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M. Rebeca Quiñonez-Piñón and Caterina Valeo

Modelling Canopy Actual Transpiration in the Boreal Forest with Reduced Error Propagation
Reprinted from: Atmosphere 2020, 11, 1158, doi:10.3390/atmos11111158 . . . . . . . . . . . . . . . 105

Guillermo Hinojos Mendoza, Cesar Arturo Gutierrez Ramos, Dulce Marı́a Heredia Corral,

Ricardo Soto Cruz and Emmanuel Garbolino

Assessing Suitable Areas of Common Grapevine (Vitis vinifera L.) for Current and Future
Climate Situations: The CDS Toolbox SDM
Reprinted from: Atmosphere 2020, 11, 1201, doi:10.3390/atmos11111201 . . . . . . . . . . . . . . . 135

v



Richard A. Giliba and Genesis Tambang Yengoh

Predicting Suitable Habitats of the African Cherry (Prunus africana) under Climate Change in
Tanzania
Reprinted from: Atmosphere 2020, 11, 988, doi:10.3390/atmos11090988 . . . . . . . . . . . . . . . . 153

Gashaw Bimrew Tarkegn and Mark R. Jury

Changes in the Seasonality of Ethiopian Highlands Climate and Implications for Crop Growth
Reprinted from: Atmosphere 2020, 11, 892, doi:10.3390/atmos11090892 . . . . . . . . . . . . . . . . 171

Eric Strobl and Preeya Mohan

Climate and the Global Spread and Impact of Bananas’ Black Leaf Sigatoka Disease
Reprinted from: Atmosphere 2020, 11, 947, doi:10.3390/atmos11090947 . . . . . . . . . . . . . . . . 189

Genesis Tambang Yengoh and Jonas Ardö
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Preface to ”Plant Adaptation to Global Climate

Change”

The issue of climate change is inevitably accompanied by climate variabilities, such as high

temperatures, varying patterns of rainfall, and other environmental factors (including biotic factors),

and causes an undesirable impact on plant growth and global food security. The effect of climate

change on vegetation may stem from the cellular to molecular levels. Consequently, the current

literature on the effect of different environmental factors on vegetation is varied. In view of the

future impacts of climate change, understanding the response of plants becomes critical in developing

strategies to cope with the threats to plant growth and development and in advancing our existing

knowledge about the influence of climate change on vegetation.

This book emerged from the Special Issue “Plant Adaptation to Global Climate Change”,

published in the journal Atmosphere. The articles presented in this book highlight important aspects

concerning the impact of global climate change on vegetation. These studies are of interest to the

environmental science research community, including those interested in assessing climate change

impacts on vegetation and researchers working on simulation modeling.

The editor thanks the authors who generously contributed their time and expertise to ensuring

the high quality of this work. The editor especially thanks Prof. Shashi Bhushan Agrawal and Prof.

Madhoolika Agrawal, Laboratory of Air Pollution and Global Climate Change, Department of Botany,

Institute of Science, Banaras Hindu University, India, and family members for constant inspiration.

The editor also expresses his gratitude to the editors of the journal Atmosphere, to the reviewers, and

to the production team members for their invaluable support and teamwork in the publication of

the book. I sincerely hope that this work promotes further approaches to increasing the current

understanding of the impact of climate change on vegetation.

Amit Kumar Mishra

Editor
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The problem of climate change is unavoidably accompanied by climate variabilities,
such as high temperature, varying patterns of rainfall, and other environmental factors
(including biotic factors), and causes an adverse impact on plant development and global
food security. The effect of climate change on vegetation may be from cellular to the
molecular level. Consequently, the existing literature on the plant’s response to different
environmental factors is varied. In view of the future impacts of climate change, under-
standing the response of plants becomes critical in developing strategies to cope with the
threats to plant growth and development. To advance our current knowledge on the impact
of climate change on vegetation, articles focusing on the urban, regional, and global levels
as well as modeling studies were collected in this Special Issue. The Atmosphere Special
Issue entitled “Plant Adaptation to Global Climate Change” comprises 13 original papers.

The impact of climate change on the harvested area, yield, and production of sugarcane
has been studied in Thailand [1]. The study concluded a projected decrease in future
sugarcane yield, harvested area, and production by 23.9–33.2%, 1.3–2.5%, and 24.9–34.9%,
respectively, using the spatial regression using the instrumental variable. Highlighting the
well-being of the sugarcane growers and instability of the sugar price under future global
climate change is the important feature of the study.

Bakku et al. [2] demonstrated differentially expressed genes in rice (Oryza sativa cv.
Koshihikari) seeds under high-temperature stress using the transcriptomics approach in
Japan. The study showed up- and downregulation of more than 100 genes in grade 2 rice
(Y2) and grade 3 rice (Y3) seeds, respectively. This study is among the first that suggests
that high temperature during the seed filling and maturation in rice damages yield as well
as kernel quality.

Analysis of tree rings provided a comprehensive understanding of growth dynamics
and their adaptation to climate change using Chinese Torreya (Torreya grandis cv Merrillii)
as a model system [3]. The analysis was performed using six stem sections from trees
having ages between 60–90 years and local climate data. The results revealed that the
accumulated radial growth enhanced linearly with time. The study suggested that the
gradual growth, drought resistance, and several stems in a single tree could help the trees
acclimate to different climate conditions.

Quantification of the isoprenoids between soil with litter and atmosphere in a Mediter-
ranean Pinus pinea was performed in order to study the ground level isoprenoid ex-
changes [4]. The study showed that isoprenoid emissions were high, variable, and can
be assessed by the dry weight of litter around the trunk. The findings recommend perva-
sive spatio-temporal analysis of ground-level isoprenoids’ exchanges in different types
of ecosystem. Gandia et al. [5] highlighted recognizing the response to environmental
change of weed species by analyzing their distribution. The analysis of species led to the
categorization of weeds as generalist, regional, or local species, corresponding to latitude
and related temperature ranges. Three weed species, Linaria micrantha (Cav) Hoffmanns
& Link, Sonchus oleraceous L., and Sysimbrium irium L., were categorized as generalist and
Stellaria media (L.) Vill. was identified as a local species. The approach in the study can be
used to designate weed distribution as a marker of changing climatic conditions.
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To study the effects of temperature on the physiological and ecological characteristics
of plants, two high-resolution thermal cameras were used to monitor the canopy leaf
temperature distribution in a primary tropical rain forest in southwest China [6]. The study
included 28 different tree species and the results suggest that both stomatal conductance
and size of the leaves determined the difference in the mean leaf-to-air temperature. The
findings indicate species-specific functional traits required to investigate and model the
interactions of entities for developing the knowledge and prediction of impacts of climate
change on vegetation.

The following seven papers in this Special Issue conducted studies using different
models or approaches under the future climate change scenario. Simulation of differential
impact on winter wheat (Triticum aestivum L.) by future projections of climate change (2025
and 2050), especially under increasing temperature was done using CSM-CERES-Wheat
model coupled with different Representative Concentration Pathways (RCPs) and two
Global Circulation Models (GCMs) in China [7]. The study indicated that the production of
wheat in Guanzhong plain will increase (positive) under future climate change using crop
simulation modeling. However, the negative impact will depend upon the climate change
projections as GCMs showed both increase and decrease in the grain yield. The study
also emphasized proper use of irrigation management as rainfed wheat is very sensitive
to climate change. In a study, a scaling approach was used to measure the variation of
scaling factors and their correlation at large scales in the estimation of actual transpiration
of three boreal species in a forest [8]. The authors demonstrated that the scaled canopy
transpiration signified a considerable fraction of forest evapotranspiration (>70%) and
recommend the approach for the proper estimation of actual transpiration in the areas
having low tree diversity. Mendoza et al. [9] emphasized the use of the Climate Data
Science (CDS) Toolbox Species Distribution Model (SDM) in evaluating the appropriate
areas of grapevine (Vitis vinifera L.) under the present and future climate conditions in
France. The study proved different possible effects of future climate change on the spatial
distribution of proper areas for grapevine crops. The maximum entropy modeling ap-
proach was utilized to foresee future habitat distribution of the susceptible Prunus Africana
under the effect of climate change in Tanzania [10]. The results showed reductions in appro-
priate habitats for P. Africana under all imminent representative concentration pathways’
scenarios as compared to present distributions. Various statistical methods were used to
study the variations in the seasonality of Ethiopian highlands’ climate, consequences for
crop development, assessment of variations in the annual cycle, and long-term trends. [11].
Coupled Model Intercomparison Project (CMIP5) Hadley2 data assimilated by the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP) hydrological models used in the
study provided understandings on the unimodal annual cycle of soil moisture in past
and future eras. The study concluded that evaporation is increasing and might put stress
on different land and water resources due to seasonal variations. An empirical hazard
model was used to get the pattern of the global spread of Black Sigatoka Leaf Disease
(Mycosphaerella fijiensis), an important pathogen on banana [12]. The results showed that
agricultural trade might play a significant role in spreading the disease across countries
and highlights the threat and prospective cost of relying on just a few varieties with genetic
similarity to produce a particular crop globally. Climate change is negatively affecting
the health of populations around the world, especially in low-income countries like East
Africa. A Wet Bulb Globe Temperature (WBGT) approach, a common index, was used to
evaluate the heat stress in occupational health in East Africa [13]. The results showed that
heat stress is already influencing the areas of East Africa. The analysis of two terms of the
agricultural calendar suggests that Kenya and Tanzania face substantial portions of their
national landmass influenced by high WBGT values; a neighboring country (Uganda) is
comparatively less affected.

The goal of this Special Issue is to present research with a broad perspective to
understand the effects of climate change on vegetation, involving applied research and
studies with different types of modeling approaches, and the 13 papers in this Special
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Issue achieve this goal. I thank the authors for their significant contributions and hope that
this issue triggers some ideas and collaboration or serve as a resource to move ahead in a
rapidly changing climate.
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Abstract: This study investigated the impact of climate change on yield, harvested area, and
production of sugarcane in Thailand using spatial regression together with an instrumental variable
approach to address the possible selection bias. The data were comprised of new fine-scale weather
outcomes merged together with a provincial-level panel of crops that spanned all provinces in Thailand
from 1989–2016. We found that in general climate variables, both mean and variability, statistically
determined the yield and harvested area of sugarcane. Increased population density reduced the
harvested area for non-agricultural use. Considering simultaneous changes in climate and demand
of land for non-agricultural development, we reveal that the future sugarcane yield, harvested area,
and production are projected to decrease by 23.95–33.26%, 1.29–2.49%, and 24.94–34.93% during
2046–2055 from the baseline, respectively. Sugarcane production is projected to have the largest drop
in the eastern and lower section of the central regions. Given the role of Thailand as a global exporter
of sugar and the importance of sugarcane production in Thai agriculture, the projected declines in the
production could adversely affect the well-being of one million sugarcane growers and the stability of
sugar price in the world market.

Keywords: climate change impacts; sugarcane; yield; harvested area; production; Thai agriculture

1. Introduction

Sugar is a low-cost energy source that can alleviate malnutrition problems in the case of energy
deficiency [1]. About 80% of the global sugar produced from sugarcane [2,3] are cultivated in
120 countries with approximately 27 million ha and an average production is 1.8–2 billion tons per
year [4]. In addition to sugar, sugarcane can be used to produce several products such as falernum,
molasses, rum, bagasse, and ethanol, creating economic benefits along the supply chain [2].

Among sugarcane producing countries, Thailand ranked fourth for sugar production, accounting
for 8.10% of the world’s total sugar production [5] and ranked second for sugar export contributing
to 16.95% of global export quantity with an export value of 2.97 billion USD in 2019 [5,6]. At the
national level, sugarcane production plays an increasing role in Thai agriculture. With support from
government policies aiming to reduce rice production and promote alternative energy, the harvested
area of sugarcane has steadily increased 44.61% in the last decade from 1.35 million ha in the 2010/2011
production year to 1.96 million ha in 2018/2019 [7] with approximately 1 million farmers in 2019 [8].
In 2018/2019, the harvested area of sugarcane ranked third among major economic crops in Thailand
following rice (11 million ha) and natural rubber (3.66 million ha). It accounted for 12% of total land
use for 11 major economic crops. Cassava and maize ranked fourth and fifth with harvested areas of
1.39 and 1.10 million ha, respectively.
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Over the last several decades, it has become increasingly clear that human activities,
especially burning fossil fuels and deforestation, are changing the world’s climate conditions, through
increases in temperatures, extreme temperatures, droughts, and rainfall intensity [9]. Agriculture is
the most vulnerable economic sector through such changes and for the past 30 years numerous studies
have attempted to estimate the effect of changing climate on crop yields and their production [10–15].

Climate change can directly affect crops through rising temperature and changing rainfall patterns,
or indirectly affect crops through soil, nutrient, and increasing pests interference [16]. Studies revealed
that crop yields have been affected by the variability of temperature, rainfall, and the interaction
between them and climate change impacts will be different across locations, types of crop, scenarios, and
farmer adaptation [17–21]. Although the world may be able to cope with food insecurity at the macro
level, the problem may also exist at the micro level with the shortage of food in developing countries
compensated by developed countries receiving the benefits from climate change [13]. Previous studies
also revealed that climate change is projected to negatively affect the global food system and food
supply may not be available to meet demand in the future [21–23].

For sugarcane, all previous studies only assessed the impact of climate change on yield.
Overall, studies showed mixed findings regarding changes in sugarcane yield from climate change.
Singels et al. [24] employed the Canegro model and revealed that future sugarcane yields with constant
CO2 concentration set at 360 ppm were expected to decline in two sites, ranging from 4.15% for rainfed
crops at Piracicaba (Brazil) and 4.65% for irrigated crops at Ayr (Australia) from the 1980–2010 baseline
period. On the other hand, sugarcane yield was predicted to increase 2.58% for La Mercy (South Africa).
By adding CO2 fertilization effect, Marin et al. [25] found that the sugarcane yield would increase 24%
for rainfed sugarcane in the 2050s in São Paulo, Brazil. Moreover, Silva et al. [26] found that rainfall
was positively correlated with sugarcane production, whereas the temperature negatively influenced
production in municipalities within Paraiba, Brazil. They also found that the mesoregion of Mata
Paraibana has a higher probability of producing sugarcane than other mesoregions.

The positive impact of climate change on sugarcane yield was also found in Mexico [27] and
southern China [28]. In Mexico, Baez-Gonzalez et al. [27] developed the Agricultural Land Management
Alternatives model and revealed the positive impacts of future climate change on sugarcane yields with
increases of 1%–13% under the A2 scenario from the baseline. In southern China, Ruan et al. [28] used
the Agricultural Production Systems Simulator (APSIM)-Sugarcane model and found that the largest
percentage change in sugarcane yields occurred at high latitude locations (e.g., Hezhou), with increased
mean values of 44.2% and 23.5% for Representative Concentration Pathway (RCP)4.5 and RCP8.5 in
the 2060s, respectively. On the other hand, in Africa, Adhikari, Nejadhashemi, and Woznicki [29]
reviewed studies projecting the climate change impacts on sugarcane production and revealed that
sugarcane will be resilient to temperature rise, but it will be vulnerable to rainfall variability. Yield of
sugarcane is projected to decline less than 5% in East Africa by 2030 as compared to 1998–2002 [30].

In Thailand, Yoshida et al. [31] present the only research study to explore the relationship between
climate and sugarcane yield in the Northeastern region of Thailand. Their study revealed that sugarcane
yield had a significant positive relationship with four months of accumulated rainfall. This finding
could imply that sugarcane yield is likely increased where the rainfalls are projected to increase under
climate change scenarios. Unfortunately, their study did not analyze this relationship at the national
level and did not differentiate the heterogenous effect of climate change on sugarcane yield among
regions of Thailand. To our knowledge, there is no study that projects the future change in yield,
harvested area, and production of sugarcane in Thailand under climate change scenarios.

Therefore, this study aims to estimate the effect of climate change on yield, harvested area, and
production of sugarcane in Thailand using the provincial-level panel data analysis. Then, we project
future changes in yield, harvested area, and production of sugarcane under climate change using
climate projections from the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate
Change (IPCC) [9].
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Our study provides several contributions to climate change related to sugarcane production.
First, our study is a pioneer in simultaneously investigating the effect of climate change including
yield, harvested area, and production, and analyzing climate change impacts for a whole country
at the provincial level. Second, we add the prices of output and input in the model and address
the issue of endogeneity bias in economics using spatial econometrics and the instrumental variable
approach as suggested by Miao and colleagues [14]. Third, unlike other studies done in Thailand, we
put additional effort to estimate the weighted average of climate data for each province using weighted
least square regression, as first introduced by Mendelsohn, Nordhaus, and Shaw [12]. Fourth, we
include variables capturing climate variability and extreme events in the model and use the recent AR5
downscaled projections of precipitation at the watershed level to deeply understand the variation of
future precipitation at the local level. Finally, we include and project the population density as a variable
capturing the change in socio-economic condition that could affect harvested areas of sugarcane.

This article is organized as follows: Section 2 presents details of materials and methods used
for the analysis; Section 3 provides results and discusses the findings; and Section 4 presents the
conclusions and policy implications that were drawn from the findings.

2. Materials and Methods

2.1. Model Estimation Approach

To quantify the effect of climate change on the production of sugarcane in Thailand, we constructed
models by including factors that determine yield and harvested area of sugarcane following Miao and
colleagues [14]. The province-specific sugarcane yield model and harvested area are shown below in
Equations (1) and (2), respectively:

Y jt = βo + β1Climatejt + β2Pricejt + β3PctIrrig jt + β4T jt + β5T2
jt + u j + ǫ jt (1)

H jt = αo + α1Climatejt + α2Pricejt + α3PctIrrig jt + α4Popden jt + α5T jt + α6T2
jt + v j + e jt (2)

where j and t are indexed for province and year, respectively. Yjt is yield of sugarcane in province j at
time t. For brevity, we will omit explanations for the subscripts. H is the harvested area of sugarcane.
β and α are vectors of parameters to be estimated. Climate is the vector of climate variables including
growing season average temperature, extreme maximum temperature, total rainfall, maximum rainfall
in 24 h, and the dummy variables capturing El Niño–Southern Oscillation (ENSO) phases including El
Niño, La Niña, and neutral phases. Price is the vector capturing output and input prices (i.e., farm
received price of sugarcane and wage rate of labor). PctIrrig is the percent of irrigated area to total
area in the province and T and T2 are time trend capturing technological progress. In the model
of harvested area, we added a variable Popden capturing population density, which determines the
demand for land and pressure of land on non-agricultural development use; u and v are region fixed
effects and ǫ and e are error terms.

For estimation, this study uses spatial regression to address spatial bias because the climate
conditions, input prices, and labor wage in a large region can be quite similar, and the provincial-level
yield and harvested area of sugarcane may be correlated with those in neighboring provinces. We also
address endogeneity bias from using sugarcane price and wage rate by employing the instrumental
variable (IV) approach together with the generalized method of moment (GMM), following procedures
suggested by Miao and colleagues [14]. By testing for the good IVs, this study uses one-year lagged
variables of the Southern Oscillation Index (SOI), extreme maximum temperature, and total stock of
sugar as IVs for the yield model. For the harvested area model, it uses one-year lagged variables of
extreme maximum temperature, total stock of sugar, and total amount of rainfall as IVs. After obtaining
estimated coefficients from the yield and harvested area models for sugarcane, we then obtain climate
projections from IPCC AR5 to predict future yield and harvested area for sugarcane. Finally, we
estimate the quantity of sugarcane production by multiplying yield to its corresponding harvested area.
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2.2. Data

This study constructs a unique provincial-level panel dataset during 1989–2016—the longest period
used compared to other studies done in Thailand—from several sources [31]. Yield and harvested area
plus crop prices were obtained from the Office of Agricultural Economics, Ministry of Agriculture
and Cooperatives. Irrigation area was obtained from the Royal Irrigation Department. We obtained
the historical monthly climate data including average temperature, maximum temperature, and
mean precipitation for all climate stations in Thailand from the Meteorological Department. Climate
projections during 2046–2055 were obtained from the IPCC AR5. They are the average values of all
general circulation models produced by the Royal Netherlands Meteorological Institute (KNMI) using
IPCC AR5 report. We also collected population statistics and future population projections under the
assumption of a moderate fertility rate at the provincial level from the Ministry of Interior and the
National Economic and Social Development Council (NESDC), respectively. Lastly, we constructed
dummy variables capturing three ENSO phases (i.e., El Niño, La Niña, and neutral) from the National
Oceanic and Atmospheric Administration (NOAA).

Unlike other studies in Thailand, we linked the agricultural data organized by province and the
climate data organized by station by conducting a spatial statistical analysis following Mendelsohn and
co-workers [12]. While climatic variables examined in this study are measured frequently, there are
some provinces with several weather stations and others with no stations. Furthermore, some provinces
are large enough that there is variation in climate within the province. We therefore proceeded by
constructing an average climate for each province using weighted least square regression by controlling
for the distance from the centroid, latitude, longitude and height of climate stations. The weight is
the inverse of the square root of a station’s distance from the province center because closer stations
usually contain more information about the climate of the center. We located the centroid of each
province and drew a circle within the radius of 250 km by assuming that all the weather stations within
this radius provide some useful climate information.

We estimated a separate regression for each province since the set of stations within 250 km and
the weights (distances) are unique for each province. The regression fits a second-order polynomial
over four climate variables, so that there were 20 final variables in the regression, plus a constant term.
Four regressions for each of the 77 provinces and 36 years led to over 11,088 estimated regressions.
Table A1 in the Appendix A shows examples of the estimated coefficients of the weighted least square
regression for each climate variable in July 2016 in Nakon Sawan Province, the largest sugarcane
producing province in Thailand. Overall, we observe that the models fit relatively well, especially for
the average temperature variable. All predicted values of climate variables are statistically significant
at 1% level. Table 1 provides a summary statistic of variables at the provincial level.

3. Results and Discussion

This section provides the estimated coefficients from sugarcane yield and its harvested area
models, the projected changes in yield, harvested area, and production of sugarcane under climate
change scenarios, as well as a discussion of the findings.

3.1. Estimated Results

The estimated coefficients from the sugarcane yield and its harvested area models are shown in
Tables 2 and 3, respectively. Details are provided in Sections 3.1.1 and 3.1.2, respectively.
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Table 1. Summary statistics of selected variables at the provincial level.

Variables Mean SD Min Max

Yield (kg/ha) 58,652.50 11,093.84 18,612.50 92,462.50
Harvested area (1000 ha) 22.89 29.09 0.03 161.41
Average temperature (◦C) 27.59 0.67 25.57 29.10

Maximum rainfall in 24 h (mm/day) 33.69 3.93 22.98 47.28
Extreme maximum temperature (◦C) 35.91 0.55 34.49 37.38

Total rainfall (mm) 1331.35 204.97 886.76 2007.98
Population density (person/km2) 125.64 67.17 21.56 417.38

Lag received price (USD/ton) 25.01 4.54 13.27 42.90
Lag wage (USD) 6.47 1.26 4.88 9.91

%Irrigated area per province area 12.72 25.81 0 166.72

No. of observation 1242

3.1.1. Determinants of Sugarcane Yields

All climate variables (excepting for the El Niño phase) statistically influenced sugarcane yield
(Table 2). The inverted U-shape relationship between temperature and sugarcane yield was revealed
and we found the U-shape relationship between rainfall and sugarcane yield. Moreover, an increase in
extreme maximum temperature showed the harmful impact on sugarcane yield. On the other hand,
the maximum rainfall within 24 h was positively correlated to sugarcane yield. This finding could be
explained by the fact that a majority of land planting sugarcane in Thailand are dryland above the sea
level. Therefore, an increase in rainfall intensity still improved sugarcane yield. Other studies reached
a similar conclusion [24,28].

We also revealed that the period with extreme climatic events, especially the La Niña phase,
had lower yield than the period with neutral phase. In addition to the climate conditions, increase in
the percent of irrigated area to total land area significantly improved the yield of sugarcane. Farm price
received and labor wage rate in the previous year are negatively correlated to sugarcane yield.
An increase in expected price could lead to a change in rotation practice and expanding area under the
crop to marginal, low quality acres [32], which could decrease yield per ha. Furthermore, the reduction
in labor use was induced by an increase in wage rate. Finally, technological progress captured by the
variable Time trend affected sugarcane yields with a U-shape relationship. We used the estimated
coefficients of Time trend and its square term to calculate the rate of technological change to investigate
the role of technological progress on sugarcane yield. Our results revealed that sugarcane yield
increased 1.36% per year as a result of technological progress during 1992–2016 period.

3.1.2. Determinants of Harvested Area

We found that total rainfall non-linearly determined sugarcane harvested area with inverted U-shape
relationship. Its harvested area in the La Niña phase was higher than that in the neutral phase. We also
revealed that increases in the percent of irrigated area to total land area reduced sugarcane harvested
area because sugarcane usually grows in rainfed areas. Sugarcane growers could obtain a higher yield
or switch from sugarcane to other high-valued crops when they can access an irrigation system. Higher
population density reduced the sugarcane harvested area as found in previous studies [14] due to higher
demand of land for non-agricultural use. The one year-lagged labor wage rate positively correlated
to sugarcane harvested area. Increase in expected wage rate could lead farmers to substitute land for
labor and expand sugarcane acreage. Lastly, technological progress non-linearly affected the sugarcane
harvested area with an inverted U-shape relationship as shown in Table 3. Similar to Section 3.1.1,
we calculated the rate of technological change to investigate the role of technological progress on
harvested area and found that harvested area slightly dropped 0.000008% per year during the same
period implying that technological progress had little impact on the land use of sugarcane.
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Table 2. Determinants of yield.

Variables Coefficients Standard Errors

Time trend −1684.42 *** 278.09
Time trend_sq 127.56 *** 12.61

%Irrigated area per province area 100.52 *** 13.20
Average temperature 165,114.40 *** 22,821.98

Average temperature_sq −2942.43 *** 416.03
Total rain −37.08 *** 11.09

Total rain_sq 0.01 ** 0.01
Maximum rain in 24 h 274.62 ** 137.55

Extreme max. temperature −8592.73 *** 1012.81
El Niño −513.00 585.99
La Niña −2244.31 *** 622.67
North 4057.12 *** 1438.25

Northeast 5618.21 *** 1462.12
Southeast −12,246.34 *** 2241.63

East −3348.69 *** 1279.85
Lag price −645.31 *** 154.72
Lag wage −8765.63 *** 640.63
Constant −1.87 × 106 *** 312,248.60

Observations 1242
R-square_adj. 0.49

Root mean square error (MSE) 6747.97

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Table 3. Determinants of harvested area.

Variables Coefficients Standard Errors

Time trend 1.04 ** 0.51
Time trend_sq −0.05 ** 0.02

Population density −0.07 *** 0.02
%Irrigated area per province area −0.09 ** 0.05

Total rain 0.05 * 0.03
Total rain_sq −2.20 × 10−5 ** 9.45 × 10−6

Maximum rain in 24 h −0.44 0.43
Extreme max. temperature −0.43 2.78

El Niño −0.67 1.28
La Niña 7.65 *** 1.70
North −16.46 *** 3.72

Northeast −8.37 ** 3.88
Southeast −10.82 6.91

East −19.34 *** 4.09
Lag price 0.23 0.37
Lag wage 10.78 *** 2.91
Constant −36.04 95.16

Observations 1242
R-square_adj. 0.11

Root MSE 10.90

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

3.1.3. Improvement in Estimation

To check whether adding the new economic variables and our estimation method improved the
fitness of the model, we compared models with and without prices and wage variables and also models
with and without IVs and spatial regression. We revealed that our yield and harvested area models
that included price and wage variables and used the IV approach plus spatial regression had higher
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R2 values and lower root mean square error (RMSE) values than the models without prices and wage
variables (See Tables A2 and A3). While the ordinary least square (OLS) method provided the low
value of the root mean square error (see model 3 in Table A3) in the harvested area model, it did not
address the endogeneity problems from both spatial bias and omitted variables. We performed the
Moran’s I test and found the spatial autocorrelation in the model. These above evidences imply that
the method used in the current study improves the estimation of the models. Future research should
address the problem of endogeneity generated by spatial bias, simultaneity bias, and omitted variables
before performing the estimation.

3.2. Simulation of Climate Change Impacts on Production of Sugarcane

To project the impact of climate change on yield, harvested area, and production of sugarcane
during 2046–2055 from the baseline during 1992–2016, we obtained future climate projections including
growing season temperature, total precipitation, extreme maximum temperature, and maximum
precipitation within 24 h from IPCC AR5 [9]. Climate change scenarios RCP4.5 and RCP8.5 were
selected to investigate the variation of projected results. RCP8.5 captures rising radiative forcing
pathway leading to 8.5 W/m2 in 2100, while RCP4.5 is stabilized without the overshoot pathway to
4.5 W/m2 after 2100.

Figure 1 presents the regional projected changes in climate variables used in the model. Overall, we
observed that the Northeastern region is projected to have the highest increase in growing season
temperature and extreme maximum temperature from the baseline among other regions. Growing season
temperatures of sugarcane (January to December) are projected to increase ranging from 1.08–1.22 ◦C
and 1.48–1.68 ◦C under RCP4.5 and RCP8.5, respectively. Extreme maximum temperatures are also
projected to rise ranging from 1.21–1.55 ◦C and 1.61–1.86 ◦C under RCP4.5 and RCP8.5, respectively.
All regions are projected to have higher annual maximum precipitation within 24 h.
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Figure 1. Projected changes in temperature (Celsius) during 2046–2055 under Representative
Concentration Pathway (RCP)4.5 and RCP8.5 from the baseline during 1992–2016.

Since rainfall has high local variation, our study, unlike other studies in Thailand, used the latest
IPCC AR5 downscaled projections of total annual rainfall at the watershed level provided by the Office
of Natural Resources and Environmental Policy and Planning (ONEP). There are 25 watersheds in
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Thailand and Figure 2 reveals that the total amount of rainfall under RCP8.5 will be higher than the
total amount of rainfall under RCP4.5. Regions in the north, south, and upper section of northeast
were projected to have higher future rainfall than the baseline, while the opposite was found in some
provinces located in the lower-southern region. Unlike other studies, we obtained population statistics
from Ministry of Interior and the National Economic and Social Development Council (NESDC), and
then predicted future changes in population using the trend analysis with quadratic time trend and
then quantified the projected population density to reflect changes in socio-economic conditions as
shown in Figure 3. We observed that the population density was projected to increase in the central,
eastern and southern regions, while it was forecasted to drop in the northeastern and northern regions.

Figure 2. Projected changes in total annual rainfall (mm) during 2046–2055 under RCP 4.5 and RCP8.5
from baseline during 1992–2016.
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change of population density in 2046–2055 from baseline.
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After adding projections of climate and population density in estimated models from
Tables 2 and 3, we found that future yields, harvested area, and production were projected to drop in
all scenarios at the national level (Table 4). Future sugarcane yield was projected to drop 23.95% under
RCP4.5 and 33.26% under RCP8.5 from the baseline. In other words, it was predicted to decline 0.59%
and 0.87% per year during 1992–2016 period under RCP4.5 and RCP8.5, respectively. Although no
study has investigated the impact of climate change on sugarcane yield in Thailand, our results were
in line with findings in Brazil and Australia [24] and East Africa [30]. However, the magnitudes of
the yield investigated in our study were higher than those in previous studies, which may come from
the fact that a majority of sugarcane in Thailand has been grown in the rainfed area and the total
precipitation in the Northeastern region was projected to increase less than other regions.

Table 4. National projected changes in yield, harvested area, and production of sugarcane under RCPs
4.5 and 8.5 during 2046–2055 from baseline 1992–2016.

Sugarcane Baseline
Percent of Change

under RCP4.5
Percent of Change

under RCP8.5

Yield 61,360 (kg/ha) −23.95 −33.26
Harvested area 1078 (1000 ha) −1.29 −2.49

Production 66.17 (1000 MT) −24.94 −34.93

By incorporating the role of changes in socio-economic condition captured by population density,
we found that the harvested area of sugarcane was projected to slightly decline ranging from 1.29–2.49%
from the baseline consistent with the findings of Miao and colleagues [14], or about 0.03–0.05% per
year during 1992–2016. After multiplying projected sugarcane yield and its corresponding harvested
area, this study reveals that sugarcane production is forecasted to decrease between 24.94–34.93%
under two climate change scenarios from the baseline without CO2 fertilization effect. As Thailand
contributed 16.95% to the world’s sugar export market, climate change could reduce the amount of
sugar supplied to the world market.

Considering the distributional impacts of climate change at the provincial level, our findings
revealed the reduction in future yield of sugarcane in all provinces ranges from 12.23–30.53% under
RCP4.5 and 16.06–43.80% under RCP8.5 from the baseline, respectively as shown in Figure 4. The largest
drop in yield was found in the lower section of the country. Prachuap Khiri Khan, Chachoengsao, Chon
Buri, Rayong, and Nakhon Sawan were predicted to have the largest reduction. Mixed results were
revealed for the harvested area of sugarcane as shown in Figure 5. A majority of provinces located in
the northeastern and northern regions were projected to have an expansion of harvested area ranging
from 2.78–19.45% under RCP4.5 and 0.35–16.79% under RCP8.5. On the other hand, some provinces
located in the eastern and central regions were projected to face a reduction in harvested area with huge
variations across provinces ranging from 0.03–93.07% under RCP4.5 and 0.37–98.45% under RCP8.5.
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Figure 4. Projected percent changes in yield of sugarcane under climate change scenarios. (a) Baseline
yield (kg/ha); (b) percent of change in yield under RCP4.5; (c) percent of change in yield under RCP8.5.
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By multiplying yield and harvested area, we found that the sugarcane production was projected
to decline at the national level (Table 4) approximately 24.94% under RCP4.5 and 34.93% under
RCP8.5 from the baseline during 1992–2016, or equivalent to the declining of 0.62% and 0.92% per
year under RCP4.5 and RCP8.5, respectively. Sugarcane production was also predicted to drop in
all provinces implying that changes in yield dominated changes in harvested area as demonstrated
in Figure 6. The largest drop was predicted in the eastern and lower section of the central regions.
Production of the top five provinces (i.e., Kanchanaburi, Suphan Buri, Nakhon Sawan, Kamphaeng Phet,
and Nakhon Ratchasima), accounting for 39.30% of total sugarcane production, was projected to
decrease 20.13–26.65% under RCP4.5 and 30.35–38.09% under RCP8.5 from the baseline.– –
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Figure 6. Projected percent changes in sugarcane production under climate change scenarios.
(a) Baseline production (MT); (b) percent of change in production under RCP4.5; (c) percent of
change in production under RCP8.5

Considering the role of technological progress in sugarcane production discussed in
Sections 3.1.1 and 3.1.2, we may need to sustain the rate of technological progress on sugarcane
production at least 0.62–0.92% per year in Thailand to address the future impact of climate change.
A higher rate of technological progression on sugarcane production may be needed to fulfill the

14



Atmosphere 2020, 11, 408

demand of sugarcane-related products given the rising population in the world, which is projected to
reach 9.73 billion by 2050 [33].

In addition to Thailand, sugarcane producing countries should be aware of climate change
impacts since previous studies also predicted a decline in sugarcane yield induced by climate change.
For example, Singels et al. [24] projected the decline of sugarcane production in the rainfed area of
Piracicaba (Brazil) and in the irrigated area of Ayr (Australia). Moreover, Adhikari, Nejadhashemi,
and Woznicki [29] predicted a drop in sugarcane production in East Africa. Recent drought during
the 2019/2020 season also caused a large fall of sugarcane production in India and Thailand [34].
Since India, Brazil, Thailand, and Australia are major sugarcane producing countries, climate change
could also cause fluctuation in the world’s markets of sugar, biofuel, and related sugarcane products.
Importing and exporting countries plus traders of sugarcane-related products should consider the
impact of climate change on sugarcane production in future planning.

4. Conclusions

The objectives of this study were to predict the impacts of climate change on yield, harvested
area, and production of sugarcane in Thailand using spatial regression with the instrumental variable.
A provincial-level panel dataset during 1989–2016 was constructed with downscaled climate projections
under RCP4.5 and RCP8.5 from IPCC AR5 as well as projections of provincial-level future populations
under a moderate fertility rate. Our results provide important implications on the well-being of almost
one million sugarcane growers in Thailand and the vulnerability of sugar supplied in the world market
as Thailand is ranked as the second largest exporter of sugar in the world market. The backward
and forward linkage industries also could be affected by the vulnerability of sugarcane production.
Several new contributions to climate change related sugarcane production were added.

For the determinants of crop yields, we found that in general climate variables, both mean and
variability, statistically determined yields. In addition to climate variables, increased population density
also reduced the harvested area for non-agricultural use. Technological progress also statistically
determined yields with a non-linear effect. Input and output prices also affected production.
Our simulated results demonstrate that sugarcane yield is projected to drop 23.95–33.26% from
the baseline with the largest drop in the lower section of Thailand. The harvested area of sugarcane is
projected to decline 1.29–2.49% from the baseline with expansion in the northeastern and northern
regions and reduction in some provinces located in the eastern and central regions. Moreover, sugarcane
production is forecasted to decrease 24.94–34.93% from the baseline with the largest drop in the Eastern
and lower section of the central regions. As a result, the amount of sugar exported to the world could
reduce approximately 2.49–3.49% and the standard of living of sugarcane growers could be diminished.
To address the impact of climate change, the rate of technological progress on sugarcane production
may need to increase at least 0.62–0.92% per year.

Several policy implications can be drawn from our findings. First, it is recommended that policy
makers should raise awareness to farmers and private sectors on the serious effects of climate change
on sugarcane production in predicted vulnerable areas, especially provinces in the eastern and central
regions of Thailand. Second, to effectively reduce the impacts of climate change, the government
should support the development of proper farm practices (e.g., moisture management, and soil
and water conservation), crop insurance programs, and infrastructure (i.e., irrigation systems) to
support the adaptation of farmers. Third, agricultural research and development should emphasize
the development of heat-resistant species for sugarcane to sustainably adapt to the future warming
world. Fourth, governments should promote research to quantify the impacts of climate change on
sugarcane production at the finer scales (i.e., tambon and household level) to improve the accuracy
of the projections and encourage researchers to analyze the climate change impacts on other crops,
livestock, and fisheries. In addition, it is recommended to support the database development for
climate change analysis in Thailand because one of the challenging problems of doing climate change
research is the lack of a complete database. Last but not least, importing and exporting countries
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as well as traders of sugarcane-related products should consider the impact of climate change on
sugarcane production in their future planning.
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Appendix A

Table A1. Weighted least square regression of climate variables of July 2016 in Nakon Sawan Province.

Average
Temperature

Total Rain
Maximum Rain

in 24 h
Extreme Max.
Temperature

Latitude 14.5154 *** 737.2921 * −449.4323 *** −80.9482 ***
(2.1368) (433.2796) (127.9690) (24.2753)

Latitude_sq 0.0442 ** 9.0523 ** 8.9787 *** 0.2565
(0.0174) (3.5243) (1.0409) (0.1577)

Longitude 19.5990 *** −9188.7530 *** −296.0857 −204.6332 ***
(6.4092) (1299.5850) (383.8320) (39.7748)

Longitude_sq −0.0860 *** 46.8822 *** 1.4239 0.9611 ***
(0.0316) (6.4126) (1.8939) (0.1910)

Latitude *
Longitude

−0.1616 *** −9.2311 ** 1.9145 * 0.7447 ***

(0.0184) (3.7253) (1.1003) (0.2413)
Height −0.3509 *** 61.0837 *** 16.6274 *** −0.6956

(0.0385) (7.7988) (2.3034) (0.4141)
Height_sq 0.0000 0.0021 *** 0.0002 * 0.0000 *

(0.0000) (0.0006) (0.0002) (0.0000)
Height_ * Latitude 0.0030 *** −0.7504 *** −0.2224 *** –0.0109 **

(0.0003) (0.0695) (0.0205) (0.0051)
Height *

Longitude
0.0030 *** −0.5090 *** −0.1332 *** 0.0082 *

(0.0003) (0.0672) (0.0198) (0.0043)
Constant −1056.2490 *** 451,024.7000 *** 17,267.2400 10,929.9900 ***

(325.1456) (65,928.9500) (19,472.1000) (2084.0220)

R-squared 0.9140 0.5537 0.5219 0.6409

Predicted value 28.29712 *** 205.7859 *** 53.06985 *** 35.87393 ***
0.0141769 2.874609 0.8490152 0.131078

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively, and standard errors are reported
in parentheses.
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Table A2. Comparison of yield models with and without price and wage variables.

1.
Existing Model

(IV and Spatial Regression with
Price and Wage Variables)

2.
IV and Spatial Regression

without Price and
Wage Variables

3.
OLS without Price

and Wage Variables

Variables Coefficients Coefficients Coefficients

Time trend −1684.42 *** 197.8 61.32
Time trend_sq 127.56 *** 26.60 *** 35.07 ***

%Irrigated area per province area 100.52 *** 110.9 *** 115.8 ***
Average temperature 165,114.40 *** 112,887 *** 81,758 ***

Average temperature_sq −2942.43 *** −2024 *** −1422 ***
Total rain −37.08 *** −8.485 −6.193

Total rain_sq 0.01 ** 0.00195 0.0016
Maximum rain in 24 h 274.62 ** −198.2 −366.5 ***

Extreme max. temperature −8592.73 *** −9363 *** −11,825 ***
El Niño −513.00 190.1 247.6
La Niña −2244.31 *** 389.2 715.1 **
North 4057.12 *** 4386 *** 6610 ***

Northeast 5618.21 *** 6250 *** 8975 ***
Southeast −12,246.34 *** −10,585 *** −13,390 ***

East −3348.69 *** −2834 ** −3860
Lag price −645.31 *** - -
Lag wage −8765.63 *** - -
Constant −1.87 × 106 *** −1.18 × 106 *** −687,863 ***

Observations 1242 1242 1242
R-square_adj. 0.49 0.40 0.427

Root MSE 6747.97 7534.01 7562.85

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Table A3. Comparison of harvested area models with and without price and wage variables.

Harvested Area

1.
Existing Model

(IV and Spatial Regression
with Price and Wage Variables)

2.
IV and Spatial Regression

without Price and
Wage Variables

3.
OLS without Price

and Wage Variables

Variables Coefficients Coefficients Coefficients

Time Trend 1.04 ** −0.528 0.249
Time Trend_sq −0.05 ** 0.0411 *** 0.0134 *

Population density −0.07 *** −0.0396 ** −0.278 ***
%Irrigated area per province area −0.09 ** −0.144 *** −0.038

Total rain 0.05 * 0.0172 −0.0347 **
Total rain_sq −2.20 × 10−5 ** −1.30 × 10−5 1.06 × 10−5 **

Maximum rain in 24 h −0.44 0.338 0.204
Extreme max. temperature −0.43 2.907 * 0.798

El Niño −0.67 −0.551 1.407 ***
La Niña 7.65 *** 3.354 ** 0.0332
North −16.46 *** −17.38 *** −40.50 ***

Northeast −8.37 ** −11.59 *** −26.06 *
Southeast −10.82 −7.51 −51.39 ***

East −19.34 *** −18.42 *** −35.15 **
Lag price 0.23 - -
Lag wage 10.78 *** - -
Constant −36.04 −75.65 68.21 **

Observations 1242 1242 1242
R-square_adj. 0.11 0.09 0.0965

Root MSE 10.90 10.92 10.310

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
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Abstract: Higher temperature conditions during the final stages of rice seed development (seed filling
and maturation) are known to cause damage to both rice yield and rice kernel quality. The western
and central parts of Japan especially have seen record high temperatures during the past decade,
resulting in the decrease of rice kernel quality. In this study, we looked at the rice harvested from a
town in the central Kanto-plains (Japan) in 2010. The daytime temperatures were above the critical
limits ranging from 34 to 38 ◦C at the final stages of seed development and maturity allowing us
to investigate high-temperature effects in the actual field condition. Three sets of dry mature rice
seeds (commercial), each with specific quality standards, were obtained from Japan Agriculture (JA
Zen-Noh) branch in Ami-town of Ibaraki Prefecture in September 2010: grade 1 (top quality, labeled as
Y1), grade 2 (medium quality, labeled as Y2), and grade 3 (out-of-grade or low quality, labeled as Y3).
The research objective was to examine particular alterations in genome-wide gene expression in grade
2 (Y2) and grade 3 (Y3) seeds compared to grade 1 (Y1). We followed the high-temperature spike
using a high-throughput omics-approach DNA microarray (Agilent 4 × 44 K rice oligo DNA chip) in
conjunction with MapMan bioinformatics analysis. As expected, rice seed quality analysis revealed
low quality in Y3 > Y2 over Y1 in taste, amylose, protein, and fatty acid degree, but not in water
content. Differentially expressed gene (DEG) analysis from the transcriptomic profiling data revealed
that there are more than one hundred upregulated (124 and 373) and downregulated (106 and 129)
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genes in Y2 (grade 2 rice seed) and Y3 (grade 3 rice seed), respectively. Bioinformatic analysis of DEGs
selected as highly regulated differentially expressed (HRDE) genes revealed changes in function
of genes related to metabolism, defense/stress response, fatty acid biosynthesis, and hormones.
This research provides, for the first time, the seed transcriptome profile for the classified low grades
(grade 2, and out-of-grade; i.e., grade 3) of rice under high-temperature stress condition.

Keywords: rice; heat stress; whole genome DNA microarray; yield loss; MapMan analysis; HRDE

1. Introduction

With the rise in mean global temperatures, the earth’s biosphere is warming up gradually.
According to the statistics of the North American Space Agency’s (NASA) earth observatory data,
the average global temperature increased above 1 ◦C since the year 1880 [1]. In the next 100 years,
the surface temperatures are expected to rise between 2 ◦C to 6 ◦C if greenhouse gas emissions continue.
This is a serious threat for our future generations as it directly influences the habitable conditions—both
flora and fauna. A rise in temperature induces heat stress and seriously affects plants, which play a key
role in providing food, oxygen, and shelter to several species of fauna including humans. Moreover,
its effects on the productivity of food crops will result in a food crisis for the growing population [2].
Recently, Zhao et al. (2017) [3] estimated that for every one-degree rise in global temperature, yields
of food crops like wheat, rice, maize, and soybean will be reduced by 6%, 3.2%, 7.4%, and 3.1%,
respectively [3]. Therefore, there is a grave need to understand the effects of increasing temperatures
and the biological responses induced in food crops, to address challenges in developing next-generation
crops [2,3].

Heat stress damages both physiological and molecular level mechanisms in plants [4–7].
Major damages include scorching and abscission of leaves, shoot and stems, fruit/seed damage,
reduced photosynthesis, seed germination, increase in reactive oxygen species (ROS), and osmotic
stress [5,6,8–11]. Furthermore, the ROS accumulated during heat stress damages molecular components
by inducing oxidative stress [12,13]. For example, the formation of hydroxyl radicle could induce
irreversible DNA single-strand breaks, peroxidation of lipids, protein proteolysis, and damage of
photosynthesis system II [14–16]. In addition, hydrogen peroxide (H2O2) formed during heat stress
could alter the balance between starch biosynthesis and degradation mechanisms by upregulation of
starch degradation and downregulation of the biosynthesis genes. Additionally, plants also develop
heat-tolerance by responding to heat stress by altering their gene expression and synthesizing specific
heat shock proteins (HSPs), transporters, and enzymes.

Rice (Oryza sativa), being one of the top three food crops produced and consumed by nearly 3.5
billion people around the world, has been well studied for its yield and quality with respect to changes
in global temperatures. According to the Food and Agriculture Organization (FAO) of the United
Nations, Asia is the largest producer of rice in the world (nearly 90%). The average rice production
statistics between 1994–2018 show that China and India stand as the top two producers (193 and
140 million tons respectively), while Japan is ranked 10th (11 million tons) in the world. Japan is
also the 13th largest consumer of rice in the world as of 2018. In Japan, as rice is a primary staple
food crop with high socio-economic importance, any reduction in yield and damage to the quality
of the grain is a serious issue. The decrease in rice productivity is generally due to reduced pollen
germination and in turn, affects the spikelet fertility and yield [17–21]. Moreover, spikelet sterility
occurs when air temperature reaches a threshold limit of 35 ◦C during flowering time [22]. For example,
in 2007, the Kanto and Tokaido regions of Japan faced a marked rise in temperatures to 40 ◦C during
the summer months. The samples collected in this region showed high rates of spikelet fertility
damages [19]. In addition to high-temperature injury in grain productivity, it also affects the quality of
rice. For example, if rice crops are exposed to high temperatures during the first two weeks after an
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early emergence, the rice grain turns into immature kernels with white portions [23–26]. A decade
back, high proportions of first-grade rice kernel were produced in the warmer regions (west Japan)
like Kyushu, while production was lower in northern regions of Japan (like Tohoku and Hokkaido),
due to cold damage. However, in the past years, the rice crop quality from North to West Japan has
been completely reversed due to climatic changes [18]. In the year 2010, the average temperature
across Japan approached 28 ◦C to 29 ◦C, as compared to normal day temperatures (26 ◦C). That year
recorded the hottest summer (June-September 2010) ever experienced with day temperatures ranging
between 35 ◦C to 38 ◦C in East, South, Central, and West regions of Japan. On average, the daytime
temperatures were nearly 1.8 and 2 ◦C above normal in August. An exposure to such anomalies in
temperature for a couple of hours is enough to induce spikelet sterility and reduce crop productivity in
rice. As such these conditions during 2010 resulted in producing milky white kernels in the first-grade
rice kernel crop, and, therefore reduced their production throughout Japan (Figure 1). This grain
chalkiness is due to the induced production of starch hydrolyzing enzymes (α-amylases) as a result of
high temperatures [27–30].

  

 3 

α

Figure 1. Temporal change in the proportion of first grade rice kernel in Northern Japan and Western
Japan. This figure, created based on Ministry of Agriculture, Forestry and Fisheries data, has been
obtained with permission from Prof. Shunji Ohta, Faculty of Human Sciences, Waseda University-Recent
Impacts of Climatic Extreme Events on Everyday Food in Japan: The Need for an Adaptation Strategy
for Climate Change [31].

It was observed that the productivity and quality of rice also depend on its variety along with
the temperature. However, no studies were reported on how different varieties of the same cultivar
respond to heat stress in the open field conditions. Especially in Japan, Koshihikari is a highly grown
rice cultivar/variety for the past few decades, and also is the most widely affected variety due to climate
changes in recent years. Understanding the importance of this cultivar in Japan, the current study
focuses on exploring transcriptome level differences under heat stress between grades 1, 2, and 3
(labeled as Y1, Y2, and Y3 for the purpose of the experiment) of the Koshihikari rice variety. Each grade
of rice is categorized by Japan’s National Food Agency (NFA) based on the grain’s physiological
characteristics like weight per volume, moisture content, appearance, region in which it was grown,
etc., which determine its quality [32]. For this open field sample, sampling was done from a region in
East Japan (Kanto-plains) during the high-temperature season of the year 2010, and included three
different grades of rice. The seed samples were analyzed for genome-wide gene expression (DNA
microarray technique) and compared using bioinformatic techniques for identifying differentially
expressed genes (DEG).

2. Results and Discussion

2.1. Koshihikari Rice Seed Quality in Grades 1 to 3

The seed quality was tested based on quality criteria like taste value, percentage of amylase,
protein, water content, and fatty acid degree in the rice seed (Table 1). Grade 1 (Y1) Koshihikari rice is
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identified to have a high taste value of 86. Compared to Y1, grade 2 (Y2) and grade 3 (Y3) are relatively
less tasty by 5 to 3 points as determined by professional analysis. In addition, the Y2 and Y3 grains
have a high percentage of amylose and water content in comparison to Y1, indicating sticky and chalky
rice. In general, lower amylose content means lower chalkiness of the grains, resulting in harder
rice. Low water content indicates lower moisture levels which in turn produce less sticky rice after
cooking [33,34]. Quality of rice also depends on its aroma and flavor. The surface lipids of grains form
free fatty acids as they undergo hydrolysis during storage of the grain. The free fatty acids formed in
this way are susceptible to oxidation and eventual formation of hydrocarbons such as aldehydes and
ketones, which give a foul odor to the seeds [35,36]. Y1 was found to have a lesser degree (15.5) of
unsaturated fatty acids in comparison to Y2 (17) and Y3 (20), indicating the presence of good aroma
with grade 1. The overall grain quality analysis clearly indicated that under extreme temperatures,
the grain quality is affected more (to negative values) in Y3 followed by Y2, and is least affected in Y1
(Grade 1).

Table 1. Rice grain (cv. Koshihikari * seed) quality analyses **.

Components 1st Grade 2nd Grade Out of Grade (3rd)

Taste Value (point) 86 *** 81 83

Amylose (%) 17.9 18.5 18.2 ****

Protein (%) 6.6 7.5 7.6 *****

Water Content (%) 14.1 14.4 14.3

Fatty Acid Degree (mg/100 g) 15.5 17.0 20.0 ******

* Rice seeds, grades 1 to 3 were obtained from JA (Japan Agriculture). ** Analyses were done by rice analyzer
(SATAKE, Japan). *** Above 85 is very good taste, as determined by a professional taster. **** Categorized as not so
sticky. ***** Categorized as hard rice. ****** Higher the degree, increased oxidation of fatty acids.

2.2. Investigation of the Koshihikari Rice Seed Transcriptomes in Grades 2 and 3

This work looks at differences in transcripts accumulated in the dried endosperm after the
maturation process. From the analysis of DEGs in Y3 and Y2 in comparison to Y1, a greater number
of DEGs were observed in Y3 (502 genes) than Y2 (230 genes), as shown in Figure 2. Individually,
a total of 373 upregulated and 129 downregulated genes were observed in Y3 while Y2 resulted in
124 and 106 up and downregulated genes, respectively. Among all the DEGs in grades Y3 and Y2,
similar expression patterns were also observed for a few common genes present in both grades. In this
category, there are nearly 59 upregulated genes and 33 downregulated genes.
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Components 1st Grade 2nd Grade Out of Grade (3rd) 
Taste Value (point) 86*** 81 83 
Amylose (%) 17.9 18.5 18.2**** 
Protein (%) 6.6 7.5 7.6***** 
Water Content (%) 14.1 14.4 14.3 
Fatty Acid Degree (mg/100 g) 15.5 17.0  20.0****** 
*Rice seeds, grades 1 to 3 were obtained from JA (Japan Agriculture). 
**Analyses were done by rice analyzer (SATAKE, Japan). 
***Above 85 is very good taste, as determined by a professional taster. 
****Categorized as not so sticky. 
*****Categorized as hard rice. 
******Higher the degree, increased oxidation of fatty acids. 

 

 

 

 

 

 

 

Figure 2. Figure indicating the differentially expressed genes (DEGs) in Y2 and Y3.
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2.3. MapMan Analysis of Koshihikari Rice Seed Differentially Expressed Genes in Grades 2 and 3

In order to visualize the DEGs that are involved in key pathways, a total of 42,560 Rice Japonica
genes were plotted against the pathway maps of the Mapman tool. Among all the genes, DEGs with
high fold changes were selected for the analysis, as discussed in methods for Mapman analysis.
From the fold change cut-off threshold, a total of 161 and 490 highly regulated differentially expressed
(HRDE) genes for each Y2 and Y3 were identified. Among these, 92 genes are common for both grades.
A total of 68 and 398 genes are unique for Y2 and Y3, respectively resulting in a total of 560 HRDEs for
both. An overview of these HRDEs in Y1-Y2 and Y1-Y3, and the related 36 pathway bins, are shown in
(Figure 3A,B). Results clearly indicate that the highest fraction of the gene regulation occurred in 16, 17,
20, 26, 27, 28, 29, 30, 33, and 34 Mapman bins. The number of genes associated with each bin, specific
to each pathway, is listed in supplementary Table S1. These bins are related to secondary metabolism,
hormone metabolism, stress response, miscellaneous enzyme families, RNA, DNA, protein, signaling,
development, and transport. In addition, bin 35 has the most differentially expressed genes; however,
these genes are without any functional annotation.

  

 5 

Figure 3. Mapman Bins for functional categorization of high temperature-responsive genes in (A) Y2:
grade 2 Koshihikari rice seed and (B) Y3: grade 3 Koshihikari rice seed. Non-redundant 640 genes
which expression are changed over 2-fold in the seeds of both grades 2 (Y2) and 3 (Y3) were functionally
categorized into MapMan bins as described in Materials and Methods. The heat map with grid boxes
shows the genes (blue, upregulated; red, downregulated) in each BIN for each grade seeds. Number
of genes associated to each bin is listed in supplementary Table S1. The 36 BINS abbreviations: PS,
photosynthesis; maCHO, major carbohydrate metabolism; miCHO, minor carbohydrate metabolism;
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G, glycolysis; FM, fermentation; GL/GC, gluconeogenese/glyoxlate cycle; OPP, oxidative pentose
phosphate; TCA/OT, tricarboxylic acid/organic acid transformations; MET/ATPs, mitochondrial electron
transport/adenosine triphosphate; CW, cell wall; L, lipid metabolism; N-, nitrogen metabolism; AA,
amino acid metabolism; S-A, sulfur assimilation; MH, metal handling; S, secondary metabolism; H,
hormone metabolism; Co-F/V, co-factor and vitamin metabolism; TS, tetrapyrrole synthesis; ST, stress;
RR, redox regulation; P, polyamine metabolism; N, nucleotide metabolism; BioDX, biodegradation of
xenobiotics; C1, C1-metabolism; MISC, miscellaneous; RNA, ribonucleic acid; DNA, deoxyribonucleic
acid; PR, protein; SIG, signaling; C, cell; mRNA, messenger RNA; D, development; T, transport; NA,
not assigned; MN, mineral nutrition.

The overall expression profile indicates that stress response genes (bin 20) are strongly regulated
in both Y2 and Y3. Y3 exhibited a larger number of strongly upregulated genes in comparison to Y2.
Further, the differential gene expression patterns of Y2 and Y3 in three major processes, namely cell
function, metabolism, and abiotic-biotic stress (Figures 4–6) were explored.

  

 6 

Figure 4. A cell function map of highly regulated differentially expressed (HRDE) genes that are
categorized based on various functions, generated using Mapman. (A) Map for HRDE genes related to
Koshihikari rice grade Y2. (B) Map for HRDE genes related to Koshihikari rice grade Y3. Blue and red
colored data points indicated highly up or downregulated genes. Numbering for each data point on
the figure was given in left to right order to identify relevant gene information from supplementary
Table S2. These numbers represent serial numbers for the genes in the supplementary table accordingly.

