solving the incompressible Navier–Stokes equations in channel geometry, we used our in-house
code as described in [24,25], which adopts a high-order finite-difference method with a centered nine-point
stencil in the wall-normal direction and Fourier-spectral method in the periodic streamwise and spanwise
directions. Readers are referred to OPENPIPEFLOW [33] for details about the finite-difference scheme and
the parallelization of the code. The Navier–Stokes equations were integrated using the method of Hugues
and Randriamampianina [34], which adopts a second-order-accurate backward-differentiation scheme,
combined with the Adamas–Bashforth scheme for the nonlinear term, for the temporal discretization and
a projection method to impose the incompressibility condition. The time-step size was fixed at Δt = 0.01
for the simulations presented in this paper, which was shown to be sufficiently small for the Reynolds
number regime considered [4,6].

We adopted the method proposed by Song and Xiao [25] to generate turbulent bands in large domains.
The method firstly derives a body force that is needed to maintain an inflectional velocity profile that bears
a sufficiently strong instability. Given a target velocity profile U(y), the body force is derived as

f = − 1
Re

∇2U(y). (2)

Then, the body force is multiplied by a localization factor such that the force is localized in the x-z
plane. The size of the localization region should be comparable with the size of the head of a turbulent
band and the forcing region is moved at the speed of cz = 0.1 (absolute value) and cx = 0.85 (see Figure 2).
If the profile U(y) is sufficiently inflectional, the instability can generate sufficiently strong tilted waves
(streaks and vortices) and trigger turbulent bands. Once triggered, the length of the band increases, and
the force can be switched off after the band has sufficiently developed. The tilt direction of the band can be
controlled by the signs of the spanwise component of U(y) and the moving speed cz.
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We measured the advection speed of the low-speed streaks inside the bulk using the Structural
Similarity Index Measure (SSIM) method proposed by Wang et al. [28], which is commonly used in image
processing to measure the similarity between two images. The SSIM index is defined as:

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ, (3)

where x and y are one-dimensional vectors containing all the pixel values of the two images to be compared,
respectively, and

l(x, y) =
2μxμy + c1

μ2
x + μ2

y + c1
, (4)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
, (5)

and

s(x, y) =
σxy + c3

σxσy + c3
, (6)

measure the luminance, contrast and structural similarity, respectively. The exponents α > 0, β > 0 and
γ > 0 are used to tune the relative weight of respective factor, and here we set all of them to 1 according
to the suggestion of Wang et al. [28]. In Equation (4), μx and μy denote the mean of x and y, respectively.
In Equation (5), σx and σy denote the standard deviation of x and y, respectively. In Equation (6), σxy is
the covariance of x and y. Parameters c1 = (k1L)2 and c2 = (k2L)2, where k1 and k2 are set to 0.01 and
0.03, respectively, and L is the maximum of the pixel value, which is set to 255 for unit8 data and 1 for
floating point data. In our calculation, the flow velocities, which are floating point data, were taken as the
pixel value x and y. The parameter c3 is set such that c3 = c2/2 in practice according to the suggestion of
Wang et al. [28]. Thus, we have

SSIM(x, y) =
(2uxuy + c1)(2σxy + c2)

(u2
x + u2

y + c1)(σ2
x + σ2

y + c2)
. (7)

The result is a value between −1 and 1, and the larger is the result, the higher is the similarity.
Firstly, we take the streamwise velocities in the cut plane y = −0.5 from two different snapshots s1

and s2 that are separated in time by δt, after the tilt angle of the band has stopped changing considerably
due to the initial transients. In the frame of reference co-moving with the head, i.e., moving with a
streamwise speed of 0.85 and a spanwise speed of −0.1 (we considered a right-going band), the bulk of
the band is located in a nearly fixed area (see Figure 10). Therefore, we set a rectangular area in which the
data inside were considered for calculating the SSIM index. We set the data outside this area to zero so
that we eliminated the influence of the data outside this area. Further, to highlight the low-speed streaks,
only the streamwise velocities in this area that satisfies ux < 0 and u2

x > 0.002 were retained. Secondly,
we shifted the data from s2 inside the rectangular over the time separation δt with a streamwise speed cx

and a spanwise speed cz. The original data from s1 and the shifted data from s2 were used to calculate
the SSIM index. Thus, for a given speed pair (cx, cz), there is a corresponding SSIM index. By varying the
speed pair, the SSIM index will maximize with certain speeds, which we considered as the mean advection
speeds of the streaks. The contours of the SSIM index in the cx and cz for Re = 750 are shown in Figure 11.

Note that, in practice, we set −cx and cz to be between 0.1 and 0.4 (the band we considered is a
right-going one; therefore, cx < 0 and cz > 0) because the actual speeds were estimated by eye to exist
in this range, and note that the shift speeds are relative to the propagation of the head. Obtaining the
contours of the SSIM index, we could estimate the advection speed of the streaks to be cx = −0.185 and
cz = 0.18, i.e., the location of the local peak at the left-bottom corner in Figure 11. It can be seen that there
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is another local peak at the right-top corner, which shows a lower SSIM index. That peak was reached
when the s2 data were shifted by more than one wave-length associated with the pattern of the low-speed
streaks. The lower SSIM index of the top-right peak, i.e., lower similarity, indicates that the streaky pattern
slowly change as it is advected in the bulk.

Note that the time separation δt between s1 and s2 cannot be too small, otherwise the streaks would
have moved too little over the time separation and the speed measurement would be inaccurate. Likewise,
it cannot be too large in which case the streaks would have moved by multiple wavelengths, which would
also affect the speed calculation. In practice, estimated by eyes, a value between δt = 10 and 15 is a good
choice, and δt = 10 in Figures 10 and 11. In the end, by varying the time instant of s1, we can obtain the
average advection speed as a function of time and calculate the temporal average, which is plotted in
Figure 7 (the speed of the head is added back in that figure).

(b) t=600(a) t=600 (c) t=610

Figure 10. The selection of low-speed streaks for the advection speed calculation. The tilt angle of this
rectangle is 45◦, which is close to the tilt angle of the band. The area of the rectangle should be large enough
to contain sufficient streaks and meanwhile reduce the influence of the tilt angle of the rectangle. (a) The
contours of streamwise speedat y = −0.5 at t = 600. The advection speed of the streaks in the region
enclosed by the rectangle is calculated; (b,c) The filtered low-speed streaks at t = 600 and t = 610.

Figure 11. The contours of the SSIM index in the cx-cz plane for the case shown in Figure 10.
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Abstract: The onset of turbulence in subcritical shear flows is one of the most puzzling manifestations
of critical phenomena in fluid dynamics. The present study focuses on the Couette flow inside an
infinitely long annular geometry where the inner rod moves with constant velocity and entrains
fluid, by means of direct numerical simulation. Although for a radius ratio close to unity the system
is similar to plane Couette flow, a qualitatively novel regime is identified for small radius ratio,
featuring no oblique bands. An analysis of finite-size effects is carried out based on an artificial
increase of the perimeter. Statistics of the turbulent fraction and of the laminar gap distributions
are shown both with and without such confinement effects. For the wider domains, they display
a cross-over from exponential to algebraic scaling. The data suggest that the onset of the original
regime is consistent with the dynamics of one-dimensional directed percolation at onset, yet with
additional frustration due to azimuthal confinement effects.

Keywords: subcritical phenomenon; transition to turbulence; direct numerical simulation

1. Introduction

The dynamics at the onset of turbulent fluid flow, as the parameters are varied, is one of the most
puzzling issues of hydrodynamics. Subcritical flows are known to feature two regimes in competition,
namely a laminar and a turbulent one. As the Reynolds number (their main control parameter) is
varied, this competition takes the form of laminar-turbulent coexistence featuring some interesting
analogies with phase transitions in thermodynamics. The onset of this coexistence in wall-bounded
shear flows has been speculated to follow a statistical scenario called directed percolation (DP).
It involves a critical point (a critical Reynolds number) in the vicinity of which fluctuations diverge
algebraically [1,2]. The directed percolation scenario has gained theoretical importance because it
appears as the usual rule for a one-dimensional systems obeying a set of specific properties, notably a
unique absorbing state and short-range interactions [3,4]. However, it quickly proved difficult to isolate
similar phenomena experimentally [5]. The main limitations happen to be finite-size effects, as well as
the presence of defects [6–8] or issues revolving around nucleation rates [9,10]. The first experimental
evidence for directed percolation in a two-dimensional physical system, with a complete set of critical
exponents, occurred in electroconvection in nematic liquid crystals [11]. More recent experiments and
numerical simulations with inert liquids were aimed at establishing the critical exponents relevant
for the laminar-turbulent transition. The only meaningful experimental results are to be found in
Ref. [12] for the flow inside an annulus driven by the revolutions of the outer wall, where all critical
exponents match those of (1 + 1)-D DP. All other experimental attempts in effectively two-dimensional
geometries have so far lead to ambiguous results [13,14]. A few numerical studies based on other
geometries have also confirmed the DP hypothesis in one dimension, among them [15]. The most
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notorious system displaying one-dimensional spatiotemporal intermittency (STI) is cylindrical pipe
flow. Although (1 + 1)-D DP has been widely speculated and is found in the most recent modelling
approaches [16–18], clean experimental evidence seems to require facilities of a size beyond anything
engineerable [19]. The only convincing two-dimensional study to date based on the (underesolved)
Navier–Stokes equations and supporting the DP hypothesis is found in Ref. [20]. There again, a cost
compromise was necessary between accuracy of the Navier–Stokes solutions and size effects. There
the set of critical exponents differs from their unidimensional counterpart and corresponds to (2 + 1)-D
DP. The status of the application of (2 + 1)-D DP to other planar flows is still open: for plane Couette
flow (pCf), finite-size effects wrongly predict to discontinuous scenarios [21], whereas plane Poiseuille
flow (pPf) seems to display a two-stage behavior so far poorly understood [22–24]. At a finite distance
from the critical point, these two planar flows feature more structured arrays of turbulent stripes, all
oblique to the mean flow direction (see, e.g., [21,25–30] for recent reviews).

Given the current status of DP affairs in shear flows, new flow candidates where to probe
the DP hypothesis are encouraged, irrespective of the effective dimension considered (one or two).
In the present article, we revisit transition in annular Couette flow (aCf) in the light of critical scaling.
This flow has a geometry similar to cylindrical pipe flow, however, with a solid cylinder at its centerline.
The geometry is determined by the radius ratio η between the radius of the outer pipe and that of the
inner one. This flow supports both turbulence [31] as well as a linearly stable base flow for all Reynolds
number of interest, hence transition has to be of the subcritical type. Unlike annular pipe flow [32–34],
no pressure gradient is applied, instead the fluid is entrained by the translating motion of the inner
cylinder [35]. Earlier work by some of us [36] on this flow have lead to surprising results: although the
transitional flow reported for η ≥ 0.5 consists of helical bands of turbulence wrapping around the inner
rod, for lower values of η, a new regime of laminar-turbulent alternations was reported. This regime is
characterized by slightly shorter streamwise correlations and non-oblique structures, explained by the
azimuthal confinement and by the impossibility to host azimuthal large-scale flows [37]. The aim of the
present article is to give a more detailed characterization of the novel low-η intermittent regime and of
its onset. In particular, the azimuthal extension of aCf is investigated in a range of parameters beyond
that used by Kunii et al. [36]. As will be seen, this new choice of geometrical parameters leads to new
conclusions regarding the critical exponents. This new parametric study allows one to rationalize once
and for all the quantitative comparison between original geometry and the extended one.

The plan of this article unfolds as follows: the geometry and the numerical methods are explained
in Section 2, and the statistics of STI are reported in Section 3 and discussed in Section 4.

2. Set-Up and Methodology

2.1. Geometry of aCf

Annular Couette flow is the flow in the interstice between two coaxial cylinders of formally
infinite length, driven by the motion at velocity Uw > 0 of the inner cylinder in the x-direction.
The annular geometry of this flow is common to both Taylor–Couette flow and annular Pipe flow;
however, the forcing is different and no spin of the walls is considered. A sketch of that geometry
is displayed in Figure 1 with the usual notations for the cylindrical coordinates (x, r, θ). Assuming
that the inner and outer cylinder have respective dimensional radii rin and rout, the main geometrical
parameter of this study is the radius ratio η = rin/rout, which varies in the open interval (0, 1). We also
introduce the gap h between the two cylinders h = rout − rin.

Computationally, the pipes require to have either finite length or to be spatially periodic. The use
of a spectral Fourier-based method to solve the pressure Poisson equation requires axial and azimuthal
periodicity. This introduces the two wavelengths Lx and Lθ , respectively, as the domain length and
the angular periodicity. While Lx is a free parameter, the natural value for Lθ is 2π because of the
cylindrical geometry. However, there is no computational obstruction to choosing other values for Lθ ,
for instance Lθ = 8π or 16π as in Ref. [36]. In what follows, we keep the generic notation Lθ .
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Figure 1. Sketch of annular Couette flow in the cylindrical coordinate system.

Like in other wall-bounded shear flows, the main lengthscale ruling out the transitional dynamics
at onset is the gap h between the two solid walls, which here depends directly on the value η via
the relation h = rout(1 − η). The perimeter on the internal cylinder, at mid-gap or on the external
cylinder, now expressed in units of h, is shown in Figure 2 when the original dimensional value of
Lθ is 2π (Figure 2a). The inner perimeter is also displayed when Lθ is a multiple of 2π (Figure 2b),
with Lθ = 2πn. The theory developed in Refs. [33,36] shows that azimuthal large-scale flows cannot
be accommodated by the geometry unless Lθr/h � 1 everywhere in the domain. The data for the
inner cylinder play the role of a lower bound. For Lθ = 2π, it is clear from Figure 2a that, for the
lowest values of η, no azimuthal large-scale flow is possible. However, increasing n leads to azimuthal
large-scale flows being possible for smaller and smaller values of η. This leads to the possibility to
artificially restore large-scale flows otherwise ruled out by geometrical confinement.

2.2. Governing Equations and Computational Methods

Whereas η is a geometrical parameter only, we also introduce the Reynolds number Rew =

Uwh/4ν, based on the half velocity of the cylinder sliding Uw/2, the half gap width h/2, and the
kinematic viscosity ν of the fluid. The reason why half-gap and half-velocities are considered to
non-dimensionalize the equations is a simple way to reconnect with the standard conventions for
pCf as η goes towards unity. By choosing this convention for all values of η, the non-dimensional
incompressible equations ruling the flow dynamics without any turbulence model read

∇∗ · u∗ = 0, (1)

∂u∗

∂t∗ + (u∗ · ∇∗) u∗ = −∇∗p∗ + 1
4Rew

Δ∗u∗, (2)

where superscripts ∗ indicate quantities non-dimensionalized with Uw and h, and where u =

(ux, ur, uθ) and p represent the velocity field and the pressure field, respectively.
Equation (2) is discretized in space using finite differences and with fine enough grid resolutions

according to the standard criteria of direct numerical simulation (DNS) [26]. The time discretization
is carried out using a second-order Crank–Nicolson scheme, and an Adams–Bashforth scheme
for the wall-normal viscous term and the other terms, respectively. Further details about the
numerical methods used here can be found in Ref. [38]. Table 1 lists the parameters used in this
computational study.
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Figure 2. (a) circumference of original annular pipe system at the outer cylinder, at mid-gap, and at the
inner cylinder; (b) circumference at the inner cylinder for Lθ ≥ 2π.

Table 1. Computational conditions. L∗
i : length of the computational domain in the direction i,

non-dimensionalized by the gap width h = (rout − rin); L∗
out (resp. L∗

in) the circumference of the outer
(resp. inner) cylinder surfaces, normalized by h; Ni : the number of grids.

η = rin/rout 0.1 0.15 0.2 0.3

L∗
x × L∗

r 512 × 1 409.6 × 1

Lθ 2π 32π 128π 128π 112π 2π 96π

L∗
out (= Lθ r∗out) 7.0 111.7 446.8 473.1 439.8 9.0 430.8

L∗
in (= Lθ r∗in) 0.7 11.2 44.7 71.0 88.0 2.7 129.2

Nx × Nr 2048 × 64

Nθ 32 512 2048 2048 2048 64 2048

3. Statistics at the Onset of Transition

3.1. Global Stability and Coherent Structures Close to Onset

In the present subsection, we recall some key results of Ref. [36] together with some updated
predictions. The investigation of the onset of turbulence starts with the determination of the global
Reynolds number Reg, defined as the highest Reynolds number below which no turbulence can survive
(at least in the thermodynamic limit, i.e., over infinite observation times in unbounded domains).
Since the flow is subcritical, using a given type of initial condition for this task can lead to overestimates
of Reg. The commonly adopted strategy, both in experiments and numerics, is that of an adiabatic
descent [39] initiated from a turbulent state at sufficiently high Reynolds number. In the limit where
the waiting time between successive diminutions of Re is sufficient long, the value at which turbulence
gets extinct is a good approximation of Reg. Figure 3 displays information about Reg depending on the
radius ratio η. For Lθ = 2π (n = 1), Reg increases monotonically with decreasing η. For larger Lθ , Reg is
always smaller than for the case with Lθ = 2π and the same value of η, with a now decreasing trend for
Reg(η) which is even more marked once η ≤ 0.3. The values of Lθ needed to obtain this curve robustly
are all listed in Table 1. As for the case of artificially extended aCf at η = 0.1, the result for Lθ = 128π

is plotted in the figure. The parameter range strictly below η = 0.1 has not been investigated.
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Figure 3. Radius ratio η dependency of the global critical Reynolds number Reg. The plot includes
the pCf limit η → 1 from Ref. [21] (labeled “*1”), as well as DNS data from Ref. [36] for η = 0.5 and
0.8 (labeled “*2”). Triangles: original aCf with Lθ = 2π is plotted using triangles; circles: artificially
extended aCf (Lθ > 2π).

The fact that artificially extended systems display a lower threshold in Re indicates that some
specific spatiotemporal regimes, specific to large Lθ and not allowed for in narrow domains, are able to
maintain themselves against relaminarization. As in Ref. [36], we can compare typical snapshots of the
velocity fields in the corresponding regime in order to highlight the qualitative differences. Figures 4
and 5 display instantaneous snapshots of the radial velocity at mid-gap (i.e., r = (rin + rout)/2) at
respectively η = 0.3 and 0.1, one very close to Reg (left column) and the other slightly above it
(right column). Each row corresponds to a different value of the integer n (n = 1, 16, 48, and 64), i.e.,
another value of Lθ . When n = 1, the one-dimensional intermittency is reminiscent of the dynamics
in cylindrical pipe flow [40]. The differences between different values of η emerge only for higher
n. For η = 0.3, the stripe patterns exhibit an obliqueness typical of most laminar-turbulent patterns
[25,26,37,41]. However, it is visually clear that the situation is different for η = 0.1, with shorter
structures and less pronounced obliqueness. It is not immediately clear whether the effective
dimensionality of the proliferation process is rather one or two. These issues can be addressed
using the determination of critical exponents, as will be done in the next subsection.

3.2. Data Binarization

Velocity fluctuations with respect to the mean flow are defined as u
′
= u − u, where u is

the space-averaged time-dependent velocity averaged along x and θ, as defined in Equation (3).
Here, y denotes the (dimensional) distance from the inner cylinder to the outer cylinder as y = r − rin,
instead of using r.

u(y, t) =
1

LxLθ

∫ Lx

0

∫ Lθ

0
u(x, y, θ, t)dxdθ. (3)

The flow is separated into its laminar and turbulent components by postulating a threshold
independently of the Reynolds number. The local criterion chosen is |u′

r/Uw| ≥ 0.01 for turbulence and
|u′

r/Uw| < 0.01 for laminar flow, with u′
r the radial velocity component, which vanishes everywhere

for strictly laminar flow. As in Figures 4 and 5, localized turbulent regions are visualized by contours
of u′

r
∗ in steps of ±0.01. The turbulent fraction Ft is evaluated at mid-gap (y = h/2) by estimating the

percentage of grid points for which the turbulent criterion above is fulfilled.
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(a) Rew = 389.5 (b) Rew = 390

(c) Rew = 320.5 (d) Rew = 325

Figure 4. Contours of radial velocity fluctuations u∗
r at mid-gap for η = 0.3 around Rew = Reg. Typical

snapshots of instantaneous flow fields obtained after reaching each equilibrium state are shown here.
The main flow is from left to right. (a,b) original aCf with Lθ = 2π, and (c,d) artificially extended with
Lθ = 96π.

(a) Rew = 407.5 (b) Rew = 415.0

(c) Rew = 272.5 (d) Rew = 277.5

(e) Rew = 262.5 (f) Rew = 267.5

Figure 5. The same as Figure 4, but for η = 0.1. (a,b) Lθ = 2π; (c,d) Lθ = 32π; and (e,f) Lθ = 128π.

The dynamics of the proliferation process for η = 0.1 and 0.3 is illustrated in Figure 6 using
space-time diagrams and compared one to another in the case n = 1. The spatial variable is x − Uf t,
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i.e., the streamwise coordinate in a frame moving with constant velocity Uf , which is close to the
average velocity um. The space-time diagram is based on the binarized radial velocity u′

r. The absolute
value of the radial velocity evaluated at mid-gap is first averaged azimuthally according to

〈u′
rrms〉θ(x, t) =

√
1

2π

∫ 2π

0
u′ 2

r (x, h/2, θ, t) dθ. (4)

and the binarization criterion is 〈u′
rrms〉θ/Uw ≥ 0.01. The frame velocity Uf for η = 0.3 is chosen to be

same with um, which is estimated in two steps. First, a spatially average velocity is evaluated at every
time t

um(t) =
1

Lx(r2
out − r2

in)Lθ

∫ Lx

0

∫ rout

rin

∫ Lθ

0
ux(x, y, θ, t) rdxdrdθ, (5)

then it is time-averaged using a classical moving average technique over a time interval ΔT (with
ΔT > 104h/Uw after reaching equilibrium).

um =
1

ΔT

∫ T+ΔT

T
um(t)dt. (6)

We found that, for η = 0.1, an optimal value of Uf for the frame to move with puffs was slightly slower
than um. For each value of η, three space-time diagrams are displayed, respectively below, close to and
above the corresponding critical point Reg(η). The shorter aspect of the coherent structures for η = 0.1
is striking compared to η = 0.3. Many more splitting and decay events, qualitatively similar to the
pipe flow case [40,42,43], occur for η = 0.1 despite equal pipe lengths. This suggests that the status
of the present simulations for η = 0.1 is qualitatively much closer to the thermodynamic limit than
it is for η = 0.3. As a by-product, the critical scaling is expected to converge at a lower price than at
higher η. Given the cost obstacles induced by the diverging lengthscales/timescales in most critical
phenomena, the above conclusion is positive news.

Figure 6. Space-time (x − Uf t) diagram of original aCf (Lθ = 2π) for η = 0.1 (three leftmost columns)
and 0.3 (three rightmost columns). Black: turbulence according to the criterion 〈u′

rrms〉θ/Uw ≥ 0.01.
The values of the frame velocity Uf for η = 0.1 are 0.288Uw at Rew = 407, 0.2875Uw at Rew = 407.5,
0.2815Uw at Rew = 415, and those for η = 0.3 are approximately equal to um.

99



Entropy 2020, 22, 988

3.3. Intermittency Statistics

The statistical post-processing protocol for STI is vastly similar to that used by other authors:
the first step is to monitor the decay in the time of the turbulence fraction Ft(t) when the system is
initiated with turbulence everywhere. By dichotomy, this yields a good approximation of Reg and
allows one to define the reduced control parameter ε = (Rew − Reg)/Reg. This decay is expected to be
algebraic exactly at onset, i.e., of the form Ft(t) = O(t−α). This yields as well the so-called dynamic
exponent α. In a second phase, the equilibrium turbulent fraction (i.e., its time average) is monitored
as a function of ε. For ε > 0, the data versus the expected scaling Ft(t) = O(εβ) yield the exponent
β. Eventually, the mean correlation length ξ(Rew) (either ξx in the streamwise direction or ξθ in the
azimuthal one) can be estimated at equilibrium by monitoring the cumulative distribution function
(CDF) of the laminar gaps Plam(lx > L), where lx stands for the length of a laminar trough and L is a
dummy variable. A critical exponent μ⊥ can be evaluated from fits as the algebraic decay exponent of
the CDF.

