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1. Introduction

As they continue to become faster and cheaper, devices with enhanced computing
and communication capabilities are increasingly incorporated into diverse objects and
structures in the physical environment. Harnessing these capabilities will provide the
basis for applications offering enormous societal impact and economic benefit, linking
the cyber world of computing and communications with the physical world. Such appli-
cations are called cyber-physical systems (CPSs). It is evident that as direct interactions
between real-world entities (including human activities) and cyber systems become more
commonplace, the trustworthiness of such systems will become an increasingly important
issue. Here, we use the term system trustworthiness in a broad sense to describe systems
that demonstrate reliable functionality and are worthy of user confidence, such that they
guarantee continuous service in response to internal errors or external attacks [1].

While CPSs traditionally involve static equipment and stable networks, the devel-
opment of increasingly pervasive mobile devices has generated considerable attention
in mobile CPSs (MCPSs). By exploiting the advantages of CPSs through mobile devices,
such as the iPhone and Android phones, with their increasing processing power, range
of sensors, and pervasive cellular connections, MCPSs provide expanded applicability,
including access to networks comprising multiple mobile devices, such as vehicle net-
works. Owing to the instability of mobile networks and the variable computing power of
individual mobile devices, many studies have been performed to address various aspects
supporting the efficient cooperation and performance of MCPSs. In particular, the timeli-
ness of data transferal is essential because delays and failures due to bottlenecks stemming
from variable network environments can adversely affect the entire system.

The objective of this Special Issue is to contribute to the advancement of research on
a wide variety of topics involved in the development of modern and future trustworthy
MCPSs, including design, modeling, verification and validation, dependability, resilience,
security, safety, and run-time resource optimization. It is imperative to address the issues
that are critical to the mobility of MCPSs, report significant advances in the underlying
science, and discuss the challenges facing the development and implementation of specific
MCPS applications, including those associated with aerospace, autonomous automotive
systems, automatic pilot avionics, smart grids, and distributed robotics. Such applications
will empower the true vision of MCPSs, driving the evolution of human interactions with
the physical world. Moreover, technologies utilizing CPSs will emerge as key drivers in
the development of a future autonomous and smart-connected world.

As a side note, we focus on methods for integrating MCPSs with artificial intelligence
(AI) without compromising the trustworthiness of the system. AI-enabled CPSs combine
computational capabilities with the ability to control and sense physical space. For example,
the behavior of autonomous CPSs, such as self-driving cars and autonomous drones in
open environments is often determined by AI and machine learning algorithms. However,
the use of data-driven deep learning techniques for perception and control in autonomous
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CPSs has raised concerns regarding the safety and robustness of autonomous systems.
When operating in a physical environment, the unexpected action of AI-enabled CPSs can
inflict critical damage on the surrounding environment, including the potential endan-
germent of humans. Therefore, AI-enabled MCPSs should satisfy stringent regulations
regarding their trustworthiness. Although sophisticated testing plays an important role in
ensuring the safety and robustness of such systems, the complexity of modern autonomous
CPSs means that evaluating trustworthiness via testing alone is insufficient. Formal ver-
ification reduces the burden on the testing process by ruling out large classes of errant
behaviors at the design stage. Nevertheless, the introduction of a standard methodology
for developing formal methods for autonomous AI-enabled CPSs is essential.

2. Review of Issue Contents

This Special Issue presents nine original papers covering the latest advances and
technologies involved in the design of reliable, resilient, secure, and intelligent MCPSs.
Moreover, each paper contributes research that offers insights regarding trustworthiness
in MCPSs.

Artificial intelligence models, especially deep neural networks such as convolutional
neural nets (CNNs), tend to have many learning parameters, thus making their integration
into small embedded CPSs, such as mobile phones, challenging. In response to this issue,
Lee et al. in [2] suggested a new model compression framework based on sparse coding
and knowledge distillation with adversarial training, thereby producing compact CNN
architectures that maintain robustness against adversarial perturbed inputs. Furthermore,
the authors provide training algorithms based on the alternating direction method of
multipliers (ADMM), which is more memory-efficient than existing CNN pruning methods
and, therefore, more suitable for AI-enabled MCPSs.

In [3], Kim et al. propose two novel data quality measures suitable for large-scale high-
dimensional data. As low-quality data can degrade prediction accuracy and inference bias,
measuring the data quality is an important first step in successful AI applications. In MCPS,
the use of AI often requires regular updates, while detecting inference bias when operating
at the AI runtime is difficult; therefore, a data quality check is essential. This study also
proposes efficient algorithms based on random projections and bootstrapping, enabling
the suggested measures to be computed for large-scale and high-dimensional data, thus
representing a departure from existing data quality measures.

Automotive systems are typical examples of CPSs in which embedded software is the
main element controlling the mechanical components of the vehicle. Internet-connected
software components can be victims of security attacks at any time, and CAN (Controller
Area Networks), an in-vehicle network system connecting individual electronic control
units (ECUs), serves as a breach point to break vehicle safety.

MAuth-CAN [4] is a new CAN authentication technique that protects ECUs from
attacking messages based on a centralized node called an authenticator. It is secure against
masquerade attacks by a compromised node and protects the authenticator node from bus-
off attacks that can temporarily force an ECU to leave CAN. However, the use of a central
node causes an additional authentication delay. Thus, in accordance with regulations such
as ISO 26262, the efficacy of the MAuth-CAN must be formally verified before it can be
used for commercial vehicles.

Cho et al. [5] present formal proof that MAuth-CAN is consistently resistant against
message flooding and Bus-Off attacks and provide formal CAN models at various levels,
which can be used to analyze CAN applications. Via model checking, the complicated
behavior of CAN in the media access control level of the data link layer connecting to
MAauth-CAN was checked exhaustively to prove its resilience and sustainability under
such attacks. These results can be used to obtain safety certificates from regulatory authori-
ties, while the methodology and the CAN models can be used to secure safety certificates
regarding CAN applications.
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Public key encryption with keyword search (PEKS) functionality enables users to
search for encrypted data that has been outsourced to an untrusted server. Unfortunately,
updates to the outsourced data may cause information leakage by exploiting the queries
previously submitted in PEKS. Yoon et al. [6] address this by proposing a novel forward
private PEKS scheme based on software guard extension (SGX), a trusted execution envi-
ronment provided by Intel. By utilizing SGX, the proposed scheme presents substantial
performance improvements compared with prior work. Owing to the readiness with which
a trusted platform such as SGX can be integrated with many current CPSs, this research
also has implications for security enhancements in CPS environments.

Event-based systems (EBSs) are prevalent in MCPS applications owing to their com-
munication model, which uses implicit invocation and concurrency between components.
However, the non-determinism of EBSs during event processing can introduce inherent
security vulnerabilities into the system. Many types of attack can incapacitate and/or
damage a target EBS by exploiting this event-based communication model. To minimize the
security risks to EBSs, the security flaws of such systems, the relationships between these
flaws, and feasible techniques for dealing with each flaw must be determined. However,
existing security flaw taxonomies do not appropriately reflect the inherent security issues
of EBSs. Therefore, Lee et al. [7] introduced a new taxonomy that defines and classifies the
inherent security flaws of EBSs, which can serve as a basis for resolving its specific security
problems. Moreover, the authors correlated their taxonomy with security attacks designed
to target specific flaws and identified existing solutions for the prevention of such attacks.

In [8], Ali et al. describe an energy minimization technique for mixed-criticality real-
time scheduling on a single-core system. The main contribution of the proposed technique
is that it allows the processor frequency to be controlled dynamically depending on the
system criticality mode. Through a series of simulations, they demonstrated and analyzed
the effects caused by both low-and high-criticality modes in power-aware mixed-criticality
systems. As safety and power awareness are both issues for MCPSs, this study offers
valuable insights for power-aware safety-critical CPSs.

Safety and efficiency provide the focus in [9], in which Kwon et al. propose a system
that dynamically controls the all-red signal length based on the driving characteristics of
vehicles identified as red-light runners (RLRs) to improve the overall safety and efficiency
of intersections in road networks. The proposed system uses a multi-channel deep convo-
lutional neural network (MC-DCNN) to enable the online detection and classification of
RLRs, which can be defined using clustering results acquired via dynamic time wrapping
(DTW) and hierarchical clustering analysis (HCA). For dynamic all-red signal control, the
proposed system uses a multi-level regression model to estimate the necessary all-red
signal extension time more accurately, thereby improving the overall safety for intersection
traffic as well as efficiency of the traffic flow.

By contrast, the study conducted by Oh et al. [10] concerns real-time data transmission
to mobile equipment used by groups of workers, termed a mobile sink group (MSG),
for which rapid and reliable data are vital to ensure the efficient operation of groups
working on collaborative projects, which often involve multiple pieces of equipment where
miscommunication could result in an industrial accident. The authors proposed a real-time
data delivery mechanism based on a virtual grid structure to support MSGs. The main idea
is to determine the farthest distance and calculate the minimum real-time data transmission
speed required.

First, the proposed scheme models the MSG as a single center point and radius, and
defines the end-to-end distance based on the member sink located furthest from the source
node. Thus, the source node can calculate the transmission speed, which is maintained
during the data transmission. The data transmission process is divided into two main
phases: the main forwarding phase, which passes through the center of the mobile sinks
from the source node, and the branch forwarding phase at the branch point, which receives
data via the main forwarding phase. In addition, even if some mobile sinks deviate from
the initial radius owing to environmental factors associated with MCPSs, the connection of

3



Appl. Sci. 2021, 11 , 1676

the sinks is ensured through the inner/outer agent concept. Thus, the proposed scheme
can deliver data to all member sinks in a timely manner and is superior to existing schemes
in terms of real-time communication for MSGs.

Finally, in [11], Choi et al. address an important system optimization problem faced by
automotive control systems. More specifically, a control application based on AUTOSAR
(AUTomotive Open System Architecture) [12] is assumed, whereby fine granular schedule
entities (i.e., runnables) are used to compose a control application. For this purpose, the
authors propose a Lagrange multiplier-based runnable period optimization method that
maximizes the level of system control, which is useful for the development of future MCPSs,
where design optimization is a fundamental consideration.

3. Conclusions

This Special Issue presents new and innovative research addressing some of the
many scientific challenges associated with improving the trustworthiness of MCPSs. We
emphasize the need for a better understanding of the security and reliability of MCPS
as well as the impacts of AI, and demonstrate procedures for solving the adverse effects
caused by these impacts. As such, the studies contained within this volume provide a
valuable basis for the protection and promotion of resilient MCPSs.
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Abstract: Convolutional neural networks (CNNs) have achieved tremendous success in solving
complex classification problems. Motivated by this success, there have been proposed various
compression methods for downsizing the CNNs to deploy them on resource-constrained embedded
systems. However, a new type of vulnerability of compressed CNNs known as the adversarial
examples has been discovered recently, which is critical for security-sensitive systems because the
adversarial examples can cause malfunction of CNNs and can be crafted easily in many cases. In
this paper, we proposed a compression framework to produce compressed CNNs robust against
such adversarial examples. To achieve the goal, our framework uses both pruning and knowledge
distillation with adversarial training. We formulate our framework as an optimization problem
and provide a solution algorithm based on the proximal gradient method, which is more memory-
efficient than the popular ADMM-based compression approaches. In experiments, we show that
our framework can improve the trade-off between adversarial robustness and compression rate
compared to the existing state-of-the-art adversarial pruning approach.

Keywords: model compression; adversarial robustness; weight pruning; adversarial training; distil-
lation; embedded system; secure AI

1. Introduction

In the past few years, convolutional neural networks (CNNs) have achieved great
success in many applications including image classification and object detection. Despite
the success, the excessively large amount of learning parameters and the vulnerability
for the adversarial examples [1–8] are making it difficult to deploy CNNs especially on
resource-constrained environments such as smartphones, automobiles, and wearable de-
vices. To overcome this drawback, various model compression methods have been pro-
posed, where many are based on weight pruning [9–17]. Weight pruning generates sparse
learning weights by solving an optimization problem with sparsity constraints on the
weights, and then the actual compression is accomplished by removing zero weights from
a trained model. Although their approach is quite simple, state-of-the-art weight pruning
methods [16,17] achieve a high compression rate with little drop in accuracy.

On the other hand, it has been reported that even the state-of-the-art CNNs are vulner-
able to adversarial attacks [1–8]. Adversarial attacks are accomplished by using perturbed
inputs which cause misclassification where modification is nearly imperceptibly small.
Such perturbation can be easily produced by exploiting the gradient information of the
target neural network [1,4,6]. Furthermore, some works show that adversary can even gen-
erate adversarial examples without knowing anything about the target neural network [5].
Adversarial training [1,6] has been proposed as a countermeasure to adversarial attacks
bringing robustness to neural networks against adversarial inputs. This method trains a
classifier not only with training examples but also with adversarial examples generated ac-
tively by the defender for known types of adversarial perturbations. In particular, projected
gradient descent attack [6]-based adversarial training is known to provide high robustness
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against the first-order adversary [1,4,6]. However, it has been shown that adversarial train-
ing requires a significantly large capacity of the neural network to achieve high accuracy
on both original and adversarial examples [6].

Recently, the vulnerability of the compressed neural network is raised as an issue [18].
As shown in Madry et al. [6] the adversarial robustness of compressed neural networks is
hard to achieve due to the lack of its architectural capacity. This prevents the compressed
neural network from being deployed to a trust-sensitive domain. Despite the seriousness
of this problem, only a few methods have been proposed [19,20]. One notable technique is
to consider adversarial robustness and model compression at the same time. Ye et al. [19]
and Gui et al. [20] formulated an optimization problem by combining adversarial training
with pruning and solved it with the alternating direction method of multiplier (ADMM)
framework. These works demonstrated that considering weight pruning and adversarial
training concurrently can show a better trade-off between robustness and compression
rate than considering them separately. However, the ADMM framework requires two
auxiliary tensors each of which has the same size as the learning parameters tensor of a
CNN: this leads to a heavy memory burden for a resource-constrained environment. In
this paper, we show that the joint optimization of pruning and adversarial training can be
solved more memory efficiently using the proximal gradient method (PGM) without any
auxiliary tensors.

Furthermore, we found that consistently providing information about the pretrained
original network during adversarial training can improve the robustness of the resulting
compressed network. With this intuition, we propose a novel robust pruning framework
that jointly uses pruning and knowledge distillation [21] within the adversarial training
procedure. Knowledge distillation is a technique to transfer the information of a network
(teacher) to another network (student) by minimizing the gap between the SoftMax outputs
of the two networks. In our framework, we use a pretrained original network as the teacher
and provide its SoftMax output to a student network being compressed. We summarize
our contribution as follows:

• We propose a new robust weight compression framework for CNNs that uses pruning
and knowledge distillation jointly within the adversarial training procedure. Our
method is described as an optimization problem which deals with pruning, knowl-
edge distillation, and adversarial training concurrently.

• We show that our optimization problem can be solved with the proximal gradient
method. Although the popular ADMM approach can also solve our optimization
problem, it must keep two auxiliary tensors during optimization which can be a bur-
den for a memory-constrained environment. Our proximal gradient-based approach
solves the optimization problem without using any auxiliary tensor.

• In experiments, we demonstrated that the knowledge distillation in our framework im-
proves the adversarial robustness of the compressed CNNs. In addition, our method
showed a better trade-off between adversarial robustness and compression rate com-
pared to the state-of-the-art methods [15,19,22].

2. Related Works

2.1. Adversarial Attacks

Adversarial attacks try to find allowable perturbations to change the prediction result
of the target network. In the image classification domain, the set of allowable perturbations
is generally defined by bounding the �p norm of perturbation to satisfy an imperceptibility
constraint. Such perturbation can be generated by exploiting the information of the target
network. According to the amount of this information, adversarial attacks are categorized
into the black-box and white-box attacks. A black-box attack assumes a weak adversary
who does not have any information about the target model. In this situation, the adversary
must rely on query access for chosen input data [5] or the transferability of adversarial
examples [2,3]. In a white-box setting, an adversary can access the details of the target
model such as the structure, the parameters, the training dataset, etc. Based on the strong
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assumption, most white-box attack methods [1,4,6] exploit the first-order information of
the target model to generate sophisticated perturbations. In this paper, we focus on the
white-box attacks because it is important to study such attacks to implement effective
defenses.

2.2. Adversarial Training

Adversarial training is a simple and intuitive learning strategy to enhance the robust-
ness of a neural network against adversarial attacks. It generates adversarial examples
using a first-order white-box attack [1,4,6] while training a neural network so that the
network will correctly classify not only the training examples but also the generated exam-
ples. Adversarial training with a single-step attack such as the fast gradient sign method
(FGSM) [1] is known to suffer from so-called label leaking [23] caused by the correlation
between perturbation and true label. To prevent label leaking and to generate strong adver-
sarial examples, Madry et al. [6] proposed projected gradient descent (PGD) attack-based
adversarial training.

2.3. Weight Pruning

Weight pruning is a model compression technique to make unimportant learning
weights to the zero value resulting in sparse weights, and thereby to remove redundant
connections or components from a neural network. According to the unit of pruning,
weight pruning is categorized into element-wise pruning and filter-wise pruning.

In their early stage, pruning methods focused on element-wise pruning that gener-
ates irregular sparsity patterns. To set the values of redundant weights to zero, element-
wise pruning [9] measures the importance of weights usually by their absolute values.
Han et al. [10] showed that this simple pruning process can be effectively combined with
weight quantization and Huffman coding to achieve further compression.

Filter-wise pruning is getting more interest since it is more adequate for GPU accel-
eration as well as compressing convolution filters in CNNs. Some primary works prune
the filters of CNN by measuring their importance by �2 norm [13] or by the number of
effects on activation map [12]. Based on these works, several advanced filter pruning
methods [14–17,24] have been proposed by varying the ways of measuring the importance
of each filter and the composition of the pruning procedure.

2.4. Knowledge Distillation

The main idea of the knowledge distillation [21] is to transfer the knowledge of a
trained teacher network to a student network by training the student network using the
input and the SoftMax output of the teacher. In the early stage, it is usually applied for
model compression and achieved by transferring the knowledge of an over-parameterized
teacher model to a smaller student model. Bucila et al. [25] primarily used this strategy with
unlabeled synthesized data to transfer the knowledge of a large ensemble teacher. Hinton
et al. [21] formally defined the knowledge distillation loss with temperature and showed
that distillation is effective for transferring knowledge with the original training dataset.

Distillation also can be used as a defense to adversarial examples. The defensive
distillation [22] achieves adversarial robustness by applying distillation on student and
teacher models which have the same structure. However, it has been shown that the defense
can be easily broken [4].

Many methods have been proposed to improve the effectiveness of distillation. Distil-
lation with boundary support samples [26] tries to improve the generalization performance
of a student model by conducting the distillation with the adversarial examples near the
decision boundary. Distillation with teacher assistant [27] fills the gap between student and
teacher models by using intermediate models called teacher assistants.
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2.5. Adversarially Robust Model Compression

To preserve the robustness of the compressed model, adversarial pruning can be
applied in most cases which combines the ideas of adversarial training and pruning.
Ye et al. [19] and Gui et al. [20] formulated an objective which includes both adver-
sarial training and sparsity constraints, and showed that applying adversarial training
and pruning concurrently generated better robustness than applying them separately.
Xie et al. [28] used blind adversarial training [29] during adversarial pruning which gener-
ated adversarial examples dynamically during adversarial training to reduce the sensitivity
to the budget of adversarial examples. Madaan et al. [30] proposed a new pruning crite-
rion to reduce the vulnerability of latent space represented by the difference between the
activation map of adversarial example and its original input.

Some works also considered the adversarial robustness of different types of compres-
sion to pruning. Bernhard et al. [31] observed that the change of adversarial robustness
according to the different levels of quantization. Lin et al. [32] proposed a defensive quanti-
zation method that reduced the sensitivity to the input of the neural network. Goldblum
et al. [33] used knowledge distillation to transfer the robustness of an over-parameterized
model to a predefined smaller model.

3. Methods

The main objective of our suggested method is to preserve the adversarial robustness
of CNNs during the pruning procedure. An adversarially robust CNN should demonstrate
high generalization performance on both original and adversarial inputs. One existing
approach to generate such a CNN is adversarial pruning, which is the combination of adver-
sarial training and pruning. However, adversarial pruning alone is not enough to achieve
the goal since the decision boundary of the original network is quickly collapsed during
the initial stage of the pruning procedure due to the decrease of network capacity, which
results in a large decrease in generalization performance on the original inputs. To solve
this problem, we propose a novel robust pruning framework that combines adversarial
pruning with knowledge distillation. Using the combination, we can provide information
of the decision boundary of the original network consistently during adversarial pruning.

In this section, we first describe our definition of the adversary, and then formulate our
entire framework as a single optimization problem showing that it can be solved efficiently
by the proximal gradient method without using any auxiliary tensors.

3.1. The Attack Model

Before describing our proposed method, we first elaborate on the attack model. For
the purpose, let us define the SoftMax output of a CNN with weight parameter w ∈ R

p as
f (·; w). Let the data pairs {(xi, yi)}n

i=1 be a training dataset. Here, xi ∈ R
d is an input and

yi ∈ {0, 1}k is the corresponding one-hot encoded true label. Then, the training procedure
of CNN can be described as the following optimization problem.

w∗ ∈ arg min
w∈Rp

1
n

n

∑
i=1

L( f (xi; w), yi). (1)

Here, L is the cross-entropy loss [34] that indicates the gap between the SoftMax
output and the true label. For the given discrete probability distribution p and q, the
cross-entropy loss is defined as follows:

L(q, p) = −∑
k

pk log qk.

The objective of the adversary is changing the prediction result of the trained CNN
by adding an imperceptible perturbation on the input image, which can be generated by
both targeted attack and untargeted attack. In the targeted attack, the adversary generates
perturbation that minimizes the cross-entropy between the SoftMax output and the pre-
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defined target label that is different from the true label. Given input data pair (x, y) and
target label yt, the targeted attack can be described as follows:

min
δ∈Δ

L( f (x + δ; w∗), yt), such that yt �= y. (2)

Since the effectiveness of the targeted adversarial attack varies depending on the
chosen target label, most robust pruning literature [19,20,30] focus on the untargeted
attack for experimenting with adversarial examples, and we take the same approach.
In untargeted adversarial attack, we generate adversarial examples by maximizing the
cross-entropy between the SoftMax output and the true label:

max
δ∈Δ

L( f (x + δ; w∗), y). (3)

Also, we suppose a white-box setting where the adversary has full knowledge about
the target CNN. In this case, the adversary can solve (2) and (3) by exploiting the gradient
of the target CNN.

3.2. Adversarial Pruning with Distillation

Adversarial training is a type of robust optimization procedure which can be stated
by the following min-max problem:

w∗
den ∈ arg min

w∈Rp

1
n

n

∑
i=1

max
δ∈Δ

L( f (xi + δ; w), yi). (4)

To solve the inner maximization problem of (4), we consider the projected gradient
descent (PGD) attack method [6] with an �∞-norm feasible set. For a given data pair (x, y),
the PGD attack is defined as follows:

xt+1 = ΠB(x,ε)(xt + α · sgn(∇xtL( f (xt + δ; w), y))). (5)

Here, ΠB(x,ε) is a projection operation to the �∞-norm ball around x defined as
B(x, ε) := {x + δ : ‖δ‖∞ ≤ ε}. Let us note that uniformly distributed random noise
is added to x in the initial stage of the PGD attack to prevent the label leaking problem [23].
The solution of (4) which we denote as w∗

den is generally non-sparse since there is no sparse
constraint on this optimization problem. By adding a sparse regularization term to (4), we
can obtain the objective of adversarial pruning,

w∗
spa ∈ arg min

w∈Rp

1
n

n

∑
i=1

max
δ∈Δ

L( f (xi + δ; w), yi) + λ‖w‖0, (6)

where λ > 0 is a hyperparameter to control the sparsity of w.
Generally, the solution of (1), denoted by w∗, is used as initial weights for solving (6).

Here, our question is how we effectively preserve the accuracy of w∗ on original inputs
during adversarial pruning procedure. The accuracy on the original inputs is largely
dropped during the adversarial pruning procedure since the one-hot encoded label yi in (6)
does not contain any information about the decision boundary of w∗.

To consistently provide the information of w∗ during pruning, we combine the knowl-
edge distillation idea with adversarial pruning. In our method, the pretrained network
works as a teacher and provides SoftMax output f t(·; w∗) on original input during adver-
sarial pruning procedure. The proposed objective is formulated as follows:

min
w∈Rp

1
n

n

∑
i=1

(1 − α)L( f (xi + δ; w), yi) + αt2L( f t(xi + δ; w), f t(xi; w∗)) + λ‖w‖0. (7)
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Here, δ is the solution of (3) and t is a distillation hyperparameter [21]. The t2 is
multiplied in front of the second term to prevent the shirking of gradient problem [21]. The
second term in (7) is distillation loss which indicates the cross-entropy between SoftMax
output of the currently pruned model f (·; w) and the teacher model f (·; w∗). The overall
formulation of (7) can be interpreted as the linear combination of the adversarial pruning
loss (6) and the distillation loss. By solving (7), we can obtain a sparse but robust solution
that approximates the decision boundary of w∗. Our framework can be extended for
filter pruning by replacing the third regularizer term with the number of non-zero filters
as follows:

min
w∈Rp

1
n

n

∑
i=1

(1 − α)L( f (xi + δ; w), yi) + αt2L( f t(xi + δ; w), f t(xi; w∗))

+λ
G

∑
g=1

�[‖wg‖2 �= 0].

Here, G is the number of filters and wg is the weight vector of gth filter.

3.3. Optimization

Most of the adversarial pruning approaches use the alternative direction method of
multiplier (ADMM) method to solve the resulting optimization problem, for example, Ye
et al. [19] and Gui et al. [20]. However, by construction, the ADMM requires using two
additional tensors to the learning weights during optimization, which can be preventive
on a resource-constrained environment with limited memory. Here, we suggest another
algorithm based on the proximal gradient method to solve our proposed optimization
problem (7) which does not require such auxiliary tensors. For simplicity, we denote the
linear combination of two cross-entropy loss in (7) by LAPD:

LAPD(w) =
1
n

n

∑
i=1

(1 − α)L( f (xi + δ; w), yi) + αt2L( f t(xi + δ; w), f t(xi + δ; w∗)). (8)

Here, APD stands for adversarial pruning with distillation. Then we can rewrite (7) as

min
w∈Rp

LAPD(w) + λ‖w‖0. (9)

By applying a second order Taylor approximation on wk and Hessian approximation
with ∇2Lapd(wk) ≈ 1

ηk
Ip×p for a ηk > 0 to (9), we obtain the following formulation:

LAPD(w) ≈ LAPD(wk) +∇LAPD(wk)
	(w − wk) +

1
2ηk

‖w − wk‖2.

Here, Ip×p indicates the identity matrix where the shape is p × p. Based on this
successive approximation result, the weight update can be formulated as follows:

wk+1 = arg min
w∈Rp

LAPD(wk) +∇LAPD(wk)
	(w − wk) +

1
2ηk

‖w − wk‖2 + λ‖w‖0.

By removing the redundant parts of the above weight update equation, we can obtain

wk+1 = arg min
w∈Rp

1
2ηk

(
2ηk∇LAPD(wk)

	w + ‖w‖2 − 2w	wk

)
+ λ‖w‖0.

We can rewrite the above equation as follows:

wk+1 = arg min
w∈Rp

1
2ηk

(
‖w‖2 − 2w	(wk − ηk∇LAPD(wk))

)
+ λ‖w‖0.
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By adding a constant ‖wk − ηk∇LAPD(wk)‖2, we can obtain

wk+1 = arg min
w∈Rp

1
2ηk

(
‖w‖2 − 2w	(wk − ηk∇LAPD(wk)) + ‖wk − ηk∇LAPD(wk)‖2

)
+ λ‖w‖0.

Then, we can get the following equation:

wk+1 = arg min
w∈Rp

1
2ηk

‖w − (wk − ηk∇LAPD(wk))‖2 + λ‖w‖0.

This is exactly the form of proximal operator which is described as

wk+1 = proxηkλ‖w‖0
(wk − ηk∇LAPD(wk)).

For each element, proximal operator with �0 regularization term can be computed as

(wk+1)i =

{
(wk − ηk∇LAPD(wk))i, |(wk − ηk∇LAPD(wk))i| >

√
λ

0, |(wk − ηk∇LAPD(wk))i| ≤
√

λ
.

It is simply the thresholding operation which sets the updated weight parameter
smaller than

√
λ to zero. Let us note that by controlling the value of λ, we can explicitly

manipulate the sparsity of network. The entire process of our method is described at
Algorithm 1.

Algorithm 1: Adversarial Pruning with Distillation (APD)
Input: a distillation temperature t, a learning rate for the student ηs, a learning

rate for the teacher ηt, the train dataset {(xi, yi)}n
i=1 where xi ∈ R

d,
yi ∈ {0, 1}k, the �∞ bound ε for imperceptibility;

Initialize the student weight vector ws ∈ R
p;

Initialize the teacher weight vector wt ∈ R
p;

while wt not converged do
Sample a data pair (x,y) from the train dataset;
Compute L( f (x; wt), y);
Weight Update: wt ← wt − ηt∇L( f (x; wt), y);

end
while ws not converged do

Sample a data pair (x,y) from the train dataset;
For each pixel of x, generate a uniformly random noise

ε = (ε1, · · · , εd) ∼ U (−ε, ε);
xadv ← x + ε;
while xadv not converged do

Update: xadv = ΠB(x,ε)(xadv + α · sgn(∇xadvL( f (xadv, ws), y))) ;
end

Compute the teacher SoftMax output: f t(x; wt);
Compute the student SoftMax output: f t(xadv; ws);
Compute LAPD(ws) with (8);
Update weight: ws = proxηsλ‖·‖0

(ws − ηs∇LAPD(ws))

end
return ws;

4. Experiments

To demonstrate that our method improves the adversarial robustness of the pruned
network, we applied our method on three popular CNNs: LeNet [35] with the MNIST
dataset, and VGG16 [36], ResNet18 [37] with the CIFAR10 dataset [38]. The MNIST
dataset consists of 28 × 28 gray-scaled images with 60,000 trainset and 10,000 testset.
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The CIFAR10 dataset has 32 × 32 color images with 50,000 trainset and 10,000 testset. As
in Han et al. [10], we used the term “compression rate” to indicate the ratio of the number of
zeros to the number of entire weight parameters in a CNN. We denoted the test accuracy on
the original images as “original accuracy” and the test accuracy on the adversarial images
as “adversarial accuracy”. As in other literature [19,20,33], we consider that the robustness
of the model is improved when both the original accuracy and the adversarial accuracy are
improved. Otherwise, we consider a model with a higher mean value of the original and ad-
versarial accuracy to be more robust. Given the time spent on the adversarial training for the
large networks, we set the number of iterations of projected gradient descent (PGD) attack
to 5 for the adversarial training of VGG16 and ResNet18. In this case, we evaluated the ad-
versarial accuracy on both 10 iterations of PGD attack (denoted by PGD10) and 5 iterations
of PGD attack (denoted by PGD5). We followed the parameters of Ye et al. [19] for the rest
of the PGD attack parameters, which are strong enough to make the adversarial accuracy
of the naturally trained LeNet, VGG16, and ResNet18 close to zero. The implementation of
our method is available as open source (https://github.com/JEONGHYUN-LEE/APD).

4.1. The Effect of Knowledge Distillation

We compared the result of adversarial pruning (denoted by AP) (6) and our method
(denoted by APD) (7) to show the effectiveness of the knowledge distillation, for both
element-wise pruning and filter pruning. In this comparison, we set the value of α in (7)
to 1 to maximize the effect of the SoftMax output of the teacher network. Also, we set the
temperature t of the knowledge distillation to 10 for the MNIST dataset, and 100 for the
CIFAR10 dataset for a similar reason.

4.1.1. Element-Wise Pruning

Generally, the element-wise pruning [9,10] can achieve higher sparsity with only a few
accuracy drops compared to the filter pruning [11–15]. Therefore, we tested the element-
wise pruning on the relatively high compression rates (×2, ×3, ×4) compared to the filter
pruning [39]. As in Ye et al. [19], we applied the same sparsity for every convolution layer
in the target neural network. For instance, if the compression rate of a given network is
determined to ×2, we set the fraction of zero weights in every layer of this network equal
to 0.5. With this pruning scheme, we compared the element-wise pruning result of our
method (7) with adversarial pruning (6). Both methods were optimized with proximal
gradient descent. With this comparison, we demonstrated how much improvement was
achieved by the knowledge distillation of our method. The results on MNIST and CIFAR10
are summarized at Tables 1 and 2, respectively.

A popular small network LeNet [35] is enough to achieve a high accuracy on the
MNIST dataset. Our baseline LeNet, trained by the original training process achieves the
original accuracy of 99.34% and the adversarial accuracy of 0%. With LeNet, our method
(APD) showed a large improvement in both original accuracy and adversarial accuracy
over the adversarial pruning (AP). In the compression rate of ×2, APD improved the
original accuracy by 1.01 and the adversarial accuracy by 2.28% over AP. In the relatively
high compression rate of ×3 and ×4, APD achieved a larger improvement in both original
accuracy and adversarial accuracy. In particular, the amount of improvement in the adver-
sarial accuracy achieved by APD in the compression rate of ×3 and ×4 was over than 20%.
Compared to the baseline performance, APD achieved the compression rate of ×4 with the
adversarial accuracy of 94.25% while reducing the original accuracy by about 1%.

We also applied APD and AP to the two CNNs, VGG16 [36] and ResNet18 [37] with
the CIFAR10 dataset. Achieving high adversarial robustness on the CIFAR10 dataset is
more challenging since it requires a higher architectural capacity of the CNN compared
to the MNIST dataset. Our baseline VGG16 achieved the original accuracy of 92.99% and
the adversarial accuracy of 0%. Despite the difficulty, APD showed an improvement with
VGG16 in the entire compression rates. For instance, in the compression rate of ×4, APD
improved the original accuracy by 0.88% and the adversarial accuracy against both PGD5
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and PGD10 by more than 1% over AP. Though ResNet18 consists of fewer parameters than
VGG16 (11 M vs. 138 M), the generalization performance of Resnet18 for the CIFAR10
dataset is higher than that of VGG16. The baseline ResNet18 showed the original accuracy
of 94.40% and the adversarial accuracy of 0.03%. With ResNet18, APD improved the
original accuracy and adversarial accuracy against both PGD5 and PGD10 by more than
2% over AP in the entire compression rates. Based on those results, we can conclude
that consistently providing the SoftMax output of the baseline CNN with the knowledge
distillation improves the adversarial robustness of the element-wise pruning solution.

Table 1. Summary of element-wise pruning results of APD (ours) and AP on MNIST.

Network (Dataset) Comp Rate Method Org Accuracy (%) Adv Accuracy (%)

LeNet (MNIST)

×2
AP 97.82 92.83

APD 98.83 95.11

×3
AP 90.94 72.71

APD 98.55 94.51

×4
AP 94.45 71.63

APD 98.48 94.25

Table 2. Summary of element-wise pruning results of APD (ours) and AP on CIFAR10.

Network (Dataset) Comp Rate Method Org Acc (%)
PGD5 PGD10

Adv Acc (%) Adv Acc (%)

VGG16 (CIFAR10)

×2
AP 81.67 49.20 40.91

APD 82.44 50.63 42.24

×3
AP 80.72 48.70 40.87

APD 81.77 50.30 42.31

×4
AP 79.69 48.77 40.97

APD 80.57 49.93 42.06

ResNet18 (CIFAR10)

×2
AP 85.13 51.27 42.45

APD 87.56 54.65 45.55

×3
AP 84.67 51.79 42.64

APD 86.87 54.40 45.31

×4
AP 84.65 51.25 42.55

APD 86.73 54.23 45.61

4.1.2. Filter Pruning

The filter pruning [11–15] generates the sparse patterns more adequate for GPU
acceleration compared to the element-wise pruning [9,10]. However, the sparsity that the
filter pruning can achieve is often lower than that of element-wise pruning [39]. Therefore,
we set the smaller compression rates of ×1.5, ×2, and ×2.5 than those of the element-wise
pruning. As with element-wise pruning, we set the same sparsity for each convolution
layer. We compared our method (APD) with the adversarial pruning (AP) to show the
effectiveness of the knowledge distillation on the filter pruning. The results on MNIST and
CIFAR10 are summarized at Tables 3 and 4, respectively.

With LeNet, APD improved both original accuracy and adversarial accuracy in the en-
tire compression rates. For instance, in the largest compression rate of ×2.5, APD improves
the original accuracy by 0.36% and the adversarial accuracy by 1.44%. The improvement
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on the original accuracy tends to be smaller than the improvement on the adversarial
accuracy since the original accuracy is already closed to that of the baseline network. APD
also showed an improvement in both accuracy measures on the CIFAR10 dataset. With
VGG16, APD improved the original accuracy significantly in high compression rate. For
instance, in the compression rate of ×2.5, the original accuracy is improved by 5.23%. The
adversarial accuracy against both PGD5 and PGD10 attacks is also improved by APD. In
the compression rate of ×2.5, the adversarial accuracy increases by 2.09% against PGD5
attacks and 0.6% against PGD10 attacks. With ResNet18, APD also showed a consistent
improvement on both original accuracy and adversarial accuracy in the entire compression
rates. For instance, in the largest compression rate of ×2.5, APD improves the original
accuracy by about 2% and adversarial accuracy by about 1% against both PGD5 and PGD10.
Those results imply that the knowledge distillation in our method improves the adversarial
robustness of the filter pruning solution.

Table 3. Summary of filter-wise pruning results of APD (ours) and AP on MNIST.

Network (Dataset) Comp Rate Method Org Accuracy (%) Adv Accuracy (%)

LeNet (MNIST)

×1.5
AP 98.91 95.26

APD 99.18 96.32

×2
AP 98.79 94.95

APD 99.17 96.21

×2.5
AP 98.68 94.58

APD 99.04 96.02

Table 4. Summary of filter-wise pruning results of APD (ours) and AP on CIFAR10.

