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Using the Entire Yield Curve in Forecasting Output
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Abstract: In forecasting a variable (forecast target) using many predictors, a factor model with
principal components (PC) is often used. When the predictors are the yield curve (a set of many
yields), the Nelson–Siegel (NS) factor model is used in place of the PC factors. These PC or NS
factors are combining information (CI) in the predictors (yields). However, these CI factors are not
“supervised” for a specific forecast target in that they are constructed by using only the predictors but
not using a particular forecast target. In order to “supervise” factors for a forecast target, we follow
Chan et al. (1999) and Stock and Watson (2004) to compute PC or NS factors of many forecasts (not
of the predictors), with each of the many forecasts being computed using one predictor at a time.
These PC or NS factors of forecasts are combining forecasts (CF). The CF factors are supervised for
a specific forecast target. We demonstrate the advantage of the supervised CF factor models over
the unsupervised CI factor models via simple numerical examples and Monte Carlo simulation.
In out-of-sample forecasting of monthly US output growth and inflation, it is found that the CF factor
models outperform the CI factor models especially at longer forecast horizons.

Keywords: level, slope, and curvature of the yield curve; Nelson-Siegel factors; supervised factor
models; combining forecasts; principal components

JEL Classification: C5; E4; G1

1. Introduction

The predictive power of the yield curve for macroeconomic variables has been documented
in the literature for a long time. Many different points on the yield curve have been used and
various methodologies have been examined. For example, Stock and Watson (1989) find that two
interest rate spreads, the difference between the six-month commercial paper rate and the six-month
Treasury bill rate, and the difference between the ten-year and one-year Treasury bond rates, are good
predictors of real activity, thus contributing to their index of leading indicators. Bernanke (1990),
Friedman and Kuttner (1993), Estrella and Hardouvelis (1991), and Kozicki (1997), among many
others, have investigated a variety of yields and yield spreads individually on their ability to forecast
macroeconomic variables. Hamilton and Kim (2002) as well as Diebold et al. (2005) provide a brief
summary of this line of research and the link between the yield curve and macroeconomic variables.

Various macroeconomic models for exploring the yield curve information for real activity
prediction are proposed. Ang and Piazzesi (2003) and Piazzesi (2005) study the role of macroeconomic
variables in an arbitrage-free affine yield curve model. Estrella (2005) constructs an analytical rational
expectations model to investigate the reasons for the success of the slope of the yield curve (the spread

Econometrics 2018, 6, 40; doi:10.3390/econometrics6030040 www.mdpi.com/journal/econometrics1
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between long-term and short-term government bond rates) in predicting real economic activity and
inflation. The model in Ang et al. (2006), Piazzesi and Wei is an arbitrage-free dynamic model
(using lags of GDP growth and yields as regressors) that characterizes expectations of GDP growth.
Rudebusch and Wu (2008) provide an example of a macro-finance specification that employs more
macroeconomic structure and includes both rational expectations and inertial elements.

Stock and Watson (1999, 2002) investigate forecasts of output growth and inflation using
over a hundred of economic indicators, including many interest rates and yield spreads.
Stock and Watson (2002, 2012) advocate methods that aim at solving the large-N predictor problem,
particularly those using principal components (PC). Ang et al. (2006) suggest the use of the short
rate, the five-year to three-month yield spread, and lagged GDP growth in forecasting GDP growth
out-of-sample. The choice of these two yield curve characteristics, as they argue, is because they have
almost one-to-one correspondence with the first two principal components of the short rate and five
yield spreads that account for 99.7% of quarterly yield curve variation.

Alternatively to the PC factor approach on the large-N predictor information set,
Diebold and Li (2006) propose the Nelson and Siegel (1987) (NS) factors for the large-N yields. They
use a modified three-factor NS model to capture the dynamics of the yield curve and show that the
three NS factors may be interpreted as level, slope, and curvature. Diebold et al. (2006) examine the
correlations between NS yield factors and macroeconomic variables. They find that the level factor is
highly correlated with inflation and that the slope factor is highly correlated with real activity. For more
on the yield curve background and the three characteristics of the yield curve, see Litterman and
Scheinkman (1991) and Diebold and Li (2006).

In this paper, we utilize the yield curve information for prediction of macro-economic variables.
Using a large number of yield curve points with different maturities yields a large-N problem in
the predictive regression. The PC factors or the NS factors of the yield curve may be used to reduce
the large dimension of the predictors. However, the PC and NS factors of the yield curve are not
supervised for a specific variable to forecast. These factors simply combine information (CI) of many
predictors (yields) without having to look at a forecast target. Hence, the conventional CI factor models
(using factors of the predictors) are unsupervised for any forecast target.

Our goal in this paper is to consider factor models where the factors are computed with a particular
forecast target in mind. Specifically, we consider the PC or NS factors of forecasts (not of predictors),
with each of the forecasts formed using one predictor at a time. (It could be generalized to make each
forecast from using more than one predictor, e.g., a subset of the N predictors, in which case there can
be as many as 2N forecasts to combine.) These factors will combine the forecasts (CF). The PC factors
of forecasts are combined forecasts using the combining weights that solves a singular value problem
for a set of forecasts, while the NS factors of forecasts are combined forecasts using the combining
weights obtained from orthogornal polynomials that emulate the shape of a yield curve (in level, slope,
and curvature). The PC or NS factors of the many forecasts are supervised for a forecasting target.
The main idea of the CF-factor model is to focus on the space spanned by forecasts rather than the
space spanned by predictors. The factorization of forecasts (CF-factor model) can substantially improve
forecasting performance compared to the factorization of predictors (CI-factor model). This is because
the CF-factor model takes the forecast target into the factorization, while the conventional CI-factor
model is blind to the forecast target because the factorization uses only information on predictors.

For both CI and CF schemes, the NS factor model can be relevant only when the yield curve is
used as predictors while the PC factor model can be used in general. The NS factors are specific to
the yield curve factors such as level, slope, and curvature factors. When the predictors are from the
points on the yield curve, the NS factor models proposed here is nearly the same as the PC factors.
Given the similarity of NS and PC and the generality of PC, we begin the paper with the PC models
to understand the mechanism of the supervision in CF-factor models. We demonstrate how the
supervised CF factor models outperform the unsupervised CI factor model, under the presence of
many predictors (50 points on the yield curve at each time). The empirical work shows that there are
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potentially big gains in the CF-factor models. In out-of-sample forecasting of U.S. monthly output
growth and inflation, it is found that the CF factor models (CF-NS and CF-PC) are substantially better
than the conventional CI factors models (CI-NS and CI-PC). The advantage of supervised factors is
even greater for longer forecast horizons.

The paper is organized as follows: in Section 2, we describe the CI and CF frameworks and
principal component approaches for their estimation, present theoretical results about supervision,
and an example to provide intuition. Section 3 provides simulations of supervision under different
noise, predictor correlation, and predictor persistence conditions. In Section 4, we introduce the NS
component approaches for the CI and CF frameworks. In Section 5, we show the out-of-sample
performance of the proposed methods in forecasting U.S. monthly output growth and inflation.
Section 6 presents the conclusions.

2. Supervising Factors

2.1. Factor Models

Let yt+h denote the variable to be forecast (output growth or inflation) using yield curve
information stamped at time t, where h denotes the forecast horizon. The predictor vector xt contains
information about the yield curve at various maturities: xt := (x1t, x2t, . . . , xNt)

′, where xit := xt(τi)

denotes the yield at time t with maturity τi (i = 1, 2, . . . , N).
Consider the CI model when N is large

yt+h = (1 x′t)α + εt+h, (t = 1, 2, . . . , T) (1)

for which the forecast at time T is
ŷCI-OLS

T+h = (1 x′T)α̂, (2)

with α̂ estimated by OLS using the information up to time T. A problem is that here the mean-squared
forecast error (MSFE) is of order O

(
N
T

)
increasing with N.1 A solution to this problem is to reduce

the dimension either by selecting a subset of the N predictors, e.g., by Lasso type regression
(Tibshirani 1996) or by using factor models of, e.g., Stock and Watson (2002). In this paper, we focus
on using the factor model rather than selecting a subset of the N predictors.2

2.1.1. CI-Factor Model

The conventional factor model is the CI factor model for xt of the form

xt = ΛCI fCI,t + vCI,t, (t = 1, . . . , T), (3)

where ΛCI is N × kCI and fCI,t is kCI × 1. The estimated factor loadings Λ̂CI are obtained either by
following Stock and Watson (2002) and Bai (2003), or by following Nelson and Siegel (1987) and
Diebold and Li (2006). The latter approach is discussed in Section 4. The factors are then estimated by

f̂CI,t = Λ̂′
CIxt. (4)

As this model computes the factors from all N predictors of xt directly, it will be called “CI-factor”.
The forecast ŷT+h = (1 f̂ ′CI,T)α̂CI can be formed using α̂CI estimated at time T from the regression

yt = (1 f̂ ′CI,t−h)αCI + uCI,t, (t = h + 1, . . . , T). (5)

1 This is explained in Bai and Ng 2008; Huang and Lee 2010; Stock and Watson 2002.
2 Bai and Ng (2008) consider CI factor models with a selected subset (targeted predictors).

3
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In matrix form, we write the factor model (3) and (5) for the vector of forecast target observations
y and for the T × N matrix of predictors X as follows:3

X = FCIΛ′
CI + vCI, (6)

y = FCIαCI + uCI, (7)

where y is the T × 1 vector of observations, FCI is a T × kCI matrix of factors, ΛCI is an N × kCI matrix
of factor loadings, αCI is a kCI × 1 parameter vector, vCI is a T × N random matrix, and uCI is a T × 1
vector of random errors.

Remark 1. (No supervision in CI-factor model): Consider the joint density of (yt+h, xt)

D(yt+h, xt; θ) = D1(yt+h|xt; θ)D2(xt; θ), (8)

where D1 is the conditional density of yt+h given xt, and D2 is the marginal density of xt. The CI-factor model
assumes a situation where the joint density operates a “cut” in the terminology of Barndorff-Nielsen (1978) and
Engle et al. (1983), such that

D(yt+h, xt; θ) = D1(yt+h|xt; θ1)D2(xt; θ2), (9)

where θ = (θ1 θ′2)′, and θ1 = α, θ2 = (F, Λ)′ are “variation-free”. Under this situation, the forecasting
equation in (5) is obtained from the conditional model D1 and the factor equation in (3) is solely obtained from
the marginal model D2 of the predictors. The computation of the factors is entirely from the marginal model D2

that is blind to the forecast target yt+h.

While the CI factor analysis of a large predictor matrix X solves the dimensionality problem,
it computes the factors using information in X only, without accounting for the variable y to be forecast,
and therefore the factors are not supervised for the forecast target. Our goal in this paper is to improve
this approach by accounting for the forecast target in the computation of the factors. The procedure
will be called supervision.

There are some attempts in the literature to supervise factor computation for a given forecast
target. For example, Bair et al. (2006) and Bai and Ng (2008) consider factors of selected predictors that
are informative for a specified forecast target; Zou et al. (2006) consider sparse loadings of principal
components; De Jong (1993) and Groen and Kapetanios (2016) consider partial least squares regression;
De Jong and Kiers (1992) consider principal covariate regression; Armah and Swanson (2010) select
variables for factor proxies that have the maximum predictive power for the variable being forecast;
and some weighted principal components have been used to downweight noisier series.

In this paper, we consider the CF-factor model that computes factors from forecasts rather than
from predictors. This approach has been proposed in Chan et al. (1999) and in Stock and Watson (2004),
there labeled “principal component forecast combination”. We will refer to this approach as CF-PC
(combining forecasts principal components). The details are as follows.

3 The suppressed time stamp of y and X captures the h-lag relation for the forecast horizon and we treat the data centered so
that we do not include a constant term explicitly in the regression for notational simplicity.

4
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2.1.2. CF-Factor Model

The forecasts from a CF-factor model are computed in two steps. The first step is to estimate the
factors of the individual forecasts. Let the individual forecasts be formed by regressing the forecast
target yt+h using the ith individual predictor xit:

ŷ(i)T+h := ai,T + bi,TxiT (i = 1, 2, . . . , N). (10)

Stack the N individual forecasts into a vector ŷt+h := (ŷ(1)t+h, ŷ(2)t+h, . . . , ŷ(N)
t+h)

′ and consider a factor
model of ŷt+h:

ŷt+h = ΛCF fCF,t+h + vCF,t+h. (11)

The CF-factor is estimated from
f̂CF,t+h := Λ̂′

CFŷt+h. (12)

The second step is to estimate the forecasting equation (for which the estimated CF-factors from
the first step are used as regressors)4

yt+h = f̂ ′CF,t+hαCF + uCF,t+h. (13)

Then, the CF-factor forecast at time T is

ŷCF
T+h = f̂ ′CF,T+hα̂CF, (14)

where α̂CF is estimated. See (Chan et al. 1999; Huang and Lee 2010; Stock and Watson 2004).
To write the CF-factor model in matrix form, we assume for notational simplicity that the data

has been centered so that we do not include a constant term. We regress y on the columns xi of X,
i = 1, . . . , N, one at a time, and write the fitted values in (10) as

ŷ(i) = xi(x′i xi)
−1x′iy =: xibi. (15)

Collect the fitted values in the matrix

Ŷ = [ŷ(1) ŷ(2) · · · ŷ(N)] := XB ∈ R
T×N , (16)

where B = diag(b1, . . . , bN) ∈ RN×N is a diagonal matrix containing the regression coefficients. We call
B the supervision matrix. Then, the CF-factor model is

Ŷ = FCFΛ′
CF + vCF, (17)

y = FCFαCF + uCF, (18)

where FCF is a T × kCF matrix of factors of Ŷ = XB, ΛCF is an N × kCF matrix of factor loadings, αCF is
an kCF × 1 parameter vector, vCF is a T × N random matrix, and uCF is a T × 1 vector of random errors.
In the rest of the paper, the subscripts CI and CF may be omitted for simplicity.

We use principal components (PC) as discussed in Stock and Watson (2002), Bai (2003), and
Bai and Ng (2006). For the specific case of yield curve data, we use NS components as discussed in
Nelson and Siegel (1987) and Diebold and Li (2006). We use both CF and CI approaches together with
PC factors and NS factors. Our goal is to show that forecasts using supervised factor models (CF-PC
and CF-NS) are better than forecasts from conventional unsupervised factor models (CI-PC and CI-NS).

4 Given the dependent nature of macroeconomic and financial time series, the forecasting equation can be extended to allow
the supervision to be based on the relation between yt and some predictors after controlling for lagged dependent variables
and to allow the dynamic factor structure, which we leave for future work.

5
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We show analytically and in simulations how supervision works to improve factor computation with
respect to a specified forecast target. In Section 5, we present empirical evidence.

Remark 2. (Estimation of B): The CF-factor model in (17) and (18) with B = IN (identity matrix) is a
special case when there is no supervision. In this case, the CF-factor model collapses to the CI-factor model. If B
were consistently estimated by minimizing the forecast error loss, then the CF-factor model with the “optimal”
B would outperform the CI-factor model. However, as the dimension of the supervision matrix B grows with
N2, B is an “incidental parameter” matrix and can not be estimated consistently. See Neyman and Scott (1948)
and Lancaster (2000). Any estimation error in B translates into forecast error in the CF-factor model. Whether
there is any virtue in considering Bayesian methods of estimating B, while still avoiding this problem, is left for
future research. Instead, in this paper, we circumvent this difficulty by imposing that B = diag(b1, . . . , bN) be a
diagonal matrix and by estimating the diagonal elements bi’s from the ordinary least squares regression in (10)
or (15) with one predictor xi at a time. The supervision matrix B can be non-diagonal in general. As imposing
the diagonality on B may be restrictive, it would be an interesting empirical question to examine if the CF-factor
forecast with this restriction and the estimation strategy of B can still outperform the CI-factor forecast with
B = IN . Our empirical results in Section 5 (Table 1) support this simple estimation strategy for the diagonal
matrix B, in favor of the CF-factor model.

Remark 3. (Combining forecasts with many predictors): It is generally believed that it is difficult to
estimate the forecast combination weights when N is large. Therefore, the equal weights

(
1
N

)
have been widely

used instead of estimating weights.5 It is often found in the literature that equally-weighted combined forecasts
are often the best. Stock and Watson (2004) call this the “forecast combination puzzle”. See also Timmermann
(2006). Smith and Wallis (2009) explore a possible explanation of the forecast combination puzzle and conclude
that it is due to estimation error of the combining weights.

Now, we note that, in the CF-factor model described above, we can consistently estimate the combining
weights. From the CF-factor forecast (14) and the estimated factor (12),

ŷT+h = f̂ ′CF,T+hα̂CF =
(
ŷ′

T+hΛ̂CF
)

α̂CF := ŷ′
T+hŵ, (19)

where
ŵ := Λ̂CFα̂CF (20)

is estimated consistently as long as Λ̂CF and α̂CF are estimated consistently.

2.2. Singular Value Decomposition

In this section, we formalize the concept of supervision and explain how it improves factor
extraction. We compare the two different approaches CI-PC (Combining Information—Principal
Components) and CF-PC (Combining Forecasts—Principal Components) in a linear forecast problem
of the time series y given predictor data X. We explain the advantage of the CF-PC approach over
CI-PC in Section 2.3 and give some examples in Section 2.4. We explore the advantage of supervision
in simulations in Section 3.2. As an alternative to PC factors, we propose the use of NS factors in
Section 4.

Principal components of predictors X (CI-PC): Let X ∈ RT×N be a matrix of regressors and let

X = RΣW ′ ∈ R
T×N (21)

5 An exception is Wright (2009), who uses Bayesian model averaging (BMA) for pseudo out-of-sample prediction of U.S.
inflation, and finds that it generally gives more accurate forecasts than simple equal-weighted averaging. He uses
N = 107 predictors.
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be the singular value decomposition of X, with Σ ∈ RT×N diagonal rectangular, that is, diagonal
square matrix padded with zero rows below the square if min(T, N) = N or padded with zero columns
next to the square if min(T, N) = T, R ∈ RT×T , and W ∈ RN×N is unitary. Write

X′X = WΣ′R′RΣW ′ = WΣ′ΣW ′, (22)

where Σ′Σ := diag(σ2
1 , . . . , σ2

N) is diagonal and square. Therefore, W contains the eigenvectors of X′X.
For a matrix A ∈ RT×N , denote by Ak ∈ RT×k the matrix consisting of the first k ≤ N columns of A.
Then, Wk is the matrix containing the singular vectors corresponding to the k = kCI largest singular
values (σ1, . . . , σk). The first k principal components are given by

FCI := XWk = RΣW ′Wk = RΣ

[
Ik
0

]
= RΣk = RkΣkk, (23)

where Ik is the k × k identity matrix, 0 is an (N − k)× k matrix of zeros, and Σkk is the k × k upper-left
diagonal block of Σ. Note that the first k principal components FCI of X are constant multiples of
columns of Rk as Σkk is diagonal. The projection (forecast) of y onto FCI is given by

ŷCI-PC := FCI(F′
CIFCI)

−1F′
CIy = XWk(W ′

kX′XWk)
−1W ′

kX′y
= RkΣkk(Σ

′
kkR′

kRkΣkk)
−1Σ′

kkR′
ky = Rk(R′

kRk)
−1R′

ky = RkR′
ky, (24)

as R′
kRk = Ik. Therefore, the CI forecast, ŷCI-PC, is the projection of y onto Rk. The CI forecast error and

the CI sum of squared error (SSE) are

y − ŷCI-PC = y − RkR′
ky = (IT − RkR′

k)y, (25)

SSECI-PC = ||y − ŷCI-PC||2 = y′(IT − RkR′
k)y, (26)

as (IT − RkR′
k) is symmetric idempotent.

Bai (2003) shows that, under general assumptions on the factor and error structure, FCI is a
consistent and asymptotically normal estimator of FCIH, where H is an invertible k × k matrix.6

This identification problem is also clear from Equation (24), and it conveniently allows us to identify
the principal components FCI = RkΣkk as FCI = Rk since Σkk is diagonal. The principal components
are scalar multiples of the first k columns of R. Bai’s result shows that principal components can be
estimated consistently only up to linear combinations. Bai and Ng (2006) show that the parameter
vector α in the forecast equation can be estimated consistently for α′H−1 with an asymptotically
normal distribution.

Principal components of forecasts Ŷ (CF-PC): To generate forecasts in a CF-factor scheme, we regress
y on the columns xi of X, i = 1, . . . , N, one at a time, and calculate the fitted values of (15). Collect the
fitted values in the matrix as in (16), with B = diag(b1, . . . , bN) containing the regression coefficients in
its diagonal. Compute the singular value decomposition of Ŷ:

Ŷ = SΘV′, (27)

6 In order for the objects in Bai’s (2003) analysis to converge, he introduces scaling such that the singular values are the
eigenvalues of the matrix X′X/T. Then, the singular vectors are multiplied by

√
T. In our notation, the singular value

decomposition becomes X =
√

TR Σ√
T

W ′.

7
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with Θ ∈ RT×N is diagonal rectangular, and S ∈ RT×T , V ∈ RN×N unitary. Pick the first k = kCF

principal components of Ŷ,

FCF := ŶVk = SΘV′Vk = SΘ

[
Ik
0

]
= SΘk = SkΘkk, (28)

where Vk is the N × k matrix of the singular vectors corresponding to the k largest singular values
(θ1, . . . , θk) and Θkk is the k × k upper-left diagonal block of Θ. Again, we can identify the estimated k
principal components of Ŷ with FCF = Sk, where FCF is the T × kCF matrix of factors of Ŷ. The projection
(forecast) of y onto FCF is given by:

ŷCF-PC := FCF(F′
CFFCF)

−1F′
CFy = ŶVk(V′

kŶ′ŶVk)
−1V′

kŶ′y
= SkΘkk(Θ

′
kkS′

kSkΘkk)
−1Θ′

kkS′
ky = Sk(S′

kSk)
−1S′

ky = SkS′
ky (29)

as S′
kSk = Ik. The CF forecast, ŷCF-PC, is the projection of y onto Sk. The CF forecast error and the CF

SSE are

y − ŷCF-PC = y − SkS′
ky = (IT − SkS′

k)y, (30)

SSECF-PC = ||y − ŷCF-PC||2 = y′(IT − SkS′
k)y, (31)

as (IT − SkS′
k) is symmetric idempotent.

2.3. Supervision

In this sub-section, we explain the advantage of CF-PC over CI-PC in factor computation. We call
the advantage “supervision”, which is defined as follows:

Definition 1. (Supervision). The advantage of CF-PC over CI-PC, called supervision, is the selection of
principal components according to their contribution to variation in y, as opposed to selection of principal
components according to their contribution to variation in the columns of X. This is achieved by selecting
principal components from a matrix of forecasts of y.

We use the following measures of supervision of CF-PC in comparison with CI-PC.

Definition 2. (Absolute Supervision). Absolute supervision is the difference of the sums of squared errors (SSE)
of CI-PC and CF-PC:

sabs(X, y, kCI, kCF) := ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = y′(SkCF S′
kCF

− RkCI R
′
kCI

)y. (32)

Definition 3. (Relative Supervision). Relative supervision is the ratio of the sums of squared errors of CI-PC
over CF-PC:

srel(X, y, kCI, kCF) :=
||y − ŷCI-PC||2
||y − ŷCF-PC||2 =

y′(IT − RkCI R
′
kCI

)y

y′(IT − SkCF S′
kCF

)y
. (33)

Remark 4. When kCI = kCF = N, there is no room for supervision

sabs(X, y, N, N) = y′(SS′ − RR′)y = y′(IT − IT)y = 0 (34)

because SS′ = RR′ = IT . Relative supervision is defined only for kCF < N.

For the sake of simplifying the notation and presentation, we consider the same number of factors
in CI and CF factor models with kCI = kCF = k for the rest of the paper.

8
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Remark 5. Sk is a block of a basis change matrix that in the expression y′Sk returns the first k coordinates of y
with respect to the new basis. This new basis is the one with respect to which the mapping ŶŶ′ = XBBX′ =
SΘΘ′S′ becomes diagonal, with singular values in descending order such that the first k columns of S correspond
to the k largest singular values. Therefore, y′SkS′

ky is the sum of the squares of these coordinates. Broadly
speaking, the Sk are the k largest components of y in the sense of Ŷ and its construction from the single regression
coefficients. Thus, y′SkS′

ky is the sum of the squares of the k coefficients in y that contributes most to the
variation in the columns of Ŷ.

Analogously, Rk is a block of a basis change matrix that for y′Rk returns the first k coordinates of y with
respect to the basis that diagonalizes the mapping XX′ = RΣΣ′R′. Therefore, y′RkR′

ky is the sum of squares of
the k coordinates of y selected according to their contribution to variation in the columns of X.

We emphasize the factors that explain most of the variation of the columns of X, i.e., the eigenvectors
associated with the largest eigenvalues of XX′, which are selected in the principal component analysis of X, may
have little to do with the factors that explain most of the variation of y, however. The relation between X and
y in the data-generating process can, at worst, completely reverse the order of principal components in
the columns of X and in y. We demonstrate this in the following Example 1.

2.4. Example 1

In this subsection, we give a small example to facilitate intuition for the supervision mechanics
of CF-PC. Example 1 illustrates how the supervision of factor computation defined in Definition 1
operates. In Example 2 in the next section, we add randomness to Example 1 to explore the effect of
stochasticity in a well-understood problem.

Let

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
1/2 0 0 0 0

0 1/3 0 0 0
0 0 0 0 1/4
0 0 0 1/5 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (35)

with T = 6 and N = 5. The singular value decomposition of X = RΣW is⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1

2 0 0 0
0 0 1

3 0 0
0 0 0 1

4 0
0 0 0 0 1

5
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

Let
y = (1, 2, 3, 4, 5, 0)′. (37)

Then, the diagonal matrix B that contains the coefficients of y w.r.t. each column of X is

B = diag(4, 9, 1, 25, 16), (38)

and

Ŷ := XB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
2 0 0 0 0
0 3 0 0 0
0 0 0 0 4
0 0 0 5 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (39)

9
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The singular value decomposition of Ŷ = XB = SΘV is⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (40)

We set kCI = kCF = k and compare CI-PC and CF-PC with the same number of principal
components. Recall from (23) that FCI = RΣk and from (28) that FCF = SΘk. The absolute supervision
and relative supervision, defined in (32) and (33), are computed for each k :

sabs(X, y, kCI, kCF) srel(X, y, kCI, kCF)

k = 1 24 1.8
k = 2 36 3.6
k = 3 36 8.2
k = 4 24 25.0
k = 5 0 N/A

See Appendix A for the calculation. The absolute supervision is all positive and the relative supervision
is larger than 1 for all k < N.

As noted in Remarks 1 and 5, the relation between X and y is crucial. In this example,
the magnitude of the components in y is reversed from the order in X. For X, the ordering of
the columns of X with respect to the largest eigenvalues of XX′ is {3, 1, 2, 5, 4}. For y, the ordering
of the columns of X with respect to the largest eigenvalues of ŶŶ′ is {4, 5, 2, 1, 3}. For example,
consider the case k = 2, i.e., we choose two out of five factors in the principal component analysis.
CI-PC, the analysis of X, will pick the columns 3 and 1 of X, that is, the vectors (1, 0, 0, 0, 0, 0)′ and
(0, 1/2, 0, 0, 0, 0)′. These correspond to the two largest singular values 1 and 1/2 of X. CF-PC,
the analysis of Ŷ, will pick columns 4 and 5 of X, that is, the vectors (0, 0, 0, 0, 1/5, 0)′ and
(0, 0, 0, 1/4, 0, 0)′. These correspond to the two largest singular values 5 and 4 of Ŷ. The regression
coefficients in B = diag(4, 9, 1, 25, 16) de-emphasize columns 3 and 1 of X and emphasize columns 4
and 5 of X.

3. Monte Carlo

There are several simplifications in the construction of Example 1, which we relax by the
following extensions:

(a) Adding randomness makes the estimation of the regression coefficients in B a statistical
problem. The sampling errors influence the selection of the components of Ŷ. (b) Adding correlation
among regressors (columns of X) introduces correlation among individual forecasts (columns of
Ŷ), increasing the effect of sampling error in the selection of the components of Ŷ. (c) Increasing N
to realistic magnitudes, in particular in the presence of highly correlated regressors, will increase
estimation error in the principal components due to collinearity.

We address the first extension (a) in Example 2. All three extensions (a), (b), (c) are addressed in
Example 3 of Section 3.2.

3.1. Example 2

Consider adding some noise to X, y in Example 1. Let v be a T × N matrix of independent random
numbers, each entry distributed as N(0, σ2

v ), and u be a vector of independent random numbers,
each distributed as N(0, σ2

u). In this example, the new regressor matrix X is the sum of X in Example 1
and the noise term v, and the new y is the sum of y in Example 1 and the noise term u. For simplicity,

10
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we set σv = σu in the simulations and let both range from 0.01 to 3. This covers a substantial range of
randomness given the magnitude of the numbers in X and y. For each scenario of σv = σu, we generate
1000 random matrices v and random vectors u and calculate the Monte Carlo average of the sums of
squared errors (SSE).

Figure 1 plots the Monte Carlo average of the SSEs for selection of k = 1 to k = 4 components.
For standard deviations σv = σu close to zero, the sum of squared errors are as calculated in Example 1.
As the noise increases, the advantage of CF over CI decreases but remains substantial, in particular for
smaller numbers of principal components. For k = 5 estimated components (not shown), the SSEs of
CI-PC and CF-PC coincide because k = N.
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Figure 1. For Example 2. Monte Carlo averages of the sum of squared errors (SSE) against a grid of
standard deviations σu = σv ranging from 0.01 to 3 in factor and forecast equations, for a selection
of k = 1 to k = 4 components. When the standard deviation is close to zero, the SSE are close to the
ones reported in Example 1. With increasing noise, the advantage of CF over CI decreases but remains
substantial, in particular for few components. For k = 5 = N (not shown), the SSE of CI-PC and CF-PC
coincide, as shown in Remark 4.

3.2. Example 3

We consider the data-generating process (DGP)

X = FΛ′ + v, (41)

y = Fα + u, (42)

where y is the T × 1 vector of observations, F is a T × r matrix of factors, Λ is an N × r matrix of factor
loadings, α is an r × 1 parameter vector, v is a T × N random matrix, and u is a T × 1 vector of random
errors. We set T = 200, N = 50 and consider r = 3 data-generating factors.

Note that, under this DGP, the CI-PC model in Equations (6) and (7) is correctly specified if the
correct number of factors is identified, i.e., kCI = r. Even under this DGP, however, an insufficient
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number of factors, kCI < r, can still result in an advantage of the CF-PC model over the CI-PC model.
We will explore this question in this section.

Factors and persistence: For each run in the simulation, we generate the r factors in F as
independent AR(1) processes with zero mean and a normally distributed error with mean zero
and variance one:

Ft,i = φFt−1,i + εt,i, t = 2, . . . , T, i = 1, . . . , r. (43)

We consider a grid of 19 different AR(1) coefficients φ, equidistant between 0 and 0.90. We consider
r = 3 data-generating factors and k ∈ {1, 2, 3, 4} estimated factors.

Contemporaneous factor correlation: Given a correlation coefficient ρ for adjacent regressors,
the N × r matrix Λ of factor loadings is obtained from the first r columns of an upper triangular matrix
from a Cholesky decomposition of⎡⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (44)

We consider a grid of 19 different values for ρ, equidistant between the points −0.998 and 0.998. In this
setup, the 10th value is very close to ρ = 0. Then, the covariance matrix of the regressors is given by

EX′X = E[(ΛF′ + v′)(FΛ′ + v)] = ΩF + Ωv, (45)

where ΩF = ΛΛ′ and Ωv = Ev′v is given by the identity matrix in our simulations. The relation
EF′F = I is due to the independence of the factors, but may be subject to substantial finite sample
error, in particular for φ close to one, for well-known reasons.

Relation of X and y: The r × 1 parameter vector α is drawn randomly from a standard normal
distribution for each run in the simulation. This allows α to randomly shuffle which factors are
important for y.

Noise level: We set σu = σv and let it range between 0.1 and 3 in steps of 0.1. We add the case of
0.01 that essentially corresponds to a deterministic factor model.

For a given number r = 3 of data-generating factors, the simulation setup varies along the
dimensions φ (19 points), k (4 points), ρ (19 points), σu = σv (31 points). For every single scenario,
we run 1000 simulations and calculate the SSEs of CI-PC and CF-PC, and the relative supervision
srel(X, y, k, k). Then, we take the Monte Carlo average of the SSEs and srel(X, y, k, k) over the
1000 simulations.7

The Monte Carlo results are presented in Figures 2–4. Each figure contains four panels that plot
the situation for k = 1, 2, 3, 4 estimated number of factors. The main findings from the figures can be
summarized as follows:

1. Figure 2: If the number of estimated factors k is below the true number r = 3, as shown in top
panels, the supervision becomes smaller with increasing noise. If the correct number of factors or

7 In relation to the empirical application using the yield data in Section 5, we could have calibrated the simulation design to
make the Monte Carlo more realistic for the empirical application in Section 5. Nevertheless, our Monte Carlo design covers
wide ranges of the parameter values for the noise levels, correlation structures (ρ and φ) in the yield data. Figure 2 shows
that the supervision is smaller with larger noise levels, which may be rather obvious intuitively. Figure 4 shows that the
advantage of supervision when the factors are persistence, which depends on the number of factors k relative to the true
number of factors r. Particularly interesting is Figure 3 which shows that the advantage of supervision is smaller when the
contemporaneous correlation ρ between predictors is larger, which may be relevant for the yield data because the yields
with different maturities may be moderately contemporaneously correlated. We thank a referee for pointing this out.

12



Econometrics 2018, 6, 40

more are estimated (k ≥ r), as in bottom panels, the advantage of supervision increases with the
noise level σu = σv, Even in this case when the CI-PC is the correct model (k ≥ r), supervision
becomes larger as the noise increases.

2. Figure 3: The advantage of supervision is greatest when the contemporaneous correlation ρ

between predictors is minimal. For almost perfect correlation, the advantage of supervision
disappears. This is true regardless of whether the correct number of factors is estimated or not.
Intuitively, for near-perfect factor correlation, the difference between those factors that explain
variation in the columns of X and those that explain variation in Ŷ vanishes, and so supervision
becomes meaningless.

3. Figure 4: If the correct number of factors or more are estimated (k ≥ r), the advantage
of supervision decreases with factor persistence φ. High persistence induces spurious
contemporaneous correlation, and in this sense the situation is related to the result in No. 2. If the
number of estimated factors is below the true number of factors (k < r), however, the advantage
of supervision increases with factor persistence.
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Figure 2. Supervision dependent on noise. Relative supervision against a grid of standard deviations
in factor and forecast equation σu = σv, ranging from 0.01 to 3, while the factor serial correlation is
fixed at φ = 0 and the contemporaneous factor correlation is ρ = 0.
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Figure 3. Supervision dependent on contemporaneous factor correlation ρ. Relative supervision against
a grid of contemporaneous correlation coefficients ρ ranging from −0.998 to 0.998, while the factor
serial correlation φ is fixed at zero and the noise level is fixed at σu = σv = 1.
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Figure 4. Supervision dependent on factor persistence φ. Relative supervision against a grid of
AR(1) coefficients φ ranging from 0 to 0.9, while the noise level is fixed at σu = σv = 1 and the
contemporaneous regressor correlation is ρ = 0.
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4. Supervising Nelson–Siegel Factors

In the previous section, we have examined the factor model based on principal components.
When the predictors are points on the yield curve, an alternative factor model can be constructed
based on Nelson–Siegel (NS) components. We introduce two new factor models, CF-NS and CI-NS,
by replacing principal components with NS components in CF-PC and CI-PC models. Like CI-PC,
CI-NS is unsupervised. Like CF-PC, CF-NS is supervised for the particular forecast target of interest.

4.1. Nelson–Siegel Components of the Yield Curve

As an alternative to using principal components in the factor model, one can apply the modified
Nelson–Siegel (NS) three-factor framework of Diebold and Li (2006) to factorize the yield curve.
Nelson and Siegel (1987) propose Laguerre polynomials Ln(z) = ez

n!
dn

dzn (zne−z) with weight function
w(z) = e−z to model the instantaneous nominal forward rate (forward rate curve)

ft(τ) = β1 + (β2 + β3)
(

L0(z)e−θτ
)
− β3

(
L1(z)e−θτ

)
(46)

= β1 + (β2 + β3)e−θτ − β3(1 − θτ)e−θτ

= β1 + β2e−θτ + β3θτe−θτ ,

where z = θτ, L0(z) = 1, L1(z) = 1 − θτ, and β j ∈ R for all j. The decay parameter θ may change over
time, but we fixed θ = 0.0609 for all t following Diebold and Li (2006).8

Then, the continuously compounded zero-coupon nominal yield xt(τ) of the bond with maturity
τ months at time t is

xt(τ) =
1
τ

∫ τ

0
ft(s)ds = β1 + β2

(
1 − e−θτ

θτ

)
+ β3

(
1 − e−θτ

θτ
− e−θτ

)
. (47)

Allowing the β j’s to change over time and adding the approximation error vit, we obtain the following
approximate NS factor model for the yield curve for i = 1, . . . , N:

xt(τi) = β1t + β2t

(
1 − e−θτi

θτi

)
+ β3t

(
1 − e−θτi

θτi
− e−θτi

)
+ vit

=

[
1

(
1 − e−θτi

θτi

) (
1 − e−θτi

θτi
− e−θτi

)]⎡⎢⎣ β1t
β2t
β3t

⎤⎥⎦+ vit

= λ′
i ft + vit, (48)

where ft = (β1t, β2t, β3t)
′ are the three NS factors and λ′

i =
[
1

(
1−e−θτi

θτi

) (
1−e−θτi

θτi
− e−θτi

)]
are

the factor loadings. Because xt(∞) = β1t, xt(∞)− xt(0) = −β2t, and [xt(0) + xt(∞)]− 2xt(τm) with
τm = 24 (say) is proportional to −β3t, the three NS factors (β1t, β2t, β3t)

′ are associated with level,
slope, and curvature of the yield curve.

8 Diebold and Li (2006) show that fixing Nelson–Siegel decay parameter at θ = 0.0609 maximizes the curvature loading at the
two-year bond maturity and allows better identifications of the three NS factors. They also show that allowing the θ to be
a free parameter does not improve the forecasting performance. Therefore, following their advice, we fix θ = 0.0609 and
did not estimate it. A small θ (for a slow decaying curve) fits the curve for long maturities better and a large θ (for a fast
decaying curve) fits the curve for short maturities better.
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4.2. CI-NS and CF-NS

4.2.1. NS Components of Predictors X (CI-NS)

We have N predictors of yields xt = (x1t, x2t, . . . , xNt)
′ where xit = xt(τi) denotes the yield to

maturity τi months at time t, (i = 1, 2, . . . , N). Stacking xit for i = 1, 2, . . . , N, (48) can be written as

xt = ΛCI fCI,t + vCI,t, (49)

or
xit = λ′

CI,i fCI,t + vCI,it, (50)

where λi denotes the i-th row of

ΛCI =

⎛⎜⎜⎝
1 1−e−θτ1

θτ1
( 1−e−θτ1

θτ1
− e−θτ1)

...
...

...
1 1−e−θτN

θτN
( 1−e−θτN

θτN
− e−θτN )

⎞⎟⎟⎠ , (51)

which is the N × 3 matrix of known factor loadings because we fix θ = 0.0609 following Diebold
and Li (2006). The NS factors f̂CI,t = (β̂1t, β̂2t, β̂3t)

′ are estimated from regressing xit on λ′
CI,i (over

i = 1, . . . , N) by fitting the yield curve period by period for each t.
Then, we consider a linear forecast equation

yt = (1 f̂ ′CI,t−h)αCI + uCI,t, t = h + 1, . . . , T, (52)

in order to forecast yt+h (such as output growth or inflation). We first estimate α̂CI using the information
up to time T and then form the forecast we call CI-NS by

ŷCI-NS
T+h = (1 f̂ ′CI,T)α̂CI. (53)

This method is comparable to CI-PC with number of factors fixed at k = 3. It differs from CI-PC,
however, in that the three NS factors (β̂1t, β̂2t, β̂3t) have intuitive interpretations as level, slope
and curvature of the yield curve, while the first three principal components may not have a clear
interpretation. In the empirical section, we also consider two alternative CI-NS forecasts by including
only the level factor β̂1t (denoted CI-NS (k = 1)), and only the level and slope factors (β̂1t, β̂2t)

(denoted CI-NS (k = 2)) to see whether the level factor or the combination of level and slope factors
have dominant contribution in forecasting output growth and inflation.

4.2.2. NS Components of Forecasts Ŷ (CF-NS)

While CI-NS solves the large-N dimensionality problem by reducing the N yields to three factors
f̂CI,t = (β̂1t, β̂2t, β̂3t)

′, it computes the factors entirely from yield curve information xt only, without
accounting for the variable yt+h to be forecast. Similar in spirit to CF-PC, here we can improve CI-NS
by supervising the factor computation, which we term as CF-NS.

The CF-NS forecast is based on the NS factors of ŷt+h := (ŷ(1)t+h, ŷ(2)t+h, . . . , ŷ(N)
t+h)

′, a vector of the
N individual forecasts as in (10) and (11),

ŷt+h = ΛCF fCF,t+h + vCF,t+h, (54)
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with ΛCF = ΛCI in (51). Hence, ΛCI = ΛCF = Λ for the NS factor models. Note that, when the NS
factors loadings are normalized to sum up to one, the three CF-NS factors

f̂CF,t+h = Λ′ŷt+h (55)

=
(

1
s1

∑N
i=1 ŷ(i)T+h

1
s2

∑N
i=1

(
1−e−θτi

θτi

)
ŷ(i)T+h

1
s3

∑N
i=1

(
1−e−θτi

θτi
− e−θτi

)
ŷ(i)T+h

)′

are weighted individual forecasts with the three normalized NS loadings, with s1 = N, s2 =

∑N
i=1

(
1−e−θτi

θτi

)
, and s3 = ∑N

i=1

(
1−e−θτi

θτi
− e−θτi

)
. The CF-NS forecast can be obtained from the

forecasting equation

yt+h = f̂ ′CF,t+hαCF + uCF,t+h, (56)

ŷCF-NS
T+h = f̂ ′CF,T+hα̂CF,

which is denoted CF-NS(k = 3). The parameter vector α̂T is estimated using information up to time
T. Using only the first factor or the first two factors, one can obtain the forecasts CF-NS(k = 1) and
CF-NS(k = 2).

Note that, while the CF-PC method can be used for data of many kinds, the CF-NS method we
propose is tailored to forecasting using the yield curve. It uses fixed factor loadings in Λ that are the
NS exponential factor loadings for yield curve modeling, and hence avoids the estimation of factor
loadings. In contrast, CF-PC needs to estimate Λ.

Also note that, by construction, CF-NS(k = 1) is the equally weighted combined forecast
1
N ∑N

i=1 ŷ(i)T+h.

5. Forecasting Output Growth and Inflation

This section presents the empirical analysis where we describe the data, implement forecasting
methods introduced in the previous sections on forecasting output growth and inflation, and analyze
out-of-sample forecasting performances. This allows us to analyze the differences between output
growth and inflation forecasting using the same yield curve information and to compare the strengths
of different methods.

5.1. Data

Let yt+h denote the variable to be forecast (output growth or inflation) using yield information up
to time t, where h denotes the forecast horizon. The predictor vector xt = (xt(τ1), xt(τ2), . . . , xt(τN))

′

contains the information about the yield curve at various maturities: xt(τi) denotes the zero coupon
yield of maturity τi months at time t (i = 1, 2, . . . , N).

Two forecast targets, output growth and inflation, are constructed respectively as monthly growth
rate of Personal Income (PI, seasonally adjusted annual rate) and monthly change in CPI (Consumer
Price Index for all urban consumers: all items, seasonally adjusted) from 1970:01 to 2010:01. PI and
CPI data are obtained from the web site of the Federal Reserve Bank of St. Louis (FRED2).

We apply the following data transformations. For the monthly growth rate of PI, we set yt+h =

1200[(1/h) ln(PIt+h/PIt)] as the forecast target (as used in Ang et al. (2006)). For the consumer price
index (CPI), we set yt+h = 1200[(1/h) ln(CPIt+h/CPIt)] as the forecast target (as used in Stock and
Watson (2007)).9

9 yt+h = 1200[(1/h) ln(CPIt+h/CPIt)− ln(CPIt/CPIt−1)] is used in Bai and Ng (2008).
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Our yield curve data consist of U.S. government bond prices, coupon rates, and coupon structures,
as well as issue and redemption dates from 1970:01 to 2009:12.10 We calculate zero-coupon bond yields
using the unsmoothed Fama and Bliss (1987) approach. We measure bond yields on the second day of
each month. We also apply several data filters designed to enhance data quality and focus attention
on maturities with good liquidity. First, we exclude floating rate bonds, callable bonds and bonds
extended beyond the original redemption date. Second, we exclude outlying bond prices less than
50 or greater than 130 because their price discounts/premium are too high and imply thin trading,
and we exclude yields that differ greatly from yields at nearby maturities. Finally, we use only bonds
with maturity greater than one month and less than fifteen years because other bonds are not actively
traded. Indeed, to simplify our subsequent estimation, using linear interpolation we pool the bond
yields into fixed maturities of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 72, 78, 84, 90, 96, 102, 108, and 120 months,
where a month is defined as 30.4375 days.11

We examine some descriptive statistics (not reported for space) of the two forecast targets and
yield curve level, slope, and curvature (empirical measures), over the full sample from 1970:01 to
2009:12 and the out-of-sample evaluation period from 1995:02 to 2010:01. We observe that both PI
growth and CPI inflation become more moderate and less volatile from around the mid-1980s. This
has become a stylized fact known as the “Great Moderation”. In particular, there is a substantial drop
in persistency of CPI inflation. The volatility and persistency of the yield curve slope and curvature do
not change much. The yield curve level, however, decreases and stabilizes.

In predicting macroeconomic variables using the term structure, yield spreads between yields
with various maturities and the short rate are commonly used in the literature. One possible reason
for this practice is that yield levels are treated as I(1) processes, so yield spreads will likely be I(0).
Similarly, macroeconomic variables are typically assumed to be I(1) and transformed properly into I(0),
so that, in using yield spreads to forecast macro targets, issues such as spurious regression are avoided.
In this paper, however, we use yield levels (not spreads) to predict PI growth and CPI inflation (not
change in inflation), for the following reasons. First, whether yields and inflation are I(1) or I(0) is
still arguable. Stock and Watson (1999, 2012) use yield spreads and treat inflation as I(1), so they
forecast change in inflation. Inoue and Kilian (2008), however, treat inflation as I(0). Since our target is
forecasting inflation, not change in inflation, we will treat CPI inflation as well as yields as I(0) in our
empirical analysis. Second, we emphasize real-time, out-of-sample forecasting performance more than
in-sample concerns. As long as out-of-sample forecast performance is unaltered or even improved,
we think the choice of treating the variables as I(1) or I(0) variables does not matter much.12 Third,
using yield levels will allow us to provide clearer interpretations for questions such as what part of the
yield curve contributes the most towards predicting PI growth or CPI inflation, and how the different
parts of the yield curve interact in the prediction, etc.

5.2. Out-of-Sample Forecasting

All forecasting models are estimated in a rolling window scheme with window size R =

300 months ending at month t (starting at t − R + 1). In the evaluation period from t = 1995:02

10 As a robust check, we apply our method to the original yield data of Diebold and Li (2006) and also to the sub-samples in
our data set. The results are essentially the same as those summarized at the end of Section 5.

11 It may be interesting to explore whether different maturity yields might have different effects on the forecast outcome.
However, the present paper is focused on the comparison between CF and CI, rather than a detailed CI-only analysis, e.g.,
to find the best maturity yield for the forecast outcome. Nevertheless, our CI-NS model has reflected such effects as the
three NS factors (level, slope, and curvature) are different combinations of bond maturities as shown in Equation (55).
The different coefficients on the NS factors suggest that different bond maturities have different effects on the forecast
outcome, as Gogas et al. (2015) has found.

12 While not reported for space, we tried forecasting change in inflation and found forecasting inflation directly using all yield
levels improves out-of-sample performances of most forecasting methods by a large margin.
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to t = 2010:01 (180 months), the first rolling sample to estimate models begins at 1970:02 and ends
at 1995:01, the second rolling sample is for 1970:03–1995:02, the third 1970:04–1995:03, and so on.
The out-of-sample evaluation period is from 1995:02 to 2010:01 (hence out-of-sample size P = 180).13

In all NS-related methods (CI and CF), we set θ, the parameter that governs the exponential decay rate,
at 0.0609 for reasons discussed in Diebold and Li (2006).14 We compare h-months-ahead out-of-sample
forecasting results of those methods introduced so far for h = 1, 3, 6, 12, 18, 24, 30, 36 months ahead.

Figure 5 illustrates what economic contents these factors in CF-PC may bear. It shows that the
first PC assigns about equal weights to all N = 50 individual forecasts that use yields at various
maturities (in months) so that it may be interpreted as the factor that captures the level of the yield
curve; the second PC assigns roughly increasing weights so that it may be interpreted as the factor
capturing the slope; and the third PC assigns roughly first decreasing then increasing weights, so that
it may be interpreted as factor capturing curvature.

Tables 1 and 2 present the root mean squared forecast errors (RMSFE) of PC methods with
k = 1, 2, 3, 4, 5, and of NS methods with k = 1, 2, 3, for PI growth (Table 1A) and for CPI inflation
(Table 2A) forecasts using all 50 yield levels.15 In Panel A of Tables 1 and 2, we report the Root Mean
Squared Forecast Errors (RMSFE, which is the squared root of the MSFE of a model).16 In Panel
B of Tables 1 and 2, we report Relative Supervision of CI-PC vs. CF-PC and Relative Supervision
of CI-NS vs. CF-NS, according to Definition 3, which is the ratio of the MSFEs of two CI and CF
models. The relative supervision in Panel B can be obtained from RMSFEs in Panel A. For simplicity
of presentation in Panel B, we present the relative supervision only with the same number of factors
(kCI = kCF and kNS = kNS).
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Figure 5. Cont.

13 As a robust check, we have also tried with different sample splits for the estimation and prediction periods, i.e., the number
of in-sample regression observations and the out-of-sample evaluation observations. We find that the results are similar.

14 For different values of θ, the performances of CI-NS and CF-NS change only marginally.
15 While we report the results for k = 4, 5 for CF-PC, we do not report for k = 4, 5 for CF-NS. Svennsson (1995) and

Christensen et al. (2009) (CDR 2009) extend the three factor NS model to four or five factor NS models. CDR’s dynamic
generalized NS model has five factors with one level factor, two slope factors and two curvature factors. The Svensson
and CDR extensions are useful to fit the yield curve at longer maturities (>10 years). Because we only used yields with
maturities ≤10 years, the second curvature factor loadings will look similar to the slope factor loadings and we will have
collinearity problem. CDR use yields up to 30 years. The 4th and 5th factors have no clear economic intrepretations and are
hard to explain. For these reasons, we report results for k = 1, 2, 3 for the CF-NS model.

16 For the statistical significance of the loss-difference (see Definition 2), the asymptotic p-values of the Diebold–Mariano
statistics are all very close to zero especially for larger values of the forecast horizon h.
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Figure 5. Factor loadings of principal components and Nelson–Siegel factors. The first two panels:
factor loadings of the first three principal components in CF-PC (k = 3) averaged over the out-of-sample
period (02/1995–01/2010), for both PI growth (first panel) and CPI inflation (second panel). The
abscissa refers to the 50 individual forecasts that use yields at the 50 maturities (in months). The
loading of the first principal component has the circle-symbol, the second the cross-symbol, and
the third the square-symbol. The third panel: three normalized Nelson–Siegel (NS) exponential
loadings in CF-NS that correspond to the three NS factors, respectively. The abscissa refers to the
50 individual forecasts that use yields at the 50 maturities (in months). The circled line denotes the first
normalized NS factor loading 1/N, the crossed line denotes the second normalized NS factor loading
(1 − e−θτ)/(θτ), divided by the sum, and the squared line denotes the third normalized NS factor
loading (1 − e−θτ)/(θτ)− e−θτ , divided by the sum, where τ denotes maturity and θ is fixed at 0.0609.

We find that, in general, supervised factorization performs better. The CF schemes (CF-PC and
CF-NS) perform substantially better than the CI schemes (CI-PC and CI-NS). Within the same CF or CI
schemes, two alternative factorizations work similarly: CF-PC and CF-NS are about the same, and
CI-PC and CI-NS are about the same. We summarize our findings from Figure 5 and Tables 1 and 2
as follows.

1. Supervision is similar for CF-PC and CF-NS. The factor loadings for CF-NS and for CF-PC are similar
as shown in Figure 5. Panel (c) of the figure plots three normalized NS exponential loadings
in CF-NS that correspond respectively to the three NS factors. Note that the factor loadings in
CF-NS are pre-specified while those in CF-PC are estimated from the N individual forecasts.
Nevertheless, their shapes in panel (a) look very similar to those of the CF-PC loadings in panels
(a) and (b) (apart from the signs). Accordingly, out-of-sample forecasting performance of CF-PC
and CF-NS are very similar as shown in Panel A of Tables 1 and 2.

2. Supervision is substantial. Supervised factor models perform better than unsupervised factor
models in forecasting. Both CF-PC and CF-NS are much better than CI-PC and CI-NS models as
shown in Panel B of Tables 1 and 2.