26



Atmosphere 2020, 11, 528

  

 7 

Figure 5. A metabolism overview map of highly regulated differentially expressed (HRDE) genes that
are categorized into various metabolic pathways generated using Mapman. (A) Map for HRDE genes
related to Koshihikari rice grade Y2. (B) Map for HRDE genes related to Koshihikari rice grade Y3.
Numbering for each data point on the figure was given in left to right order to identify relevant gene
information from supplementary Table S3. These numbers represent serial numbers for the genes in the
supplementary table accordingly. Expression of specific genes of interest like PME, cellulose synthases,
pectin lyases, XET, raffinose synthase, TAG lipases, DGK, Omega-6-desaturases, SPT2, amylase and
Susy family genes can be observed in Y2(1, 3), Y3(6), Y3(7, 8), Y3(4), Y3(2), Y2(2), Y3(9), Y3(12, 13, 14),
Y3 (10), respectively.
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Figure 6. An abiotic-biotic map of differentially expressed genes that are categorized into abiotic and
biotic stress-responsive pathways generated using Mapman. (A) Map for HRDE genes related to
Koshihikari rice grade Y2. (B) Map for HRDE genes related to Koshihikari rice grade Y3. Numbering for
each data point on the figure was given in left to right order to identify relevant gene information from
supplementary Table S4. These numbers represent serial numbers for the genes in the supplementary
table accordingly. Expression of specific genes of interest like sHsp, MYB4, DREB1/CBF, ERF, OsWRKY,
GGPS, anthocyanins, and flavonoid biosynthesis, COMT, laccasses, OsSAUR, FIP1, lipoxygenase2 and
OPR family genes can be observed in Y3(115/138), Y2/Y3(35/114), Y3(101, 102), Y3(98), Y3(110-112),
Y2(41),Y3(133-135), Y3(178,179), Y2/Y3(47/186), Y2/Y3(1), Y2/Y3(2,3/2,3,4,5), Y2/Y3 (4/10) and Y2/Y2
(5/11,12) grid boxes, respectively. Y2/Y3 represents similar genes detected in both Y2 and Y3.

For each of the above pathway maps, a total of 15, 151 and 46 HRDE genes of Y2 and 53, 457
and 152 HRDE genes of Y3, were mapped as data points. All these genes are listed in supplementary
Tables S2–S4, along with their bin-numbers and functions. For the cell function, metabolism-overview
and biotic-abiotic stress pathway maps (Figures 4–6), the numbering for each data point was given
in left to right order to identify relevant gene information from supplementary Tables S2–S4. Serial
numbers for the genes in the supplementary tables were numbered accordingly. Overall mapping
results indicate that around 650 genes related to various cellular functions were differentially regulated
in both Y2 and Y3, respectively (Figure 4, supplementary Table S2). Y2 appears to respond specifically
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by down regulation of genes in biotic-abiotic stress, transcription, RNA processing, protein degradation,
hormones and regulation. While Y3 exhibited quite opposite response by upregulation of genes in
respective mechanisms, with few downregulated genes. Genes related to protein modification are
downregulated in both Y2 and Y3.

Specifically, from the metabolic-overview map (Figure 5), results indicate that highly up-,
or downregulated genes are mainly related to cell wall, lipid, starch, and secondary metabolic pathways.
In Y2, very few genes were differentially regulated (7 downregulated and 8 upregulated). Among
these, genes related to cell wall remodeling proteins (pectin methyl esterase’s- PMEs), sucrose synthase,
triacylglycerol (TAG) lipase, phosphotase synthase and a few secondary metabolism-related genes
(tyrosine decarboxylate, terpene cyclase, isoflavonoid reductase) were highly downregulated. On the
other hand, Y3 data showed upregulation of cell wall modification proteins like transglucosylases
(XET), diacylglycerol kinases, omega-6 fatty acid desaturases, male sterility proteins, α-amylase
isozymes, rubisco interacting proteins, mitochondrial electron-transport proteins (transposons) and
many proteins related to secondary metabolites (terpenes, flavonoids, and phenolics) (Supplementary
Table S3). Out of both Y2 and Y3, commonly upregulated metabolic pathways were related to starch,
chitinase, phenylpropanoids and phenolics, and aromatic amino acid synthases. While the commonly
downregulated genes are related to PME and sucrose synthase.

On the other hand, among the cellular functions, the biotic and abiotic stress responses are
the major events during heat stress. Y2 exhibited downregulation of genes related to auxins,
jasmonic acid (JA), lipoxygense, PME, proteases, peroxidases, protein kinases, ATP binding proteins,
signaling G-proteins, calcium ion binding proteins and abiotic stress-related germin like proteins
(Figure 6). On the other hand, Y3 showed more upregulated genes especially related to glucanase,
proteolysis, peroxidases, glutathione-S-transferases, signaling, transcription factors (TFs), HSPs,
secondary metabolites, and abiotic stress responses. Despite heat stress, in Y2 there were no genes
related to ethylene, HSP, and TFs like b-zip that crossed the threshold set for detection of HRDE genes,
in our two-color dye-swap DNA microarray strategy. There are genes with a 1-fold upregulation which
are not considered as the threshold is set to 2. So, there is a minimal level of gene expression in Y2
indicating that it is not as sensitive as Y3 to heat stress.

2.4. High Temperature-Triggered Regulatory Events in Koshihikari Rice Seeds of Grades 2 and 3

Overall results indicated that the effect of high temperature on Koshihikari rice of grades 2 and 3
is quite different. Most of the genes were downregulated in Y2 type, while Y3 exhibited upregulation.

2.4.1. Cell Wall Damage Repair

Initial response to heat shock is observed in cell wall remodeling proteins like PMEs and XETs.
PMEs are involved in regulating cell wall plasticity, porosity, and modulation of Ca2+ ion channels [37],
while XETs are involved in secondary cell wall strengthening [38,39]. The regulation of XETs and PMEs
under heat shock is previously observed in rice, Arabidopsis, and many plant varieties [38,40,41]. During
heat stress, Y2 and Y3 exhibited down regulation of PMEs genes Os09g37360.1 and Os04g46740.1,
respectively. In addition, Y3 alone shows downregulation of genes related to cellulose synthesis
(Os02g09930.1) and pectin lyases (Os10g26940.1 and Os02g15690.1), while upregulation of XET gene
(Os06g22919.2) indicating cell wall response in Y3 is more sensitive to heat shock. An upregulation
of the raffinose synthase gene (Os08g38710.1) in Y3, which prevents plants from oxidative stress
damage [42–44], was also observed. Besides, the pectinase activity upregulation of cellulases like
endo-glucosidase, prominently in Y3 can be seen (supplementary Table S3, Metabolism overview;
and Figure 5).

2.4.2. Lipid Remodelling

The lipid signaling is another key process involved in abiotic stress responses by the plants.
In Y2, there is no more than one gene related to lipid mechanism which was identified as the HRDE
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gene. This gene (Os08g04800.1) codes for a TAG lipase protein and is related to lipid degradation.
TAG lipase was found to be strongly downregulated (−1.63). TAG lipases de-esterify fatty acids from
TAG (accumulated in lipid bodies) or plastglobular lipids and are generally accumulated during seed
germination [45]. TAG lipases are observed to be accumulated under heat stress in Arabidopsis [45,46];
however, the current data shows the opposite result. It is to be noted that rice and Arabidopsis are
different, and therefore, the same gene could have unique functions in different plants and tissues.
On the other hand, in Y3 there were no genes related to TAG lipases identified as HRDEs. However,
the same gene was found in Y3 with very minimal (three times less than Y2) downregulation (not
HRDE). This indicated that in this case, strong downregulation of TAG lipases could be common in
Koshihikari as this is a DEG analysis in comparison to Y1 also. So, the result in Y3 indicates that Y3
might have started the accumulation of this gene under heat stress.

Furthermore, the genes related to diacyl-glycerol kinases (DGK), phospholipid synthesis,
sphingolipid transferases, and fatty acid omega 6 desaturases were strongly upregulated in Y3
(supplementary Table S3, Metabolism overview; and Figure 5). In general, DGKs are involved in
phosphatidic acid (PA) synthesis as well as sphingo-lipid synthesis. The PA produced by the mediation
of DGKs has a positive regulatory impact on sphingo-lipid kinases and a negative effect on abscisic acid
synthesis pathways [47]. PA is also involved in the growth and development of plant root hair and also
functions as membrane-localized signal to recruit specific proteins and change their activity [48–50].
Therefore, by upregulation of this DGK specific gene (Os04g54200.1), Y3 is preparing for abiotic stress
due to increased temperatures.

The fatty acid desaturases, on the other hand, are involved in maintaining membrane fluidity
and are usually upregulated under low-temperature stress. However, studies also identified that
high temperatures also enhance desaturases involved in the eukaryotic pathway [51]. In the current
work upregulation of omega-6-desturases (Os07g23410.2, Os07g23430.1, Os02g48560.5) FAD2 and
FAD3 related genes was observed. This clearly indicates a remodeling of fatty acids in endoplasmic
reticulum [52]. In addition, the FAD2 gene was also found to be downregulated. This could be possibly
due to a stop in the FA 18:1 synthesis from plastids [53,54].

Sphingo-lipids, on the other hand, also play an essential role in preventing plants from heat
stress. Therefore, the data were screened for any changes in Sphingo-lipid genes and resulted in
the identification of an upregulated of serine palmitoyl transferase 2 (SPT2) (Os01g70370.1) in Y3.
This enzyme is involved in de novo synthesis of sphiganine and di-hydro shpinganine to form
sphingo-lipids and ceramides. The ceramides further induce at least one heat shock protein-like
αβ-crystallin upon heat stress [55]. In accordance with this, an upregulation of “α-crystallin-Hsps
IbpA,” a small Hsp (sHsp) related gene (Os02g48140.1) was also observed (Supplementary Table S4,
Aiotic-Biotic stress; Figure 6). The SPT2 enzyme is known to play a key role in the male gametophyte
development in Arabidopsis [56]. Upregulation of SPT2 might be a heat shock recovery mechanism in
order to prevent gametophyte damage.

2.4.3. Transcription Factor Activation

Besides differential expression of major genes involved in the metabolic process, several changes
in the TF genes related to abiotic-stress responses were also observed. Specifically, in both Y2 and
Y3 the MYB and bZIP TF’s were downregulated while upregulation of AP2/ERF and OsWRKY was
observed only in Y3 (Supplementary Table S4, Aiotic-Biotic stress; Figure 6). MYB4 TF-related gene
(Os09g36730.1) was downregulated in both Y2 and Y3. Recent studies in Arabidopsis have indicated
that upregulation of MYB4 TFs induce the biosynthesis of secondary metabolites (hydroxycinnamate
esters) that in turn increase UV-B hypersensitivity in plants [57,58]. Downregulation of these MYB4
TFs in Y2 and Y3 indicate increased tolerance to UV-B radiation. AP2/ERF TFs were upregulated in Y3
alone. The AP2/ERF (APETALA2/ethylene response factor) TF’s are one of the most important groups
in plants that help in the stress defense mechanism [59]. These TF’s induce a set of abiotic stress-related
genes. In this study, AP2/ERF family proteins like dehydration-responsive element-binding protein
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(DREB1/CBF) (Os09g35020.1 and Os09g35010.1) and ethylene-responsive element-binding factor (ERF)
(Os04g46220) were upregulated in Y3. These genes were known to play a key role in ABA independent
stress tolerance, especially related to osmotic stress [60,61]. The other major class of TFs identified in
this study is the OsWRKY TFs. The WRKY TF’s are well known for their roles in the regulation of
plant growth, development and apoptosis, and responses to biotic and abiotic stresses [62]. There are
74 and 109 WRKY members in each of Arabidopsis and rice genome, respectively [63,64]. In the
current analysis, especially in Y3, an upregulation of OsWRKY genes 24, 28, 45, and 49 (Os01g61080.1,
Os06g44010.1, Os05g25770.1, Os05g49100.1), and downregulation of OsWRKY24 (Os07g02060.1) was
observed. However, no such specific responses were observed in Y2. Among these, the OsWRKY28
and OsWRKY45 were well studied. OsWRKY28 known to be highly responsive to As(V) and regulation
of As(V)/Pi uptake or tolerance in rice [65]. In addition, Cai et al. (2014) showed that OsWRKY28
rice mutants resulted in various disorders like downregulation of JA biosynthesis genes in the shoots,
irregular spikelet development, altered flower closing, and anther dehiscence and eventually resulting
in lower fertility [66]. In the current study, JA gene expression was observed to decrease in Y2 while
OsWRKY28 is not differentially regulated. On the other hand, in Y3, upregulation of OsWRKY28
along with JA biosynthesis genes is seen. In addition, JA is also known to regulate OsWRKY45 gene
expression [67]. The OsWRKY45 family is also known to participate in ABA and salt stress signaling [68].
Therefore, it is obvious from our study that the expression of OsWRKY28, JA, and OsWRKY45 are
linked to each other. This clearly indicates that Y3 might be moving towards heat stress damage
recovery by overexpressing these TFs and in turn producing stress-responsive hormones.

2.4.4. Secondary Metabolites

Secondary metabolites are produced by plants through several metabolic pathways to support
their survival in the environment. Some of the most commonly studied secondary metabolites are
alkaloids, flavonoids, and terpenoids. Most plants regulate synthesis of these compounds for their
survival based on the environmental conditions. Among most environmental factors, temperature
is known to influence plant secondary metabolite production significantly [69]. In the current study,
upregulation of some genes related to ent-kaurene synthase, anthocyanins, flavonoid biosynthesis,
lignin biosynthesis, and laccases was observed. Three genes related to ent-kaurene synthase were
found to be strongly upregulated in Y3 (Os04909900.1, Os02936140, and Os02936210), while only one
gene (Os01914630) was mildly upregulated in Y2. These enzymes are known for their role in gibberellin
phytohormone biosynthesis and serve as intermediates in specific di-terpenoid metabolism [70].
Additionally, specific genes belonging to the anthocyanins and flavonoid biosynthesis pathway in Y3
were found to be upregulated. Some of these are chalcone synthase (Os11g32650.1), leucoanthocyanidin
reductase (Os06g44170.1) and dihydroflavonol-4-reductase (DFR) (Os03g08624.1). On the contrary,
in Y2, these genes were not found. However, the isoflavonone reductase related gene with moderate
expression was found to be downregulated in both Y2 (Os01g01660.1) and Y3 (Os02g56460.1). This class
of flavonoids was identified to exhibit antioxidative functions in plants like tomato [71]. These are also
responsible for fruit and flower color in several plants. In Arabidopsis, the mutants with DFR deficient
genes resulted in decreased levels of proanthocyanidin brown tannins on their seed coats [72,73].
Another important metabolite that is very essential for plants is lignin. It provides structural support
for the plants to grow and also protect the plant from pathogens. Its accumulation could be considered
as a repair mechanism to prevent cell wall damage during heat stress. Genes related (Os04g01470.1,
Os04g09680.1, and Os11g42200.1) to lignin biosynthesis were also found to be upregulated in both Y2
and Y3. Os04g01470.1 and Os04g09680.1 are the caffeic acid 3-O-methyltransferase (COMT) genes.
These are involved in converting caffeic acid to ferulic acid and 5-hydroxyferulic acid to sinapic
acid [74]. Both the genes were observed to be upregulated in Y3, while the former was only observed
in Y2. In addition, upregulation of laccases (Os11g42200.1) was observed in both Y2 and Y3. Higher
laccase activity indicates induced catalysis of oxidative coupling between phenylpropane units to
form lignin [75]. Heat stress in plants could also lead to osmotic stress due to disruption of osmotic
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hemostasis. In order to prevent osmotic stress plants produce carotenoids [74]. Here in Y2, a gene
(Os01g14630.1) geranyl diphosphate synthase (GPPs) related to osmotic stress and carotenoid synthesis
was strongly downregulated compared to Y3. Upregulation of GGPS during stress conditions leading
to enhanced osmotic stress tolerance was found in Arabidopsis thaliana [76,77]. The current result is
quite opposite to previous reports. It could be due to abundance of GPPs in leaves compared to seed
and differential expression of specific genes in specific tissues.

2.4.5. Starch Metabolism

Starch metabolism is a key process in regulating rice quality and germination [23,33]. Two key
enzymatic processes involved in this pathway are related to starch hydrolysis and sucrose synthesis.
Here, in both Y2 and Y3, few amylase genes (Os08g36910.2 and Os09g28400.1) were found to be
commonly upregulated (supplementary Table S3, Metabolism overview; and Figure 5). In addition,
one more gene related to amylase (Amy1) (Os02g52700.1) was also found to upregulated in Y3 alone.
It was previously found that upregulation of Amy1 related genes produced chalky grains by degrading
the starch reserves in the ripening grains [24–26]. It appears to be more in Y3 as multiple copies of such
genes are upregulated. On the other hand, cleavage of sucrose is very important for accumulation of
starch in the seeds. This is mediated by sucrose synthase (Susy) genes which converts sucrose to UDP
glucose. The effect of heat stress could suppress these genes and was observed here. A gene related
to the Susy family (SUS4, Os07g42490.1) was downregulated in both Y2 and Y3. Downregulation of
this gene indicates a reduction in starch content and indirectly contributing to grain chalkiness along
with amylases.

2.4.6. Hormone Regulated Gene Expression

Hormones play a major role in regulating stress-responsive mechanisms in plants.
Several hormones are involved in the activation or inactivation of specific genes related to stress tolerance.
In this experiment few hormone-regulated genes were found to be differentially expressed in Y2 and
Y3. Two different SAUR class proteins OsSAUR18 (Os04g43740.1) and OsSAUR23 (Os04g56690.1) were
observed in both Y2 and Y3, respectively (Supplementary Table S4, Abiotic-Biotic stress; and Figure 6).
In general SAUR class genes were induced in the presence of auxins. The reduced expression of OsSAUR
genes 18 and 23 in Y2 and Y3 could indicate low levels of endogenous auxins. A decrease in endogenous
auxins and SAUR expression was previously observed in barley and Arabidopsis [78,79]. This could be
due to the disruption of the auxin metabolism caused by heat stress. Previously, such effect due to heat
stress was identified in rice under heat stress which could lead to inhibition of pollen tube elongation
resulting in decreased spikelet fertility [80]. Further, ABA-induced GRAM domain-containing proteins
like FIP1 were also found to be upregulated, indicating possible accumulation of ABA. ABA is known
to regulate starch biosynthesis genes and plays a key role in grain filling under high temperatures [81].
The induced expression of the FIP1 genes could therefore suggest a heat-responsive mechanism in rice.
Two F1P1 genes (os10g34730.1 and Os04g44500.1) were found to be similarly regulated in both Y2
and Y3. Additionally, genes os02g42430.1 and Os04g44510.1 were observed to be upregulated in Y3
alone indicating a stronger response to high temperatures. In addition to the above findings, unique
changes in genes related to jasmonate synthesis were detected. Expression of genes related to the JA
biosynthesis pathway, like lipoxygenase 2 (Os03g52860.1), 12-Oxo-PDA-reductase family genes OPR
(Os06g11200.1) and OsOPR5 (Os06g11210.1) is also observed in our study. Between Y2 and Y3 the
expression of these genes is opposite. Lipoxygenase-2 and OPR were downregulated in Y2, while in
Y3 the lipoxygenase-2 and OsOPR5 are upregulated and OPR is not. Previously JA levels and these
genes were identified to be upregulated under drought stress and downregulated under heat stress in
rice [82]. Accordingly, from the current results, it can be understood that Y2 is experiencing heat stress.
Whereas, Y3 might be experiencing both drought and heat stress, as downregulation of the OPR gene
was also observed here.
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2.4.7. Concluding Remarks

This is the first such study targeting a field situation where an experiment was designed after
observing the heat, and talking to the farmers in Tsukuba city. In summary, the rice being eaten by the
people has been found to have certain characteristics of heat stress-like response, and current work
clarified the genome-wide changes in genes, under the indicated experimental conditions and the
environment from where they were harvested. The present study also provides a unique database for
the readers and scientific community to further utilize and research upon.

3. Materials and Methods

3.1. Plant Material

The experiment used japonica-type rice cultivar (O. sativa L. cv. Koshihikari) seeds. Dry mature
seeds of cv. Koshihikari were the commercially available rice and obtained from Japan Agriculture
(JA Zen-Noh, Japan) branch in Ami-town of Ibaraki prefecture (Kanto region), Japan, in September
2010. Three sets of seeds were obtained as grade 1 (labeled Y1), grade 2 (labeled Y2), and out-of-grade
(Grade 3, labeled as Y3), as defined by JA Zen-Noh.

3.2. Seed Quality Analysis

Dry mature seeds (grain) were analyzed for its quality using a commercial rice grain analyzer
service (Satake Corporation, Tokyo). The analysis consisted of the following: taste value, amylose,
protein, moisture, and fatty acid degree.

3.3. Rice Whole Genome DNA Microarray Analysis

Dry mature seeds (12 of each grade of Y1-Y3) were used for preparing fine powders in liquid
nitrogen. Briefly, the seeds were placed in a pre-chilled mortar and pestle containing liquid nitrogen,
ground completely to a very fine powder with the chilled pestle in liquid nitrogen and stored at
−80 ◦C till used for RNA extraction. For total RNA extraction, the stored sample powder (~100 mg)
was transferred to a 2 mL sterile microfuge tube, followed by addition of 0.9 mL of CTAB buffer
[a 10 mL volume of buffer contains 0.5 mL (50 mM) of 1 M stock Tris–HCl solution (pH 8.0), 1.0 mL
(5 mM) of 500 mM ethylenediaminetetraacetic acid (EDTA, pH 8.0), 0.2 g (2%, w/v) of CTAB, 1.68 mL
(0.84 M) of 5 M NaCl, and 0.1 M β-mercaptoethanol, which is added just before use of the solution].
The contents were mixed by vortexing for 30 s and incubated for 5 min at RT. After an addition of
0.8 mL of phenol-chloroform-isoamylalcohol (PCIA; 25:24:1), the homogenate was mixed well (by
gentle shaking) for 5 min at RT. After centrifugation at 15,000 × g for 5 min at 4 ◦C, an aliquot (0.6 to
0.7 mL) of the upper phase was transferred to a 1.5-mL sterile microfuge tube, followed by addition of
1 volume of chloroform, and the mixture was centrifuged at 15,000 × g for 5 min at 4 ◦C. The resulting
supernatant was transferred to another 1.5 mL microfuge tube and 0.033 volume of 3 M sodium
acetate, pH 5.5 and 1 volume of 2-isopropanol were added. The mixture was incubated for 15 min
on ice and then centrifuged at 15,000 × g for 5 to 10 min at 4 ◦C to collect the RNA. The supernatant
was completely removed and the pellet was dissolved in 0.1 mL of RNase-free water (SDW; double
sterilized distilled water) followed by using the RNeasy mini protocol for RNA cleanup exactly as
described by the manufacturer (QIAGEN, Gaithersburg, MD, USA). To verify the quality of this RNA,
the yield and purity were determined spectrophotometrically (NanoDrop, Wilmington, DE, USA) and
visually confirmed using formaldehyde-agarose gel electrophoresis.

After extraction of high-quality total RNA from dehusked seeds using a modified CTAB extraction
protocol, a rice 4 × 44K custom (eARRAY, AMAdid-017845) oligo DNA microarray chip (G2514F:
Agilent Technologies, Palo Alto, CA, USA) was used for genome-wide gene profiling as described
previously [83]. The flip labeling (dye-swap or reverse labeling with Cy3 and Cy5 dyes) procedure
was used to nullify the dye bias associated with unequal incorporation of the two Cy dyes into
cRNA [84–86]. The dye-swap approach which is well established in our laboratories and research
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provides a more stringent selection condition for profiling differentially expressed genes rather than
simply doing only 2 or 3 replicates, which overlook the dye bias [86–92]. The experimental design
for the DNA microarray analysis of rice seed transcriptome using a two-color dye-swap approach
(Figure 7A) is shown along with the extracted seed total RNA quality (Figure 7B).
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Figure 7. Experimental design for the DNA microarray analysis of high temperature affected mature
dry rice (cv. Koshihikari) seed grades 2 and 3 transcriptome. A two-color dye-swap approach was
used (A) and followed by checking the quality of extracted seed total RNA (B). Three sets of dry
mature rice seeds (commercial) were obtained Japan Agriculture (JA Zen-Noh) branch in Ami-town of
Ibaraki prefecture in September 2010, as grade 1 (labeled as Y1), grade 2 (labeled as Y2), and grade 3
(out-of-grade, labeled as Y3). Gene expressions genome-wide in grade 2 (Y2) and grade 3 (Y3) seeds
over the grade 1 (Y1) was carried out using an Agilent 4 × 44K rice oligo DNA chip.

Total RNA (800 ng) for each Y1, Y2, and Y3 sample were labeled with either Cy3 or Cy5 dye
using an Agilent Low RNA Input Fluorescent Linear Amplification Kit. Hybridization and wash
processes were performed according to the manufacturer’s instructions. Hybridized microarray chips
were scanned using the Agilent Microarray Scanner G2565BA. To detect differentially expressed
significant genes between control and treated samples, each slide image was processed by Agilent
Feature Extraction software (version 9.5.3.1). Normalization of Cy3 and Cy5 signals was performed by
LOWESS (locally weighted linear regression), which calculates the log ratio of dye-normalized Cy3-
and Cy5-signals. The significance (P) value is based on the propagate error and universal error models.
In this analysis, the threshold of significantly expressed differential genes was set to <0.01 (for the
confidence that the feature was not differentially expressed). Lists of differentially expressed gene [up-
(≥2.0 fold) and down- (≤0.5 fold) regulated genes] were generated and annotated using the Agilent
GeneSpring version GX 10.

The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus
(GEO) and are accessible through GEO series accession number GSE79405.

3.4. MapMan Analysis

To analyze the gene expression changes, rice genes were mapped onto metabolic pathways using
MapMan tool (version 3.5.1, Max Plant Institute of Molecular Plant Physiology, Germany) [93]. To map
genes onto their respective pathways MapMan uses information from its datasets (Mappings), where all
annotated genes of the respective organism were classified into BINS based on their function [94].
In this work, a rice mapping file (Rice_japonica_automatic_mapping08) from MapMan database was
used as a template. Out of 43,494 genes detected from our microarray data, 41,446 genes were present
in the mapping file and the remaining 2048 (having ID_ TIGRv4S1) were not annotated. The annotated
gene expression data was used here and pre-processed it using a PERL script to meet the locus_name
identifier criteria similar to that available in the mapping file. Once this is done the expression data file
with modified gene ID’s were successfully classified into various BINS (Table S1-Mapman Bins) by
MapMan. For the final mapping, the upregulated and downregulated genes were selected, and their
fold change transformed into Log2 (fold) data was used. A total of 41,446 differentially expressed genes
were sorted to select up (≥2.0 fold) and down (≤0.5 fold) regulated genes were generated and annotated
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using the Agilent GeneSpring version GX 10. This resulted in 161 and 490 HRDE-genes for each Y1-Y2
and Y1-Y3, respectively. This sorted gene expression data was used to map onto Mapman pathways.
The genes which are differentially expressed are indicated either as highly up- or downregulated are
represented in blue and red-colored data points (grid boxes), respectively. A gradient in blue or red
indicate genes with medium up or downregulation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/5/528/s1,
Table S1: Rice Japonica genes associated with Mapman BINS; Table S2: Highly expressed differentially regulated
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Abstract: Chinese Torreya is a vital crop tree with an average life span of a thousand years in
subtropical China. Plantations of this tree are broadly under construction, to benefit the local economy.
Information on the growth and adaptation to climate change for this species is limited, but tree
rings might show responses to historical climate dynamics. In this study, six stem sections from
Chinese Torreya trees between 60 and 90 years old were acquired and analyzed with local climate
data. The results indicated that the accumulated radial growth increased linearly with time, even at
the age of 90 years, and the average radial increment of each tree ranged from 1.9 to 5.1 mm/year.
The variances of basal area increment (BAI) increased with time, and correlated with the variances of
precipitation in the growing seasons. Taylor’s power law was present in the radial growth, with the
scaling exponents concentrated within 1.9–2.1. A “Triangle”-shaped relationship was found between
the precipitation in the growing seasons and annual radial increments. Similar patterns also appeared
for the standard precipitation index, maximum monthly air temperature and minimum monthly
air temperature. The annual increases were highly correlated with the local climate. Slow growth,
resilience to drought and multiple stems in one tree might help the tree species adapt to different
climate conditions, with the implications for plantation management discussed in this paper.

Keywords: basal area increment; air temperature; precipitation; Taylor’s power law; tree ring analysis

1. Introduction

Progressing global climate change, with increased frequency of extreme climatic events, increased
atmospheric CO2 concentration and related disturbance regimes, affects plant growth, survival,
and range shift [1,2], which causes environmental and economic consequences [3,4]. Increasing air
temperature will accelerate plant growth and increase the rate of water use; increasing atmospheric
CO2 concentration will decrease leaf stomatal conductance and lead to increased water-use efficiency,
but this effect will vary with species, and will depend on soil water and nutrient status [5,6]. In order
to mitigate the negative impacts of climate change on plant production and maintain sustainable
food supplies, it is necessary to develop adaptation strategies and enhance plant resilience, especially
for those crucial crops [7]. Since climate change’s impacts on plant production may have spatial
and temporal variations, due to complicated interactions among species, weather and landscape [8],
environment-specific or local adaptation strategies need to be developed [9,10]. Studying some existing
plants (e.g., trees) with long life spans and already-experienced climate dynamics may help provide
clues in understanding plant adaptation strategies [11].

Chinese Torreya (Torreya grandis cv Merrillii) is an evergreen coniferous tree with light green
leaves in subtropical China [12,13]. Currently, there exist only six species, with a restricted distribution
globally. T. california Torrey and T. taxifolia Arn. are distributed in North America [14], T. nucifera

(L.) Sieb. et Zucc. is in Japan and South Korean [15], and three species (T. fargesii Franch, T. grandis

Fort. ex Lind. and T. jackii Chun) and two varieties (T. fargesii var. yunnanensis and T. grandis var.
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jiulongshanensis) are found in China [13,16]. Only Chinese Torreya trees produce edible seeds, and can
live for a thousand years [13,17], with some dating to the late Tang Dynasty in China. This tree was
first scientifically described by R. C. Ching in 1927 [18]. Chinese Torreya has become an important
economic tree cultivar for its nuts, which have been used as food in China [19]. One mature tree can
produce thousands of dollars in nut crops [20]. The economic benefit has helped thousands of farmers
to overcome poverty in Shaoxing [21,22]. Currently, establishing Chinese Torreya plantations and
providing nuts is a strategy for poverty alleviation in some poor mountainous areas. The tree also
has important medicinal value [23]. Additionally, its timber is an excellent material for high-quality
ornaments, such as sculptures and furniture. An increasing number of farmers are setting up Chinese
Torreya plantations in order to gain a higher income from this high-value tree species. However,
this tree grows slowly, usually producing seeds after 5–10 years [12,20]. This tree species experienced
an increase in annual air temperature from 15 ◦C to 17.5 ◦C during the last century in this region [11].
Under the global climate change scenario, the annual air temperature and precipitation in this region
are modeled to increase by about 2–2.5 ◦C, and 2–12%, respectively [24]. It is unknown whether
climate change will affect this tree, and whether this species can adapt to climate change. Currently,
there are some studies on the short-term physiological responses of Chinese Torreya seedlings under a
controlled environment [25,26]. For one-year-old seedlings, the growth in height was found mainly in
May–June and September [27]. However, there is limited information concerning long-term radial
growth for mature trees of this critical species.

One approach to studying the tree growth process is through tree ring analysis, which provides
an understanding of tree growth dynamics and the capacity to adapt to climate change [28]. Tree rings
can be used to estimate tree age and assess long-term growth patterns in tree species, which provide
information on species life history [29,30]. Tree ring widths can also give information about the growth,
biomass accumulation and productivity of the species [31,32]. In addition, tree rings reflect the effect
of climatic and environmental conditions on tree growth, and the vulnerability of tree species [33–36].
The patterns of tree rings show the combined impact of growth responses and environmental changes
on tree species. Increasing atmospheric CO2 concentration can increase the photosynthetic rate, but this
also depends on air temperature, water and nutrient condition. Climate change may lead to a reduction
in rainfall but increased temperatures, which can affect some trees’ growth and carbon sequestration
potential [37,38]. The long life span of Chinese Torreya trees provides an opportunity to study its
adaptation to climate dynamics. However, so far, there is no chronological study for Chinese Torreya.

Sustainable management of Chinese Torreya plantations needs to enhance seed production, carbon
storage and livelihoods [12,20,39,40]. These objectives require a deeper understanding of the tree’s
growth behavior and responses to past environmental changes. However, it is challenging to acquire
stem samples, because these trees have been the source of income for farmers, and it is not possible
to collect samples without damaging the tree. Further, applying an increment borer can introduce
diseases. Most old trees have a rotten heartwood, although they still grow well and produce seeds.

This study aims to find some tree samples and study tree rings of Chinese Torreya trees, as well
as find their growth patterns. Since Chinese Torreya trees have existed in the region for more than a
thousand years, it is reasonable to assume that this tree could endure climate change. Furthermore,
it was found that there was an increase of inter-annual variation in seed production with time
in some trees due, to environmental change [41]. Thus, it might be assumed that there was an
increased inter-annual variation of tree ring growth for the Chinese Torreya. The specific objectives
of this study include: (i) studying the growth rate and patterns of tree rings and testing the above
assumptions; (ii) indicating relationships between tree growth and climate, and understanding the
tree’s adaptation; and (iii) providing suggestions for the adaptive management of Chinese Torreya
forests under climate change.
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2. Materials and methods

2.1. Materials

Six stem sections from six Chinese Torreya trees were used for this study, and one tree (tree #6)
had two stems according to the two sets of tree rings (Table 1). All stem sections are preserved in the
Torreya Museum at Zhuji County, in Zhejiang Province of China. Each stem section was acquired from
the tree bottom (above the grafting point) in the nearby Chinese Torreya forest (27.7191 ◦N, 120.5127 ◦E)
at Zhaojiazhen around 2015. Trees of 100 years of age can usually reach 10–15 m. These trees were
cut down due to house building or wind damage. Tree #5 might be a different ecotype or mutation.
This area is the central production area of Chinese Torreya trees, and the oldest Chinese Torreya tree in
the area is about 1300 years old, with a height of approximately 23 m [12,20]. The local soil is yellow
earth, with a pH value of 5.2–7.5. The elevation varies from about 300 m to 600 m. The region has a
monsoon climate with a hot and humid summer and relatively cold and wet winter. The annual mean
temperature is approximately 16 ◦C, and the average annual precipitation is about 1400 mm, which is
mostly concentrated between May and August [11,39,40]. Intense rainfall usually occurs during the
monsoon and typhoon periods, within the growing seasons. Currently, routine management practices
include weeds control, tilling or fertilizer applying. However, there were limited management practices
about 20 years ago, and it can thus be assumed that the growth of these sampled trees was mainly
controlled by the natural condition. Since the ages of these trees were different, it is not valid to
compare their tree rings directly because they might be at different life stages. However, comparing
their growth patterns and general relationships with climate would be helpful to understand this tree
species’ adaptation to historical climate dynamics

Table 1. Tree ring information of six Chinese Torreya trees.

Item Tree #1 Tree #2 Tree #3 Tree #4 Tree #5
Tree #6

Stem 1 Stem 2

Age (year) 90 89 81 86 63 75 80
Diameter (mm) 426 408 382 340 638 368 308

Average
Ring width (mm)

2.4 2.3 2.4 2.0 5.1 2.5 1.9

Maximum
Ring width (mm)

5 5 9 7 8 8 7

Minimum ring width (mm) 0.5 1 0.5 0.3 1 1 1

2.2. Methods

Tree ring measurement: For each stem section, the radiating rings were measured in three
different directions because the tree rings were not perfect circles. Then, the average of the ring radiates,
widths between rings or annual radial increments, and basal areas of increases (BAI) were estimated.

Taylor’s power law: Taylor’s power law is one of the most widely verified empirical relationships
in ecology [42]. In this study, Taylor’s power law is expressed as:

Variance = a×Meanr (1)

where Variance is the variance of tree ring radiates, and the Mean is the average of tree ring radiators.
After taking the logarithm, log (Variance) = log (a) + r × log (Mean). With the time scale increased from
1, 2 or 3 to the age of a tree, the scaling exponent (r) between the variance and average of tree ring
radiators for each Chinese Torreya tree was estimated.

Climate data: Since there was limited climate information from the ground observations in the
area with Chinese Torreya plantation at Zhaojiazhen, the climate data for this area were collected
from the Climate Research Unit. The high-resolution gridded (0.5◦ × 0.5◦) data of the monthly air
temperature and precipitation during 1923–2015 were used in this study. The data were drawn directly
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from the CRU TS 4.03 dataset and related nearby observations [43]. The CRU dataset has been broadly
cross-checked with ground-monitored climate data [44]. Thus, here the data were not cross-checked
due to the limited ground observations.

Each year, the average monthly air temperature, maximum and minimum monthly air temperature,
and the average monthly air temperature during the growing season (from April to September) were
estimated. Although Chinese Torreya is an evergreen tree species, it usually stops radial growth
in wintertime.

The drought was estimated by the standardized precipitation index (SPI), which is based on [45],
and only the precipitation was involved.

Monthly SPI = (Monthly precipitation − the average precipitation of this month from 1923 to
2015)/the standard deviation of this month’s precipitation from 1923 to 2015. If SPI > 0, it is wet;
if SPI < 0, it is dry.

SPI in the growing seasons = the sum of the monthly SPI from April to September each year.
Precipitation in the growing seasons = the sum of the monthly precipitation from April to

September each year.
Also, with the consideration of drought induced by heat in the growing seasons, the hydrothermal

coefficient (HTC), including both air temperature and precipitation, was used here by applying
Selyaninov’s formula as the following [46]:

HTC = Σp/(Σt× 10) (2)

where Σ p and Σ t are the sum of precipitations and air temperatures (≥ 10 ◦C) in the growing seasons,
respectively; when HTC > 1.0, it is considered humid; while HTC is within 0.7–1.0, it is dry; and if
HTC is within 0.4–0.7, it is very dry [46].

Statistics: Pearson’s correlation was used between the accumulated radial growth and time,
BAI and time, log(average of radial growth) and log(variance of radial growth), the slopes of
the accumulated radial growth and the scaling exponents of Taylor’s power law, SPI and HTC,
and log(variance of precipitation) and log(variance of BAI) in the six trees. The correlation coefficients
were recorded, and the statistical test was considered as significant at p < 0.05.

3. Results

3.1. Tree Age and Growth

The tree ages based on the tree rings varied from approximately 63 to 90 years old, among the six
trees considered under this study (Table 1). The average increment of tree rings for each tree ranged
from 1.9 mm to 5.1 mm. The maximum width of the tree rings was 9 mm, and the minimum width
was 0.3 mm. The increments of radial growth were mainly distributed at 1 and 2 mm. The variance of
radial increments did not increase with time for all trees. However, the accumulated radial growth
increased linearly with time for each tree (Figure 1), and most of them had slight changes in growth
rate. For tree #3, the growth rate changed around 41 years old. For tree #6, the two stems had different
rates of accumulated radial growth. The accumulated radial growth did not become stable for each
tree, which means these trees were not senescent in their ages. BAI generally increased with tree,
age but varied dramatically (Figure 2). The variance of BAI increased with time for all trees (Figure 3).
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3.2. Taylor’s Power Law

Taylor’s power law was present between the average accumulated radial growth and variance 
–

Figure 1. Accumulated radial growth with time for six Chinese Torreya trees.

3.2. Taylor’s Power Law

Taylor’s power law was present between the average accumulated radial growth and variance
(Figure 4). The scaling exponents were concentrated within 1.9–2.1, which might indicate a similar
growth regime. For tree #6, the two stems had similar scaling exponents. These scaling exponents
were significantly correlated with the slopes of the fitting lines between the accumulated radial growth
and time (Figure 5).
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Figure 2. Basal area increments (BAI) change with time for six Chinese Torreya trees.

Figure 3. The variance of BAI increased with time for six Chinese Torreya trees.
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Taylor’s power law in the radial growth for six Chinese Torreya trees.

Correlation between the scaling exponents of Taylor’s power law and the slopes of fitting

Figure 4. Taylor’s power law in the radial growth for six Chinese Torreya trees.
Taylor’s power law in the radial growth for six Chinese Torreya trees.

Correlation between the scaling exponents of Taylor’s power law and the slopes of fitting
Figure 5. Correlation between the scaling exponents of Taylor’s power law and the slopes of fitting
lines between accumulated radial growth and time.
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3.3. Climate and Radial Growth

The relationship between the average monthly air temperature during the growing season and
annual radial increment was not apparent. A “Triangle”-shaped relationship existed between the
precipitation in the growing seasons and annual increments. When the accumulated precipitation
during the growing seasons was close to an average of 975 mm (±200 mm), there were high annual
increments in radial growth (Figure 6). This pattern was similar to the SPI, which was between −2
and 2 (Figure 7). For the two stems of tree #6, stem 1 had more growth when SPI < 0, while stem
2 had more growth when SPI > 0. The sensitivity and lasting time of each tree that responded
to SPI change were different; for example, tree #4 could grow at 0.3 mm each year for 10 years
(Figure 8). Similar “triangle”-shaped patterns existed for the maximum monthly air temperature in the
growing seasons or the minimum monthly air temperature in winters (Figure 9). When the maximum
monthly air temperature was around 27.5–28.5 ◦C, or the winter monthly air temperature about 3–4 ◦C,
there were high annual increments in radial growth.

There was a significant correlation between SPI and HTC (p < 0.05, Figure 10), which indicates
the consistency between the two metrics. The trees had a high BAI when HTC was around 0.7–0.9,
which was classified as a dry condition, based on HTC.

annual radial increment was not apparent. A “Triangle”

−2

Similar “triangle”

– –

–

Figure 6. Precipitation in growing seasons and annual radial increments for six Chinese Torreya trees.
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Figure 7. Standardized precipitation indices and annual radial increments for six Chinese Torreya trees.

Figure 8. Response of tree ring increment to SPI change with time, for tree #3 and #4 (no negative
values for tree ring increment).

49



Atmosphere 2020, 11, 691

Figure 9. Maximum monthly air temperature and annual radial increments (a), and minimum monthly
air temperature and annual radial increments (b).

Taylor’s power law 
–

ylor’s power law. Both these slopes may reflect the biological and 

Figure 10. The correlation between SPI and HTC and the change of BAI along with HTC.
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4. Discussion

The dendrochronological data of six trees indicated that the accumulated radial growth increased
with time in these Chinese Torreya trees when they were cut. This result means that these trees were
not at the senescent age [47]. Usually, the life span of this tree can reach hundreds of years, or even
more. Currently, the oldest in the region is approximately 1300 years old [13]. This result provided
more evidence that slow-growth trees were associated with long life spans [48]. The long life span
is advantageous for this tree species, as it helps create a long-term income from the seeds. Further,
the slow growth and long life span of the species make it suitable for carbon sequestration. Other tree
species grow fast but die young, so the periods over which they store carbon are short [49].

Taylor’s power law can be observed in the accumulated radial growth, and the scaling exponents
concentrated at 1.9–2.1, although the rates of accumulated radial growth varied among these trees.
This means that the radial growth of these trees was under a similar regime (e.g., the same area
with similar biological and environmental interactions) [50]. The historical climate dynamics did not
constitute a significant regime shift in the radial growth for these trees. This study also confirmed the
high tolerance of this tree species [11], that is, Tree #3 and #4 could endure limited radial growth for
about 10 years. The slopes of the accumulated radial growth with time are significantly correlated
with the scaling exponents of Taylor’s power law. Both these slopes may reflect the biological and
environmental interactions (e.g., self-organization) of these trees. Most annual radial increments were
approximately 1 or 2 mm/year in these trees. The average annual radial increment of these trees
was above 2 mm/year, and tree #5 even reached 5 mm/year. This rate is considerably larger than
the original reported value, of 1.1 mm/year, from a 1500-year-old tree by the Beijing Natural History
Museum in 2012 [17]. These different rates and lasting times might be linked to small-scale local
environmental conditions that support individual trees. However, the growth rates found here are still
very low compared to those of other trees, such as loblolly pine in southeastern USA, which can reach
12 mm/year [51]. Thus, the first assumption of the slow growth rate being related to adaptation to the
environment is valid.

Despite the approximate increase of 70 ppm in global average CO2 concentration (increased from
315 ppm to 390 ppm from the 1920s to 2015), and the increase of approximately 2.5 ◦C in the local
annual air temperature [11], there was no clear trend of increasing radial increment in these trees.
Furthermore, the variance in the radial increment did not increase for all individual trees. However,
the variance of BAI generally increased for all trees. The second assumption related to the increase of
variance is valid for BAI; it is more accurate for describing tree growth than radial increment, because
the same radial increment can indicate a different BAI if the radiating rings are different. For some
trees, there was a significant correlation between the variance of growing season precipitation and the
variance of BAI (Figure 11). The variance of growing season precipitation explains about 40–66% of the
variance of BAI. The CO2 fertilization effect might be counterbalanced by other environmental stressors,
such as light condition, insufficient precipitation, and extremely high or low air temperature [52].
Different from [44], the tree ring widths here were not correlated with the annual rainfall.

There were “triangle”-shaped relationships between the annual radial increments and climate
factors, such as the precipitation in growing seasons, the maximum monthly air temperature, and the
minimum monthly air temperature in winter. This result means that tree growth was limited by
many factors. The outlier points can be fitted by polynomials with a power of 2. The optimum
values of these factors were found in this study: the optimum precipitation during the growing
seasons was approximately 975 mm (±200 mm), SPI was between −2 and 2, the maximum monthly air
temperature was about 27.5–28.5 ◦C, the minimum monthly air temperature in winter was around
3–4 ◦C, and HTC was approximately 0.7–0.9. A climate within these limits may be better for growing
Chinese Torreya trees. Climate conditions that are too dry, too wet, too warm or too cold may affect the
radial increments of Chinese Torreya, which are believed to be linked with seed production. The trees
could also tolerate a drought condition, with SPI around −6, or HTC of 0.46 in the growing seasons.
This climate envelope may help in finding suitable areas to introduce Chinese Torreya into for industrial
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plantations. The result also provides a base for the agricultural insurance policy in this region. If trees
cannot produce a normal amount of seeds under unfavorable weather conditions, then an agricultural
insurance company will make a specific payment to the farmers to cover the loss. This result is
different from [44], wherein rainfall augmented tree ring width, and hot temperature reduced tree
ring growth in Scutia buxifolia. A positive correlation with precipitation, and a negative correlation
with extreme summer temperatures, were usually observed for trees in Africa and Australia [53,54].
However, growth ceased at a certain threshold, rather than showing a continuous linear decline, was
also observed in ponderosa pine [55].

–

 
Figure 11. Correlation between BAI variances and the variances of precipitation in the growing seasons
for six Chinese Torreya trees.

The phenomenon of multiple stems living on one tree is very popular in Chinese Torreya. In this
study, it was found that (i) the two stems had quite different radial increment rates; (ii) the two stems
shared a similar growth regime (e.g., similar scaling exponents in Tayler’s power law); and (iii) the
two stems had different climate adaptations (e.g., dry or wet climate). The heterogeneous growth
rates might be related to different positions, or the adaptation to different microclimate conditions.
The phenomena may show the ability of an individual tree to achieve maximum growth under different

52



Atmosphere 2020, 11, 691

environmental conditions. Morphological changes in trees are an adaptation strategy to climate
change [56]. A tree with multiple stems may have the advantage of using solar radiation at different
positions, and maintaining productivity under environmental variation, over a tree with a single stem.
It is not known whether more stems is always better. However, Chinese Torreya trees with a couple of
stems are popular in the central production area. Usually, a tree with multiple stems may have a big
canopy, which may be easily damaged by typhoons.

This study provides several implications for the adaptive management of Chinese Torreya
plantations. First, these trees still had radial growth at the age of 90 years. Since the life span of this tree
species could reach a thousand years, it indicated that these trees were still at the early growth stage,
which means Chinese Torreya trees can lead to long-term economic and biological income. However,
the farmers still need to wait for 5–10 years for seedlings to produce the first seeds. Second, the timber
growth rate of most trees was slow. However, some trees could have a relatively high growth rate,
such as tree #5. This result might be related to a genetic mutation or suitable local environmental
setting (e.g., soil, water). This deviation makes it possible to identify the fast-growing tree varieties
or select appropriate sites for a plantation. Regular citizen science or community activities may help
select the variety with a high timber or seed production. Local citizen scientists should be trained
to preserve genetic variations and other natural resources that are particularly adapted to climate
change [12]. Some trees grow slowly, but may have a high endurance to climate change. Third, selecting
trees with multiple stems in plantations may offer the advantage of maintaining productivity under
environmental change. The stems can take advantage of the light at different positions, and adapt
to different conditions. Fourth, the effect of climate change on tree growth could be estimated via
precipitation in growing seasons, and the highest or the lowest monthly air temperature. Further,
the climate conditions identified by this study may be useful for introducing Chinese Torreya trees to
new locations. Besides, human management practices, such as cutting grasses and shrubs and digging
surface soil, could alter tree growth through the changing soil water and air temperature. However,
these management practices may not be a good way to maintain proper environmental conditions at
certain stages, and may lead to environmental problems [12,39,40]. Finally, based on the radial growth
patterns, it is possible to estimate the tree canopy size and possible seed production through allometric
scaling relationships [49,57,58]. This algorithm may help forest farmers assess potential income and
benefits, and also helps them manage Chinese Torreya plantations more effectively.

5. Conclusions

Chinese Torreya is an important crop tree with a long life span. The dendrochronological data of
Chinese Torreya trees are very scarce. This study is the first one that provides relevant information for
understanding growth patterns and the adaptation of this tree to climate dynamics. In this central
production area, the long-term persistence of Chinese Torreya could indicate its adaptation to the
historical climate fluctuation and atmospheric CO2 enrichment. The slow radial growth rate of Chinese
Torreya (on average, form 1.9 to 5.1 mm/year) might help this species to adapt to unfavorable conditions.
The change of precipitation in growing seasons could impact the variation of basal area increment.
The radial growth regime did not change significantly during their life spans, because similar Taylor’s
power law exponents existed in the accumulated radial growths. “Triangle”-shaped relationships,
which indicate optimum values, occurred between the climate and annual radial increments, especially
the extreme air temperature (maximum and minimum monthly air temperatures), precipitation in
growing seasons, and drought, which could affect its growth rate as well as the variance. The trees
could tolerate the drought conditions with SPI of approximately −6, or HTC of 0.46 in growing seasons,
and being either too dry or too wet both decreased tree growth. The presence of multiple stems in
one tree could help it adapt more effectively to the local environment. It is necessary to conduct
long-term intensive monitoring projects across different environmental settings, which can help in
collecting data to find the relationships between tree growth and environmental change. It will be
helpful to derive the core increment data from some old trees, although this may affect these trees.
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However, these long dendrochronological data could provide beneficial information about adaptive
response and endurance. Local agencies need to organize citizen scientists to collect sample trees and
preserve genetic diversity, since some trees (e.g., tree #5) could grow much faster, which may provide
the opportunity for developing fast-growing trees. In contrast, other trees (e.g., tree #4) might have
high endurance. The current introduction of this tree to new areas for plantation should be based
on the environmental requirements. Regional planners and decision-makers need to know the tree
growth ecology, and consider the possible unfavorable environmental conditions, before introducing
or developing large-scale plantations of Chinese Torreya.
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Abstract: The emissions of isoprenoids, a kind of biogenic volatile organic compounds (BVOCs), from
soils is not well characterized. We quantified the exchange of isoprenoids between soil with litter and
atmosphere along a horizontal gradient from the trunks of the trees, in a Mediterranean Pinus pinea

plantation with dry and green needle litter to open herbaceous turf during mornings at mid-summer.
Further, potential associated drivers were identified. Isoprenoid emissions were greatest and most
diverse, and also can be roughly estimated by litter dry weight near the trunk, where the needle litter
was denser. The composition of emitted isoprenoid by needle litter was different than the composition
previously described for green needles. Low exchange rates of isoprenoids were recorded in open
turf. Isoprenoid exchange rates were correlated positively with soil temperature and negatively with
soil moisture. Given the variations in ground emissions with soil, vegetation, microorganisms, and
associated interactions, we recommend widespread extensive spatio-temporal analysis of ground
level BVOC exchanges in the different ecosystem types.

Keywords: isoprenoid exchanges; ground; litter emissions; soil; Pinus pinea; distance gradient;
Mediterranean turf

1. Introduction

Biogenic volatile organic compounds (BVOCs) represent 90% of total volatile organic compound
(VOC) emitted into the atmosphere [1], impacting the atmospheric chemistry and climate processes [2–4].
BVOC emission profiles from terrestrial ecosystems tend to be driven by plant species composition [5]
which is linked to phenology and climate [2,6] and are usually dominated by isoprenoids [5] with
blends of other carbon-based compounds, such as alkanes, alkenes, carbonyls, alcohols, esters, ethers,
and acids [5,6]. This key role of terrestrial plants in BVOCs has received much research attention [7–10];
however, there is emerging evidence that a wide range of BVOCs are also released from terrestrial
ecosystem ground [10] regardless of level of vegetation [8,10,11].

Ground level emission of BVOCs from natural and semi-natural ecosystems may derive from
organic litter and soil where plant root systems and microorganisms are major sources [11,12] and
sometimes also by understory vegetation [13,14]. Most of the ground measurements do not distinguish
the emissions from plant roots, decomposing litter, or the microbes themselves [15,16]. Litter has
often been suggested as the main BVOC source in the forests besides vegetation [14,17–19], in fact, the
decomposing litter has been assumed to be the main BVOCs source in the forest ground [8,14,20,21].
It is evident that both decomposers and the decomposing material affect the quantities and types of
VOC productions [21], and also that VOCs released through the decomposition processes are strongly
dependent on litter type, climate and soil microbial composition [21,22]. Differentiating each of the soil
component responsible for these emissions is very complex [10,18,23]. For example, the assessment of
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the contribution of root emissions to the overall soil VOC fluxes is difficult because of their linkage
with soil microbes owing to root exudates can boost microbial activity, which can either increase
the production or consumption of VOCs [10]. Some soil microbes, particularly fungi, are capable of
producing terpenoid compounds [24], but plant roots are likely to be the dominant source of these
compounds [8,23,25]. Isoprenoids are commonly emitted from litters and soils [8,12,22], and are likely
adsorbed on the living leaf surfaces which are covered by a lipophilic cuticle layer [14]. Soil and
litter microbes can also modify VOC emissions by metabolizing plant-emitted VOCs [26], which
may cause low isoprenoid fluxes measured from soil with dense understorey vegetation cover [15].
Some understorey vegetation (grasses, shrubs, mosses, lichens, and other vegetation) [13,14] can also
contribute to the exchange of BVOCs by emitting them [7].

Ground level emissions to the atmosphere are often 1–2 orders of magnitude lower than those
from aboveground vegetation [10]. Moreover, they may represent up to 50% of net canopy BVOC flux,
depending on the type of ecosystem, litter and soil [19], environmental conditions [10,27] and season of
the year [19], particularly in coniferous forests that produce large amounts of litter [4,10]. Nevertheless,
some studies suggest that these emissions play an insignificant role because they constitute a very
low fraction with respect to the total ecosystem emissions [12,19,20,28]. In addition, soil VOCs also
have important ecological roles [8,10,29], affecting microbial process such as methane oxidation,
nitrification, nitrogen mineralization, and aerobic respiration [8,23,25] and biological interactions as key
compounds in communication among soil microorganism and plant roots [4] that release carbon-rich
root exudates and thus feed associated populations of bacteria, fungi, arthropod and nematode within
the rhizosphere [8].

Soils are considered to be sources and sinks of BVOCs [8,10,12,22] with very low exchanges in
Mediterranean-type ecosystems [17,29,30]. Maybe microbial processes play most important roles in
atmosphere-soil exchanges of BVOCs [7,12,19]. In this line, there are studies showing the lower VOC
emission rates in the litter plus soil treatments indicating many litter VOCs appear to be metabolized
in soil [8,12,22], meanwhile, litter VOCs represent an important carbon source to soil and elevate
soil microbial activity [22]. In addition, the consumption of some specific VOCs in soils result
from microbial activities [7,22] depending on the type of compound and soil [7]. Besides, abiotic
processes like adsorption to soil particles [19,31], dissolution in soil water [19], and reactions with soil
chemicals [32] are also the mechanism behind the soil uptake [7,19].

Deposition and emission of ground level BVOCs is strongly influenced by environmental
conditions [19,29]. Soil temperature and moisture seems to be the most important factors since
they control physiological processes both in plants and microorganisms [30]. Temperature affects
VOC production [10,12] through the temperature dependence of enzyme production and activity
in VOC synthesis [2,21], while soil water content can determine which microbial groups are most
active [21,33], which means both the physiological activity and community composition of decomposer
microorganisms can be affected by environmental conditions [4,34]. Soil temperature and moisture affect,
moreover, soil BVOC physical processes, including dissolution in soil water [7], and physico-chemical
processes [2,21], such as diffusion and volatility. The over-arching effects of climate warming on
increasing soil temperature and decreasing soil moisture will contribute higher BVOC volatilization
from soil into the atmosphere [31], and may influence composition of vegetation and distribution of
the associated soil microorganisms, and cause further variations in BVOC exchange profiles [4,8,34].

Isoprenoids are produced by all conifers and are stored in the needles [35] where they readily
volatize from needle storing tissues [22]. The distance to the conifer tree can be a qualitative and
quantitative determinant of ground level BVOC exchange profiles [17]. Here, we aimed to quantify
emissions and exchange of isoprenoids and its potential drivers along a horizontal gradient from dense
Pinus pinea litter to open herbaceous turf to improve understanding of spatial-temporal differences in
ground level BVOC exchange to the atmosphere.
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2. Material and Methods

2.1. Study Site and Experimental Design

We selected four isolated, similar sized (mean trunk circumference at breast height: 1.20 ± 0.06 m)
Pinus pinea L. trees in a managed herbaceous turf on a silty-clay Typic Calcixerept soil, with a high
proportion of carbonates (pH: 8) [17], near the campus of the Autonomous University of Barcelona
(41◦30′ N, 2◦6′ E). Ground vegetation was dominated by legumes, such as Trifolium repens L., Psoralea

bituminosa L., Medicago minima (L.) Bartal, with other herbs, such as Plantago lanceolata L. and grasses
(Lolium perenne L., Brachypodium phoenicoides R. and S., and Bromus intermedius Guss). Sampling points
(N = 11) were arranged every meter along a single 10 m transect from the trunk of each tree, and
avoided canopy effects of other trees, where point 1 was as close to the trunk as possible. Leaf litter
was present within 4 m, and most dense within 2 m from the trunk where litter covered ground totally.