Network (Dataset) Comp Rate Method Org Acc (%)
PGD5 PGD10

Adv Acc (%) Adv Acc (%)

VGG16 (CIFAR10)

×1.5
AP 79.91 49.02 41.10

APD 81.01 50.18 42.62

×2
AP 73.69 47.11 40.56

APD 76.88 48.61 41.22

×2.5
AP 69.30 45.10 39.61

APD 74.53 47.19 40.21

ResNet18 (CIFAR10)

×1.5
AP 84.57 51.42 42.35

APD 86.70 54.29 45.42

×2
AP 83.37 51.27 42.90

APD 85.55 53.32 45.59

×2.5
AP 82.09 51.65 43.21

APD 84.02 52.54 44.63

4.2. The Convergence Behavior

To investigate the effect of the knowledge distillation on the convergence behavior
of the adversarial pruning, we traced both original accuracy and adversarial accuracy of
AP and APD on every epoch. The results on the epoch 0 indicate the initial performance
of the currently pruned model where the weight parameters were initialized with the
baseline model. We focused on the original accuracy of the early stage of the optimization
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to show how well APD preserved the original accuracy of the baseline model during the
adversarial pruning.

4.2.1. Element-Wise Pruning

We traced both original accuracy and adversarial accuracy of AP and APD with the
element-wise pruning scheme in the compression rate of ×2, ×3 and ×4. The results are
described at Figure 1. Let us note that the adversarial accuracy is measured against PGD10.
APD achieved a significant improvement in the original accuracy in the early stage of
optimization with LeNet, VGG16, and ResNet18. With LeNet, the original accuracy of
AP fell to lower than 20% on the first epoch whereas the original accuracy of APD was
maintained above 90% across the entire optimization process. With VGG16, the original
accuracy of both AP and APD was dropped on the first epoch. However, the amount of
decrease in the original accuracy on the first epoch of APD was less than that of AP. For
instance, in the compression rate of ×4, the original accuracy on the first epoch of APD was
higher than that of AP by about 20%. Moreover, with LeNet and VGG16, APD improved
the convergence behavior of both original accuracy and adversarial accuracy compared
to AP. For instance, in the compression rate of ×3 with VGG16, APD only required 40
epochs for the average value of the original accuracy and the adversarial accuracy to reach
61.00% (the maximum average value achieved by AP), whereas AP required 46 epochs
to achieve that. With ResNet18, APD reduced the drop of original accuracy on the first
epoch by about 10% across the entire compression rates though the improvement in the
convergence behavior of both original accuracy and adversarial accuracy is smaller than
that of other networks.

4.2.2. Filter Pruning

We also traced both original accuracy and adversarial accuracy of AP and APD with
the filter pruning scheme in the compression rate of ×1.5, ×2, and ×2.5. The results are
described at Figure 2. APD improved the overall convergence behavior of the filter pruning.
With LeNet, APD reduced the drop of the original accuracy on the first epoch about 5%.
With VGG16, the improvement in the first epoch was more significant. For instance, in
the compression rate of ×1.5, APD reduced the drop of the original accuracy on the first
epoch by about 20%. Mitigating the drop of original accuracy in the first epoch led to an
improvement in the overall convergence behavior. For instance, in the compression rate of
×1.5 with LeNet, APD required 49 epochs for the average value of the original accuracy
and the adversarial accuracy to reach 96.63% (the maximum average value achieved by
AP), whereas AP required 86 epochs to achieve that. In the compression rate ×1.5 with
VGG16, APD required 33 epochs for the average value of both accuracies to reach 54.46%
(the maximum average value achieved by AP), whereas AP required 59 epochs to achieve
that. With ResNet18, APD also reduced the drop of original accuracy in the initial stage of
pruning but the amount of improvement decreased in the high compression rate.

4.3. Comparison with the State-of-the-Art Methods

To show the relative benefit of our method (denoted as APD) compared to other
state-of-the-art methods, we also compared APD to Defensive Distillation [22] (denoted as
DD), Filter Pruning via Geometric Median [15] (denoted as FPGM), and Ye et al. [19]. The
results are summarized at Table 5.
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(a) LeNet Accuracy Trajectory on the Element-wise Pruning

(b) VGG16 Accuracy Trajectory on the Element-wise Pruning

(c) ResNet18 Accuracy Trajectory on the Element-wise Pruning

Figure 1. The original accuracy and the adversarial accuracy of AP and APD (ours) with respect to the epoch of the
element-wise pruning procedure for (a) LeNet, (b) VGG16, and (c) ResNet18. The left of each row is the result in the
compression rate of ×2, the middle of each row is the result in the compression rate of ×3, and the right side of each row is
the result in compression rate of ×4. The blue line means the original accuracy and the red line indicates the adversarial
accuracy. The solid line is the result of APD and the dashed line is the result of AP.
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Table 5. Summary of filter-wise pruning results of APD (ours) and other state-of-the-art methods.

Network (Dataset) Type Method Comp Rate Org Acc (%) Adv Acc (%)

VGG16 (CIFAR10)
Pruning FPGM ×1.3 93.13 16.17

Pruning + Defense APD ×1.5 81.01 42.62

LeNet (MNIST)
Defense DD ×1 93.15 86.57

Pruning + Defense APD ×2 99.17 96.21

LeNet (MNIST)

Pruning + Defense Ye et al. ×2 99.01 95.44

Pruning + Defense APD ×2 99.17 96.21

Pruning + Defense Ye et al. ×4 98.87 94.77

Pruning + Defense APD ×4 98.88 94.90

Pruning + Defense Ye et al. ×8 98.07 89.95

Pruning + Defense APD ×8 98.08 91.06

ResNet18 (CIFAR10)
Pruning + Defense Ye et al. ×2 81.83 48.00

Pruning + Defense APD ×2 82.09 48.03

DD is a well-known defense strategy that generates a robust model by using knowl-
edge distillation. It trains a teacher model with a high temperature value in a modified
SoftMax output and then applies knowledge distillation to a student model whose archi-
tecture is the same as that of the teacher model. We compared the original accuracy and
the adversarial accuracy of APD and DD with LeNet in the compression rate of ×2. For
DD, we set the temperature t as 40 and the number of epochs as 100. In comparison, APD
showed about 6% higher original accuracy and 10% higher adversarial accuracy than DD.

FPGM is a SOTA filter pruning method that effectively prunes the redundant filters by
measuring the Geometric Median [40] of each filter. To show that the pruning method only
is not enough to generate sparse but robust solutions, we compared our pruned VGG16
with the compression rate of ×1.5 to FPGM’s pruned VGG16 with the compression rate of
×1.3. APD showed 26.45% higher adversarial accuracy and 12.12% lower original accuracy
compared to FPGM. The mean value of the original and the adversarial accuracy of APD is
61.82 and that of FPGM is 54.65. This result demonstrates that the model generated by the
pruning method alone is vulnerable to adversarial attack.

Ye et al. is a SOTA robust pruning method. To solve the adversarial pruning (6)
problem using alternative direction method of multipliers (ADMM), the method introduced
two additional tensors for auxiliary parameters and Lagrangian multipliers. The size of
those two tensors is exactly the same as the size of the weight parameters and therefore, it
requires two times more memory than the memory required to store the weight parameters
during the optimization procedure. On the other hand, APD solves our optimization
problem (7) with the proximal gradient descent, which does not require any auxiliary
tensor. We compared the result of APD and Ye et al with LeNet and ResNet18. VGG16
was excluded in this comparison since the exact values of the original accuracy and the
adversarial accuracy with VGG16 are not available in the original paper of Ye et al. We set
the compression rates to ×2, ×4, and ×8 for LeNet, and ×2 for ResNet18. With LeNet , APD
slightly improved both original accuracy and adversarial accuracy over Ye et al. in entire
compression rates. With ResNet18, APD improved the original accuracy by 0.26% and the
adversarial accuracy by 0.03% compared to Ye et al. The adversarial robustness of APD
appears to be similar to that of Ye et al.; however, APD requires far less memory that Ye et
al. and therefore will be more suitable for generating robust models in memory-constrained
environments as we discuss in the next section.
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(a) LeNet Accuracy Trajectory on the Filter Pruning

(b) VGG16 Accuracy Trajectory on the Filter Pruning

(c) ResNet18 Accuracy Trajectory on the Filter Pruning

Figure 2. The original accuracy and the adversarial accuracy of AP and APD (ours) with respect to the epoch of the filter
pruning procedure for (a) LeNet, (b) VGG16, and (c) ResNet18. The left of each row is the result in the compression rate
of ×1.5, the middle of each row is the result in the compression rate of ×2, and the right side of each row is the result in
compression rate of ×2.5. The blue line means the original accuracy and the red line indicates the adversarial accuracy. The
solid line is the result of APD and the dashed line is the result of AP.
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4.4. Computational and Space Complexity

To show the computational and memory efficiency of APD in comparison to other
methods, here we provide a short analysis without big O notations. The most dominant
part of the training procedure of CNNs in terms of computational complexity is the forward
and backward operations. For a given network and input data, we denoted the amount of
computation for a forward as F and the amount of computation for a backward as B. In
addition, we supposed that the number of iterations for training given network is IT and
the number of iterations for generating adversarial example as IA. Then, the computational
complexity of most of the pruning methods such as FPGM is IT × (F + B). DD contains
additional forward operations for generating the SoftMax output of the teacher network
resulting in IT × (2F + B). A relatively large increase of computational complexity for APD
and Ye et al. is inevitable since the adversarial training requires an iterative adversarial
attack for every iteration. Considering this, the computational complexity of Ye et al. is
IT × (F + B + IA × F), where APD requires IT × (2F + B + IA × F) since it contains both
adversarial training and knowledge distillation.

On the other hand, the most dominant part of the space complexity of the training
procedure is the number of learning parameters. To describe the space complexity, let us
denote the number of weights of the given network as P. FPGM requires no additional
parameter and therefore its complexity is P. The space complexity of DD and APD are 2P
since they require a teacher and a student network to perform knowledge distillation. Ye
et al. requires two additional parameters for ADMM and a large 3P space complexity in
result. Compared to Ye et al., the analysis shows that APD requires far less memory with
the cost of an additional forward step.

4.5. Effectiveness of Knowledge Distillation on Other Attack Methods

To test our method on the other adversarial attacks, we evaluated the adversarial
accuracy of our PGD-based trained LeNet (MNIST) against Fast Gradient Sign Method
(FGSM) attack [1] and Carlini–Wagner (CW) �2 attack [4]. For FGSM attack, we set the
attack radius ε to 0.3. For CW attack, we used �2 bounded perturbation and set the maxi-
mum iterations to 1000. The baseline LeNet showed the original accuracy of 99.41% and
the adversarial accuracy of 1.08% against FGSM and 0.48% against CW. The results are
described in Table 6. The APD showed higher original accuracy and adversarial accuracy
against both FGSM and CW �2 attacks compared to AP in the entire compression rates. In
particular, the improvement on the adversarial accuracy against CW �2 attack is significant.
Those results imply that our PGD-based approach is also effective on the other attack
methods.

Table 6. Summary of AP and APD results against FGSM and CW �2 attacks on the MNIST dataset.

Network (Dataset) CompRate Method Org Acc (%) FGSM Adv Acc (%) CW �2 Adv Acc (%)

LeNet (MNIST)

×1.5 AP 98.91 97.62 70.23

APD 99.18 98.27 91.01

×2 AP 98.79 97.48 69.77

APD 99.17 98.28 88.19

×2.5 AP 98.68 97.38 77.11

APD 99.04 98.15 93.30

5. Conclusions

The adversarial robustness of the compressed CNNs is essential for deploying them to
the real-world embedded systems. In this paper, we proposed a robust model compression
framework for CNNs. Our framework used the knowledge distillation to improve the
result of the existing adversarial pruning approach. In several experiments, our framework
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showed a significant improvement in the trade-off between the compression rate and
the adversarial robustness on the two datasets, MNIST and CIFAR10. We found that the
amount of improvement of our framework tends to decrease in the high compression
rate. We expect that this phenomenon is due to the large gap in the architectural capacity
between the teacher network and the student network. We hope that this phenomenon will
be mitigated through future works.
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Featured Application: MAuth-CAN is a new CAN authentication mechanism, and the proposed

CAN model and verification techniques are useful to analyze timing properties of CAN applications.

Abstract: The Controller Area Network (CAN) is the most common network system in automotive
systems. However, the standardized design of a CAN protocol does not consider security issues,
so it is vulnerable to various security attacks from internal and external electronic devices. Recently,
in-vehicle network is often connected to external network systems, including the Internet, and can
result in an unwarranted third-party application becoming an attack point. Message Authentication
CAN (MAuth-CAN) is a new centralized authentication for CAN system, where two dual-CAN
controllers are utilized to process message authentication. MAuth-CAN is designed to provide an
authentication mechanism as well as provide resilience to a message flooding attack and sustainably
protect against a bus-off attack. This paper presents formal techniques to guarantee critical timing
properties of MAuth-CAN, based on model checking, which can be also used for safety certificates of
vehicle components, such as ISO 26262. Using model checking, we prove sufficient conditions that
MAuth-CAN is resilient and sustainable against message flooding and bus-off attacks and provide
two formal models of MAuth-CAN in timed automata that are applicable for formal analysis of other
applications running on CAN bus. In addition, we discuss that the results of model checking of those
properties are consistent with the experiment results of MAuth-CAN implementation.

Keywords: controller area network bus; authentication; authenticity; resiliency; sustainability; formal
verification; model checking; in-vehicle network

1. Introduction

Advanced digital control technology provides more convenience, safety, and pre-
dictability to automotive systems. Recently, many vehicles would not only make use of
local sensors, but also cooperate with other vehicles and infrastructures, such as the Intelli-
gent Transport System (ITS). For instance, Right-turn Collision Caution (RtCC) cooperating
with infrastructures can alert drivers in a risky situation hidden when they would make
right turn. ITS monitors the situation about oncoming vehicles and pedestrians around
intersections or a corner with poor visibility from drivers where a vehicle would make a
right turn. It cooperates with the vehicle via road-to-vehicle communication so the infor-
mation on potential approaching risk is conveyed by vehicle-to-vehicle communication
with audio and visual alerts to warn the driver, and when necessary, the driver is alerted
about the approach risk. The infrastructure uses a dedicated ITS frequency of 760 MHz for
road-to-vehicle and vehicle-to-vehicle communication to gather information that cannot be
obtained by vehicle sensors. In addition, various features, such as Communication Radar
Cruise Control, Red Right Caution, and Emergency Vehicle Notification using network
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communication also helps drivers be more predictive against approaching risky situations
so that their driving is safe and predictable.

However, the vehicle connecting to open networks can be vulnerable to security attacks.
For instance, many studies such as [1–6] have shown that the adversary is able to easily access
an in-vehicle network from the outside and control vehicles. Once an adversary compromises
an ECU, it disguises itself as a normal node, breaches to other ECUs, and controls and disrupts
normal driving function. In addition, DoS (Denial of Service) is also one of the most common
attacks that exhausts data processing and communication resources.

To prevent the masquerade attack to a vehicle network, the most popular defense
technologies are intrusion detection systems (IDS) and authentication systems. Most pro-
posed IDS techniques are not, however, fast enough to protect the attack, i.e., the adversary
can compromise the vehicle system before IDS detects the attack [7–13]. In order to ad-
dress these issues, many authentication protocols have been studied, such as [14–20].
These works can be classified into two categories: authentication using group keys [14–17]
or authentication using pairwise keys [18–20]. In case that CAN uses a group key for
message authentication, the group key could be exploited if any node using the group
key is compromised. In case of authentication using pairwise keys, CAN bus can be
overflowed by authentication tags (e.g., message authentication code) if CAN bus uses a
basic pairwise key-based authentication method where every destination node requires
a unique authentication tag for verification of a CAN message. Thus, the work [18–20]
adopts a centralized node-based authentication to deal with the overflow issue.

However, this centralized node-based authentication has two problems. First, the au-
thentication by a centralized node can be delayed by DoS attack on the centralized node.
Second, in case of the centralized authentication, the authenticator could miss a message if it
is too slow to process every message. Thus, it should be guaranteed that the authentication
is complete on time no matter how often the adversary sends an attack message.

To address the above problems, Jo et al. have proposed a new authentication pro-
tocol, named MAuth-CAN (Message Authentication-CAN), in [21]. MAuth-CAN uses
an ECU node dedicated to authenticating each message over the CAN bus by using
pairwise keys. For sharing the authentication result with other ECUs, the authenticator
uses an authentication-fail error (AFR) message. The authentication fail report (i.e., AFR
message) is transmitted and gives alerts to other nodes only when a message is authenti-
cated. This minimizes the communication overload caused by a centralized authentication
because the authentication fail report is transmitted only when a message cannot pass
authentication. In addition, Jo et al. addresses Bus-off Attacks (BoAs) by introducing their
centralized message authentication to dual-CAN controllers. Under the adversary’s BoA
to the authenticator, the AFR message from the authenticator can also be destroyed by the
adversary, resulting in consecutive transmission errors. If the transmission error count of
the authenticator steps over a threshold, it is enforced to leave CAN bus for a while and
reset to recover the connection to CAN bus. Jo et al. adopts dual-CAN controllers for the
authenticator to be more sustainable under BoA. Jo et al. [21] also showed that (1) MAuth-
CAN is robust against the masquerade attack and BoA, (2) it requires approximately 46%
less CAN bandwidth than a comparable protocol [19], and (3) it does not need to modify
the current CAN controller to apply the CAN protocol.

However, they have not provided the proof of timing-related properties of MAuth-
CAN that can be used for security proof and evidence for practical use of real applications.
For instance, MAuth-CAN should prove that no adversary message is accepted by any
node while authentication is in processing under DoS attack. It is related to a timeout
for AFR, which delays message communication. Thus, it is necessary to check if such a
timeout is bounded to check if the authentication delay meets the maximum acceptance
communication delay.

In this paper, we show that the authentication of MAuth-CAN is resilient enough to
prevent a masquerade attack for the given timing constraints and is sustainable under a
DoS attack. In addition, we prove that the timeout for authentication can be bounded with
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respect to the message transmission time. In this paper, we apply formal methods of model
checking to prove the timing properties of MAuth-CAN. We build formal models of CAN
and MAuth-CAN using timed automata and perform model-checking to verify the critical
timing properties of MAuth-CAN using UPPAAL SMC and UPPAAL MC. We present
two formal models of CAN and MAuth-CAN. The first model abstracts MAuth-CAN by a
producer-consumer model in terms of authenticator and attacker, so that it is proved that
the authenticator in terms of a consumer addresses all attack messages from the attacker in
terms of a producer. The second model details CAN in the level of MAC frame of the data
link layer, so that the model of MAuth-CAN is shown to be valid in the data-link layer of
CAN networking.

This paper presents sufficient conditions to ensure:

• The centralized authentication of MAuth-CAN never fails to make AFR messages
reach individual ECUs within a specific bounded time,

• The authentication of MAuth-CAN can never be a victim of BoA.

The above conditions are relevant to (1) the size of reception queue of authenticator’s
CAN controller, (2) the relation between authentication time and CAN bus transmission
time, and (3) the number of CAN controllers of the authenticator.

This paper presents the following three contributions:

• In terms of MAuth-CAN security, it shows that MAuth-CAN is resilient and sustain-
able against a message flooding attack and bus-off attack under the specific conditions
this paper provides;

• It presents a usage of formal methods to obtain certificates of safety and security standards
and regulations, such as ISO (International Organization for Standardization) 26262;

• It presents new formal models of CAN bus at the level of MAC (Media Access Con-
trol) of the data link layer that can be useful for verification of properties of other
applications running on CAN bus.

The rest of the paper is organized as follows: Section 2 discusses the related work.
Section 3 presents the background theory of this work. Section 4 overviews MAuth-CAN,
a centralized CAN authentication, two attack scenarios i.e., masquerade attack and BoA
attack, and MAuth-CAN’s countermeasure to those attacks. Section 5 shows formal proof
of our proposed sufficient conditions for MAuth-CAN resiliency to a masquerade attack
and sustainability to BoA attack, using symbolic and statistical model checking techniques.
Section 6 presents more results from the implementation of MAuth-CAN. In Section 7,
we conclude this paper with the potential future work.

2. Related Work

In 2010, Koscher et al. were the first to demonstrate attacks on in-vehicle network
using a real vehicle [1]. They introduced the CARSHARK tool, which makes it easy for
an adversary to analyze and inject attack packets on in-vehicle network, i.e., CAN bus.
After the first vehicle attack, many studies included new attack surfaces on an in-vehicle
network [2–6]. To deal with these cyber-attacks on in-vehicle network, intrusion detection
systems [7–13] and message authentication protocols [5,14–21] were studied.

In the work of [7–10], the transmission frequencies or sequences of CAN packets
were used to detect the CAN traffic abnormality caused by in-vehicle network attacks.
Recently, deep neural network (DNN) model-based intrusion detection systems that take
transmission frequencies or sequences of CAN packets as input values have been proposed
in [11,12]. However, these studies [7–12] cannot detect masquerade attacks by a compro-
mised ECU because the compromised node can mimic the transmission frequencies or
sequences of CAN packets to bypass intrusion detection algorithms.

To handle the masquerade attacks, Cho et al. proposed an ECU’s clock-based intrusion
detection system [13]. In this study, a clock skew for each ECU is profiled as a hardware fingerprint,
which is unique for every ECU, and this inimitable value is used to identify a masquerading
ECU. However, this study cannot be used to deal with masquerade attacks using aperiodic CAN
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messages generated from aperiodic vehicle operations, such as auto-parking, lane keeping aid
(LKA), and adaptive cruise control (ACC) functions. Furthermore, this clock-based intrusion
detection can be defeated by the clock emulation attack proposed in [22].

To address the limitations of existing intrusion detection systems, message authentica-
tion protocols for in-vehicle network have been designed. In general, message authentica-
tion protocols can be divided into two categories: a group key-based authentication [14–17]
and a central node-based authentication [18–21]. In the group key-based authentication
studies [14–17], one group key shared by all ECUs is used to generate authentication tags
such as message authentication code. However, these studies cannot also handle masquer-
ade attacks because one group key could be accessed by a compromised node. In light
of this, centralized node-based authentication studies have been presented in [18–21] for
handling masquerade attacks by compromised ECUs. Since the centralized node-based
authentication does not share one group key with all ECUs, a compromised ECU cannot
access the authentication keys stored in other ECUs. However, the methods [18,19] cannot
be applied into legacy vehicles because the CAN-controller must be modified to include
new functions that do not follow the CAN-standard or incurs network overhead that
exceeds the maximum capacity of the CAN bus. Furthermore, the protocol [20] also has
limitation that several bytes of a CAN message is not included in the authentication value
generation process.

To handle these issues of authentication protocols, Jo et al. presented an authentication
report-based message authentication [21]. This protocol does not incur network overhead
nor require CAN controller modification, but there is a message authentication delay
caused by an authentication report message. Even though the work of [21] evaluated the
authentication delay by using CAN development boards, there is no formal analysis about
the delay which could affect real-time operations of vehicles. Thus, this paper puts the
authentication delay of [21] into formal analysis using UPPAAL SMC and UPPAAL MC.

In addition, we did the several Arduino-based authentication tests, which are related
to what-if analysis and robustness checking defined in [23], by measuring the authentication
delay of [21] in the worst case scenarios to show that the authentication delay is bounded
within a certain amount of time even when there are DoS attacks such as message flooding
and bus-off attacks on CAN.

3. Preliminaries

In this section, we give the overall of our approach and overview our formal tech-
niques, model checking, UPPAAL and CAN communication, prior to MAuth-CAN in the
following section.

3.1. Our Approach

The CAN authentication in MAuth-CAN meets two goals: (1) No receiver can open
any message that does not go through a centralized authentication of MAuth-CAN, (2) The
CAN controller for message authentication is never enforced to leave CAN bus by consecu-
tive and numerous transmission errors by intention.

In this paper, we show why MAuth-CAN never fails to meet the above goals. To sim-
plify the above goals, we present sufficient conditions in theorems, which should be satisfied
to meet the goals (Section 4.4, and then prove them by model checking (Section 5)). We use
a high-level model of MAuth-CAN, where the reaction of the authenticator to the attack
message is highlighted (Section 5.1). Then, using model checking, we prove that the au-
thenticator of MAuth-CAN passes no attack message without verification even under even
consecutive attacks if the sufficient conditions in Theorem 1 consisting of Lemma 1 and
Lemma 2 are satisfied. We present a low-level formal model of MAuth-CAN in the MAC
level of the data link layer of CAN, which is detailed enough to be able to reflect actual
behaviors of CAN. This model ensures our verification is practical enough to provide valid
proofs of security of MAuth-CAN (Section 5.2). Then, we prove Theorem 2 by proving
Lemma 3, which is the essential property of MAuth-CAN assumed by Theorem 2. Finally,
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we show that our verification results are consistent with the actual implementation of
MAuth-CAN (Section 6).

In the following subsection, we present our model method technique, model checking
using UPPAAL.

3.2. Model Checking

Model checking is a rigorous verification method that presents a mathematical proof
for a given property of the system. It accepts a system model and properties that the
system model should satisfies. During verification, model checking explores all states of
the system by taking every symbolic computational step and exhaustively check if every
state satisfies given properties. Since model checking explores thoroughly all states of the
system, it requires numerous time and memories. It is used to obtain guarantee of given
properties of safety critical systems by mathematical proving techniques.

In this paper, we apply UPPAAL, a model checker, to prove MAuth-CAN’s properties.
UPPAAL tool suite includes various analysis techniques such as symbolic model checking,
statistical model checking, and simulation. Symbolic model checking of UPPAAL accepts
timed automata (TA) [24] as modeling language and use CTL (Computational Tree Logic)
for property specification. CTL in UPPAAL comprises path formulas and state formulas.
A path formula consists of branch quantifiers and path quantifiers. A and E, branch
quantifiers, denotes “all paths” and “any path”, respectively. � and ♦, path quantifiers,
represent “all states” and “exist a state”, respectively.

Let φ a state formula. A path formula along with a state formula is expressed by the grammar:

ϕ ::= φ|A�φ|E�φ|A♦φ|E♦φ|φ1→φ2

Using such a formula, reachability, safety and liveness properties can be formulated in
UPPAAL. Reachability properties are expressed by the path formula E♦φ, meaning that a
state satisfying φ is reachable.

Safety properties are formulated by the path formula A�. For example, A�φ requires
that φ should be true in all reachable states. Meanwhile, E�φ denotes that there exists
a maximal path such that φ is always true. A maximal path is a path that is either
infinite or where the last state has no outgoing transitions [25]. Liveness properties are
formulated by the path formula A♦φ, which means that there exists a state satisfying φ

in all the branches, i.e., φ is eventually satisfied. One of useful formulas is the leads to or
response property, which are written A�(φ→A♦ψ). That means that whenever φ happens,
ψ should hold eventually [25]. For instance, whenever a message is sent, that should
always be acknowledged.

UPPAAL SMC accepts a network of stochastic timed automata (NSTA). A model of
network of timed automata in UPPAAL is redefined by a network of stochastic timed
automata where the non-determinism of behavior in a timed automata model is refined
by a probability distribution, so that the property for a given model is characterized by a
probability that an event happens or a property holds.

The specification of UPPAAL SMC is based on Metric Interval Temporal Logic [26].
For an NSTA M, PM (]φ) denotes the probability that a random run of M satisfies φ.
The problem of checking PM (φ) ≥ p (p ∈ [0, 1]) is undecidable. For this reason, for the
sub-logic of cost-bounded reachability problem PM(♦(x≤C) AP) ≥ p, where x is a clock, C
is a time bound, and AP is a conjunction of predicates over the state of a NSTA, UPPAAL
SMC approximates the answer using simulation-based algorithms [27]. In UPPAAL SMC,
the following three types of questions can be answered:

1. Probability estimation: What is the probability PM(♦(x≤C) AP) for a given M?
2. Hypothesis testing: Is the probability PM(♦(x≤C) AP) for a given M greater or equal

to p [0, 1]?
3. Probability comparison: Is the probability PM(♦(x≤C)AP1) greater than the probability

PM(♦(x≤C)AP2)?
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PM(♦(x≤C)AP) is expressed by “P[⇐ C](<> AP)” in UPPAAL. This formula omits x
from the original formula assuming that the global clock is used implicitly by formula.
Besides, the following two forms of queries to simulate a given model:

• simulate [bound; N] {E1, E2, . . . , Ek}: Simulate a model and return results in E1, . . . ,
Ek expressions. N represents the number of simulations.

• E[bound; N] (min|max: expr): Simulate a model N rounds of which each precedes up
to bound time units and return the min or max of the expression expr.

where bound is a time bound on the simulation, Ek is an expression that would be
monitored and visualized.

In this paper, we use both UPPAAL and UPPAAL MC for proving properties of
MAuth-CAN and simulating our model of MAuth-CAN. In Section 5, we present MAuth-
CAN model of TA and various properties specification in CTL and verification results from
UPPAAL.

3.3. CAN (Controller Area Network)

A Controller Area Network (CAN) is a de-facto standard for an in-vehicle network.
Basically, once a node using CAN releases a message onto CAN bus, CAN broadcasts the
message to all nodes, and the message is selectively picked up by an ECU that is one of
message’s destinations. Table 1 shows the structure of the CAN packet frame.

Table 1. CAN packet frame (Unit: bits).

SOF ID Control Data CRC ACK EOF

1 11 6 0–64 16 1 7

Table 2 shows the individual frames of a CAN packet. Each node is given its own
CAN ID, which plays a role as priority for CAN bus. Two or more nodes release messages
into CAN bus at the same time, then one of them with the higher priority can transmit the
message. In CAN bus, 0 (dominant bit) has a higher priority over 1 (recessive bit). That is,
CAN controller permits 0 to flow over CAN bus rather than 1 when both are released
at time same time. CAN causes various errors, such as bit, stuff, CRC, and ACK errors.
Once a node on CAN bus encounters one of the errors, rest of nodes are informed the error
simultaneously. Each node updates one of error counters, such as Receive Error Counter
(REC) and Transmit Error Counter (TEC), according to error types error mode depending
on error counter. For instance, a node transits into the passive error from the active error
state when REC or TEC is over 126 (≥127). A node under the passive error state goes to
bus-off state when TEC is over 255 (≥256), but the node is not driven to bus-off state by
REC. Once a node is at bus-off state, it is enforced to leave the CAN bus for a specific time.
TEC has different increasing and decreasing rates. Every time a transmission error happens,
TEC increases by 8. Meanwhile, it decreases by 1 every time a transmission is successful.

Table 2. Symbol and variable definitions.

Var UPPAAL Var Description

ECUi nodid ECU with id i
AUTH Authenticator

CANIDi canid CAN id used by ECUi
Msgi Message with absolute sequence id i

AFRi,1|2 AFR message for message Msgi
Auth(Msgi) Authentication of message Msgi
Tran(Msgi) Transmission by CAN bus for message Msgi

Accept(Msgi) Action of accepting message Msgi by ECU
TxMsgi txMsg[i] Message released by CANIDi
RxMsgi rxMsg[i] Message read by CANIDi

CANBus canstat Predicate to indicate whether CAN bus is occupied or not
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Table 2. Cont.

Var UPPAAL Var Description

Tauth AUTU_TIME Authentication processing time of authenticator
Ttx TX_TIME Transmission time of CAN bus

UCMsgCnt AttkMsgCnt The number of messages that remain unchecked by the authenticator
TB A waiting time that CAN controller waits for AFR message

IQSizei MAX_QSIZEi The reception queue size of CANIDi

4. MAuth-CAN

This section overviews MAuth-CAN, a new CAN authentication technology, and their
properties for protection of masquerade attack and BoA. In addition, we formulate proper-
ties for model checking of MAuth-CAN. Prior to description of MAuth-CAN protocol and
models, Table 2 defines symbols and variables for formal descriptions.

4.1. System and Adversary Assumptions

In this subsection, we provide the assumptions for CAN and adversary (attacker),
in particular, their capability for defense and attack.

4.1.1. System Assumptions

First, the system dedicates to the authenticator an ECU with two CAN controllers
for CAN message authentication. The dedicated ECU is assumed to be assigned to the
highest priority CANID, which is open to anyone. Second, we assume that it is possible to
compute the maximum acceptable communication delay for a given application running
and communicating over CAN. Third, we assume that the ECU, i.e., the authenticator,
for authentication is very hard for the attacker to compromise so as to drop the assumption
that CAN is a victim of a single point failure (SPF) where all points lose a specific security
once a point is compromised. This assumption can be achieved by applying lightweight
tamper-resistance hardware such as SMART [28] and TrustLite [29] into the authenticator.

4.1.2. Adversary Assumptions

An adversary is subject to the following assumptions: First, any adversary reaches a
node responsible for driving controls and can cause bad driving consequences. Second,
two or more adversary nodes cannot perform DDoS (Distributed DoS), i.e., attacker cannot
compromise more than one ECU node. Third, the information of CAN messages, such as
source address, data, etc., transmitted on CAN bus can be fabricated, forged by adversary
node. Fourth, the highest priority ID can be exploited by an adversary. Fifth, each ECU has
a different CAN controller and the different number of the message receiving queues from
the others. Sixth, each ECU is equipped with a single message buffer each for transmission
and reception.

4.2. Attack Scenarios
4.2.1. Masquerade Attack

An adversary fabricates CAN messages with a normal CANID so that vehicle driving
is illegally controlled by adversary’s control messages. For example, the compromised
ECU can transmit a CAN message using the CANID of an ECU related to the engine to
control the vehicle’s speed. According to [5], the CANID of 0x43F was transmitted by a
compromised node to actuate the vehicle’s engine.

4.2.2. Denial of Service Leading to Bus-Off

Figure 1 describes a scenario of an adversary’s Denial of Service attack using BO.
The adversary performs DoS attack with consecutive attack messages, in particular, while
the authenticator needs to broadcast an authentication-fail report. When both the adversary
and the authenticator attempt to send messages with the same identifier simultaneously,
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the AFR and the attack message collide with each other. As a result, the transmission error
occurs and increases TEC on both sender and receiver. If the TEC of the authenticator
goes behind the threshold of Passive Error mode, it has less chances to transmit messages
than the attacker. This situation can continue by the crafty attacker until the authenticator
becomes off CAN bus.

Figure 1. Bus-off attack scenarios from a single-point adversary (IFS: Interframe space, Suspend: Suspend transmission,
RX mode: Reception mode, Active: Error active state, Passive: Error passive state, C#1: Controller #1, C#2: Controller #2).

4.3. Countermeasures of MAuth-CAN

To protect from the above attacks, MAuth-CAN performs the authentication using
dual-CAN controllers as shown in Figure 2.

Figure 2. New authenticator model with dual CAN controllers.

As the authenticator uses two CAN controllers, the reception and transmission queues
are doubled. The controller has its own transmission error counter (TEC) and receive error
counter (REC), thus dual-CAN controllers have two TECs and RECs for authentication.
In particular, TEC is the decisive variable that determines to expel a CAN controller from
CAN bus.

4.3.1. Countermeasure to Masquerade Attack

To avoid masquerade attacks, MAuth-CAN performs the authentication for every
single message via CAN bus, as shown in Figure 3. When an ECU transmits a message
upon CAN bus, every CAN controller takes the message into its reception queue but
delays in reading it until the authentication for the message is done. A CAN controller
keeps a new message in its reception queue for T B time units, as shown in Figure 3.
The controller reads a new message when the TB expires (Pass scenario in Figure 3). If a
message does not pass authentication, then a CAN authenticator creates and broadcasts an
error report i.e., an authentication-fail report (AFR) and ECUs discard the message (Fail
scenario in Figure 3). MAuth-CAN uses the duration of the length of 4 × Ttx for TB under
the assumption that the transmission time is always greater than the authentication time.
In this paper, we present the results of model checking for proving that the condition and
the assumptions of MAuth-CAN authenticator are sufficient to protect masquerade attack
to CAN system. The details regarding the AFR message is given in [21].
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Figure 3. Basics of MAuth-CAN.

4.3.2. Countermeasure to DoS and Bus-Off Attacks

Figure 4 shows a scenario that MAuth-CAN performs CAN message authentication
under BoA, and consequently sends all AFR messages to ECUs when a message cannot
pass the authentication.

Figure 4. MAuth-CAN resistant against flooding.

AFR Flooding

Every time an unauthenticated message comes in, the authenticator instantiates and
broadcasts an AFR. Ideally, if the authenticator always dominates CAN bus over any nodes
including the attacker, every ECU under masquerade attack must receive the AFR message
within 4 × Ttx time units according to Figure 4. In order for the attacker not to be able to
infer anything from AFR messages or reuse the previous AFR messages, the authenticator
uses the reversed hash chain. An AFR message consists of two packets. Thus, the AFR
message for the first adversary message can reach all nodes within 3 × Ttx time unit, but the
AFR message for the second adversary message can be delayed by the first AFR message.
For this reason, the waiting time of ECU for authentication needs to be 4 × Ttx time units.

BO Avoidance
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Both authenticator and attacker attempt to dominate CAN bus at the same time if the
highest priority CANID is open. If they send messages simultaneously with the same ID,
the transmission error occurs and increases TEC of message senders i.e., the authenticator
and the attacker, here. If either of authenticator or attacker’s TECs steps over a threshold
of Active Error mode, it transits to Passive Error mode. When TEC goes over the limit
of Passive Error mode, the ECU in Passive Error mode is enforced to leave CAN bus for
a while.

To avoid this situation, the authenticator is equipped with two CAN controllers
using two TECs of each CAN controllers. Consequently, both CAN controllers of the
authentication cannot be enforced to enter into Passive Error mode at the same time.

MAuth-CAN is resilient to masquerade attacks if the authenticator leaves no missing
message to verify at all. It is also sustainable under BoA because the attacker is disabled to
send adversary messages faster than authenticator using two TECs in dual-CAN controllers.

4.4. Sufficient Conditions for MAuth-CAN Resiliency and Sustainability

CAN is resilient to masquerade attack if the authentication makes it to investigate
every single message. Also, it is sustainable if the authentication is never disabled by BoA.
MAuth-CAN achieves the above two goals by introducing a new authenticator equipped
with two CAN controllers. In this paper, we show that MAuth-CAN achieves the above
two goals with the following properties and prove them using model checking.

Theorem 1. If MAuth-CAN authenticator uses a reception queue of size 2 for incoming new
messages and the authentication time is always less than the message transmission time, it never
fails to transmit AFR messages and the duration for ECUs to wait for AFR message needs no longer
than 4 × Ttx.

Theorem 1 emphasizes on the size of the reception queue for the CAN controller of the
authenticator and the relation between the authentication time and the transmission time.
The size of the CAN controller’s reception queue is relevant to the resiliency of MAuth-
CAN authenticator. The relation between the authentication time and the transmission
time is relevant to the waiting time of ECUs for AFR messages.

Theorem 2. MAuth-CAN authenticator is sustainable under BoA if it uses two CAN controllers.