3. Supervision is generally stronger for a longer forecast horizon h. The advantage of CF-PC over CI-PC
generally increases with forecast horizon h, as shown in Panel B of Tables 1 and 2.17

17 We conducted a Monte Carlo (not reported), which are consistent with the empirical results that the supervision is stronger
for a longer forecast horizon h.
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4. We often get the best supervised predictions with a single factor (k = 1) with the CF-factor models.18

Since CF-NS(k = 1) is the equally weighted combined forecast as noted in Section 4.2.2, this is
another case of the forecast combination puzzle discussed in Remark 3 that the equal-weighted
forecast combination is hard to beat. Since CF-PC(k = 1) is numerically identical to CF-NS(k = 1)
as shown in Figure 5, CF-PC(k = 1) is also effectively equally weighted forecast averaging.19

Table 1. Out-of-sample forecasting of personal income growth.

Panel A. Root Mean Squared Forecast Errors

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) 5.64 3.56 2.99 2.78 2.61 2.50 2.46 2.42
CI-PC(k = 2) 5.67 3.64 3.12 3.00 2.81 2.66 2.55 2.45
CI-PC(k = 3) 5.71 3.69 3.19 3.08 2.92 2.77 2.63 2.49
CI-PC(k = 4) 5.72 3.76 3.23 3.12 2.93 2.77 2.58 2.36
CI-PC(k = 5) 5.74 3.78 3.26 3.15 2.98 2.81 2.61 2.38
CI-NS(k = 1) 5.84 3.84 3.28 3.06 2.86 2.69 2.53 2.41
CI-NS(k = 2) 5.71 3.71 3.20 3.11 2.93 2.77 2.62 2.48
CI-NS(k = 3) 5.72 3.69 3.19 3.09 2.93 2.78 2.63 2.47
CF-PC(k = 1) 5.60 3.45 2.83 2.54 2.24 1.95 1.75 1.58
CF-PC(k = 2) 5.56 3.43 2.83 2.62 2.31 1.93 1.76 1.61
CF-PC(k = 3) 5.60 3.44 2.94 2.78 2.47 2.02 1.65 1.48
CF-PC(k = 4) 5.63 3.60 3.08 2.83 2.39 1.97 1.67 1.45
CF-PC(k = 5) 5.63 3.60 3.05 2.87 2.41 2.05 1.69 1.51
CF-NS(k = 1) 5.60 3.45 2.83 2.54 2.24 1.95 1.75 1.58
CF-NS(k = 2) 5.56 3.43 2.84 2.62 2.30 1.95 1.76 1.62
CF-NS(k = 3) 5.59 3.44 2.94 2.79 2.47 2.02 1.64 1.48

18 Figlewski and Urich (1983) talked about various constrained models in forming a combination of forecasts and examined
when we need more than the simple averaging combined forecast. They discussed a sufficient condition when the simple
average of forecasts is the optimal forecast combination: “Under the most extensive set of constraints, forecast errors are
assumed to have zero mean and to be independent and identically distributed. In this case the optimal forecast is the simple
average.” This corresponds to CF-PC(k = 1) and CF-NS(k = 1) when the first factor (k = 1) in PC or NS is sufficient for the
CF factor model. It is clearly the case in CF-NS as shown in Equation (55). One can show that the first PC (corresponding to
the largest singular value) would also be the simple average. Hence, in terms of the CF-factor model, the forecast combination
puzzle amounts to the fact that we often do not need the second PC factor. Interestingly, (Figlewski and Urich 1983, p. 696)
continued to note the cases when the simple average is not optimal: “However, the hypothesis of independence among
forecast errors is overwhelmingly rejected for our data-errors are highly positively correlated with one another.” On the other
hand, they also noted other reasons why the simple average may still be preferred, as they wrote, “Because the estimated
error structure was not completely stable over time, the models which adjusted for correlation did not achieve lower mean
squared forecast error than the simple average in out-of-sample tests. Even so, we find...that forecasts from these models,
while less accurate than the simple mean, do contain information which is not fully reflected in prices in the money market,
and is therefore economically valuable.” We thank a referee for letting us know on this from Figlewski and Urich (1983).

19 While the simple equally weighted forecast combination can be implemented without the use of PCA or without making
reference to the NS model, it is important to note that the simple average combined forecast indeed corresponds the first
CF-PC factor (CF-PC(k = 1)) or the first CF-NS factor (CF-NS(k = 1)). In view of Figlewski and Urich (1983), it will be useful
to know when the first factor (k = 1) is enough so that the simple average is good or when the higher order factors (k > 1)
may be necessary as they contain more information in addition to the first CF-factor. This is important in understanding the
forecast combination puzzle. The forecast combination puzzle is about whether to include only the first CF factor or more.
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Table 1. Cont.

Panel B. Relative Supervision srel(X, y, kCI, kCF)

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) vs. CF-PC(k = 1) 1.01 1.06 1.12 1.20 1.36 1.64 1.98 2.35
CI-PC(k = 2) vs. CF-PC(k = 2) 1.04 1.13 1.22 1.31 1.48 1.90 2.10 2.32
CI-PC(k = 3) vs. CF-PC(k = 3) 1.04 1.15 1.18 1.23 1.40 1.88 2.54 2.83
CI-PC(k = 4) vs. CF-PC(k = 4) 1.03 1.09 1.10 1.22 1.50 1.98 2.39 2.65
CI-PC(k = 5) vs. CF-PC(k = 5) 1.04 1.10 1.14 1.20 1.53 1.88 2.39 2.48
CI-NS(k = 1) vs. CF-NS(k = 1) 1.09 1.24 1.34 1.45 1.63 1.90 2.09 2.33
CI-NS(k = 2) vs. CF-NS(k = 2) 1.05 1.17 1.27 1.41 1.62 2.02 2.22 2.34
CI-NS(k = 3) vs. CF-NS(k = 3) 1.05 1.15 1.18 1.23 1.41 1.89 2.57 2.79

The forecast target is Output Growth yt+h = 1200 × log(PIt+h/PIt)÷ h. Out-of-sample forecasting period
is 02/1995–01/2010. In Panel A, reported are the Root Mean Squared Forecast Errors (which is the squared
root of the MSFE of a model). In Panel B, reported are Relative Supervision of CI-PC vs. CF-PC and Relative
Supervision of CI-NS vs. CF-NS, according to Definition 3, which is the ratio of the MSFEs of the two models.
For simplicity of presentation, we present the relative supervision in Panel B only with the same number of
factors (kCI = kCF = k and kNS = kNS = k).

Table 2. Out-of-sample forecasting of CPI inflation.

Panel A. Root Mean Squared Forecast Errors

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) 3.77 2.86 2.25 1.92 1.94 2.16 2.47 2.75
CI-PC(k = 2) 4.21 3.45 2.96 2.76 2.77 2.84 2.96 3.08
CI-PC(k = 3) 4.24 3.50 3.00 2.82 2.88 2.98 3.10 3.19
CI-PC(k = 4) 4.31 3.57 3.05 2.87 2.91 3.00 3.12 3.18
CI-PC(k = 5) 4.30 3.58 3.07 2.93 3.00 3.10 3.20 3.23
CI-NS(k = 1) 3.95 3.12 2.62 2.48 2.60 2.79 2.97 3.10
CI-NS(k = 2) 4.22 3.46 2.98 2.82 2.88 2.98 3.09 3.18
CI-NS(k = 3) 4.24 3.50 3.01 2.83 2.89 2.99 3.11 3.20
CF-PC(k = 1) 3.65 2.67 1.91 1.31 1.01 0.90 0.96 1.08
CF-PC(k = 2) 3.66 2.70 1.93 1.35 1.10 1.05 1.11 1.19
CF-PC(k = 3) 3.68 2.72 1.97 1.47 1.29 1.19 1.19 1.20
CF-PC(k = 4) 3.74 2.80 2.01 1.47 1.22 1.14 1.15 1.17
CF-PC(k = 5) 3.74 2.79 1.98 1.45 1.20 1.12 1.18 1.20
CF-NS(k = 1) 3.65 2.68 1.91 1.31 1.02 0.90 0.96 1.08
CF-NS(k = 2) 3.66 2.70 1.93 1.35 1.10 1.05 1.10 1.19
CF-NS(k = 3) 3.68 2.73 1.97 1.47 1.29 1.20 1.19 1.20

Panel B. Relative Supervision srel(X, y, kCI, kCF)

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) vs. CF-PC(k = 1) 1.07 1.15 1.39 2.15 3.69 5.76 6.62 6.48
CI-PC(k = 2) vs. CF-PC(k = 2) 1.32 1.63 2.35 4.18 6.34 7.32 7.11 6.70
CI-PC(k = 3) vs. CF-PC(k = 3) 1.33 1.66 2.32 3.68 4.98 6.27 6.79 7.07
CI-PC(k = 4) vs. CF-PC(k = 4) 1.33 1.63 2.30 3.81 5.69 6.93 7.36 7.39
CI-PC(k = 5) vs. CF-PC(k = 5) 1.32 1.65 2.40 4.08 6.25 7.66 7.35 7.25
CI-NS(k = 1) vs. CF-NS(k = 1) 1.17 1.36 1.88 3.58 6.50 9.61 9.57 8.24
CI-NS(k = 2) vs. CF-NS(k = 2) 1.33 1.64 2.38 4.36 6.85 8.05 7.89 7.14
CI-NS(k = 3) vs. CF-NS(k = 3) 1.33 1.64 2.33 3.71 5.02 6.21 6.83 7.11

The forecast target is Inflation yt+h = 1200 × log(CPIt+h/CPIt) ÷ h. Out-of-sample forecasting period is
02/1995–01/2010. In Panel A, reported are the Root Mean Squared Forecast Errors (which is the squared
root of the MSFE of a model). In Panel B, reported are Relative Supervision of CI-PC vs. CF-PC and Relative
Supervision of CI-NS vs. CF-NS, according to Definition 3, which is the ratio of the MSFEs of the two models.
For simplicity of presentation, we present the relative supervision in Panel B only with the same number of
factors (kCI = kCF = k and kNS = kNS = k).
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6. Conclusions

For forecasting in the presence of many predictors, it is often useful to reduce the dimension
by a factor model (in a dense case) or by variable selection (in a sparse case). In this paper,
we consider a factor model. In particular, we examine the supervised principal component analysis of
Chan et al. (1999). The model is called CF-PC, as the principal components of many forecasts are the
combined forecasts.

The CF-PC extracts factors from the space spanned by forecasts rather than from the space
spanned by predictors. This factorization of the forecasts improves forecast performance compared to
factor analysis of the predictors. We extend the CF-PC to CF-NS, which uses the NS factor model in
place of the PC factor model, for the application where the predictors are the yield curve. While the
yield curve is a functional data consisting of many different maturity points on a curve at each time,
the NS factors can parsimoniously capture the shapes of the curve.

We have applied the CF-PC and CF-NS models in forecasting output growth and inflation using a
large number of bond yields to examine if the supervised factorization improves forecast performance.
In general, we have found that CF-PC and CF-NS perform substantially better than CI-PC and CI-NS,
that the advantage of supervised factor models is even larger for longer forecast horizons, and that the
two alternative factor models based on PC and NS factors are similar and perform similarly.
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Appendix A. Calculation of Absolute and Relative Supervision in Example 1

Using R and Σk obtained from the SVD for CI in (36), and S and Θk obtained from the SVD for CF
in (40), we calculate the absolute supervision and relative supervision for each k. The CI factors are
FCI = RΣk from (23), and the CF factors FCF = SΘk from (28).

For k = 1,

FCI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, FCF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
5
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A1)

ŷCI-PC = R1R′
1y = (1, 0, 0, 0, 0, 0)′, (A2)

ŷCF-PC = S1S′
1y = (0, 0, 0, 0, 5, 0)′, (A3)

||y − ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 0, 0, 0, 0, 0)′||2 = 54, (A4)

||y − ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 0, 0, 0, 5, 0)′||2 = 30. (A5)

Hence, sabs(X, y, 1, 1) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 54 − 30 = 24, and srel(X, y, 1, 1) = ||y −
ŷCI-PC||2/||y − ŷCF-PC||2 = 54/30 = 1.8.
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For k = 2,

FCI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

2
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

2
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, FCF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 0
0 4
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 4
5 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A6)

ŷCI-PC = R2R′
2y = (1, 2, 0, 0, 0, 0)′, (A7)

ŷCF-PC = S2S′
2y = (0, 0, 0, 4, 5, 0)′, (A8)

||y − ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 0, 0, 0, 0)′||2 = 50, (A9)

||y − ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 0, 0, 4, 5, 0)′||2 = 14. (A10)

Hence, sabs(X, y, 2, 2) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 50 − 14 = 36, and srel(X, y, 2, 2) = ||y −
ŷCI-PC||2/||y − ŷCF-PC||2 = 50/14 = 3.6.

For k = 3,

FCI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1

2 0
0 0 1

3
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1

2 0
0 0 1

3
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, FCF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0
0 4 0
0 0 3
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 3
0 4 0
5 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A11)

ŷCI-PC = R3R′
3y = (1, 2, 3, 0, 0, 0)′, (A12)

ŷCF-PC = S3S′
3y = (0, 0, 3, 4, 5, 0)′, (A13)

||y − ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 0, 0, 0)′||2 = 41, (A14)

||y − ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 0, 3, 4, 5, 0)′||2 = 5. (A15)

Hence, sabs(X, y, 3, 3) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 41 − 5 = 36, and srel(X, y, 3, 3) = ||y −
ŷCI-PC||2/||y − ŷCF-PC||2 = 41/5 = 8.2.

For k = 4,

FCI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 1

4
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 1

4
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, FCF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 2
0 0 3 0
0 4 0 0
5 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A16)

ŷCI-PC = R4R′
4y = (1, 2, 3, 4, 0, 0)′, (A17)

ŷCF-PC = S4S′
4y = (0, 2, 3, 4, 5, 0)′, (A18)
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||y − ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 4, 0, 0)′||2 = 25, (A19)

||y − ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 2, 3, 4, 5, 0)′||2 = 1. (A20)

Hence, sabs(X, y, 4, 4) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 25 − 1 = 24, and srel(X, y, 4, 4) = ||y −
ŷCI-PC||2/||y − ŷCF-PC||2 = 25/1 = 25.

For k = 5, sabs(X, y, 5, 5) = y′(SS′ − RR′)y = 0 because

||y − ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 4, 5, 0)′||2 = 0, (A21)

||y − ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 4, 5, 0)′||2 = 0. (A22)

Hence, as noted in Remark 4, sabs(X, y, 5, 5) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 0 − 0 = 0, and
srel(X, y, 5, 5) is not defined for k = N = 5.
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Abstract: Many financial decisions, such as portfolio allocation, risk management, option pricing and
hedge strategies, are based on forecasts of the conditional variances, covariances and correlations
of financial returns. The paper shows an empirical comparison of several methods to predict
one-step-ahead conditional covariance matrices. These matrices are used as inputs to obtain
out-of-sample minimum variance portfolios based on stocks belonging to the S&P500 index from 2000
to 2017 and sub-periods. The analysis is done through several metrics, including standard deviation,
turnover, net average return, information ratio and Sortino’s ratio. We find that no method is the
best in all scenarios and the performance depends on the criterion, the period of analysis and the
rebalancing strategy.

Keywords: Minimum variance portfolio; risk; shrinkage; S&P 500

JEL Classification: C13; C53; C58; G11

1. Introduction

Forecasting returns, volatilities and conditional correlations has attracted the interest of
researchers and practitioners in finance since these factors are crucial, for example, in portfolio
allocation, risk management, option pricing and hedging strategies; see, for instance, Engle (2009),
Hlouskova et al. (2009) and Boudt et al. (2013) for some references.

A well-known stylised fact in multivariate time series of financial returns is that not only
conditional variances but also conditional covariances and correlations evolve over time. To describe
this evolution, several methods have been proposed in the literature. In general, these methods
involve different ways to circumvent the issue of dimensionality. The treatment of this problem
is vital for the estimation of large portfolios (composed of hundreds or thousands of assets).
As noted by Engle et al. (2017), when dealing with portfolios composed of a thousand time
series, many multivariate GARCH models present unsatisfactory performance or computational
problems in their estimation. For some multivariate GARCH models, estimation problems arise
even for smaller dimensions; see, for instance, Laurent et al. (2012), Caporin and McAleer (2014),
Caporin and Paruolo (2015) and de Almeida et al. (2018).

Our empirical application is based on an investor who adopts the minimum variance
criterion in order to decide on portfolio allocations. A very large body of literature in portfolio
optimization considers this particular policy; see, for instance, Clarke et al. (2011 2006) for
extensive practitioner-oriented studies on the performance and composition of minimum variance
portfolios. This policy can be seen as a particular case of the traditional mean-variance optimisation.

Econometrics 2019, 7, 19; doi:10.3390/econometrics7020019 www.mdpi.com/journal/econometrics29
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The mean-variance problem, however, is known to be very sensitive to estimation of the mean returns
(Frahm 2010; Jagannathan and Ma 2003).1 Very often, the estimation error in the mean returns degrades
the overall portfolio performance and introduces an undesirable level of portfolio turnover. In fact,
existing evidence suggests that the performance of optimal portfolios that do not rely on estimated
mean returns is usually better, see DeMiguel et al. (2009).

To obtain the minimum variance portfolio, the key input is the estimate of the conditional
covariance matrix. As far as we known, there are few works in the literature comparing the estimation of
this matrix for large portfolios, with Creal et al. (2011), Hafner and Reznikova (2012), Engle et al. (2017),
Nakagawa et al. (2018) and Moura and Santos (2018) being especially relevant. Given the myriad of
models and methods in the literature to estimate the covariance matrix, empirical studies about the
comparison of estimates in large portfolios are most welcome.

The paper is intended to assess the performance of several methods to predict one-step-ahead
conditional covariance matrices in large portfolios. This is done empirically, by comparing the
out-of-sample performance of minimum variance portfolios based on S&P500 stocks traded from
2 January 2000 to 30 November 2017, using measures such as average (AV), standard deviation (SD),
information ratio (IR), Sortino’s ratio (SR) (Sortino and van der Meer 1991), turnover (TO) and average
portfolio net of transaction cost (AVnet). Since not all stocks of the index were traded during the
whole period, we consider portfolios of dimension N = 174 stocks. To assess the robustness of the
results, we also the analyse three sub-periods: the pre-crisis period (January 2004 to December 2007),
the subprime crisis period (January 2008 to June 2009), and the post-crisis period (July 2009 to
November 2017).

We consider several attractive methods and models including recent proposals used by
practitioners and academics to predict one-step-ahead conditional covariance matrices. They are
selected mainly because they use different approaches to overcome the issue of dimensionality problem.
Specifically, the paper compares the DCC model as used in Engle et al. (2017), the DECO model of
Engle and Kelly (2012), the OGARCH model of Alexander and Chibumba (1996), the RiskMetrics 1994
and the RiskMetrics 2006 (Zumbach 2007) methods, the generalised principal volatility components
analysis (GPVC) proposed by Li et al. (2016) as a generalisation of the procedure of Hu and Tsay (2014),
and we also apply the robust version of the GPVC method proposed by Trucíos et al. (2019).
DCC models are estimated using composite likelihood, as advocated in Pakel et al. (2014). In addition,
the linear shrinkage (LS) and non-linear shrinkage (NLS) of Ledoit and Wolf (2004a) and Ledoit
and Wolf (2012), respectively, are applied on all the previous methods. Therefore, compared to
Engle et al. (2017), Hafner and Reznikova (2012) and Nakagawa et al. (2018), the set of competing
methods is much bigger and the device of shrinkage is assessed in all the compared methods.
We consider a total of 47 methods, including the equal-weighted portfolio strategy. This constitutes the
main contribution of the paper.

The rest of the paper is organised as follows: Section 2 presents the methods and models used to
predict the one-step-ahead volatility covariance matrix. It also presents the composite likelihood used
to estimate the DCC model and the shrinkage method as presented in Pakel et al. (2014). The empirical
application is given in Section 3. Section 4 concludes and the list of the estimation methods is in the
Appendix A.

2. The Forecast Methods

Denote by ri,t, i = 1, . . . , N, t = 1, . . . , T the return of the i-th asset at time t, where N is
the number of assets under consideration to construct the portfolio and T denotes the sample size.
For simplicity, consider that E(ri,t|Ft−1) = 0, where Ft−1 denotes the information available at time
(t − 1). Let rt = (r1,t, . . . , rN,t)

′; the conditional covariance matrix is defined as Ht = Cov(rt|Ft−1)

1 See Wied et al. (2013) for a test for the presence of structural breaks in minimum variance portfolios
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with elements hi,j,t = Cov(ri,t, rj,t|Ft−1). At time (t − 1), we are interested in estimating Ht in order to
select a portfolio for the period (t − 1, t]. In the following we present some methods to estimate it.

2.1. The RiskMetrics Methods

One of the most popular methods used in risk analysis is the RiskMetrics method developed by
the RiskMetrics Group at JP Morgan. We call this the RiskMetrics 1994 (RM1994) method. The main
feature of the RiskMetrics method is that the predicted volatility is a linear function of the present and
past squared returns. Although it has being widely used, it has some problems. In order to overcome
some of these problems, the same group developed the RM2006 method. Like the RM1994 method,
the RM2006 method is also data-oriented, in the sense that it was calibrated and tested to have good
performance with the majority of the target empirical data, and was developed to take into account
some of the stylised facts and weaknesses detected in the RM1994 method. We can summarize the
main modifications in three types. In the first type, considering that the volatility has a long memory
feature, the weights decay logarithmically instead of exponentially, as happens in the RM1994 method.
The second is that the weights depend on the forecast horizon. The third is that the conditional
distribution of the return is not multivariate Gaussian; the distribution is based on the estimated
devolatilised residuals and it can be roughly defined as a Student-t distribution with scale correction.
Finally, the return levels are modelled considering the lagged correlation between returns.

2.2. The CCC Model

The constant conditional correlation model (Bollerslev 1990) is one of the simplest MGARCH
models to estimate, since basically the variances are modelled independently and the covariances
are obtained using the conditional standard deviation and a constant conditional correlation matrix.
The conditional covariance matrix Ht evolves according to:

Ht = DtRDt, (1)

Dt = Diag(d1,t, . . . , dN,t), (2)

R = Diag(H)−1/2HDiag(H)−1/2, (3)

H = Cov(rt), (4)

with d2
i,t = Var(ri,t|Ft−1) (marginal univariate conditional variances). The advantage of the CCC

model is its easy estimation, although, the main disadvantage is the strong assumption that conditional
correlations are time-invariant. Engle (2002) extended this idea in a dynamic conditional correlation
way, as detailed in the next section.

2.3. The DCC Model

In this section, we describe the scalar DCC model of Engle (2002) as used in Pakel et al. (2014)
and Engle et al. (2017), and the composite likelihood. The non-linear shrinkage method, which is
also used to estimate the DCC model, is presented in Section 2.8. In the DCC model, the marginal
univariate conditional variances d2

i,t = Var(ri,t|Ft−1) are modelled first. Define the devolatilised
residuals as st = (r1,t/d1,t, . . . , rN,t/dN,t)

′. We use the DCC model with correlation targeting as in
Engle et al. (2017). The conditional covariance matrix Ht evolves according to:

Ht = DtRtDt, (5)

Rt = Diag(Qt)
−1/2QtDiag(Qt)

−1/2, (6)

Qt = (1 − α − β)C + αst−1s
′
t−1 + βQt−1, (7)
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where Dt is a diagonal matrix with the i-th element of the diagonal equal to d2
i,t, C = Corr(rt) = Cov(st)

is the unconditional correlation matrix, and Rt = Corr(rt|Ft−1) = Cov(st|Ft−1) is the conditional
correlation matrix at time t. The parameters α and β are non-negative with α + β < 1. We have

rt|Ft−1 ∼ WS(0, Ht), (8)

where WS(0, Ht) means a multivariate distribution with mean zero and covariance matrix Ht.
The model is usually estimated in three stages. In each stage, the estimation is conditional on the

estimates found in previous stages. The stages are: (1) estimate Dt usually assuming a GARCH(1,1)
model for each t = 1, . . . , T, and evaluate the devolatilised residuals; (2) select an estimator of the
correlation target matrix C using the devolatilised residuals; and (3) estimate the parameters α and β.
We will comment on stage one in the application section and on stage 2 in Section 2.8. In the third
stage, even with only two parameters, one may face estimation problems with a large number of
assets because it is necessary to invert the conditional covariance matrix Ht (for each t = 1, . . . , T).
One way to overcome this problem is through the use of the composite (log-)likelihood2 to compute it.
This method was proposed in the 2008 version of Pakel et al. (2014). In the 2014 version, they showed
that the estimators of α and β, given by maximizing the composite likelihood, are consistent although
not efficient. They evaluate the composite likelihood by summing the likelihood of all contiguous pairs.
Thus, there are only (N − 1) bivariate terms and for any contiguous pair it is only necessary to invert
a matrix of order two. For instance, let r(i) = (ri,1, . . . , ri,T)

′
, i = 1, . . . , N, i.e., the series of returns of

the ith asset, and denote by li(α, β; r(i), r(i+1)) the likelihood of the pair (r(i), r(i+1)), i = 1, . . . , N − 1,
assuming that each pair comes from a bivariate DCC model, defined similarly as the model given by
Equations (5–7). Then, the composite likelihood is given by:

CL(α, β; r(i), i = 1, . . . , N) =
N−1

∑
i=1

li(α, β; r(i), r(i+1)). (9)

Engle et al. (2017) argue that the estimator of the conditional covariance matrix given by the DCC
model using composite likelihood in stage three with the estimation of the unconditional correlation
matrix using non-linear shrinkage in stage two is robust against model misspecification in large
dimensions (N).

2.4. The DECO Model

Engle and Kelly (2012) propose a dynamic equicorrelation (DECO) model as a trade-off between
a model which imposes many restrictions in the covariance matrix and a less structured model.
They contend that imposing too much structure can lead to an efficient estimation when the restrictions
are correct, but can suffer from breakdown in the presence of misspecification. On the other hand,
the lack of restrictions may lead to the issue of dimensionality. Considering this trade-off, they propose
a model where the cross-correlations between any pair of returns are equal on the same day, but it can
vary over time. In addition, as in the CCC and DCC models, the DECO model also assumes that
the marginals are modelled by a univariate volatility model. Using the same notation, we have
d2

i,t = Var(ri,t|Ft−1), and the covariance matrix is written as Ht = DtRtDt as in Equation (5).
The equicorrelation matrix is given by:

Rt = (1 − ρt)IN + ρtJN , (10)

where ρt is the equicorrelation, IN denotes the N-dimensional identity matrix and JN is the
N × N matrix of ones. According to Engle and Kelly (2012), R−1

t exist if and only if ρt �= 1 and

2 From now on we just call the log-likelihood likelihood.
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ρt �= −1/(N − 1), and Rt is positive definite if and only if ρt ∈ (−1/(N − 1), 1). The evaluation of the
likelihood is easy because we have closed forms for R−1

t and det(Rt), given by:

R−1
t =

1
1 − ρt

IN − ρt

(1 − ρt)(1 + [N − 1]ρt)
JN , (11)

and
det(Rt) = (1 − ρt)

N−1 [1 + (N − 1)ρt] , (12)

respectively. This description of the DECO model corresponds to a single block. The DECO model can
also be used considering many blocks, as described in Engle and Kelly (2012).

2.5. The OGARCH Model

Alexander and Chibumba (1996) propose the Orthogonal GARCH (OGARCH) model, a dimension
reduction technique to model the conditional covariance matrix. The model intends to simplify the
problem of modelling an N-dimensional system into modelling a system of K-dimension orthogonal
components where those components are obtained through principal component analysis (K ≤ N).
Since the components are orthogonal, the conditional covariance matrix of the whole system can be
obtained as:

Ht = ADtA
′ + Vε, (13)

where A is an N × k matrix whose columns are the normalised eigenvectors associated with the
unconditional covariance matrix, Dt is a diagonal matrix whose elements are the conditional variances
of the k principal orthogonal components associated with the k largest eigenvalues, and Vε is the
covariance matrix of the errors that can be ignored. The conditional variances of each component can
be modelled by a GARCH-type model.

Alexander and Chibumba (1996) and Alexander (2002) emphasise the importance of using
a number of components k much smaller than N. However, Bauwens et al. (2006) and
Becker et al. (2015) suggest using k = N to avoid problems related with the inverse of Ht.
The OGARCH model with k = N is a particular case of the GO-GARCH model (Van der Weide 2002).

2.6. The Generalised Principal Volatility Components Model

The generalised principal volatility components (GPVC) procedure is a dimension reduction
technique recently proposed by Li et al. (2016), which decomposes a series into two groups of volatility
components. The first group corresponds to a small number of components with volatility evolving
over time while the second one corresponds to components whose volatility is constant over time.
The GPVC procedure considers an orthogonal matrix M = [A : B] and decomposes an N-dimensional
vector yt = (y1t, ..., yNt)

′ with E(yt|Ft−1) = 0 into:

yt = MM′yt = (AA′ + BB′)yt = Aft + fflt, (14)

with ft = A′yt and fflt = BB′yt. The matrix M is obtained through the decomposition GM = ΛM,
where Λ is a diagonal matrix with elements given by the eigenvalues in decreasing order and
M is the associated matrix of normalised eigenvectors. The columns of matrices A and B are the
eigenvectors associated with the non-zero and zero eigenvalues, respectively, which are obtained from
the eigenvalue decomposition of the matrix G. In practice, G is given by:

G =
g

∑
k=1

T

∑
t=1

ω(yt)E2 [(yty
′
t − Σ

)
I(‖yt−k‖ ≤ ‖yt‖)

]
, (15)
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where g is a positive integer that gives the maximum lag order considered, ω(·) is a weight function,
Σ is the unconditional covariance matrix and ‖ · ‖ is the L1 norm. Then, after some calculations,
the conditional covariance matrix can be obtained by:

Ht = AH
f
t A′ + AA′ΣBB′ + BB′Σ, (16)

where H
f
t is the conditional covariance matrix of the volatility components with volatility evolving

over time and the remaining are terms as defined previously3. The matrix G is estimated as:

Ĝ =
g

∑
k=1

T

∑
τ=1

ω(yτ)

[
1

T − k

T

∑
t=k+1

[(
yty

′
t − Σ̂

)
I(‖yt−k‖ ≤ ‖yτ‖)

]]2

. (17)

The estimated version of Equation (16) is obtained by replacing the true values with the
estimated ones.

2.7. The Robust GPVC Model

Trucíos et al. (2019) show the non-robustness of the GPVC procedure of Li et al. (2016) and propose
an alternative procedure to obtain volatility components that is robust to outliers. This procedure
is based on a robust estimator of the unconditional covariance matrix, a weighted estimator of
E [(yty

′
t − Σ) I(‖yt−k‖ ≤ ‖yt‖)], and robustified filters. The matrix (17) is replaced by a less sensitive

matrix, defined as:

ĜR =
g

∑
k=1

T

∑
τ=1

ω(yτ)

[
T

∑
t=k+1

δ∗(d2
t )

{
(yty

′
t − Σ̂R)I(‖yt−k‖ ≤ ‖yτ‖)

}]2

, (18)

where d2
t is the robust squared Mahalanobis distance given by d2

t = (yt − ˆ̄R)′Σ̂−1
t (yt − ˆ̄R) with

Σ̂t = 0.01ρ(y′
t−1yt−1) + 0.99Σ̂t−1, Σ̂1 = Σ̂R and ˆ̄R, Σ̂R being robust estimates of the unconditional

mean and covariance matrix. Trucíos et al. (2019) use the minimum covariance determinant (MCD)
estimator of Rousseeuw (1984), implemented by the algorithm of Hubert et al. (2012). The robust filters,
ρ(·) and δ(·) are given by ρ(xt) = xt if d2

t ≤ c, ρ(xt) = Σ̂R if d2
t > c; δ(x) = 1 if x ≤ c, δ(x) = 1/x if

x > c and δ∗(·) = δ(·)/||δ(·)||, where ‖ · ‖ is the L1 norm. For details, see Trucíos et al. (2019).
To avoid returns corresponding to periods with high volatility being considered as possible

outliers, the robust procedure incorporates in the squared Mahalanobis distance a covariance matrix
evolving over time, which can be seen as a robust RM1994 method with λ = 0.99.

Finally, the conditional covariance matrix Ht is obtained as in Equation (16).

2.8. Linear and Non-Linear Shrinkage

Besides the estimation of the covariance matrix (Ht), in some of the aforementioned models, we
have to estimate the unconditional covariance or correlation matrix; for instance, the matrix C in
Equation (7) of the DCC model. Generally, the estimation of the unconditional correlation (covariance)
matrix is done using the sample correlation (covariance) matrix. However, this is inefficient in the
large dimensional case because we could end up with a number of parameters with the same order
of magnitude as the dataset, or even larger (see, for instance, the simulation study in the Appendix
of Engle et al. (2017)). In general, comparing the eigenvalues of the true correlation matrix with
the eigenvalues of the sample correlation matrix, there is a tendency to underestimate the smaller
eigenvalues and overestimate the larger ones. A natural way to reduce this bias is to increase the
smaller eigenvalues and decrease the larger sample eigenvalues and then reconstruct the estimate of the

3 Note that when Σ = I, Ht = AH
f
t A′ + BB′Σ = AH

f
t A′ + Σffl as presented in Li et al. (2016).
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correlation matrix. This is the main idea behind the shrinkage method. Engle et al. (2017) analyse the
use of three types the shrinkage: linear shrinkage of Ledoit and Wolf (2004b) with shrinkage target given
by (a multiple of) the identity matrix; linear shrinkage of Ledoit and Wolf (2004a) with shrinkage target
given by the equicorrelation matrix; and the non-linear shrinkage of Ledoit and Wolf (2012) for the
estimation of the unconditional correlation matrix in Equation (7). Using simulation, they conclude that
the three types of shrinkage have better performance than the use of the sample correlation matrix in the
estimation of Ht, and the best performance is obtained from the non-linear shrinkage. They conclude
that the application of non-linear shrinkage improves the estimation, and the improvement generally
increases for a larger number of assets. In the application, they also apply the non-linear shrinkage to
the estimated one-step-ahead conditional covariance matrix, which is not done in the simulation study.
In the empirical application, they construct portfolios of global minimum variance with portfolio sizes
100, 500 and 1000 and updated monthly. As in the simulation study, they construct portfolios with Ht

modelled by DCC and CCC models and the RiskMetrics 2006 method. However, besides applying
the linear and non-linear shrinkage to the target correlation matrix, they also apply the shrinkages to
the one-step-ahead prediction of the volatility matrix. The best performance is achieved by the DCC
model with the non-linear shrinkage applied only to the estimation of the intercept matrix, followed
by the non-linear shrinkage applied both to the intercept matrix and to the one-step-ahead prediction
matrix. We use the linear shrinkage towards the equicorrelation matrix, because in Engle et al. (2017) it
presented slightly better performance than the shrinkage towards the identity matrix, although the
estimator does not belong to the class of rotation-equivariant estimators.

For a light introduction to the main idea behind shrinkage, suppose we want to estimate the
covariance matrix Σ and we have an estimate Ĉ based on a sample of size T. For instance, Ĉ could
be the sample covariance matrix and Σ, the population matrix (unconditional covariance matrix).
This is the case of the estimation of the DCC, where Σ is the intercept matrix. When the ratio N/T,
called concentration ratio, becomes large, we have in-sample overfitting due to the excessive number
of parameters, introducing a bias in the estimation of the eigenvalues. One way to correct this problem
is through the shrinkage method.

For the linear shrinkage towards the equicorrelation matrix, denote by ĉij the element of the
estimate Ĉ. The mean of the estimated correlations is given by:

r̄ =
2

(N − 1)N

N−1

∑
i=1

N

∑
j=i+1

ĉi,j√
ĉi,i ĉj,j

, (19)

such that for the target matrix F we have fi,i = ĉi,i and fi,j = r̄
√

ĉi,i ĉj,j. The shrinkage estimate
is given by:

Σ̂Shrink = δF + (1 − δ)Ĉ, (20)

where the shrinkage intensity, δ, is such that it minimizes the expected quadratic loss as in
Ledoit and Wolf (2004a). For the shrinkage intensity δ, define the quadratic loss function

L(δ) = ||δF + (1 − δ)Ĉ − Σ||2.

Ledoit and Wolf (2004a) propose to use the shrinkage intensity, which minimizes the risk function
R(δ) = E(L(δ)). The formulae and the derivation of the estimated shrinkage intensity can be found in
the Appendix B of Ledoit and Wolf (2004a).

Regarding the non-linear shrinkage, let Ĉ having dimension (N × N), (λ̂1, . . . , λ̂N), sorted in
descending order, be the set of eigenvalues, and (û1, . . . , ûN) the corresponding eigenvectors, such that:

Ĉ =
N

∑
i=1

λ̂iûiû
′
i. (21)
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For an investor holding a portfolio with weights ω, the estimated variance is given by ω′Ĉω.
The non-linear shrinkage of Ledoit and Wolf (2004b) is a transformation from (λ̂1, . . . , λ̂N) to
λ̃ = (λ̃1, . . . , λ̃N), such that substituting λ̂i for λ̃i in Equation (21) gives a consistent estimator of the
out-of-sample variance ω′Σω′. Denote by λ = (λ1, . . . , λN) the set of eigenvalues of Σ in descending
order. Ledoit and Wolf (2004b) define QuEST functions (q1(λ), . . . , qN(λ), such that λ̃ minimizes the
Euclidean distance between the QuEST functions and the sample eigenvalues, i.e., given by:

λ̃ = arg min
λ∈[0,∞)N

N

∑
i=1

[qi(λ)− λ̂i]
2. (22)

A definition of the QuEST functions and a rigorous exposition of non-linear shrinkage can be found in
Ledoit and Wolf (2012), while a lighter presentation can be found in the Supplementary Material of
Engle et al. (2017).

3. Empirical Application

3.1. Data and Methods

In this section, we implement the procedures described in Section 2 and use the predicted
one-step-ahead conditional covariance matrix to construct the minimum variance portfolio (MVP) of
the stocks used in the composition of the S&P 500 index, traded from 2 January 2000 to 30 November
2017. Because not all stocks of the index were traded during the whole period, we ended up with
N = 174 stocks.

To evaluate the out-of-sample portfolio performance, we consider a rolling window scheme.
The out-of-sample portfolio performance is evaluated in four different periods, namely: pre-crisis
period (January 2004 to December 2007, 1008 days), subprime crisis period (January 2008 to June 2009,
378 days), post-crisis period (July 2009 to November 2017, 2218 days), and full period (January 2004 to
November 2017, 3503 days). In each window, the one-step-ahead covariance matrix is estimated and
the MVP values with and without short-sale constraints are obtained. The weights in the MVP portfolio
are rebalanced with both daily and monthly frequencies. In the latter case, we follow Engle et al. (2017),
that is, we obtain the portfolio returns daily but update the weights monthly (following the common
convention we use 21 consecutive trading days as a month). Monthly updating is common in practice
to reduce transaction costs.

The procedures described in Section 2 are combined with the linear and non-linear shrinkage
estimator described in Subsection 2.8. The linear and non-linear shrinkage are applied at the beginning
and/or at the end of the estimation procedure. A detailed description of each combination of the
estimation procedures is given in the Appendix A. In addition, for the sake of comparison, we also
implement the naive equal-weighted portfolio. In the line of Engle et al. (2017), Gambacciani and
Paolella (2017), Trucíos et al. (2018) among others, we consider the following annualised out-of-sample
performance measures. Denote by Rp = {rp,1, . . . , rp,k} the observed out-of-sample returns from
a given method where k in the length of the out-of-sample period. The measures considered in
this paper: the annualised average portfolio return (AV), standard deviation portfolio return (SD),
information ratio (IR), Sortino’s ratio (SR) and average turnover (TO) are computed as follows:

AV: equal to 252 × R̄p, where R̄p is the average of the elements of Rp.
SD: equal to

√
252 × Sp, where Sp is the standard deviation of the elements of Rp.

IR: AV/SD.
SR: AV/

√
252 × S∗2, where S∗2 is the mean of r∗p,i, i = 1, . . . , k, with r∗p,i = r2

p,i if rp,i less than the
minimal acceptable return, which is taken to zero, and zero otherwise.

TO: k−1
k

∑
t=2

N

∑
j=1

|ωj,t − ωj,t−1| where ωj,t is the portfolio weight at time t for the j-th asset, and k is the

number of the out-of-sample portfolio returns.
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As pointed out by Kirby and Ostdiek (2012), Santos and Ferreira (2017), Olivares-Nadal
and DeMiguel (2018), among others, transaction costs (c) can have an impact on the portfolio’s
performance. In order to take into account those costs, we also compute the portfolio returns net
of transaction cost. For a given c, the portfolio return net of transaction costs at time t is given
by rnet

p,t = (1 − c × turnovert)(1 + rp,t)− 1 and then the annualised average portfolio return net of
transaction costs is AVnet = 252 × R̄net

p where R̄net
p is the average of the portfolio return net of

transaction costs rnet
p,1, . . . , rnet

p,k . We consider c = 20bp (intermediate) and c = 50bp (high level)
transaction costs where a basis point (bp) is a unit of measure commonly used in finance and is
equivalent to 0.01%. The annualised average portfolio return net of transation costs considering
c = 20bp and c = 50bp are denoted by AVnet

20bp and AVnet
50bp, respectively.

3.2. Results

Tables 1–8 report annualised out-of-sample performance measures for MVP with performance
for the pre-crisis, crisis, post-crisis and full periods. Tables 1–4 report the results for daily rebalanced
portfolios whereas Tables 5–8 report the results for monthly rebalanced portfolios. We also have
results for MVP with no short-sale constraints. However, in this paper we focus on the results for
MVP with short-sale constraints and give a short summary of the main findings for the case without
short-sale constraints. A detailed analysis of the case without short-sale constraints is given in the
Supplementary Material.

In Tables 1–8 we report (in parentheses) the rank of the methods according to the SD criterion in
the second column. Moreover, for each criterion, the best five methods are highlighted in shadowed
cells. The equal-weighted portfolio strategy is represented by 1/N.

Taking into account the fact that portfolios are chosen in order to have the minimum variance,
the analysis is first done according to the SD criterion. For portfolios rebalanced daily or monthly,
the largest SD is reported by the equal-weight portfolio strategy. For portfolios rebalanced daily
(Tables 1–4), the five smallest SDs are obtained by the DCC based-methods, except in the crisis period,
in which case the five smallest SDs are spread among the DCC, OGARCH and GPVC based-methods.
In the crisis-period, the smallest SD is obtained by the GPVC procedure with the non-linear shrinkage
applied to the one-step-ahead conditional covariance matrix. For portfolios rebalanced monthly
(Tables 5–8), the smallest SDs are obtained by the RM2006-LS4, NLS-DCC, NLS-GPVC and RM2006-LS
procedures for the full, pre-crisis, crisis and post-crisis periods, respectively.

The best performance in terms of the AV criterion differs depending on the period and rebalance
strategy. For instance, for daily rebalancing the best performance in the full period is achieved
by the RPVC followed by the RPVC with non-linear shrinkage applied to the one-step-ahead
conditional covariance matrix. However, for the pre-crisis, crises and post-crisis periods, the best
performance is achieved by the OGARCH with non-linear shrinkage applied to the unconditional
covariance matrix (NLS-OGARCH), RPVC with linear shrinkage applied to the one-step-ahead
conditional covariance matrix (RPVC-LS) and RiskMetrics method with linear shrinkage applied to
the one-step-ahead conditional covariance matrix (RM1994-LS), respectively. For monthly rebalancing,
the best performances in the full, pre-crisis, crisis and post-crisis periods are achieved by the RPVC,
OGARCH-NLS, GPVC-LS and equal-weight portfolio strategy, respectively.

In terms of average turnover, the five smallest average turnovers are in the OGARCH and GPVC
groups, with the best performance being achieved by the OGARCH with non-linear shrinkage applied
to the one-step-ahead conditional covariance matrix in almost all cases. The only two exceptions
are observed in the crisis period, in which case the best performance is achieved by the GPVC
procedure with non-linear shrinkage applied to the one-step-ahead conditional covariance matrix.

4 The acronyms are described in the Appendix A.
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Additionally, note that regardless of whether portfolio is rebalanced daily or monthly, the average
turnover reported by all dimension reduction techniques is smaller than reported by the non-dimension
reduction procedures.

Table 1. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to November 2017. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 8.302 20.058 (47) 0.414 0.570 - - -

CCC 7.706 11.839 (12) 0.651 0.890 0.297 7.509 7.279
CCC LS 7.004 11.881 (14) 0.590 0.807 0.307 6.815 6.578
CCC NLS 7.876 11.932 (17) 0.660 0.905 0.277 7.685 7.470
LS CCC 7.506 11.816 (11) 0.635 0.868 0.302 7.311 7.078
NLS CCC 7.345 11.809 (10) 0.622 0.848 0.298 7.153 6.923
LS CCC LS 6.628 11.918 (16) 0.556 0.759 0.305 6.439 6.205
NLS CCC NLS 7.522 11.910 (15) 0.632 0.865 0.303 7.327 7.091
DCC 7.737 11.613 (2) 0.666 0.908 0.308 7.532 7.296
DCC LS 6.941 11.689 (5) 0.594 0.810 0.314 6.749 6.508
DCC NLS 7.711 11.695 (6) 0.659 0.905 0.285 7.513 7.292
LS DCC 7.707 11.613 (1) 0.664 0.904 0.308 7.502 7.266
NLS DCC 7.629 11.616 (3) 0.657 0.894 0.307 7.424 7.188
LS DCC LS 6.907 11.688 (4) 0.591 0.806 0.314 6.715 6.474
NLS DCC NLS 7.645 11.699 (7) 0.653 0.896 0.283 7.447 7.227
RM2006 8.649 11.809 (9) 0.732 0.995 0.271 8.446 8.234
RM2006 LS 8.746 11.724 (8) 0.746 1.017 0.282 8.564 8.343
RM2006 NLS 8.734 11.865 (13) 0.736 1.011 0.268 8.537 8.327
RM1994 8.502 12.220 (22) 0.696 0.947 0.283 8.289 8.069
RM1994 LS 8.391 12.012 (18) 0.699 0.953 0.277 8.196 7.979
RM1994 NLS 8.763 12.151 (19) 0.721 0.990 0.225 8.581 8.405
DECO 5.980 12.258 (25) 0.488 0.660 0.297 5.797 5.568
DECO NLS 6.103 12.485 (41) 0.489 0.669 0.360 5.884 5.604
LS DECO 5.980 12.257 (24) 0.488 0.660 0.297 5.797 5.568
NLS DECO 5.981 12.257 (23) 0.488 0.660 0.297 5.798 5.569
NLS DECO NLS 6.103 12.485 (42) 0.489 0.669 0.360 5.884 5.604
OGARCH 8.363 12.341 (27) 0.678 0.936 0.095 8.271 8.196
OGARCH LS 7.052 12.544 (43) 0.562 0.773 0.103 6.974 6.893
OGARCH NLS 8.126 12.154 (20) 0.669 0.928 0.072 8.052 7.996
LS OGARCH 7.951 12.477 (39) 0.637 0.877 0.095 7.860 7.786
NLS OGARCH 8.365 12.341 (27) 0.678 0.936 0.095 8.273 8.198
LS OGARCH LS 6.880 12.710 (44) 0.541 0.743 0.101 6.802 6.723
NLS OGARCH NLS 8.126 12.154 (20) 0.669 0.928 0.072 8.051 7.996
GPVC 7.825 12.467 (38) 0.628 0.861 0.132 7.700 7.598
GPVC LS 7.438 12.274 (26) 0.606 0.834 0.106 7.341 7.259
GPVC NLS 6.727 12.369 (31) 0.544 0.749 0.113 6.621 6.533
LS GPVC 7.994 12.452 (36) 0.642 0.891 0.117 7.872 7.781
NLS GPVC 7.672 12.433 (33) 0.617 0.845 0.130 7.547 7.447
LS GPVC LS 7.470 12.429 (32) 0.601 0.826 0.161 7.359 7.238
NLS GPVC NLS 6.725 12.365 (30) 0.544 0.749 0.113 6.619 6.533
RPVC 9.657 12.785 (45) 0.755 1.047 0.222 9.479 9.310
RPCV LS 7.989 12.439 (34) 0.642 0.889 0.180 7.861 7.724
RPVC NLS 9.186 12.485 (40) 0.736 1.026 0.184 9.035 8.893
LS RPVC 8.543 12.347 (29) 0.692 0.953 0.201 8.387 8.235
NLS RPVC 8.064 13.142 (46) 0.614 0.850 0.191 7.904 7.755
LS RPCV LS 7.493 12.439 (35) 0.602 0.828 0.167 7.378 7.252
NLS RPVC NLS 7.658 12.460 (37) 0.615 0.850 0.172 7.509 7.376
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Table 2. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to December 2007. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 12.732 12.755 (47) 0.998 1.418 - - -

CCC 11.425 8.381 (6) 1.363 1.963 0.256 11.137 10.934
CCC LS 9.818 8.495 (14) 1.156 1.655 0.264 9.569 9.362
CCC NLS 11.157 8.404 (11) 1.328 1.907 0.247 10.863 10.668
LS CCC 11.305 8.394 (9) 1.347 1.940 0.258 11.030 10.826
NLS CCC 11.461 8.399 (10) 1.365 1.966 0.251 11.195 10.997
LS CCC LS 9.632 8.628 (17) 1.116 1.596 0.258 9.386 9.183
NLS CCC NLS 11.172 8.426 (12) 1.326 1.910 0.263 10.901 10.692
DCC 11.144 8.203 (3) 1.359 1.947 0.263 10.843 10.636
DCC LS 9.450 8.394 (8) 1.126 1.605 0.268 9.201 8.992
DCC NLS 10.919 8.234 (5) 1.326 1.898 0.253 10.609 10.410
LS DCC 11.103 8.199 (2) 1.354 1.941 0.263 10.802 10.596
NLS DCC 11.035 8.196 (1) 1.346 1.929 0.262 10.733 10.527
LS DCC LS 9.423 8.391 (7) 1.123 1.601 0.268 9.174 8.965
NLS DCC NLS 10.829 8.226 (4) 1.316 1.884 0.252 10.519 10.321
RM2006 11.983 8.553 (15) 1.401 2.045 0.258 11.630 11.426
RM2006 LS 10.988 8.435 (13) 1.303 1.887 0.268 10.728 10.516
RM2006 NLS 9.852 8.686 (19) 1.134 1.619 0.259 9.520 9.318
RM1994 9.496 9.148 (29) 1.038 1.503 0.282 9.121 8.902
RM1994 LS 8.498 8.866 (23) 0.959 1.374 0.275 8.182 7.967
RM1994 NLS 10.080 9.112 (28) 1.106 1.584 0.220 9.742 9.571
DECO 9.282 9.062 (25) 1.024 1.457 0.253 9.040 8.840
DECO NLS 8.998 9.197 (32) 0.978 1.388 0.302 8.725 8.487
LS DECO 9.280 9.063 (26) 1.024 1.456 0.253 9.039 8.838
NLS DECO 9.271 9.064 (27) 1.023 1.455 0.254 9.030 8.829
NLS DECO NLS 8.998 9.197 (33) 0.978 1.388 0.302 8.725 8.487
OGARCH 13.356 9.188 (31) 1.454 2.097 0.083 13.165 13.100
OGARCH LS 11.565 10.105 (45) 1.144 1.602 0.088 11.435 11.367
OGARCH NLS 12.805 9.203 (34) 1.391 1.998 0.071 12.638 12.582
LS OGARCH 13.068 9.257 (36) 1.412 2.030 0.081 12.885 12.821
NLS OGARCH 13.362 9.188 (30) 1.454 2.098 0.083 13.172 13.106
LS OGARCH LS 11.305 10.326 (46) 1.095 1.528 0.082 11.175 11.110
NLS OGARCH NLS 12.804 9.203 (34) 1.391 1.997 0.071 12.637 12.582
GPVC 11.497 9.268 (37) 1.241 1.757 0.109 11.246 11.163
GPVC LS 11.024 9.282 (39) 1.188 1.680 0.082 10.835 10.772
GPVC NLS 11.210 9.320 (43) 1.203 1.690 0.099 10.993 10.918
LS GPVC 12.213 9.294 (41) 1.314 1.868 0.094 11.953 11.881
NLS GPVC 11.274 9.348 (44) 1.206 1.703 0.108 11.020 10.938
LS GPVC LS 10.325 9.288 (40) 1.112 1.559 0.129 10.153 10.052
NLS GPVC NLS 11.165 9.318 (42) 1.198 1.683 0.097 10.949 10.876
RPVC 12.966 8.680 (18) 1.494 2.169 0.193 12.642 12.492
RPCV LS 10.423 9.000 (24) 1.158 1.646 0.152 10.218 10.100
RPVC NLS 12.233 8.697 (20) 1.407 2.018 0.171 11.951 11.818
LS RPVC 11.635 8.577 (16) 1.357 1.944 0.175 11.354 11.218
NLS RPVC 10.878 8.829 (22) 1.232 1.760 0.171 10.579 10.447
LS RPCV LS 10.304 9.271 (38) 1.111 1.558 0.139 10.125 10.016
NLS RPVC NLS 10.628 8.760 (21) 1.213 1.723 0.158 10.336 10.215
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Table 3. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2008 to June 2009. The shaded cells denote the top five for
each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N −30.668 43.046 (47) −0.713 −0.960 - - -