2.2. Isoprenoid Sampling

Sampling was carried out during the summer when climate warming effects are most pronounced
and BVOCs emissions are greatest at this region [9,29], from 18 July to 8 August of 2018, on sunny
or slightly cloudy days, between 09:00 and 13:00 hrs. Emitted isoprenoids were collected with a
Teflon® soil VOC chamber and retained in stainless steel tubes (89 mm in length with 6.4 mm external
diameter, Markes International Inc. Wilmington, NC, USA) manually filled with adsorbents (115 mg
of Tenax TA and 230 mg of SulfiCarb, Markes International Inc. Wilmington, NC, USA) separated
by sorbent-retaining springs that were fixed using gauze-retaining springs and closed with air-tight
caps. Flow was generated using a Q-MAX air-sampling pump (Supelco, Bellefonte, PA, USA) and
measured using a Bios Defender 510 flow meter (Bios International Corporation, Butler, PA, USA) and
sampling time was 20 min. This dynamic system was also connected to ambient air with a Teflon®

tube of 3 mm of inner diameter and air inside chamber was homogenized using a small fan. The flow
rate across the sampling cartridges was adjusted at around 200 mL min−1 [17]. Although the studied
emission could be slightly influenced by an addition from ambient air under this situation, it can be
counteracted by the subtraction of blank measurements whose emissions were collected prior to the
measurement of each sample using Tedlar® PVF film between ground and the chamber (Figure S1).
Each point cost around 1 h including twice measurements (blank and sample), the time for operation
and movement to next point, and the order of sampling at points along the transect was randomized for
every tree and varied with sampling period (Table S1). Soil temperature and moisture content around
the soil chamber were measured using a Pt100 4.5 × 150 mm probe (Jules Richard Instruments-ICT, SL,
Fesches-le-Chatel, France) and a ML3 ThetaProbe sensor connected to a ML3 ThetaKit (Delta-T Devices,
Cambridge, UK), respectively. The litter below the soil chamber was collected after sampling at 0, 1, 2
and 3 m from tree trunks and oven-dried at 60 ◦C to a constant weight. The sampled cartridges were
stored at 4 ◦C until analysis.

2.3. GC-MS Analyses of BVOCs

BVOCs were analyzed using a GC-MS system (7890A GC-system interfaced with a 5975C VL
MSD and a Triple-Axis detector; Agilent Technologies, Palo Alto, CA, USA). An automated thermal
desorption unit (Ultra 2 and Unity 2; Markes International Ltd, Llantrisant, UK) was used for desorption
of sampled cartridges. Desorbed BVOCs were cryofocused at −25 ◦C for 2 min, then, the cryotrap was
rapidly heated to 320 ◦C and conducted into a 30 m × 0.25 mm × 0.25 µm film capillary column (HP-5,
Crosslinked 5% pH Me Silicone; Supelco, Bellefonte, PA, USA). Carrier gas was helium and column
flow was 1 mL min−1. Total run time was 30 min, where initial oven temperature was held at 35 ◦C for
5 min, then programmed to increase by 15 ◦C min−1 to 150 ◦C for 5 min, then by 15 ◦C min−1 to 250 ◦C
for another 3 min, and finally by 30 ◦C min−1 to 280 ◦C for 2 min [17]. Terpenes were identified by
comparing retention times with those of standards from Fluka (Buchs, Switzerland) and published
spectra from the Wiley275 and NIST05a mass-spectral library using GCD ChemStation G1074A HP.
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Isoprenoid concentrations were determined by reference to trapped standards of α-pinene, 3-carene,
β-pinene, limonene and sabinene every five analyses, and their calibration curves were made using
three terpene concentrations (relationship between signal and terpene concentrations: r2 > 0.99) [9,12].
The most abundant isoprenoids, such as α-pinene, 3-carene, β-pinene, limonene and sabinene, had
similar sensitivities, with <5% differences among calibration factors.

The exchange rates were expressed as differences between the emission rates of the sample and
the corresponding blank in µg m−2 h−1. When the values are positive, they indicate BVOC emission
from ground to atmosphere, and the exchange rates are then referred to be “emission rates”. When
the values are negative, they indicate BVOC adsorption to ground, and the exchange rates are then
referred to be “adsorption rates”.

2.4. Statistical Analyses

Differences in terpene exchange along the horizontal gradient were tested using one-way analysis
of variance at P < 0.05 in Statistica v.8.0 (StatSoft, Inc., Tulsa, OK, USA) and covariance in terpene
exchanges with soil environmental conditions was analyzed using partial least squares (PLS) regression
using the plsdepot package in R v. 3.3.3. A comparison of emission profile was made between the
ground covering dense litter and green needle of P. pinea according to the data from this study and
Staudt et al (2000) [36].

3. Results

3.1. Soil Environmental Conditions

Mean soil temperatures along the transects of the four trees were 28.5 ± 0.80◦C, 28.8 ± 1.16 ◦C,
33.1 ± 1.01 ◦C and 34.3 ± 1.46 ◦C, and soil moisture (v/v) was 12.2 ± 1.06%, 16.7 ± 0.91%, 4.7 ± 0.70%
and 2.2 ± 0.39%. There was some variation in soil environmental conditions among the trees due to
precipitation, but within-transect variation was lower owing to the randomization of sampling. Mean
soil temperature ranged between 28.4 ± 1.00 ◦C (at 1 m) and 33.2 ± 1.88 ◦C (at 8 m), and mean soil
moisture (v/v) ranged between 7.1 ± 2.23% (at 8 m) and 10.5 ± 3.09% (at 6 m) (Figure S2). The BVOC
exchanges at same distance can be considered paralleled in terms of similar environmental conditions,
which makes the average value can represent exchange at the distance; the conditional environment
for all samplings was concentrated in certain scope which is also optimum to analyse its relationship
with exchange.

3.2. Terpene Exchange

There were no detectable isoprene emissions, while the terpene emissions varied greatly in terms
of amount and composition along the transects. Terpene emissions varied most significantly along the
horizontal gradient under litter, where they were greater at 1 m (371.4 ± 71.1 µg m−2 h−1) than at 0 m
(135.2 ± 22.9 µg m−2 h−1; P < 0.05) and 2 m (13.1 ± 1.8 µg m−2 h−1; P < 0.01), and greater at 0 m than
at 2 m (P < 0.01) (Figure 1); emissions were 7.3 ± 2.0 µg m−2 h−1 at 3 m. Litter was absent from 4 m
along the transect and terpene exchange became irregular, where terpenes were emitted or adsorbed at
low rates (average < 2 µg m−2·h−1); greatest adsorption rates were recorded at 4m (1.6 µg m−2 h−1)
(Figure 1).

Nine monoterpenes and two sesquiterpenes were detected from the transects, all of which were
detected for emission at only 0 and 1 m and, with the exception of camphene, tended to be emitted
in greater quantities at 1 m than at 0 m (Figure 2). Limonene, β- and γ-terpinene with sabinene, and
α-pinene together account for around 90% of total emissions at dense litter zone, while the spectrum
of emission of green needles from P. pinea is dominated by trans-β-ocimene, followed by limonene,
linalool, and 1,8-cineole, that together, accounted for around 90% (Table S2; Figure 3) of all emissions
in summer mornings [36]; α-pinene and limonene account for higher proportion at dense litter zone
than green needles, while myrcene showed similar proportion (Table S2; Figure 3).
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Figure 1. Rates of total terpene, α-pinene, limonene, β- and γ-terpinene with sabinene exchange along
the transects. Data are means ± SE; n = 4. Different letters indicate differences among distances (P < 0.05).
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β

Figure 2. Distribution of terpene exchange along the transects.

Limonene was the most dominant compound, followed by β- and γ-terpinene with sabinene, and
α-pinene (Figure 1), and their emissions along the transect were similar to those of total terpenes in
the litter zone (greater concentrations at 1 m than 0 and 2 m, and greater at 0 m than at 2 m; P < 0.05)
(Figure 1), and there were relatively high emissions of other terpenes at 0 and 1 m (<10 µg m−2 h−1),
but lower emissions (<1 µg m−2 h−1) at the other distances (Figure 2). While two sesquiterpenes
β-caryophyllene and α-caryophyllene were emitted at around 7.5 and 2.5 µg m−2 h−1 at 1 m, they were
emitted at <0.5 µg m−2 h−1 at other distances, and were barely detected after 4 m (Figure 2). Almost all
terpenes were adsorbed at 4 and 10 m, particularly α-pinene (Figure 2).
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Figure 3. The composition of terpene emissions for green needles [36] and dense litter zone of our
study (≤1 m) in summer mornings.

The litter dry weight was largest at 1 m (4.768 g), followed by 0 m (3.282 g), 2 m (2.128 g) and 3 m
(0.492 g), and it showed strong exponential relationship with terpene emission (Figure 4a). The detected
compounds were correlated positively with soil temperature and negatively with soil moisture content
and distance to the tree (Figure 4b).
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Figure 4. Relationship between total terpene emissions and litter dry weight within 4 m of the study
trees (a). Partial least squares (PLS) regression between soil temperature or soil moisture content or
distance to the trees and terpene exchange along the transects in turf zone (≥4 m) (b). Black represents
soil temperature, soil moisture content and distance to the trees as independent variables (X), red
represents exchange rates of individual terpenes as dependent variables (Y). α-Pin, α-pinene; Cam,
camphene; β-Pin, β-pinene; Myr, myrcene; α-Phe, α-phellandrene; Lim, limonene; β-, γ-ter and sab, β-,
γ-terpinene with sabinene; β-Car, β-caryophyllene.

4. Discussion

Terpene exchanges varied with the distance to the trunk of Pinus pinea, a storage species for these
compounds [35]. The ground showed totally different emission pattern due to litter coverage or not,
with different magnitude, and it is possible to divide the exchange profiles into three groups: short
distances (<2 m) covering dense litter, medium distances covering moderate litter (2–4 m), turf (≥4 m),
where emission rates were greatest at <2 m and lowest at ≥4 m, reflecting the degree of canopy coverage
of the ground. Previous studies also found evidence of a gradient from high levels of monoterpenes in
the vicinity of the tree trunk to lower levels at the farthest distance [16,17,37]. These studies suggested
that the large source of volatiles result predominantly from a large amount of litter or roots/rhizosphere
activity in the soil near trunks [16,19].

The BVOC emissions at short and medium-distances were dominated by litter (Figure 4a), and
also probably released by microbial metabolism and sparse ground vegetation, especially by roots
owing to emissions decreasing with increasing distance from the tree trunk. However, the points at
0m with less litter, maybe owing to uneven ground near trunk, also showed obviously less emissions
compare to that of the points at 1 m, where is supposed to be farther from and have less quantities
of underground roots for the species of taproot system. The roots were reported to increase [38]
or decrease [29] soil emissions, both with low fluxes indicating root-rhizosphere activity [10,30,39]
would be a much smaller source compared to litter in this study. However, roots may represent a
strong terpene source for Pinus spp. as well [17,37] and are a non-negligible source of VOCs for
some species, like Arabidopsis [30,39]. Soil microbial activity has been shown to correlate with VOC
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emissions over a range of different forest soils [8,12,16], however, the soil moisture recorded were
very low which has probably strongly hampered microbial metabolism [33]. Although activity of soil
microorganisms and roots were both decreased in summer [29], the changes towards a decrease in
the ratio of microorganisms/roots activities in the rhizosphere was found [30], which may suggest the
emission from microbe activity may be a smaller source compared to roots.

The strongly positive relationship between emission rate and litter dry weight (Figure 4a) also
indicated that the aboveground plant litter was likely the dominant terpene source [8,16,18] as
also reported for aboveground litter of other species storing terpenes [28,34,40]. Turf is a “simpler”
ecosystem compared to other ecosystems because it has less vegetation mass and associated interactions,
than forests, grasslands or croplands [28,41]. The strong relationship (Figure 4a) may actually indicate
that the aboveground plant litter was the most dominant terpene source, while other biotic sources
like roots and microorganism, and abiotic factors like soil properties and environmental conditions
may play less important roles in ground level isoprenoid emissions. This makes that the emissions
can be estimated by litter dry weight in this type of ecosystem while it may be instead unrealistic for
other ecosystems.

The quantity of terpenes is thus dominantly linked to the amount of needle litter at short and
medium-distances which might mask the variation caused by environmental conditions, although
effects of temperature on emissions elicit changes in transport resistance along the diffusion path
from the litter [5] and temperature and humidity are always supposed to be main factors acting on
terpene emission in Mediterranean summer daytime [29,42]. However, litter emissions associated with
microbial decomposition of organic matter have been reported to be quantitatively more dominant
than emissions caused only by abiotic factors as temperature and humidity [8,34,40] as suggested by
the strong correlation between VOC production and microbial CO2 production [8].

The emitted compounds found in this study follow a pattern similar to other studies of ground VOC
emissions which consist of very few abundant compounds associated with several less representative
ones (Figure 3) [11,22,29]. The spectrums of emission vary significantly between dense litter zone
and green needles from P. pinea (Figure 3), but both contain high amounts of limonene [36]. Emission
rates of trans-β-ocimene, linalool and 1,8-cineole are light-dependent, and carbon dioxide exerts a
particularly positive influence on the emission rates of trans-β-ocimene [35]. Trans-β-ocimene is
directly synthesized in chloroplasts and follow a different metabolic path to other monoterpenes which
are stored in resin ducts [35], this can be proved by its presence only in the sampling of green needle.
However, this variation was also found in another typical Mediterranean pine species Pinus halepensis

whose litter showed remarkably high sesquiterpenes (β-caryophyllene, followed by α-caryophyllene)
emissions [17] which represent less than 5% of the total emissions of green needles [43,44]. Although the
relative composition of terpenes in needle litter is related to that of green needles, terpene concentrations
may change with time during decomposition processes [17]. The increased proportion of limonene
and α-pinene and similar proportion of myrcene emission in dense litter zone compared with green
needles may showed soil microbes readily consume a diverse array of BVOCs with different ability of
utilization which also varied from distinct microbial communities [8,24,34], representing an important
sink of BVOCs in terrestrial ecosystems dominated by plants that store terpenes [8]. On the other hand,
the high proportion of β- and γ-terpinene with sabinene emissions in dense litter zone could indicate
soil microbes producing terpenes that are not emitted by plants [8,17].

We found that terpene exchanges were very low (Figure 1) which was in agreement with the
previous studies [17,20,29,30] and not correlated with the distance from the trunk overall (Figure 4b)
at the greatest distance from the trees in the herbaceous turf, where there was a lack of needle litter
and too far to be influenced by roots as well. Despite potential terpene content in grasses [17,45],
there was a negligible impact on exchange rates owing to the small biomass compared with the
pine, supporting research that shows terpene emissions from ground in close proximity to trees
derives from litter and plant roots [17]. Much less research has been directed towards the more
intensively anthropogenic managed turf soils than forest, grassland or cropland systems that have
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been studied [28,40]. Our findings showed that turf soils produced negligible BVOC emissions,
which were much lower than forest soil in Mediterranean summer [30]. Further, BVOC exchange
profiles depend on soil type [10,28], and influenced by environmental conditions [10,27]. However,
most of the measured fluxes from forest soil probably originated from understory vegetation [21,34].
Previous research suggests that biotic factors affecting the emissions of VOCs from soil are 5–10 times
stronger than the abiotic ones [8,27], and soil environmental conditions affect both sources by altering
volatility of VOCs and the activity and community composition of microorganisms [34]. In this study,
α-caryophyllene was lacking at the greatest distances from the trunks where turf dominated, and
emissions of β-pinene were not related to soil temperature or moisture content but positively related to
the distance (Figure 4b). However, the emission of the rest of emitted compounds including the most
abundant compound, limonene, along with β- and γ-terpinene, sabinene, and α-pinene were correlated
positively with soil temperature and negatively with soil moisture content except for α-phellandrene
which showed an opposite trend (Figure 4b). Soils in this study emitted a variety of terpenes that
varied as a function of soil temperature and moisture [4,32], and slight trend can be found for total
terpene exchange (Figure S3). The positive correlation with temperature and negative correlation
with moisture of BVOC emissions are also in agreement with previous study in Mediterranean holm
oak forest soil [29] and high arctic soil [6]. The diversity of compounds found in this study, although
not very high, gives an idea, of the various factors for VOC emissions that can be taken into account,
such as temperature, moisture and their interaction. In addition, the type of soil and low vegetation
also influences. Mediterranean soil behaves more as a sink than as a source of BVOCs since total
soil BVOC adsorption overcame emission over the year [29,30]. However, our results show that soil
VOC exchange with the atmosphere might greatly change in response to climate change, with likely
increased emissions under the warmer and drier summers expected for the coming decades in the
Mediterranean region [41].

5. Conclusions

To conclude, the presence of aboveground litter was the dominant source of ground level terpene
emissions in the proximity of Pinus pinea trees and the emission amounts can be estimated by litter dry
weight while the components vary significantly from green needle. In addition, soils act as a source or
sink of terpenes in managed Mediterranean turf environments with negligible terpene exchanges and
the exchange rates of total terpenes were correlated positively with soil temperature and negatively
with soil moisture. The soil terpene emissions are expected to increase by climate change in the
Mediterranean region. Given the variations in ground emissions with soil, vegetation, microorganisms,
and associated interactions, we recommend further spatio-temporal analysis of ground level BVOC
exchanges in a wider range of ecosystem types.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/8/809/s1:
Figure S1. Schematic of the isoprenoid sampling; Figure S2. Mean soil temperature and moisture content along
the transects. Data are means ±SE; n = 4; Figure S3. Relationships for the rates of total terpene exchange with
soil temperature and soil moisture along the transects in turf zone (≥4 m); Table S1. Randomized sampling plan
for the four studied trees during the morning. T1-T4 are first to fourth study trees, respectively; Table S2. The
component of terpene emissions of P. pinea for green needle (a) from the study of Staudt et al. (2000) and dense
litter zone (≤1 m) (b) from this study in summer mornings.
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Abstract: (1) Background: In agro-ecosystems, the success of the crops has a strong connection
to biodiversity in the landscape. In the face of climate change, it is important to understand the
response to environmental variation of weed species by means of their distribution. In the last century,
biodiversity has been impacted due to a variety of stresses related to climate change. Although the
composition of vegetation tends to change at a slower rate than climate change, we hypothesize
species present in weed communities are distributed in diverse patterns as a response to the climate.
Therefore, the general aim of this paper is to investigate the effect of temperature, using latitude as an
indicator, on the composition and distribution of weed communities in agro-ecosystems. (2) Methods:
Weeds were monitored in georeferenced cereal fields which spanned south and central Spanish
regions. The graphic representation according to latitude allowed us to identify groups of weeds
and associate them to a temperature range. We classified weeds as generalist, regional, or local
according to the range of distribution. (3) Results: The monitoring of species led to the classification
of weeds as generalist, regional or local species according to latitude and associated temperature
ranges. Three weed species that were present in all latitude/temperature regions, were classified as
generalist (Linaria micrantha (Cav) Hoffmanns & Link, Sonchus oleraceous L., and Sysimbrium irium L.).
The species were classified as regional or local when their presence was limited to restricted
latitude/temperature ranges. One weed, Stellaria media (L.) Vill., was considered a local species and
its distribution dynamics can be considered an indicator of temperature. (4) Conclusions: The novel
methodology used in this study to assign weed distribution as an indicator of climatic conditions
could be applied to evaluate climate gradients around the world.

Keywords: agro-ecosystems; biodiversity; climate change; weed communities

1. Introduction

Biodiversity plays an important role in maintaining the processes and functions of ecosystems,
including farming [1,2]. Plants respond to environmental conditions based on their needs in the habitat
and physiological tolerances, which influences the composition of weed communities, their structure
and resilience. In the last century, biodiversity has been impacted due to a variety of stresses related
to climate change which have affected how and where species live, reproduce, and interact with
each other [3,4]. The composition of vegetation tends to change at a slower rate than climate change,
but nevertheless species present in weed communities have been distributed in diverse patterns
according to their response to the climate [5].

Because climate change has influenced the annual productivity of many crops [6,7], as well as the
composition and distribution of weed communities in agro-ecosystems [8,9], we can say that climate
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change presents both a threat to biodiversity and a cost in terms of weed control, for agriculture. Weeds are
one of the main limiting factors of crop production worldwide, with part of their success being due
to their plasticity: weed flora can adapt to changes in the environment [10–13]. This plasticity may
respond to climate change at the local and regional level [14–16], and can act as a filter to soften the
negative effects of a rapid change of climatic conditions in a particular area. In the short term, plasticity
in the weeds allows them to cope with changes of environmental conditions.

Most of the agronomic actions in an agro-ecosystem has been designed to reduce the overall weed
density [17–19]. However, the sustainability of cropping systems should be assessed not only in terms of
crop yield but also adequate levels of biodiversity within cropland [20]. Agricultural practices, which vary
according to local climate, cause a disturbance to the agro-ecosystem, and change the dynamics of the
weed community, creating ecological niches [2,5,21,22]. These niches formed by weed communities
affect plant diversity in the field [23,24]. Extreme weather combined with agronomic practices can
lead to empty niches which present an opportunity for the establishment of new weed species [25,26].
The way that these niches are filled depends on the level of biodiversity. In agro-ecosystems with a
greater diversity of weeds, there are more species available to fill these niches, which prevents any one
species becoming dominant [27–29]. Logically, in agro-ecosystems with less diversity, it is easier for one
weed species to take over a niche created by agricultural activity and become dominant. Weed diversity
provides ecosystems services for the upper trophic levels in cropland ecosystems [23,30]. These changes
in distribution of the weed community (abundance and richness) are often difficult to predict so
monitoring changes is recognized as crucial both in stable and unstable environments. In the face of this
challenge, several authors have argued that monitoring arable weed species can be used as biodiversity
indicators in agro-ecosystems [31,32].

Studies on global warming have predicted a change in general temperature and rainfall
patterns [33,34], but there are high levels of uncertainty about the nature of local changes. In Spain,
temperature trend analysis confirms that there has been a widespread rise in annual average temperature
since the mid-1970s, with warming being more apparent in winter (1.9 ◦C), and this increase in
temperature in winter has given rise to longer growing seasons. One of the least explored aspects of
global warming is its possible impact on the geographic distribution of agricultural weed species [35,36].
Climate change, and the consequent longer growing seasons, has led to the appearance of weed
species which are more common in warmer conditions [24,37,38]. In this context, we have seen that
the weed distribution patterns found in agro-ecosystems vary according to latitude, as influenced by
temperatures gradients.

We hypothesize that climatic conditions are linked to weed species distribution. Although, studies have
been conducted on the effects of climatic conditions on weeds, to our knowledge, relatively few studies have
focused on weed distribution on regional and local scales. The objectives of this study were: (1) to implement
a novel methodology; (2) to analyze the distribution pattern of weed species with respect to climate gradients
and identify weed species as potential indicator of climate changes; and (3) to provide data regarding
expected weed distribution changes due to global warmer for agricultural managers, in order to maximize
yield parameters by maintaining biodiversity.

2. Material and Methods

In this study, we identified the weed species in cereal agro-ecosystems found in UTM quadrants of
10 km2 (grid zones 29 and 30+, from latitude bands S and T). These quadrants were established within
a North-South latitude range between Madrid (central Spain) 40.51 ◦N and Seville (southern Spain)
37.24 ◦N. We categorized plant species by latitude in a total of 50 quadrats.

This geographical range covers three latitudinal communities. The first two communities, located
within Madrid and Castile La Mancha regions, are under Central Iberian plateau conditions. The altitude
of the plateau is responsible for the existence of a continental Mediterranean climate. The most significant
characteristics in these areas are severe winters, hot summers, summer drought, irregular rainfall,
strong thermal oscillations and remarkable aridity. These features have been the result of the interrelations

70



Atmosphere 2020, 11, 853

between geographical factors such as latitude, the situation of the region within the Iberian Peninsula, the
relief layout and altitude. The annual thermal amplitude (difference between the average temperature of
the coldest month and the hottest month) is very high, normally between 18 and 20 ◦C due to continentality.
In July, the average monthly temperature is above 24 ◦C in most of the regions. The southern-most
latitudinal community in the study, Andalusia region (Seville), has also semiarid conditions, similar to the
continental Mediterranean climate but with more temperate conditions due to the coastal proximity.

The weed monitoring was carried out on georeferenced cereal fields, in the established route,
during April 2018. The “time window” for the monitoring was decided according to the crop maturation
stage. The cereal booting stage was selected because it is one of the critical competition stages in
cereals [39], and the best time to identified weed flora representative of agro-ecosystems. All of the
fields monitored, from central Spain were between 600 and 800 m in altitude and southern Spain fields
were at an altitude range from 6 to 400 m. All the fields monitored showed the standard conventional
management for each region.

To display the weed distribution along the latitude gradient a novel ordination methodology
was performed on weed species present in the time of monitoring. A binary code was assigned to the
presence or absence of weed species. The data was presented according to latitude (North–South) and the
Tmax and Tmin were ordered from lowest to highest. Then, we represented these weed arrangements
graphically (see the figures): where the peaks on the chart indicate the presence of weed species in a
certain latitude or temperature. Also, the Spearman rank order correlation (Supplementary Materials)
was used to obtain the relation between the weed species ordered by latitude and temperatures at the
time window for monitoring, in the month of April.

In terms of temperatures, average maximum and minimum temperatures in April from the
WorldClime database were reviewed, and data were adjusted to sea level. This method allowed us
to classify and catalogue weed species according to environmental conditions, specifically different
temperatures. This data analysis allowed for the identification of weeds that are able to tolerate high
temperatures, these species, known as thermophilic, were found in latitude ranges that correspond to
higher average temperatures. Other species were found not to thrive in the same conditions and weeds
that are particularly sensitive to low temperatures and therefore have a reduced range of distribution
were identified.

3. Results

A total of sixty-six weed species were observed in agro-ecosystems along our established
route. The results of the process of categorizing weed species provided valuable information about
distribution of weeds according to latitude and temperature. For the timing of weed monitoring,
April 2018, the correlation between latitude and Tmax and Tmin were 0.749 and 0.790, respectively
(in Supplementary Materials).

Figure 1 represents the findings of the sampling surveys. The peaks in the graph show presence
of the weed species in the corresponding area. For this graphic representation we classified the weeds
according to latitude. We can see three latitude ranges of 3 degrees (from 40.5◦ to 37.2◦) which coincided
with three regions of Spain called latitudinal communities: Madrid, Castile La Mancha, and Andalusia.
We classified the weeds as local, regional and generalist, according to their range of dispersion:

(1) Local weed species were defined as restricted to a single latitudinal community (either Madrid,
Castile La Mancha, or Andalusia), less than 33% of the geographical range.

(2) Species were classified as regional (two latitudinal communities) if they had a higher dispersion
than local, between 33 and 66% of the geographical range.

(3) Generalists weeds were found in all areas of study, over three latitudinal communities, over 66%
of the geographical range.
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Figure 1. Graphical pattern of arable weed species distribution found in the studied areas according
to latitude from Central to South of Spain (the peaks show presence of the weed species in the
corresponding area).

Weed species were also divided into four groups by their thermal amplitude (species that appeared
in up to 18, 36, 54 and 100% of Tmax and Tmin ranges), Figures 2 and 3 illustrate this. Figure 2 categorizes
weed species according Tmax in April. The Tmax range was 4.7 ◦C (from 20.9 ◦C to 25.7 ◦C), and Figure 3
classifies weed species observed within a Tmin range of 4.1 ◦C (from 10.2 ◦C to 14.3 ◦C). The weed species
were divided into four groups according to temperature: (1) weed species dispersed within a narrow

72



Atmosphere 2020, 11, 853

temperature range, less than 18% of the total range; (2) weed species which were found within the 18–36%
of temperature range; (3) weed species with more thermal amplitude, between 36 and 54%, and finally,
(4) weed species present in all Tmax ranges. The classification of local, regional and generalist species
had different results according to each of the three figures. We considered a species to be an indicator of
temperature if its classification was the same in all three figures.

Figure 2. Graphical pattern of arable weeds distribution according to the Tmax in April.
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Figure 3. Graphical pattern of arable weeds distribution according to the Tmin in April.

According to latitude, Anchusa azurea Mill. and Avena sterilis L. were local species in Andalusia.
Moricandia arvensis (L.) DC., Eruca vesicaria (L.) Cav. and Malcomia africana (L.) R.Br. were local species in
Castile La Mancha. We consider these species to be potential indicators because their latitude ranges were
narrow (≤33% of range) and also their dispersion of Tmax and Tmin range were between 18 and 36%
(Figures 2 and 3, respectively). Other local species found were Cardaria draba (L.) Desv., Blugossoides arvensis

(L.) I.M. Johnst., Silene vulgaris (Moench) Garcke, Raphanus raphanistrum L., and Lamium amplexicaule (L.).
All of them were recorded in the latitude community of Madrid, 40◦ of latitude-north, with distribution
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within a geographical range corresponding to 33%, and 18% of dispersion in Tmin range. Local species
were distributed in narrow ranges in terms of latitude and minimum temperature, however, a rise in
average Tmin could favor their spread into more northern geographical ranges.

Linaria micrantha (Cav.) Hoffmanns. and Link. appeared as regional species, between 33 and 66%
of dispersion within latitude range, and the variation in Tmax and Tmin ranges were narrower, ≤18%.
In climate gradients where average temperatures are too high or too low, this weed species was not
present. Then, global warming could completely change the geographical distribution of this weed
species. Sysimbrium irio L. was observed as regional species, with similar variation in latitude and
Tmin, but its Tmax range was very low (≤18%). When the maximum temperature is too high this weed
species was not present. The opposite occurred with Sonchus oleraceous L., similar latitude and Tmax
ranges variations, and Tmin range of ≤18%. When the average temperature was too low, this weed
species was not present.

Stellaria media (L.) Vill. appeared in the highest latitude range (66–99%), but the narrowest Tmax
and Tmin ranges (≤18%). We can state that this generalist weed is sensitive to temperature.

4. Discussion

Some weed species can share response patterns to particular environmental circumstances and
hence affect their geographical distribution. Global warming, which implies longer growing seasons,
may favor the appearance of weed species in regions which used to be colder [24,38]. Weeds sensitive
to temperatures such as thermophilic weeds, or species with late emergence and opportunistic species
can thrive now in some farming systems due to a rise in temperatures [5,8,9]. Numbers of these weed
species have been increasing in northern areas because they are able to adapt to warmer conditions,
and the growth cycle of these weeds has changed, accelerating the flowering stage [36–38,40–42].

On the other hand, climate change indirectly influences weeds that adapt to different agronomic
practices. Frequently, we find that weeds are closely associated with the cropping system, and climate
conditions have, therefore, an influence on the occurrence of weeds through crop management and land
use [18,19]. From the above, we can deduce that the weeds that are present today in the agro-ecosystems
are not necessarily the weeds that will be of concern in the future. However, further compilation of data
regarding climatic conditions and the identification of weed flora in a determined area is necessary [26].

In this paper, we propose the implementation of a monitoring program for weeds in cereal systems,
at a regional or local scale. It is important to facilitate the detection of changes within agro-ecosystems
and allow farm managers the chance to predict the effects of climate change and reduce the impact
on crop parameters. However, there is little information of the distribution of weed species [24,43],
within the cereal agro-ecosystems, according to variables as latitude and temperature changes. Our study
about weed distribution offers a resource to observe and compare weed species distribution in semiarid
agro-ecosystems at the local level.

We found Anchusa azurea Mill., Avena sterilis L., Moricandia arvensis (L.) DC., Eruca vesicaria (L.) Cav.,
and Malcomia africana (L.) R.Br. as local species. We could consider these species as marker of warm
conditions. If average minimum and maximum temperature increase, can be facilitated a thermophilic
movement of these species and we would find these weeds relocated in other latitudes. Avena spp.
has been categorized as aggressive grass in northern countries [12]. Avena sterilis L. is a widely spread
weed by the Iberian Peninsula and has been principally controlled by herbicides. Its presence in the
monitoring reflects its ability to adapt to warmer conditions. Therefore, the dispersal mechanisms of
these species will have a great influence on their distribution and the plant traits of these local species
should be object of future consideration.

Cardaria draba (L.) Desv., Blugossoides arvensis (L.) I.M. Johnst., Silene vulgaris (Moench) Garcke,
Raphanus raphanistrum L., and Lamium amplexicaule L., were local species disperse in Tmin range narrowest.
So, we think that Tmin can sorted the weed species within the observed latitude. Some authors [44,45]
have found as local species Silene noctiflora due to propagule transport mainly relies on biological dispersal
mechanisms and the habitat fragmentation prevent the dispersal of species.
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Linaria micrantha (Cav.) Hoffmanns. and Link., Sysimbrium irio L. and Sonchus oleraceous L. were
species more spread than others mentioned in this study. However, too low or too high temperatures
may challenge their survival within their latitude, and so we could consider these three weeds
(Linaria micrantha, Sysimbrium irio, and Sonchus oleraceous) as opportunistic because their presence is a
function of optimal temperatures. Several Sysimbrium spp. species has been found in oilseed rape fields
in Germany [38]. Stellaria media (L.) Vill. would also be considered a generalist species, widespread in
all latitudes, but sensitive to changes in temperatures. Stellaria media (L.) Vill., as a nitrophilous species
with shading tolerance has become relevant species in northern areas [12,46].

Temperature change reveals both the threat to biodiversity and the cost of weeds for agriculture.
Because temperature has influenced the annual productivity of many crops, as well as the composition
and distribution of weed communities in agro-ecosystems. These results demonstrate some degree of
plasticity in response to environmental variation of weed species by means of their spatial distribution.
Of course, the plants are integrated in agro-ecosystems, and these responses are influenced by other
factors such as agronomic practices.

In view of the results, climate change poses an uncertainty about the best way to design weed
management strategies. A static style of management cannot be assumed any longer, and an adequate
management of weeds, in the future, must take into account temperature change, land use, and human
activity. Changes in the composition of the weed community can reduce the effectiveness of existing
control strategies, as well as yield and economic cost to producers due to uncontrolled weeds.
Also, important ecosystem services provided by weeds can be compromised if the composition of the
community evolves with climate change. The different weed distribution patterns found could, in the
long term, lead to variations of ecosystem functions. Therefore, the estimation of the damage of the
weeds in the agro-ecosystems will be very important to reduce its impact and develop management
strategies, current and future, effective against climate change.

5. Conclusions

Our research supports the common view that the monitoring of biodiversity is a means to obtain
information on the state and dynamics of the agro-ecosystem. The application of the novel methodology
proposed has made it possible to visualize clear links between latitude and temperature ranges related
to weed distribution. The monitoring method presented here can be a promising tool to supply
information in bioclimatic distribution models of species that needs to be validated with empirical
data on weeds under changing climatic conditions. Also, this methodology proposed may be applied
to the study of climate gradients around the world.

We think that there are temperature sensitive weeds which can be used in further studies as indicators
of climate change by comparing distribution to local and regional data. Considering that weed community
changes are not always noticeable in the short term, we recommend establishing long-term monitoring to
detect changes in the biodiversity of agro-ecosystems. Furthermore, any changes in weed distribution in
the agro-ecosystem due to temperature changes would affect the crops. Therefore, any information about
shifts of weed dynamics related to temperature changes is going to be especially important in the future
for crop management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/8/853/s1,
Figure S1: Distribution of weed species according Latitude (from South to North in X-axis) and temperatures.
Spearman rank order correlation values with temperatures in April month = 0.749 (Tmax) and 0.7906 (Tmin).
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Abstract: As one of the important factors affecting plant productivity and plant distribution,
temperature also affects the physiological and ecological characteristics of plants to a large extent.
We report canopy leaf temperature distribution over a 36 m tall primary tropical rain forest and
samplings of 28 tree species in SW China by means of two high resolution thermal cameras (P25, Flir
systems, Wilsonville, OR, USA). The leaf temperature of dominant tree Species Pometia tomentosa was
the highest (31.8 ◦C), 10.2 ◦C higher than that of tree species Mezzettipsis creaghii (21.6 ◦C). The mean
leaf to air temperature difference (Tc–Ta) of Pometia tomentosa was the highest (6.4 K), the second
highest was Barringtonia pendula (6.1 K), and Mezzettipsis creaghii had the lowest (Tc–Ta) (1.9K). (Tc–Ta)
of tree species with smaller leaves and larger stomatal conductance was lowly sensitive to climate
factors. Leaf size and stomatal conductance together decided the effect of climate change to (Tc–Ta)
of the different tree species. We have shown that the composition of tree species in tropical rain forest
areas is important to the climate through our research.

Keywords: leaf temperature; infrared thermography; thermal imagery; tropical rain forest

1. Introduction

There are many factors that affect plant productivity and plant distribution, such as climate,
topography, water, soil, microorganisms, and so on. However, as one of the important factors affecting
plant productivity and plant distribution, temperature also affects the physiological and ecological
characteristics of plants to a large extent. Temperature influences rates of plant photosynthesis and
respiration, litter decomposition and microbial activity [1], and other biological processes will affect
the fixation and release of carbon dioxide [2]. On the other hand, leaf temperature is also affected by
stomatal control of transpiration [3] and traits affecting heat exchange [4]. For example, leaf size, leaf
shape, petiole length, and other traits can affect leaf temperature [5–7].As a result, global warming is
expected to affect carbon pools on land, increasing the amount of carbon dioxide in the atmosphere [8,9].
The rate of ecosystem respiration will increase with increasing temperature. At the same time, rising
temperatures may lead to plant stomata closing, thus reducing the primary productivity of tropical
rainforest ecosystems.
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With the global biodiversity crisis becoming increasingly serious, research on plant diversity
and its role in ecosystem function is becoming increasingly important in ecology. Due to the good
combination of precipitation and temperature in the tropical rain forest area, the plant types in the
tropical rain forest area are also very rich. Moist rainforests cover about 6~7% of the earth’s surface, but
they are home to more than half of all life on earth [10]. According to research, the tropical rainforest
contains the largest collection of living plant species in the world [9]. They contain 40% of the world’s
forest biomass [10] and soil carbon [11]. Especially on a small scale, dominant tree species in a tropical
rain forest community have a great influence on forest carbon sequestration [12].

Due to the incomplete development of technology, the early research mostly focused on the
microhabitat temperature measurement of single tree species. Recently, new digital technologies in
combination with thermal (IR) transmission lenses have been developed to accurately measure actual
temperature regimes in canopies. For example, Kumar et al. conducted field experiments on farms
in central and southern India (18◦9′ N, 74◦28′ E). They used thermal imaging to assess the canopy
temperature differences among different genotypes of soybeans to further differentiate the soybean’s
ability to withstand water stress [13]. Padhi et al. used infrared thermal imaging technology to measure
the canopy temperature of cotton fields at Kingsthorpe Research Station (27◦30′44′′ S,151◦46′55′′ E),
thus providing a basis for assessing crop water deficit pressure using stomatal conductance
index [14]. Daniel and Körner assessed, by using a combination of IR imagery, both surface and
root zone temperatures on a landscape scale in the Swiss Alps [13]. In Switzerland, leaf surface
temperatures vary widely between species in mixed deciduous forests and urban environments [14,15].
Stomatal conductance, the key factor controlling leaf temperature, varies greatly in ten tropical
forests [3]. Thus, we can see that different plants have different canopy temperatures. Moreover,
the temperature of the crown is closely related to the stomatal conductance and water content of
the leaves. Canopy temperatures have a series of uncertainties in their variations, and controlling
environmental factors [3,4]. Therefore, we hypothesized that canopy temperatures of broadleaved
trees in primordial tropical forests may differ significantly among species. According to the 2007 report
by the Intergovernmental Panel on Climate Change (IPCC), global temperatures are expected to rise
from 2.4 to 5.5 ◦C as carbon dioxide levels in the atmosphere increase [16]. This global warming may
be related to changes in solar radiation, precipitation, and other micrometeorological factors on a
regional or ecosystem scale. Studying the responses of different tree species to these climatic stress
factors is helpful to understand the dynamics of vegetation in the context of global warming [14,15].

Little is known about how species-scale variation in leaf temperature influences community-scale
variation in canopy temperature [14]. Our study has two main purposes (1) to study the spatial and
temporal distribution of species under specific canopy temperature, (2) to discuss the possible influence
of future climate change on canopy temperature difference (CTD). Through this study, we want to
explore the significance of forest tree species’ composition on canopy heat accumulation.

2. Materials and Methods

2.1. Site Description and Studied Species

Our experiment was conducted in a tropical rain forest in Xishuangbanna, southwestern
China (21◦55′39′′ N, 101◦15′ 55′′ E, elevation 750 m). Xishuangbanna Nature Reserve Authority is
mainly responsible for protecting the reserve forest sites. Our institute workers were approved by
Xishuangbanna Nature Reserve Authority to conduct experiments in the site. There were no specific
permissions required for the activities. The height of the rainforest canopy is about 36 m. The stand has
a stem density of 964 trees ha−1 (diameter ≥ 5 cm) and a total basal area of 32.28 m2 ha−1; the number
of tree species in the plot was 179 in 2007 [17].
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2.2. Dominant Mature Tree Species

The important value of the five tree species ranked in the top five over the whole tree species [17].
So, we selected the top five canopy mature tree species in this rainforest which is dominated by Pometia

tomentosa, Barringtonia macrostachya, Gironniera subaequalis, Ardisia tenera, and Mezzettiopsis creaghi,
respectively [18]. The canopy temperature characteristics of the five tree species are shown in Table 1.
The sites did not involve endangered or protected species.

2.3. Saplings of 28 Tree Species

We also selected samplings of 28 tree species in the lower layer of the forest that could be
adequately replicated. Five tree samples of each tree species were measured.

2.4. Thermal Imaging of the Canopy Dominant Tree Species

A 70 m tower was established at the center of the plot. In this study, two thermal imaging cameras
(P25, Flir systems, Wilsonville, OR, USA) with a resolution of 320 × 420 pixels were used to determine
the canopy temperature of the dominant tree species. Two thermal imaging cameras (P25, Flir systems,
Wilsonville, OR, USA) were mounted 3 to 5 m above the canopy. In addition, exposed and certain
sized canopies were selected to measure the average canopy surface temperature. The camera (P25,
Flir systems, Wilsonville, OR, USA) software was used to analyze the canopy surface temperature of
the measured images. This provided us with 76,800 temperature data with a resolution of 0.1K under
sunny conditions. We only cut three leaves in a tree to analyze the leaf stomatal conductance.

2.5. Thermal Imaging and Stomatal Conductance of 28 Tree Species Samplings

By measuring the temperature of the leaves and the temperature of the air, we calculated
the difference between the two average temperatures. In addition, we measured the leaf stomatal
conductance of samplings of 28 tree species. All measurements were conducted on 13–15 June 2018,
three meteorologically similar days (from 09:30 to 13:00). We also used two thermal cameras (P25, Flir
systems, Wilsonville, OR, USA) to measure the leaf temperature. Then, the leaf stomatal conductance
was measured with a portable photosynthesis system (LI-6400, Li-COR, Lincoln, NE, USA).

2.6. Environmental Data and Soil Moisture

In the corresponding period, wind speed (A100R, Vector, UK), air temperature and humidity
(HMP45C, Vaisala, Vantaa, Finland), photosynthetically active radiation (LI-190SB, Li-COR, Lincoln,
NE, USA), net radiation (CNR-1, Kipp & Zonen, The Netherlands), soil temperature (TCAV, Scientific
Inc., Logan, UT, USA), and soil moisture (CS616, Campbell Scientific Inc., Logan, UT, USA) were
measured simultaneously. All these factors were sampled at 0.5 Hz and the data were stored in the
data logger. The 30 min average was also calculated and stored by the data logger (CR1000, Campbell
Scientific Inc., Logan, UT, USA).

The canopy temperature difference was calculated by using the canopy surface temperature and
air temperature at the same time.

2.7. Evaluate the Canopy Temperature Change

In order to explore the possible influence of future climate change on the canopy temperature
difference (CTD), we used Function (1) to evaluate the canopy temperature change [19].

Tc–Ta =
Pa(Rn − G) − gcλ VPD +

(
gc /gH)Pa(Rn − G)]

gcCp + gHCpVPD
(1)

where Pa is atmospheric pressure (kPa), Rn is net radiation (W m−2), G is soil heat flux (W m−2), gc is
canopy stomatal conductance (mmol m−2 s−1), gH is boundary layer heat conductance (mmol m−2 s−1),
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Cp is the specific heat of air at constant pressure (J mol−1 K−1), λ is latent heat of vaporization (J mol−1),
VPD is the vapor pressure deficit (kPa), and Pa is atmospheric pressure (kPa).

2.8. Statistical and Analytical Methods

All data processing and statistical analyses were conducted using the Statistical Analysis System
(SPSS 26.0 Software, IBM, Armonk, NY, USA). Significant differences between means were tested using
one-way analysis of variance (ANOVA). Significant effects of the main meteorological elements on the
canopy temperature difference rates were determined by multiple linear regressions.

3. Results

3.1. Environmental Conditions

Figure 1 showed diurnal variations in the main meteorological elements during the observational
period. The maximum air temperature was 27.6 ◦C. The maximum photosynthetic active radiation
(PAR) was 1380 µmol m−2 s−1. Wind speed was very low in this site.

 

− − − λ
− VPD

μ − −

 

− −

Figure 1. Air temperature (Ta), vapor pressure deficit (VPD), photosynthetic active radiation (PAR)
and wind speed (Ws) during the canopy temperature measurements.

Soil moisture has a strong influence on the plant surface temperature. During the measurement,
the soil moisture content at 5 cm depth was 12.5%. This is an area with very low soil moisture
throughout the year, which means trees can tolerate drought.

3.2. Spatial and Temporal Temperature Distribution of the Dominant Mature Tree Species

Canopies were scanned on 4 February, 2018 from 13:55 to 14:05 true local time. Figure 2 shows the
pattern of the mean temperature of the three layers at 14:00. The mean leaf temperature of Pometia

tomentosa in upper layer was the highest (31.8 ◦C), 10.2 ◦C higher than that of the tree species Mezzettipsis

creaghii (21.6 ◦C) in the lower layer.
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Figure 2. The false color thermal image of part of the canopy of five tree species taken at 14:00 on
4 February 2018, shows the canopy surface temperature of five different tree species. The squares show
some selected frames that have been used (Table 1 and Figure 5).

Table 1. The average canopy temperature repeat number n, canopy temperature difference (CTD),
temperature range, minimum and maximum values of the five rainforest tree species selected in the
study (letter a~e represents the difference from high to low at the significant level of 0.05 (p < 0.05)).

Species
Tc–Ta

(K)
T-Range

(K)
Tmin

(◦C)
Tmax

(◦C)
n

Pometia tomentosa 6.4 a 14.5 ± 1.51 24.3 ± 0.37 38.8 ± 1.14 9
Barringtonia pendula 6.1 b 11.7 ± 2.04 23.8 ± 0.61 35.5 ± 1.43 9

Gironniera subaequalis 4.7 c 8.7 ± 1.26 25.6 ± 0.25 34.3 ± 1.01 9
Ardisia tenera 4.4 d 13.8 ± 1.05 19.4 ± 0.18 33.2 ± 0.87 9

Mezzettiopsis creaghii 1.9 e 10.9 ± 1.07 16.8 ± 0.26 27.7 ± 0.81 9
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The maximum stomatal conductance of the five species ranged from 93~120 mmol m−2 s−1

(Figure 3), and there were significant differences between the five species. The leaf size of the five
species ranged from 14~173 cm2 (Figure 3). With the increase in temperature, the relative frequency of
Gironniera subaequalis changed most obviously, and reached the maximum at 28 ◦C. The change of the
other four trees was relatively gentle (Figure 3).

 

－

Figure 3. Leaf temperature distributions of the five tree species showed (photos). Maximum gs and
leaf size values are inserted.

We measured the mean (Tc–Ta) on 4 February, 2018. The mean (Tc–Ta) consisted with the photo
flux density patterns (Figures 3 and 4). The five species of the three layers monitored on that day
showed significant differences in (Tc–Ta). Pometia tomentosa had the highest (Tc–Ta) (6.4 K), the second
highest was Barringtonia pendula (6.1 K), and Mezzettipsis creaghii had the lowest (Tc–Ta) (1.9K) (Figure 4).

We found that the temperature change within the canopies was very significant (p< 0.01) (Figure 4).
The canopy temperature difference of Pometia tomentosa and Barringtonia macrostachya reached the
highest at about 13:00. However, the canopy temperature difference of Gironniera subaequalis reached
its maximum two hours later (at about 15:00) (Figure 4).
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Figure 4. Leaf to air temperature difference of the five tree species.

3.3. (Tc–Ta) Variations in a Changing Climate

(Tc–Ta) ranged from nearly 0 K (Barringtonia racemosa (L.) Spreng.) to 3 K (Swietenia mahagoni (L.)
Jacq.), showing that the mean leaf temperatures of 28 tree species had a highly species-specific manner
(Table 2). The mean leaf temperature cannot be fully or solely explained by stomatal conductance
or leaf area. This is because of the complex feedback effect between leaf temperature and climatic
conditions or leaf function [20].

Table 2. Leaf-to-air temperature (Tc–Ta), leaf area, and maximum stomatal conductance (gsmax) of
28 tree species.

No. Species Name
Tc–Ta
◦C

Leaf Area
cm2

gsmax

mmol m−2 s−1 n

1 Mezzettiopsis creaghii 0.99 ± 0.86 32.83 ± 6.47 173.29 ± 49.90 5
2 Swietenia mahagoni (L.) Jacq. 2.93 ± 2.00 44.32 ± 5.10 162.93 ± 27.76 5
3 Dipterocarpus turbinatus Gaertn. f. 1.80 ± 0.51 106.38 ± 7.44 222.04 ± 17.58 4
4 Cleistanthus sumatranus (Miq.) Muell. Arg. 0.81 ± 0.11 15.98 ± 5.93 401.26 ± 29.47 5
5 Dalbergia odorifera T. Chen 0.57 ± 0.48 14.51 ± 3.83 221.41 ± 57.08 5
6 Pterocarpus indicus Willd. 0.79 ± 0.15 70.93 ± 30.95 188.18 ± 65.16 5
7 Artocarpus heterophyllus Lam. 1.43 ± 1.92 97.80 ± 11.60 448.82 ± 44.31 5
8 Hopea hainanensis Merr. et Chun 0.83 ± 0.28 74.03 ± 12.96 480 ± 31.26 5
9 Saraca dives Pierre 1.27 ± 0.11 100.88 ± 30.05 166.59 ± 33.11 5

10 Woodfordia fruticose (Linn.) Kurz 1.15 ± 1.73 20.10 ± 3.70 548.88 ± 48.58 5
11 Aquilaria agallocha Roxb 0.31 ± 0.08 29.64 ± 4.58 217.26 ± 21.22 5
12 Magnolia rostrata W. W. Smith 0.59 ± 0.51 253.10 ± 116.03 170.23 ± 49.83 5
13 Mesua ferrea L. 0.63 ± 0.11 22.28 ± 7.27 127.65 ± 26.22 5
14 RauwoIfia yunnanensis Tsiang 0.23 ± 0.22 23.86 ± 4.01 88.26 ± 43.74 5
15 Oroxylum indicum 0.30 ± 0.72 59.16 ± 23.86 355.58 ± 139.85 5
16 Millettia rubiginosa Wight et Arn. 1.68 ± 1.06 46.97 ± 16.90 235.17 ± 102.95 5
17 Ficus curtipes 0.26 ± 0.38 70.38 ± 17.56 209.97 ± 78.20 5
18 Bauhinia Linn. 0.16 ± 0.17 65.65 ± 9.33 183.91 ± 53.83 5
19 Mayodendron igneum (Kurz) Kurz 0.32 ± 0.22 41.82 ± 8.00 274.25 ± 77.56 6
20 Dracaena cambodiana Pierre ex Gagnep. 0.93 ± 0.16 95.00 ± 21.43 80.78 ± 33.25 5
21 Baccaurea ramiflora Lour 0.67 ± 0.19 76.53 ± 8.38 121.56 ± 21.29 5
22 Barringtonia racemosa (L.) Spreng. 0.08 ± 0.24 178.54 ± 51.97 219.04 ± 79.81 5
23 Moghania macrophylla (Willd.) O Ktze. 1.57 ± 0.46 115.02 ± 25.24 212.76 ± 70.90 5
24 Plukenetia volubilisLinneo 2.61 ± 1.69 94.54 ± 19.97 550.80 ± 93.84 5
25 Terminalia bellirica (Gaertn.) Roxb. 0.38 ± 0.66 57.87 ± 11.24 269.73 ± 46.20 5
26 Camptotheca acuminata. 0.76 ± 0.23 144.90 ± 34.76 398.22 ± 93.55 5
27 Cinnamomum japonicum Sieb. 0.07 ± 0.42 23.21 ± 4.00 187.48 ± 28.19 5
28 Clerodendrum bungei Steud. 1.20 ± 0.12 171.80 ± 47.19 638.84 ± 43.46 5
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It is estimated that global warming will strengthen the water cycle and increase the demand
for evaporation in ecosystems. Under drought stress, stomatal conductance of plants decreases,
thus reducing transpiration and increasing canopy temperature. Therefore, in order to explore the
differences in canopy temperature among tree species in an expected changing climate, we assumed
that the maximum gs value of each tree species decreased linearly to 50%. (Tc–Ta) was very sensitive
to all simulated meteorological elements (Figure 5; p < 0.01) and increased linearly with the increase in
direct radiation (DR) and relative humidity (RH) (Figure 5a,c). (Tc–Ta) decreased non-linearly with the
increase in air temperature (Ta) and wind speed (Ws) (Figure 5b,d).
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Figure 5. Response of canopy temperature difference (Tc–Ta) to climatic factors, including direct
radiation (DR) (a), air temperature (Ta) (b), relative humidity (RH) (c), and wind speed (Ws) (d). Red
line: Magnolia rostrata W. W. Smith; pink line: Dracaena cambodiana Pierre ex Gagnep; blue line: Woodfordia

fruticose (Linn.) Kurz; green line: Cleistanthus sumatranus (Miq.) Muell. Arg.

With the increase in direct radiation (DR), the canopy temperature difference (CTD) of large-leaved
trees increased more than that of small-leaved trees (Figure 5a). Species-specific differences in (Tc–Ta)
became larger with the increasing DR.

The decrease amplitude of (Tc–Ta) with the increasing Ta of the tree species with the largest leaves
(Magnolia rostrata W. W. Smith) was similar to the tree species with the smallest leaves (Woodfordia

fruticose (Linn.) Kurz). (Tc–Ta) was negatively correlated with air temperature (Ta) and relative humidity
(RH) (Figure 5b,c), indicating that (Tc–Ta) decreased with increasing water vapor pressure deficit
(VPD). Species-specific differences in (Tc–Ta) became smaller with the increasing Ws (Figure 5d).

4. Discussion

Our results suggest that the species composition of trees has an important impact on the local
climate of the primary tropical rain forest and are consistent with the study in a mixed deciduous
forest [14]. The temperature changes found in this study may be critical in determining the diversity of
canopy-dwelling plant communities. The patterns of temperature change identified by the study may
be critical in determining canopy plant diversity [14].

The mean leaf temperatures of 28 tree species have a highly species-specific manner. Mean leaf
temperature cannot be fully or solely explained by stomatal conductance or leaf area [21]. This is
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because of the complex feedback effect between leaf temperature and climatic conditions or leaf
function [22]. Variations in leaf temperature play a major role in determining rates of photosynthetic
CO2 uptake and transpiration [23]. On the other hand, changes in photosynthesis and transpiration
resulting from changes in leaf temperature may have an impact on the efficiency of nutrient use [7,20].

On the other hand, the response of canopy temperature difference of 28 tree species to climate
change was also diverse. (Tc–Ta) of tree species with smaller leaves and larger stomatal conductance
was lowly sensitive to climate factors, such as Woodfordia fruticose (Linn.) Kurz and Cleistanthus
sumatranus (Miq.) Muell. Arg. In contrast, (Tc–Ta) of tree species (Dracaena cambodiana Pierre ex
Gagnep.) with the smallest stomatal conductance was highly sensitive to climate factors. (Tc–Ta) of
tree species (Magnolia rostrata W. W. Smith) with the largest leaves was also highly sensitive to climate
factors, even if the stomatal conductance was not small. In other words, different tree species have
their own strategies for climate change. With the maintenance of tree species diversity, the ability of
ecosystems to resist climate change will be stronger. Conversely, loss of tree species diversity will make
forests more vulnerable to climate change [24]. Climate change research for the future will involve a
series of uncertainties, and it is still not sure what climate scenario will best reflect reality. What are
the differences of short-term response and long-term adaptation of different tree species to climate
change? [25]. Thus, tropical rainforest management for climate change has to deal with a range of
uncertainties in the future.

5. Conclusions and Implications

Our study showed that the leaf size and stomatal conductance together decided the effect of
climate change on (Tc–Ta) of the different tree species in the tropical rainforest. (Tc–Ta) of tree
species with smaller leaves and larger stomatal conductance was lowly sensitive to climate factors.
These results indicate species-specific functional traits which are needed to explicitly explore and
model the interactions of individuals for improving the understanding and prediction of climate
change impacts on vegetation.
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Abstract: Wheat plays a very important role in China’s agriculture. The wheat grain yields are affected
by the growing period that is determined by temperature, precipitation, and field management,
such as planting date and cultivar species. Here, we used the CSM-CERES-Wheat model along with
different Representative Concentration Pathways (RCPs) and two global circulation models (GCMs)
to simulate different impacts on the winter wheat that caused by changing climate for 2025 and 2050
projections for Guanzhong Plain in Northwest China. Our results showed that it is obvious that there
is a warming trend in Guanzhong Plain; the mean temperature for the different scenarios increased
up to 3.8 ◦C. Furthermore, the precipitation varied in the year; in general, the rainfall in February
and August was increased, while it decreased in April, October and November. However, the solar
radiation was found to be greatly reduced in the Guanzhong Plain. Compared to the reference year,
the results showed that the number of days to maturity was shortened 3–24 days, and the main reason
was the increased temperature during the winter wheat growing period. Moreover, five planting dates
(from October 7 to 27 with five days per step) were applied to simulate the final yield and to select an
appropriate planting date for the study area. The yield changed smallest based on Geophysical Fluid
Dynamics Laboratory (GFDL)-CM3 (−6.5, −5.3, −4.2 based on RCP 4.5, RCP 6.0, and RCP 8.5) for
2025 when planting on October 27. Farmers might have to plant the crop before 27 October.

Keywords: anthesis and maturity date; crop yield; SimCLIM; DSSAT model; planting date

1. Introduction

The growing wheat (Triticum aestivum L.) in China makes up 21.9% of the whole crop area
sown in 2011, leading to China producing the highest wheat grain yield in the world [1,2].
However, wheat production is facing future changes in rainfall patterns, temperature conditions,
and other factors that restrict farmers’ ability to plant this crop. Thus, the whole world, including China,
is paying attention to the risk of wheat production [3–5]. Previous studies have shown that wheat
productivity will be vulnerable to climate change in southeastern Asia and southern China [6–8].
Thus, the appropriate strategies should be analyzed for adoption by policymakers and farmers.