We begin by describing the results from the critical quench experiments of Figure 7 for η = 0.1 and
n = 64. The initial condition corresponds to a turbulent velocity field from a long simulation well above
Reg, here taken as Rew = 280. The same initial condition is used for new simulations at another target
value of Rew, in principle such that Rew is “close” to Reg. As expected, the flow relaminarizes (attested
by the monotonic decrease of Ft(t)) for sufficiently low values of Rew, whereas it stays turbulent for
the higher values. In the latter case, the turbulent fraction reaches a non-zero mean value Ft, which
will be reported in the next figure. The set of colored curves in Figure 7a straddle the decay curve
corresponding to the critical value Rew = Reg, whose best approximation in the figure is the red curve
associated with Rew = 262.5. For continuous phase transitions, the corresponding decay is expected
to be of power-law type, i.e., Ft = O(t−α). This fact of 260 < Reg < 262.5 yields an approximation of
Reg = 261.7, which allows for defining ε as before. The present approach rests on the hypothesis of a
critical scaling in the vicinity of the critical point. If that hypothesis is correct then, by rescaling time
and turbulent fraction, the curves of Figure 7a should collapse onto two master curves, one for the
relaminarization process and the other for the saturation process. This is tested in Figure 7b by plotting
tαFt(t) as a function of the rescaled time t|ε|ν‖ . As for α and ν‖, the approximate values from (1 + 1)-D
DP theory, respectively 0.451 and 1.733, have been used for the rescaling. The match is satisfying,
which confirms that a critical range has been identified in this system.

As a by-product of Figure 7, the values of the mean turbulent fraction Ft, obtained after reaching
equilibrium, are reported in Figure 8 as functions of Rew. Critical theories all predict a scaling
Ft = O(εβ) close enough to the critical point. The algebraic scaling revealed in the previous plots of
critical quench suggests that, for instance, Re = 262.5 belongs to the range where algebraic fits apply
for η = 0.1 and Lθ = 128π. Consequently, if, for these parameters, ε is defined using the approximated
Reg = 261.7, the dependence of Ft versus ε is also expected to be algebraic in the same range of values
of Re. In that case, the power-law exponents can be classically estimated using log-log plots and
compared to those from DP theories. Algebraic fits of Ft are shown in Figure 8 both for η = 0.1 (left)
and 0.3 (right). For each case, the main plot of Ft versus Rew is displayed in linear coordinates, while
the inset displays Ft versus ε in log-log coordinates, in order to highlight the quality of the estimation
of the power-law exponent.
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Figure 7. Critical quenches from Rew = 280 to each Reynolds number. Temporal variation of turbulent
fraction Ft for η = 0.1 and Lθ = 128π (log-log scale). In (a), the black dashed-dotted line and dashed
line each indicate possible algebraic fits with the dynamic exponent α from (2 + 1)-D and (1 + 1)-D
directed percolation (respectively α = 0.451 and 0.159). See also Supplementary; (b) test of the 1D
scaling hypothesis by plotting tαFt vs. tεν|| (log-log scale), with ν||=1.733 for (1 + 1)-D DP.
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Figure 8. Reynolds-number dependence of the time-averaged turbulent fraction Ft vs Rew for the
different radius ratios in the original domain (Lθ = 2π) and in artificially extended domains (Lθ � 2π).
Vertical error bars: standard deviations of Ft during the averaging period. Dashed/dashed-dotted
line: algebraic fits Ft = O(εβ), with exponent β obtained either as best fit βfit or from the (1 + 1)-D DP
universality class β1D = 0.276. In each figure, the insets are plotted in log-log coordinates versus ε that
is determined with Reg presented in Table 2.

The details of the fitting procedure for the various parameters used are given in Table 2. It includes
the values of the best fitted exponents as well as the approximate fitting range. As could already be
deduced graphically from the insets in Figure 8a, for η = 0.1, the compatibility of the exponent β with
the theoretical value of β1D = 0.276 from (1 + 1)-D DP is good (to the second digit). This is confirmed
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for both η = 32π and η = 128π, which suggests that the thermodynamic limit is already reached,
at least as far as the determination of the exponent β is concerned. For Lθ = 2π the approximated
exponent is 0.31 which constitutes a less accurate, but still consistent approximation of the theoretical
exponent. For Lθ = 2π, the range of validity of the algebraic fits extends up to ≈5%, whereas it exceeds
10% for Lθ ≥ 32π. For η = 0.3, the situation is slightly different: for a large azimuthal extent Lθ = 96π,
there is a very good match with the 1D theoretical exponent all the way up to ε ≈ 20%. For Lθ = 2π,
however, although an algebraic fit seems consistent with the data below ε < 1% the measured exponent
is closer to 0.12 than to 0.276: none of these values matches any of the percolation theories.

Table 2. Critical Reynolds number Reg and critical exponent β depending on geometrical parameters η

(radius ratio) and Lθ (azimuthal extension). In addition, shown is the fitting range to estimate Reg and
β. † : not measured.

η = rin/rout Lθ Fitting Range Reg β

0.10 2π 407.5–460.0 406.9 0.31(3)
0.10 32π 277.5–300.0 269.0 0.26(2)
0.10 128π 263.0–270.0 261.7 0.28(2)
0.15 128π — † 290.5 — †

0.20 112π — † 303.5 — †

0.30 2π 389.0–395.0 388.7 0.12(2)
0.30 96π 320.5–375.0 319.0 0.28(1)

(1 + 1)-D DP model — — 0.276

The interpretation is delicate. On one hand, algebraic fits seem always verified as soon as ε is
small enough; on the other hand, (1 + 1)-D percolation exponents are well approximated only for
sufficient azimuthal extension of the order of 100π or more. The original system with Lθ = 2π hence
needs to be interpreted as a system with the DP property that experiences a geometrical frustration due
to lateral confinement. The present data support the hypothesis that the frustration effect is stronger
for η = 0.3 than for η = 0.1, and thus that the quality of the DP fit will be correspondingly worse.
Conversely, the convergence towards the thermodynamic limit seems slower for larger η.

Importantly, we emphasize the main difference between the present conclusion and that by
Kunii et al. [36], where the azimuthal extension for η = 0.1 was limited to Lθ = 16π (to be compared
to the present values of 32π and 128π). The fits reported in Figure 16 of that article suggested a fit
compatible with the (2 + 1)-D exponent β2D = 0.583. This former result, in the light of the present
computations, is re-interpreted now as a finite-size effect.

A power-law dependence of Ft alone does not warrant the proximity to the critical point,
as pointed out by Shimizu and Manneville [23] for pPf. Although the critical quenches reported
earlier also suggest power-law statistics near the picked up values for Reg, the classical determination
relies on, at least, three independent algebraic exponents. In order to lift this ambiguity, we chose to
report in Figure 9 statistics of laminar gap size for different values of Rew near the suspected critical
point. Expecting possible anisotropy when the domain is artificially extended in θ, two kinds of
statistics have been monitored, similarly to the study of Chantry et al. [20]. The axial extent of the
gaps for η = 0.1 and Lθ = 128π is shown in Figure 9a in log-log coordinates (and Figure 9c in lin-log
representation). The azimuthal extent of the laminar gaps is shown in Figure 9b in log-log coordinates
(and Figure 9d in lin-log representation). All four figures support a cross-over from exponential
to power-law statistics as Rew approaches the value of 262.5, with a decay exponent graphically
compatible with the decay exponent μ⊥ of (1 + 1)-D DP. The cross-over appears, however, more clearly
in the azimuthal where the match with the theoretical value of μ⊥ is valid over a full decade. In the
streamwise direction, the trend is not clear enough to extract a critical exponent with full accuracy.
This confirms, however, that the present statistics are indeed gathered in a relevant neighborhood
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of the critical point and that, for these parameters, Rew = 262.5 is a decent working approximation
of Reg.
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Figure 9. Time-averaged distributions of laminar gap in (a,c) the streamwise direction and (b,d) the
azimuthal direction, evaluated at mid-gap. (a,b) log-log plots vs. (c,d) lin-log plots. Lθ = 128π, η = 0.1
as in Figure 5e,f. In both figures, black dashed-dotted line (- · -) and dashed lien (- - -) indicate theoretical
distributions P(ΔL∗) ∼ ΔL∗−μ⊥ with exponents μ⊥ from the universality classes of (2 + 1)-D DP and
(1 + 1)-D DP, respectively, i.e., μ⊥2D = 1.84, and μ⊥1D = 1.748.

3.4. Dynamics of Localized Turbulent Patches

In this last subsection, we address the issue of the influence of azimuthal confinement/extension
on the lower transition threshold Reg, as the estimations from Figure 3 suggest. In Ref. [36], a similar
trend was noted (from measurements in shorter and narrower domains). The mechanism suggested in
this former work addressed the presence of oblique stripes rather than their influence on the value of
Reg. It was thereafter realized that the phenomenon governing the value of Reg, and by extension all
statistics of the turbulent fraction, is the way different coherent structures interact together dynamically
rather than the shape of such individual structures (although that shape certainly influences the
interactions). In analogy with pipe [16,42,43] and channel [44,45], the finite turbulent fraction is
the result of a dynamical competition between the proliferation of coherent structures and their
tendency to decay in number. The transitional range where Ft > 0 is dominated by the splitting of
coherent structures, whereas instantaneous relaminarizations become rare. We hence focus on the
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dynamics of splitting events in two different computational domains, namely those with Lθ = 32π and
128π. Figure 10 contains zooms on the radial velocity plotted for different values of y = cst surfaces
(a different value for each row) and for different times (different columns). In Figure 10, the value of
Lθ is fixed to 32π, but the circumference in terms of rθ/h varies according to r. The global dynamics
of these flows can also been scrutinized in the videos made available as Supplementary Materials.
The comparison of different values of y is useful to confirm that, for all parameters, the spots remain
coherent over the gap even during splitting events.

Lateral splitting events are considered in each of these figures and videos. Because of the different
advection velocities in the azimuthal direction, spanwise collisions can occur. During spanwise
collisions, usually one of the two spots disappears (see also Ref. [21] for similar observations in pCf).
This tends to reduce the turbulent fraction while the other surviving spot is still active. In the presence
of a short enough spanwise periodicity, a spot collides with itself rather than with a different neighbor.
In such periodic domains, the local relaminarization of one spot is equivalent to the extinction of
an infinity of identical spots. Hence, the turbulent fraction decreases more than in large domains
where individual spots behave more like independent entities. We thus expect more turbulence to
proliferate more for larger Lθ . As a consequence, the critical Reynolds number Reg, for which the
rate of proliferation balances the probability to relaminarize locally, is lowered when Lθ is increased,
consistently with the thresholds reported in Figure 3 and Table 2. This effect is more marked at lower η.
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Figure 10. Snapshots of splitting and self-colliding events in aCf for Rew = 262.5 with Lθ = 32π and
η = 0.1. Radial velocity in a frame moving with bulk velocity um. Here, t = 0 is an arbitrary time
instant after reaching equilibrium. Top row, y∗ = y/h ≈ 0.9; center row, y∗ ≈ 0.5; lower row, y∗ ≈ 0.1.

4. Conclusions

The present DNS study deals with the statistical aspects of the intermittent transitional regime
of aCf, with an emphasis on the low values of the radius ratio η close to 0.1. It is an extension of
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the simulations reported recently by Ref. [36]. The paper compares two computational situations,
respectively the case of a realistic geometry and the one where the azimuthal extent is larger than
the original value of 2π. In Ref. [36], this parametric trick was introduced in an explicit attempt to
decouple the effects of wall curvature effects from the effects of azimuthal confinement induced by the
geometry. The main conclusion for large η was that the reported absence of oblique laminar-turbulent
patterns was due to azimuthal confinement, since they could re-appear for Lθ > 2π. In the present
article, the same trick is introduced for η = 0.1; however, larger values of Lθ have been tried up to
128π (i.e., 64 times the original value). The oblique patterns do not reappear and a new percolating
regime takes place with shorter spatial correlations. The statistical analysis of the STI is convergent as
Lθ grows, and is consistent with (1 + 1)-D DP. This updates the results of Ref. [36] where (2 + 1)-D DP
was suggested from fits with Lθ = 16π. The present results suggest now that the Lθ = 16π algebraic
statistics was still far from the true thermodynamic limit, while Lθ = 128π seems to yield more
decent results.

To our knowledge, there has been only poor evidence for the cross-over from exponential to
algebraic scaling in the shear flow literature, as far as well-resolved simulations of the Navier–Stokes
equations are concerned [2]. An exception is the work by Shi et al. [46] in a tilted periodic domain
of pCf, which again is not a fully realistic numerical domain. It is interesting to speculate how much
the present results can teach us something about a fully realistic system such as cylindrical pipe flow.
Naive homotopy of the turbulent regimes is ruled out because of the singularity near the centerline.
Instead, we can compare the rate at which these two effectively one-dimensional percolating systems
tend towards their own thermodynamic limit. This issue was raised recently in the experimental study
by Mukund and Hof [19]. There, despite pipes as long as 3000 diameters, no critical regime (with
power-law statistics) was identified, only classical STI as reported in Refs. [47,48]. This issue was
attributed to the narrowness of the critical range, and to a clustering property of puffs which delays
the convergence to the thermodynamic limit. Here, in aCf with η = 0.1, the situation is different but
depends on this artificial parameter Lθ . To our surprise, power-law statistics of the turbulent fraction
as well as of the laminar gap distributions do appear in our simulations as Rew is reduced. All cases
shown in Figure 8 suggest a cross-over from turbulent to power-law behavior as Rew is within ≈ 1%
of the critical point. For Lθ = 2π or around, the turbulent fraction curve still suggests an unconverged
power-law. For Lθ = 32π or 128π, power-law statistics of Ft are fully consistent with one-dimensional
DP appear. This occurs despite a value of Lx of only 512h, i.e., much less than the pipe flow case and
even less if one counts in outer pipe diameters. A possible interpretation is that azimuthal extension,
by modifying the interaction with neighboring spots, can suppress the tendency to form clusters,
and hence converge faster towards the thermodynamic limit. This is consistent with lower transition
thresholds in Rew as well. One is left wondering if a similar approach to cylindrical pipe flow could
also easily yield the percolation exponents from simulation measurements.

We conclude by noting that artificially modifying both the shape of turbulent patches and their
interaction, as done here using azimuthal extension, is more than an esoteric thought experiment
or an exotic parameter study. It is used here as a legitimate strategy in order to untangle complex
phenomena, e.g., to decouple confinement from curvature effects. As demonstrated in our recent work
using a simple modeling approach [49,50], wall roughness can have similar effects on transitional
flows and change the way turbulence invades laminar flows. We expect similar strategies of artificial
domain extension to be relevant to such cases too.

Supplementary Materials: Video S1: Time evolution of turbulent fraction Ft(t) and of fluctuating velocity
fields visualized at mid-gap, for η = 0.1 with an artificially extended azimuthal domain size of Lθ = 128π.
On the right column, contours show x-θ distributions of the radial velocity fluctuation u′

r normalized by the
inner-cylinder velocity Uw. Top (orange box and curve in the graph) : above the global critical Reynolds
number Reg. Middle (red) : near Reg. Bottom (black) : below Reg. A supporting video article is available at
https://doi.org/10.5281/zenodo.3985963.
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aCf annular Couette flow
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DNS direct numerical simulation
DP direct percolation
pCf plane Couette flow
pPf plane Poiseuille flow
rms root-mean-square value
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Abstract: Direct numerical simulations were carried out with an emphasis on the intermittency and
localized turbulence structure occurring within the subcritical transitional regime of a concentric
annular Couette–Poiseuille flow. In the annular system, the ratio of the inner to outer cylinder
radius is an important geometrical parameter affecting the large-scale nature of the intermittency.
We chose a low radius ratio of 0.1 and imposed a constant pressure gradient providing practically zero
shear on the inner cylinder such that the base flow was approximated to that of a circular pipe flow.
Localized turbulent puffs, that is, axial uni-directional intermittencies similar to those observed in the
transitional circular pipe flow, were observed in the annular Couette–Poiseuille flow. Puff splitting
events were clearly observed rather far from the global critical Reynolds number, near which given
puffs survived without a splitting event throughout the observation period, which was as long as 104

outer time units. The characterization as a directed-percolation universal class was also discussed.

Keywords: subcritical transition; spatiotemporal intermittency; direct numerical simulation

1. Introduction

The discontinuous reverse transition of wall-bounded turbulence into a laminar flow is a
fundamental problem that has been studied for many years, while the laminar-to-turbulent transition
is rather smooth, or its critical point is often well predicted by linear stability theory. Subcritical flows
in the reverse transition are known to feature two regimes in competition, namely, laminar and
turbulent, in which there occurs large-scale intermittency that coexists spatially with a laminar
flow. The large-scale nature of localized turbulence often forms a regular pattern once established.
The intermittent structure or formation pattern of localized turbulence varies depending on the flow
system, and a number of studies have been conducted on canonical flows, such as a circular pipe
flow (CPF) and planar flows. In the CPF, a so-called equilibrium turbulent puff, or simply a “puff,”
is localized in the streamwise direction, resulting in uni-directional intermittency. The puff turbulence
is sustained within a Reynolds-number range based on the bulk velocity U and the pipe diameter
D of ReD = 2000–2700 [1]: Although there are some differences depending on the experimental
conditions, such as the disturbance introduction method and the pipe length [2–4], studies have
indicated that the puff’s nature is deeply related to the determination of the lower-limit Reynolds
number (the global critical Reynolds number, Reg), above which turbulent motions can survive globally.
Streamwise-localized solutions underlying the puff have been found, and Hopf bifurcations to new
branches including unstable periodic orbits are expected to cover the turbulent attractor [5]. It is also
known that puffs can split (or proliferate) more frequently than their decay and have a finite lifetime
even at Re > Reg [6–9]. Avila et al. [10] identified Reg = 2040 ± 10 for the CPF by monitoring both the
puff-splitting time and the decay time. Recent attempts have been made to elucidate the puff-driving
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mechanism [11] and one-dimensional modeling [12], and an understanding of the puff’s nature is
progressing compared to other intermittent structures.

In planar flows, intermittent structures with bi-directionality were discovered during the last
two decades (excluding the spiral turbulence in a Taylor–Couette flow [13]), which are called oblique
turbulent stripes/bands with a certain inclination with respect to the streamwise direction, and were
found in a plane Couette flow (pCf) [14–18] and a plane Poiseuille flow (pPf) [19–21]. A wall turbulence
that is stably stratified by body forces, such as the Coriolis force and buoyancy, also undergoes the stripe
regime [22,23]. The stripe pattern has attracted recent interest, and some studies have found families
of relevant localized solutions [24,25]. As the Reynolds number approaches the relevant Reg, the stripe
pattern becomes isolated oblique bands, which fall into a non-equilibrium state accompanied by band
growth, a break (not the same as the splitting of the puff), and a mutual collision [26–28]. Because the
laminar gap surrounding the isolated bands is large at near criticality, a large-scale channel setup or
computational domain is required for precise tracking of the process toward a fully laminar state and
for estimating Reg. For this reason, research is still ongoing, such as elucidating the mechanism of an
isolated oblique band [29] and the statistical characteristics [30]. For details, also see recent review
papers [31–33].

The two kinds of intermittent structures mentioned above were observed in different canonical
flows, that is, the CPF and the planar flow, and the direct relationship between the turbulent puff
and stripe is unknown. Our research group therefore focused on an annular flow between concentric
cylinders. Depending on the radius ratio η ≡ rin/rout (where rin and rout are the inner and outer
cylinder radii, respectively), the curvature and the circumferential length (relative to the gap width)
should change and may affect the large-scale nature of the intermittency. With η ≈ 1 or 0, the flow
system can be regarded as a planar flow or a CPF system, respectively. Ishida et al. [34–36] conducted
direct numerical simulations (DNSs) to study the subcritical transition process of the annular Poiseuille
flow (aPf) using η as a parameter in addition to the Reynolds number. The authors observed both
the turbulent puff and the stripe according to η, i.e., a helical turbulence (i.e., a turbulent stripe in the
annular flow) at η ≥ 0.5, puff turbulence similar to the transitional CPF at η < 0.2, and an intermediate
state at 0.2 ≤ η ≤ 0.4. At η = 0.1, the observed puff split and decayed over time. A similar tendency
was also uncovered in an annular Couette flow (aCf); it was reported that puffs occur at η = 0.1,
and they split and attenuate over time [37,38]. The authors found a speckled irregular intermittent
structure that differs from turbulent stripes and puffs, which was shown to have characteristics of
the (1+1)-dimensional directed-percolation (DP) universal class. Recent studies have focused on the
relationship between the subcritical transition phenomenon and DP [39–42].

In this study, by employing an annular system as a platform, we aim to unify uni- and
bi-directional intermittent structures observed in the CPF and planar flows, respectively. The key to
achieving this aim is bridging between the two different systems in terms of the base flow. The base
flows of the studied aPf and aCf are qualitatively different from that of the CPF. This mismatch
motivated us to simulate the annular Couette–Poiseuille flow (aCPf) at a low η, which should be more
similar to the CPF. However, the presence of the inner cylinder may affect both the onset and splitting
of the puff. The main purpose of this study is to answer whether puff splitting would occur in a low η.
Moreover, Reg and the Reynolds-number dependence of puff splitting are investigated, and the DP
feature is discussed.

Previous DNS studies on Couette–Poiseuille flow mainly focused on the planar turbulence.
Kuroda et al. [43] compared the mean velocity profiles and various turbulence statistics for three
patterns of imposed mean pressure gradients in the flow path. In particular, among the three
patterns, the authors analyzed the shear stress near the moving wall surface in a turbulent field
such that it approaches zero. A similar attempt was also conducted by other researchers [44–46].
As an experimental study, Nakabayashi et al. [47] also measured the turbulence statistics of a plane
Couette–Poiseuille flow at high Reynolds numbers, and classified the flow field into a Couette-
or Poiseuille-type depending on the base flow. In addition, Klotz et al. [48,49] eliminated the net
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flow in a plane Couette–Poiseuille flow (pCPf), allowing localized turbulence to be tracked for long
periods of time while stationary in the observation window. A recent quench experiment on the
decay of Couette–Poiseuille turbulence is likely to approach the crossover of the decay rate, that is,
the quantitative identification of Reg [50]. However, to the best of our knowledge, except for in limited
studies [51,52], there is no DNS available for the subcritical transition process of the aCPf. The present
DNS is the first to explore laminar–turbulent intermittency in a low-η aCPf.

The remainder of this paper is organized as follows. Section 2 presents the flow configuration,
dimensionless parameters, and equations used in our simulations. In Section 3, which is dedicated
to the preliminary results, we validated the current code and illustrated the parameter dependence
of the base flow in terms of the mean friction on the inner cylinder. Section 4 begins with a puff
characterization of the observed turbulent patches. Space-time diagrams of a turbulent quantity
revealing the puff splitting and decay are then presented. All results are summarized and discussed in
Section 5.