CCC −25.407 22.009 (20) −1.154 −1.464 0.362 −25.564 −25.799
CCC LS −25.522 22.003 (19) −1.160 −1.471 0.365 −25.680 −25.917
CCC NLS −23.682 22.613 (27) −1.047 −1.344 0.300 −23.820 −24.026
LS CCC −26.288 21.934 (13) −1.199 −1.516 0.369 −26.448 −26.686
NLS CCC −27.144 21.965 (16) −1.236 −1.558 0.365 −27.301 −27.537
LS CCC LS −27.052 21.967 (17) −1.232 −1.553 0.368 −27.211 −27.449
NLS CCC NLS −25.372 22.346 (25) −1.135 −1.446 0.326 −25.521 −25.743
DCC −26.520 21.580 (5) −1.229 −1.554 0.389 −26.683 −26.928
DCC LS −26.702 21.596 (7) −1.236 −1.563 0.391 −26.866 −27.112
DCC NLS −24.636 21.926 (12) −1.124 −1.446 0.312 −24.777 −24.989
LS DCC −26.639 21.582 (6) −1.234 −1.561 0.390 −26.802 −27.047
NLS DCC −27.020 21.596 (7) −1.251 −1.581 0.392 −27.184 −27.429
LS DCC LS −26.833 21.599 (9) −1.242 −1.570 0.392 −26.997 −27.243
NLS DCC NLS −24.899 21.952 (14) −1.134 −1.460 0.311 −25.039 −25.249
RM2006 −22.728 21.862 (11) −1.040 −1.326 0.281 −22.858 −23.054
RM2006 LS −22.912 21.815 (10) −1.050 −1.338 0.279 −23.041 −23.235
RM2006 NLS −21.267 21.958 (15) −0.969 −1.264 0.216 −21.372 −21.529
RM1994 −20.793 22.108 (22) −0.941 −1.205 0.260 −20.914 −21.096
RM1994 LS −21.234 22.053 (21) −0.963 −1.232 0.259 −21.355 −21.537
RM1994 NLS −20.974 22.161 (23) −0.946 −1.236 0.178 −21.060 −21.188
DECO −31.859 22.706 (33) −1.403 −1.742 0.408 −32.030 −32.288
DECO NLS −29.187 22.618 (28) −1.291 −1.633 0.386 −29.358 −29.615
LS DECO −31.854 22.706 (32) −1.403 −1.742 0.408 −32.026 −32.284
NLS DECO −31.829 22.702 (31) −1.402 −1.741 0.408 −32.001 −32.258
NLS DECO NLS −29.188 22.618 (29) −1.291 −1.633 0.386 −29.359 −29.615
OGARCH −21.671 23.390 (36) −0.927 −1.218 0.107 −21.722 −21.799
OGARCH LS −21.745 23.360 (35) −0.931 −1.223 0.108 −21.796 −21.873
OGARCH NLS −20.118 21.541 (3) −0.934 −1.223 0.071 −20.153 −20.205
LS OGARCH −23.677 24.009 (45) −0.986 −1.291 0.109 −23.728 −23.804
NLS OGARCH −21.671 23.390 (36) −0.927 −1.218 0.107 −21.722 −21.799
LS OGARCH LS −23.571 23.957 (41) −0.984 −1.288 0.109 −23.622 −23.699
NLS OGARCH NLS −20.118 21.541 (3) −0.934 −1.223 0.071 −20.153 −20.205
GPVC −19.789 22.287 (24) −0.888 −1.151 0.105 −19.831 −19.894
GPVC LS −16.841 22.700 (30) −0.742 −0.973 0.113 −16.890 −16.964
GPVC NLS −23.692 21.444 (1) −1.105 −1.434 0.050 −23.711 −23.740
LS GPVC −18.380 22.823 (34) −0.805 −1.079 0.112 −18.429 −18.503
NLS GPVC −20.574 21.983 (18) −0.936 −1.207 0.102 −20.614 −20.674
LS GPVC LS −21.137 23.982 (43) −0.881 −1.144 0.193 −21.208 −21.315
NLS GPVC NLS −23.716 21.451 (2) −1.106 −1.435 0.050 −23.735 −23.764
RPVC −17.369 23.870 (40) −0.728 −0.962 0.188 −17.446 −17.561
RPCV LS −15.911 23.839 (39) −0.667 −0.888 0.189 −15.990 −16.109
RPVC NLS −22.229 22.432 (26) −0.991 −1.296 0.114 −22.277 −22.350
LS RPVC −21.004 23.672 (38) −0.887 −1.153 0.195 −21.076 −21.183
NLS RPVC −25.119 27.169 (46) −0.925 −1.231 0.156 −25.192 −25.302
LS RPCV LS −21.164 23.982 (44) −0.883 −1.145 0.193 −21.235 −21.342
NLS RPVC NLS −25.492 23.964 (42) −1.064 −1.389 0.115 −25.543 −25.620
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Table 4. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period July 2009 to November 2017. The shaded cells denote the top five
for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 13.130 16.057 (47) 0.818 1.148 - - -

CCC 11.830 10.561 (15) 1.120 1.606 0.306 11.669 11.427
CCC LS 11.455 10.599 (18) 1.081 1.554 0.318 11.288 11.037
CCC NLS 11.932 10.502 (10) 1.136 1.628 0.288 11.781 11.554
LS CCC 11.713 10.540 (13) 1.111 1.595 0.310 11.550 11.304
NLS CCC 11.525 10.512 (11) 1.096 1.571 0.308 11.362 11.119
LS CCC LS 11.193 10.629 (19) 1.053 1.514 0.315 11.027 10.778
NLS CCC NLS 11.640 10.552 (14) 1.103 1.583 0.317 11.473 11.222
DCC 12.213 10.366 (1) 1.178 1.681 0.315 12.047 11.797
DCC LS 11.736 10.429 (8) 1.125 1.612 0.322 11.566 11.311
DCC NLS 11.942 10.383 (5) 1.150 1.644 0.295 11.786 11.553
LS DCC 12.204 10.366 (1) 1.177 1.679 0.314 12.038 11.788
NLS DCC 12.175 10.367 (3) 1.174 1.674 0.314 12.009 11.761
LS DCC LS 11.715 10.427 (7) 1.124 1.609 0.322 11.545 11.290
NLS DCC NLS 11.922 10.383 (4) 1.148 1.641 0.293 11.768 11.536
RM2006 12.648 10.498 (9) 1.205 1.686 0.275 12.502 12.283
RM2006 LS 13.314 10.403 (6) 1.280 1.812 0.289 13.160 12.930
RM2006 NLS 13.542 10.518 (12) 1.288 1.820 0.281 13.393 13.169
RM1994 13.243 10.941 (35) 1.210 1.691 0.287 13.091 12.863
RM1994 LS 13.613 10.686 (25) 1.274 1.799 0.281 13.463 13.239
RM1994 NLS 13.430 10.808 (32) 1.243 1.747 0.235 13.305 13.117
DECO 11.144 10.806 (29) 1.031 1.478 0.298 10.986 10.749
DECO NLS 11.007 11.214 (39) 0.982 1.410 0.383 10.805 10.501
LS DECO 11.145 10.806 (31) 1.031 1.478 0.298 10.987 10.750
NLS DECO 11.145 10.806 (29) 1.031 1.478 0.298 10.987 10.750
NLS DECO NLS 11.007 11.214 (39) 0.982 1.410 0.383 10.805 10.501
OGARCH 11.333 10.671 (22) 1.062 1.508 0.098 11.280 11.201
OGARCH LS 10.030 10.684 (24) 0.939 1.334 0.109 9.972 9.885
OGARCH NLS 10.927 11.000 (36) 0.993 1.422 0.072 10.889 10.833
LS OGARCH 11.145 10.658 (20) 1.046 1.485 0.099 11.092 11.012
NLS OGARCH 11.333 10.671 (22) 1.062 1.508 0.098 11.280 11.201
LS OGARCH LS 10.194 10.669 (21) 0.956 1.360 0.108 10.136 10.050
NLS OGARCH NLS 10.926 11.000 (37) 0.993 1.421 0.072 10.889 10.833
GPVC 10.992 11.289 (41) 0.974 1.377 0.148 10.913 10.795
GPVC LS 10.052 10.781 (27) 0.932 1.324 0.116 9.991 9.898
GPVC NLS 10.008 11.374 (44) 0.880 1.251 0.132 9.939 9.835
LS GPVC 10.681 11.061 (38) 0.966 1.366 0.128 10.612 10.508
NLS GPVC 10.985 11.300 (42) 0.972 1.375 0.146 10.907 10.790
LS GPVC LS 11.203 10.569 (16) 1.060 1.532 0.170 11.114 10.981
NLS GPVC NLS 10.030 11.364 (43) 0.883 1.256 0.131 9.962 9.858
RPVC 12.892 11.524 (46) 1.119 1.592 0.241 12.766 12.578
RPCV LS 11.084 10.772 (26) 1.029 1.466 0.192 10.985 10.836
RPVC NLS 13.327 11.476 (45) 1.161 1.682 0.202 13.221 13.062
LS RPVC 12.331 10.816 (33) 1.140 1.636 0.214 12.219 12.051
NLS RPVC 12.630 10.801 (28) 1.169 1.677 0.207 12.521 12.358
LS RPCV LS 11.256 10.596 (17) 1.062 1.535 0.177 11.164 11.026
NLS RPVC NLS 12.145 10.837 (34) 1.121 1.619 0.189 12.047 11.898

41



Econometrics 2019, 7, 19

Table 5. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to November 2017. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 8.302 20.058 (47) 0.414 0.570 - - -
CCC 7.946 12.262 (10) 0.648 0.902 0.319 7.938 7.925
CCC LS 6.832 12.263 (11) 0.557 0.775 0.329 6.823 6.810
CCC NLS 7.725 12.388 (16) 0.624 0.867 0.296 7.717 7.704
LS CCC 7.731 12.261 (9) 0.631 0.878 0.323 7.723 7.709
NLS CCC 7.588 12.278 (14) 0.618 0.859 0.319 7.579 7.566
LS CCC LS 6.471 12.359 (15) 0.524 0.728 0.325 6.462 6.449
NLS CCC NLS 7.758 12.439 (20) 0.624 0.869 0.321 7.749 7.736
DCC 7.425 12.182 (3) 0.610 0.845 0.325 7.416 7.403
DCC LS 6.567 12.200 (6) 0.538 0.747 0.334 6.558 6.544
DCC NLS 6.901 12.247 (8) 0.563 0.780 0.302 6.892 6.879
LS DCC 7.386 12.184 (4) 0.606 0.840 0.325 7.377 7.364
NLS DCC 7.296 12.193 (5) 0.598 0.829 0.325 7.287 7.274
LS DCC LS 6.518 12.203 (7) 0.534 0.741 0.334 6.509 6.495
NLS DCC NLS 6.781 12.266 (12) 0.553 0.764 0.300 6.772 6.760
RM2006 7.350 12.012 (2) 0.612 0.843 0.287 7.342 7.329
RM2006 LS 7.442 11.870 (1) 0.627 0.867 0.294 7.434 7.421
RM2006 NLS 7.101 12.274 (13) 0.579 0.798 0.296 7.093 7.081
RM1994 7.777 12.644 (29) 0.615 0.848 0.296 7.769 7.756
RM1994 LS 7.157 12.391 (17) 0.578 0.796 0.292 7.149 7.136
RM1994 NLS 7.906 12.606 (27) 0.627 0.865 0.254 7.899 7.888
DECO 5.631 12.899 (43) 0.437 0.608 0.317 5.622 5.609
DECO NLS 5.641 13.162 (44) 0.429 0.599 0.386 5.630 5.614
LS DECO 5.631 12.899 (42) 0.437 0.608 0.317 5.622 5.609
NLS DECO 5.631 12.899 (41) 0.437 0.608 0.317 5.622 5.609
NLS DECO NLS 5.640 13.162 (45) 0.429 0.599 0.386 5.630 5.614
OGARCH 7.819 12.556 (24) 0.623 0.859 0.101 7.816 7.812
OGARCH LS 6.848 12.687 (32) 0.540 0.744 0.113 6.845 6.840
OGARCH NLS 7.985 12.451 (22) 0.641 0.891 0.078 7.984 7.981
LS OGARCH 7.581 12.716 (37) 0.596 0.821 0.103 7.579 7.575
NLS OGARCH 7.821 12.555 (23) 0.623 0.859 0.101 7.818 7.814
LS OGARCH LS 7.029 12.893 (40) 0.545 0.751 0.111 7.026 7.021
NLS OGARCH NLS 7.993 12.451 (21) 0.642 0.891 0.078 7.991 7.988
GPVC 7.282 12.707 (34) 0.573 0.789 0.155 7.277 7.271
GPVC LS 7.225 12.435 (19) 0.581 0.801 0.120 7.222 7.218
GPVC NLS 6.560 12.672 (31) 0.518 0.712 0.132 6.557 6.552
LS GPVC 7.200 12.713 (36) 0.566 0.783 0.138 7.196 7.190
NLS GPVC 7.223 12.697 (33) 0.569 0.782 0.153 7.219 7.212
LS GPVC LS 6.521 12.568 (25) 0.519 0.718 0.172 6.516 6.509
NLS GPVC NLS 6.568 12.665 (30) 0.519 0.713 0.130 6.565 6.559
RPVC 8.453 12.712 (35) 0.665 0.920 0.248 8.446 8.436
RPCV LS 7.355 12.415 (18) 0.592 0.822 0.193 7.350 7.342
RPVC NLS 8.011 12.816 (39) 0.625 0.863 0.201 8.005 7.997
LS RPVC 7.000 12.615 (28) 0.555 0.765 0.227 6.994 6.985
NLS RPVC 6.488 13.243 (46) 0.490 0.676 0.203 6.482 6.474
LS RPCV LS 6.535 12.588 (26) 0.519 0.718 0.180 6.530 6.523
NLS RPVC NLS 6.874 12.741 (38) 0.540 0.743 0.182 6.869 6.862
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Table 6. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to December 2007. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 12.732 12.755 (47) 0.998 1.418 - - -
CCC 10.636 8.697 (7) 1.223 1.750 0.265 10.629 10.618
CCC LS 7.605 8.868 (19) 0.858 1.208 0.284 7.597 7.585
CCC NLS 10.356 8.732 (8) 1.186 1.694 0.254 10.349 10.338
LS CCC 10.158 8.738 (9) 1.163 1.659 0.269 10.150 10.139
NLS CCC 10.186 8.758 (11) 1.163 1.659 0.263 10.179 10.168
LS CCC LS 7.319 9.045 (23) 0.809 1.137 0.281 7.312 7.300
NLS CCC NLS 9.802 8.809 (16) 1.113 1.581 0.277 9.795 9.784
DCC 10.939 8.612 (3) 1.270 1.825 0.271 10.932 10.920
DCC LS 7.691 8.796 (15) 0.874 1.233 0.286 7.683 7.671
DCC NLS 10.763 8.661 (6) 1.243 1.782 0.260 10.756 10.745
LS DCC 10.923 8.608 (2) 1.269 1.823 0.271 10.915 10.904
NLS DCC 10.889 8.599 (1) 1.266 1.819 0.269 10.882 10.871
LS DCC LS 7.672 8.795 (14) 0.872 1.230 0.284 7.664 7.653
NLS DCC NLS 10.725 8.649 (5) 1.240 1.778 0.258 10.718 10.707
RM2006 10.378 8.765 (13) 1.184 1.706 0.292 10.369 10.357
RM2006 LS 9.295 8.629 (4) 1.077 1.540 0.300 9.287 9.275
RM2006 NLS 9.578 8.884 (20) 1.078 1.527 0.313 9.569 9.556
RM1994 8.112 9.545 (37) 0.850 1.209 0.323 8.103 8.089
RM1994 LS 6.813 9.279 (24) 0.734 1.033 0.317 6.804 6.791
RM1994 NLS 9.912 9.282 (25) 1.068 1.520 0.265 9.904 9.892
DECO 6.883 9.577 (39) 0.719 1.009 0.277 6.875 6.864
DECO NLS 6.257 9.784 (43) 0.640 0.887 0.340 6.247 6.233
LS DECO 6.882 9.577 (39) 0.719 1.008 0.277 6.875 6.863
NLS DECO 6.873 9.577 (41) 0.718 1.007 0.277 6.865 6.854
NLS DECO NLS 6.257 9.784 (44) 0.640 0.887 0.340 6.247 6.233
OGARCH 12.682 9.305 (26) 1.363 1.958 0.088 12.680 12.676
OGARCH LS 11.229 10.166 (45) 1.105 1.556 0.097 11.226 11.222
OGARCH NLS 12.878 9.376 (29) 1.374 1.971 0.063 12.877 12.874
LS OGARCH 12.588 9.346 (28) 1.347 1.928 0.088 12.586 12.582
NLS OGARCH 12.682 9.305 (26) 1.363 1.958 0.088 12.680 12.676
LS OGARCH LS 11.414 10.359 (46) 1.102 1.548 0.090 11.411 11.408
NLS OGARCH NLS 12.878 9.376 (29) 1.374 1.971 0.063 12.877 12.874
GPVC 11.014 9.504 (36) 1.159 1.636 0.145 11.010 11.004
GPVC LS 11.064 9.438 (31) 1.172 1.657 0.105 11.061 11.057
GPVC NLS 10.637 9.478 (33) 1.122 1.569 0.134 10.634 10.628
LS GPVC 11.235 9.595 (42) 1.171 1.652 0.120 11.232 11.226
NLS GPVC 10.939 9.576 (38) 1.142 1.611 0.145 10.935 10.929
LS GPVC LS 9.183 9.503 (35) 0.966 1.345 0.139 9.179 9.174
NLS GPVC NLS 10.656 9.473 (32) 1.125 1.572 0.132 10.652 10.647
RPVC 11.558 8.741 (10) 1.322 1.896 0.216 11.552 11.544
RPCV LS 10.172 9.038 (22) 1.126 1.594 0.174 10.168 10.161
RPVC NLS 11.023 8.761 (12) 1.258 1.791 0.193 11.018 11.010
LS RPVC 9.859 8.845 (18) 1.115 1.566 0.202 9.854 9.846
NLS RPVC 9.802 8.925 (21) 1.098 1.558 0.193 9.797 9.789
LS RPCV LS 9.188 9.490 (34) 0.968 1.346 0.151 9.184 9.178
NLS RPVC NLS 9.995 8.828 (17) 1.132 1.600 0.183 9.990 9.982
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Table 7. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp
and AVnet

50bp stand for the average out-of-sample MVP return net of transaction costs considering 20
and 50 basis-points, respectively. Period January 2008 to June 2009. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N −30.668 43.046 (47) −0.713 −0.960 - - -
CCC −25.344 22.796 (13) −1.112 −1.460 0.381 −25.355 −25.371
CCC LS −25.390 22.796 (14) −1.114 −1.462 0.383 −25.401 −25.418
CCC NLS −23.540 23.614 (33) −0.997 −1.318 0.318 −23.550 −23.566
LS CCC −25.295 22.748 (12) −1.112 −1.463 0.385 −25.306 −25.323
NLS CCC −26.760 22.916 (21) −1.168 −1.532 0.373 −26.771 −26.787
LS CCC LS −26.818 22.925 (22) −1.170 −1.535 0.375 −26.828 −26.844
NLS CCC NLS −25.222 23.536 (26) −1.072 −1.414 0.335 −25.233 −25.248
DCC −26.146 22.840 (16) −1.145 −1.508 0.419 −26.158 −26.175
DCC LS −26.248 22.850 (17) −1.149 −1.513 0.419 −26.259 −26.276
DCC NLS −23.982 23.354 (24) −1.027 −1.359 0.333 −23.993 −24.008
LS DCC −26.384 22.858 (18) −1.154 −1.520 0.419 −26.395 −26.412
NLS DCC −27.056 22.905 (20) −1.181 −1.554 0.419 −27.067 −27.084
LS DCC LS −26.495 22.865 (19) −1.159 −1.526 0.421 −26.506 −26.523
NLS DCC NLS −24.849 23.458 (25) −1.059 −1.401 0.331 −24.859 −24.875
RM2006 −22.356 22.084 (4) −1.012 −1.327 0.356 −22.367 −22.383
RM2006 LS −23.045 22.006 (2) −1.047 −1.370 0.356 −23.055 −23.071
RM2006 NLS −21.109 23.116 (23) −0.913 −1.206 0.274 −21.116 −21.126
RM1994 −22.685 22.716 (11) −0.999 −1.307 0.337 −22.695 −22.711
RM1994 LS −23.388 22.619 (10) −1.034 −1.350 0.335 −23.398 −23.413
RM1994 NLS −21.739 23.572 (28) −0.922 −1.215 0.235 −21.745 −21.755
DECO −28.184 24.101 (42) −1.169 −1.550 0.404 −28.197 −28.215
DECO NLS −27.588 23.858 (35) −1.156 −1.533 0.367 −27.599 −27.617
LS DECO −28.182 24.100 (41) −1.169 −1.550 0.404 −28.195 −28.213
NLS DECO −28.166 24.098 (40) −1.169 −1.549 0.404 −28.178 −28.197
NLS DECO NLS −27.591 23.859 (36) −1.156 −1.533 0.367 −27.602 −27.620
OGARCH −20.677 23.592 (30) −0.877 −1.145 0.124 −20.680 −20.683
OGARCH LS −20.855 23.577 (29) −0.885 −1.155 0.126 −20.857 −20.860
OGARCH NLS −19.608 22.343 (7) −0.878 −1.156 0.063 −19.610 −19.613
LS OGARCH −20.516 24.433 (44) −0.840 −1.098 0.130 −20.518 −20.522
NLS OGARCH −20.677 23.592 (30) −0.877 −1.145 0.124 −20.680 −20.683
LS OGARCH LS −20.564 24.390 (43) −0.843 −1.103 0.132 −20.567 −20.570
NLS OGARCH NLS −19.608 22.343 (7) −0.878 −1.156 0.061 −19.610 −19.613
GPVC −14.454 22.017 (3) −0.657 −0.868 0.138 −14.457 −14.462
GPVC LS −14.100 22.418 (9) −0.629 −0.831 0.136 −14.103 −14.107
GPVC NLS −20.436 22.235 (5) −0.919 −1.209 0.048 −20.438 −20.440
LS GPVC −15.361 22.807 (15) −0.674 −0.902 0.165 −15.364 −15.368
NLS GPVC −14.829 21.853 (1) −0.679 −0.892 0.134 −14.832 −14.837
LS GPVC LS −17.991 24.031 (38) −0.749 −0.995 0.226 −17.996 −18.004
NLS GPVC NLS −20.471 22.244 (6) −0.920 −1.210 0.048 −20.472 −20.474
RPVC −15.076 23.561 (27) −0.640 −0.849 0.203 −15.080 −15.086
RPCV LS −14.841 23.612 (32) −0.629 −0.837 0.201 −14.844 −14.850
RPVC NLS −23.341 23.711 (34) −0.984 −1.289 0.134 −23.344 −23.349
LS RPVC −18.340 23.935 (37) −0.766 −1.017 0.226 −18.345 −18.353
NLS RPVC −26.862 26.877 (46) −0.999 −1.331 0.178 −26.868 −26.876
LS RPCV LS −17.991 24.031 (38) −0.749 −0.995 0.226 −17.996 −18.004
NLS RPVC NLS −25.379 24.937 (45) −1.018 −1.338 0.140 −25.383 −25.388
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Table 8. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period July 2009 to November 2017. The shaded cells denote the top five
for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 13.130 16.057 (47) 0.818 1.148 - - -
CCC 12.592 10.935 (21) 1.152 1.666 0.333 12.583 12.569
CCC LS 12.200 10.873 (17) 1.122 1.628 0.342 12.191 12.178
CCC NLS 12.038 10.852 (15) 1.109 1.600 0.310 12.029 12.017
LS CCC 12.455 10.936 (22) 1.139 1.648 0.340 12.446 12.432
NLS CCC 12.466 10.894 (18) 1.144 1.656 0.333 12.457 12.443
LS CCC LS 11.992 10.932 (20) 1.097 1.592 0.336 11.983 11.970
NLS CCC NLS 12.656 10.945 (23) 1.156 1.679 0.340 12.646 12.633
DCC 11.729 10.801 (11) 1.086 1.554 0.336 11.720 11.706
DCC LS 11.873 10.761 (7) 1.103 1.590 0.340 11.864 11.850
DCC NLS 10.560 10.716 (3) 0.985 1.402 0.315 10.551 10.538
LS DCC 11.714 10.800 (10) 1.085 1.551 0.333 11.705 11.691
NLS DCC 11.701 10.801 (12) 1.083 1.549 0.333 11.692 11.678
LS DCC LS 11.845 10.761 (6) 1.101 1.585 0.340 11.835 11.821
NLS DCC NLS 10.534 10.714 (2) 0.983 1.397 0.312 10.525 10.512
RM2006 11.197 10.716 (4) 1.045 1.476 0.271 11.189 11.177
RM2006 LS 11.987 10.531 (1) 1.138 1.627 0.279 11.978 11.966
RM2006 NLS 10.943 10.776 (8) 1.016 1.442 0.291 10.935 10.923
RM1994 13.040 11.344 (37) 1.150 1.630 0.275 13.032 13.021
RM1994 LS 12.758 11.017 (27) 1.158 1.653 0.273 12.750 12.738
RM1994 NLS 12.229 11.068 (28) 1.105 1.566 0.252 12.222 12.211
DECO 11.054 11.293 (34) 0.979 1.415 0.321 11.045 11.032
DECO NLS 11.262 11.791 (45) 0.955 1.392 0.409 11.251 11.235
LS DECO 11.054 11.293 (34) 0.979 1.415 0.321 11.045 11.032
NLS DECO 11.055 11.293 (36) 0.979 1.415 0.321 11.046 11.033
NLS DECO NLS 11.262 11.791 (45) 0.955 1.392 0.409 11.251 11.235
OGARCH 10.576 10.959 (25) 0.965 1.377 0.103 10.573 10.569
OGARCH LS 9.694 10.852 (16) 0.893 1.281 0.120 9.691 9.686
OGARCH NLS 10.568 11.197 (33) 0.944 1.348 0.088 10.566 10.563
LS OGARCH 10.200 10.921 (19) 0.934 1.332 0.103 10.197 10.192
NLS OGARCH 10.580 10.958 (24) 0.966 1.377 0.103 10.577 10.573
LS OGARCH LS 9.853 10.847 (14) 0.908 1.304 0.115 9.850 9.845
NLS OGARCH NLS 10.581 11.197 (32) 0.945 1.350 0.088 10.579 10.576
GPVC 9.374 11.733 (43) 0.799 1.121 0.161 9.370 9.363
GPVC LS 9.194 11.126 (31) 0.826 1.168 0.124 9.191 9.186
GPVC NLS 9.425 11.598 (41) 0.813 1.146 0.145 9.421 9.416
LS GPVC 9.295 11.436 (38) 0.813 1.143 0.141 9.291 9.285
NLS GPVC 9.379 11.742 (44) 0.799 1.122 0.159 9.375 9.368
LS GPVC LS 9.617 10.737 (5) 0.896 1.283 0.180 9.612 9.605
NLS GPVC NLS 9.435 11.585 (40) 0.815 1.149 0.145 9.432 9.426
RPVC 11.163 11.486 (39) 0.972 1.376 0.268 11.155 11.144
RPCV LS 9.965 10.803 (13) 0.922 1.319 0.201 9.959 9.951
RPVC NLS 12.158 11.600 (42) 1.048 1.497 0.218 12.152 12.143
LS RPVC 10.150 11.125 (30) 0.912 1.291 0.239 10.143 10.133
NLS RPVC 10.847 11.091 (29) 0.978 1.388 0.212 10.841 10.833
LS RPCV LS 9.637 10.782 (9) 0.894 1.279 0.187 9.632 9.624
NLS RPVC NLS 11.130 10.964 (26) 1.015 1.451 0.189 11.125 11.118

As for the annualised average portfolio returns taking into account transaction costs, the
procedures with the five largest values of AVnet

20bp and AVnet
50bp are the same procedures with the

largest AV, except in some cases in the pre-crisis period, where one of five largest AVnet
50bp is obtained by

the NLS-OGARCH-NLS procedure.
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For each period, the five best methods in terms of information criteria are the same (except in
Table 8, where four methods are the same). We omit the analysis in the crisis period because these
criteria values are negative. Overall, for daily rebalancing, RiskMetrics based methods are among
the best in the full and post-crisis periods, RPVC and RPVC-NLS are among the best in the full and
pre-crisis periods, and NLS-OGARCH and LS-OGARCH are among the best in the pre-crisis period.
For monthly rebalancing, some OGARCH-based methods are among the best in the pre-crisis and full
periods, some CCC-based methods are among the best in the post-crisis and full periods, RM1994-LS
is among the best for the post-crisis period, and RPVC is among the best for the full period.

The analysis of Tables 1–8 reveals that none of the methods is the best in all scenarios and the
performance depends on the criterion, the period and the rebalancing strategy. In this sense, the
analysis will focus on the full period (Tables 1 and 5) in order to account for periods with different
volatility levels. When portfolios are rebalanced on a daily basis, we find that DCC-based methods
are the best in terms of SD; RM2006-LS, RM2006-NL, RPVC and RPVC-NLS are the best in terms of
{AV, AVnet

20bp, AVnet
50bp} and {IR, SR}, and some OGARCH-based are the best regarding TO. For monthly

rebalanced portfolios, the best methods in terms of SD are DCC, LS-DCC, NLS-DCC, RM2006 and
RM2006-LS, whereas the best performances in terms of {AV, AVnet

20bp, AVnet
50bp} and {IR, SR} are given by

(RPVC, RPVC-NLS), (OGARCH-NLS,NLS-OGARCH-NLS) and CCC. In addition, the equal-weighted
strategy is the second best in terms of AV, but the worst regarding SD, IR and SR criteria.

To show when the shrinkage method improves performance in terms of SD, the analysis is again
focused on the full period (Tables 1 and 5). For daily and monthly portfolio rebalancing : shrinkage
always improves the performance of the RM2004 and GPVC methods (except LS-GPVC for monthly
rebalancing) whereas it always worsens the DCC method; linear shrinkage at the end improves
RM2006; just linear/non-linear shrinkage at the beginning improves DECO; OGARCH-NLS and
NLS-OGARCH-NLS improves OGARCH; LS-CCC improves CCC (as well as NLS-DCC for daily
rebalancing). Additionally, for daily rebalancing, shrinkage always improves the performance of RPVC
(except LS-GPVC), whereas for monthly rebalancing, linear shrinkage applied at the beginning and/or
end improves RPVC. Nakagawa et al. (2018) also reports that in some cases the use of non-linear
shrinkage on the unconditional covariance matrix of the devolatilised returns in the DCC model
increases the standard deviation of the out-of-sample portfolio returns.

We now discuss the effect of shrinkage in terms of AVnet
50bp. For daily rebalancing, shrinkage

improves the performance of the RM2006 and DECO methods, and worsens the performance of the
DCC and RPVC methods. In addition, CCC-NLS is better than CCC, RM1994-NLS is better than
RM1994, and LS-GPVC is better than GPVC. For monthly rebalancing, shrinkage does not improve
the performance of the CCC, DCC, GPVC and RPVC methods. In addition, RM2006-LS is better than
RM2006, RM1994-NLS is better than RM1994, DECO-NLS and NLS-DECO-NLS are better than DECO,
and OGARCH-NLS and NLS-OGARCH-NLS are better than OGARCH.

Finally, we list next the main findings when short-selling is allowed for optimisation of the
portfolio variance. A detailed analysis of these cases is given in the Supplementary Material. First, none
of the methods is the best in all scenarios and the performance depends on the criterion, the sample
period and the portfolio rebalancing scheme. Second, the analysis of the full period reveals that for
daily rebalancing, DCC methods are the best regarding SD and are among the best in terms of IR and
SR. RM1994-LS and RM2006-LS are the best according to AV, AVnet

20bp, AVnet
50bp, IR and SR. For monthly

rebalancing, DCC-LS and LS-DCC-LS are among the best in terms of SD, RM2006-NLS is the best in
terms of SD and is among the best regarding IR and SR. RM 1994 and RM1994-LS are the first and
second best in terms of AV, AVnet

20bp, AVnet
50bp but are among the worst in terms of SD. Third, the analysis

of the turnover and average net returns in the no short-sale constraints case must be carefully done.
This is because since no limits are imposed on the weights of the portfolio, large turnover values can
be obtained and consequently we can have a large loss (average return) but huge net gain (average net
portfolio return taking into account transaction costs). Fourth, in many cases shrinkage improves the
performance of the methods in terms of SD, and this improvement can be substantial. Fifth, the top-five
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models in terms of SD are the same in both restricted and unrestricted minimum variance portfolios
for daily rebalancing, except in the crisis period.

4. Conclusions

The main conclusion of the paper is that none of the methods is the best in all scenarios and
the performance depends on the criterion, the sample period, the portfolio rebalancing scheme and
whether or not short-selling constraints are included in the portfolio optimisation process.

When short-selling constraints are included in the portfolio optimisation process, the main
results can be summarised as follows. First, none of the methods is the best in all scenarios
and the performance depends on the criterion, the sample period and the portfolio rebalancing
scheme. Second, when considering the SD criterion, the five smallest SDs are obtained by the DCC
based-methods, except in the crisis period, in which case, the five smallest SDs are spread among
the DCC, OGARCH and GPVC based-methods. In the crisis-period, the smallest SDs are obtained
by the GPVC procedure with the non-linear shrinkage applied to the one-step-ahead conditional
covariance matrix. For portfolios rebalanced monthly, the smallest SDs are obtained by the RM2006-LS,
NLS-DCC, NLS-GPVC and RM2006-LS procedures for the full, pre-crisis, crisis and post-crisis periods,
respectively. Third, unlike Engle et al. (2017) and Nakagawa et al. (2018), we do not find that applying
non-linear shrinkage to the unconditional correlation matrix of the devolatilised returns improves
the performance of the portfolio in terms of SD when the DCC model is used, and this also happens
when applied in other methods. It is important to point out that Engle et al. (2017) use portfolio of
1000 assets, Nakagawa et al. (2018) use portfolios of 100, 500 and 1000 assets and we use a portfolio
with 174 assets.

When short-selling is allowed for optimisation of the portfolio variance, the main conclusions
are: none of the methods is the best in all scenarios and the performance depends on the criterion,
the sample period and the portfolio rebalancing scheme; in many cases shrinkage improves the
performance of the methods in terms of SD and this improvement can be substantial; for daily
rebalancing the top-five models in terms of SD are the same of those when short-selling constraints
are imposed, except in the crisis period cases. Finally, focusing on the analysis of the full period cases
we can say that overall the DCC and Riskmetrics-based methods are the best; and the analysis of the
turnover and average net returns in the no short-selling constraints case should be carefully done.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1146/7/2/19/s1,
File: Covariance Prediction in Large Portfolio Allocation: Supplementary Material.
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Appendix A. Estimation Methods

Here we present the detailed list of the estimation methods implemented in the paper.
The marginal variances in the CCC, DCC and DECO models were modelled by the GJR-(1,1)
model (Glosten et al. 1993) and the parameters were estimated by quasi-maximum likelihood
assuming a Student-t distribution. The volatility components in the GPVC and RPVC procedures were
modelled by the GJR(1,1)-cDCC(1,1) model and its robust version proposed by Boudt et al. (2013) and
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Laurent et al. (2016), respectively. The univariate variances in the OGARCH model were also modelled
by the GJR-(1,1).

In the GPVC and RPVC procedures, the number of selected volatility components was estimated
using criteria of Ahn and Horenstein (2013), Bai and Ng (2002) and Kaiser-Guttman Guttman (1954),
and using the ratio estimator proposed by Lam and Yao (2012). Following these criteria and the
suggestions in Trucíos et al. (2019), we use one volatility component in the GPVC procedure and four
volatility components in the RPVC procedure.

The CCC, DCC, DECO, RM1994 and RM2006 procedures were implemented using the MFE
Matlab Toolbox of Kevin Sheppard. The OGARCH, GPVC and RPVC procedures were implemented
in R (R Core Team 2017) using the R packages rugarch of Ghalanos (2017), Rcpp of Eddelbuettel and
François (2011) and covRobust of Wang et al. (2017). For the shrinkage procedures, we used the R
packages RiskPortfolios (Ardia et al. 2018) and nlshrink (Ramprasad 2016) for the linear and non-linear
shrinkage, respectively, coupled with the MATLAB toolbox QuEST (Ledoit and Wolf 2017) for the
non-linear shrinkage and the MATLAB function covCor5. Whenever a program presented other options,
we used the default options.

CCC based-methods

• CCC: Estimated by quasi-maximum likelihood.
• LS-CCC: Estimated as in CCC, but with the unconditional covariance matrix (Equation (4))

estimated using linear shrinkage.
• NLS-CCC: Estimated as in LS-CCC, but replacing linear by the non-linear shrinkage.
• CCC-LS: Estimated as in CCC, with the application of the linear shrinkage to the one-step-ahead

conditional covariance matrix HT+1.
• CCC-NLS: Estimated as in CCC-LS, but replacing linear by non-linear shrinkage.
• LS-CCC-LS: Estimated as in LS-CCC, with the application of non-linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.
• NLS-CCC-NLS: Estimated as in NLS-CCC, with the application of non-linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.

DCC based-methods

• DCC: Estimated by composite likelihood (Pakel et al. 2014) using consecutive pairs.
• LS-DCC: Estimated as in DCC, but with the unconditional covariance matrix of the devolatilised

returns (C in Equation (7)) estimated using linear shrinkage.
• NLS-DCC: Estimated as in LS-DCC, but replacing linear by non-linear shrinkage.
• DCC-LS: Estimated as in DCC, with the application of linear shrinkage to the one-step-ahead

conditional covariance matrix HT+1.
• DCC-NLS: Estimated as in DCC-LS, but replacing linear by non-linear shrinkage.
• LS-DCC-LS: Estimated as in LS-DCC, with the application of linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.
• NLS-DCC-NLS: Estimated as in NLS-DCC, with the application of non-linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.

DECO based-methods

• DECO: Estimated using a single block.
• LS-DECO: Estimated as in DECO, but the unconditional covariance matrix of the devolatilised

returns is estimated using linear shrinkage.

5 Available at www.econ.uzh.ch/en/people/faculty/wolf/publications.
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• NLS-DECO: Estimated as in LS-DECO, but replacing linear by non-linear shrinkage.
• DECO-NLS: Estimated as in DECO-LS, but non-linear shrinkage is applied to the one-step-ahead

conditional covariance matrix HT+1.
• NLS-DECO-NLS: Estimated as in NLS-DECO model, but with non-linear shrinkage applied to

the HT+1 and linear shrinkage towards the equicorrelation matrix

Because in the DECO model the estimated unconditional covariance matrix and HT+1 are already
equicorrelated there is no sense in using linear shrinkage towards the equicorrelation matrix, since it
has no effect.

RiskMetrics based-methods

• RM1994: RM1994 method.
• RM1994-LS: Estimated as in RM1994 with linear shrinkage applied to the one-step-ahead

conditional covariance matrix HT+1.
• RM1994-NLS: Estimated as in RM1994-LS but replacing linear by non-linear shrinkage.
• RM20066: RM2006 method (Zumbach 2007).
• RM2006-LS: Estimated as in RM2006 with linear shrinkage applied to the one-step-ahead

conditional covariance matrix HT+1.
• RM2006-NLS: Estimated as in RM2006-LS but replacing linear by non-linear shrinkage.

OGARCH based-methods

• OGARCH: The OGARCH model considers k = N components.
• LS-OGARCH: Estimated as in OGARCH, but the unconditional covariance matrix used in the

spectral decomposition is estimated using linear shrinkage.
• NLS-OGARCH: Estimated as in LS-OGARCH, but replacing linear by non-linear shrinkage.
• OGARCH-LS: Estimated as in OGARCH with the linear shrinkage applied to the one-step-ahead

conditional covariance matrix HT+1.
• OGARCH-NLS: Estimated as in OGARCH-LS, but replacing linear by non-linear shrinkage.
• LS-OGARCH-LS: Estimated as in LS-OGARCH, but linear shrinkage is applied to the predicted

one-step-ahead conditional covariance matrix HT+1.
• NLS-OGARCH-NLS: Estimated as in NLS-OGARCH, but non-linear shrinkage is applied to the

predicted one-step-ahead conditional covariance matrix HT+1.

GPVC based-methods

• GPVC: The GPVC procedure considers k = 1 volatility component, as explained later. We use
g = 5 as in Li et al. (2016).

• LS-GPVC: Estimated as in the GPVC model with the unconditional covariance matrix Σ̂ in
Equation (17) estimated using linear shrinkage.

• NLS-GPVC: Estimated as in LS-GPVC, but replacing linear by non-linear shrinkage.
• GPVC-LS: Estimated as in GPVC with linear shrinkage applied to the one-step-ahead conditional

covariance matrix HT+1.
• GPVC-NLS: Estimated as in GPVC-LS, but replacing linear by non-linear shrinkage.
• LS-GPVC-LS: Estimated as in LS-GPVC with linear shrinkage applied to the predicted

one-step-ahead conditional covariance matrix HT+1.

6 This method was implemented using the MFE Matlab Toolbox of Kevin Sheppard with the default options.
An R implementation of the same procedure can be found in Trucios (2017).
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• NLS-GPVC-NLS: Estimated as in NLS-GPVC with non-linear shrinkage applied to the predicted
one-step-ahead conditional covariance matrix HT+1.

RPVC based-methods

• RPVC: The RPVC procedure considers k = 4 volatility components, as explained later. We use
g = 5 as in Li et al. (2016) and c as in Trucíos et al. (2019).

• LS-RPVC: Estimated as in RPVC, but linear shrinkage is applied to the robust unconditional
covariance matrix Σ̂R used in Equation (18).

• NLS-RPVC: Estimated as in LS-RPVC, but replacing linear by non-linear shrinkage.
• RPVC-LS: Estimated as in RPVC with linear shrinkage applied to the one-step-ahead conditional

covariance matrix HT+1.
• RPVC-NLS: Estimated as in RPVC-LS, but replacing linear by non-linear shrinkage.
• LS-RPVC-LS: Estimated as in LS-RPVC with the linear shrinkage applied to the predicted

one-step-ahead conditional covariance matrix HT+1.
• NLS-RPVC-NLS: Estimated as in NLS-RPVC with non-linear shrinkage applied to the predicted

one-step-ahead conditional covariance matrix HT+1.
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Abstract: We propose a methodology to include night volatility estimates in the day volatility
modeling problem with high-frequency data in a realized generalized autoregressive conditional
heteroskedasticity (GARCH) framework, which takes advantage of the natural relationship between
the realized measure and the conditional variance. This improves volatility modeling by adding, in a
two-factor structure, information on latent processes that occur while markets are closed but captures
the leverage effect and maintains a mathematical structure that facilitates volatility estimation. A class
of bivariate models that includes intraday, day, and night volatility estimates is proposed and was
empirically tested to confirm whether using night volatility information improves the day volatility
estimation. The results indicate a forecasting improvement using bivariate models over those that do
not include night volatility estimates.

Keywords: high-frequency; volatility; forecasting; realized measures; bivariate GARCH

JEL Classification: C32; C53; C58

1. Introduction

We aim to improve volatility modeling by adding information that exists on latent volatility
processes while the markets are closed and no transactions occur. We build upon the observation that
the price at market closing usually differs from the price at market opening, despite no transactions
occurring between the two recordings. Models previously proposed usually estimate volatility by
including information on past day and intraday volatility, estimated from day-recorded prices and
sampled at various time intervals. Some papers have proposed methods to address overnight returns.
The latent volatility component apparent in periods when markets are closed, highlighted by the
difference between the two prices, may be the effect of events that occurred during the market closing,
both domestic or international, or may be due to other latent factors that usually influence the financial
markets, and may prove useful in volatility modeling. We propose an estimation of this night latent
volatility and suggest a new model that uses day, intraday, and night volatility information to model day
volatility. What distinguishes our contribution from other papers published on similar topics is that we
propose a two-factor structure in a realized generalized autoregressive conditional heteroskedasticity
(GARCH) setting that takes advantage of the natural relationship between the realized measure and the
conditional (day and night) variance. The mathematical structure is thus elegant, facilitates volatility
estimation, and allows the inclusion of return-volatility dependence. We call the structure bivariate
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because it uses both day and night volatility information, as opposed to the univariate ones that only
use day information. To strengthen the robustness of our empirical research, we further extended this
idea to a number of realized GARCH models that use day and intraday volatility information, creating
an equivalent set of bivariate models that additionally use night volatility information. We obtained a
class of realized GARCH models that incorporate day, night, and intraday volatility measures; they
were assessed against their counterparts that did not include night volatility information using an
extended set of 10 stock prices. Empirical results of the forecasting performance assessment show a
degree of improvement of the newly proposed models over those that do not include night volatility
measures. This finding suggests the potential of our method for volatility forecasting problems for
financial assets and other assets with night latent volatility information.

Financial volatility modeling has benefited significantly from the availability of high-frequency
data. The main interest in modeling using frequently sampled information and integrating it into
models built to estimate day conditional variance was initiated by Andersen and Bollerslev (1998), who
used realized volatility estimates extracted from intraday data (realized variance) as better estimates of
conditional volatility than squared returns. They proved that by adding up squared intraday returns,
the forecasted volatility would correlate closely to the future latent volatility factor.

Engle (2002) was among the first econometricians who extended the standard GARCH model to
include an exogenous realized measure (the realized variance) in the conditional variance (GARCH)
equation. In this model, the realized measures’ variation is not explained; thus, such models (GARCH-X)
are considered incomplete. Engle and Gallo (2006) proposed the multiplicative error model (MEM),
which was the first attempt to contain a separate GARCH structure equation for the realized measure.
A similar complete model nested in a MEM setting is the high frequency based volatility (HEAVY)
model of Shephard and Sheppard (2010). Both MEM and HEAVY models are difficult to use as
they work with multiple latent processes—for every realized measure used, there is a corresponding
latent volatility process. The Realized GARCH model proposed by Hansen et al. (2012) combines
a GARCH structure for returns with realized measures of volatility. Compared with MEM and
HEAVY models, the Realized GARCH model takes advantage of the natural relationship between
the realized measure and the conditional variance. Instead of introducing additional latent factors, it
proposes a single measurement equation in which the realized measure is a consistent estimator of
the integrated variance. Besides its elegant mathematical structure, the Realized GARCH model is
easy to estimate, captures the return-volatility dependence (leverage effect), and has been empirically
shown to outperform conventional GARCH. A more robust version of the Realized GARCH model
was introduced by Banulescu-Radu et al. (2019), suggesting a variant that is less sensitive to outliers
and minimizes the impact on volatility of days with extreme negative volatility shocks. A realized
exponential GARCH model that can use multiple realized volatility measures for the modeling of a
return series, using a similar framework, has also been proposed (Hansen and Huang 2016). Finding
that the Realized GARCH model was insufficient for capturing the long memory of underlying
volatility, Huang et al. (2016) developed a parsimonious variant of the Realized GARCH model by
introducing Corsi’s (2009) heterogeneous autoregressive (HAR) specification in the volatility dynamics.
A multivariate GARCH model that incorporates realized measures of variances and covariances was
also introduced by Hansen et al. (2014), but it did not suggest the introduction of night volatility
information. Bollerslev et al. (2018) proposed asymmetric multivariate volatility models that exploit
estimates of variances and covariances based on the signs of high-frequency returns to allow for
more nuanced responses to positive and negative return shocks than the threshold leverage effect.
Hansen et al. (2019) proposed a multivariate GARCH model that incorporates realized measures for
the covariance matrix of returns.

Overnight (close-to-open) volatility is usually higher than the five-minute realized volatility
estimated during trading hours, and the close-to-open price differential may trigger a distorting
effect on the realized volatility. Thus, the inclusion of overnight returns when constructing the
realized conditional covariance matrix of the daily returns has been empirically documented to reduce
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information loss and consequently improve volatility forecasting. A common approach to account for
volatility during the market’s closing hours has been to calculate a close-to-open return from the price
change recorded between the trading day closing and the next trading day opening, and then add its
squared value to the sum of intraday returns (Bollerslev et al. 2009; Martens 2002; Blair et al. 2001).
Hansen and Lunde (2005) compounded optimal weights corresponding to overnight returns and to the
sum of intraday returns, and Fleming and Kirby (2011) and Fuertes and Olmo (2013) further applied
it. De Pooter et al. (2008) and Fleming et al. (2003) computed it in matrix form by incorporating the
cross-product of the vector of overnight returns in the summation of the matrix that provided the
covariance matrix of the daily returns, acknowledging that the outer product of the vector of overnight
returns is an inaccurate estimator of the integrated covariance matrix for the period when markets were
closed (Fleming et al. 2003). Koopman et al. (2005); Martens (2002); and Angelidis and Degiannakis
(2008) excluded the noisy overnight returns to compute an estimate of volatility during trading hours,
instead of daily volatility; then, they scaled up the sum of intraday returns to cover the whole 24-h day.
The literature has not yet reached a consensus on the best method of accounting for overnight returns;
however, Ahoniemi and Lanne (2013) suggested that the weighted sum of the squared overnight return
and the sum of intraday squared returns was the most accurate measure of realized volatility for the
Standard&Poor’s’ S&P 500 index.

This paper suggests a method of capturing and incorporating night volatility into the day
conditional volatility equation of one low-frequency as well as a number of high-frequency GARCH
models. We propose a two-factor structure of the conditional variance, one for night and one for day
variance, in a realized GARCH setting that takes advantage of the natural relationship between the
realized measure and the conditional (day and night) variance. The mathematical structure is thus
elegant, facilitates volatility estimation, and allows the inclusion of the return-volatility dependence. A
general framework is formulated; based on it, a set of GARCH models is adapted such that it uses the
estimation of night latent volatility to model day conditional volatility. This approach enabled us to
document, in an empirical context, whether the introduction of the night volatility component, in the
two-factor structure and realized GARCH setting we propose, improved the volatility modeling for
each of the models discussed. The new models are called bivariate as they use both night and day
volatility information and are defined to work in typical financial settings, such as volatility modeling
of stock and commodity prices. We assessed the performance of the bivariate models by comparing the
error functions of the forecasts of the bivariate models with those obtained when the simple versions
of the models, which do not use night volatility information, were used. We call the latter models
univariate models. The scope of this study was thus to analyze whether the use of night volatility
information in the forms proposed improves the modeling of day volatility.

The paper proceeds as follows. Section 2 proposes the new set of bivariate realized models.
Section 3 describes the data and methodology, and Section 4 summarizes the results. The paper
concludes with Section 5, where final remarks are presented, and some future lines of research
are proposed.

2. Bivariate Realized Models

2.1. Base Model

Existing high-frequency GARCH models estimate day conditional variance using day and intraday
volatility information. We developed a class of realized models that allow constructing day volatility
estimates with day, intraday, and night volatility information. Models previously proposed use return
and volatility information estimated from trades that occurred during the trading day to estimate
next-day volatility. However, latent volatility existing between the trading periods (called night
volatility) has scarcely been considered in the day volatility estimation problem. The idea emerged
from an observation on financial stock time series; prices at market closing differ from those at market
opening the following trading day, although during the night the market is closed and thus no
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transactions occur, so no intranight information exists. Despite the lack of night trades, latent (night)
volatility still occurs, causing a price mismatch. We examined whether this latent night volatility can
be modeled and whether, if incorporated into the conditional volatility modeling, it would help to
provide better estimates of day volatility. Compared to other researchers that also modeled overnight
returns, we proposed a two-factor structure in a realized GARCH setting with a GARCH equation
that links day/night volatility to returns, night/day volatility, and intraday volatility of the previous
day. This allowed us to retain the benefits of the Realized GARCH model of Hansen et al. (2012),
namely, to take advantage of the natural relationship between the realized measure and the conditional
day (and night for the models we proposed in the current paper) variance in an elegant structure
that facilitates volatility estimation, allowed us to capture the return-volatility dependence, and was
previously proved to outperform traditional GARCH. Below, we presented a method to capture this
volatility and to insert it into the day conditional volatility equation.

The starting model is a reduced form Bivariate Realized GARCH model, which is a Realized
GARCH model with night volatility information and exogenous realized measures, defined as follows:
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. As such, rt is

the sum between night r•t and day r
◦
t returns, z

◦
t represents the standardized day returns, and z•t

represents the standardized night returns, whereas μ
◦

is the means of day returns and μ• is the means
of night returns. All τ’s are coefficients of the standardized returns that follow to be estimated through
the maximum log-likelihood function (MLE). If marked by ◦, τ represents the coefficients of the
standardized returns in the equation of conditional day volatility, and if marked by •, τ represents the
coefficients of the standardized returns in the equation of conditional night volatility. The numbers next
to ◦ or • are for indexing purposes: For example, τ(

◦1) and τ(
◦2) are two coefficients of the standardized

returns in the equation of conditional day volatility that follow to be estimated through MLE.
Thus, the base model is formed of three equations: The return equation, which is the sum

between day (open-to-close) returns and night (close-to-open) returns, and two conditional volatility
equations, as follows: The first expresses day volatility as a function of previous day (z

◦
t−1) and night

(z•t−1; standardized) returns, conditional day variance (h
◦
t−1), and a realized measure of volatility (xt−1;

realized kernel, high–low, realized variance, etc.). The second defines night volatility as a function
of previous day (z

◦
t−1) and night (z•t−1; standardized) returns, conditional night variance (h•t−1), and a

realized measure of volatility (xt−1). Notably, in this model (called reduced form for this reason), the
realized measure is not endogenized nor linked to the day volatility measure through a measurement
equation, but rather is treated as an exogenous variable. We added this equation to the complete form
of the model that was documented in the next section. The realized measure was compounded from
intraday prices recorded throughout the day.

2.2. Extended Models

We used the base model structure and extended its idea to a class of best-known GARCH-type
models. We used this approach as all models used share the same structure and thus similar properties,
which enabled us to set up a similar bivariate configuration. The aim was to construct a group of models
that takes advantage of night volatility estimation, and also defines the existing natural relationship
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between the realized measures and the conditional day and night variance. As such, we proposed
four new realized models and one non-realized model: Bivariate Realized GARCH (1,1), with an
endogenous component of realized measure and therefore a separate measurement equation, which we
will call a complete version model; Bivariate Exponential GARCH-X (Bivariate EGARCH-X), that is a
bivariate exponential generalized autoregressive conditional heteroskedastic model with an exogenous
realized measure; Bivariate Realized EGARCH (1,1); Bivariate Realized GARCH (2,2); and Bivariate
EGARCH (1,1). The detailed specifications of the bivariate models we propose are provided in Table 1.