In 30 or 50 years, the world will change in an unimaginable way and it is difficult to imagine how
the future climate will be changed and how the crops respond to those climate changes, which results
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in many uncertainties in these studies [9–11]. Therefore, determining the possibile future changes in
climate may affect the wheat yield, therefore finding strategies to adapt to ensure the continuation
of the wheat supply are necessary. Combining the outputs of GCMs under different RCPs with the
models is an active way to learn the effects of changed climate on crops yield [12–15]. At present,
crop models have been proved the ability to provide useful views into the design of decision making
in the agricultural management by simulating how cropping systems respond to climate change,
management, and variety selection [16–19]. One of their advantages is that they can deal with
crop responses for climate changes, i.e., drought, waterlogging, high temperatures, atmospheric
CO2 concentration changes and precipitation [20–22]. Therefore, many studies have attempted to
investigate how the future climate will affect wheat growing under different scenarios by using crop
models [23–25].

Generally, the projected changes in final production have quite a wide range, depending on
the crop simulation models, GCMs, and RCP scenarios that were selected. SimCLIM has been
used with a large number of crop simulations [26,27]. For example, SimCLIM was used in Georgia,
USA to study the response of soybean phenology, development and yield to the changing climate
coupled with the CSM-CROPGRO-Soybean model [28,29], and it also has been applied to project the
climate variability and its impact on cotton production in southern Punjab, Pakistan [29]. Moreover,
SimCLIM has provided an easier way to learn climatic factors for different fields such as agriculture [30]
and ecosystem resilience [31]. The CSM-CERES-Wheat model could analyze the influence of soil,
field management (like irrigation, fertilization, planting date, cultivar) as well as climate on crop growth
and grain yield [32–34]. The model can simulate wheat development, water balance, phosphorous,
nitrogen balance, and aboveground biomass and grain yield in relation to weather, soil, phenotype
factors and management practices [35–37].

In this research, we studied the future climate change in the two future projections of 2025 and
2050 compared with the baseline period (1961–1990), and the response of winter wheat production to it
and compared with the reference years (19834–2013). The greenhouse gas CO2 emissions of three RCPs
were considered. The CERES-Wheat model was applied to study crop yield simulation in cooperation
with the GCM climate. The main goals of this analysis were: (1) to identify the future climate change
in Guanzhong Plain, (2) to study the future climate change impacts on winter wheat phenology and
productivity in this region, and (3) to provide suggestions for potential adaptation strategies for winter
wheat growth in Guanzhong Plain.

2. Materials and Methods

2.1. Study Location and Crop Management

Yangling, an arid area of Guanhzong Plain, China (34.38◦ N, 107.15◦ E), was selected as a case
study (Figure 1) [38]. Guanzhong Plain, located in the southestern China, a winter wheat-summer
corn double cropping system was applied in this area. The cultivar “Xiaoyan 22” was selected as
the planting cultivar with the recommendation of local farmers. The data of growth and yield for
“Xiaoyan 22” were validated with different irrigation levels by the CERES-Wheat model; the details
were provided by Zheng et al. [39]. Previous results showed that the validated model could simulate
winter wheat phenology, total biomass and final yield greatly, with a lower normalized root mean
square error (RMSEn). However, the RMSEn was a bit high when simulating aboveground biomass
in the treatments that had water stress. With the RMSEn less than 2% for phenology, 15% for total
biomass, and 15% for the yield. The genetic coefficient for “Xiaoyan 22” is shown in Table 1.

Further detailed information about basic field conditions and management strategies was pursued
by Zheng et al. [40]. The soil parameters are listed in Table 2, and the initial conditions of soil used
in the simulation are shown in Table 3. The sowing density was 340 plants m−2, and 130 kg ha−1 N
was applied on the planting date and wintering time, independently. The simulation was set as a
rainfed condition.
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−

Figure 1. Location of the study area.

Table 1. Validated “Xiaoyan 22” wheat cultivar parameters.

Abbreviation Definition Unit Value

P1V Vernalization sensitivity coefficient degree-days 6.62

P1D Photoperiod parameter - 81.37

P5 Grain filling phase duration ◦C. d 572.10

G1 Kernel number per unit canopy weight at anthesis #/g 23.30

G2 Potential kernel growth rate mg 33.70

G3
Standard, non-stressed dry weight (total, including

grain) of a single tiller at maturity
g 1.55

PHINT Thermal time between the appearance of leaf tips ◦C. d 97.20

Table 2. Soil physical parameters for the study area, Yangling.

Depth (cm) Bulk Density (g·cm−3) Field Capacity Wilting Moisture Soil Texture (%)

sand silt clay

0–23 1.3 0.28 0.12 26.7 40.8 32.1
23–35 1.4 0.28 0.13 25.0 42.8 32.1
35–74 1.4 0.27 0.15 24.1 44.8 31.0
74–95 1.4 0.28 0.19 22.7 38.8 38.5
95–163 1.4 0.27 0.14 21.3 38.6 40.1

163–196 1.3 0.26 0.13 24.3 36.9 38.9
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Table 3. Initial conditions of soil profile and physical characteristics in the field, Yangling.

Soil Depth
(cm)

Wilting Point
(cm3·cm−3)

Field Capacity
(cm3·cm−3)

Saturation
(cm3·cm−3)

Initial Water
Content

(cm3·cm−3)

NH4-N Conc.
(g·Mg−1)

NO3-N Conc.
(g·Mg−1)

0–5 0.10 0.28 0.45 0.28 1.90 12.90
5–35 0.11 0.28 0.46 0.24 0.50 11.20
35–70 0.12 0.28 0.46 0.22 0.40 12.60
70–90 0.14 0.28 0.49 0.22 0.60 11.80

90–100 0.14 0.28 0.50 0.23 0.60 10.50

2.2. Climate Models

The SimCLIM [41] as initially developed to enable integrated estimate of future climate on
different regions in New Zealand [42,43]. SimCLIM 2013 [44] mainly relies on the IPCC CMIP5 datasets.
Generally, 1986 to 2005 was used as the baseline period for the SimCLIM 2013; the previous standard
1961 to 1990 can also be used. Thus, we used 1961–1990 as the baseline period and chose 1984–2013
as the reference year in our study. The climate projections from ranged from 1991 to 2100 around
the world.

2.3. Yield Simulation with the Crop Model

Here, DSSAT Version 4.6 [35–37] was used to simulate the wheat phenology, as well as the
winter wheat grain yield for 2025 and 2050 projections. The inputs of daily weather data for
simulations from future projections were modified from SimCLIM based on the reference years weather.
The daily weather inputs included sunshine hours, rainfall, and maximum and minimum temperatures.
These data for the reference time 1984–2013 and baseline 1961–1990 at the study area were downloaded
from the China Meteorological Data Service Center (CMDC) [45]. The RCPs (RCP 2.6, RCP 4.5, RCP 6.0,
and RCP 8.5) are named after a possible range of radiative forcing values in the year 2100 (of 2.6,
4.5, 6.0, and 8.5 W/m2, respectively) [46]. Three scenarios (RCP 4.5, RCP 6.0, and RCP 8.5) were
selected in this study. RCP 6.0 represents the median value of medium climate prediction sensitivity,
while RCPs 4.5 and 8.5 with low and high climate sensitivity, respectively. Furthermore, two GCM
models (GFDL-CM3 and MRI-CGCM3) were selected from SimCLIM; both of these GCMs provided
all the climate variables including temperature, precipitation, SRAD, wind speed, relative humidity,
and sea level. These two GCMs can project future climate change accurately, so their prediction for
future temperature, SRAD and rainfall have been accepted [28,47]. The present average planting date
was around October 15 in the study area. Five planting dates, about 10 days in advance of and 10 days
after (October 7, 12, 17, 22 and 27), were set to simulate the anthesis date, maturity date, and yield in
the 2025 and 2050 projections. The simulated phenology and final yield in projections 2025 and 2050
were compared with 1984–2013.

3. Results

3.1. Climate Projections for 2025 and 2050

The predicted monthly change of solar radiation (SRAD) (Figure 2), percentage of precipitation
(Figure 3) and mean temperature (Tmean) (Figure 4) for 2025 and 2050 were modified with SimCLIM
based on two GCMs (i.e., GFDL and MRI) and three RCPs. The mean daily radiation for 1961–1990
in the study area was 15.2 MJ m−2; the results showed that the average SRAD decreased for all three
RCPs compared with the baseline. The SRAD showed difference by year and month for the GFDL
model for the future projections in 2025 and 2050. The predicted SRAD change (based on GFDL) as
2025 was the same for the given months compared to 2050 projection, with a slight decreasing trend in
January, February, and March and a slight increasing trend in the rest of the months. Among the three
RCPs, the projection for SRAD for 2025 only showed a slight difference, but the differences among the
three scenarios in 2050 were greater than in 2025. The predicted trends for the change in solar radiation
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based on MRI were similar to GFDL, and the differences among the three scenarios were smaller than
the GFDL.

 

−Figure 2. Changes in monthly SRAD (MJ m−2) as projected for 2025 and 2050 based on three RCPs for
two GCMs compared with 1961–1990 for Guanzhong Plain.

−

 

Figure 3. Changes in precipitation (%) as projected for 2025 and 2050 based on three RCPs for two
GCMs compared with 1961–1990 for Guanzhong Plain.
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Figure 4. Changes in mean temperature (◦C) projected for 2025 and 2050 based on three RCPs, and RCP
8.5 for two GCMs compared with 1961–1990 for Guanzhong Plain.

The average yearly rainfall for 1961–1990 at the experiment site was 623.5 mm. Projected rainfall
showed a difference between two GCMs, with one GCM simulating an increase in rainfall and another
projecting a decrease (Figure 3). Projected rainfall usually increased in February, June, August, while it
decreased in April, July, October, and November compared with the baseline. The rainfall was projected
to increase by 13–40% for February and 1.5–5% for March for the 2025 projection. The differences
among RCPs were no more than 3% for 2025. While the yearly difference, between the projections of
2025 and 2050, was larger based on MIR compared with GFDL; it was approximately 61% between
2025 and 2050.

The average daily Tmean for 1961–1990 at the study area was 13.9 ◦C. Figure 4 shows changes in
Tmean projected by two GCMs and three RCPs compared with the baseline. Overall, the Tmean had an
increasing trend in the 2025 and 2050 projections. The mean temperature increases were 1.2, 2.1, 1.0
and 1.8 ◦C for the GFDL 2025, GFDL 2050, MRI 2025, and MRI 2050 projections. A small decreasing
trend was found in the projections except for the GFDL 2050 projection.

3.2. Projected Phenology Changes

To know the impact of changing climate on winter wheat growing period, we simulated the
number of days from planting to anthesis (ADAPS) and the number of days from planting to maturity
(MDAPS) for different planting dates based on the two GCMs and three RCPs, the results of which are
illustrated in Figure 5. Obvious decreases were projected for both two future periods compared with
the reference year. The ADAPS decreased from 4.8 to 5.9 days on average and from 8.3 to 12.7 days
based on GFDL for the 2025 and 2050 projections, respectively. The largest change of ADAPs was
observed in 2050, according to GFDL model in RCP 8.5, with a decrease of 17.9 days, and with a
decrease of 18.1 days based on MIR under RCP 8.5.

Similarly, the MDAPS was shortened compared with the reference years for both GCMs;
the predictions showed a difference in planting date, GCMs, scenarios, and projected years (Figure 6).
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The MDAPS had a decreasing trend under different scenarios and different planting dates. Among the
three RCPs, the largest decrease was occurred for the RCP 8.5, followed by RCP 6.0, while RCP 4.5
showed similar changes based on both GCMs. The greatest shortening of MDAPS was projected
by MIR on October 27 during 2050 under RCP 8.5, reaching 24.3 days. The MDAPS decreased
from 6.3 to 7.1 days on average and from 9.7 to 14.5 days based on GFDL for the 2025 and 2050
projections, respectively.

 

Figure 5. Simulated ADAPS of winter wheat for Guanzhong Plain based on three RCPs under different
planting dates based on two GCMs in the 2025 and 2050 projections.

 

Figure 6. Predicted MDAPS of winter wheat for Guanzhong Plain based on three RCPs under different
planting date based on two GCMs in the 2025 and 2050 projections.
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3.3. Projected Changes in Winter Wheat Yields

As mentioned before, the historical weather data based on the reference years were modified
through two GCMs and three RCP scenarios to predict the yield productions in the future projections
under changed sowing windows by using crop model. The predicted grain yields for the 2025 and
2050 projections based on two GCMs are shown in Table 4. For all the scenarios, the winter got a higher
yield when planting on October 17, and the yield decreased largely when planting date shifted to
October 27. In our study, we compared the simulations of winter wheat for the reference years with
the future projections based on two GCMs instead of analyzing the absolute wheat yield prediction
(Figure 7).

Table 4. Simulated yields for the 2025 and 2050 projections based on GFDL and MRI GCM.

Planting
Date

Projections

GFDL-CM3 2025 GFDL-CM3 2050 MRI-CGCM3 2025 MRI-CGCM3 2050

RCP 4.5 RCP 6.0 RCP 8.5 RCP 4.5 RCP 6.0 RCP 8.5 RCP 4.5 RCP 6.0 RCP 8.5 RCP 4.5 RCP 6.0 RCP 8.5

10.7 4216 4282.5 4271 4552 4643 5034 4157 4272 4178.5 4247 4542 4121
10.12 4216 4282.5 4271 4552 4643 5034 4157 4272 4178.5 4247 4542 4121
10.17 4216 4282.5 4340 4552 4643 5002 4157 4272 4243 4247 4542 3982
10.22 4216 4282.5 4068.5 4552 4643 4870 4157 4272 4137.5 4247 4542 4466
10.27 3734 3778.5 3824 4010 4235 4603 3814 3942 3979 4160 4477 4582

 

Figure 7. Predicted winter wheat yield for Guanzhong Plain based on three RCPs under changed
planting dates based on two GCMs in the 2025 and 2050 projections.

Among the three RCPs, the increases in grain yield between the scenarios were different and
they depended on the sowing date. The yield increased higher for RCP 6.0, followed by RCPs 8.5
and 4.5 in the 2025 projection before October 12, while in the 2050 projection, the increase in yield for
RCP 8.5 was higher, followed by RCPs 6.0 and 4.5 based on GFDL. For MRI GCM, the yield increased
higher for RCP 6.0 and followed by RCP 4.5 and RCP 8.5. Due to the large increase in rainfall for the
2050 projection, the yield rose larger than for the 2025 projection. The grain yield at maturity had
a deceasing trend when planting on October 27 based on all the RCPs and both GCMs for the 2025
projection, and except for the MRI 2050 projection, the grain yield had a declining trend based on all
three RCPs and two GCMs when the planting date was delayed to 17 October. The largest increases in
grain yield were 26.1%, 16.3%, and 14% based on the GFDL 2050 projection for the RCP 8.5, RCP 6.0,
and RCP4.5, respectively, when planting on October 7 and 12.
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4. Discussion

In our study, by using the crop simulation model, the wheat grain yield in Guanzhong Plain would
increase by 2.8% and 8.6% under RCP 4.5, 5.1% and 13.9% under RCP 6.0, and 3.9% and 14.8% under
RCP 8.5 for the 2025 and 2050 projections. The results were consistent with a previous study which
found that the warming climate in the last 30 years increased wheat yield by 0.9–12.9% in north part of
China but decreased 1.2–10.2% in south part of China, differed in location, and the reason was due to
the final impacts depends on the combined effect of changes in all climate variables. One zone was
sensitive to mean temperature and the other was most sensitive to solar radiation during the growing
period [6]. The adverse effects of changed climate can be reduced by choosing optimum sowing
dates [48,49], and increasing rainfall during this time is also beneficial [50]. Our study illustrated that
the winter wheat planted after October 17 would decrease the grain yield by 0.3–6.5%. For the 2025
projection, the average yield increased less for RCP 8.5 compared with the other RCPs based on GFDL
and MRI GCM. The reason for this may due to the larger decrease in MDPAS.

Physiologically, wheat is a C3 plant, which greatly benefits from an increase in CO2 concentration;
that is, the increase in CO2 concentration has a fertilization effect that can increase in the photosynthetic
rate and it also has a water-saving effect by decreasing transpiration [51,52]. Generally, increases in
CO2, high mean temperature, and SRAD can improve photosynthesis leading to a final yield increase.
Therefore, changes in CO2, Tmean, and SRAD would affect the crop production significantly [53].
Parry et al. [54] illustrated that, because of the “CO2-fertilization effect”, increasing in CO2 concentration
would counteract the passive influences (such as yield reduction) of climate change in the future
projections. The yield gains for RCP 8.5 were larger based on GFDL. The reason for this may due
to the CO2 fertilization offsetting the interactions, such as higher temperature [55]. Semenov and
Shewry [56] found that, although earlier flowering with increasing temperatures allowed crops to
escape increasing terminal drought, compared to RCP 4.5, the RCP 8.5 with higher CO2 concentrations
can also counteract the increased negative impacts of rainfall reduction and shorter growth period.
Thus, an appropriate decision to support the arid area could be to plant a cultivar that flowers early [52].

Obviously, there were some uncertainties and limitations in the method of combining different
scenarios and crop models in our study. The crop models are useful tools in predicting the impacts of
different weather conditions on crop development and final productivity, but they have limitations
regarding extreme weather events and soil conditions, and the soils used for simulation were also
sources of uncertainty, as different calibration results could lead to different simulation results.
Our results showed that the phenology of winter wheat totally decreased in the future and the yield
increased in Guanzhong Plain by the midcentury. Hernandez-Ochoa et al. [55] indicated that applying
the wheat-crop-climate multi-model ensemble may counteract the negative impact of climate change
on wheat yield in Mexico. Parry et al. [57] suggested about 5% to 10% wheat yield may decline around
the world by midcentury, even changing the sowing dates, choosing the different varieties, applying
the appropriate fertilizer and irrigation amount or other adaptation strategies applied. In our further
studies, we will take into account other wheat cultivars that may be more heat tolerant and drought
resistant, as well as other potential adaptation scenarios such as irrigation and fertilizer management.

5. Conclusions

The present study indicated that the solar radiation mainly reduced from 0.3 to 3.3 MJ m−2 in the
future projection and decreased most in June. Rainfall normally raised in February, June and August,
but reduced in April, October and November in the study area. The precipitation change for the RCP
8.5 scenario was the largest, followed by RCPs 6.0 and 4.5. The mean temperature in most months
rose compared with the baseline, among which the temperature in January, March, and December
increased the most. The winter wheat anthesis date was shortened 3–23 days, the maturity date was
shortened 4–24 days under different projections, and the winter wheat yield increased up to 28%
among all scenarios.
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Overall, the effect of the future climate on winter wheat production in Guanhzong Plain is positive,
and the negative impact of climate change depends on the climate projections considered, as some of
the GCMs showed an increase in grain yield and some showed a reducing trend. For the planting date,
October 7–17 is the optimum choice, and the winter wheat yield would have a declining trend when
planting after October 17. However, the simulated results were based on the rainfed scenario; the grain
yield of rainfed wheat is very sensitive to climate change. Due to the great uncertainty in the future
change of rainfed wheat yield in the Guanzhong area, irrigation management should be considered.

Author Contributions: Z.Z. and Z.W., methodology, software, investigation, and data curation. X.W., formal
analysis. Z.Z., conceptualization, writing-original draft preparation. H.C., validation, resources, writing-review
and editing, supervision, project administration, and funding acquisition. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of China
(grant number 2016YFC0400202), the Project of the Faculty of Agricultural Equipment of Jiangsu University,
and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Eeucation Institutions
(No. PAPD-2018-87).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. National Bureau of Statistics of China. China Statistical Yearbook 2011; China Statistics Press: Beijing,
China, 2011.

2. FAO. Statistical Yearbook: World Food and Agriculture; FAO (Food and Agriculture Organization of the United
Nations): Rome, Italy, 2012; p. 184.

3. Chen, Y.; Zhang, Z.; Wang, P.; Song, X.; Wei, X.; Tao, F. Identifying the impact of multi-hazards on crop
yield—A case for heat stress and dry stress on winter wheat yield in northern China. Eur. J. Agron. 2016, 73,
55–63. [CrossRef]

4. Liang, S.; Li, Y.; Zhang, X.; Sun, Z.; Sun, N.; Duan, Y.; Xu, M.; Wu, L. Response of crop yield and nitrogen use
efficiency for wheat-maize cropping system to future climate change in northern China. Agric. For. Meteorol.

2018, 262, 310–321. [CrossRef]
5. Hernadez-Ochoa, I.M.; Asseng, S.; Kassie, B.T.; Xiong, W.; Robertson, R.; Pequeno, D.N.L.; Sonder, K.;

Reynolds, M.; Babar, M.A.; Milan, A.M.; et al. Climate change impact on Mexico wheat production. Agric. For.

Meteorol. 2018, 263, 373–387. [CrossRef]
6. Tao, F.; Zhang, Z.; Xiao, D.; Zhang, S.; Rotter, R.P.; Shi, W.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. Response of

wheat growth and yield to climate change in different climate zones of China, 1981–2009. Agric. For. Meteorol.

2014, 189, 91–104. [CrossRef]
7. Xiao, D.; Tao, F. Contributions of cultivars, management and climate change to winter wheat yield in the

North China Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [CrossRef]
8. Kaushika, G.S.; Himanshu Arora, H.; KS, H.P. Analysis of climate change effects on crop water availability

for paddy, wheat and berseem. Agric. Water Manag. 2019, 225, 105734.
9. Zhang, H.; Zhou, G.; Liu, D.; Wang, B.; Xiao, D.; He, L. Climate-associated rice yield change in the Northeast

China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Sci. Total Environ.

2019, 666, 126–138. [CrossRef]
10. IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment

Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M.,
van der Linden, P.L.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2001; p. 881.

11. Lobell, D.B.; Field, C.B.; Cahill, K.N.; Bonfils, C. Impacts of future climate change on California perennial
crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteorol. 2006, 141, 208–218.
[CrossRef]

12. Xiong, W.; Holman, I.; Conway, D.; Lin, E.; Li, Y. A crop model cross calibration for use in regional climate
impacts studies. Ecol. Model. 2008, 213, 365–380. [CrossRef]

100



Atmosphere 2020, 11, 681

13. Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.;
Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded
crop model inter comparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3272. [CrossRef]

14. Wang, W.; Yu, Z.; Zhang, W.; Shao, Q.; Zhang, Y.; Luo, Y.; Jiao, X.; Xu, J. Response of rice yield, irrigation
water requirement and water use efficiency to climate change in China: Historical simulation and future
projections. Agric. Water Manag. 2014, 146, 249–261. [CrossRef]

15. Yan, C.R.; Liu, L.; Huang, G.H. Multi-model projections of future climate change under different RCP
scenarios in arid inland region of north China. J. Drain. Irrig. Mach. Eng. 2018, 36, 1193–1199. (In Chinese
with English abstract)

16. Rotter, R.P.; Carter, T.R.; Olesen, J.E.; Porter, J.R. Crop-climate models need an overhaul. Nat. Clim. Chang.

2011, 1, 175–177. [CrossRef]
17. Chenu, K.; Porter, J.R.; Martre, P.; Basso, B.; Chapman, S.C.; Ewert, F.; Bindi, M.; Asseng, S. Contribution of

crop models to adaptation in wheat. Trends Plant Sci. 2017, 22, 472–490. [CrossRef] [PubMed]
18. Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.;

Cammarano, D.; et al. Multi-model ensembles of wheat growth: Many models are better than one.
Glob. Chang. Biol. 2015, 21, 911–925. [CrossRef] [PubMed]

19. Gu, Z.; Qi, Z.; Ma, L.; Gui, D.; Xu, J.; Fang, Q.; Yuan, S.; Feng, G. Development of an irrigation scheduling
software based on model predicted crop water stress. Comput. Electron. Agric. 2017, 143, 208–221. [CrossRef]

20. Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.;
Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015,
5, 143–147. [CrossRef]

21. Bai, H.; Tao, F. Sustainable intensification options to improve yield potential and co-efficiency for rice-wheat
rotation system in China. Field Crop Res. 2017, 211, 89–105. [CrossRef]

22. Yang, W.C.; Mao, X.M. Uncertainty of crop models under influence of climate change. J. Drain. Irrig.

Mach. Eng. 2018, 36, 874–879, 902. (In Chinese with English abstract)
23. Liu, Y.; Tao, F. Probabilistic change of wheat productivity and water use in China for global mean temperature

changes of 1, 2, and 3 oC. J. Appl. Meteorol. Climatol. 2013, 52, 114–129. [CrossRef]
24. Gennady, B.M.; Peter, T.H.; Bertram, O. Modelling long-term risk profiles of wheat grain yield with limited

climate data. Agric. Syst. 2019, 173, 393–402.
25. Rashid, M.A.; Jabloun, M.; Andersen, M.N.; Zhang, X.; Olesen, J.E. Climate change is expected to increase

yield and water use efficiency of wheat in the North China Plain. Agric. Water Manag. 2019, 222, 193–203.
[CrossRef]

26. Warric, R.A.; Kenny, G.J.; Harman, J.J. The Effects of Climate Change and Variation in New Zealand: An Assessment

Using the CLIMPACTS System; The International Global Change Institute (IGCI), University of Waikato:
Hamilton, New Zealand, 2001. Available online: http://hdl.handle.net/10289/897 (accessed on 28 June 2020).

27. Warrick, R.A. Using SimCLIM for modelling the impacts of climate extremes in a changing climate:
A preliminary case study of household water harvesting in Southeast Queensland. In Proceedings of the
18th World IMACS. In MODSIM Congress, Cairns, Australia, 13–17 July 2009; pp. 2583–2589.

28. Bao, Y.; Hoogenboom, G.; McClendon, R.; Urich, P. Soybean production in 2025 and 2050 in the southeastern
USA based on the SimCLIM and the CSM-CROPGRO-Soybean models. Clim. Res. 2015, 63, 73–89. [CrossRef]

29. Amin, A.; Nasim, W.; Mubeen, M.; Ahmad, A.; Nadeem, M.; Urich, P.; Fahad, S.; Ahmad, S.; Wajid, A.;
Tabassum, F.; et al. Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for
southern Punjab, Pakistan. Agric. Syst. 2018, 167, 213–222. [CrossRef]

30. Kenny, G.J.; Harman, J.J.; Flux, T.L.; Warrick, R.A.; Ye, W. The Impact of Climate Change on Regional
Resources: A Case Study for Canterbury and Waikato Regions. In The Effects of Climate Change and Variation

in New Zealand: An Assessment Using the CLIMPACTS System; Warrick, R.A., Kenny, G.J., Harman, J.J., Eds.;
The International Global Change Institute (IGCI), University of Waikato: Hamilton, New Zealand, 2001.
Available online: http://hdl.handle.net/10289/897 (accessed on 28 June 2020).

31. Storey, L.P. Effect of climate and land use change on invasive species: A case study of Tradescantiafluminensis
(Vell.) in New Zealand. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 2009. Available online:
http://hdl.handle.net/10289/2634 (accessed on 28 June 2020).

101



Atmosphere 2020, 11, 681

32. Li, Z.; Song, M.; Feng, H.; Zhao, Y. Within-season yield prediction with different nitrogen inputs under
rain-fed condition using CERES-Wheat model in the northwest of China. J. Sci. Food Agric. 2016, 96,
2906–2916. [CrossRef]

33. Liu, J.; Feng, H.; He, J.; Chen, H.; Ding, D.; Luo, X.; Dong, Q. Modeling wheat nutritional quality with a
modified CERES-Wheat model. Eur. J. Agron. 2019, 109, 125901. [CrossRef]

34. Dar, E.A.; Brar, A.S.; Mishra, S.K.; Singh, K.B. Simulating response of wheat to timing and depth of irrigation
water in drip irrigation system using CERES-Wheat model. Field Crop Res. 2017, 214, 149–163. [CrossRef]

35. Hoogenboom, G.; Jones, J.W.; Wilkens, P.W.; Porter, C.H.; Boote, K.J.; Hunt, L.A.; Singh, U.; Lizaso, J.L.;
Whiht, J.W.; Uryasev, O.; et al. Decision Support System for Agrotechnology Transfer, Version 4.5; University of
Hawaii: Honolulu, HI, USA, 2011.

36. Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.;
Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [CrossRef]

37. Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.;
Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT crop modeling ecosystem. In Advances in Crop Modeling

for a Sustainable Agriculture; Boote, K.J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019;
pp. 173–216.

38. Saddique, Q.; Cai, H.; Ishaque, W.; Chen, H.; Chau, H.W.; Chattha, M.U.; Hassan, M.U.; Khan, M.I.; He, J.
Optimizing the sowing date and irrigation strategy to improve maize yield by using CERES (Crops Estimation
through Resource and Environment Systhesis)-Maize model. Agronomy 2019, 9, 109. [CrossRef]

39. Zheng, Z.; Cai, H.; Yu, L.; Hoogenboom, G. Application of the CSM–CERES–Wheat Model for Yield Prediction
and Planting Date Evaluation at Guanzhong Plain in Northwest China. Agron. J. 2017, 109, 204. [CrossRef]

40. Zheng, Z.; Cai, H.; Hoogenboom, G.; Chaves, B.; Yu, L. Limited Irrigation for Improving Water Use Efficiency
of Winter Wheat in the Guanzhong Plain of Northwest China. Trans. ASABE 2016, 59, 1841–1852.

41. What is SimCLIM? Available online: http://www.climsystems.com/simclim (accessed on 28 June 2020).
42. Warrick, R.A.; Ye, W.; Kouwenhoven, P.; Hay, J.E.; Cheatham, C. New Developments of the SimCLIM

Model for Simulating Adaptation to Risks Arising from Climate Variability and Change. MODSIM 2005.

International Cogress on Modelling and Simulation; Zerger, A., Argent, R.M., Eds.; Modelling and Simulation
Society of Australia and New Zealand, 2005. Available online: https://hdl.handle.net/10289/5486 (accessed on
28 June 2020).

43. Kenny, G.J.; Warrick, R.A.; Campbell, B.D.; Sing, G.C.; Camilleri, M.; Jamieson, P.D.; Mitchell, N.D.;
Mcpherson, H.G.; Salinger, M.J. Investigating climate change impacts and thresholds: An application of
the CLIMPACTS integrated assessment model for New Zealand agriculture. Clim. Chang. 2000, 46, 91–113.
[CrossRef]

44. Yin, C.; Li, Y.; Urich, P. SimCLIM 2013 Data Manual; CLIMsystems Ltd.: Hamilton, New Zealand, 2013.
Available online: http://documents.climsystems.com/news/6-11-2013/SimCLIM_2013_AR5_data_manual.pdf
(accessed on 28 June 2020).

45. China Meteorological Data Service Center. Available online: http://data.cma.cn/ (accessed on 28 June 2020).
46. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment

Report to the Intergovernmental Panel o Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.;
IPCC: Geneva, Swizerland, 2014; p. 151, In IPCC AR5 Synthesis Report website.

47. Bao, Y.; Hoogenboom, G.; McClendon, R.W.; Paz, J.O. Potential adaptation strategies for rainfed soybean
production in the south-eastern USA under climate change based on the CSM-CROPGRO-Soybean model.
J. Agric. Sci. 2015, 153, 798–824. [CrossRef]

48. Carbone, G.J.; Kiechle, W.; Locke, C.; Mearns, L.O.; McDaniels, L.; Downton, M.W. Response of soybean and
sorghum to varying spatial scales of climate change scenarios in the southeastern United States. Clim. Chang.

2003, 60, 73–98. [CrossRef]
49. Nasim, W.; Belhouchette, H.; Ahaman, M.H.; Jabran, K.; Ulah, K.; Fahad, S.; Shakee, M.; Hoogenboom, G.

Modelling climate change impacts and adaptation strategies for sunflower in Punjab-Pakistan. Outlook Agric.

2016, 45, 39–45. [CrossRef]
50. IPCC. Climate Change 2007: Impacts, Adaptation and Bulnerability. In Contribution of Working Group II to

the Fourth Assessment Report of the Inter Governmental Panel on Climate Change; Parry, M.L., Canziani, O.F.,
Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007;
pp. 589–662.

102



Atmosphere 2020, 11, 681

51. Dettori, M.; Cesaraccio, C.; Duce, P. Simulation of climate change impacts on production and phenology of
durum wheat in Mediterranean environments using CERES-Wheat model. Field Crops Res. 2017, 206, 43–53.
[CrossRef]

52. Qu, C.; Li, X.; Ju, H.; Liu, Q. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain
of China using DSSAT-CERES-Wheat model under different climate scenarios. J. Integr. Agric. 2019, 18,
1379–1391. [CrossRef]

53. Wang, B.; Liu, D.; Asseng, S.; Macadam, I.; Yu, Q. Modelling wheat yield change under CO2 increase, heat
and water stress in relation to plant available water capacity in eastern Australia. Eur. J. Agron. 2017, 90,
152–161. [CrossRef]

54. Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food
production under SRES emissions and social-economic scenarios. Global Environ. Change 2004, 14, 53–67.
[CrossRef]

55. Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, K.M.; Kisekka, I.; Martorano, L.G. Assessment of maize
growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric. For.

Meteorol. 2015, 214, 252–265. [CrossRef]
56. Semenov, M.A.; Shewry, P.R. Modelling predicts that heat stress, not drought, will increase vulnerability of

wheat in Europe. Sci. Rep. 2011, 1, 66. [CrossRef]
57. Hernandez-Ochoa, I.M.; Pequeno, D.N.; Reynolds, M.; Babar, M.A.; Sonder, K.; Milan, A.M.; Hoogenboom, G.;

Robertson, R.; Gerber, S.; Rowland, D.L.; et al. Adapting irrigated and rainfed wheat to climate change in
semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 2019, 109,
125915. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

103





atmosphere

Article

Modelling Canopy Actual Transpiration in the Boreal
Forest with Reduced Error Propagation

M. Rebeca Quiñonez-Piñón 1 and Caterina Valeo 2,*

1 Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW,
Calgary, AB T2N 1N4, Canada; mrquinon@gmail.com

2 Mechanical Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8P 5C2, Canada
* Correspondence: valeo@uvic.ca

Received: 5 September 2020; Accepted: 22 October 2020; Published: 27 October 2020
����������
�������

Abstract: The authors have developed a scaling approach to aggregate tree sap flux with reduced error
propagation in modeled estimates of actual transpiration (Tplot) of three boreal species. The approach
covers three scales: tree point, single tree trunk, and plot scale. Throughout the development of
this approach the error propagated from one scale to the next was reduced by analyzing the main
sources of error and exploring how some field and lab techniques, and mathematical modeling
can potentially reduce the error on measured or estimated parameters. Field measurements of
tree sap flux at the tree point scale are used to obtain canopy transpiration estimates at the plot
scale in combination with allometric correlations of sapwood depth (measured microscopically and
scaled to plots), sapwood area, and leaf area index. We compared the final estimates to actual
evapotranspiration and actual transpiration calculated with the Penman–Monteith equation, and the
modified Penman–Monteith equation, respectively, at the plot scale. The scaled canopy transpiration
represented a significant fraction of the forest evapotranspiration, which was always greater than
70%. To understand climate change impacts in forested areas, more accurate actual transpiration
estimates are necessary. We suggest our model as a suitable approach to obtain reliable Tplot estimates
in forested areas with low tree diversity.

Keywords: climate change; actual evapotranspiration; modified Penman–Monteith; sap flow; scaling
methods; allometric correlations; sapwood depth; sapwood area; leaf area index

1. Introduction

Climate change is reflected in almost every ecosystem by rising temperatures and changing
precipitation patterns [1]. Higher seasonal temperatures in the boreal forest will increase evapotranspiration
rates, decrease groundwater recharge, and affect water runoff levels [2–4]. Recent findings project a
decrease in boreal forest biomass due to climate change, especially in the dominant conifer species [5],
and these factors will likely change the boreal forest composition [6] and therefore change overall
forest evapotranspiration. In vegetated areas, reliable water balance component estimates are of great
importance for water management, sustainability, wildlife conservation, and nowadays, to understand
and define plant species’ challenges to climate adaptation [7]. Evaporation and transpiration are two
water balance components whose estimates are well known to carry uncertainty due to the use of
equations and models that (1) lump the components into a single estimate of evapotranspiration (ET),
and (2) focus on estimating ET under ideal atmospheric conditions and with an unlimited source
of water (i.e., potential ET) [8,9]. This paper focuses on estimating actual transpiration (Tplot) and
actual ET (Ea) as a first step to reduce the uncertainty introduced by assumptions of ideal conditions.
Recent studies have proven that modeling actual evapotranspiration and using site-specific calibrated
variables greatly reduces the error and improves estimates of actual evapotranspiration [10,11].
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Scaling a single tree’s point sap flow measurements to the watershed level is a complex and
challenging task, not to mention the error propagated during the scaling process. Thus, most studies
tend to focus on refining single components of the scaling process. For instance, direct ways to
estimate actual transpiration of a single tree include the heat thermal dissipation method developed by
Granier [12]. Still, sap flow radial variability should be accounted for and several researchers focus
their effort on modelling and reducing the error associated with tree sap flow fluctuations [13–16].

Initial efforts to account for radial variation was to measure sap flow at different depths [17–20] of
the tree trunk. The problem with measuring sap flow at different depths is that none of the thermal
techniques are sensitive enough to determine the boundary between the sapwood and heartwood
(i.e., sapwood depth) of a tree, and some radial flow and moisture transfer between sapwood and
heartwood can be confounded with transversal sap flow. These radial variations in sap flow are also
related to the species vascular structure, specifically the radial distribution and length of sapwood
depth around the tree circumference [21–24]. Thus, the influence of a single tree’s sapwood depth
variability on estimating sap flow velocity should be acknowledged. The key point for most of the
thermal techniques is that accurate measures of sapwood depth or sapwood area are required to take
into account the sap flow radial pattern. Most studies measure sapwood depth using visual methods,
which carry uncertainty [25], and studies suggest that more accurate methods to measure sapwood
depth and sapwood area should be included in the scaling process in order to reduce error propagation
at the tree scale [25–27]. The use of more accurate sapwood depth values to estimate sapwood area
and tree sap mass flux should be a first step towards reduction of error propagation to larger scales
(i.e., canopy).

Based on our previous work [25,26], the importance of accurate estimates of sapwood area and
sapwood depth to model robust allometric correlations [28] cannot be underestimated. Allometric
correlations to scale up sap flow to sap flux and to canopy transpiration normally require estimates or
measurements of the structural characteristics of trees, such as diameter at the breast height, leaf area,
and leaf area index. These findings indicate that there is not always a positive, direct correlation
between the structural characteristics [29–38], and it is necessary to create species specific allometric
correlations in the area of study.

Canopy heterogeneity is another source of uncertainty when estimating canopy and basin
transpiration estimates [20,37–44]. Due to the differences in vegetation structure, each type of plant
differs in its physiological process and therefore, in the amount of water required for transpiration [45].
For instance, coniferous trees require less water than deciduous trees because of their more conservative
vascular structure and their tolerance to growing in xeric–mesic environments [46]. At the same time,
trees’ transpiration rates change according to micrometeorological conditions, solar energy, and water
availability [47]. This combination of physiological, micrometeorological and energy factors generate
spatial and temporal heterogeneity. Indeed, it is expected that the total transpiration of a forested area
with mixed vegetation will be the aggregation of each tree’s transpiration at a given time and under
specific conditions.

In this work, we hypothesize that an accurate scaling approach can be reached by using the
current, and most robust techniques to measure the necessary scaling parameters and in situ sap flow.
We also consider that the main sources of error while scaling transpiration are (1) leaf area and sapwood
area estimates, (2) sap flow radial variability, (3) canopy heterogeneity and density (interspecific and
intraspecific variability), and (4) forest fragmentation. In addition to these, it is necessary to validate
the final estimates, and also to estimate the propagated error.

Our previous work demonstrates that accurate estimates of canopy sapwood area [25,26,28] are
predicated on obtaining sapwood depth values with a negligible error. Hence, sapwood areas of single
trees can produce accurate regression models for estimating canopy sapwood area while considering
the canopy’s heterogeneity. This paper presents the computation of sap flow radial variations for
each tree species included into the scaling approach. We use the allometric models—sapwood area
and leaf area—reported in [28] to scale tree sap flow to canopy actual transpiration in a five-day
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period. These canopy actual transpiration estimates are compared to actual evapotranspiration (Ea)

and actual transpiration values calculated with the Penman–Monteith equation, and the modified
Penman–Monteith equation, respectively.

2. Methodology

2.1. Scaling Approach Concept

Our scaling approach is based on the concept that calibrated values of tree sap flow that are
aggregated to the tree scale by using allometric correlations with low uncertainty, will provide estimates
of tree sap flux that can be used to compute low error estimates of canopy transpiration when plot’s
vegetation heterogeneity is integrated into the mathematical model. For a more accurate estimate of
canopy transpiration, we included canopy heterogeneity into our model by counting the total number
of individuals of each species within our 60 × 60 m2 delimited plots, and we measured each tree’s
circumference and estimated outer bark diameter, DOB. Based on allometric correlations between
DOB and sapwood depth, we computed each plot’s total sapwood area. These allometric correlations
are reported in [26,28]. Figures 1 and 2 explain graphically the scaling approach to estimate canopy
actual transpiration.

 

(𝐸)

 
 
 

 

Figure 1. Sap flow measured at a single tree point, can provide actual tree sap flux estimates when 
Figure 1. Sap flow measured at a single tree point, can provide actual tree sap flux estimates when the
tree’s sapwood area is known or accurately estimated. Each tree species sap flux can provide accurate
estimates of a plot’s actual transpiration by using reduced error allometric correlations of canopy
structure parameters such as Leaf Area or Sapwood Area. The plot scale can provide estimates of ET
and T comparable to estimates from Penman–Monteith (P-M) and Modified P-M method, respectively.
Appendix A.4 details the calibration of tree sap flow measurements.
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Figure 2. Thermal Dissipation Probes (TDPs) installed in a boreal, coniferous tree with the isolation
material (upper part of the picture) ready to cover the sensors and protect them from direct exposure to
solar radiation that could affect the sensors’ temperature.

In summary, the expected outcomes are:

1. To aggregate mass sap flow from single trees to the plot scale;
2. To estimate the transpiration rates of a single plot (i.e., canopy transpiration);
3. To obtain estimates of canopy transpiration and validate these results through their comparison

with other well-known and reliable methods (i.e., Penman–Monteith).

2.2. Study Site

A forest region located in the Sibbald Areas of Kananaskis Valley in Alberta, Canada, was the
study site for field measurements to support this work. The Kananaskis Valley is a Montane closed
forest formation [48] within the Rocky Mountains [49,50]. This type of forest has ridged foothills and a
marked rolling topography. The Montane forest is classified as an ecoregion within the Cordilleran
eco-province and experiences unique climatic conditions arising from the combination of physiography
and air masses [48]. Within the province of Alberta, the Montane forest maintains the warmest
temperatures during the winter than any other forested ecosystem.

Two plots of 60 × 60 m were delimited and used to scale up sap mass flow and to calculate the
total rate of transpiration per plot. One plot was a pure coniferous site of Pinus contorta (Lodgpole
pine) mixed with Picea glauca (White spruce), while the other was a pure deciduous site composed of
Populus tremuloides (Trembling aspen). They are henceforth to be referred to as Coniferous site and
Deciduous site, respectively. These two plots were part of the plot samples used to create allometric
regression models to scale up five boreal species sapwood area to the plot level (SAplot) [28].

Field campaigns conducted in 2004 and 2005 were used to collect all the material and biometrics
required for the entire scaling process. Field data collected at each plot included: each plot’s number of
trees per species, each tree’s outside bark diameter at breast height (DOB), leaf area index (LAIplot), soil
moisture, and sap flow velocity (Ji). We measured LAIplot within the 60 × 60 m plots using the Tracing
Radiation and Architecture Canopies device (TRAC, 3rd Wave Engineering Co., Nepean, ON, Canada).

2.3. Measuring Single Trees’ Sap Flow

Sap flow in a single tree was measured using the heat dissipation technique [51]. At each plot,
a group of four trees (for each species inside the plot) were set up with thermal dissipation probes
(TDP-30, Dinamax, Inc., Houston, TX, USA) for periods of 48 h. The thermal dissipation probes (TDP’s)
were installed in the North side of the trees and covered with a special insulating material (Figure 2)
to avoid direct solar incidence and overheating of the sensors that might alter the logger readings.
At the same time, a set of soil moisture sensors (six sensors) was placed in the soil (below the litter)
to observe the changes in soil moisture content and to later compare with the trees’ water uptake.
The soil moisture values are also used in the empirical calculation of Ea. After 48 h, another group of
four trees was set up with the TDP’s and soil moisture sensors. This task was performed at least four
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times within each plot. We were interested in capturing the sap flow patterns of trees with different
diameters (i.e., interspecific heterogeneity); therefore, the trees selected for measuring daily sap mass
flow were chosen in order to cover the range of trees’ outside bark diameter at breast height (DOB) in
each plot (i.e., the largest, the smallest, the mean, and other intermediate DOB values of each species
found inside the plot).

Sap mass flow measurements were corrected by applying the original calibration presented by
Granier [52], and presented here in Appendix A. The canopy transpiration estimates were computed
after sap mass flow data were corrected for radial patterns of sap flow. Trembling aspen individuals
were excluded from the radial correction, since it had been proven that diffuse-porous tree radial sap
flow does not vary significantly [18,53,54]. The method to compute canopy transpiration from sap
mass flow data is detailed in Section 2.2.

In order to validate the scaled transpiration values, the actual forest evapotranspiration (Ea) and
plant actual transpiration (Tplant) were estimated for both sites. The former estimate was computed
using the Penman–Monteith equation, while the latter was computed using a modified version of the
Penman–Monteith equation [47]. The mathematical theory behind the three models’ computations is
detailed in Sections 2.3 and 2.4.

The meteorological data required to compute Ea and Tplant were collected using a HOBO
meteorological station (Onset Computer Corporation, Bourne, MA, USA), which was set up in
a 25 m radius clearing located inside the Barrier Lake forestry trails nearby. The installed sensors
measured temperature, relative humidity, dew point, rainfall, atmospheric pressure, wind speed,
gust speed, wind direction, solar radiation, and photosynthetically active radiation. The sensors
were placed at height of about 3 metres above the ground level. All the variable data were collected
every minute.

The sap flow values were assessed by observing the order of magnitude and their agreement
between some meteorological variables and the sap flow trends. It was expected that sap flow rates
would be greater in sunny, calm days than in rainy, cold, cloudy days, with a plateau at night. There are
periods of the day when sap flow decreases to avoid desiccation, and some other periods in which it is
known that all trees reach their maximum sap flow rates.

2.4. Scaling Actual Canopy Transpiration

2.4.1. Radial Patterns of Sap Flow

The acropetal sap transport rate has a radial gradient that decreases from the outermost part of
the sapwood towards the pith. Since there is enough evidence of the significance of the sap flow radial
gradient while scaling up sap flux density from a single point to the entire tree [17,18,24,55,56] a sap
flow radial profile function developed by [57] was used to calculate the sap flow velocity along the
entire sapwood depth of each tree. The radial profile function accounts for the fractional changes in
sap flow as a function of the maximum sap flow rate, the sapwood depth at which this rate occurs,
the total sapwood depth and the rate at which the sap flow velocity decreases from the outer to the
inner sapwood:

f (x) = ̟exp(−0.5 [
x− x0

β
]
2
) (1)

where f (x) is the sap flow rate index (expressed as a fraction), ̟ is the maximum sap flow rate (equal
to 1.0) occurring at the xo sapwood depth, and 1/β is the rate at which the sap flow radially decreases
towards the pith’s trunk. In order to calculate sap flow velocity changes instead of fractional changes,
Equation (1) was modified to the following form:

V0−3/Vmax =
1

β
√

2π

∫ 3

0
exp(−0.5

[
x− x0

β

]2

) dx (2)
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where V0−3 is the sap flow velocity in the first three centimeters of sapwood, and the maximum sap
flow velocity is Vmax. Studies in variations of radial sap flow have found that in conifers, the maximum
velocity or the largest portion of sap flow occurs in the first centimetre [17], the first 2 cm and 3 cm [58]
of sapwood depth (from cambium to pith). Research outcomes [56] reported graphs showing that
maximum sap flow occurs at 20% of the depth (from cambium to pith as well). It seems that the depth
at which the maximum sap flow occurs is a standard pattern independent of the tree size. Based on
these previous results, here it is assumed that Vmax occurs somewhere between the first two centimeters;
thus, x0= 2 cm. Other studies have reported that the rate of decrement in radial sap flow is about
20–24% in conifers; thus, β has been assumed to equal 4 (i.e., a 25% of decrement). As V0−3 is known;
that is, it is calculated from the field measurements, Vmax can be estimated from Equation (2). Finally,
Vmax is used to estimate the sap flow velocity along the entire sapwood depth (sd) at a specific time:

V0−sd
= Vmax

1

4
√

2π

∫ sd

0
exp(−0.5

[
x− 2

4

]2
) dx (3)

Note that V0−sd
is Ji, the original symbol used by [53] to define sap flow velocity; thus,

Fs = SAJi = SAtreeV0−sdi
(4)

where the sap flow velocity, V0−sdi (cm s−1), is converted into the total trunk’s mass flow, Fs, (cm3

s−1), by scaling from the point of measurement, to the total sapwood cross-sectional area, SAtree (cm2).
Values of V0−sdi were computed with Equation (3) at each time step (5 min) and then used to estimate
each tree’s daily Fs.

To estimate an average canopy transpiration rate, Tplot, single tree transpiration values where
scaled up to the whole plot. First, a diurnal average sap flow per species was estimated, and multiplied
by the total sapwood area of that species inside the plot, obtaining the total average canopy water
mass flow:

Jsp =
1
m

m∑

i=1

V0−sd
(5)

and
Fsp = Jsp SAsp (6)

where Jsp is the average sap flow velocity of the species sp obtained by the summation of the diurnal
average sap flow velocity of each ith individual and divided by the total m individuals of the same
species whose sap flow was measured. Fsp is the average of the species sp total mass flow, and SAsp

is the total sapwood area of the species sp. present in a specific plot The calculation of the average
canopy water mass flow (Fplot) is through the summation of each plot’s species total water mass flow:

Fplot =
n∑

i=1

Fspi
(7)

The average sap flow within the plot is:

Jplot =
n∑

i=1

Jspi
(8)

To estimate Tplot, the Fplot is normally divided by a unit area of ground (i.e., 1 ha). This division
allows one to observe the agreement between canopy transpiration and actual forest evapotranspiration
(Ea), or actual forest transpiration (Tplant). Here, we assessed three different units of surface ground
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area: Plot sapwood area (SAplot), the actual leaf area (LA), and the effective leaf area (LAe f f ). Finally,

Tplot values were compared with an average of Ea and Tplant.

2.4.2. Azimuthal Sap Flow Variation

Previous work [27] where we reported that we measured sapwood depth in four different sides of
the tree to account for the sapwood depth variation around the tree trunk, and therefore the azimuthal
variation in sap flow. The sapwood depth was measured under the microscope, and for each tree,
an average sapwood depth was computed. We consider that this is sufficient to account for azimuthal
sap flow variation.

2.4.3. Water Storage Capacity Estimates

It is assumed that the water stored in the tree trunk equals the amount of water replenished at
night. The assumption is based on previous research focused on the contribution of a tree trunk’s stored
water to transpiration, under dry and wet conditions. Reported results show that on average, of the
daily amount of water transpired by a tree, 14.8–20.0% corresponds to the trunk’s stored water [59–62].
In Trembling aspen, the water trunk provided 11.6% of the mean daily transpiration [61] and most
of the time, full replenishment for the tree trunk occurs at night [60], which creates a water balance
between the tree water lost during the day and the water recharged at night. In addition, it has been
determined that for scaling purposes, the error associated with water storage capacity is practically
null if between individuals, the sap flux variability is low [60].

2.5. Estimating Actual Forest Evapotranspiration

The Penman–Monteith equation estimates the actual evapotranspiration of vegetated surfaces
by accounting for all the micrometeorological factors that influence evapotranspiration as well as the
influence of the canopy conductance and aerodynamic resistance in the rates of vegetation transpiration:

λEa =
∆(Rn −G) + ρacp(eo − ea)/ra

∆ + γ
[
1 + rc

ra

] (9)

where λEa is the latent heat of actual evapotranspiration, ∆ is the slope of the saturation vapor pressure
curve (kPa◦C−1), Rn is the net solar radiation, and G is the soil heat flux (all these terms in units of
(J m−2 s−1)). The air density is denoted by ρa (kg m−3) and cp is the specific heat of air at constant
pressure (i.e., 1010 Jkg−1◦C−1). The term (eo − ea) is the vapor pressure deficit (VPD) calculated by the
difference between the saturation vapor pressure (eo, (kPa)) and the actual vapor pressure (ea, (kPa)).
The psychrometric constant γ is in units of (kPa◦C−1). The aerodynamic terms, ra and rc are the
aerodynamic resistance to vapor and heat transfer, and the bulk canopy resistance (both expressed in
sm−1). To convert the latent heat of evapotranspiration to actual evapotranspiration (Ea), Ea =

λEa
λ in

units of mms−1 was employed. The equations used to solve the aerodynamic and energy parameters
of the Penman–Monteith equation are detailed in Appendix A.

2.6. Estimating Actual Canopy Transpiration

Liu et al. [47] presented a modified version of the Penman–Monteith equation in order to
estimate actual canopy transpiration at large scales. According to Liu et al. [47], a model such as
Penman–Monteith should be adjusted by separately estimating the transpiration of shaded and sunlit
leaves as follows (stratified model):

Tplant = TsunLAIsun + TshadeLAIshade (10)
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where Tsun and Tshade are the actual transpiration of sunlit and shaded leaves, respectively; LAIsun and
LAIshade are the leaf area indices for sunlit and shaded leaves as well. The Penman–Monteith equation
is then used by Liu et al. [47] to estimate Tsun and Tshade:

λTsun =
∆(Rn,sun) + ρacp(eo − ea)/ra

∆ + γ[1 + rs/ra]
(11)

and

λTshade =
∆
(
Rn,shade

)
+ ρacp(eo − ea)/ra

∆ + γ[1 + rs/ra]
(12)

where Rn,sun and Rn,shade are the net solar radiation available for sunlit and shaded leaves (Jm−2s−1),
respectively, and rs is the stomatal resistance (sm−1). The rest of the parameters and units remain the
same as in Equation (9).

The boreal ecosystem productivity simulator (BEPS) provides a set of equations to calculate Rn,sun

and Rn,shade (Liu et al., [47,63]). The equations compute the shortwave solar radiation for sunlit and
shaded leaves as well. The net longwave solar radiation is assumed to behave equally for sunlit and
shaded leaves; therefore, a single equation is used to calculate net longwave solar radiation. Thus,
Rn,sun and Rn,shade are respectively given by:

Rn,sun = Rs,sun + Rnl,sun (13)

and
Rn,shade = Rs,shade + Rnl,shade (14)

where Rs,sun and Rs,shade are the shortwave solar radiation for sunlit and shaded leaves, respectively,
and Rnl,sun and Rnl,shade are the net longwave solar radiation for sunlit and shaded leaves, respectively.
The solution to these equations is formulated in Appendix A, and also provided by Liu et al. [47].

3. Results

Not all of the instrumented trees provided credible data and after all the sap flow data collection
were checked for quality, only four Trembling aspen, five Lodgepole pine, and four White spruce
trees provided credible sap flow measurements adequate for scaling up to the plot scale. In the case
of the Coniferous site, eight days of sap flow measurements were used to calculate Fplot and Tplot.
The Deciduous site provided four days of sap flow measurements and meteorological data. For the
same dates, Ea and Tplot were computed. Each site’s daily values were averaged and compared with

the average Tplot obtained for their respective time periods.

3.1. Scaling Canopy Transpiration

The Deciduous plot’s ratio of SAplot to the plot’s basal area was 0.57, while in the Conifer site,
the ratio was 0.54 for the Lodgepole pine trees and 0.38 for the White spruce trees. Thus, the Trembling
aspen showed a larger sapwood area per unit basal area at the plot scale than the conifer species.
That was expected since diffuse-porous trees have larger sapwood areas in order to meet their water
demand (i.e., they are less efficient at transporting water). As it is shown in the following sections,
the Deciduous site drew larger mass flow per plot than the Coniferous site.

Figures 3–5 exemplify the diurnal sap flow patterns in Lodgepole pine, White spruce, and Trembling
aspen. In each plot, the dashed line is Rs and the solid line is Ji. Two individuals of different DOB are
presented in order to exemplify the differences in Ji due to the tree size. Notice that the Lodgepole pine
Ji is somewhat tempered in comparison to Rs.
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Figure 3. An example of a Lodgepole pine tree diurnal sap flow. Tree’s diameter at breast height was
17 cm. Day of the year: 216, in 2004. Dashed line is Rs and the solid line is Ji.
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Figure 4. An example of a White spruce tree diurnal sap flow. Tree’s diameter at breast height was
18 cm. Day of the year: 232, in 2004. Dashed line is Rs and the solid line is Ji.
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Figure 5. An example of a Trembling aspen tree diurnal sap flow. Tree’s diameter at breast height was
31 cm. Day of the year: 228, in 2004. Dashed line is Rs and the solid line is Ji.
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Each tree’s sap flow pattern was analyzed in order to determine the times of initial and final
daily transpiration activity. The transpiration patterns of the sampled trees showed activity starting
early in the morning (around 500 and 545 h) and finishing between 1700 and 1900 h. Variations in
the time at which the tree stopped transpiring and starting transpiring again were related to the
meteorological changes.

The radial profile function to correct the sap flow velocity showed that the sap flow velocity values
could have an underestimation of 12.5% in trees with a relatively small sapwood depth (3.5 ± 1.5 cm).
The average sd in conifers ranged between 3.10 cm and 3.50 cm. In this particular case, if the radial
profile correction could not be applied, the sap velocity will be underestimated when scaled to the
entire tree. Each species, Fsp and Fplot are reported in Table 1. The Coniferous site total mass flow is the
summation of the two species populating the site.

Table 1. Fsp and Fplot (m3day−1) at each site (n is the number of individuals used per plot).

Site Tree Type n Fsp Fplot Days Averaged

Conifer-4
Lodgepole pine 5 12.64 8

White spruce 4 2.57 15.21 1 8

Deciduous-6 Trembling aspen 4 32.44 32.44 4
1 Conifer-4 Fplot is the sum of Fsp of both species within the plot.