2. Problem Setup and Methods

The problem under consideration is the turbulent annular flow of an incompressible Newtonian
fluid, for which the governing equations are the equation of continuity and the Navier–Stokes equation,
as described in the classical cylindrical coordinate system of (x, r, θ):

∇∗ · u∗ = 0, (1)
∂u∗

∂t∗ + (u∗ · ∇∗) u∗ = −∇∗p∗ + 1
Rew

Δ∗u∗ − dP∗

dx∗ ex. (2)

Here, the velocity vector is represented by u, or (ux, ur, uθ), which are the respective components
in (x, r, θ); p is the pressure, and t is the time. These quantities are non-dimensionalized and are marked
by a ∗ superscript: u∗ = u/uw, p∗ = p/ρu2

w (ρ, density), t∗ = tuw/h, x∗ = x/h, and r∗ = r/h, where
uw and h are the inner-cylinder axial velocity and the gap between the two cylinder radii, respectively,
as illustrated in Figure 1. The Reynolds number Rew is therefore based on uw, h, ρ, and the fluid
viscosity μ, whereas another definition using one-quarter of Rew is more conventional for studies on
the pCf [15,16,22]. In only the axial-direction component of Equation (2), a constant pressure gradient
in x is added as an external force term, −dP/dx, with the axial unit vector ex. In addition to the
imposed pressure gradient, the flow is driven by an axial translation of the inner rod with a constant
velocity of uw > 0. The x-axis corresponds to the central axis common to both cylinders, and the
radius ratio of η is an important geometrical parameter and is set to 0.1 for the main analysis in this
study. Periodic boundary conditions are imposed in both the x and θ directions, and no-slip boundary
conditions are enforced at the wall surfaces of the cylinders. In the following sections, the imposed
pressure gradient is re-defined as the pressure gradient function F(p), which is normalized as

F(p) ≡ −dP∗

dx∗ · Rew =
−dP/d(x/h)

μuw/h
(3)

and can be interpreted as the ratio of the imposed pressure gradient (i.e., the Poiseuille-like driving
force) against the wall-bounded viscous shear stress (the Couette-like driving force).

As introduced above, there are two control parameters for the flow under consideration,
i.e., Rew and F(p). Poiseuille-like flows are realized for a large F(p), whereas Couette-like flows are
obtained for a small F(p), and a specifically pure Couette flow corresponds to F(p) = 0. As indicated
in [44], the ratio of the shear stress at the two walls, which can be defined by γ = τin/τout in an aCPf,
is another candidate of the control parameter relevant to a Couette–Poiseuille flow. Flows with γ ≈ 0,
or a shear-less inner cylinder wall, are of special interest because they exhibit nearly zero mean shear
at the moving rod, and can thus be a model for an understanding of the puff dynamics in a pure pipe.
Under such conditions, the inner cylinder practically affects the core flow only as an impermeable
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thin rod, and the coherent turbulent structures and turbulent production that dominantly occur near
the static outer cylinder wall mimic those found in a canonical system of the CPF. Although the
system chosen here is closer to a CPF than to an aPf or an aCf, it should be noted that the different
boundary conditions regarding the inner rod preclude a mathematical homotopy continuation with
the CPF. Except for a fully laminar flow state, F(p) providing γ = 0 is not explicitly obvious, and thus,
a parametric survey must be conducted for each given Rew. In this study, we conducted a preliminary
survey of the F(p) dependence of τin for several Rew values using a DNS with a medium-scale
computational domain, as reported in Section 3. Based on these results, we selected F(p), which will
provide τin ≈ 0 (γ ≈ 0) at each tested Rew, and accordingly applied the main DNS using a large-scale
domain to reduce the spatial limitation on the laminar–turbulent coexistence.
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Figure 1. Couette–Poiseuille flow in an annular channel between two concentric cylinders with a
radius ratio of η ≡ rin/rout = 0.1, driven by a constant pressure gradient and an inner-cylinder axial
movement. In this study, the pressure gradient is adjusted such that the mean velocity gradient on the
inner-cylinder surface is approximately zero; that is, τin = μ [∂ux(r)/∂r]r=rin

≈ 0.

The numerical conditions of the preliminary and main simulations for η = 0.1 are summarized
in Tables 1 and 2, respectively. Long domain sizes of 51.2h and 409.6h were employed in the axial
direction to capture a single turbulent puff and expected multiple puffs, whereas the radial and
azimuthal domain lengths were of geometrically determined values of h and 2π, respectively. The grid
resolutions have been confirmed to be fine such that fine-scale eddies in turbulent patches are well
resolved, at least for the particularly interesting transitional regime of Rew ≤ 1600.

Equations (1) and (2) were discretized using a staggered central finite-difference method, where the
fourth-order central difference scheme was used in both x and θ, along with the second-order scheme
in r on a non-uniform radial grid. A time advancement was performed using a fractional-step
second-order Adams–Bashforth scheme in combination with a Crank–Nicolson scheme for the radial
viscous term. The Courant–Friedrichs–Lewy (CFL) condition was continuously monitored in all
directions, and accordingly, the time-step Δt constraint for the nonlinear terms was enforced to ensure
stability. The details of the numerical method were reported in the literature [34,53]. The code
validation carried out is discussed in the next section.

3. Preliminary Simulations

The reliability of the current simulation code may be demonstrated through a comparison with
the existing pCPf DNS database at a comparable Reynolds number. Kasagi and coworkers [43,54]
applied a DNS of several pCPfs and released their database obtained, from which a condition of
(Rew, (p)) = (6000, 15.96) was chosen for the code validation during this test. At this Reynolds
number and the mean pressure gradient, the pCPf is under a fully turbulent state throughout the
channel, and no large-scale intermittency occurs. Its friction Reynolds number Reτ , normalized
by the friction velocity on the fixed wall and the half width of the gap, is 154. Kuroda et al. [43]
adopted a spectral method with a 128 × 128 Fourier series in the horizontal directions and Chebyshev
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polynomials up to order 96 in the wall-normal direction. Their domain size was 2.5πh × h × πh,
whereas our counterpart simulation on an aCPf of η = 0.9 employed a nearly equal domain size of
8h × h × π/8 (≈ 3h at the gap center) in (x, r, θ). Figure 2 shows comparisons of the present mean and
second-order statistics. An overbar, such as ux(r), denotes an ensemble-averaged quantity with respect
to t, x, and θ, and subscript ‘rms’ indicates a root-mean-square value. The present control parameters
of Rew and F(p) for our aCPf are 6000 and 16.0, respectively, and the resulting friction velocity and the
friction Reynolds number on the fixed outer cylinder wall are 0.050uw and 151. The present results
shown in Figure 2 are in reasonable agreement with the reference study, despite the wall curvature of
the aCPf. A noticeable difference is detected only near the fixed wall (y/h ≈ 0.9), where the profile of
ux exhibits a steep gradient, and thus, those of the streamwise turbulent intensity u′

xrms and Reynolds
shear stress u′

xu′
r have peaks. The rather coarse grid resolution and the low-order spatial discretization

(our finite difference code versus the previous spectral code) might affect the accuracy of the present
simulation. In addition to the peak values of u′

xrms and u′
xu′

r, the second-order statistics from the
present DNS and those of Kuroda et al. [43] agree well, particularly considering the differences in the
flow geometry. The current Fortran code has been employed in different studies for several different
boundary conditions [34,35,37,38,55], and thus, no further validation will be shown here.
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Figure 2. Code validation by comparison with a previous direct numerical simulation (DNS) study on
Couette–Poiseuille flow at Rew = 6000. (Left) Mean streamwise velocity profile; (middle three panels)
root-mean-square values of velocity fluctuations in the streamwise, wall-normal (radial), and spanwise
(azimuthal) directions; and (right) Reynolds shear stress. Lines and symbols represent the results
obtained by this study for the annular Couette–Poiseuille flow (aCPf) with η = 0.9, and the result
by Kuroda et al. [43] for plane Couette–Poiseuille flow (pCPf), respectively. Here, the wall-normal
coordinate y represents the distance from the inner (bottom) wall, that is, y = r − rin.

In this study, we simulated a low-η annular flow that mimics a CPF by approximating the base
flow, or the mean velocity profile, to that in the CPF. In the CPF, the velocity profile reaches its maximum
at the pipe center; the velocity gradient becomes zero at the pipe center, and is at maximum on the
surface of the pipe (i.e., the outer-cylinder surface). To match the base-flow characteristics of a CPF in
an annular system, it is necessary to conduct a parametric investigation on the appropriate magnitude
of the pressure gradient applied in the annular channel. As a preliminary analysis, we employed
a medium-scale computational domain to reduce the computational cost of the parametric study.
The computational domain size is smaller in the x direction than the present main analysis shown
in Section 4. The streamwise length of the domain, Lx, was sufficient to capture one turbulent puff.
The purpose of the preliminary analysis is to identify the value of the pressure gradient function
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F(p) at each Reynolds number such that the friction coefficient on the inner cylindrical wall, Cf ,in,
is practically zero, where Cf ,in is defined by the following:

Cf ,in =
τin

1
2 ρU2

, (4)

where U is the bulk mean velocity obtained through a simulation. The positive/negative sign of
Cf ,in corresponds to the positive/negative velocity gradient on the wall surface of the inner cylinder.
Given du/dr < 0, Cf ,in < 0, and vice versa. Table 1 shows the calculation conditions and the ranges
of Rew and F(p) in the preliminary analysis. In the preliminary analysis, the calculation area in the
mainstream direction was set to a smaller calculation area than that for the main analysis, but can
capture one turbulent puff. Figure 3 shows the F(p) dependence of Cf ,in at several values of Rew near
the global critical value. In each analysis plotted in the figure, a turbulent field with a high Reynolds
number at equilibrium for each given F(p) was set as the initial flow field, and the ensemble-averaged
Cf ,in value was acquired after reaching a statistically steady state. Note that laminarization did not
occur in any of the cases shown here. In general, as F(p) increases, Cf ,in increases monotonically
while changing from a negative to a positive value. This is consistent with the transition of the mean
velocity profile from Couette-like to Poiseuille-like, and it can be confirmed that “the turning point”
of F(p) indicating Cf ,in = 0 increases with Rew. According to this Reynolds-number dependence,
an extrapolation predicts a value of F(p) that brings Cf ,in = 0 at a lower Rew, by which the main DNS
analysis in the next section was executed.

Table 1. Numerical conditions for preliminary DNS with a moderate computational domain.

η 0.1

Domain size Lx × Lr × Lθ = 51.2h × h × 2π
Number of grids Nx × Nr × Nθ = 512 × 64 × 128

Rew 1600–3000
F(p) 4.0–16.0
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Figure 3. Friction coefficient on the inner cylinder surface as a function of the pressure function F(p)
for different Reynolds numbers, obtained through the preliminary DNS study on an aCPf.

4. Results and Discussion

The main DNS at Rew ≤ 1600 for which a laminar–turbulent intermittency was clearly confirmed
through the preliminary analysis is presented in this section, and the characteristics of the localized
turbulence are discussed. Table 2 summarizes the numerical conditions, including the friction Reynolds
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number Reτ that was obtained. As in the preliminary analysis, the radius ratio was η = 0.1, and the
computational domain was extended only in x; however, the grid resolution was not changed.
Because Reτ is lower than that of the preliminary analysis, the grid spacing in terms of the wall
units was finer. The table also shows the grid resolutions based on the friction velocity uτ under each
condition:

uτ =
ηuτ,in + uτ,out

η + 1
, (5)

where uτ,in and uτ,out are defined by the corresponding wall shear stress, τin, and τout, as well as by
the relation τ = ρu2

τ , from which inner units can be defined. For a low Reynolds-number regime of
Rew < 1600, which is of interest in this study, the grid spacings of Δx+ < 8, Δr+min < 0.2, Δr+max < 3,
and Δz+ < 4 are comparable to or higher in resolution than those in previous studies [35,37,53].
The initial conditions during each analysis adopted a turbulent field with a one-step-higher Reynolds
number, but reduced the Reynolds number adiabatically. In other words, the study was carried
out carefully such that the sudden drop in the Reynolds number will not be a proximate cause
of laminarization.

Table 2. Numerical conditions for the main DNS with a long domain. The grid resolutions of
(Δx, Δr, Δθ) are described in their dimensionless form based on uτ and μ/ρ. The minimum and
maximum Δr of the radial direction, in which we used non-uniform grids, are shown. † Laminar values
from a laminarized case.

η 0.1
Domain Size Lx × Lr × Lθ = 409.6h × h × 2π

Number of Grids Nx × Nr × Nθ = 4096 × 64 × 128

Rew 3000 1600 1575 1550 1540 1530 1525 1500 †

Reτ(= h+) 70.2 36.0 34.1 33.4 33.1 32.7 32.4 31.5
F(p) 14.2 6.5 6.0 5.8 5.7 5.6 5.5 5.3
Δx+ 14.1 7.14 6.82 6.68 6.61 6.53 6.47 6.30

Δr+min 0.37 0.19 0.18 0.18 0.17 0.17 0.17 0.17
Δr+max 4.44 2.26 2.16 2.11 2.09 2.07 2.05 1.99
r+inΔθ 0.77 0.39 0.37 0.36 0.36 0.36 0.35 0.34
r+outΔθ 7.66 3.89 3.72 3.64 3.61 3.56 3.53 3.44

4.1. Puffs in Annular-Pipe Flow

Figure 4 presents a three-dimensional visualization of localized turbulence in the form of puffs,
which is observed as an equilibrium state reached after a lengthy simulation under the condition of
Rew = 1600 and F(p) = 6.5. The turbulent region can be clearly detected by showing the radial velocity
fluctuations or the wall-normal velocity component. The threshold value of ±0.03uw for the iso-surface
was arbitrarily chosen to extract its typical arrowhead shape similar to that of a puff. A slight change
in this threshold value does not significantly affect the interpretation of the present results. In the
snapshot, multiple turbulent patches, called ‘puffs’ hereafter, can be confirmed to be distributed
intermittently with respect to the streamwise direction. The blank regions between neighboring puffs
can be regarded as being in a laminar flow because of an insignificant fluctuating velocity, implying the
well-established coexistence of laminar and turbulent regions in the aCPf. As is clear from the enlarged
figure, the puff has an arrowhead shape, and the puff extends downstream in the center of the outer
pipe. Although the average velocity gradient on the inner cylindrical wall surface is almost zero, this
situation is considered to be due to the similar driving mechanism of the puff of the CPF. For the CPF,
Shimizu et al. [11] reported that turbulence in the puff originates from low-speed streaks, as well as
from streamwise vortices along the (outer-)pipe wall and across the trailing edge of the puff through
the Kelvin–Helmholtz instability, which induces velocity fluctuations that propagate downstream
faster than the puff itself in the core region. Such a driving mechanism of the puff is also common to
the present aCPf with nearly zero Cf ,in. The streamwise size of each puff is approximately 30 times
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the gap width h, which corresponds to 15 times the hydraulic diameter, and is consistent with that of
the puff observed in the CPF [1,7,8,12]. The array of puffs seems variable in intervals, but is likely not
less than 30h. The wavelength and periodicity of the puffs are examined using two-point correlation
functions of the turbulence quantities. In the x and θ directions, the auto-correlation coefficients are
defined as follows:

Rii(Δx) =
u′

i(x, rref, θ)u′
i(x + Δx, rref, θ)

u′
irms(rref) · u′

irms(rref)
(6)

and

Rii(Δθ) =
u′

i(x, rref, θ)u′
i(x, rref, θ + Δθ)

u′
irms(rref) · u′

irms(rref)
, (7)

where i ∈ (x, r, θ). Figure 5 shows the two-point correlation coefficients of each velocity component
for the case visualized in Figure 4. The statistical dataset was accumulated over the time of 5000h/uw

after achieving a pseudo-equilibrium state of multiple puffs.

Figure 4. Instantaneous flow field for Rew = 1600 and F(p) = 6.5. Iso-surfaces of radial velocity
fluctuation are shown: red, u′

r = 0.03uw; blue, u′
r = −0.03uw. The left-to-right direction corresponds to

the direction of the main flow, by which the observed puffs propagate. Not to scale.

From Figure 5a, the axial periodicity and interval of the puff can be estimated. First, we note
that the three curves at different y∗ exhibit consistency, implying that flow state and patterning are
only weakly dependent on y or r. As also plotted in (b) and (c) for the other directional components,
fine-scale turbulent structures inside a puff should have a rather short streamwise extent, and indeed,
the profiles of Rrr and Rθθ fall to almost zero at Δx < 5h. The profile of Rxx also decreases drastically
for a small Δx, although its significant oscillation for a long axial extent suggests a spatial coexistence
of laminar and turbulent regions rather than turbulent structures, since these two flow states have
different mean velocity profiles, particularly near the walls. The oscillations observed in Figure 5a are
somewhat strong at both the inner and outer walls, relative to the gap center. The profile of Rxx takes
the first negative local minimum at Δ ≈ 30h and shows regular spikes at intervals of approximately
60h. The correlation is not zero even at half the computational domain length (Lx/2 = 204.8h). Peaks at
60h, 120h, and 180h manifest the presence of seven distinct puffs in Lx on average. This suggests that
the puffs at this Reynolds number tend to be arranged regularly throughout the axial extent. If the
puff spacing is irregular, the correlation coefficient distribution should not show periodic fluctuations
and should asymptotically approach zero. This regularity of the puff arrangement may differ from
the characteristic of the DP universal class, which should exhibit a wide-scale invariant pattern close
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to the critical point [39,41]. Mukund and Hof [3] reported a similar aspect on multiple puffs in a
CPF, where they referred to the wave-like fashion as ‘puff clustering’; that is, the resultant pattern
of clustering puffs was observed to propagate like waves. They also pointed out that interactions
between puffs were responsible for the approach to the statistical steady state and strongly affected
the percolation threshold. This may predict a difference in the global stability between a single puff
(i.e., isolated puffs) and multiple puffs (puff clustering), as discussed in Section 4.2.
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Figure 5. Two-point correlation coefficient of velocity fluctuation for Rew = 1600 and F(p) = 6.5.
(a–c) Streamwise spatial correlation as a function of Δx, and (d–f) azimuthal correlation as a function
of Δθ. (a,d) Auto-correlation of streamwise velocity component u′

x, (b,e) that of u′
r, and (b,e) that of u′

θ .
Here, the reference radial position rref is translated as the inner-wall-normal height y∗ = rref − r/h.

The azimuthal two-point correlation functions shown in Figure 5d–f indicate the azimuthal
intervals between fine-scale turbulent structures, such as low-speed streaks inside the puff. There exists
no large-scale pattern in the azimuthal direction, unlike those of the helically shaped turbulent patches
in high-η aPf [35] and aCf [37]. The blue curve in Figure 5d, measured near the outer cylinder wall,
only has a peak at Δθ = π/2. The cross-sectional flow pattern observed here consists of four low-speed
streaks close to the outer wall spaced at π/2. This azimuthal configuration regarding turbulence inside
the puff is in agreement with those found in the CPF [6].
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The presence of turbulent equilibrium puffs was observed even at Rew < 1600, and the flow field
finally reached the fully laminar state at Rew = 1500. Although the space-time diagram (STD) and the
turbulent fraction, Ft(t) (the plot of which is shown later), reveal a tendency toward laminarization at
Rew = 1525, one turbulent puff was maintained in the present computational domain at least during
the present observation time of >1.3 × 104, and the laminarization was not completed. If normalized
by the hydraulic equivalent diameter 2h and bulk velocity U, the Reynolds numbers of Rew = 1600
and 1500 correspond to ReD = 2190 and 2045, respectively. This range of ReD = 2045–2190 is close to
or slightly narrower than that for the counterpart of the CPF (ReD = 2000–2700 [1], 2040–2400 [10],
2300–3000 [2], and 2000–2200 [4]). In particular, a discrepancy in the lower bound value of the
subcritical transition regime, that is, the global critical Reynolds number, is of interest, although the
similarity with the results by Avila et al. [10] is rather surprising. A cause of this discrepancy remains
unclear: One of the main causes may be the presence of the inner cylinder, which suppresses turbulent
motions across the central axis in the case of an aCPf. Another cause may be the non-slip inner-cylinder
surface, which prevents a puff from splitting into two puffs in the case of an aCPf. Shimizu et al. [8]
proposed a model process of puff splitting in the CPF, which starts with an azimuthally isolated streak
propagating downstream through the laminar–turbulent interface of the puff. An emitted streaky
disturbance can be a seed of a “daughter puff,” which spreads again in the azimuthal direction and
grows into a turbulent puff after leaving the parent puff sufficiently far away. As a system even
closer to the CPF, an ideal aPf with a stress-free boundary condition at the inner wall can be analyzed,
although such an unpractical situation will be considered as a future task. In terms of the conjecture
that puff splitting is unlikely in the aCPf relative to the CPF, we traced puffs with lengthy simulations,
and their STDs are shown in Section 4.2.

4.2. Space-Time Diagrams

As for the puff turbulence in CPF, it is well known that a turbulent puff can split into two puffs
over time, the turbulence between puffs should attenuate and become a laminar pocket, and one or
both puff(s) should decay quasi-stochastically because of their finite lifetime [3,6,8,9]. Avila et al. [10]
observed the puff-turbulence sustainment only due to puff-splitting events that have time scale shorter
than the puff-decay time scale. These features may be identified from the temporal development
of the puff spatial distribution. The STDs of the present aCPf are shown in Figures 6–8, where the
horizontal axis is the streamwise coordinate in a frame of reference moving at a certain velocity,
and the vertical axis represents the dimensionless time at each Reynolds number. The frame-moving
velocity is nearly the mean gap-center velocity, which also corresponds to the propagation velocity
of an observed single puff. The color contour shows the azimuthal average of the radial velocity at
mid-gap, 〈ur〉θ =

∫ 2π
0 ur(x, h/2, θ, t)dθ/2π, such that the laminar and turbulent regions can be clearly

distinguished. Although the apparent length of each turbulent puff depends on the criterion used to
discriminate it from the surrounding laminar flow, a different choice does not change the qualitative
conclusions obtained.
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Figure 6. Space-time diagram for (a) Case 1 at Rew = 1600 and F(p) = 6.5, (b) Case 2 at Rew = 1600
and F(p) = 6.5 with a different initial condition from that in Case 1, and (c) a typical discrete expansion
process of turbulence in a subcritical transitional pipe flow at Re = 2300, cited from Avila et al. [10].
In (c), the contour color indicates the cross-sectional average of the streamwise vorticity squared,
where red and blue correspond to turbulent puff and laminar regions, respectively, and the Reynolds
number Re is based on the mean velocity U and the pipe diameter D. In (a,b), the contour shows the
azimuthally averaged radial velocity 〈ur〉θ at the gap center. The axial distribution is monitored from
a moving frame of reference with a speed close to the puff propagation. The temporal development
is monitored from t = 0, that is, the beginning of each DNS with a higher-Rew field with more puffs;
therefore, some initial puffs decayed immediately after the start of the simulation. Not to scale (aspect
ratio x:y = 10:1).

We first present the results for Rew = 1600 and F(p) = 6.5, as discussed in Section 4.1. The flow
field visualized in Figure 4 was first achieved through an adiabatic decrease in Rew (with a change in
F(p), accordingly) from a fully turbulent regime, and was then used as the initial condition for the
following simulation to trace the behavior of the puff in the phase diagram of the Lx-space and time for
as long as possible. The STD obtained is shown in Figure 6b, which monitors the pattern starting from
an initial state with several puffs—the isolated turbulent patch featured as a red and blue segment at
given time t. The overall puff pattern remains intrinsically spatiotemporally intermittent and exhibits
both puff decay and splitting very frequently. These individual puffs have statistically well-defined
lengths, similar to those in a CPF [8]. The number of puffs captured in the present domain is roughly
constant between 5 and 7, and it is again confirmed that the puff intervals tend to be constant even
if splitting or attenuation occurs in each individual puff. For this reason, Figure 5a reveals regular
oscillations in the correlation function Rxx(Δx), while a snapshot visualized in Figure 4 happens to
have no periodicity in the puffs when considering the complete pipe length. Figure 6b may invoke
an STD obtained from experimental and numerical observations of a DP-like feature in other flow
systems [39,42]. Another DNS labeled as Case 1 was repeated for the same parameter set of (Rew, F(p)),
but with a different initial condition with a single puff, which was prepared from a lower-Rew DNS
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(see Figure 6a). The initial single puff is sustained for a long period of >5000h/uw, during which
it splits irregularly, the first time at tuw/h ≈ 3000 and the second time at tuw/h ≈ 4000, but both
newborn puffs decay after they are separated from their parents. A newly emitted daughter puff
by the third splitting tuw/h ≈ 5500 grows and successively produces grandchild puffs. In addition,
there are many signs of puff splitting. The puff turbulence eventually covers the entire domain, yet is
intrinsically patchy, as in Case 2. It can be concluded that, in an aCPf similar to a CPF, the turbulent
puff can split, regardless of the initial field, in qualitative agreement with a typical STD sample of a
CPF [10], as displayed in Figure 6c.
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Figure 7. Space-time diagram for (a) Rew = 1600 (ReD ≈ 2190) and F(p) = 6.5, as well as (b)
Rew = 1500 and F(p) = 5.3 (ReD ≈ 2045). The contour shows 〈ur〉θ at the gap center. The axial
distribution was monitored from a moving frame of reference. The same initial condition was applied
for all cases presented here. Not to scale (aspect ratio x:y = 10:1).