The sustainability of MAuth-CAN in Theorem 2 means that MAuth-CAN is never
enforced to be off from CAN bus. In order to prove Theorem 2, we focus on TEC of authenti-
cator’s CAN controllers because TEC of the CAN controller goes over the threshold of Passive
Error mode, then the CAN controller is enforced to leave CAN bus for a while. Thus, we will
show that TEC of authenticator’s CAN controllers never goes over the threshold of Passive
Error mode even if that of attacker’s CAN controller goes over the threshold. In next section,
we will prove the above two theorems using model checking techniques.

5. Formal Analysis of MAuth-CAN

In this section, we present two formal models of CAN authentication in TA: An abstract
CAN networking model and a detailed ECU model. The first model, the CAN networking
model, captures the interlocking between three components: the authenticator, CAN bus,
and ECUs. It focuses on verification of Theorem 1. The second model, the ECU model,
details the behaviors of ECUs and bus at a bit-wise level so that the analysis can be done at
a lower level. It focuses on verification of Theorem 2.

5.1. Model Checking Analysis of Theorem 1

To avoid the complexity of formal analysis, we abstract interaction between CAN
components, as shown in Figure 5.
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(a) Authenticator 

  
(b) ECU in transmission (c) CAN Bus 

Figure 5. CAN networking model. (a) This figure shows the state transitions of the authenticator in
MAuth-CAN. (b) It shows the state transitions of an ECU in data transmission. (c) It shows the state
transitions of the CAN bus for data transmission.

The model of CAN interaction comprises authenticator, attacker, and CAN bus. The at-
tacker model has the same behavior as normal ECUs, but the authenticator in our model
responds to the message from the attack by broadcasting AFR messages. We do not include
the behavior of the CAN controller of CAN message receiver nodes in our model since the
authenticator model has the same behavior as CAN message receiver and we focus on the
resiliency of MAuth-CAN’s authentication that handles every attack message.

The authenticator model in Figure 5a waits for any message through CAN bus. When
the authenticator reads a message (RxMsg) from CAN bus, the authenticator in Figure 5a
transits into the location Authenticate for processing authentication. If the message passes
the authentication, it returns to Idle state. Otherwise, it joins SendRep state. Then, it sends
the AFR message for the unauthenticated message when CAN bus is available (CANBUS
= FREE). The authenticator keeps any message in its reception queue (EnQ) when it is in
authentication. If the queue is empty, the authenticator returns to the initial location Idle.
Otherwise, it returns to Authenticate and performs authentication for another incoming
message again.

The CAN controller model of an attacker in Figure 5b is simpler than the authenticator.
If the CAN controller has a message to send and CAN bus is available, it just sends it
through CAN bus. Notice that it returns to the initial location when the transmission of the
message is acknowledged by CAN bus through the event RxMsg.

The CAN bus model in Figure 5c controls the permission for a CAN controller to
access CAN bus. Initially, it allows any controller to use CAN bus by setting CAN-
BUS:=FREE. If the CAN bus receives a message via TxMsg, it locks the key by setting
CANBUS:=OCCUPIED, prohibits any node from using CAN bus, moves to Transmit loca-
tion, and notifies the transmitting of a message. Finally, the CAN bus returns to the initial
location Idle with unlocking the key with setting CANBUS:=FREE.

Based on the CAN networking model in Figure 5, Figure 6 captures CAN behavior
models in TA. It also comprises three models: Authenticator, ECU and CAN bus. Four TA
processes are instantiated for simulation and verification: Two authenticator processes
from the authenticator model, one CAN attacker process from the ECU model, and one
CAN bus process from the CAN bus.
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(a) CAN authentication using two buffers of the incoming queue in TA. 

 

 
(b) ECU in TA (c) CAN bus in TA 

Figure 6. Simulation of CAN networking in TA. (a) This figure shows two UPPAAL processes of message authenticator
that individually process authentication of incoming message. (b) This figure shows an UPPAAL process of an ECU that
continuously sends messages, simulating message flooding attack. (c) This figure shows an UPPAAL process of a CAN bus
that simulates the message transmission in the synchronization with the sender ECU and the receiver ECU.

As shown in Figure 6a, two authenticator processes are instantiated from the au-
thenticator model to capture message queuing behavior using the reception queue of size
2. It particularly highlights the concurrent behavior of the CAN controller’s authenti-
cation, reception, and message transmission using the reception queue of size 2. When
a new message arrives, authenticator’s CAN controller checks the message and sends
AFR messages for unauthenticated messages. While the authenticator is sending AFR,
it can simultaneously receive another new message. It is because the reception queue
and sending queue of a CAN controller are separate. However, only one of them can
process authentication at the same time. The authenticator processes, ECUAuth_Q1 and
ECUAuth_Q2, in Figure 6a have an invariant over Authenticate location, which limits
the authentication time to a specific time bound AUTH_TIME. The authenticator process
leaves Authenticate location after AUTH_TIME expires and transits to TxRep location so
as to send one of AFR messages. In this interaction model, canstat represents the status of
CAN bus. The authenticator process can send the AFR message through CAN bus when
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no node occupies CAN bus, then canstat value of CANBus1 is set to true (1). When TA
authenticator enters RepeatAFRMsg location, it broadcasts two consecutive packets for
one AFR message.

The ECU process in ECUTx1_Q1 of Figure 6b may send any attack message
(txMsg[canid][attkid]) at any time if CAN bus is available. If the reception of the at-
tack message is acknowledged by the authenticator i.e., rxMsg[canid][attkid] is received,
it may send another message.

The CAN bus in CANBus1 of Figure 6c manages the permission for use of CAN
bus using canstat. If the CAN bus process receives a message from an ECU and the
authenticator, it sets canstat to false (0). Then, any CAN controller cannot occupy CAN bus.
The transmission of messages is captured with the clock x and the invariant TRX_TIME
over Transmit location. The CAN bus process stays over Transmit location for TRX_TIME
time units, and then it leaves Transmit location with synchronizing the channel rxMsg
and setting canstat to true (1). Particularly, The CAN bus model is designed to count the
number of attack messages using the function checkAttk(). The number is denoted by
AttMsgCnt. AttMsgCnt keeps increasing, meaning that the authenticator fails to check the
attack message. If AttMsgCnt keeps below a specific number, particularly the reception
queue size of the authenticator, it means that the authenticator succeeds in authenticating
every attack message.

MAuth-CAN authenticator must not miss any message without verification, meaning
that no ECU should not read unauthenticated message. All CAN controllers on ECUs
temporarily store any incoming message in the reception queue during authentication.
They postpone reading it until a predefined authentication time ends. However, when the
AFR message arrives within the predefined authentication time, the CAN controller regards
that the message in the reception queue fails the authentication and discards it. For the
reasons, it is crucial to characterize the AFR waiting time TB i.e., the duration that an ECU
waits for AFR message. Also, the CAN authenticator is capable of verifying consecutive
adversary messages and transmit AFR messages within a predefined authentication time so
as to protect every ECU from adversary messages. In terms of the authenticator, we prove
the following lemma in order to characterize the CAN controller of the authenticator that
can protect adversary messages in any forms:

Lemma 1. If the CAN controller of the authenticator is given the reception queue of size 2 and the
transmission time is less than the authentication time, it can always verify every new message and
every ECU does not miss AFR.

In order to prove Lamma 1, we model-check the CAN controller model of the authen-
ticator and checks the number of delayed AFR messages in the transmission queue. If the
variable AttkMsgCnt is not larger than the size of the reception queue, we can say that
the authenticator has no remaining AFR to send. The following two CTL properties are
checked by UPPAAL MC and the verification results are also shown in Table 3:

CTL-Property-1: A[] not deadlock (1)

CTL-Property-2: A[] AttkMsgCnt ≤ IQSizeAUTH (2)

Table 3. Setting of the model checking for Lemma 1 and model-checking results.

Case IQSizeAUTH Tauth~Ttx CTL-Property-2 Case IQSizeAUTH Tauth~Ttx CTL-Property-2

1 1 = Not Satisfied 4 2 = Not Satisfied

2 1 < Not Satisfied 5 2 < Satisfied

3 1 > Not Satisfied 6 2 > Not Satisfied
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CTL-Property-1 specifies that the system is put into no deadlock where no progress is
made. CTL-Property-2 states that AttkMsgCnt is not larger than the maximum reception
queue size of authenticator’s CAN controller.

To prove Lemma 1, we have six different configurations in Table 3, where the maxi-
mum reception queue size of the authenticator, the authentication time, and transmission
time are varied. The maximum reception queue size is either of one or two. The transmis-
sion time and the authentication time are also varied in such a way that Tauth~Ttx where
~= {<, =, >}.

In Table 3, Tauth and Ttx denote the authentication processing time and the transmis-
sion time, respectively. The results show that CAN authentication needs no more than two
queues if the authentication time is less than the transmission time, so that no message is
missed without verification.

To validate our models, we simulate the model using statistical model checking
technique and the following query:

Sim-Property-1: simulate [≤100;1] CANBus1.srvCANID (3)

This query states which CANID preempts CAN bus over time.
Figure 7 shows a simulation of CAN authentication with different number of CAN

controller. The x-axis represents the time and the y-axis represents the identifier of a
CAN controller which makes it to transmit a message. Thus, Figure 7 shows which CAN
controller makes it to transmit messages over time. The attacker’s CANID is 2 and the
authenticator’s is 1.

(a) Simulation of CAN authentication with a single buffer (size 1) of the incoming queue of 
CAN. 

(b) Simulation of CAN authentication with two buffers (size 2) of the incoming queue of CAN. 

Figure 7. Simulation of CAN authentication nodes. (a) This figure shows that the attack messages are overwhelming CAN
bus by message flooding attack, and blocking all AFR messages from the authenticator. (b) This figure shows that two
consecutive AFR messages for one attack message are transmitted on CAN bus without failure and the attack message
cannot dominate CAN Bus.

Figure 7a shows the case where the authenticator’s CAN controller uses a single
buffer of a reception queue so it cannot handle no more than one message. The first two
messages are adversary messages sent by the attacker. The third and fourth messages are
the AFR messages sent by the authenticator after addressing the first adversary message.
Note that authenticator’s CAN controller succeeds in sending the AFR messages for the
first adversary message, but not the rest of the adversary messages.

Meanwhile, the plot in Figure 7b shows different behavior of CAN authentication
when authenticator’s CAN controller 2 size of the reception queue. In Figure 7b, the first
two transmissions are made by the attacker. The second adversary message transmission
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is possible while the authenticator is checking the first adversary message. However, the
4 transmissions following the first two adversary messages are made for AFR messages
by the authenticator. That is consistent with Figure 4: Two attack messages can be con-
secutively transmitted over CAN bus, but AFR messages follow those attack messages.
In following, all AFR messages are successfully sent following every attack message. No
AFR message is delayed by adversary message, then no adversary message is adopted by
ECUs due to AFR messages.

In order to compute the minimum TB, we present Lemma 2:

Lemma 2. If the CAN authenticator makes it to address all consecutive attack messages, TB is not
necessarily longer than 4 × Ttx.

In our model, for a given authentication time, denoted by Tauth, and transmission
time, denoted by Ttx, we can measure the maximum communication delay, using the
clocks ECUAuth_Q1.x and ECUAuth_Q2.x on the locations ECUAuth_Q1.TxAck and
ECUAuth_Q2.TxAck. For given Tauth = 1 and Ttx = 2, we check the worst-case time for the
AFR message to arrive all ECUs. We use the following queries:

CTL-Property-3: sup{ECUAuth_Q1.TxAck}: ECUAuth_Q1.x (4)

CTL-Property-4: sup{ECUAuth_Q2.TxAck}: ECUAuth_Q2.x (5)

“sup{expr}: list” in UPPAAL MC returns the maximum value of variables in “list”.
That is, the expression in list is evaluated only on the states that satisfy expr (a state
predicate) that acts like an observation.

Model checking shows that the worst-case response time of the AFR is always
8 (4 × Ttx). That is consistent with the illustration in Figure 4, thus we can conclude
that 4 × Ttx is the minimum TB.

In the results of model-checking for CTL-Property-1, 2, 3, and 4, we prove Lemma 1
and Lemma 2. Consequently, Theorem 1 is proved by the proofs of Lemma 1 and Lemma 2.

In this section, we show that MAuth-CAN is resilient to masquerade attack using
consecutive adversary messages if the authenticator reads incoming message using 2 size of
reception queue and the authentication time is less than the message transmission time. In
particular, it is shown that the consecutive two messages of AFR sent by the authenticator
can prevent the flooding of adversary messages by preempting CAN bus. However, it is
true only if the AFR messages is successfully transmitted to other nodes.

In next section, we will show that MAuth-CAN is sustainable to BoA even if CAN
priority is not secure and attacker can utilize the highest priority of CAN.

5.2. Model Checking Analysis of Theorem 2

Recall the scenario that BoA enforces the CAN controller of the authenticator to leave
CAN bus for a while. When the authenticator tries to transmit AFR messages, the attacker
causes transmission error. The attacker with the same priority of CAN bus begins the
attack message transmission at the same time when the authenticator begins message
transmission. Then, two messages conflicts, resulting in transmission error. The repeated
transmission errors accumulate up to a specific count, then CAN system gets rid of the
attacker and the authenticator from CAN bus for a while. The CAN authentication should
be designed to sustainable against this BoA.

In order to capture such a complicated situation, we present more concrete and
detailed model of the CAN controller and bus in TA. Our CAN controller model in TA
captures a detailed behavior of the CAN controller based on the CAN protocol in Figure 8.
We capture CAN controller’s behavior in a bit-wise level as if a simple protocol is captured
by a TA as shown in Figure 9. In Figure 9, a frame consists of a specific number of bits and
TA captures the behavior of such a frame with the same series of time units. Here, we do
not consider the semantics of bits and focus on a bit-wise timing behavior of the protocol.
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Figure 8. CAN-Frame in base format in bit levels [30].

Figure 9. Modeling a dummy protocol into TA. (a) This figure gives an example of a simple protocol
in packet frames. (b) This figure captures the simple protocol into a TA model in a bit-wise level.

If a protocol evolves from one frame to another frame, TA captures the frames transits
from one location and to another location. Basically, a frame is captured by a location
in our TA model, where our TA model stays for the same time units as the number of
bits of a frame. For example, the Start frame using 1 bit in Figure 9 is captured by the
Start location where TA stays for the same number of time units as 1 bit. A specific event
occurring on a frame can be captured by an event causing a transition leaving off the
location representing the frame. For example, if a Data frame in Figure 9 encounters an
error and needs re-transmission, then TA captures it by a transition returning from Data
location to Start location.

Figures 10 and 11 shows TA models of CAN bus and controller in the MAC level of
the data link layer. The CAN controller has three modes: Receiving mode, transmission
mode, and error handling mode. The receiving mode consists of receiving (Rxing) and
error handing locations (RxErrRep, RxErrStuffing, RxErrDelimite). The transmission mode
is composed of multiple transmissions of different frames, as shown in Figure 11. When
a CAN controller needs data transmission, the CAN controller model at the location
Rxing in Figure 10 checks if CAN bus is available by checking the condition variable
canstat. The SOF frame of Figure 8 is modeled by the invariant x ≤ SOF over the location
StartTrans and the guard x==SOF on the transition leaving StartTrans in Figure 11. Note
that the Arbitration Field frame needs an interaction of CAN controller with the CAN bus
for CAN bus arbitration and such a scheduling responsibility is placed upon the CAN
bus, so the Arbitration Field frame is modeled on the location CANArbitration in CAN
bus model of Figure 10. The last 1 bit of Arbitration frame field and the first 2 bits of
Control field are abstracted together by the location DestControl. When more than one
CAN controller attempt to make any frame transmissions simultaneously, it may lead to a
transmission error status of CAN controller and bus. The transmission error is captured
by the transition leaving the location Txing of Figure 11 having no guard. The transition
may be taken non-deterministically to leave the location Txing, and that implies that our
CAN controller model of TA can go to a transmission error (handling) status at any time.
When a transmission error occurs, the CAN controller is put into one of Active Error model,
Passive Error mode, or Reset. When a transmission error happens, the CAN controller goes
to at Active Error mode and an Active Error frame will be transmitted on the bus if TEC
(Transmission Error Counter) is lesser than 128. If TEC is greater than 127 and lesser than
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255, then the CAN controller is led to Passive Error mode and a Passive Error frame will be
transmitted on the bus.

Figure 10. CAN bus model in TA.

Figure 11. A CAN controller model in TA.

The CAN controller in Passive Error mode is given a penalty in such a way that it is
more delayed to make transmission than the CAN controller in Active Error or Normal
modes. The situation is captured by our CAN controller model of TA where the CAN
controller in Passive Error mode should stay over SuspTrans location for 8 time-units.
When TEC of a CAN controller is greater than 255, then the controller enters Bus Off state,
where no frames cannot be transmitted by the controller [30]. We capture the BO situation
with Reset location in Figure 11, where the CAN controller stays for a while without being
able to send any message.

Now, we present the formal verification results of model checking for MAuth-CAN
under BoA. In order to prove Theorem 1 that the CAN controller in charge of the authenti-
cation is sustainable to BoA, we need to verify if our dual-CAN controllers can never be
put into Passive Error mode when the attacker crafts continually to cause transmission
errors. We introduce to Lemma 3 as follows:
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Lemma 3. Dual-CAN controllers of MAuth-CAN authentication is never put into Passive Error
mode together at the same time when the attacker is in Passive Error mode.

We prove Lemma 3 by model checking as follows: In order to reduce the state space of
our models, the TA authenticator model and the TA at-tacker model in Figures 12 and 13
are mutated from the CAN controller model of Figure 11 so that they terminate analysis
when one of them goes into Passive Error mode. That is, when either of the authenticator
controller or the attack controller goes to Passive Error mode first, then the analysis is
over. We verify that both dual-CAN controllers for authentication never go to Passive
Error mode at the same time. In this way, our model checking using the mutated CAN
controller models can be less suffering state-explosion issue. We use the following queries
to prove Lemma 3:

CTL-Property-5: A[] not deadlock (6)

CTL-Property-6: A[] CANContAttk3.errMod==ERR_PAS imply

(CANContAuth1.errMod != ERR_PAS or CANContAuth2.errMod != ERR_PAS)
(7)

CTL-Property-7: A[] (CANContAuth1.errMod! = ERR_PAS or CANContAuth2.errMod! = ERR_PAS) (8)

Figure 12. An ECU controller model of the authenticator in TA.

CTL-Property-5 specifies that the system model should never be in deadlock status in
which every process stops running. We use it to check if our TA model is valid to check
using model checking. CTL-Property-6 specifies that the error mode (errMod) of both
authenticators (CANContAuth1 and CANContAuth2) would never be in Passive Error
mode (ERR_PAS) together at the same time when the error mode (errMod) of the attacker
(CANContAtt3) happens to be in Passive Error mode (ERR_PAS). Similarly, CTL-Property-7
is used to check if they can fall into Passive Error mode.
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Figure 13. An ECU controller model of the attacker in TA.

Figure 14 shows that the properties above are met by our model, implying that Lemma
3 is proved by the model checking of the CTL properties. By proving Lemma 3, we conclude
that Theorem 1 is proved and that our authentication using dual-CAN controllers is resilient
to BoA even when the attacker can exploit the highest priority of CAN controller.

Figure 14. Model checking results for MAuth-CAN’s resiliency to BoA.

Our model checking environment is as follows:

• Processor: Intel Core i7 CPU, 1.80GHz, 2.30GHz
• RAM: 16.0GB
• OS: Windows 10-64Bits

6. Implementation and Experiments

In this section, the implementation and experimental results of MAuth-CAN are pro-
vided to check whether Theorem 1 and 2 proved in the formal analysis are applicable to the
CAN testbed considering real CAN traffic with message authentication. In the experiment
of MAuth-CAN, we adopt the BLAKE2S algorithm with keyed mode for implementation
of message authentication code, which is used to generate authentication tags for CAN
messages and report messages. BLAKE2S is a cryptographic hash function which is faster
than keccak (SHA3) in software implementations. The security proof of BLAKE2S with
keyed mode is referred to [31]. We tested the implemented source codes on the Raspberry
Pi 3 Model B and Arduino Zero that are assumed to be the authenticator and the normal
ECUs, respectively.

6.1. Message Authentication Time

When an ECU transmits a CAN message, it always generates a message authentication
tag (i.e., a MAC value). The CAN message then is verified by the authenticator and a
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report message (an AFR message) is generated if there is a verification failure. The normal
ECUs verify an AFR message to see if it is transmitted by the authenticator only when they
receive it. We tested each operation one hundred times, and the average the computation
time and the corresponding standard deviation for individual cryptographic operations
are presented in Table 4.

Table 4. Individual operations of MAuth-CAN (μs).

Authenticator ECU

Message Report Message Report

Authentication (TM
Auth) Generation (TR

Gen) Generation (TM
Gen) Verification (TR

Ver)

Mean 28.26 28.14 258.8 516.4

Std. Dev. 0.46 0.34 0.43 1.02

6.2. Reception Time of an AFR Message

We evaluate the reception time of an AFR message under the following two attacks:
message flooding attack and BoA.

6.2.1. Reception Time of an AFR Message under Message Flooding Attacks

As shown in Table 4, the sum of TM
Auth and TR

Gen is approximately 56.4 μs and less
than the transmission time of an AFR message, i.e., 444 μs = Packet_Size

Bus_Speed = 2 × 111 bits
500,000 bits/s

(111 bits is size of a CAN data frame with an 8 byte data field if the bit-stuffing rule of the
CAN standard is ignored). Since the time to authenticate a CAN message and to generate a
report message is less than the transmission time of the report message, the authenticator
can authenticate all CAN messages without increasing its own message queue. Thus,
every report message for an invalid CAN message can be transmitted successfully within a
bounded time, which is the length of 4 × the transmission time as described in Theorem
1. According to our implementation result, the worst time of report reception under the
flooding attacks is approximately 1012 μs, as shown in Figure 15a.

Figure 15. The reception time of an AFR message under attacks. (a) This figure shows the AFR
reception time under message flooding. Note that the maximum time of AFRs is 1012 μs. (b) This
figure shows the ARF reception time under BoA where the malicious ECU creates the bit-error at
the FIRST bit position in the AFR message. (c) This figure shows the ARF reception time under BoA
where the malicious ECU creates the bit-error at the LAST bit position in the AFR message.
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The reception time shown in Figure 15a is slightly larger than 888 μs = Packet_Size
Bus_Speed

= 4 × 111 bits
500,000 bits/s , which is the theoretical transmission time of four CAN packets. The

reason is that this experimental time is affected by the bit stuffing rule for synchronization
of CAN bus and the time measurement error originating from Arduino UNO. In order to
maintain synchronization of CAN bus, a bit stuffing rule is defined in the CAN standard.
In this rule, a bit of opposite value is inserted after every five consecutive bits of the same
value. For example, if six consecutive dominant bits, 000000, are transmitted by the host
controller of an ECU, the CAN controller of the ECU adds one recessive bit after every five
consecutive dominant bits 0000010. This additional bit is automatically removed by the
CAN controllers of receiver ECUs.

6.2.2. Reception Time of an AFR Message under BoA

BoA on the authenticator causes the transmission delay of an AFR message. In general,
the continuous BoA can permanently interfere with the communication from an ECU.
However, since the authenticator of MAuth-CAN has two CAN controllers, it is possible
for the authenticator to put a malicious ECU that performs the BoA into Passive Error
mode which allows the transmission of an AFR message from the authenticator.

The time it takes for the malicious node performing BoA to become the error passive
state varies depending on the attack bit position for the BoA (i.e., a bit-error position in
the data field of an AFR message). If the malicious node performing BoA creates the first
bit-error at the first bit position in the data field of an AFR message, the reception time
of an AFR message is approximately 2355 ms as shown in Figure 15b. In other hands,
to maximize the transmission delay of an AFR message by the BoA, the malicious node
performing BoA can create a bit-error at the last bit position (i.e., 64th bit position in the
data field) of an AFR message. In this the worst case, the reception time of an AFR message
is approximately 4495 ms as shown in Figure 15c.

Through this experiment, we show Theorem 2 by validating that Passive Error mode
of the malicious node performing BoA on the authenticator allows the authenticator with
dual CAN-controllers to transmit an AFR message within the bounded time and the worst
case time is 4495 ms.

7. Conclusions

CAN is the most common in-vehicle network system. The latest automobiles devel-
oped recently are equipped with numerous ECUs. The ECU over CAN bus can be a victim
of security attacks leading to critical risks of vehicle safety. In particular, in case that the
infotainment system of unwarranted third party vendor and driving control systems share
CAN bus, the security risk is dramatically escalated.

MAuth-CAN is a centralized authentication mechanism for CAN. In MAuth-CAN, the
response timing is critical for the properties since a timeout works for the indication that a
message passes authentication and ECUs accept a new message stored in its temporary
queue when the timeout expires. MAuth-CAN utilizes two CAN controllers for fault-
tolerance mechanism so that it continues its functionality under message flooding and
bus-off attacks.

This paper presents the formal proofs of resiliency and sustainability of MAuth-CAN
authentication against message flooding and bus-off attacks where timing is critical to
maintain such properties. Also, this paper shows how model checking, a formal verification
technique, works for safety and security certificates of in-vehicle network. In this paper, we
present a novel CAN model in a formal model, which captures CAN’s timing behavior in
MAC level of the data-link layer and can thus be used for verification of safety properties
of other CAN applications. Using this CAN model, we perform formal verification for the
sufficient conditions of those properties of MAuth-CAN.

As conclusions, we show that MAuth-CAN authenticator is sufficiently resilient and
sustainable against those two kinds of attacks if MAuth-CAN authenticator can handle two
consecutive attack messages, the authentication time is less than the message transmission
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time, and MAuth-CAN authenticator uses two CAN controllers. Also, we conclude that
4 × Ttx is the minimum and sufficient length of the timeout for ECUs to open incoming
messages that have passed MAuth-CAN authentication. The experiment results from the
implementation of MAuth-CAN are shown to be consistent with that propositions and
conditions we have shown in this paper.
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Abstract: Machine learning has been proven to be effective in various application areas, such as
object and speech recognition on mobile systems. Since a critical key to machine learning success
is the availability of large training data, many datasets are being disclosed and published online.
From a data consumer or manager point of view, measuring data quality is an important first step in
the learning process. We need to determine which datasets to use, update, and maintain. However,
not many practical ways to measure data quality are available today, especially when it comes to
large-scale high-dimensional data, such as images and videos. This paper proposes two data quality
measures that can compute class separability and in-class variability, the two important aspects
of data quality, for a given dataset. Classical data quality measures tend to focus only on class
separability; however, we suggest that in-class variability is another important data quality factor.
We provide efficient algorithms to compute our quality measures based on random projections and
bootstrapping with statistical benefits on large-scale high-dimensional data. In experiments, we show
that our measures are compatible with classical measures on small-scale data and can be computed
much more efficiently on large-scale high-dimensional datasets.

Keywords: data quality; large-scale; high-dimensionality; linear discriminant analysis; random projec-
tion; bootstrapping

1. Introduction

We are witnessing the success of machine learning in various research and application
areas, such as vision inspection, energy consumption estimation, and autonomous driving,
just to name a few. One major contributor to the success is the fact that the datasets are
continuously accumulated and openly published in several domains. Low data quality
is very likely to cause inferior prediction performance of machine learning models, and
therefore measuring data quality is an indispensable step in a machine learning process.
Especially in real-time and mission-critical cyber-physical-system, defining appropriate
data quality measures is critical since the low generalization performance of a deployed
model can result in system malfunction and possibly catastrophic damages to the physical
world. Despite the importance, there exist only a few works for measuring data quality
where most of them are hard to evaluate on large-scale high-dimensional data due to
computation complexity.

A popular early work on data quality measures includes Ho and Basu [1], proposing
12 types of quality measures which are simple but powerful enough to address different
aspects of data quality. These measures have limitations, however, in that it is difficult to
compute them for large-scale high-dimensional and multi-class datasets. Baumgartner
and Somorjai [2] proposed a quality measure designed for high-dimensional biomedical
datasets; however, it does not work efficiently on large-scale data. Recently, Branchaud-
Charron et al. [3] proposed a quality measure for high-dimensional data using spectral
clustering. Although this measure is adequate for large-scale high-dimensional data, it
requires an embedding network which involves a large amount of computation time
for training.
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In this paper, we propose three new quality measures called Msep, Mvar, and Mvari , and
their computation methods that overcome the above limitations. Our approach is inspired
by Fisher’s linear discriminant analysis (LDA) [4], which is mathematically well-defined
for finding a feature subspace that maximizes class separability. Our computation method
makes use of the techniques from statistics, random projection [5] and bootstrapping [6], to
compute the measure for large-scale high-dimensional data efficiently.

The contributions of our paper are summarized as follows:

• We propose three new data quality measures that can be compuated directly from
a given dataset and can be compared across datasets with different numbers of
classes, examples, and features. Although our approach takes ideas from LDA (linear
discriminant analysis) and PCA (principal component analysis), the techniques by
themselves do not produce single numbers that are comparable across different
datasets.

• We provide efficient algorithms to approximate the suggested data quality measures,
making them available for large-scale high-dimensional data.

• The proposed class separability measure Msep is strongly correlated with the actual
classification performance of linear and non-linear classifiers in our experiments.

• The proposed in-class variability measures Mvar and Mvari quantify the diversity of
data within each class and can be used to analyze redundancy or outlier issues.

2. Related Work

In general, the quality of data can be measured by Kolmogorov complexity which
is also known as the descriptive complexity for algorithmic entropy [7]. However, the
Kolmogorov complexity is not computationally feasible; instead, an approximation is used
in practice. To our knowledge, there are three main approaches for approximating the
Kolmogorov complexity: descriptor-based, classifier-based, and graph-based approaches.
We describe these three main categories below.

2.1. Descriptor-Based Approaches

Ho and Basu [1] proposed simple but powerful quality measures based on descriptors.
They proposed 12 quality measures, namely F1, F2, F3, L1, L2, L3, N1, N2, N3, N4,
T1, and T2. The F measures represent the amount of feature overlap. In particular,
F1 measures the maximum Fisher’s ratio which represents the maximum discriminant
power of between features. F2 represents the volume of overlap region in the two-class
conditional distributions. F3 captures the ratio of overlapping features using the maximum
and minimum value. The L measures are for the linear separability of classes. L1 is a
minimum error of linear programming (LP), L2 is an error rate of a linear classifier by
LP, and L3 is an error rate of linear classifier after feature interpolation. The N measures
represent mixture identifiability, the distinguishability of the data points belonging to two
different classes. N1 represents the ratio of nodes connected to the different classes using the
minimum spanning tree of all data points. N2 is the ratio of the average intra-class distance
and average inter-class distance. N3 is the leave-one-out error rate of the nearest neighbor
(1NN). N4 is an error rate of 1NN after feature interpolation. The T measure represents
the topological characteristic of a dataset. T1 represents the number of hyperspheres
adjacent to other class features. T2 is the average number of data points per dimension.
These quality measures can capture various aspects of data quality; however, they are
fixed for binary classification and not applicable for multi-class problems. Furthermore,
quality measures, such as N1, N2, and N3, require a large amount of computation time on
large-scale high-dimensional data.

Baumgartner and Somorjai [2] proposed a quality measure for high-dimensional but
small biomedical datasets. They used singular value decomposition (SVD) with time
complexity O(min(m2n, mn2)), where m is the number of data points, and n is the number
of features. Thus, it is computationally demanding to calculate their measures for the
datasets with large m and n, such as recent image datasets.
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There are other descriptor-based approaches, for example for meta learning [8,9], for
classifier recommendation [10], and for synthetic data generation [11]. However, only
a small number of data points in a low dimensional space have been considered in
these works.

2.2. Graph-Based Approaches

Branchaud-Charron et al. [3] proposed a graph-based quality measure using spectral
clustering. First, they compute a probabilistic divergence-based K × K class similarity
matrix S, where K is the number of classes. Then, an adjacency matrix W is computed
from the S matrix. The quality measure is defined as a cumulative sum of the eigenvalues
gap which is called as cumulative spectral gradient (CSG), which represents the minimum
cutting cost of the S. The authors also used a convolutional neural network-based auto-
encoder and t-SNE [12,13] to find an embedding that can represent data points (images in
their case) well. Although the method is designed for high-dimensional data, it requires to
train a good embedding network to reach quality performance.

Duin and Pękalska [14] proposed a quality measure based on a dissimilarity matrix
of data points. Since calculating the dissimilarity matrix is a time-consuming process, the
method is not adequate for large-scale high-dimensional data.

2.3. Classifier-Based Approaches

Li et al. [15] proposed a classifier-based quality measure called an intrinsic dimension,
which is the minimum number of solutions for certain problems. For example, in a neural
network, the intrinsic dimension is the minimum number of parameters to reach the desired
prediction performance.

The method has a benefit that it can be applied to many different types of data as
long as one has trainable classifiers for the data; however, it often incurs high computation
cost since it needs to change the number of classifier parameters iteratively during data
quality evaluation.

Overall, the existing data quality measures are mostly designed for binary classifica-
tion in low dimension spaces with a small number of data points. Due to their computation
complexity, they tend to consume large amount of time when applied to large-scale high-
dimensional data. In addition, the existing measures tend to focus only on the inter-class
aspects of data quality. In this paper, we propose two new data quality measures suitable
for large-scale high-dimensional data resolving the above mentioned issues.

3. Methods

In this section, we formally describe our data quality measures. We focus on multi-
class classification tasks where each data point is associated with a class label out of
c categories (c ≥ 2). Our measures are created by adapting ideas from Fisher’s LDA [4].
Fisher’s LDA is a dimensionality reduction technique, finding a projection matrix that
maximizes the between-class variance and minimizes the within-class variance at the
same time. Motivated by the idea, we propose two types of data quality measures, class
separability Msep and in-class variability Mvar and Mvari . For efficient handling of large-
scale high-dimensional data, we also propose techniques to reduce both computation
and memory requirements taking advantage of statistical methods, bootstrapping [6] and
random projection [5].

3.1. Fisher’s LDA

The objective of Fisher’s LDA [4] is to find the feature subspace which maximizes the
linear separability of a given dataset. Fisher’s LDA achieves the objective by minimizing
the within-class variance and maximizing the between-class variance simultaneously.
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To describe the Fisher’s LDA formally, let us consider an input matrix X ∈ R
m×n

where m is the number of data points, n is the input dimension, and xi,j ∈ R
n is a j-th data

point in the i-th class. The within-class scatter matrix Sw ∈ R
n×n is defined as follows:

Sw =
c

∑
i=1

mi

∑
j=1

(xi,j − xi)(xi,j − xi)
T .

Here, c is the number of classes, mi is the number of data points in the i-th class, and
xi ∈ R

n is the mean of data points in the i-th class. This formulation can be interpreted as
the sum of class-wise scatter matrices. A small determinant of Sw indicates that data points
in the same class exist densely in a narrow area, which may lead to high class separability.

Next, the between-class scatter matrix Sb ∈ R
n×n is defined as follows:

Sb =
c

∑
i=1

mi(xi − x)(xi − x)T ,

where x is the mean of entire data points in the given dataset. A large determinant of Sb
indicates that the mean vector xi of each class is far from the x, another condition hinting
for high class separability.

Using these two matrices, we can describe the objective of Fisher’s LDA as follows:

Φlda ∈ arg max
Φ

|ΦTSbΦ|
|ΦTSwΦ| . (1)

Here, Φlda ∈ R
n×d is the projection matrix where d is the dimension of feature

subspace (in general, we choose d � n). The column vectors of projection matrix Φlda
are the axes of feature subspace, which maximize the class separability. The term in the
objective function is also known as the Fisher’s criterion. By projecting X onto these axes,
we obtain a d-dimensional projection of the original data X′ ∈ R

m×d:

X′ = XΦlda.

In general, if Sw is an invertible matrix, we can calculate the projection matrix which
maximizes the objective of the Fisher’s LDA by eigenvalue decomposition.

3.2. Proposed Data Quality Measures

Motivated by the ideas in Fisher’s LDA, we propose two types of new data quality
measures: Msep (class separability), Mvar and Mvari (in-class variability).

3.2.1. Class Separability

Our first data quality measure tries to capture the class separability of a dataset by
combining the within-class variance and between-class variance, similarly to Fisher’s
LDA (1) but more efficiently for large-scale and high-dimensional data and comparable
with other datasets.

We start from creating the normalized versions of the matrices Sw and Sb in Fisher’s
LDA (1) so that they will not be affected by the different numbers of examples in classes
(mi is the number of examples in the i-th class) across different datasets. The normalized
versions are denoted by Ŝw and Ŝb:

Ŝw :=
c

∑
i=1

1
mi

mi

∑
j=1

(xi,j − xi)(xi,j − xi)
T , Ŝb :=

c

∑
i=1

mi

∑c
j=1 mj

(xi − x)(xi − x)T . (2)

Considering the determinants of these n × n matrices as in the original Fisher’s LDA
will be too costly for a high-dimensional data where n is large, since the time complexity
to compute the determinants will be proportional nearly to n3. Instead, we consider the
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direction of maximum linear separation v ∈ R
n that maximizes the ratio of between-class

variance to the within-class variance being projected onto the vector. Using the vector, we
define our first data quality measure Msep for class separability as follows:

Msep := max
v∈Rn :‖v‖=1

|vTŜbv|
|vTŜwv| . (3)

This formulation is almost the same as (1) in Fisher’s LDA except that (1) finds the
projection matrix φlda which maximizes the Fisher’s criterion, while, in (3), we will focus
on finding the maximum value of Fisher’s criterion itself. Unlike Fisher’s criterion, our
measure Msep is comparable across datasets with different numbers of classes and examples
due to normalization, to check the relative difficulty of linear classification.

Solving (3) directly will be preventive for a large n as in the original LDA. If Ŝw is
invertible, we can calculate the vector which maximizes Msep as follows using simple linear
algebra. To find the vector v which maximizes the equation in (3), first differentiate it with
respect to v to get:

(vTŜbv)Ŝwv = (vTŜwv)Ŝbv.

This leads us to the following generalized eigenvalue problem in the form of:

Ŝ−1
w Ŝbv = λv, (4)

where λ = vTŜbv
vTŜwv

can be thought as an eigenvalue of the matrix Ŝ−1
w Ŝb. The maximizer v

is the eigenvector corresponding to the largest eigenvalue of Ŝ−1
w Ŝb which can be found

rather efficiently by the Lanczos algorithm [16]. However, the overall time complexity for
computation can be up to O(n3), which makes it difficult to calculate the optimal vector for
high-dimensional data, such as images. In Section 3.3, we provide an efficient algorithm to
compute Msep using random projection.