3.2. Actual Evapotranspiration Results

All the mathematical models to calculate Ea are detailed in Appendix A. The most complex
parameter to obtain is rc. A series of reduction functions were used, and the assumptions made
provided half-hourly rc values that are in reasonable agreement with the values listed by [64–66].
The other parameter that was estimated in an uncommon way was Rn. This was done by integrating
parameters that take into account the influence of LAI, gap fraction and emmisivity of understory and
overstory. Since the determination of LAIu and Ωu was essentially based on previous reports, which at
the same time are based on a few assumptions, it was necessary to observe the influence of LAIu and
Ωu values on the calculation of Ea. Thus, a sensitivity analysis of Ea was performed by using different
LAIu and Ωu values. The range of values to test LAIu and Ωu were 0.6–1.5 and 0.5–0.9, respectively.
The obtained estimates of Ea with respect to the initial Ea differ in the range of −2.0 × 10−4 to 9.0 × 10−4

mmd−1. When LAIu and Ωu are set up as 0.6 and 0.9, respectively, Ea estimates are practically the same
as when LAIu and Ωu are set up as 1.0 and 0.5 (the values used here), respectively. The sensitivity
analysis was also performed to see the impact on the average of Ea (i.e., Ea) per day. The analysis
showed differences among values in the range of 2.0 × 10−4 to 6.0 × 10−4. In conclusion, the assumed
LAIu and Ωu values were considered adequate. Final estimates of Ea are listed in Table 2. The Ea values
are shown per date and sorted by the type of site that was set up for sap flow measurements in the
same dates.
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Table 2. Penman–Monteith Ea and Ea estimates during the same days that sap flow was measured at
each site (in 2004). Ea is the daily Ea average.

Day of the Year
Conifer-4

Day of the Year
Deciduous-6

Ea(mm/d) Ea(mm/d)

212 1.50 225 4.79
213 0.78 226 5.82
215 3.01 227 3.29
216 1.68 228 3.27
231 0.90
232 0.87
234 3.63
235 0.07

Ea 1.56 4.29

Liu et al. [47] reported that Canadian boreal forest evapotranspiration values range between 100
and 300 mm year−1. Additionally, Liu et al. [47] estimated that a coniferous land cover could have a
yearly transpiration of 123 mm with an s = 55 mm; and deciduous and mixed forests land covers were
reported with yearly transpiration values of 327 mm and 244 mm, respectively. On examination of the
previous results, it would seem that there is an overestimation of Ea; however, 2004 had a particularly
wet and hot summer, that exceeded reported rainfall normals [67] by a factor of 0.75 in July and 2.27 in
August. Moreover, daily maximum temperatures during the months of July and August were greater
than the daily maximum values reported in Environment Canada’s Climatic Normals [68]. That is,
July and August maximum temperatures varied between 24 and 29 ◦C, respectively, while the Climatic
Normals reported maximum temperatures of 21.5 and 21.1 ◦C, respectively. Thus, the conditions
for large evapotranspiration amounts that are greater than normal maximums could be considered
reasonable for this wet and hot summer.

Variation in the Soil Field Capacity

The soils in the field plots were comprised of a sandy loam. The field capacity of a sandy loam
soil varies between 0.16 and 0.22, and its wilting point is 0.073 [68]. The reported Ea was calculated
using an average value of the soil field capacity. Calculations of θe, gs, and Ea were made using the
lower and upper bounds of the soil’s θ f c.

Results showed that in days when θe ≤ 0.00, the function limiting Ea was g(θsm), causing gs to
become practically null, and making rc reach its maximum value. In these days, there was no difference
in the final Ea since the computation of θe will always be zero or negative, no matter the θ f c value.
Of course, in those days the factor limiting Ea was soil moisture to the point that observed Ea values
were lower than 1 mmd−1 (e.g., days 213 and 235, Coniferous site).

When 0.16 ≥ θsm ≥ 0.22, soil moisture is not limiting at all, and other environmental factors drive
Ea. In these cases, there was no variation in the final Ea estimate. It was noticed as well that the
immediate limiting factor was VPD, and then Rs (e.g., days 231, Coniferous site).

Finally, if θsm ≈ θwp, there is variation in the estimates of Ea. This was noticeable for just two
days in the whole data set used here (days 215 and 216, set up in the Conifer site). When θsm varied
from 0.0750 to 0.0795, the changes in θ f c generated Ea to vary between 2.54 mmd−1 and 3.73 mmd−1,
when θ f c was set up as 0.22 and 0.16 respectively (day 215). When θsm varied from 0.0735 to 0.0743,
the changes in θ f c caused Ea of 0.90 mmd−1, either θ f c was 0.22 or 0.16, respectively (day 216).
The reported Ea values for these two days are 3.01 mmd−1 and 1.68 mmd−1. In those two days, it could
be said that there is a variation in the Ea estimates between 0.47 mmd−1 and 0.78 mmd−1.
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3.3. Actual Canopy Transpiration Results

Appendix A details the mathematical models, and the computation of Tsun and Tshade is very
similar to the one applied for computing Ea. The main changes rely on substituting Rn by either Rsun or
Rshade and the use of rs instead of rc. Tables 3 and 4 show the obtained transpiration estimates for shaded,
sunlit leaves, and the total canopy transpiration in the Conifer and Deciduous sites, respectively. It is
worth mentioning that for the Deciduous site, the Tplant estimates were based on the estimation of
g(VPD) computed with KVPD = 0.84 kPa.

Table 3. Modified Penman–Monteith Tplant estimates during the same days that sap flow was measured
at the Coniferous site. Tplant is the summation of Tshade and Tsun. Tplant is the average of the daily Tplant.
All estimates are in mm/d.

Day of the Year Tshade Tsun Tplant

212 0.38 1.08 1.46
213 0.19 0.56 0.75
215 1.80 0.73 2.53
216 1.26 0.41 1.67
231 0.56 0.66 1.22
232 0.52 0.64 1.16
234 2.59 0.95 3.54
235 0.11 0.04

Tplant 1.56

Table 4. Modified Penman–Monteith Tplant estimates during the same days that sap flow was measured
at the Deciduous site (measured in 2004). Tplant is the summation of Tshade and Tsun. Tplant is the average
of the daily Tplant. All estimates are in mm/d.

Day of the Year Tshade Tsun Tplant

225 3.00 1.75 4.75
226 3.67 2.13 5.80
227 2.44 1.42 3.86
228 2.05 1.20 3.25

Tplant 4.42

Variation of the Soil Field Capacity

As in the Ea estimates, there is variation in the estimates of Tplant if θsm ≈ θwp. At the Coniferous
site, days 215 and 216 showed the variations at the Coniferous site. When θsm varied from 0.0750 to
0.0795, the changes in θ f c generated Tplant to vary between 2.10 mmd−1 and 3.22 mmd−1, (keeping θ f c

equal to 0.22 and 0.16 respectively; day 215). When θsm varied from 0.0735 to 0.0743, the changes in
θ f c caused Tplant of 0.87 mmd−1, either θ f c was 0.22 or 0.16, respectively (day 216). The reported Tplant

values for these two days are 2.53 mmd−1 and 1.67 mmd−1. In those two days, it could be said that
there is a variation in the Tplant estimates between 0.43 mmd−1 and 0.80 mmd−1.

3.4. Agreement between Methods

The Coniferous site’s daily average estimates of Ea and Tplant (Tables 2 and 3) are practically the

same (1.56 mm/d). For the Deciduous site Tplant > Ea by 0.13 mm/d. Hence, both Equations (9) and
(10) draw very similar estimates. Such close similarity could mean that the wet, hot summer conditions
of the studied area made the evaporation component negligible. Nevertheless, this should be part of
future studies that could observe the agreement between the original Penman–Monteith equation and
the stratified model developed by Liu et al. [47].
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The comparison between Ea and Tplot is shown in Table 5, while Table 6 shows the comparison

between Tplant and Tplot. For these comparisons, the transpiration values are expressed as the average

of the Jsp [mm3
sapmm−2

SAd−1] measured in the trees inside of each plot per unit ground area. This unit
ground area was estimated as the ratio of SAplot per 1 ha (from now on referred to as “SAplot as unit

ground area”). Additionally, Ea and Tplant were averaged (i.e., Ea and Tplant) on the same days for

which Fplot was computed.

Table 5. Ea and Tplot at the Coniferous (8 days average) and Deciduous (4 days average) sites. SAplot

was used as the unit ground area to estimate Tplot. All estimates in mm/d.

Site Ea Tplot Scale Agreement

Conifer-4 1.56 1.52 canopy Tplot = 0.97
(
Ea

)

Deciduous-6 4.29 3.14 canopy Tplot = 0.73
(
Ea

)

Deciduous-6 1 5.31 3.14 canopy Tplot = 0.59
(
Ea

)

1 When KVPD = 0.79 kPA.

Table 6. Tplant and Tplot at the Coniferous (8 days average) and Deciduous (4 days average) sites. SAplot

was used as the unit ground area to estimate Tplot. All estimates in mm/d.

Site Ea Tplot Scale Agreement

Conifer-4 1.56 1.52 canopy Tplot = 0.97
(
Tplant

)

Deciduous-6 1 4.42 3.14 canopy Tplot = 0.71
(
Tplant

)

1 When KVPD = 0.84 kPA.

The agreement between the Coniferous Ea and Tplot is acceptable and showed that Tplot is about 97%

of the total forest evapotranspiration. The remaining 3% of Ea may be attributed to the other sources of
forest evapotranspiration such as surface evaporation and understory transpiration. The contribution
of understory evapotranspiration varies and it could be fairly large during the growing season;
however, [69] listed different sources that measured understory ET in stands of different pinaceas,
and percentages range from 6% to 60% as understory contribution to forest ET. Thus, it is reasonable to
attribute the difference between both methods to understory ET. Very similar results were seen in the
comparison between Tplant and Tplot where Tplot is 97% of the Tplant estimates. Although both values

are quite similar, the Tplant is greater than Tplot by 0.04 mm/d. The agreement is acceptable as well;

however, it was expected that both values would be equal (i.e., Tplant = Tplot).

The Deciduous plot results showed a better agreement with Ea when KVPD was set as 0.84 kPa
and VPDc = 1.0 kPa. In this case, Tplot is about 73% of Ea, and about 71% of Tplant. This value can also

be considered acceptable as well, since the days when the Jsp was measured, the soil moisture was not
limiting, and VPD was the driving factor. As it has been shown in other works [52], when this situation
happens, the sap flow reaches a plateau and becomes quasi constant along the day. Just as when
water is limiting, Jsp decreases. Thus, the remnant 28% of the Ea may be attributed to the understory
transpiration and other surfaces of evaporating water.

3.5. Leaf Area Indices as Scaling Factors

Assessing other unit areas that could be helpful in transforming sap flux density values into a
canopy transpiration rate, effective leaf area (LAe f f ) and actual leaf area (LA) were used as unit areas
as well:

Tplot = Jplot × SAIe f f (15)

where

SAIe f f =
SAsp

LAIe f f ×Aplot
=

SAsp

LAe f f
(16)
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or
Tplot = Jplot × SAIactual (17)

where

SAIactual =
SAsp

LAI ×Aplot
=

SAsp

LA
(18)

Leaf area values are the same values as those used to create the regression model with SAplot

in [25]. Results are shown in Tables 7 and 8. As it is appreciated, LAplot and LAe f f as unit ground areas

describe the canopy transpiration of the Coniferous site as 48% and 67% of Ea, respectively; and the
same agreements are shown with Tplant. In the case of the Deciduous site, Tplot is described as 64% and

83% of Ea. On the other hand, Tplot is 62% and 80% of Tplant. The LAe f f as a unit area describes the

Deciduous Tplot as a larger proportion of Ea than the unit ground area when these values are based on
KVPD = 0.84 kPa).

Table 7. LAplot, LAe f f , and site average canopy transpiration over eight days at the Coniferous site.

Unit Area Lodgepole Pine White Spruce Tplot Agreement

LAplot 1.56 1.52 0.74 Tplot = 0.48
(
Ta

)

Tplot = 0.48
(
Tplant

)

LAeff 0.86 0.18 1.04 Tplot = 0.67
(
Ea

)

Tplot = 0.67
(
Tplant

)

Table 8. LAplot, LAe f f , and site average canopy transpiration over four days at the Coniferous site.

Unit Area Tplot Agreement

LAplot 2.75
Tplot = 0.64

(
Ea

)

Tplot = 0.62
(
Tplant

)

LAeff 3.55
Tplot = 0.83

(
Ea

)

Tplot = 0.80
(
Tplant

)

4. Discussion

The main objectives of this study involve scaling issues in transpiration: firstly, to identify those
parameters influencing transpiration at different scales in order to use them as scaling parameters if
adequate models can be developed [25,26,28]; and secondly (but no less important), the improvement
of the final transpiration estimates at larger scales. This is a complex task since there often exists large
intra- and interspecific variability that, at the same time, is controlled by biophysical characteristics.
In this study, these problems were faced and addressed by using more accurate methods to estimate the
scaling factors in order to avoid large uncertainty in the final estimates. The effectiveness of using more
accurate methods is proven through the validation of Tplot estimates. That is, Tplot will be reasonable

result if first, Tplot = Tplant, or at least Tplot ≈ Tplant; and second, Tplot will be a significant proportion of

Ea.
Each site’s Tplot shows an acceptable agreement with the computed actual forest evapotranspiration

and the actual canopy transpiration—Equations (9) and (10). In the Deciduous site case, the obtained
Tplot motivates one to speculate if the agreement is good enough. In this particular case there is an issue

worth mentioning here (in case the reader considers the Tplot fraction to be small). The days in which

118



Atmosphere 2020, 11, 1158

the Tplot was calculated, showed large Ea and Tplant values because θsm was not limiting, and VPD

was driving Ea and Tplant transpiration as well. In this case, the empirical factor KVPD was adjusted as
much as possible by respecting previous reports on the influence of VPD on gs. The actual rc of the
Trembling aspen individuals could go beyond the empirical estimates, but there is no field data that
could evince this and allow modification to KVPD. Moreover, BEPS results suggest that at larger scales,
a deciduous forest’s transpiration is about 67% of the annual actual forest evapotranspiration [47].
Therefore, the Deciduous Tplot are considered reasonable estimates.

The three different area factors that were used to calculate actual canopy transpiration drew
dissimilar results. Still, the three estimated Tplot values always met the expected agreements with Ea

and Tplant. The Coniferous site Tplot estimated by means of SAplot as a unit ground area (i.e., using
SAplot10× 106 m2) implies that there is a significant contribution of canopy transpiration to the total ET

of the studied sites. Moreover, the estimated Tplot ≈ Tplant. Thus, the canopy transpiration rates are in
good agreement with previous works when using SAplot as the unit ground area.

However, using any leaf area as a unit area factor, it seems that canopy transpiration is
underestimated (in the Coniferous site), and overestimated (in the Deciduous site) in comparison with
the obtained Tplot using SAplot as unit area. The LAe f f as a unit ground area that defines the Deciduous

site’s Tplot as a larger fraction of Ea (than that estimated with SAplot as unit ground area). Thus, Tplot

becomes a larger proportion of Tplant than using SAplot as a unit ground area. Conversely, LAe f f as a

unit ground area defines the Coniferous site’s Tplot as a smaller fraction. Results suggest that SAplot as

unit ground area gives adequate Tplot estimates for the Coniferous site and the SAIe f f gives adequate

Tplot estimates for the Deciduous site. Hence, the chosen unit ground area considerably influences the

Tplot estimates.

With respect to the results from Equations (9) and (10), it was expected that Tplant will be a

significant proportion of Ea (i.e., between 70% and 90%). However, the daily values of Ea and Tplant

slightly differ; and most days showed that indeed Ea > Tplant (i.e., Days 212, 215, 216, 234, 225,
226, and 228). As it was expected, Tplant is always a significant proportion of Ea for most days
(i.e., Tplant > 90% of the Ea. There were also days when Tplant > Ea (Days 231, 232, 235, and 227).
These results suggest that there were humid days causing some water condensation. Indeed, in those
days, the Ea morning estimates (i.e., Ea hourly values) are negative. Moreover, approximately half of
each day drew VPD ≤ 0.5 kPa.

If the volumetric soil moisture approximates its wilting point, there could be significant variations
in Ea (as well as Tplant). Therefore, the influence of θe variations on Ea was studied. During the
days that this research was conducted, the soil was either extremely dry (below its θwp) or very wet
(0.16 ≥ θsm ≥ 0.22), causing just two days of transition between dryness and wetness to affect Ea values.

Even though the authors’ methods help reduce the error carried out by scaling parameters,
there is certainly opportunity to improve sap flow measurements. The choice to capture inter-specific
variability, that is, changing the thermal probes after 48 h to individuals of different diameters, may have
introduced uncertainty into the final data due to the short sampling time. The two summers in which
sap flow data were collected were not the most favorable in terms of capturing sap flow patterns (such
as those shown in Figures 4 and 5). Overcast days were constantly present, and we were not able to
observe expected diurnal sap flow patterns (e.g., Figure 3). Another challenge was that on several
occasions, the probes had to be moved to different trees because the probes were not capturing sap
flow activity, which was attributed to tree infestation that was not initially visible or obvious. Thus,
the sample size and temporal replication of sap flow were reduced to only a few trees and only up to
four and eight days of sap flow data for the Coniferous and Deciduous site, respectively. In addition,
the calibration method used to account for radial variation was estimated, and many other authors
could argue that in situ calibration methods are the most effective methods, but they also indicate
that this is a rare practice [15]. The available calibration methods—using potometers—are invasive,
and there are concerning factors with these calibration techniques. Among those concerns is the fact
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that the base of the tree is damaged by the removal of its outermost bark, which means that most likely
the tree will suffer from embolism and most likely will die. Injecting pressurized water into a tree could
also cause severe damage to the secondary xylem tissue, which is known to be extremely delicate and
easily broken by slight changes in pressure. Amid climate change and the global biodiversity crisis,
the intention with this research was to propose a scaling approach that will conserve and protect the
forest trees and their environment; thus, the authors used those techniques that were the least invasive
and did not require sacrifice or damage to the integrity of the trees.

5. Conclusions

The scaling approach proposed here was shown to be an appropriate way to quantify the variation
of scaling factors [25,26,28] and to prove their correlation at large scales. The use of these scaling
factors and the careful formulation of the scaling approach were fundamental in obtaining canopy
transpiration estimates that closely agreed with the estimated actual evapotranspiration using the
Penman–Monteith and the modified Penman–Monteith equations.

The canopy transpiration values calculated using the LAe f f as a unit ground area factor are
meaningful due to the close relationship between the total amount of leaves that fully operate during
transpiration. Thus, we suggest that a deeper understanding and testing of this canopy transpiration
number would be a significant contribution to the study of the efficiency of trees in water use. It is also
recommended that prior characterization of the intraspecific biometrics’ variations be made in order to
further develop the scaling approach. In addition, future work should focus on observing the behavior
of this scaling approach at larger scales.

Many canopy transpiration studies disregard the impact that regression models have in the final
estimates of transpiration. Previous research has demonstrated the constant over and underestimations
of sapwood depth, sapwood area, leaf area, and leaf area index by using general assumptions, and the
concerning level of error that these values carry to larger scales. However, the authors acknowledge that
the sap flow data collected for this work would be further improved by increasing the temporal scale
and sample size per species. Our suggested approach for capturing sap flow interspecific variability
requires further study and thus, for future work, it is advised to measure sap flow simultaneously on a
series of trees with different diameters.
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Table S1: E_p estimates during the same days that sap flow was measured at each site. Field campaign 2004.
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Appendix A Computing Actual Evapotranspiration and Canopy Transpiration

Appendix A.1 Actual Evapotranspiration

Since the direct estimation of transpiration is complex, it is more common to estimate
evapotranspiration (ET) of forested areas as a close estimate of transpiration. For dense, homogenous
vegetated areas, transpiration is usually considered the largest portion of total evapotranspiration in
forested areas. In Canada, it is estimated that forest transpiration has a large proportion of the total ET

varying between 45% and 67% of total ET), while the rest of the water lost is through soil evaporation
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or evaporation of water on surfaces (e.g., leaves and trunks) and sublimation [47]. These statements
are reinforced with detailed studies of ET in the boreal forest that demonstrate the large activity and
amounts of energy and mass fluxes [70].

In this study, the Penman–Monteith equation [71] is used to estimate the actual evapotranspiration
of the vegetated areas under study. These evapotranspiration estimates will be used to validate the
daily transpiration rate estimates at the plot scale. The Penman–Monteith equation estimates the actual
evapotranspiration of vegetated surfaces by accounting for all the micrometeorological factors that
influence evapotranspiration as well as the influence of the canopy conductance and aerodynamic
resistance in the rates of vegetation transpiration:

λ Ea =
∆(Rn −G) + ρacp(eo − ea)/ra

∆ + γ
[
1 + rc

ra

] (A1)

where λ Ea is the latent heat of evapotranspiration ∆ is the slope of the saturation vapor pressure
curve (kPa

◦
C −1), λ Ea is the latent heat of actual evapotranspiration ( Jkg−1), Rn is the net solar

radiation, and G is the soil heat flux (all these terms in units of Jm−2s−1). The air density, ρa is in
(kgm−3); cp is the specific heat of air at constant pressure (i.e., 1010 Jkg−1 ◦C −1). The term (eo − ea) is
the vapor pressure deficit (VPD) calculated by the difference between the saturation vapor pressure
(eo, (kPa)) and the actual vapor pressure (ea, (kPa)). The psychrometric constant, γ, is in units of
(kPa

◦
C −1). The aerodynamic terms, ra and rc are the aerodynamic resistance to vapor and heat

transfer, and the bulk canopy resistance (both expressed in sm−1). The following paragraphs explain
in detail the calculation of each Penman–Monteith equation’s parameter. To convert the latent heat of
evapotranspiration to actual evapotranspiration (Ea ), use Ea = λ Ea/ λ in units of mms−1.

Appendix A.1.1 Aerodynamic Parameters

To calculate the VPD term in the Penman–Monteith equation, the saturation vapor pressure was
initially calculated using two different equations:

eo = a◦ + a1Ta + a2T2
a + a3T3

a + a4T4
a + a5T5

a + a6T6
a (A2)

and
eo = exp

(16.78 Ta − 116.9
Ta + 237.3

)
(A3)

In both equations, Ta is the air temperature (◦C, field weather station measurements). The first
equation is the resultant of a Chebyshev fitting procedure used by [72]. The polynomial coefficients
(i.e., a◦ to a6) are reported in Lowe’s paper [72] and eo is calculated in mbar units. The latter equation
calculates eo in kPa was derived by [73] and its estimates are considered of high reliability [64].
The average difference between eo values calculated with both equations was of 0.00017 kPa. Thus,
for further estimations, Equation (A3) is applied. The actual vapor pressure is calculated using the
estimated eo and the relative humidity (RH, (%)) that was measured in the field [74]:

ea =
RH eo

100
(A4)

The air density, ρa, can be derived from [64]:

ρa =
1000 P

Tv R
(A5)
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where P is the daily mean atmospheric pressure calculated with the field measurements (barometer,
units of kPa), R is the specific gas constant (287 Jkg−1K−1). Tv is the virtual temperature in degrees
Kelvin, calculated as [64]:

Tv =
Ta

1− (0.378 ea P−1)
(A6)

where ea and Ta are taken as the daily average of ea and Ta respectively. A sensitivity analysis was
performed to observe how Ta values affect ρa or the evapotranspiration estimates. There were no
significant changes in the values. Thus, Ta was used in the equation. This analysis was performed
since [64] did not specify if an average temperature or temperature at each hourly time-step value
should be used.

The psychrometric constant can be expressed as [75]:

γ =
cp P

ε λ
(A7)

where γ is given in units of kPa
◦
C −1, cp is entered as 1.010 kJ kg−1 ◦C−1, P is in kPa. The water vapor

ratio molecular weight (ε) is a constant value equal to 0.622, and λ is calculated using the following
equation [64]:

λ = 2.501− 2.361× 10−3 Ta (A8)

where λ is given in units of MJ kg−1 (i.e., multiply by 1000 to match units of cp).
The slope of the saturation vapor pressure curve (∆) is derived from the following equation:

∆ =
4098 eo

(Ta + 237.3)2
(A9)

The aerodynamic resistance to vapor and heat flux, ra, is estimated with the following
equation [64,76]:

ra =

([
ln

zu − d

zom

][
ln

zu − d

zoh

])
÷ k2uz (A10)

where k is von Karman’s constant (0.40), zu is the height (m) at which the wind speed uz (ms−1) has
been recorded (12.19 m in this particular case), d is the zero-plane displacement (m) that is assumed as
67% of the canopy height (i.e., d = 0.67 hc) for vegetation with LAI > 2.0. Here, the average canopy
height is 15 m, which is the same height used in previous estimations. The parameters zom and zoh are
the roughness lengths for the momentum and heat transfer, respectively. Allen et al. [64] suggested
applying zoh = 0.1 zom. In this study, the fact that zom varies with cover has been taken into account;
thus, zom is calculated differently for the Deciduous and the Coniferous sites. For the Deciduous sites,
whose vegetation is considered dense and homogeneous, the equation suggested by [76] is applied:

zom =
1
e
(hc − d) = 0.37(hc − d) (A11)

For the Coniferous sites, the equation suggested by [64] is applied:

zom = ς(hc − d) (A12)

where ς is an empirical factor that is independent of vegetation height [77]. Based on their calculated
values of zom and d for conifers, [77] determined ς = 0.22. Table 1 lists the constant terms of the
aerodynamic resistance equation. The ratio zom/hc = 0.7 calculated for Coniferous sites concurs with
the mean value reported by [64] for this ratio. The Deciduous’ sites zom value is between the range of
values listed for deciduous trees by [64].
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Table A1. Steady parameters in the calculation of the aerodynamic resistance to heat and vapor transfer,
ra. All parameters are reported in meters, with exception of ς, which is unitless.

Parameter Coniferous Sites Deciduous Sites

hc 15 15
ς 0.22 0.37
d 10.05 10.05

zom 1.089 1.82
zoh 0.1089 0.1821

The canopy resistance is more complicated to estimate since it varies along the day and it is a
function of several atmospheric parameters [78]:

gc = gcmax
[minimum(g(LAI), g(Rs), g(VPD), g(Ta), g(θsm))] (A13)

This equation implies that the canopy conductance (gc) is a function of the environmental
parameters: LAI, Rs (Wm−2), VPD (kPa), Ta (◦C), and volumetric soil moisture (θsm, in m3m−3).
The parameter that reaches its minimum at a specific time (genv), drives the canopy conductance. The
lower the value of the environmental parameter reduction function, the lower the value of gc, therefore
the higher the rc. Each parameter is represented by a reduction function that computes the value of
the function between zero and one (i.e., 0 ≤ gc ≤ 1). Different authors have developed and calibrated
reduction functions for calculating each one of the parameters in Equation (A13). Allen et al. [64]
suggested that these equations can be replaced in the function above. Here, a set of equations was
chosen and presented below. Most of the equations and empirical factors are taken from [79]; otherwise,
the author is cited. Stewart [79] developed and calibrated these functions for Scots pine. This is the
closest species to the species studied in this work with reported functions. In the case of the Deciduous
site, the empirical factors were adjusted according to the response of rc or gc to the environmental
parameters. This task was performed based on previous results and results that were obtained in
this study.

The gcmax
is the reciprocal of the minimum canopy or surface resistance (rcmin

). Typical values
reported for coniferous forests rcmin

range from 30 sm−1 to 60 sm−1 [64]. Here, an average value of the
reported ranges was taken for the Coniferous site (i.e., 51 sm−1). Ref. [80] reported maximum values of
canopy conductance for Trembling aspen (31 ms−1) and it is the one applied here for the Deciduous
site. To compute g(LAI):

g(LAI) =
LAI

LAImax
(A14)

where LAImax is the maximum LAI Along the year. Since data collection occurred during the peak
of the summer (July and August), it is assumed that g(LAI) ≈ 1.0 for both the Coniferous and the
Deciduous sites. The g(Rs) is calculated with

g(Rs) =
Rs(1000 + KR)

1000(Rs + KR)
(A15)

where Rs is in Wm−2 and KR is an empirical factor that was set up as 104.4 Wm−2.
The VPD function is established based on the two following equations:

g(VPD) = 1−KVPDVPD for 0 < VPD < VPDc (A16)

and
g(VPD) = 1−KVPDcVPD for VPD ≥ VPDc (A17)

with KVPD = 0.5 kPa. The VPDc is called the “threshold vapor pressure deficit” and is set up as 1.5kPa
for the Coniferous site. For the Deciduous site, [52] reported the sap flow trend of four hardwood
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species in relation to VPD. One of the species studied is from the genus Populus. For that result, it was
reported that the Populus sap flow did not significantly vary when VPD was greater than 1 kPa, unless
the soil moisture content was limiting. The results presented by [52] perfectly concur with our study
results. Thus, the threshold for the Deciduous site was assumed as 1 kPa. Since a KVPD factor was not
found in the literature, its value was determined by using previously reported trends of gc versus VPD.
Thus, the value was assumed as KVPD = 0.79 kPa initially. This decision was somehow conservative
and based on the fact that deciduous rc reported values have reached 160 sm−1 [64]. Therefore, KVPD

was set up to make the reciprocal of gmaxgenv to quasi match rc to 160 sm−1 when VPDc is greater than
1 kPa and becomes the driving environmental parameter of rc. Using graphs by [80] of half-hourly
changes in gc and VPD, it was observed that rc can change from 81 sm−1 to 200 sm−1 as VPD reaches
values greater than 1 kPa. In this case, a second run for Ea was performed assuming KVPD = 0.84 kPa,
to make rc ≈ 200 sm−1 when VPD > 1 kPa. Values of Ea obtained with both parameters are presented
here.

For calculating g(Ta), a maximum and a minimum temperature (TM and TN, in ◦C) is required
that constrain the stomas process, plus another empirical factor, KT (called the “optimum conductance
temperature”):

g(Ta) =
(T − TN)(TM − T)ρ

(KT − TN)(TM −KT)
ρ (A18)

where
ρ =

TM −KT

KT − TN
(A19)

and KT is 18.35 ◦C for the Coniferous site. In the case of the Deciduous site, reported half-hour
Trembling aspen gc and temperature values [80] were used to estimate the optimum conductance
temperature for Trembling aspen gc. An average optimum temperature of 18.29 ◦C was obtained.

Finally, to estimate the g(θsm), a function reported by [64], which is a slightly modified version of
the one suggested by [79], was used:

g(θsm) = 1− e−Kθθe (A20)

where Kθ (Kθ = 6.7) is the empirical factor used to calculate g(θsm); and θe is the fraction available for
transpiration, also called the “effective fraction of available soil moisture” [64]:

θe =
θsm − θwp

θ f c − θwp
(A21)

where θsm is the volumetric soil moisture (field measurements, m3m−3), θwp is the soil wilting point
and θ f c is the soil field capacity. The values of θ f c and θwp are obtained based on the soil texture.
Direct studies of the soil type and texture in the area of Kananaskis [81–84] were used to define the soil
texture in the Coniferous and Deciduous sites. The soil texture, generally defined as fine sandy loam
(for both areas), drew a soil field capacity ranging between 0.16 and 0.22, while the soil wilting point
was estimated as 0.07 (all values in volumetric fraction).

Appendix A.1.2 Energy Parameters

The soil heat flux is calculated using a “universal relationship” developed by [85]:

G = 0.4
(
e−0.5LAI

)
Rn (A22)

G has the units of Rn. The net solar radiation is derived from the following equation [64]:

Rn = (1− α)Rs + Rnl (A23)
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where Rs is the shortwave solar radiation (measured in the field with a pyranometer), Rnl is the net
outgoing longwave solar radiation, and α is the surface’s albedo value. The term (1− α) helps to
calculate the fraction of incident net shortwave solar radiation that is absorbed by a specific surface.
For coniferous forests, mean α values are in the range of 0.09–0.15 [66,76], and deciduous forests
are in the range of 0.15–0.25 [76]. Monthly albedo values for mid-latitude forests are of 0.14 during
the months of July and August [86–88]. The net longwave solar radiation is calculated based on the
emissivity values of four different surfaces and the air temperature, Ta [47]:

Rnl =
{
εo

[
εa σsb T4

a + εu σsb T4
a

(
1− e−0.5LAIu Ωu/cos θu

)
+ εg σsb T4

a

(
e−0.5LAIu Ωu/cos θu

)]

−2εo σsb T4
a

}(
1− e−0.5LAIoΩE/cos θo

) (A24)

where σsb is the Stefan–Boltzmann constant (5.675× 10−8 Jm−2K−4s−1), Ta is the air temperature (units
of K). LAIo and LAIu are the Leaf Area indices of the overstory and understory respectively; ΩE and
Ωu are the clumping indices of the overstory and understory; cos θu and cos θo are estimations of
the transmission of diffuse radiant energy through the understory and overstory. The emissivity of
the overstory, the ground, the understory, and the atmosphere are respectively represented by εo, εg,
εu, and εa. Emissivity values for the first three surfaces are assigned from [47,89] as 0.98, 0.95 and
0.98, respectively. These emissivity values concur with values reported by [64]. Emissivity from the
atmosphere is calculated with the following equation [76]:

εa = 1.24
(

ea

Ta

)1/7
(A25)

where ea is in [mba] and Ta is in degrees Kelvin. The transmission of diffuse radiant energy through
the understory and overstory is given by the following two equations that were derived by [47]:

cos θu = 0.537 + 0.025LAIu (A26)

cos θo = 0.537 + 0.025LAIo (A27)

LAIo was measured for every coniferous and deciduous site (i.e., LAIplot = LAIo); LAIu is more
complex to measure directly and it was derived from previous reports of understory NDVI and LAI

values. Buerman et al. [90] used the reflectance values to estimate the understory NDVI and calculate
LAI indices based on understory NDVI-LAI scatterplots developed by [91]. The LAIu values reported
by [90] range between 0.6 and 1.0 (being the largest values for Black spruce and the smallest for Jack
Pine). Conifers understory NDVI (NDVIu) values reported by [90] were compared with the studied
Coniferous sites NDVIu calculated from the understory spectral reflectance that was recorded in
the 2003 field campaign at two Coniferous and two Deciduous sites [92]. For both Coniferous and
Deciduous sites, the average NDVIu is 0.8, which is 0.3 larger than the values reported by [90] in 2002
(their NDVIu range is 0.35–0.50). Using information reported by [91], ref. [90] established that an
NDVIu of 0.5 corresponded to an LAIu of 1.0. On the other hand, ref. [92] established a standard LAIu

value of 0.5 for broadleaf and needle-leaf forests.
Therefore, based on these previous results, LAIu for the Coniferous sites in Kananaskis is assumed

1.0, and for Deciduous sites, 0.6. The latter value is also in the LAIu range reported by [69] for deciduous
stands in a boreal forest. Figure A1 is the typical understory spectral response at a Coniferous and a
Deciduous site in Kananaskis Field Station. It is convenient to stress the fact that these LAIu values
are approximate; however, the main objective is to acknowledge the importance of understory in the
overall evapotranspiration estimates. Thus, as [47] thought, it is convenient to somehow include the
understory evapotranspiration based on assumptions about its LAIu.
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Figure A1. Typical understory spectral reflectance in Kananaskis Field Station study sites during the
summer of 2003.

The understory clumping index Ωu, was derived by modifying the former Chen’s equation:

LAI = (1− αl)LAIe f f γEΩE (A28)

where γEΩE = 1ΩE in vascular vegetation [93]. Thus, for understory vegetation ΩE does not have to
be partitioned into fractions that account for the shoot effect. At the same time, the αl value is zero since
there is no fraction of wood to account for in the understory vegetation present at the study sites. Thus,

LAIu = LAIe f f Ωu (A29)

As LAIu is known, LAIe f f can be approximated as 50% of LAIu as suggested by [94] for grasses
(the closest that can be found to a forest understory). Hence,

Ωu = LAIe f f /LAIu = 0.5LAIu/LAIu = 0.5 (A30)

Appendix A.2 Potential Evapotranspiration

The potential evapotranspiration results are provided in the Supplementary Material section
for the reader to compare the great disparity between potential evapotranspiration and actual
evapotranspiration estimated with the Penman–Monteith equation. The Penman combination equation
estimates the potential evapotranspiration, or also, the free water evaporation. Potential rates of
evapotranspiration assume that the water is never a limiting factor, the plant completely shades the
ground (thus, there is no soil evaporation) and it has the optimal environmental conditions to transpire
at its maximum rate (there is no canopy resistance). Two versions of the Penman–Monteith equation
are used here to estimate the Potential Evapotranspiration (Ep), the combination equation for free water
evaporation [95,96], and the Penman–Monteith equation that includes the aerodynamic parameter but
sets rc = 0 [97]. The former equation is computed in the following form:

Ep =
∆(Rn −G) + ρacp

(
e
◦ − ea

)
u2

λ(∆ + γ)ρw
(A31)
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where ρw is the water density in units of kg m−3, and u2 is the wind speed at 2 m height. Wind speed
measured at 3 m height was scaled down to 2 m using the aerodynamic function [98]:

u2

u◦
=

z2

z◦
(A32)

where u2 is the wind speed to be estimated at height z2 = 2 m and u◦ is the wind speed at the reference
height z◦ (in this case, 3 m). Wind differences of ±6 cm were registered between the two heights.
The rest of the parameters were already defined. The G parameter is not included in the original
equation; however, it was decided to slightly modify the method and include G. Equation (A31) gives
Ep in units of ms−1. The second one is Equation (A1), making rc = 0, and Ep is given in mms−1:

Ep =
∆(Rn −G) + ρacp(eo − ea)/ra

λ[∆ + γ]
(A33)

The obtained Ea and Ep daily values were averaged along the eight days (for the Coniferous site)
and the four days (for the Deciduous site) and compared with the average Tplot value obtained for
their respective period of time.

Appendix A.3 Canopy Transpiration Using Modified Penman–Monteith Equation

Liu et al. [47] used a slightly modified version of the Penman–Monteith equation in order to estimate
actual canopy transpiration at large scales. According to [47], a model such as Penman–Monteith
should be adjusted by separately estimating the transpiration of shaded and sunlit leaves as follows
(stratified model):

Tplant = TsunLAIsun + TshadeLAIshade (A34)

where Tsun and Tshade are the actual transpiration of sunlit and shaded leaves respectively; LAIsun and
LAIshade are the leaf area indexes for sunlit and shaded leaves as well. The Penman–Monteith equation
is then used by [47] to estimate Tsun and Tshade:

λTsun =
∆(Rn, sun) + ρacp(eo − ea)/ra

∆ + γ[1 + rs/ra]
(A35)

and

λTshade =
∆
(
Rn, shade

)
+ ρacp(eo − ea)/ra

∆ + γ[1 + rs/ra]
(A36)

where Rn, sun and Rn, shade are the net solar radiation available for sunlit and shaded leaves in Jm−2s−1,
and rs is the stomatal resistance in units of sm−1. The rest of the parameters and units remain the same
as in Equation (A1). The boreal ecosystem productivity simulator (BEPS) sets up a set of equations to
calculate Rn, sun and Rn, shade [47,63]. The equations compute the shortwave solar radiation for sunlit
and shaded leaves as well. The net longwave solar radiation is assumed to behave equally for sunlit
and shaded leaves; therefore, a single equation is used to calculate net longwave solar radiation. Thus,
Rn, sun and Rn, shade are respectively given by

Rn, sun = Rs, sun + Rnl, sun (A37)

and
Rn, shade = Rs, shade + Rnl, shade (A38)
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where Rs, sun and Rs, shade are the shortwave solar radiation for sunlit and shaded leaves, respectively,
and Rnl, sun and Rnl, shade are the net longwave solar radiation for sunlit and shaded leaves, respectively.
The shortwave solar radiation terms are calculated by the following equations:

Rs, sun = (1− αL)
(
Rs, dir cos αsa/cos θ

)
+ Rs, shade (A39)

where αL is the leaf scattering coefficient (constant that equals 0.25); αsa is the mean leaf–sun angle,
which is taken as 60

◦
[47]; θ is the solar zenith angle; and Rs, dir is the direct shortwave solar radiation.

Rs, shade is calculated with
Rs, shade =

(
Rs, di f −Rs, di f−under

)
/LAIo + C (A40)

where Rs, di f is the diffuse shortwave solar radiation; Rs, di f−under is the diffuse shortwave solar radiation
under the overstory; and C accounts for the multiple scattering of direct radiation, which is calculated by

C = αL ΩE Rs, dir(1.1− 0.1LAIo) e−cos θ (A41)

Rs, dir is a function of Rs and Rs, di f :

Rs, dir = Rs −Rs, di f (A42)

and Rs, di f can be estimated using the following cases:

Rs, di f

Rs
=

{
0.13 if r ~ ≥ 0.8

0.943 + 0.734̃r− 4.9̃r2 + 1.796̃r3 + 2.058̃r4 if r ~ < 0.8
(A43)

where r̃ is calculated as a function of the solar constant (SC = 1367 Wm−2), Rs and θ:

r̃ =
Rs

SC cosθ
(A44)

and finally, Rs, di f−under can be calculated as a function of Rs, di f , ΩE, LAIo, and the angle for diffuse

radiation (θo):

Rs, di f−under = Rs, di f

(
e−0.5ΩELAIo/cosθo

)
(A45)

where cosθo is calculated using Equation (A27). The ΩE is of course the clumping index of the overstory,
which is taken as 0.83 and 0.64 for the Coniferous and Deciduous site respectively (values obtained in
situ with the TRAC optical device). As mentioned, the net longwave radiation terms are considered to
behave the same for sunlit and shaded leaves. Thus, Rnl, sun = Rnl, shade, and their value is calculated by

Rnl, sun = Rnl, shade =
Rnl

LAIo
(A46)

and Equation (A24) calculates Rnl. As it is noticed, Equations (A35) and (A36) include the term rs

instead of rc. The stomatal resistance is calculated based on the rc values obtained with the set of
reduction functions that resolve gc (Equations (13)–(21)) and with the LAIo:

rs = LAIo rc (A47)

Allen et al. [94] reported the previous equation using a LAI value which is standardized for crops
and relatively tall grasses (i.e., 0.5 LAI). Here, the equation is modified to make it applicable to overstory.
In addition, it is considered that shaded and sunlit leaves have similar stomatal resistances responses.

128



Atmosphere 2020, 11, 1158

Appendix A.4 Calibration of Tree Sap Flow Measurements with TDPs

In theory, when the sap flow is constant, [52] assumed that the sap’s velocity is

Ji =
1
α

[
∆Tm − ∆T

∆T

]
(A48)

where ∆Tm is the maximum temperature difference given when the sap flow is null (i.e., Ji = 0),
∆T is the difference in temperature between the two probes at a specific time. The ratio between the
temperature differences becomes the calibrated constant K (flux index) in Granier’s 1985 technique [52].
With a sample size of 53 trees of three different species and diameters, [52] determined that the flux
index has an exponential relationship with the velocity of sap flow:

K = 0.0206Ji
0.8124 (A49)

with a R2 = 0.96, and units of Ji are 10−6 ms−1. Ji is expressed in the same way as sap flux density;
that is, flow rate of sap volume per unit of sapwood area (i.e., 10−6m3

sap m2
SA

s−1). Substituting K into
Equation (A48) by Equation (A49), and considering the α term independent of the experimentation the
sap flow velocity is estimated by

Ji = 0.0119
[

∆Tm − ∆T

∆T

]1.231
(A50)

where Ji is in units of cms−1. Granier [52] validated his results with the Penman equation outcomes,
finding a good agreement between both set of results (of course, Penman potential evapotranspiration
estimates were greater than the ones obtained with the Granier method). The studied species were
Douglas fir (Pseudotsuga menziesii), European black pine (Pinus nigra), and Oak tree (Quercus pedunculata).
In this study, Ji radial flow is correct and azimuthal sap flow variation was corrected by measuring
sapwood depth in four sides of the tree to obtain an average sapwood depth and capture sapwood
depth variation around the tree trunk [25,26,28].
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Abstract: Climate Data Science (CDS) Toolbox Species Distribution Model (SDM) aims identifying
the suitable areas for species, community of species and landscape units. This model is based on the
use of 23 variables available over the Internet, for which any assumptions are formulated about their
relationships with the spatial distribution of species. The application of CDS Toolbox SDM on the
assessment of the potential impact of two scenarios of climate change (Representative Concentration
Pathways RCP4.5 and RCP6.0) on the suitability of grapevine crops in France shows a general decrease
of the most suitable areas for grapevine crops between 41% and 83% towards 2070 according to the
current location of the vineyard parcels. The results underline a potential shift of the suitable areas in
northern part of the French territory. They also show a potential shift of the most suitable areas in
altitude (60 m in average) for RCP6.0 scenario. Finally, the model shows that RCP4.5 scenario should
be more drastic than RCP6.0 scenario by 2050 and 2070. In effect, the model underlines a significant
potential decrease of cultivated crops in the areas of high probably of suitable areas, according to the
baseline scenario. This decrease would be of 630,000 ha for 2070 RCP4.5 scenario and 330,000 ha for
2070 RCP6.0 scenario.

Keywords: species distribution model; climate change; scenarios; GIS; ecological niche; grapevine

1. Introduction

Species Distribution Models (SDM) have shown a significant development in the last decades,
especially due to the needs of scientists to provide methods and tools in order to assess the potential
impacts of climate change on the distribution of species or communities of species [1].

Also, public and private sectors, and the public in general interested on the potential impacts of
climate change on ecosystems services, expressed the need to have more access to studies, tools and
results from the experts.

Currently different methodologies are in use to estimate the potential impact of climate change
on the distribution and assemble of species at different spatio-temporal scales. Among these
methods are the regression trees [2], Artificial Neural Networks [3–8], and Bayesian approaches [9–11].
ANN (Artificial Neural Network) are able to learn complex non-linear relations and can help estimate
parameters like suitable areas of a territory for species. However, they require huge datasets in order
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to be efficient, which is not always possible when scientists have to assess the spatial distribution of
few observed species. Bayesian approaches are also developed when the model uses random variables
or observed data, or when the assumption of fixed variables is not verified, which is often the case for
data records from long term and/or huge areas [9–11]. Most of these approaches can be aggregated in
order to improve the models. A key step of the models is calibration of the relationships of the species
and environmental variables using ad hoc of wildlife with environmental data and taking into account
the quantitative and intermittent nature of the relationships of the data. As mentioned by [12] some
approaches are based on geometrical statistics that do not really respect the intermittent nature of the
relationships between species or communities of species and the parameters of their environment,
like climate and soil parameters [13].

Other approaches are based on probabilistic methods that take into account the intermittent
nature of the data better [14,15]. We propose a model integrated into a set of other models and tools
named CDS toolbox SDM (CDS for Climate Data Science) in order to assess the potential suitable
areas for species, community of species, or landscape units according to current and future scenarios
of climate change. We started to develop this model in 2009, in the frame of an exploratory project
called “Climpact” in order to assess the potential consequences of climate change scenarios on the
risk of wildland fires in Corsica [14,15]. This first prototype, computerized in C++, was initially
based on three climatic variables (minimum temperature—Tmin; maximum temperatures—Tmax,
precipitations—P). This project led us to improve our model by integrating more bioclimatic and
environmental variables in order to characterize, in a more accurate way, the ecological niche of species
and landscape units [16–19]. The current version is an ArcGis© tool (ArcGis, ESRI, Redlands, CA, USA)
developed with the model builder of GIS (Geographic Information System) application. This tool is
only available through a collaboration agreement and an online version is under development.

Since the beginning of its design, this SDM provided three main benefits:

(i) It respects the intermittent nature of species occurrences into environmental variables;
(ii) It is a GIS (Geographic Information System) based application that does not require a high level

of expertise in computer systems in order to implement it;
(iii) It shows gradients of probabilities to find suitable areas for each species, communities of species,

or landscape units.

The next sections introduce the model structure, its functioning, and an example of a species
distribution modelling (grapevine, Vitis vinifera L.) according to a baseline climatic situation and two
scenarios of climate change provided by the IPCC (Intergovernmental Panel on Climate Change)
and downscaled thanks to the WorldClim 2 contributors [20]. The discussion is based on the comments
of the models results and a comparison with other studies on the potential impact of climate change on
grapevine crops.

2. Model Description and Functioning

The aim of the CDS toolbox SDM is to identify, on a territory, the potential suitable areas where a
species or a community of species could grow.

CDS toolbox SDM is based on ecological niche theory where an ecological niche can be considered
as “the position of a species within an ecosystem, describing both the range of conditions necessary for persistence

of the species, and its ecological role in the ecosystem” [21].
It is required to calibrate the relationships between the spatial distribution of a species (or group of

species) with the spatial distribution of environmental variables that seems relevant for its development,
like climate, soil types, slope, etc. This calibration represents the first step of the CDS toolbox SDM
(Figure 1) which consists with the overlap of the spatial distribution of 23 environmental variables with
the observations of a species. 19 are related to climatic and bioclimatic variables that are considered as
relevant for the development and survival of species.
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Figure 1. Data and steps related of CDS Toolbox SDM.

The other 4 environmental variables are related to the land use and vegetation type in which the
species are observed, the type of soil, and rocks that are relevant for their ecology and the range of
slope where species can be observed.

The CDS toolbox SDM does not formulate any assumption on the relationship between a species
with its environment: it just considers the occurrence of the species on the values or category of each
variable. In this process, each variable has the same weight in order to avoid conjectural assumptions.
Like other SDM [1], the accuracy of the calibration belongs to the spatial resolution and the amount of
observations and measures. The result of this first step is the identification of the range of variable
values that are considered significant in order to ensure species development and survival. In another
terms, this step allows establishing the ecological niche of a species. The 19 selected climatic variables
are related to temperature and precipitation statistics that give a synthetic description of climatic
envelop of species and can also be considered as limiting factors [22]. Temperature plays a role on
plant lethality: temperatures that are too low slow down or stop the growth of plants. For example,
the frost causes a mechanical action on plant cells, resulting in the formation of ice crystals which
destroy cell walls. The frost also causes water loss, which leads to desiccation of certain organs.
In contrast, high temperatures have an effect on the evaporation of water reserves contained in the
soil and generate excessive leaf transpiration causing water stress (evapotranspiration phenomenon).
Depending on its duration and intensity, it can be lethal for non-adapted or poorly adapted plants.
Scorching episodes, such as the one that occurred in France and Europe in 2003, resulted in increased
mortality of plants [23,24].

In this frame, we give more importance to climatic variables because they influence largely the
survival of plants especially for areas where climatic gradients are significant, according to the spatial
distribution of their observations and the spatial distribution of the potential suitable areas for their
development. Appendix A provides a statistical description (min, max, mean, standard deviation)
of the quantitative variables and the description of the classes of nominal variables.

The second step is the identification of potential suitable areas for the species survival and
development according to current or future environmental situations. In our approach, we perform the
two assessments (baseline and future environmental contexts) in order to identify the potential trends
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(increase, decrease, stability) of the spatial distribution of suitable areas for species, community of
species, or landscape units.

The calculation is based on the finding of favorable conditions on a territory. In this step,
the algorithm looks for the pixels where the reference conditions are the same as the one observed for
species. The algorithm selects the pixels that have the same categories of nominal variables (land use,
vegetation cover, edaphology, geology) and the pixels that fall in the range of quantitative variables
(temperature, precipitation, slope). However, in order to take into account the uncertainty of finding
similar environmental conditions for the species and their capacity to adapt to the environmental
changes, the model considers 3 ecological situations:

1. The species or community of species adapt slightly to the new environmental conditions and they
select the areas where the conditions are closest to the optimum of reference with a contraction of
the populations or the community;

2. The species or community of species adapts drastically to the new environmental conditions and
they can remain in the same areas;

3. The species or community of species are not able to adapt to changes and disappears locally.

Thus, the algorithm uses a linear equation in which each of the 23 variables is summed in order to
calculate the level of suitability of each area for the ecological niche of species or community of species.
This parameter, named “Potential Ecological Distribution” (PED), is given by the following expression:

Potential Ecological Distribution = Variable 1 + Variable 2 . . . + Variable n . . . + Variable 23 (1)

Figure 2 shows a hypothetical example of the application of the algorithm on four pixels of a territory
and with only three variables (pattern 1 =maximum temperature, pattern 2 =minimum temperature,
and pattern 3 = precipitations). For pattern 1, there is only one pixel with a value corresponding to
the ecological niche of a species. For pattern 2, there are two pixels with a favorable value for the
development of a species, and for pattern 3, all four pixels have a suitable value. Then, the algorithm
calculates the sum of each value of variables for each pixel. The result shows that 1 pixel has the best
suitability (amount = 300), another has an average level of suitability (amount = 200) and two pixels
have a low level of suitability (amount = 100).

 

 

 

 

 
Figure 2. Potential ecological distribution of a species in 4 pixels according to 3 variables (patterns).

This step allows identifying the level of environmental similarity of each part of a territory that
will support the decision process for ecosystems and biological resource management. This activity is
related to different categories of stakeholders and decision-makers at local, regional, and national levels
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like Ministers of Ecology and Agriculture, Mayors and public authorities, farmers, forest managers,
policy makers, protected areas administrators, supply chain supervisors, etc.

In the CDS toolbox SDM, the algorithm carries out this calculation for each pixel of a particular
territory according to the 23 variables taken into account for defining the ecological niche of a species
or a community of species. This process is applied for baseline and future environmental conditions
especially the climatic ones based on the IPCC scenarios. The result allows identifying trends of
species spatial dynamics and can help support decisions in order to manage potential changes in
ecosystem services.

According to [25], we present, in Figure 3, the three modalities that contribute to the decision process.
These decision rules are based on arithmetic and statistical procedures allowing the integration of
stabilized criteria into a unique index. This index aims to help decision makers for making comparisons
of alternatives of spatial distribution of species, community of species and landscape units.

 

 

 

 

 

 

Figure 3. Decision criteria, weighting, and global similarities of pixels according to the ecological niche
of species, a community of species, or landscape units.

In order to respect the three ecological situations mentioned previously, the interpretation of the
table follows the coming logic:

• When a pixel has the 100% of global similarity (weighting = 23) it means that the pixel has 100%
of suitability for species or community of species. In this area the environmental parameters
correspond to the ecological niche of species or community of species (decision criteria = equal,
that means equality of environmental parameters). In the case of the assessment of the potential
impact of climate change on species distribution, 100% of global similarity means that species
would not find problems for their life and their development.

• When a pixel has global similarity values between 82.6 and 100% (weighting = 1900, 2000, 2100 or
2200), this indicates that the environmental conditions for the species are slightly similar to their
ecological niche. The potential impact of climate change should not be significant on their life
and development, and the adaptation of species to the future environmental conditions should
be appropriate.

• When a pixel has global similarity values between 52.17 and 82.6% (weighting between 1200
and 1800), the pixels represent an area where the species should adapt to the new environmental
conditions but showing some slight periods of stress. In this case, the uncertainty for the adaption
of species to the new ecological situation is more important than in the other part of the range of
the global similarity values.
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• Finally, when a pixel has global similarity values between 1 and 52.17% (weighting between
100 and 1200), the area can be considered as poorly suitable for the development of the species
or community of species. The possibility of adaptation of species to the future environmental
conditions decreases significantly.

The final result of the application of the CDS Toolbox SDM is a map showing the probability to
find suitable areas for species, community of species, and landscape units.

We present hereinafter an example of the application of CDS Toolbox SDM in order to assess the
spatial distribution of suitable areas for Vitis vinifera L., the common grapevine, in France. Viticulture is
a key socio-economic sector in Europe. Due to the strong sensitivity of grapevines to atmospheric
factors, climate change may represent an important challenge for this sector [26].

According to the CnIV (National Committee of Interprofessions of Wines), France is the leading
wine and wine brandy exporter, and is the second economic sector in the trade This economic sector
employs 500,000 people and it can be considered as a key sector for the economy. With 750,000 ha of
grapevine crops, France represents 11% of the world surface area for wine production.

For this case study, the spatial resolution of the data is around 1 km. They come from:

• WorldClim for the 19 climatic/bioclimatic data and for the slopes (elevation layer);
• The Ecoregion Layer for the data on land cover provided by WWF (World Wildlife Fund) [27];
• GeoTypes.net for geology layer [28];
• FAO GeoNetwork (Food and Agriculture Organization of the United Nations) for the

edaphology layer.

The proposed assessment aims to identify the potential problems or opportunities on such
crop and, if necessary, to aware stakeholders for adapting their practices on crops, on supply chain
management, and on the selection of the best areas for the cultivation of grapevine.

3. Results

The field observations of Vitis vinifera L. in France (Figure 4) come from the iNaturalist Internet
platform and they represent an amount of 35 observations. We also present the official map of grapevine
crops in France (Figure 4) provided by the RGP (Parcells Geographic Register provided by the French
National Geographic Institute–IGN) in 2018. All of this data is free of charge and open source.

 

 
 
 
 

 

Figure 4. Locations of the observations of Vitis vinifera L. in France (in green, source: iNaturalist)
and the grapevine crops declared in 2018 (in red).
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The assessment of the suitable areas for Vitis vinifera L. has been performed for the closest
climatic situation of the current period (called “baseline”) provided by the WorldClim platform
and for 2050 and 2070 by the use of IPCC scenarios corresponding to two average Representative
Concentration Pathway: RCP4.5 and RCP6.0. We decided to use those two scenarios because they
represent moderately optimistic (RCP4.5) and moderately pessimistic (RCP6.0) scenarios of climate
change according to the current and future adoption of policies and application of means dedicated to
GHG (Greenhouse Gas) emissions reduction by countries, industries, and organizations.

The contributors of WorldClim dataset provided the baseline scenario that we use in our
study [20] by using climatic data from 60,000 weather stations for a temporal range of 1970 to 2000.
They interpolated these measures with thin-plate splines and covariates (elevation, distance to the
coast, maximum and minimum temperature, cloud cover from MODIS satellite). For the scenarios
of climate change, the WorldClim contributors used IPCC data for which they apply a statistical
downscaling method based on interpolations [29].

These maps show the different level of probabilities that have been classified into three classes
according to the Jenks Natural Break classification method [30]. This method is often used in GIS
project because it allows underlying differences of different objects of a same data set in a map.
This classification is based on an iterative process in order to define classes with significant differences
in the values of the data. Table 1 presents the probability ranges of the different classes.

Table 1. Ranges of the different classes of probabilities.

Classes 2050 RCP4.5 2050 RCP6.0 2070 RCP4.5 2070 RCP6.0 Baseline

1 4.34 60.86 4.34 56.52 4.34 56.52 4.34 52.17 4.34 60.86
2 60.86 82.6 56.52 82.6 56.52 78.26 52.17 78.26 60.86 86.95
3 82.6 100 82.6 100 78.26 95.65 78.26 100 86.95 100

Class 1 corresponds to the low level of probabilities to find environmental conditions required
for the development of a species, class 2 corresponds to the average level of probabilities, and class 3
corresponds to the high level of probabilities. The results of the model are analyzed by taking into
account the different levels of probabilities to find suitable environmental conditions for the selected
specie. These classes of probabilities are expressed by a colored code described below each figure.

The aim of these maps is to compare the potential spatial distribution of the suitable areas for
cultivating the grapevine according to the current climatic situation and the climate change scenarios.
The maps of probabilities to find suitable areas are presented on the left side of the figure while the right
side of the figure represents the current probabilities to find suitable areas and the current locations of
grapevine crops.