Figure 7a shows the STD of Rew = 1600 and F(p) = 6.5 (Case 2), but the speed of the moving
frame of reference is modified such that puffs appear to be stationary with respect to space. With this
adjustment, the propagation speed of the puff can be estimated as approximately 0.625uw. According to
Figure 6a, when tracking a single puff in Case 1, the propagation speed is slightly faster and ≈0.65uw.
The result is reasonable because the bulk velocity generally decreases with the expanding turbulent
region. Figure 7b is an STD at Rew = 1500 with the same horizontal coordinate of (x − 0.625uw)/h,
showing the eventual return to laminar flow. Once a puff starts to decay, its turbulent patch seems
to accelerate slightly and takes approximately 300uw/h to attenuate completely. Before that, it took
more than 4200h/uw before the system settled to the fully laminar state. While the flow at ReD = 2190
of Figure 7a exhibits frequent puff splitting or those signs during a period of tuw/h ≈ 5000, the flow
at ReD = 2045 in Figure 7b undergoes only the puff decay with no puff splitting, and the flow field
simply reached a laminar flow.
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Figure 8. Space-time diagram for (a) Rew = 1550, (b) Rew = 1540, (c) Rew = 1530, and (d) Rew = 1525:
see Table 1 for each given F(p) value. The contour shows 〈ur〉θ at the gap center. The axial distribution
is monitored from a moving frame of reference. The same initial condition was applied for all cases
presented here. Not to scale (aspect ratio x:y = 10:1).

We further investigated the intermediate range between the two above-discussed cases (2045 <

ReD < 2190) to elucidate the trends in the frequency or time of the puff-splitting events. Figure 8
presents an STD at each control-parameter set. In all DNSs presented in the figure, the initial conditions
are exactly the same. In the figure, six puffs can be seen initially, but two or three of them decay
immediately, particularly in the lower-Reynolds-number cases. At the lowest Rew shown in Figure 8d,
puffs disappear one after another on a time scale of O(1000h/uw), and finally, one puff remains.
There is no sign of decay in the surviving puff even after 13,000h/uw, but it is likely that the puffs will
stochastically disappear and laminarize if a much longer simulation is available. This might also be
true for the other cases presented here. At Rew < 1600, no puff splitting was observed, resulting in
only puff damping. In only Figure 8b, a sign of puff splitting is detected at tuw/h ≈ 7500, although the
“daughter puff” is not perfectly formed, and is finally attenuated before leaving the parent puff.
Note here that a further DNS indicates no qualitative change in the flow pattern at least until tuw/h =
11,500 also for Rew = 1540, although not shown in the figure. According to a similar type of study
[10], the puff splitting in the CPF was observed both numerically and experimentally for ReD > 2200,
whereas clear splitting was measured in their experiments down to ReD = 2025 < Reg (=2040). If our
observations were continued as long as 107 outer time units, as Avila et al. [10] experimentally did,
the current system of the aCPf could exhibit a puff-splitting event even below the true Reg, which is
not exactly determined as of now. At least, it can be said that the puff decay and splitting rates at this
stage differ strongly from those observed at Rew = 1600 (ReD = 2190). As for this regime, a conclusion
similar to an experimental study on a CPF [3] can be drawn, i.e., the cluster of puffs in a wave-like
fashion results in fewer puff-splitting events in the STD, whose visual appearance differs from the STD
for a DP universality class. Such well-organized distances between active sites (corresponding to the
puffs) and the absence of splitting events are different features from those of the DP.

Figure 9 shows the temporal change in the turbulent fraction, Ft(t), which is the spatial ratio
of the turbulent region to the entire calculated region, including both the turbulent and laminar
regions. Here, Ft(t) ≈ 1 indicates a fully turbulent state, and Ft(t) = 0 is a fully laminar state. We set
a threshold vth to distinguish between laminar and turbulent regions such that Ft(t) ≈ 0.5 in the
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Reynolds number region where turbulent puffs densely appear in an axial extent, as in the case of
Rew = 1600 and F(p) = 6.5 visualized in Figure 7a. Figure 9a shows the temporal change of Ft(t)
at Rew = 1500 and F(p) = 5.3, that is, the case diagnosed as a laminar regime by a visualization in
Figure 7b, employing three different threshold values (vth, vth2, and vth3). It can be confirmed that the
time change of Ft(t), particularly the gradient of the curve, does not depend on the threshold value.
When vth = 0.005, the temporal changes in Ft(t) at several Reynolds numbers below Rew = 1600
are plotted in Figure 9b. In the vicinity of the critical point, a (1+1)-D DP universality class should
obey a power law of Ft(t) ∝ t−0.159 over time. From the figure, the current data at Rew = 1575–1550
seem to be consistent with (1+1)-DP, although more data and more exponents will be needed to
properly confirm this trend. However, it should be noted that, for Rew ≤ 1550, none of the puffs split
and turbulent puffs were only attenuated, as shown in Figure 8a. This result suggests that a value
close to the critical exponent of DP can be obtained even under a non-DP phenomenon of a simple
decaying process without splitting. We should regard this result as a ‘spurious’ DP feature because
the puff splitting (or an active site that creates offspring) is a requisite for the critical point and, hence,
DP behavior. In other words, this reminds us to take caution regarding the judgment of a DP within
the laminar–turbulent intermittency.
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Figure 9. Time series of turbulent fractions: (a) for Re = 1500 with different threshold values and
(b) for Re = 1525–1600 with a threshold value of vth.

5. Conclusions

We performed direct numerical simulations (DNSs) of the concentric annular Couette–Poiseuille
flow (aCPf) and investigated the laminar–turbulent intermittent field of the so-called puff turbulence,
particularly during its subcritical transition. From previous studies, the laminar–turbulent
intermittency in annular flows (a pure Couette flow [37] or Poiseuille flow [34]) exhibits the
helically shaped turbulent pattern with bi-directional spatial intermittency and puff turbulence with
uni-directional intermittency, depending on the radius ratio. This fact leads to a unified understanding
of the formation of localized turbulence patterns of different systems, including planar and circular
pipe flows (CPFs); however, these analyses were conducted under conditions in which the basic
velocity profiles do not qualitatively match those of the CPF. In this study, the radius ratio (of the
inner/outer radii) was as low as 0.1, and the mean pressure gradient was imposed such that the
inner-cylinder surface had a zero velocity gradient on average, so that the CPF was alternatively
simulated by an annular system. Multiple puffs were demonstrated using a long computational
domain in the axial direction, and the presence or absence of the puff-splitting event and its onset
Reynolds number were investigated using a long-term DNS. The Reynolds number was reduced
adiabatically from the fully turbulent field, and the following results were obtained.

• At Rew = 1600, puff-splitting events occur along with stochastic puff decay, resulting in wave-like
fashion of multiple puffs with constant intervals.
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• At Rew < 1600, no puff-splitting event occurs, but initially given individual puffs survive over a
present observation time of at least 104h/uw, maintaining the intervals among the puffs.

• At Rew ≈ 1550, a ‘spurious’ feature of (1+1)D-DP was detected during the quenching process
even without puff splitting, and a lower Rew deviates from the DP critical exponent.

• At Rew = 1500, the flow becomes fully laminar after the non-trivial finite lifetime of the puff.
• The range of Rew = 1500–1600 (with the accordingly changed F(p)) corresponds to the bulk

Reynolds-number range of ReD = 2045–2190 based on the hydraulic diameter and bulk velocity.

The question considered in this study was whether puff splitting can occur in an aCPf,
which essentially has a non-slip inner cylinder. In fact, puff splitting was clearly observed at
Rew = 1600, and a sign of splitting was detected at Rew = 1540, which may be close to the global
critical point, Reg. This result guarantees that the planar system and the in-pipe system can be linked
via the annular system. Near the criticality, oblique turbulent stripes grow or split in the longitudinal
direction of the band, but the mainstream directional splitting, as seen in the CPF, is less pronounced
in the planar flows. Our results suggest that the localized structures seen in both the planar and
pipe flows can cause mainstream directional splitting. However, we should note that no completed
puff splitting was detected near Reg. The puff splitting could be observed for Rew < 1600 and even
below Reg by increasing both the observation time and domain by orders of magnitude. Such a task
to explore the exact Reg value as well as the Reynolds-number dependence of the puff-splitting time
scale near Reg is a challenging one that is almost impossible at present. Another possible approach
is to study lifetimes of single puffs [56] and time scales of splitting [10] at conditions away from Reg,
as in earlier studies on the CPF. This may allow us to discuss whether the current system behaves
more like quasi-1D Couette flow or like pipe flow, as done by Shi et al. [57] for a pCf. We would like to
report on this issue in another paper. Moreover, the characterization of a DP universal class remains
skeptical. Similarly to the critical phenomena of the DP universal class, the region of the absorbing state
(laminar-flow gap among puffs) should increase as the criticality approaches. From these facts, it is
important to verify the DP feature after further expanding the axial computational domain. In addition,
since the transition process of an aCPf has a dependence on the radius ratio and F(p), a parametric
study will also be addressed in the future.
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The following abbreviations are used in this manuscript:

aCf annular Couette flow
aCPf annular Couette–Poiseuille flow
aPf annular Poiseuille flow
CPF Circular pipe flow
DNS direct numerical simulation
DP direct percolation
pCPf plane Couette–Poiseuille flow
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rms root-mean-square value
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Abstract: In line with Pomeau’s conjecture about the relevance of directed percolation (DP)
to turbulence onset/decay in wall-bounded flows, we propose a minimal stochastic model
dedicated to the interpretation of the spatially intermittent regimes observed in channel flow
before its return to laminar flow. Numerical simulations show that a regime with bands obliquely
drifting in two stream-wise symmetrical directions bifurcates into an asymmetrical regime,
before ultimately decaying to laminar flow. The model is expressed in terms of a probabilistic
cellular automaton of evolving von Neumann neighborhoods with probabilities educed from a close
examination of simulation results. It implements band propagation and the two main local processes:
longitudinal splitting involving bands with the same orientation, and transversal splitting giving
birth to a daughter band with an orientation opposite to that of its mother. The ultimate decay stage
observed to display one-dimensional DP properties in a two-dimensional geometry is interpreted
as resulting from the irrelevance of lateral spreading in the single-orientation regime. The model
also reproduces the bifurcation restoring the symmetry upon variation of the probability attached
to transversal splitting, which opens the way to a study of the critical properties of that bifurcation,
in analogy with thermodynamic phase transitions.

Keywords: transition to/from turbulence; wall-bounded shear flow; plane Poiseuille flow;
spatiotemporal intermittency; directed percolation; critical phenomena

1. Context

How laminar flow becomes turbulent, or the reverse, when the shearing rate changes, is a problem
of great conceptual interest and practical importance. This special issue is focused on the case when
the transition is characterized by the fluctuating coexistence of domains either laminar or turbulent in
physical space at a given Reynolds number Re (control parameter), a regime called spatiotemporal
intermittency, relevant to wall-bounded flows in particular. Several years ago, Y. Pomeau [1] placed
that problem in the realm of statistical physics by proposing its approach in terms of a non-equilibrium
phase transition called directed percolation (DP). This process displays specific statistical properties
defining a universality class liable to characterize systems with two competing local states, one active,
the other absorbing, with remarkably simple dynamical rules: any active site may contaminate a
neighbor and/or decay into the absorbing state, and an absorbing state cannot give rise to any
activity [2]. The coexistence is regulated by the contamination probability, and a critical point can be
defined above which the mixture of active and absorbing states is sustained and below which the active
state recedes, leaving room for a globally absorbing state. The fraction of active sites is a measure of the
global status of the system. The subcritical context typical of wall-bounded flows, initially pointed out
by Pomeau, seems an interesting testbed for universality [3,4]. Here, turbulence plays the role of the
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active state and laminar flow, being linearly stable, represents the absorbing state. DP has indeed been
shown relevant to simple shear between parallel plates (Couette flow) [5] and its stress-free version
(Waleffe flow) [6]. The most recent contributions to the field can be found in [7]. In this paper we will
be interested in plane channel flow (also called plane Poiseuille flow), the flow driven by a pressure
gradient between two parallel plane plates, which is not fully understood despite recent advances.

In this context, universal properties are notably difficult to extract from experiments, since they
relate to the thermodynamic limits of asymptotically large systems in the long time limit, whereas what
plays the role of microscopic scales involves already macroscopic agents, e.g., roll structures in
convection or turbulent streaks in open flows, and the turnover time associated with such structures.
However, universality focuses on quantitative aspects of systems sharing the same qualitative
characteristics, in particular symmetries and the effective space dimension D in which these systems
evolve. Delicate questions can thus be attacked by modeling attempts that implement these traits
appropriately. This approach involves simplifications from the primitive equations governing the
problem, here the Navier–Stokes equations, to low-order differential models implementing the building
blocks of the dynamics [8], to coupled map lattices (CML) in which the evolution is rendered by
maps and space is discretized [9,10], to cellular automata for which local state variables are also
discretized, and ultimately to probabilistic cellular automata (PCA), where the evolution rule itself
becomes stochastic [11]. The absence of a rigorous theoretical method supporting the passage from
one modeling level to the next, such as multi-scale expansions or Galerkin approximations, makes the
simplification rely on careful empirical observations of the case under study, which somehow comes
and limits the breadth of the conclusions drawn.

1.1. Physical Context: Plane Channel Flow

Of interest here, the transitional range of plane channel flow displays a remarkable series of
steps at decreasing Re from large values where a regime of featureless turbulence prevails. It has
been the subject of numerous studies and references to them can be found in the article by Kashyap,
Duguet, and Dauchot in this special issue [12]; see also [13]. Our own observations based on numerical
simulations are described in [14,15] and summarized in Figure 1.

Re

Reg Re2 Ret
1-sided 2-sided

tight network

"featureless"

A Bloose network

laminar

ReDP

Figure 1. Bifurcation diagram of plane channel flow after [14]. Reg ≈ 700. Transversal splitting sets in
at Re ∼ 800 (event A). The extrapolated 2D-DP threshold is ReDP 	 984. The “one-sided → two-sided”
transition takes place at Re2 	 1011. localized turbulent bands (LTBs) exist up to Re ≈ 1200 (event
B), beyond which a continuous laminar–turbulent oblique pattern prevails up to the threshold for
featureless turbulence Ret ≈ 3900.

The Reynolds number used to characterize the flow regime is defined as Re = Uch/ν, where 2h is
the gap between the plates, Uc is the mid-gap stream-wise speed of a supposedly laminar flow under
the considered pressure gradient, and ν the kinematic viscosity. This definition using Uc is appropriate
for our numerical simulations under constant pressure-gradient driving. Other definitions involve
the friction velocity Uτ , or the stream-wise speed averaged over the gap Ub. They are related either
empirically, vis., Ub vs. Uc, or theoretically, vis., Reτ =

√
2Re to be used in particular for connecting

to the work presented in [12], and some other articles. See [14] for details. Below a first threshold
Ret, featureless turbulence leaves room for a laminar–turbulent, oblique, patterned regime (upper
transitional range) that next turns into a sparse arrangement of localized turbulent bands (LTBs)
propagating obliquely along two directions symmetrical with respect to the general stream-wise flow
direction, experiencing collisions and splittings (“two-sided” lower transitional regime). Event B in
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Figure 1 corresponds to the opening of laminar gaps along the intertwined band arrangement observed
in the tight laminar–turbulent network regime, and the simultaneous prevalence of downstream active
heads (DAHs) driving the LTBs. Upon decreasing Re further, a symmetry-breaking bifurcation takes
place at a second threshold Re2, below which a single LTB orientation prevails. Figure 2 displays
snapshots of the flow illustrating these last two stages.

Figure 2. Illustration of the different regimes featuring the wall-normal velocity component at the
mid-gap; turbulent/laminar flow is pink/white, after data in Figure 1 of [14]. The domain size is
250 × 500 (span-wise × stream-wise). The flow is from left to right. Left: Strongly intermittent loose
continuous LTB network at Re = 1200 (∼event B). Centre: Two-sided regime at Re = 1050 (Re � Re2).
Right: One-sided regime at Re = 850. Downstream active heads (DAHs) are easily identified in the
two right-most panels; a single one is visible in the upper left corner of the left image, marking the
transition between sustained regular patterns and loose intermittent ones. Images here and in Figures 2
and 3 are adapted from snapshots taken out of the supplementary material of reference [14].

A significant result in [14] was that the decrease of turbulence intensity with Re below event B
followed expectations for directed percolation in two dimensions but that, controlled by the decreasing
probability of transversal splitting, the bifurcation at Re2 prevented the flow to reach the corresponding
threshold. The latter could nevertheless be extrapolated to a value ReDP < Re2. The ultimate decay
stage takes place at Reynolds numbers below the point whereat transversal splitting ceases to operate.
Figure 3 illustrates an extremely rare occurrence of transversal splitting at a Reynolds number roughly
corresponding to event A in Figure 1.

Figure 3. First observed occurrence of transversal splitting during a simulation at Re = 800 for
t ∈ (17100:100:17500). The stream-wise direction is horizontal and the flow is from left to right.

At lower Re, deprived of the possibility to nucleate daughters’ LTBs of opposite propagation
orientation, LTBs are forcibly maintained in the “one-sided” regime that eventually decays below a
third threshold Reg, marking the global stability of the laminar flow. Corresponding flow patterns
are illustrated in Figure 4, the right panel of which displays the surprising result that the turbulent
fraction decreases as a power law with an exponent β of the order of that for directed percolation in
one dimension, despite the fact that the flow develops in two dimensions [16].

The objective of the present work is the design of a minimal PCA model for these two last stages
that is applicable to flow states for Re below event B, incorporates the anisotropy features visible in
Figures 2–4, and accounts for the specific role transversal splitting above event A, in view of providing
clues to their statistical properties in relation to dimensionality and universality issues.
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Figure 4. (Left): One-sided flow at Re = 725, 750; same representation as in Figure 2. The domain size
is now 500× 1000, the stream-wise direction is vertical, and the flow upwards. (Right): Used as a proxy
for the turbulent fraction, Ey = V−1 ∫ u2

y dV is displayed as a function of 1/Re; inset: same data raised
at power 1/β with β = 0.28 suggesting decay according to the DP scenario in 1D, adapted from [16].

1.2. Modeling Context: Directed Percolation, Probabilistic Cellular Automata, and Criticality Issues

Various modeling approaches to transitional wall-bounded flows have received considerable
attention recently, from low-order Galerkin expansions of the primitive equations [17,18],
to phenomenological theories based on a deep physical analysis of the processes involved in a
reaction-diffusion context [19], to analogical systems expressed in terms of deterministic coupled map
lattices [6,10], and to more conceptual models implementing the dynamics of cellular automata with
probabilistic evolution rules (PCA) [20–22]. The model developed below belongs to this last category,
implementing rules that focus on the main qualitative features seen in experiments. Such models are
based on the conventional modeling of DP [2] which is most appropriate to account for the absorbing
versus active character of local states.

Let us briefly recall the PCA/DP framework. In the most general case, the activity at site j at
time t + 1, call it Sj ∈ {0, 1}, depends on the activity at sites in a full D-dimensional neighbor Vj
of that site at time t and the status of the links, permitting or not the transfer of activity within the
neighborhood. For convenience a (D + 1)-dimensional lattice is defined with one-way (directed) bonds
in the direction corresponding to time so that D-dimensional directed percolation is often presented as a
special (D + 1)-dimensional percolation problem. In the simplest case of one space dimension (D = 1),
the neighborhood of a lattice site at j is the set of sites with j′ ∈ [j − r1, j + r2], comprising r2 + r1 + 1
sites, and it is supposed that contamination of the state at j at time t + 1 depends on the status of
full configuration, the sites’ activity, and the bonds’ transfer properties (“bond–site” percolation [23]).
In some systems, the propagation rule is totalistic in the sense that the output only depends on the
number of active sites in the neighborhood and not on their positions, i.e., ς j = ∑j′∈Vj

Sj′ ; an interesting
example is given in [24].

In view of future developments, let us discuss bond directed percolation in one dimension (D = 1)
with two neighbors (r1 = 0 or r2 = 0), only depending on the probability p that bonds transfer
activity. The evolution rule S′

j = R(Sj, Sj+1), where S′
j denotes the state at node j and time t + 1,

is totalistic. With ς j = Sj + Sj+1, we have (a) R(ς = 0) = 0 with probability 1 (a site connected to
two absorbing parents never gets active whatever the links) and (b) R(ς = 1) = 1 with probability
p (closed link transmitting activity), so that (a’) R(ς = 1) = 0 with probability 1 − p (open link
preventing transmission), (c) R(ς = 2) = 0 with probability (1 − p)2 (absorbing since the two links
are open), and (d) R(ς = 2) = 1 with probability 1 − (1 − p)2 = p(2 − p), the complementary case.

The question is whether, depending on the value of p, once initiated, activity keeps continuing
in the thermodynamic limit of infinite times in an infinitely wide system. An answer is readily
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obtained in the mean-field approximation where actual local states are replaced by their mean value,
neglecting the effect of spatial correlations and stochastic fluctuations (we follow the presentation
of [20]). The spatially-discrete Boolean variables Sj are, therefore, replaced by their spatial averages
S = 〈Sj(t)〉 and this mean value is just the probability that any given site is active. It is then argued
that the probability to get a future absorbing state, 1 − S′, is given by activity not being transmitted
(1 − pS)2, which yields the mean-field equation:

1 − S′ = (1 − pS)2 = 1 − 2pS + p2S2, i.e., S′ = 2pS − p2S2. (1)

Equilibrium states correspond to the fixed points of (1): S′ = S = S∗, which gives a nontrivial activity
level S∗ = (2p − 1)/p2 when p ≥ pc = 1/2. Close to threshold, defining ε = (p − pc)/pc = 2p − 1
one gets S∗ ≈ 4ε. In the mean-field (MF) approximation S∗ is the order parameter of the transition
supposed to vary as εβ, which defines the critical exponent β, here βMF = 1. Directed percolation is
the prototype of non-equilibrium phase transitions and, as such, is associated with a set of critical
exponents (see [2]). Both the critical probability pc and the mean activity S∗ are affected by the effects of
fluctuations, with pc ≈ 0.6445 > 1/2 expressing that a probability larger than the mean-field estimate
is necessary to preserve activity, and βDP ≈ 0.276 when D = 1. The simple mean-field argument is
not sensitive to the value of D in contrast with reality: βDP ≈ 0.584 when D = 2, ≈ 0.81 when D = 3,
and trends upwards to 1 reached at D = 4 = Dc = 4, called the upper critical dimension (see [2] for a
review). Quite generally, mean-field arguments are valid for D > Dc. We are interested in another
critical exponent, α. When starting from a fully active system exactly poised at pc, the turbulent
fraction is observed to decrease with time (the number of iteration steps) as 〈S〉 ∝ t−α with α ≈ 0.159
when D = 1 and 0.451 when D = 2, whereas the mean-field prediction, easily derived from (1),
is αMF = 1. Scaling theory shows that α = β/ν‖, where ν‖ is the exponent accounting for the decay of
time correlations while ν⊥ describes the decay of space correlations [2].