3.2.2. In-Class Variability

Our second data quality measure gauges the in-class variability. Figure 1 shows one of
the motivating examples to consider in-class variability for data quality. In the figure, we
have two photos of the Bongeunsa temple in Seoul, Korea, taken by the same photographer.
The photographer had been asked to take photos of Korean objects from several different
angles, and it turned out that quite a few of the photos were taken in only marginal angle
differences. Since the data creation was a government-funded project providing data for
developing object recognition systems in academia and industry, low data variability was
definitely an issue.

Figure 1. An example of low in-class variability that similar images in the same class. The images
are Bongeunsa temple in Seoul, Korea. (Source: Korean Type Object Image AI Training Dataset at
http://www.aihub.or.kr/aidata/132, National Information Society Agency.)

53



Appl. Sci. 2021, 11 , 472

Here, we define two types of in-class variability measure, the overall in-class variability
of a given dataset Mvar and the in-class variability of the i-th class, Mvari . First, the overall in-
class variability Mvar tries to capture the minimum variance of data points being projected
onto any direction, based on the matrix Ŝw defined in (2):

Mvar := min
v∈Rn :‖v‖=1

1
c · n

vTŜwv,

where c is the number of class and n is the dimension of data. Unlike class separability,
we added additional normalization factors c and n, since the value Ŝw is affected by the
number of class and the data dimension.

Second, the class-wise in-class variability Mvari is based on the sample covariance
matrix of each class:

Ŝwi :=
1

mi

mi

∑
j=1

(xi,j − xi)(xi,j − xi)
T ,

where mi is the number of data points in the i-th class. The class-wise in-class variability
measure Mvari is defined as follows:

Mvari := min
v∈Rn :‖v‖=1

1
c · n

vTŜwi v .

The normalization factors c and n are required for the same reason as in Mvar. The
measure Mvari represents the smallest variance of the data points in the same class after
being projected onto any direction.

As a matter of fact, Mvar and Mvari are the same as the smallest eigenvalue of 1
c·n Ŝw and

1
c·n Ŝwi which can be computed for instance using the Lanczos algorithm [16] on the inverse
of them with O(n3) computation, which will be preventive for large data dimensions n.
We discuss a more efficient way to estimate the value in the next section, which can be
computed alongside with our first data quality measure without significant extra cost.

Using the Mvar and Mvari , we can analyze the variety or redundancy in a given
dataset. For instance, a very small Mvar and Mvari would indicate that we may have a small
diversity issue where data points in the invested class are mostly alike. On the other hand,
the overly large Mvar and Mvari may indicate a noise issue in the class, possibly including
incorrect labeling. The difference between Mvar and Mvari is that the Mvar aggregates the
information of diversity for each class, and the Mvari represents the information of diversity
for a specific class. Since the Mvar aggregates the information of variability of data points
in each class, we can use this for comparing the in-class variability between datasets. On
the other hand, we can use Mvari for the datasets analysis, i.e., data points of a specific
class with less Mvari than other classes may cause low generalization performance. We will
discuss more details in Section 4.

3.3. Methods for Efficient Computation

One of the key properties required for data quality measures is that they should be
computable in a reasonable amount of time and computation resources since the amount
and the dimension of data are keep increasing as new advanced sensing technologies
become available. In this section, we describe how we avoid a large amount of time and
memory complexity to compute our suggested data quality measures.

3.3.1. Random Projection

Random projection [5] is a dimension reduction technique that can transform an
n-dimensional vector into a k-dimensional vector (k � n), while preserving the critical
information of the original vector. The idea behind of random projection is the Johnson-
Lindenstrauss lemma [17]. That is, for any vectors {x, x′} ∈ X from a set of m vectors in
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X ⊂ R
n and for ε ∈ (0, 1), there exists a linear mapping f : Rn → R

k such that the pairwise
distances of vectors are almost preserved after projection in the sense that:

(1 − ε)‖x − x′‖2
2 ≤ ‖ f (x)− f (x′)‖2

2 ≤ (1 + ε)‖x − x′‖2
2,

where k > 8 ln(m)/ε2. It is known that when the original dimension n is large, a random
projection matrix P ∈ R

k×n can serve as the feature mapping f in the lemma, since random
vectors in R

n tend to be orthogonal to each other as n increases [18].
Motivated by the above phenomenon, we use random projection to find a vector that

satisfies (3) instead of calculating the eigenvalue decomposition to solve (4). The idea is that
if the number of random vectors is sufficiently large, the maximum value of the Fisher’s
criterion calculated by random projection can approximate the behavior of a true solution.

Furthermore, random projection makes it unnecessary to explicitly store Ŝw and Ŝb
since we can simply compute the denominator and numerator of (3) as follows:

wTŜww =
c

∑
i=1

1
mi

mi

∑
j=1

wT(xi,j − xi)(xi,j − xi)
Tw,

wTŜbw =
c

∑
i=1

mi

∑c
j=1 mj

wT(xi − x)(xi − x)Tw,

where w is a random unit vector drawn from N (0, 1). This technique is critical for dealing
with high-dimensional data, such as images, in a memory-efficient way. In our experiments,
ten random projection vectors were sufficient in most cases to accurately estimate our
quality measures.

3.3.2. Bootstrapping

Bootstrapping [6] is a sampling-based technique that estimates the statistic of the
population with little data using sampling with replacement. For instance, bootstrapping
can be used to estimate the mean and the variance of a statistic from an unknown popula-
tion. Let si is a statistic of interest that is calculated from a randomly drawn sample of an
unknown population. The mean and variance of the statistic can be estimated as follows:

μ̂ =
1
B

B

∑
i=1

si, σ̂2 =
1
B

B

∑
i=1

s2
i −

(
1
B

B

∑
i=1

si

)2

,

where B is the number of bootstrap samples, μ̂ is a mean estimate of the statistic, and
σ̂2 is the variability of the estimate. By using a small B, we can reduce the number of
data points to be considered at once. We found that B = 100 and making each boot-
strap sample to be 25% of a given dataset in size worked well overall our experiments.
We summarized the above procedure in Algorithm 1 (The implementation is available
here: https://github.com/Hyeongmin-Cho/Efficient-Data-Quality-Measures-for-High-
Dimensional-Classification-Data.)
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Algorithm 1: Algorithm of class separability and in-class variability.
Result: Msep, Mvar and Mvari score
Dataset = {(x1, y1), . . . , (xm, ym)}
Args= the number of samples B, a sample ratio of each bootstrap sample against a given dataset R, the number

of random vector used in each sample nv, an array storing the values of overall in-class variability Avar, an
array storing the values of class-wise in-class variability Avari and an array storing the values of class
separability Asep.

’←−’ symbol stands for variable assignment
i ←− 1
Avar ←− {}
Avari ←− {}
Asep ←− {}
while i ≤ B do

j ←− 1
i ←− i + 1
Calculate the number of class c and data dimension n from the dataset
Sampling with replacement using stratified sampling as much as R ratio from the dataset
Standardize the sampled dataset
while j ≤ nv do

j ←− j + 1
w ←− a unit vector drawn from N (0, 1)
Compute wTŜwj,c w
wTŜwj w ←− Sum({wTŜwj,1 w, . . . , wTŜwj,c w})
Mvar−j ←− wTŜwj w
Compute wTŜbj

w
Msep−j ←− (wTŜbj

w)/(wTŜwj w)

end

Avari .insert({ 1
c·n min(wTŜw1,1 w, . . . , wTŜwnv,1 w), . . . , 1

c·n min(wTŜw1,c w, . . . , wTŜwnv,c w)})
Avar.insert( 1

c·n min(Mvar−1, . . . , Mvar−nv))
Asep.insert(max(Msep−1, . . . , Msep−nv))

end
Msep ←− Mean(Asep)
Mvar ←− Mean(Avar)
Mvari ←− ClassWiseMean(Avari )
Return Msep, Mvar, Mvari

4. Experiment Results

In this section, we show that our method can evaluate the data quality of the large-scale
high-dimensional dataset efficiently.

To verify the representative performance of Msep for class separability, we calculated
the correlation between the accuracy of chosen classifiers and Msep. Classifiers used in our
experiments are as follows: a perceptron, a multi-layer perceptron with one hidden layer
and LeakyReLU (denoted by MLP-1), and a multi-layer perceptron with two hidden layers
and LeakyReLU (denoted by MLP-2). To simplify the experiments, we trained the models
with the following settings: 30 epochs, a batch size of 100, a learning rate of 0.002, the Adam
optimizer, and the cross-entropy loss function. Additionally, we fixed the hyperparameters
of Algorithm 1 as B = 100, R = 0.25, and nv = 10 since there was no big difference in
performance when larger hyperparameter values were used.

For comparison with other quality measures, we chose F1, N1, and N3 from Ho and
Basu [1] and CSG from Branchaud-Charron et al. [3]. Here, N1, N3, and CSG are known
to be highly correlated with test accuracy of classifiers Branchaud-Charron et al. [3]. F1 is
similar to our Msep in its basic idea. Other quality measures suggested in Ho and Basu [1]
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showed very similar characteristics to F1, N1, N3, and CSG and are therefore not included
in the results.

4.1. Datasets

To evaluate the representative performance of Msep for class separability, we used vari-
ous image datasets that are high-dimensional and popular in mobile applications. We chose
ten benchmark image datasets for our experiments: MNIST, notMNIST, CIFAR10, Lin-
naeus, STL10, SVHN, ImageNet-1, ImageNet-2, ImageNet-3, and ImageNet-4. MNIST [19]
consists of ten handwritten digits from 0 to 9. The dataset contains 60,000 training and
10,000 test data points. We sampled 10,000 data from the training data for a model training
and measuring the quality, and we sampled 2500 data from the test data for assessing the
model accuracy. The notMNIST [20] dataset is quite similar to MNIST, containing English
letters from A to J in various fonts. It has 13,106 training and 5618 test samples. We sampled
the data in the same way as MNIST. Linnaeus [21] consists of five classes: berry, bird, dog,
flower, and others. Although the dataset is available in various image sizes, we chose
32 × 32 to reduce the computation time of N1, N3, and CSG. CIFAR10 [22] is for object
recognition with ten general object classes. It consists of 50,000 training data and 10,000 test
data points. We sampled the CIFAR10 dataset in the same way as MNIST. STL10 [23]
is also for object recognition with ten classes, and it has 92 × 92 images: we resized the
images into 32 × 32 to reduce the computation time for the N1, N3, and CSG. The dataset
consists of 5000 training and 8000 test data points. We combined these two sets into a single
dataset, and then sampled 10,000 data points from the combined set for model training and
measuring quality. We also sampled 2500 data points from the combined set for assessing
prediction model accuracy if necessary. SVHN [24] consists of street view house number
images. The dataset contains 73,200 data points. We sampled 10,000 training data for a
model training and measuring the quality, and we sampled 2500 data for assessing the
model accuracy. ImageNet-1, ImageNet-2, ImageNet-3 and ImageNet-4 are subsets of Tiny
ImageNet dataset [25]. The Tiny ImageNet dataset contains 200 classes, and each class has
500 images. They are consist of randomly selected ten classes of the Tiny ImageNet dataset
(total 5000 data points). We used 4500 data points for model training and measuring the
quality and 500 data points for assessing the model accuracy, respectively.

We summarized the details of datasets in Table 1. The accuracy values in the Table 1
are calculated from the MLP-2 model since it showed good overall performance compared
to the perceptron and the MLP-1 models.

Table 1. Details of the datasets used in our experiments. The accuracy is from MLP-2, and M
represents the total number of data used for training and evaluation.

Datasets Accuracy M No. Classes Description

MNIST 92.64% 12.5 k 10 Hand written digit
notMNIST 89.24% 12.5 k 10 Fonts and glyphs similar to MNIST
Linnaeus 45.50% 4.8 k 5 Botany and animal class images
CIFAR10 42.84% 12.5 k 10 Object recognition images

STL10 40.88% 12.5 k 10 Object recognition images
SVHN 45.60% 12.5 k 10 House number images

ImageNet-1 37.40% 5 k 10 Visual recognition images (Tiny ImageNet)
ImageNet-2 40.60% 5 k 10 Visual recognition images (Tiny ImageNet)
ImageNet-3 34.20% 5 k 10 Visual recognition images (Tiny ImageNet)
ImageNet-4 36.20% 5 k 10 Visual recognition images (Tiny ImageNet)

4.2. Representation Performance of the Class Separability Measure MSep

Here, we show in experiments that how well our first quality measure Msep repre-
sents class separability, compared to simple but popular classifiers and the existing data
quality measures.
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4.2.1. Correlation with Classifier Accuracy

To demonstrate how well Msep represents the class separability of given datasets,
we compared the absolute value of Pearson correlation and Spearman rank correlation
between quality measures Msep, N1, N3, F1, and CSG to the prediction accuracy of three
classification models: perceptron, MLP-1, and MLP-2. Table 2 summarizes the results.

In the case of the perceptron, Msep has a similar Pearson correlation with the shortest
computation time to the N1 and N3 which have the highest correlation with the accuracy
of classifiers. Furthermore, Msep and F1 have the highest Spearman rank correlation.
This is because Msep and F1 measure linear separability that is essentially the information
captured by the linear classifier, the perceptron in our case. In the case of MLP-1 and MLP-2,
Msep also showed a sufficiently high correlation with classification accuracy although it is
slightly lower in Pearson correlation compared to the case of the perceptron. On the other
hand, CSG does not seem to have noticeable benefits considering its computation time.
This is because CSG is affected by an embedding network which requires a large amount
of training time.

In summary, the result shows that our measure Msep can capture separability of data as
good as the existing data quality measures, while reducing computation time significantly.

Table 2. The absolute Pearson and Spearman rank correlation between the quality measures and
the accuracy of three classifiers on the ten image datasets (MNIST, CIFAR10, notMNIST, Linnaeus,
STL10, SVHN, ImageNet-1, ImageNet-2, ImageNet-3, and ImageNet-4). The computation time of our
method Msep is the fastest.

Classifier Quality Measure Pearson Corr. Spearman Corr. Time (s)

Perceptron

F1 0.9386 0.7697 1253
N1 0.9889 0.7333 5104
N3 0.9858 0.7333 9858

CSG 0.9452 0.8182 23,711
Msep (ours) 0.9693 0.8061 354

MLP-1

F1 0.9039 0.3455 1253
N1 0.9959 0.9758 5104
N3 0.9961 0.9030 9858

CSG 0.9295 0.5879 23,711
Msep (ours) 0.9261 0.3818 354

MLP-2

F1 0.8855 0.3455 1253
N1 0.9908 0.9273 5104
N3 0.9912 0.8788 9858

CSG 0.9127 0.5879 23,711
Msep (ours) 0.9117 0.4303 354

4.2.2. Correlation with Other Quality Measures

In order to check if our suggested data quality measure Msep is compatible with the
existing ones in quality, and therefore ours can be a faster alternative to the existing data
quality measures, we computed the Pearson correlation between F1, N1, N3, CSG, and
Msep. The results are summarized in Table 3. Our measure Msep showed a high correlation
with all four existing measures F1, N1, N3, and CSG, indicating that Msep is able to capture
the data quality information represented by F1, N1, N3, and CSG.
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Table 3. The absolute Pearson correlation between Msep and other quality measures.

Msep (Ours) F1 N1 N3 CSG

Msep (ours) 1.0000 0.9673 0.9322 0.9245 0.9199
F1 0.9673 1.000 0.8909 0.8879 0.8806
N1 0.9322 0.8909 1.0000 0.9988 0.9400
N3 0.9245 0.8879 0.9988 1.000 0.9417

CSG 0.9199 0.8806 0.9400 0.9417 1.0000

4.2.3. Computation Time

As mentioned above, our quality measure Msep represents the class separability well,
but much faster in computation than F1, N1, N3, and CSG. Here, we show how the
computation time changes according to data dimension and sample sizes, in order to show
that our suggested data quality measure can be used for many big-data situations.

The computation time according to the data dimension is shown in Figure 2 and
Table 4. In all dimensions, our measure Msep was on average 3.8 times faster than F1,
13.1 times faster than N1, 25.9 times faster than N3, and 17.7 times faster than CSG. Since
the N1, N3, and CSG have to calculate the MST and to train a 1NN classifier and embedding
networks, respectively, it is inevitable that they would take a large amount of computation
time (see more details in Sections 2.1 and 2.2). On the other hand, since Msep utilizes
random projection and bootstrapping to avoid eigenvalue decomposition problem and to
deal with the big-data situations, the computation time of Msep is shortest in all cases.

Figure 2. Data dimension vs. computation time (CIFAR10).

Table 4. Data dimension vs. computation time (CIFAR10) in detail (the values in the table repre-
sent seconds).

Image Size Dimension F1 N1 N3 CSG Msep (Ours) Speedup

16 × 16 × 3 768 49 246 445 1963 17 ×2.9 ∼ 115.5
32 × 32 × 3 3072 203 947 1850 2513 57 ×3.6 ∼ 44.1
48 × 48 × 3 6912 492 2144 4182 3132 122 ×4.0 ∼ 34.3
64 × 64 × 3 12,288 1011 3810 7466 5427 303 ×3.3 ∼ 24.6
80 × 80 × 3 19,200 1783 5973 11,674 6838 461 ×3.9 ∼ 25.3
96 × 96 × 3 27,648 2850 8652 17,346 9550 700 ×4.1 ∼ 24.8

Figure 3 and Table 5 show how computation time changes for various sample sizes.
Our measure Msep was on average 2.8 times faster than F1, 47.0 times faster than N1,
94.5 times faster than N3, and 41.6 times faster than CSG. N1 and N3 show extremely
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increasing computation time with respect to the sample size, which is not suitable for
large-scale high-dimensional datasets.

All the above results show that our measure Msep is suitable for the big-data situations
and compatible with other well-accepted data quality measures.

Figure 3. Sample size vs. computation time (CIFAR10).

Table 5. Sample size vs. computation time (CIFAR10) in detail (the values in the table represent seconds).

Sample Size F1 N1 N3 CSG Msep (Ours) Speedup

10,000 205 939 1904 2645 56 ×3.7 ∼ 47.2
20,000 411 3719 7797 5674 136 ×3.0 ∼ 57.3
30,000 605 8572 17,177 9065 220 ×2.8 ∼ 78.1
40,000 825 14,896 29,813 11,843 293 ×2.8 ∼ 101.8
50,000 1006 23,235 46,541 16,208 387 ×2.6 ∼ 120.3

4.2.4. Comparison to Exact Computation

In Section 3.2, we proposed to use random projections and bootstrapping for fast
approximation of the solution of (4), which can be computed exactly as an eigenvalue. Here,
we compare the values of Msep using the proposed approximate computation (denoted
by “Approx”) and the exact computation (denoted by “Exact”) due to an eigensolver in
the Python scipy package. One thing is that, since we use only Gaussian random vectors
for projection, it is likely that they may not match the true eigenvectors; therefore, the
approximated quantity would differ from the exact value. However, we found that the
approximate quantities match well the exact values in their correlation, as indicated in
Table 6, and, therefore, can be used for fast comparison of data quality of high-dimensional
large-scale datasets.

4.3. Class-Wise In-Class Variability Measure, MVari

In fact, many of the existing data quality measures are designed to measure the diffi-
culty of classification for a given dataset. However, we believe that the in-class variability
of data must be considered as another important factor of data quality. One example
to show the importance and usefulness of our in-class variability measure Mvari is the
generalization performance of a classifier.
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Table 6. Comparison of Exact and Approx values and their correlations. Pearson and Spearman are
the Pearson and Spearman rank correlation between the Exact and Approx.

Exact Approx

MNIST 0.1550 0.0535
CIFAR10 0.0331 0.0173

notMNIST 0.2123 0.0625
Linnaeus 0.0250 0.0118

STL10 0.0695 0.0207
SVHN 0.0004 0.0010

ImageNet-1 0.0062 0.0131
ImageNet-2 0.0293 0.0145
ImageNet-3 0.0191 0.0125
ImageNet-4 0.0092 0.0076

Pearson 0.9847
Spearman 0.9152

The generalization performance of the learning model is an important consideration
especially in mission-critical AI-augmented systems. There are many possible reasons
causing low generalization, and overfitting is one of the troublemakers. Although we have
techniques to alleviate overfitting, e.g., checking the learning curve, regularization [26,27],
and ensemble learning [28], it is critical to check if there is an issue in data to begin with
which may lead to any inductive bias. For example, a very small value of Mvari in a class
compared to the others would indicate a lack of variability in the class, which can lead to
low generalization due to, e.g., unchecked input noise, background signal, object occlusion,
and angle/brightness/contrast differences during training. On the other hand, the overly
large Mvari may indicate outliers or even mislabeled data points likely to incur unwanted
inductive bias in training.

To show the importance and usefulness of in-class variability, we created a degraded
version of CIFAR10 (denoted by degraded-CIFAR10) by reducing the variability of a specific
class. The degraded-CIFAR10 is created by the following procedure. First, we chose an
image of the deer class in the training data, then selected the nine mostly similar images
in the angular distance to the chosen one. Figure 4 shows the total ten images selected
by the above procedure that have similar backgrounds and shapes. Next, we created
1000 images by sampling with replacement from the ten images, while adding random
Gaussian noise with zero mean and unit variance, and we replaced the original deer class
data with sampled degraded deer class data.

Table 7 shows that the value of Mvari is significantly small on the degraded deer
class compared to the other classes. That is, it can capture small in-class variability. In
contrast, Table 8 shows that the existing quality measures F1, N1, N3, and CSG may not
be enough to signify the degradation of the dataset. As we can see, all quality measures
indicate that class separability increased in degraded-CIFAR10 compared to the original
CIFAR10; however, the test accuracy from MLP-2 decreased. This is because the reduction
in in-class variability is very likely to decrease the generalization performance. Therefore,
class separability measures can deliver incorrect information regarding data quality in
terms of in-class variability, which can be a critical problem for generating a trustworthy
dataset or training a trustworthy model.
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Figure 4. Ten similar selected images in the deer class on degraded-CIFAR10. Images with high
similarity were selected using cosine similarity.

Table 7. Our in-class variability measure for the degraded-CIFAR10 dataset. A class with a smaller
value than other classes has a lower variability.

Class

Measure

Mvari × 1000

Airplane 0.1557
Automobile 0.2069

Bird 0.1394
Cat 0.1803

Deer 0.0123
Dog 0.1830
Frog 0.1344

Horse 0.1775
Ship 0.1472

Truck 0.1997

Table 8. Quality measures on the degraded-CIFAR10 dataset. The existing quality measures F1, N1,
N3, and CSG only capture the class separability and fail to capture the degradation. Lower values
of N1, N3, and CSG represent higher class separability, whereas lower values of F1 represent lower
class separability. The test accuracy is from MLP-2 trained with original and degraded-CIFAR10,
respectively, and tested on the original CIFAR10 test data.

Data

Quality Measure
F1 N1 N3 CSG Test Accuracy (%)

Original CIFAR10 0.2213 0.7909 0.7065 0.7030 42.84
Degraded-CIFAR10 0.2698 0.7035 0.6096 0.6049 41.28

As we showed above, the small value of Mvari of a specific class represents that similar
images do exist in the invested class, which can lead to low generalization performance
of classifiers. Suppose we have generated a dataset for an autonomous driving object
classification task. The dataset has been revealed that it has a high class separability through
various quality measures. Moreover, the training accuracy was also high. Therefore, one
may expect high generalization performance. Unfortunately, the exact opposite can happen.
If the variability in the specific class is small as in the degraded-CIFAR10 example above,
high generalization performance cannot be expected. For instance, if a car with new
colors and new shapes that have never been trained is given as an input to the model, the
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probability of properly classifying the car will be low. This example indicates that in-class
variability plays an important role in data quality evaluation.

4.4. Quality Ranking Using MSep and MVar

As we mentioned before, quality measures Msep and Mvar can be compared among
different datasets. The class separability Msep represents the relative difficulty of linear
classification, and the overall in-class variability Mvar represents the average variability of
data points in classes.

Figure 5 shows a data quality comparison plot of datasets in our experiments. The
direction towards the lower-left corner indicates lower class separability and lower in-class
variability, and the upper-right direction is for higher class separability and higher in-class
variability. According to the plot, the MNIST and the notMNIST dataset show very high
linear separability compared to other datasets, indicating that their classification might
be easier than the other datasets. The SVHN dataset is at the lower-left corner, indicating
low linear separability and possible redundancy issues (this could be just the reflection
of the fact that many SVHN images contain changing digits but the same backgrounds).
The four ImageNet datasets, Linnaeus, CIFAR10 and STL10 have similar class separability
and in-class variability values. This appears to be understandable considering their similar
data construction designed for object recognition.

Figure 5. Data quality plot using the two proposed quality measures.

5. Conclusions

In this paper, we proposed data quality measures Msep, Mvar and Mvari , which can be
applied efficiently on large-scale high-dimensional datasets. Our measures are estimated
using random projection and bootstrapping and therefore can be applied efficiently on
large-scale high-dimensional data. We showed that Msep can be used as a good alternative
to the existing data quality measures capturing class separability, while reducing their com-
putational overhead significantly. In addition, Mvar and Mvari measures in-class variability,
which is another important factor to avoid unwanted inductive bias in trained models.
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Abstract: Public key encryption with keyword search (PEKS) enables users to search over encrypted
data outsourced to an untrusted server. Unfortunately, updates to the outsourced data may incur
information leakage by exploiting the previously submitted queries. Prior works addressed this issue
by means of forward privacy, but most of them suffer from significant performance degradation.
In this paper, we present a novel forward private PEKS scheme leveraging Software Guard Extension
(SGX), a trusted execution environment provided by Intel. The proposed scheme presents substantial
performance improvements over prior work. Specifically, we reduce the query processing cost
from O(n) to O(1), where n is the number of encrypted data. According to our performance
analysis, the overall computation time is reduced by 80% on average. Lastly, we provide a formal
security definition of SGX-based forward private PEKS, as well as a rigorous security proof of the
proposed scheme.

Keywords: searchable encryption; PEKS; forward privacy; trusted execution environment; SGX

1. Introduction

Data outsourcing to cloud service providers is beneficial in terms of data management, but raises
data security and privacy concerns. Encrypting data prior to outsourcing may solve the data privacy
problems. However, it inevitably complicates, or sometimes hinders important data management
operations such as searches over the outsourced data. Public key encryption with keyword search
(PEKS) solves this dilemma, in which data senders are allowed to encrypt data using a public key
such that the ciphertexts are searchable only by a data receiver whose secret key is associated with the
public key [1].

Unfortunately, previous PEKS schemes are vulnerable to query leakage attacks. For example,
in file injection attacks [2], an adversarial data sender generates maliciously crafted files of his choice,
encrypts them with the public key of a data receiver, and then outsources it to the cloud storage.
Then, the adversary observes file access patterns by monitoring which files are returned in response to
queries submitted by a specific receiver, thereby leaking the receiver’s queries.

As a countermeasure, forward private PEKS schemes have been proposed, which can guarantee
that the past search queries cannot be used for newly inserted files [3]. Unfortunately, the previous
schemes are unsuitable for the multi-user environment where multiple data senders are existing for
each receiver, which is the widespread setting in cloud-based applications (In this study, a multi-receiver
environment is not considered. Thus, henceforth, a multi-user environment implies only a multi-sender
environment in the paper). Thus, designing forward private PEKS that securely support multi-user
setting in a scalable way is one of the challenging and important goals in the PEKS literature.
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Moreover, prior works suffer from high communication overhead that degrades practicality.
For example, Zhang et al. [4] achieved forward privacy by means of key revocation, which incurs
costly key management tasks to distribute key update messages every time a query is processed.
Zeng et al. [5] proposed a scheme to guarantee forward privacy without such key revocations.
However, the scheme depends on computationally extensive cryptographic primitives, which incurs
unacceptable computation costs in practice. Furthermore, the query size of their scheme depends on
the time periods, leading to significant communication overheads.

To design secure and efficient schemes, one may utilize Trusted Execution Environments (TEEs)
such as Intel Software Guard Extension (SGX) [6–10]. TEE provides memory isolation such that it
loads data or code from (untrusted) main memory to the (trusted) isolated memory area, or enclave.
Since TEE can protect data and processes from operating systems or hypervisors using enclaves,
it can guarantee confidentiality and integrity of them even when operating systems or hypervisors are
compromised. Recently, Amjad et al. [11] introduced an SGX-supported dynamic searchable symmetric
encryption scheme that is forward private. However, it is also not applicable to the multi-user settings.

In this paper, we propose SPEKS, a forward private SGX-based public key encryption with
keyword search scheme. To the best of our knowledge, it is the first SGX-based PEKS that achieves
forward privacy in a multi-user setting. The proposed scheme uses a search counter to achieve forward
privacy by unlinking the current data status with the previous queries. Specifically, both the data
receiver and the cloud server share the same search counter, which is updated per each data update.
Since the current data is encrypted using the latest search counter, the previous queries cannot be
associated with subsequently updated data. Thus, forward privacy is guaranteed in the proposed
scheme. In addition, SPEKS significantly outperforms prior works [4,5,12] and preserves forward
privacy against stronger attack model by utilizing Intel SGX.

The contributions of this work are as follows:

• We propose a forward secure public key encryption with keyword search using Intel SGX, the first
SGX-based PEKS scheme that achieves forward privacy in multi-user settings.

• The communication cost is significantly reduced as a single query is sufficient to search over
multiple encrypted data, while prior works require numerous queries in proportional to the
number of encrypted data.

• We define a security model of SGX-based forward private PEKS, and formally prove the security
of our scheme.

• We implement our scheme using SGX, and evaluate the performance of our scheme and the
previous schemes. According to the experiment with implementations, our scheme is significantly
more efficient then the previous schemes without security degradation.

2. Background

Intel Software Guard Extension (SGX) is used for designing our construction for forward secure
searchable encryption. SGX is an extension of the x86 instruction set architecture (ISA) introduced
since the 6th generation Intel Skylake Processor. SGX provides Memory Isolation, Enclave Page Cache,
and Software Attestation, which are major functionalities that we rely on to construct our scheme.
In this section, we briefly introduce the SGX structures and basic PEKS algorithms upon which our
scheme is built.

2.1. Intel Software Guard Extensions (SGX)

Memory Isolation. SGX platform can be divided into untrusted parts and trusted parts.
Enclaves are trusted parts, or private regions of the physical memory whose contents are protected.
The memory space for enclave is isolated from any process outside the enclave itself, including processes
running at higher privilege levels. Thus, any access by other processes such as privileged operating
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systems, firmware, hypervisor and code in system management mode (SMM) to the enclave memory
is disallowed.

The enclave memory is mapped into virtual memory of the untrusted part, and the untrusted
part is executed on the ordinary process within the virtual address space. The mapping of the enclave
memory is crucial, because this enables the enclave to access the host process’s entire virtual memory.
However, the host process is only allowed to call enclave through certain interface. In addition,
the executed code and data inside the enclave are encrypted when they reside in the untrusted part
of the memory. When loaded into the enclave, on the other hand, the enclave is decrypted on the
fly within the CPU. Thus, the processor protects the code from being examined by other processes,
which treated as potentially hostile.

Enclave Page Cache (EPC): Enclave page cache (EPC) is memory area where the enclave code and
data are placed. Using the Memory Encryption Engine (MEE), the EPC is encrypted and external reads
on that memory bus can only monitor encrypted data. For EPC, a fixed amount of the main memory,
limited to 128 MB, of the system is allocated to store enclave and related metadata. Since the dedicated
memory is shared between enclave itself and related metadata, the enclave cache, on average, is able
to use 96 MB [13]. Because of the memory limitation, enclaves sometimes need to swap pages when
dealing with large data of which size exceeds the dedicated memory. During the boot phase, the SGX
memory is reserved statically throughout the runtime of the system. If there are multiple enclaves,
the memory is supposed to be dynamically managed by the OS and allocated to each enclave. When the
page swapping occurs, the key generated at the boot-time is used for both encryption and decryption
of the page. In the page swapping operations, confidentiality and integrity of the swapped-out pages
can be guaranteed.

Software Attestation [14]: SGX supports software attestation feature that verifies the validity
of locally or remotely created enclaves. The enclave measurement, which is the initial code loaded
when the enclave is created, is used to verify the correctness of the enclave. Provided by the SGX
attestation functionality, it can be assured that the measurements are authentic and associated with
the benign enclave. For local attestation, EREPORT and EGETKEY instructions are used to generate
the signed report and verify it at the target enclave. For remote attestation, the signature is provided
by the Quoting Enclave (QE), a component of SGX. Before generating the signature, QE only accepts
measurements from the hardware itself, which ensures that only legitimate enclave is measured.

2.2. Public Key Encryption with Keyword Search (PEKS)

Boneh et al. [1] first introduced the notion of public key encryption with keyword search
(PEKS). Compared to symmetric searchable encryption, PEKS has better performance in data sharing.
Abdalla et al. [15] gives a generic framework of PEKS and shows how to obtain public key based
searchable encryption from anonymous identity-based encryption. In the PEKS scheme, a data receiver
provides a gateway with a trapdoor function for keywords. Then, a data sender uses the data receiver’s
public key for encrypting a keyword and sends the ciphertext to the server or the gateway. The latter
applies search or test function to the search token and the ciphertext. When the keywords within
the search token and the ciphertext match, the search or the test function returns 1; otherwise, 0.
The scheme is proven to be secure in the standard model, but under the condition where the number
of malicious clients is smaller than a specified value.

3. SPEKS Overview and Definitions

In this section, we describe a high level design of our SPEKS scheme, and show the search processes
over encrypted data by users. Then, we define algorithms for SPEKS scheme and security model.

3.1. Overview

The high level design of our scheme is shown in Figure 1. In the proposed scheme, there are three
system entities: data receiver (DR), data sender (DS), SGX-enabled cloud server (CS).
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During the setup phase, a DR initially generates his private key SKu, public key PKu,
and symmetric key Ku. Using the SGX attestation protocol for enclave authentication, the DR establishes
a secure channel with the enclave within the CS (shown in step � in Figure 1). After establishing the
secure connection, the DR provisions SKu and Ku into the enclave (step �). The enclave stores two
provisioned keys for future processes. When enclave is unloaded or rebooted, the provisioned keys can
be securely stored in the local memory.

For the PEKS algorithm, a DS gets search counter of the DR, encrypts data that includes predefined
keyword with the search counter, and uploads the encrypted data to the server (see step � and �).
Then, the DR generates a search query, encrypts it with symmetric key SKu, and transfers it to enclave
within the CS using the Trapdoor algorithm (step �). The enclave has provisioned keys required for
decryption and the search query from the DR. For the Search algorithm, the data record is loaded
to the enclave (step �). If the data record size is greater than the EPC, the record are separated into
smaller pieces and partial records are loaded multiple times to the enclave. The enclave decrypts the
search query using the symmetric key and searches the matching record (step �). Finally, if there is a
matched result, then the enclave returns the result to the DR (step �).

Figure 1. High level design overview.

3.2. Algorithms and Security Definitions

SPEKS consists of four polynomial-time algorithms: SPEKS = (Setup(1λ, λ), PEKS(PKu, w, u, F),
Trapdoor(Ku, w, sc[u]), Search(SKu,R, tw)).

Definition 1. (SPEKS). A secure SPEKS is a tuple of four polynomial-time algorithms (Setup, PEKS, Trapdoor,
Search) as follows:

• (PKu, SKu, K) ← Setup(1λ, λ): It takes the security parameter 1λ as input for generating a key pair for
private key SKu and public key PKu, and takes λ as input for generating symmetric key Ku.

• tw ← Trapdoor(Ku, w, sc[u]): It takes the symmetric key Ku, keyword w, and search counter sc[u] as
input. It then outputs encrypted search token tw.

• R ← PEKS(PKu, w, u, F): It takes the public key PKu, keyword w, user index u, and a set of data F as
input. It then outputs a record R.

• (F/ ⊥) ← Search(SKu,R, tw): It takes the private key SKu, record R, and search token tw as input.
It then outputs F if there is a match; otherwise, ⊥.
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Definition 2. (Correctness) Let D denote a SPEKS-scheme consisting of the four algorithms described in
Definition 1. For any correctly generated public key pair (PK, SK) and symmetric K of the data receiver, and for
any keyword w, Search(SKu,R, tw) = 1 holds with probability 1, where ciphertext R ← PEKS(PKu, w, u, F)
and tw ← Trapdoor(Ku, w, sc[u]).

We define our security model based on the three steps framework introduced in [16]. For the
first step, we need to formulate a leakage which means an upper bound of the information that
an adversary may gather from the protocol. Second step is defining the RealA(λ) and IdealA,S (λ)
games for an adaptive adversary A and a polynomial-time simulator S . RealA(λ) is the actual
protocol and IdealA,S (λ) is the simulated protocol for the real game by utilizing S using only the
formulated leakage. Information learned in the previously executed protocols can be used by an
adaptive adversary for its subsequent queries. Third step is proving that a scheme is CKA2-secure
by showing that A can distinguish the outputs of the games with probability close to 0. When the
probability is negligibly close to 0, A does not learn anything more than just the leakage stated in the
first step.

Similar to the scheme introduced by Fuhry et al. [13], our scheme has an additional transaction
between the cloud server and the trusted hardware, SGX. This additional transaction can be monitored
by the adversary; therefore, we extended the original security model to hardware-security model.
Lhw denotes the leakage on the CKA2-HW-security.

Definition 3. (CKA2-HW-security). Let D denote a SPEKS scheme consisting of the four algorithms described
in Definition 1. A is a stateful passive adversary, and S is a stateful simulator that gets the leakage functions
LPEKS and Lhw. Two probabilistic experiments RealA(λ) and IdealA,S (λ) are described as a follow.

• RealA (λ): The data receiver runs Setup
(
1λ, λ

)
and generates a key pair (PK, SK) and symmetric key K.

A outputs a search counter of user, sc[u]. The data sender calculates R ← PEKS(PKu, w, u, F) and passes
R to A. The data receiver returns search token tw to A after calculating tw ← Trapdoor(Ku, w, sc[u]).
A can use R and the returned tokens at any time to make a query to the trusted hardware. The trusted
hardware answers the query by running (F/ ⊥) ← Search(SKu,R, tw). If the query matches, then the
search counter is incremented and A returns a bit b as a result of the experiment.