Figure 5 shows the potential suitable areas for Vitis vinifera L. in France according to the baseline
climate. It also presents the location of the map of grapevine crops in order to compare its spatial
distribution with the probabilities to find suitable areas.

A simple visual analysis of the maps shows that the current declared grapevine crops are mainly
localized in the high probability level to find suitable areas for the development of Vitis vinifera L.
The quantitative analysis of the overlap of these two information layers (Table 2) shows that 93% of
the surface of grapevine crops are located into the high level of probability to find suitable areas for
this cultivation. This first result demonstrates the relevance of the model in order to assess the spatial
distribution of suitable territories of this specie.

The other areas of grapevine crops (7%) are located into to average probability of occurrence of
suitable areas and there are no declared crops in the low probability class. Only 0.1% of the crops’
surfaces are in areas that do not present any probability of occurrence. For the other results relating to
the assessment for the future (2050 and 2070), they present a value of 1% of grapevine crops in areas
without any probability to find suitable areas.
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  1. Low level of probabilities   2. Average level of probability   3. High level of probabilities 

Figure 5. Potential suitable areas for grapevine crop according to baseline climate. Grapevine crops
declared in 2018 are represented in red.

Table 2. Percentage and ha of grapevine crops in the probability classes to find suitable area.

% of Polygons
Outside of

Suitable
Areas

ha
Outside of

Suitable
Areas

% of
Polygons in
Low Proba.

Class

ha in
Low

Proba.
Class

% of
Polygons in

Average
Proba. Class

ha in
Average

Proba.
Class

% of
Polygons in
High Proba.

Class

ha in
High
Proba.
Class

Baseline <1 0 0 0 7 52,500 93 697,500
2050 RCP 4.5 1 7500 16 120,000 64 480,000 19 142,500
2050 RCP 6.0 1 7500 1 7500 46 345,000 52 390,000
2070 RCP 4.5 1 7500 5 37,500 85 637,500 9 67,500
2070 RCP 6.0 1 7500 1 7500 49 367,500 49 367,500

The analysis of Table 2 underlines a significant potential decrease of cultivated crops in the areas
of high probably of suitable areas, according to the baseline scenario: this decrease would be of
555,000 ha for 2050 RCP4.5 scenario, 307,500 ha for 2050 RCP6.0 scenario, 630,000 ha for 2070 RCP4.5
and 330,000 ha for 2070 RCP6.0.

According to these first results, it is possible to compare the baseline situation with the potential
future situations. The simulation of the potential impact of RCP4.5 climate scenario for 2050 (Figure 6)
on the spatial distribution of suitable areas for Vitis vinifera L. shows a significant decrease of high level
of probabilities on the French territory.

 

  

  1. Low level of probabilities   2. Average level of probability   3. High level of probabilities 

Figure 6. Potential suitable areas for grapevine crop according to RCP 4.5 climate scenario for 2050.
Grapevine crops declared in 2018 are represented in red.
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The comparison with the current grapevine crops (Table 2) shows that only 19% of the crops
should be in the high level of probability to find suitable areas, 64% in the average level, and 16% in
the low level.

At the opposite of the previous result, the simulation of the potential impact of RCP6.0 climate
scenario for 2050 on the spatial distribution of suitable areas for Vitis vinifera L. (Figure 7) presents a
less contrasted situation. The comparison with the current grapevine crops (Table 2) shows that 52%
of the crops should be in the high level of probability to find suitable areas, 46% in the average level,
and only 1% in the low level.

 

  

  1. Low level of probabilities   2. Average level of probability   3. High level of probabilities 

Figure 7. Potential suitable areas for grapevine crop according to RCP 6.0 climate scenario for 2050.
Grapevine crops declared in 2018 are represented in red.

The modeling of the potential spatial distribution of suitable areas for Vitis vinifera L. in 2070
with RCP4.5 scenario (Figure 8) confirms the decrease of high probability class on the French territory.
The comparison with the current crops areas shows that they should be located mainly in average
probability class (85%) for this scenario (Table 2). The rest of the spatial distribution should correspond
to 9% in high probability class and 5% in the low probability class.

 

  
  1. Low level of probabilities   2. Average level of probability   3. High level of probabilities 

Figure 8. Potential suitable areas for grapevine crop according to RCP 4.5 climate scenario for 2070.
Grapevine crops declared in 2018 are represented in red.

The assessment of potential suitable areas for 2070 according to RCP6.0 scenario (Figure 9) presents
a potential equivalent spatial distribution of grapevine crops of 49% for high and average classes of
probability. Only 1% of current cultivations should be located in the lowest probability class.
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  1. Low level of probabilities   2. Average level of probability   3. High level of probabilities 

Figure 9. Potential suitable areas for grapevine crop according to RCP 6.0 climate scenario for 2070.
Grapevine crops declared in 2018 are represented in red.

The results presented in Table 3 are related to the statistical distribution of the average altitude in
each class of probability and according to the different climatic situations (baseline, 2050 and 2070).

Table 3. Average altitude of polygons into the different probability classes according to baseline and
future climate scenarios.

Title Climate
Scenarios

Avg. Alti. (m) Outside
of Suitable Areas

Avg. Alti. (m) in
Low Proba. Class

Avg. Alti. (m) in
Average Proba. Class

Avg. Alti. (m) in
High Proba. Class

Baseline 390 1306 421 233
2050 RCP 4.5 387 934 386 204
2050 RCP 6.0 384 1408 269 297
2070 RCP 4.5 387 1207 342 231
2070 RCP 6.0 384 1601 302 297

This table highlights that the areas with a high level of probability to find suitable areas for
grapevine crops should be located in higher altitudes than the current ones for scenario RCP6.0 in
2050 and 2070. For scenario RCP4.5, there could be a global decrease of average altitudes for 2050 and
2070 according to the baseline situation. This decrease should be significant with the low and average
classes of probability.

The analysis of the whole results underlines that the current location of grapevine crops are mainly
situated in high level probability class (93%) but, according to the potential impact of climate change,
these areas should become less favorable to its cultivation towards 2050 and 2070, even if the RCP4.5
and RCP6.0 scenarios show contrasted future situations. The variation of the surface located in the
high probability class would decrease from 41% to 84% of the amount of the current areas situated in
this class which would represent an amount between 307,500 ha and 630,000 ha where grapevines
would face some perturbations on its growth and its mortality rate.

The results also show that RCP4.5 scenario would have a more drastic impact on the spatial
distribution of suitable areas for grapevine than RCP6.0 scenario for both 2050 and 2070 periods
in France because most of the crops would be situated in average and low probability classes with
RCP4.5 scenario.

4. Discussion

The application of CDS Toolbox SDM on the potential suitability of grapevine crops in France
shows two main ecological and biogeographical mechanisms.
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The first one is the selection pressure that leads to the contraction of the spatial distribution
of species. This appears when the suitable areas are very few (global similarity values between
1 and 52.17%) like it is for class 1. In this case, species cannot adapt or may face very difficult
problems to adapt to the future environmental conditions. The result is a decrease of the surface they
previously colonized.

The second one is the environmental pressure on the phenotypic plasticity that can lead or not
to the expansion of the areas colonized by the species or community of species. This process is
complex because there are different ways of expression of the phenotypic plasticity. One of these
possibilities is the contraction of the distribution area of species that correspond to the resistance of
new environmental conditions. This process can also generate a migration of species to other areas
that are more suitable but the areas colonized remain lower than the previous ecological situation
(classes 2 and 3). Another type of expression of phenotypic plasticity is the expansion of the specie in
more areas than before because the environmental changes provides areas that are more suitable.

With the use of RCP4.5 scenarios for the 2050 and 2070 periods, CDS Toolbox SDM shows
that climate change would have a significant negative role on the spatial distribution of suitable
areas for grapevine crops. RCP4.5 scenario seems to have a more drastic impact on the spatial
distribution of grapevine than RCP6.0 scenario. Nevertheless, those two scenarios also show a
significant decrease of suitable areas for grapevine in 2050 and 2070 according to its current distribution.
This result is coherent with the conclusions of [31], which identified that new territories should be
suitable for grapevine cultivation in the northern part of France by using A1B from penultimate
IPCC climate scenarios version (scenario similar to RCP6.0, [32]) with three downscaling methods
(weather type—WT; Quantile-Quantile—QQ; and Anomalies—ANO) in 2050 and 2100, but without
proposing a mapping method. The model developed by [32] is based on the use of annual means and
standard deviation in order to calculate the climate change impact on phenology, transpiration ratio,
and climatic water balance [33], using a GIS approach, also shows a potential shift of suitable areas for
viniculture towards 2100 in the northern part of France. They use the penultimate IPCC scenarios B1
(scenario close to RCP2.6 scenario, the most optimistic one, [31]) and A1B with a spatial resolution
of 18 km. The estimation of the potential distribution of suitable areas is based on the spatial
distribution of bioclimatic variables, but without calibrating the relationships between vineyards areas
and these variables.

Fraga et al. [34] present similar trends with RCP4.5 and RCP8.5 scenarios in order to show the
potential impact of climate change on climatic suitability of 44 varieties of grapevine in Portugal.
Their results show a potential shift of suitable areas in the northern part of Portugal and other European
countries and in higher altitudes than currently. Their model is based on a spatial resolution of 1 km
using the WorldClim dataset and they focus their analysis on the spatial distribution of bioclimatic
indexes and their correlation with the viticultural regions of Portugal.

Moriondo et al. [35] argue that climate change would provoke a shift in the north and north-west
of their current location in France, Germany, Italy, Portugal and Spain using A2 and B2 scenarios
towards 2050 at 1 km of spatial resolution. They also underline the potential expansion or contraction
of some suitable areas for grapevine crops according to the potential impact of climate change.

In the frame of the European CORDEX project (Coordinated Downscaling Experiment—European
Domain) Cardell et al. [36] studied the evolution of 11 bioclimatic indices for 3 periods (2021–2045,
2046–2070, 2071–2095) by using RCP4.5 and RCP8.5 scenarios at 12 km of spatial resolution. Their results
show that climate change would induce a shift of suitable areas for grape wine crops in Central and
Northern parts of Europe like Germany, North of France, Belgium, Poland, Southern England and
Czech Republic due to better temperatures around 2050. Our study presents similar conclusions but
with a more accurate spatial resolution (1 km) at the scale of the French territory.

In Italy, Caffarra and Eccel [37], by using A2 (scenario similar to RCP6.0, IPCC 2013) and B2
(scenario similar to RCP8.5, [31]) IPCC scenarios from the penultimate version of climatic assessment,
mention that mountain areas at an elevation of around 1000 m in the region of Trentino (Italian Alps)
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would be suitable for the cultivation of grapevine due climate change towards 2100. In our model,
the potential development of the grapevine in mountains is more nuanced, especially for the territories
situated in high levels of probability to find suitable conditions. According to RCP6.0 in 2050 and 2070,
there could be a potential increase of the average altitude but only around 300m. The areas situated
around 1000 m mainly match with low probability class to find suitable environmental conditions for
the cultivation of grapevine.

However, CDS Toolbox SDM also underlines that the potential impact of climate change may be
less significant than the other studies suppose. This is particularly the case by the use of RCP6.0 scenario
for 2050 and 2070. In this case, it seems that the future climate conditions related to RCP6.0 scenario
would be more favorable for the grapevine crops than the one related to RCP4.5 scenario. These results
show the ability of CDS Toolbox SDM to render the bioclimatic dimension of the relationship between
the species and the climatic variables, which is a relevant aspect in order to help decision-makers
establish their strategy to make their activities resilient to climate change.

5. Conclusions

CDS Toolbox SDM has been developed in order to help decision-makers adapt their strategy and
activities concerning the biological resources (biodiversity, agriculture, landscape, etc.) to the potential
impacts of climate change. The aim of this model is to support a prospective approach that can be
considered as a key process to ensure territorial resilience.

The application of CDS Toolbox SDM on the viniculture in France has shown the capability of the
model to take into account the different potential impacts of climate change on the spatial distribution
of suitable areas for grapevine crops according to the scenarios RCP4.5 and RCP6.0 for 2050 and 2070
periods. These results can contribute to define practical actions in order to adapt viniculture to climate
change. For example, some of these actions can be related to developing irrigation infrastructures
and techniques as suggested by [31]. Another strategy could be based on the diversification of
cultivars. In that frame, [38] demonstrated that the use of 11 grapevine cultivars may help to reduce
the potential losses of suitable areas by a half (for a 2 ◦C scenario) or by a third (for a 4 ◦C) for 2100.
Finally, CDS Toolbox SDM can be used in order to identify the territories that are and would still be
suitable for grapevine crops towards 2050 and 2070 in order to plan the development of wine supply
chain in regions where this cultivation has not been developed or only slightly so.

As an improvement of CDS Toolbox SDM, we plan to add a climatic downscaling module allowing
the use of climate change scenarios at very high spatial resolution (75 m) in order to provide the results
at parcels scale. Because Morales-Castilla et al. [38] underlines that climate change since the 2000s
affected the production of wine, especially when drought occurs during the growing season in summer,
we also plan to combine our approach with the use of other climate based indexes like the Net Primary
Productivity (NPP). This index is able to assess the potential productivity of vineyard through the
next decades and its potential impact on the expected grapevine harvest. As suggested by [39,40],
the implementation of the Huglin index, used at high spatial resolution, could also be helpful in order
to map the potential evolution of the thermal requirements of grape varieties and the potential sugar
content of grapes, this last parameter being relevant for wine producers.
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Appendix A

We present here the statistical description of the quantitative variables used by CDS Toolbox SDM
in order to assess the potential distribution of suitable areas for the development of species like Vitis
vinifera L. on the French territory. We also give the description of the nominal variables classes.

Quantitative variables

Table A1. 19 Bioclimatic variables of baseline scenario (see Figure 1 for variables names).

Variable Min Max Mean Std

Bio1 −10.26 17.21 10.73 2.1
Bio2 3.11 12.1 8.59 0.99
Bio3 17.12 45.05 35.97 2.49
Bio4 312.1 714.12 567.33 57.3
Bio5 −0.69 30.2 22.34 2.43
Bio6 −19.2 8 −1.55 2.33
Bio7 12.7 31.4 23.89 2.31
Bio8 −15.33 19.39 9.14 4.25
Bio9 −6 −24.88 12.7 6.58

Bio10 −3.15 24.88 17.9 2.09
Bio11 −15.98 11.18 4.1 2.23
Bio12 468 2104 848.73 182.72
Bio13 55 274 92.88 22.43
Bio14 7 127 49.12 13.58
Bio15 6.74 53.78 18.61 7.83
Bio16 157 692 256.64 61.23
Bio17 38 401 165.9 41.17
Bio18 39 401 182.91 43.94
Bio19 90 592 224.35 58.41

Table A2. 19 Bioclimatic variables of 2050 RCP4.5 scenario (see Figure 1 for variables names).

Variable Min Max Mean Std

Bio1 −4.7 19.2 13.577 1.985
Bio2 4.3 12.1 9.897 1.274
Bio3 19 40 33.92 2.39
Bio4 409.4 783 655.102 60.41
Bio5 8.8 36.4 30.662 2.684
Bio6 −13.9 10 1.948 2.159
Bio7 17.8 34.6 28.714 2.865
Bio8 −9.8 20 9.331 4.308
Bio9 −3.9 27.8 20.89 5.262

Bio10 3.6 27.8 22.466 2.086
Bio11 −10.9 13 5.726 2.148
Bio12 415 2442 745.58 153.37
Bio13 60 262 87.16 18.03
Bio14 4 141 35.52 12.9
Bio15 10 55 24.37 7.67
Bio16 167 727 239.85 50.56
Bio17 28 460 129.75 37.61
Bio18 48 460 137.81 39.73
Bio19 84 697 205.64 56.1
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Table A3. 19 Bioclimatic variables of 2050 RCP6.0 scenario (see Figure 1 for variables names).

Variable Min Max Mean Std

Bio1 −4.9 18.7 13.088 1.97
Bio2 3.9 10.7 8.251 1.139
Bio3 19 42 34.56 2.82
Bio4 351.3 651.7 553.378 45.459
Bio5 4.3 32.5 26.755 2.507
Bio6 −11.9 9.9 3.246 2.021
Bio7 14.5 30 23.508 2.426
Bio8 −8.8 21.5 9.8513 4.722
Bio9 −1.9 25.7 13.371 5.822

Bio10 1 25.7 20.202 2.033
Bio11 −9.9 12.8 6.246 2.001
Bio12 490 2702 826.5 173.43
Bio13 62 332 96.33 23.56
Bio14 4 182 45.74 13.34
Bio15 11 62 20.92 7.388
Bio16 168 856 258.09 61.47
Bio17 26 562 161.57 41.03
Bio18 52 563 187.95 45.47
Bio19 107 759 231.01 62.53

Table A4. 19 Bioclimatic variables of 2070 RCP4.5 scenario (see Figure 1 for variables names).

Variable Min Max Mean Std

Bio1 −4.2 19.7 14.103 1.991
Bio2 4.3 12.4 10.063 1.296
Bio3 18 38 32.18 2.19
Bio4 443.6 822.5 698.475 59.803
Bio5 10.2 37.5 32.146 2.709
Bio6 −14.8 9.5 1.424 2.122
Bio7 19.4 36.3 30.722 2.804
Bio8 −11.4 20.4 9.888 4.174
Bio9 2.8 28.7 23.053 3.45

Bio10 4.9 28.8 23.677 2.036
Bio11 −11.4 13 5.72 2.145
Bio12 471 2435 737.69 151.05
Bio13 58 278 88.8 18.77
Bio14 3 114 32.79 11.08
Bio15 13 60 26.2 7.65
Bio16 161 755 238.46 54.45
Bio17 23 399 119.27 31.6
Bio18 38 399 127.56 26.81
Bio19 97 755 211.43 57
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Table A5. 19 Bioclimatic variables of 2070 RCP6.0 scenario (see Figure 1 for variables names).

Variable Min Max Mean Std

Bio1 −4.3 19.2 13.509 1.956
Bio2 3.9 10.9 8.267 1.23
Bio3 19 42 34.4 3.29
Bio4 334.2 653.6 552.964 50.36
Bio5 5.8 33.7 27.634 2.616
Bio6 −10.8 11.2 3.982 1.809
Bio7 14.1 29.6 23.652 2.344
Bio8 −8.4 22 9.78 4.207
Bio9 1.7 26.4 16.722 6.071

Bio10 1.8 26.5 20.814 2.096
Bio11 −9.1 13.6 6.861 1.963
Bio12 479 2702 791.68 171.24
Bio13 60 359 95.16 25.6
Bio14 3 165 43.45 13.56
Bio15 10 66 23.62 9.62
Bio16 163 928 253.14 66.23
Bio17 18 524 148.1 41.92
Bio18 37 524 166.2 47.11
Bio19 97 834 233.58 66.75

Table A6. Slopes.

Min Max Mean Std

Slopes 0 45.66 3.59 4.95

Nominal variables

Table A7. Ecoregions.

Ecoregions

Mediterranean Forests,
Woodlands and Scrub

Temperate Broadleaf and
Mixed Forests

Temperate Conifer Forests

Table A8. Edaphology.

Acronym Soil type Acronym Soil type

Bc Chromic Cambisols Lg Gleyic Luvisols
Bd Dystric Cambisols Lo Orthic Luvisols
Be Eutric Cambisols Oe Eutric Histosols
Bh Humic Cambisols Ph Humic Podzols
Bk Calcic Cambisols Pl Leptic Podzols
Dd Dystric Podzoluvisols Po Orthic Podzols
E Rendzinas Ql Luvic Arenosols
I Lithosols Rc Calcaric Regosols
Jc Calcaric Fluvisols WR Planosols
Je Eutric Fluvisols Zg Gleyic Solonchaks
Lc Chromic Luvisols
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Table A9. Geology.

Rock Type

Cenozoic
Lower paleozoic (Cam, Ord, Sil)
Mesozoic - Jurassic and Cretaceous
Mesozoic - Triassic
Metamorphic formations
Paleozoic or older volcanic
formations
Plutonic rocks
Quaternary
Recent volcanic formations
Upper paleozoic (Dev, Car, Per)
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Abstract: Prunus africana is a fast-growing, evergreen canopy tree with several medicinal, household,
and agroforestry uses, as well as ecological value for over 22 countries in sub-Saharan Africa.
This species is under immense pressure from human activity, compounding its vulnerability to
the effects of climate change. Predicting suitable habitats for P. africana under changing climate is
essential for conservation monitoring and planning. This study intends to predict the impact of
climate change on the suitable habitats for the vulnerable P. africana in Tanzania. We used maximum
entropy modeling to predict future habitat distribution based on the representative concentration
pathways scenario 4.5 and 8.5 for the mid-century 2050 and late-century 2070. Species occurrence
records and environmental variables were used as a dependent variable and predictor variables
respectively. The model performance was excellent with the area under curve (AUC) and true skill
statistics (TSS) values of 0.96 and 0.85 respectively. The mean annual temperature (51.7%) and terrain
ruggedness. index (31.6%) are the most important variables in predicting the current and future
habitat distribution for P. africana. Our results show a decrease in suitable habitats for P. africana under
all future representative concentration pathways scenario when compared with current distributions.
These results have policy implications for over 22 countries of sub-Saharan Africa that are facing
problems associated with the sustainability of this species. Institutional, policy, and conservation
management approaches are proposed to support sustainable practices in favor of P. africana.

Keywords: habitat suitability; species distribution; climate change; conservation; P. africana

1. Introduction

Climate change is a serious threat to floral biodiversity conservation [1–3]. Over the next century,
the global temperature is projected to rise by 0.3–4.8 ◦C [4]. The projected increase in temperature
is anticipated to influence both species and habitat distribution in several different ways. Some of
the climate change impacts on flora include changes in species distribution, the increased extinction
rate of species, changes in the length of growing season, and reproduction timings for plants [5].
With a rise in temperature, plant species are likely to shift their distribution patterns depending on
resource availability [6]. This may lead to species range expansion or range contraction, or range shift
when respond to changing climate [7]. Predicting suitable habitat of species under climate change
using species distribution models (SDM) is one of the key important steps to undertake conservation
planning and management [6,8]. Greenhouse gases (GHGs) from various human activities are the
primary agents answerable for climate change and the current emission rates are at the highest level in
the recorded history [9].
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SDM have been widely used to monitor the impacts of climate change on the floral distribution [10]
and identification of suitable habitats of species [11]. SDM uses species occurrence and environmental
variables [12] to predict the distribution of a species in a geographical or an environmental space [13].
SDM engage a variety of methods for predicting species distribution and mapping habitat suitability [14].
These include: MAXENT, BIOCLIM, DOMAIN artificial neural networks, generalized linear models,
and generalized additive models. Maxent, Bioclim, and Domain use presence-only data [15] while
others require both presence absent data [14]. Presence-only methods include bioclimatic envelope
algorithm BIOCLIM, DOMAIN.

Maxent has been widely used and gives better results when compared to other different modeling
methods that use presence-only data are used [14,16,17]. Several studies have demonstrated Maxent’s
ability to accurately predict species distribution in a wide range of ecological and geographical
regions [10,18,19]. Subsequently, conservation practitioners have been increasingly using habitat
suitability models from Maxent to make conservation management decisions [20,21]. We used Maxent:
first to identify the most important variables that govern the current distribution of P. africana; second to
predict current suitable habitats; third to predict future suitable habitats based on two representative
concentration pathways (RCP 4.5 and RCP 8.5) for the mid-century 2050 and late-century 2070 in
Tanzania. We selected P. africana due to local and international economic importance for medicinal
purposes, contributing to its overexploitation. Due to the changing climate and overexploitation and,
there is a need to use species occurrence data for identification of key conservation sites so as to develop
a countrywide conservation strategy.

1.1. P. africana–Its Value, Demand and Conservation Pressures

P. africana is a fast-growing, evergreen canopy tree about 30–40 m in height. It has a wide range,
spanning several countries in central, western, southern, and eastern Africa (including Madagascar).
It occupies habitats in upland rain-forest, montane and riverine forests, moist evergreen forest, and the
edges of dry gallery forests [22]. The uses of P. africana are many, and explain the huge demand for this
tree and its products throughout the world:

Medicinal uses: The tree is widely used in both traditional and modern medicine to treat a
variety of ailments [23–25]. P. africana contains several medically active compounds including the
cyanogenic glycoside amygdalin, which is found in the bark, leaf, and fruit; phytosterols such as.
β-sitosterol 15–18%, and its 3-O-glycoside, β-sitostenone, campesterol, and aucosterol; pentacyclic
triterpenoids [26,27]. The bark is highly valued for its medicinal properties, particularly as a treatment
for benign prostatic hyperplasia and prostate gland hypertrophy, diseases that commonly affect older
men in Europe and North America [28]. In traditional medicinal practices throughout sub-Saharan
Africa, the bark is used in traditional medicine as a purgative and as a remedy for stomachache,
while the leaves are used as an inhalant for fever or are drunk as an infusion to improve appetite.
Demand for P. africana bark for medicinal uses has been high and growing, putting immense pressure
on the species throughout sub-Saharan Africa. In Tanzania, this has raised issues of sustainability for
the species [29]. While data on current demand and supply of P. africana barks in the international and
local markets is scarce, it was expected in 2000 that this demand would triple or quadruple to 7000 to
11,000 tons/year in export and about 500 tons/year for use in Africa the years after the report [30].

Household uses: Domesticated trees serve as shade in compounds, as windbreaks, and as
ornamental trees. The tree yields a high-quality fuel, and so is a favorite for the production of charcoal
or for use as fuel wood in many communities. Regarding household socioeconomics, P. africana supports
revenue streams of communities in a wide variety of ways. As an input to furniture production,
the seasoned wood saws easily and cleanly; works well with hand and machine tools; and polishes
and finishes well. It also serves as highly desirable timber for flooring and heavy construction where
durability is not required.

Agroforestry uses: Where the tree has been domesticated for integration into agricultural systems,
the tree is used for erosion control, while the leaves are incorporated into the system of organic manure

154



Atmosphere 2020, 11, 988

complex of crop production. There have been efforts to more tightly incorporate P. africana into the
agroforestry mix of agricultural systems in some parts of the continent. For example, in Cameroon
where the harvesting and commercialization have come under more targeted scrutiny given the large
volumes involved, the government established a “National Management Plan for P. africana” that
supported greater efforts towards reducing the pressures on wild tree species with locally cultivated
trees [31].

Ecological value: One of the most cited ecological value of P. africana is its preference by the black
and white colobus monkeys (Colobus guereza) as their top food species [32]. In forests, agricultural
fields, as in homes, P. africana also serves as shelter for a variety of bird species. It is a valuable species
for beekeeping, and therefore an important contributor in supporting pollination services that are
relied on by forest species, and for the success of agriculture.

The heavy pressures to which P. africana has recently come under in most African countries
because of wild harvesting for the medicinal plant trade have not gone unnoticed in the international
and biodiversity community. In 1995, P. africana was added to Appendix A of the Convention on
International Trade in the Endangered Species of Wild Fauna and Flora’s (CITES) list of endangered
species, for the regulation of its trade from wild harvesting [33]. Currently, all exports of P. africana

should therefore subject to a CITES export permit to protect the tree from depletion in Africa. In response,
a European Union (EU) ban on imports of P. africana bark came into force in 2007 to help stocks to
recover [34]. The International Union for Conservation of Nature (IUCN) recognize P. africana as a
vulnerable species on its red list (https://www.iucnredlist.org) and it was categorized as a species
“of urgent concerns” by CITES [22].

1.2. Forests and the Circular Economy

The circular economy is defined as “the concept can, in principle, be applied to all kinds of
natural resources, including biotic and abiotic materials, water and land. Eco-design, repair, reuse,
refurbishment, remanufacture, product sharing, waste prevention and waste recycling are all important
in a circular economy” [35]. The concept of the circular economy seeks to achieve a shift from the linear
economy, which is characterized by less than optimal recycling and reuse of materials and resources in
human societies. The overall goal of the circular economic model is to reduce the undesirable impacts
of the linear economy by achieving a systemic transition into a more sustainable approach to natural
resource exploitation and use built on long-term sustainability. One of the main objectives of the
circular economy is to reduce the impact of human activities on the planet’s ecosystems by reducing
the excessive exploitation of natural resources and minimizing the pressure of human actions on the
functioning of these ecosystems.

The role of forests in human societies and development, as well as the nature of forestry and
forestry-based industries makes them a prime candidate for contributing to the global drive towards
achieving the goals of a circular economy [36,37]. By striving towards achieving the objectives of
the circular economy, positive contributions can be made towards achieving several sustainable
development goals [38], many of which are relevant for Tanzania’s development.

2. Material and Methods

2.1. Study Area

The United Republic of Tanzania is located in East Africa between longitude 29◦ and 41◦ East
and latitude 1◦ and 12◦ South (Figure 1). Tanzania is endowed with a wide range of natural resources
as well as ecological and cultural diversity including extensive areas of arable land, wildlife reserves
and parks, mountains, forest reserves, rivers, and lakes. The mean annual rainfall varies from below
500 mm to over 2000 mm per annum while the mean temperature ranges from −4.9 ◦C to 27.9 ◦C per
annum. The central and western plateau is relatively dry while, the northern and southern highland
are cool. Rainfall for large parts of the country is bimodal with short rains from October-December
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and long rains from March to May [39]. The country has 7 hotspots including forest reserves, nature
reserves game reserves, and national parks that are recognized by The United Nations Educational,
Scientific and Cultural Organization as World Heritage sites (https://whc.unesco.org). A significant
number of world endemic and threatened species are reported from Tanzania (https://www.cbd.int).
However, the country has lost its forest cover from land use change and it is threatened by changing
climate [40].

 

Figure 1. Location map of the study area Tanzania. Black points show species occurrence. Note that
the data for P. africana is superimposed on top of elevation layer.

2.2. Species Presence Records

We obtained the present locations of P. africana from a 5-year field survey done across the country by
National Forest Resources Monitoring and Assessment Project, and different online sources, TROPICOS
an online botanical database containing taxonomic information on plants (http://www.tropicos.org)
and Global Biodiversity Information Facility database (http://www.gbif.org). A total of 187 records
were collected, and after screening, 57 duplicate records were removed, and finally 120 records were
used to run the model (Figure 1). To model potential attribution of P. africana across the country.

2.3. Environmental Variables

We collected 19 bioclimatic variables from WorldClim dataset (https://www.worldclim.org).
To derive elevation and terrain ruggedness index, we downloaded a digital elevation model from Shuttle
Radar Topography Mission dataset (http://srtm.csi.cgiar.org). Soil type (Table 1) were obtained from the
International Soil Reference and Information Centre database (https://www.isric.org). We resampled
both soils and topographic layers to the resolution of bioclimatic variables (~1 km) using ArcGIS 10.6.
To reduce multi-collinearity of climate variables, the two variables that found to have a high correlation
coefficient (|r| > 0.7), as suggested by [41], we selected “one variable for modeling due to its ecological
importance for the survival of P. africana” [42]. This resulted in the inclusion of eight variables for
modeling. Table 2 lists the general statistics of the major environmental variables used in this study.
We used Climate Community Climate System version four (CCSM4) bioclimatic variables to predict
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the future distribution of P. africana under future climate scenarios, namely representative concetration
pathway (RCP) 4.5 a moderate greenhouse gas emission scenario and RCP 8.5 a extreme greenhouse
gas emission scenario for mid-century and late-century. The CCSM4 is among the most commonly
used bioclimatic variables to predict the impact of climate change on plant distribution [1,3].

Table 1. Summary of dominant tropical soil groups for Southern Africa (Batjes, 2004).

Code Major Soil Group Descriptions

1 Acrisols Strongly weathered acid soils, with low base saturation

2 Andosols Black soils of volcanic landscapes, rich in organic matters

3 Arenosols
Sandy soils with limited soil development, under scattered

(mostly grassy) vegetation to very old plateaus of light forest

4 Cambisols
Weakly to moderately developed soil soils occurring from sea

level to the highlands and under all kind of vegetation
(savanna woodland and forests)

5 Chernozems
Black soil rich in organic matter, occurring in flat to undulating

plains with forest and tall grass vegetation

6 Ferralsols
Deep, strongly weathered, physically stable but chemically

depleted

7 Fluvisols
Associated with important river plains, periodically

flooded areas

8 Gleysols
Temporary or permanent wetness near soil surface,
support swamp forests or permanent grass cover

9 Histosols
Peat and muck soils with incompletely decomposed

plant remains

10 Leptosols
Shallow soils over hard rock/gravel, at medium to high

altitude landscapes, suitable for forestry and
nature conservation

11 Lixisols
Strongly weathered and leached, finely textured materials

support natural savanna or open woodland vegetation

12 Luvisols
Common in flat or gently sloping land with unconsolidated

alluvial, colluvial, aeolian deposits in cooler environments and
young surface

13 Nitisols
Deep, red, well-drained tropical soils with a clayey, well

defined nut-shaped peds with shiny surface. Found in level to
highland under tropical rain forest or savanna vegetation

14 Phaeozems
Dark soils, rich in organic matter. Occur on flat to undulating
land in a warm to cool (tropical highland). Support natural

vegetation with tall grass steppe and or/forest

15 Planosols
Clayey alluvial and colluvial deposits and support light forest

or grass vegetation

16 Regosols
Contain gravelly lateritic materials (murrum) with low

suitability for plant growth

17 Solonchanks
Occur in seasonally or permanently water logged areas with

grasses and/or halophytic herbs

18 Solonetz
Associated with flat lands in a hot climate, dry summers,

coastal deposit. Contain a high proportional of sodium ions

19 Vertisols

Contain sediments with a high proportion of smectite clay,
high swelling and shrinking of results in deep cracks during

dry season. Climax vegetation is savanna, natural grass
and/or woodland

20 Water Areas covered by water bodies
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Table 2. Environmental variables used to model distribution of P. africana.

Variable Code Mean Standard Error Minimum Maximum

Annual mean temperature (◦C) bio1 17.10 3.46 3.70 24.00
Isothermality (dimensionless) bio3 6.64 0.48 6.10 8.40

Annual precipitation (mm) bio12 1237 38 503 2287
Precipitation of warmest quarter (mm) bio18 364 12 140 576

Precipitation of driest month (mm) bio14 7 0.9 0 57
Terrain ruggedness index (m) tri 104.43 9.47 0.13 418.75

Elevation (m) eleva 1903 56 698 4249

2.4. Species Distribution Modeling

We used Maxent version 3.3.3; [17] to model the distribution of P. africana in this study due to the
unavailability of absence records. Maxent uses presence records in combination with environmental
conditions the species is present to model the spatial distribution based on the theory of maximum
entropy [14]. During modeling, we selected 75% of presence records to training the model and 25%
for testing the model [1,3,15], while changing Maxent setting. We tried to set various values for the
regularization multiplier and the number of iterations and changed feature types. We obtained the
good results with the following settings; cross-validate with iterations set to 5000, regularization
multiplier set to 1, and feature type set to quadratic, hinge, and linear. Further, the maximum number
of background points was set to 10,000, and replicates were set to 30. Afterward, we imported current
and future predicted maps for P. africana from Maxent models into ArcGIS 10.6 and reclassified into
five classes of potential habitats according to [43]: unsuitable habitat (0–0.2); barely suitable habitat
(0.2–0.4); suitable habitat (0.4–0.6); highly suitable habitat (0.6–0.8); very highly suitable habitat (0.8–1).
Finally, current distribution maps were subtracted from future maps to compute the relative changes
in species range (decreasing or increasing) [2].

2.5. Model Evaluation and Validation

We used the area under receiver operating characteristic (AUC) and true skill statistic (TSS) to
assess the performance of model. The AUC values range between 0–1; higher AUC values suggest the
better and higher performance of a model [14,17]. “TSS values range between +1 to −1; a values > 0.8
suggest excellent, 0.4–0.8 useful, and <0.4 poor model performance” [2]. Finally, we selected the model
with highest AUC and TSS. Besides, we used jackknife test to identify important variable governing
the distribution of P. africana. Further, we use response curves to show how the predicted probability
of presence changes as each environmental variable is varied.

3. Results

3.1. Model Validation and Influencing Bioclimatic Variables

Model for P. africana provided satisfactory results, with AUC and TSS values of 0.957 and 0.845
respectively. These suggest that the model for P. africana produced good results. Annual mean
temperature (bio1) contributed most to the model, followed by terrain ruggedness index (tri) (Table 3).
The cumulative contribution of these two variables is 83.30%. On the other hand, the variable with the
highest gain when used in isolation is bio1, this implies this variable has the most useful information
by itself. The variable that decreases the gain most when it is omitted is tri, this implies that the tri has
the most information that is not present in the other variables (Figure 2). These results signify that bio1
and tri a proxy measure of topographic heterogeneity are the master variables governing the current
and future distribution of P. africana in Tanzania.
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Table 3. Environmental variables used in the study and their percentage contributions, and the maps
that show the spatial distribution of the important variables are presented in Figure A1.

Variable Code Percent Contribution (%)

Annual mean temperature bio1 51.7
Terrain ruggedness index tri 31.6

Elevation eleva 5.7
Soil type soils 5.5

Annual precipitation bio12 3.4
Precipitation of warmest quarter bio18 0.9

Precipitation of driest month bio14 0.8
Isothermality bio3 0.5

 

Figure 2. Jackknife test results indicating variable with highest gain when used in isolation and
variable that decreases the gain the most when it is omitted. The test results indicate annual mean
temperature (bio1) has the most useful information by itself while terrain ruggedness index (tri) has
the most information that is not present in the other variables. Jackknife of regularized training gain
for P. africana.

Figure 3, below, shows how the predictions depend on the variables, as mean annual temperature
(bio1), increases habitat suitability for P. africana decreases while its habitat suitability increases with
annual precipitation (bio12). On the other hand, as elevation (eleva) and terrain ruggedness index (tri),
increases habitat suitability for P. africana increases indicating that it prefers undulating upland areas.
Further, P. africana prefers to reside on nitisols, histosols, leptosols, and acrisols soils, which is widely
distributed in undulating upland areas.

3.2. Current and Future Distribution of P. africana

Predicted distributions under current conditions revealed that highly and moderately suitable
areas for P. africana covers only 6.69% (62,388.75 sq. km), while low and very low suitable areas cover
the large portion, 93.31% (869,937.04 sq. km), of the study area (Table 4; Figure 4). The highly suitable
areas to a large extent are identified in the southern highlands, western, and northern zones of the
study area (Tanzania, Figure 4). Predicted distributions under future conditions indicates decline in
suitable areas and increase in suitable areas under RCP 4.5 and RCP 8.5 scenarios for mid-century 2050
and late-century 2070 (Table 4; Figure 4). Climatically highly and moderately suitable areas will decline
by 2.29% and 3.07% under RCP 8.5 for 2050 and 2070, respectively while under RCP 4.5 for 2050 and
2070 highly and moderately suitable areas will decline by 2.10% and 2.20% respectively. Climatically
very low areas will increase by 6.85% and 8.59% under RCP 8.5 for 2050 and 2070, respectively while
under RCP 4.5 for 2050 and 2070 suitable conditions will decline by 6.25% and 6.59% respectively
(Table 4; Figure 4). Southern highlands, western, and northern zones are anticipated to lose large
portion of suitable areas in the future for all climate scenarios under mid-century and late-century
(Table 5; Figure 4).
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Figure 3. Relationships between selected environmental variables and probability of species suitability
of P. africana (A) mean annual temperature (bio1) (B) annual precipitation (bio12), (C) elevation (eleva),
(D) terrain ruggedness index (tri), (E) precipitation of warmest quarter (bio18), (F) soil types (soils).
The y-axis represents the probability of presence (cloglog output). Red curves show the average
response and blue margins are ± SD calculated by 30 replicate runs. For the interpretation of soil type
legend, refer Table 1.

Table 4. Change in suitable areas of P. africana country-wide for mid-century and late-century under
representative concertation pathway (RCP) 4.5 and RCP 8.5 scenarios.

Suitability Class
Species Distribution Area (km2)

Current RCP 4.5 Area Change RCP 8.5 Area Change

2050 Very low 767,755.74 826,010.1 58,254.37 831,659.80 63,904.06
Low 102,181.30 64,349.85 −37,831.46 59,628.51 −42,552.80

Moderate 32,044.01 19,254.13 −12,789.88 19,514.24 −12,529.77
High 15,758.05 11,585.16 −4172.88 11,224.09 −4533.96

Very high 14,586.70 11,126.55 −3460.15 10,299.16 −4287.54
2070 Very low 767,755.74 829,251.22 61,495.48 847,873.04 80,117.30

Low 102,181.30 61,217.40 −40,963.90 50,670.11 −51,511.19
Moderate 32,044.01 19,591.25 −12,452.77 15,309.70 −16,734.31

High 15,758.05 11,456.82 −4301.23 9021.71 −6736.34
Very high 14,586.70 10,809.11− 3777.58 9451.23 −5135.46
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Figure 4. Climate Community Climate System version four (CCSM4) climate model based predicted
future suitability of P. africana species: (A) current potential distribution; (B,C) RCP 4.5, and 8.5 emission
scenario for 2050; (E,D) RCP 4.5, and 8.5 scenario for 2070.
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Table 5. Change in suitable areas of P. africana zone wide for mid-century and late-century under RCP 4.5 and RCP 8.5 scenarios.

Species Distribution Area (km2)

Scenario Suitability Class Eastern Zone Southern Zone Northern Zone Central Zone Southern Highlands Zone Western Zone Lake Zone

RCP 4.5 (2050)

Very low 1089.21 1216.69 12,694.85 2972.43 11,410.56 12,119.02 16,740.23
Low −416.69 −556.15 −8740.17 −2262.26 −5417.79 −6645.61 −13,783.20

Moderate −219.89 −412.41 −2170.71 −404.71 −2750.82 −4373.08 −2457.34
High −176.26 −175.40 −885.57 −145.46 −1374.98 -941.18 −473.16

Very high −276.37 −72.73 −898.40 −160.00 −1866.97 −159.15 −26.52

RCP 4.5 (2070)

Very low 1156.80 1082.36 14,000.53 2985.26 10,945.11 12,734.21 18,578.96
Low −479.15 −416.69 −9586.38 −2332.42 −5392.98 −7310.43 −15,435.41

Moderate −229.31 −403.85 −2176.70 −396.15 −2286.22 −4326.88 −2632.75
High −169.41 −183.10 −860.75 −114.65 −1546.96 −942.04 −483.43

Very high −278.93 −78.72 −1376.69 −142.03 −1718.94 −154.87 −27.38

RCP 8.5 (2050)

Very low 1333.06 1315.09 13,487.16 3082.80 12,644.37 13,412.72 18,614.89
Low −582.68 −624.60 −8825.73 −2387.18 −6618.23 −7879.42 −15,622.79

Moderate −250.70 −390.16 −2244.29 −399.58 −2331.57 −4409.02 −2503.55
High −175.40 −213.91 −765.78 −133.48 −1827.61 −954.02 −462.89

Very high −324.28 −86.42 −1651.35 −162.57 −1866.97 −170.27 −25.67

RCP 8.5 (2070)

Very low 1911.46 1935.42 17,698.52 4095.86 16,881.41 16,414.24 21,166.36
Low −748.67 −975.41 −11,529.49 −3080.24 −7644.12 −9855.04 −17,666.87

Moderate −421.82 −577.54 −3021.20 −521.07 −3902.49 −5315.97 −2973.28
High −274.65 −280.64 −1523.86 −278.93 −2831.25 −1048.14 −497.12

Very high −466.31 −101.82 −1623.97 −215.62 −2503.55 −195.08 −29.09
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4. Discussion

The findings of the study show that the suitability distribution of the P. africana is largely controlled
by annual temperature, terrain ruggedness index, elevation, and soil type (contributed more than
90%). P. africana showed sharp decline in response to an increase in annual temperature beyond
signifying that the probability of occurrence of the species may be affected with higher temperature.
This is in line with the results from a study in eastern arc mountains Tanzania, where the studied
tree species showed a declining trend in response to an increase in temperature [44]. With warming
trends, plant species are expected to track the changing climate and shift their distributions to the
extent that resource availability allows [6]. P. africana showed an increasing trend in response to an
increase of the terrain ruggedness index suggesting that the species prefers rugged or undulating
areas [45]. “Terrain ruggedness index as a measure of terrain heterogeneity is an important variable for
predicting which habitats are used by a species and the density at which species occur in a variety of
environments” [46]. P. africana showed an increasing trend in response to the increase of elevation
indicating that the species prefers high elevation areas. Higher temperature is stated to cause shifts in
plant distribution along the elevation gradients [47]. P. africana distribution appears to associate with
Nitisols, Histosols, and Leptosols soils that are found in undulating upland areas. Soil type plays a
major role in the heterogeneity of habitats, thus determining the distribution of plant species [48].

4.1. Management Implications

Our results indicate that climate change will pose a severe impact on the future distribution of
P. africana in Tanzania. Research institutions and public universities can take an interest in both in situ
and ex situ long-term monitoring trends of P. africana distribution in a country. In-situ interventions
should focus on the “recruitment and regeneration of the species while ex-situ interventions should
target to promote tree retention on farms, or advocate further planting, collect specimens, and to
establish gene banks and botanical gardens to ensure the survival of the species” [42].

4.2. Institutional and Policy Context for Addressing Challenges Associated with P. africana

Addressing challenges associated with the vulnerability of P. africana in Tanzania can benefit
from the institutional context already in place in the country. The government has put in place
institutional frameworks to manage natural resources and environment-related initiatives and
challenges countrywide. The President’s Office-Regional Administration and Local Government
(PORALG) works closely with Local Government Authorities through their various departments in
collaboration with the respective sector ministries to implement the strategic interventions at the local
level (municipalities, districts, wards, villages, and sub-villages). This is important for addressing
the immediate management decisions that directly affect the health and survival of P. africana, as the
trees are directly impacted by community demand for livelihoods at the local level. Successful
implementation of policies, laws, and plans also requires enhanced engagement with Civil Society
Organizations, development partners, the private sector, and academic and research institutions.

Addressing the more systemic and long-term environmental challenges facing P. africana would
be best addressed within the institutional arrangements for environmental management functions
in Tanzania. These are two basic types of such functions: (i) Sectoral Environmental Management
Functions (also known as Type A functions) that are concerned with the management of specific natural
resources or environmental services, such as forestry, agriculture, fisheries, wildlife, mining, and waste
management. These functions are to a large extent operational and guided by sector-specific policies
and acts such as the Forest Act (2002), which should be directly relevant for addressing challenges
of P. africana. (ii) Coordinating and Supporting Environmental Management Functions (commonly
referred to as Type B functions) involve the task of providing central support functions by coordinating
and supporting the different and sometimes conflicting Type A activities and integrating them into an
overall sustainable system. Specific tools within this Type B functions relevant for addressing challenges
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of P. africana are the National Environmental Policy (1997) and the Environmental Management Act
(2004), which provide policy and legislative framework for the coordination of the implementation of
policies and laws on environmental and natural resources management.

4.3. Conservation and Management Approaches to Support Sustainable Practices in Favor of P. africana

Three main conservation and management approaches can offer possibilities to address the
vulnerability of P. africana in Tanzania. These draw from experiences in other parts of the developing
world facing conservation challenges of their own and the lessons learned from their conservation and
management approaches.

4.3.1. Supporting Inclusive Conservation Approaches

While climate changing is increasingly representing a challenge to the distribution and health of
P. africana, this challenge comes to compound existing pressures imposed by anthropogenic pressures
of the species. Given the high degree of anthropic intervention contributing to the vulnerability of the
species, conservation and management strategies need to be closely linked to the needs of indigenous
peoples and local communities. There is therefore a serious need to consider the genuine and
effective participation of indigenous peoples and local communities in the definition and application
of resource management options when addressing challenges to the sustainable management of
P. africana. Given the importance of this specie to the health of local populations, socio-economic
and environmental welfare, emphasis on supporting its sustainable and adaptive use, supported by
initiatives that reduce local reliance on the harvesting of wild resources (such as agroforestry) may
prove to be more locally acceptable. This principle of “conservation through use” is an example of the
application of community-based natural resources management models to address issues of resource
degradation. These types of co-management models have been applied to the successful management
of protected resources in other parts of the world [41]. Such an approach will be in alignment with
current governmental efforts towards a more inclusive management of forests and natural resources.
A program of Participatory Forest Management has been introduced and operationalized through the
Joint Forest Management (JFM) as well as a Community Based Forest Management (CBFM) processes
across the country. Under JFM, agreements between community groups and the Government have
been developed with a view to promoting the participation of communities in the management
and utilization of forest resources. The Community Based Forest Management program encourages
communities to set up forest reserves from the general lands for economic and conservation activities.

4.3.2. Collaboration to Streamline and Align Regional and International Efforts

Given the regional and international character of challenges of P. africana vulnerability, there is a
need for collaboration to improving forest management, share best practices, and support effective
conservation as well as the production and trade of forest products. The Collaborative Partnership on
Forests (CPF) is an informal, voluntary arrangement among 14 international organizations to share
experiences and build on them to produce new benefits for their respective national stakeholders in the
forest resources sector [41]. Addressing the challenges of P. africana has the potential of benefiting from
the CPF whose mission is to promote sustainable management of all types of forests and to strengthen
long-term political commitment to this end.

4.3.3. Leveraging the Potential of Payments for Ecosystem Services (PES)

Payments for ecosystem services (PES) refer to voluntary transactions between users and suppliers
of environmental services, such that suppliers are subject to natural resource management and handling
rules within and outside of service provision areas [49]. Under a PES scheme, users of land upstream
may agree to voluntary limitation or diversification of their activities in return for an economic
benefit. In many parts of the world, the positive impact on forest cover and species diversity of
the implementation of PES) schemes have been documented [50,51]. Developing PES schemes that
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specifically target compounding factors contributing to the vulnerability of P. africana can contribute to
reducing these vulnerabilities. Such schemes would also concomitantly contribute to combatting the
degradation or loss of essential ecosystems and ecosystem services without sacrificing the well-being
of people—an essential element in the portfolio of Tanzania’s sustainable development goals. It must
be noted however that the design and implementation of PES programs must be carefully done,
adopting best practices as well as the best and most recent scientific guidance on the subject matter.
This is because PES per se is not a panacea for addressing underlying deficiencies in natural resources
governance policies and practices where they exist. For example, Tuanmu Viña [50] observed that the
effectiveness of a PES program depends on who receives the payment and on whether the payment
provides sufficient incentives.

4.3.4. Incorporating Forest Management into the Circular Economy

In striving to incorporate forests and forestry into the circular economy, it is important to
understand some of the strategies required to achieve the transition from a linear to a circular
economy. In a study aimed at understanding strategies for an effective transition into sustainable
forest-based bioeconomy in Italy, Falcon, Tani [52] identified that four strategies are most effective.
These include defining viable methods of circular management to improve environmental and forest
planning; investing in forest infrastructure; supporting entrepreneurship programs for professionals
in the forestry sector; and enhancing the development and application of innovative forest-based
value chains.

One of the key challenges to transitioning the exploitation and use of P. africana in Tanzania
from a linear to a circular economic model is that of adding value to the main product, as well as
to bio-residuals. Much of the chain for its value-addition for its many uses (medicinal, furniture,
fuelwood, etc.) is minimal to non-existent. This is in line with the recognition of that weak market pull,
needs for big investments, and the adoption of risk-averse approaches among the few incumbent firms
in the sector are reducing the potential for the forestry industry to invest in technological and market
capabilities for valorizing residuals [53].

5. Conclusions

Bioclimatic predictors mainly mean annual temperature presented high contribution and important
information in predicting distribution and mapping habitat suitability for P. africana in Tanzania. Suitable
habitats for P. africana will decline in mid- and late-century for both RCP 4.5 and RCP 8.5 scenarios
when compared with baseline conditions. For instance, southern highlands and northern zones will
constantly lose much more suitable habitats for P. africana in the future. The areas mapped in this
study as suitable habitats for the tree species could be advantageous for conservation planning and
afforestation interventions.
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Figure A1. Distribution of the selected environmental variable in the study area.
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Abstract: Rain-fed agriculture in North-West (NW) Ethiopia is seasonally modulated, and our
objective is to isolate past and future trends that influence crop growth. Statistical methods are
applied to gauge-interpolated, reanalysis, and satellite data to evaluate changes in the annual cycle
and long-term trends. The June to September wet season has lengthened due to the earlier arrival
and later departure of rains. Meteorological composites relate this spreading to local southerly winds
and a dry-south/wet-north humidity dipole. At the regional scale, an axis of convection over the
Rift Valley (35E) is formed by westerly waves on 15S and an anticyclone over Asia 30N. Coupled
Model Intercomparsion Project (CMIP5) Hadley2 data assimilated by the Inter-Sectoral Impact Model
Intercomparision Project (ISIMIP) hydrological models are used to evaluate projected soil moisture
and potential evaporation over the 21st century. May and October soil moisture is predicted to
increase in the future, but trends are weak. In contrast, the potential evaporation is rising and may
put stress on the land and water resources. A lengthening of the growing season could benefit crop
yields across the NW Ethiopian highlands.

Keywords: Ethiopia highlands; seasonal climate; crop impacts

1. Background

The effects of rising temperature and changing precipitation affect ecosystems, biodiversity,
and people. In both developed and developing countries, climate impacts are reverberating through
the economy, from fluctuating water availability to sea-level rise and extreme weather impacts,
to coastal erosion and tourism [1] and to disease and pests. Climate change could translate into reduced
agricultural performance in Africa where warming of 1 ◦C in the 20th century and lengthy droughts in
recent decades have undermined progress [2–4].

Soil moisture deficits and crop failure undermine livelihoods and need to be offset by local
knowledge to enable adaptation [5]. Seasonal precipitation (hereafter ‘P’) can be forecast to maintain
crop yields—with parallel efforts in institutional capacity building and resource management [6–8],
but Ethiopia’s rainfall occurs before ‘maturity’ of the El Nino Southern Oscillation and Indian Ocean
Dipole, making long-range forecasts less skillful [9]. Understanding changes in the onset and cessation
of the growing season could assist coping strategies, particularly if locally tailored to production risks.

World opinion is rightfully pessimistic on the impacts of climate change, but some places may
see less harmful trends that could be translated into opportunities. Our study on the NW Ethiopian
highlands crop growing season will address the following questions:

1. What temporal and spatial hydro-climate change has occurred in the 20th century and is projected
for the 21st century?
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2. How will changes in the hydro-climate affect the onset and cessation of the crop growing season?

In NW Ethiopia, the months February–May have high evaporation losses and soil moisture
deficit, while the months October–January have cold temperatures. These two factors limit the crop
growing season for short-cycle crops [10–13]. Could future climate extend the length of growing
season, thus improving yields from rain-fed agriculture?

2. Concepts and Methods

We first analyze Empirical Orthogonal Functions (EOF) for cenTrends P [14] via covariance matrix
and time scores. This delineates a ‘NW Ethiopia highlands’ study area: 8.5–13 N, 35–39.5 E with 1st
mode loading pattern covering 73% of variance. We employ statistical techniques to identify the mean
annual cycle, measures of association that account for lags between air and land, and linear regression
for trends and dispersion [15–18]. Table 1 summarizes the methods of analysis; acronyms are defined
following acknowledgements.

Table 1. Sequence of methods applied. CMIP5: Coupled Model Intercomparsion Project.

Scope Methods and Variables

1 Determination of homogenous study area
EOF cluster analysis of cenTrends precipitation (P): 8.5–13 N,

35–39.5 E

2 Evaluate potential evaporation (E)
Comparison of observed, reanalysis, model-simulated sensible

heat flux (SHF)

3 CMIP5 model validation and selection
Apply criteria to determine annual cycle bias in P, SHF as

proxy for E
4 Soil moisture fraction (S) Compare P–E, latent heat flux (LHF) and NDVI with S

5 Collection of optimal time series
Area-average NW Ethiopian highlands: P, E, S, T; 8.5–13 N,

35–39.5 E

6 Characterization of annual cycle
Calculate annual cycle and percentiles for P, E, S, T, LHF;

determine shift/width

7 Meteorological forcing of annual cycle
Composite analysis of reanalysis fields for early-late,

wide-narrow LGP

8 Analysis of climate trends
Statistical regression slope and significance; seasonal changes

for P, E, S
9 Assess LGP and impact of climate change Onset and cessation in past (1900–2000) and future (2001–2100)

Atmospheric convection initiates a cascading water cycle of runoff and infiltration that is offset by
desiccation due to net radiation and turbulent flux. As our focus is on crop growth, we distinguish
between transpiration of moisture via latent heat flux (LHF) and moisture lost by soil via potential
evaporation (hereafter ‘E’). E can be calculated from station data, measured by A-pan, estimated by
satellite, or modeled via sensible heat flux (hereafter ‘SHF’) [19,20]. We compared the annual cycle
of SHF with A-pan data and found a r2 = 0.95, while other proxies such as temperature and LHF
exhibited weak relationship and were screened out. The resultant water budget over time produces
soil moisture residuals that accumulate to sustain crop growth [19].

Coupled hydrological models estimate the soil moisture fraction in the upper meter (hereafter ‘S’)
via theassimilation of in situ and satellite measurements. These include passive and active microwave
radiance and gravity anomalies [21,22], and vegetation color fraction (NDVI). The NDVI represents
photosynthetic activity and is used to constrain reanalysis LHF and monitor crop condition [23–32].
The majority of Ethiopia’s highlands have an NDVI vegetation fraction > 0.4 (Figure 1) and a mean
annual cycle close to soil moisture.

Reanalysis data from NCEP2, ECMWF, and FLDAS (cf. acronym table after Section 4) form
an integral part of our study on the evolving atmospheric boundary layer and hydrology [33–36]
over the NW Ethiopia highlands [37,38]. We compared multi-station averages with reanalyses and
found statistically significant correlations; yet the main reason for parameter choices was due to their
availability in the most recent version, underpinned by satellite technology and sophisticated data
assimilation. We calculate mean annual cycle percentiles for daily Chirps P [39] and ECMWF LHF and

172



Atmosphere 2020, 11, 892

E. To understand seasonal shifts, we use the gauge-interpolated cenTrends P from 1900 to 2018 and
calculate percentage contributions in April–May (early), July–August (narrow), October–November
(late), and early + late (wide). Then, we rank those percentages in recent decades (Table 2) and form
composite difference fields using NCEP2 reanalysis wind and humidity, and NOAA satellite net
outgoing long-wave radiation (OLR), to determine the regional forcing of convection.

–
–

–

‘ ’ study area – –

–

 

–
Figure 1. (a) Mean nocturnal land surface T and (b) NDVI vegetation color fraction of the Ethiopian
highlands averaged 2000–2014. (c) Topographic map of the study area and (d) Empirical Orthogonal
Functions (EOF) loading pattern of cenTrends 1st mode P and box for the extraction of time series.

Table 2. Categorization of sub-seasonal rainfall percentages (yellow-least, blue-most).