Table 1. Summary of the bivariate realized generalized autoregressive conditional heteroskedasticity
(GARCH) models proposed.
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Bivariate Realized
EGARCH (1,1)
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Bivariate Realized
GARCH (1,1) complete

form
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Bivariate Realized
GARCH (2,2)
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Next, we summarized the main features of each model. All share similar return equations as in the
case of the base model—the daily return rt is the sum between open-to-close return (day return) r

◦
t and

close-to-open return (night return) r•t . The GARCH equations share distinct properties but they have
unique features as well. All define the day (open-to-close) volatility h

◦
t as a function of day z

◦
t and night

z•t standardized returns as defined above, and also as a function of the previous day (open-to-close)
volatility. Except for the Bivariate EGARCH (1,1) and the reduced form Bivariate Realized GARCH
models, all other models also include the relationship between day volatility h

◦
t and intraday volatility

xt−1 in the GARCH equation. Since Bivariate EGARCH (1,1) is not a realized model, it does not contain
intraday information. In our Bivariate EGARCH-X model, intraday volatility xt−1 is treated as an
exogenous variable and is thus not linked to any other variable. However, all other realized models
incorporate a third equation, the measurement equation, which defines the joint dependence between
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rt and xt. xt is thus “endogenized” by being formulated as a function of day (open-to-close) volatility,
night (close-to-open) volatility, and day and night standardized returns (z

◦
t and z•t , respectively).

3. Data and Estimation Methodology

We used tick data sampled along 3537 trading days during the period of 30 August 2004–31
December 2018, corresponding to 10 stocks: AIG (American International Group, Inc.), AXP (American
Express Company), BAC (Bank of America Corporation), CSCO (Cisco Systems, Inc.), F (Ford Motor
Company (F)), GE (General Electric Company), INTC (Intel Corporation), JPM (JPMorgan Chase &
Co.), MSFT (Microsoft Corporation), and T (AT&T Inc.). To avoid the outliers that would result from
quiet days, the half trading days around the Christmas and Thanksgiving holidays were removed.

We opted for estimating intraday volatility by compounding realized kernels instead of the more
widely used realized variance, as it is generally acknowledged that squared daily returns provide a
poor estimation of actual intraday volatility. Realized kernels are robust for microstructure errors or
frictions, which are known to cause endogenous and dependent noise terms. They are used to estimate
the quadratic variation in an efficient price process when the time stamps in every day do not match
(non-synchronous, with irregularly spaced observations) and when the high-frequency time series
described by the prices are noisy with many microstructure effects. We compounded the realized kernels
as measures of intraday volatility (xt) using the methodology of Barndorff-Nielsen et al. (2009, 2011).
The framework is given by Y, a variable that is the sum of a Brownian semi-martingale and a jump
process, as follows:

Yt =

∫ t

0
audu +

∫ t

0
σudWu + Jt. (4)

For the purpose of our exercise, we need to find the quadratic variation of Y, [Y] =
∫ T

0 σ
2
udu +∑NT

i=1 C2
i . Barndorff-Nielsen et al. (2009, 2011) estimated it from the noisy discrete observations Xτ j of

Yτ j , 0 = τ0 < τ1 < . . . < τn = T, where Xτ j = Yτ j + Uτ j and Uτ j represents the market microstructure
effects (noise). Barndorff-Nielsen et al. (2009, 2011) estimated this quadratic variation by proposing
realized kernels, a non-negative estimator that is constructed as follows.

The first challenge with the tick data is the non-synchronicity. Non-synchronous trading occurs
when the trades or quotes appear at irregularly spaced times across stocks, which is usually the case in
stock markets, especially those with low liquidity or stale prices. Barndorff-Nielsen et al. (2011) solved
this by suggesting a refresh time when all the stocks are traded. We implemented the same method by
recording the prices only when (and immediately after) all of them were traded.

To eliminate start and end effects and their associated errors, which are averaged through this
procedure, we proceeded to jittering (averaging) the first and last two prices, as also suggested by
Barndorff-Nielsen et al. (2011)Barndorff-Nielsen et al. Having synchronized and constructed the time
series by jittering at the initial and final time points, we defined the semi-definite realized kernels, as
follows, according to Barndorff-Nielsen et al. (2009, 2011):

K(X) =
∑

H
h=−Hk(

h
H + 1

)γh, where γh =
∑

n
j=|h|+1xjxj−|h|, (5)

where k(x) is a kernel weight function that has the k(0) = 1, k′(0) = 0 property, and k is twice
differentiable with continuous derivatives.

Barndorff-Nielsen et al. (2009) used a Parzen kernel as it satisfies the smoothness conditions
through k′(0) = k′(1) = 0, and its estimates are positive. We made the same choice, and used the same
Parzen kernel function:

k(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1− x)3, 1/2 ≤ x ≤ 1
0, x > 1

. (6)
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The optimal choice of bandwidth, according to Barndorff-Nielsen et al. (2009), which we chose to

use, is H∗ = c∗ξ4/5n3/5, with c∗ =
{

k′′ (0)2

k0,0•

}1/5
and ξ2 = ω2√

T
∫ T

0 σ
4
udu

, where c∗ = ((12)2)
1/5

= 3.5134 for

the Parzen kernel.
∫ T

0 σ
4
udu is called the integrated quarticity, and, in our empirical exercise, it equals

RVsparse. This denotes a subsampled realized variance based on 20-min returns. By calculating 1200
realized variances by shifting the first observation recorded time in 1-s increments, we obtained a
number of realized variance estimators. We averaged them and obtained RVsparse. ω2 was estimated
by calculating the realized variance using every ith trade. We varied the starting point, and thereby
produced i realized variances, namely RVi

dense. Thus, our ω2 estimator was calculated as:

ω̂2
( j) =

RV( j)
dense

2n( j)
, j = 1, . . . , i, (7)

where n( j) is the number of non-zero returns used to estimate RV( j)
dense. The estimate of ω2 is then the

average of the j estimates,

ω̂2 =
1
i

∑
i
j=1ω̂

2
( j). (8)

By design, the realized kernel is positive semi-definite and the rate of convergence is n1/5.
We estimated the in-sample and out-of-sample (3000th day in the sample, 24 November 2016,

the cutoff point) in both the univariate and bivariate models with respect to each of the 10 stocks.
The univariate models considered are the standard realized versions of the GARCH model (Realized
GARCH, Realized EGARCH, EGARCH-X, and Realized GARCH (2,2)), as well as the EGARCH model.
The estimated bivariate models are those mentioned in Section 2 (Bivariate EGARCH, reduced and
complete forms of Bivariate Realized GARCH, Bivariate Realized EGARCH, Bivariate EGARCH-X,
and Bivariate Realized GARCH (2,2)).

The estimation was performed by maximizing the total log-likelihood functions (MLE), namely
the sum of partial log-likelihood functions for the returns and for the intraday measures; the ranking
criterion with respect to the MLE was the partial log-likelihood function for returns solely. We used
MLE to estimate both the proposed bivariate models and a number of univariate models that do not
include night volatility information.

The log-likelihood function used in the estimation of the above models takes
the form l

(
r•t , r

◦
t , xt

)
= L1 for Bivariate EGARCH and Bivariate EGARCH-X, or

l
(
r•t , r

◦
t , xt

)
= L1 + L2 for Bivariate Realized GARCH complete version, Bivariate Realized

EGARCH (1,1), and Bivariate Realized GARCH (2,2) (Appendix A), where L1 =

− 1
2
∑n

t=1

⎧⎪⎪⎨⎪⎪⎩2 log(2π) + log
(
1− ρ2

)
+ log h•t + log h

◦
t +

(r•t − μ•)2/h•t +(r
◦
t − μ

◦
)

2
/h
◦
t

(1 − ρ2)
− 2ρ

(1 − ρ2)

(r•t − μ•)(r
◦
t − μ

◦
)√

h•t h
◦
t

⎫⎪⎪⎬⎪⎪⎭
and L2 = − 1

2
∑n

t=1

{
log(2π) + log

(
σ2

u

)
+ u2

t /σ2
u

}
.

To evaluate whether introducing night volatility estimations in models’ equations improves the
day volatility estimation, we calculated two loss functions, root mean squared error (RMSE) and mean
absolute error (MAE). Based on these, we documented the number of models for each in-sample
and out-of-sample estimation for each of the 10 stocks, at which MAE and RMSE were smaller. This
allowed us to draw conclusions about the better performance of the bivariate or univariate models.
Based on the size of the loss functions obtained at each estimation, we analyzed the performance of the
new models that included night volatility estimates. This contributed to our objective by documenting
whether or not night volatility information improves the estimation of day volatility with respect to
the main GARCH-type of models proposed in the literature.

The maximized log-likelihood functions in univariate and bivariate estimations are provided
in Tables A1 and A2 in Appendix B. As the log-likelihood functions of the bivariate models
differ from those of the univariate versions (for the bivariate estimation, we maximized a
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bi-dimensional vector
(

r•t
r
◦
t

)
with a non-null correlation factor (ρ) between its subvectors), it

makes little sense to compare the values of the MLEs across the univariate and bivariate
models to document an improvement or loss of performance when introducing night
volatility estimates. Specifically, the log-likelihood function for the bivariate models is:

log l(r•t , r
◦
t ) = − 1

2
∑n

t=1

⎧⎪⎪⎨⎪⎪⎩2 log(2π) + log
(
1− ρ2

)
+ log(h•t ) + log(h

◦
t ) +

r•t 2/h•t + r
◦
t

2/h
◦
t

(1 − ρ2)
− 2ρ

(1 − ρ2)

r•t r
◦
t√

h•t h
◦
t

⎫⎪⎪⎬⎪⎪⎭,

where ρ = corr
(
r
◦
t , r•t

)
. In the univariate models’ case, the log-likelihood function is

log l(rt) = − 1
2
∑n

t=1

[
log(2π) + log

(
ht

)
+

(rt − μ)2

ht

]
for EGARCH and EGARCH-X, and log l(rt) =

− 1
2
∑n

t=1

[
2 log(2π) + log

(
ht

)
+

(rt − μ)2

ht
+ log

(
σ2

u

)
+

u2
t
σ2

u

]
for Realized EGARCH, Realized GARCH, and

Realized GARCH (2,2). As such, we could not use this method to evaluate the performance of the
bivariate models, as we would be comparing the values of estimations of different functions.

Thus, for the purpose of documenting the gain or loss in accuracy, we used the standard method
in econometrics for evaluating the models’ performance—that of calculating two loss functions (RMSE
and MAE)—which would better assess whether adding night volatility information with a two-factor
structure in a realized GARCH setting improves estimations of next-day volatility.

4. Results

The standard method used in econometrics to evaluate models’ performance is to calculate the size
of the loss functions, among which RMSE and MAE are the most common and reliable. We calculated
them for both in-sample and out-of-sample estimations, and our results indicate an improvement
when night volatility estimations were included in the equations of the day conditional volatility in
almost every case.

We worked with a number of models that have different features and for which adding an
estimation of night volatility may contribute to the volatility estimation. For example, by inspecting
the results for RMSE (in-sample estimation) in Table 2, the improvement was evident for 55 out of 60
cases (1 loss function result × 6 models evaluated × 10 stocks). The cases in which the improvement
could not be documented are marked with red (for RMSE) or green (for MAE) numbers in Table 2.
In the five cases in which this was not evident, four of them were for Realized GARCH (2,2). This
means that Realized GARCH (2,2) only shows some features that did not work better when the night
volatility estimates were considered given the way in which the model was designed. This may be
because, compared to the other models that model next-day volatility by only using information from
the previous day and night, Realized GARCH (2,2) uses information on the previous night volatility as
well as information on returns and volatility of the previous two days. We thought that this might
be the problem with this model, but it would need to be proven empirically; we left this question for
future work.
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Table 2. Loss functions in univariate and bivariate estimations; in-sample.

Stock
EGARCH EGARCH-X

Realized
EGARCH

Realized GARCH
Realized
GARCH

(2,2)

Univ Biv Univ Biv Univ Biv Univ Biv (com) Univ Biv (red) Univ Biv

AIG
RMSE 203.3 188.6 203.7 195.1 189.8 195.8 254.0 218.2 254.0 219.7 190.6 250.2
MAE 18.0 15.1 20.1 16.5 17.2 15.2 22.9 21.0 22.9 21.1 17.4 21.4

AXP
RMSE 6.9 6.3 6.7 6.2 6.8 5.5 6.8 5.5 7.0 5.2 7.0 7.1
MAE 3.1 2.3 3.1 2.6 3.1 2.2 3.2 2.0 3.3 1.9 3.0 2.3

BAC
RMSE 16.7 15.9 16.3 15.4 15.9 15.1 16.2 15.7 16.4 15.3 15.9 15.1
MAE 4.5 3.5 4.0 3.2 4.1 2.8 4.3 3.0 3.8 3.1 4.2 2.7

CSCO
RMSE 6.5 5.6 6.6 6.4 6.8 5.7 6.4 5.5 6.8 5.9 6.8 6.6
MAE 3.1 2.2 3.1 2.4 3.3 2.5 3.0 2.2 3.0 1.9 3.2 2.3

F
RMSE 16.9 16.3 16.4 15.1 16.3 15.5 16.1 15.7 16.5 15.3 16.2 14.8
MAE 4.0 3.2 3.8 3.3 4.2 3.3 4.3 3.3 4.2 2.9 4.0 3.0

GE
RMSE 6.8 6.0 6.9 6.5 6.6 5.8 6.9 5.5 6.7 5.5 6.4 7.0
MAE 3.3 1.9 2.7 2.2 3.1 1.8 3.2 2.2 3.2 1.8 2.8 2.4

INTC RMSE 16.6 15.9 16.3 15.4 16.4 15.3 16.5 15.0 16.5 15.1 16.1 15.2
MAE 4.4 3.1 4.0 3.5 4.3 3.1 4.2 3.0 3.7 3.2 3.9 2.7

JPM RMSE 11.4 10.4 11.1 9.7 10.7 10.6 11.1 9.9 10.8 10.1 11.1 9.9
MAE 3.9 2.6 3.5 2.7 3.5 2.7 3.3 3.0 3.6 2.2 3.6 2.7

MSFT
RMSE 6.8 6.4 6.6 6.1 6.8 5.6 6.9 5.6 6.8 5.5 6.6 7.1
MAE 3.3 1.8 2.8 2.5 3.1 2.1 3.3 2.0 3.4 2.1 3.4 2.9

T
RMSE 16.8 15.9 16.5 15.2 16.7 15.2 16.4 15.4 16.6 15.7 16.2 14.9
MAE 4.3 3.5 4.2 3.4 4.0 3.0 4.1 3.0 4.5 3.5 4.5 3.1

This conclusion was strengthened by examining the MAE results. When considering MAE as
an evaluation tool, the bivariate models produced superior forecasting ability in 59 out of 60 cases,
indicating an improvement for the models that included night volatility estimation in the day volatility
modeling. However, in only one case out of 60 was the improvement not evident, for the same Realized
GARCH (2,2) model. As such, the model itself appears to be problematic, not the evaluation we
performed. As mentioned above, we thought that the problem with this model was that it models
conditional day volatility by including in the model information on day volatility and returns from
the previous two days, instead of one day only as we did for the other models. In Bivariate Realized
GARCH (2,2), we considered only one-night volatility information instead of considering the night
volatility estimation from the previous two nights.

Univ and Biv stand for Univariate and Bivariate, respectively, while com and red stand for complete
and reduced, respectively. Red and green numbers indicate the stances in which bivariate models
perform worse than the univariate ones (when evaluated according to RMSE or MAE, respectively).

When examining the results for the out-of-sample estimations in Table 3, we found that of 60
evaluations with RMSE, 53 showed forecasting improvement when night volatility information was
used. In the seven cases in which the improvement was not evident, three were recorded for the same
Realized GARCH (2,2) model. The remaining four belonged to various other models, one for each.
However, we observed another pattern. Most of the failures in documenting an improvement were
for the same stock: AIG. This suggests that the results were sensitive not only to the model (as we
explained earlier with the way in which Realized GARCH (2,2) was built), but were also sensitive to
the stock choice. Since AIG persistently failed in showing an improvement when using night volatility
information, AIG price recordings should be more carefully examined to understand what makes it less
sensitive to this modeling suggestion, including examining the amount of the stock price differential
(the difference between the market closing and the market opening prices), and also understanding the
roots of the volatility transmission for this stock in particular. Again, we left this as exploratory work
for the future paper. When ranked according to MAE, 58 results out of 60 indicated improvement,
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whereas only two cases (among them, one for Realized GARCH (2,2)) did not. Again, both estimations
indicated strong evidence in favor of including night volatility estimation in the modeling problem of
day volatility.

Table 3. Loss functions in univariate and bivariate estimations; out-of-sample.

EGARCH EGARCH-X
Realized
EGARCH

Realized GARCH
Realized
GARCH

(2,2)

Stock Univ Biv Univ Biv Univ Biv Univ Biv (com) Univ Biv (red) Univ Biv

AIG
RMSE 565.5 574.3 552.0 532.9 544.0 566.4 552.9 572.4 552.9 573.3 538.9 584.7
MAE 109.0 100.4 106.9 104.1 103.8 102.5 122.0 103.1 122.1 103.0 104.6 121.1

AXP
RMSE 14.3 14.0 14.5 13.3 14.2 12.8 14.0 13.0 14.0 12.6 13.9 12.8
MAE 8.8 8.1 9.0 9.1 8.6 7.8 8.7 7.7 8.7 8.1 9.0 7.7

BAC
RMSE 44.0 43.1 43.2 42.1 44.5 42.6 43.5 42.1 43.3 42.6 43.3 43.1
MAE 19.4 17.7 18.4 17.6 18.0 17.2 18.3 17.8 18.6 17.2 18.0 17.4

CSCO
RMSE 14.2 14.2 14.4 13.1 14.3 13.2 13.9 12.8 14.2 13.1 13.8 12.7
MAE 8.9 8.0 9.0 8.9 8.7 7.8 9.0 8.1 9.0 8.0 9.2 8.1

F
RMSE 44.0 43.0 43.0 42.4 44.3 42.3 43.4 42.6 43.5 42.0 43.3 43.4
MAE 19.1 18.1 18.6 17.4 18.6 16.7 18.5 17.9 18.3 17.0 18.6 17.0

GE
RMSE 14.7 14.4 14.3 13.3 14.0 13.3 13.9 12.7 14.3 12.6 13.9 13.0
MAE 9.5 7.6 8.8 8.7 8.6 7.8 8.8 8.2 8.4 8.0 9.4 7.8

INTC
RMSE 44.4 43.3 43.2 42.2 44.4 42.0 43.7 42.2 43.4 41.9 43.4 43.3
MAE 19.6 18.1 18.5 17.1 18.2 17.0 18.4 18.0 18.3 17.1 18.3 17.3

JPM RMSE 26.7 26.1 26.1 25.3 25.4 24.0 25.2 24.8 25.5 24.6 25.4 25.1
MAE 12.5 11.9 12.9 11.6 12.1 10.9 12.1 11.7 12.4 11.9 12.3 11.3

MSFT
RMSE 14.6 14.3 14.0 13.5 13.8 13.2 13.7 12.7 14.3 12.7 14.0 12.3
MAE 8.7 8.0 9.2 9.0 8.6 7.6 8.5 7.6 8.8 8.1 9.0 7.7

T
RMSE 43.8 42.9 43.1 42.3 43.8 42.5 43.3 42.1 43.4 42.0 43.2 43.4
MAE 19.6 17.9 18.4 17.5 18.0 16.7 18.3 17.6 18.6 17.0 18.3 17.6

Counting the number of cases that fail to show improvement is valuable for two reasons: (1) It is
the best tool when comparing models evaluated through MLE given that the log-likelihood functions
were not similar for looking at the size of the MLE values; and (2) the cases in which we failed to see
improvement indicated some consistency for a specific model and a specific stock. This opens the
opportunity for future work in which we might try to understand why the Realized GARCH (2,2)
model and AIG stock persistently indicated less evidence compared with other models and stocks,
where by adding night volatility information, we produced improved volatility estimation.

Red and green numbers indicate the stances in which bivariate models perform worse than the
univariate ones (when evaluated according to RMSE or MAE, respectively).

Thus, we concluded that the proposed bivariate models improved the forecasting performance
compared with the univariate models; as such, adding night volatility estimations according to the
methodology suggested improves next-day volatility estimates.

5. Conclusions

This paper provided a methodology that captures and integrates night volatility into the modeling
of day volatility. In univariate context, this method led to formulating four bivariate realized GARCH
models (Bivariate EGARCH-X, Bivariate Realized GARCH, Bivariate Realized GARCH (2,2), and
Bivariate Realized EGARCH) and one bivariate non-realized model (Bivariate EGARCH). The novelty
of this method is the incorporation of a night measure of volatility into the models, computed from
price changes between the closing and opening of the trading market with a two-factor structure of
the conditional variance in a realized GARCH setting that takes advantage of the natural relationship
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between the realized measure and the conditional variance. This captures the leverage effect and
maintains an elegant mathematical structure that facilitates the estimation of volatility.

With respect to assessing forecasting performance, the first finding was that rankings were
sensitive to the stock and model choice but displayed little sensitivity to the ranking criterion and
estimation methodology. However, the bivariate models were proved to perform better in most
instances, compared with the univariate models. As such, we concluded that by adding night volatility
estimates in the volatility models according to the methodology described, better estimates of next-day
volatility could be obtained. This represents a step further from including high-frequency data in
the modeling problem of the GARCH models in that estimates of night volatility are added into the
equation of the day conditional variance according to the novel methodology we suggest.

The assessment to multivariate assets (e.g., portfolios of stocks) could be extended in future work
by documenting a method of forecasting volatility of assets using the principal component (PC) analysis
or other statistical procedures that use the orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated variables, taking advantage
of the autoregressive conditional heteroskedastic models we proposed that use estimates of day,
intraday, and night volatility. We might refer to these models as PC Bivariate Realized GARCH
models and these might be used to formulate the general form of one multivariate asset’s conditional
variance–covariance matrix expressed in terms of conditional variances of the compounding assets and
of their principal components. This would allow the estimation of the volatility of one multivariate
asset through estimations of the volatility of principal components using day, intraday, and night
volatility information. Then, by reducing the n-multivariate to a n− k stock dimension (n and k positive
integers), we could estimate the new models and assess their one-day-ahead forecasting performance.
Constructing models that use volatility information from the previous two days and two nights may
further improve the modeling of volatility, as we noted by inspecting the results for the current bivariate
form of Realized GARCH (2,2). Disseminating among the stocks according to their underlying volatility
features may provide a better method of more consistently modeling their volatility patterns.

Integration of volatility estimates of highly interlinked markets that are open during the closing
time of the reference market is another suggestion for further research. For example, proposing models
for the U.S. market that estimate day volatility using night volatility estimates from the Asian markets
open during the non-trading times of the U.S. market would allow for integration in such models of
systemic risk and financial contagion related elements, with likely benefits for volatility estimation
and forecasting.
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Appendix A. Log-Likelihood Function for the Bivariate Models

The data are bivariate vectors compounded of two univariate vectors that refer to uncorrelated
sets of information (we considered first that night volatility was uncorrelated with day volatility):(
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However, we want to consider the log-likelihood function of the bivariate vector
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By performing some simple iterations in the expression above, we
obtained the final form of the bivariate log-likelihood function as log l(r•t , r
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Appendix B

Table A1. Maximized log-likelihood functions in univariate and bivariate estimations; in-sample.

Stock
EGARCH EGARCH-X Realized EGARCH Realized GARCH Realized GARCH (2,2)

Univ Biv Univ Biv Univ Biv Univ Biv (com) Biv (red) Univ Biv

AIG −1721.9 −2900.0 −1710.1 −2821.5 −1711.8 −2845.7 −1709.1 −2874.4 −2875.4 −1701.3 −2849.9
AXP −1668.6 −2742.6 −1637.8 −2790.4 −1645.5 −2842.3 −1642.7 −2855.3 −2857.5 −1638.3 −2904.8
BAC −1506.6 −2499.9 −1473.0 −2438.8 −1475.5 −2437.7 −1478.5 −2443.0 −2439.7 −1471.5 −2437.1
CSCO −1722.4 −2886.2 −1709.7 −2820.9 −1712.9 −2841.1 −1711.7 −2876.9 −2876.1 −1702.1 −2845.1
F −1673.5 −2746.3 −1644.2 −2791.8 −1645.9 −2841.5 −1644.1 −2853.8 −2855.2 −1642.8 −2898.9
GE −1504.9 −2498.1 −1474.2 −2433.2 −1475.8 −2442.8 −1477.9 −2446.1 −2440.1 −1467.1 −2440.7
INTC −1505.4 −2497.5 −1471.4 −2434.7 −1478.1 −2439.8 −1475.5 −2445.9 −2439.8 −1468.1 −2437.7
JPM −1658.1 −2750.6 −1616.4 −2699.0 −1619.6 −2702.0 −1625.9 −2714.3 −2703.1 −1615.4 −2683.7
MSFT −1668.0 −2743.3 −1639.9 −2792.0 −1639.3 −2840.6 −1642.8 −2851.0 −2855.3 −1639.9 −2903.1
T −1507.1 −2497.5 −1470.9 −2434.4 −1477.5 −2438.6 −1478.2 −2442.1 −2440.0 −1471.3 −2439.3
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Table A2. Maximized log-likelihood functions in univariate and bivariate estimations; out-of-sample.

Stock
EGARCH EGARCH-X Realized EGARCH Realized GARCH Realized GARCH (2,2)

Univ Biv Univ Biv Univ Biv Univ Biv (com) Biv (red) Univ Biv

AIG −399.5 −1032.1 −394.2 −795.4 −387.7 −749.6 −372.5 −777.9 −774.4 −383.6 −736.9
AXP −313.3 −607.7 −309.6 −565.7 −310.7 −576.5 −305.9 −561.3 −561.8 −308.4 −573.1
BAC −344.6 −654.0 −341.9 −687.9 −352.0 −671.4 −337.0 −673.7 −676.2 −337.6 −670.0
CSCO −407.3 −1033.4 −386.0 −790.5 −392.5 −752.5 −376.0 −770.1 −777.9 −372.5 −732.2
F −308.9 −602.1 −308.0 −560.3 −307.6 −566.1 −305.6 −573.0 −563.7 −307.7 −570.1
GE −348.8 −657.6 −339.0 −687.8 −353.7 −666.6 −348.5 −678.1 −672.0 −339.1 −672.9
INTC −347.5 −659.5 −345.9 −681.7 −351.3 −678.7 −336.2 −674.3 −674.8 −340.5 −676.8
JPM −330.9 −607.9 −326.1 −589.3 −324.1 −582.2 −316.0 −579.1 −573.1 −323.2 −584.8
MSFT −403.5 −1030.5 −393.2 −787.9 −389.4 −745.4 −368.9 −772.7 −780.4 −386.3 −733.3
T −315.0 −603.8 −305.2 −568.1 −303.8 −569.8 −301.4 −570.6 −572.1 −304.2 −570.6
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Abstract: The Japanese candlesticks’ technique is one of the well-known graphic methods of dynamic
analysis of securities. If we apply Japanese candlesticks for the analysis of high-frequency financial
data, then we need a numerical representation of any Japanese candlestick. Kacprzak et al. have
proposed to represent Japanese candlesticks by ordered fuzzy numbers introduced by Kosiński and
his cooperators. For some formal reasons, Kosiński’s theory of ordered fuzzy numbers has been
revised. The main goal of our paper is to propose a universal method of representation of Japanese
candlesticks by revised ordered fuzzy numbers. The discussion also justifies the need for such revision
of a numerical model of the Japanese candlesticks. There are considered the following main kinds
of Japanese candlestick: White Candle (White Spinning), Black Candle (Black Spinning), Doji Star,
Dragonfly Doji, Gravestone Doji, and Four Price Doji. For example, we apply numerical model of
Japanese candlesticks for financial portfolio analysis.

Keywords: Japanese candlestick; ordered fuzzy number; Kosiński’s number; oriented fuzzy number;
dynamic analysis of securities

JEL Classification: C02; C43; G19

1. Introduction

The notion of ordered fuzzy number (OFN) is introduced by Kosiński (Kosiński and Słysz 1993;
Kosiński et al. 2002, 2003) as an extension of the concept of fuzzy number (FN), which is widely
interpreted as an imprecise approximation of a real number. They intuitively determine OFN as FN
equipped with information about the location of the approximated number. This additional information
is given as orientation of OFN. For this reason, we can interpret OFN as an imprecise approximation
of a real number which may change in the direction determined by orientation. The monograph
(Prokopowicz et al. 2017) is a competent source of information about the contemporary state of
knowledge on OFN defined by Kosiński. On the other hand, Kosiński (2006) has shown that there
exist improper OFNs which cannot be represented by a pair of FNs and its orientation. Then, we
cannot to apply any knowledge about fuzzy sets to solve practical problems described by improper
OFN. Therefore, any considerations which use improper OFN may be not fruitful. For formal reasons,
Kosiński’s theory was revised (Piasecki 2018) in such a way that the revised OFN definition fully
corresponds to the intuitive Kosiński’s definition of OFN. In this paper, we recall OFN defined
by Kosiński as “Kosiński’s number” which is in line with suggestions given by other researchers
(Prokopowicz 2016; Prokopowicz and Pedrycz 2015). Moreover, we propose the OFNs defined in
a revised way to be called oriented fuzzy numbers. This proposal has been thoroughly justified in
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Piasecki (2019). In this way, in the concept of OFNs, we distinguished two of its types: Kosiński’s
numbers and oriented fuzzy numbers.

A Japanese candlestick (JC) is a style of financial chart used to describe variability of financial
assets’ exchange quotations. Candlestick charts were developed in the 18th century by a Japanese rice
trader, Munehisa Homma (Morris 2006). The JC charting techniques were introduced to the Western
world by Nison (1991). Among other things, the market quotation changes are described in this way:
that any White Candle describes a rise in quotations and any Black Candle describes a fall in quotations.
According to the traditional convention, any classical JC is represented by a four-element set of its real
numbers: open price, close price, low price, and high price. Some applications of JCs are presented,
for example in (Detollenaere and Mazza 2014; Fock et al. 2005; Jasemi et al. 2011; Marshall et al. 2006;
Kamo and Dagli 2009; Tsung-Hsun et al. 2012, 2015).

Any original JC charting technique is a graphic tool for recording quotations volatility. Any JC
is a very convenient tool for synthetic recording of high-frequency time series of financial data.
If we use JCs for the analysis of high-frequency financial data, then then we need their linguistic or
numerical representation.

Lee et al. (2006) proposed to describe some JC attributes by linguistic variables evaluated
by linguistic labels which have a meaning depending on the applied pragmatics of the natural
language. By its very nature of things, each such description is imprecise information. For this reason,
Zadeh (1975a, 1975b, 1975c) proposed to describe each linguistic variable by its values defined as
a fuzzy subset in the predefined space. Then, these linguistic variables may be transformed with
the use of fuzzy set theory. Lee et al. (2006) assessed JC attributes by linguistic labels represented
by trapezoidal fuzzy numbers. In an analogous way, JCs are described in (Kamo and Dagli 2009;
Naranjo et al. 2018; Naranjo and Santos 2019). After (Herrera and Herrera-Viedma 2000), we can say
that an application of imprecise linguistic assessments for decision analysis is very beneficial because it
introduces a more flexible framework which allows us to represent the information in a more direct
and adequate way when we are unable to express it precisely. Then, all the authors mentioned in this
paragraph use linguistic labels representing JC as an input signal for the different systems supporting
financial decision-making. The output signals received in this way are very useful.

On the other hand, linguistically described JCs cannot be used for calculating portfolio JC as a
sum of their components’ JCs (Łyczkowska-Hanćkowiak and Piasecki 2018b). This task requires the
JCs numerical representation given as their quantified models.

For any security, each quantified JC may be used as such an approximation of its market price
that it is additionally equipped with information about this price trend. For these reasons, Kacprzak et
al. (2013) have described JC by means of Kosiński’s numbers. Kacprzak’s description has a significant
disadvantage. There, each Black Candle is described by improper OFN. So, Kacprzak’s approach is
not convenient for financial analysis with JCs use.

The above conclusion justifies remodeling JCs with the use of the revised theory of OFN. The main
aim of our paper is to describe JCs by means of oriented fuzzy numbers.

Our approach to represent JCs by OFNs differs to the approach represented by Marszałek and
Burczyński (2013a, 2013b, 2014), who define the membership function of candles as some density
function. In our opinion, such an approach is not compatible with the essence of the JCs.

Our paper is organized as follows. In Section 2, we present two kinds of trapezoidal OFNs:
Kosiński’s numbers and oriented fuzzy numbers. At the end of this section, we justify the postulated
restricting applications of the oriented fuzzy numbers. Section 3 contains the main information about
JCs. In Section 4, we briefly discuss Marszałek’s approach and Kacprzak’s approach to modeling JCs by
OFNs. Section 5 is the main part of our paper. In this section we propose our method of representing
JCs by oriented fuzzy numbers. In Section 6, we determine the imprecise expected return rate by
means of JCs models. Next, we show the possibility of application of this return rate for fuzzy portfolio
analysis. This section is based on (Piasecki 2017). Section 7 presents a simple case study in which
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the introduced numerical model of JCs is applied for financial portfolio analysis. Section 8 contains
final conclusions.

2. Fuzzy Numbers

The symbol F (R) denotes the family of all fuzzy sets in the real line R. A commonly accepted
model of imprecise number is the fuzzy number (FN), generally defined by Dubois and Prade (1978) as
some kind of fuzzy subset L ∈ F (R). Thanks to the results obtained in (Goetschel and Voxman 1986),
any FN can be equivalently defined as follows:

Theorem 1 (Delgado et al. 1998). For any FN L there exists such a non-decreasing sequence (a, b, c, d) ⊂ R

that L(a, b, c, d, LL, RL) = L ∈ F (R) is determined by its membership function μL(·|a, b, c, d, LL, RL ) ∈ [0, 1]R

described by the identity:

μL(x|a, b, c, d, LL, RL) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [a, d],

LL(x), x ∈ [a, b],

1, x ∈ [b, c],

RL(x), x ∈ [c, d],

(1)

where the left reference function LL ∈ [0, 1][a,b] and the right reference function RL ∈ [0, 1][c,d] are upper
semi-continuous monotonic ones meeting the conditions:

LL(b) = RL(c) = 1, (2)

∀x∈]a,d[ : μL(x|a, b, c, d, LL, RL) > 0. (3)

Let us note that identity (1) additionally describes the extended notation of numerical intervals,
which is used in this work. The family of all FNs is denoted by the symbol F. For any z ∈ [b, c],
a FN L(a, b, c, d, LL, RL) is a formal model of linguistic variable “about z”. Understanding the phrase
“about z” depends on the applied pragmatics of the natural language. In (Dubois and Prade 1979),
arithmetic operations on FNs are introduced in such a way that they are coherent with the Zadeh’s
extension principle. In our paper, we do not apply this arithmetic. Therefore, a description of arithmetic
operations on FNs is omitted here.

2.1. Kosiński’s Number

The concept of ordered fuzzy numbers (OFN) was introduced by Kosiński and his co-writers in
the series of papers (Kosiński and Słysz 1993; Kosiński et al. 2002, 2003) as an extension of the concept
of FN. Thus, any OFN should be determined with the use of any fuzzy subset in real line R. On the
other side, Kosiński has defined OFN as an ordered pair of functions from the unit interval [0, 1] into R.
This pair is not similar to any fuzzy subset in R. It means that the Kosiński’s proposal of OFN notion is
not an extension of FN. Thus, we can not to accept Kosiński’s original terminology. For this reason,
we are agreeing with other scientists (Prokopowicz 2016; Prokopowicz and Pedrycz 2015) that the
OFN defined by Kosiński should be called the Kosiński’s number (KN). Let the symbol

〈
f
〉� denote

the pseudo-inversion of monotonic continuous surjection f ∈ [r, s][t,u]. KNs are originally defined
as follows:

Definition 1. For any sequence (a, b, c, d) ⊂ R, the KN
↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs
〉�) is defined as an ordered pair

( fS, gS) of monotonic continuous surjections fS : [0, 1]→ UPS = [a, b] and gS : [0, 1]→ DOWNS = [c, d]
fulfilling the condition:

fs(0) = a and fs(1) = b and gs(1) = c and gs(0) = d. (4)
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For any KN
↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs

〉�), the function fS ∈ UP[0,1]
s is called the up-function. Then, the

function gS ∈ DOWN[0,1]
s is called the down-function. Moreover, for KN

↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs

〉�), the
number a ∈ R is called the starting point and the number d ∈ R is called the ending point. The space of
all KNs is denoted by the symbol Ǩ. Any sequence (a, b, c, d) ⊂ R satisfies exactly one of the following
conditions:

b < c ‖ (b = c and a < d), (5)

b > c ‖ (b = c and a > d), (6)

b = c and a = d. (7)

If the condition (5) is fulfilled, then the KN
↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs

〉�) has a positive orientation.
For this case, an example of graphs of KN is presented in Figure 1a. Any positively oriented K’N is
interpreted as an imprecise number, which may increase. If the condition (6) is fulfilled, then KN
↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs

〉�) is negatively oriented. Then, it is interpreted as an imprecise number, which

may decrease. For the case (7), KN
↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs

〉�) represents the interval [a, b] ⊂ R.

a) b)

c)

x

y

1

UPS

DOWNS

x

y

fS

gS

1

UPS DOWNS x

y

fS-1 gS-1

ADDED
INTERVAL

1

Figure 1. (a) Positively oriented Kosiński’s pair, (b) membership function of FN determined by positive
oriented KN, (c) arrow denotes the positive orientation of KN. Source: (Kosiński et al. 2002).

In (Piasecki 2018) it is shown that we have:

Theorem 2. For any sequence (a, b, c, d) ⊂ R , the KN
↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs

〉�) is explicitly determined by its
membership relation μs

(
·
∣∣∣a, b, c, d,

〈
fs
〉�,

〈
gs

〉� ) ⊂ R× [0, 1] given by the identity:

μL(x
∣∣∣a, b, c, d,

〈
fs
〉�,

〈
gs

〉�) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [a, d] ≡ [d, a],〈
fs
〉�(x), x ∈ [a, b] ≡ [b, a],

1, x ∈ [b, c] ≡ [c, b],〈
gs

〉�(x), x ∈ [c, d] ≡ [d, c].

(8)

The graph of membership function of KN
↔
S
(
a, b, c, d, f�S , g�S

)
is presented in Figure 1b.

A membership relation of any KN may be represented by the graph which has an extra arrow
from the starting point to the ending one. This arrow denotes the KN orientation, which shows
supplementary information about possible changes of the approximated number. The graph of KN
membership function with positive orientation is shown in Figure 1c. Next, examples of such graphs
are presented in Figure 2.
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(a) (b) 

Figure 2. The membership relation of trapezoidal KN (TrKN)
↔
Tr(a, b, c, d) with: (a) positive orientation

and (b) negative orientation. Source: Own elaboration.

If the sequence (a, b, c, d) ⊂ R is not monotonic, then the membership relation
μs(x

∣∣∣a, b, c, d,
〈

fs
〉�,

〈
gs

〉�) ⊂ R × [0, 1] is not a function. Then, this membership relation cannot
be considered as a membership function of any fuzzy set. Therefore, for any non-monotonic sequence
(a, b, c, d) ⊂ R, the KN S

(
a, b, c, d, f�S , g�S

)
is called an improper one (Kosiński 2006). An example of a

membership relation of a negatively oriented improper KN is presented in Figure 3. The remaining
KNs are called proper ones. Some examples of proper KNs were presented in Figure 2.

Figure 3. Membership relation of negatively oriented improper TrKN
↔
Tr(a, b, c, d). Source: Own elaboration.

Kosiński et al. (2002, 2003) determined arithmetic operators for KNs as an extension of results
obtained for FNs in (Goetschel and Voxman 1986). In our paper, we do not apply this arithmetic.
Therefore, a description of arithmetic operations on FNs is omitted here.

Because in this paper we restrict our main considerations to the case of trapezoidal numbers,
we will take into account the following definition:

Definition 2. For any sequence (a, b, c, d) ⊂ R, the trapezoidal KN (TrKN)
↔
Tr(a, b, c, d) is defined as KN

determined by its membership relation μTr(·|a, b, c, d ) ⊂ R× [0, 1] given by the identity:

μT(x) = μTr(x|a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [a, d] ≡ [d, a],
x−a
b−a , x ∈ [a, b] ≡ [b, a]

1, x ∈ [b, c] ≡ [c, b]
x−d
c−d , x ∈ [c, d] ≡ [d, c].

(9)

The symbol ǨTr denotes the space of all TrKNs. Some examples of membership relations of TrKN
are presented in Figures 2 and 3.

Kosiński et al. (2002, 2003) determine arithmetic operators for TrKNs in the following way:

• The “dot multiplication” � defined for any pair
(
β,
↔
Tr(a, b, c, d)

)
∈ R× ǨTr by the identity:

β�
↔
Tr(a, b, c, d) =

↔
Tr(β·a, β·b, β·c, β·d), (10)
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• The “Kosiński’s addition” �K defined for any pair
(↔
Tr(a, b, c, d),

↔
Tr(e, f , g, h)

)
∈

(
ǨTr

)2
by

the identity:
↔
Tr(a, b, c, d) �K

↔
Tr(e, f , g, h) =

↔
Tr(a + e, b + f , c + g, d + h). (11)

The determining “dot multiplication” is coherent with the Zadeh’s extension principle. On the
other hand, “Kosiński’s addition” is not coherent with the Zadeh’s extension principle. In (Kosiński
2006) it is shown that there exist such pairs of proper TrKNs that their Kosiński’s sum is an improper
one. This is the main reason why Kosiński’s theory of OFNs was revised in (Piasecki 2018).

2.2. Oriented Fuzzy Numbers

Only in the case of any monotonic sequence (a, b, c, d) ⊂ R may the membership
relation μs

(
·
∣∣∣a, b, c, d,

〈
fs
〉�,

〈
gs

〉� ) ⊂ R × [0, 1] be interpreted as a membership function

μs
(
·
∣∣∣a, b, c, d,

〈
fs
〉�,

〈
gs

〉� ) ∈ [0, 1]R. Thus, we distinguish the following kind of proper OFN.

Definition 3. (Piasecki 2018) For any monotonic sequence (a, b, c, d) ⊂ R, the oriented fuzzy number (OFN)
↔
L(a, b, c, d, SL, EL) =

↔L is the pair of orientation
→

a, d = (a, d) and fuzzy setL ∈ F (R) described by membership
function μL(·|a, b, c, d, SL, EL) ∈ [0, 1]R given by the identity:

μL(x|a, b, c, d, SL, EL) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [a, d] ≡ [d, a],

SL(x), x ∈ [a, b] ≡ [b, a],

1, x ∈ [b, c] ≡ [c, b],

EL(x), x ∈ [c, d] ≡ [d, c].

(12)

where the starting function SL ∈ [0, 1][a,b] and the ending function EL ∈ [0, 1][c,d] are upper semi-continuous
monotonic ones meeting the conditions (3) and

SL(b) = EL(c) = 1. (13)

The symbol K denotes the space of all OFNs. Any OFN is a proper KN and any proper KN is OFN.
Therefore, we have K ⊂ Ǩ. The positive and negative orientations of OFN are determined in the same
way as for the case of KN. The interpretation of a OFN orientation is identical to the interpretation
of a KN orientation. For the family of all positively oriented OFNs and the family of all negatively

oriented OFN, we respectively denote by the symbols K+ and K−. For any OFN
↔
L(a, b, c, d, SL, EL),

the condition (7) implies that:
a = b = c = d. (14)

Then, the OFN
↔
L(a, a, a, a, SL, EL) = �a� describes the real number a ∈ R which is not oriented.

Summing up, we see that:
K = K

+ ∪ R∪ K
−. (15)

We restrict our main considerations to the case of trapezoidal OFN, defined as follows:

Definition 4. For any monotonic sequence (a, b, c, d) ⊂ R, the trapezoidal OFN (TrOFN)
↔
Tr(a, b, c, d) is

defined as OFN determined with use its membership function μTr(·|a, b, c, d ) ∈ [0, 1]R given by identity (9).
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The symbol KTr denotes the space of all TrOFNs. In our considerations, we will only use the
arithmetic operators determined for TrOFN. Then, the“Kosiński addition” �K is replaced by “addition”

� defined for any pair
(↔
Tr(a, b, c, d),

↔
Tr(p− a, q− b, r− c, s− d)

)
∈ (KTr)

2 by the identity:

↔
Tr(a, b, c, d) �

↔
Tr(p− a, q− b, r− c, s− d)

=

⎧⎪⎪⎨⎪⎪⎩
↔
Tr(min

{
p, q

}
, q, r, max{r, s}), (q < r) ∨ (q = r∧ p ≤ s),

↔
Tr(max

{
p, q

}
, q, r, min{r, s}), (q > r) ∨ (q = r∧ p > s).

(16)

The space KTr is closed under the addition � (Piasecki 2018). Moreover, sums obtained by using
the addition � are the best approximation of sums obtained by means of the Kosiński’s addition �K

(Piasecki 2018). The restrictions imposed in Definition 4 allow that TrOFNs may be analyzed with use
of the fuzzy set theory. On the other hand, these methods of analysis are not applicable for TrKNs.
Therefore, if we intend to apply trapezoidal OFNs for any additive model, then we should restrict
our considerations to the use of the additive semigroup 〈KTr, �〉. This principle is shortly called the
postulate restricting applications to the use of TrOFNs. It is very important restriction because we
have many additive models of real-world problems. For example, financial portfolio analysis is an
additive model.

Furthermore, the addition � is not commutative. It implies that any multiple sum determined by
�may be dependent on its summands’ ordering (Piasecki 2018). For this reason, the assumed order of
performing multiple additions may require additional justifications.

For any OFN, the “dot multiplication” operator is determined by the identity (10). As we know,
the “dot multiplication” is coherent to the Zadeh’s extension principle. Therefore, using this principle,
we can extend the “dot multiplication” operator to any unary operator linked to monotonic function
G : R ⊃ A→ R . This extension is determined in the following way:

If TrOFN
↔
Tr(a, b, c, d) is represented by its membership function μTr(·|a, b, c, d ) ∈ [0, 1]R, then the

membership function μG ∈ [0, 1]R of OFN
↔G = G

(↔
Tr(a, b, c, d)

)
is given by the identity:

μG(x) = μTr
(
G−1(x)

∣∣∣G(a), G(b), G(c), G(d)
)
. (17)

While discussing the results obtained, we will also refer to the disorientation map Ψ : K→ F

determined in (Piasecki 2019) as follows:

Ψ
(↔L(a, b, c, d, SL, EL)

)
=

⎧⎪⎪⎨⎪⎪⎩ L(a, b, c, d, SL, EL)
↔L(a, b, c, d, SL, EL) ∈ K+ ∪ R,

L(d, c, b, a, EL, SL)
↔L(a, b, c, d, SL, EL) ∈ K−.

(18)

3. Japanese Candlesticks

We understand the term “security” as an authorization to receive a future financial revenue,
payable to a certain maturity. Japanese Candlestick (JC) is a kind of financial chart used to describe
the volatility of a fixed security quotation. The JC charting techniques are perfectly described by
Nison (1991). The basic elements of JC charting techniques are the descriptions of a single JC.

Let fixed security be given asY. For the assumed time period [0, T], the volatility of the security
Y quotations are described by the function Q : [0, T]→ R+ . Then, JC represents four important pieces
of information aboutY quotations:

• The open price:
Po = Q(0), (19)

• The close price:
Pc = Q(T), (20)
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• The high price:
Ph = max

{
Q(t) : t ∈ [0, T]

}
, (21)

• The low price:
Pl = min

{
Q(t) : t ∈ [0, T]

}
. (22)

The high price and the low price together are called extreme prices. In brokerage house reports,
each JC is usually described by the data set {Po, Pc, Pl, Ph} of reported prices. In general, JCs are optional
composed of:

• The body determined as a rectangle between the open price and the closed price.
• The upper wick determined as the line between the body and the high price.
• The lower wick determined as the line between the body and the low price.

The body illustrates the opening and closing trades. We can note the following cases here:

Po < Pc, (23)

Po > Pc, (24)

Po = Pc, (25)

If the condition (23) is met, then the candle body is white. Then, the JC is called White Candle
or White Spinning. Any Black Candle may be considered as a bullish signal, i.e., a forecast of an
increase in quotations. If the condition (24) is satisfied, then the candle body is black. Then, the JC
is called Black Candle or Black Spinning. Any Black Candle may be considered as a bearish signal,
i.e., a forecast of a decline in quotations. The general case of a White Candle and a Black Candle are
presented in the Figure 4.

Figure 4. Japanese candlesticks. Source: Own elaboration.

Any JC need not have either a body or a wick. If a JC fulfills the condition (25) then it does not
have a body. Such a JC is called a Doji. We distinguish the following main kinds of Doji:

• Doji Star is a JC fulfilling the condition:

Pl < Po = Pc < Ph, (26)

• Dragonfly Doji is a JC fulfilling the condition:

Pl < Po = Pc = Ph, (27)
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• Gravestone Doji is a JC fulfilling the condition:

Pl = Po = Pc < Ph, (28)

• Four Price Doji is a JC fulfilling the condition:

Pl = Po = Pc = Ph, (29)

These kinds of Doji are presented in Figure 5.

(a) (b) (c) (d) 

Figure 5. The main kinds of Doji: (a) Doji Star, (b)Dragonfly Doji, (c) Gravestone Doji, and (d) Four
Price Doji. Source: Own elaboration

Example 1. During the session on the Warsaw Stock Exchange (WSE) on July 23, 2019, we observed quotations
of the following companies: Assecopol (ACP), CYFRPLSAT (CPS), ENERGA (ENG), JSW (JSW), KGHM
(KGH), LOTOS (LTS), ORANGEPL (OPL), PGE(PGE), PKOBP (PKO). For each observed company, the
results of our observations are recorded in Table 1 as reported price sets.

Table 1. Selected quotations on the Warsaw Stock Exchange (WSE) on 23 July, 2019. Source: (Bankier.pl
n.d.) and own elaboration.

Company Open Price Po Close Price Pc Low Price Pl High Price Ph Kind of JC

ACP 56.00 56.55 56.00 57.15 White Candle
CPS 30.14 30.00 29.74 30.24 Black Candle
ENG 7.60 7.60 7.58 * 7.71 ** Doji Star
JSW 42.60 41.92 41.80 42.68 Black Candle
KGH 97.50 96.62 95.94 97.96 Black Candle
LTS 88.70 87.48 86.82 88.70 Black Candle
OPL 6.18 6.38 6.17 6.47 White Candle
PGE 9.48 9.32 9.25 9.57 Black Candle
PKO 42.60 42.60 42.49 ** 42.79 * Doji Star

* Earlier extreme price Pxe ** later extreme price Pxl.

Each reported price set may be graphically presented by the JC mentioned in the last column of Table 1.
Furthermore, we see that the quotations of ACP are assigned with a White Candle without a lover wick.
In addition, all extreme prices are marked here with stars. The notions of earlier and later extreme prices are
explained in Section 5.

4. Modeling of Japanese Candlesticks by Kosiński’s Numbers

Let us take into account two facts:

• Any OFN may be interpreted as an imprecise approximation of a real number, which may change
in direction determined by orientation.

• Each JC may be used as such an approximation of market price that it is additionally equipped
with information about this price trend.
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For this reason, any JC may be represented by means of OFN. In this section, we focus our
attention on the use of KN for modeling candles. In the literature we find two such models.

4.1. The Marszałek’s Approach

Let fixed security be given asY quoted in the assumed time period [0, T], Marszałek and Burczyński
(2013a, 2013b, 2014) consider the observed quotation trend Q : [0, T]→ R+ as a realization of random
variable. Considered security,Y, can be represented by the following parameters: the open price Po,
the close price Pc, the high price Ph, and the low price Pl.

At the beginning, the authors select two real numbers, S1, S2 ∈ R, fulfilling the condition:

Pl < S1 ≤ S2 < Ph. (30)

Then, they calculate conditional probabilities:

fq(x) = P(Q(t) > x
∣∣∣Q(t) > S2), (31)

gq(x) = P(Q(t) < x
∣∣∣Q(t) < S1). (32)

The above probabilities determine the functions fq : [S2, Ph]→ [0, 1] and gq : [Pl, S1]→ [0, 1] .
Different methods of determining numbers S1, S2 and estimating the probabilities (31) and (32) are
discussed in (Marszałek and Burczyński 2013a, 2013b, 2014). However, in all the examples given there
we observe that:

Po < S1 ≤ S2 < Pc. (33)

This restriction results from the requirements of probability estimation methods. Finally, authors

save the observed quotation trend Q : [0, T]→ R+ as KN
↔Q ∈ Ǩ, determined in the following way:

↔Q =
↔
S(a, b, c, d,

〈
fs
〉�,

〈
gs

〉�) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
↔
S
(
Pl, S1, S2, Ph,

〈
gq

〉
�,

〈
fq
〉
�
)

Po < Pc
↔
S
(
Ph, S2, S1, Pl,

〈
fq
〉
�,

〈
gq

〉
�
)

Po > Pc

. (34)

It is easy to see that the essence of the above KN is similar to the JC essence. For this reason, we

agree with Marszałek and Burczyński that the above KN
↔Qmay be called oriented fuzzy candlestick

(OFC). In our opinion, OFCs are an excellent short record of quotation volatility. In (Marszałek and
Burczyński 2013a, 2013b, 2014), it is shown that OFC is very useful for financial decision making.
Unfortunately, OFC does not save information about the low price Pl and high price Ph. Therefore, any
OFC is not a quantitative model of JC.