• IdealA,S (λ): The adversary A outputs search counter sc to the data sender. Using LPEKS, the data sender
creates R and sends it to A. The simulator S creates search token tw and passes it to A. A can use R
and search token tw to make queries to S , who simulates the trusted hardware. Next, with the given Lhw,
S returns the search result. At last, the adversary A returns an output bit b of the experiment.

We claim that D is (LPEKS,Lhw)-secure against adaptive chosen-keyword attacks if for any
probabilistic, polynomial-time algorithms A, there exists a probabilistic, polynomial-time S such that:

|Pr [RealA (λ) = 1]− Pr [IdealA,S (λ) = 1]| ≤ negl (λ) .

4. Construction

4.1. Cryptographic Primitive

Let EncPKE and DecPKE refer to IND-CPA secure public key encryption and decryption algorithm
respectively, and EncSKE and DecSKE refer to IND-CPA secure symmetric key encryption and
decryption algorithm respectively. The proposed scheme is constructed based on these symmetric and
public key encryption/decryption algorithms.

4.2. Provisioning

For key sharing between the enclave and the data receiver, the data receiver provisions his
private key and symmetric key to the enclave. Since the keys should not be revealed to any untrusted
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entity, secure connection between the data receiver and the enclave should be established using the
attestation feature of SGX. During the creation of the enclave, the key pair (skE) and (pkE) are created.
The hardware random number generator (rdrand [17]) available in current CPUs can provide the
sufficient randomness required for the key generation in practice.

Subsequently, the enclave sends the created pkE to the quoting enclave (QE). The QE creates the
signature used for verification of the measurement of the initial memory content of the enclave ME
and the public key σQE(ME ‖ pkE). With the given Intel’s public key, the data receiver verifies the
signature of ME, pkE, and σQE(ME ‖ pkE). The data receiver is now able to encrypt SKu and Ku with
pkE and sends them back to the enclave. As a result, the enclave and the data receiver share the SKu

and Ku, which they use for secure communication.

4.3. Algorithms

The proposed forward secure searchable encryption scheme with keyword search (SPEKS) consists
of the following four algorithms: (Setup, PEKS, Trapdoor, Search).

Algorithm 1 gives a formal description of Setup of our SPEKS scheme. In (PKu, SKu, K) ←
Setup(1λ, λ) algorithm, a data receiver (DR) generates PKu, SKu, and Ku. Next, the DR provisions the
SKu and Ku to the enclave within the cloud server, EnclaveCS, through a secure channel. The secure
channel can be established by the attestation feature provided by Intel SGX as explained in Section 4.2.

Next, Algorithm 2 provides a formal description of PEKS. In R ← PEKS(PKu, w, u, F), where F
denotes a set of data, a data sender (DS) first requests search counter sc[u] from the cloud server (CS).
Using the retrieved sc[u], the DS runs EncPKE(PKu,(w, sc[u])) and generates searchable ciphertext ct.
A record R consists of three components (d, ind, ct), where d refers to the data, ind refers to the index,
and ct refers to the searchable ciphertext. The generated record R is sent to the CS.

Algorithm 3 describes the Trapdoor algorithm of our scheme. In the algorithm, the DR creates a
search token with the keyword. Specifically, in the execution of tw ← Trapdoor(Ku, w, sc[u]), the DR
uses the search counter sc[u] and keyword, and generates the search token. Then, using symmetric key
encryption (SKE), the DS encrypts the search token with symmetric key K. The encrypted search token
tw is now transferred to EnclaveCS. After transferring the search token, the DR increments his or her
own search counter by 1.

Algorithm 4 describes the Search algorithm of our scheme. In Algorithm 4, EnclaveCS checks
whether search token tw matches R. EnclaveCS runs DecSKE (Ku, tw) and retrieves keyword w′ and
search counter sc′. Next, using the key SK, keyword w and search counter sc are retrieved from the
ciphertext cti. The indi from R is returned. sc[u] is then incremented by one, and F with returned indi
is returned to the DR, when matched; else, ⊥ is returned .

Algorithm 1: (PKu, SKu, K) ← Setup(1λ, λ)

DR:

(PKu, SKu) ← Setup(λ)

Symmetric key Ku ← Setup(1λ)

Provision Private Key SKu

and Symmetric Ku to EnclaveCS

72



Appl. Sci. 2020, 10 , 7842

Algorithm 2: R ← PEKS(PKu, w, u, F)
DS:

Request the search counter of u from the CS

CS:

Return sc[u] to DS

DS:

for i = 1 to |F| do

cti ← EncPKE(PKu,(w, sc[u]))

R ← R ∪ {(di, indi, cti)}
end for

Transfer R to CS

CS:

for i = 1 to |R| do

ED ← ED ∪ {(di, indi, cti)}
end for

Algorithm 3: tw ← Trapdoor(Ku, w, sc[u])
DR:

τw ← (w, sc[u])

tw ← EncSKE(Ku, τw)

Transfer tw to EnclaveCS

sc[u] ← sc[u] + 1

Algorithm 4: (F/ ⊥) ← Search(SKu,R, tw)

CS:

EnclaveCS :

(w′, sc′) ← DecSKE (Ku, tw)

for i=1 to sc’ do

(w, sc) ← DecPKE (SKu, cti)

if (w = w′) and (i = sc) then

return indi

end if

end for

sc[u] ← sc[u] + 1

Return F to DR if match; else, ⊥

5. Analysis

5.1. Security Analysis

We will prove the security of our scheme by defining the leakage functions related to access
pattern. Then, we will explain how our SPEKS scheme guarantees the forward privacy.
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We define two leakage functions: LPEKS (sc) and Lhw (sc,R). LPEKS (sc) function outputs a
record R given the search counter sc, which consists of encrypted data, indices, and searchable
ciphertexts. Given sc and R, Lhw (sc,R) function outputs the access pattern P (sc,R).

The access pattern P (sc,R) contains information of search counter sc and records R, which are
stored in the untrusted memory region of the server. When the data receiver requests sc, the server
can see which value is being returned. R also leaks which record is being sent to enclave or the data
receiver. In our analysis, we further utilize values access pattern Δ (sc,R) [13], which, in our analysis,
describes the pointers to the result values that specifically points the record with index ind.

Theorem 1. (Security). The SPEKS construction is (LPEKS,Lhw)-secure.

Proof. We consider a polynomial-time simulator S for which probabilistic, polynomial-time adversary
A can distinguish between RealA(λ) and IdealA,S (λ) with negligible probability.

• Setup: S creates a new random keys
(

P̃K, S̃K, K̃
)
= Setup(1λ, λ) and stores them.

• Simulating R: S gets LPEKS and receives search counter sc. Furthermore, S creates |F| (the size
of data set) encryption of keyword C =

(
C1, ..., C|F|

)
using EncPKE (PK, (w, sc)). All encrypted

value is given a distinct index value ind. S outputs R = (indi, Ci). Since the value of search
counter and the size of the record are included in the leakage, the operations above are possible.
The simulation of R has the same size with the output of RealA(λ). In addition, the simulation
result is indistinguishable from the output of RealA(λ) due to IND-CPA-security of public key
encryption scheme.

• Simulating tw: The simulator S creates value τw = (w, sc) and encrypts it as EncSKE(Ku, τw).
S outputs search token tw. Since EncSKE is IND-CPA secure, the simulated tw is indistinguishable
from the output of RealA(λ).

• Simulating secure hardware: At a given time t, S receives search token and Lhw. S uses P (sc,R, t)
to simulate the access pattern. S begins with the first record of P and follows the indices given by
R. The leakage Δ determines the specific point of the record with index ind.

The adversary A cannot distinguish access of RealA(λ) from simulated access due to the delivering
of deterministic results. The results are consistent for each different requests made for the same keyword.
Since Δ (sc,R) is explicit, the number of result pointers matches and the pointers are also consistent.
The pointed values are indistinguishable, because those values are encrypted IND-CCA secure.

Forward Privacy. In order to guarantee forward privacy, the past search queries should not
be directly associated with the updated files. In our SPEKS scheme, we use a search counter that
is supposed to be updated after each search. The search queries are generated only with private
key and the search counter. Since the ciphertexts are created with the current newly updated search
counters, past queries generated with past search counter values cannot match with newly updated
files. Therefore, forward privacy is guaranteed in our proposed scheme.

5.2. Performance Analysis

In this section, we analyze the performance of our scheme and provide a comparative analysis
with previous forward secure public key encryption with keyword search (FS-PEKS) schemes such as
Zeng at al.’s [5] and Kim et al.’s [12] schemes.

Our experiment is run on a system equipped with Intel(R) Core(TM) i7-9700K CPU at 3.60 GHz,
16G DDR4 RAM. 64-bit Ubuntu 18.04.4 LTS with enabled SGX is used as an operating system.
Our scheme is implemented based on Intel’s Software Guard Extension (SGX) Software Development
Kit (SDK).

When considering the multi-user environment, it is important to evaluate the initial costs for key
setup and key management. In order for general symmetric searchable encryption (SSE) schemes to
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support a multi-user environment, they need to set up the key multiple times in proportion to the
number of users. For instance, if we define u as the number of data senders and |DH| as the initial cost
of Diffie–Hellman key exchange protocol between a data sender and a data receiver, then the initial
cost for the key setup is

(initial key setup cost) = u · |DH|.
However, the proposed scheme does not require key exchange protocol for each data sender, thus the
key setup cost remains constant.

Furthermore, since the data receiver also needs to manage each key corresponding to each data
sender, storage overhead for storing the key is also increased in proportion to the number of data
senders in the previous schemes. For the key management, SSE schemes require a data receiver to store
all of the keys set up for data senders. If |K| refers to the size of a key, the overall storage overhead is

(storage cost) = u · |K|.

Whereas, our scheme does not require a data receiver to store multiple keys for each sender.
Therefore, our scheme has constant storage overhead for key management regardless of the number of
data senders, which shows high scalability of our scheme in the multi-sender environment.

Computation overhead: As shown in Figure 2, the proposed scheme has lower computation cost
compared to those of Kim et al.’s and Zeng at al.’s schemes. Specifically, for PEKS algorithm,
while Kim at al.’s scheme takes 3.958 ms and Zeng at al.’s takes 8.123 ms, our scheme takes just 0.0919 ms,
which is significantly less overhead. Next, for generating a search token using Trapdoor algorithm,
our scheme takes 0.02 ms, which is constant independently of the search count. However, in Kim et al.’s
scheme [12], it takes 4.85 ms for a single search token, and the computational cost increases in proportion
to the number of search counters. Zeng at al.’s scheme takes 12.11 ms for running Trapdoor, which is
orders of magnitude slower than ours. In addition, for the Search algorithm, as shown in Table 1,
it has the same complexity as our scheme in terms of the search time. However, when measuring
the actual computation time in practice, the Search algorithm of ours takes, in average, 0.0436 ms,
while the computation cost of search process in [5] depends on a set of encoded time period. This causes
unnecessary computational overhead for some cases. The search algorithm in Kim et al.’s scheme takes
0.863 ms as shown in Figure 2.

This reduction in computation cost is caused by the characteristic of the trusted execution
environment, especially Intel SGX in our scheme. Previous PEKS schemes [5,12] are constructed based
on the pairing based cryptographic operations which leads to high computation overhead. For instance,
in Trapdoor algorithm, our proposed scheme uses AES-GCM that is included in the SGX SDK for
encryption and decryption of search query. Compared to pairing-based operations, AES-GCM is much
more efficient cryptographic primitive. In addition, For Search algorithm, previous schemes utilize the
pairing-based cryptography for searching over ciphertext. RSA or Elliptic Curve Cryptography cannot
be used in such software-only based schemes, because the comparison over ciphertexts for search is
not possible. However, the trusted execution environment provided by SGX enables the search process
over plaintext while still guaranteeing the data privacy.

Communication overhead: As the previous revocation-based FS-PEKS scheme [4], most of the search
counter-based schemes including Kim et al.’s scheme [12] generate multiple search tokens. To be specific,
since public and private keys are revoked for each search phase, revocation-based FS-PEKS scheme
needs to create multiple search tokens for previous ciphertext, and the size of the token depends on the
number of searches made beforehand. Such an overhead becomes devastating as a number of searches
are made subsequently. For instance, after 1000 searches, data receiver needs to generate 1000 search
tokens. Moreover, the revocation-based approach leads to sending re-encrypted data, incurring an
additional communication overhead. Likewise, Kim et al.’s scheme [12] generates a number of search
tokens as the search counter increases, shown in Figure 3. Therefore, communication overhead related
to the query size depends on the number of search counters. As shown in Table 1, the query size
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is O (1) in our scheme because it requires only a constant number of search tokens regardless of
the search counter. However, in Kim et al.’s scheme [12], the number of generated search tokens
increases as the search counter increases. Zeng at al,’s scheme, on the other hand, does not adopt
counter-based mechanism, but still creates multiple search tokens for the search operations. As shown in
Table 1, communication overhead related to query size in Zeng et al.’s scheme depends on the encoded
time period. However, unlike the other previous schemes, our scheme only generates a single token
regardless of the number of search counters, thus the proposed scheme is more scalable in practice.

Figure 2. Computational cost of each algorithm.

Figure 3. Communication cost of each scheme.

Overall, the proposed scheme significantly outperforms previous FS-PEKS schemes and achieves
better security by exploiting trusted execution environment, specifically Intel SGX in our scheme.

Table 1. Efficiency comparison of public key encryption with keyword search (PEKS) schemes.
(|sc| refers to the value of search counter, nd refers to the number of data, |id| refers to size of identifier,
|S| denotes number of searches made, |T| denotes a set of encoded time period.)

Scheme Search Time Query Size Index Size

Zeng et al. [5] O (|T| · nd) O (|T|) O (nd)

Kim et al. [12] O (|sc| · nd) O (|sc|) O (nd + |id|)
Our scheme O (|sc| · nd) O (1) O (nd)
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6. Related Work

In this section, we introduce the previous searchable encryption schemes and trusted execution
environment (TEE).

6.1. Searchable Encryption

After the first searchable encryption (SE) was proposed by Song et al. [18], SE has been
continuously studied to extend its functionality. Generally, the existing SE schemes can be classified
into two types: searchable symmetric encryption (SSE) and public key encryption with keyword search
(PEKS). By utilizing the symmetric key primitives [18–21], SSE schemes are generally more efficient
than PEKS schemes. However, SSE schemes are not suitable for multiple data sender environments.
PEKS schemes, based on the public key primitives [22,23], was first introduced by Boneh et al. [1],
and it suits for multiple data sender environment due to the efficient key management. In PEKS
schemes, generally, a data sender generates searchable ciphertext with a specific user’s public key.
Then, the data receiver creates a search queries and retrieves the data with secret key.

6.2. TEE Based Implementations

Fisch et al. [24] first introduced functional encryption scheme using Intel SGX and formally
defined the security model. Since the first adoption of Intel SGX, many studies have been made
to construct encryption schemes on Intel SGX platform. Fuhry et al. [13] used Intel SGX to design
HardIDX, which is an encrypted database index. The functionality of search operation is implemented
inside the enclave, but does not support the update operation. In addition, Zerotrace [25] proposed
generic efficient ORAM primitives using Intel SGX, and Oblix [26] was designed for oblivious search.
In Oblix, update process is designed to minimize the leakage of access pattern and result size of
searches. Harnessing TEE such as Intel SGX as a building block for SE scheme construction is an
effective way to increase efficiency and security of the schemes in practice.

7. Conclusions

In this paper, we proposed a public key encryption with keyword search scheme guaranteeing
forward privacy using Intel SGX. We formally defined a security model for the proposed TEE-based
scheme. Compared with the previous schemes, our scheme shows significantly higher efficiency because
the proposed scheme generates a single search token regardless of conditions; while the previous
schemes require multiple search tokens. Furthermore, the proposed scheme requires significantly less
computation time for creating indices, generating search tokens, and searching processes.

Our scheme considers only a multi-sender environment. Extending our scheme to the multi-receiver
environment is another important and challenging issue. In addition, preserving resilience against
de-synchronization attack is also an important open problem in most of the cryptographic protocols
or algorithms based on shared secret information such as IV (initial vector) or counter information.
Since most of the forward secure PEKS schemes are constructed based on counter values, how to make
an efficient countermeasure against the de-synchronization attack over the shared counter value is also a
challenging topic in the PEKS literature as an important future work.
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Abbreviations

The following abbreviations are used in this manuscript:

PEKS Public Key encryption with keyword search
FS-PEKS Forward Secure PEKS
SE Searchable encryption
TEE Trusted Execution Environment
SGX Software Guard Extension
IND-CPA Indistinguishable under chosen-plaintext attack
PKE Public key encryption
SKE Symmetric key encryption
CS Cloud server
DS Data sender
DR Data receiver
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Abstract: Event-based system (EBS) is prevalent in various systems including mobile cyber physical
systems (MCPSs), Internet of Things (IoT) applications, mobile applications, and web applications,
because of its particular communication model that uses implicit invocation and concurrency between
components. However, an EBS’s non-determinism in event processing can introduce inherent security
vulnerabilities into the system. Multiple types of attacks can incapacitate and damage a target EBS by
exploiting this event-based communication model. To minimize the risk of security threats in EBSs,
security efforts are required by determining the types of security flaws in the system, the relationship
between the flaws, and feasible techniques for dealing with each flaw. However, existing security flaw
taxonomies do not appropriately reflect the security issues that originate from an EBS’s characteristics.
In this paper, we introduce a new taxonomy that defines and classifies the particular types of inherent
security flaws in an EBS, which can serve as a basis for resolving its specific security problems.
We also correlate our taxonomy with security attacks that can exploit each flaw and identify existing
solutions that can be applied to preventing such attacks. We demonstrate that our taxonomy handles
particular aspects of EBSs not covered by existing taxonomies.
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1. Introduction

Event-based systems (EBSs) developed by using message-oriented middleware (MOM)
platforms [1] have been widely used in mobile cyber physical systems (MCPSs) as well as a wide
range of applications including Internet of Things (IoT) [2–5], financial markets, logistics, and web
apps [6], including those that directly interfaced with users (e.g., Android apps [7]). In the case of
MCPSs, for example, since they integrate distributed entities including computational, communication,
and physical components [8], event-based architecture has been considered as an appropriate
mechanism for their implementation [8–11]. MCPSs’ inherent heterogeneity and integration of
multiple processes make event-based architecture as a relevant approach for their modeling and
application [12–15]. Specifically, EBSs are highly scalable, easily evolvable, and have a low coupling
that makes them especially suitable for highly heterogeneous distributed systems [16–21].

EBSs’ popular attributes are led by their communication model. For example, in EBSs, components
(interchangeably referred to as “event-clients” or “event-agents”) invoke each other implicitly by
publishing event messages (simply referred to as “events”) instead of directly calling other components
via explicit references. Accordingly, the components may not know the consumers of the events
they publish, and may not necessarily know the producers of the events they consume as well.
Although this communication mechanism provides several advantages, as its operation is based on
non-determinism in event processing, it exposes EBSs to security threats such as event spoofing,
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interception, and eavesdropping [22–24] (called event attacks). To minimize the risk of such threats on
EBSs, security efforts are required.

When working on software security efforts, developers or administrators are required to determine
the types of security flaws that exist in the system, the relative importance of each flaw, and the types
of techniques that can be employed to handle each flaw. A security flaw taxonomy (an ordered system
that indicates the natural relationships of security flaws [25,26]) can provide a basis for developers to
make better decisions in securing their target software system. For the past three decades, many such
lists and taxonomies of security problems have been studied [25–38]. However, despite the prevalence
of EBSs, systematic identification and classification of EBSs’ security flaws have not been extensively
studied yet. Existing security flaw taxonomies do not adequately reflect the security issues that
originate from the EBSs’ characteristics or have been found in recent types of EBSs such as Android
(Android is a mobile operating system (OS), but it also has been studied as a particular type of EBS
because it supports event-based communication model. In this research, we consider Android not
only as an OS, but also as a software system encompassing from middleware to applications. We will
discuss the details in Section 2.2). Because EBSs have particular attributes that general software systems
do not bear (e.g., implicit invocation in event communication), the existing lists or taxonomies are
not directly applicable for securing EBSs. Therefore, it is inherently necessary to first systematically
identify and classify EBSs’ fundamental security flaws to negate any vulnerabilities in the system.

In this paper, we introduce a new taxonomy that classifies the security flaws within
EBSs [22,39–47]. Built upon previously identified security flaws present in general software
systems [25], our taxonomy classifies particular types of inherent flaws in EBSs, and is distinguished
from the existing taxonomies because (1) it clarifies and classifies the inherently present security flaws
in EBSs, (2) it covers all types of security flaws in the EBSs domain that have been identified so far,
and (3) it considers different types of EBSs configurations (e.g., commercial or open-source MOM
platforms). We also correlate our taxonomy with security attacks that can exploit these flaws and
existing solutions that are applicable to preventing corresponding attacks. We evaluated our taxonomy
in terms of its coverage by comparing it with the existing security flaw taxonomies. Our taxonomy
covers all types of security flaws discovered in EBSs so far and even handles additional security flaws
not covered by existing taxonomies.

The remainder of paper is structured as follows: Section 2 illustrates the background and
definitions, Section 3 describes the methodology that we followed and the resulting taxonomy, Section 4
describes its evaluation, and Section 6 presents the conclusions.

2. Background

In this section, we clarify the underlying concepts and terminology that we will use later to
describe our taxonomy in Section 3. We first provide the definitions of key concepts that our taxonomy
uses. We then introduce the fundamental mechanism of EBSs and the different types of event attacks.

2.1. Key Concepts

In this paper, our use of the terms “flaw”, “vulnerability”, and “attack” are based on the terms
defined in the existing literature [25,26]. A flaw is a defect of a software system, which can result
in a security violation [25]. A vulnerability is caused by at least one flaw and can be exploited by
attacks. An attack refers to the techniques that an attacker uses for attempting to detect and exploit a
vulnerability. Attack or vulnerability taxonomies might be useful when developers (or administrators
or testers) need to clarify the ways their target system can be attacked and the parts of the system
that should be protected. However, considering the fact that a flaw is the root cause of security
violations and can be masked by another part of the system, its identification is more useful for making
a target system robust to security threats. Hence, in this paper, we focus on flaws, rather than attacks
or vulnerabilities.
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2.2. Event-Based Systems

The EBSs’ popular attributes (e.g., scalability, evolvability, and low coupling [16–20]) are
fundamentally enabled by their communication model. In EBSs, the components (i.e., the units
of computation and data) communicate asynchronously with each other by using messages [48].
A message typically describes one or more observed events. An event is any occurrence that can be
observed by a component (e.g., a change of the component’s state or a change in the environment of the
system) [49]. An event and its corresponding message are often conflated in literature for convenience.
In this paper, the term “event” will be used to refer to these concepts broadly. A connector is an
architectural element tasked with effecting and regulating interactions among the components [1].
Although there exist several connector types, in this paper, a connector will always refer to an
event-based distribution connector [1] that distributes events to associated components. We will
use the term “event broker” to refer to this concept broadly.

In EBSs, the components do not have explicit references to each other and are only able to invoke
an event broker directly [49]. Consequently, the addition, removal, and updating of components can be
achieved relatively easily during runtime [50]. A component can be an event producer or a consumer,
or both. Communication between the components is processed via “source” and “sink” [51]—a
source is an event interface invoked to publish events by a producer component; a sink is an event
interface that an event broker invokes to transfer an event to a consumer component. When a producer
publishes an event, the event broker routes the event to the appropriate consumers based on the system
configuration, along with the routing and filtering policies [49]. When the event broker transfers an
event to a component’s sink, the component consumes the event. Each sink declares an event type
and only allows the processing of events that match its declared type. In this paper, we will target
the following three event types commonly used in today’s EBSs [48]: (1) nominal, (2) subject-based
and (3) attribute-based. Nominal event types are explicitly declared in a system’s programming
language and subsequently enforced at compile-time. In subject-based event typing, each event type is
defined through a string value that captures an event’s name. Similar subject-based event types can
be organized into naming hierarchies (e.g., Weather/Country/City). In attribute-based event typing,
an event type is defined through a set of attributes, where each attribute is a pair of name and value.
Event types can be further defined into more specific event subtypes.

2.3. Event Attacks

Event attacks represent the security problems caused by non-determinism in an EBS’s event
processing encountered by developers and end-users. Event attacks abuse, incapacitate, and damage
the system by exploiting event-based communication. Different types of event attacks have been
identified throughout various domains, such as mobile and web apps [22,24,47,52–61]. The research
to date has identified the following types of event attacks: Spoofing (A1): A malicious component
can send an event that spoofs a target component to exploit the target’s functionality/data [22];
Interception (A2): A malicious component can intercept an event that is supposed to be sent to other
components and can send back inappropriate replies to make a target component malfunction or
to exploit the target’s functionality/data [22,24]; Eavesdropping (A3): A malicious component can
eavesdrop on an event, which contains sensitive data, and is supposed to be open only for particular
components [24,60]; Confused deputy (A4): A malicious component can indirectly access a target
component, by accessing another component that has access to the target component, to exploit the
target’s functionality/data [47]; Collusion (A5): Two or more malicious components can collude by
exchanging events to exploit the functionalities or resources of a target component [47]; Flooding (A6):
A malicious component can send an overwhelming amount of events that makes a target component
malfunction [55]; Delaying (A7): A malicious component (or event broker) can intentionally delay a
series of event interactions to make a target component malfunction [54]. We have formally defined
each type of event attack as listed in Table 1.
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Table 1. Types of Event Attacks.

No. Attack Type Definition

A1 Spoofing
For 𝑉1,𝑉2, 𝑀1 ∈ 𝐶 where 𝑉1 ≠ 𝑉2 ≠ 𝑀1 and ∃(𝑉1

𝑒
−→ 𝑉2) and (𝑉2 contains 𝑓 ) and (𝑀1

𝑒
=⇒ 𝑉2):

𝑀1 sent a spoofed 𝑒 to 𝑉2 to exploit 𝑓 in 𝑉2

A2 Interception
For 𝑉1,𝑉2, 𝑀1 ∈ 𝐶 where 𝑉1 ≠ 𝑉2 ≠ 𝑀1 and ∃(𝑉1

𝑒
−→ 𝑉2) and (𝑒 contains 𝑠) and (𝑉1

𝑒
=⇒ 𝑀1) ∧ ¬(𝑉1

𝑒
=⇒ 𝑉2):

𝑀1 intercepted 𝑒, which was supposed to be sent to 𝑉2, to obtain 𝑠

A3 Eavesdropping
For 𝑉1,𝑉2, 𝑀1 ∈ 𝐶 where 𝑉1 ≠ 𝑉2 ≠ 𝑀1 and ∃(𝑉1

𝑒
−→ 𝑉2) and (𝑒 contains 𝑠) and (𝑉1

𝑒
=⇒ 𝑀1) ∧ (𝑉1

𝑒
=⇒ 𝑉2):

𝑀1 eavesdropped on 𝑒, which was supposed to be open only to 𝑉2, to obtain 𝑠

A4
Confused

deputy
For 𝑉1,𝑉2, 𝑀1 ∈ 𝐶 where 𝑉1 ≠ 𝑉2 ≠ 𝑀1 and �(𝑀1

𝑒
−→ 𝑉1) and (𝑉1 contains 𝑓 ) and (𝑀1

𝑒1
==⇒ 𝑉2) ∧ (𝑉2

𝑒2
==⇒ 𝑉1):

𝑀1 accessed 𝑉1 by accessing 𝑉2, which can access 𝑉1, to exploit 𝑓 in 𝑉1

A5 Collusion
For 𝑉1, 𝑀1, 𝑀2 ∈ 𝐶 where 𝑉1 ≠ 𝑀1 ≠ 𝑀2 and �(𝑀1

𝑒
−→ 𝑉1) and (𝑉1 contains 𝑓 ) and (𝑀1

𝑒1
==⇒ 𝑀2) ∧ (𝑀2

𝑒2
==⇒ 𝑉1):

𝑀1 colluded with 𝑀2, which can access 𝑉1, to exploit 𝑓 in 𝑉1

A6 Flooding
For 𝑉1,𝑉2, 𝑀1 ∈ 𝐶 where 𝑉1 ≠ 𝑉2 ≠ 𝑀1 and ∃(𝑉1

𝑒
−→ 𝑉2) and (𝑀1

𝑒∗
==⇒ 𝑉2) ∧ ¬(𝑉1

𝑒
=⇒ 𝑉2)∧

(the number of 𝑒∗ is overwhelmingly greater than the average number of 𝑒):
𝑀1 sent an overwhelming number of 𝑒∗ to hinder 𝑉1 from accessing 𝑉2

A7 Delaying
For 𝑉1,𝑉2,𝑉3, 𝑀1 ∈ 𝐶 where 𝑉1 ≠ 𝑉2 ≠ 𝑉3 ≠ 𝑀1 and ∃(𝑉1

𝑒
−→ 𝑀1

𝑒1
−−→ 𝑉2

𝑒2
−−→ 𝑉3) and (𝑉1

𝑒
=⇒ 𝑀1

𝑒1
==⇒ 𝑉2

𝑒2
==⇒ 𝑉3)∧

(the time interval between 𝑒 and 𝑒1 is overwhelmingly larger than the time interval between 𝑒1 and 𝑒2):
𝑀1 delayed the publication of 𝑒1 to make 𝑉2 and 𝑉3 malfunction

𝐶: a set of components, 𝑉 : a victim component, 𝑀 : a malicious component, 𝑓 : sensitive functionality, 𝑠: sensitive information,
𝑒: an event, 𝑥

𝛼
−→ 𝑦: an event communication channel for sending an event 𝛼 from 𝑥 to 𝑦, 𝑥

𝛼
==⇒ 𝑦: an event 𝛼 sent from 𝑥 to 𝑦.

As event attacks are administered in the same manner as ordinary event exchanges and the
malicious components disguise themselves as benign, it is difficult to identify and block event
attacks. Preventing event attacks becomes more challenging especially when it is not possible to
predict which component will compromise the system (e.g., as in the case in Android and J2EE
apps). For example, in Android systems, depending on the apps installed according to different
users’ preferences, the components comprising the system would be different. In such a case, as it
is hard to guarantee that all components in the system are benign or safe from security threats,
existing techniques that require pre-defined access distribution (e.g., role-based access control [39])
cannot be used to prevent event attacks. Although the Android system was designed to enforce
permission-based access control [7], some types of event attacks can bypass the permission checks
(i.e., confused deputy and collusion [47,53,61]). Putting a strict limitation on event communication
may address some of these security threats, but it can reduce the flexibility of and hamper the benefits
of the EBSs. Although developers are required to follow security policies while building a system,
they tend to lack attention and make mistakes [62]. Practice has also shown that developers are often
completely unaware of potential threats or underestimate the framework’s capabilities, thus placing
the responsibility on the end-users to protect themselves while using the system [63].

3. Taxonomy

3.1. Literature Review Methodology

To analyze the security flaws in the EBS domain, we inspected the results of 84 literatures
published in reputable journals and conferences [22,24,39–47,52,56,60,61,64–132]. We carefully
followed the general guidelines for a systematic literature review process [133]. Specifically, we
formulated our taxonomy by performing a content analysis over a set of literatures. The literatures
were initially collected by using reliable literature search engines, such as IEEE Explore, ACM Digital
Library, Springer Link, and Google Scholar. As shown in Table 2, our search query was formed
as a conjunction of the domain keywords (i.e., “distributed event-based systems”, “event-based
systems”, “android intent”, and “android event”) and attribute keywords (i.e., “security vulnerability”,
“security attack”, “security flaw”, and “security error”). Specifically, our search query was defined
as the following formula: ∀𝑑 ∈ 𝐷 ∧ ∀𝑎 ∈ 𝐴, where 𝐷 is the set of domain keywords and 𝐴 is the
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set of attribute keywords as specified in Table 2. Note that, to cover a larger number of literatures,
synonyms were considered for the attribute keywords during the search process. For example,
regarding “vulnerability”, we also considered similar keywords such as “flaw” and “error”. Because
the scope of search for Android keywords is too large, in order to effectively collect the Android
literature dealing with the characteristics of EBSs, we used “android event” and “android intent”
as domain keywords. The selected keywords were applied to the search for the literatures’ titles,
abstracts, and tags. To exclude outdated literatures, we limited the scope of the search to literatures
published from 2000 to 2020. Although the majority of the literatures regarding EBSs were almost a
decade old, we decided to keep them if they had appeared in top-tier conferences or journals with
significant contributions (H5-index ≥ 20 or citation counts ≥ 50). Table 2 shows the number of initially
searched literatures (IEEE Explore = 104, ACM Digital Library = 624, Springer Link = 1188, Google
Scholar = 3078, Total = 4994) processed by keyword-based search over the aforementioned databases.
After the initial searching, because the search engines in each database may have processed our queries
differently, we performed a consistent keyword validation on the searched literatures based on the
same keywords (1st filtering = 2018). After the first filtering, as not all the searched literatures fit within
the scope of this research, we performed a brief review based on the title and abstract of each literature
(2nd filtering = 780). Our review criteria included whether they handled security issues in EBSs.
After the second filtering, we performed a detailed review on the filtered literatures by inspecting if
they fit within the scope of this research. Finally, 84 literatures were selected as the base ingredient for
our taxonomy.

Table 2. Number of Collected References during Literature Review Process.

D: Domain Keyword A: Attribute Keyword IEEE ACM Springer Google Scholar

distributed event-based systems,
event-based systems,
android event,
android intent

security vulnerability,
security attack,
security flaw,
security error

104 624 1188 3078

Initially Searched 4994

After 1st Filtering 2018

After 2nd Filtering 780

After Final Filtering 84

3.2. Taxonomy Construction Methodology

Although EBSs have particular attributes that general software systems do not bear, they may still
inherit security issues from them. Hence, we decided to build a taxonomy upon existing taxonomies
that targeted general software systems.

First, we targeted the taxonomies that classify software security flaws. The advantage of this type
of taxonomy lies in the convenience of creating a common language for sharing security flaws, allowing
an efficient organization of security flaws across information sources, and ultimately identifying
strategies to remedy security problems, which is the final goal of this research. For example,
depending on the type of flaw, developers can figure out applicable solutions from among the
existing ones and also for flaws that lack appropriate solutions. According to the review of security
flaw taxonomies [37,38,134], the outdated taxonomies (i.e., before the year 2000) tend to be less
elaborate than recently published ones [26,33] or some of them have been adapted to the latest
ones [25,27,29,37,38]. Thus, among the selected taxonomies, we filtered out the taxonomies published
before the year 2000. The taxonomies that only focused on implementation-level errors were also
excluded to consider design-oriented security flaws.

Consequently, from among the remaining set of candidates, “software security flaw taxonomy”
by Weber et al. [25] was selected as the starting point to create a taxonomy, because it has been
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designed to adequately reflect the nature of security issues in an EBS. Weber’s taxonomy classifies the
flaws based on genesis (i.e., how they were introduced to the system). Specifically, this taxonomy is
distinguished from others due to its major division between “intentional” and “inadvertent” flaws,
which is pertinent to classifying security flaws in EBS. As an EBS generally provides an extensible
infrastructure, unintended external source code can be included in the system, which implies that a
developer’s intention is an important determinant for classifying an EBS’s security flaws. For example,
although the Android framework was not originally designed to contain security flaws, if an Android
app, intentionally designed as malicious, is installed on the system, the system will contain “intentional”
security flaws. We adapted Weber’s taxonomy based on 84 selected literatures on security issues
in EBSs [39–44,64–77,127] as well as on Android security issues that originated from its event-based
communication [22,24,45–47,52,56,60,61,78–126,128–132]. From those publications, we first extracted
the security flaws each approach tries to address or introduce as an example. Then we clustered the
flaws based on the similarity of ways they can be exploited. Finally, we examined if any of those flaws
is related to its counterpart in Weber’s taxonomy. The detailed process is as follows:

According to the existing research [40,45,79,87,105,118,121], an EBS may contain malicious
code that allows different types of external access, such as a piece of code directed to unsafe
URL. These types of flaws belong in the same category as “Trapdoor” in Weber’s taxonomy. Prior
research has defined and introduced a particular concurrency problem that only exists in EBSs,
referred to as event anomalies [81,127,128]. Weber’s taxonomy does define “Concurrency” flaws,
but only includes time-of-check to time-of-use (TOCTTOU) errors; therefore, we expanded the
scope of their characteristics and changed the name of the category to “Inadequate Concurrency”
to present a more precise definition. The existing approaches indicated that the components in an
EBS may communicate via covert (i.e., non-system-standard) communication channels [47,100,119].
Although some types of “Covert Channels” flaws were defined in Weber’s taxonomy, we extended
them to include newly identified covert channels such as the battery and vibrator in mobile
devices. Authentication issues were also identified in EBSs, in the form of permission grant and
authentication in a multi-domain EBS—a particular type of EBS comprising multiple event-brokers
from different domains [65,80,86,90,108,118–120,135]. We extended the “Inadequate Authentication”
category in Weber’s taxonomy to include those authentication-related flaws. From Android
apps, new types of resource leaks such as resource leaks via wifi and SQLite database were
introduced [40,45,88,104,106,114,115,126,129,132], which can be added to “Resource Leak” in
Weber’s taxonomy. We changed the name of the category “Inadequate Resource Management”
to define the scope more broadly. We also found that the flaws that existing approaches try
to resolve fall under “Logic/Time Bomb” in Weber’s taxonomy [56,103,115]. The existing EBS
research introduced the knowledge of flaws where multiple components collude to exploit the
system [45,47,61,88,100,104,106,109,117,131]. Moreover, the majority of security attacks in EBS are
basically caused by its extensible event communication channels [22,24,39–41,45,47,52,60,68,70,71,
77,94,97,99,130,135]. As Weber’s taxonomy does not include them, we extended the definitions of
“Conspirator” and “Open Event Channels,” respectively. We also added “Unsafe Events” and “Unsafe
Event Interface” for including cases where those open event channels are unintentionally introduced
to the system [22,24,39,41,68–70,75,77,79,84,85,87,95,102,110,123,130]. Note that, to guarantee the
completeness of taxonomy, all the flaws extracted from the existing publications were incorporated in
the new taxonomy. However, drawing from the flaws in the Weber’s taxonomy, we excluded those that
were not introduced in the existing literatures under review to build a taxonomy specialized for EBSs.