Universality is a key concept in the field of critical phenomena characterizing continuous phase
transitions. It leads to the definition of universality classes expressing the insensitivity of critical
properties to specific characteristics of the systems and retaining only properties linked to the
symmetries of the order parameter and the dimension of space. For directed percolation, universality is
conjectured to be ruled by a few conditions put forward by Grassberger and Janssen: that the transition
is continuous into a unique absorbing state and characterized by a positive one-component order
parameter, and that the processes involved are short-range and without weird properties such as
quenched randomness; see [2]. Universality issues are discussed at length elsewhere in this special
issue, in particular by Takeda et al. [25].

In this first approach, we shall examine how universality expectations hold for the ultimate decay
stage of transitional channel flow at Reg, as described in Section 1.1, and limit the discussion to the
consideration of exponents β and α. This will be done in Section 3, the next section being devoted to
the derivation of the model and its mean-field study. Section 4 focuses on its ability to account for the
symmetry-breaking bifurcation at Re2, and our conclusions are presented in Section 5.

2. Description of the Model

2.1. Context

The approach to be developed is not new in the field of transitional flows. For example,
studying plane channel flow, Sano and Tamai [21] introduced a plain 2D-DP model dedicated to
support their experimental results, with a simple spatial shift implementing advection and a uniformly
turbulent state upstream corresponding to their setup. Earlier, a similarly conceptual model was
examined by Allhoff and Eckhardt [20], who introduced a PCA with two parameters accounting for
persistence and lateral spreading appropriate for the symmetries of plane Couette flow, developed its
mean-field treatment, and performed simulations to illustrate the spreading of spots and decay of
turbulence in agreement with expectations. In a similar spirit but introducing more physical input,
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Kreilos et al. [22] analyzed the development of turbulent spots in boundary layers as a function of
the residual turbulence level upstreams, separating a deterministic transport step from a stochastic
growth/decay step with probabilities extracted from a numerical experiment, gaining insight into the
statistics of boundary layer receptivity.

Following the lines of research suggested by those works, we developed a 2D model designed
to interpret the decay of channel in the LTB regimes from two-sided to one-sided at decreasing Re,
just qualitatively proposing a plausible variation of probabilities introduced as functions of Re. In our
approach, the elementary agents are the LTBs themselves either propagating to the left or to the
right of the stream-wise direction. To them we attach variables analogous to spins in magnetic phase
transitions problems. Even if in computations, numerical values S = ±1 will be used, for descriptive
and graphical convenience we shall associate them with colors—specifically: blue (B) and red (R)
for right- and left-propagating LTBs, respectively. Laminar sites will be denoted using the empty-set
symbol ∅, will have value 0, and will be graphically left blank. These agents will be seated at the
nodes of a square lattice with coordinates (i, j), i.e., S(i,j) with S �→ {R, B, ∅} at the given site. As seen
in Figure 5a, we place the stream-wise direction along the first diagonal of the lattice so that the LTBs
will move along the horizontal and vertical axes; see Figure 5b.
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Figure 5. (a) Cellular automata lattice with the two types of active states, B and R; the state at an
empty node is denoted ∅ and left blank. (b) Left: the two possible kinds of propagation from an
initial position marked with the “∗”. Right: collision configuration to the point marked with the “∗”.
(c) Labeling of the von Neumann neighborhood used to account for the dynamics.

A strong assumption is that an LTB as a whole corresponds to a single active state, while the
discretization of space coordinates (i, j) ∈ Z2, and time t ∈ N tacitly refers to an appropriate rescaling
of time and space. Furthermore, interactions are taken as local, with configurations limited to
nearest neighbors in each space direction. Accordingly, the dynamics at a site (i, j) only depend
on the configuration of its von Neumann neighborhood V(i,j) := {(i, j), (i ± 1, j), (i, j ± 1)}, Figure 5c,
while evolution is driven by a random process. We now turn to the definition of rules that mimic the
actual continuous space-time, subcritical and chaotic, Navier–Stokes dynamics governing the LTBs’
propagation, decay, splitting, and collisions, via educated guesses from the scrutiny of simulation
results, in particular those in the supplementary material attached to [14].

2.2. Design of the Model

Let us first give a brief description of the processes to be accounted for. Below Re ≈ 800 (event A)
only decay and longitudinal splittings are possible. Not visible in the snapshots of Figure 4 (left)
but observable in the movies is the fact that a daughter LTB resulting from longitudinal splitting
runs behind its mother along a track that may be slightly shifted upstream. This shift is negligible
when Re is small (in-line longitudinal splitting) but as Re increases it becomes more and more visible
while the general propagation direction is unchanged (off-aligned longitudinal splitting). On the
other hand, Figure 4 clearly illustrates the fact that, upon transversal splitting, the new-born LTB
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systematically develops on the downstream side of its parent. Importantly, the propagation of LTBs is
a dynamical feature different from advection treated as a deterministic step in [22]. Accordingly, it will
be understood as a statistical propensity to move in a given direction resulting from an imbalance
of stochastic “forward” and “backward” processes along their directions of motion. Other complex
processes also seen in the simulations, such as fluctuating propagation with acceleration, slowing down,
or lateral wandering, will be included only in so far as they can be decomposed into such more
elementary events. All the events to be included in the model can be translated into the language of
reaction–diffusion processes, persistence or death, offspring production, and coalescence, common in
the field of DP theory [2].

On general grounds the governing equation reads:

S′(i, j) = ∑
C′

RC′δC′C(i,j) , (2)

where C(i, j) is the neighborhood configuration of site (i, j) at time t, C′ one of the possible
configurations, and RC′ a stochastic variable taking value 1 with probability pC′ corresponding to
configuration C′ and value 0 with probability 1 − pC′ . The Kronecker symbol δC′C is here to select the
configuration C′ that matches C. Depending on C and C′, the output S′(i, j) can be B or R.

Figure 6 illustrates the set of possible single-colored neighborhoods, either B (upper line)
or R (lower line). Following the indexation in Figure 5c, the order of the columns is based on
the physical condition and respects the upstream/downstream distinction illustrated in Figure 5a,
making configurations with the same index physically equivalent.

(1) (2) (3) (4) (5)

(B)

(R)

? ? ? ??

? ? ? ??

Figure 6. Single-color configurations: from the overall geometry depicted in Figure 5a, the downstream
side of a state is to the top for B states and to the right for R states. Each colored square indicates the
active state in the configuration at time t of site (i, j) at the center. The question mark features the
probabilistic outcome (time t + 1).

These single-color elementary configurations will be denoted as Ci with i ∈ [1:5]. They will
be described as [SSSSS] with S = B, R, or ∅. Hence C3 ≡ [∅ ∅ B ∅ ∅] or [∅ R ∅ ∅ ∅].
Later, more complicated configurations will not be given a name but just a description following
the same rule, e.g., [∅ BBR ∅].

Importantly, we make the assumption that the future state at a given node, the question marks in
Figure 6, is the result of the probabilistic combination of the independent contributions of elementary
configurations involving a single active state in its neighborhood.

First of all, the void configuration C0 ≡ [∅ ∅ ∅ ∅ ∅] obviously generates an empty site with
probability 1, hence an occupied site with probability pC0 = 0, in order to preserve the absorbing
character of the dynamics. All the other configurations evolves according to probabilities that are free
parameters just constrained by empirical observations. Let us now interpret probabilities associated
with the five situations depicted in Figure 6, focusing on the case of B states:
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1. C5 ≡ [∅ ∅ ∅ ∅ B] corresponds to the natural propagation of the active state along its own motion
direction. Accordingly, the active site B at (i − 1, j) is expected to be found at (i, j) and time t + 1
with a high probability, pC5 = p5 � 1, which corresponds to the near-deterministic propagation
of an active state as observed for Re ≥ Reg. With probability 1 − p5 � 1, site (i, j) will not turn
active, which means that the LTB has decayed or experienced a speed fluctuation that delayed its
propagation. The corresponding R configuration is C5 ≡ [∅ ∅ ∅ R ∅].

2. Configuration C1 ≡ [B ∅ ∅ ∅ ∅] corresponds to an active site B at (i, j) that is not supposed to
stay in place but move to (i + 1, j) with probability p5 and leave site (i, j) empty at time t + 1.
The probability p1 that (i, j) is still active at time t + 1, therefore, generally corresponds to the
creation of a novel active state by in-line longitudinal splitting at the rear of the active state that
has effectively moved. Persisting activity at (i, j) and time t + 1 can also be the result of state at
(i, j) and time t experiencing a speed fluctuation leaving it stuck at the same place with probability
1 − p5 as argued above for configuration C5. The presence of parameter p1 undoubtedly makes
the dynamics richer. The corresponding R-configuration is C1 ≡ [R ∅ ∅ ∅ ∅].

3. Configuration C2 ≡ [∅B ∅ ∅ ∅] corresponds to an active state B at site (i, j + 1) that contaminates
backwards and laterally upstream the site at (i, j) in addition to its likely propagation to
(i + 1, j + 1) with probability p5. This is precisely what is sometimes observed for longitudinal
splitting, where the daughter follows a track parallel to that of the mother but slightly shifted
upstream, i.e., off-aligned. Configurations C1 and C2 both account for longitudinal splitting but
the latter hence introduces some lateral diffusion. Along this line of thought, numerical simulation
results in [14], illustrated in Figure 4, suggest that probability p2 is tiny close to Reg but increases
with Re. The corresponding R-configuration is C2 ≡ [∅ ∅R ∅ ∅].

4. In configuration C3 ≡ [∅ ∅ B ∅ ∅], the active site B at (i + 1, j) is supposed to advance further at
(i + 2, j) with probability p5. Persisting activity at (i, j), therefore, means longitudinal splitting
ahead but now with the opening of a wide laminar gap between the offspring left behind at (i, j)
and the parent that has advanced, with probability p5, at (i + 2, j). Else, activity at (i, j) and t + 1
could result from activity at (i + 1, j) and time t propagating backwards to (i, j) at time t + 1.
These circumstances have not been observed and appears unlikely or impossible, which suggests
to take p3 = 0. The corresponding R-configuration is C3 ≡ [∅ R ∅ ∅ ∅].

5. In configuration C4 ≡ [∅ ∅ ∅ B ∅], the state B at (i, j− 1) and time t is expected to be at (i+ 1, j− 1)
at time t + 1. State at (i, j) being active at t + 1 means contamination backwards and laterally
downstream, which is never observed in the simulations; hence, p4 = 0. The corresponding
R-configuration is C4 ≡ [∅ ∅ ∅ ∅ R].

6. Still about configuration C4, the situations described in the previous items all imply single-colored
evolution, which is guaranteed below the onset of transversal splitting, i.e., R � 800. When Re �
800, as illustrated in Figure 3, this splitting produces an R offspring at (i, j) out of a B parent at
(i, j − 1) or B offspring from an R parent at (i − 1, j), as sketched in Figure 7 (left). A probability
p′4 �= 0 will be associated with it, where the prime is meant to recall that it involves states of
different colors.

To summarize, as it stands the model involves four parameters: p1 mainly governs longitudinal
splitting and p2 additional lateral diffusion, p5 is for propagation, and p′4 for transversal splitting.
The propagation of active states along their own direction involves probabilities associated with
elementary configurations C1 and C5 while the overwhelming contribution of p5 favors one direction.
Configuration C3 that could have contributed to the balance is empirically found negligible, saving one
parameter as indicated above.

Neighborhoods with more than one active site are treated by assuming that the future state S′ of
the central node (i, j) is the combined output of its elementary ingredients, each contribution being
considered as independent of the others, i.e., without memory of the anterior evolution, of which the
considered configuration is the outcome. The computation of the probability attached to the output of
a given single-colored neighborhood is then straightforward. The argument follows the lines given for
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directed percolation, bearing on the probability that the state at the node will be absorbing (empty) and
leading to Equation (1) in the mean-field approximation [20,24]. Things are a little more complicated
when the neighborhood is two-colored since in all mixed-colored cases some configurations correspond
to collisions and others allow for the nucleation of a differently colored offspring when p′4 �= 0.

For an elementary configuration, non-contamination of site (i, j) from an active neighboring
state in position k ∈ [1:5] takes place with probability (1 − pk) and of course with probability 1 if the
corresponding site is empty. This gives the general formula (1 − pkSk), where Sk = 1, when the site is
active, either B or R, and Sk = 0 when it is absorbing (∅). For a configuration Cx = [S1, S2, S3, S4, S5],
where S = B, R, or ∅, the probability to get an absorbing state is (1 − pCx ) = ∏k(1 − pkSk) hence for
the node to be activated pCx = 1 − ∏k(1 − pkSk). To deal with two-colored neighborhoods properly,
we must be a little more specific and write the probability of the state S′ of a given color S as

p[S1,S2,S̄4,S5]
= 1 − (1 − p1S1)(1 − p2S2)(1 − p′4S̄4)(1 − p5S5) (3)

where it is understood that if S = B, then S̄ = R or the reverse, and Sj = 0 for j = 1, 2, 5, or S̄4 = 0 if
the corresponding states are ∅. Figure 7 (right) illustrates the most interesting two-state configurations
with different colors corresponding to collisions (C1) and offspring generation (C2). Such a situation is
dealt with by adding a supplementary rule:

(R)(B) (C2)(C1)

Figure 7. Modeling of transversal splitting for states of type (B) propagating horizontally and (R)
propagating vertically, the base flow being along the diagonal (↗). Heavy colors indicate states present
at time t and, playing the role attributed to question marks in Figure 6; light colors stand for states
possibly present at time t + 1 according to probabilities p5 (propagation) and p′4 (transversal splitting).
Conflicting configurations are (C1) ([SSSRB] corresponding to propagation leading to a collision and
(C2) [SSSBR] corresponding to simultaneous transversal splittings, respectively (here S = ∅ for clarity).

7. When the general expression (3) gives non-zero probabilities to S′ and S̄′ the resulting
superposition of states is not allowed and a choice has to be made. It might seem natural
to keep the state with the maximum probability but, depending on circumstances hard to
decipher, collisions sometimes appear to cause the decay of both protagonists or else reinforce the
dominance of one color in a given region of space. A similar bias can affect transversal splitting.
These peculiarities are not taken into account here: for simplicity, in all conflicting cases, we make
the assumption that the result is non-empty and random with probability 1/2.

The model is now complete with parameters clearly related to empirical observations,
plausible relative orders of magnitude and sense of variation: Probability p5 is the main ingredient for
the built-in propagation of the two families of LTBs (active states). In turn p1 is obviously related to the
behavior of the system close to decay at and slightly above Reg. The value given to probability p2 will
appear crucial to the 1D reduction of DP in a 2D medium as observed experimentally (Figure 4, right).
Finally, we can anticipate that probability p′4 will control the one-sided/two-sided symmetry-restoring
bifurcation, as it continuously grows from 0 beyond Event A at R ≈ 800.

2.3. Mean-Field Approach

The explanatory potential of the model is first examined by means of a mean-field approximation
which mainly relies on the replacement of fluctuating quantities by space-averaged values and the
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neglect of correlations. The observables involved in the mean-field expressions are the ensemble
averages of the microscopic states 〈S(i, j)〉. Their values at t + 1 are obtained by taking averages
of the governing Equation (2) using the expression of the configurational probabilities given in (3).
By assumption/definition 〈S′〉 is the mean outcome of pCx averaged over all the possible configurations,
where space dependence (i, j) is temporarily kept: 〈S′(i, j)〉 = 〈p[S1,S2,S̄4,S5]

〉. This gives a set of
two equations:

〈B′(i, j)〉 = 1 − 〈
(1 − p1B(i, j))(1 − p2B(i, j + 1))(1 − p′4R(i − 1, j))(1 − p5B(i − 1, j))

〉
, (4)

〈R′(i, j)〉 = 1 − 〈
(1 − p1R(i, j))(1 − p2R(i + 1, j))(1 − p′4B(i, j − 1))(1 − p5R(i, j − 1))

〉
. (5)

The approximation now enters the evaluation of the products on the right hand side of the equation.
Each variable is replaced by its average and the spatial dependence is dropped: 〈B(i, j)〉 �→ 〈B〉
and 〈R(i, j)〉 �→ 〈R〉. Further, correlations are neglected so that the average of a product is just the
product of averages. The expansions of (4) and (5) in powers of 〈B〉 and 〈R〉 are then readily obtained.
Forgetting for a moment the intricacy linked to transversal splitting/collisions, the general expression
for the dummy variables 〈S〉 and 〈S′〉 reads:

〈S′〉 = ∑
k

pk〈Sk〉 − ∑
k1,k2

pk1 pk2〈Sk1〉〈Sk2〉+ h.o.t. (6)

with pk ∈ {p1, p2, p′4, p5} and where h.o.t. stands for the higher order terms, formally cubic, quartic,
etc. The first sum in (6) corresponds to the contribution of the elementary configurations introduced in
Figure 6, and the second sum to binary configurations, in particular the nontrivial ones corresponding
to transversal splittings and collisions examined in Figure 8 (right). Orders of magnitude among
the pk, further support neglecting the contribution of configurations populated with three or more
active sites, involving products of three or more probabilities pk, and among contributions of a given
degree, those not containing p5 when compared to those that do, recalling the assumption p5 � 1
and {p1, p2} � 1 implied by the nearly deterministic propagation of states in position 5 of Figure 6.
A number of terms can, therefore, be neglected in the expanded forms of (4) and (5), which after
simplification read:

〈B′〉 = (p1 + p2 + p5)〈B〉+ p′4〈R〉 − p5(p1 + p2)〈B〉2 − p5
2〈B〉〈R〉 , (7)

〈R′〉 = (p1 + p2 + p5)〈R〉+ p′4〈B〉 − p5(p1 + p2)〈R〉2 − p5
2〈R〉〈B〉 . (8)

This system presents itself as the discrete time counterpart of the differential system introduced in [14]
to interpret the symmetry-breaking bifurcation observed at decreasing Re in the simulations. As a
matter of fact, subtracting 〈B〉 and 〈R〉 on both sides of (7) and (8) respectively, one gets:

〈B′〉 − 〈B〉 ≈ d〈B〉
(dt ≡ 1)

= (p1 + p2 + p5 − 1)〈B〉+ . . . (9)

〈R′〉 − 〈R〉 ≈ d〈R〉
(dt ≡ 1)

= (p1 + p2 + p5 − 1)〈R〉+ . . . (10)

to be compared with system (1,2) in [14], reproduced here for convenience:

dX+

dt
= aX+ + cX− − bX2

+ − dX+X− , (11)

dX−
dt

= aX− + cX+ − bX2− − dX−X+ , (12)

where X± represents what are now the densities 〈B〉 and 〈R〉. The coefficients in (11) and (12) are then
related to the probabilities introduced in the model as a ∝ p1 + p2 + p5 − 1, b ∝ p5(p1 + p2), c ∝ p′4,
and d ∝ p2

5. By omitting the common proportionality constant that accounts for the time-stepping
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inherent in the discrete time reduction (featured by the denominator of left-hand sides in (9) and (10)
as “(dt ≡ 1)),” constants a, b, c, and d will serve as short-hand notation for the corresponding full
expressions in terms of the probabilities pk.

Since fixed points given by the condition 〈S′〉 = 〈S〉 is strictly equivalent to dX±/dt = 0, we can
next take advantage of the analysis performed in [14] and predict a supercritical symmetry-breaking
bifurcation for an order parameter |〈B〉 − 〈R〉| (denoted “A” in [14]) at a threshold given by
ccr = a(d − b)/(d + 3b). This symmetry-breaking bifurcation takes place for p′4 = c > 0, but the model
can deal with the regime below event A at Re ≈ 800 for which p′4 ≡ 0. In that case the bifurcation
corresponding to global decay at Reg takes the form of two coupled equations generalizing (1) for DP.
Using the abridged notation, these equations read:

〈B′〉 = (a + 1)〈B〉 − b〈B〉2 − d〈B〉〈R〉 , 〈R′〉 = (a + 1)〈R〉 − b〈R〉2 − d〈R〉〈B〉 . (13)

In addition to the trivial solution 〈R〉0 = 〈B〉0 = 0 corresponding to laminar flow, we have two
kinds of non-trivial solutions, either single-sided (∗) with 〈R〉 �= 0 and 〈B〉 = 0 or 〈B〉 �= 0 and
〈R〉 = 0, the non-vanishing solution being 〈S〉∗ = a/b, with S = R or B, or double-sided (∗∗) with
〈B〉∗∗ = 〈R〉∗∗ = a/(b + d). A straightforward stability analysis of the fixed points of iterations (13)
shows that the one-sided solution is stable when b < d and unstable otherwise whereas the reversed
situation holds for the two-sided solution. Returning to probabilities, the global stability threshold is
thus given for a = 0; hence, (p1 + p2 + p5)

cr = 1 and the one-sided solution is expected when b < d;
i.e., p1 + p2 < p5. Results of the mean-field approach adapted from [14] to the present formulation
will be illustrated in Figure 14 below.

2.4. Numerical Simulations

While serving as a guide to the exploration of a vast range of parameters, the simplified
mean-field theory developed above is not expected to give realistic results relative to the critical
properties expected near the transition point, whether decay at Reg or symmetry restoration above
Re2. For example, observations suggest that LTB propagation is a dominant feature; hence, p5 � 1
and {p1, p2} is small, leading us to expect stable one-sided solutions systematically. This conclusion,
however, strongly relies on neglecting all terms beyond second degree in (4) and (5) in the evaluation
of the contribution of densely populated configurations, leading to (7) and (8). This is legitimate
only when 〈S〉n � 〈S〉2, i.e., 〈S〉 � 1, that is, close to decay in the case of a continuous
(second-order) transition but not necessarily elsewhere in the parameter space, in particular at the
one-sided/two-sided bifurcation where both 〈R〉 and 〈B〉 are of the same order of magnitude but may
be large. Even when keeping the assumption of independence of contributions to the future state at a
given lattice node, this problem is not easily addressed and, at any rate, has to be properly accounted
for in the presence of stochastic fluctuations, which will be done numerically.

The translation of the probabilistic rules introduced in Section 2.2 using Matlab® is straightforward
once the “B/R/∅” convention is appropriately translated into “+1/−1/0”. No assumption is made
other than the independence of the contributions of the different configurations to the outcome at
a given lattice node, by strict application of the rules expressed through (2) and (3). In particular,
computations involve the contribution of all configurations and not only the unary or binary ones,
as presumed to derive the mean-field equations. Periodic boundary conditions have been applied to
2D lattices of various dimensions (NB × NR), where NB (NR) is the number of sites in the propagation
direction of B (R) active states, with ordinarily NB = NR. At each simulation step, we shall measure the
mean activity of B and R states denoted 〈B〉 and 〈R〉 above and from now on called turbulent fractions,
as Ft(B) = (NBNR)

−1#(B) and Ft(R) = (NBNR)
−1#(R) where #(B) and #(R) are the numbers of sites

in the corresponding active state.
A preliminary study of the model in a small domain has shown that the different transitional

regimes and the symmetry-breaking bifurcation were indeed present as expected from the simplified
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mean-field approach. (We remind that the model contains nothing appropriate for organized
laminar–turbulent regimes for Re > 1200 and is relevant only for the strongly intermittent sparse
LTB networks pictured in Figures 2 and 3). In [14], we argued that the onset of transversal splitting
was the source of genuinely 2D behavior. Accordingly we shall consider the stochastic model in two
steps, below and above the onset of transversal splitting, here associated with p′4 ≡ 0 and p′4 > 0
respectively. Furthermore, in the simulations the LTBs were seen to propagate obliquely with respect
to the background downstream current. This propagation is nearly all contained in the probability
attached to configuration C5 (p5 for propagation and 1− p5 for decay or slowing-down), and to a lesser
extent influenced by the contribution of configuration C1, mostly associated with in-line longitudinal
splitting. We shall account for the limited sensitivity of the propagation speed to the value of Re to fix
p5 constant and close to 1, more specifically p5 = 0.9, and let other parameters vary. The role of p2 and
p′4, both related to 2D features, will be studied separately in the two next sections.