4.2. The Kacprzak’s Approach

Kacprzak et al. (2013) propose ex cathedra the universal way of presenting JC as TrKN
↔
Tr(Pl, Po, Pc, Ph).

Then, any White Candle is represented by positively oriented TrKN, which is a proper one.
The membership function of this White Candle is presented in Figure 6a. In line with the Kacprzak’s
approach, any Black Candle is described by negatively oriented TrKN, which is an improper one.
In Figure 6b, we can see the graph of a membership relation describing a Black Candle. Any Doji is
represented by proper TrKN.
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(a) (b) 

Figure 6. Membership relation representing Japanese Candlesticks (JCs): (a) White Candle, (b) Black
Candle. Source: Own elaboration.

Example 2. We describe each Japanese candle observed in Example 1 by TrKN determined by means of the
Kacprzak’ method. Obtained representations are presented in Table 2. All improper TrKNs are indicated in red.

Table 2. Representation of Japanese candles observed in Example 1 in the WSE on 23 July, 2019. Black:
proper KN; Red: improper KN; Green: positively oriented FN; Blue: negatively oriented FN.

Company
Kacprzak’s Method of Representation

by TrKN
Proposed Method of Representation

by TrOFN

ACP
↔
Tr(56.00, 56.00, 56.55, 57.15)

↔JCACP =
↔
Tr(56.00, 56.00, 56.55, 57.15)

CPS
↔
Tr(29.74, 30.14, 30.00, 30.24)

↔JCCPS =
↔
Tr(30.24, 30.14, 30.00, 29.74)

ENG
↔
Tr(7.58, 7.60, 7.60, 7.71)

↔JCENG =
↔
Tr(7.58, 7.60, 7.60, 7.71)

JSW
↔
Tr(41.80, 42.60, 41.92, 42.68)

↔JCJSW =
↔
Tr(42.68, 42.60, 41.92, 41.80)

KGH
↔
Tr(95.94, 97.50, 96.62, 97.96)

↔JCKGH =
↔
Tr(97.96, 97.50, 96.62, 95.94)

LTS
↔
Tr(86.82, 88.70, 87.48, 88.70)

↔JCLTS =
↔
Tr(88.70, 88.70, 87.48, 86.82)

OPL
↔
Tr(6.17, 6.18, 6.38, 6.47)

↔JCOPL =
↔
Tr(6.17, 6.18, 6.38, 6.47)

PGE
↔
Tr(9.25, 9.48, 9.32, 9.57)

↔JCPGE =
↔
Tr(9.57, 9.48, 9.32, 9.25)

PKO
↔
Tr(42.49, 42.60, 42.60, 42.79)

↔JCPKO =
↔
Tr(42.79, 42.60, 42.60, 42.42)

To our best knowledge, for the moment, the described Kacprzak’s representation of JCs have
not found an application in finance theory or practice. We suppose that it results from the fact that
Kacprzak’s approach to JCs’ modeling is not coherent with the postulate restricting applications to
the use of TrOFNs. Thus, in the next section, we will propose a universal model of representing JCs
by TrOFN.

5. Representation of Japanese Candlesticks by Trapezoidal Oriented Fuzzy Numbers (TrOFN)

In above section, we conclude that any JC should be represented by TrOFN. That is why we are
reconsidering the fixed JC, J̃C. Let J̃C be reported by the data set {Po, Pc, Pl, Ph} of reported prices.

Then, J̃Cmay be represented by a TrOFN
↔
Tr(α, β,γ, δ), where a sequence (α, β,γ, δ) is a monotonic

permutation of all reported prices. Moreover, it is obvious that the TrOFN
↔
Tr(α, β,γ, δ) should be

79



Econometrics 2020, 8, 1

oriented from open price Po to close price Pc. It means that in a general case, any sequence (α, β,γ, δ)
contains the subsequence (Po, Pc). From dependences (19)–(22), we get:

Pl ≤ min{Po, Pc} ≤ max{Po, Pc} ≤ Ph. (35)

We see that in a general case, the starting point and ending point are extreme prices. Therefore,

any J̃C may be be represented only by a TrOFN
↔
Tr(α, Po, Pc, δ) where the sequence (α, δ) is such a

permutation of extreme prices that the sequence (α, Po, Pc, δ) is monotonic. Looking for a universal
method for determining the permutation (α, δ), in the first step, we will change the identification of
extreme prices.

The orientation from open price, Po, to close price, Pc, may be determined unambiguously only
for the case when J̃C has a body. It is equivalent to the condition:

Po � Pc. (36)

If the extreme price, Pb ∈ {Pl, Ph}, is closer to the open price, Po, than to the close price, Pc, then
the price, Pb, is called the back price. In other words, the extreme price, Pb ∈ {Pl, Ph}, is called the back
price if it fulfills the condition:

|Pb − Po| ≤ |Pb − Pc|. (37)

In this way, for the White Candle, the back price, Pb, is equal to the low price, Pl, and for the Black
Candle, the back price, Pb, is equal to the high price, Ph. If the extreme price, P f ∈ {Pl, Ph}, is closer to
the close price, Pc, than to the open price, Po, then the price, P f , is called face price. In other words, the
extreme price, Pb ∈ {Pl, Ph}, is called the face price if it fulfills the condition:∣∣∣P f − Pc

∣∣∣ ≤ ∣∣∣P f − Po
∣∣∣. (38)

In this way, for the White Candle, the face price, P f , is equal to the high price, Ph, and for the Black
Candle, the face price, P f , is equal to the low price, Pl. Thanks to condition (36), the back price, Pb,
and the face price, P f , are determined explicitly. With this reinterpretation of extreme prices, we get a
modernized model of JCs which have a body. The general cases of a White Candle and a Black candle
are presented in Figure 7.

Figure 7. Japanese candles—modernized model. Source: Own elaboration.

The sequence
(
Pb, Po, Pc, P f

)
is the unique monotonic permutation of reported prices which

contains the subsequence (Po, Pc). For this reason, we propose to describe the Japanese Candle, J̃C,
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by the TrOFN,
↔
Tr

(
Pb, Po, Pc, P f

)
. Then, any White Candle is represented by positively oriented TrOFN

determined by the membership function presented in Figure 8a. In this representation, any Black
Candle is described by negatively oriented TrOFN determined by the membership function presented
in Figure 8b.

(a) (b) 

Figure 8. Membership function representing modernized JCs: (a) White Candle, (b) Black Candle.
Source: Own elaboration.

Now, we consider the case (25) when the considered J̃C is a Doji. Then, the inequality (35)
implies that for any permutation (α, δ) of extreme prices, the sequence (α, Po, Pc, δ) = (α, Pc, Pc, δ) is

monotonic. Then Doji J̃C may be represented by a TrOFN,
↔
Tr(α, Pc, Pc, δ), where the subsequence

(α, δ) is any permutation of extreme prices. On the other hand, in line with (5) and (6), the orientation

of
↔
Tr(α, Pc, Pc, δ) can only be determined as orientation from the starting point to the ending point.

Furthermore, for any Doji, the back price, Pb, and the face price, P f , are not explicitly determined. Thus,
the orientation of TrOFN representing any Doji cannot be defined as the direction from a back price, Pb,
to a face price, P f . For these reasons, we propose to present any Doji by TrOFN with orientation from
the earlier extreme price, Pxe, to the later extreme price, Pxl.

The kinds of extreme prices mentioned above are determined in the following way. At the
beginning, we assign each quotation Q̂ ∈ Q([0, T]) the last moment τ

(
Q̂
)

of its observation defined by
the identity:

τ
(
Q̂
)
= max

{
t ∈ [0, T] : Q(t) = Q̂

}
. (39)

Let us consider now the case when:
Pl � Ph. (40)

Then, we get:
τ(Pl) � τ(Ph) (41)

Then, the earlier extreme price, Pxe, and later extreme price, Pxl, we define as follows:

Pxe =

{
Pl, τ(Pl) < τ(Ph),
Ph, τ(Pl) > τ(Ph),

(42)

Pxl =

{
Ph, τ(Pl) < τ(Ph),
Pl, τ(Pl) > τ(Ph).

(43)

In this way, we interpret extreme prices as an earlier or later one. With this reinterpretation of
extreme prices, we get a modernized model of Doji. The general cases Doji Stars are presented in
Figure 9.
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(a) (b) 

Figure 9. Doji—modernized model: (a) positively oriented Doji Star, (b) negatively oriented Doji Star.
Source: Own elaboration.

We propose to describe any Doji by TrOFN,
↔
Tr(Pxe, Pc, Pc, Pxl). Then, the Doji Star presented in

Figure 9a is described by the positively oriented TrOFN,
↔
Tr(Pl, Pc, Pc, Ph). The Doji Star presented in

Figure 9b is described by the negatively oriented TrOFN,
↔
Tr(Ph, Pc, Pc, Pl). These representations of

Doji are determined by their membership functions presented in Figure 10.

(a) (b) 

Figure 10. Membership function representing the modernized Doji: (a) positively oriented Doji Star,
(b) negatively oriented Doji Star. Source: Own elaboration.

For any Dragonfly Doji we have:

τ(Ph) = τ(Pc) = T > τ(Pl). (44)

Thus, any Dragonfly Doji is represented by positively oriented TrOFN,
↔
Tr(Pl, Pc, Pc, Pc).

This positive orientation is consistent with the common belief that any Dragonfly Doji could signal a
potential bullish reversal of market quotations. The Dragonfly Doji modernized model is shown in
Figure 11a.

(a) (b) (c) 

Figure 11. Doji—modernized model: (a) Dragonfly Doji, (b) Gravestone Doji, (c) Four Price Doji.
Source: Own elaboration.
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For any Gravestone Doji we have:

τ(Pl) = τ(Pc) = T > τ(Ph). (45)

Therefore, any Gravestone Doji is represented by negatively oriented TrOFN,
↔
Tr(Ph, Pc, Pc, Pc).

This negative orientation is consistent with the common belief that any Gravestone Doji could signal a
potential bearish reversal of market quotations. The Gravestone Doji modernized model is shown in
Figure 11b.

If the condition (40) is not satisfied, then we get:

Pl = Po = Pc = Ph. (46)

This case corresponds to the Four Price Doji, the modernized model of which is presented

in Figure 11c. Any Four Price Doji is described by the TrOFN,
↔
Tr(Pc, Pc, Pc, Pc) = �Pc�, which is

not oriented.
It is very easy to check that all types of Japanese candles omitted in the above specification are

only special cases of the discussed candles.

Example 3. We describe each Japanese candle observed in Example 1 by TrOFN determined by means of
the method proposed by us. The quotations ACP and OPL are assigned with White Candles represented by

TrOFNs in the form
↔
Tr(Pl, Po, Pc, Ph). The quotations of CPS, JSW, KGH, LTS, and PGE OPL are assigned

with Black Candles represented by TrOFNs in the form
↔
Tr(Ph, Po, Pc, Pl). The quotations ENG and PKO are

assigned with Doji Star. Therefore, we should determine an earlier extreme price Pxe and a later one Pxl for both
companies. We are looking f or these prices by studying tick − data. The results of this search are shown in
Table 1. For ENG, we get Pxe = Pl and Pxl = Ph. Therefore, the quotations of ENG are assigned to Doji Star

represented by TrOFN in the form
↔
Tr(Pl, Pc, Pc, Ph). For PKO, we obtain Pxe = Ph and Pxl = Pl. Therefore,

the quotations of PKO are assigned to Doji Star represented by TrOFN in the form
↔
Tr(Ph, Pc, Pc, Pl). Obtained

representations are presented in Table 2. All positively oriented TrOFNs are indicated in green. All negatively
oriented TrOFNs are indicated in blue.

In summary, any JC can be represented by TrOFN:

↔
JC =

↔
Tr(α, Po, Pc, δ) (47)

where the sequence (α, δ) is such a permutation of extreme prices {Pl, Ph} that it is determined by
conditions (37) and (38) or by (42) and (43), or by (46).

Any security may be evaluated by a present value (PV) generally defined as a current equivalent
value of payments at a fixed point in time (Piasecki 2012). It is commonly accepted that the PV of a
future cash flow can be imprecise. The natural consequence of this approach is estimating PV with
FNs. A detailed description of the evolution of this particular model can be found, for example in
(Łyczkowska-Hanćkowiak and Piasecki 2018a). If an imprecisely estimated PV is additionally equipped
with a forecast of its closest changes, then it is called oriented PV (OPV). It is obvious that any OPV

should be represented by an OFN
↔

PV.
Let us take into account the fixed securityY. If the volatility of its quotations is characterized by

JC (47) then we can determine its OPV as follows:

↔
PV(Y) = ↔

JC =
↔
Tr(α, Po, Pc, δ). (48)

Then, the OPV membership function μTr(·|α, Po, Pc, δ ) is determined by condition (9). Some
applications of such an approximated OPV are given in Sections 6 and 7.
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6. Oriented Expected Return Determined by Japanese Candlestick

Let us assume that the time horizon t > 0 of an investment is fixed. Then, the securityY considered
here is determined by two values:

• Anticipated FV Vt and
• Assessed PV V0.

The basic characteristic of benefits from owning this security is a return rate rt given by the identity:

rt = r(V0, Vt) (49)

In the general case, if (V0, Vt) ∈ R+ ×R+, then the function: r : R+ ×R+ → R is a decreasing
function of PV and an increasing function of FV. Moreover, in the special case, we have here:

• Simple return rate:

rt =
Vt −V0

V0
=

Vt

V0
− 1 (50)

• Logarithmic return rate:

rt = ln
Vt

V0
. (51)

In this section, we restrict our considerations to the case of any simple return rate given by
condition (50). Thanks to this, our considerations will be more clear. However, the results obtained can
be easily generalized to the case of generalized return rate given by condition (49).

The securityY is an authorization to receive future financial revenue, payable to a certain maturity.
The value of this revenue is interpreted as the anticipated FV of the security. According to the
uncertainty theory introduced by Mises (1962) and Kaplan and Barish (1967), for anyone unknown
to us, the future state of affairs is uncertain. The Mises–Kaplan uncertainty is a result of our lack of
knowledge about the future state of affairs. Yet, in the researched case, we can point out this particular
time in the future, in which the considered state of affairs will already be known to the observer. Behind
(Kolmogorov 1933, 1956; Von Mises 1957; Von Lambalgen 1996; Caplan 2001), we will accept that this
is a sufficient condition for modeling the uncertainty with probability.

Above is justified in detail that FV is a random variable Ṽt : Ω→ R+ . The set, Ω, is a set of
elementary states, ω, of the financial market. In a classical approach to the problem of return rate
estimation, a security PV is identified with the observed market price, Č. Thus, the return rate is a
random variable determined by identity:

rt(ω) =
Ṽt(ω) − Č

Č
. (52)

In practice of financial markets analysis, the uncertainty risk is usually described by probability
distribution of return rate determined by condition (52). Nowadays, we have an extensive knowledge
about this subject. Let us assume that the mentioned probability distribution is given by cumulative
distribution function Fr

(
·
∣∣∣r ) : R→ [0; 1] . We assume that the expected value, r, of this distribution

exists. Moreover, let us note that we have:

Ṽt(ω) = Č·(1 + rt(ω)). (53)

Let us now consider the case when PV is imprecisely estimated by OPV
↔

PV(Y), determined
by conditions (47) and (48). Then, it is represented by its membership function μPv ∈ [0, 1]R given
by identities:

μPv(x) = μTr(x|α, Po, Pc, δ) (54)
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and (9). Then, the Zadeh’s extension principle, (50) and (52), imply that a return rate is a fuzzy
probabilistic set (Hirota 1981) represented by its membership function ρ̃ ∈ [0; 1]R×Ω as follows:

ρ̃(r,ω) = μPV
(

Vt(ω)

1 + r

)
= μPV

(
Č·(1 + rt(ω))

1 + r

)
. (55)

The membership function, ρ ∈ [0; 1]R, of an expected return rate,
↔R ∈ K, is calculated as:

ρ(r) =
∫ +∞

−∞
μPV

(
Č·(1 + y)

1 + r

)
dFr(y

∣∣∣r) = μPV
(

Č·(1 + r)
1 + r

)
. (56)

According to conditions (9) and (54), the Formula (56) can be transformed into:

ρ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Č· 1+r
1+r−α

Po−α , for α ≤ Č· 1+r
1+r < Po,

1, for Po ≤ Č· 1+r
1+r < Pc,

Č· 1+r
1+r−δ

Pc−δ , for Pc < Č· 1+r
1+r ≤ δ,

0, for Č· 1+r
1+r > δ ‖ Č· 1+r

1+r < α.

(57)

Finally, we get that expected return rate is equal to OFN
↔R ∈ K, given as follows:

↔R =
↔
L
(

Č·(1 + r)
α

− 1,
Č·(1 + r)

Po
− 1,

Č·(1 + r)
Pc

− 1,
Č·(1 + r)
δ

− 1, SL, EL

)
, (58)

where,

SL(x) =
Č· 1+r

1+x − α
Po − α , (59)

EL(x) =
Č· 1+r

1+x − δ
Pc − δ . (60)

The above determined expected return rate,
↔R, is an example of the oriented expected return rate

(Piasecki 2017). We see that the expected return rate is not TrOFN. Moreover, the identities (48) and
(58) show that JC and the expected return rate determined by it always have opposite orientations.
Therefore, we can say:

• Rise in quotations predicted by JC allows us to anticipate a decline in the expected return rate.
• Fall in quotations predicted by JC allows us to anticipate an upturn in the expected return rate.

In theory and practice of finance, both of these facts are well known. This observation proves that
the extension of the fuzzy models of imprecise PV and return rate to the case of oriented fuzzy models
is the appropriate direction for the development of fuzzy finance theory.

Using the disorientation map (34), we can convert any oriented expected rate to fuzzy return
rate. Then, JCs may be applied in fuzzy portfolio analysis (Fang et al. 2008; Gupta et al. 2014) or in
(Piasecki 2014).

Example 4. During the session on the Warsaw Stock Exchange on 23 July, 2019, we observed quotations of

ORANGEPL. The volatility of these quotations is characterized by JC
↔JCOPL =

↔
Tr(6.17, 6.18, 6.38, 6.47).

Then, in agreement with condition (48), the ORANGEPL OPV is equal to positively oriented:

↔
PV(OPL) =

↔
Tr(6.17, 6.18, 6.38, 6.47).
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The expected quarterly return rate from ORANGEPL is determined by the broker’s office as follows:
r = 0.025. We determined the ORANGEPL market price Ĉ = 6.20 as open price on 24 July, 2019.

From conditions (58)–(60), we get that expected return rate is equal to the negatively oriented OFN
↔R ∈ K,

given as follows:
↔R =

↔
L(0.0300, 0.0283,−0.0039,−0.0178, SL, EL),

where,

SL(x) =
18.5− 617.0·x

1 + x
,

EL(x) =
1.278 + 71.68·x

1 + x
.

Finally, using the disorientation map (34), we calculate fuzzy expected return rate, R ∈ F, in the
following way:

R = L(−0.0178, −0.0039, 0.0283, 0.3000, EL, SL)

= Ψ
(↔
L(0.0300, 0.0283,−0.0039,−0.0178, SL, EL)

)
7. Case Study

In this section, we present some simple applications of JCs for financial portfolio analysis. The main
aim of this section is to show that the proposed JC representation is applicable in quantified analyses
of the financial market. Such presentation requires a prior explanation of the theoretical foundations of
this case study.

7.1. Theoretical Background

From a financial portfolio, we will understand an arbitrary, finite set of financial assets. In this
section, we restrict our considerations to the case of assets given as securities quoted in an assumed
time period.

We consider a multi-assets portfolio, π, consisting of assets,Yi (i = 1, 2, . . . , n). Each of the assets
Yi ∈ π are characterized by OPV:

↔
PV(Yi) =

↔
Tr

(
α(i), P(i)

o , P(i)
c , δ(i)

)
. (61)

We distinguish the rising securities’ portfolio, π+ ⊂ π, and the falling securities’ portfolio, π− ⊂ π,
as follows:

π+ =
{
Yi ∈ π :

↔
PV(Yi) ∈ K+ ∪ R

}
, (62)

π− =
{
Yi ∈ π :

↔
PV(Yi) ∈ K−

}
. (63)

The portfolio PV is always equal to the sum of its components’ PV. For the OPV case, the addition
should be modeled by sum �. In (Piasecki 2018), it is shown that a result of multiple additions �
depends on summands permutation. It implies that the portfolio’s OPV given as any multiple sum of
components’ OPV is not explicitly determined. Therefore, in (Łyczkowska-Hanćkowiak and Piasecki
2018a), some reasonable method of calculating a portfolio’s OPV is proposed.

At first we calculate OPV of the rising securities’ portfolio π+ :

↔
PV

(
π+

)
= + Yi∈π+

↔
PV(Yi) (64)
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and OPV of the falling securities’ portfolio π−:

↔
PV(π−) = + Yi∈π−

↔
PV(Yi). (65)

In (Piasecki 2018), it is proven that both sums (64) and (65) do not depend on permutation
of the summand. Therefore, these sums are determined explicitly. Moreover, single addition � is
commutative. Therefore, we can to determine OPV of total portfolio, π, in an explicit manner as
the sum: ↔

PV(π) =
↔

PV
(
π+

)
�
↔

PV(π−). (66)

The above approach is sufficient to manage portfolio risk, because only rising securities can
get BUY or ACCUMULATE recommendations and only falling securities can get SELL or REDUCE
recommendations. The complex form of the addition definition (16) allows us to use OPV only
for the evaluation of an already constructed portfolio. Such an evaluation may be carried out
using the analytical tools described in Section 5 and by (Łyczkowska-Hanćkowiak 2019a, 2019b;
Łyczkowska-Hanćkowiak and Piasecki 2018b, 2019a, 2019b).

7.2. Empirical Study

We analyzed the portfolio of shares listed in Example 1. After closing the session on the WSE on
July 23, 2019, we evaluated the portfolio, π, of:

• The block B1 of 10 shares of ACP,
• The block B2 of 29 shares of CPS,
• The block B3 of 30 shares of ENG,
• The block B4 of 5 shares of the JSW,
• The block B5 of 5 shares of KGH,
• The block B6 of 10 shares of LTS,
• The block B7 of 100 shares of OPL,
• The block B8 of 50 shares of PGE,
• The block B9 of 10 shares of PKO.

For each securityY ∈ π, its OPV
↔

PV(Y) is estimated by current JC
↔JCY, as presented in Example 3

and Table 2. Using the identity (10), for each considered block Bi (i = 1, 2, . . . , 9) of shares, we calculate

their OPV
↔

PV(Bi) as follows:

↔
PV(B1) = 10�

↔JCACP =
↔
Tr(560.00, 560.00, 565.50, 571.50), (67)

↔
PV(B2) = 29�

↔JCCPS =
↔
Tr(876.96, 874.06, 870.00, 862.46), (68)

↔
PV(B3) = 30�

↔JCENG =
↔
Tr(227.40, 228.00, 228.00, 231.30), (69)

↔
PV(B4) = 5�

↔JCJSW =
↔
Tr(213.40, 213.00, 209.60, 209.00), (70)

↔
PV(B5) = 5�

↔JCKGH =
↔
Tr(489.80, 487.50, 483.10, 479.70), (71)

↔
PV(B6) = 10�

↔JCLTS =
↔
Tr(887.00, 887.00, 874.80, 868.20), (72)

↔
PV(B7) = 100�

↔JCOPL =
↔
Tr(617.00, 618.00, 638.00, 647.00), (73)

↔
PV(B8) = 100�

↔JCPGE =
↔
Tr(957.00, 948.00, 932.00, 925.00), (74)

↔
PV(B9) = 10�

↔JCPKO =
↔
Tr(427.90, 426.00, 426.00, 424.20). (75)
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In the next step, we distinguish the rising securities’ portfolio π+ and the falling securities’
portfolio π− as follows:

π+ = {ACP, ENG, OPL, }, (76)

π− = {CPS, JSW, KGH, LTS, PGE, PKO}. (77)

Then, we calculate OPVs of the rising securities’ portfolio π+ ⊂ π and the falling securities’
portfolio π− ⊂ π. Due to conditions (64) and (65), we obtain:

↔
PV

(
π+

)
=
↔

PV(B1) �
↔

PV(B3) �
↔

PV(B7) =
↔
Tr(1404.40, 1406.00, 1431.50, 1449.80), (78)

↔
PV(π−) =

↔
PV(B2) �

↔
PV(B4) �

↔
PV(B5) �

↔
PV(B6) �

↔
PV(B8) �

↔
PV(B9)

=
↔
Tr(3852.06, 3835.56, 3795.50, 3768.56).

(79)

The membership functions of
↔

PV(π+) and
↔

PV(π−) are presented in Figure 12.

(a) 

(b) 

 

(c) 

Figure 12. Membership function of OPV (a) for the rising securities’ portfolio π+, (b) for the falling
securities’ portfolio π−, and (c) for total portfolio π. Source: Own elaboration.
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In the last step, due to condition (66), we determine OPV of portfolio π as the sum:

↔
PV(π) =

↔
PV

(
π+

)
�
↔

PV(π−) =
↔
Tr(5256.46, 5241.56, 5227.00, 5218.38). (80)

The membership function of
↔

PV(π) is presented in Figure 12. We notice that the portfolio π is
evaluated by a Black Candle, which is a bearish signal. Moreover, the above result may be applied for
determining the imprecise expected return from portfolio π. This return rate should be calculated in
such a way as that presented in Example 4.

After Klir (1993), we distinguish the ambiguity as a component of imprecision. Ambiguity
is understood as a lack of a clear recommendation between one alternative among various others.
Ambiguity increases with the amount of the recommended alternatives. With the increase in ambiguity,
imprecision is growing too. Comparing the membership function charts, we see that OPV ambiguity
of total portfolio, π, is less than OPV ambiguity of the rising securities’ portfolio, π+ ⊂ π, and the
falling securities’ portfolio, π− ⊂ π. In (Piasecki et al. 2019), the mathematical theorem showing that
the analogous result we get for any total portfolio containing simultaneously rising securities and
falling securities was proven. In addition, it was proven that this effect is not revealed when we use
FNs to determine imprecise PV. Thanks to this, we can conclude that the replacement of FN by OFN
reduces the imprecision of the determined PV. This is another benefit of using OFNs.

8. Summary

It is a well-known fact that JCs are a very convenient tool for synthetic recording of high-frequency
time series of financial data. We have shown that each JC may be explicitly represented by such
a TrOFN that its orientation is always consistent with the closest quotations’ changes predicted
by the represented JC. The positive orientation of JC representation always means a bullish signal.
The negative orientation of JC representation is always a bearish signal. The proposed JC numerical
model distinguishes all JC types. In addition, the use of this model does not cause a loss of information
about the represented JC. Therefore, the JC representation described here can be recommended as a
numerical tool for analyzing high-frequency financial data.

The proposed JC numerical model highlights the imprecision of capital market assessments. In the
case of economics and finance, this imprecision is a natural state of affairs. Therefore, we can conclude
that the proposed model reflects the essence of information about the observed capital market well.
On the other hand, a fuzzy set is a commonly used imprecise information model. The replacement of
Kacprzak’s model by our model means that we can apply the whole fuzzy sets theory to the analysis
of JCs. To our best knowledge, the JC fuzzy numerical model proposed by us is a unique one which
is coherent with fuzzy set theory. Some possibilities of application of the usual fuzzy set theory are
shown. In a special case, we can use methods dedicated to OFNs.

We showed a simple application of our JC model for financial portfolio analysis. The results
obtained have the possibility of further application in any financial analysis. It proves that the JC
model proposed by us is applicable for financial analysis.

Each JC chart is a finite sequence of JCs describing the volatility of fixed security quotation in an
assumed period of time. Financial practitioners distinguish JC patterns defined as such families of
short JC sequences similar to a given reference pattern, which they believe can predict a particular
quotations’ movement. Using the results obtained in this work, we can recognize any JC chart as a
sequence of TrOFNs. Therefore, our model can be used for recognition of JC patterns on a current
JC chart. The above remark well justifies the need for further research into determining known
reference patterns.

Moreover, our JC model should be used to test high-frequency financial data systems to determine
the optimal time horizon described by a single JC. We recommend this research field as a very promising
area of scientific considerations and discussion.
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The directions of future research described above are very general. We can also suggest more
detailed directions of future research. An interesting problem here is the use of the JC numerical
model to determine the orientation of behavioral present value (Piasecki 2011; Piasecki and Siwek 2015;
Łyczkowska-Hanćkowiak 2017). Another interesting problem is the use of our numerical JC model as
a premise in the models described in (Marszałek and Burczyński 2013a, 2013b, 2014). Then, we can
compare the effects of the application of our numerical JC model with the effects of the application of
Marszałek’s fuzzy candles.
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Kosiński, Witold, Piotr Prokopowicz, and Dominik Ślęzak. 2002. Fuzzy numbers with algebraic operations:

Algorithmic approach. In Proc.IIS’2002 Sopot. Edited by Mieczysław Klopotek, Sławomir T. Wierzchoń and
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Łyczkowska-Hanćkowiak, Anna. 2017. Behavioural Present Value determined by ordered fuzzy number. SSRN
Electronic Journal. [CrossRef]
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in Katowice Publishing, pp. 31–44.
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Abstract: We investigate the marginal predictive content of small versus large jump variation,
when forecasting one-week-ahead cross-sectional equity returns, building on Bollerslev et al. (2020).
We find that sorting on signed small jump variation leads to greater value-weighted return
differentials between stocks in our highest- and lowest-quintile portfolios (i.e., high–low spreads)
than when either signed total jump or signed large jump variation is sorted on. It is shown that the
benefit of signed small jump variation investing is driven by stock selection within an industry, rather
than industry bets. Investors prefer stocks with a high probability of having positive jumps, but they
also tend to overweight safer industries. Also, consistent with the findings in Scaillet et al. (2018),
upside (downside) jump variation negatively (positively) predicts future returns. However, signed
(large/small/total) jump variation has stronger predictive power than both upside and downside
jump variation. One reason large and small (signed) jump variation have differing marginal predictive
contents is that the predictive content of signed large jump variation is negligible when controlling
for either signed total jump variation or realized skewness. By contrast, signed small jump variation
has unique information for predicting future returns, even when controlling for these variables.
By analyzing earnings announcement surprises, we find that large jumps are closely associated with
“big” news. However, while such news-related information is embedded in large jump variation,
the information is generally short-lived, and dissipates too quickly to provide marginal predictive
content for subsequent weekly returns. Finally, we find that small jumps are more likely to be
diversified away than large jumps and tend to be more closely associated with idiosyncratic risks.
This indicates that small jumps are more likely to be driven by liquidity conditions and trading activity.

Keywords: forecasting; integrated volatility; high-frequency data; jumps; realized skewness;
cross-sectional stock returns; signed jump variation

1. Introduction

Theoretical models of the risk-return relationship anticipate that volatility should be
priced, and that investors should demand higher expected returns for more volatile
assets. However, ex-ante risk measures are not directly observable, and must be estimated (see e.g.,
Rossi and Timmermann (2015)). Given the necessity of estimating volatility, various risk estimators
have been used in the empirical literature studying the strength and sign of the risk-return relationship.
Unfortunately, the evidence from the literature is mixed, in the sense that researchers have found
both negative and positive relationships between return and volatility. One possible reason for
these surprisingly contradictory findings is that the risk-return relationship is nonlinear. Examples
of papers pursuing this hypothesis include Campbell and Vuolteenaho (2004), who incorporate
different factor betas based on good and bad news about cash flows and discount rates; and
Woodward and Anderson (2009) who find that bull and bear market betas differ substantially across
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most industries. This research has helped to spawn the “smart-beta” approach to factor investing.1

In related research, Feunou et al. (2013) model the effects of volatility in positive and negative return
states separately. They define so-called disappointment aversion preferences, and show that investors
should demand a higher return for downside variability. These authors find empirical support for their
model in the U.S. and several foreign markets using a bi-normal GARCH process to estimate volatility.

In this paper, we focus on the importance of jumps in volatility for understanding the
risk-return relationship. We do this by assessing the marginal predictive content of small versus large
jump variation, when forecasting one-week-ahead cross-sectional equity returns. We also examine
earnings announcements as well as carry out various Fama–MacBeth type regressions to uncover
the linkages between (small and large) jumps and news. Finally, we examine the importance of
control variates, including skewness and other firm characteristics, when undertaking to disentangle
the relative importance of small, large, positive, and negative jumps for the dynamic evolution
of firm specific returns. Much of the empirical research that explores the importance of jumps
in this context focuses on the estimation of continuous and jump variation components using
nonparametric realized measures constructed with high-frequency financial data. A key paper in
this area is Bollerslev et al. (2020), who examine the relationship between signed jumps and future
stock returns in the cross-section. They document that signed jump variation, which captures the
asymmetric impact of upside and downside jump risk, is a good predictor of future returns, particularly
for small and illiquid stocks.2 We add to this literature by decomposing jump variation into signed
small and large components and evaluating the importance of these elements in the cross-section of
stock returns. We use the cross-section of individual stocks because aggregate index returns may mask
small jump effects on return predictability. Indeed, many studies document that aggregation may
diversify away idiosyncratic small jumps in the cross-section (see e.g., Aït-Sahalia and Jacod (2012);
Duong and Swanson (2015)).

The motivation for our paper can be traced back to Yan (2011) and Jiang and Yao (2013), who show
that large, infrequent jumps are priced in the cross-section of returns. Feunou et al. (2018) take the
decomposition used by these authors one step further, and model jumps in the realized semi-variances
of market returns. They construct a new measure of the variance risk premium, and find a strong
positive premium for downside risk. Fang et al. (2017) find a similar result for Chinese market returns.
In a related line of research, various authors study the information content in upside and downside
jump variation. For example, Guo et al. (2015) document that at the market level, a negative jump
component in realized volatility predicts an increase in future equity premia. Bollerslev et al. (2015)
identify both left and right jump tail risks under the risk-neutral measure. They find that the left jump
tail risk is an appropriate proxy for market fear. Additionally, they find that including a variance
risk premium together with jump tail risk measures as predictors significantly improves market
return forecasts. Finally, they show that jump risk helps explain the high–low book-to-market and
winners-versus-losers portfolio returns.

Building on the above literature, we decompose jump variation into four distinct components
depending on both the direction (upward and downward) and magnitude (small and large)
of the jumps.3 Specifically, we decompose individual stock jump (semi) variances into small
and large components, using high-frequency intraday data. We then investigate the relationship

1 In 2017, Morningstar reported that this approach to investing has attracted over one trillion dollars in assets (see e.g., Jennifer
Thompson, Financial Times, 27 December 2017).

2 In a related paper, Duong and Swanson (2015) construct both small and large jump measures based on some fixed truncation
levels. They exploit the risk predictability of different jump measures using both index data and Dow 30 stocks and find
that small jump variation has more volatility predictability than large jump variation.

3 The methods that we implement to separate jump variation use recent advances in financial econometrics due to
Andersen et al. (2007, 2003), Jacod (2008), Mancini (2009), Barndorff-Nielsen et al. (2010), Todorov and Tauchen (2010),
Aït-Sahalia and Jacod (2012), and Patton and Sheppard (2015). Most importantly, the reader is referred to
Aït-Sahalia and Jacod (2012), who survey the methods used in this paper.
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between these various jump measures and future returns, using single- and double-sorted stock
portfolios, and Fama–MacBeth cross-sectional regression analysis. The reason that we decompose
jump semi-variances into small and large components is that this decomposition allows us to explore
the possibility that they contain different information relevant to investing and return predictability.
As Maheu and McCurdy (2004) note, large jumps may reflect important individual stock and market
news announcements. Smaller jumps (or continuous variations) may result from liquidity and
strategic trading.

Of note is that in our setup, the number of large jumps is always finite, regardless of jump
activity. However, there may exist infinitely many small jumps. This framework is surveyed
in Aït-Sahalia and Jacod (2012), where cutoff (truncation) methods used for decomposing total
jump variation into large and small jump components are outlined. We follow their approach
when constructing large and small jump variation measures. Summarizing, we construct jump
variation measures by estimating the difference between quadratic variation and power variation,
as well as by decomposing quadratic variation into jump and non-jump components using cutoffs.
The cutoff (truncation) values that we use are related to those discussed in Li et al. (2017), and in
Aït-Sahalia and Jacod (2012). However, we are not interested in jump detection (or jump testing),
per-se, in discussed in Bollerslev et al. (2008), but are instead interested in the estimation and
analysis of jump variation measures. For this reason, our methodology most closely mirrors
that discussed in Aït-Sahalia and Jacod (2012). In contexts where jump testing is of interest,
many approaches are available. For example, one may rely on the conservative approach discussed in
Bollerslev et al. (2008), or the false discovery control and spurious jump detection approach discussed
in Bajgrowicz et al. (2016) and Scaillet et al. (2018). For further discussion of testing, the reader
is referred to Lee and Mykland (2008, 2012), Barras et al. (2010), Bajgrowicz and Scaillet (2012),
Christensen et al. (2014), and the references cited therein.4

Our key findings can be summarized as follows. First, we find that both small and large upside
(downside) jump variation negatively (positively) predicts subsequent weekly returns. However,
portfolios sorted using signed total jump variation are associated with increased average returns and
risk-adjusted alphas for high–low portfolios, relative to the cases where upside or downside jump
variation is sorted on. This finding is in accord with the findings of Bollerslev et al. (2020).

Our second finding involves the case where jump variation is further decomposed into “small”
and “large” components. In this case, sorting on signed small jump variation leads to value-weighted
high–low portfolios with greater average returns and alphas than when either signed total jump or
signed large jump variation is sorted on. Indeed, when the truncation parameter used to differentiate
small from large jumps is based on a 5 standard-deviation (i.e., α = 5) cutoff, we find that average
return spreads are 10% higher when signed small jump variation is sorted on rather than signed
total jump variation. Moreover, these average return spreads are statistically significant in both cases.
However, average return spreads are not significantly different from zero when signed large jump
variation is sorted on. Indeed, including large jump variation is actually detrimental to predictive
accuracy, as average returns and alphas for high–low portfolios actually decline relative to the case
where total variation is instead used in our prediction experiments. These results suggest that there
may be a “jump-threshold”, beyond which large jump variation contains no marginal predictive ability,

4 As noted by the editor, an important issue in the context of the estimation of jump variation components is the assessment of
the importance of the cutoff methods used in this paper when disentangling small and large jump variations. Our approach
to this issue in the sequel is to assess the robustness of our empirical findings to the use of various different cutoffs.
However, Monte Carlo simulation may shed further light on the issue. In undertaking Monte Carlo simulations, one must
carefully simulate both infinite-activity and finite-activity jump processes, consider various portfolios of simulated assets,
and calibrate DGPs using models fitted to panels of high-frequency asset prices and returns. Although this topic is important,
it is beyond the scope of the current paper, and is left to future research.
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relative to that contained in small jump variation.5 In summary, we find that large jump variation has
little to no marginal predictive content, beyond a certain threshold.6 Indeed, when the threshold is
judiciously selected, one can actually improve predictive performance in our experiments, leading to
increased high–low portfolio average returns and alphas, when sorting portfolios based on small jump
variation rather than total jump variation.

To understand why small jumps matter in our analysis, note that Scaillet et al. (2018) document
that jumps are frequent events and that jump dynamics are not consistent with the compound Poisson
processes with constant intensity. In addition, many recent studies find that infinite-activity Levy
jump specifications (e.g., Variance Gamma and Normal Inverse Gaussian return jumps) can improve
the goodness of fit and option pricing performance of models (e.g., see Yang and Kanniainen (2016)).
These results point to the possible importance of small jumps, which may have infinite numbers in
a finite time interval. Though more frequent than large jumps, note that we estimate daily jump
variation measures and aggregate them into weekly measures for forecasting future weekly returns.
Thus, it is not individual small jumps that necessarily matter, but the overall contribution of small
jumps to total variation, in the cross-section. Additionally, we show (see below discussion) that
small jump variation is more closely associated with idiosyncratic risk than is large jump variation.
If idiosyncratic volatility matters (see Ang et al. (2006, 2009)), so do small jumps, at least to some extent.
Indeed, our results partially help explain the idiosyncratic volatility puzzle (investors prefer positive
skewness/asymmetry, so they will accept lower returns for stocks with higher probabilities of having
positive jumps).

Third, industry double-sorts indicate that the benefit of small signed jump variation investing is
driven by stock selection within an industry, rather than industry bets. Investors prefer stocks with a
high probability of having positive jumps, but they also tend to overweight safer industries.

Fourth, the reason small and large (signed) jump variation measures have differing marginal
predictive content for returns is associated with the importance of realized skewness as a control
variable in our experiments. Specifically, we find that in double-sorted portfolios, the content of signed
large jump variation is negligible when controlling for either signed total jump variation or realized
skewness. By contrast, signed small jump variation has unique information for predicting future
returns, even when controlling for total jump variation or realized skewness. This finding is consistent
with the results from a series of Fama–MacBeth regressions, in which we control for multiple firm
characteristics and risk measures.

Finally, small and large jump variation measures are driven by different economic factors and
contain different information for predicting future returns. For example, large jumps are closely
associated with “big” news. In particular, large earning announcement surprises increase both the
magnitude and occurrence of large jumps. While such news-related information is embedded in large
jump variation, the information is generally short-lived, and dissipates too quickly to provide marginal
predictive content for subsequent weekly returns. This is consistent with our finding that filtering out
signed small jump variation (which we know to be useful) from signed total jump variation results

5 When equal-weighted portfolios are instead examined, sorting on total jump variation yields higher average returns and
alphas than when sorting on small or large jump variation. However, deeper inspection of our tabulated results in this case
reveals that average returns associated with large jump variation sorts are much smaller—around 1/2 of the magnitude of
those associated with small and total jump variation sorts. Also, the magnitude of average returns associated with small
jump variation sorts is much closer (within 10%) to the average returns associated with total jump variation sorts, when our
truncation parameter uses a 5 standard-deviation cutoff instead of a 4 standard-deviation cutoff. This suggests that the
jump-threshold differs depending upon portfolio type, and indicates that our findings based on equal-weighted portfolios
are largely in accord with the findings elucidated above.

6 This result is not in contradiction with the extant literature on the importance of large jumps. This is because all our
conclusions are for the cross-section (our paper is the first one that investigates the return predictability of large/small jump
variation measured in the cross-section). It is true that large jumps have been shown to have return/variance predictability
for individual stocks/portfolios. But in the cross-section, we do not observe such return predictability. In this cross-section,
this is simply because large jumps are rare, so that they provide little (or at least infrequent) information for future weekly
returns, in the cross-section.
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in increased predictive ability, relative to the case where only signed total jump variation is used in
return forecasting, particularly for big firms. Additionally, this finding is interesting, given that the
comparison of aggregated and weighted jump variation measures indicates that small jump variation
captures idiosyncratic risk. More specifically, we find that small jumps are more likely to be diversified
away than large jumps, thus tend to be more closely associated with idiosyncratic risks, and are
therefore more likely to be driven by liquidity conditions and trading activity.7

In closing, it is worth stressing that the magnitudes of price movements depend on the magnitude
of news (if they are related to news), and on the underlying process describing price evolution,
and thus movements may manifest in the form of large/small jumps and/or price drifts. Needless to
say, the process associated with how firms and markets digest information is critical to understanding
and quantifying what sorts of price movements ensue. For any given news, responses may differ in
terms of upside or downside price drifts, or large/small jumps. In this sense, both small and large
jumps may matter, as shown in our empirical results, in the cross-section. Also, note that idiosyncratic
volatility, one of the most studied asset pricing anomalies, is one of the most successful predictors for
stock returns in the cross-section (see Gu et al. (2019)). As we show that small jumps are more likely to
be associated with idiosyncratic risk, and since signed small jump variation has a negative relationship
with future stock returns, our results help explain the idiosyncratic volatility puzzle. This is because of
agent’s preference for lottery-like returns (i.e., investors will accept lower returns for stocks with high
probabilities of having positive jumps).

The rest of this paper is organized as follows. In Section 2 we discuss the model setup and
define the jump risk measures that we use. Section 3 contains a discussion of the data used in our
empirical analysis, and highlights key summary statistics taken from our dataset. Section 4 presents our
main empirical findings, including discussions of results based on single portfolio sorts, double-sorts,
cumulative return and Sharpe ratio analysis, firm-level Fama–MacBeth regressions, and finally, jumps
and news announcements. Section 5 concludes.

2. Model Setup and Estimation Methodology

Following Aït-Sahalia and Jacod (2012), assume that the log price, Xt, of a security follows an Itô
semimartingale, formally defined as:

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs +

∫ t

0

∫
{|x|≤γ}

x(μ − ν)(ds, dx) +
∫ t

0

∫
{|x|≥γ}

xμ(ds, dx),

where b and σ denote the drift and diffusive volatility processes, respectively; W is a standard
Brownian motion; μ is a random positive measure with its compensator ν; and γ is the (arbitrary)
cutoff level (threshold) used to distinguish between small and large jumps. As pointed out in
Aït-Sahalia and Jacod (2012), the continuous part of this model (i.e., the

∫ t
0 σsdWs term) captures the

normal hedgeable risk of the asset. The large jumps part of the model (i.e., the
∫ t

0

∫
{|x|≥γ} xμ(ds, dx)

term) might capture big news-related events such as default risk, and the small jumps part of
the model (i.e., the

∫ t
0

∫
{|x|≤γ} x(μ − ν)(ds, dx) term) might arise due to other information flows,

as discussed below. For cases where jumps are summable (e.g., when jumps have finite activity, so that

7 This result is consistent with the finding of Amaya et al. (2015) that preference for positive asymmetry (skewness) may
partially explain the idiosyncratic volatility puzzle, especially for small firms.
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∑s≤t ΔXs < ∞, for all t), then the size of a jump at time s is defined as ΔXs = Xs − Xs−.8 In this context,
the “true” price of risk is often defined by the quadratic variation, QVt, of the process Xt. Specifically,

QVt =
∫ t

0
σ2

s ds + ∑
s≤t

ΔX2
s ,

where the variation of the continuous component (i.e., the integrated volatility) is given by
IVt =

∫ t
0 σ2

s ds, and the variation of the price jump component is given by QJt = ∑s≤t ΔX2
s .

In the sequel, intraday stock returns are assumed to be observed over equally spaced time intervals
in a given day, where the sampling interval is denoted by Δn, and the number of intraday observations
is n. Thus, the intraday log-return over the ith interval is defined as

ri,t = XiΔn ,t − X(i−1)Δn ,t.

It is well known that when the sampling interval goes to zero, the realized volatility, RVt, which is
calculated by summing up all successive intraday squared returns, converges to QVt, as n → ∞, where

RVt =
n

∑
i=1

r2
i,t →u QVt = IVt + QJt,

where →u denotes convergence in probability, uniformly in time.
To separate jump variation from integrated volatility, Andersen et al. (2007) show that the jump

and continuous components of realized variance can be constructed as:

RV Jt = max(RVt − ÎVt, 0)

and
RVCt = RVt − RV Jt,

respectively, where ÎVt is an estimator of
∫ t

0 σ2
s ds. Following Barndorff-Nielsen and Shephard (2004)

and Barndorff-Nielsen et al. (2006), we use tripower variation to estimate the integrated volatility.
In particular, define

ÎVt = V2
3 , 2

3 , 2
3
μ−3

2
3

,

where μq = E(|Z|q) is the qth absolute moment of the standard normal distribution, and

Vm1,m2,...mk =
n

∑
i=k

|ri,t|m1 |ri−1,t|m2 . . . |ri−k+1,t|mk ,

where m1, m2 . . . mk are positive, such that ∑k
1 mi = q.

Now, again following Aït-Sahalia and Jacod (2012), we separate total jump variation into small
and large variation measures, using various truncation levels, γ (see Duong and Swanson (2011, 2015)
for additional details). In particular, define realized small and large jump variation as follows:

RVLJγ,t = min(RV Jt,
n

∑
i=1

r2
i,t I{|ri,t |≥γ})

and
RVSJγ,t = RV Jt − RVLJγ,t,

8 A jump process has finite activity when it makes a finite number of jumps, almost surely, in each finite time interval,
otherwise it is said to have infinite activity.
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respectively, where I(·) denotes the indicator function, which equals one if the absolute
return is larger than the truncation level, and is otherwise equal to zero. We are also
interested in upside and downside variation measures associated with positive and negative
returns. Following Barndorff-Nielsen et al. (2010), we construct realized semi-variances, defined as:
RS+

t = ∑n
i=1 r2

i,t I{ri,t>0}, RS−
t = ∑n

i=1 r2
i,t I{ri,t<0}, and RVt = RS+

t + RS−
t . These authors show that the

above upside and downside semi-variances (RS+
t and RS−

t , respectively) each converge to the sum of
one half of the integrated volatility and the corresponding signed jump variation. Specifically,

RS+
t →u

1
2

∫ t

0
σ2

s ds + ∑
s≤t

ΔX2
s I{ΔXs>0}

and

RS−
t →u

1
2

∫ t

0
σ2

s ds + ∑
s≤t

ΔX2
s I{ΔXs<0}.

We construct upside and downside jump variation as follows:

RV JPt = max(RS+
t − 1

2
ÎVt, 0) (1)

and
RV JNt = max(RS−

t − 1
2

ÎVt, 0). (2)

In addition, signed jump variation can be calculated as the difference between these upside and
downside jump measures, as follows:

SRV Jt = RV JPt − RV JNt. (3)

This measure captures asymmetry in upside and downside jump variation.
In our analysis, we decompose the above upside and downside jump variation into small and

large components, again using the cutoff (truncation level) discussed in Aït-Sahalia and Jacod (2012).
For further related discussion, see Mancini (2009), Duong and Swanson (2015), and Li et al. (2017).
In particular, upside and downside large jump variations based on γ are defined as follows:

RVLJPγ,t = min(RV JPt,
n

∑
i=1

r2
i,t I{ri,t>γ}) (4)

The corresponding downside measure is defined as follows:

RVLJNγ,t = min(RV JNt,
n

∑
i=1

r2
i,t I{ri,t<−γ}). (5)

In all of our analyses, we construct γ by estimating α

√
1
t ÎV

(i)
t Δ0.49

n , thus accounting for the
time-varying diffusive spot volatility of different stocks in the cross-section.9 In the sequel, we consider

9 As an example of how our cutoff level compares with others used in the literature, consider Li et al. (2017). These authors

use bipower variation as the fixed value for ÎV
(i)
t . We instead use bipower variation as the initial value for the integrated

volatility ÎV
(0)
t , say, and ÎV

(i)
t is estimated using truncated bipower variation with threshold γ(i−1), say, where γ(i−1) is

fixed only when | ÎV
(i)
t − ÎV

(i−1)
t | is smaller than 5% × ÎV

(i−1)
t .
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three values for γ, say γ1 (with α = 4), γ2 (with α = 5), and γ3 (with α = 6). Our signed large jump
variation (i.e., large jump asymmetry) measures are defined as follows:

SRVLJt = RVLJPt − RVLJNt. (6)

Our corresponding small jump variation measures are defined as the difference between total and
large jump variation. Specifically,

RVSJPt = RV JPt − RVLJPt (7)

and
RVSJNt = RV JNt − RVLJNt. (8)

Additionally, signed small jump variation is defined as:

SRVSJt = RVSJPt − RVSJNt. (9)

To analyze the predictability of various jump measures in the cross-section, we normalize each of
the jump variation measures discussed above by total realized variation.

An alternative to our approach for calculating the upside and downside jump variation measures
in (1) and (2) is to use truncated realized variation (TRV) instead of tripower variation as a consistent
estimator of integrated volatility, where TRVt = ∑n

i=1 r2
i,t I{|ri,t |≤αn} →u IVt =

∫ t
0 σ2

s ds. Upside and
downside jump variation can then be calculated using:

RV JPt = RS+
t −

n

∑
i=1

r2
i,t I{0<ri,t≤αn} (10)

and

RV JNt = RS−
t −

n

∑
i=1

r2
i,t I{−αn≤ri,t<0}, (11)

where αn is the truncation level. Please note that this truncation level is a generic “jump detection”
truncation level, whereas γ is a truncation level used to disentangle large and small jump variations
from total jump variation.10 Our empirical findings based on the use of (10) and (11) to define RV JPt

and RV JNt are qualitatively the same as those reported in Section 4 based on the use of (1) and (2).
To measure skewness and kurtosis, we construct higher order realized return moments.

Following Amaya et al. (2015), standardized daily skewness is defined as:

RSKt =

√
n ∑n

i=1 r3
i,t

RV
3
2

t

, (12)

and normalized daily realized kurtosis is defined as:

RKTt =
n ∑n

i=1 r4
i,t

RV2
t

. (13)

Finally, it should be noted that we follow Amaya et al. (2015) and Bollerslev et al. (2020),
and conduct our cross-sectional analysis at the weekly frequency. In particular, on each
Tuesday, we compute the following weekly realized measures: RVW

t = ( 252
5 ∑4

i=0 RVt−i)
1/2 and

RMW
t = 1

5 (∑
4
i=0 RMt−i), where RVt is defined above, and where RMt denotes any of the realized

10 Here, the threshold, αn = 3
√

1
t ÎV

(i)
t Δ0.49

n , is estimated using the same procedure as in footnote 9.
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measures defined above other than RVt (e.g., RV JPt, RV JNt, SRV Jt, etc.). Hereafter, we shall drop
the superscript “W” for the sake of notational brevity. All the descriptors used to denote the various
realized measures constructed in our empirical analysis are summarized in Table 1.