3.3. Taxonomy

The security flaw taxonomy for EBSs is shown in Figure 1. As an EBS is a particular type of
software system, it incorporates some flaws from general software systems. Note that the boxes
highlighted in red (F1, F4, F6, F9, F10) indicate the flaws adapted from the existing ones [25] to better
reflect the system’s event-based characteristics, and the boxes highlighted in blue (F2, F5, F7, F8) indicate
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the flaws we added because they are specifically caused by event-based communication. Finally,
the green box (F3) indicates a flaw whose definition remains unchanged from the existing one [25].
In particular, the dashed boxes (F2, F5, F6, F7, F8, F10) indicate the flaws that can be exploited by event
attacks. It is important to note that every flaw in this taxonomy was validated by existing publications
regarding the security of EBS and Android [22,24,39–47,52,56,60,61,64–132] In this taxonomy, a software
system is defined as a combined system that comprises both application-level and framework-level
elements (i.e., middleware) where an operating system is considered as a sub-component of the system.
As the taxonomy considers both the design and implementation-level flaws, we will use “developer”
as a term that represents both system designer and programmer. Moreover, a component is defined as
an architectural unit that can communicate with other components using system-defined events.

 

Figure 1. Security Flaw Taxonomy for event-based system (EBS). The Red boxes indicate the flaws
adapted from the original taxonomy. The Blue boxes indicate the newly added flaws. The Green box
indicates the flaw unchanged from the original taxonomy. The circled labels indicate the assigned
number for each flaw.

The goal of this classification is to provide a basis for determining the appropriate security
strategies to be used in a particular context. The taxonomy is first classified according to the developer’s
intention (Intentional and Inadvertent) because different security strategies can be used to reduce each
type of flaw. For example, in a target EBS, if most of the security flaws are unintentionally and
inadvertently introduced, exhaustive source code reviews and testing can be utilized to reduce the
flaws [26]. However, in case most of the security flaws are intentionally introduced to an EBS, it would
be more effective to minimize the proportion of externally-developed source code in the system by
restricting the external components access (e.g., restrictive installation of third-party apps on Android
system) or by incorporating more trustable message oriented middleware (MOM) platforms.

Intentional flaws are classified as Malicious and Non-Malicious. The Malicious flaws indicate the
flaws that were deliberately inserted. If any part of the system was incorporated from an unreliable
source, it might intentionally contain the following flaws:
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• F1. Trapdoor [40,45,47,56,72,79,86,87,89,90,92,93,103,105,109–113,115,117–122,125,126]: Due to an
EBS’s flexibility and scalability, the system may contain the source code that allows someone to
gain illicit access to the system, possibly at both the application and framework level. For example,
a user may install an Android app comprising malicious code which directs to undesirable web
site. Furthermore, an externally-developed framework for event-based communication may
contain malicious code for allowing access to the system.

• F2. Conspirator [40,43,45,47,61,88,97,100,103,104,106,107,109,117,119,123,124,131,135,136]: EBSs
may comprise components that collude by exchanging events to exploit the system functionalities
or access sensitive resources. For example, in an Android system, a component belonging to an
app that can access the Internet and a component belonging to an app that can access contact
information could collude to send out the contact information over the Internet [47]. Furthermore,
a component can help the other component indirectly access sensitive resources, such as photos,
contacts, or text messages.

Non-Malicious flaws are the side-effects of features that were deliberately added to the system.
These flaws are not recognized by developers in general, but we categorize them as intentional
because they were designed into the system by essential system requirements. For example, functional
requirements created without considering security requirements can lead to these flaws.

• F4. Covert Channel [47,100,119,123]: Two components that are not permitted to communicate
via system-standard communication channels (e.g., event-based communication) communicate
through the side-effects of the operations authorized for them. Covert channels are classified as
intentional and non-malicious because they are not due to bugs in the system’s implementation,
but due to the system’s design. Moreover, they mainly appeared in resource-sharing that are not
maliciously designed in the system. This can happen either by means of manipulating storage,
or by modulating the time which various operations take to perform. As EBSs can be deployed
in various environments, such as mobile devices, the types of covert channels are diversified.
For example, in Android systems, shared hardware resources such as audio volume, vibrator,
and battery can be used as a communication channel between malicious components [137].

• F5. Open Event Channel [22,24,39–41,45–47,52,60,65,68,70,71,75,77,78,84,85,87,94,95,97–99,104,
106,107,110,116,117,119,123,130,135,138,139]: This flaw exists when a component intentionally
exposes its event communication channel to communicate with other components. Specifically,
a component can advertise the types of event it can dispatch or open its event interfaces to
share its functionality or data with other components. Although it would make a system more
scalable and expandable, there exists a threat where malicious components can exploit the event
communication channels in undesirable ways. For example, Android components can dispatch
system-defined events to share their functionalities with others, but malicious components can
intercept those events and exploit the functionalities [22].

Inadvertent flaws indicate software bugs. Although they can be detected and removed through
testing, some flaws may remain undetected and later cause problems during the operation and
maintenance stages of the system. Inadvertent flaws are classified based on the parts where the flaws
reside. Event-Based Communication flaws represent the flaws that can be caused by the design or
implementation of a system’s event-based communication.

• F6. Inadequate Concurrency [22,81,127,128]: A particular form of concurrency flaw exists in EBSs,
called event anomalies [81]. In general, EBSs’ components randomly process the events that were
received simultaneously. Specifically, if two different components simultaneously send the events
that can access the same memory location (e.g., a variable containing state or data) of the target
component, there is no guarantee that any one of the two events will be processed prior to the
other. This flaw may allow spoofed events sent from malicious components to corrupt the victim
component’s memory location [81].
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• F7. Unsafe Event [22,24,39–41,45,46,52,60,64,68–71,75,77–79,82,85,94,95,97,98,101,102,107,110,117,
130,135,138,139]: This flaw is caused when an event containing sensitive information is
insufficiently protected. For example, if a component broadcasts an event containing sensitive
information without any particular protection (e.g., encryption), malicious components may
intercept or eavesdrop on the event and peek at the sensitive information [22].

• F8. Unsafe Event Interface [22,24,39–41,45–47,52,65,68,70,71,75,77,78,82,84,87,94,97,99,104,106,107,
110,116,117,119,123,130,135,138,139]: If an event interface of a component has inadequate for
filtering for handling received events, the component can be exposed to spoofed events. In case a
component contains sensitive functionalities that can be triggered in response to receiving events
through the unsafe interface, a malicious component can inject spoofed events to the exposed
event interface thereby causing the target component to malfunction or operate in undesirable
ways [22].

System Configuration flaws are the ones that can be caused by a system’s defective configurations
or deployments.

• F9. Inadequate Authentication [65,80,86,90,108,118–120]: Because of a low coupling between
components in EBSs, this flaw exists when a system does not completely authenticate each
component (e.g., checking if each component has sufficient permissions to send or receive events).
This may allow malicious components to exploit event interactions in the system (e.g., intercepting
or corrupting events). Moreover, in a multi-domain EBS, as the system may comprise multiple
event brokers from different domains, the identification and authentication of components
may not be uniform across the event broker networks [135], which may allow unsafe access
between components.

• F10. Inadequate Resource Management [39–41,43,45,56,64,69,72,77,88,101,103,104,106,108,114,115,
124,126,129,132,135]: To achieve scalability, EBSs can be deployed on distributed clusters of
heterogeneous nodes, which causes complex resource management. This flaw is caused when a
system allocates resources to a component and releases them in an untimely manner. For example,
if resource allocation is not appropriately designed, a malicious component can monopolize
the system resources, which can result in denial of service. Furthermore, inadequate dynamic
allocation may lead to convert channels where malicious components can communicate with each
other [140].

The remaining flaw in green box indicates a flaw inherited from Weber’s taxonomy [25]: Logic/Time
Bomb [56,103,115] flaw indicates a piece of source code designed to disrupt the system when certain
conditions are satisfied.

3.4. Relationship between Security Flaws and Event Attacks

The identified security flaws in EBSs can be exploited by different types of attacks including event
attacks. To effectively counter each type of event attack, we identified the relationship between the
flaws and the event attacks. Then we examined existing solutions that have been proposed to protect
the flaws from event attacks. In this section, we demonstrate the relationship between the flaws and
event attacks, and assess existing solutions for resolving those attacks.

As discussed in Section 2.3, event attacks represent the security problems faced by developers or
end-users due to an EBS’s non-determinism in event processing. Recall the seven types of event attacks:
Spoofing (A1), Interception (A2), Eavesdropping (A3), Confused deputy (A4), Collusion (A5), Flooding (A6),
and Delaying (A7).

Each security flaw in an EBS can be exploited by different types of event attacks as depicted
in Table 3. To protect each type of security flaw from event attacks, various solutions have been
studied across different EBS platforms (e.g., OASIS [77] and Android [141]). Table 3 also presents the
representative solutions that prevent event attacks from exploiting each type of security flaw.
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Table 3. EBS Security Flaws, Event Attacks, and Existing Solutions.

No.
Security Flaw

in EBS
Event
Attack

Existing
Solution

F1 Trapdoor - -

F2 Conspirator A5
- Detection of information leaks [46,60,142]
- Detection and control of colluding apps [47]

F3 Logic/Time Bomb - -

F4 Covert Channel - -

F5 Open Event Channel A1-7
- Encryption of events [41]
- Policy enforcement [46,47,71,143]

F6 Inadequate Concurrency A1 - Detection of event anomalies [68]

F7 Unsafe Event A2,3,7

- Role-based access control [39,135]
- Encryption of events [41]
- Detection of vulnerable components [22,45,46,142]
- Policy enforcement [46,47,71,143]

F8 Unsafe Event Interface A1,4,6
- Role-based access control [39,135]
- Detection of vulnerable components [22,45,46,142]
- Policy enforcement [46,47,71,143]

F9 Inadequate Authentication A1-7 - Security policy validation [39,144]

F10 Inadequate Resource Management A6-7 - Analysis of runtime events and resources [145,146]

As indicated in Table 3, neither security flaw F1 nor F4 are the targets of event attacks. They can be
resolved by general security solutions such as a signature-based detection [147–149] or identification
of covert channels [47]. Flaw F2 can be exploited by the attack A5, but the threat can be minimized by
detecting sensitive information flows between the components [46,60,142] or controlling unsafe event
communication between components [47,53]. Flaw F5 can be exploited by multiple types of event
attacks (A1-7). Existing research has tried to minimize the threat using encryption of events, but it
requires safe key distribution between the components and additional resources that may become a
burden for an environment with limited resources (e.g., mobile devices) [41]. While enforcement of
security policies [46,47,71,143] has also been proposed, a coarse-grained policy may fail to prevent
event attacks. For flaw F6, which is vulnerable to the attack A1, a static analysis for event anomalies
detection [81,127,128] can help developers identify and fix the flaw. Flaw F7 can be a target for the
attacks A2, A3, and A7. Although role-based access control and encryption of events [39,41,135] may
prevent the attacks, those techniques require certain assumptions about the components engaged in
event-based interactions, namely, they assume that “benign” components will be known. In other
words, these approaches cannot properly deal with event-related security threats when the types
of components are not clearly delineated and a malicious component can behave as a legitimate
component. Though existing research has focused on the detection of attacks A2 and A3 in Android
apps [22,45,46,142], they either target limited types of attacks or do not provide actual prevention
mechanisms. Flaw F8, which is vulnerable to the attacks A1, A4, and A6, can be resolved by the
same solutions that are applicable for flaw F7. Flaw F9 is exposed to all types of event attacks,
because the possibility of a malicious component’s existence in a system can be increased if the system’s
authentication mechanism is not well-defined. This threat can be minimized by validating a system’s
security policies [39,144]. Flaw F10, which is vulnerable to the attacks A6 and A7, can be resolved by
analyzing and monitoring a system’s runtime event interactions or resource usages [145,146].

Overall, existing solutions belong to prevention- or detection-type and each type has its limitations.
As the prevention-type solutions are based on the assumption that the types of components are clearly
delineated, they can be coarse-grained in case it is unclear how to pinpoint the benign components.
Although detection-type solutions provide relatively finer-grained results for identifying the flaws
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vulnerable to event attacks, they suffer from inaccuracy and scalability issues in their analysis.
To further secure EBSs, advanced approaches that combine detecting flaws and preventing attacks
are required.

4. Evaluation

To validate our taxonomy in terms of coverage, two different types of evaluation were required:
(1) completeness: if it covers all types of security flaws in EBSs; and (2) originality: if it handles
particular types of security flaws not covered by existing listings or taxonomies.

Regarding the completeness of our taxonomy, as mentioned in Section 3.2, all types of flaws
extracted from existing publications were incorporated in our taxonomy. We carefully collected 80
existing publications dealing with security issues in EBSs as well as Android security issues that
originated from its event-based communication feature. We then derived different types of security
flaws from those literature and classified them, which guarantees that our taxonomy covers all types
of security flaws identified in the EBS domain so far.

To evaluate the originality of our taxonomy, we performed an analytic comparison with existing
listings and taxonomies for security flaws. Among a number of studies for classifying security issues,
we targeted the most cited or recently published taxonomies. To the best of our knowledge, four
existing works share our taxonomy’s goal of classifying security issues—Weber’s [25], OWASP [36],
Tsipneuk’s [29], and Linares-Vásquez’s [35]. The first three taxonomies mainly target general software
systems and the last one targets the Android system. Considering the fact that Android is widely used
and is a particular type of EBS, we included Linares-Vásquez’s taxonomy in this evaluation. Although
the selected taxonomies target different types of security issues (i.e., risks, errors, and vulnerabilities),
they also serve the same purpose as our taxonomy in that they classify the cause of the security
violations. We analyzed if each type of security issue in the selected taxonomies can be mapped to
any flaw type in our taxonomy in terms of its definition. If the definitions of any two types were
identical, we classified them as “completely mapped,” and if they were partially matched in broad terms,
then as“partially mapped.” As each taxonomy has different levels in its classification, we correlated the
security issues regardless of the levels of classification.

As mentioned in Section 3.2, out of 16 flaws in Weber’s taxonomy [25], we adapted five in terms
of their definition and added four related to event-based communication. We excluded ten flaws that
mainly focused on implementation-level security issues in general software systems (e.g., aliasing and
error handling).

Compared with the Open Web Application Security Project (OWASP) Top Ten 2017 [36], which is
a list of the 10 most critical web application security risks, three risk types can be mapped to the flaws
in our taxonomy (see Table 4). Specifically, “Injection” in the OWASP list can be partially mapped to
the flaws F1 and F8 in our taxonomy. It represents an exploitation of a victim to perform unintended
behaviors, which can be implemented via flaws F1 and F8. In a broad sense, “Sensitive data exposure” in
the OWASP list can be partially mapped to the flaw F7, because an unsafe event may expose sensitive
data. To be more exact, however, the flaws F7 and F8 are more specific to event-based communication.
The remaining seven types of risks in the OWASP list such as “Cross site scripting” and “Insecure
deserialization” are more focused on the inherent characteristics of web applications.
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Table 4. Correlation with Existing Security Flaw Taxonomies.

No.
Security Flaw

in EBS
Weber’s

[25]
OWASP

[36]
Tsipenyuk’s

[29]
Linares-Vásquez’s

[35]

F1 Trap door ◦ ◦ ◦ ◦

F2 Conspirator

F3 Logic/Time Bomb •

F4 Covert Channel ◦

F5 Open Event Channel

F6 Inadequate Concurrency ◦

F7 Unsafe Event ◦ ◦

F8 Unsafe Event Interface ◦ ◦ ◦

F9 Inadequate Authentication ◦

F10 Inadequate Resource Management ◦ ◦ •

◦ : partially mapped, • : completely mapped

Tsipenyuk’s taxonomy [29] handles implementation-level errors that affect a system’s security.
It classifies seven main categories and 76 underlying errors. Among those errors, three types can be
mapped to the flaws in our taxonomy (see Table 4). Specifically, both “Command injection” and “Process
control” can be partially mapped to the flaws F1 and F8 in our taxonomy. They also represent the
exploitation of a victim to perform unintended behaviors, which can be implemented via flaws F1
and F8. “Unreleased resource” can be partially mapped to the flaw F10 in our taxonomy. It represents a
system’s failure to release system resources, which can be caused by inadequate resource allocation.
However, none of these error types consider the inherent characteristics of EBSs, such as event-based
communication. The remaining 73 types of errors in Tsipenyuk’s taxonomy do not correlate with the
flaws in our taxonomy.

Linares-Vásquez’s taxonomy [35] targets security vulnerabilities in Android, and classifies 15 main
categories with 126 underlying vulnerabilities. Similar to the aforementioned taxonomies, both “Code
injection” and “Command injection” in Linares-Vásquez’s taxonomy can be partially mapped to the
flaws F1 and F8 in our taxonomy. “Resource management errors” can be completely mapped to our
flaw F10 in terms of its definition. Although “Race condition” in Linares-Vásquez’s can be partially
mapped to flaw F6, it does not consider event anomalies [81]. “Missing encryption of sensitive data”
and “Insufficient verification of data authenticity” can be partially mapped to flaw F7 to consider an
event containing sensitive information without any particular protection. The remaining 120 types of
vulnerabilities in Linares-Vásquez’s taxonomy are more focused on Android-specific security issues.

Overall, although existing taxonomies for security issues handle some of the flaws in our
taxonomy, most of them are partially matched. Our taxonomy covers additional security flaws
related to the inherent characteristics of EBSs, which are not covered by existing listings or taxonomies.
However, it is important to note that existing taxonomies cover the flaws related to general software
systems that are not the focus on our taxonomy.

5. Discussion

In this paper, we analyzed security flaw patterns and trends in the existing literature,
and underlined challenges that will shape the focus of future research. Our taxonomy can help
engineers assessing security problems in EBSs they built. A finer-grained classification of the most
common flaws or attacks is useful because system administrators need to anticipate what they will
experience in their system. It also provides a baseline for collecting and organizing security-related
data, and consequently the information can help engineers strengthen their EBSs. Furthermore,
our taxonomy will be useful for security practitioners to organize the problem space. Security problems
are caused by an unexpected combination of flaws in general. In these cases, finer-grained distinctions
between security flaws can help define a specific problem space. Our taxonomy will be useful for
researchers to develop and evaluate potential research directions. Despite significant research efforts
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to mitigate the security threats in EBSs, solutions targeting these types of systems still lack. We believe
that the results of our review (see Section 3.4) will help initiate the required research in this area.

In this research, we carefully followed the general guidelines for a systematic literature review
(SLR) process in order to minimize the threats to validity. Nevertheless, there exist inherent threats
that require further discussion. Our SLR process includes the utilization of search engine and keyword
construction. To maximize the completeness of our taxonomy—whether all of the appropriate literature
was included—, we adopted multiple search engines and employed an iterative approach for keyword
construction. Furthermore, our SLR process inevitably relies on the interpretation of individual
reviewers. To address any resulting bias, we additionally conducted the crosschecking of the literatures,
such that no paper reviewed by a single reviewer. Although new variations of security flaws in EBSs can
be encountered, to mitigate this threat, our taxonomy has adapted existing classification method which
has proven to be rich enough to adequately classify the characteristics of security flaws. This implies
that our taxonomy can be adapted to counter new types of security flaws in EBSs.

6. Conclusions

Event-based systems (EBSs) have become popular in mobile cyber physical systems, IoT
applications, mobile applications, and web applications because of their inherent advantages. However,
their reliance on non-determinism in event processing can be exploited by different types of attacks
(e.g., event attacks). In the light of current interest in the security threats within EBSs, we developed a
novel security flaw taxonomy for EBS. Each flaw is categorized based on the common factors present
among flaws, enabling a systematic approach to resolving the security problems in an EBS. We showed
the correlations between each flaw and different types of attacks as well as between each flaw and
the applicable existing solutions for preventing the corresponding attacks. We also demonstrated that
our taxonomy covers all types of security flaws identified in EBSs so far and even handles additional
security flaws not covered by existing taxonomies.

Our taxonomy will help developers determine the types of security flaws existing in their target
system and decide the appropriate techniques suitable to resolve each one. In addition, our taxonomy
will shed light on potential research directions for securing EBSs.
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Abstract: In this paper, we study energy minimization consumption of a mixed criticality real-time
system on uni-core. Our focus is on a new scheduling scheme to decrease the frequency level in order to
conserve power. Since many systems are equipped with dynamic power and frequency level memory,
power can be saved by decreasing the system frequency. In this paper, we provide new dynamic energy
minimization consumption in mixed-criticality real-time systems. Recent research has been done on
low-criticality mode for power reduction. Thus, the proposed scheme can reduce the energy both in
high-criticality and low-criticality modes. The effectiveness of our proposed scheme in energy reduction
is clearly shown through simulations results.

Keywords: mixed-criticality; power-aware; real-time scheduling; DVFS

1. Introduction

Real-time systems take some inputs and produce outputs in a time-bound manner. Meeting deadline
is the core concept of a real-time system such that missing a deadline may collapse the whole system.
A real-time system has fragile uses such as an airline command system, which is so highly critical that a
single failure can cause a major explosion. Similarly, a real-time system is employed in satellite receivers
for collecting highly important information and failures can misguide and result in a major collapse [1].
Daily home appliances such as microwave, AC, electric power system, and refrigerator, etc. can also
employ a real-time system.

In a real-time system, the term mixed-critically means that high-critical tasks must meet their deadlines
at the cost of missing deadlines for certain low-criticality tasks. Therefore mixed-criticality can be used as
a tool for assuring the system failure needed for different components. In the literature, mixed-criticality is
identified as mission-criticality and LO- (low-criticality) criticality. The mission-criticality (hard real-time)
failures can cause major damage in the systems such as loss of flight control, receiving wrong information
via radar system, and misguiding satellite data. On the other hand, LO-criticality (soft real-time) is relaxed
critical and can be considered less destructive such that deadlines can be violated occasionally.

A mixed-criticality system (MCS) is characterized to execute in each of two modes, high and low
critical mode [2]. Each task is described by the shortest arrival time of a task (period denoted by P),
deadline (denoted by D), and Worst case execution time WCET one per criticality level, denoted by
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(Ci(LO) and Ci(HI). The condition of the basic MCS model is the system beginning in the LO-criticality
mode and can stay in that mode given all jobs execute within their low-criticality computation times
(Ci(LO). If any job executes for its (Ci(LO) execution time without any signal, the system directly moves
to high-criticality (HI)-criticality mode. In HI-criticality mode, LO-criticality jobs should not be executed
but some level of service should be maintained if at all possible as LO-criticality tasks are still critical.

In this scheme Guan, Emberson, and Pedro [3–5] consider a simple protocol for mode switch situations
for controlling the time of the change of mode back to low-criticality, which is to wait until the CPU is idle
and then safely be made. Producing a somewhat more efficient scheme, Santy [6] extends this approach
that can be applied to a globally scheduling multi-processor system in which the CPU may never get
to an ideal tick. In a dual criticality level that has just shifted into a HI-criticality mode and hence no
LO-criticality tasks are computed, its protocol is to first wait when the HI-criticality task has completed
its high computation time and then wait for the next high priority task, and this continues until the
lowest priority job is inactive and it is then safe to reintroduce all low-criticality jobs. If there is a further
misbehavior of low computation bound the protocol drops all low-criticality jobs if any jobs compute more
then its (Ci(LO) value.

Dynamic voltage and frequency scaling (DVFS) is a commonly-used technique for reducing the overall
energy consumption, which is minimized in a large-scale data processing environment. This technique is
based on utilizing two common parameters such as processor voltage and processor frequency to reduce
power consumption. DVFS enable processor maximum power consumption, which can be accomplished
by decreasing the operating frequency level of a processor. However, a scale-down of the processor’s CPU
frequency causes a delay in task completion time. Much of the literature has been focused on reducing
power consumption in embedded systems. A similar technique, real-time dynamic voltage and frequency
scaling (RT-DVFS), studied reducing power consumption for periodic and aperiodic tasks. In the RT-DVFS
technique, slack time is used as a parameter for adjusting the processor speed such that tasks deadlines
will be guaranteed.

In the proposed work, we scheduled a single-processor which support variable frequency and voltage
scaling. Our aim is to schedule the given jobs that a CPU speeds all jobs achieved to meet its deadline
and minimize energy. Few research has been done on minimizing the energy in a mixed-criticality (MC)
real-time system, in [7] CPU acceleration is a deterioration algorithm that adds for given mixed-criticality
aperiodic real-time tasks. They characterize an optimization issue of power consumption in MC real-time
systems under extended frequency scaling. As the same time each job is performed under the derived
frequency scaling. So we enhanced the dynamic approach where the frequency level accommodates under
the derived frequency scaling for the plain power decline. The main grant in this research is that we
reduced energy in HI-criticality mode dynamically.

2. Related Work and Problem Description

Initially, an MC system is considered by Vestal [8] for scheduling and since then it has gained
increasing interest in real-time scheduling. S. Barauch and P. Ekberg consider [9] the mixed-criticality
system in a way that all LO-criticality jobs are discarded when the system mode switches to
HI-criticality [10–12]. In [13], they showed that the scheme of Vestal is optimal for fixed-priority scheduling
systems. In [14], they provided response-time analysis of mixed-criticality tasks in order to increase the
schedulability of fixed-priority tasks. In [10], they provided a heuristic scheduling algorithm based on
Audsley priority assignment strategy for efficient scheduling.

Audsley approach [15] is used to assign priority from the lowest to highest level. At each priority
level, the lowest priority job from the low criticality task set is tried first, if it is schedulable then the job
moves up to the next priority level if it is schedulable, then the lowest search can be abandoned as the
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task set is unscheduled. In [16], they considered how these time-triggered tables can be produced via
first simulation.

The energy-minimization consumption of a processor is generally classified into dynamic and static
techniques in terms of the consideration of dynamic frequency adjustment. They are also classified into
continuous or discrete frequency level schemes according to the assumption of frequency continuity.
Yao et al. [17] and Aydin et al. [18] also proposed a static (or offline) scheduling method to reduce energy
minimization in a real-time system, in this paper [19] Jejurikar and Gupta study the energy saving of a
periodic real-time job. Gruian determined proposed stochastic data to derive a energy-efficient schedules
scheme in [20]. In [21], they provided minimum power consumption in periodic task scheduling for
discrete frequency-level systems. On the contrary, the dynamic scheduling scheme adjusts the CPU
frequency or speed levels depending on the current system load in order to fully utilized the CPU
slack time.

The Audsley scheme for assigning priority to mixed-criticality jobs is based on their criticality level in
this paper [15], and priority is given to jobs manner high to low scheduling priorities so that priorities
are given to lowest priorities task, the schedule difficulty of the MC real-time system is investigated
by Baruah, the author proof when all jobs are released at the same time is when these jobs are set to
NP-complete [9]. In this scheme, they investigated the optimal schedule algorithm for the MC system
scheduling performing well in practice.

The own criticality base priority (OCBP) to MC sporadic jobs by Li and Baruah [22] considers
criticality for priority assignment. When a new job arrives to the system, a new priority is assigned to the
job. In [3], they presented a scheduling scheme known as priority-list reuse scheduling based on the OCBP
scheduler. In [23], they assumed a likewise realistic energy model and presented an optimal static scheme
for minimizing the energy of multi-component with adjusting individual frequencies main memory and
processor system bus.

The connection between multiple-choice knap sack problem (MCKP) and dynamic voltage scaling
(DVS) for periodic task and energy optimization was at first proven by Mejia-Alvarez and Mosse [24].
In this paper Aydin et al. consider [18] the dynamic voltage frequency scaling scheme for periodic jobs that
complete before their worst-case execution times (WCETs). In [25], they proposed the elastic scheduling for
the purpose of utilizing CPU with discrete frequencies. In [26], they presented a dynamic slack algorithm
allocation for real time that consider both the loss energy minimization and frequency scaling overhead.
The cycle conservation approach was proposed by Mei et al. [27]. They suggested a novel power aware
scheduling scheme named cycle conservation DVFS for sporadic jobs. In this algorithm P.Pillai and
K.G.Shin [28] proposed real-time DVS, the OS’s real time scheduler, and jobs managing service to allocate
minimum power consumption while maintaining that the deadlines must always be met.

More recently researches on a power-aware mixed-criticality real-time system have been presented
by [7,29]. The major technique is used for a power-aware mixed-criticality system and they consider
only a set job with no periodical jobs. They determine possible CPU speed degraded for MCS jobs.
In this algorithm [29], they show that minimizing the energy of power-aware mixed-criticality real-time
scheduling for periodic jobs under continuous frequency scaling. The early deadline first with the virtual
deadline (EDF-VD) algorithm [11] provide the most favorable virtual deadline (VD) and frequency scaling
of jobs, and do not adjust during run time the derived frequency levels of jobs. In [30], when high-critical
jobs do not finish low computation time, all low-critical jobs are terminated and the system frequency level
is set to maximum, in this paper they only reduce frequency in low-critical mode.

In our work we provide an efficient power-aware scheduling algorithm in MC real-time systems and
adjust the optimal frequency level of high-criticality mode, to the best of our knowledge this is the first
work that introduces optimal energy consumption of high-criticality mode in a mixed-criticality real-time
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system, the main grant our scheme is that we minimize energy in high-criticality mode dynamically and
show the experimental results in simulations.

3. System Model

3.1. Task Model

In this subsection, we provide an overview of the task model. In the mixed-criticality real-time systems,
a low-criticality periodic task releases an order of jobs only in low criticality mode, while high-criticality
tasks release their jobs in both high- and low-criticality mode. Thus a mixed-criticality task τi consists
of four parameters: Period (Pi) , computation time of low-criticality jobs, Ci(LO), computation time of
high-criticality jobs, Ci(HI), and tasks level (Xi) as follows:

• Pi: The task period. The task releases a job every period (minimum interval arrival time);
• Ci(LO): The worst-case execution time in low-criticality mode. The task requires Ci(LO) times in

low-criticality mode;
• Ci(HI): The worst-case execution time in high-criticality mode. The task requires Ci(HI) times in

high-criticality mode;
• Xi: The criticality level of task. The system can be either in high-criticality (HI) mode or in

low-criticality (LO) mode.

The task τi is a periodic real-time task, so that jobs are released at every Pi time units. The j-th
instance or job of a task τi is denoted as the τi,j. In the mixed-criticality system, tasks are categorized into
low-criticality and high-criticality tasks. In addition, the system mode is also divided into low-criticality
and high-criticality mode. In low-criticality mode, all tasks release their jobs so that each task’s job τi
requires the worst-case execution time of Ci(LO). On the contrary, in high-criticality mode, only the
high-criticality tasks release their jobs with Ci(HI) execution time (Ci(HI) ≤ Ci(LO)). Thus, each task has
its criticality mode Xi.

The mixed-criticality system is an integrated suit of hardware, middleware service, operating system,
and application software that support the execution of non-criticality, mission-criticality, and safety-critical
functions. The system starts in low-criticality mode. However, if there is a possibility that any low-critical
job interrupts in high-criticality jobs’ execution time, then the system criticality mode changes. In such a
situation, all low-criticality tasks are dropped in the system. In mixed-criticality systems, such a possibility
occurs when a high-criticality job does not complete its computation time, which is the condition of
switching from low-criticality mode to high-criticality mode.

On the contrary, the system returns to low-criticality mode when there is no possibility of overrun.
While high-criticality tasks are executed in high-criticality mode, the system changes its criticality to low
mode as long as there is no task ready in the queue [29].

For example, Figure 1 shows an example of three mixed-criticality tasks of τ1(2, 2, 5, LO), τ2(1, 3, 6, HI),
and τ3(2, 3, 8, HI). The system starts in low-criticality mode, where each task requires Ci(LO) execution
time. Each task releases its job every Pi time units. The scheduling algorithm used in Figure 1 is EDF
(earliest deadline first).
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Figure 1. An example of mixed-criticality scheduling.

Let us assume that the job τ3,3 does not complete its execution at time 19. Then, the system changes
the criticality mode to high-criticality. After then, the system executes only high-criticality tasks (τ2 and τ3)
with their Ci(HI) execution times. The execution times of τ3,3 and τ2,4 become 3 in each. When the system
is in high-criticality mode, all low-criticality jobs are ignored or removed from the queue. For instance, the
job τ1,5 released at time 20 is removed from the scheduling queue since it is a low-criticality job.

The systems returns to low-criticality mode if there is no high-criticality jobs waiting in the scheduling
queue. For example, the system returns back to the low-criticality mode at time 23 because there are no
jobs available. After then, the system executes low-criticality jobs again as before.

3.2. Power Model

In this paper, we assume the DVFS-enabled CPU system where the CPU frequency is adjusted
dynamically during run-time. The number of discrete frequency levels is given by m while the frequency
levels are defined as a set F.

Let us assume that a task requires t execution time on the CPU at its maximum frequency level. For a
given frequency level f of the CPU, the relative speed level s is defined by f / fmax, where fmax is the
maximum frequency level. Then, the task execution time is defined by t/s.

Since the dynamic power consumption is a major issue in the power consumption of systems, we take
dynamic power consumption into account in the paper. Generally, the dynamic power is in proportion to
f 3 or f 4 for a frequency level f , we use Equation (1) for the execution time model of a task with t execution
time on the relative speed level s [31].

E = α · t
s
· s3 = α · t · s2, (1)

where α is a coefficient. In this paper we assume α = 1 for the sake of simplicity.
Figure 2 shows an DVFS scheme for real-time task scheduling. For example, a real-time task requires

3 time unit for its execution, while its result requires 10 time units (Figure 2a). If there is no other task, the
system has 7 time-unit slack time to the task deadline. Thus, the task can be executed on the relative speed
level of 0.3, as shown in Figure 2b. In the reduced CPU speed level, the system can reduce the power
consumption without violating the task deadline.
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(a) Maximum frequency. (b) Appropriate frequency.

Figure 2. Dynamic voltage scaling (DVS) for real-time tasks.

4. Research Motivations

4.1. Recap of EDF-VD for Power-Aware Mixed-Criticality Real-Time Tasks

In this subsection, we describe a brief explanation of the previous work on power-aware
mixed-criticality tasks scheduling [29]. The base scheduling algorithm is early deadline first with
the virtual deadline (EDF-VD) which is a mode-switched EDF scheduling technique developed for
mixed-criticality task sets [22,32,33]. The reservation of time budgets for HI criticality tasks is done in
the LO mode. This is achieved by shortening the deadline of HI criticality tasks. Intuitively, shortening
the deadline of HI criticality tasks will push them to finish earlier in the LO mode, leaving more time
until their actual deadlines to accommodate extra workloads. Indeed, this form of safety preparation
(i.e., shortening deadlines of HI criticality tasks in the LO mode) has proven to be effective in improving
system schedulability [34].

In EDF-VD, the value of x in a system determines the virtual deadline VDi as Pi · x, where 0 < x ≤ 1.
In order to guarantee the schedulability of task sets both in LO mode and HI mode, the value of x should
satisfy the two equations of Equations (2) and (3):

UHI
LO
x

+ ULO
LO ≤ 1 (2)

UHI
HI + xULO

LO ≤ 1 (3)

In [29], EDF-VD is adjusted in order to provided power-awareness for mixed-criticality real-time
systems. They defined a problem of power-aware scheduling in MC systems. The objective is to minimize
power consumption satisfying both Equations (4) and (5):

∑
τi∈THI

Ci(LO)/ f HI
LO

Pi
· 1

x
+ ∑

τi∈TLO

Ci(LO)/ f LO
LO

Pi
≤ 1 (4)

∑
τi∈THI

Ci(HI)
Pi

+ x · ∑
τi∈TLO

Ci(LO)/ f LO
LO

Pi
≤ 1 (5)

where THI and TLO are sets of high-criticality tasks and low-criticality tasks, in each. In Equations (4) and
(5), f LO

LO and f HI
LO indicate optimal frequency levels of HI-criticality tasks and LO-criticality tasks in low

mode. They provided an optimal solution to derive x, f LO
LO , and f HI

LO for the formulated problem.
For example, Table 1 shows an example of a task set. The optimal values of x, f LO

LO , and f HI
LO are given

by 0.56, 0.6, and 0.8, respectively from the method in [29]. The right three columns of Table 1 shows the
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virtual deadline and the execution time in low-criticality mode. Figure 3 shows the scheduling example of
Table 1 based on EDF-VD.

Table 1. An example of tasks.

Task Pi Ci(LO) Ci(H I) Xi V Di = x · Pi Ci(LO)/ f LO
LO Ci(H I)/ f H I

LO

τ1 6 1 2 HI 3.36 - 1.25
τ2 8 1 3 HI 4.48 - 1.25
τ3 12 1 1 LO - 1.67 -
τ4 16 2 2 LO - 2.33 -

Figure 3. An example of power-aware mixed-criticality Scheduling of Table 1.

As shown in Figure 3, high-criticality tasks, τ1 and τ2, are run at a f HI
LO frequency level in low-criticality

mode, while low-criticality tasks of τ3 and τ4 run at f LO
LO . Let us assume that τ2,3 does not complete Ci(LO)

at time 17.25. Then, the system mode changes to high-criticality mode so that two low-criticality jobs of τ3

and τ4 are ignored after the mode switch event. In high-criticality mode, the frequency level is set as the
maximum frequency in order to guarantee the schedulability of high-criticality tasks. The system mode
returns back to low-criticality mode after executing all high-criticality jobs.

4.2. Motivations

As discussed in the previous subsection, the previous work focused on low-criticality mode. However,
we can further reduce the power in high-criticality mode without violating the schedulability. For example,
we can reduce the frequency level while executing τ2,3 and τ1,4 in the high-criticality mode of Figure 3.

In order to guarantee the schedulability in both criticality modes, we need appropriate frequency
levels in each mode. The main problem of this paper is to determine optimal frequency levels that consider
both modes.

5. The Proposed Scheme

5.1. Dynamic Power Aware Scheme MCS Jobs

The proposed scheme dynamically adjusts the CPU frequency level depending on both the system
mode and task mode. The baseline frequency levels are derived from static analysis so that x, f LO

LO , f HI
LO ,
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and f HI
HI are obtained before run-time. Throughout the optimization problem, we solve those values in the

initial step.
The power-consumption with consideration of both high- and low-crticality modes in defined by

the following three equations. The unit-time power consumption in low-crticality mode is derived by
Equation (6), where LCM is the least common multiplier of all periods. In Equation (6), the total power
consumption during LCM is computed by adding the power consumption of task τi in low mode using
Equation (1). The number of τi’s jobs is LCM/Pi. Thus, the unit-time power consumption is obtained by
dividing the total sum with LCM.

Similarly, the unit-time power consumption in high-criticality mode is defined by Equation (7).
Thus, the average unit-time power consumption can be obtained as the expected value in each mode,
as in Equation (8), where PLO and PHI denote the probabilities of the system mode in low- and
high-crticality, respectively.