3. Before Onset of Transversal Splitting, P′
4 = 0

3.1. Coarsening from Two-Sided Initial Conditions

In the absence of transversal splitting, changes in the population of each state only comes from
transversal collisions. As documented in [14], when starting from an initial condition with two
similarly represented orientations, collisions lead to the formation of domains uniformly populated by
one of each species, following from a majority rule, with interactions limited to the domain boundaries.
A coarsening takes place with one species progressively disappearing to the benefit of the other,
leaving a single-sided state at large times. The process is illustrated here using simulations of the
model with p5 = 0.9, p1 = 0.1, p2 = 0.07, values known from the preliminary study to produce a
sustained nontrivial final state.

The decay from a fully active state populated with a random distribution of B and R states in equal
proportions is scrutinized in a 256× 256 domain with periodic boundary conditions. Figure 8 illustrates
a particularly long transient displaying the different stages observed during a typical experiment.

The upper panel displays the time series of the turbulent fractions for each species, B and R, for
a two-sided high-density initial condition, Ft(B) + Ft(R) = 1, Ft(B) 	 Ft(R) 	 0.5. Contrasting with
the monotonic variation observed when starting from one-sided initial conditions, either increasing
from a low density of active states (Ft = 0.05) or decreasing from a fully active configuration (Ft = 1),
the turbulent fractions change in a more complicated way that is easily understood when looking
at the bottom line of snapshots. The total turbulent fraction first decreases due to the dominant
effect of collisions. These collisions tend to favor a spatial modulation of the activity amplifying
inhomogeneities in the initial conditions. This distribution results from the majority effect expressing
the local stability of one-sided states predicted by the mean-field analysis. A periodic pattern already
appears at t = 100, with bands oriented parallel to the second diagonal of the square domain. B states
move right along the horizontal axis, and R states up along the vertical axis, at the same average speed
so that the pattern drifts along the first diagonal of the domain. Regions where B or R dominate are
locally stable against destructive collisions and activity is limited to B/R interfaces. After a while,
splittings begin to counteract collisions and an overall activity recovers, here for t ≈ 250. The local
density of B and R states increases inside bands that become better defined, reaching a sustained
regime with two R–B alternations, wide and narrow, at t 	 1500. This configuration is nearly stable
and slowly evolves only due to the erosion of narrowest bands at the R/B interfaces. At t ≈ 5500 these
bands disappear by merging, leaving two bands, B wide and R narrow. The same slow erosion process
leads to the final homogeneous B regime by decay of the R band at t ∼96,000. The two successive
band decays take place at roughly constant total turbulent fraction with fast adjustment at the band
decay, up to the final single-sided turbulent fraction. The asymptotic state is independent of the way it
has been obtained, from one-sided or two-sided initial conditions.
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Figure 8. (Top): Time series of the turbulent fractions for a simulation from a fully active initial
configuration with B and R states in equal proportions—blue and red in graphs, respectively; the dotted
black trace is for the total turbulent fraction. Two simulations starting from low (Ft = 0.05, cyan) and
high (Ft = 1, magenta) density one-sided states are displayed for comparison. (Bottom): Snapshot of
state during the simulations from the two-sided initial condition, at t = 100 during initial decay,
at t = 5500 with two pairs of active bands of each color, at t = 13,000 when the narrowest bands merge
and disappear, at t = 96,000 when the R active band disappears, leaving a uniform B state.

The long duration of the transient taken as an example is due to the near stability of the rather
regular pattern building up after the initial fast decay. This property is in fact the result of a geometrical
peculiarity of the square domain: B and R states travel statistically at the same speed through the
domain, horizontally and vertically, respectively, so that the band integrity is maintained despite
propagation and the evolution controlled by collisions at the B–R and R–B interfaces only. The observed
slow erosion process only results from large deviations among collisions. In rectangular domains,
the propagation times become different and the symmetry of the two interfaces is lost. A bias results,
which induces a systematic erosion of bands and a shorter transient duration. Whatever the aspect
ratio, one of the states is always ultimately eliminated and the last stage of the transient corresponds
to a trend toward a statistically uniform saturated one-sided regime with a turbulent fraction strictly
independent of the shape. Accordingly, to save the time corresponding to the transient, in the
next section we will study the decay of the one-sided regime by starting from random one-sided
initial conditions.

All these features nicely fit the empirical observations discussed at length in [14] where similar
transients were obtained below the onset of transversal splitting—in much smaller effective domains
and with far fewer interacting LTBs, however (Figure 2, right panel, and Figure 4, left panels).
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3.2. Decay: 1D vs. 2D

The model is designed to exemplify a decay according to the DP scenario in a two-dimensional
setting, with specificities linked to the anisotropic propagation properties of the LTBs in transitional
channel flow, and, in particular, propose an interpretation for the observation of 1D-DP exponents in
the absence of transversal splitting (p′4 = 0). Accordingly, we examine the role of transverse diffusion
(parameter p2) modeling the slight upstream shift that may affect LTBs at longitudinal splitting.
We focus on a set of experiments with p5 = 0.9, p2 fixed, and control parameter p1. When p2 cancels
exactly, it is easily understood that transversal expansion is forbidden: An active B state at (i, j + 1)
or R state at (i + 1, j) at time t cannot give birth to an active state of the same kind at (i, j) at t + 1.
The evolution stems from processes associated with configuration C5 with probability p5 or C1 with
probability p1. These processes change occupancy only along direction i for B states, and j for R states,
precisely in the direction corresponding to the single-sided regime considered (after termination of the
transient). The dynamics are, therefore, strictly one-dimensional and decay is expected to follow the
1D-DP scenario. In contrast, introducing some transverse diffusion (p2 �= 0) immediately gives some
2D character to the dynamics. This is illustrated in Figures 9–12.

We consider first p2 non-zero and relatively large p2 = 0.1. Figure 9 displays the behavior of the
turbulent fraction as a function of p1.
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Figure 9. (Left): Time series of the turbulent fraction at different values of p1; average over 5 (10)
independent simulations (p1 = 0.0584 ≈ pc

1, black trace). (Right): Mean value of the turbulent
fraciton at stationary state as a function of p1 (original data). Inset: once raised to power 1/β,
with β = 0.584 ≈ βDP for D = 2, the mean turbulent fraction tends to 0 linearly with an extrapolated
threshold pc

1 = 0.05843.

The left panel illustrates the decrease of the turbulent fraction with the number of steps from a
uniformly fully turbulent single-sided state (Ft = 1 at t = 0) in a domain D = (192× 192), showing the
saturation to a finite value 〈Ft〉 above threshold, a near power-law decay close to threshold, and an
exponential decay below. The right panel presents the mean of Ft after elimination of an appropriate
transient as a function of p1, for simulations in domains up to 512 × 512 for the lowest values of Ft.
Once fitted in the range p1 ∈ [0.058, 0.064] against the expected power law behavior 〈Ft〉 = a(p1 − pc

1)
β

one gets a = 3.213 (2.936, 3.489), pc
1 = 0.05844 (0.05842, 0.05845), β = 0.5811 (0.566, 0.5962), in very

good agreement with the value βDP ≈ 0.584 when D = 2 [2]. This is confirmed in the inset of Figure 9
(right) showing 〈Ft〉1/0.584 as a function of p2 for Ft small, the linear variation of which extrapolates to
zero for p1 ≈ 0.05843.

Having a good estimate of the threshold one can next consider the decay of the turbulent fraction,
which is supposed to decrease as a power law at criticality, p1 = pc

1: Ft ∼ t−αDP with αDP = βDP/ν‖DP
where ν‖DP

≈ 1.295; hence, αDP ≈ 0.451 [2]. Figure 10 (left) shows that this is indeed the case for the
compensated turbulent fraction Ft × tαDP , up to the moment when fluctuations become too important
due to size effects and lack of statistics. When p1 is different from pc

1 but stays sufficiently close to it,
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the variation of the turbulent fraction keeps trace of the critical situation, except that the number of
steps needs to be rescaled by the distance to threshold due to critical slowing down: the time scale τ

diverging as (p1 − pc
1)

−ν‖ , number of steps is rescaled upon multiplying it by (p1 − pc
1)

ν‖ . Figure 10
(right) indeed shows a good collapse of the compensated curves as a function of the rescaled number
of steps when using the exponents corresponding to 2D-DP, αDP ≈ 0.451 and ν‖DP

≈ 1.295 [2].
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Figure 10. (Left): Power law decay of the turbulent fraction at p1 = 0.0584 ≈ pc
1 = 0.05843:

compensation with αDP confirms the 2D nature of the process. (Right): Critical behavior near
threshold: compensated turbulent fraction 〈Ft〉 × tαDP as a function of the number of steps rescaled
by (p1 − pc

1)
ν‖DP for p1 ∈ [4.5:0.2:6.5] ×10−2 surrounding the presumed critical value pc

1, with the
exponents corresponding to DP for D = 2.

We now consider p2 = 0 which, as argued earlier, should fit the critical behavior of directed
percolation when D = 1. In that case, when using square or nearly-square rectangular domains,
size effects turn out to be particularly embarrassing as will be illustrated quantitatively soon.
However, we can take advantage of the fact that, assuming propagation in the one-sided regime,
e.g., along the direction for B active states, NB being the corresponding number of sites involved,
the computed turbulent fraction is, in fact, the average of the activity over NR independent
lines in the complementary direction, while still being sensitive to size effects controlled by NB.
Accordingly, at given computational load (proportional to NB × NR), one can freely increase the size
artificially in considering a strongly elongated domain D′ = [(NB × k)× (NR/k)], with k sufficiently
large that the average over NR/k independent lines still make sense from a statistical point of view,
while postponing size effects. With reference to a (192 × 192) domain, we have obtained good results
with k = 16, i.e., 3072 × 12 up to k = 64, i.e., 12288 × 3.

Though this choice is a bit extreme, we present here results about 1D-DP criticality with the
12288 × 3 domain in Figure 11. The left panel displays the variation of the mean turbulent fraction
with p1, which has been fitted against the expected power law, 〈Ft〉 = a(p1 − pc

1)
β. One gets a = 1.473

(1.446, 1.5), pc
1 = 0.2682 (0.2682, 0.2683), β = 0.2701 (0.2664, 0.2738). This value of β is quite compatible

with the value βDP ≈ 0.276 when D = 1 [2]. Furthermore, accepting this value, a linear fit of 〈Ft〉1/β

with p1 then provides an extrapolated threshold pc
1 = 0.26817. As seen in the right panel of Figure 11,

in the neighborhood of pc
1 a good collapse is obtained for the compensated turbulent fraction as

a function of the rescaled number of steps when using the exponents α = 0.159 and ν‖ = 1.734
corresponding to 1D-DP [2].
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Figure 11. (Left): Mean turbulent fraction at stationary state as a function of p1. Once raised
at power 1/β with β = 0.276 ≈ βDP for D = 1, the mean turbulent fraction tends to 0
linearly with an extrapolated threshold pc

1 = 0.26817. (Right): Critical behavior near threshold:
compensated turbulent fraction 〈Ft〉 × tαDP as a function of the number of steps rescaled by
(p1 − pc

1)
ν‖DP for p1 ∈ [0.260:0.002:0.280] surrounding the presumed critical value pc

1, with the
exponents corresponding to DP for D = 1.

Size effects already alluded to above are illustrated in Figure 12.
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Figure 12. Size effects when p2 = 0. (Left): Raw data showing late exponential decay and progressive
prevalence of power-law decay as NB grows. (Right): Rescaled data. According to scaling theory,
the appropriate scale for the number of steps (time t) is NB

z/D; hence, t �→ t/Nz/D
B , with z ≈ 1.58

when D = 1, while the turbulent fraction has to be compensated for decay as Ft × tα with α = 0.159.
The collapse of traces illustrates universality with respect to 1D-DP.

Displaying the turbulent fraction as a function of the number of steps for linear size NB from small
systems to relatively large ones (NB = 64 up to 768) in lin-log scale, the left panel illustrates the late
stage of decay right at criticality as obtained from the previous study summarized in Figure 11. It is
seen that, in the time-window considered (0, 105) the exponential dependence observed at small sizes
is progressively replaced by the power-law behavior expected at criticality at infinite size. Size effects
are also ruled by scaling theory; see, e.g., [2] for DP. They relate to correlations in physical space that
are associated with exponent ν⊥. The ratio z = ν‖/ν⊥ is called the dynamical exponent and theory
predicts that, for finite size systems, scaling functions depend on time with the number of sites as
tD/z/N where N is the total number of sites. In the (quasi-)one-dimensional regime we are interested
in, D = 1, N is just NB and z = 1.58 [2]. The right panel of Figure 12 indeed shows extremely good
collapse of the traces corresponding to those in the left panel, once the number of steps is rescaled as
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t/N1.58
B and the turbulent fraction is compensated for decay as Ft(t)× t0.159, both exponents taking on

the 1D-DP values already mentioned.
Of interest in the context of channel flow decay, the crossover from 2D behavior for p2 sizable

(e.g., p2 = 0.1, Figures 9 and 10) to 1D behavior for p2 = 0 is of interest since p2 is associated with the
progressive importance of off-aligned longitudinal splitting as Re increases. A series of values of p2,
decreasing to zero roughly exponentially, has been considered and the corresponding DP threshold
has been determined as given in Table 1 and shown in Figure 13 (left).

Table 1. Values of p1 at criticality at given p2 (p5 = 0.9 and p′4 = 0).

p2 0.0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1

pc
1 0.2682 0.2585 0.2548 0.2476 0.2404 0.2302 0.2111 0.1907 0.1629 0.1109 0.0584

Except for p2 = 0 determined as explained above (Figure 11), these values have been obtained in
domains 192 × 192 with averaging over 10 independent experiments. Figure 13 (right) displays
the averaged time-series of the turbulent fraction at criticality for each of these values of p2,
once compensated for decay according to 2D-DP (α = 0.451).
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Figure 13. Crossover p2 → 0. (Left): Criticality condition separating the sustained active regime
from the absorbing regime. (Right): A DP-like process governs the decay when the line is crossed,
the characteristics of which can be understood from the asymptotic power-law decrease of the turbulent
fraction as a function of time, here compensated by tα, with α = αDP(D = 2).

The results for p2 = 0, evolving as tα2D−α1D are marked with (∗) and (∗∗) are obtained in the
192 × 192 domain and in the 3072 × 12 quasi-1D domain, respectively. In the time span considered
here, the latter is free from finite-size effects which is not the case of the former with the corresponding
compensated data decaying exponentially at the largest times. It is easily seen that, except for p2 = 0,
the compensated time series display a wide plateau indicating that 2D behavior holds for a certain
amount of time. Whereas traces for p2 = 0.1 and p2 = 0.05 cannot be distinguished, for smaller values
of p2 the plateau regime starts at larger and larger times and develops after having followed the 1D
trace for longer and longer durations, clearly indicating the influence of the anisotropy controlling the
effective dimensional reduction. A similar consequence of the crossover affects the decrease of the
mean turbulent fraction with the distance to threshold but, apart from this qualitative observation,
no reliable information can be obtained on exponent β owing to the difficulty to reach the relevant
critical regime.

We shall not document the case when p1 = 0 and p2 varies. This situation is not observed
in the simulations since off-aligned longitudinal splitting is conspicuous only sufficiently above
Reg, in the vicinity of which decay is fully accounted for by in-line longitudinal splitting modeled
by a variable p1 �= 0, but the possibility remains, at least conceptually. The decay when p1 = 0

143



Entropy 2020, 22, 1348

happens to follow the same 1D-DP scenario though the argument is slightly less immediate. It relies
on the observation that no growth is possible in the propagation direction of a given LTB species,
whereas off-aligned longitudinal splitting (p2 �= 0) permits growth and diffusion in the transverse
direction. Under the combined effects of transversal diffusion (p2 small) and propagation (p5 large),
near-threshold, the sustained turbulent regime is made of quasi-1D clusters that are aligned with and
drift along the diagonal of the lattice, i.e., the stream-wise direction, and get thinner and thinner when
decaying, supporting the reduction to a “D = 1” scenario. Here, the trick used for p2 = 0 does not
work, and simulations in square domains are necessary with no escape for size effects which hinders
the observation of the critical regime. Nevertheless, pc

2 when p1 = 0 seems close to pc
1 when p2 = 0,

suggesting some symmetry between p1 and p2.
The relevance of the results with p′4 ≡ 0 to transitional channel flow will be discussed in

the concluding section. We now turn to the general two-sided case with transversal collisions
and splittings.

4. Beyond Onset of Transversal Splitting, P′
4 > 0

In statistical thermodynamics systems, critical properties at a second order phase transition
leads to define a full set of exponents governing the variation of macroscopic observables close to
criticality [26]. The concept of universality was introduced to support the observation that these
systems can be classified according to the value of their exponents depending on a few qualitative
characteristics, the most prominent ones being the symmetries of the order parameter and the
dimension of physical space. This viewpoint can be extended to far-from-equilibrium systems such as
coupled map lattices (CMLs) displaying nontrivial collective behavior. The associated ordering
properties present many characteristics of thermodynamical critical phenomena at equilibrium.
Universality classes beyond those known from equilibrium thermodynamics have been shown to exist
with different sets of exponents. An additional criterion, the synchronous or asynchronous nature of
the dynamics, has been found relevant to distinguish among them [27]. In the context of the present
model, as soon as probability p′4 grows from zero, fully one-sided configurations previously reached
after the termination of a possibly long transient are now unstable against the presence of states with
the complementary color. The stationary regime that develops in the long term can be, either ordered,
i.e., one-sided with one dominant active state (B or R), or disordered, i.e., two-sided with statistically
equal fractions of each active state (B and R). Furthermore, a transition at some critical value p′4

c is
expected to take place on general grounds. This gives us the motivation to study the response of the
model to the variation of p′4 as a critical phenomenon beyond the mean-field expectations of Section 2.3.

The results of the mean-field approach, system (11) and (12), rephrased from [14], are depicted
in Figure 14 (left). Upon variation of parameter c representing p′4 up to an unknown rescaling factor,
all along the one-sided regime (c < ccr), the total turbulent fraction is seen to decrease while the order
parameter measuring the lack of symmetry similarly decreases to zero according to the usual Landau
square-root law. Obviously symmetrical, the two-sided regime (c > ccr) is then characterized by a
total turbulent fraction that regularly grows due to the contribution of splitting, whatever the type of
active state.

From now on, we shall simply refer to the turbulent fractions and other statistical quantities as
their time average over a sufficiently long duration, up to 2 × 106 simulation steps, after elimination
of an appropriate transient, up to 105 steps, the largest values being necessary close to the transition
point owing to the well-known critical slowing down. On the one hand, the total turbulent fraction
is obviously defined as Ft(B) + Ft(R), where the over-bar denotes the time averaging operation.
(Later on, we shall omit this over-bar when no ambiguity arises between the instantaneous value of a
quantity and its time average, especially for the axis labelling in figures.) On the other hand, the lack
of symmetry can be measured by the signed difference averaged over time Ft(B)− Ft(R), able to
distinguish global B orientation from its R counterpart, or rather its absolute value

∣∣∣Ft(B)− Ft(R)
∣∣∣

since we are only interested in the amplitude of the asymmetry (called ‘A’ in [14]) and not in which

144



Entropy 2020, 22, 1348

orientation is dominant, the two being equivalent a priori for symmetry reasons. However, due to
the finite size of the system, in the symmetry-broken regime close to threshold, orientation reversals
can be observed as illustrated later (Figure 15), so that blind statistics in the very long durations are
no longer representative of the actual ordering. Like in thermal systems [28] or their non-equilibrium
counterparts [27], it is thus preferable to define the order parameter through the mean of the unsigned
difference: |Ft(B)− Ft(R)| . Corresponding simulation results are displayed in Figure 14 (right) for a
system of size (256 × 256). The general agreement between the two diagrams is remarkable, up to
an unknown multiplicative factor translating c into p′4, as discussed earlier. One can notice that the
order parameter is minimal but not zero in the two-sided regime, which is due to fluctuations and the
fact that the two operations of averaging over time and taking the absolute value do not commute.
Finite-size effects are also apparent as a rounding of the graph at the location of the would-be critical
point in the thermodynamic limit.
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Figure 14. (Left): Bifurcation diagram of system (11) and (12) after [14]. The total turbulent fraction is
Ft(B) + Ft(R) and the order parameter characterizing the transition is abs(Ft(B)− Ft(R)). A standard
supercritical bifurcation is expected for this quantity with abs(Ft(B) − Ft(R)) ∝ (cc − c)1/2 in the
one-sided regime, whereas Ft(B) = Ft(R) in the two-sided regime. (Right): Time average of turbulent
fractions as functions of the control parameter p′4 after elimination of an appropriate transient as
obtained from simulations of the stochastic model.

The current justification for taking the absolute value is that the time between orientation reversals
diverges with the system size and the phase transition only takes place once we have taken the
thermodynamic limit of infinitely large systems studied over asymptotically long durations [28].
Accordingly, very long well-oriented intermissions can be considered as representative of the
symmetry-broken regime. The problem is illustrated in Figure 15 displaying the time series of
Ft(B) − Ft(R) and histograms of |Ft(B) − Ft(R)| for p′4 = 0.0121, still in the one-sided but already
alternating regime, next for p′4 = 0.0125 and 0.0126, where one can notice a change in the shape of
the histogram, and finally for p′4 = 0.0140, sufficiently deep inside the two-sided regime where the
histogram displays a sharp maximum at the origin. On this basis one could use the histograms
of the “order parameter” and determine the threshold from the position of its most probable
value, whether non-zero in the symmetry-broken state or at the origin when symmetry is restored.
This procedure would give p′4

c ≈ 0.01255.
The symmetry-breaking bifurcation can now be studied beyond the mean-field description

as other collective phenomena studied in equilibrium and far-from-equilibrium statistical physics:
In addition to the order parameter, the variation of which leads to the definition exponent β in the
ordered regime, another observable of interest is the susceptibility measuring the response to an
applied field conjugate to the order parameter, vis. M = χH with the magnetization M coupled to
magnetic field H in the case of magnets. The susceptibility diverges near the critical point, with leads
to the definition of two exponents γ and γ′ in the disordered and ordered regime, respectively.
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Universality implies γ = γ′, as can already easily be derived in the mean-field framework. When a
conjugate field cannot be defined, one uses the property that fluctuations take the instantaneous value
of the order parameter away from its average value, which can be understood as resulting from the
response to a conjugate field. This helps one to relate the susceptibility to the variance of fluctuations
of the order parameter. The identification is up to a multiplication by the “volume” of the system that
has to be introduced in order to compare the results from systems with different sizes. This is what
will be done here; hence, χ = NBNR × var (|Ft(B)− Ft(R)|). As shown in Figure 16 (top), this quantity
displays a sharp maximum, indicative of the singularity expected at the thermodynamic limit. In a
finite-size but large system, the critical point is then estimated from the position of the maximum of
the susceptibility. Here, this gives p′4

c ≈ 0.0123 slightly smaller but compatible with the value obtained
above from the examination of the histograms. Unfortunately, this discrepancy due to size-effects
forbids us to determine exponents β and γ with some confidence.
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Figure 15. Time series of the instantaneous mean orientation as measured by Ft(B) − Ft(R) in a
256 × 256 domain for p1 = p2 = 0.1 and p5 = 0.9, at p′4 = 0.0121 below the onset of the one-sided
regime, at p′4 = 0.0125 and 0.0126 near the bifurcation point, and at p′4 = 0.0140 in the two-sided
regime. Bottom line: Corresponding histograms of |Ft(B)− Ft(R)|. The histograms were all built
using 75 bins and contain the same number of points for 105 < t < 2 × 106, but the vertical scales are
not identical.