As described in detail in Section 4, the realized measures outlined above are used in several
different ways in our empirical analysis. First, we carry out single portfolio sorts, in which we sort
stock portfolios on the above realized jump measures, and predict average excess returns, one week
ahead. In these experiments, we also calculate alphas based on regressions that use the Fama–French
and Carhart factors. In this first part of our analysis, we also examine cumulative returns and Sharpe
ratios. In addition to the single portfolio sorts, we carry out double portfolio sorts, in which we sort not
only on realized jump risk measures, but also on various control variables, including realized skewness
and other firm specific characteristics. Using these double-sorts, we also examine the inter-play
between individual stock-level jump variations and industry-level jump variations. Needless to say,
the purpose of our double-sorts is to examine the robustness of our findings based on single sorts,
after controlling for other realized measures. Next, we carry out a series of Fama–MacBeth regressions,
in order to check the robustness of our findings to the inclusion of various firm specific characteristics.
Finally, we carry out an event study in which the effect of earning surprises on realized jump measures
is examined. For complete details, see Section 4.

Table 1. Realized Measures and Firm Characteristics.

Panel A: Realized Measures Used in Portfolio Sorts and Fama–MacBeth Regressions

RVJP Positive (upside) jump variation, see (1).
RVJN Negative (downside) jump variation, see (2).
SRVJ Signed jump variation, RV JP − RV JN, see (3).
RVLJP Positive (upside) large jump variation, see (4).
RVLJN Negative (downside) large jump variation, see (5).
SRVLJ Signed large jump variation, RVLJP − RVLJN, see (6).
RVSJP Positive (upside) small jump variation, see (7).
RVSJN Negative (downside) small jump variation, see (8).
SRVSJ Signed small jump variation, RVSJP − RVSJN, see (9).
RVOL Realized volatility
RSK Realized skewness, see (12).
RKT Realized kurtosis, see (13).

Panel B: Explanatory Variables and Firm Characteristics Used in Fama–MacBeth Regressions

BETA Market beta
log(Size) Natural logarithm of firm size
BEME Book-to-market ratio
MOM Momentum
REV Short-term reversal
IVOL Idiosyncratic volatility
CSK Co-skewness
CKT Co-kurtosis
MAX Maximum daily return
MIN Minimum daily return
ILLIQ Illiquidity

Notes: The realized measures listed in Panel A of this table are defined and discussed in Section 2. For detailed
descriptions of the explanatory variables and firm characteristics listed in Panel B of this table, refer to
Bollerslev et al. (2020), and the references cited therein.

3. Data

We use high-frequency trading data obtained from the consolidated Trade and Quote (TAQ)
database. In particular, we analyze all stocks in the TAQ database that are listed on the NYSE, Amex,
and NASDAQ stock exchanges. There are 15,585 unique stocks during the 1246 weeks analyzed in this
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paper.11 The sample period is from 4 January 1993 to 31 December 2016. Intraday prices are sampled
at 5-min intervals from 9:30 a.m. to 4:00 p.m. from Monday to Friday. Overnight returns are not
considered in this paper, and days with less than 80 transactions at a 5-min frequency are eliminated.
All high-frequency data used in this paper are cleaned to remove trades outside of exchange hours,
negative or zero prices or volumes, trade corrections and non-standard sale conditions, using the
methodology described in Appendix A.1 in Bollerslev et al. (2020).

We constructed two variants of our dataset. The first is cleaned as discussed above. The second
classifies 5-min intraday returns greater than 15% as abnormal and replaces them with zeros. In the
sequel, results based on analysis of the second dataset are reported. However, results based on the
use of the first dataset are qualitatively the same; and indeed key return results reported in this paper
generally change by 1 basis point or less when the former dataset is used in our analysis. Complete
results are available upon request from the authors.

Daily and monthly returns, and adjusted numbers of shares for individual securities are collected
from the CRSP database. Delisting returns in CRSP are used as returns after the last trading day.
Daily Fama–French and Carhart four-factor (FFC) portfolio returns are obtained from Kenneth R.
French’s website.

Following Amaya et al. (2015) and Bollerslev et al. (2020), we also construct various lower
frequency firm-level variables that might be related to future returns, such as the market beta
(BETA), the firm size, the book-to-market ratio (BEME), momentum (MOM), short-term reversals
(REV), idiosyncratic volatility (IVOL), co-skewness (CSK), co-kurtosis (CKT), maximum (MAX) and
minimum (MIN) daily return in the previous week, and the Amihud (2002) illiquidity measure
(ILLIQ). For a complete list of these firm specific control variables, refer to Table 1. For a detailed
description of these variables, including the methodology used to construct them, see Appendix A.2
in Bollerslev et al. (2020).

Please note that while the majority of our analysis is based on the examination of individual
stocks, in our double-sorts, there are some cases (that are reported in Section 4.4) where we examine
the inter-play between individual stock-level jump variations and industry-level jump variations,
as mentioned above. In this case, we follow the Fama–French industry classification approach,
and group stocks into 49 industries based on their SIC codes, which are obtained from CRSP.

3.1. Unconditional Distributions of Realized Measures

Figure 1 displays kernel density estimates of the unconditional distributions of each of our
realized measures, across all firms and weeks. The top two panels in the figure show the distributions
of signed jump variation and realized skewness. Both distributions are approximately symmetric
and peaked around zero. The skewness distribution is more fat-tailed, however.12 The middle two
panels of Figure 1 display the distributions of signed small and large jump variation. Similar to
signed jump variation, both signed small and large jump variation measures are approximately
symmetric around zero, but signed small jump variation is less fat-tailed.13 Consistent with the results
in Amaya et al. (2015) and Bollerslev et al. (2020), realized volatility and realized kurtosis are both
right skewed and very fat-tailed, as shown in the bottom two panels of the figure.14

Figure 2 shows the time variation in the cross-sectional distribution of each realized measure
using 10-week moving averages. In particular, 10th, 50th, and 90th percentiles for each realized
measure in the cross-section are plotted. Thus, dispersion at any given time in these plots reflects

11 In some cases, multiple TAQ symbols are matched with a unique Center for Research in Security Prices (CRSP) PERMNO.
Over each quarter, the TAQ symbol which has the most observations is kept and the other overlapping observations are
dropped.

12 The kurtosis of signed jump variation is 4.36. For realized skewness, the analogous statistic is 12.04.
13 The unconditional kurtosis is 6.43 and 3.51, for signed small and large jump variation, based on truncation level γ1; and 8.87

and 3.09 based on truncation level γ2, respectively.
14 The kurtosis is 15.85 and 27.24, for the unconditional distribution of realized volatility and realized kurtosis, respectively.
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information about the cross-sectional distribution of the realized measure. Inspection of Panels A
and B in the figure reveals that signed jump variation and realized skewness have stable dispersion,
for all three cross-sectional percentiles, over time, while the cross-sectional dispersion in realized
volatility and kurtosis are rather time-dependent (see Panels C and D). Additionally, similar to the
cross-sectional distribution of signed jump variation, the percentiles for signed small and large jump
variation measures are quite steady over time, as indicated in Panels E–H.

Panel A: SRVJ Kernel Density Estimate Panel B: RSK Kernel Density Estimate

Panel C: SRVLJ Kernel Density Estimate Panel D: SRVSJ Kernel Density Estimate

Panel E: RKT Kernel Density Estimate Panel F: RVOL Kernel Density Estimate

Figure 1. Unconditional Distributions of Realized Measures. Panels A-F display unconditional
distribution kernel density estimates of various realized measures, for the cross-section of stock
returns for the period January 1993 to December 2016. Signed small and large jump variation measures

are constructed using truncation levels γ1 = 4
√

1
t ÎV

(i)
t Δ0.49

n . Distributions are similar when using

γ2 = 5
√

1
t ÎV

(i)
t Δ0.49

n .
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Panel A: Percentiles of SRVJ Panel B: Percentiles of RSK

Panel C: Percentiles of RKT Panel D: Percentiles of RVOL

Panel E: Percentiles of SRVLJ Based on γ2 Panel F: Percentiles of SRVSJ Based on γ2

Figure 2. Percentiles of Realized Measures. Panels A-H display 10-week moving averages of percentiles
of realized measures, for the cross-section of stocks, for the period January 1993 to December 2016.
Signed small and large jump variation measures are contructed based on jump truncation level

γ2 = 5
√

1
t ÎV

(i)
t Δ0.49

n .

3.2. Summary Statistics and Portfolio Characteristics

Table 2 contains various summary statistics for all the realized measures summarized in Table 1.
In Panel A, the cross-sectional means and standard errors for each of the realized measures is

given. This is done for two different truncation levels, denoted as γ1 = 4
√

1
t ÎV

(i)
t Δ0.49

n and

γ2 = 5
√

1
t ÎV

(i)
t Δ0.49

n . As might be expected, jump variation is quite sensitive to the choice of γ.
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For example, the (normalized) mean of RVSJP (positive (upside) small jump variation) increases from
0.1180 to 0.1715 when the threshold is increased from γ1 to γ2.

Panel B of Table 2 contains cross-sectional correlations for all the realized measures. In accord
with the findings reported by Amaya et al. (2015) and Bollerslev et al. (2020), signed jump variation
(SRVJ) and realized skewness (RSK) are highly correlated with each other and have significantly
positive correlations with the short-term reversal variable (REV); as well as with maximum (MAX)
and minimum (MIN) daily returns in the previous week.

Interestingly, we also find that signed large jump variation (SRVLJ) is highly correlated with SRVJ
and with RSK. However, signed small jump variation (SRVSJ) has a lower correlation with SRVJ and
much smaller positive correlation with RSK. This finding is consistent with our finding discussed
below that realized skewness captures information that is primarily contained in large jumps; and
serves as an important distinction between the findings in this paper and those reported in the papers
discussed above.

Table 3 complements Table 2 by sorting stocks into quintile portfolios based on different realized
measures. On each Tuesday, stocks are ranked by the realized variation measures, and we calculate
the equal-weighted averages of each firm characteristic in the same week. Panels A, B, C and E report
summary statistics for portfolios sorted by SRVJ, SRVLJ, SRVSJ, and RSK, respectively. Consistent with
the correlations contained in Table 2, firms with larger signed small and large jump variation measures
tend to have higher signed jump variation, realized skewness, REV, MAX and MIN. Firms with high
realized volatility and realized kurtosis (see Panels D and F) tend to be illiquid and small.15

15 See the Supplementary Appendix for results based on the examination of additional quintile portfolios that are constructed
based on ex-ante risk measures and displayed with ex-post risk measures. It is clear that sorting stocks based on jump risk
measures results in portfolios with the desired risk exposures.

105



Econometrics 2020, 8, 19

T
a

b
le

2
.

Su
m

m
ar

y
St

at
is

ti
cs

fo
r

V
ar

io
us

R
ea

liz
ed

M
ea

su
re

s
an

d
Fi

rm
C

ha
ra

ct
er

is
ti

cs
Ba

se
d

on
Tw

o
Ju

m
p

Tr
un

ca
ti

on
Le

ve
ls

.

P
a

n
e

l
A

:
C

ro
ss

-S
e

ct
io

n
a

l
S

u
m

m
a

ry
S

ta
ti

st
ic

s

S
R

V
J

R
V

JP
R

V
JN

S
R

V
L

J
R

V
L

JP
R

V
L

JN
S

R
V

S
J

R
V

S
JP

R
V

S
JN

R
V

O
L

R
S

K
R

K
T

B
E

T
A

lo
g

(S
iz

e
)

B
E

M
E

M
O

M
R

E
V

IV
O

L
C

S
K

C
K

T
M

A
X

M
IN

IL
L

IQ

P
a

rt
I:

Ju
m

p
T

ru
n

ca
ti

o
n

L
e

v
e

l
=

γ
1

M
ea

n
0.

00
61

0.
26

98
0.

26
37

0.
00

45
0.

15
18

0.
14

72
0.

00
15

0.
11

80
0.

11
65

0.
94

89
0.

02
88

8.
25

69
1.

07
94

6.
52

80
0.

59
69

20
23

.8
45

6
70

.6
07

7
0.

02
93

−0
.0

26
3

1.
14

38
41

2.
10

94
−3

46
.7

60
8

−5
.2

82
6

St
d

0.
15

37
0.

13
50

0.
13

47
0.

14
24

0.
15

55
0.

15
23

0.
06

35
0.

07
83

0.
07

83
2.

12
11

0.
81

59
4.

57
06

0.
55

66
1.

83
59

0.
72

24
74

64
.5

27
3

92
7.

35
51

0.
02

50
0.

32
83

0.
84

74
57

2.
14

54
35

9.
67

89
2.

40
47

P
a

rt
II

:
Ju

m
p

T
ru

n
ca

ti
o

n
L

e
v

e
l

=
γ

2

M
ea

n
0.

00
61

0.
26

98
0.

26
37

0.
00

29
0.

09
83

0.
09

54
0.

00
31

0.
17

15
0.

16
84

0.
94

89
0.

02
88

8.
25

69
1.

07
94

6.
52

80
0.

59
69

20
23

.8
45

6
70

.6
07

7
0.

02
93

−0
.0

26
3

1.
14

38
41

2.
10

94
−3

46
.7

60
8

−5
.2

82
6

St
d

0.
15

37
0.

13
50

0.
13

47
0.

13
03

0.
14

01
0.

13
68

0.
08

59
0.

09
11

0.
09

09
2.

12
11

0.
81

59
4.

57
06

0.
55

66
1.

83
59

0.
72

24
74

64
.5

27
3

92
7.

35
51

0.
02

50
0.

32
83

0.
84

74
57

2.
14

54
35

9.
67

89
2.

40
47

P
a

n
e

l
B

:
C

ro
ss

-S
e

ct
io

n
a

l
C

o
rr

e
la

ti
o

n
s

S
R

V
J

R
V

JP
R

V
JN

S
R

V
L

J
R

V
L

JP
R

V
L

JN
S

R
V

S
J

R
V

S
JP

R
V

S
JN

R
V

O
L

R
S

K
R

K
T

B
E

T
A

lo
g

(S
iz

e
)

B
E

M
E

M
O

M
R

E
V

IV
O

L
C

S
K

C
K

T
M

A
X

M
IN

IL
L

IQ

P
a

rt
I:

Ju
m

p
T

ru
n

ca
ti

o
n

L
e

v
e

l
=

γ
1

SR
V

J
1.

00
0.

57
−0

.5
7

0.
91

0.
43

−0
.4

0
0.

37
0.

13
−0

.1
8

−0
.0

2
0.

94
0.

03
−0

.0
3

0.
01

0.
01

0.
01

0.
30

−0
.0

3
0.

09
0.

00
0.

17
0.

22
0.

00
RV

JP
1.

00
0.

33
0.

52
0.

85
0.

37
0.

21
0.

04
−0

.1
3

0.
22

0.
54

0.
45

−0
.2

6
−0

.4
9

0.
14

−0
.1

0
0.

15
0.

12
0.

04
−0

.2
4

0.
15

0.
06

0.
56

RV
JN

1.
00

−0
.5

2
0.

35
0.

84
−0

.2
2

−0
.1

0
0.

08
0.

24
−0

.5
4

0.
41

−0
.2

3
−0

.4
9

0.
13

−0
.1

1
−0

.1
9

0.
15

−0
.0

6
−0

.2
4

−0
.0

5
−0

.2
0

0.
55

SR
V

LJ
1.

00
0.

48
−0

.4
4

−0
.0

4
−0

.0
5

−0
.0

1
−0

.0
1

0.
92

0.
03

−0
.0

2
0.

00
0.

01
0.

00
0.

20
−0

.0
2

0.
05

0.
00

0.
12

0.
16

0.
00

RV
LJ

P
1.

00
0.

57
−0

.0
2

−0
.4

6
−0

.4
5

0.
23

0.
44

0.
61

−0
.2

5
−0

.4
7

0.
12

−0
.0

6
0.

09
0.

13
0.

02
−0

.2
4

0.
12

−0
.0

2
0.

54
RV

LJ
N

1.
00

0.
01

−0
.4

4
−0

.4
5

0.
24

−0
.4

1
0.

59
−0

.2
3

−0
.4

8
0.

11
−0

.0
6

−0
.1

0
0.

15
−0

.0
3

−0
.2

4
0.

01
−0

.1
7

0.
54

SR
V

SJ
1.

00
0.

42
−0

.4
2

−0
.0

2
0.

19
0.

00
−0

.0
3

0.
01

0.
01

0.
01

0.
26

−0
.0

3
0.

08
0.

00
0.

14
0.

18
0.

00
RV

SJ
P

1.
00

0.
64

−0
.0

4
0.

06
−0

.4
0

0.
06

0.
03

0.
01

−0
.0

5
0.

10
−0

.0
3

0.
04

0.
04

0.
02

0.
11

−0
.0

6
RV

SJ
N

1.
00

−0
.0

3
−0

.1
0

−0
.4

0
0.

08
0.

02
0.

01
−0

.0
6

−0
.1

2
−0

.0
1

−0
.0

3
0.

03
−0

.0
9

−0
.0

4
−0

.0
6

RV
O

L
1.

00
−0

.0
1

0.
22

−0
.0

5
−0

.5
5

0.
08

−0
.1

2
0.

06
0.

56
−0

.0
1

−0
.2

7
0.

44
−0

.4
7

0.
56

R
SK

1.
00

0.
04

−0
.0

2
0.

00
0.

01
0.

00
0.

22
−0

.0
2

0.
06

0.
00

0.
13

0.
17

0.
00

R
K

T
1.

00
−0

.2
0

−0
.3

4
0.

09
−0

.0
2

0.
00

0.
10

−0
.0

1
−0

.1
9

0.
08

−0
.1

0
0.

40
BE

TA
1.

00
0.

10
−0

.0
9

0.
00

−0
.0

4
0.

06
0.

01
0.

30
0.

03
−0

.0
9

−0
.1

6
M

E
1.

00
−0

.1
9

0.
11

−0
.0

5
−0

.5
2

0.
01

0.
40

−0
.3

2
0.

35
−0

.9
3

BE
M

E
1.

00
0.

03
0.

02
0.

05
0.

00
−0

.0
6

0.
05

−0
.0

3
0.

18
M

O
M

1.
00

0.
00

−0
.0

8
−0

.0
7

0.
06

−0
.0

5
0.

05
−0

.1
5

R
EV

1.
00

0.
12

0.
16

−0
.0

4
0.

49
0.

29
0.

05
IV

O
L

1.
00

0.
02

−0
.3

5
0.

50
−0

.4
7

0.
47

C
SK

1.
00

0.
01

0.
07

0.
07

0.
00

C
K

T
1.

00
−0

.1
6

0.
15

−0
.3

7
M

A
X

1.
00

−0
.2

8
0.

34
M

IN
1.

00
−0

.3
5

IL
LI

Q
1.

00

S
R

V
J

R
V

JP
R

V
JN

S
R

V
L

J
R

V
L

JP
R

V
L

JN
S

R
V

S
J

R
V

S
JP

R
V

S
JN

R
V

O
L

R
S

K
R

K
T

B
E

T
A

lo
g

(S
iz

e
)

B
E

M
E

M
O

M
R

E
V

IV
O

L
C

S
K

C
K

T
M

A
X

M
IN

IL
L

IQ

P
a

rt
II

:
Ju

m
p

T
ru

n
ca

ti
o

n
L

e
v

e
l

=
γ

2

SR
V

J
1.

00
0.

57
−0

.5
7

0.
83

0.
40

−0
.3

7
0.

52
0.

23
−0

.2
7

−0
.0

2
0.

94
0.

03
−0

.0
3

0.
01

0.
01

0.
01

0.
30

−0
.0

3
0.

09
0.

00
0.

17
0.

22
0.

00
RV

JP
1.

00
0.

33
0.

48
0.

77
0.

33
0.

30
0.

30
0.

01
0.

22
0.

54
0.

45
−0

.2
6

−0
.4

9
0.

14
−0

.1
0

0.
15

0.
12

0.
04

−0
.2

4
0.

15
0.

06
0.

56
RV

JN
1.

00
−0

.4
7

0.
31

0.
75

−0
.3

1
0.

03
0.

33
0.

24
−0

.5
4

0.
41

−0
.2

3
−0

.4
9

0.
13

−0
.1

1
−0

.1
9

0.
15

−0
.0

6
−0

.2
4

−0
.0

5
−0

.2
0

0.
55

SR
V

LJ
1.

00
0.

49
−0

.4
4

−0
.0

4
−0

.0
5

−0
.0

1
−0

.0
1

0.
89

0.
04

−0
.0

1
0.

00
0.

01
0.

00
0.

16
−0

.0
2

0.
04

0.
00

0.
09

0.
13

0.
00

RV
LJ

P
1.

00
0.

56
−0

.0
2

−0
.3

6
−0

.3
4

0.
20

0.
43

0.
64

−0
.2

4
−0

.4
0

0.
11

−0
.0

5
0.

06
0.

11
0.

01
−0

.2
2

0.
10

−0
.0

2
0.

47
RV

LJ
N

1.
00

0.
01

−0
.3

4
−0

.3
5

0.
21

−0
.4

0
0.

62
−0

.2
3

−0
.4

1
0.

10
−0

.0
6

−0
.0

9
0.

13
−0

.0
3

−0
.2

2
0.

01
−0

.1
4

0.
47

SR
V

SJ
1.

00
0.

47
−0

.4
7

−0
.0

2
0.

32
0.

00
−0

.0
3

0.
01

0.
01

0.
01

0.
30

−0
.0

3
0.

09
0.

00
0.

16
0.

21
0.

00
RV

SJ
P

1.
00

0.
55

0.
03

0.
13

−0
.3

0
−0

.0
2

−0
.1

4
0.

04
−0

.0
7

0.
13

0.
02

0.
04

−0
.0

4
0.

07
0.

10
0.

13
RV

SJ
N

1.
00

0.
05

−0
.1

7
−0

.3
0

0.
01

−0
.1

5
0.

04
−0

.0
7

−0
.1

5
0.

05
−0

.0
4

−0
.0

4
−0

.0
8

−0
.0

9
0.

13
RV

O
L

1.
00

−0
.0

1
0.

22
−0

.0
5

−0
.5

5
0.

08
−0

.1
2

0.
06

0.
56

−0
.0

1
−0

.2
7

0.
44

−0
.4

7
0.

56
R

SK
1.

00
0.

04
−0

.0
2

0.
00

0.
01

0.
00

0.
22

−0
.0

2
0.

06
0.

00
0.

13
0.

17
0.

00
R

K
T

1.
00

−0
.2

0
−0

.3
4

0.
09

−0
.0

2
0.

00
0.

10
−0

.0
1

−0
.1

9
0.

08
−0

.1
0

0.
40

106



Econometrics 2020, 8, 19

T
a

b
le

2
.

C
on

t.

P
a

n
e

l
B

:
C

ro
ss

-S
e

ct
io

n
a

l
C

o
rr

e
la

ti
o

n
s

S
R

V
J

R
V

JP
R

V
JN

S
R

V
L

J
R

V
L

JP
R

V
L

JN
S

R
V

S
J

R
V

S
JP

R
V

S
JN

R
V

O
L

R
S

K
R

K
T

B
E

T
A

lo
g

(S
iz

e
)

B
E

M
E

M
O

M
R

E
V

IV
O

L
C

S
K

C
K

T
M

A
X

M
IN

IL
L

IQ

P
a

rt
II

:
Ju

m
p

T
ru

n
ca

ti
o

n
L

e
v

e
l

=
γ

2

BE
TA

1.
00

0.
10

−0
.0

9
0.

00
−0

.0
4

0.
06

0.
01

0.
30

0.
03

−0
.0

9
−0

.1
6

M
E

1.
00

−0
.1

9
0.

11
−0

.0
5

−0
.5

2
0.

01
0.

40
−0

.3
2

0.
35

−0
.9

3
BE

M
E

1.
00

0.
03

0.
02

0.
05

0.
00

−0
.0

6
0.

05
−0

.0
3

0.
18

M
O

M
1.

00
0.

00
−0

.0
8

−0
.0

7
0.

06
−0

.0
5

0.
05

−0
.1

5
R

EV
1.

00
0.

12
0.

16
−0

.0
4

0.
49

0.
29

0.
05

IV
O

L
1.

00
0.

02
−0

.3
5

0.
50

−0
.4

7
0.

47
C

SK
1.

00
0.

01
0.

07
0.

07
0.

00
C

K
T

1.
00

−0
.1

6
0.

15
−0

.3
7

M
A

X
1.

00
−0

.2
8

0.
34

M
IN

1.
00

−0
.3

5
IL

LI
Q

1.
00

N
ot

es
:

Se
e

no
te

s
to

Ta
bl

e
1.

T
hi

s
ta

bl
e

p
re

se
nt

s
cr

os
s-

se
ct

io
na

l
su

m
m

ar
y

st
at

is
ti

cs
an

d
co

rr
el

at
io

ns
fo

r
al

l
re

al
iz

ed
m

ea
su

re
s

an
d

co
nt

ro
l

va
ri

ab
le

s
ba

se
d

on
tw

o

tr
un

ca
tio

n
le

ve
ls

:
γ

1
=

4√ 1 t
ÎV
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4. Empirical Results

In this section, we begin by discussing single (univariate) portfolio sort results (see Tables 4–7),
and double sort results (see Tables 8–13). We then discuss results based on a firm-level Fama–MacBeth
regression analysis and an analysis of jumps and news announcements. We assume a weekly holding
period, and return calculations reported in the tables are carried out as follows. At the end of each
Tuesday, stocks are sorted into quintile portfolios based on different realized variation measures
(see Panel A of Table 1). We then calculate equal-weighted and value-weighted portfolio returns over
the subsequent week. We report the time series average of these weekly returns for each portfolio
(these returns are called “Mean Return” in the tables). In addition, we regress the excess return of
each portfolio on the Fama–French and Carhart (FFC4) factors to control for systematic risks, using
regression of the form

ri,t − r f ,t = αi + βMKT
i (MKTt − r f ,t) + βSMB

i SMBt + βHML
i HMLt + βUMD

i UMDt + εi,t (14)

where ri,t denotes the weekly return for firm i, r f ,t is the risk-free rate; and MKTt, SMBt, HMLt,
and UMDt denote FFC4 market, size, value and momentum factors, respectively. The intercepts
from these regressions (called “Alpha” in our tabulated results), measure risk-adjusted excess returns,
and are also reported in Tables 4–13. Needless to say, our objective in these tables is to assess
whether predictability exists, after controlling for various systematic risk factors. Finally, in Table 14,
we report the results of cross-sectional (firm-level) Fama–MacBeth regressions used to investigate return
predictability when simultaneously controlling for multiple realized measures and firm characteristics.
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4.1. Single (Univariate) Portfolio Sorts Based on Realized Measures

In this section, we first discuss the results contained in Table 4. Recall that the Mean Return
in this table is an average taken over our entire time series of equal-weighted and value-weighted
portfolio returns, for single-sorted portfolios based on positive jump variation (RVJP), negative jump
variation (RVJN) and signed jump variation (SRVJ). Values in parentheses are Newey–West t-statistics
(see Bollerslev et al. (2015) and Petersen (2009) for further discussion). Panel A provides results for
portfolios sorted by RVJP. Inspection of the entries in this panel indicates that mean returns and alphas
of high–low portfolios (i.e., the difference in returns (alphas) between the fifth and first quintiles) are all
negative, indicating a negative association between RVJP and subsequent stock returns. Interestingly,
the alpha of −7.71 basis points (bps) is insignificant for the high–low spread for the equal-weighted
portfolio, while the alpha of −5.63 bps is only significant at a 10% level for the high–low spread for the
value weighted portfolio.

The lack of statistical significance for some of the mean return values reported in Panel A does
not characterize our findings when negative and signed jump variation measures are used for sorting.
Moreover, the magnitudes of the mean returns and alphas are usually three or more times larger
when sorting on negative and signed jump variation (to see this, turn to Panels B and C of Table 4).
In Panel B, the high–low spread of mean returns equals 36.06 bps, with a t-statistic of 6.47 for the
equal-weighted portfolio, and 15.13 bps with a t-statistic of 3.75 for the value-weighted portfolio.
Moreover, both equal-weighted and value-weighted portfolios generate significant positive abnormal
future returns measured by the alphas. These results clearly point to a statistically significant positive
association between negative jump variation and the following week’s returns.

Panel C in Table 4 contains results for portfolios sorted by signed jump variation. The negative
high–low spreads indicate a statistically significant negative association between signed jump variation
and future returns. In particular, a strategy buying stocks in the lowest signed jump variation quintile
and selling stocks in the highest signed jump variation quintile earns a mean return of 40.82 bps with a
t-statistic of 9.85 each week for the equal-weighted portfolio and 25.02 bps with a t-statistic of 5.78 for
the value-weighted portfolio. These results are consistent with the results reported in Bollerslev et al.
(2020). Interestingly, almost all of the mean returns listed in Table 4 are “alpha” (see tabulated average
alphas in the table), and cannot be explained by standard portfolio risk factors using regressions of the
type given above as Equation (14).

A key question that we provide evidence on in this paper is whether the results summarized
in Table 4 carry over to the case where small and large jump variation is separately sorted on. First,
consider large jumps. Table 5 reports the results for portfolios sorted by positive, negative and signed
large jump variation, respectively. Similar to positive jump variation, positive large jumps negatively
predict subsequent returns, but the predictability is not significant, regardless of the truncation level
(γ) used to separate small and large jumps, and regardless of portfolio weighting used. This is
demonstrated by the fact that the t-statistics for mean returns and alphas of high–low portfolios all
indicate insignificance, at a 5% testing level, regardless of truncation level. Thus, there is no ambiguity,
as in Panel A of Table 4. Positive jump variation is not a significant predictor, under our large jump
scenario. On the other hand, we shall see that sorting on small and large negative variation measures
yields significant excess returns, as does sorting on small positive jump variation, under both equal
and value weighting schemes.

As just noted, equal-weighted high–low portfolios sorted on large negative jump variation
generate significant positive returns and alphas (see Panel B of Table 5). However, analogous returns
and alphas under value weighting are not significant. Signed large jump variation is sorted on in
Panel C of Table 5. Signed large jump variation is useful for undertaking a long-short trading strategy
based on the difference between large upside and downside jump variation measures. Inspection of
the results in this panel of the table reveals that the high–low spread for the equal-weighted portfolio
generates an average risk-adjusted weekly return of −28.36 bps (with a t-statistics of −9.39) and
−9.25 bps (with a t-statistics of −2.87) for the value-weighted portfolio, for truncation level equal to γ1.
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Results based on γ2 (i.e., our larger truncation level) are also significant, although magnitudes are lesser
and only for our equal-weighted portfolio.16 In particular, observe that when large jump variation
is constructed using γ2, the high–low spreads for value-weighted portfolios sorted by downside or
signed large jump variation measures are insignificant, suggesting that small firms have stronger
relationships (than larger firms) between signed (or negative) large jump variation and subsequent
returns. This may be because smaller firms are in some ways more susceptible to changing market
conditions than larger firms.

Table 6 summarizes results analogous to those reported in Table 5, but for positive, negative
and signed small jump variation measures. Similar to large jump measures, positive and signed
small jump variation measures negatively predict future returns, and negative small jump variation
measures positively predict returns in the following week. By contrast, the differences in average
(risk-adjusted) returns between equal-weighted and value-weighted long-short portfolios based on
RVSJP and RVSJN are smaller than those for portfolios based on large jumps (compare the entries
for the high–low quintiles under the two weighting schemes in Panels A and B of Table 6 with like
entries in Panels A and B of Table 5). These results indicate that big firms have a stronger relationship
between small jump variation and future returns than that between large jumps and subsequent weekly
returns. Since stocks for big firms are more liquid and price discovery is more rapid, predictability
associated with large jumps is much weaker or insignificant for big firms. This finding is in line
with Bollerslev et al. (2020), who document that the predictability of signed jump variation is stronger
for small and illiquid firms and is driven by investor overreaction. In addition, when using our larger
truncation level, γ2, value-weighted high–low spreads based on signed small jump variation are
larger than those based on signed total jump variation and signed large jump variation. This result
implies that a long-short strategy associated with signed small jump variation generates the highest
value-weighted risk-adjusted returns, given the use of an appropriate truncation level to separate
small and large jumps.

As discussed above, in order to understand why small jumps matter in our analysis,
note that Scaillet et al. (2018) document that jumps are frequent events and that jump dynamics
are not consistent with the compound Poisson processes with constant intensity. In addition, many
recent studies find that infinite-activity Levy jump specifications (e.g., Variance Gamma and Normal
Inverse Gaussian return jumps) can improve the goodness of fit and option pricing performance of
models (for example, see Yang and Kanniainen (2016)). These results point to the possible importance
of small jumps, which may have infinite numbers in a finite time interval. Though more frequent than
large jumps, note that we estimate daily jump variation measures and aggregate them into weekly
measures for forecasting future weekly returns. Thus, it is not individual small jumps that necessarily
matter, but the overall contribution of small jumps to total variation, in the cross-section. Additionally,
we show (see below discussion) that small jump variation is more closely associated with idiosyncratic
risk than are large jump variation. If idiosyncratic volatility matters (see Ang et al. (2006, 2009)),
so do small jumps, at least to some extent. Indeed, our results partially help explain the idiosyncratic
volatility puzzle (investors prefer positive skewness/asymmetry, so they will accept lower returns for
stocks with a higher probability of having positive jumps).

Table 7 reports results for portfolios sorted by realized volatility, realized skewness,
realized kurtosis, and continuous variance. Consistent with the results in Amaya et al. (2015)
and Bollerslev et al. (2020), there is a significant negative relationship between realized skewness
and future returns, while the association is not significant between either realized volatility or realized
kurtosis and returns in the following week, regardless of portfolio weighting scheme. In addition,

16 Empirical findings based on γ3 are similar to those discussed above, and hence are not reported. This robustness of our
findings to the choice of γ also characterizes the other empirical findings discussed in the sequel.
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continuous variance significantly and negatively predicts one-week-ahead returns for equal-weighted
portfolios, but this negative association is not significant for value-weighted portfolios.

4.2. Cumulative Returns and Sharpe Ratios

Not surprisingly, our findings based on univariate portfolio sorts suggest that strategies that use
different realized measures deliver different risk-adjusted average returns. In order to investigate
this result further, we calculate cumulative returns and Sharpe ratios for short-long portfolios, sorted
on various risk measures that are described in Table 1, including SRVJ, RSJ, SRVLJ, SRVSJ, and RSK.
In addition, for comparison purposes, we also carry out our analysis using the relative signed jump
variation measure (called RSJ) that is examined by Bollerslev et al. (2020). Our experiments are carried
out as follows. Beginning in January 1993, various short-long portfolios are constructed, with an initial
investment of $1. These portfolios are re-balanced and accumulated at a weekly frequency, until the
end of 2016.17 Figure 3 plots portfolio values over time. Consistent with our results based on single
portfolio sorts, inspection of the plots in this figure indicates that for equal-weighted portfolios sorting
on signed jump variation (SRVJ) yields the largest portfolio accumulations; and for value-weighted
portfolios, sorting on signed small jump variation (SRVSJ) yields the largest portfolio accumulations.18

Panel A: Equal-Weighted Mean Return Panel B: Value-Weighted Mean Return

Figure 3. Cumulative Gains of Short-Long Portfolios. Panels A–B display cumulative gains of
equal-weighted and value-weighted short-long portfolios constructed using SRVJ, SRVLJ, SRVSJ,
and RSK (see Table 1 and Section 2 for a discussion of these measures). RSJ is the relative signed jump
variation measure defined and analyzed in Bollerslev et al. (2020), who include the risk-free rate in
all of their calculations, while we do not (refer to Bollerslev et al. (2020) for complete details). In all
experiments, the initial investment, made on January 1993, is $1. Each portfolio is re-balanced and
accumulated on a weekly basis, through 2016. Signed small and large jump variation measures used in

the experiment reported on in this figure are constructed based on truncation level γ2 = 5
√

1
t ÎV

(i)
t Δ0.49

n .
See Section 4.2 for further discussion.

Now, consider the Sharpe ratios reported below, which are reported for various jump measures,

and are constructed based on truncation level γ2 = 5
√

1
t ÎV

(i)
t Δ0.49

n .

17 Cumulative returns calculations do not include the risk-free rate. For a definition of cumulative returns both with and
without the weekly risk-free rate, see Bollerslev et al. (2020).

18 Please note that RSJ, which measures the same signed jump variation as SRVJ, although using different estimation
methodology, generates the highest cumulative return for equal-weighted portfolios, but is dominated by SRVSJ for
value-weighted portfolios.
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Table 15. Sharpe Ratios.

SRVJ RSJ SRVLJ SRVSJ RSK

Equal-Weighted 2.1342 2.1363 1.8556 1.8161 2.2234
Value-Weighted 1.1322 1.1310 0.1611 1.2755 0.8665

The entries in Table 15 are Sharpe ratios for equal- and value-weighted short-long portfolios
constructed using SRVJ, RSJ, SRVLJ, SRVSJ, and RSK. Recall that RSK is realized skewness (see Table 1
for definitions of these measures). The sample of stocks used for Sharpe ratio calculations includes
all NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December 2016. At the
end of each Tuesday, all the stocks in the sample are sorted into quintile portfolios based on ascending
values of various realized risk measures. A high–low spread portfolio is then formed as the difference
between portfolio 1 and portfolio 5, and held for one week, where 1 and 5 refer to quintiles, as in
Tables 3–7. The Sharpe ratio is calculated with the one-week-ahead returns.

Interestingly, for equal-weighted portfolios, the RSK-based short-long strategy yields the
highest Sharpe ratio (i.e., 2.2234), although the ratio of 2.1342 for SRVJ is approximately the same.
Still, the success of the RSK measure is likely due to its relatively stable performance, compared with
other jump-based strategies. This finding is similar to the findings discussed in Xiong et al. (2016),
who show that tail risks can be substantially reduced by forecasting skewness. Note also that the signed
small jump variation (SRVSJ)-based portfolio has the highest Sharpe ratio, among all value-weighted
portfolios. However, it is clear that all equal-weighted portfolios outperform their corresponding
value-weighted counterparts. This result is consistent with the finding discussed above that small and
illiquid firms tend to react more strongly to realized risk measures.

4.3. Double Portfolio Sorts Based on Realized Measures

To further investigate whether small and large jumps are priced differently, we use double
portfolio sorts. In particular, we carry out double-sorts in order to examine the robustness of our
findings based on single sorts, after controlling for other realized measures. Table 8 reports returns
and alphas from various of these sorts in which we alternate the sorting order among SRVJ, SRVLJ
and SRVSJ. When we first sort by total jump variation, and then sort stocks based on SRVLJ or SRVSJ,
a negative relation only exists between SRVSJ and subsequent weekly returns (see Panels A and B
of the table). This result indicates that there is no marginal predictive content associated with large
jumps, when conditioning on the predictive content associated with total jump variation, while small
jumps have unique information for predicting future returns, even compared to total jumps.

Panel C reports returns and alphas based on sorting on SRVSJ after controlling for SRVLJ. Both the
equal- and value-weighted high–low spreads and alphas are statistically significant in this case,
while this is not the case if stocks are first sorted by SRVSJ and then by SRVLJ, as shown in Panel D.
More specifically, the high–low return is −25.38 bps (with a t-statistic of −6.61), for the value-weighted
portfolio in Panel C, and is −3.77 bps with a t-statistics of −1.49 in Panel D, for the value-weighted
portfolio. This indicates that the predictable content in large jumps becomes negligible after controlling
for small jumps.

Bollerslev et al. (2020) document that the negative association between realized skewness and
one-week-ahead returns is reversed when controlling for the signed jump variation. To further
investigate the relationship between skewness and different jump variation measures, we use double
portfolio sorts to control for different effects that are associated with cross-sectional variation in
future returns.

Panel A of Table 9 reports average returns and corresponding t-statistics for 25 portfolios sorted
by SRVJ (signed jump variation), controlling for realized skewness (RSK). Inspection of the results
in this table indicates that the negative association between SRVJ and future returns still exists,
after controlling for RSK, indicating that there is unique predictive information contained in signed
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jump variation. Panel B in this table reports results for portfolios sorted first by SRVJ and then by RSK.
The high–low spreads of the averaged portfolios are positive after controlling for SRVJ, confirming the
results reported in Bollerslev et al. (2020).

Panel A of Table 10 contains results for portfolios sorted by SRVLJ (signed large jump variation)
after controlling for RSK. As noted above, the negative association between SRVLJ and future returns
is reversed after controlling for skewness. By contrast, this issue does not exist for portfolios sorted by
SRVSJ (signed small jump variation) when controlling for skewness, as shown in Panel B of Table 10,
indicating that signed small jump variation has unique information about future return premia.
However, first accounting for skewness negates the usefulness that signed large jump variation has
for predicting future returns. This finding serves as an important distinction between the predictive
content of small and large jumps.

Finally, Table 11 contains results for portfolios sorted on RSK, after controlling for SRVLJ and
SRVSJ, respectively. Inspection of the entries in this table indicates that the high–low spreads are
negative, except in select value-weighted portfolio cases, when controlling for SRVSJ. This is not
surprising since skewness captures information from both SRVLJ and SRVSJ, while the negative
association between realized skewness and subsequent returns remains, when controlling for either
SRVLJ or SRVSJ, in most cases. Of note is that this negative association disappears for some
value-weighted portfolios, when controlling for SRVSJ, suggesting that signed small jump variation
(especially for big firms) is the main driver of the signed total jump variation. These findings are
consistent with the findings documented by Bollerslev and Todorov (2011) that S&P 500 market
portfolios tend to have symmetric jump tails (large jumps).

4.4. Using Double Portfolio Sorts to Examine Stock-Level versus Industry-Level Predictability

In this section, we carry out an additional set of double portfolio sort experiments, in which
industry-based investing is compared with individual stock-based investing. Our earlier findings
indicate that low signed jump variation investing (buying stocks with low signed jump variation and
shorting stocks with high signed jump variation) can deliver significant risk-adjusted returns (this is a
result also found by Bollerslev et al. (2020), for example). In order to examine whether this investment
strategy relies on industry betting or stock selection within industries (or both), we form double-sorted
portfolios based on industry-level and stock-level signed jump risk variation. In particular, each
Tuesday we group stocks into 49 industries based on SIC codes. Industry-level signed jump risk is
calculated as the value-weighted average of signed (large/small) jump variation measures for stocks
within each industry. Thus, stocks in the same industry have the same industry signed (large/small)
jump variation during a given week. Stock-level signed jump risk is calculated as outlined in the
above. Double sorts are then used to investigate the selection effects at industry- and stock-level.
Specifically, stocks are sorted into 25 portfolios based on industry- and stock-level signed (large/small)
jump variation quintiles. With this particular variety of sorting, results are independent of the order in
which stocks are sorted.

Figure 4 depicts the percentage of stocks in each portfolio (see Panel A), and the market
capitalization in these portfolios (see Panel B). If industry-level selection and stock-level selection lead
to different quintile portfolios (i.e., off-diagonal portfolios in the figures have non-zero membership),
it is possible to separate these two effects using double-sorts. Specifically, there are different industry-
and stock-level effects. Both panels indicate this to be the case.
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Panel A: Average Distribution of Stocks
Across Double-Sorted Portfolios

Panel B: Average Distribution of Market
Capitalization Across Double-Sorted

Portfolios

Figure 4. Distribution of Stocks in Portfolios Formed Based on Stocks’ Signed Jump Variation (SRVJ)
and Industry Signed Jump Variation. The vertical axis in Panels A and B measures time series average
proportions of stocks and market capitalizations, across double-sorted portfolios.

Tables 12 and 13 report our empirical findings based on our double portfolio sort experiments.
In particular, Table 12 reports results for sorting done on signed jump variation (SRVJ), while Table 13
reports results for sorting done on signed large jump variation (SRVLJ) and signed small jump variation
(SRVSJ), respectively. Entries in the tables are mean returns and alphas, as in previous tables. However,
in these tables we also report industry-level effects and stock-level effects. These are reported in the
last two rows of entries in each panel of the tables. The first of these two rows, called “Industry-Level
Effect” reports average high–low returns and alphas by averaging across quintiles in the high–low
and alpha columns of the table (these are industry-level results). The second of these two rows, called
“Stock-Level Effect” reports average high–low returns and alphas by averaging across quintiles in
the high–low and alpha rows of the table (these are stock-level results). Summarizing, rows in these
tables display portfolios formed by stocks in the same stock-level SRVJ, SRVLJ, or SRVSJ quintiles,
while columns report results for portfolios formed by stocks in the same industry-level SRVJ, SRVLJ,
or SRVSJ quintiles.

Turning to Table 12, notice, for example, that a strategy of buying stocks in the highest industry
SRVJ quintile and selling stocks in the lowest industry SRVJ quintile generates an equal-weighted
average return of 29.63 bps with a t-statistic of 5.66, and the corresponding value-weighted average
return is 11.48 bps with a t-statistics of 2.23 (see Table 12). This finding is interesting, as it suggests
that the negative association between SRVJ and future returns is reversed at the industry level.
The equal-weighted average of the high–low row (i.e., the average stock-level effect) is −45.28 bps
with a t-statistic of −11.39 and the alpha is −44.70 bps with a t-statistic of −11.50, indicating that
the stock-level effect is economically significant. At the stock-level, investors prefer stocks with high
SRVJ, requiring lower returns under higher SRVJ, given that there is a large probability of extremely
large positive jumps. By contrast, when sorting at the industry-level, investors are more interested in
industry exposure with lower SRVJ, or in return distributions concentrated to the right. Lottery-like
payoff exposure comes from individual stocks, not from industry bets. These results are mirrored in
Table 13, where SRVLJ and SRVSJ are the sorting measures. However, average stock- and industry-level
returns and alphas are much higher under SRVSJ sorting than under SRVLJ sorting. For example,
buying stocks in the highest industry SRVLJ quintile and selling stocks in the lowest industry SRVLJ
quintile generates an equal-weighted average return of 14.83 bps with a t-statistic of 3.77 under SRVLJ
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sorting (see Panel A of Table 13), versus an equal-weighted average return of 26.69 bps with a t-statistic
of 5.02 under SRVSJ sorting (see Panel B of Table 13).

4.5. Firm-Level Fama–MacBeth Regressions

Table 14 gathers results based on firm-level Fama–MacBeth regressions, which we run in order to
investigate the return predictability associated with variation measures, when controlling for multiple
firm specific characteristics. Regressions are carried out as follows. At the end of each Tuesday, we run
the cross-sectional regression,

ri,t+1 = γ0,t +
K1

∑
j=1

γj,tXi,j,t +
K2

∑
s=1

φs,tZi,s,t + εi,t+1, t = 1, . . . , T, (15)

where ri,t+1 denotes the stock return for firm i in week t + 1, K1 is the number of potential variation
measures, and Xi,j,t denotes a relevant realized measure at the end of week t. In addition, there are
K2 variables measuring firm characteristics, which are denoted by Zi,j,t (see Section 3 for details).
After estimating the cross-sectional regression coefficients on a weekly basis, we form the time series
average of the resulting T weekly γ̂j,t and φ̂s,t values, in order to estimate the average risk premium
associated with each risk measure. Specifically, we construct

γ̂j =
1
T

T

∑
t=1

γ̂j,t, and φ̂s =
1
T

T

∑
t=1

φ̂s,t, for j = 1, . . . , K1, s = 1, . . . , K2.

Panel A of Table 14 reports results for regressions on various realized variation measures,
without controlling for firm specific characteristics. Consistent with our results based on univariate
sorting, signed jump variation (SRVJ) significantly negatively predicts cross-sectional variation,
in these weekly returns regressions. Additionally, both signed small and large jump variation
measures negatively predict future weekly returns. Finally, both small and large upside (downside)
jump variation measures negatively (positively) predict subsequent weekly returns. However, when
including measures that contain information from both small and large jump variation measures,
as well as realized skewness, the negative association between skewness and future returns is reversed
(see the results for the regressions labeled IX, XII, XV, XVI). In particular, skewness drives out signed
large jump variation in regression XIII by reverting the negative association between the latter and
future returns. If only small jumps are considered to be control variables, skewness still negatively
predicts future returns. This again indicates that signed small jump variation has unique and significant
information about future returns.

Panel B of Table 14 reports regression results for the same set of regressions in
Panel A, but controlling for various firm specific characteristics, ranging from BETA to
ILLIQ (see Table 1 for details). In these regressions, signed (small) jump variation is always
significant. Additionally, skewness significantly negatively predicts future returns in regressions that
only include small jump variation. This provides yet further evidence that signed small jump variation
has unique and significant information about future returns, while large jumps have information in
common with realized skewness.

4.6. Pricing Distinctions between Small and Large Jumps

The results in previous sections show that small and large jump variation measures contain
different information, and thus have different predictive content. To further investigate whether
the differences are driven by distinct economic factors, we provide empirical evidence on the
inter-relationship between jumps and news.
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4.6.1. Jumps and News Announcement

We begin by examining the relationship between jumps and firm-level news announcements.
In order to do this, we construct event windows using the approach of Bernard and Thomas (1989).
We then plot the dynamics of SRVJ, SRVLJ, and SRVSJ around earnings announcements. In particular,
following Livnat and Mendenhall (2006), the earning surprise (SUE) for each stock is defined as

SUEj,t =
(Xj,t − Ej,t)

Pj,t
, (16)

where Ej,t and Xj,t denote the analysts’ expectations and reported actual earnings per share, respectively.
Here, Pj,t is the price per share for stock j at the end of quarter t. In a [−12, 12] week event window,
where week zero denotes the earning announcement week, stocks are sorted into tertile portfolios by
the value of SUE at the end of week zero. We then calculate the equal-weighted and value-weighted
average of jump measures for each tertile portfolio at each week. Figure 5 displays various jump
variation measures of portfolios with the most negative, median, and positive earning surprises. It turns
out that large (both positive and negative) jump variation measures are higher during announcement
weeks, regardless of news sentiment (i.e., regardless of whether SUE is positive or negative). However,
positive large jump variation (RVLJP) is higher on days with the most positive earning surprises,
and negative large jump variation (RVLJN) reaches its peak on days with the most negative earning
surprises. In contrast, both small positive and negative jump variation measures (RVSJP and RVSJN)
have lower magnitudes during announcement weeks. The size of the reduction associated with small
positive jump variation (RVSJP) is larger on days with the most negative earning surprises, while
small negative jump variation (RVSJN) decreases the most on days with the most positive surprises.
For signed jump variation, jump magnitudes increase (relative to non-earnings-surprise weeks) on
positive surprise days and decrease on negative surprising days. These results indicate that big news,
regardless of sentiment, simultaneously leads to increases in the magnitude of large jump variation,
and reductions in the level of small jump variation.

The other direction in which we investigate the linkage between news announcements and jump
variation is based on an exploration of whether news announcements affect the frequency of occurrence
of either small or large jumps. Table 16 reports the average percentage of firms exhibiting particular
types of jumps on days with and without earning surprises. Specifically, on each announcement date,
all stocks exhibiting earnings are sorted into tertile portfolios based on the absolute value of the earning
surprise (SUE). The categories sorted on are denoted as “small”, “medium”, and “large”, with tertiles
calculated by appropriate sorting of the firms based on the absolute values of the firms’ earnings
surprise magnitudes. Then, within each tertile, the percentage of firms exhibiting a particular type of
jump (averaged across all earnings surprise days) is calculated and reported. For these calculations,
only days in which at least 3 firms report earning surprises and included in our sample.19 Turning to
the results in the table, note, for example, that the entry 0.3042 in the sixth column of Panel A indicates
that 30.42% of firms in the “small surprise” tertile portfolio recorded a large jump (measured by SRVLJ)
on small surprise days, on average, across the entire daily sample. By contrast, 89.83% of firms exhibit
small jumps (measured by SRVSJ) on days with small surprises.

Two clear conclusions emerge upon examination of the results in this table. First, when the
magnitude of earning surprises increases, the average percentage of firms with large jumps (SRVLJ)
increases from 30.42% to 37.37%. In particular, in Panel A, note that for the small tertile, the percentage
of firms exhibiting large jumps (SRVLJ) is 30.42%, while for the large tertile, the percentage is 37.37%.
By contrast, the percentage of firms with small jumps decreases as the relative magnitude of earnings
surprises increases (i.e., the percentage of firms associated with SRVSJ decreases from 89.83% to

19 Results are virtually identical if we only include days in which at least 12 or 24 firms report earnings surprises.
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88.29%). This result indicates that “big news” is associated with an increase in the prevalence of large
jumps. Second, the prevalence of jumps differs depending upon whether one tabulates results on
earnings surprise days (Panel A) or on non-earnings surprise days (Panel B). For example, large news
surprises are associated with large jumps for 31.07% of firms on non-announcement days (see Panel B)
and 37.37% of firms on announcement days (Panel A). This result is consistent with event study finding
that jump magnitudes are larger on announcement days than non-announcement days.

Panel A: Value-Weighted
RVJP

Panel B: Value-Weighted
RVJN

Panel C: Value-Weighted
SRVJ

Panel D: Value-Weighted
RVLJP

Panel E: Value-Weighted
RVLJN

Panel F: Value-Weighted
SRVLJ

Panel G: Value-Weighted
RVSJP

Panel H: Value-Weighted
RVSJN

Panel I: Value-Weighted
SRVSJ

Figure 5. Jump Variation Measures Around Earnings Announcement. Panels A–I display
value-weighted averages of various weekly jump variation measures in a [−12, 12] week window
around earnings announcement.
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It is also worth noting that Panel C of Table 16 reports t-statistics that test whether the differences
in percentages of jumps in different portfolios are significant. In this table, “None” refers to the
case where percentages are calculated on non-earnings-announcement days. Thus, the fact that the
“Large-None” t-statistic associated with SRVLJ is 16.85, indicates that the percentage of large jumps
on “large-surprise” earnings announcement days is significantly greater than the percentage of large
jumps on non-earnings-announcement days. This in turn implies that large jumps tend to occur on
large-surprise earnings announcement days. On the other hand, the reverse is true in the case of small
jumps. In particular, the “Large-None” t-statistic associated with SRVSJ is −10.85, indicating that small
jumps tend to occur on non-earnings-announcement days.