UPLO =
1

LCM

(
∑

τi∈TLO

LCM
Pi

· Ci(LO)

f LO
LO

· ( f LO
LO )3 + ∑

τi∈THI

LCM
Pi

· Ci(LO)

f HI
LO

· ( f HI
LO )3

)

= ∑
τi∈TLO

Ci(LO)

Pi
· ( f LO

LO )2 + ∑
τi∈THI

Ci(LO)

Pi
· ( f HI

LO )2

= ULO
LO · ( f LO

LO )2 + UHI
LO · ( f HI

LO )2 (6)

UPHI =
1

LCM ∑
τi∈THI

LCM
Pi

· Ci(HI)
f HI
HI

· ( f HI
HI )

3

= ∑
τi∈THI

Ci(HI)
Pi

· ( f HI
HI )

2

= UHI
HI · ( f HI

HI )
2 (7)

UAP = UPLO · PLO + UPHI · PHI

=
(

ULO
LO · ( f LO

LO )2 + UHI
LO · ( f HI

LO )2
)
· PLO + UHI

HI · ( f HI
HI )

2 · PHI (8)

For the given probabilities of PLO and PHI , the problem of deciding the optimal frequency levels and
x of EDF-VD is: to minimize(

ULO
LO · ( f LO

LO )2 + UHI
LO · ( f HI

LO )2
)
· PLO + UHI

HI · ( f HI
HI )

2 · PHI (9)

subject to
UHI

LO
f HI
LO

· 1
x
+

ULO
LO

f LO
LO

≤ 1 (10)

UHI
HI

f HI
HI

+ x · ULO
LO

f LO
LO

≤ 1. (11)

The scheduling system flow in low mode is shown in Figure 4a. Each task releases jobs with Ci(LO)

execution time every period. Since we use EDF-VD, the virtual deadline of a high-criticality job released at

110



Appl. Sci. 2020, 10 , 7256

time t is given by t + VDi. The deadline of low-criticality job is set as t + pi. These new jobs are waiting in
the ready queue.

(a) Scheduling flow in low mode.

(b) Scheduling flow in high mode.

Figure 4. The proposed scheduling framework.

The scheduling algorithm for jobs is based on early deadline first so that the job with the earliest
deadline is scheduled first. At the time of dispatching a high-criticality job, the CPU frequency level is set
as f HI

LO . On the contrary, the frequency level is adjusted with f LO
LO for low-criticality job execution.

When a high-criticality job does not complete its low-mode execution time, then the system switches to
high-criticality mode. At that time, all low-criticality jobs are dropped in order to guarantee high-criticality
tasks as shown in Figure 4b. However, the system can switch back to low-mode at any time when there is
no pending task.

5.2. DVFS Scheduling

The notation for the scheduling algorithm is shown in Table 2. The task utilization of τi is denoted as
Ui. Each job, denoted as Jk, in the waiting queue is defined by (Ck, Dk) so that a job requires Ck execution
time by the deadline Dk. The values are determined at the time of job release.
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Table 2. Notations.

Notation Meaning

Ui The utilization of the task τi
Jk = (Ck, Dk) The job of task τi

t The current time
Qready The CPU ready queue
Jcurr current job of execution

The proposed scheme is defined by functions that are called at a certain event. The algorithms are
given in the followings pseudo-code in Algorithms 1 and 2.

• Job-Release (τi): Every Pi period, a task τi releases a job. The function Job-Release is called;
• Job-Finish (Ji): The function is called when a job completes its execution or over-runs the

execution time;
• Power-aware Schedule (): At the time of a job release or completion, the function re-schedules jobs

in the queue;
• Frequency-Adjust (): The CPU frequency is adjusted at the time of job allocation to the CPU.

When a job is released in low mode, the job is inserted in the ready queue. The task utilization is
also updated. Since the frequency-level of a LO-criticality task is given by f LO

LO , the task utilization is
determined by the equation in line 5 of Algorithm 1. In case of a high-critical job of Ci(HI)− Ci(LO)

every period so that the utilization is given by the equation in line 7. If the current system mode is low,
we terminate or ignore the low-criticality job. If the current mode is high, we execute the high-criticality
job (line 14). The job is inserted in the ready queue, we call the scheduling algorithm in line 19.

When the job Ji finishes its computation, if the current system mode is low, nothing is executed.
We only check Xi = HI. We have two cases if Ji finishes. If Ji does not complete, the system mode becomes
high. When the ready queue is empty and there is no high-criticality job in the ready queue, the system
mode is changed from high to low (lines 29–31).

The function Power-aware Schedule () dispatches jobs using EDF (line 38–43 of Algorithm 1). At each
scheduling event, Frequency-Adjust () function is called so as to adjust the CPU frequency dynamically.
As shown in Algorithm 2, if the system is in high-criticality mode, we minimize the frequency of
high-criticality mode which is set as f HI

HI . The frequency level is set as the frequency level sufficient
to schedule current jobs. Thus, the relative speed level of the frequency is greater than or equal to the
current utilization.

112



Appl. Sci. 2020, 10 , 7256

Algorithm 1 Algorithm of energy minimization consumption in mixed-criticality tasks.

1: function JOB-RELEASE(τi)
2: if the current system mode is Low then
3: Insert job Ji(Ci(LO), t + VDi) into Qready
4: if Xi = Low then � Low-criticality job
5: Ui ← (Ci(LO)/ f LO

LO )/Pi
6: else
7: Ui ← (Ci(LO)/ f HI

LO )/Pi + ((Ci(HI)− Ci(LO)/ f HI
HI )/Pi

8: end if
9: else � The current system mode is High

10: if Xi = Low then
11: Ui ← 0
12: else � Xi = High
13: Ui ← (Ci(HI)/ f HI

HI )/Pi
14: Insert job Ji(Ci(HI), t + Pi) into Qready
15: end if
16: end if
17: POWER-AWARE SCHEDULE( )
18: end function

19: function JOB-FINISH(Ji)
20: if the current system mode is Low then
21: if Xi = High then � High-criticality job
22: if Ji finish Ci(LO) completely then
23: Ui ← (Ci(LO)/ f HI

LO )/Pi
24: else
25: The system mode changed to High � Mode switch to HI
26: end if
27: end if
28: else � The current system mode is High
29: if Qready = ∅ then
30: The system mode is changed from High to Low � Mode switch back to LO
31: end if
32: end if
33: POWER-AWARE SCHEDULE( )
34: end function

35: function POWER-AWARE SCHEDULE( )
36: if Qready �= ∅ then
37: Jk ← the job with the earliest deadline in Qready
38: if Jcurr = ∅ then � CPU idle
39: Jcurr ← Jk
40: else if Dk < Dcurr then � Preemption by EDF
41: Jcurr is preempted and re-Inserted into Qready
42: Jcurr ← Jk
43: end if
44: FREQUENCY-ADJUST( )
45: end if
46: end function
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Algorithm 2 Algorithm of selecting frequency.

1: function FREQUENCY-ADJUST( )
2: if The system is in High mode then
3: The frequency is set as f HI

HI .
4: else � The system is in Low mode.
5: U ← min(∑n

i=1 Ui, 1.0)
6: if Xcurr = LO then
7: U ← U × f LO

LO
8: else
9: U ← U × f HI

LO
10: end if
11: freq ← the minimum fi ∈ F s.t. U ≤ fi/ fmax
12: The frequency is set as freq.
13: end if
14: end function

5.3. Example

Let us consider the task set in Table 1 as an example. The previous work derives the optimal value
of f LO

LO and f HI
LO as 0.6 and 0.8, respectively. In high-criticality mode, the maximum frequency level is

used. However, the proposed work derives the optimal frequency levels by solving Equation (9) with
two constraints of Equations (10) and (11). Table 3 shows those values for given probabilities of high- and
low-criticality mode.

For example, for a given PHI = 0.2, the optimal frequency levels of f LO
LO , f HI

LO , and f HI
HI are 0.7, 0.8, and

0.9. The scheduling example of Table 1 in the same scenario as Figure 3 is shown in Figure 5. The frequency
level in high-criticality is set as 0.9, not as 1.0. As shown in Table 3, the proposed work can reduce more
energy in higher probability of high-criticality mode.

Table 3. Optimal frequency levels and x of the example of Table 1.

x f LO
LO f H I

LO f H I
H I Power Improvement

Previous 0.56 0.6 0.8 1 -

Previous

PHI = 0.1 0.56 0.6 0.8 1 0%
PHI = 0.2 0.52 0.7 0.8 0.9 1.5%
PHI = 0.3 0.47 0.7 0.9 0.8 6.3%
PHI = 0.4 0.47 0.7 0.9 0.8 14.6%

Figure 5. An example of proposed power-aware scheduling.
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6. Performance Evaluation

6.1. Simulations Environment

We conduct extensive simulation to validate the proposed idea by utilizing random power-aware
mixed-criticality task sets. Simulation parameters are shown in Table 4. We used six discrete frequency
levels in the system. The execution time is randomly generated from 1 to 100. Then, the task period is
defined in order to meet the target utilization. We have a different utilization of LO- and HI-criticality
jobs which is 0.2, 0.25, 0.3, 0.35, 0.4, and 0.45. We have five different tasks in a set, where the numbers of
LO-criticality and HI-criticality tasks are two and three in each. We generate 1000 random tasks sets to
evaluate the effect of energy minimization consumption for a given tasks sets. We simulate each task set
for the least common multiple of the tasks’ periods.

Table 4. Simulation Parameters.

Parameters Values

CPU Frequency levels 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
ULO

LO 0.3, 0.35, 0.4, 0.45
UHI

LO 0.3, 0.35, 0.4, 0.45,
Low-to-high rate (r) 1.5, 2.0, 2.5, 3.0
Low-criticality tasks 2
High-criticality tasks 3

6.2. Energy Consumption Results

We present energy consumption for different task sets as shown in Figure 6a–d. We measure the
average value of 1000 task sets. The figure presents energy consumption as a function of system utilization
for different probabilities. As shown in the figure, the proposed approach achieves better minimum energy
consumption compared to that of existing approaches for the same task set. The main reason of minimum
energy consumption is due to the task utilization at low and high criticality modes. The figure further
shows that when the probability of high-criticality mode is increased, the impact of energy consumption
gradually increases from 0.01 to 0.09. As shown in Figure 6c, the minimum energy consumption depends
on the probability values for task utilization U = (0.2, 0.25, 0.3, 0.35, 0.4, 0.45).

We also present the impact of average x on energy minimization in Figure 7. We consider the same
value of x for both previous and proposed approaches. When the value of utilization is increased by 0.35,
the proposed approach achieves significant improvement in the performance. The impact of x in the
probabilities is shown in Figure 7a. When the utilization is between 0.2 and 0.25, the average x is 0.4 but
when the utilization is increased up to 0.35 and the value of x is increased by 0.56. When the utilization is
between 0.35 and 0.4, then the average value of x goes to 0.65. This implies that in HI-criticality mode the
energy consumption is not affected when we increase the value of x.
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(a) PLO = 0.9 and PHI = 0.1 (b) PLO = 0.8 and PHI = 0.2

(c) PLO = 0.7 and PHI = 0.3 (d) PLO = 0.6 and PHI = 0.4

Figure 6. Average energy results.

(a) PLO = 0.9 and PHI = 0.1 (b) PLO = 0.8 and PHI = 0.2

(c) PLO = 0.7 and PHI = 0.3 (d) PLO = 0.6 and PHI = 0.4

Figure 7. The impact of x.

Figure 8 shows energy consumption as a function of different ratios of low- and high-computation
times. The figure considers different values of r ranging from 1.5 to 3. The ratio between low-critical
and high-critical execution time in the sequence in order to observe its effects on the scheduling of
mixed-criticality tasks. As shown in Figure 8, the increasing ratio also leads to an increase in the
average energy consumption. When the ratio is 1.5, the values of average energy for proposed and
previous approaches are 0.082 and 0.136, respectively. Similarly, when the probability is between 0.6 to 0.4,
the proposed approach minimizes energy consumption as compared to that of the previous approach as
shown in Figure 8b. It is concluded that an increase in the ratio leads to increase in the average energy
consumption of the mixed-criticality task sets.
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(a) PLO = 0.8 and PHI = 0.2 (b) PLO = 0.6 and PHI = 0.4

Figure 8. The impact of ratio r.

The result in Figure 9 shows the impact of different task sets in mixed-criticality systems. The figure
presents the average energy as a function of seven task sets, i.e., (1LO/6HI, 2LO/5HI, 3LO/4HI, 4LO/3HI,
5LO/2HI, 6LO/1HI) ranging from low to high critical modes. It is observed that the average energy is
increasing for the average number of 1000 task sets.

Figure 9. Impact of the number of low- and high-criticality tasks (PHI = 0.2).

In Figure 10, the average energy consumption is presented for different frequency intervals. The figure
shows the effects of the task-sets frequencies on minimum energy consumption. In the range between
0.4 and 0.5, we generate random task sets utilization for the sufficient number of tasks. When the
frequency interval is between 0.05 and 1, the proposed approach outperforms the previous approach
approach. Figure 10b shows that when the frequency interval is between 0.05 and 0.1, the value of x
decreases. It is concluded that the proposed approach achieves a lower value of x compared to that of the
previous approach.

(a) Average energy (b) Average value of x

Figure 10. Impact of frequency intervals.

6.3. Comparison Summary

The following Table 5 describes a comparison with the previous work. Although the previous
work sets the maximum frequency level in high-criticality mode, the proposed scheme adjusts the level.
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When the probability of high-criticality mode is low, the performance of both work seems similar. However,
the proposed work has more overhead for frequency scaling adjustment.

Table 5. Comparison summary.

Previous Proposed

Frequency in HI-mode Maximum Optimized
Performance at low PHI Near optimal Optimal
Performance at high PHI Good Optimal

Frequency switch overhead Moderate High

7. Discussion and Conclusions

7.1. Discussion

An issue of the proposed work is practicality in terms of the probability of high-criticality mode.
Recent work [35,36] have considered the probability of execution times of tasks for mixed-criticality
systems. In [37], they introduced the probabilistic confidence of a task and a system and provided statistical
scheduling algorithm. In [35,36], probabilistic scheduling algorithms are analyzed for mixed-criticality
real-time systems with a consideration of mode-switch probabilities.

As shown in Figure 6a, the proposed work shows the similar performance in low-PHI systems.
When the probability of high-criticality mode is extremely low (e.g., 10−8), the effect of power reduction in
high-criticality mode is negligible. However, the proposed work is still useful in terms of followings.

• Although the probability of mode-switch of an individual task is low, the probability of the system
mode-switch can be increased for a larger number of tasks. Let us assume that fi is defined by
the probability of the task’s τi mode-switch. Then, the probability of the system mode-switch of
the task set T is derived by 1 − Πτi∈T(1 − fi) [35]. Figure 11 shows the probability of the system
mode-switch in terms of individual task’s probability and the number of tasks (N). Let us note that
the x-axis in Figure 11 is log-scale. In case of N = 50, the proposed work may affect the performance
from the probability of task mode-switch of 0.002 because the proposed work shows performance
gain where PHI ≥ 0.1. On the contrary, when the number of tasks is higher (e.g., N = 200), the
probability of system mode-switch will become higher from lower task mode-switch probability
(e.g., fi = 0.001). Thus, the proposed work will be useful depending on the number of tasks and
task’s mode-switch probability;

Figure 11. The probability of mode switch w.r.t. task mode switch probability and the number of tasks.
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• The system mode-switch policy also affects the probability. In mixed-criticality systems, it is still an
open issue on how long the system remains in high-criticality mode after the mode-switch occurrence.
The proposed work performance is useful in mixed-criticality systems where the system should
remain for a certain period after the mode-switch;

• Finally, the problem formulation with consideration of high-criticality mode is one contribution.
Since the probability of mode-switch can be adjusted according to the system safety requirement, the
proposed work will be useful when the system optimization is required in mixed-criticality systems.

7.2. Concluding Remark

In this paper, we designed a new dynamic power-aware scheduling scheme of mixed-criticality
real-time tasks under high frequency scaling on unicore processors. To tackle the difficulty in trading off
minimizing power in HI-criticality mode to reduce the overall average energy, we first proposed reducing
the energy level in high-criticality mode. Furthermore, we switched to low-critical mode if there was idle
time between high critical job executions.

Our experimental simulation results show that our scheme is more efficient in terms of reducing
energy at the high critical mode as well as in low critical mode. Our proposed scheme outperformed
the static scheme for reducing energy because the frequency scaling in the static scheme may not have
been optimal in dynamic scheme. The results validated that our proposed scheme better performed by
increasing the probability of the high critical tasks in comparison to low critical tasks.

We plan to investigate more on the proposed scheduling scheme and extend it to the multi-core
processor systems. In addition, we will further analyze the probability of high-criticality mode in many
applications and apply it to the proposed work. We will also apply the probabilistic scheduling approach
in the proposed work in order to find the optimal power-aware scheduling.
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Abstract: Despite recent advances in technologies for intelligent transportation systems, the safety of
intersection traffic is still threatened by traffic signal violation, called the Red Light Runner (RLR).
The conventional approach to ensure the intersection safety under the threat of an RLR is to extend
the length of the all-red signal when an RLR is detected. Therefore, the selection of all-red signal
length is an important factor for intersection safety as well as traffic efficiency. In this paper, for better
safety and efficiency of intersection traffic, we propose a framework for dynamic all-red signal control
that adjusts the length of all-red signal time according to the driving characteristics of the detected
RLR. In this work, we define RLRs into four different classes based on the clustering results using
the Dynamic Time Wrapping (DTW) and the Hierarchical Clustering Analysis (HCA). The proposed
system uses a Multi-Channel Deep Convolutional Neural Network (MC-DCNN) for online detection
of RLR and also classification of RLR class. For dynamic all-red signal control, the proposed system
uses a multi-level regression model to estimate the necessary all-red signal extension time more
accurately and hence improves the overall intersection traffic safety as well as efficiency.

Keywords: Intelligent Transportation System (ITS); deep neural network; Red Light Runner (RLR);
dynamic signal control; intersection safety

1. Introduction

As the traffic volume in urban areas has increased significantly over the last decades, there has
been many demands and efforts to develop and deploy technologies for intelligent transportation
systems in order to address issues of traffic congestion, safety, efficiency, and also environmental
improvements [1]. Undoubtedly, one of the most complex, dangerous, and important traffic
environments on the road is the intersection, where traffic flows from different directions overlap in
a common space, and it also has substantial impacts on the overall urban traffic efficiency and safety [2].
At intersections, traffic flows from different directions are typically coordinated through traffic light
systems to prevent conflicting traffic flows passing the intersection simultaneously. Therefore, if a traffic
participant violates the traffic rules imposed by the traffic light, the other participants in the intersection
inevitably face the risk of an accident. The most representative example of such a traffic participant
that violates the traffic signal is the Red Light Runner (RLR) [3].

An RLR is a vehicle passing through an intersection, ignoring the traffic signal when the traffic
light is red. According to the AAA Foundation for Traffic Safety, the number of deaths from RLRs
increased by 31% from 2009 to 2017. In addition, the Insurance Institute for Highway Safety (IIHS)
reported in 2017 that approximately 132,000 casualties were caused by the RLR. Also, the Manual on
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Uniform Traffic Control Devices (MUTCD), a standard for maintaining and installing traffic control
devices, provides the control of intersection signals to reduce RLR accidents [4]. In general, intersection
traffic lights consist of green, yellow, red and all-red signals. All-red signals exist when the intersection
traffic light changes from yellow to red and red to green, and is used to prevent accidents caused by
vehicles entering the intersection with the yellow signal [5]. MUTCD proposes the construction of
a system that extends the all-red signal of intersection traffic lights when an RLR is detected. The length
of the all-red signal needs to be determined so that collision by RLR does not occur in the intersection.
One of the methods of determining the signal extension time is to use a statistical method to extend
a constant time regardless of the current state of the vehicle. Another method extends the all-red signal
by dividing the distance to the collision prediction point by the speed of the current vehicle.

The current all-red signal extension system depends only on the vehicle speed at the moment
when an RLR is detected. However, if the RLR does not move at a fixed speed as expected, the safety
in the intersection cannot be ensured. Therefore, in this paper, we propose a framework for a dynamic
all-red signal control system that determines the signal extension time according to the driving pattern
of the detected RLR. In this proposed system, driving patterns of RLR vehicles are distinguished
through the Multi-Channel Deep Convolutional Neural Network (MC-DCNN) [6]. Also, a multi-level
regression strategy, consisting of the Hougen–Watson nonlinear regression model [7] and a quadratic
polynomial regression model, is used to estimate the necessary all-red signal extension time with
improved accuracy.

The structure of the paper is organized as follows. Section 2 introduces conventional RLR
prediction and signal extension methodologies. An overview of the proposed system is presented in
Section 3. Clustering and classification based on the characteristics of RLRs are covered in Section 4.
The proposed dynamic signal control model is described in Section 5. We validate the performance of
the proposed system in Sections 6 and 7. Finally, conclusions are discussed in Section 8.

2. Related Works

RLR is an action that threatens the traffic system passing through by ignoring the signaling system
at a signaled intersection. RLR is a serious problem that can lead to fatal traffic accidents as well as
minor traffic violations. A collision between a violating vehicle and another vehicle legally passing
through an intersection and a green traffic light is called an RLR collision. To avoid RLR-related
collisions, it is important to identify factors that have a significant impact on the behavior of RLR
drivers and to predict RLR likelihood in real-time [8].

Li et al. [9] proposed a connected vehicle based dynamic all-red extension (DARE) framework to
prevent potential collisions due to RLR. The proposed method performs binary classification of RLR
and Non-RLR based on non-weighted and weighted least square support vector machines (LS-SVM)
using continuous trajectories measured by radar sensors. As a result, RLR and Non-RLR were classified
with higher accuracy compared to other techniques based on conventional inductive loop detection.
In [10], RLR prediction consists of two parts: arrival time and vehicle behaviors when the vehicle
reaches the stop line. The proposed technique is a Bayesian network (BN) probability model based on
continuous trajectories collected by radar sensors for RLR prediction. Based on the vehicle’s speed,
acceleration, and car-following behavior, and the causality of BN, RLR prediction performance was
improved. In addition, the driving decision maker was provided with the predicted RLR probability
and contributed to the improvement of traffic safety. de Goma et al. [11] proposed a camera-based
RLR detection technique using a Single Shot Detector (SSD). In this study, researchers use cameras
to collect data at intersections. The proposed system achieved RLR detection performance of 92.1%
by applying a deep learning based approach. However, despite the high detection performance,
the proposed technique focused on detection rather than the prediction of RLR as a camera-based
technique. In [12], a random forest-based learning model was proposed to predict RLR violation.
In addition, observation data and driver simulator data were used to analyze factors affecting RLR.
According to the results of the proposed prediction model, the important factors for predicting RLR
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violations are the distance between the vehicle and the intersection, time to intersection (TTI) and the
speed of the vehicle at the yellow onset.

In order to reduce accidents at intersections, techniques to control the traffic signal when RLR
is detected has been proposed. In [13], a traffic signal countdown (CT) auxiliary device is used in
order to reduce the RLR. The CT-based traffic light system aims to reduce RLR by providing the driver
with the remaining time of green light. However, at the end of the green light’s duration, the RLR
may increase as the driver accelerates through the intersection before the signal changes. Likewise,
if there is little red light remaining when reaching the intersection, the driver will not decelerate and
may enter the intersection early and an RLR may occur. Control of the yellow signal interval had
a positive effect on the reduction of RLR [14]. Control of the yellow signal interval helped the driver to
make a driving decision at the intersection. According to the study, the time duration of the yellow
signal that most effectively reduces RLR is 5 s, and when the duration of the yellow signal exceeds
5 s, RLR is increased again. Since this method is a fixed yellow signal setting, the effect is reduced if
the driver gets used to the yellow signal in the long term. Retting et al. [15] proposed an extension
of the yellow signal and an enforcement system using a Red Light Camera (RLC). The incidence
of RLR was reduced by 36% by increasing the duration of the yellow stop light by 1 s. In addition,
by applying an enforcement system using RLC, the RLR incidence rate was reduced by more than
96%. Collotta et al. [16] proposed a method to reduce RLR violations by dynamically allocating signal
periods through a Wireless Sensor Network (WSN). The main goal is to dynamically change the green
time based on the queue length, allocating a larger green time to the road with the longest queue.
Experiments conducted in Philadelphia reduced RLR violations through dynamic assignment of traffic
signal periods. However, changing signal settings under the influence of RLR can lead to an asymmetric
traffic assignment problem. In [17], authors argued that two distinct problems can be formulated to
address the asymmetric traffic assignment problem: First, the global optimization of signal setting and
traffic assignment (GOSSTA) combined problem and second, the local optimization of signal setting
and traffic assignment (LOSSTA) combined problem. Related to these problems, Adacher et al. [18]
transformed the GOSSTA problem into a surrogate continuous optimization problem via a generalized
surrogate problem methodology based on an online control scheme and solved the latter using
a standard gradient-based approach. On the other hand, D’Acierno et al. [19] proposed an Ant Colony
Optimization (ACO) algorithm to solve LOSSTA. The results of the proposed ACO algorithm for real
networks were able to get the solution in a shorter time with the same accuracy as the conventional
method of the successive averages (MSA) approach [20].

Kashani et al. [21] identified driver and vehicle characteristics that affect accidents using
classification and regression tree techniques based on the 2012–2016 Isfahan crash database. In this
study, the tree model divided drivers into three age groups: under 22.5 years old, 22.5 to 51.5 years
old, and over 51.5 years old. It also suggested improving driver education, increasing traffic fines,
and banning drivers with poor driving history to reduce RLR. Fu et al. [22] proposed a step-by-step
penalty strategy to prevent the re-offending of RLR vehicles. Despite the rigorous penalty strategy
to reduce RLR, its effectiveness was limited. The reason is that traffic delays for other vehicles due
to the potential risk of collision with RLR vehicles are not included. In addition, both unintentional
and intentional RLRs are subject to the same penalties because the proposed system cannot make
a clear distinction between unintentional RLR and intentional RLR. This may be unfair for unintended
RLR violators.

Conventional studies have focused on the binary classification of RLR and Non-RLR, and the
extension of fixed time signals. Penalties were also effective in reducing RLR. Additionally, some studies
have discussed penalty policies to reduce RLR. However, excessive penalties for unintended RLR
are a problem to be solved. Our proposed system performs a specific classification of RLR based on
features rather than binary classification of RLR and Non-RLR. This can contribute to the classification
of unintended RLRs based on the characteristics of RLRs, and is expected to positively help in
constructing a stronger RLR fines system. In addition, our proposed system can contribute to the
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improvement of safety and efficiency of the intersection traffic system based on the dynamic all-red
signal extension conforming to the specified RLR class. As discussed above, while it is still possible
that the proposed dynamic all-red signal extension may cause an asymmetric traffic assignment
problem, it is not the primary focus of this paper to improve the overall traffic efficiency by solving
the asymmetric traffic assignment problem as done in many aforementioned related works. Instead,
we focus more on improving the safety of intersection traffic by preventing accidents due to RLRs and
also the efficiency of it by overcoming the problem of conventional fixed signal extension mechanisms.

3. System Overview

For better intersection safety, a dynamic all-red signal control is necessary to avoid collisions due to
sudden appearances of RLRs. To address the issues with conventional fixed signal extension approach,
the proposed system identifies first which incoming vehicles are likely to be RLRs and then utilizes the
driving characteristics of the detected RLR to adjust the length of the all-red signal accordingly. Hence,
the proposed system improves the overall safety as well as efficiency of intersection traffic.

Figure 1 shows the overall architecture of the proposed dynamic all-red signal control system.
The first step of the process begins with traffic data collection from the intersection traffic environment.
Traffic data to be collected includes traffic signal as well as all incoming vehicles’ movement data such
as each vehicle’s speed, acceleration, distance to the intersection (DTI) and headway during a certain
time duration. Note that, for the purpose of all-red signal length control, the system requires traffic
data measured while the traffic signal is in the yellow state. The next step of the process is to identify
which incoming vehicles are likely to be RLR. As shown in Figure 1, we use the MC-DCNN classifier
for this purpose. The proposed MC-DCNN classifier classifies not only whether an incoming vehicle
is likely to be an RLR or not but it also classifies into several different types of RLR based on the
vehicle’s driving characteristics if the vehicle is likely to be an RLR. Then the last step of the process is
to determine the length of all-red signal extension based on the detailed classification result from the
MC-DCNN. For this step, we use a multi-level regression approach consisting of the Hougen–Watson
nonlinear regression and a quadratic polynomial fitting to determine the necessary all-red signal
extension time. More details on each of the steps in the process are covered in the following sections.

Figure 1. The proposed dynamic all-red signal control architecture.

4. Clustering and Classification

In general, the intersection is considered as the most complex road traffic environment.
Furthermore, each vehicle on the road shows very different driving characteristics depending on
the driving style or physical/mental conditions of the driver in the vehicle. Hence, the movements
of vehicles approaching an intersection to cross are very different from each other and are affected
by various factors. Thus, for safer intersection traffic through traffic light control, it is not enough to
identify which vehicle is likely to be an RLR. To determine the length of the all-red signal appropriately,
it is also necessary to identify the characteristics of the vehicle movement and determine the necessary
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all-red signal time for the vehicle accordingly. Our approach to addressing this issue is to utilize
techniques for time-series clustering for characterization of RLRs into several clusters according to
their movements. Then, the identified groups of clusters are used as labels for the generation of the
traffic dataset to be used for training the MC-DCNN classifier.

Figure 2 shows the overall procedure for dataset generation. The data collected from the traffic
environment includes traffic signal data, vehicle movement data, and also whether each vehicle is RLR
or non-RLR. In the collected raw traffic data, RLR vehicles are not distinguished according to their
characteristics. Therefore, clusters for each RLR characteristic are generated through Dynamic Time
Wrapping (DTW) and Hierarchical Clustering Analysis (HCA) processes. After this process, a dataset
for training MC-DCNN is constructed based on the traffic data together with RLR cluster labels so that
each vehicle in the dataset is now labeled with a cluster ID according to its driving characteristics.

Figure 2. Dataset preparation process for classification.

4.1. Time-Series Clustering

Conventional studies are based on the assumption that the RLR passes through the intersection
at a fixed speed. However, RLR vehicles have a variety of driving characteristics in the real world.
Therefore, we adopt the clustering method to define the driving characteristics of RLR. The clustering
method performs merging into one group when the similarity between data is high, and splits into
another group when the similarity is low. However, driving characteristics are difficult to define with
one moment of data. Therefore, driving data continuously measured over a certain period of time and
a clustering method for time-series data are required. In general, the time-series clustering method
consists of a representation of continuous-time trajectories in time-series form, calculation of similarity
or distance measure between every pair of time-series data, and then clustering all time-series data
into several groups according to the similarity measure.

At an intersection, a vehicle’s speed profile changes dramatically in response to traffic signals.
Vehicles with no intention of signal violations and RLR vehicles typically show different movement
from the start of the yellow signal [23]. Furthermore, it is well known that the speed profile of a vehicle
represents the driving pattern of the vehicle and also reflects various factors affecting the vehicle
motion such as driving condition and driving style [24,25]. As an illustration of how other factors affect
the speed profile of a vehicle, Figure 3 shows a comparison between driving profiles of two different
RLR clusters. Figure 3a shows a pattern in which the speed and acceleration are maintained without
significant change after 1 s of yellow onset. The DTI shows a decreasing pattern because it is moving
toward the intersection. The headway has a value of 1, which means that there is no preceding vehicle.
On the other hand, the headway shown in Figure 3b changes from 1 to 0 around 1.5 s after the yellow
onset. This means that a preceding vehicle suddenly appeared in front of the vehicle from the other
lane. With its influence, the speed and acceleration of the RLR decreases rapidly and then increases as
the headway increases again.
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(a) (b)

Figure 3. Comparison of driving profiles from two different Red Light Runner (RLR) clusters. (a) Speed
maintenance pattern; (b) Acceleration after deceleration by the preceding vehicle pattern.

Similarity measure is a way to check the similarity between time-series data. We calculate the
similarity measure based on the speed profile of each vehicle and utilize it to create a cluster as the
speed profile of a vehicle is one of the representative time-series data used to distinguish RLR vehicles.
The most commonly used methods for calculating the similarity measure are the Euclidian distance
and DTW. Euclidian distance is a technique to calculate the distance between two time-series in
each time slice by one-to-one matching. This technique is simple and fast, but there is a limitation
when there exists a time shift between sequences. In comparison, DTW performs one-to-many or
many-to-one matching and is more robust than the Euclidian distance technique for time shifts between
sequences [26]. Therefore, we use DTW to calculate the similarity measure in the speed profiles of
various vehicles.

Once the similarity measures are calculated through DTW, clustering is performed through
Hierarchical Clustering Analysis (HCA) [27]. HCA is an algorithm that performs clustering using
a hierarchical tree structure. Since the number of clusters of driving characteristics of RLR cannot
be pre-defined easily, we determine the number of clusters by investigating the tree structure where
the difference in similarity measure calculated by DTW increases rapidly. Through the HCA process,
the driving characteristics of RLR vehicles are divided into four groups which are (i) acceleration
(Type A RLR), (ii) acceleration after deceleration (Type B RLR), (iii) speed maintenance (Type C RLR),
and (iv) acceleration after deceleration by preceding vehicle (Type D RLR). Here, the created clusters
are used for the training process of the classification model.

4.2. Classification

A traditional technique for RLR detection and classification is the Support Vector Machine
(SVM) [28,29]. SVM is a technique that classifies into two classes by obtaining a decision boundary
that separates several sample points. The decision boundary separates two classes of clusters, and the
sample closest to the boundary becomes the support vector. SVM classifies the binary classes by
finding the decision boundary that maximizes the margin between the support vector and the decision
boundary. Multi-class SVM for multi-class classification obtains sub-SVMs for classifying each class,
and performs multi-class classification based on this idea [30,31]. Recently, deep learning models with
higher classification accuracy than SVM have been proposed [32]. A representative deep learning
model is the Convolutional Neural Network (CNN). In general, CNN consists of a convolutional layer,
Rectified Linear Unit (ReLU) layer, pooling layer, and fully-connected layer [33]. The convolutional
layer extracts the features of the input, while the ReLU layer increases the non-linearity properties
of the convolutional layer. The pooling layer prevents overfitting through down-sampling. Finally,
scores are calculated for each class of output in the fully connected layer. However, the general CNN
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is an image-based model but not for the time-series data. Therefore, a deep learning model using
time-series data as input is needed.

We use the Multi-Channel Deep Convolutional Neural Network (MC-DCNN), a signal data-based
model for time-series classification [34,35]. MC-DCNN is a model that uses time-series data of each
sensor as the input of multi-channels. The proposed MC-DCNN model uses the speed, acceleration,
headway, and DTI as input signals. Since the driving pattern obtained from the speed profile of the
vehicle is affected by various driving conditions, the headway and DTI are also selected as inputs to
consider the front vehicle and the distance to the intersection. In addition, speed and acceleration
are selected to analyze the driving pattern of the RLR. Since the input signal used for MC-DCNN
is time-series data, a window length and a prediction time after yellow onset are also required to
determine the time interval of traffic data measurement and also to determine when to perform the
classification. Prediction time after yellow initiation refers to the point at which RLR is predicted after
the start of the yellow signal. If the window length is 2 s and the prediction time after the onset of
yellow is 3 s, 2 s of data are collected from 1 to 3 s after the yellow onset.

The proposed network structure consists of two convolutional, ReLU, pooling layers and the last
fully connected layer. The convolution layer is composed of a 1D convolution because the driving
pattern is identified through the feature over time [36]. The last layer is a softmax, which outputs
a distribution over classes. The classes are defined in five categories: Non-RLR, Type A RLR, Type B
RLR, Type C RLR, and Type D RLR.

5. Dynamic All-Red Signal Control

In order to dynamically control the length of the all-red signal considering the driving
characteristics of RLRs, it is necessary to predict the time at which the RLR under consideration
can completely pass the intersection. For this purpose, we use multi-level regression to predict the
necessary time duration for the RLR to completely get out of the intersection from the moment of
prediction, which we call the intersection passing time in the sequel. The input data for the regression
model is composed of the speed, DTI, and headway of the RLR at the prediction time. As the first level
of regression for prediction, we use the Hougen–Watson model in (1), one of the nonlinear regression
models, to roughly estimate the intersection passing time.

ŷ =
β1x2 − x3/β5

1 + β2x1 + β3x2 + β4x3
(1)

where ŷ is the predicted intersection passing time and variables x1, x2, x3 are the DTI, the speed,
the headway of a vehicle, respectively. β1, · · · , β5 in (1) are parameters to be determined through
regression using data. In our study, we determined these parameters by the Levenberg–Marquardt
nonlinear least squares algorithm [37,38]. The Levenberg–Marquardt algorithm is a combination
of two minimization methods, which are known as gradient descent and Gauss–Newton.
The Levenberg–Marquardt operates in a gradient descent method when it is far from the
solution, and finds the solution in a Gauss–Newton method near the solution. In addition,
the Levenberg–Marquardt method is more stable than the Gauss–Newton method and converges to
the solution relatively quickly, so the Levenberg–Marquardt method is mostly used in the nonlinear
least square problem. The Levenberg–Marquardt nonlinear least squares algorithm optimizes the
model by iteratively reducing the sum of squares of errors between the model and the measured data
through an update process to the parameters.

As the prediction of intersection passing time of RLR through the Hougen–Watson model is
a rough estimate of actual intersection passing time required for the RLR, the predicted time can
be much shorter than necessary for some cases. This means that if the length of all-red signal is
adjusted according to this estimated intersection passing time, then vehicles from other direction
may enter the intersection before the RLR completely clears the intersection. Thus, it is necessary to
address such safety issue caused by using only the Hough–Watson model in predicting intersection
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passing time. For this purpose, we also use the quadratic polynomial fitting model as the second
level of regression based on the prediction results of the Hougen–Watson model for better safety of
intersection traffic. Furthermore, since prediction of the intersection passing time of RLR without
considering the driving characteristics of the RLR, the predicted intersection passing time can be too
conservative in some cases. Therefore, to address this issue and improve the overall traffic efficiency,
we build separate multi-level regression models according to RLR classes, as described in Section 4.2,
and predict the intersection passing time of an RLR according to its RLR class. More details on this
multi-level regression framework and results are given in Section 7.3.

6. Traffic Simulation

The system proposed in this paper requires data collection for clustering and classification.
However, it is difficult to collect traffic data in a real environment. Therefore, we use the Vissim
traffic simulator, which is widely used in transportation engineering for microscopic traffic simulation,
to collect intersection traffic data and also to evaluate the performance of the proposed system.