Having in mind results of the mean-field approach, namely, β = 1/2 and γ = 1, we can,
however, estimate the range where stochastic fluctuations have nontrivial effects. The bottom-left
panel of Figure 16 displays the variation of the order parameter already shown in Figure 14 (right),
but now squared in order to show that, far from the critical point, the system fulfils the mean-field
square-root prediction to an excellent approximation, with an extrapolated threshold p′4

MF 	 0.0133,
shifted upwards with respect to the estimates obtained from the simulations p′4

c. 	 0.0123–0.0125.
In the same way, the divergence of the susceptibility with exponents γ = γ′ = 1 expected from

the mean-field argument shows up upon retreating the data already given in Figure 16 (top) and
plotting 1/χ as a function of p′4. This is done in Figure 16 (bottom-right) showing the same linear
variation of 1/χ below and above the transition point, in agreement with the theory. The extrapolation
of the linear fits on both sides of the transition yield p′4

c ≈ 0.0127 in reasonable agreement with
the value obtained from the order parameter variation in the same conditions and definitely larger
than the empirical values. Clearly, deviations seen in the boxed parts of these two figures warrant
further scrutiny, motivating our current approach via finite-size scaling theory [28] in search for
universality. On going work attempts at a full characterization of the critical regime through exponents
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determination. Though local agents do not behave as Ising spins, symmetries are basically identical,
so that the equilibrium 2D Ising universality class or its non-equilibrium extension [27] might be
relevant. We shall discuss this further below.
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Figure 16. (Top): Variation of the susceptibility χ as a function of p′4. (Bottom): Evidence of
mean-field behavior away from the critical regime: The order parameter squared (left) and the
inverse of the susceptibility (right) both vary linearly with p′4 sufficiently far from the mean-field
extrapolated threshold.

5. Discussion and Concluding Remarks

Coming long after a conjecture by Pomeau [1], empirical evidence is growing that the
ultimate stage of decay of wall-bounded turbulent flows towards the laminar regime follows a
directed-percolation scenario. The evidence comes from laboratory experiments and direct numerical
simulation of the Navier–Stokes equations but this support is still far from a theoretical justification.
The recognition of the globally subcritical character of nontrivial states away from laminar flow and
the elucidation of the structure of coherent structures involved in these nontrivial states [29] were
first steps in this direction. The next ones would be the elucidation of special phase space trajectories
from sustained localized turbulence accounting for the decay to laminar regime, on one side, and to
proliferation via splitting, on the other side, using specific algorithms for the detection of rare events
and the determination of transition rates that can be attached to them (see [30] for an illustrative
example and references). These are heavy, and possibly not much rewarding, tasks but it would be nice
to be able to attach numbers to specific events such as the splittings illustrated in Figure 3 or Figure 4.
We have chosen to short-circuit such studies through analogical modeling, by which seemed more
appropriate to make further progress regarding the thermodynamic limit and associated universality
issues. One should though consider this practice as providing hints and not a demonstration that the
results will apply to the case under study.

In the present paper, the problem has been considered from this last viewpoint, assuming that
the ultimate decay stages were amenable to the most abstract level of implementation in terms of
probabilistic cellular automata [2], following [20,22]. We focussed on the specific case of channel flow
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that offers a particularly rich transitional range. Its upper part displays regular non-intermittent
laminar–turbulent patterns that can better be described using the tools of pattern-forming
theory [15,25,31]. The lower transitional range is characterized by their spatiotemporally intermittent
disaggregation, to which the considered type of modeling is particularly relevant. The analogy
alluded to above has, however, been severely constrained to fit the empirical observations. The main
assumptions were the introduction of two types of active agents attached to each kind of localized
turbulent bands propagating in one of the two possible orientations with respect to the stream-wise
direction. Interactions were assumed local so that the probabilistic cellular automata evolved simple
nearest neighbors von Neumann neighborhoods (Figures 5–7). Scrutiny of simulation results lead to the
introduction of a certain number of probabilities governing the fate of single-occupancy neighborhoods.
Multiple-occupancy was treated as a combination of single-occupancy configurations supposedly
independent, reducing the number of parameters to be introduced and drastically simplifying
the interactions (at any rate impractical to estimate in detail). A clear-cut physical interpretation
was, however, given to each parameter in the set reduced to four, accounting for every possible
stochastic event affecting the agents, namely, propagation, decay, and splitting, either longitudinal
or transversal. A mean-field study of the model, neglecting the nontrivial effects of stochastic
fluctuations, reproduced the empirical bifurcation diagram of channel flow at a qualitative level
(Figure 14). Transitions have been studied quantitatively by numerical simulation of the stochastic
model considering variations of these parameters as putative functions of the Reynolds number Re,
highlighting three situations:

In the two first cases, the parameter p′4 associated with transversal splitting, i.e., the nucleation of
a daughter with orientation opposite of its mother, was switched off, as inferred from observations
for Re � 800, where the single-sided regime is well established. The coarsening observed when
starting from two-sided initial conditions was faithfully reproduced (Figure 8) and decay seen to
follow the directed-percolation expectations. The specific conclusion was that, when parameter p2 is
no-zero, with p2 attached to longitudinal but upstream-shifted splitting, the scenario is typical of a
2D system with a high level of confidence, whereas when it is strictly zero, i.e., the daughter strictly
aligned with the mother, the decay is 1D. A cross-over is observed when p2 is reduced, that manifests
itself as a transient reminiscent of 1D behavior, the longest the closest p2 is to zero. Simulations of
channel flow have shown that exponent β controlling the ultimate decay of the turbulent fraction
was that of 1D directed percolation [16]. Since parameter p2 is attached to the slight upstream
trajectory shift experienced by a daughter upon splitting from its mother, this observation strongly
suggests that the trajectory shift is mostly irrelevant and that localized turbulent bands propagate
along independent tracks so that the end result is just a mean over the direction complementary to
their propagation direction.

The last situation we have considered corresponds to p′4 �= 0, with transversal splitting on.
This parameter measures the frequency of transversal splitting and is expected to increase with
Re. Accordingly, the system can change from one-sided when p′4 is zero or small, to two-sided
when it is large. The transition has indeed been observed and mean-field predictions were well
observed far from the transition point. Unfortunately, while the effect of fluctuations close to that
point was obvious, strong size effects have forbidden us to approach it and evaluate critical corrections.
This is the subject of on-going work within the framework of finite-size scaling theory [2,27,28].
This follow-up should allow us to establish the universality class to which this transition belongs.
Here, the left-right symmetry of localized turbulent bands with respect to the stream-wise direction is
reminiscent of the up-down symmetry of magnetic systems at thermodynamic equilibrium, which may
lead to conjecture the relevance of the 2D Ising class [26]. This class appears also applicable to
coupled map lattices with the same up-down symmetry when updated asynchronously, one site
after the other, close to randomization by thermal fluctuations. In contrast, another universality
class is obtained with synchronous update [27]. Here, the situation is unclear: on the one hand,
configurations are treated as a whole in a simulation step, which tips the scales in favor of a synchronous
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update model (in line with what is expected for a problem primitively formulated in terms of partial
differential equations); on the other hand, spatial correlations generated by the deterministic dynamics
governing the coupled map lattices are weakened by the independence of random drawings at the
local scale, which can be viewed as a source of asynchrony in the probabilistic cellular automata. In its
application to the symmetry-breaking bifurcation in channel flow, this uncertainty is, however, only of
conceptual importance in view of size effects: owing to the large and unknown time-scale rescaling
that allowed us to pass from flow structures to local agents in the model and to the narrowness of the
region where critical corrections are expected, the mean-field interpretation developed in [14] appears
amply sufficient.

In the three cases that were considered in detail (specific cuts in the parameter space),
the transitions remained continuous. However, this may not always be the case since there are known
example of similar systems displaying transitions akin to first-order ones [24]. Even while keeping the
same general frame, a plethora of circumstances of physical interest can be mimicked: propagation can
be made more stochastic by decreasing p5, splitting rules not observed in channel flow can be
considered, e.g., with p3 or p4 different from zero, etc., though it seems hard to anticipate situations
where the universal features pointed out here would not hold. In contrast, when dealing with highly
populated configurations, even in the simple nearest-neighbor von Neumann setting, rules can be made
more complicated by introducing the neighborhood’s degree of occupation. This introduction might
help us to account also for the upper part of the transitional range of wall-bounded flows characterized
by the emergence of regular patterns in the same stochastic framework [11]. The construction of the
present model is, of course, fully adapted to the study of universality in the framework of the theory of
critical phenomena in statistical physics, especially directed percolation. Still, we are confident that the
kind of approach illustrated here brings a valuable contribution to the understanding of the transition
to turbulence, by rationalizing its key ingredients in an easily accessible way.
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Abstract: Despite its importance in cardiovascular diseases and engineering applications, turbulence
in pulsatile pipe flow remains little comprehended. Important advances have been made in the recent
years in understanding the transition to turbulence in such flows, but the question remains of how
turbulence behaves once triggered. In this paper, we explore the spatiotemporal intermittency of
turbulence in pulsatile pipe flows at fixed Reynolds and Womersley numbers (Re = 2400, Wo = 8)
and different pulsation amplitudes. Direct numerical simulations (DNS) were performed according
to two strategies. First, we performed DNS starting from a statistically steady pipe flow. Second,
we performed DNS starting from the laminar Sexl–Womersley flow and disturbed with the optimal
helical perturbation according to a non-modal stability analysis. Our results show that the optimal
perturbation is unable to sustain turbulence after the first pulsation period. Spatiotemporally
intermittent turbulence only survives for multiple periods if puffs are triggered. We find that puffs in
pulsatile pipe flow do not only take advantage of the self-sustaining lift-up mechanism, but also of
the intermittent stability of the mean velocity profile.

Keywords: unsteady shear flow; turbulence intermittency; helical instability; puff dynamics

1. Introduction

The dynamics and intermittency of transitional turbulence in statistically steady pipe flow have
been extensively studied for over a century [1–4], and the underlying mechanisms are reasonably well

understood [5]. The only control parameter is the Reynolds number (Re = 〈ub〉tD
ν ), which quantifies

the relative magnitude of inertia and viscous forces in the system. Here, ub, D, and ν denote the bulk
velocity, the pipe diameter, and the fluid’s kinematic viscosity, respectively. Angled brackets indicate
an averaging operation with respect to time (t). Although statistically steady pipe flow is linearly
stable [6,7], turbulence can be triggered with finite-amplitude perturbations [1,8]. Independently of
their type [9], if successful, these perturbations result in spatially localised turbulent puffs, provided
that the Reynolds number is not too high [10]. More specifically, for Re < 2250, puffs can remain
in equilibrium for long times until they either proliferate or decay. Both processes are stochastic
(memoryless) and, beyond the critical point (Re > 2040), ultimately lead to patterns consisting of
several puffs separated by quiescent flow regions [5,11]. For Re > 2250, the spatiotemporal dynamics
become much richer. Here, puffs may grow and split into two, as for lower Reynolds numbers, or
expand continuously to become slugs (see Figure 1). In addition, laminar holes may appear inside the
slugs and eventually close, leading to a merger of structures [12]. Figure 2a provides a representation
of the resulting spatiotemporally intermittent behaviour of localised turbulent structures (red) and
laminar islands (blue) at Re = 2400.
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Figure 1. Instantaneous representation of localised turbulent structures in a statistically steady pipe
flow (Re = 2400, A = 0.0). Grey surfaces represent low-speed streaks (u′z = −0.4ub) and blue/red
surfaces represent positive/negative axial vorticity (ωz = ±6 ub

D ). (a) Puff splitting. (b) Single puff.
(c) Weak slug. The exact location and time for each snapshot are indicated in Figure 2a. The direction
of the mean bulk flow (us) is always from left to right.

In many systems, internal fluid transport is statistically unsteady. Pumps never run perfectly
uniformly, blood flow in arteries is pulsatile (due to the systolic contractions of the heart), and air
oscillates in and out of the lungs while breathing. A simple mathematical model for these examples is
pipe flow driven at a harmonically varying rate

ub(t) = 〈ub〉t
(
1 + A · cos

(
2π t

T

))
. (1)

In this case, two more control parameters come in to play in addition to the Reynolds number.

The Womersley number (Wo = D
2

√
2π
Tν ) quantifies the relative magnitude of the viscous time scale with

respect to the time scale of the imposed flow pulsation, i.e., the oscillation period T. The amplitude
(A = uo

us
) is the relative strength of the oscillating component of the flow (uo) with respect to the steady

component of the flow (us = 〈ub〉t). For A = 0, the statistically steady case is recovered, whereas for
large A, the purely oscillatory flow is approached (as the steady part becomes negligible). According to
Sexl [13] and Womersley [14], there is an analytical solution to the Navier–Stokes equations for laminar
flow through a smooth pipe and single harmonic driving. The Sexl–Womersley (SW) velocity profile
(uSW(r, t)) can be added to the (parabolic) Hagen–Poiseuille profile to obtain an analytical (laminar)
solution for any combination of Wo and A. As an example, we show in Figure 3a the temporal evolution
of uSW for a pulsatile pipe flow at Wo = 8 and A = 1.

Understanding the transition to turbulence in statistically unsteady pipe flows remains incomplete,
although progress has recently been made [15–17]. The puff dynamics for relatively small amplitudes
(A ≤ 0.5) are well understood. For Wo ≤ 5, the flow stays for a long time in the low Reynolds
number regime. A low instantaneous Re enhances the decay of puffs, and hence, puffs only survive
if the mean Reynolds number is substantially increased with respect to the steady case [15,16]. For
Wo ≥ 12, the minimum Reynolds number necessary for puffs to survive tends asymptotically to the
one for statistically steady pipe flow [15,16,18,19]. For intermediate Womersley numbers, the threshold
decreases smoothly from the low to high Wo regime [15,16]. This can be seen, for example, in Figure 8
of Xu et al. [15].

Puffs, however, are not the only mechanism through which pulsatile pipe flow may become
turbulent. A new instability was discovered recently in laboratory experiments by Xu et al. [17]. In
their experiments, curvature, misalignment of pipe segments, small contractions, and, in general,
finite-size geometric imperfections led to the cyclic development of sudden bursts of turbulence. At
each period, helical-like structures grew and triggered turbulence during the deceleration phase of
the pulsation before the flow relaminarised again during the acceleration phase. This behaviour was
observed for relatively high amplitudes (A ≥ 0.5), intermediate Womersley numbers (5 ≤ Wo ≤ 8),
and mean Reynolds numbers as low as Re = 800. Motivated by this finding, Xu et al. [20] carried
out a comprehensive non-modal stability analysis of pulsatile pipe flow. They showed that certain
helical perturbations exploit an Orr-like mechanism to grow by several orders of magnitude in energy.
They linked this mechanism to the inflection points of the SW velocity profile that emerge during the
deceleration phase (see Figure 3a–c). Inflectional SW velocity profiles are indeed known to be linearly
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unstable in the quasi-steady limit [21], as long as they satisfy the Fjortoft criteria. The smaller the
Womersley number, the longer the velocity profile is unstable, thus effectively providing a more fertile
ground for instabilities to grow. However, as the Womersley number is reduced, the velocity profile
becomes increasingly parabolic and, hence, loses its inflection points. The amplification of helical
disturbances is most efficient for Wo ≈ 7 [20], exactly in the regime where the helical instability was
observed experimentally [17].

Figure 2. Spatiotemporal representation of the turbulence activity in the computational pipe domain
based on the cross-sectional average of the streamwise vorticity (ωz) plotted on a logarithmic scale
and in a co-moving reference frame. Steady (A = 0, a) and pulsatile (b–f) pipe flow at Re = 2400,
Wo = 8, and different amplitudes A. Initial conditions for all A � 0 were either taken from the steady
case at time t

T = 0.25 (b–d,f) or composed of a localised helical perturbation on top of the laminar
Sexl–Womersley velocity profile (e).
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Figure 3. Sexl–Womersley (SW) flow and its optimal perturbation for (Re = 2400, Wo = 8, A = 1.0).
(a) Time-dependent velocity profile (uSW) for 20 equispaced points within one pulsation period (T).
Circles denote the maximum and minimum peak flow (PF), whereas upward- and downward-facing
triangles denote phases of acceleration (AC) and deceleration (DC), respectively. (b) Optimal helical
perturbation during DC ( t

T = 0.2) according to our transient growth analysis based on the linearised
Navier–Stokes equations. To be used as initial condition in our direct numerical simulation (DNS)
(Section 3.3), the helix is scaled to an amplitude of 4 × 10−2 us. (c) Evolution of the optimal perturbation
under the constraints of the linearised Navier–Stokes equations at the later time of maximal energy
amplification. Note that, in the framework of transient growth analysis, the absolute amplitude of the
initial helix is not important; only the relative growth rate is of interest. The dashed lines correspond to
the Stoke layer thickness (δ).

The purpose of this paper is to investigate the spatiotemporal intermittency of turbulence in
pulsatile pipe flow. More specifically, we aim to characterise the intermediate regime in which helical
structures and puffs are expected to compete. To that end, we perform transient growth analysis and
direct numerical simulations of pulsatile pipe flow at fixed Re = 2400 and Wo = 8, as well as different
pulsation amplitudes A.

2. Numerical Methodology

2.1. Governing Equations

We consider a viscous fluid with constant properties confined in a straight smooth rigid pipe of
circular cross-section and diameter D. The fluid flow is driven through the pipe with a time-dependent
pressure gradient, and is considered to be incompressible and governed by the Navier–Stokes
equations (NSE)

∂u
∂t + (u · ∇)u = −∇p + 1

Re∇2u + Fd(t) + Fp(r,θ, z, t)and∇ ·u = 0. (2)

Here, u and p denote the fluid velocity and pressure. The driving force Fd(t) represents a mean
pressure gradient, which is adapted in a way such that the flow rate (ub) given in Equation (1) is
maintained. The additional body force term Fp(r,θ, z, t) is used to model geometric imperfections in
the pipe geometry, and thus to perturb the flow locally (see Section 2.4). Unless otherwise stated, all
quantities are rendered dimensionless using the pipe diameter D, the statistically steady part of the
bulk velocity us = 〈ub〉t (see Equation (1)), and the fluid’s density (ρ).
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2.2. Direct Numerical Simulation

In order to study the departure from the laminar Sexl–Womersley flow and the dynamics
of intermittent localised turbulence, we perform direct numerical simulations (DNS) using our
open-source pseudo-spectral simulation code nsPipe [22]. In nsPipe, the governing Equation (2) are
treated in cylindrical coordinates (r,θ, z) and discretised using a Fourier–Galerkin ansatz in θ and
z and high-order finite differences in r. No-slip boundary conditions are imposed at the solid pipe
wall and periodic boundary conditions in θ and z. The discretised NSEs are integrated forward in
time using a second-order predictor–corrector method with variable time-step size; details are given in
López et al. [22] and the references therein. We have modified nsPipe to account for a time-dependent
driving force that maintains a pulsating flow rate according to Equation (1) and an additional volume
force Fp to perturb the flow locally.

We use a computational domain of 100D in length, and the number of radial grid points and
Fourier modes used in our DNS is (Nr ×Nθ ×Nz) = (96× 192× 2400). After dealiasing, this results in
a spatial resolution of ΔθR+ = 3.1 and Δz+ = 3.8, whereas radial grid points are clustered towards
the pipe wall such that 0.06 ≤ Δr+ ≤ 1.4, and 14 points lie within the buffer layer based on the shear
Reynolds number for the statistically steady case (A = 0). By comparison to the resolution used in
other contemporary DNS studies in the literature and the fact that we consider only moderate A
(the instantaneous Reynolds number is never > (1 + A)Re), we expect our choice of resolution to be
sufficient for all set-ups considered here. The adaptive time-step size is roughly Δt = 2× 10−3 D

us
.

2.3. Transient Growth Analysis

In order to study the linear stability of the SW profile and to determine the perturbations that grow
the most on top of it within one pulsation period, we have performed transient growth analysis (TGA)
for the parameter space at hand. This non-modal method returns the most dangerous perturbation in
terms of energy growth out of all possible axial/azimuthal wavenumbers and pairs of initial (t0) and
final (t f ) times. To this end, the governing Equations (2) are linearised (LNSE). The LNSE and their
adjoint counterpart are integrated forward and backward in time iteratively, until such an optimum is
reached for each combination of Re, Wo, and A. During integration, the underlaying velocity profile
develops in time (see, e.g., Figure 3a), but remains unchanged by the developing perturbations.

The LNSE and their adjoint are discretised using a Fourier–Galerkin ansatz in θ and z and a
Chebyshev collocation method in r. Further details are given in Barkley et al. [23], and our TGA
computations were undertaken using an in-house Matlab script.

2.4. Modelling Geometric Imperfections in Our DNS

Section 3.6 presents results from DNS in which we mimiced the geometric perturbation of the
experiments of Xu et al. [17]. Inspired by the optimal baffle designed by Marensi et al. [24], we here
model the effect of geometric perturbations with an additional volume force in Equation (2) of the form

Fp(r,θ, z, t) = −Ap · fp(r,θ, z) ·u(r,θ, z, t). (3)

The body force Fp acts against the velocity field u and is localised in the radial, azimuthal, and
axial direction by

fp(r,θ, z)= f(r) · g(θ, z) · h(z)with (4)

f(r)=
1
2
+

1
π

arctan(Mr(r− r0)), (5)

g(θ, z)=
1
π
(arctan(Mθ(θ−π(θ0(z) − Lθ))) − arctan(Mθ(θ−π(θ0(z) + Lθ)))), (6)

h(z)=
1
π

(
arctan

(
Mz

(
z− z0 +

Lz

2

))
− arctan

(
Mz

(
z− z0 − Lz

2

)))
and (7)
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θ0(z)= 1 + 2Δθ
(z− z0)

Lz
. (8)

These localisation functions satisfy the constraints max( f ) = 1, min( f ) = 0, max(g) = 1, min(g) = 0,
max(h) = 1, and min(h) = 0; the perturbation amplitude is given by Ap.

Due to the big parametric space in hand, we designed three simple body force set-ups and left
further optimisation of parameters as future work. The first set-up is an axisymmetric force that
models the effect of a small circumferential contraction similar to weak stenosis in blood vessels [25]
or imperfect pipe joints in laboratory experiments [17] (see Figure 4a). The second set-up is a highly
localised force that approximates the effect of a single bump or an individual roughness element (see
Figure 4b). The third set-up is also a highly localised force that approximates the effect of a single
bump or an individual roughness element, but this time, it is tilted with respect to the axial direction
(see Figure 4c). The parameters defining the perturbations are given in Table 1. We studied the effect
of the axisymmetric force on steady laminar Hagen–Poiseuille flow at Re = 2400 to select a suitable
value of the force amplitude Ap. Our criterion was that the force must be strong enough to sufficiently
disturb the flow without creating too long of a re-circulation region. For Ap = 0.25, we found a fair
compromise between these two constraints.

Figure 4. Geometric representation of the perturbation force (Fp) in terms of iso-surfaces (black) of the
localisation function for fp = 0.5. (a) Axisymmetric contraction. (b) Localised bump. (c) Tilted bump.
See Table 1 for details. The direction of the mean bulk flow (us) is always from left to right.

Table 1. Parameters to control the body force term in Equation (3) to model the effect of geometric
perturbations: Magnitude (Ap) and slope (M), size (L), and location in the radial (r), azimuthal (θ), and
axial (z) direction. Geometric representations of the perturbations are shown in Figure 4.