As discussed above, it is worth closing this section by stressing that the magnitudes of price
movements depend on the magnitude of news (if they are related to news), and on the underlying
process describing price evolution, and thus movements may manifest in the form of large/small jumps
and/or price drifts. Clearly, the process associated with how firms and markets digest information is
critical to understanding and quantifying what sorts of price movements ensue. For any given news,
responses may differ in terms of upside or downside price drifts, or large/small jumps). In this sense,
both small and large jumps may matter, as shown in our empirical results, in the cross-section.

4.6.2. Systematic versus Idiosyncratic Risks

To further explore the unique information embedded in either large or small jump variation
measures, and examine their association with systematic and idiosyncratic risks, we identify the effect
of diversification on both small and large jumps. In order to do this, we construct two alternative
measures of SRVLJ and SRVSL. The ratio of these is plotted in Figure 6.

Method 1: For jump measures using this method, we simply construct SRVLJ and SRVSJ as
done earlier in the paper. Specifically, we sort stocks into quintiles based on either weekly SRVLJ or
SRVSJ. Then, we construct daily ratios of SRVLJ to SRVSJ for each individual stock in a given quintile.
Finally, these ratios are aggregated, forming weekly measures of SRVLJ/SRVSJ. These measures are
then used to form equal- or value-weighted ratios of SRVLJ to SRVSJ. These values are depicted in red
(solid line) in Figure 6.

Method 2: For jump measures using this method, we start by constructing the same quintiles
(based on weekly SRVLJ and SRVSJ) as done above. Then, we use the 5-min returns for each stock in a
given quintile to construct 5-min aggregate portfolio returns for that quintile. We then construct daily
jump measures using these portfolio returns (called SRVLJ and SRVSJ, and SRVLJ/SRVSJ), which are
portfolio versions of the similar measures constructed using Method 1. Finally, daily measures are
aggregated into weekly measures. These values are depicted in blue (dotted line) in Figure 6.

Comparing jump variation ratios constructed in these two different ways allows us to explore the
importance of diversification when measuring jump variation. Turning to our findings, Figure 6 shows
the time series of aggregated (Method 2) and weighted average (Method 1) jump variation measures
for the first quintile portfolios. The fact that Method 1 (red line) is much smoother than Method 2
(blue line) means that the small jump component in the ratio of SRVLJ/SRVSJ remains much larger
than in the other case. Thus, the obvious difference between aggregated and weighted averages of
SRVLJ/SRVSJ indicates that small jump variation is more likely to be diversified away than large jump
variation. This can be immediately seen upon examination of the plots in any of the four panels in the
figure. Small jump variation is therefore more closely related to firm specific or idiosyncratic risks,
while large jump variation is more likely to be systematic risks. 20

20 See the Supplementary Appendix for plots of jump variation measures for the other quintile portfolios.
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Panel A: Equal-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVLJ)y

Panel B: Value-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVLJ)y

Panel C: Equal-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVSJ)y

Panel D: Value-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVSJ)y

Figure 6. Aggregated and Weighted Average of Jump Variation Measures. Panels A-D display weekly
aggregated and weighted averages of the ratio of SRVLJ to SRVSJ for 1st quintile stocks, sorted on
SRVLJ and SRVSJ. Aggregated jump measures are depicted in blue (dotted line), and are constructed
using 5-min portfolio returns. Weighted average jump measures are depicted in red (solid line) and are
constructed using individual daily jump measures, and then aggregating to weekly. All calculation use

jump truncation level γ1 = 4
√

1
t ÎV

(i)
t Δ0.49

n . For complete details, refer to Section 4.6.2.

Another way to explore the relationship between systematic and idiosyncratic risks is to carry
out Fama–MacBeth type regressions where the dependent variable is one of our jump variation
measures and the independent variables are firm characteristics.21 The results from several these sorts
of regressions are reported in Table 17. Evidently, the firm characteristics always explain more of the
dynamics associated with small jumps than with large jumps. This finding is supported by the fact that
the adjusted R2 is higher when the dependent variable is a small jump variation measure (compare the
results of regressions I and II with III and IV). This again suggests that small jump variation is more
likely to be associated with idiosyncratic risks. 22

21 Specifically, our objective in this section is to discuss regressions of the form given in Equation (15), with the dependent
variable replaced by various realized variables.

22 See the Supplementary Appendix for results from double-sorted portfolios that condition on various control variables.
In these tables, it is noteworthy that when stocks are first sorted by a control variable (e.g., illiquidity, volatility, firm size and
reversal), the SRVJ (SRVLJ and SRVSJ) effect is much higher within quintile portfolios with high illiquidity, high volatility,
small firm size, and low reversal. This result suggests that all these control variables significantly contribute to the
predictability of jump variation measures. This result provides additional confirmation to earlier findings reported
in Bollerslev et al. (2020).
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Table 17. Fama–MacBeth Type Regressions Using Various Jump Variation Measures as
Dependent Variable.

SRVLJ SRVLJ SRVSJ SRVSJ SRVJ SRVJ

I II III IV V VI

Intercept 0.0080 0.0176 0.0034 0.0159 0.0115 0.0335
(5.81) (10.78) (2.59) (11.64) (4.63) (12.31)

RVOL −0.0050 0.0025 −0.0065 0.0006 −0.0115 0.0032
(−11.02) (5.36) (−15.37) (1.88) (−14.81) (4.71)

Beta 0.0014 −0.0011 0.0003
(4.40) (−3.76) (0.79)

log(Size) 0.0013 0.0003 0.0030 0.0017 0.0043 0.0020
(5.79) (1.62) (15.19) (9.21) (12.71) (6.67)

BE/ME 0.0007 0.0003 0.0010
(4.11) (2.72) (4.58)

MOM 0.0007 0.0011 0.0018
(3.54) (5.94) (6.13)

REV 0.25166 0.1176 0.3172 0.1882 0.5688 0.3058
(61.05) (31.43) (65.55) (41.52) (69.66) (39.62)

IVOL −0.1424 −0.1880 −0.3303
(−17.05) (−23.23) (−24.43)

CSK 0.0142 0.0206 0.0349
(19.14) (28.33) (26.38)

CKT −0.0008 −0.0008 −0.0015
(−2.28) (−1.96) (−2.31)

MAX 0.2456 0.2248 0.4704
(43.77) (25.28) (35.84)

MIN 0.5115 0.4365 0.9480
(54.63) (48.47) (58.64)

ILLIQ 0.0020 0.0016 0.0032 0.0023 0.0052 0.0039
(6.33) (5.32) (18.60) (16.36) (12.20) (10.28)

Adjusted R2 0.0322 0.0492 0.1070 0.1473 0.1049 0.1517

Notes: See notes to Tables 1, 5 and 14. This table reports results for cross-sectional Fama–MacBeth type
regressions using various jump variation measures (listed across the first row of entries in the table) as
dependent variables, and for various control variables (listed in the first column of the table). Thus,
the regressions in this table mirror those reported in Table 14, with one difference. Specifically, the dependent
variable in the regressions is either SRVLJ, SRVSJ, or SRVJ. Here, SRVLJ and SRVSJ are contructed using jump

truncation level γ2 = 5
√

1
t ÎV

(i)
t Δ0.49

n .

5. Concluding Remarks

In this paper, we add to the literature that explores the relationship between equity returns and
volatility. In particular, we focus on the strand of this literature that explores the data for evidence
of asymmetry (non-linearity) in the return volatility trade-off. Following Bollerslev et al. (2020),
we decompose realized variation into upside and downside semi-variances (good and bad volatilities).
We then take the additional step of partitioning the semi-variances into small and large components.
Within this context, we examine the marginal predictive content of small and large jump variation
measures. We also examine the importance of earnings announcements for examining the linkages
between small and large jumps and news.

We find that sorting on signed small jump variation leads to value-weighted high–low portfolios
with greater average returns and alphas than when either signed total jump or signed large jump
variation is sorted on. We also find that there is a threshold, beyond which large jump variation
contains no marginal predictive ability, relative to that contained in small jump variation. Indeed,
including large jump variation can actually be detrimental to predictive accuracy, as average returns
and alphas for high–low portfolios actually decline when total variation is instead used in some of our
prediction experiments. Analysis of returns and alphas based on industry double-sorts indicates that
the benefit of small signed jump variation investing is driven by stock selection within an industry,
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rather than industry bets. Investors prefer stocks with a high probability of having positive jumps,
but they also tend to overweight safer industries. Additionally, we find that the content of signed
large jump variation is negligible when controlling for either signed total jump variation or realized
skewness. By contrast, signed small jump variation has unique information for predicting future
returns, even when controlling for total jump variation or realized skewness. Finally, we find that
large jumps are closely associated with “big” news, or large earnings surprises, as might be expected.
We also find that small jumps are more likely to be diversified away than large jumps, thus tend to be
more closely associated with idiosyncratic risks, and are therefore more likely to be driven by liquidity
conditions and trading activity. One reason for this is that while news-related information is embedded
in large jump variation, the information is generally short-lived, and dissipates too quickly to provide
marginal predictive content for subsequent weekly returns, in the particular cross-sectional setup that
we use in our analysis.

Supplementary Materials: The Supplementary Materials available at http://www.mdpi.com/2225-1146/8/2/19/s1.
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Abstract: For typical sample sizes occurring in economic and financial applications, the squared bias
of estimators for the memory parameter is small relative to the variance. Smoothing is therefore a
suitable way to improve the performance in terms of the mean squared error. However, in an analysis
of financial high-frequency data, where the estimates are obtained separately for each day and then
combined by averaging, the variance decreases with the sample size but the bias remains fixed.
This paper proposes a method of smoothing that does not entail an increase in the bias. This method
is based on the simultaneous examination of different partitions of the data. An extensive simulation
study is carried out to compare it with conventional estimation methods. In this study, the new method
outperforms its unsmoothed competitors with respect to the variance and its smoothed competitors
with respect to the bias. Using the results of the simulation study for the proper interpretation of
the empirical results obtained from a financial high-frequency dataset, we conclude that significant
long-range dependencies are present only in the intraday volatility but not in the intraday returns.
Finally, the robustness of these findings against daily and weekly periodic patterns is established.

Keywords: long-range dependence; log periodogram regression; smoothed periodogram;
subsampling; intraday returns

JEL Classification: C13; C14; C22; C58

1. Introduction

After Mandelbrot (1971) had discussed the possibility that the strength of the statistical dependence
of stock prices decreases very slowly, several researchers investigated this issue empirically. For example,
Greene and Fielitz (1977) found indications of long-range dependence when they applied a technique
called range over standard deviation (R/S) analysis (Hurst 1951; Mandelbrot and Wallis 1969;
Mandelbrot 1972, 1975) to daily stock return series. This technique is based on the R/S statistic
Qn, which is defined as the range of all partial sums of a time series of length n from its mean
divided by its standard deviation. For a large class of short-range dependent processes, Qn/nH

converges to a non-degenerate random variable if H = 0.5. An analogous result with H � 0.5
holds for long-range dependent processes. The parameter H is called the Hurst coefficient and
is used as a measure of long-range dependence. However, Lo (1991) pointed out that the results
obtained with this technique may be misleading because of the sensitivity of Qn to short-range
dependence (see also Davis and Harte 1987; Hauser and Reschenhofer 1995) and proposed, therefore, a
Newey and West (1987) type modification for the denominator of the R/S statistic, which is appropriate
for general forms of short-range dependence. Contrary to the findings of Greene and Fielitz (1977)
and others, he found no evidence of long-range dependence in daily and monthly index returns
once the possible short-range dependence was properly taken care of. A disadvantage of Lo’s (1991)
modified R/S analysis is its dependence on an important tuning parameter, namely the truncation lag q,
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which determines the number of included autocovariances. The general conditions that ensure the
consistency of the Newey and West estimator provide little guidance in selecting q in finite samples.
Additionally, Andrews’s (1991) data-dependent rule for choosing q is based on asymptotic arguments.

Long-range dependence can not only be characterized by a Hurst coefficient H � 0.5 but also by a
slowly decaying autocorrelation function ρ or a spectral density f that is steep in a small neighborhood
of frequency zero, i.e.,

ρ(k)k1−2d → c as k→∞, c > 0, d � 0, (1)

and:
f (ω) ∼ cω−2d, ω ∈ (0, ε), c > 0, d � 0, (2)

respectively. The parameter d is called a memory parameter (or fractional differencing parameter)
and is related to H by d = H − 0.5. It can be estimated by replacing the unknown spectral density
f in (2) by the periodogram (Geweke and Porter-Hudak 1983) or a more sophisticated estimate of f
(Hassler 1993; Peiris and Court 1993; Reisen 1994), taking the log of both sides, and regressing the log
estimate on a deterministic regressor. Robustness against short-range dependence can be achieved by
using only the K = nα lowest Fourier frequencies in the regression. A popular choice for the tuning
parameter α is 0.5. For the purpose of testing, the asymptotic error variance is used. Applying the
log periodogram regression method of Geweke and Porter-Hudak (1983) to the daily returns of the
30 components of the Dow Jones Industrials index and several indices, Barkoulas and Baum (1996)
found no convincing evidence in favor of long-range dependence, which is not surprising in light of
the finding of Mangat and Reschenhofer (2019) that the test based on the asymptotic error variance has
very low power. Unfortunately, using the standard variance formula of the least squares estimator
of the slope in a simple linear regression instead of the asymptotic error variance is also problematic
because it leads to overrejecting the true null hypothesis (see Mangat and Reschenhofer 2019).

The negative results of Lo (1991) and Barkoulas and Baum (1996) are in line with the results
obtained by Cheung and Lai (1995) with both modified R/S analysis and log periodogram regression
for stock return data from eighteen countries and by Crato (1994) with fractionally integrated
ARMA (ARFIMA) models (Granger and Joyeux 1980; Hosking 1981) for stock indices of the G-7
countries. Using not only the log periodogram regression with the asymptotic error variance but
additionally also nonparametric techniques such as R/S analysis and modified R/S analysis as well
as parametric techniques, Grau-Carles (2000) also found little evidence of long-range dependence
in index returns but strong evidence of persistence in volatility measured as squared returns and
absolute returns, respectively, which corroborates earlier findings of Crato and de Lima (1994) and
Lobato and Savin (1998). In general, results obtained with ARFIMA models must be treated with
caution. Firstly, the true model dimension is unknown in practice and reliable inference after automatic
model selection is illusory. Secondly, Pötscher (2002) has shown that the problem of estimating
the memory parameter d falls into the category of ill-posed estimation problems when the class of
data generating processes is too rich. For example, Grau-Carles (2000) considered all ARFIMA(p,q)
processes with p ≤ 3 and q ≤ 3, which is possibly an unnecessarily large class for return series.

While the bulk of empirical research focused on major capital markets, Barkoulas et al. (2000)
examined an emerging capital market, namely the Greek stock market, with the log periodogram
regression and obtained significant estimates of d in the range between 0.20 and 0.30 for values of the
tuning parameter α between 0.5 and 0.6. However, their sample period is relatively short and the
sampling frequency is weekly rather than daily. Even less confidence-inspiring are the positive results
obtained by Henry (2002) with monthly data from several international stock markets. Clearly, methods
that have been designed for large samples should not be applied to small and medium samples.
Recently, small-sample tests for testing hypotheses about the memory parameter d have been proposed
(Mangat and Reschenhofer 2019; Reschenhofer and Mangat 2020). When applied to asset returns,
these tests produced negative results throughout. Cajueiro and Tabak (2004), Carbone et al. (2004),
Batten and Szilagyi (2007), Batten et al. (2008), Souza et al. (2008), Batten et al. (2013), and
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Auer (2016a, 2016b) observed time-variability of the Hurst exponent in stock returns, currency prices,
and the prices of precious metals, respectively. These apparent changes were occasionally interpreted
as indications of changing market efficiency or even used for the construction of trading strategies.
Although it cannot be ruled out that some erratic estimator for the memory parameter d catches signals
that are useful for trading purposes even when in fact there is no long-range dependence, there still
seems to be a need for a more efficient estimator that actually allows to get some information about the
true nature of the data generating process.

In general, there is always a trade-off between bias and variance. Estimators for the memory
parameter d that are based on a smooth estimate of the spectral density have typically a smaller variance
and a larger bias than those based on the periodogram (Chen et al. 1994; Reschenhofer et al. 2020),
which is advantageous in situations where the squared bias is small relative to the variance. However,
in the case of high-frequency financial data, there are usually gaps between the individual trading
sessions, which make it necessary to estimate d separately for each trading session and compute the
final estimate by averaging the individual estimates. Here, the variance decreases with the number of
trading sessions but the bias remains fixed; hence, conventional smoothing methods, which achieve a
reduction in the variance at the expense of an increase in the bias, are of no use. The goal of this paper
is therefore to introduce a new method of smoothing that does not systematically have a negative
impact on the bias. This method will be described in detail in the next section. Section 3 presents the
results of an extensive simulation study, which compares the performance of various estimators for the
memory parameter in terms of bias, variance, and root-mean-square error (RMSE). Using limit order
book data obtained from Lobster, Section 4 searches for indications of long-range dependence both in
the intraday volatility and in the intraday returns. Section 5 provides a conclusion.

2. Methods

2.1. Log Periodogram Regression

Fractionally integrated white noise satisfies the difference equation:

yt = (1− L)−dut, (3)

where L is the lag operator and ut is white noise with mean zero and variance σ2 (Adenstedt 1974).
Its spectral density is given by:

f (ω) =
σ2

2π

∣∣∣1− e−iω
∣∣∣−2d

=
σ2

21+2d π

(
sin2

(
ω
2

))−d
. (4)

The memory parameter d, which represents the degree of long memory if d � 0, can be estimated
by regressing the log periodogram of the time series y1, . . . , yn on a deterministic regressor
(Geweke and Porter-Hudak 1983). Indeed, we have:

Lj = log I
(
ω j

)
= c + dxj + vj, (5)

where:

I(ω) =
1

2πn

∣∣∣∣∣∣∣
n∑

t=1

yte−iωt

∣∣∣∣∣∣∣
2

. (6)

is the periodogram,
ω j = 2π j/n, j = 1, . . . , K ≤ m = [(n− 1)/2], (7)

are the first K Fourier frequencies between 0 and π,

xj = −2 log
(
sin

( ω j

2

))
(8)
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is a deterministic regressor,
c = log

(
σ2/(21+2d π)

)
(9)

is a constant, and
vj = log

(
I
(
ω j

)
/ f

(
ω j

))
. (10)

are random perturbations. Choosing K � m rather than K = m is advisable when it is suspected that
not only long-term dependencies are present but also short-term dependencies, e.g., when the data
come from an ARFIMA process:

yt =
(
1−φ1L− . . .−φpLp

)−1
(1− L)−d

(
1 + θ1L + . . .+ θqLq

)
ut (11)

(Granger and Joyeux 1980; Hosking 1981), where the parameter d takes care of the former dependencies
and the parameters φ1, . . . , φp,θ1, . . . ,θq take care of the latter. It is assumed that d < 0.5 (stationarity
condition), d > −0.5 (invertibility condition), and all roots of the lag operator polynomials Φ(L) =
1−φ1L− . . .−φpLp and Θ(L) = 1 + θ1L + . . .+ θqLq lie outside the unit circle (causality condition and
invertibility condition, respectively).

In the special case of d = p = q = 0 and Gaussianity, the ratios I
(
ω j

)
/ f

(
ω j

)
are independent and

identically distributed (i.i.d.) standard exponential and v1, . . . , vm are, therefore, i.i.d. Gumbel with
mean −γ and variance π2/6, where γ = 0.57721 . . . is Euler’s constant. The variance of the Geweke
Porter-Hudak (GPH) estimator d̂GPH is then identical to the variance of the ordinary least squares
(OLS) estimator for the slope in a simple regression model, i.e.,

var
(
d̂GPH

)
=
σ2

v
Sxx

=
π2

6Sxx
, (12)

where:
Sxx =

∑K

t=1
(xt − x)2. (13)

In a neighborhood of frequency zero:
sin(ω) ≈ ω, (14)

Hence:
Sxx ≈ 4

∑K

t=1

(
log(t) − log(t)

)2
. (15)

Furthermore: ∫ K
1 log2(t) − 1

K

(∫ K
1 log(t)

)2
= K log2(K) − 2K log(K) + 2(K − 1)

− 1
K (K log(K) − (K − 1))2 = K + o(K).

(16)

Indeed, we have:
sxx = 4(K + o(K)) (17)

If:
K log(K)/n→ 0 (18)

(see Hurvich and Beltrao 1993), hence, the variance formula (10) becomes:

var
(
d̂GPH

)
≈ π

2

24K
(19)

in line with the asymptotic result:

√
K
(
d̂GPH − d

) d→ N
(
0,
π2

24

)
(20)
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derived by Hurvich et al. (1998) under the assumption that K = o
(
n4/5

)
and log2(n) = o(K) for a class

of stationary Gaussian long-memory processes with spectral densities of the form:

f (ω) =
∣∣∣1− e−iω

∣∣∣−2d
f ∗(ω), (21)

which includes all stationary ARFIMA processes.
If d � 0, the ratios I

(
ω j

)
/ f

(
ω j

)
are neither independent nor identically distributed, not even

asymptotically (Robinson 1995). The problem is the irregular behavior of the spectral density in the
neighborhood of frequency zero, i.e., f (ω)→∞ as ω→ 0 if d > 0 and f (ω)→ 0 as ω→ 0 if d < 0.
Robinson (1995), therefore, proposed to remove the lowest Fourier frequencies from the log periodogram
regression. Künsch (1986) showed that in the case of ARFIMA processes, the ratios I

(
ω j

)
/ f

(
ω j

)
, j =

H+ 1, . . . , H+K are indeed asymptotically i.i.d. standard exponential provided that (H + 1)/
√

n→∞
and (H + K)/n→ 0 . However, Reisen et al. (2001) and Mangat and Reschenhofer (2019) found that
even the removal of only the first Fourier frequency already has a negative effect on the performance
of the estimator d̂GPH.

2.2. Smoothing the Periodogram

An obvious possibility to further develop the estimator d̂GPH is to smooth the periodogram before
it is used in the regression (5) (Hassler 1993; Peiris and Court 1993; Reisen 1994). In order to illustrate
the effect of smoothing, we consider the simple case of K/3 non-overlapping averages:(

I
(
ω j−1

)
+ I

(
ω j

)
+ I

(
ω j+1

))
/3, j = 2, 5, 8, . . . , K − 1. (22)

In this case, the sample size is divided by three but at the same time the variance of the error term
decreases approximately from:

var

⎛⎜⎜⎜⎜⎜⎜⎝log

⎛⎜⎜⎜⎜⎜⎜⎝ I
(
ω j

)
f
(
ω j

)
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ ≈ π2

6
(23)

to the variance of the log chi-square distribution with 6 degrees of freedom because:

var

⎛⎜⎜⎜⎜⎜⎜⎝log

⎛⎜⎜⎜⎜⎜⎜⎝ I
(
ω j−1

)
+ I

(
ω j

)
+ I

(
ω j+1

)
3 f

(
ω j

)
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ ≈ var

⎛⎜⎜⎜⎜⎜⎜⎝log

⎛⎜⎜⎜⎜⎜⎜⎝2I
(
ω j−1

)
f
(
ω j−1

) +
2I

(
ω j

)
f
(
ω j

) +
2I

(
ω j+1

)
f
(
ω j+1

)
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠. (24)

Noting that the mean (first cumulant) and the variance (second cumulant) of the log chi-square
distribution with k degrees of freedom are given by:

κ1 = log(2) +ψ(k/2) (25)

and:
κ2 = ψ′(k/2), (26)

respectively. we obtain for k = 6, κ1 = 1.615932 and κ2 = 0.3949341. Here, ψ is the digamma function
and ψ′ is its first derivative. Overall, the (approximate) variance of the least squares estimator of the
memory parameter d decreases from

π2

6
1

4K
= 1.644934

1
4K

(27)

to
ψ′(3) 1

4K/3
= 1.184802

1
4K

, (28)

149



Econometrics 2020, 8, 40

where we have assumed that

1
K/3

∑
t=2,5,...

(xt − x)2 ≈ 1
K

∑K

t=1
(xt − x)2 ≈ 4. (29)

The little practical relevance of asymptotic results such as (20) can be seen when the asymptotic
values are confronted with the actual values obtained by simulations. In the simplest case of Gaussian
white noise, we do not have to safeguard against short-range dependence and can therefore choose a
value of α slightly below 4/5. Choosing α = 0.7 and K ≈ nα, we obtain 0.00857 (27) and 0.00617 (28) vs.
0.01148 and 0.00885 (simulated) for n = 250 and K = 48, 0.00326 and 0.00235 vs. 0.00381 and 0.00282
for n = 1000 and K = 126, 0.00065 and 0.00047 vs. 0.00068 and 0.00050 for n = 10, 000 and K = 630,
and 0.00021 and 0.00015 vs. 0.00021 and 0.00015 for n = 50, 000 and K = 1947. Obviously, huge sample
sizes are required for good agreement. In the case of a nontrivial ARFIMA process, this problem will
become even more serious because a smaller value of αmust be chosen.

More sophisticated further developments of the estimator d̂GPH are obtained by using more than
three periodogram ordinates, allowing for overlaps, and introducing weights, or, equivalently, by
using a lag-window estimator of the form:

f̂
(
ω j

)
=

1
2π

∑m

s=−m
w(s/m)γ̂(s)e−iω js, j = 1, . . . , K, (30)

where γ̂(s) denotes the sample autocovariance at lag s and the lag window w satisfies w(0) = 1,∣∣∣w(s)
∣∣∣ ≤ 1, and w(−s) = w(s) (see Hassler 1993; Peiris and Court 1993; Reisen 1994). A disadvantage

of these estimation procedures is that they require the specification of a second tuning parameter,
namely the length of the weighted averages in the former case and m ≤ n − 1 in the latter case,
in addition to K. Of course, suitable weights and a suitable lag window, respectively, must be chosen
too. Carrying out an extensive simulation study to compare various frequency-domain estimators
for d, Reschenhofer et al. (2020) found that too strong smoothing, e.g., caused by choosing a too small
value for m, entails an extremely large bias. Hunt et al. (2003) derived an approximation for the
bias and observed generally a good agreement between their approximation and the corresponding
value obtained by simulations when d > 0. However, the practical relevance of this approximation is
limited because of its dependence on characteristics of the data generating process, which are unknown
in practice.

2.3. Using Subsamples

A simple method of smoothing without introducing a bias is to average estimates obtained from
different subsamples. Assume, for example, that the final estimate d̂ is obtained by averaging over N
preliminary estimates d̂1, . . . , d̂N obtained from independent subsamples y11, . . . , yn1, . . . , y1N, . . . , ynN;
then, the variance of d̂ vanishes as N increases while the bias remains unchanged. Of course, artificially
splitting a long, homogeneous time series into non-overlapping subseries does not necessarily have
a positive effect. For illustration, consider the simplest case where the time series y1, . . . , yn is split
into two disjoint subseries y1, . . . , yn/2 and yn/2+1, . . . , yn of equal length. To allow a fair comparison,
the frequency range (0,ωK], is kept constant, which implies that in the case of the two subseries the
number of used Fourier frequencies is K/2. Under the simplistic and mostly unrealistic assumption
that the two subseries are independent, the (approximate) variance of the mean of the two GPH
estimators based on the two subseries is given by:

1
4

(
π2

6
1

4K/2
+
π2

6
1

4K/2

)
=
π2

6
1

4K
(31)

which is, therefore, of the same size as that of the original estimator, which is based on the whole time
series. However, there is still room for improvement. A reduction in the variance may be achieved by
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allowing for overlaps between the subseries, e.g., with a rolling estimation window or a combination
of different partitions.

At first glance, the idea of improving an OLS estimator by averaging the OLS estimators obtained
from the whole sample and the first and second halves, respectively, seems to be at odds with the
Gauß-Markov theorem because the combined estimator is still linear. However, the crucial point here
is that only the observations are partitioned and not the log periodogram, which is used as dependent
variable in the regression and is obtained from the observations through nonlinear transformations.
For illustration, consider an estimator of the form:

d̃2 = (1− 2λ)d̂1 + λd̂21 + λd̂22, (32)

where d̂1, d̂21, d̂22 are the OLS estimators for d based on the log periodograms L1, L21, L22 of the
whole sample and the first and second halves, respectively. In the special case of Gaussian white
noise with variance 2π, the constant c in the regression (3) vanishes, and we may, therefore, use the
simpler estimators:

d̆1 =

∑K
j=1 xjL

1
j∑K

j=1 x2
j

≈ 1
4K

∑K

j=1
xjL

1
j , (33)

and:

d̆2s =

∑K/2
j=1 x2 jL

2s
j∑K/2

j=1 x2
2 j

≈ 1
2K

∑K/2

j=1
x2 jL

2s
j , s = 1, 2, (34)

where xj = xj − x. For the variances of the simplistic estimators d̆1 and:

d̆2 = (1− 2λ)d̆1 + λd̆21 + λd̆22, (35)

we obtain approximately:

var(d̆1) ≈
( 1

4K

)2 ∑K

j=1
x2

j
π2

6
≈ π

2

24K
(36)

and:
var(d̆2) ≈ π2

24K ((1− 2λ)2 + 4λ2) + 4λ(1− 2λ)cov(d̆1, d̆21)

≈ π2

24K ((1− 2λ)2 + 4λ2 + 4λ(1− 2λ)(ρ0 + ρ1))

≈ 0.69 π2

24K , if λ = 1
4 ,

(37)

respectively, where we have used that cov(d̆1, d̆21) = cov(d̆1, d̆22) and cov(d̆21, d̆22) = 0 as well as the
rough approximations:

∑K
2

j=1
x2

2 j ≈
∑K

2

j=1
x2 jx2 j−1 ≈

∑K
2 −1

j=1
x2 jx2 j+1 ≈ 2K, (38)

cor(L1
j , L2s

k ) ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ0 = 0.35, i f 2k = j,
ρ1 = 0.13, i f

∣∣∣2k− j
∣∣∣ = 1,

0, else
(39)
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(see Table 1), and:

cov(d̆1, d̆21) ≈ 1
8K2 cov(

∑K
2
j=1 x2 jL

1
2 j +

∑K
2
j=1 x2 j−1L1

2 j−1,
∑K

2
k=1 x2kL21

k )

≈ 1
8K2

(∑K
2
j=1

∑ K
2
k=1 x2 jx2k cov(L1

2 j, L21
2k) +

∑K
2
j=1

∑K
2
k=1 x2 j−1x2k cov(L1

2 j−1, L21
2k)

)
≈ 1

8K2

(
ρ0
π2

6
∑K

2
j=1 x2

2 j + ρ1
π2

6
∑K

2
j=1 x2 jx2 j−1

)
≈ π2

24K (ρ0 + ρ1)

(40)

For a further reduction of the variance, we may consider more general estimators of the form:

d̃k =
1
k

(
d̂1 +

∑k

j=2

1
j
(d̂ j1 + . . .+ d̂ j j)

)
, (41)

which are based on k partitions. The next section examines whether this possible reduction actually
materializes and whether it is accompanied by an increase in the bias. All computations are carried out
with the free statistical software R (R Core Team 2018).

Table 1. Sample correlations between Lj, j = 1, . . . , 20, and L1
k , k = 1, . . . , 10, obtained from 10,000,000

realizations of Gaussian white noise (n = 400).

1 2 3 4 5 6 7 8 9 10

1 0.1475 0.0186 0.0072 0.0044 0.0027 0.0014 0.0013 0.001 0.0008 0.0005
2 0.3541 0.0002 −0.0001 −0.0004 0 0.0003 −0.0003 0.0002 0.0002 0.0005
3 0.1364 0.133 0.0154 0.006 0.0032 0.0025 0.0009 0.001 0.0007 0.0003
4 −0.0001 0.3541 −0.0001 −0.0002 0.0002 0.0008 −0.0005 −0.0002 −0.0004 −0.0003
5 0.0164 0.1316 0.1307 0.0144 0.005 0.0027 0.0019 0.0016 0.0008 0.0008
6 −0.0001 −0.0003 0.354 0.0002 0.0002 −0.0004 0.0004 0.0001 −0.0005 0.0005
7 0.007 0.0147 0.1311 0.1308 0.014 0.0043 0.0025 0.0021 0.0013 0.0011
8 0 0.0001 0.0004 0.3541 0.0004 0.0001 −0.0001 −0.0002 −0.0001 −0.0002
9 0.0035 0.0054 0.0143 0.1302 0.1302 0.0139 0.0051 0.003 0.0016 0.0009
10 −0.0003 0 −0.0001 0.0004 0.3539 −0.0003 0.0003 0.0001 −0.0005 0.0003
11 0.0023 0.0033 0.0047 0.0138 0.1301 0.13 0.0133 0.0054 0.0025 0.0014
12 −0.0004 −0.0001 −0.0004 −0.0001 0.0003 0.3542 0.0001 −0.0001 0.0002 0
13 0.0013 0.002 0.0032 0.0053 0.0137 0.1305 0.1309 0.0147 0.004 0.003
14 −0.0004 0.0001 0.0003 0.0004 0.0008 0.0002 0.3544 −0.0002 0.0005 −0.0002
15 0.0011 0.0016 0.002 0.0025 0.0059 0.014 0.1304 0.1297 0.0141 0.0055
16 −0.0006 0.0001 −0.0004 0 0.0002 −0.0001 −0.0001 0.354 0.0002 0.0002
17 0.0011 0.0009 0.0009 0.0021 0.0025 0.0049 0.0138 0.1305 0.1304 0.0137
18 0.0003 −0.0002 0 −0.0001 −0.0006 −0.0004 −0.0002 −0.0004 0.3541 −0.0001
19 0.0008 0.0005 0.0011 0.0015 0.0019 0.0026 0.0046 0.0138 0.1306 0.1302
20 −0.0001 0.0005 0.0001 0.0002 0.0008 0.0001 0.0007 −0.0003 −0.0005 0.3541

3. Simulations

In this section, we compare the new estimator d̃k (41) for k = 2, 3, 5, 10 with Geweke and
Porter-Hudak’s (1983) estimator d̂GPH, which is based on the log periodogram regression (5), and the
estimators d̂sm and d̂βsmP, which are obtained by replacing the periodogram ordinates in (5) by simple
moving averages of neighboring periodogram ordinates and lag-window estimates of the form (30)
with truncation lags m =

[
nβ

]
, β = 0.5, 0.7, 0.9, 1, respectively. In the latter case, the Parzen window is

used, which is given by:

w(z) =
{

1− 6z2 + 6|z|3, |z| < 1
2 ,

2(1− |z|)3, 1
2 ≤ |z| ≤ 1.

(42)

With a view to the later application of the estimators to 1-min intraday returns in Section 4,
the sample size n = 390 is chosen for our simulation study because there are 390 min in a regular

152



Econometrics 2020, 8, 40

trading session for U.S. stocks, which starts at 9:30 a.m. and ends at 4:00 p.m. The number K of Fourier
frequencies included in the log periodogram regression is defined by setting K = 20 ≈ [nα], α = 0.5.
For k = 2, the first K/k = 10 Fourier frequencies of the two disjoint subseries of length n/k = 195 are
given by ω2,ω4, . . . ,ωK, and for k = 10, the first K/k = 2 Fourier frequencies of the 10 disjoint subseries
of length n/k = 39 are given by ω10,ωK. Clearly, we cannot go beyond k = 10 because at least two
frequencies are required to carry out the log periodogram regression. Additionally, using frequencies
outside the interval (0,ωK] is not an option because this would amount to an unfair advantage,
particularly when there are no short-term dependencies which have to be taken into account.

With the help of the R-package ‘fracdiff’, 10,000 realizations of length n = 390 of ARFIMA(1,d,0)
processes with standard normal innovations and parameter values d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25, respectively, are generated using a burn-in period of 10,000. For each
realization, the estimators d̂GPH, d̂sm, d̂βsmP, β = 0.5, 0.7, 0.9, 1, d̃k, k = 2, 3, 5, 10, are employed for the
estimation of the memory parameter d. The competing estimators are compared with respect to bias
(Table 2), variance (Table 3), and RMSE (Table 4). Table 3 shows that d̃2 has indeed a smaller variance
than d̂GPH = d̃1. The variance keeps decreasing as the number of partitions increases from two to 10.
Table 2 shows that this improvement does in general not come at the cost of a greater bias. In contrast,
the reduction in the variance achieved in the case of the estimator d̂βsmP by increasing the degree of
smoothing from β = 0.9 to β = 0.5 is for d � 0 accompanied by a dramatic increase in the bias. Overall,
in terms of the RSME, the best results are obtained with d̂0.5

smP for small values of d and with d̂0.7
smP for

larger value of d. However, this is only relevant in the standard case where only a single time series is
available. When a large number of time series are examined simultaneously (as in the empirical study
of Section 4), the bias is the decisive factor and the new estimators d̃k are therefore more appropriate
than the conventional estimators d̂βsmP.

Since values of β such as 0.5, 0.7, or 0.9 are usually chosen to minimize the MSE for a single
sample, we may suspect that the estimator d̂βsmP becomes more competitive in the case of multiple
samples when the averaging is taken into account. This can be done by further reducing the degree of
smoothing. Unfortunately, there is a limit to what can be achieved by increasing the value of β. Table 2
shows that large biases are still obtained with the maximum possible value of β, i.e., β = 1. This is due
to the fact that global smoothing inevitably causes local distortions and cutting off higher-order sample
autocovariances is not the only source of smoothing. Downweighting the sample autocovariances with
the Parzen window also has a strong smoothing effect, even when all sample autocovariances are used.

Table 2. Bias of the estimators d̂GPH (log periodogram regression), d̂sm (simple smoothing), d̂βsmP,

β = 1, 0.9, 0.7, 0.5 (smoothing with Parzen window and truncation lag m = [nβ]), and d̃k, k =

2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: n = 390, number of used Fourier
frequencies: K = 20) of Gaussian ARFIMA(1,d,0) processes with d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

−0.25 −0.25 0.0074 −0.0001 −0.0073 −0.0099 0.0345 0.1609 0.0087 0.0084 0.0098 0.0107
−0.1 0.0050 0.0002 −0.0083 −0.0107 0.0345 0.1625 0.0080 0.0084 0.0087 0.0092

0 0.0042 −0.0031 −0.0098 −0.0124 0.0337 0.1641 0.0065 0.0065 0.0076 0.0086
0.1 0.0097 0.0036 −0.0049 −0.0073 0.0380 0.1664 0.0126 0.0120 0.0128 0.0140

0.25 0.0151 0.0110 0.0006 −0.002 0.0436 0.1717 0.0165 0.0179 0.0201 0.0216

−0.1 −0.25 0.0002 −0.0029 −0.0211 −0.0280 −0.008 0.0570 0.0008 0.0016 0.0006 0.0002
−0.1 0.0015 −0.0028 −0.0212 −0.0286 −0.0085 0.0578 −0.0001 0.0005 0.0001 −0.0001

0 0.0039 0.0017 −0.0184 −0.0251 −0.0053 0.0601 0.0038 0.0052 0.0060 0.0057
0.1 0.0014 0.0007 −0.0197 −0.0263 −0.0056 0.0612 0.0024 0.0028 0.0039 0.0037

0.25 0.0055 0.0059 −0.0148 −0.0215 −0.0003 0.0666 0.0086 0.0099 0.0093 0.0101
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Table 2. Cont.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

0 −0.25 −0.0043 −0.0035 −0.0282 −0.0376 −0.0321 −0.0107 −0.0038 −0.0039 −0.0048 −0.0049
−0.1 −0.0011 0.0006 −0.0258 −0.0353 −0.0299 −0.0096 −0.0004 −0.0007 −0.0004 −0.0010

0 −0.0011 −0.0001 −0.0265 −0.0361 −0.0305 −0.0087 −0.0016 −0.0004 −0.0006 −0.0006
0.1 −0.0001 0.0009 −0.0235 −0.0333 −0.0278 −0.0063 0.0016 0.0025 0.0019 0.0025

0.25 0.0040 0.0064 −0.0214 −0.0309 −0.0250 −0.0022 0.0033 0.0060 0.0053 0.0073

0.1 −0.25 0.0009 0.0057 −0.0274 −0.039 −0.0475 −0.0762 0.0009 −0.0003 0.0008 −0.0001
−0.1 0.0016 0.0056 −0.0277 −0.0396 −0.0478 −0.0754 −0.0003 0.0002 −0.0007 −0.0006

0 −0.0005 0.0043 −0.0277 −0.0396 −0.0479 −0.0745 −0.0012 −0.0012 −0.0012 −0.0010
0.1 0.0029 0.0059 −0.0250 −0.0374 −0.0458 −0.0727 0.0020 0.0028 0.0038 0.0034

0.25 0.0097 0.0149 −0.0186 −0.0305 −0.0392 −0.0685 0.0088 0.0096 0.0114 0.0115

0.25 −0.25 0.0006 0.0102 −0.0314 −0.0451 −0.0690 −0.1748 0.0021 0.0018 0.0009 0.0006
−0.1 0.0016 0.0112 −0.0314 −0.0453 −0.0689 −0.1744 0.0006 0.0011 0.0014 0.0010

0 0.0044 0.0140 −0.0281 −0.0420 −0.0656 −0.1730 0.0032 0.0037 0.0040 0.0039
0.1 0.0049 0.0162 −0.0269 −0.0408 −0.0649 −0.1718 0.0049 0.0065 0.0061 0.0060
0.25 0.0079 0.0229 −0.0228 −0.0364 −0.0600 −0.1682 0.0105 0.0120 0.0130 0.0137

Table 3. Variance of the estimators d̂GPH (log periodogram regression), d̂sm (simple smoothing),
d̂βsmP, β = 1, 0.9, 0.7, 0.5 (smoothing with Parzen window and truncation lag m = [nβ]), and d̃k,
k = 2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: n = 390, number of used Fourier
frequencies: K = 20) of Gaussian ARFIMA(1,d,0) processes with d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

−0.25 −0.25 0.0330 0.0328 0.0201 0.018 0.0106 0.0011 0.0287 0.0259 0.0254 0.0238
−0.1 0.0334 0.0339 0.0207 0.0185 0.0110 0.0012 0.0297 0.0266 0.0261 0.0245

0 0.0342 0.0337 0.0209 0.0185 0.0108 0.0011 0.0296 0.0267 0.0262 0.0248
0.1 0.0327 0.0330 0.0202 0.0180 0.0107 0.0011 0.0287 0.0262 0.0257 0.0240

0.25 0.0323 0.0325 0.0199 0.0178 0.0106 0.0011 0.0287 0.0260 0.0258 0.0242

−0.1 −0.25 0.0333 0.0327 0.0211 0.0187 0.0114 0.0011 0.0295 0.0268 0.0264 0.0250
−0.1 0.0332 0.0317 0.0209 0.0186 0.0114 0.0011 0.0291 0.0264 0.0260 0.0250

0 0.0334 0.0330 0.0212 0.0189 0.0115 0.0012 0.0298 0.0271 0.0267 0.0251
0.1 0.0330 0.0315 0.0208 0.0185 0.0112 0.0011 0.0289 0.0262 0.0258 0.0246

0.25 0.0328 0.0320 0.0209 0.0185 0.0112 0.0011 0.0291 0.0266 0.0263 0.0248

0 −0.25 0.0333 0.0322 0.0212 0.0191 0.0120 0.0012 0.0296 0.0268 0.0263 0.0250
−0.1 0.0328 0.0320 0.0212 0.0191 0.0120 0.0012 0.0293 0.0268 0.0261 0.0252

0 0.0335 0.0319 0.0214 0.0192 0.0119 0.0012 0.0297 0.0271 0.0266 0.0254
0.1 0.0338 0.0323 0.0217 0.0195 0.0122 0.0012 0.0299 0.0271 0.0270 0.0260

0.25 0.0332 0.0324 0.0213 0.0192 0.0120 0.0012 0.0300 0.0273 0.0269 0.0255

0.1 −0.25 0.0332 0.0327 0.0218 0.0198 0.0130 0.0012 0.0299 0.0274 0.0271 0.0260
−0.1 0.0327 0.0321 0.0218 0.0199 0.0130 0.0012 0.0294 0.0269 0.0262 0.0252

0 0.0328 0.0317 0.0214 0.0194 0.0127 0.0012 0.0293 0.0264 0.0263 0.0250
0.1 0.0331 0.0321 0.0215 0.0195 0.0129 0.0012 0.0295 0.0269 0.0267 0.0256

0.25 0.0326 0.0321 0.0217 0.0197 0.0130 0.0012 0.0293 0.0268 0.0263 0.0254

0.25 −0.25 0.0333 0.0315 0.0220 0.0202 0.0145 0.0013 0.0300 0.0271 0.0271 0.0260
−0.1 0.0327 0.0323 0.0222 0.0205 0.0148 0.0013 0.0302 0.0278 0.0275 0.0265

0 0.0328 0.0312 0.0219 0.0202 0.0146 0.0012 0.0297 0.0268 0.0264 0.0255
0.1 0.0333 0.0325 0.0226 0.0207 0.0147 0.0013 0.0301 0.0274 0.0274 0.0262

0.25 0.0339 0.0319 0.0226 0.0208 0.0150 0.0012 0.0302 0.0275 0.0272 0.0261
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Table 4. RMSE of the estimators d̂GPH (log periodogram regression), d̂sm (simple smoothing), d̂βsmP,

β = 1, 0.9, 0.7, 0.5 (smoothing with Parzen window and truncation lag m = [nβ]), and d̃k, k =

2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: n = 390, number of used Fourier
frequencies: K = 20) of Gaussian ARFIMA(1,d,0) processes with d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

−0.25 −0.25 0.1818 0.1811 0.1421 0.1344 0.1084 0.1643 0.1697 0.1612 0.1595 0.1545
−0.1 0.1827 0.1840 0.1442 0.1365 0.1104 0.1661 0.1724 0.1634 0.1618 0.1567

0 0.1851 0.1837 0.1449 0.1368 0.1092 0.1674 0.1721 0.1635 0.1621 0.1578
0.1 0.1812 0.1816 0.1423 0.1343 0.1103 0.1698 0.1700 0.1623 0.1607 0.1555
0.25 0.1803 0.1807 0.1412 0.1335 0.1119 0.1751 0.1701 0.1621 0.1619 0.1571

−0.1 −0.25 0.1825 0.1808 0.1466 0.1396 0.1070 0.0663 0.1717 0.1636 0.1624 0.1581
−0.1 0.1823 0.1782 0.1460 0.1394 0.1072 0.0669 0.1705 0.1625 0.1611 0.1580

0 0.1829 0.1816 0.1467 0.1398 0.1072 0.0691 0.1727 0.1647 0.1636 0.1585
0.1 0.1817 0.1775 0.1454 0.1386 0.1061 0.0698 0.1699 0.1618 0.1607 0.1569
0.25 0.1811 0.1789 0.1451 0.1378 0.1059 0.0745 0.1707 0.1634 0.1625 0.1578

0 −0.25 0.1826 0.1796 0.1481 0.1431 0.1142 0.0360 0.1721 0.1639 0.1624 0.1583
−0.1 0.1812 0.1790 0.1479 0.1426 0.1137 0.0359 0.1713 0.1638 0.1615 0.1588

0 0.1831 0.1785 0.1486 0.1433 0.1132 0.0351 0.1723 0.1646 0.1630 0.1593
0.1 0.1837 0.1796 0.1491 0.1435 0.1139 0.0351 0.1729 0.1647 0.1645 0.1611
0.25 0.1824 0.1801 0.1475 0.1418 0.1123 0.0345 0.1731 0.1653 0.1640 0.1599

0.1 −0.25 0.1822 0.1810 0.1502 0.146 0.1237 0.0837 0.1728 0.1657 0.1646 0.1612
−0.1 0.181 0.1793 0.1502 0.1464 0.1237 0.0831 0.1715 0.1639 0.1617 0.1588

0 0.181 0.1781 0.1490 0.1448 0.1226 0.0820 0.1711 0.1624 0.1622 0.1582
0.1 0.1819 0.1792 0.1489 0.1446 0.1223 0.0805 0.1717 0.1641 0.1633 0.1599
0.25 0.1808 0.1799 0.1485 0.1437 0.1206 0.0768 0.1713 0.1640 0.1626 0.1596

0.25 −0.25 0.1824 0.1778 0.1517 0.1493 0.1390 0.1784 0.1733 0.1648 0.1647 0.1612
−0.1 0.1809 0.1800 0.1522 0.1502 0.1398 0.1780 0.1738 0.1666 0.1657 0.1629

0 0.1810 0.1772 0.1505 0.1483 0.1375 0.1765 0.1723 0.1636 0.1626 0.1598
0.1 0.1824 0.1809 0.1526 0.1495 0.1377 0.1754 0.1737 0.1657 0.1657 0.1621
0.25 0.1842 0.1799 0.1522 0.1487 0.1363 0.1718 0.1740 0.1663 0.1654 0.1623

4. Empirical Results

In this section, we employ the estimators discussed in the previous sections for the search of
possible long-range dependencies in intraday returns and absolute intraday returns. For this purpose,
the limit order book data from 27 June 2007 to 30 April 2019 (2980 trading days) of the iShares Core S&P
500 ETF (IVV) are downloaded from Lobster (https://lobsterdata.com). In the process of data cleaning,
27 early-closure days (the day before Independence Day, the day after Thanksgiving, and Christmas
Eve) are removed as well as 9 January 2019 because of a large number of missing values. For each of
the remaining days, the first mid-quotes (midpoints of the best bid and ask quotes) in each minute
and the last mid-quote in the last minute are computed and subsequently used to obtain 1-min log
returns. Finally, another three days are omitted because of extreme returns, namely 19 September 2008,
6 May 2010, and 24 August 2015, which leaves 2949 days for our analysis. Estimates are computed for
each day, divided by the number of days, and plotted cumulatively; hence, the last values correspond
to the averages of the estimates. The validity of these values is reinforced by the striking linearity of
the curves. This linearity also implies that the possible long-range dependence is not changing over
time; hence, there appears to be no such thing as fractal dynamics. Figure 1a suggests that d is close to
zero in case of the 1-min log returns. The large negative values obtained with d̂0.9

smP and d̂0.7
smP as well

as the comparatively inconspicuous values obtained with d̂0.5
smP can be explained with the help of the

results of our simulation study. According to Table 2, they are indicative for d = 0. In contrast, there is
strong evidence of long-range dependence in the volatility (see Figure 1b). Most estimators suggest
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that the memory parameter d is approximately in the range between 0.3 and 0.4. Only the estimator
d̂0.5

smP, which is severely downward biased in case of positive d (see Table 2), favors a smaller value.

 

Figure 1. Cumulative plots of the estimates obtained by applying d̂GPH (blue), d̂sm (darkgreen), d̂1
smP

(green), d̂0.9
smP (gold), d̂0.7

smP (red), d̂0.5
smP (orange), d̂2 (pink), d̂3 (magenta), d̂5 (turquoise), d̂10 (yellowgreen)

to the (a) 1-min intraday log returns rt(s), s = 1, . . . , 390, (b) absolute 1-min intraday log returns
∣∣∣rt(s)

∣∣∣,
(c) rt(s) − rt−1(s), (d)

∣∣∣rt(s) − rt−1(s)
∣∣∣, (e) rt(s) − rt−5(s), (f)

∣∣∣rt(s) − rt−5(s)
∣∣∣.

Visual significance of the differences between certain estimates can be ascertained just by observing
the large differences between the slopes of the corresponding lines in Figure 1 and noting the striking
stability of these lines over time. However, we still might want to augment our visual analysis with
a formal statistical test. A simple way to accomplish that is to calculate the difference between two
estimates separately for each trading day and compare the number of positive differences to the
number of negative differences (sign test). Not surprisingly, the resulting p-values are infinitesimal.
For example, even in the case of the two neighboring lines corresponding to d̂GPH and d̃2 in Figure 1b,
the p-value is less than 2.2 × 10−16. It is still less than 9.7 × 10−8 when we omit most of the trading
days and use only Wednesdays in order to ensure approximate independence of the subsamples.
Note that there are 4× 390 = 1560 1-min returns between the last 1-min return of some Wednesday
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and the first 1-min return of the next Wednesday plus five overnight breaks and a whole weekend.
Even for a relatively large value of the memory parameter such as d = 0.3, the autocorrelation of an
ARFIMA(0,d,0) process at lag j = 1561 is quite small, i.e.,

ρ( j) =
Γ( j + d)Γ(1− d)
Γ( j− d + 1)Γ(d)

=
∏ j

h=1

h− 1 + d
h− d

≈ 0.023. (43)

Finally, in order to check the robustness of our findings against daily and weekly periodic
patterns, we repeat the graphical analyses with suitably transformed data. Replacing the 1-min
log returns rt(s), s = 1, . . . , 390, by the daily differences rt(s) − rt−1(s) and the weekly differences
rt(s) − rt−5(s), respectively, ensures that any daily or weekly periodic patterns are erased while
long-range dependencies remain unaffected. Figure 1c,e are very similar to Figure 1a, which shows that
the insights gained from Figure 1a are genuine. Analogously, comparing Figure 1d,f with Figure 1b,
we see that the same is true for the absolute returns

5. Discussion

In this paper, we have introduced a new estimator for the memory parameter d, which is based on
running a log periodogram regression repeatedly for different partitions of the data. In contrast to
conventional smoothing methods, which manage to achieve a reduction in the variance at the expense
of an increase in the bias, our approach does not systematically have a negative impact on the bias,
which makes it particularly useful for applications where the bias is the decisive factor. For example,
intraday returns are usually only available during trading hours and estimation must therefore be
carried out separately for each trading day. When the individual estimates are eventually combined by
averaging, the variance decreases as the sample size increases, but the bias does not change. The results
of an extensive simulation study confirm the good performance of the new estimator. It outperforms
all of its competitors when both bias and variance are taken into account, but the bias is weighted
more heavily.