LEAST Early LEAST Late LEAST Wide LEAST Narrow

2003 0.06 1984 0.03 2003 0.09 2014 0.38
1990 0.08 1995 0.03 1990 0.11 1997 0.39
2002 0.08 1990 0.03 2002 0.12 2019 0.39
2009 0.08 2003 0.03 2012 0.13 2015 0.40
1988 0.09 1991 0.04 1986 0.14 1987 0.41
2012 0.09 2010 0.04 1991 0.15 1993 0.42

Apr.–May Oct.–Nov. Early + late Jul.–Aug.
1996 0.18 1982 0.11 2008 0.26 1994 0.50
1993 0.19 2019 0.12 1987 0.26 2013 0.51
1987 0.19 2000 0.12 2016 0.27 2009 0.52
2008 0.19 1992 0.13 2000 0.27 2012 0.52
2016 0.20 1999 0.13 2014 0.29 1981 0.52
2014 0.20 1997 0.16 1997 0.32 1990 0.54

MOST early MOST late MOST wide MOST narrow
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Many of the climate factors that govern our ability to extract resources are seasonal, and thus,
we seek ways to determine the annual onset and cessation of crop growing. Most short-cycle crops
(e.g., teff) require a length of growing period (LGP) > 100 days [40–45]. At higher elevations in
the tropics, the temperature (hereafter ‘T’) may drop below thresholds (16 ◦C) that support crop
growth, even if soil moisture is available [46]. Figure 1a illustrates cool nocturnal T over the highlands;
crop growth tends to slow in October. Crop models use S that depend on cumulative P minus E,
conditioned by T and infiltration rates [47–49]. Crop growth is predicted when P accumulates > 1

2 E,
or when S reaches a critical value. Here, we define LGP as the time when area-average S > 15% with
T > 16 ◦C (see Appendix A Figure A2c).

To quantify climate change, we first compare the mean annual cycle of reference P and SHF
with all available CMIP5 models (Appendix A Tables A1 and A2) [50–52]. We determined the
Hadley2 model [53] as optimal and analyze E and S via ISIMIP ‘glowb’ and ‘watergap’ hydrology [54].
Using continuous bias-corrected Hadley2-ISIMIP (Inter-Sectoral Impact Model Intercomparision
Project) projected time series with rcp6 scenario [55], we calculate the linear trends and signal-to-noise
ratio [56] via the r2 value and analyze annual cycle differences in past (1900–2000) and future eras
(2001–2100). Although much of the analysis uses monthly data, the LGP is detected from daily data.

3. Results

3.1. Historical Trends

The background information reviewed earlier (Figure 1a–d) identified the complex topography
of the NW Ethiopian highlands, and climatic responses in T and vegetation that point to orographic
rainfall. Most crop production (cf. Appendix A Figure A2b) occurs in the eastern side of our index
area, e.g., along 38E, where the NDVI fraction is approximately 0.4. Annual cycle terciles from daily
P–E are considered (Figure 2a) based on the area averages of 1980–2018. Surplus conditions begin on
day 123-154-190 and end on 285-266-243 (wet-mean-dry). Hence, the season of surplus is 112 days
with a tercile range of 162–53. The P–E curve is relatively symmetrical with a crest at the end of July.
Upper tercile flood spikes > 10 mm/day extend two months (July–August) and contribute millions of
cubic meters to the Blue Nile catchment. The P–E > 0 in dry years is too short for crop production,
and the upper–lower spread exceeds 5 mm/day from May through August. Thus, the beginning of the
planting cycle is a stressful time for soil moisture and farming practice.

The ECMWF LHF is a useful proxy for vegetation fraction, which satellite NDVI cannot provide at
daily intervals due to cloud cover. Its annual cycle terciles in the NW Ethiopian highlands (Figure 2b)
exhibit a gradual rise to a plateau in September (approximately day 260), followed by a rapid decline
at the end of the year. This asymmetry is quite different than rainfall. Of particular interest is the wide
spread between upper and lower terciles in April–May (approximately days 100–130), and limited
spread in early July (approximately day 180) and after the peak. Years with low LHF correspond with
low NDVI and poor crop yields, and vice versa.

The annual cycle of P–E, LHF, and NDVI guide crop management, but only P has long-term
records for analysis of past trends. In Figure 2c, the percentage contribution of sub-seasonal rainfall
over the 20th century is calculated. Mean values are: 13% early (April–May), 47% mid (July–August),
7% late (October–November). Linear trends in each sub-season demonstrate that ‘late’ is becoming
prevalent +0.021% yr−1, followed by ‘wide’ +0.018% yr−1 (e.g., early + late), which reduces ‘narrow’
to0.015% yr−1, leaving ‘early’ unchanged + 0.003% yr−1. Thus, we see more wet spells at the end of
season and ask: what underlies this tendency?
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Figure 2. Annual cycle terciles from daily data 1980–2018: (a) Seasonal precipitation (P) minus E and
(b) ECMWF LHF ‘vegetation’ proxy. (c) Seasonal contributions of cenTrends P over the 20th century,
where late = Oct.–Nov., early = Apr.–May, wide = early + late, narrow = Jul.–Aug. only. All time series
averaged in the study area: 8.5–13◦ N, 35–39.5◦ E.

3.2. Composite Analysis

To understand the meteorology behind the seasonal changes, we conduct a composite difference
analysis (Figure 3a–c) after ranking of ‘early’, ‘late’, and ‘narrow’ and subtracting the five least from
the five most. The early composite illustrates that SE wind anomalies from the Turkana Valley push
moisture northwestward from Kenya, creating a local humidity dipole. In contrast, the late composite
features W wind anomalies from southern Sudan that push moisture northeastward. Again, there is
a local humidity dipole corresponding with the source sink. For the narrow composite, we analyze
a vertical section and find an S wind anomaly in the 700–600 hPa layer with dry conditions in low
latitudes (Kenya). Moisture differences are positive over northern Ethiopia and in the layer 400 hPa.
Thus, equatorial convection is ‘pushed’ northward to the Blue Nile catchment. Yet, [57] find little
coherent response of the equatorial trough to global warming.
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show that CMIP5 hydrological projections support the ‘wide’ scenario, so 

Figure 3. Composite differences of 5-most minus 5-least seasons 925–700 hPa circulation (left) and
humidity: (a) ‘Early’ (Apr.–May), (b) ‘Late’ (Oct.–Nov.). (c) Meridional circulation and humidity in N-S
vertical section with topography for 5-most minus 5-least ‘Narrow’ (Jul.–Aug.) seasons.

The ‘wide’ composite differences have mid-latitude influence that require analysis at a larger
space scale. Later, we show that CMIP5 hydrological projections support the ‘wide’ scenario, so here,
we establish the underlying process. Figure 4a illustrates that convective differences (−netOLR) over
Ethiopia extend southward over the African Rift Valley (35E) and northeastward over the Arabian
Peninsula. There are dry zones over the south Indian Ocean [58], Kalahari, and the Mediterraean
(+netOLR). Tropospheric wind differences (Figure 4b) are almost absent in the tropics, but there is
westerly flow in the southern sub-tropics and a deep anticyclone over southern Asia. The westerly flow
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along 15S has ridge 10E/trough 35E/ridge 60E features that indicate how anomalies in the sub-tropics
lengthen the crop growing season over the NW Ethopian highlands.

−

 

least ‘Wide’ seasons: (
–

–

–

Figure 4. Composite differences of 5-most minus 5-least ‘Wide’ seasons: (a) satellite net outgoing
long-wave radiation (OLR) and (b) 1000–100 hPa tropospheric circulation vectors with key features,
and an index box.

3.3. Annual Cycle

We consider the 1st EOF loading patterns for S and E in Figure 5a,b. There is a center of action
over the NW Ethiopian highlands and a sympathetic zone over the White Nile Valley approximately
9N, 33E which identify a unimodal climate. The annual cycle of E reaches an apex in February–April.
The mean annual cycle of reanalysis and satellite soil moisture and NDVI in Figure 5c,d reveal that
the ECMWF is slightly below FLDAS, which tends to peak later (Sep 31%). The GRACE satellite
exhibits dry (March 16%) to wet (August 32%) changes that are relatively sinusoidal. Lag correlations
with respect to continuous monthly ECMWF soil moisture (Figure 5e,f) show that P leads by one
month and vegetation lags by one month, as expected. Thus, grazing pastures and crops reach peak
conditions in September–October. The lag correlation of E is markedly negative and symmetric about
zero. The Hadley2 model SHF relates negatively to S in a manner consistent with the reanalysis of E.
These serve as references for model projections.

177



Atmosphere 2020, 11, 892

 

– –
–

– – –
–

Figure 5. EOF loading patterns of 1st mode ECMWF reanalysis: (a) S and (b) SHF, identifying
zones with unimodal climate. Mean annual cycle of area-averaged: (c) reanalysis S and (d) satellite
S and vegetation NDVI. Lag-correlation of reanalysis S with variables from the NW Ethiopia area:
(e) cenTrends P, satellite S and NDVI, and (f) Hadley2-rcp6 SHF and ECMWF E. Negative months refer
to variable leading S.

3.4. Hadley2 Projections

The Hadley2-rcp6 ISIMIP mean annual cycle of soil moisture is given Figure 6a,b. The seasonal
range is lower in glowb than watergap: 13% in February–March to 33% in August–September.
Both simulations over-deplete S from November–March, but infiltration is near observed from
May–August. Changes from the past (1900–2000) to the future (2001–2100) are generally < 1% and
retain a unimodal structure consistent with other work [59–63]. There is a seasonal widening of S
projected in the future, during May in watergap (1.1%) and during October in glowb (0.7%).

The long-term trend of the Hadley2-rcp6 ISIMIP annual S is slightly downward, with greater
multi-year fluctuation in watergap than glowb (Figure 6c,d). Drought conditions may increase slightly
during the 21st century. Projected E has a desiccating trend (+0.0022 to +0.0069 mm day−1/yr) and
significant signal-to-noise ratio r2 = 0.60–0.81. Trends in E are initially flat and only become steep
in the 21st century, suggesting dependence on the scenario employed. Mapping the past trends
(Figure 6e–g), we find that the ECMWF soil moisture is slightly downward over the 20th century
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around the edges of the Blue Nile catchment < −0.1% yr−1. Both projections show little future trend
over the highlands, but the surrounding lowlands become desiccated. While minor adjustments may
be needed in agricultural practice and water management to cope with fluctuating soil moisture,
greater evaporation will stress the land and reservoirs.

 

− –
– – −

− –

–
entury around the edges of the Blue Nile catchment < −0.1% −
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–

–

Figure 6. Hadley2-rcp6 annual cycle of S in past, future, and difference: (a) glowb and (b) watergap.
Hadley2-rcp6 projected time series of annual S and E from (c) glowb and (d) watergap, and E slope
(mm day−1/yr) and r2 fit; scales vary slightly. S trend maps for Jul–Oct wet season: (e) ECMWF past
(1900–2018), (f) glowb future (2001–2100), and (g) watergap future (% yr−1). 1500 m elevation contour
delineates the highlands.

3.5. LGP Outcome

The LHF annual cycle from Hadley2 rcp6 projection (Figure 7a) has an asymmetrical shape close
to NDVI and ECMWF (cf. Figure 2c or Figure 5d). It rises gradually in May–August and reaches
a peak in September–October, when crops are harvested. Differences in the future are positive for
June–July and otherwise slightly negative. Long-term LHF trends have a small signal-to-noise ratio of
approximately 2%. In contrast, we find a considerable increase of minimum T (>2 ◦C) from the 20th to
the 21st century in the Hadley2 rcp6 projection, which is evenly distributed across the annual cycle
(Figure 7b). The cool temperatures of October will gradually recede, leaving soil moisture depletion to
end the farming season.

Comparing past and future LGP (Figure 7c,d), we determined that the median onset was earlier:
day 140 to 138 (trend −0.026 day/yr), cessation was later: day 315 to 317 (+0.035 day/yr), and duration
lengthened 175 to 179 days (trend +0.023 day/yr) and exhibited a median range 168–185 days.
Appendix A Figure A2c is an example of LGP constraints imposed by daily S and T over the past
decade. Variations in duration S > 15% and peak S are evident; in some years, T causes early cessation.
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With a longer growing season and adequate minimum temperatures, crop production could
shift from temperate to sub-tropical varieties. Alternatively, farming efforts could move gradually
upslope to preserve current conditions (−0.7 ◦C/100 m elevation, Appendix A Figure A2a,b). In any
case, the LGP will exceed the 120 days needed for short-cycle crops.

 

trend −0
–

−

‘late’
−

Figure 7. Hadley2-rcp6 annual cycle in past, future, and difference: (a) LHF vegetation, and (b)
minimum T, the arrow points to warming in October. Box and whisker plot of onset, cessation, and LGP
of (c) past and (d) future era: (dashed: median, box: 25/75th percentile, whisker: 10/90th percentile, o:
extreme value).

4. Discussion and Conclusions

We have compared hydro-climate change in the 20th century and projections in the 21st century [64],
particularly with regard to the seasonal onset and cessation of conditions favoring crop phenology
in the NW Ethiopian highlands. Statistical methods were applied to gauge-interpolated, reanalysis,
and satellite data to detect the LGP annual cycle. We are motivated to offset climate impacts with more
knowledge on cropping cycles that lead to adaptation strategies. Trends in sub-seasonal rainfall over
the 20th century show a ‘late’ season rise +0.021%yr−1, meaning that conditions favoring crop growth
will extend into October. Lag correlations with soil moisture show that P leads by one month and
vegetation lags by one month, and that SHF and LHF are valuable proxies via ECMWF reanalysis and
Hadley2 model simulation.

To understand the meteorology behind the seasonal changes, we conducted a composite difference
analysis. The ‘late’ composite featured W wind anomalies from southern Sudan that push moisture
northeastward from the White Nile to the Blue Nile catchment. Sub-tropical troughs to the north and
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south that create a meridional axis of convection (–netOLR) that lengthens the crop growing season
over the NW Ethopian highlands.

CMIP5 bias-corrected Hadley2 data assimilated by ISIMIP hydrological models gave insights on
the unimodal annual cycle of soil moisture in past and future eras. The annual cycle amplitude for S saw
a low-point of 13% in February–March and a high point of 33% in August–September. Both hydrology
simulations over-deplete S from November–March, but fractional increases in May–August were near
observed. The future ‘widening’ of S was 1.1% during May in watergap and 0.7% during October
in glowb.

Projections of both E and S show little future trend over the highlands, but the surrounding
lowlands become desiccated. While only minor adjustments are needed in agricultural practice and
water management to cope with fluctuating soil moisture, more effort is essential to control stresses
from evaporation.

A longer growing season is likely given the rising minimum temperatures in October.
Crop production could shift from temperate to sub-tropical varieties, or farming efforts could move
gradually upslope to preserve current conditions. Our results show that the LGP will increase from
175–179 days, which is more than adequate for short-cycle crops. Farming efforts could utilize earlier
planting and later harvesting with future LGP suitable for longer-cycle crops or double cropping,
and they could also employ seasonal forecasts to reduce the risks of climate variability. In a doubled
CO2 future, the number of frost days will decline to zero, meaning that pests and disease may disturb
food production.
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Glossary

cenTrends centennial trends (precipitation)
Chirps2 satellite-gauge blended rainfall product
CMIP5 coupled model intercomparison project v5
E potential evaporation (p.Evap)
ECMWF European community medium-range weather forecasts
EOF Empirical Orthogonal Function
FLDAS FEWS land data assimilation system
glowb hydrological model (ISIMIP)
GRACE gravity recovery climate experiment (satellite soil moisture)
Hadley2-rcp6 Hadley v2 coupled model with +6 W/m2 scenario
ISIMIP inter-sectoral impact hydrological model intercomparison project
LGP length of (crop) growing period
LHF latent heat flux (vegetation proxy)
NCEP2 national lefts for environmental prediction reanalysis v2
NDVI normalized difference vegetation index (colour fraction)
NW northwest
OLR (net) outgoing long-wave radiation
P precipitation
S soil moisture (0–1 m)
SHF sensible heat flux
T temperature
watergap hydrological model (ISIMIP)
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Appendix A

Table A1. Evaluation of NW-Ethiopia highlands CMIP5 model rainfall with gauge-interpolated
reference [65] 1981–2010. Correlation of mean annual cycle, Jun.–Sep. seasonal difference between
observation and model, model mean mid-summer rain rate (mm/day) and phase/amplitude ‘fit’ of
annual cycle.

No Model
Rain

Correlation
Jun.–Sep.

Difference
Jul.–Aug.

Value
Annual Cycle

1 bcc-csm1-1 0.65 −3.2 3.8 poor
2 bcc-csm1-1-m 0.90 −1.4 6.3 poor
3 CCSM4 0.76 −2.0 4.3 poor
4 CESM1-CAM5 0.75 −0.9 5.7 poor
5 CSIRO-Mk3-6-0 0.91 −1.1 8.8 moderate
6 FIO-ESM 0.80 −2.1 4.6 poor
7 GFDL-CM3 0.87 −1.5 6.2 poor
8 GFDL-ESM2G 0.86 −0.3 6.7 moderate
9 GFDL-ESM2M 0.87 −0.5 6.4 moderate

10 GISS-E2-H_p1 0.96 −5.3 3.2 poor
11 GISS-E2-H_p2 0.96 −5.5 2.8 poor
12 GISS-E2-H_p3 0.96 −4.7 4.0 poor
13 GISS-E2-R_p1 0.97 −5.6 2.5 poor
14 GISS-E2-R_p2 0.97 −5.7 2.6 poor
15 GISS-E2-R_p3 0.96 −5.3 2.7 poor
16 HadGEM2-AO 0.96 −0.4 8.1 high
17 HadGEM2-ES 0.97 −0.5 8.0 high
18 IPSL-CM5A-LR 0.89 −2.7 6.3 poor
19 IPSL-CM5A-MR 0.90 −3.3 5.3 poor
20 MIROC5 0.98 6.5 16.1 poor
21 MIROC-ESM 0.86 −0.5 7.3 high
22 MIROC-ESM-CHEM 0.88 −0.5 7.4 high
23 MRI-CGCM3 0.93 −2.5 6.0 moderate
24 NorESM1-M 0.66 −2.7 3.4 poor
25 NorESM1-ME 0.62 −2.3 3.3 poor

Table A2. Evaluation of NW-Ethiopia highlands CMIP5 model sensible heat flux (SHF) with ECMWF
reanalysis 1981–2010. Correlation of mean annual cycle, Feb.–Apr. seasonal difference between
observation and model (mm/day), and phase/amplitude ‘fit’ of annual cycle.

No Models
SHF

Correlation
Feb.–Apr.

Difference
Annual Cycle

1 bcc-csm1-1-m 0.79 0.46 moderate
2 bcc-csm1-1 0.73 0.72 poor
3 CCSM4 0.96 0.63 high
4 CESM1-CAM5 0.78 0.06 moderate
5 CSIRO-Mk3-6-0 0.79 1.04 poor
6 FIO-ESM 0.95 0.81 high
7 GFDL-CM3 0.92 1.26 poor
8 GFDL-ESM2G 0.9 0.92 moderate
9 GFDL-ESM2M 0.92 0.88 moderate

10 GISS-E2-H_p1 0.95 1.48 poor
11 GISS-E2-H_p2 0.96 1.32 poor
12 GISS-E2-H_p3 0.97 1.21 poor
13 GISS-E2-R_p1 0.95 1.29 poor
14 GISS-E2-R_p2 0.97 1.11 poor
15 GISS-E2-R_p3 0.97 1.04 moderate
16 HadGEM2-AO 0.93 0.34 high
17 HadGEM2-ES 0.96 0.24 very high
18 IPSL-CM5A-LR 0.87 1.52 poor
19 IPSL-CM5A-MR 0.74 1.34 poor
20 MIROC5 0.95 −0.95 moderate
21 MIROC-ESM 0.87 0.11 moderate
22 MIROC-ESM-CHEM 0.85 0.05 moderate
23 MRI-CGCM3 0.8 0.31 moderate
24 NorESM1-M 0.95 0.58 high
25 NorESM1-ME 0.91 0.44 high
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Table A3. Statistical significance of soil moisture trends per month in the NW-Ethiopian highlands,
based on HadGEM2-ES rcp6 projection 1981–2100 and ISIMIP hydrological output, where bold values
are significant. Temporal correlation indicating slope of regression line, where negative = drying,
and p-value with respect to 119 degrees of freedom.

N = 119 Glowb Watergap

Months Time Cor. p-Value Time Cor. p-Value

Jan −0.25 0.01 0.12 0.18
Feb −0.28 0.00 0.12 0.19
Mar −0.19 0.03 0.12 0.21
Apr −0.06 0.49 0.14 0.12
May −0.08 0.38 0.12 0.21
Jun 0.13 0.17 0.36 0.00
Jul −0.43 0.00 −0.07 0.42

Aug −0.19 0.03 −0.42 0.00
Sep 0.15 0.11 −0.10 0.26
Oct 0.17 0.06 0.05 0.57
Nov −0.27 0.00 −0.02 0.82
Dec −0.23 0.01 −0.03 0.77

 

–

–

–

GPCC rain (upper) ECMWF SHF HadGEM2-ES rain 

Figure A1. Mean annual cycle of NW Ethiopian highlands area-averaged (a) P and (b) E derived from
SHF; comparing all 25 CMIP5 simulations with observation/reanalysis reference (bold green upper,
bold red lower) 1981–2010. HadGEM2-ES rainfall (upper) is bold pink.
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Figure A2. (a) Scatterplot of elevation vs. Jul.–Oct. surface T across Ethiopia, arrow highlights the
most suitable range, (b) main crop-growing areas (green shaded). (c) Example of LGP constraints
imposed by thresholds of daily soil moisture and minimum T. Note the drought in 2015 and higher T in
2017–2018. The min. T is trimmed above 16C to indicate no threshold exceedance.
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Abstract: While Black Sigatoka Leaf Disease (Mycosphaerella fijiensis) has arguably been the most
important pathogen affecting the banana industry over the past 50 years, there are no quantitative
estimates of what risk factors determine its spread across the globe, nor how its spread has affected
banana producing countries. This study empirically models the disease spread across and its impact
within countries using historical spread timelines, biophysical models, local climate data, and country
level agricultural data. To model the global spread a empirical hazard model is employed. The results
show that the most important factor affecting first time infection of a country is the extent of their
agricultural imports, having increased first time disease incidence by 69% points. In contrast,
long distance dispersal due to climatic factors only raised this probability by 0.8% points. The impact
of disease diffusion within countries once they are infected is modelled using a panel regression
estimator. Findings indicate that under the right climate conditions the impact of Black Sigatoka
Leaf Disease can be substantial, currently resulting in an average 3% reduction in global annual
production, i.e., a loss of yearly revenue of about USD 1.6 billion.

Keywords: bananas; Black Sigatoka Leaf Disease; climate; global spread & impact

1. Introduction

While early farming hunter-gatherers were probably aware of the existence of fungal crop diseases
and their potential impact, given that they depended on a local natural, often diverse, population of
plants, the range for gathering was likely easily extended and thus any impact was minimized (Agrios [1]
and Scheffer [2]). However, as the domestication of plants and the development and dissemination of
techniques for raising them productively increased around 8000 years ago, resulting in larger areas of
plantation as well as the reliance on fewer crops, food security became increasingly more vulnerable to
disease outbreaks. As a matter of fact, there are ample references in historical documents that make
reference to such events and their often devastating impacts (Agrios [1]). Modern globalization and
specialization of agricultural production in the 19th century further encouraged the focus on fewer
crop varieties, leading to further susceptibility to crop diseases. In some instances crop disease outbreaks
have even been argued to have changed history, as, for example, through massive migration following
the 1845 potato famine in Ireland (Gráda and O’Rourke [3]), the near downfall of the wine industry
during the Downy Mildew of Grapes outbreak in the Mediterranean for wine in 1865 (Simms [4]), or the
switch from drinking coffee to tea in the British Empire as a result of the coffee leaf rust in the 1890s in
Sri Lanka (Money [5]). Finally, with the agricultural green revolution in the 1960s, which involved
breeding and encouraging specific varieties that had higher yield potential, monocropping became
firmly established across the globe (Hunter et al. [6]).
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The link between crop monoculture systems and crop diseases is straight forward: by focusing on
fewer varieties with higher genetic uniformity, many crops have become substantially more susceptible
to both old and newly arising varieties of fungi (Wolfe [7] and Garrett and Mundt [8]). Moreover,
with increasing globalization and specialization the transmission of diseases has also increased on a
much greater geographical scale (Gergerich et al. [9]). Measures to prevent or dampen crop disease
outbreaks through the increasing use of existing and the development of new pesticides, as well
as strictly controlling the import of plant related products into countries, have only been partially
effective. In terms of the former, many fungi have shown increased resistance to existing pesticides
over time (Lucas et al. [10]) (As a matter of fact, despite a clear increase in pesticide use, crop losses
have not significantly decreased during the last 40 years (Oerke [11])). For the latter, not only are
there arguably inefficiencies in current legislation implementation (Perrings [12]), but for many crop
fungi even strictly enforced physical borders may not be effective as these can still spread through
the atmosphere over long distances (Brown and Hovmøller [13]). As a matter of fact, rough estimates
suggest that currently losses of major crops due to fungal diseases amount to enough to feed 8.5% of the
global population (Fisher et al. [14]), and between 10 to 40% of global production (Savary et al. [15]).
These losses continue to occur despite the fact that many countries have implemented integrated
disease management, including the biological control of many pests and diseases (HE et al. [16]).

Within the context of the important role that fungal diseases play in the evolution of many major
crops, bananas are perhaps the most exemplary. More specifically, 160 years ago few people outside
banana growing countries would have even known the taste of a banana (Marin et al. [17]). However,
after 1870, with the first commercialization of banana exports, the introduction of refrigerated shipping,
the growing taste for the tropical fruit, and the expansion of organized cultivation into Central America,
bananas became one of the most important crops globally (Abbott [18] and Koeppel [19]). Today it
is the most exported fruit, and the fourth most imported crop globally. Bananas earn approximately
US$ 8 billion annually from the production of 114 million tonnes on 5.6 million hectares of land
(Authors’ own calculations using data from FAOSTAT), and are produced in more than 100 countries
in tropical and subtropical regions, including Africa, Asia, the Pacific islands, Latin America and the
Caribbean (Churchill [20]). However, bananas have also been a crop decidedly marked by disease.
More precisely, early exports were dominated by a single banana cultivar, the Gros Michel banana,
but the appearance of Panama fungal disease in Central America, the main global exporting region of
bananas, wiped out vast tracts of plantations (Koeppel [19]). Consequently, most banana exporting
plantations replaced the Gros Michel with the Cavendish cultivar, which is resistant to Panama disease.
However, in the early 1960s a new fungal disease, Black Sigatoka Leaf Disease (BSLD), to which the
Cavendish cultivar is extremely susceptible, started spreading across the banana growing world. It has
now been detected in nearly half of all banana producing countries and is likely to further spread through
natural and human induced channels (Brown and Hovmøller [13]). The disease can reduce yields by up to 90%
and induce early ripening, the latter being an important drawback for a fruit that is usually shipped unripe and
then artificially ripened in transport or industrial greenhouses (de Bellaire et al. [21] and Alamo et al. [22]).
BSLD is now considered one of the world’s main crop diseases, and while chemical treatment can
partially help control it, such measures have increased production costs substantially and fungicide
resistance appears to be increasing(Jones et al. [23]).

Despite the potential historical importance of fungi diseases for many crops, apart from rough
figures, direct evidence on the actual quantitative impact at a global and long-term scale is virtually
non-existent (For example, Savary et al. [15] conduct a survey among crop health experst in order
to derive their estimates). For example, in terms of the quantitative impact of BSLD on bananas
specifically, there is, as far as we are aware, no existing empirical study, not even at a local scale
(The only two econometric studies related to the topic, Edmeades et al. [24] and Kenneth et al. [25],
both investigate the impact of the perceived risk of black sigatoka and the adaption of resistant
varieties, respectively, on farmers’ banana planting decisions in Uganda). Rather, a few papers have
used simulations to predict the economic impact of the disease and possible preventive measures
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on banana production. For instance, Alamo et al. [22] use an equilibrium displacement model for
Puerto Rico and find that even with import prohibition measures and assistance from the government,
the introduction of the disease would result in loss of yields of 10%. In their partial equilibrium model
for Australia, Cook et al. [26] show that under import restrictions expected damage to the banana
industry due to Black Sigatoka would be around USD 40 million dollars, and would increase to USD
130 million, which is about a third of the gross annual value of production, if all quarantine restrictions
were removed.

In this paper we, to the best of our knowledge for the first time, estimate the historical global
impact of a major crop disease, using the case study of bananas and BSLD. To this end we first
construct the history of first time infections across the globe. We then simulate the long distance
wind dispersal and local diffusion of the disease using gridded (≈50 km) climate data and known
optimal conditions relevant to BSLD. These data allow us to empirically model the risk factors related
to the spread of the disease across countries, as well as the impact on banana production once a
country becomes infected. The fact that we model variations in the disease spread only based on
optimal climatic conditions, while controlling for climatic factors in general, allows us to arguably
identify true causal effects. Our results show that trade in agricultural products has played the main
role in diffusion across countries, while long distance wind dispersal has only played a minor part.
The analysis also demonstrates that once countries are infected, climatic conditions conducive to the
local diffusion of BSLD can cause considerable losses, currently on average about a 2–3% reduction in
global banana production.

2. Black Sigatoka Leaf Disease & Climate

BSLD is caused by the pathogens Myscosphaerella fijiensis in their sexual state, and by
Paracercospora fijiensis in their asexual form. Infection can occur via both ascospores (sexual) and
conida (asexual). The evolution of the disease occurs mainly from the top to the bottom of the banana
plant, where aerospores first affect the stomata and then ultimately the leaves (de Bellaire et al. [21]).
This can lead to the production of conida which further infects the tree. The first symptoms are reddish
brown streaks which grow to form large darker lesions. This leaf spotting has two types of impacts on
banana yield. Firstly, because it affects the photosynthetic area of the leaves and diminishes the leaf
area, which consequently has a strong effect on bunch weight (Ramsey et al. [27]). Secondly, it reduces
the greenlife, i.e., the time between harvest and climacteric rise, of harvested fruits from diseased
plants, and thus the ability to export the fruit over long distances (de Bellaire et al. [21]).

Importantly spore germination of BSLD crucially depends on the micro-climate and it is this
feature that is used in this study to model the aerial dispersion and local diffusion of the disease
(de Bellaire et al. [21] and Bebber [28]). More specifically, in order to germinate and infect the leaf spores
Myscosphaerella fijiensis requires very high relative humidity or a wet leaf surface, and once these conditions
are present the rate of germination and infection will also depend on the temperature. In terms of the
spread of the disease, both conida and ascospores seem to play a role, again subject to the right climatic
conditions. For conida the principal agents of dispersal appear to be rain wash and rain splash. In contrast,
while rainfall still plays a role in the release of ascospores, wind appears to be the primary carrier, where its
speed and degree of turbulence appear to be important drivers (Marin et al. [17], Norros et al. [29]). It is
common to distinguish between gradual local disease spread (LDS) and much rarer, stochastic long
distance dispersal (LDD) (Golan and Pringle [30]).

3. Results

3.1. Descriptive Results

Figure 1 shows the global spatial distribution of areas suitable for banana production that is
used as the basis of allocating climate and modelling disease spread for the analysis. As can be seen,
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these are located in the tropical and sub-tropical regions across Asia, Africa, the South Pacific and
the Americas.

Figure 1. Bananas Growing Suitability Area. Note: This figure depicts banana suitability areas.

Next the percentage of banana producing countries infected with BSLD is depicted in Figure 2
over the sample period of the analysis (1961–2016). Accordingly, at the start BSLD was present in 4.4%
of these, but this rose steadily to over 53% by 2016. The change in geographical distribution of this
spread is shown in Figure 3. Accordingly, in 1961 it was essentially only in the United States (Hawaii)
and small parts of Asia and the South Pacific that BSLD had been detected. By 1980 Black Sigatoka
spread more widely across Asia, and began to additionally appear in Africa. As of 1999, it had further
spread to the South American Continent and the Caribbean, as well as expanded more into Africa.
At the end of the sample period the Caribbean and Africa had been further affected.

Figure 2. Black Sigatoka Detected-% Countries. Note: This figure shows the percent of banana
producing countries that have been infected.
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(a) 1961 (b) 1980

(c) 1999 (d) 2016

Figure 3. Temporal Spread of Black Sigatoka. Note: (i) This figures shows the distribution of countries
where BSLD has been detected over time. (ii) Detected; Not Detected.

Table 1 provides summary statistics of all the variables used in the analysis. The average annual
country level production of bananas is about 465,000 tons, but with considerable variation. This output
is comes from harvested areas of on average 3000 hectares. In the data sample the mean first time
BSLD infection is 31.7%. The climate optimal for disease diffusion (F) exists about 2.6% of the time,
where this is slightly lower in countries that have already been infected. The potential infection rate
through long distance dispersal is on average very small (4.09 × 10−6), but with a large standard
deviation. One may also want to note that for more than 48% of the time countries did not have the
optimal amount of water available for banana production.

3.2. Regression Results

3.2.1. First Time Infection

For model assessment of Equation (10) the Cox-Snell are plotted against the cumulative Hazard
in Figure 4. These are relatively close to the reference line and thus indicate a satisfactory fit.

The estimates from Equation (10) are given in the first column of Table 2. As can be seen,
agricultural imports have a significant positive impact on a country becoming infected by BSLD.
In contrast, banana imports play no play significant role. One also finds that the long distance dispersal
of the fungus from other infected countries under the right climatic conditions is a positive risk factor
in becoming infected. All other control variables do not constitute significant risk factors for first time
infection. The results of additionally including DWBSLD is included in the last column of Table 2.
The coefficient on this variable is significantly negative and increases the estimated coefficient on LDD

and AIMP.
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Table 1. Summary statistics.

Variable Definition Mean Std. Dev.

PROD Production (tons) 464,628 1,621,986
HAREA Area Harvested (Ha) 3,0087 79,202
BSLD Detection Indicator 0.3169 0.4653
F Disease Diffusion rate 0.0259 0.0526
F (BSLD = 1) F once Infected 0.021 0.039
LDD Long Distance Dispersal Probability 4.09 × 10−6 0.0003
RAIN Rainfall (mm/day) 4.0223 2.5112
EVAPO Evapotranspiration (mm/day) 2.6141 1.1214
HUMID Relative Humidity (%) 74.9114 11.7134
CMOIST Moisture Storage on Canopy 2.2819 2.513
CTEMP Canopy Temperature (◦C ) 24.0699 2.4552
WIND Wind (m/s) 2.9039 1.7498
WSTRESS % Days Soil Water Stressed 0.4804 0.3589
CTEMP8 % Days CTEMP < 8 ◦C 0.0053 0.0188
CTEMP38 % Days CTEMP > 38 ◦C 0.0001 0.0014
HUMID60 % Days HUMID > 60% 0.166 0.219
WIND4 % Days WIND > 4 m/s 0.403 0.3092
BIMPORT Import of Bananas (tons) 24,006 113,401
AIMPORT Import of Agr. Products (tons) 1,720,699 4,777,477
BSUIT Area of Banana Suitability (Ha) 1691 4409
DWBS Distance Weight. Detection 0.037 0.202
DWAEXP Distance Weight. logged Agricultural Exports 0.717 2.544
DWBEXP Distance Weight. logged Bananas Exports 0.406 1.785

Note: This table provides summary statistics for all variables used in the analysis.

Figure 4. Cox-Snell Residuals Model Fit Assessment. Note: This figure provides the Cox-Snell Residual
Model Fit Assessment of the Cox Proportional Hazard Model from Equation (10).

194



Atmosphere 2020, 11, 947

Converting the estimated coefficients of the Cox model in column 2 to hazard ratios for agricultural
imports indicates that a standard deviation increase in log(AIMP) raises the (relative) hazard of being
infected by over 450%. When the probability of LDD is at its mean value, this would increase the
(relative) risk by 18.3%.

The estimated coefficients of the logit model explicitly estimating the baseline hazard (t) are given
in the last column of Table 2 provide the basis for conducting the counterfactual analysis of setting
LDD and AIMP alternatively to zero and comparing the predicted hazards to using their actual values.
Noteworthy is that the estimated coefficients of this logit specification are very similar to the estimates
of the Cox proportional hazard in terms of all common variables. The coefficients on t and t2 suggest
that the baseline hazard takes on an inverted u-shaped function, where it first increases, then after
reaching an optimum decreases. Calculating marginal effects from the coefficients suggest a turning
point of around 33 years.

Table 2. First-Time Infection.

(1) (2) (3)

LDD
0.032 * 0.0397 ** 0.0411 **
(0.013) (0.012) (0.0116)

log(AIMP)
0.6039 ** 0.6735 ** 0.6328 **
(0.1666) (0.1684) (0.1554)

log(BIMP)
−0.0031 −0.0275 −0.0356
(0.0928) (0.0991) (0.0954)

DWBSLD
−1.4895 * −1.0984
(0.6779) (0.7962)

FT
−0.2109 −0.3030 −01.0721
(2.5275) (2.5928) (2.6881)

RAIN
0.13 0.1269 0.1619

(0.1384) (0.1399) (0.1499)

EVAPO
−0.8477 −0.8978 −0.7071
(0.6737) (0.6778) (0.7295)

HUMID
0.0759 0.0974 0.0327

(0.1153) (0.1116) (0.1347)

CMOIST
−0.3582 −0.4000 −0.3787
(0.2181) (0.216) (0.2319)

CTEMP
0.1954 0.2236 0.199

(0.1513) (0.1467) (0.1605)

WIND
−0.8690 −01.1943 −0.9247
(1.0180) (1.0125) (0.9748)

WSTRESS
−4.9328 −5.2234 −4.3036
(2.8768) (2.8953) (3.1743)

CTEMP8
2.5629 2.7856 2.9621

(13.0638) (12.6117) (12.5182)

CTEMP38
−2968.0320 −2750.2310 −5314.0590
(5605.0180) (5690.3960) (8580.5970)

HUMID60
0.2426 1.3038 −1.8477

(6.6567) (6.5067) (8.0296)
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Table 2. Cont.

(1) (2) (3)

WIND4
2.9073 4.7726 3.4434

(5.8018) (5.8627) (5.6950)

log(HAREA)
0.0598 0.0494 0.0122

(0.1316) (0.1268) (0.1534)

log(BAREA)
−0.3020 −0.3588 −0.3106
(0.2067) (0.2156) (0.2671)

t
0.2261 **
(0.073)

t2 −0.0034 **
(0.0011)

MODEL: COX COX LOGIT
Obs. 4137 4137 4137

Notes: (a) This table provides the estimates from the Cox Proportional Hazard model in Equation (10), as well as
the logit model of survival; (b) * and ** indicate 1 and 5 per cent significant levels, respectively; (c) All regressions
include 12 sub-regional indicator variables and measures of the logged area and the logged banana suitable areas.
(d) Standard errors clustered by country in parentheses. (e) COX: Cox Proportional Hazard.

The predicted actual and counterfactual probability of hazard for an average banana producing
country are shown in Figure 5. Accordingly, for LDD there is little difference in the actual and
counterfactual average probability of being infected. As a matter of fact, by 2016 the actual probability
is only about 0.8 per centage points higher than under the counterfactual of no long distance dispersion.
The same counterfactual exercise but setting AIMP to zero is depicted in Figure 6. With no agricultural
imports the average probability of being infected by 2016 is just a little over 2%, compared to 71%
when AIMP takes on its observed values.

Figure 5. Probability of First Time Infection—No Long Distance Dispersal. Note: This figure
provides the counter-factual prediction of the impact assuming of no LDD as estimated from the
Cox Proporational Hazard Model in Equation (10).
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Figure 6. Probability of First Time Infection—No Agricultural Imports. Note: This figure provides the
counter-factual prediction of the impact assuming no agricultural imports as estimated from the Cox
Proporational Hazard Model in Equation (10).

3.2.2. Impact of Disease Diffusion on Banana Production

The results of estimating Equation (11), i.e, the impact on country level banana production once
they become infected, are provided in Table 3. The R2 statistic indicates that the model explains
around 68% of the variation in banana production. The estimated coefficients show that having first
reported BSLD in the past does not per say reduce banana production, as the coefficient on BSLD on
its own is not significant. Rather it is only its interaction with F that produces a significant (negative)
predictor of banana production. Alternatively using (logged) harvested area rather than production
as the dependent variable in Equation (11), as shown in the last column, produces the same findings,
although the model fit is slightly lower (0.66%). In terms of the other control variables, only the
number days that the temperature was below 8 degrees is a significant (negative) predictor of banana
production across all three specifications.

Taking at face value the size of the coefficients in the fourth column of Table 3 suggests that when
a country is already infected and the diffusion probability, i.e., F(BSLD = 1), is at the mean of the
sample (0.021), banana production falls by nearly 3.8%. In Figures 7 and 8 this estimated coefficient on
F × BSLD was used to predict the counterfactual implied losses as a total in tons, and as a percentage
of annual production, respectively, over the sample period. Accordingly, since the year 2000 average
annual losses have been at least 2, and since 2010 close to 3 million tonnes. As a percentage of total
potential productions this translates into annual losses of over 2% since 1998. If one takes the average
level of F over the sample time period for each country and assumes that BSLD = 1, i.e., that all
countries have been at least once infected, then annual expected losses would nearly double to about
4.2% of total global banana production.
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Table 3. Banana Production.

(1) (2)

BS
0.076 0.057

(0.047) (0.041)

F
−1.315 −0.732
(1.089) (0.904)

F × BS
−1.846 ** −2.717 **

(0.545) (0.611)

RAIN
−0.025 −0.012
(0.016) (0.014)

EVAPO
−0.061 −0.005
(0.148) (0.108)

HUMID
0.011 0.01

(0.009) (0.008)

CMOIST
0.009 0.008

(0.019) (0.017)

CTEMP
−0.051 −0.046
(0.027) (0.025)

WIND
−0.005 0.042
(0.043) (0.042)

WSTRESS
−0.082 0.101
(0.244) (0.214)

CTEMP8
−4.916 ** −4.845 **

(1.778) (1.458)

CTEMP38
−0.127 1.202
(4.859) (3.754)

HUMID60
0.531 0.718

(0.431) (0.37)

WIND4
−0.471 −0.488
(0.409) (0.293)

Dep. Var: PROD BAREA
Obs. 6793 6793
R2 0.677 0.66

Notes: (a) This table provides the estimates from the linear regression model in Equation (11), as well as the logit
model of survival; (b) ** indicates 1 per cent significant levels, respectively; (c) All regressions yearly indicators as
well as country specific time trends. (d) Driscoll and Kraay [31] standard errors allowing for cross-sectional and
serial correlation in parentheses.

Figure 7. Potential Losses. Note: This figure provides the total predicted losses as estimated from the
linear regression model in Equation (11).

198



Atmosphere 2020, 11, 947

Figure 8. Potential Losses (%). Note: This figure provides the percentage of predicted losses as
estimated from the linear regression model in Equation (11).

4. Discussion

Global agricultural losses of major crops due to crop disease pathogens are believed by experts
to be considerable (Savary et al. [15]). As a matter of fact, rough estimates suggest that currently
losses of major crops due to fungal diseases amount to enough to feed 8.5% of the global population
(Fisher et al. [14]), and between 10 to 40% of global production (Savary et al. [15]). Yet there is no
quantitative estimate of what risk factors increase their dispersion, nor what their impact is once
regions become infected. Using the case study of Bananas and BSLD-the most important pathogen
affecting the industry—this study models the risk factors associated with the historically observed
global cross-country spread of the disease using hazard models, as well as the impact on country level
banana production once a country is infected using panel linear regression models.

Our results showed that the main driver of first time infection was the import of agricultural
products. While long distance diffusion based on climatic factors also played a role, it was small
compared to the trade channel. One should note that these two findings support the current literature
in that BSLD is likely to have spread over long distances rather than through slow local diffusion.
For instance, such claims have not only been substantiated by the sequence of first reporting within
and across continents (Jones et al. [23]), but also by genetic evidence. More specifically, Robert et al. [32]
showed that the genetic drift between samples across countries and continents was large enough to
serve as evidence that the introduction of BSLD in several locations had been over long distances.
In other words, rather than a steady diffusion of an epidemic frontier, the evidence is consistent with
stochastic spread of the disease [33].

Nevertheless, there is some disagreement as to the exact causes of such spread. Most studies
would agree that human drivers, such as the importation of plant material into a country, are likely
to have played the most important role- see, for instance, Robert et al. [32] and Burt [34]-and this is
certainly supported by our result that the degree of agricultural imports into a country is quantitatively
an important predictor of first time infection. However, there is still considerable disagreement if wind
dispersal on its own could explain some of the stochastic introductions within and across continents.
More specifically, it has been shown that some fungi can be spread over several thousands of kilometers
by wind under the right conditions, as, for example, wheat leaf rust (Aylor [35]). In this regard, Burt [34]
notes that under optimal conditions it would have taken about 37 days for BSLD to have been carried
from Australia to the Caribbean and that perhaps the South Easterly trade winds might have brought
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BSLD from Africa to the Caribbean. However, importantly Myscosphaerella fijiensis ascospores, unlike
many others, are killed by ultraviolet radiation and are thus much less likely to survive being carried
across long distance over long time periods by wind unless they happen to be protected by clouds
(Parnell et al. [36]). As a matter of fact, some studies, such as Rivas et al. [33], have argued that for
BSLD wind dispersal is likely to be limited to just a few hundred of kilometers and thus probably
occurred within rather than across continents. The results of our study indicate that long distance
dispersal through climatic factors might have still played a role, albeit only a very small one.

Local climate, apart from that incorporated in the long distance dispersal probability measures,
was not a significant predictor of first time infection, again pointing to stochastic dispersal as the main
cross-country spread channel. We also find that the import of bananas did not increase a country’s
likelihood of first time infection. This may not be surprising given that banana fruits themselves,
unlike the leaves on their plant, are possibly not infected by the fungus (Robert et al. [32]). Leaves,
typically used as packing material for other goods, are unlikely to be captured in the FAO data of
banana imports, which strictly refers to imports of the fruit. Nevertheless, any more reliable conclusions
in the role of banana imports would require bilateral trade data, so that we would need to be able to
trace imports from infected countries. Such trade data would also allow us to more accurately estimate
the role of agricultural imports in introducing the disease.

The fact that a distance weighted measure of first time infection of other countries (DWBSLD)
had a negative impact on first time infection and that its inclusion as a control variable reduced the
estimates on agricultural imports and LDD suggests that it is indeed possibly capturing the role
that policy may play. More specifically, the presence of BSLD in neighboring countries may have
induced uninfected nations to implement greater preventive measures and legislation. For instance,
in many banana producing countries in the Caribbean agricultural quarantine precautions became
fairly strict after the first outbreaks in the region and may have prevented further spread (Burt [34]).
The possible benefits of such measures, even at the cost of reduced trade, should not be overlooked.
Using an equilibrium displacement model for Puerto Rico, Alamo et al. [22] show that not having
trade restrictions would cause a net loss in welfare. However, in actuality not only are there arguably
inefficiencies in current legislation implementation (Perrings [12]), but for many crop fungi even
strictly enforced physical borders may not be effective as these can still spread through the atmosphere
over long distances (Brown and Hovmøller [13]), as evidence here also indicates. Nevertheless any
accurate assessment on the efficacy of trade restrictions and legislation to reduce infection would
require detailed historical construction of policies implemented across countries and time.

Our findings from the banana production model revealed that once a country is infected and the
right climatic conditions prevail, losses in banana production due to the disease can be substantial.
Currently these average about 2-3% of total production a year. If we take the average current producer
price of bananas from available FAOSTAT data, i.e., USD 630 per tonne, then this would imply annual
expected losses currently of about USD 1.6 billion. This would more than double if the remaining
banana producing countries become infected. While this arguably demonstrates that the effects of
BSLD on the banana industry are economically important, it is difficult compare this to other major
crops since no other comparable global study exists, rather, as noted above, just qualitative estimates
by experts (Savary et al. [15]).

Climatic conditions were found to be crucial in terms of the impact of BSLD on banana production.
More specifically, even if BSLD has already been reported in a country, it is only when climate is
optimal for diffusion that this will have an impact on aggregate banana production of a country.
This result is echoed in Yonow et al. [37] who find that there is a strong relationship between climate
suitability of BSLD and export ratings for disease pressure. In this regard, Bebber [28], on whose
biophysical model our local disease diffusion framework is heavily based, showed that the risk of a
disease outbreak has increased by a median of 44.2% in Latin America and the Caribbean since the
1960s. Moreover, using different climate dependent predictive factors of BSLD under two climate
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change scenarios, Júnior et al. [38] calculate that while the areas favourable to the disease will decrease,
extensive areas will continue to be favourable to BSLD.

Surprisingly climate stress factors specific to bananas, as taken FAO [39], were not found to
be significant predictors of country level production, except days when the temperature was below
8 ◦C. Assuming that most of them should be, this suggests that there is considerable error in their
measurement, leading to attenuation bias and thus leading to Type II errors in our estimated coefficient
hypothesis testing; see Wooldridge [40]. One obvious reason is that we only know the banana suitability
areas and not actual banana growing areas, so that our climate proxies are not only capturing the
relevant local climate variations. Another explanation is that since banana are potentially grown
year round except for the sub-tropical regions, but we have no information as to the local growing
cycles, this may again introduce some measurement error in our climate variables. Importantly,
such measurement error in our climate variables would also have implications for our ability to
estimate the impact of the probability of long distance and local disease diffusion, which are also based
on climate factors, so that we may be underestimating the true impact these as well.

Although we were not able to investigate this specifically due to data availability, one way to
control the spread of BSLD is through chemical control. In this regard, the high susceptibility of
the Calvendish crop to the disease necessitates the use of both protectant and systemic fungicides at
relatively high frequencies (Marin et al. [17], de Bellaire et al. [21]). However, the costs of such treatment
are substantial, so much so that Cavendish cultivars are among the top global inputs of agricultural
fungicides (Churchill [20]), and thus making this treatment option not feasible for many smaller banana
producers. Moreover, the disease has shown over time to develop increased resistance to the treatment
(Jones et al. [23]. For example, experience in Costa Rica has shown that within 20 years of use the amount
of fungicide needed to control BSLD increased by around two thirds (de Bellaire et al. [21]).

5. Materials and Methods

5.1. Methods

Local Disease Spread (LDS)

The approach in this study follows Bebber [28] closely and employs a local infection diffusion
model based on micro-climate to simulate the spread of BSLD once a country i is infected. Consider a
set of localities m = 1, ..., M in country i during days d = 1, ..., D. It is assumed that the diffusion rate of
spores at locality m during day d, Fimd, follows a probabilistic survival process of spores transitioning to
infections, which depends on the number of days, simd, that passed since the outbreak and temperature,
Timd. Moreover, local diffusion is dependent on the occurrence of a sufficiently wet period, 1Cimd

.
Thus Fimd is determined by:

Fimd = (1 − e−H(simd ,Timd))× 1Cimd
(1)

where H is a Weibull hazard function such that:

Himd = r(Timd)
( simd

α

)γ
(2)

The temperature dependent rate r depends on Timd’s value relative to given thresholds of
minimum (Tmin), optimum (Topt), and maximum (Tmax) temperatures:

r(Timd) =

(

Tmax − Timd

Tmax − Topt

)(

Timd − Tmin

Topt − Tmin

)

Topt−Tmin
Tmax−Topt (3)
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The incidence of a sufficiently wet period, 1Cimd
, is contingent on minimum wetness (WETthresh)

and humidity (RHthresh) thresholds:

1Cimd
=

{

1 (WETimd > WETthresh) ∪ (RHimd > RHthresh)

0 (WETimd ≤ WETthresh) ∩ (RHimd ≤ RHthresh)
(4)

As in Bebber [28], in order to parameterize Equations (1)–(4), α = 32.6, β = 37.6, Tmin = 16.6 ◦C,
Topt = 27.2 ◦C, Tmax = 30.3 ◦C, WETthreshold = 0, and RHthreshold = 98%. (These parameters were
estimated by Bebber [28] using Brazilian data on Black Sigatoka and temperature) One should note
when 1Cimd

= 0, simd is reset to 0 and will start to sequence again only once 1Cimd
= 1.

Since the empirical analysis is at the country level, LDS is measured as the country level annual
average daily diffusion rate:

Fit =
∑

M
m ∑

D
d Fimd

M × D
(5)

where D is the total amount of banana growing days in year t and M the total number of banana
growing localities in country i.

5.2. Long Distance Dispersal (LDD)

To model long distance aerial dispersal of BSLD a simplified version of the LDD model of Aylor [35]
is employed, where it is ’simple’ in the sense that it does not model the time between release of
spores in the source region and target region, but rather simply assumes that the transport happens
within the same year. This is in part because only the first infection date by year is known and the
banana production data is only annual, but also because climatic data to model the waiting time
between release and potential infection is not available. Moreover, there is no data to model the
potentially important impediment of ultra-violet radiation along any transport route, and this aspect is
thus ignored.

It is assumed that the amount of possible spores released from location m on day d in source
country j at time t, Qjt, depends on the local diffusion rate Fjmd, as defined in Equation (5),
and appropriate climate conditions conducive to aerospore release 1Ajmd

:

Qjt =
∑

M
m ∑

D
d Fjmd

M × D
× 1Ajmd

(6)

1Ajmd
=

{

1 (RAINjmd > 0) ∩ (0.2 ≤ TUjmd ≤ 0.5)
0 (RAINjmd = 0) ∪ (TUjmd ≤ 0.2) ∪ (0.5 ≤ TUjmd)

(7)

where RAIN is the amount of daily local rainfall and TU the local wind turbulence measured as the
ratio of the standard deviation relative to the mean wind speed. These optimum spore release climatic
conditions were chosen since rainfall is necessary for spore release (Burt [34]), and Norros et al. [29] found
that LDD of small spores, like those of Myscosphaerella fijiensis, increased within the wind turbulence
range between 0.2 to 0.5 m/s.

Along the route to possible destinations it is assumed that there are constant and favourable
transport conditions in that the rainfall rate is zero, there is no spores mortality due to ultraviolet
radiation or other reasons. This is done since the necessary data, particularly over water bodies, is not
available for most the time period of the analysis. The concentration of viable spores located at i at a
distance xij downwind from source countries, j = 1, ..., J; j 6= i, can be described by a Gaussian puff as:
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LDDit =
J

∑
j 6=i

Qjt × e−xij × RAINRATEit (8)

where the Equation (8) is made dependent on the RAINRATE, i.e., the amount of rainy days during
the growing season in target country i at time t, since it is well known that the deposition velocity of
spores is dependent on the rate of rainfall (Aylor [35]). In order to measures xij the shortest distance
between banana growing areas between countries is used.

5.3. BSLD Presence

A country level indicator of BSLD presence, BSLDit, takes on the value of zero until the first
infection appears in country i in year t and then from a value of one. A distanced weighted measure of
BSLD presence in neighboring countries j = 1, ..., J; &j 6= i for country i is generated as:

DWBSLDit =
J

∑
j 6=i

exp(−xij)× BSLDjt (9)

where xij is defined as in Equation (8).

5.4. Empirical Modeling

5.4.1. First Time Infection Model

A country’s hazard of becoming infected by BSLD for the first time is modelled using a Cox
Proportional Hazards Model where time varying and time invariant covariates are allowed to influence
a country’s hazard function hi(t) from the disease free state as:

hi(t) = h0(t)exp

(

αLDDLDDit + αAIMPlog(AIMPit)

+αBIMPlog(BIMPit) + αlog(HAREA)log(HAREA)it−1

+αBSUIT log(BSUITi) + αCCit + αCSCSit

)

(10)

where BSUIT is the total area suitable for banana growing, C is a vector of the disease spread
optimal climatic conditions (rainfall, evapotranspiration, relative humidity, canopy moisture, canopy
temperature, and wind speed), and the vector CS consists of productivity reducing climatic stress
factor thresholds in terms of water availability, temperature, humidity, and wind. Additionally, twelve
sub-regional dummy indicators are included to capture regional time invariant differences. In order to
make the estimated coefficient on LDD more readable in the estimation output its value is multiplied
by 106. In order to assess model fit we examined the Cox-Snell residuals, as suggested by Grambsch
and Therneau [41].

One should note that the Cox Proportional Hazard model is semi-parametric in that the baseline
hazard h0(t) is estimated non-parametrically and only depends on time t, but the risk factors are
estimated parametrically, where this parametric function takes on an exponential form. The hazard
of country i becoming infected is thus multiplicatively proportional to the baseline hazard h0.
The drawback of this non-parametric flexibility is that the hazard for any country is a fixed proportion
of the hazard for any other country, and thus only the relative, and not the absolute, hazard of countries
can be estimated. Thus, when the estimates from Equation (10) are used to make counterfactual
predictions, as in Zheng and Cai [42] a logit model version of Equation (10) of infection is employed,
where the baseline hazard h0(t) is specified as a linear and quadratic function of time elapsed.
The estimated coefficients from this logit model are then used to construct counterfactual predictions
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by setting alternatively LDD or AIMP equal to zero, but keeping all other controls at their observed
values, and predicting the probability of a representative country being infected. This is then compared
to doing the same prediction but using the observed values of all control variables.

5.4.2. Impact of Disease Diffusion Model

To determine how, once a country is infected, diffusion of BSLD has impacted banana production
is estimated using the following regression equation:

log(BANANASit) = β0 + βBSLDBSLDit + βFFit

+βF×BSLDFit × BSLDit + βCCit + βCSCSit

+βTR4TR4it + trendit + πt + µi + ǫit

(11)

where trend is a vector of country specific time trends, π is a vector of year specific indicator variables.
In order to purge the vector of country specific effects µ from Equation (11) a panel fixed effects
linear estimator is employed (Wooldridge [40]). To take account of serial correlation due to growing
seasons spanning across calendar years and cross-sectional dependence we calculate standard errors
as recommended by Driscoll and Kraay [31]. Model fit is assessed by examining the R-squared of the
residuals, where a good fit is if these are close to the diagonal intersecting the origin. The estimated
coefficients from Equation (11) are also used to predict what banana production would be if there was
no local disease spread by setting the interaction term of Fit × BSLD to zero, but keeping all other
control variables at their observed values, and calculating out predicted production. This is then
comparing to the predicted banana production when all variables are at their observed values.

5.5. Data

5.5.1. BSLD Presence Data

To construct the history of the BSLD spread across the countries and time a number of sources
were resorted to, most prominently Stover et al. [43], Pasberg-Gauhl et al. [44], Jones et al. [23],
Jacome [45], Jones et al. [23], Rivas et al. [33], de Bellaire et al. [21], and Blomme et al. [46]. Additionally,
the list of first infection reports provided by the European and Mediterranean Plant Protection
Organization (EPPO) disease database and the CABI International’s Invasive Species Compendium
were consulted. For all banana producing countries that were not on these lists the internet was
extensively searched for any information on first time outbreaks and the years of these, if any.