Ap
Mz in

1
D

Lz in D z0 in D Mr in 1
D r0 in D Mθ Lθ Δθ

Contraction 0.25 4 2.5 10 100 0.45 20 ≥1 0
Bump 0.25 4 2.5 10 100 0.45 20 0.25 0
Tilted
Bump 0.25 4 2.5 10 100 0.45 20 0.0625 0.1

The goal of this model is to serve as a proof of concept. Our hypothesis is that geometric
imperfections employed in the experiments locally modify the flow pattern causing the instability.
The model satisfies this requirement, as it represents a small perturbation to the flow. It is meant for
testing such a hypothesis, whereas the precise shape of its geometry plays an ancillary role. In order
to faithfully reproduce the experiments of Xu et al. [17], one would need to have a boundary-fitted
mesh or use immersed boundary methods. We are, however, confident that if the DNS was exactly
reproducing the precise imperfections of the experiments, the exact same behaviour would be observed
in the DNS.
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3. Results

We first tested the effect of the pulsation on spatiotemporal intermittency by performing a DNS
initialised with a snapshot of the statistically steady pipe flow (SSPF), as shown in Figure 2a. We refer to
these simulations as IC SSPF. Next, we followed Xu et al. [20] and performed a linear non-modal stability
analysis to identify the optimal perturbation for the parameter values of interest (Re = 2400, Wo = 8,
and several A). This method produces the geometry (radial shape and axial/azimuthal wavenumbers)
and the initial time (t0) of the perturbation achieving the maximum energy amplification. We used
these optimal perturbations on top of the Sexl–Womersley velocity profile as initial conditions for a
second set of DNS in order to test whether puffs or helical waves were developed. We refer to these
simulations as IC SWOP. In a last step, we performed a third set of DNS with the body force term in
Equation (3) to mimic the experimental setup of Xu et al. [17]. All parameter combinations for which
we have performed DNS are summarised in Figure 5b.

Figure 5. Turbulent fraction (Ft) in the computational pipe domain based on the axial vorticity data
shown in Figure 2 and Figure 7. The threshold to distinguish turbulent from laminar regions is set
to
〈
ω2

z

〉
r,θ

= 4× 10−2. (a) Time series of the turbulent fraction for several amplitudes A (line styles)
and different numerical set-ups (symbols and colours from those in (b)). (b) Time-averaged turbulent
fraction 〈Ft〉t>2 for four different set-ups: The statistically steady pipe flow (SSPF) serves as reference
data and as initial condition (IC) for the first set-up. The IC for the second set-up are composed out of
the analytical Sexl–Womersley (SW) velocity profile superimposed with an optimal perturbation (OP).
The third set-up is initialised with an unperturbed SW flow and then permanently perturbed using a
localised body force (see Section 3.6).

3.1. Temporal Modulation of Statistically Steady Puff Dynamics

Figure 2a shows the typical intermittent behaviour of statistically steady pipe flow at Re = 2400.
Here, the vorticity is viewed from a reference frame co-moving at the constant bulk speed us = 〈ub〉t.
This case was run for 6000 convective time units ( D

us
) or an equivalent to more than 100 periods

beforehand in order to relax from its initial conditions and to let the flow develop its typical patchy
and intermittent character: Turbulence is spatially localised and surrounded by laminar regions of
relative calm. The time scale of laminar–turbulent interactions is on the order of 100 D

us
, as can be seen

in Figure 5a, where we plot the temporal evolution of the turbulent (volume) fraction (Ft =
Vturb
Vpipe

) in the
computational pipe domain (Vpipe). It changes considerably every two or three hundred time units,
reflecting the interactions visible in the corresponding space–time diagram. We computed Ft based
on the streamwise vorticity plotted in Figure 2a and the threshold to separate laminar regions (deep
blue in Figure 2) from turbulent ones was set to ω2

z = 4× 10−2 in order to match the average turbulent
fraction reported by Avila and Hof [12] at Re = 2400 (approximately 50%, as in Figure 5b).

We started all pulsatile IC SSPF runs from the same initial flow field and set the initial time to
t
T = 0.25 to match the instantaneous bulk velocity of the pulsation (see Equation (1)) to the one of
the steady flow. This ensured a smooth evolution from the initial condition and further allowed us
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to track the exact same realisations of localised flow structures in space and time as A was increased.
The resulting spatiotemporal dynamics are shown in Figure 2b–d,f in a frame co-moving at the
instantaneous bulk speed

x∗(t) =
t∫

t0

ubdt. (9)

Already at A = 0.2, the time scale of the flow modulation (T ≈ 60 D
us

) dominates the dynamics (Figure 2b).
In general, as the amplitude of the pulsation increases, the turbulent fraction in the flow decreases, as
seen in Figure 5b. Many structures in the initial flow field decay quickly and do not survive the first
acceleration (AC) phase. At A = 0.2, only two puffs survive after t = 5T, and the dynamics appear
to reach an equilibrium state that repeats cyclically. The two surviving puffs grow in intensity and
in length during the early deceleration (DC) phase of the flow, and they split into two in the late
stages of DC before the minimum flow rate is reached. Out of these two, only the upstream puff
survives the entire AC phase and reaches the peak flow rate, where this cycle starts over. Indeed,
it is well known that for SSPF, only the upstream puff survives in puff interactions [26]. Overall, it
appears that for A = 0.2, the flow is clearly self-sustained (above the critical point) and that a successful
splitting event may occur at later times. However, the length of the computational domain (100D)
may not be sufficient to accommodate three puffs without strong interactions due to the periodic
boundary conditions. Similar results were obtained for A = 0.4 and 0.5 and are shown in Figure 2c,d;
the question of whether, in these cases, the puffs will ultimately decay or successfully split would
require substantially longer runs than those performed here and is not further pursued. Figure 6
shows typical localised structures at four equispaced points of the cycle for A = 0.5, illustrating the
cyclically occurring splitting attempts. In agreement with Xu et al. [15], Xu and Avila [16], these figures
show that the surviving puffs (Figure 6d,c) are very similar to the puffs in the steady case (Figure 1c)
even at this relatively large pulsation amplitude. For A = 0.6, no turbulent structure survived the
first pulsation period, and the flow fully relaminarised. We checked amplitudes up to A = 1.4 (see
Figure 5b). In general, with increasing amplitude, the downstream puff separates farther away from
the upstream puff during AC before it dies at almost the end of AC.

Figure 6. Instantaneous representation of localised turbulent structures in a pulsatile pipe flow
(Re = 2400, Wo = 8, A = 0.5). Grey surfaces represent low-speed streaks (u′z = −0.4us) and blue/red
surfaces represent positive/negative axial vorticity (ωz = ±8 us

D ). (a) Death of downstream puff.
(b) Splitting event. (c) Growing puff. (d) Isolated puff. The exact location and time for each snapshot
are as indicated in Figure 2d. The direction of the mean bulk flow (us) is always from left to right.

3.2. Optimal Infinitesimal Perturbations of Pulsatile Pipe Flow

We performed a linear non-modal stability analysis of Sexl–Womersley flow at (Re = 2400, Wo = 8)
and amplitudes up to A = 1.6, as described in Section 2.3. For A ≤ 0.4, the optimal perturbation is
the same as for statistically steady pipe flow: an axial two-roll configuration (not shown here). For
A ≥ 0.5, the optimal perturbation is a streamwise helix and the optimal initial time of perturbation
is t0

T ∈ [0.2, 0.3]. In Figure 3b,c, we show the optimal perturbation for A = 1 at the optimal time of
perturbation (t0) and at the point of maximum energy amplification (t f ), respectively. Initially, the
optimal helical perturbation is localised very close to the pipe wall at the border of the Stokes layer
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(δ = 1√
2Wo

), and it is tilted towards it. Within the rest of the DC phase and the first stages of AC, the
perturbation rapidly grows by four orders of magnitude in energy within only 40% of the period.
By the time of maximum energy amplification (early AC phase at t

T = 0.6), the optimal helix has
separated from the Stokes layer and moved completely to the outer bulk region, where the stabilising
effect of acceleration arrives later. This wall-normal phase lag increases with Wo [13] and can be nicely
seen for the profiles close around the peak flow rate ( t

T = 0.5 and 1.0) in Figure 3a. At the end of the
process, the helix has been tilted opposite to its original configuration in a process reminiscent of the
Orr mechanism. See Xu et al. [20] for more details and for a comprehensive parametric exploration.

3.3. Nonlinear Dynamics of Helical Perturbations

In our second set of DNS (IC SWOP), we superimposed the optimal helical perturbation scaled to a
small amplitude (4× 10−2 us) on top of the SW profile. All simulations were started at the optimal initial
time of perturbation (t0). We used a global, as well as an axially localised, helix as initial perturbation
and we varied the pulsation amplitude A whilst keeping Re = 2400 and Wo = 8 fixed. In all runs, the
global helix exhibited rapid growth, followed by a breakdown into turbulence and immediate decay
within the first period, in good agreement with the DNS of Xu et al. [17], for A = 0.85, Wo = 5.6, and a
shorter pipe domain. Our results hence extend their findings to larger A and Wo, and are not explicitly
shown here.

Using a localised helix as initial condition instead also led to a very similar fate for the helix, but
only for A ≥ 0.8 (see Figure 5b). The amplification of the local helix and its subsequent death is shown
in Figures 7c–e and 8a–d. For smaller amplitudes (A ≤ 0.8), intermittent puff turbulence emerged after
the growth and decay of the initial helix and then was sustained for many periods (see Figure 5). The
dynamics of the generated localised puffs are the same as described in Section 3.1 and are exemplarily
shown in Figure 8e–h. The puffs that survive AC grow during early DC and attempt to split into
two puffs during late DC. In the subsequent AC, the splitting downstream puff decays and leaves
only the upstream puff behind to start the cycle over. Figures 2e and 7a,b compare this cycle and its
initialisation phase for different amplitudes. For A = 0.5, a self-sustaining puff develops only from the
downstream end of the amplified helix. For A = 0.6, puffs develop from both ends of the localised
helix. Shortly thereafter, both puffs interact, which leads to the death of the downstream puff (similar
to what happens, for example, in Figure 2b). For A = 0.8, a puff develops only from the upstream
end of the amplified helix. For this case, the puff is able to survive for four periods before the flow
completely relaminarises.

For both large and small amplitudes, the initial optimum perturbation energy is amplified by
about two orders of magnitude (Figure 8), which is much less than in the linear case. It is worth noting
that perturbations obtained with a non-linear non-modal stability analysis should yield a more effective
growth [27]. These methods would help to avoid the discrepancy between linear and non-linear
behaviour of perturbations at least before their complete saturation, and should be considered in future
works. Our linear optimum perturbation, once introduced into the DNS, also moves towards the bulk
region of the pipe; however, before it can complete the growth predicted in the linear analysis, it breaks
up into turbulent spots arising at its upstream and downstream ends. For the larger amplitudes, the
helix further narrows and develops a turbulent puffwith a central low-speed streak before decaying.
For the lower amplitudes, on the other hand, the helix opens up again and develops a turbulent spot
with several low-speed streaks closer to the wall.

We used a hyperbolic tangent, as in Equation (7), to localise the radial and axial velocities of the
helix perturbation in the z direction with the parameters Mz =

20
D and Lz = 5D. The azimuthal velocity

was calculated to preserve the divergence-free condition. For a perturbation magnitude of 4× 10−2 us,
this procedure leaves a remainder of the helix in the rest of the domain, which is everywhere < 10−7us.
This remainder grows dramatically and results in the white bands visible in Figures 2e and 7a–e.
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Figure 7. Spatiotemporal representation of the turbulence activity in the pipe domain based on the
cross-sectional average of the streamwise vorticity (ωz) plotted on a logarithmic scale and in a co-moving
reference frame (z∗). For pulsatile pipe flow at (Re = 2400, Wo = 8). (a–e) For different pulsation
amplitudes A, always using the SWOP initial condition. Note that the optimal time of perturbation
slightly changes with A. The horizontal straight lines mark regions for which three-dimensional
representations of the localised flow structures are shown in Figure 8. (f) For a permanent body force
and the unperturbed SW velocity profile as initial condition. The curved black line represents the fixed
location of the highly localised body force viewed from the co-moving reference frame. The direction
of the mean bulk flow (us) is always from left to right.
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Figure 8. Instantaneous representation of localised turbulent structures in a pulsatile pipe flow DNS at
Re = 2400, Wo = 8, and two different amplitudes. (a–d) Growth and decay of an initial helix at A = 1.0.
(e–h) Development of a puff at A = 0.5. Both DNS were initialised at t

T = 0.2 using the SWOP initial
condition. Grey surfaces represent low-speed streaks (u′z = −0.4us) and blue/red surfaces represent
positive/negative axial vorticity (ωz = ±8 us

D ). The exact location for each snapshot is as indicated in
Figures 2e and 7c, respectively. (a) Decay. (b) Breakdown into turbulence. (c) Amplification of helix.
(d) Localised optimal helix perturbation. (e,f) Birth of a downstream puff. (g) Amplification of helix.
(h) Localised optimal helix perturbation. Note that the initial perturbation is two orders of magnitude
smaller. The direction of the mean bulk flow (us) is always from left to right.

3.4. Puff Recovery Length

As has been observed in both strategies, whenever a puff tries to split, only the upstream puff
survives. This is a feature common to SSPF and is related to the so-called puff recovery length, which
represents the influence length the puff has downstream from its position [26,28]. Its effect can be seen
in Figure 9, where the instantaneous uz profile is presented at five axial positions and four time instants
for an IC SWOP simulation at Re = 2400, Wo = 8, and A = 0.5. The position of the turbulent puff is
presented as a shaded area in terms of axial vorticity. For all phases, the flow quickly recovers the
laminar SW profile upstream of the puff location. Downstream of the puff, on the other hand, the flow
needs a much longer buffer length to do so. Note the periodic boundary conditions used in our DNS.

3.5. Intermittent Production and Dissipation

In order to investigate the physical mechanisms by which puffs arise and survive in pulsatile pipe
flow, we computed the production and dissipation of turbulent kinetic energy,

Pα(r) = −〈u′ru′z〉α ∂〈uz〉α
∂r andDα(r) = − 1

Re 〈∇u′ : ∇u′〉α. (10)

Angled brackets denote averaging with respect to α and prime denotes the fluctuation around the
respective average. Here, α can be any combination of averaging in the two homogeneous directions θ
and z, as well as time t, or at a fixed phase φ. For the cases where puffs survive, Pθ,z,φ and Dθ,z,φ are
strongly modulated by the pulsation of the flow, as exemplified in Figure 10 for A = 0.6. During AC,
production and dissipation are low, whereas during DC, they are high. Peak production takes place
during the early DC and is very similar to steady pipe flow in terms of magnitude and wall-normal
distribution. However, at the phase of maximum production, the dissipation inside the Stokes layer
is much more intense than in the steady case. Right after the peak in flow rate, the mean velocity
profile develops an inflection point at the wall, which satisfies the Fjortoft criterion [6]. With ongoing
deceleration, the inflection point moves away from the wall and catches up with the point of peak
production. Both travel together further towards the pipe centre. Near to the minimum flow rate, the
unstable inflection point loses the Fjortoft condition (because of new inflection points arising in the
velocity profile,) and the production collapses. Hence, it appears that the puff is taking advantage of
this inflection point during DC to survive the upcoming AC.
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Figure 9. Instantaneous streamwise velocity profiles (uz) at five axial locations along the pipe for an IC
SWOP simulation at Re = 2400, Wo = 8, and A = 0.5. To not interfere with one another, they are scaled
in arbitrary physical units, since, in this representation, only the development in time and deviation
from the SW profile are of interest. Thus, the velocity is scaled so its all-time maximum uz(r,θ = 0, z) is
equal to 10D. Each profile is compared with the corresponding instantaneous SW profile (grey lines,
also scaled) and its inflection point (grey circles) if they fulfil the Fjortoft criterion. The shaded grey
area shows the instantaneous cross-sectional average of the streamwise vorticity (

〈
ω2

z

〉
r,θ

) scaled so its
all-time maximum is equal to 0.5D.

Figure 11 compares the production and dissipation profiles for the growth and decay of the
localised helix during the first pulsation period for A = 1. Here, phase-logged time averaging is
not possible, and averaging was performed only in the θ and z directions. During DC, the rate of
production is negative in a small region inside the Stokes layer, meaning that turbulent kinetic energy
is fed back to the mean flow and acts as an additional energy sink. This promotes relaminarisation and
explains why the helix does not evolve into puff dynamics, as in the low-amplitude cases. Overall,
the phenomenology is similar to that reported for oscillatory pipe flow, where negative production
causes turbulence decay in cases initialised with fully developed turbulent flow fields of SSPF at high
Reynolds numbers [29].

3.6. Effect of Local Geometric Imperfections

We performed a third set of DNS using the laminar SW velocity profile as the initial condition
and the volume force described in Section 2.4. For this third set of simulations, we considered only
the four amplitudes A ∈ {0, 0.5, 1.0, 1.4}. In line with the experiments of Xu et al. [17], we found no
transition to turbulence at all for the axisymmetric contraction in all cases considered. By contrast,
when the force is localised in all three dimensions, the response of the flow depends strongly on
the amplitude of the pulsation. For A = 0, i.e., statistically steady pipe flow, there is no surge of
turbulence or localised transition arising from the bump. This confirms that our force represents a
small perturbation to the flow. As we increase the amplitude to A = 0.5, some vorticity is generated
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during peak flow rate, but no turbulent dynamics develop (see Figure 12a). The picture changes for
amplitude A = 1. As shown in Figure 12b, during early DC, the presence of the bump is able to trigger
turbulence in every period. Turbulence grows until late DC, and then laminarises. Occasionally, puffs
emerge and are able to survive for more than one period if they interact (again) with the local bump
due to the periodic boundary conditions used in our DNS. However, if the upstream puff interacts
with a new turbulent spot arising from the bump, both die. For A = 1.4, on the other hand, no puffs
develop, and the dynamics are solely characterised by bursts of turbulence arising at the bump, which
proceed downstream as they decay (see Figure 12c). In all cases, the time at which the perturbation is
triggered and grows is in agreement with our non-modal stability analysis and with the experiments
of Xu et al. [17].

Figure 10. Production (a) and dissipation (b) of turbulent kinetic energy compared for different phases
of the pulsation period for A = 0.6 using the SWOP initial conditions. Averages are taken over space-
and phase-logged time instants (α = θ, z,φ) over four periods of puff dynamics, excluding the initial
period without puffs. Circles denote the existence and wall-normal location of the inflection points
of the corresponding mean profile ∂2〈uz〉φ,θ,z/∂2r = 0 that satisfy the Fjortoft criterion. The vertical
dashed line denotes the Stokes layer.

Figure 11. Production (a) and dissipation (b) of turbulent kinetic energy compared for different phases
of the initial pulsation period for A = 1 using the SWOP initial conditions.
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Figure 12. Spatiotemporal representation of the turbulence activity in the pipe domain based on the
cross-sectional average of the streamwise vorticity (ωz) plotted on a logarithmic scale and in a stationary
reference frame. Pulsatile pipe flow at Re = 2400, Wo = 8, and different amplitudes A. Initial conditions
are based on the Sexl–Womersley velocity profile, and there is a permanent body force. (a–c) Local
bump. (d) Tilted bump.

Interestingly, the structures that the local bump triggers are mirror symmetric and not helical
(see Figure 13a–d). They resemble structures resulting from the optimal non-modal disturbances in
pulsatile pipe flow past a constriction [25]. They grow in axial length and magnitude during the
late stages of DC while retaining their mirror symmetry. This is only lost in the last stages of DC, as
low-velocity streaks form in the centre of the pipe. Finally, either a puff emerges from these streaks, or
the flow laminarises during AC.

We also performed simulations with a tilted bump. In this case, the emerging structures exhibit
not only mirror-symmetric, but also helical-like features (see Figure 13e–h). They also grow during
the late stages of DC and either decay or trigger puffs depending on the pulsation amplitude. From
the point of view of spatiotemporal intermittency, their evolution is quite similar to the evolution of
the structures triggered by the local bump for all the amplitudes considered, as exemplarily shown in
Figure 12c,d.

The fact that different geometric disturbances can trigger different structures is consistent with
the non-modal stability analysis of Xu et al. [20]. The analysis showed that the instantaneous
Sexl–Womersley profile is linearly unstable (in the quasi-steady limit) during most of the DC phase.
Out of all the perturbations that could grow on top of this unstable profile, helical modes have the
highest potential to do so. This holds for helical modes spiralling in positive and negative axial
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directions. That means that, if we were to disturb a flow in a way such that helical modes are
excited, unless there is a preferred direction, helical modes and their swirling counterparts can grow
simultaneously on top of the laminar flow profile. Our local bump represents a highly symmetric
perturbation that allows this to happen, which explains why we observe mirror-symmetric structures.
If we introduce some non-symmetric perturbation instead, then we see a preferred direction for the
structures to swirl, as in the simulations with the tilted bump.

Figure 13. Instantaneous representation of localised turbulent structures in a pulsatile pipe flow DNS
at (Re = 2400, Wo = 8, A = 1.4). The DNS was initialised at t

T = 0.25 using the corresponding SW
profile and by introducing a local bump like body force, as described by Equation (3) and Table 1. Grey
surfaces represent low-speed streaks (u′z = −0.2 us) and blue/red surfaces represent positive/negative
axial vorticity (ωz = ±2 us

D for all panels except (d) and (h). There, it is ±0.8 us
D . (a–d) Local bump. (e–h)

Tilted bump. The exact instants in time are given in Figure 12c,d. The direction of the mean bulk flow
(us) is always from left to right.

4. Discussion and Conclusions

In agreement with the experiments and simulations of Xu et al. [17], our results show that
helical perturbations are able to trigger turbulence in pulsatile pipe flow, but not to maintain it. The
helix perturbation grows from the instantaneous linear instability of the laminar flow profile during
deceleration. However, during acceleration, the mean profile, which is close to the corresponding SW
profile, is linearly stable. Without the unstable character of the profile, the perturbation no longer has
its main mechanism to produce turbulent kinetic energy available, and it either completely decays or
switches to puffmechanisms to survive. In either case, no helical perturbation is triggered again in the
next deceleration phase.

This trend is further confirmed by the simulations that included a body force. For perturbations
that seek to mimic the effect of geometric imperfections, and A ≥ 1, turbulence is triggered intermittently
every DC and dies during AC, as in the experiments. Thus, for pulsatile pipe flows that are not constantly
disturbed, it is the presence of a self-generating puffmechanism (i.e., streak–vortex interaction with
lift-up) that guarantees that the flow remains intermittently turbulent throughout many periods.

For puffs to survive in pulsatile pipe flow, plug-like mean profiles must be avoided, as also happens
in statistically steady pipe flow [12,26,28,30]. This means that high amplitudes and/or Womersley
numbers are detrimental for puffs’ survival, but so are flows with a high fraction of turbulence. This
includes cases initialised with a fully turbulent flow field and cases initialised with a helix perturbation
in the whole domain. The former has also been shown by Feldmann [29] in purely oscillatory pipe flow
at much higher Reynolds numbers. In agreement with Xu et al. [17], global helical perturbations with
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an initial magnitude of only 4× 10−2us grow quickly and break up, and turbulence spreads throughout
the whole pipe. The resulting highly disturbed flow, whose mean is far from the corresponding SW
profile, does not allow puffs to grow. For the helical instability to be able to trigger puffs, it must be
localised and surrounded by a laminar flow.

Once they have been successfully triggered, puffs take advantage of two mechanisms: the lift-up
mechanism, as in SSPF, and the linear instability of the SW-like profile close to it. The former plays
a leading role during late acceleration and early deceleration phases for amplitudes that result in
a not-so-plug-like mean profile. The latter has a higher importance for most of the deceleration,
where it compensates for the milder gradients of the instantaneous SW-like profile with production
of kinetic energy due to its linear instability. The presence of puffs and their corresponding recovery
length, in addition to a more intense acceleration phase, make turbulence more intermittent as the
amplitude increases.

In future works, a different parametric space will be explored, and the combined effects of body
force and random noises will be studied. In addition, physiological-like waveforms with longer
deceleration phases will be considered, where the helical instability may have a longer time span
to grow.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Acceleration
DC Deceleration
SW Sexl–Womersley
NSE Navier–Stokes equations
TGA Transient growth analysis
DNS Direct numerical simulation
SSPF Statistically steady pipe flow
IC SSPF Cases with a SSPF initial condition

IC SWOP
Cases with a SW profile and optimum perturbation
initial condition
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