The importance of results obtained with the help of simulations is due to the fact that reliable
inference on the memory parameter d is not possible under general conditions. Some asymptotic results
can be obtained under very restrictive conditions though. Unfortunately, convergence is typically
very slow (recall the discussion in Section 2.2). Indeed, Pötscher (2002) showed that many common
estimation problems in statistics and econometrics, which include the estimation of d, are ill-posed in
the sense that the minimax risk is bounded from below by a positive constant independent of n and
does, therefore, not converge to zero as n→∞ . In particular, he found that for any estimator d̂n for d
based on a sample of size n from a Gaussian process with spectral density f :

sup
f∈F

E
∣∣∣d̂n − d

∣∣∣r ≥ 1
2r > 0, (44)

where 1 ≤ r < ∞ andF is the set of all ARFIMA spectral densities (p ≥ 0, q ≥ 0), ARFI spectral densities
(p ≥ 0, q = 0), or FIMA spectral densities (p = 0, q ≥ 0). Furthermore, he showed that for every f0 ∈ F ,
(44) holds also “locally,” when the supremum is taken over an arbitrarily small L1-neighborhood of f0.
Finally, he established that confidence intervals for d coincide with the entire parameter space for d
with high probability and are therefore uninformative. Nevertheless, it may be possible to formally
derive the statistical properties of our new estimator for a rather narrow class of processes such as low
order ARFI processes. However, this is left for future research. The current paper provides just a proof
of concept.

In our empirical investigation of high-frequency data of an index ETF, we have applied the
competing estimators to 1-min log returns and absolute 1-min log returns separately for each day.
The results are quite stable over time and across estimation methods. The few deviations are due
to conventional smoothing methods and can easily be explained by the size of their bias as shown
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in Table 2. We may, therefore, safely conclude that significant long-range dependencies are present
only in the intraday volatility but not in the intraday returns. These findings are genuine and not just
due to daily or weekly periodic patterns because similar results are obtained when daily and weekly
differences are investigated instead of the original intraday returns.
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Abstract: The maximum diversification has been shown in the literature to depend on the vector of
asset volatilities and the inverse of the covariance matrix of the asset return covariance matrix. In
practice, these two quantities need to be replaced by their sample statistics. The estimation error
associated with the use of these sample statistics may be amplified due to (near) singularity of the
covariance matrix, in financial markets with many assets. This, in turn, may lead to the selection of
portfolios that are far from the optimal regarding standard portfolio performance measures of the
financial market. To address this problem, we investigate three regularization techniques, including
the ridge, the spectral cut-off, and the Landweber–Fridman approaches in order to stabilize the
inverse of the covariance matrix. These regularization schemes involve a tuning parameter that needs
to be chosen. In light of this fact, we propose a data-driven method for selecting the tuning parameter.
We show that the selected portfolio by regularization is asymptotically efficient with respect to the
diversification ratio. In empirical and Monte Carlo experiments, the resulting regularized rules
are compared to several strategies, such as the most diversified portfolio, the target portfolio, the
global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample and out-
of-sample Sharpe ratio performance, and it is shown that our method yields significant Sharpe
ratio improvements.

Keywords: portfolio selection; maximum diversification; regularization

JEL Classification: G11; C16; C52

1. Introduction

Since the seminal work of Markowitz (1952), which offers essential basis to portfolio
selection, diversification issues have been in the center of many problems in the financial
market. According to Markowitz’s portfolio theory, a portfolio is diversified if its variance
could not be reduced any further at the same level of the expected return.The fundamental
objective of this diversification is to construct a portfolio with various assets that earns
the highest return for the least volatility that may be a good alternative to the market cap-
weighted portfolios. In fact, there is evidence that market portfolios are not as efficient as
assumed by Sharpe (1964) in his Capital Asset Price Model (CAPM). The CAPM model as
introduced by Sharpe (1964) implies that the tangency portfolio is the only efficient one and
should produce the greatest returns relative to risk. Nonetheless, several empirical studies
have shown that investing in the minimum variance portfolio yields better out-of-sample
results than does an investment in the tangency portfolio (see Haugen and Baker 1991;
Choueifaty et al. 2013; Lohre et al. 2014).

Even if these surprising results seem to be due to the high estimation risk associ-
ated with the expected returns (according to Kempf and Memmel (2006)), the efficiency
of the market capitalization-weighted index has been questioned motivating numerous
investment alternatives (see Arnott et al. (2005); Clarke et al. (2006); Maillard et al. (2010)).
Subsequently, Choueifaty (2011) introduced the concept of maximum diversification, via
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a formal definition of portfolio diversification: the diversification ratio (DR) and claimed
that portfolios with maximal DRs were maximally diversified and provided an efficient
alternative to market cap-weighted portfolios.

This optimal maximum diversification portfolio is shown to be a function of the in-
verse of the covariance matrix of asset returns (see Theron and Van Vuuren 2018), which is
unknown and needs to be estimated. Solving for the maximum diversification portfolio
leads to estimate the covariance matrix of returns and take its inverse. This results in
estimation error, amplified due to (near) singularity of the covariance matrix, in financial
markets with many assets. This, in turn, may lead to the selection of portfolios that are
far from the optimal regarding standard portfolio performance measures of the financial
market. Therefore, Choueifaty et al. (2013) propose the most diversified portfolio (MDP) by
imposing a non-negative constraint on the maximum diversification problem1. However,
this ad hoc constraint suggests that the MDP is unlikely to represent the final word of
diversification. Without the ability to short securities it may be impossible to unlock the
full range of uncorrelated risk sources present in the market (see Maguire et al. 2014).
Therefore, this paper proposes a more general method to control for estimation error in the
covariance matrix of asset returns without restricting the ability to short sell in the financial
market. This method is fundamentally based on different ways to stabilize the inverse
of the covariance matrix particularly useful when the number of assets in the financial
market increases considerably compared with the estimation window. More precisely, as in
Carrasco (2012) and Carrasco and Tchuente (2015) we investigate three regularization tech-
niques including the spectral cut-off, the Tikhonov, and Landweber–Fridman approaches
in order to stabilize the inverse of the covariance matrix. This procedure has been used by
Carrasco et al. (2019) to stabilize the inverse of the covariance matrix in the mean-variance
portfolio.

These regularization schemes involve a tuning parameter that needs to be chosen.
Therefore, we propose a data-driven method for selecting the tuning parameter that
minimizes the distance between the inverse of the estimated covariance matrix and the
inverse of the population covariance matrix.

We show, under appropriate regularity conditions, that the selected strategy by reg-
ularization is asymptotically efficient with respect to the diversification ratio for a wide
choice of the tuning parameter. Meaning that, even if the optimal diversified portfolio is
unknown, there exists a feasible portfolio obtained by regularization capable of reaching
similar level of performance in terms of the diversification ratio.

To evaluate the performance of our procedures, we implement a simulation exercise
based on a three-factor model calibrated on real data from the US financial market. We
obtain by simulation that our procedure significantly improve the performance of the
proposed strategy with respect to the Sharpe ratio. Moreover, the regularized rules are
compared to several strategies such as the most diversified portfolio, the target portfolio, the
global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample and
out-of-sample Sharpe ratio, and it is shown that our method yields significant Sharpe ratio
improvements. To confirm our simulations, we do an empirical analysis using Kenneth R.
French’s 30-industry portfolios, 100 portfolios formed on size and book-to-market, and a
subset of the S&P500 index constituents. The empirical results show that by stabilizing the
inverse of the covariance matrix in the maximum diversification portfolio, we considerably
improve the performance of the selected strategy in terms of maximizing the Sharpe ratio.

The main finding of this paper is that by stabilizing the inverse of the covariance
matrix in the maximum diversification portfolio, we considerably improve the perfor-
mance of the selected portfolio with respect to several statistics in the financial market
including the diversification ratio, the Sharpe ratio, and the rebalancing costs (turnover) as
shown by extensive simulations and empirical study. Therefore, our methods are highly

1 The objective is to reduce the effect of estimation error on the performance of selected maximum diversification portfolio.
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recommended for investors in the sense that these procedures help them to select very
effective strategies with lower rebalancing cost.

The rest of the paper is organized as follows. Section 2 presents the economy. The
regularized portfolio is presented in Section 3. Section 4 gives some asymptotic properties
of the selected strategy and proposes a data-driven method to select the tuning parameter.
Section 5 presents some simulation results and an empirical study. Section 6 concludes the
paper.

2. The Model

We consider a simple economy with N risky assets with random returns vector Rt+1
and a risk-free asset. Let us denote R f the gross return on this risk-free asset. Empirically
with monthly data, R f is calibrated to be the mean of the one-month Treasury-Bill (T-B)
rate observed in the data. The number of risky assets in our economy N is assumed to be
large for diversification issue.

We assume that the excess returns rt+1 = Rt+1 −R f 1N are independent and identically
distributed with the mean and the covariance matrix given by μ and Σ =

{
σi,j

}
i,j∈N ,

respectively. Let us denote by ω = (ω1, ..., ωN)
′

the vector of portfolio weights that
represents the amount of the capital to be invested in the risky assets and the remain
1 − ω

′
1N is allocated to the risk-free asset. Short-selling is allowed in the financial market,

i.e., some of the weights ωi could be negative. Let us denote σ = (σ1,1, ..., σN,N)
′

the vector
of asset volatilities.

According to Choueifaty (2011), the diversification ratio (DR) of any portfolio ω is
given by

DR(ω) =
ω

′
σ√

ω
′Σω

(1)

which is the ratio of weighted average of volatilities divided by the portfolio volatility.
Using the relation in Equation (1), the maximum diversification portfolio is obtained

by solving the following optimization problem

max
ω

DR(ω). (2)

As the DR is invariant by scalar multiplication (for instance see Choueifaty et al. (2013)),
solving the problem in Equation (2) is equivalent of solving the following new problem
according to Theron and Van Vuuren (2018)

min
ω
′
σ=1

1
2

ω
′
Σω. (3)

This new optimization problem is very close to the global minimum variance portfolio.
The only difference is that the constraint ω

′
1 = 1 in the global minimum variance problem

is replaced by ω
′
σ = 1. The solution of this new optimization problem is given by

ω =
Σ−1σ

σ
′Σ−1σ

=
(

σ
′
Σ−1σ

)−1(
Σ−1σ

)
. (4)

The solution in (4) is unknown because it depends on the covariance matrix of asset
returns and the vector of volatilities that are unknown and need to be estimated from
available data set. We need, in particular, to estimate the covariance matrix and take its
inverse. The sample covariance may not be appropriate because it may be nearly singular,
and sometimes not invertible. The issue of ill-conditioned covariance matrix must be
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addressed because inverting such matrix increases dramatically the estimation error and
then makes the maximum diversification portfolio unreliable. Many techniques have been
proposed in the literature to stabilize the inverse of the covariance matrix in the solution
in (4). According to Carrasco et al. (2007), an interesting way to stabilize the inverse of
the covariance matrix consists of dampening the explosive effect of the inversion of the
singular values of Σ̂. It consists in replacing the sequence

{
1/λj

}
of explosive inverse

singular values by a sequence
{

q(α, λj)/λj
}

, where the damping function q(α, λ) is chosen
such that

1. q(α, λ)/λ remains bounded when λ → 0
2. for any λ, limα→0 q(α, λ) = 1

where α is the regularization parameter. The damping function is specific to each
regularization.

In this paper, we propose a consistent way to estimate the solution in (4) using three
regularization schemes based on three different ways of inverting the covariance matrix of
asset returns. These regularization techniques are the spectral cut-off, the Tikhonov, and
the Landweber–Fridman. The spectral cut-off regularization scheme is based on principal
components whereas the Tikhonov’s one is based on Ridge regression (also called Bayesian
shrinkage) and the last one is an iterative method.

3. The Regularized Portfolio

The regularization methods used in this paper are drawn from the literature on inverse
problems (see Kress (1999)). They are designed to stabilize the inverse of Hilbert–Schmidt
operators (operators for which the eigenvalues are square summable). These regularization
techniques will be applied to the sample covariance matrix of asset returns to stabilize its
inverse in the selected portfolio.

Let λ̂2
1 ≥ λ̂2

2 ≥ ... ≥ λ̂2
N ≥ 0 be the eigenvalues of the sample covariance matrix Σ̂. By

spectral decomposition, we have that Σ̂ = PDP
′

with PP
′
= IN , where P is the matrix of

eigenvectors and D the diagonal matrix with eigenvalues λ̂2
j on the diagonal. Furthermore,

let Σ̂α be the regularized inverse of Σ̂.

Σ̂α = PDαP
′

where Dα is the diagonal matrix with elements q(α, λ̂2
j )/λ̂2

j . The positive parameter α

is the regularization parameter, a kind of smoothing parameter which is unknown and
needs to be selected. q(α, λ̂2

j ) is the damping function that depends on the regularization
scheme used.

3.1. Tikhonov Regularization (TH)

This regularization scheme is close to the well known ridge regression used in presence
of multicollinearity to improve properties of OLS estimators. In Tikhonov’s regularization
scheme, the real function q(α, λ̂2

j ) is given by

q(α, λ̂2
j ) =

λ̂2
j

λ̂2
j + α

3.2. The Spectral Cut-Off (SC)

It consists in selecting the eigenvectors associated with the eigenvalues greater than
some threshold.

q(α, λ̂2
j ) = I

{
λ̂2

j ≥ α
}

164



Econometrics 2021, 9, 1

The explosive influence of the factor 1/λ̂2
j is filtered out by imposing q(α, λ̂2

j ) = 0 for small

λ̂2
j , that is, λ̂2

j < α. α is a positive regularization parameter such that no bias is introduced

when λ̂2
j exceeds the threshold α. Another version of this regularization scheme is the

Principal Components (PC) which consists in using a certain number of eigenvectors to
compute the inverse of the operator. The PC and the SC are perfectly equivalent, only
the definition of the regularization term α differs. In the PC, α is the number of principal
components. In practice, both methods will give the same estimator.

3.3. Landweber–Fridman Regularization (LF)

In this regularization scheme, Σ̂α is computed by an iterative procedure with the formula

{
Σ̂α

l =
(

IN − cΣ̂α
)
Σ̂l−1 + cΣ̂ for l = 1, 2, ...1/α − 1

Σ̂α
0 = cΣ̂

The constant c must satisfy 0 < c < 1/λ̂2
1. Alternatively, we can compute this

regularized inverse with

q(α, λ̂2
j ) = 1 −

(
1 − cλ̂2

j

) 1
α

The basic idea behind this procedure is similar to the spectral cut-off method but with a
smooth bias function.

See Carrasco et al. (2007) for more details about these regularization techniques. The
regularized diversified portfolio for a given regularization scheme is

ω̂α =
Σ̂ασ̂

σ̂
′ Σ̂ασ̂

=
(

σ̂
′
Σ̂ασ̂

)−1
Σ̂ασ̂. (5)

This regularized portfolio depends on an unknown tuning parameter that needs to be
selected through a data-driven method.

4. Asymptotic Properties of the Selected Portfolio

In this section, we will look at the efficiency of the regularized portfolio with respect
to the diversification ratio. We will also propose a data-driven method to select the
tuning parameter.

4.1. Efficiency of the Regularized Diversified Portfolio

To obtain the efficiency of the selected portfolio, we need to impose some regularity
conditions, in particular we will need the following assumption.

Assumption A: Σ
N is a trace class operator.

A a trace class operator K is a compact operator with a finite trace, i.e., Tr(K) = O(1).
This assumption is more realistic than assuming that Σ is a Hilbert–Schmidt operator.
Moreover, Carrasco et al. (2019) show that Assumption A holds when the returns are
generated from a standard factor model.

Under Assumption A, the following proposition presents information about the
asymptotic property of the diversification ratio associated with the selected portfolio.

Proposition 1. Under Assumption A we have that

DR(ω̂α) →p DR(ωt), (6)

if N
α
√

T
→ 0 as T goes to infinity.
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Proof. In Appendix A.

Comment on Proposition 1. The regularity condition behind proposition 1 implies several
things: First, α

√
T → +∞ implies that the estimation window should go to infinity faster

than the optimal tuning parameter goes to zero. Second, N
α
√

T
→ 0 implies that α

√
T

should go to infinity faster than the number of assets in the financial market. Therefore,
the number of assets should be limited asymptotically compared with the estimation
window. As the regularization parameter α is in (0, 1), N

α
√

T
→ 0 is implied by the following

condition N√
T
→ 0. However, the regularity condition N√

T
→ 0 seems to be more restrictive

than assuming that N
T → Constant. One way to avoid this regularity condition will be to

assume that the covariance matrix of assets returns is a trace class operator or to assume
that this covariance matrix is a Hilbert–Schmidt operator. These assumptions seem to
be more restrictive than assuming that N√

T
→ 0, which seems to be close to the reality

asymptotically. Moreover, N√
T
→ 0 is only an asymptotic assumption and we do not need to

have N√
T

close to zero in practice to obtain good performance with the regularized portfolio.
Particularly, in finite sample, N could be larger than T or too close to T. Proposition 1
shows that the regularized diversified portfolio is asymptotically efficient in terms of the
diversification ratio for a wide choice of the tuning parameter. Meaning that, even if the
optimal diversified portfolio in Equation (4) is unknown, there exists a feasible portfolio
obtained by regularization capable of reaching similar level of performance in terms of the
diversification ratio.

4.2. Data-Driven Method for Selecting the Tuning Parameter

We show in the previous sections that the selected portfolio depends on a certain
smoothing parameter α ∈ (0, 1). We have derived the efficiency of the selected portfolio
assuming that this tuning parameter is given. However, in practice, the regularization
parameter is unknown and needs to be selected. Therefore, we propose a data-driven
selection procedure to obtain an approximation of this parameter.

Our objective here is to select the tuning parameter which minimizes the distance
between the inverse of the estimated covariance matrix and the inverse of the true co-
variance matrix. According to Ledoit and Wolf (2003), most of the existing shrinkage
estimators from finite-sample statistical decision theory as well as in Frost and Savarino
(1986) break down when N ≥ T because their loss functions involve the inverse of the
sample covariance matrix which is a singular matrix in this situation. Therefore, to avoid
this problem, they propose a loss function that does not depend on this inverse. This loss
function is a quadratic measure of distance between the true and the estimated covariance
matrices based on the Frobenius norm. Unlike in Ledoit and Wolf (2003), we will use a
loss function that depends on the inverse of the covariance matrix under the assumption
that the true covariance matrix is invertible. One important thing to notice here is that
the regularized covariance matrix is always invertible even if N ≥ T meaning that our
loss function exists for N ≥ T. In fact, we know that the optimal diversified portfolio as
given by Equation (4) depends on the inverse of the covariance matrix of assets returns.
Moreover, because our objective is to stabilize the inverse of this covariance matrix in the
estimated portfolio by regularization, we propose to use a loss function that minimizes a
quadratic distance between the regularized inverse and the theoretical covariance matrix.

The loss function we consider here is given by

μ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

μ (7)

where μ is the expected excess return. The choice of this specific quadratic distance is
useful to obtain a criterion that can easily be approximated by generalized cross validation
approach.
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Therefore, the objective is to select the tuning parameter that minimizes

E
{

μ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

μ

}
. (8)

It implies that

α̂ = arg min
α∈HT

E
{

μ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

μ

}
(9)

To obtain a better approximation of the tuning parameter based on a generalized
cross-validation criterion, we need additional assumptions. Therefore, let us start with
some useful notations.

We denote by Ω = E
(

rtr
′
t

)
= E

(
X

′
X
)

/T and β = Ω−1μ = E(X′X)−1E(X′1T) where
rt, t = 1, · · · , T are the observations of the excess returns and X the T × N matrix with tth
row given by r′t.

Assumption B

For some ν > 0, we have that

N

∑
j=1

< β, φj >
2

η2ν
j

< ∞

where φj and η2
j denote the eigenvectors and eigenvalues of Ω

N .

The regularity condition in Assumption B can be found in Carrasco et al. (2007) and
Carrasco (2012). Moreover, Carrasco et al. (2019) show that Assumption B hold if the
returns are generated by a factor model. Assumption B is used combined with Assumption
A to derive the rate of convergence of the mean squared error in the OLS estimator of
β. These two assumptions imply in particular that ‖β‖2 < +∞ such that we have the
following relations,

‖β − βα‖2 =

{
O(αν) for SC, LF
O
(

αmin(ν,2)
)

for T

βα is the regularized version of β.
The following result gives us a very nice equivalent of the objective function. We can

easily apply a cross-validation approximation procedure on this expression of the objective
function.

Proposition 2. Under Assumptions A and B we have that

E
{

μ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

μ

}
∼ E

{(
Σ̂αμ̂ − Σ−1μ

)′
Σ
(

Σ̂αμ̂ − Σ−1μ
)}

if 1
α2T → 0 and

√
Nαmin( ν

2 ,1) → 0 as T goes to infinity.

Proof. In Appendix B.

We obtain the following corollary from this proposition.

Corollary 1. Under Assumptions A and B we have that

E
{

μ
′
[(

Σ̂α − Σ−1
)′

Σ
(

Σ̂α − Σ−1
)]

μ

}
∼ 1

T
E
∥∥X

(
β̂α − β

)∥∥2
+

(μ′(βα − β))2

(1 − μ′β)

if 1
α2T → 0 and

√
Nαmin( ν

2 ,1) → 0 as T goes to infinity.
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The result in Corollary 1 is obtained by using Proposition 2 combined with Proposition 1
in Carrasco et al. (2019).

From Corollary 1, it follows that minimizing E
{

μ
′[(

Σ̂α − Σ−1)′Σ(
Σ̂α − Σ−1)]μ

}
is

equivalent to minimizing

1
T

E
∥∥X

(
β̂α − β

)∥∥2
(10)

+
(μ′(βα − β))2

(1 − μ′β)
. (11)

Terms (10) and (11) depend on the unknown β, and therefore need to be approximated.
The approximation of these two quantities is borrowed from Carrasco et al. (2019). More
precisely, the rescaled MSE

1
T

E
[∥∥∥X

(
β̂α − β

)∥∥∥2
]

can be approximated by generalized cross-validation criterion:

GCV(α) =
1
T

‖(IT − MT(α))1T‖2

(1 − tr(MT(α))/T)2 .

Using the fact that

μ̂′(βα − β) =
1′T
T
(MT(α)− IT)Xβ,

(11) can be estimated by plug-in: (
1′T(MT(α)− IT)Xβ̂α̃

)2

T2
(
1 − μ̂′ β̂α̃

) (12)

where β̂α̃ is an estimator of β obtained for some consistent α̃ (α̃ can be obtained by mini-
mizing GCV(α)).

The optimal value of τ is defined as

α̂ = arg min
τ∈HT

{
GCV(α) +

(
1′T(MT(α)− IT)Xβ̂α̃

)2

T2
(
1 − μ̂′ β̂α̃

) }

where HT = {1, 2, ..., T} for spectral cut-off and Landweber–Fridman and HT = (0, 1)
for Ridge.

5. Simulations and Empirical Study

We start this section by a simulation exercise to set up the performance of our pro-
cedure and compare our result to the existing methods. In particular, we compare our
method to the most diversified portfolio proposed by Choueifaty and Coignard (2008).
More precisely, we focus on how our procedure performs in terms of the Sharpe ratio and
the diversification ratio. To end this section, we analyze the out-of-sample performance of
the selected portfolio.

5.1. Data

In our simulations and empirical analysis, various forms of monthly data will be used
from July 1980 to June 2016. The one-month Treasury-Bill (T-Bill) rate is used as a proxy
for the risk-free rate, and R f is calibrated to be the mean of the one-month Treasury-Bill
rate observed in the data. We use monthly returns of Fama–French three factors and of 30
industry portfolios from the Kenneth R. French data library in order to calibrate unknown
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parameters of the simulation model. In the empirical study, we also use monthly data for
the 100 portfolios formed on size and book-to-market from the Kenneth R. French data
Library and the CRSP monthly data for the S&P500 index constituents.

5.2. Simulation

We implement a simple simulation exercise to assess the performance of our procedure
and compare it with the existing procedures. Let us consider for this purpose a simple
economy with N ∈ {10, 20, 40, 60, 80, 90, 100} risky assets. We use several values of N to
see how the size of the financial market (defined by the number of assets in the economy)
could affect the performance of the selected strategy. Let T be the sample size used to
estimate the unknown parameters in the investment process. Following Chen and Yuan
(2016) and Carrasco et al. (2019), we simulate the excess returns at each simulation step
from the following three-factor model for i = 1, ..., N and t = 1, ..., T

rit = bi1 f1t + bi2 f2t + bi3 f3t + εit (13)

ft = ( f1t, f2t, f3t)
′

is the vector of common factors, bi = (bi1, bi2, bi3)
′

is the vector of factor
loadings associated with the ith asset, and εit is the idiosyncratic component of rit satisfying
E(εit| ft) = 0. We assume that ft ∼ N

(
μ f , Σ f

)
, where μ f and Σ f are calibrated on the

monthly data of the market portfolio, the Fama–French size, and the book-to-market
portfolio from July 1980 to June 2016. Moreover, we assume that bi ∼ N (μb, Σb) with
μb and Σb calibrated using data of 30 industry portfolios from July 1980 to June 2016.
Idiosyncratic terms εit are supposed to be normally distributed. The covariance matrix of
the residual vector is assumed to be diagonal and given by Σε=diag

(
σ2

1 , ..., σ2
N
)

with the
diagonal elements drawn from a uniform distribution between 0.10 and 0.30 to yield an
average cross-sectional volatility of 20%.

In the compact form (13) can be written as follows,

R = BF + ε (14)

where B is a N × 3 matrix whose ith row is b
′
i . The covariance matrix of the vector of excess

return rt is given by
Σ = BΣ f B

′
+ Σε.

The mean of the excess return is given by μ = Bμ f . The return on the risk-free asset R f
is calibrated to be the mean of the one-month T-B observed in the data from July 1980 to
June 2016.

The calibrated parameters used in our simulation process are given in Table 1. The
gross return on the risk-free asset calibrated on the data is given by R f = 1.0036. Once
generated, the factor loadings are kept fixed over replications, while the factors differ from
simulations and are drawn from a trivariate normal distribution.

Table 1. Calibrated parameters.

Parameters for Factors Loadings Parameters for Factors Returns

μb Σb μ f Σ f

1.0267 0.0422 0.0388 0.0115 0.0063 0.0020 0.0003 −0.0004
0.0778 0.0388 0.0641 0.0162 0.0011 0.0003 0.0009 −0.0003
0.2257 0.0115 0.0162 0.0862 0.0028 −0.0004 −0.0003 0.0009

Let SR(ωt) be the Sharpe ratio associated with the optimal portfolio ωt, then SR(ωt) is
given as follows,
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SR(ωt) =
[
μ
′
Σμ

]1/2

To evaluate the performance of our procedure in terms of the Sharpe ratio, we focus
on the actual Sharpe ratio associated with the selected portfolio. The actual Sharpe ratio at
time point t is given by

SR(ω̂t) =
ω̂

′
tμ[

ω̂
′
tΣω̂

′
t
]1/2

We consider the following portfolio selection procedures.

• The sample-based diversified portfolio (SbDP). This strategy is obtained using sample
moments to estimate the unknown parameters in the maximum diversification portfolio.

SbDP =
Σ̂−1σ̂

σ̂
′ Σ̂−1σ̂

• The most diversified portfolio (MDP) proposed by Choueifaty et al. (2013). This
strategy is obtained by solving the optimization problem in Equation (2) under the
following constraint,
ωi ≥ 0 f or i = 1, ..., N.
The closed form associated with this new optimization problem is given as follows,

MDP = diag(Σ)C−11

where diag(Σ) is a diagonal matrix of assets volatilities, C the correlation matrix, and
1 a N × 1 vector of ones. The MDP is then estimated by replacing the unknown
parameters by their empirical counterparts.

• The global minimum variance portfolio (GMVP) obtained by minimizing the variance
of the return on the optimal selected portfolio. By solving this optimization problem,
the following closed form is obtained,

GMVP =
Σ−11

1′Σ−11

This solution is then estimated by replacing the covariance matrix by the sample
covariance matrix.

• The regularized strategies such as: the ridge regularized diversified portfolio (RdgDP),
the spectral cut regularized diversified portfolio (SCDP), and the Landweber–Fridman
regularized diversified portfolio (LFDP).

• The equal-weighted portfolio which is also called the naive portfolio (XoNP) which
allocates a constant amount 1/N+1 in each asset.

• The target (or the maximum Sharpe ratio) portfolio (TgP). The closed form of the
target portfolio is

TgP =
Σ−1μ

μ
′Σ−11

This portfolio is also estimated using sample moments such as the sample mean and
the sample covariance matrix to estimate the unknown parameters.
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• The linear factor-based shrinkage estimators proposed by Ledoit and Wolf (2003)
(LWP). It consists of replacing the sample covariance matrix in the selected portfolio
by an optimally weighted average of two existing estimators: the sample covariance
matrix and single-index covariance matrix. This method involves also a tuning pa-
rameter that is unknown and has been selected by the authors. The tuning parameter
selection procedure proposed in Ledoit and Wolf (2003) is based on minimizing the
distance between the population covariance matrix and the regularized one. This im-
plies that the way they select the turning parameter is different from our data-driven
method. Therefore, the LWP will be considered here as a very good benchmark (and it
will be the only benchmark that we consider) to evaluate the ability of our data-driven
method to deliver additional performance compare to other data-driven methods.

We perform 1000 simulations and estimate our statistics over replications. We obtain
the following results about the actual Sharpe ratio.

Table 2 contains the results about the average monthly Sharpe ratio obtained by
simulations. The results show that the sample based diversified portfolio performs very
poorly in terms of maximizing the Sharpe ratio in the financial market with large number
of assets. This result is essentially due to the fact that the estimation error from estimating
the vector of assets volatilities is amplified by using the sample covariance matrix of assets
returns closed to a singular matrix when N becomes too large compared with the sample
size. Therefore, even if this strategy is supposed to be the maximum diversification’s one
with the highest Sharpe ratio, the SbDP is dominated by several other strategies such as the
GMVP, the XoNP, and the TgP. Therefore, this strategy cannot be consider as the maximum
diversification strategy in practice. To solve this problem, Choueifaty et al. (2013) proposes
the most diversified portfolio (MDP) obtained by maximizing the diversification ratio
under a non-negative constraint on the portfolio weights. This additional constraint in the
investment process may help to reduce the effect of estimation error on the performance
of the selected portfolio. The results of this analysis are in Table 2. By imposing the
non-negative constraint, investors considerably improve the performance of the selected
portfolio in terms of the Sharpe ratio. This new strategy even outperforms the global
minimum variance portfolio. However, this procedure is still dominated by the target
portfolio and the equal weighted portfolio meaning that much remains to be done about
finding the maximum diversification strategy in practice. One explanation to this result is
that imposing the non-negative constraint on the portfolio weight may limit the ability of
the selected portfolio to be fully diversified. Therefore, one needs to find a more general
estimation procedure for the maximum diversified portfolio that allows for short selling.

Table 2. The average monthly Actual Sharpe ratio from optimal strategies using a three-factor
model as a function of the number of assets in the economy with the sample size n = 120, over
1000 replications. True SR is the true actual Sharpe ratio.

Strategies
Number of Risky Assets

10 20 40 60 80 90 100

SbDP 0.1549 0.0906 0.0889 0.0779 0.0652 0.0719 0.0704
XoNP 0.2604 0.2604 0.2415 0.2525 0.2406 0.2461 0.2467
GMVP 0.2227 0.2338 0.2098 0.2298 0.1710 0.1640 0.1449
MDP 0.2514 0.2545 0.2410 0.2544 0.1778 0.1821 0.1935
TgP 0.2608 0.2818 0.2662 0.2687 0.2026 0.1925 0.1699
LWP 0.2589 0.2702 0.2688 0.2704 0.2628 0.2521 0.2507

RdgDP 0.2587 0.2785 0.2817 0.2907 0.2947 0.2830 0.2991
SCDP 0.2592 0.2872 0.2993 0.2898 0.2746 0.2887 0.2853
LFDP 0.2605 0.2765 0.2840 0.2870 0.2850 0.2912 0.2980

True SR 0.2626 0.2922 0.3393 0.3379 0.3592 0.3477 0.3657
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For this purpose, we propose a new way to estimate the optimal diversified portfolio
by stabilizing the inverse of the sample covariance matrix without imposing a non-negative
constraint on the portfolio weights in the investment process. The results of these methods
are also in Table 2. The first thing to point out about these results is that the regularized
diversified portfolio outperforms the most diversified portfolio in terms of maximizing
the Sharpe ratio. For instance, we obtain an average Sharpe ratio of 0.2514, 0.2587, 0.2592,
and 0.2605 for the MDP, the RdgDP, the SCDP, and the LFDP, respectively, when only
10 assets are considered in the economy. The difference in terms of the actual Sharpe
ratio performance between our procedure and the most diversified portfolio significantly
increases with the number of assets in the financial market. For example, for 100 assets, the
average Sharpe ratio is about 0.1935, 0.2991, 0.2853, and 0.2980 for the MDP, the RdgDP,
the SCDP, and the LFDP, respectively. This results may be due to the fact that when the
number of assets in the economy increases, the degree of diversification of the selected
strategy may deteriorate with non-negative constraints on the investment process that
may reduce the ability to find a strategy that performs the Sharpe ratio. Moreover, the
regularized diversified portfolio outperforms the target strategy and the equal-weighted
portfolio when the number of assets in the financial market exceeds 40. Nonetheless,
for 10 assets in the economy, the target portfolio outperforms the RdgDP and the SCDP
but is dominated by the LFDP. With 20 assets the target portfolio dominates the RdgDP
and the LFDP and is dominated by the SCDP. The equal-weighted portfolio outperforms
some regularized strategies such as the RdgDP and the SCDP only for 10 assets in the
financial market. The fact that the regularized strategies give very interesting results in
terms of maximizing the Sharpe ratio (compared with the existing strategies) for large
N is because these methods are essentially used to address estimation issues in large
dimensional problems. The performance of these procedures seems to be independent of
the size of the financial market. In fact, with a reasonable choice of the tuning parameter,
each of these methods can achieve satisfactory performance in terms of the Sharpe ratio
even if the number of assets in the economy is large.

Our regularized portfolio also outperforms the selected strategy obtained using the
linear shrinkage estimator of Ledoit and Wolf (2003) to estimate the covariance matrix of
asset returns. The difference in terms of performance between these two portfolios tends to
become large when the number of assets we consider in the economy increases. This result
can be due to the fact that the estimation error associated with estimating the single-index
covariance matrix may be important for very large assets. One other thing that could
explain this result comes from the fact that our tuning parameter is selected to minimize
the distance between the regularized inverse of the covariance matrix and the inverse of
the population’s one. Moreover, because the optimal portfolio depends on the inverse of
the covariance matrix, selecting a tuning parameter that minimizes the estimation error
in the inverse of the covariance matrix seems to be more appropriate than choosing this
parameter to minimize the estimation error in the covariance matrix. One important thing
to point out is that the Ridge regularized portfolio is a special case of the selected portfolio
with the linear shrinkage estimation of the covariance matrix. In this case, the structural
covariance matrix is replaced by the identity to avoid the potential estimation error which
may be associated with this covariance matrix.

Similar results are obtained when choosing the estimation window to be 1000 and by
increasing the number of assets in the economy from 150 to 999 (N ∈ {150, 250, 400, 550,
700, 850, 950, 999}) as given in Table 3.
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Table 3. The average monthly Actual Sharpe ratio from optimal strategies using a three-factor
model as a function of the number of assets in the economy with the sample size n = 1000, over
1000 replications. True SR is the true actual Sharpe ratio.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.1230 0.1104 0.103 0.0998 0.060 0.03 0.012 0.008
XoNP 0.2630 0.2640 2507 0.240 0.238 0.2207 0.2180 0.220
GMVP 0.3080 02908 0.2890 0.2780 0.250 0.1980 0.1017 0.095
MDP 0.3280 0.3305 0.3198 0.309 0.2679 0.2892 0.1985 0.120
TgP 0.3290 0.3105 0.307 0.3100 0.2608 0.210 0.180 0.098
LWP 0.3302 0.3408 0.3318 0.3070 0.415 0.4504 0.4601 0.4807

RdgDP 0.3702 0.3850 0.3980 0.458 0.524 0.540 0.558 0.601
SCDP 0.3689 0.3860 0.3980 0.460 0.5230 0.535 0.590 0.608
LFDP 0.3704 0.3840 0.3984 0.4560 0.5250 0.538 0.585 0.595

True SR 0.3758 0.3904 0.407 0.489 0.5480 0.588 0.608 0.618

To analyze the statistical significance of the regularized portfolio over the other strate-
gies, we implement the following test procedure about the Sharpe ratio,

H0 : RSR ≤ SR0vsH1 : RSR > SR0

where RSR is the regularized Sharpe ratio and SR0 the Sharpe ratio of the portfolio under
comparison. This test is conducted using the same procedure as in Ao et al. (2019). For
more information about this test procedure see Jobson and Korkie (1981) and Memmel
(2003). The fundamental objective of this test procedure is to confirm the domination
of our method over the existing strategies with a statistic test. The p-values associated
with this test procedure for each of the regularized portfolios are given in Tables 4–6.
According to these results, our regularized portfolio dominates the other strategies in
terms of maximizing the Sharpe ratio at the significant level 5%. In particular, our method
outperforms the LW portfolio in the large financial market setting.

Table 4. The p-value associated with performance hypothesis testing with the Sharpe ratio from
Ridge regularized strategy using a three-factor model as a function of the number of assets in the
economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.004 0.002 0.007 0.005 0.000 0.000 0.000 0.000
GMVP 0.008 0.004 0.006 0.007 0.000 0.000 0.000 0.000
MDP 0.003 0.001 0.002 0.000 0.000 0.000 0.000 0.000
TgP 0.009 0.003 0.008 0.004 0.001 0.000 0.008 0.000
LWP 0.089 0.013 0.001 0.012 0.035 0.003 0.043 0.008
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Table 5. The p-value associated with Performance hypothesis testing with the Sharpe ratio from
Landweber–Fridman regularized strategy using a three-factor model as a function of the number of
assets in the economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.003 0.001 0.008 0.007 0.001 0.000 0.000 0.000
GMVP 0.010 0.003 0.007 0.002 0.001 0.000 0.000 0.000
MDP 0.005 0.001 0.004 0.000 0.000 0.000 0.000 0.000
TgP 0.008 0.004 0.005 0.004 0.002 0.000 0.008 0.000
LWP 0.090 0.014 0.003 0.009 0.040 0.007 0.001 0.007

Table 6. The p-value associated with performance hypothesis testing with the Sharpe ratio from
spectral cut-off regularized strategy using a three-factor model as a function of the number of assets
in the economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of Risky Assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.004 0.003 0.006 0.005 0.000 0.000 0.000 0.000
GMVP 0.020 0.003 0.005 0.001 0.000 0.000 0.000 0.000
MDP 0.003 0.002 0.003 0.002 0.001 0.000 0.000 0.000
TgP 0.003 0.002 0.004 0.002 0.001 0.000 0.001 0.000
LWP 0.104 0.043 0.002 0.008 0.032 0.004 0.002 0.006

We also compute in Table 7 the average monthly diversification ratio associated with
the selected portfolio. We obtain similar results to what has been obtained in Table 2. The
regularized portfolio performs well in terms of maximizing the diversification ratio and
dominated most of the existing methods in the large financial market. The diversification
ratio that we obtain with our method is very close to the true one. This implies that in
addition to the asymptotic results obtained in the Section 4, the regularized portfolio has
very good finite sample properties. This result shows that we do not need N/

√
T to be

close to zero to improve the finite sample performance of the selected portfolio.

Table 7. The average monthly Actual monthly diversification ratio from optimal strategies using a
three-factor model as a function of the number of assets in the economy with the sample size n = 120,
over 1000 replications. True DR is the true diversification ratio.

Strategies
Number of Risky Assets

10 20 40 60 80 90 100

SbDP 2.315 2.307 2.304 2.08 1.308 1.128 1.098
XoNP 3.103 3.140 3.180 3.184 3.325 3.288 3.154
GMVP 3.242 3.241 3.150 3.185 3.147 3.155 3.093
MDP 3.252 3.320 3.240 3.290 3.320 3.265 3.254
TgP 3.240 3.170 3.105 3.050 3.132 3.149 3.080
LWP 3.345 3.360 3.320 3.380 3.398 3.403 3.420

RdgDP 3.325 3.428 3.480 3.590 3.598 3.602 3.640
SCDP 3.347 3.435 3.446 3.570 3.589 3.615 3.625
LFDP 3.289 3.405 3.470 3.548 3.604 3.509 3.638

True DR 3.45 3.56 3.57 3.68 3.8 3.7 3.9

5.3. Empirical Study

In this empirical section, our objective is to use the real data (unlike in the simulation
part) to estimate the unknown parameters of the optimal portfolio and then to evaluate the
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performance of each estimation procedure based on the same statistics as in the simula-
tion section. Note that our purpose in this paper lies not in forecasting but proposing a
consistent way that allows us to correctly estimate the portfolio in Equation (4) in large
dimensional setting.

We apply our method to several sets of portfolios from Kenneth R. French’s website.
In particular, we apply our procedure to the following portfolios: the 30-industry portfolios
and the 100 portfolios formed on size and book-to-market. We allow investors to rebalance
their portfolios every month. This implies that the optimal portfolio is constructed at the
end of each month for a given estimation window M by maximizing the diversification
ratio. The investor holds this portfolio for one month, realizes gains and losses, updates
information, and then recomputes optimal portfolio weights for the next period using the
same estimation window. This procedure is repeated each month, generating a time series
of out-of-sample returns. This time series can then be used to analyze the out-of-sample
performance of each strategy based on several statistics such as the out-of-sample Sharpe
ratio. For this purpose, we use data from July 1980 to June 2018.

Table 8 contains some results of the out-of-sample analysis in terms of the Sharpe
ratio for two different data sets: the FF30 and the FF100. The empirical results in this
table confirm what we have obtained in the simulation part. According to this result, by
stabilizing the inverse of the covariance matrix in the maximum diversification portfolio,
we considerably improve the performance of the selected strategy in terms of maximizing
the Sharpe ratio. Moreover, our regularized strategies outperform the most diversified
strategy, the target portfolio, The LW portfolio, and the global minimum variance portfolio
for each data set. The most diversified strategy outperforms the global minimum variance
portfolio but is dominated by the Equal-Weight portfolio for each data set. These results of
the most diversified portfolio can essentially be explained by the fact that by imposing a
non-negative constraint in the investment process, one cannot fully diversify the optimal
portfolio. The LWP outperforms the other strategies, in particular, this method dominates
the most diversified strategy of Choueifaty et al. (2013). The return of the regularized
portfolio is less volatile than what we obtain with the most diversified portfolio, the target
one, and the LW strategy.

Table 8. Out-of-sample performance in terms of the Sharpe ratio applied on the 30 industry portfolios
(FF30) and the 100 portfolios formed on size and book-to-market (FF100) with a rolling window
of 120.

Strategies XoNP GMVP MDP TGP RdgP LFP SCP LWP

FF30
ER 0.0110 0.01134 0.0121 0.017 0.0149 0.014 0.014 0.014
V 0.0540 0.0630 0.058 0.076 0.063 0.057 0.061 0.067

SR 0.204 0.180 0.209 0.224 0.237 0.246 0.2295 0.209

FF100
ER 0.0103 0.0127 0.015 0.0173 0.0200 0.0201 0.0203 0.019
V 0.0485 0.075 0.088 0.091 0.0772 0.0770 0.078 0.082

SR 0.212 0.1693 0.1705 0.1901 0.2590 0.2610 0.2602 0.2317

We are also interested in how our procedure can perform in terms of minimizing
the rebalancing cost at a given period. The rebalancing cost at the time t can be naturally
measured by

Costt =
N

∑
j=1

∣∣ωt,j − ωt−1,j
∣∣.

This measure of the trading cost is, in fact, the turnover. The transaction cost can be
measured using the turnover in the sense that these costs are positively related to the
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turnover. Therefore, in the rest of the paper the turnover will be called transaction costs.
The average trading cost over the investment horizon is given by

TradingCost =
1
Q

Q

∑
t=1

Costt

where Q is the number of rebalancing periods. This quantity can be interpreted as the
average percentage of wealth traded at each period. The average monthly rebalancing costs
are given in Table 9. These results show that by stabilizing the inverse of the covariance
matrix by regularization, we help investors to select strategies that significantly reduce the
rebalancing cost. The regularized portfolio outperforms the other strategies in terms of
minimizing the trading costs faced by investors in their investment process.

Table 9. Out-of-sample performance in terms of rebalancing cost (turnover) applied on
the 30 industry portfolios (FF30) and the 100 portfolios formed on size and book-to-market
(FF100) for two different rolling windows.

P EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

FF30 60 6.890 4.329 2.809 4.209 1.0328 0.9952 0.989 0.9872
120 5.605 3.901 2.087 3.290 0.9892 0.7140 0.7203 0.6450

FF100 120 9.789 6.2390 5.978 6.309 1.7808 1.3267 1.3890 1.2078
240 7.089 4.297 3.879 4.2870 1.3065 1.0349 1.0398 1.096

The evolution of the share of the selected assets in the optimal portfolio in Figure 1
shows that by regularizing the covariance matrix, we considerably reduce extreme positions
in the selected strategy. Therefore, we significantly reduce the transaction costs faced by
investors when they decide to take positions in the financial market. Moreover, the return
on the selected portfolio becomes less volatile in such a situation.

Figure 1. The evolution of the selected assets in the optimal portfolio. We obtain this figure using the 30 industry portfolios
with an estimation window of n = 120.

Tables 10 and 11 contain the Fama–French monthly regression coefficients for the
100 portfolios formed on size and book-to-market and the 30-industry portfolios, respec-
tively. Monthly data are used from July 1990 to June 2018. According to the result in
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Table 10, only the return on the Equal-Weight portfolio can be explained by the Fama–
French three-factor model for the 100 portfolios formed on size and book-to-market. The
return obtained with the regularized portfolios and the most diversified portfolio can be
explained only with the return on the market portfolio (a one-factor model) through a
positive relation. However, the return of the most diversified portfolio and the global
minimum variance portfolio can be explained with a two factors model when using the
30-industry portfolios. The return of the other strategies such as the regularized portfolios,
the Equal-Weight portfolio, and the target portfolio can be explained by the Fama–French
three-factor model.

Table 10. Fama–French Monthly Regression Coefficients for the 100 portfolios formed on size and
book-to-market from July 1990 to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio 0.9168
(0.000)

0.079
(0.531)

−0.139
(0.302)

0.0075
(0.057)

LF- regularized Portfolio 0.823
(0.000)

0.174
(0.153)

−0.1651
(0.204)

0.0125
(0.001)

SC-regularized Portfolio 1.02
(0.000)

−0.127
(0.177)

−0.133
(0.189)

0.0077
(0.010)

Most-Diversified Portfolio 0.72
(0.000)

0.13
(0.344)

0.098
(0.506)

0.007
(0.002)

Equal-Weight-Portfolio 1.002
(0.000)

0.5104
(0.000)

0.33
(0.000)

0.0001
(0.815)

Global-Minimum-Variance
Portfolio

0.416
(0.000)

−0.125
(0.319)

0.155
(0.247)

0.0094
(0.000)

Target-Portfolio 0.43
(0.000)

0.144
(0.367)

0,207
(0.226)

0.010
(0.000)

LW-Portfolio 0.802
(0.000)

0.074
(0.247)

0.207
(0.226)

0.0082
(0.067)

Table 11. Fama–French Monthly Regression Coefficients for the 30-industry portfolios from July 1990
to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio 1.03
(0.000)

0.24
(0.003)

0.36
(0.000)

0.0007
(0.767)

LF- regularized Portfolio 0.93
(0.000)

0.22
(0.003)

0.25
(0.001)

0.0046
(0.042)

SC-regularized Portfolio 0.86
(0.000)

0.27
(0.000)

0.21
(0.031)

0.0054
(0.053)

Most-Diversified Portfolio 0.46
(0.000)

−0.285
(0.000)

0.070
(0.391)

0.002
(0.001)

Equal-Weight-Portfolio 0.983
(0.000)

0.061
(0.006)

0.265
(0.000)

0.0013
(0.050)

Global-Minimum-Variance
Portfolio

0.46
(0.000)

−0.146
(0.008)

0.077
(0.188)

0.0021
(0.017)

Target-Portfolio 0.54
(0.000)

−0.44
(0.000)

−0.21
(0.019)

0.013
(0.000)

LW-Portfolio 0.982
(0.000)

0.272
(0.0098)

0.4112
(0.0301)

0.0006
(0.429)

As the portfolio optimization is generally based on individual stocks instead of aggre-
gate portfolios as the Fama–French portfolio, we apply also our method to a subset of the
S&P500 index constituents to see how our method performs in such universe. We use for
this purpose monthly data from March 1986 to December 2019. At the beginning of this
empirical analysis, we randomly form pools of 100 or 150 stocks from the S&P500 index
constituents for which there are complete return data for the prior 120 or 240 months. The
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optimal portfolio will then be constructed using the same procedure as before. We then
compute the out-of-sample performance in terms of the Sharpe ratio and the turnover. The
results of this empirical analysis are given in Tables 12 and 13. We obtain similar results
as in the case of the Fama–French portfolios proving that our method also performs well
when the optimal portfolio is formed with individual stocks from S&P500.

Table 12. Out-of-sample performance in terms of Sharpe ratio applied on two subsets of S&P500
constituents for two different rolling windows.

P EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

100 A 120 0.0850 0.1506 0.2458 0.1983 0.3702 0.4382 0.4380 0.4397
240 0.0982 0.1604 0.260 0.2028 0.3809 0.4565 0.4567 0.4578

150 A 180 0.0750 0.1204 0.309 0.1407 0.4108 0.5353 0.5320 0.5462
240 0.0895 0.1750 0.320 0.1890 0.4208 0.5603 0.5609 0.5579

Table 13. Out-of-sample performance in terms of rebalancing cost (turnover) applied on two subsets
of S&P500 constituents for two different rolling windows.

Assets EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

100 Assets 120 9.450 6.786 4.675 6.679 3.348 2.1067 2.0801 2.0682
240 6.978 5.308 3.892 5.234 3.078 1.491 1.608 1.569

150 Assets 180 10.489 7.345 6.782 7.328 3.897 2.678 2.780 2.8960
240 8.0789 5.542 4.032 5.438 3.057 2.104 2.0978 2.0956

6. Conclusions

This paper addresses the estimation issue that exists in the maximum diversification
portfolio framework in the large financial market. We propose to stabilize the inverse of
the covariance matrix in the diversified portfolio using regularization techniques from
inverse problem literature. These regularization techniques, namely, the ridge, the spectral
cut-off, and Landweber–Fridman, involve a regularization parameter or penalty term
whose optimal value is selected to minimize the expected distance between the inverse
of the estimated covariance matrix and the inverse of the true covariance matrix. We
show, under appropriate regularity conditions, that the selected strategy by regularization
is asymptotically efficient with respect to the diversification ratio for a wise choice of
the tuning parameter. Meaning that, even if the diversified portfolio is unknown, there
exists a feasible portfolio obtained by regularization capable of reaching a similar level of
performance in terms of the diversification ratio.

To evaluate the performance of our procedures, we implement a simulation exercise
based on a three-factor model calibrated on real data from the US financial market. We
obtain by simulation that our procedure significantly improves the performance of the
selected strategy with respect to the Sharpe ratio. Moreover, the regularized rules are
compared to several strategies such as the most diversified portfolio, the target portfolio,
the global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample
and out-of-sample Sharpe ratio, and it is shown that our method yields significant Sharpe
ratio improvements. To confirm our simulations, we do an empirical analysis using
Kenneth R. French’s 30-industry portfolios and 100 portfolios formed on size and book-
to-market. According to this empirical result, by stabilizing the inverse of the covariance
matrix in the maximum diversification portfolio, we considerably improve the performance
of the selected strategy in terms of maximizing the Sharpe ratio.

178



Econometrics 2021, 9, 1

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Proposition 1

By definition we have that

DR(ω̂α) =
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′
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ω̂
′
αΣω̂α

.

Let us first look at ω̂
′
αΣω̂α
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αΣω̂α = [(ω̂α − ω) + ω]

′
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= ω
′
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′
Σ(ω̂α − ω)︸ ︷︷ ︸
(a)

+2 (ω̂α − ω)
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(b)

.

Now we are going to look at the properties of (a) and (b). We know that
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By Assumption A
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∥∥∥ = O(1). Therefore, we obtain that

∥∥∥(σ̂ − σ)
′
Σ̂ασ

∥∥∥ =

∥∥∥∥∥ (σ̂ − σ)
′

√
N

(
Σ̂
N

)α
σ√
N

∥∥∥∥∥
= Op

(‖σ̂ − σ‖√
Nα

)

= Op

⎛⎝
∥∥∥ σ̂−σ√

N

∥∥∥
α

⎞⎠.

179



Econometrics 2021, 9, 1

Using those information combine with the fact that Σ̂α = Σ̂α − Σα + Σα, we have that
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Using Assumption A combined with Theorem 4 of Carrasco and Florens (2000), we
have that ∥∥∥∥ Σ̂
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As α → 0 as T → ∞, we have that
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Under the assumption that 1
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→ 0, we have that
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By Assumption A we have that ‖Σ‖ = O(N). Therefore, using (A1), we obtain that
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Appendix B. Proof of Proposition 2
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We also know that μ = μ̂ + (μ − μ̂), so
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which implies that
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