5.5.2. Climatic Data

To construct climatic variables the Japanese 55-year Reanalysis (JRA55) climate reanalysis data
set from the National Center for Atmospheric Research (NCAR) Research Data Archive was used,
which consists of griddded data with a spatial resolution of TL319 (about 55 km). Unfortunately
there is no data set that allows one to know the exact location of banana growing areas within a
country at any point in time. In order to nevertheless capture the climate likely to be relevant to
local production of bananas, the local banana growing areas are proxied by the local areas suitable
for banana production, as given in the FAO’s Global Agro-Ecological Zones (GAEZ) database at
the 0.5 degree resolution. This set of cells provides set of (potentially) banana growing localities
m = 1, ..., M and thus for which climate data from the JRA55 is extact. To this end 6-hourly data
over the time period 00:00 h UTC on 1/1/1960 to 21:00 h UTC on 31 December 2016 on measures
of canopy moisture (CMOIST), canopy temperature (CTEMP), relative humidity at 2m (HUMID),
rainfall (RAIN), temperature (T), and the u- and v-wind components, which are used to calculate wind
speed (WIND), were downloaded. Daily mean values were then calculated for those pixels that fell
within the banana growing suitability areas, as derived from the GAEZ map described above. Since the
banana growing season may be throughout the year for tropical areas, all daily values within a year for
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this region where used, while for the sub-tropical region (deliminated by being outside the −34◦ and
42◦ latitude zone) we restrict the climatic data to fall within the March to December window. While all
the derived climatic variables are employed as potential climatic factors for banana production, canopy
moisture and canopy temperature are specifically used to measure WET and T in order to construct F

in Equation (1). The v- and w-wind component data to generate wind turbulence (TURB).
The climatic stress indicators that are likely to retard banana growth for inclusion in

Equations (10) and (11) were also constructed, following FAO [39]. More specifically, these were
the percentage of days in a year (or the 10 month growing period for sub-tropical regions) that mean
wind speed was above 4 m/s (WIND4), canopy temperature was below 8 ◦C (CTEMP8), canopy
temperature was above 38 ◦C (CTEMP38), and relative humidity was above 60% (HUMID60). In order
to estimate the incidence of water stress, following Allen et al. [47], the daily soil water balance using
the appropriate parameters for bananas, and calculated as the percentage of days that the water balance
was below absolute optimum level (WSTRESS).

5.5.3. Banana and Agricultural Products Data

Data on banana production, area harvested, exports, and imports are taken from the FAOSTAT
database. More specifically, these data provide annual country level banana production in tons
(BANANAS), area harvested area in Ha (HAREA), exports in tons (BEXP), and imports in tons
(BIMP) from 1961 to 2016 for all 129 major banana producing countries. Additionally information
on total agricultural (plant based) imports (AIMP) and exports (AEXP) was used. Combining those
countries that changed name over the period, and summing production and area harvested for those
that split into several territories, left a total sample of 129 nations that produce bananas.

6. Conclusions

Our study of the global spread and impact of Bananas’s Black Sigatoka Leaf Disease highlights
the danger and potential cost of relying on just a few varieties with genetic uniformity for production
of a specific crop on a global scale. In particular the results show that agricultural trade may play an
important role in spreading the disease across countries. In this regard, while strict import restrictions
and securities measures may be hypothetically able to prevent the influx of crop diseases across
countries due to the transfer of diseased material by humans, there is still nevertheless the chance
that the disease is transmitted over long distances from elsewhere under the right climatic conditions.
Countries should thus plan for the likely arrival of a debilitating disease at some stage. Of course,
once such a disease arrives chemical treatment may be able to keep it partially under control, although
costs of such treatments may be prohibitive for some farmers and their effectiveness is likely to fade
over time. Hence, international efforts to look for disease resistant crop varieties, such as FAO’s
Technical Cooperation program (The Technical Cooperation Programme (TCP) was created to enable
FAO to make its know-how and technical expertise available to member countries upon request),
should be continuously supported. Nevertheless, if anything, the history of banana crop diseases has
shown that, while disease resistant varieties or treatments are eventually likely to be discovered or
developed, new or mutations of existing fungi also continuously emerge, thus potentially restarting
the vicious circle.
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Abstract: Agricultural production in sub-Saharan Africa remains dependent on high inputs of human
labor, a situation associated with direct exposure to daylight heat during critical periods of the
agricultural calendar. We ask the question: how is the Wet-Bulb Globe Temperature (WBGT) going to be

distributed in the future, and how will this affect the ability of smallholder farmers to perform agricultural

activities? Data from general circulation models are used to estimate the distribution of WBGT in 2000,
2050 and 2100, and for high activity periods in the agricultural calendar. The distribution of WBGT
is divided into recommended maximum WBGT exposure levels (◦C) at different work intensities,
and rest/work ratios for an average acclimatized worker wearing light clothing (ISO, 18). High WBGTs
are observed during the two periods of the East African. In February to March, eastern and coastal
regions of Kenya and Tanzania witness high WBGT values—some necessitating up to 75% rest/hour
work intensities in 2050 and 2100. In August to September, eastern and northern Kenya and north
and central Uganda are vulnerable to high WBGT values. Designing policies to address this key
challenge is a critical element in adaptation methods to address the impact of climate change.

Keywords: climate change; farm work; heat stress; WBGT; mitigation; East Africa

1. Introduction

Climate change is already adversely affecting the health of populations around the world, with
the greatest impacts in low-income countries [1,2]. As a result of climate change, mean annual
temperatures and the intensity and frequency of heat waves are expected to increase [3]. An increase
in average temperatures, as well as the frequency, duration, and intensity of heat waves, has already
been reported in some regions, with significant adverse impacts on local economies, agriculture, water
resources and public health [1,4–6]. Scenario-based projections forecast that average global surface
temperatures will increase by 1.4 to 5.8 ◦C from 1990 to 2100 [7]. This is bound to have substantial
implications for human health, with the potential of contributing to an increase in future heat-related
morbidity and mortality [1,8–10]. This study sought posits that Wet Bulb Globe Temperature (WBGT)
(the concept of Wet Bulb Globe Temperature (WBGT) is further defined and operationalized in the
‘Methods’ section of this paper) in East African croplands in 2000 remains unchanged in 2050 and
in 2100. The heat-related human health impacts of climate change are therefore expected to become
more widespread and profound in the future. The future health impacts of climate change will vary
spatially and temporally and will depend on changing socioeconomic and environmental conditions,
as well as the preparedness of communities and health systems to avoid preventable health outcomes.
Populations that are particular vulnerable to heat-related conditions include the elderly, children,
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the chronically ill, the socially isolated, and at-risk occupational groups. Some experts see climate
change as “the biggest global health threat of the 21st century” [11].

Research on the impact of climate change on agriculture in Africa has expanded in some
fields. These include studies on the impact of severe events associated with a changing climate,
on the implications of changes in precipitation amounts and frequencies on cropping cycles, yields,
and production [12–15]. Efforts have also been made to understand the implication of rising sea levels
on agriculture in coastal regions, the role of climate change in the distribution of agricultural pests,
and outcomes for animal production, including fisheries [16–19]. Changes in production systems and
the spatial distribution of resources that support agricultural production are bound to have implications
on social and economic systems dependent on or supported by agriculture [20]. This dimension of
climate change impacts has also been widely investigated.

Data on the human element of climate change impacts, especially regarding labor for agricultural
production, remain scarce, and our understanding of implications of the impact of climate change on
the ability to work in labor-driven economic systems (such as agriculture) remains scarce. Initiatives
have been undertaken to understand the implications of climate change on increasing heat impacts
on labor productivity [2,21,22]. Kjellström et al. focused on estimating populations exposed to heat
stress resulting from climate change [1]. Others have assessed human productivity under conditions
of heat stress [6], and compared heat stress and its impacts on the health of workers from different
occupational sectors [10].

The potential health impacts of climate change can be relieved through a combination of strategies,
including strengthening key health system functions and improving the management of associated
risks. To achieve robust health systems and manage human health risks, there is a need for a better
understanding of the geography and scale of its potential impacts, especially impacts associated with
the most common economic activities of populations.

In this study, we seek to examine whether environmental determinants of heat stress in the
croplands of East Africa vary between the periods 2000–2100. East Africa is a diverse environment,
with elevations rising from sea level to 5825 m above sea level, and a variety of agroecological zones
(Figure 1). This study focuses on three countries of this region: Kenya, Tanzania, and Uganda. Together,
these three countries comprise a total land area of over 1.6 million Km2—Kenya (569,140 Km2); Uganda
(200,523 Km2); and Tanzania (885,800 Km2). To put in perspective the combined land area of the study
area is larger than that of western Europe at 1.4 million Km2 [23].

This study sought to assess the hypothesis that Wet Bulb Globe Temperature (WBGT) (the concept
of Wet Bulb Globe Temperature (WBGT) is further defined and operationalized in the ‘Methods’ section
of this paper) in East African croplands in 2000 remains unchanged in 2050 and in 2100. This study
therefore contributes to assessing the geographical distribution of heat stress. We attempt to associate
the geographical distribution of this challenge with the most important economic activity in East Africa,
i.e., agriculture. By so doing, we examine the spatial distribution of heat stress, as a current and future
challenge to agricultural productivity in East Africa. This initiative constitutes to strengthening the
case for planning and investment in health protection within the context of climate change challenges.

1.1. Heat Waves and Heat Stress

Until recently, the severity of heat waves has been largely ignored. The Intergovernmental Panel
on Climate Change (IPCC) now emphasizes the risk of drastically increasing incidences of heat waves
with severe consequences for human health, livelihoods, agriculture, ecosystems, and societies at
large [24]. The IPCC special report on extreme events, Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation (SREX), concluded that the length or number of heat waves have
increased in many parts of the world and will virtually certainly increase further in the 21st century.
Under a medium warming scenario, Coumou, Robinson [25] used a global 2 × 2◦ grid with roughly
12,500 grid points with monthly data and predicted the number of monthly heat records to be over
12 times more common by the 2040s. This equates, on average, to roughly one record-breaking warm
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month per year in the tropics, including East Africa. A recent report estimated that mortality in Europe
due to heat waves would increase by over 5550% by 2100 in a medium warming scenario [26]. If the
global mean temperature increases to +7 ◦C or more, the habitability of large parts of the tropics and
mid-latitudes will be at risk [27].

 

 
Figure 1. Location of the countries studied in East Africa, Kenya, Tanzania, and Uganda—showing the
varied altitudinal ranges as well as the diversity of agro-ecological zones.

1.2. Impacts of Heat on Human Health

Excessive heat exposure affects natural and human systems, directly and indirectly, often resulting
in severe losses of lives, assets and resources, and even social unrest, and may trigger tipping points in
both natural and social systems [1,6,22,28,29]. Even if knowledge of climate change impacts on health
has increased markedly in the last decade, research has mainly focused on direct physical rather than
indirect mental health impacts. The physical impacts include: (1) mortality and morbidity from extreme
weather events; (2) physical health impacts of extreme heat stress and heat waves; an increased intensity
and spread of vector-borne disease; (3) effects of air quality on respiratory disorders; climate-induced
changes in food and water quality and availability; (4) impacts on hygiene as effects of changed access
to water [30]. When subject to heat stress, our cognitive ability is affected. These cognitive tasks may
involve decision making, problem solving, memory, attention and judgement. Numerous studies
have investigated the impact of heat stress on cognition-related outcomes [31], including performance
responses and protective strategies [32], and even its outcomes on labor productivity and the economic
implications [33]. Table 1 shows the conditions and symptoms of some common heat-related illnesses.
Individuals show varying adaptive and maladaptive responses [34]. Heat stroke is another serious
direct impact of heat stress. The role of contributing factors and the pathway to heat stroke from
occupational heat stress has been mapped by Seichi Horie [35]. A combination of strenuous physical
activity, a hot and humid atmosphere, continuous work without rest, and the use of inappropriate
clothing for the heat environment such as some protective clothes and masks as the main contributing
factors to elevated body temperatures. This can lead to a reduction of sodium concentration in the blood
and dehydration. Elevated body temperature can also cause circulatory disturbance from cutaneous
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vasodilation, as well as cause elevated brain temperatures. These together have the potential of
contributing to heat stroke characterized by symptoms such as heat cramps, muscle weakness, nausea,
oliguria, fainting, headaches and high body temperatures [35]. Poverty may act as a barrier preventing
adaptive behavior if poor people dependent on outdoor hard physical work consider resting. In a
review of barriers to climate change adaptation among natural resource-dependent communities and
livelihoods, financial constraints on agricultural production and rural development was identified
as a major factor [36]. The inability to afford alternative means of production limits the potential for
smallholder communities to easily change from current production practices to practices that limit
their exposure to high WBGT.

Table 1. Some heat related illnesses (condition and symptoms)—modified from the Centres for Disease
Control (CDC).

Condition Symptoms

Heat stroke

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

Heat 

▪
•

▪

•
•
•
•

•
•
•

•

The body’s response to loss of water and salt from
heavy sweating.

• High body temperature (103◦F or higher)
• Hot, red, dry, or damp skin
• Fast, strong pulse
• Headache
• Dizziness
• Nausea
• Confusion
• Losing consciousness (passing out)

Heat exhaustion

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

Sun

▪
•
•

Heat 

▪
•

▪

•
•
•
•

•
•
•

•

Develops when a person is working or exercising in hot
weather and does not drink enough liquids to replace those
lost liquids.

• Heavy sweating
• Cold, pale, and clammy skin
• Fast, weak pulse
• Nausea or vomiting
• Muscle cramps
• Tiredness or weakness
• Dizziness
• Headache
• Fainting (passing out)

Heat cramps

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

Heat 

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Caused by the loss of body salts and fluid during sweating.
Low salt levels in muscles cause painful cramps.

• Heavy sweating during intense exercise
• Muscle pain or spasms

Sunburn

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

Heat 

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

A painful sign of skin damage from spending too much time
outdoors without wearing a protective sunscreen

• Painful, red, and warm skin
• Blisters on the skin

Heat rash

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

Heat 

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Caused by sweat that does not evaporate from the skin.
• Red clusters of small blisters that look like pimples on the

skin (usually on the neck, chest, groin, or in elbow creases)

Heatstroke (also known as sunstroke)

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Occurs when the body fails to regulate its own temperature
and body temperature continues to rise, often to or above
40.6 ◦C.

• Unconsciousness for longer than a few seconds.
• Confusion, severe restlessness, or anxiety.
• Convulsion (seizure).
• Symptoms of moderate to severe difficulty breathing.
• Fast heart rate.
• Sweating that may be heavy or may have stopped.
• Skin that may be red, hot, and dry, even in the armpits.
• Nausea and vomiting.

1.3. Impacts of Heat on Society

The economic effects of heat stress are huge, primarily regarding lower labor productivity [2],
higher demands on health care, and increasing welfare costs. In all countries, heat stress is associated
with social consequences, such as increasing violence, emotional problems and low life satisfaction
including various secondary social stressors [24]. Impacts are highly differential with disproportionate
burdens on people (often women and children) who toil daily under a scorching sun [24]. Small-scale
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farmers and fisher folks are particularly exposed to high temperatures and are already reporting
excessive heat as a major burden [24]. From a livelihood perspective, food production is a particular
concern. Since around 2010, knowledge about the sensitivity of crops to extreme heat has increased
substantially, showing that heat stress is a major reason for productivity declines and crop failures,
particularly in the tropics. For tropical systems where moisture availability or extreme heat will limit
the length of the growing season, it is likely that the growing season and overall suitability for crops
will decline due to heat stress. By 2050, most African countries will experience temperatures—over at
least half of their current crop area—that lie outside the currently experienced range. As a further
threat to small-scale farming, heat stress affects the health and productivity of livestock in meat and
dairy production. As the most predictable, widespread and severe climate change impact on human
societies, heat stress is already affecting, directly and indirectly, millions of people every year—and that
the situation will get increasingly worse is ‘virtually certain’ according to the IPCC [24].

2. Smallholder Farmers and the Climate Change Context

The definition of smallholder farmers varies across geographies, agroecological zones, and even
contexts. More holistic definitions incorporate elements of farm size, education level, knowledge of
farming practices, land tenure situation, household demographics, and farming assets (which include
access to financial resources, and technologies). Generally, however, smallholders tend to be defined
based on the size of their farm holdings and levels of technology integration in the practice of agriculture.
In sub-Saharan Africa, farmers operating less than 2 hectares of cropland are commonly categorized
as smallholders [37,38]. Data on the distribution of farmland sizes and factors associated have been
analyzed in a recent FAO/UNCTAD study [38]. In Ethiopia and Egypt, farms with an area of 2 hectares
or less constitute nearly 90% of all farms. While in Kenya, if the classification of smallholders is taken
to be those farmers with farmlands of 2 hectares or less is applied, it will cover nearly the entire land.
In Tanzania, it will account for nearly 80% of all farms [38]. The focus on smallholder farmers is
important because this group of agricultural producers makes up the vast majority of actors in the food
production sector in the developing world [39]. An estimated two-thirds of the developing world’s
3 billion rural people live in about 475 million smallholder farming households, working on land plots
smaller than 2 hectares. Kenyan and Tanzanian smallholder farmers produce 63% and 69% of the food
in the country, respectively [38].

Land management systems of smallholder agriculturalists rely heavily on human (often, family)
labor [38]. Manual labor is a key feature of activities such as farm clearing, tillage, planting, weeding,
harvesting, as well as traditional processing or farm products. The use of machinery or other
labor-saving technologies is minimal [40]. Smallholder agriculture is therefore characterized by high
labor inputs [41].

Agricultural practices among smallholder farmers in most of sub-Saharan Africa puts most
agriculturalists under the category of outdoor workers. Outdoor workers refer to any workers who
spend a substantial portion of the shift outdoors. For these groups of workers, their sources of heat
exposure and potential for overheating can come in two ways:

1. The environmental conditions in which they work: most of which are already very warm in many
parts of sub-Saharan Africa.

2. The internal heat generated by physical labor: smallholder farming practices depend heavily on
manual labor for many strenuous farming activities, such as farm preparation, planting, weeding,
harvesting, etc. Levels of technology use in agriculture remain very low.

Heat-related illnesses occur when the body is not able to lose enough heat to balance the heat
generated by physical work and external heat sources. Weather conditions are the primary external
heat sources for outdoor workers. Smallholder agricultural workers in sub-Saharan Africa are therefore
at risk of heat-related illness when the heat index (WBGT) is high.
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Four main on-farm activities substantially expose smallholder farmers in our study region to
outdoor heat stress. These include (1) farm preparation, which involves clearing, tilling, and the
preparation of planting surfaces (mounds or ridges); (2) planting; (3) farm maintenance (weeding);
and (4) harvesting [42]. The maize production calendar is taken as a crop of choice for this study
because of the importance of maize in the agricultural and food system in the East African region.
The maize-mix farming system is the most important food production system in Eastern Africa [38].

2.1. Farm Preparation

Farm preparation is a dominantly manual activity for smallholder farmers in sub-Saharan Africa.
In 2006, for example, human muscle power accounted for 65% of the energy used for land preparation
in sub-Saharan Africa [43]. This is compared to 40% in East Asia, 30% in South Asia, and 25% in Latin
America and the Caribbean [43]. Manual clearing involves the shearing of trees and bush vegetation
with a cutting blade for new or fallowed land. In continuously cultivated land, it involves cutting of
grasses that have colonized the farmland since the last cropping season. In some cases, the burning
of vegetation is used as a means of clearing the land [44]. Tilling refers to turning the soil over so
some of the lower soil comes up and some of the upper soil goes down aerating is and, in some
cases, burying plant material that will eventually decompose in the process. Manual tilling is still a
dominant agricultural practice among most smallholder farmers in sub-Saharan Africa [45]. A hoe
with a large blade is the universal tool for tilling, even though there are variations in the design of
this tool preferred in different agroecological zones [45]. Tilling and planting are done at the same
time. Preparation of mounds or ridges is sometimes done during the tilling process. In more fertile
farmlands, farmers may decide to eliminate the use of mounds and ridges altogether. The preparation
of the planting surface (mounds and ridges) has been a well-established practice in the agricultural
history of East Africa [46,47]. C.G. Knight observed the system of “nkule” in Tanzania in 1980 [48].
Planted crops take advantage of the take advantage of the nutrients provided by decomposing grass
under the mounds and released by the process of burning [48]. In Zambia, these ridging systems are
referred to as “ibala” [49], and as “ankara” in the North West Region of Cameroon. Common tools
used for land preparation include hoes; machete; axes; forks; rakes; spades; grass hooks.

2.2. Planting

Planting for most crops is not done according to precisely measured distances; rather, it is based
on estimates of required distances between crops. With a heavy reliance on manual labor, there is little
need for adherence to precise measurements and geometrical patterns during most farming practices
(including planting). Maize may be planted on mounds, ridges, or on flat, tilled, or untilled fields.
Common tools used for planting are dibbers, hoes, and machetes. Better-off farmers occasionally make
use of semi-mechanized tools such as jab planters, push-pull seed drills, and manual rotary injection
planters [50].

2.3. Weeding

Manual weeding is another backbreaking work intensity in smallholder farming practice.
Most weeding is done with the hands and hoe. Weeds are pulled out with the hands while the
hoe is used to till and soften the soil, as well as to cover the dislodged vegetation with soil to ease
the process of decomposition. As with tilling, the preparation of ridges and planting, the worker
undertakes this process in the crouched position as he/she moves from one row to another.

2.4. Harvesting

As with other activities, harvesting is a manual activity for the smallholder farmer. The process
of harvesting maize usually involves plucking the maize cob from the standing plant, collecting the
harvested crop and transporting the harvested crop. The problem of transportation of harvested produce
stems chiefly from the poor development of roads in rural sub-Saharan Africa [51]. This, together
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with the limited resources of smallholder farmers to afford the high transportation costs makes the
arduous task of transportation a practice that relies heavily on human muscle power. The use of human
muscle power limits the amount of crop that can be transported per person and trip. This means that
smallholder farmers require more trips to transport their crops. Hence, smallholder farmers would be
exposed to potential heat stress during the process of harvesting and the transportation of crops.

3. Materials and Methods

3.1. Wet Bulb Globe Temperature

Wet Bulb Globe Temperature (WBGT) is the most common index used for assessing heat stress
in occupational health. It was developed by the US Army two decades ago [52,53] to guide military
and civilian health care providers and allied medical personnel on understanding, identifying and
managing heat stress among troops. Early studies investigated total heat stress imposed on military
personnel in three camps by physical training, temperature, radiation, humidity and wind [54].
This index considers air temperature, radiant temperature, humidity and air movement, and is the
reference for time limitations of work under different heat exposure conditions (Table 2).

Table 2. Recommended maximum Wet Bulb Globe Temperature (WBGT) exposure levels (◦C) at different
work intensities and rest/work ratios for an average acclimatized worker wearing light clothing. Source:
compiled by Kjellström et al. 2009 from the International Organization for Standardization (ISO) 18
and the National Institute for Occupational Safety and Health (NIOSH) (criteria for a recommended
standard: occupational exposure to hot environments. NIOSH Publication No. 86113. Atlanta, GA:
National Institute of Occupational Health; 1986).

Metabolic Rate Class (Work Intensity)
1

(Light)
2

(Medium)
3

(Heavy)
4

(Very Heavy)

Continuous work, 0% rest/hour 31 28 27 25.5
25% rest/hour 31.5 29 27.5 26.5
50% rest/hour 32 30.5 29.5 28
75% rest/hour 32.5 32 31.5 31

No work at all (100% rest/hour) 39 37 36 34

3.2. Meteorological Data

Meteorological data for the year 2000, 2050 and 2100 were downloaded from the Earth System
Grid Federation repository (https://esg-dn1.nsc.liu.se/) and used for the calculation of WBGT. This data
originates from CORDEX—Coordinated Regional Climate Downscaling Experiment, http://www.
cordex.org/ [55]. The data have a spatial resolution of 0.44 x 0.44 degrees latitude/longitude and 3 h
temporal resolution.

Near-surface relative humidity (RH,%), surface down welling shortwave radiation (Rs, W m−2)
and surface air temperature (Ta, ◦C) at 2 m were derived from historical and RCP4.5 simulations with
the Second Generation Canadian Center for Climate Modelling and Analysis Earth System Model
(CanESM2) [56] (Data ID’s listed in Appendix A). RCP 4.5 was selected as a reasonable lower range
scenario with peaking emissions around 2040—a middle scenario among the available ones (RCP2.6,
RCP4.5, RCP6, and RCP8.5).

3.3. Calculation of WBGT

To compute WBGT, we used the Natural wet-bulb temperature (combined with dry-bulb
temperature indicates humidity, Tw); the Globe thermometer temperature (measured with a globe
thermometer, also known as a black globe thermometer, Tg); and the Dry-bulb temperature (actual air
temperature, Td).

WBGT = 0.7Tw + 0.2Tg + 0.1Td (1)

where:
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Tw = natural wet-bulb temperature (combined with dry-bulb temperature indicates humidity, ◦C);
Tg = globe thermometer temperature (measured with a globe thermometer, also known as a black
globe thermometer, ◦C);
Td = dry-bulb temperature (actual air temperature, ◦C).

We calculated Tg according to Hajizadeh et al. [57] as:

Tg = 0.01498 ∗ Rs + 1.184 ∗ Ta − 0.0789 ∗ RH − 2.739 (2)

Tw was calculated according to Stull [58] (see units and abbreviations above):

Ta ∗ atan(0.151977 ∗ (RH + 8.313659)0.5) + atan(Ta + RH) − atan(RH-1.676331) +

0.00391838 ∗ (RH)ˆ1.5 ∗ atan(0.023101 ∗ RH) − 4.686035
(3)

For each day during the planting period (February–March) and the harvest period
(August–September), the maximum WBGT was calculated and used for further analysis. This resulted
in about 60 daily maximum WBGT values per grid cell that were further used for analysis.

3.4. Uncertainty and Bias Correction

When using climate simulation data for prognostic studies it is important to quantify the bias of
observed versus simulated data [59,60] as this bias can cause systematic errors [61]. In the supplement
(Appendix C), we compare observed surface air temperature from a set of climate stations to the
estimated surface air temperature in order to quantify this bias.

Farm tasks such as manual clearing, hoeing, planting, weeding, and harvesting involve substantial
inputs of labor and energy. Given that these energy-demanding activities are carried out mainly in the
outdoors with exposure to elements of weather, WBGT is judged to be a suitable index for assessing
risks for heat stress among this population of workers. Kohut [62] identifies some activities associated
with military exercises in hot, dry climates that fall under the metabolic rate. These activities are
matched to activities of comparable categories carried out by smallholder farmers in a typical farming
cycle (Table 3).

This research is one study in a project whose goal is to understand the implications of environmental
changes on human welfare and health (see Funding for details). In this project, the environmental
determinants of human wellbeing, including on the burden of tropical diseases will be investigated.
The study area is in the Lake Victoria region, hence the choice of Kenya, Tanzania, and Uganda as
locations of interest.

To assess the sensitivity of our computations of WBGT, we used the software (WBGT) developed by
Strategic Security Sciences Division, Argonne National Laboratory [53]. For this analysis, we examined
the variability of WBGT for the years 2000, 2050 and 2100 (Appendix B Figure A1) as well as assessed
the sensitivity of WBGT to Air Temperature (Ta) and Relative humidity (Rh) (Appendix B Figure A2).

3.5. Annual Calendar of Agricultural Activities

Farming activities associated with maize production are used to assess the potential of heat stress on
food crop production. Maize is used as the reference crop for assessing farmers’ activities as it is the main
food crop in the east African region. In many parts of the region, maize is cultivated in two cycles within
the year. The timing of agricultural activities was derived from the database of the Food and Agriculture
Organization of the United Nations (FAO) (Found here: www.fao.org/agriculture/seed/cropcalendar/).
This database gives the onset and end dates of planting and harvesting cycles for major food crops,
including maize (see Appendix D, Table A2). While the database contains planting and harvesting
dates, it does not have information on weeding periods.
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Table 3. Examples of activities within metabolic rate categories (from Naval Medical Command,
1988, Manual of Naval Preventive Medicine, Washignton DC, 20372–5120, https://www.med.navy.
mil/directives/CanPublications/5010-3.pdf) equated to farming practices undertaken by smallholder
farmers. (Estimated from Monica Dungarwal and Maya Choudhry, 2003, Energy Balance of Farm
Labourers. J. Hum. Ecol., 14(1): 51–55. Starred activities are estimates of the metabolic category of farm
activities by authors.)

Physical Activity
Average Metabolic Rate

Kcal/hr
Comparative Farm

Activities
Average Metabolic Rate

Kcal/hr

(a) Sitting

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

Sun

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Moderate arm and trunk movement (e.g.,
typing, drafting, driving a car in light traffic)

68

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Moderate arm and leg movement (e.g., general
laboratory work, slow movement about
an office)

82

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Heavy arm and leg movement (e.g., driving a
car in moderate traffic) 99

(b) Standing

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

Heat 

▪
•

▪

•
•
•
•

•
•
•

•

Light work at machine or bench, mostly arms 82

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

Heat 

▪
•

▪

•
•
•
•

•
•
•

•

Threshing

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

Sun

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Weeding

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Harvesting maize in a
standing position

95

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Light work at machine or bench, some moving
about (e.g., using a table saw, driving a truck in
light traffic)

99

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

Heat 

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Moderate work at machine or bench, some
walking about (e.g., replacing tires, driving a
car in heavy traffic)

119

—

▪ ’

•
•
•
•
•
•
•
•

▪

•
•
•
•
•
•
•
•
•

Heat 

▪
•
•

▪
•
•

▪
•

▪

•
•
•
•

•
•
•

•

Manual planting of
maize using machete,
dibber or hoe

109

(c) Walking About, with Moderate Lifting or Pushing
(e.g., driving a truck in moderate traffic, scrubbing in
a standing position)

164 Hoeing 179.6

(d) Intermittent Heavy Lifting, Pushing or Pulling
(e.g., sawing wood by hand, callisthenic exercise,
pick and shovel work)

238
Bunding—Ridging and
mound formation during
land preparation

205

(e) Hardest Sustained Work 300

3.6. Cropping Intensity

We used the European Space Agency’s prototype high-resolution LC map over Africa based
on 1 year of Sentinel-2A observations from December 2015 to December 2016 (Found here: http:
//2016africalandcover20m.esrin.esa.int/) to identify areas of cropland. This “Prototype land cover map
of Africa” v1.0 dataset was downloaded from http://2016africalandcover20m.esrin.esa.int/. This dataset
divides land cover in Africa into 10 generic classes that describe the land surface at a 20 m × 20 m
spatial resolution: “trees cover areas”, “shrubs cover areas”, “grassland”, “cropland”, “vegetation
aquatic or regularly flooded”, “lichen and mosses/sparse vegetation”, “bare areas”, “built-up areas”,
“snow and/or ice” and “open water”. From the 10 land cover classes included, cropland was extracted
and resampled to spatially fit the WBGT data, whereas the percentage of cropland per grid cell was
calculated. This data was then used for the stratifications of cropping/cropland intensity (Figure 2).
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Figure 2. The distribution of cropland density—computed as a percent of cropland per 0.44◦ × 0.44◦

grid cell. This is input data for the stratification of cropping intensity.

4. Results and Discussion

The hypothesis advanced by this study that the Wet Bulb Globe Temperature (WBGT) in East
African croplands in 2000 remains unchanged in 2050 and in 2100 is rejected, as high WBGT are
observed during the two periods of the East African farming calendar studied. We also asked the
question: How is the Wet-Bulb Globe Temperature (WBGT) going to be distributed in the future, and how will

this affect the ability of smallholder farmers to perform agricultural activities? Generally, in February to March,
the eastern and coastal regions of Kenya and Tanzania witness high WBGT values—some necessitating
at least 50%, and up to 75% in some cases, rest/hour work intensities in 2050 and 2100. In August
to September, the eastern and northern regions of Kenya, as well as the north and central regions
of Uganda are vulnerable to high WBGT values. During this maize harvesting period, rest/work
intensities with up to 50% rest/hour are expected in 2050 and 2100. Planning to understand and craft
policies to address this key challenge is a critical element in adaptation methods to address the impact
of climate change.
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4.1. The Geographical Distribution of Maximum WBGT

The geographical distribution of maximum WBGT generally shows high values along coastal
regions of of Kenya and Tanzania (Figure 3). WBGT values in coastal communities remain relatively
high (generally above 25 ◦C), especially for the February–March season in all time segments.
In Tanzania, regions with currently high maximum WBGT values and whose condition is going
to be sustained in the future include Tanga, Pwani, Lindi, Mtwara, Ruvuma, and sections of
Morogoro. In 2000, high maximum WBGT values were also observed in Shinyanga, Tabora, Kigoma,
and Rukwa—a condition that becomes more widespread in the southeastern regions in 2100 (Figure 3c).

 

 

Figure 3. Distribution of maximum WBGT for the months of February–March (a–c),
and August–September (d–f) in the years 2000, 2050 and 2100.
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In August–September, maximum WBGT values affect the eastern and north eastern regions of
Kenya more profoundly—with values reaching well above 30 ◦C in most of these areas (Figure 3e).
High values are also observed north of the Rift Valley Region. Comparatively lower maximum WBGT
values are observed in the central egion, Nyanza, and the southern portions of the Rift Valley region in
all years and seasons. The central regions of Kenya have areas of high cropland density, many above
60%. In many of these areas, observed maximum WBGT values tend to be high, more than 28 ◦C
(Figure 3b–f). In 2000, Uganda had a comparatively lower maximum WBGT (Figure 3a). By 2050,
however, higher values are evident in the north-western (north of Gulu) and southern parts of the
country (around Kampala) (Figure 3b,e). While generally lower maximum WBGT values are observed
in Uganda in February–March, higher values are more widespread in August–September, affecting the
central and north-western regions (especially in 2050, Figure 3e).

The distribution of high WBGT values illustrated by Figure 3 above is a cautionary tale of
experiences that are already being observed in other parts of the Sub-Saharan Africa region. In a
study of heat exposure on farmers in northeast Ghana, Frimpong, Eddie Van Etten [63] suggested
that farmers were a population at risk and noted that the farming methods (using rudimentary tools
and labor-intensive methods) were at the center of their vulnerability to high WBGT. In a study of
the impact of heat stress and farmers’ adaptation to it, Frimpong, Odonkor [64] found that heat stress
associated with farming activities was a challenge for small-holder farmers in the region. They also
recognized that, even though there were adaptation strategies for coping with heat stress in Baku East
in Northern Ghana, these strategies were ineffective. In their study of the impact of heat on health and
productivity among maize farmers in the Gombe province of Nigeria, Sadiq, Hashim [65] found that
farmers were frequently exposed to heat stress—a condition that was contributing to heat exhaustion
and productivity decreases among small-holder producers.

4.2. WBGT Frequncies and Farming Practices

Studies of labor inputs (in man-hours per hectare per year) into smallholder African agriculture
reveals that farm preparation is the most labor-intensive activity in the cropping cycle. This has been
reported in the study of pure maize cultivation in seven locations in Malawi [66]. Harvesting is the
next most labor-intensive activity, then weeding, then planting. This distribution of labor inputs across
crop types was also true for millet, legumes, manioc, and peanuts. While up-to-date data on labor use
for different crops and different activities is hard to get, the mean amount of time spent on farms by
smallholder farmers can give an idea of the potential for their exposure to potential elements of heat
stress risk. Table 4 summarizes mean national data for the average amount of days spent on-farm by
smallholder farmers. Family labor days on the farm supplied over a day refer to the total number of
person-days that family members spend on the farm during one working day [67]. The FAO computes
it by taking the total family labor day supplied on the farm over a day period, which is the total number
of days at household level divided by the number of working days in a year—here, 300 days. In our
case, the yearly labor inputs are presented [67].

Table 4. Mean national summaries of on-farm labour (days per year).

Family on-Farm Labour (Days per Year)

Kenya, 2005 231
United Republic of Tanzania, 2013 189

Uganda, 2012 192

Drawing from values presented in Table 4, farmers will be putting in between 189 to 231 days
of labor on farms annually. This is well above half the number of days of each year working in
farms. If we draw on the Malawi [66] example to examine the distribution of activities between tasks,
we find a total of 341 man-hour ha−1 year−1 during the garden preparation and planting seasons
in February and March. (We use Malawi for a breakdown of farming activities as we do not have
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this data for the study area. Malawi has the same agroecological zones as found in portions of the
study area (such as Tanzania) and the practice of smallholder agriculture is quite comparable in
methods.) These activities connect each other closely regarding the periods in which they are practices
(see Appendix D). Assuming an eight-hour work day, this translates to 42.6 days ha−1 of exposure to
mean maximum WBGT (i.e., the mean value of all maximum WBGT for February-March 2000) ranging
from 23.5 to 24.7 ◦C in 2050, with maximum reaching 31.3 ◦C. In 2100, the mean maximum WBGT
will be 25.4 to 26.6 ◦C, with maximums reaching 30.3 ◦C (Table 5). Based on our classification of the
manual planting of maize and associated crops using machete, dibber or hoe as heavy work, it follows
that there are regions in which high WBGT will warrant at least 50% rest/hour work intensity (Table 2).
Farm preparation tasks are classified as very heavy work (Table 3). These include clearing vegetation
using a machete and a grass hook; ridging and mound formation during land preparation; and hand
weeding and tilling at a crouched position. Performing these tasks will warrant work intensities
with up to 75% rest/hour (see Table 2). A high number of workdays in conditions of high WBGT in
February–March will be affecting the eastern half of Kenya, the east and southern regions of Tanzania
as well as pockets of regions in Tanzania’s center and north-west in 2050. In 2100, the geography of
maximum WBGT values does not change much from the 2050 situation (Figure 4).

During the harvesting season in August–September, labor inputs of 141 person-hours ha−1 year−1

translate to 17.6 days of eight-hour workdays (Table 3). Maximum daily WBGT values during this
period have a mean of 26.6 to 28.5 ◦C in 2050, with the maximum reaching 34.0 ◦C (Table 4). In 2100,
maximum daily WBGT have a mean of 27.1 to 29.2 ◦C, with the maximum reaching 31.9 ◦C.

Harvesting maize in a standing position is classified as medium work (Table 2). At WBGTs of up to
30.3 ◦C in August–September (Table 5), there are regions in which maize harvesting will warrant work
intensities with up to 50% rest/hour (Table 2). Areas in the north and northeastern Kenya, including
the coastal regions, will be particularly vulnerable to high WBGT in 2050 (Figure 3). The central and
northwestern regions of Uganda will also be vulnerable. While the eastern coastal regions of Tanzania
will see increased WBGT values compared to other parts of the country, the country as a whole will not
be as vulnerable as its northern neighbors in August to September (Figure 5).

Table 5. Maximum daily WBGT per grid cell, disaggregated to areal cropland percentage for the
months of February–March and August–September for the years 2000, 2050 and 2100. The values hence
describe the variability of the max daily WBGT (n, min mean, max and standard deviation, (stdev)).

AUG-SEP WBGT 2000 2050 2100

Cropland% n Min Mean Max Stdev n Min Mean Max Stdev n Min Mean Max Stdev

>0% 1131 16.74 25.19 32.58 2.57 1131 18.89 26.72 34.00 2.23 1131 18.50 27.14 31.99 2.57
>50% 193 17.41 25.01 29.10 3.03 193 19.85 26.63 29.88 2.37 193 19.57 26.73 30.32 2.84
>75% 107 19.26 26.23 28.81 2.76 107 21.74 27.57 29.88 2.05 107 20.90 27.85 30.18 2.67
>90% 71 21.57 27.68 28.81 1.49 71 23.74 28.55 29.88 1.17 71 23.07 29.23 30.07 1.39

FEB-MAR WBGT 2000 2050 2100

Cropland% n Min Mean Max Stdev n Min Mean Max Stdev n Min Mean Max Stdev

>0% 1131 15.30 22.94 27.4§9 2.61 1131 16.42 23.49 31.30 2.90 1131 18.43 25.38 30.33 2.27
>50% 193 16.30 23.13 27.48 2.27 193 17.11 23.72 30.26 2.38 193 19.22 25.40 28.88 2.03
>75% 107 18.64 24.13 25.43 1.59 107 19.52 24.47 30.26 1.55 107 21.82 26.18 28.73 1.40
>90% 71 21.28 24.81 25.42 0.65 71 22.17 24.70 27.14 0.95 71 23.53 26.57 27.46 0.74
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4.3. Implications for Climate Change Planning in the Agricultural Sector

There is consensus on the observation that African countries will suffer serious health consequences
due to impacts of climate change. The rapidly growing populations in many African countries are
among the most vulnerable to climatic changes in the world [30,68]. Beyond the direct negative health
impacts, the impact of climate change stands to affect key socio-economic sectors such as agriculture.
We demonstrate in this study that the impact of changing climates on the availability and productivity
of labor will affect many geographies in East Africa. This study demonstrates that key sectors such as
agriculture are particularly vulnerable to the effects of climate change. In many parts of the continent,
this vulnerability is due in part to existing problems of poverty, weak institutions, political unrest,
and the activities of some international financial institutions, which limit the capacity of some countries
to deal with the challenges posed by a changing climate [69,70]. This vulnerability poses threats
to human health, well-being and the economic productivity of agriculture-dependent countries in
sub-Saharan Africa. Such threats warrant the need for mitigation measures to adapt smallholder
agriculture to a warming world and policy engagement on occupational health programs that protect
individuals at risk of heat-related morbidity and mortality.

4.4. Mitigation Measures to Adapt Smallholder Agriculture to A Warming World

Mitigation measures that adapt agriculture to changing conditions brought about by climate
change. One is inclined to propose a more concerted drive towards practices of agroecological farming
and ecological intensification to achieve the goals of sustainable food production and viable food
systems in sub-Saharan Africa. In this case, a focus should be on management approaches that
reduce human exposure to elements that contribute to heat stress within the agricultural environment.
Examples may include:

(a) Reduction in exposure to heat stress in farm preparation activities (Figure 4 and Table 4). This may
include the diffusion of best practices in no-till farming that eliminate the need to spend time and
energy clearing, tilling and ridging the land. No-till farming usually involves (a) sustaining the
availability of mulch or crop residue, or a careful section of cover crops for maintaining soil cover
at all times (including off-farming seasons), and (b) using suitable crop rotations [50]. Within the
context of human exposure to the elements of heat stress, the labor savings of no-till farming is
especially important. In some cases, it has been observed that planting in a no-till system can
reduce labor input by as much as 60% [71]. Notwithstanding the potential to reduce exposure to
heat stress be adopting no-till farming, there are constraints associated with making it work in
East Africa. Constraints include the small sizes of farms, which make farmers less willing to set
aside portions of it to experiment with new approaches; problems of land tenure that decrease
incentives for long-term investments in no-till practices; and access to information on the best
practices for no-till farming. In addition, the highly degraded soils of the region mean that the
transition period to achieving viable no-till farming systems is longer and may not be appreciated
by farmers with restricted economic margins.

(b) Reduction in exposure to heat stress in planting activities (Figure 5 and Table 4). Planting is the
activity that has experienced the most diverse innovations in mechanization among smallholder
farming practices. Grain planting, in particular, has seen substantial innovation in small-scale
mechanization that can reduce the work intensity of the practices [50]. Constraints to accessing
and using these planting aids remain at the level of affordability (because many smallholder
farmers may not have the financial resources to purchase this machinery) and organization
(because, at the level of the institutional framework, it makes it possible for these tools to reach
smallholder farmers, farming communities and farming organizations in the first place [72]).
In the absence of mechanization, farming activities can be planned to reduce the risk of excessive
exposure to heat, through a modification of the timing of practice of some activities. In a study
of heat exposure among non-harvest sugarcane workers in Costa Rica, one of the conclusions
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drawn was that changes in the attitudes of employers that involve creative ways of organizing
work shifts, among other things, can reduce worker exposure to heat stress [73].

(c) Reduction in exposure to heat stress during harvesting. It is challenging identifying what can be
done to reduce the work intensity or harvesting for smallholder farmers. The mechanization of
the harvesting process for crops such as maize and potatoes, for example, seems to be challenging
for a variety of reasons, namely the small size of farms means that they are often not suited to
the large-scale mechanization of the harvesting activity. In addition, the haphazard geometry of
planted crops also reduces the suitability of mechanizing the process. However, an important
component of crop harvesting is its transportation to homes or markets, since the purpose of
harvesting is to get produce to where they can be sold or consumed. In this regard, there is a lot
that can be done to reduce the long distances over which farmers transport agricultural produce,
as well as the number of times that the harvesting of a single farm has to be done because the family
can transport only so much at a time. There is also potential for reducing heat exposure through
the smart planning of farming activities using existing intervention programs already in use. For
example, interventions that make use of the Occupational Safety and Health Administration
(OSHA)’s Water–Rest–Shade program (WRS) have been evaluated in El Salvador and found to
contribute to reductions in symptoms associated with heat stress and with dehydration [74].

4.5. Policy Engagement on Occupational Health Programs

Policy engagement on occupational health programs that protect individuals at risk of heat-related
morbidity and mortality is an essential part of mitigation and adaptation planning [1]. This falls
within a recommendation proposed by the 2015 Lancet Commission to scale-up financing for climate
resilient health systems worldwide [75]. As warmer temperatures become a reality in many parts
of sub-Saharan Africa, redesigning medical services to meet and address the emerging challenges of
outdoor occupational heat stress are indispensable. Among some of the areas of concern is the need
to include heat-related morbidity and mortality into training programs for personnel in the health
sector [76]. Such training will enable emergency medical personnel, clinicians, and doctors to respond
to an increase in incidences of heat-related emergencies in a warming world. Just as important is the
need to invest in infrastructure and equipment to facilitate the ability of these medical practitioners
to meet the challenge. In the countries of Europe, these policy engagements culminate in what is
referred to as “heat-health action plans” [77]. A policy engagement plan that responds to the emerging
challenges of heat stress would address three key issues:

(a) Develop an illness prevention plan for outdoor work based on the heat index that is appropriate
for specific agro-ecological zones in each country. The goal of such a prevention plan would
be to prevent heat-related illnesses and deaths by raising awareness among agricultural
practitioners, support personnel, and policymakers about the health risks associated with
working in hot environments.

(b) Train workers in the agricultural sector (practitioners, agricultural extension workers, members of
agricultural common initiative groups) how to recognize and prevent heat-related illness. To be
fully effective, an interdisciplinary approach that engages stakeholders at different levels of the
agricultural production and distribution chain, as well as on associated agricultural support
services, would be essential [78].

(c) Define protective measures for dealing with outdoor work conditions for smallholder farmers.
These measures may include work/rest schedules, clothing choices under different heat stress
conditions, techniques for keeping cool, the importance of hydration during working hours,
as well as how to deal with heat-related emergencies. Many examples of such protective measures
have been examined by previous studies [1]. These measures can contribute to addressing
heat-related morbidities.
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4.6. Uncertainty in the Distribution of Future Agricultural Areas

The African climate is determined by three main processes. Two of these are local processes
that determine the regional and seasonal patterns of temperature and rainfall-tropical convection,
and the alternation of the monsoons. The third, El Niño-Southern Oscillation is foreign to the continent,
but strongly influences interannual rainfall and temperature patterns in Africa. Some of the most
reported impacts of anthropogenic global warming and climate change in Africa are higher sea and
land surface temperatures, and an increase in the incidence and severity of droughts, floods and other
extreme weather events. It is forecast that over the next 100 years, mean temperatures across Africa
will rise faster than the global average, exceed 2 ◦C, and may reach as high as 3 ◦C to 6 ◦C greater than
20th century levels [79]. Drier subtropical regions are expected to warm more than the moister tropics,
with northern and southern Africa becoming much hotter by as much as 4 ◦C. It is also expected
to become drier, with precipitation falling by as much as 15% or more [79]. In East Africa, climate
change is projected to increase temperature and precipitation variability as well [80]. These changes in
key factors that determine the suitability of rain-fed agriculture are bound to have an effect on the
distribution of suitable areas for smallholder agriculture on the African continent. Indeed, even if
rainfall remains constant, existing water stress will be amplified as a result of increased temperatures,
putting even more pressure on agricultural systems on the continent, especially in arid and semiarid
areas [14]. Climate change is projected to decrease the yields of cereals overall in Africa through
shortening growing season length, amplifying water stress and increasing the incidence of diseases,
pests and weed outbreaks [80]. In East Africa, cereal mixes, especially the maize mixed cropping
system, covers over 40% of the area [12].

This study therefore acknowledges that suitable areas for food crops and agriculture in general
may therefore change by the middle and end of the century, meaning that some of the areas that host
agriculture today may not be hosting these activities in the future. We also acknowledge that there
is a possibility that improved technologies may reduce the burden of human labor in smallholder
agricultural systems. However, if we draw from experience over the last three decades, these changes
have neither been fast nor widespread enough to expect that substantial radical changes may have
changed the agricultural landscape before the middle of the century. Poor agricultural performance
in sub-Saharan Africa has led to a situation of stagnating real incomes of farmers, stagnating and
often increasing rural poverty, and a farming landscape whose methods and productivity have not
changed substantially over the last three decades [81]. Indeed, the Alliance for a Green Revolution
in Africa (AGRA) notes that, despite the positive outlook on the role of agriculture and plans for
its development in the sub-region, “there remains significant need for improvement to achieve an
inclusive agricultural transformation: (i) agricultural growth is still too slow and yield increase too
marginal; (ii) food security is not yet sustainable in most places; (iii) new challenges such as climate
change, pests and diseases threaten progress, etc. [81]”. Nonetheless, our findings point to the need
to take human labor and its vulnerabilities in the face of climate change into consideration when
examining or exploring adaptation policies.

4.7. Uncertainty of the CORDEX Data

The results of the comparison of measured surface air temperature versus the CORDEX estimated
surface air temperature (Appendix C) show no systematic bias. Approximately 80% of the observations
(n = 63,027 daily mean temperature observations) showed a mean absolute error of 1 ◦C or less,
whereas the percent bias was 5% or less for about 60% of the 252 station years studied.

5. Conclusions

We find that heat stress is already affecting regions of East Africa. This condition is set to continue
in the middle of the century and beyond. Not all areas of the East African region or all areas inside
national boundaries are affected equally. Different regions of each country are affected at different
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degrees and at different times of the year. While Kenya and Tanzania experience large portions of
their national land mass affected by high WBGT values, a neighboring country (Uganda) is relatively
less affected in the two seasons of the agricultural calendar examined. High WBGT has implications
on the rest/work cycles of smallholder farmers whose use of machinery for many farming practices
remains very limited. There is therefore a need to design and implement mitigation measures to adapt
smallholder agriculture to a warming world. These could be measures that target exposure to heat
stress in different farming cycle activities, such as land preparation, planting, weeding, and harvesting.
There is also a need for policy engagement to protect from the risks of heat-related morbidity and
mortality. Reduced work capacity in heat-exposed jobs constitutes one of the important effects of
climate change. This has implications for the attainment of key social and economic goals for societies
in which economic production relies on high inputs of manual labor and high levels of exposure to
climatic elements during key production periods.
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Appendix A

Identification Values for CORDEX Data Used:

Below are the ID’s for data sets used:

Historical (1951–2005)

cordex.output.AFR-44.SMHI.CCCma-
CanESM2.historical.r1i1p1.RCA4.v1.3hr.tas.v20180109|esg-dn1.nsc.liu.se
cordex.output.AFR-44.SMHI.CCCma-
CanESM2.historical.r1i1p1.RCA4.v1.3hr.rsds.v20180109|esg-dn1.nsc.liu.se
cordex.output.AFR-44.SMHI.CCCma-
CanESM2.historical.r1i1p1.RCA4.v1.3hr.hurs.v20180109|esg-dn1.nsc.liu.se

Simulations (2006–2100):

cordex.output.AFR-44.SMHI.CCCma-
CanESM2.rcp45.r1i1p1.RCA4.v1.3hr.tas.v20180109|esg-dn1.nsc.liu.se
cordex.output.AFR-44.SMHI.CCCma-
CanESM2.rcp45.r1i1p1.RCA4.v1.3hr.hurs.v20180109|esg-dn1.nsc.liu.se
cordex.output.AFR-44.SMHI.CCCma-
CanESM2.rcp45.r1i1p1.RCA4.v1.3hr.rsds.v20180109|esg-dn1.nsc.liu.se

Appendix B

Sensitivity of WBGT to Air Temperature (Ta) and Relative humidity (Rh). (WBGT used for the sensitivity

analysis is derived using the software “WBGT”, developed by Liljegren JC, Carhart RA, Lawday P, Tschopp

S, Sharp RJJoo, hygiene e (2008), who model the wet bulb globe temperature using standard meteorological

measurements. 5:645–655).
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−

Figure A1. Mean 24 h WBGT (◦C) variability for one grid-cell in the year 2000, 2050 and 2100.
WBGT calculated using near-surface relative humidity (RH, %), surface down welling shortwave
radiation (Rs, W m−2) and surface air temperature (Ta, ◦C) at 2 m were derived from historical (year
2000) and RCP4.5 simulations (years 2050 and 2100) with the Second-Generation Canadian Center for
Climate Modelling and Analysis Earth System Model (CanESM2) [56].
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Appendix C

Appendix C.1 Bias of CORDEX RCM Surface Temperature Data as Compared to Observations from
Meteorological Stations

Appendix C.1.1 Introduction

When using climate simulation data for prognostic studies, it is important to quantify the bias
between observed and simulated data. Either in order to do a bias correction or to get an estimate of
the uncertainty of the prognoses done and the potential effects on downstream calculations. Here,
we briefly described such a comparison between observations and model estimates, including potential
effects on calculated WBGT.

Appendix C.1.2 Data and Methodology

Data

From the 3h CORDEX, surface air temperature data was a daily mean temperature calculated for
the locations of 18 meteorological stations within the study area for the period 2006–2019 (Table A1).
In total, 63027 daily mean temperature observations were used. These temperatures were compared to
daily mean temperature data for the corresponding stations that were downloaded from the Global
Surface Summary of the Day (GSOD) database provided by the National Oceanic and Atmospheric
Administration (NOAA) at https://www.nodc.noaa.gov/ (Table A1).

Table A1. Meteorological stations used. United State Air Force number (USAF), station name, country,
latitude, longitude and altitude.

USAF Station Name Country
Latitude

[Degrees]
Longitude
[Degrees]

Altitude
[m]

636020 ARUA Uganda 3.05 30.917 1211
636300 GULU Uganda 2.806 32.272 1069
636310 LIRA Kenya 2.283 32.933 1189
637720 LAMU MANDA Kenya −2.252 40.913 6
636710 WAJIR Kenya 1.733 40.092 234
639620 SONGEA Tanzania −10.683 35.583 1067
637260 KABALE Uganda −1.25 29.983 1869
636020 ARUA Uganda 3.05 30.917 1211
636120 LODWAR Kenya 3.122 35.609 522
639710 MTWARA Tanzania −10.339 40.182 113
636120 LODWAR Kenya 3.122 35.609 522
636410 MARSABIT Kenya 2.300 37.900 1345
636610 KITALE Kenya 0.972 34.959 1850
636860 ELDORET Kenya 0.483 35.300 2120
637170 NYERI Kenya −0.500 36.967 1759
637230 GARISSA Kenya −0.464 39.648 148
637400 NAIROBI JKIA Kenya −1.319 36.928 1623
638700 ZANZIBAR Tanzania −6.222 39.225 16

Methodology

For each station and year was the corresponding goodness of fit (R2), Mean Absolute Error,

MAE =
∑n

i=1 |Poi−Psi|
n and the Percent Bias PBIAS =

∑n
i=1(Poi−Psi)∑n

i=1 Poi
suggested by Luo et al. (2018).

Results

In total, 252 station years and 63027 daily mean temperature observations were used. R2 ranged
from 0.0 to 0.42, and PBIAS ranged from −13.9% to 36.5% with a mean of 0.37%. MAE ranged from
−2.3 ◦C to 6.5 ◦C with a mean of 0.04 ◦C. Approximately 80% of the observations (Figure A3a) show
a MAE of 1 ◦C or less, whereas the percent bias is 5% or less for about 60% of the 252 station years
studied (Figure A3b). Station 636410 (MARSABIT, Kenya) stands out with PBIAS ranging from 23 to
36% and MEA ranging from 1 to 6.5 ◦C. This indicate that, for most stations, the systematic error is low
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when described on an annual basis. This does not exclude larger unsystematic errors during shorter
periods and individual days (Figure A4 gives an example for one year and one station.).

 

−

  

(a) (b) 

Figure A3. Distribution describing the relative and cumulative distributions of the mean absolute error
(a) and percent bias (b) for 252 station years of Global Surface Summary of the Day (GSOD) daily man
temperature compared to surface air temperature from a regional climate model for CORDEX-Africa.
Both the error and the bias are centered around 0 indicating no systematic deviations.

 

 

−

−

−
− −

Figure A4. Comparison of mean daily surface temperature from Zanzibar (Station Temp. In graph)
versus the mean daily surface temperature from CORDEX (RCM Temp) for the year 2016. (a) The mean
daily observed temperature is in black and the CORDEX temperature is in blue. (b) Daily temperature
difference (observed-CORDEX) and (c) scatterplot of observed versus estimated (RCM) temperature.

Appendix C.1.3 Implications for WBGT

The effect of the uncertainty or bias of CORDEX-predicted surface air temperature (Ta, the most
important input when calculating WBGT) was quantified by recalculation of WBGT for February-March
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2050 (corresponding to Figure 2b in the main paper) using Ta − 2 ◦C and Ta + 2 ◦C. We consider ±2 ◦C
as a reasonable approximation of the uncertainty of the CORDEX-predicted surface air temperature
based on Figure A3b. Figure A5 describe the spatial distribution of the outputs as well as the
histograms for WBGT calculated with Ta − 2, Ta, Ta + 2. The increase in WBGT (February–March, 2050)
when using Ta + 2 compared to using Ta (Figure A6a) range from about 1.5◦ to 2.1◦ The decrease in
WBGT (February–March, 2050) when using Ta−2 compared to WBGT calculated with Ta range from
approximately −2.1◦ to −1.5◦ (Figure A6b).

 

 

(a) 

   

(b) 

−

Figure A5. Maximum WBGT for February-March in 2050 assuming a data uncertainty of the surface
air temperature of ±2 ◦C. Spatial distribution (a) and histograms with cumulative distributions in blue
of maximal WBGT (b).

 

  

(a) (b) 

−

Figure A6. Relative and cumulative (blue line) distributions of the effects of an uncertainty of ±2 ◦C
in air surface temperature on maximum WBGT for February-March 2050. WBGT[C] (x-axis) is the
difference (WBGTTa+2–WBGTTa) assuming Ta to be CORDEX Ta + 2 ◦C (a) and (WBGTTa–2–WBGTTa)
assuming Ta to be CORDEX Ta − 2 ◦C (b).
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