Figure 4 shows the intersection traffic environment configured in Vissim and also shows the traffic
signal phases. A standard intersection model is used, which has three input lanes and two output lanes
for each ramp way. The leftmost input lane is for left turning, and the center lane is for straight traffic.
The far right lane is used for both straight and also for right turning with 20% probability. The traffic
signal cycle at the intersection consists of four phases. The signal duration is set to be 27 s for straight
traffic and 15 s for left turning traffic according to the traditional Webster’s method [39]. On the other
hand, the signal duration for yellow and red in each phase are set differently according to the traffic
speed based on the FHWA’s Traffic Signal Timing Manual [40]. Traffic flow includes car-following and
lane change motion.

(a) (b)

Figure 4. Intersection traffic simulation in Vissim. (a) Simulated intersection traffic; (b) Traffic
signal phase.

Since Vissim provides two different models, called the continuous decision model and one decision
model, to mimic the reaction patterns of real drivers at an intersection when the traffic signal changes
from green to yellow, we utilize both of these models in our simulations to generate a more realistic
intersection traffic data.

In a continuous decision model, there are two options available. First, a vehicle will not brake,
if even the maximum deceleration would not allow for a stop at the stop line. Second, a vehicle brakes
if a vehicle cannot pass the traffic light within 2 s when continuing at its current speed rate. On the
other hand, in one decision model, the decision made at the time of the yellow onset is kept until the
vehicle has passed the stop line. A vehicle stops according to the following probability

p =
1

1 + e−α1−α2v−α3dx (2)
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where v is the vehicle’s current speed, dx is the DTI, and α1, α2, α3 are fitting parameters. In our
simulation, we use the default values for these fitting parameters, which are α1 = 1.59, α2 = 0.27,
and α3 = −0.26 provided in Vissim.

Figure 5 shows representative reaction patterns of traffic observed in simulation according to
two decision models. Depending on the state of a vehicle such as current speed, DTI at the time of
yellow onset, the vehicle reacts into three different patterns. First, Go is the case when a vehicle enters
the intersection before the red signal, Stop is the case when a vehicle stops at the stop line on the red
signal, and finally, RLR means the case when a vehicle is entering the intersection at the red signal [9].
Figure 5a shows the change in speed for each reaction of continuous decision traffic. The vehicle with
Go reaction does not have a red signal before the distance to the intersection becomes 0 m. The vehicle
with Stop reaction stops gradually with a yellow signal starting at a distance more than 60 m from
the intersection. However, vehicles with the RLR reaction show that they start to accelerate rapidly
between about 15 to 20 m before the intersection. Figure 5b shows the speed change for each reaction of
one decision model. In one decision model, Go and Stop reactions are similar to those in the continuous
decision model. On the other hand, one of the vehicles with RLR reaction maintains speed without
significant change in its speed even when the yellow signal starts. Thus, for the purpose of our study
in this paper, we can confirm that the intersection traffic simulated in Vissim according to two decision
models can provide a close enough representation to actual intersection traffic.

(a) (b)

Figure 5. Comparison of vehicle reaction pattern between continuous decision model and one decision
model where colored circles in the images indicate the traffic light signals. (a) Examples of velocity
profiles with continuous decision model; (b) Examples of velocity profiles with one decision model.

Table 1 shows the statistical result of 2567 vehicle data (RLR: 1710 and non-RLR:857) collected
over 24 h simulation in Vissim. This result is obtained with vehicles of which DTI is less than 100 m at
the time of yellow onset. In the case of the continuous decision model, acceleration of RLR is relatively
high compared to that of Non-RLR. This means that RLR vehicles attempt to pass the intersection
faster than non-RLR vehicles. In the case of RLR in one decision model, acceleration is the lowest but
it has a high headway on average. In addition, the mean and standard deviation of acceleration are
the smallest and thus the movement of maintaining the speed is observed. In the results, we can also
observe that RLR vehicles of the two decision models have higher mean speed than other reaction
patterns. In addition, the mean of DTI in both decision models is farther than that with the Go reaction
but closer than that of the Stop reaction.
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Table 1. Statistical results of traffic simulation data collected at the time of yellow onset.

Variable Decision Model Behavior Mean Standard Deviation

RLR 14.1337 1.5924
Continuous Go 13.6342 1.3388

Speed (m/s) Stop 12.2642 4.4733

RLR 15.2914 1.3388
One Go 13.8057 2.7491

Stop 12.3939 4.3449

RLR 0.3404 0.7978
Continuous Go 0.2910 0.6586

Acceleration (m/s2) Stop 0.1817 0.8693

RLR -0.0500 0.4520
One Go 0.2076 0.5830

Stop 0.1709 0.7996

RLR 37.6579 3.7382
Continuous Go 16.0680 10.6932

DTI (m) Stop 63.8649 21.3053

RLR 51.3914 6.3918
One Go 19.1971 12.2729

Stop 65.6994 21.5267

RLR 88.8779 76.6408
Continuous Go 88.9833 81.1717

Headway (m) Stop 86.4493 78.2994

RLR 106.6986 77.8763
One Go 95.3744 83.9599

Stop 89.2601 79.3263

7. Results

In this section, we present results of the proposed clustering, classification, and dynamic all-red
signal control approach obtained through traffic simulations in Vissim.

7.1. Clustering

As described in Section 4.1, we use the DTW algorithm to measure the similarity between
a pair of speed profile time-series. Figure 6 shows several examples of speed profile time-series data,
selected from different clusters which are determined later through the HCA clustering process,
to illustrate the effect of the DTW algorithm for optimal alignment of two time-series data and the
similarity measure calculated between them. Figure 6a shows a comparison between speed profiles
from Type A RLR and Type B RLR clusters. The similarity measure between these two time-series data,
calculated as the accumulated pairwise Euclidean distance, is 131.26 in this case. Similarly, Figure 6b,c
also show the similarity results from different RLR clusters where similarity measures calculated from
the DTW algorithm are 87.85 and 71.23, respectively. On the other hand, Figure 6d shows the similarity
result between a pair of speed profile time-series selected from the same cluster, which is Type B RLR
in this case. For these speed profile time-series data, the similarity measure from the DTW algorithm
is less than 25, which is substantially lower than the other three cases in the figure and hence clearly
indicates that these two time-series are quite similar to each other in terms of their shapes while they
may be in slightly different phases.

Next, to determine the number of clusters via HCA based on the similarity measures, it is necessary
to choose a threshold appropriately for the value of a similarity measure. If the threshold for cluster
separation is too low, then there will be too many clusters formed and the driving characteristics
of RLRs between clusters are not clearly distinguishable. Therefore, we investigate the hierarchical
structure of clusters generated from HCA for all RLR traffic datasets and choose to separate clusters
when the similarity measure suddenly increases more than 50 in the HCA process since clusters formed
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from this are most reasonably distinguishable in terms of their driving characteristics. As a result,
there are four different clusters formed for RLRs, as described in Section 4.1.

(a) Type A RLR (data 1) vs. Type B RLR (data 2). (b) Type B RLR (data 1) vs. Type D RLR (data 2).

(c) Type D RLR (data 1) vs. Type A RLR (data 2). (d) Type B RLR (both data 1 and data 2).

Figure 6. Examples of similarity results through the Dynamic Time Wrapping (DTW) algorithm.

Figure 7 shows the result of clustering generated through the HCA process for all RLR traffic
data collected from the Vissim simulation. Figure 7a–d shows RLR speed profiles of each cluster.
As shown in the figure, four RLR clusters show different driving characteristics where RLR in Type A
keeps accelerating to cross an intersection, RLR in Type B first decelerates and then accelerates, RLR in
Type C is mostly maintaining its speed, and finally, RLR in Type D exhibits similar behavior as Type B
in the beginning but decelerates rapidly shortly after accelerating due to the sudden appearance of
a proceeding vehicle in front of the RLR.
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(a) Type A RLR cluster. (b) Type B RLR cluster.

(c) Type C RLR cluster. (d) Type D RLR cluster.

Figure 7. Clustering of RLR traffic dataset through Hierarchical Clustering Analysis (HCA).

7.2. Classification

For online classification of an incoming vehicle to predict whether the vehicle is a Non-RLR
or one of the four RLR types, we use MC-DCNN as described in Section 4.2. For training of the
MC-DCNN model, we built a training dataset from traffic data consisting of time-series of vehicle
speed, acceleration, DTI, and headways with cluster type determined through HCA so that each vehicle
in the training dataset is labeled whether it is a Non-RLR, Type A RLR, Type B RLR, Type C RLR,
and Type D RLR. Therefore, as shown in Figure 1, the trained MC-DCNN model gives a prediction to
which class out of the above five classes an incoming vehicle is classified.

To evaluate the classification performance MC-DCNN, we compare the classification accuracy of
MC-DCNN with that of SVM using the validation dataset. Tables 2 and 3 are classification accuracy
results using SVM and MC-DCNN, respectively. In the results, the classification accuracy is 100% if
the classifier classifies all five classes, Non-RLR, Type A, B, C, D RLR correctly. The “window size”
means the time-series length of input data, and the “prediction time after yellow onset” means the
time when a classifier performs classification after yellow onset. In the case of SVM, if the window size
is 0 s (i.e., there is only one data point in the input time-series), the accuracy is lower than about 60%
regardless of prediction time. Table 2 also shows that the longer the input time-series length, the better
the classification performance. The highest accuracy appears when the window size is 3 s and the
prediction time is 2.5 or 3 s after yellow onset.

Compared to the result from SVM, the classification accuracy of the MC-DCNN model is
substantially better than that of SVM especially when the windows size is small. For instance, even the
classification accuracies of MC-DCNN with 0 s window size in all prediction time cases are comparable
to those of SVM with a 2 s window size. Also, the highest accuracy achieved by MC-DCNN with 1 s
window size is 99.9% at 3 s prediction time while SVM with the same window size and prediction
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time can achieve only up to 87.5%. It is interesting to see that this 99.9% accuracy with 1 s window
size is even better than the highest classification accuracy of SVM achieved with the longest window
size. As a result of this comparison, it is shown that the MC-DCNN classification model proposed
in this work can classify the class of an incoming vehicle more accurately than SVM even with
shorter duration of vehicle motion measurement and also at a slightly earlier time after yellow onset.
Furthermore, it is expected that the proposed MC-DCNN model can be applied to improve the
performance of the system for imposing fines for vehicles violating traffic signals based on the accurate
classification performance.

Table 2. Classification accuracy of Support Vector Machine (SVM) classifier.

Prediction Time after Yellow Onset (Sec)

Window
size
(sec)

0 0.5 1 1.5 2 2.5 3

0 56.6% 57.5% 58.6% 57.1% 57.4% 57.7% 59%
0.5 79.8% 85.4% 85% 85.2% 84.6% 85.4% 85.1%
1 84.3% 86.5% 87.7% 87.2% 87% 87.3% 87.5%

1.5 88.4% 88.6% 89% 90% 90.2% 90.3% 90%
2 90.6% 92.2% 92.6% 93.3% 93.3% 93.4% 93.3%

2.5 94% 94.7% 95.6% 95.9% 95.8% 95.8% 96%
3 98.9% 98.9% 99.2% 99.3% 99.3% 99.4% 99.4%

Table 3. Classification accuracy of the Multi-Channel Deep Convolutional Neural Networks
(MC-DCNN) classifier.

Prediction Time after Yellow Onset (Sec)

Window
size
(sec)

0 0.5 1 1.5 2 2.5 3

0 87.3% 92.5% 92.9% 90.7% 89.2% 95.4% 99.5%
0.5 90.7% 95.2% 96.4% 97.4% 98.1% 98% 99.6%
1 93.5% 96.4% 97.1% 97.8% 98.3% 98.4% 99.9%

1.5 93.5% 96.9% 97.4% 98.4% 98.6% 99.1% 99.9%
2 93.8% 96.2% 97.1% 99% 98.9% 99.3% 99.9%

2.5 94.3% 96.7% 97.2% 98.7% 98.2% 98.9% 99.9%
3 94.5% 97.3% 97.5% 98.6% 98.6% 99.3% 99.9%

7.3. Dynamic All-Red Signal Control

For the safety of intersection traffic under the threat of RLRs, an approach of all-red signal
extension has been proposed to extend the all-red signal to a pre-fixed time duration, which is typically
less than 5 s, in order to prevent vehicles from other directions entering the intersection when an RLR
is detected. However, the fixed-time all-red signal extension may not be effective as drivers can adapt
easily to the fixed extension time. In addition, it may reduce the intersection traffic efficiency in case
the all-red signal extension time is chosen too conservatively and it may also reduce the traffic safety
in case the all-red signal extension time is too short.

To address such issues related to the fixed-time all-red signal extension approach, we incorporate
the driving characteristics of RLR to determine the necessary all-red extension time. For this purpose,
we adopt a nonlinear regression model, called the Hougen–Watson model, to develop an all-red
extension time prediction model based on the traffic data collected from the Vissim simulation.
The Hougen–Watson model performs nonlinear fitting through multivariate input of speed, DTI and
headway, and has the advantage of being easily usable because it is provided as a Matlab function.

Figure 8 shows the comparison between the actual intersection passing time calculated from
the traffic data and the predicted intersection passing time by the Hougen–Watson prediction model
for all RLRs traffic data. In the figure, circular points represent RLRs. For each RLR, the actual and
the predicted intersection passing times for the vehicle can be compared between the values in the
vertical and horizontal axis. The diagonal line, called the Base line in the figure, represents when the
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actual and predicted time matches. Thus RLRs above the base line actually take longer time than
the predicted intersection passing time to completely cross an intersection. As shown in the figure,
a large number of RLRs are shown above the base line. Therefore, for such RLRs, the Hougen–Watson
prediction model alone is not enough to predict the necessary all-red signal extension time for all
types of RLRs. To address this issue, we identified RLRs, called the Outliers, from the dataset in
which actual intersection passing times are larger and also maximally deviated from their predicted
intersection passing times. In Figure 8b, red colored circular points represent those outliers identified
from the dataset and the dashed line represents the quadratic polynomial curve fitted to the outliers.
Hence, if we use the quadratic curve model on top of the Hougen–Watson model to predict the
intersection passing time, then the predicted time will be long enough for most RLRs so that they
can completely clear an intersection within the time interval, which is much safer than using the
Hougen–Watson model alone.

(a) Prediction by the Hougen-Watson model. (b) Quadratic polynomial fitting for outliers.

Figure 8. All-red signal extension time for RLRs: Actual vs. Prediction.

However, as one can notice, it may be too conservative sometimes to use only one prediction model
to predict intersection passing times for all types of RLRs. For a certain class of RLRs, the predicted
intersection passing time predicted by the model may be unnecessarily longer than needed for such
RLRs. Thus, for better traffic efficiency, we develop and use different prediction models for different
RLR classes to predict the intersection passing time more precisely. Figure 9 shows the prediction
model of each RLR class developed by the same framework of using Hougen–Watson model and
quadratic polynomial curve fitting. Having these four different prediction models corresponding
to each RLR types, it is now possible to determine the necessary all-red signal extension time more
effectively than using only one prediction model once the type of RLR of an incoming vehicle is
correctly classified by the MC-DCNN classifier. Table 4 shows the values of the Hougen–Watson model
parameters determined by the Levenberg–Marquardt algorithm for each prediction model and also the
values of the coefficients for the quadratic polynomial curve fitting of outliers. Regarding the values of
the quadratic polynomial curve fitting shown in the table, p1 represents the second-order coefficient,
p2 is the first-order coefficient, and p3 is the polynomial constant of a quadratic polynomial equation.
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(a) Type A RLR. (b) Type B RLR.

(c) Type C RLR. (d) Type D RLR.

Figure 9. Prediction models of all red-light extension time for each RLR class type.

Table 4. Coefficients of prediction models for all-red signal extension time. (Mixed RLR represents the
prediction model shown in Figure 8 and others are corresponding to models shown in Figure 9).

Hougen–Watson Model Polynomial Fitting

β1 β2 β3 β4 β5 p1 p2 p3

Type A RLR 2.83 ×1027 −7.33×1026 1.15×1027 4.24×1027 5.1×106 4.39 −25.03 39.06
Type B RLR 0.0642 0.1003 −0.0205 0.0382 −8.89×105 0.57 −1.45 2.83
Type C RLR 0.1625 0.2340 −0.0210 0.1941 −2.19×105 −0.21 2.1 −1.32
Type D RLR 2.8061 −0.6884 0.7655 −1.3043 0.0644 0 1 0
Mixed RLR 0.0733 0.0828 −0.0133 0.0510 −7.00×105 2.17 −8.48 10.39

To evaluate the accuracy of the proposed multi-class intersection passing time prediction
framework compared to the case of using only one prediction model, the mixed RLR model in Table 4,
we use the following standard deviation of residual σest defined as

σest =

√
∑ (y − ŷ)2

N
(3)

where N is the number of RLRs, y is the actual intersection passing time of an RLR, and ŷ is the
predicted intersection passing time of the RLR. Table 5 is the result of the prediction accuracy of
intersection passing time of RLRs measured by σest for the two prediction models in the case where the
prediction time after yellow onset is 3 s. As shown in the result, the proposed multi-class model has
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a much smaller residual standard deviation of residual compared to the case of using the mixed RLR
model. This result shows that the proposed model can predict the time more accurately when an RLR
will completely cross an intersection.

Table 5. Comparison of residual between mixed RLR model and proposed model.

Mixed RLR Model Proposed Multi-Class Model

σest defined in (3) for N = 1517 0.03133 0.0166

Once the intersection passing time of an RLR ŷ is estimated precisely, then it is relatively
straightforward to determine the necessary all-red signal extension time for the RLR. A simple strategy for
dynamic all-red signal extension control is as follows: If the length of the all-red signal is greater than 1 s,
which is the default all-red signal length, then the length of the all-red signal is set to ŷ unless it is larger
5 s. In case the value of ŷ exceeds 5 s, then the all-red signal length is set to 5 s according to the standard.

8. Conclusions

In this paper, we proposed a system that dynamically controls all-red signal length based on
the driving characteristics of Red Light Runner (RLR) vehicles to improve the overall intersection
safety and efficiency. The main components of the proposed system are the Multi-Channel Deep
Convolutional Neural Networks (MC-DCNN) classifier that classifies an approaching vehicle into five
classes according the vehicle’s driving characteristics and the multi-level nonlinear regression model
that can predict the necessary all-red signal extension time more accurately. We used the Dynamic
Time Wrapping (DTW) and the Hierarchical Clustering Analysis (HCA) to carefully determine the
types of clusters to be classified via MC-DCNN so that each class can be reasonably distinguishable
by their driving characteristics. As a result of this multi-step classification and regression process,
we validated that the proposed system can predict the actual intersection passing time of RLRs with
very small prediction error and thereby it can improve both the safety as well as the efficiency of
intersection traffic. In the future, we will build vehicle surveillance systems at some sections of real
road intersections to collect real traffic data. Synchronized data of vehicle data and signal information
will be collected, and the proposed system will be verified in a real environment. In addition, we will
conduct a quantitative assessment of intersection safety and economic loss through the analysis of
traffic flow due to signal extension.
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Abstract: Mobile Cyber-Physical Systems (MCPS) have extended the application domains
by exploiting the advantages of Cyber-Physical Systems (CPS) through the mobile devices.
The cooperation of various mobile equipment and workers based on the MCPS further improved
efficiency and productivity in the industry. To support this cooperation of groups of workers
(hereafter referred to as the Mobile Sink Groups), data should be delivered to appropriate groups of
workers in a timely manner. Traditionally, the data dissemination for MSG relies on flooding-based
geocasting into the movable area of the group due to frequent movements of each group member.
However, the flooding-based data dissemination could not be directly applied to real-time data
delivery that demands the required time deadline and the end-to-end delivery distance, because the
flooding could not define the end-to-end distance and progress to each member in a group. This paper
proposes a real-time data delivery mechanism for supporting MSG in time-critical applications.
In our mechanism, a ring-based modeling and data transfer scheme on a virtual grid in the ring for
group mobility provides the end-to-end distance and the progress to forward real-time data to each
member. Simulation results show our mechanism is superior to the existing ones in terms of real-time
communication for MSG.

Keywords: Mobile Cyber-Physical Systems (MCPS); industry; Mobile Sink Groups (MSG);
group mobility; real-time data delivery

1. Introduction

As Cyber-Physical Systems (CPS) are collectively a technology for managing systems that interlink
real-world assets, such as various sensors and actuators, with computing power in the information
world [1], and it has recently become a key research area in industry, which utilized in various
applications such as smart factory, digital manufacturing, and digital twin [2]. For example, CPS exploit
sufficient computing resources to process information that has not been addressed in the physical
world in the past to promote economic benefits such as improved energy efficiency and productivity in
the industry [3]. In addition, by transferring the experimental environment of the physical world to the
virtual world, various prototypes could be tested in the virtual environment in advance as performing
error diagnosis, predictive maintenance, and product performance measurement very efficiently [4].
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Nowadays, with the development of pervasive mobile devices, Mobile Cyber-Physical Systems
(MCPS) have attracted more and more attention. MCPS have extended the application domains by
exploiting the advantages of CPS through mobile devices [5]. In other words, MCPS could embrace
not only CPS, which mainly deal with static equipment and stable networks, but also a network
consisting of a number of mobile devices, such as vehicle networks. As the networks with mobile
devices are unstable, unlike the networks assumed by the CPS, and the computing power of each
mobile device is very different, many studies have been proposed from various aspects for their
efficient cooperation. In particular, the timeliness of the data is very important because delay and
failures due to bottlenecks, etc., which could be caused by variable network environments, adversely
affect the entire system [6,7]. In addition, the various mobile equipment and groups of workers (Mobile
Sink Groups (MSG)) performing the collaboration should be able to receive data within a valid time
because they must be operated in a mutually collaborative manner.

In the past, the spatiotemporal approach was exploited for real-time data transmission [8,9].
The spatiotemporal approach forwards data with the required delivery speed. The end-to-end
delay is proportional to the distance between the devices. By maintaining the delivery speed across
the network, this approach could provide a predictable real-time service according to the distance.
For multihop communication, each node selects one node among its neighbor nodes, which has faster
delivery speed than the required delivery speed. To apply the spatiotemporal approach, per-hop data
forwarding requires the delivery speed, the coordinates of the specific destination, and the progress to
the destination by each of the 1-hop neighbor nodes.

This traditional spatiotemporal approach has been able to successfully transmit data for individual
mobile sinks through virtual infrastructure; however, data dissemination to a group of mobile sinks
causes duplicated location management of all sinks and duplicated data delivery to all sinks. Therefore,
the group mobility support scheme, divided into two steps, has been proposed: member information
gathering and data forwarding to group members [10–12]. Typically, a leader gathers the location of
member sinks and reports the representative location of the group (i.e., center point and radius) as the
location information of each members might be changed frequently. After gathering, M-Geocasting [10]
causes data packets to be flooded into the region (a circle) for active data delivery. In [10], a source
node sends its data toward the center point of the movable area of a group. Once one of the boundary
nodes gets the data, it starts flooding them only in the area. Flooding data could reduce the cost for
trivial movement of sinks within the region. The authors of [11] exploit the internal movement of each
member sink. They put data in a virtual rectangular area passing the center point of the group so that
member sinks passively get the data when the sinks encounter the area. However, flooding-based
dissemination has still a problem regarding application into the spatiotemporal approach for real-time
data. The data flooding could not define the final destination for a mobile sink group. Without the final
destination, the source node could not calculate the delivery distance and the required delivery speed.
Furthermore, each node on the delivery path is not able to calculate the progress to the destination
via its neighbor node. Moreover, the passive data dissemination also could not define the end-to-end
distance and the progress. VTS [12] exploits a virtual tube storage to deliver data to mobile sink group.
As this scheme requires the process of storing data and acquiring data through queries in the sink, it is
difficult to achieve real-time data transmission.

To overcome the problem, we propose a real-time data delivery mechanism for supporting a
mobile sink group. First, the proposed scheme calculates the movable area of mobile sink group based
on the virtual grid structure. Based on the structure, the maximum (farthest) distance for the real-time
communication is calculated to find the minimum speed that should be satisfied in the process of data
transmission. Finally, the proposed scheme could transfer data to all sinks in the group in a valid
time by performing main forwarding and branch forwarding process which along nodes that meet the
previously calculated minimum speed. The simulation results verify that the proposed mechanism
achieves better performance than the existing ones to support real-time communication for mobile
sink groups.
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The remainder of this paper is organized as follows. In Section 2, we explain the real-time
data delivery for mobile sink groups. The performance evaluation results are provided in Section 3.
Finally, the proposed scheme and simulation results are summarized in Section 4.

2. The Proposed Mechanism

2.1. Overview

In this section, we describe the overview of the our proposed scheme through Figure 1. As the
group moves collectively, our mechanism puts data in a ring-based movable area of the group. In order
to define the delivery distance, we construct a grid-based virtual structure in the movable area.
Based on the virtual structure, our proposed scheme is largely divided into two forwarding steps: main
forwarding and branch forwarding. In the main forwarding process, the data are forwarded along a
straight line between the source node and center point of the group sinks (the solid line in Figure 1).
The branch forwarding is performed at each branch point in the process of main forwarding. When any
branch point receives data through the main forwarding process, each branch point forwards the data
through the line to the previously anticipated boundary of the movable area of mobile sinks (the dotted
line in Figure 1). In addition, the proposed mechanism calculates the maximum (farthest) distance for
the real-time communication based on the virtual structure. Then, each destination and the progress
toward the destination could be provided according to either main forwarding or branch forwarding.

Figure 1. Overview of the proposed scheme.

2.2. Group Sink Modeling

In the MCPS environment, a group of mobile sinks usually have a common goal such as
maintenance or production work in a restrict region. However, they have different roles for individuals.
Thus, we assume that the group of mobile sinks collectively moves, but each member sink in the group
moves independently in a restrict region. Each sink receives data from the nearest sensor as an agent
node. To forward data to a sink, the coordinates of the sink are needed. However, in the case of a mobile
sink group, per-sink movement management causes excessive energy consumption. M-Geocasting [10]
offers an effective data delivery to mobile sink groups. We can gather the geographical information of
member sinks and report the group information by a leader sink of the group that is responsible for
gathering the location of all member sinks and periodically advertising coordinates of center point and
a radius of the area. With the information of the mobile sink group, a source node sends its data using
the geographic routing toward the center point. Once the data enter the area, it is flooded within the

143



Appl. Sci. 2020, 10 , 5950

area. Using the flooding, the protocols do not need to independently manage the locations of each
members. The group has a ring-based movable area with the center point and the radius. Each member
sink selects one of the sensor nodes as an agent to access the network since the mobile sinks in the
group exist on an infrastructureless field.

2.3. Calculation of the Delivery Speed of a Mobile Sink Group

In the spatiotemporal approach for the real-time communication, the delivery speed concept is
applied. The delivery speed is maintained in order for all relay nodes to evenly distribute the real-time
requirement of applications that have a dynamic topology and error-prone nodes. The selected
next-hop node must have a relay speed that is faster than the required delivery speed to meet the
requirement. The speed concept includes the spatial requirement and the temporal requirement for
the data delivery. The temporal requirement can be given by the application, whereas the spatial
requirement might be calculated with the Euclidean distance between the source node and the
destination node, as we assume each sensor node could get its own coordinates from either GPS
or any localization algorithms. However, in the mobile sink group, the end-to-end distance between a
source node and each sink node could not be defined as the data delivery towards each sink node is
based on flooding within the area.

A source node defines the distance and calculates the delivery speed after getting the location
information of a mobile sink group from sink location server [10,11]. From the server, the source gets
the center point PC and the radius of movable area RC. PC is the central coordinate calculated based on
the position of all sinks in the group, and when a circle is drawn around PC, the radius of the circle
that can contain all member sinks is RC. RC could vary depending on the requirement of application.

Equation (1) is a formula for calculating PC, and Equation (2) is a formula for obtaining RC.

PC(x, y) =
1

n(P)

n(P)

∑
i=1

Pi, P = {(x, y) | (x, y) = coordinate of member sinks} (1)

RC = MAX(D), D = {d | d = distance between PC and member sinks} (2)

To define the distance and calculate the delivery speed, main forwarding and branch forwarding
are applied. In the main forwarding, we follow the longest straight line of the area, passing the center
point. Branching the longest straight line could reduce the total length of the grid structure and
increase the probability of path merging.

The total transmission distance for each sink is the summation of the main forwarding and the
branching forwarding. The main forwarding operates on the straight line between a source (xs, ys)
and the center point (xc, yc). The branching forwarding for each sink i (xsi, ysi) could be defined by the
distance between the sink and the straight line:

|kxsi − ysi + yc − kxc|√
k2 + 1

(3)

where k = (ys − yc)/(xs − xc), (xs �= xc).
In order to derive the delivery speed for every member in a mobile sink group, we consider the

maximum (farthest) distance in the movable area. In the area, as the farthest point from the entry point
might be located on the ring, we calculate the distance between two points on the ring. In Figure 2,
we assume that the center point and the source node are on the coordinate (0,0) and (D,0), respectively.
Each point on the circle can be represented with the angle θ: (Rcos θ, Rsin θ). The distance to each point
is presented as follows.

f (θ) = (D − Rcosθ) + |Rsinθ|. (4)
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Figure 2. Longest distance in the movable area.

With a differential equation from the Equation (4), we can get the farthest points on the
circle: (θ = 3/4π or 5/4π) as f ′(3/4π) = f ′(5/4π) = 0 and f ′′(3/4π) < 0, f ′′(5/4π) < 0.
Therefore, the maximum distance is (D +

√
2R). With the maximum distance, the source node

makes the delivery speed which will be maintained during the data delivery.

2.4. Real-Time Data Transfer via Branch Points

From a source node to the exit point of the movable area (via the entry point of the movable area),
data are transferred by the main forwarding. During the main forwarding, the destination of the data
packets for geographic routing is the coordinate of the exit point of the movable area.

Each branch forwarding is repeated in every radio-range. For each branch forwarding, multiple
branch zones are virtually constructed. The reason to construct the branch zone is to reduce energy
consumption by allowing only a flow of data in a zone and avoiding every node participating in
communication. There are �2R/r� branching points in the main forwarding in a movable zone,
where the radius is R and the radio range of the sensor nodes is r. The branching point set is
represented as follows.

BP =
{

bi = (xi, yi)| xi = xc + i(xs − xc)r/D,

yi = yc + i(ys − yc)r/D, (5)

i = [−�R/r�, �R/r�]}
Each branch point is on the straight line between the entry point and the exit point. The entry

point PEN and the exit point PEX can be represented as follows.

PEN = (xc + R(xs − xc)/D, yc + R(ys − yc)/D)

PEX = (xc + R(xc − xs)/D, yc + R(yc − ys)/D) (6)

In each branch point, three nodes could be selected at most as the next-hop nodes as shown
in Figure 3. One is selected for the main forwarding, the others for branching toward orthogonal
directions. To transfer data to the multiple next-hop nodes, we exploit the broadcast nature in wireless
transmission. However, there might be interference and concurrent transmission among the selected
nodes in the radio-range of the node holding a data packet. To avoid this problem, we apply time
slot-based transmission for branching. It divides the time slot and assigns the nodes to each slot.
The slot-based transmission is needed for sharing opportunity to relay among the branch nodes.
Each node can relay its data packet from its hop delay to time deadline for the real-time packet.
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The temporal duration can be called real-time tolerable time. As the tolerable times of the selected
next-hop nodes might be overlapped to each other, controlled relaying is needed.

Figure 3. Branching point and termination of branching.

The nodes are assumed to timely synchronize by the time synchronization schemes [13,14].
Each next-hop node has its own and different available time until time deadline in real-time data
transmission. We call it the tolerable time. However, in the branch node, the multiple next-hop nodes
can relay their data packet independently, thus causing serious packet collision. In order to avoid
this problem, an additional scheduling procedure is needed by the branch nodes. The branch node
divides the real-time tolerable time to multiple time slots and assigns the time slots to its next-hop
candidates. As the maximum number of the next-hop candidates is three, we divide it into three time
slots. Each next-hop node could forward data packet in the assigned slot. The duration of the time
slot should be longer than the minimum relaying time. For assignment of the time slots, we apply the
following rules.

• The first time slot is assigned to the node which has the shortest hop delay.
• The last time slot is assigned to the node which has the longest time deadline.
• The remaining time slot is assigned to the node which has not been assigned to any time slot.

After branching, the destination of the data packet is modified toward the orthogonal direction.
The destination could be calculated with the coordination of branch point and source node, and the
information of the movable area. The destinations of branch points are needed to calculate because of
the two orthogonal direction in shown in Figure 4. As the destination points locate on the circle of the
movable area, the destination could be presented as follows:,

(xc + Rcos(a), yc + Rsin(a)), (7)

where a = π + θE + θB. The θE is the angle of the straight line of the source node and the center point
and presented as

θE = arctan((yc − ys)/(xc − xs)). (8)
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The θB is the angle between two line from the branch point and the destination point to the center
point. To the point, data packet is transferred via the geographic routing. Finally, the destination of
each branch zone is presented as follows,

(xc − Rcos(θE + θB), yc − Rsin(θE + θB)). (9)

Figure 4. Real-time scheduling in branch points.

2.5. Management of Mobile Sinks by Sensor Nodes

Typically, mobile sink selects a sensor node as its communication agent node and gets data from
the agent node. The procedure of data transfer starts in source node, via main forwarding, branch
forwarding, and agent, ends in the mobile sink. For the real-time data transmission, the agent should
relay the holding data with the highest priority (almost no delay).

Sometimes, each individual mobile sink might temporally be out of the movable area due to
obstacles on the path. That is, deviations from environmental factors could be occur. When the mobile
sink leaves the movable area, the sink selects the node closest to the edge of the movable areas as
inner agent to report its location. In addition, if the sink is out of the communication range of inner
agent, the node that exists within the communication range of inner agent is selected as outer agent.
It ensures that the sink has a connectivity to receive data even if it is out of the movable area. When the
inner agent receives a data packet, the agent forwards the packet to the outer agent using geographic
routing. It is possible to relay with more distance because there might be remaining distance to the
maximum distance (D +

√
2R). The remaining distance could be represented as follows,

fr(θ) =
√

2R + Rcosθ − |Rsinθ|. (10)

Although the remaining distance is positive, it cannot be enough to support the out-of-range
mobile sink. In order to support the mobile sink with higher remaining distance and higher probability,
the location of the out-of-range mobile sink is shared with neighbor boundary nodes and the data
packet is relayed via one of the multiple boundary nodes by multipath routing as shown in Figure 5.
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Figure 5. Mobility support for sinks out of the region.

3. Performance Evaluation

3.1. Analysis

We analyze the energy consumption of the flooding based scheme and the proposed protocol to
define our routing protocol. To analyze the energy-efficiency of the proposed scheme, we focus on
the worst-case communication overhead of each protocol. We consider a square area A in which
N sensor nodes are uniformly distributed. There is a mobile sink group which has k multiple
mobile sinks. The group moves at an average speed, while receiving d data packets from a source.
The communication overhead to flood an area is proportional to the number of sensor nodes in the
area, and that to send a message along a path by greedy geographical forwarding is proportional to the
number of sensor nodes in the path. In this analysis, the mobile sink group has a radius R. There are
n = N/A*π*R2 sensor nodes in the group region.

A sink group is assumed to update its location m times, and receive d/m data packets between two
consecutive location updates. A radius of the expected group region is 2R. The overhead for group
information calculation and advertisement is 5n+kR+

√
2A, where n is the number of sensor nodes

in the group region, kR is the update cost from each sink to the leader sink, and
√

2A is the update
cost from the leader sink to the location server in the sensor field. The communication overhead for
location update is m(5n+kR+

√
2A)).

To deliver a data packet, we have two communication modes: unicasting from the source the
entry point of the sink group and delivery mode within the group area. The length of the unicasting is
(D − R), where D is the average length between a source and the center of the group area and R is the
radius of the area. Thus, the energy consumption of the unicasting is (D − R)/r. For delivery in the
group area, the energy consumption is based on the number of sensor nodes in the area: NπR2/A. It is
exponential to the radius of the area R. Our protocol divides the delivery before and after the branch.
There are b = �2R/r� branch points on the straight line 2R. After the branch, energy consumption
is 2bR, where the constant 2 is for the two branches in the opposite directions. Totally, the energy
consumption is presented as follows,

COFlooding = m((5(NπR2/A) + kR +
√

2A) +

d((D − R)/r + NπR2/A),

COProposal = m((5(NπR2/A) + kR +
√

2A) +

d((D − R)/r + �2R/r�+ (�2R/r�)2)

As a result, the energy consumption of the flooding based scheme depends on the density and
the radius of the area, whereas that of the proposed scheme is affected only by the radius of the area.
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3.2. Simulation Environment and Results

We have implemented the proposed mechanism in the network simulator NS-3. For application
to industrial area, sensor nodes follow the reference of the Wireless HART [15], one of the well-known
standards in IWSNs which employs an IEEE 802.15.4-based radio, frequency hopping, and retry
mechanisms. We compare with M-Geocasting [10] and VLDD [11], which are group mobility support
protocols. The simulation network space consists of 1000 sensor nodes uniformly deployed in a 500 m
× 500 m square area. Fifteen mobile sinks are in a group and the radio range of each sensor nodes is
~20 m. The source node generates 30 byte data packets with an interval of 400ms and the time deadline
for each packet is 400 ms. The simulation time is 50 s. We measure the in-time data delivery ratio,
which means how many of data packets are received by the mobile sinks within the time deadline.
The result in the figures is the average value of 100 times of simulation.

Figure 6 shows the in-time data delivery ratio according to the end-to-end (E2E) distance. In this
graph, the E2E distance indicates the Euclidean geographical distance between a source and the center
of a movable area. In M-Geocasting, a number of packets are lost due to the fact that it exploits
flooding and flooding makes broadcast storm. As VLDD is a passive forwarding for supporting
group mobility based on the internal movement of each member sink, it causes temporal-useless data
packets. In addition, we conduct a simulation with SPEED applying multiple destinations. With these
simulation, as SPEED constructs multiple paths for each sink, the interference between multiple paths
is frequently occurred. In our scheme, more than 80% of the packets could be received by the sinks of
the mobile sink group via unicasting in movable area.

Figure 6. Comparison of in-time data delivery ratio according to end-to-end distance.

In Figure 7, the in-time data delivery ratio is presented according to the movable area range of
a mobile sink group. In M-Geocasting, as the movable area spans, a larger number of sensor nodes
should participate in communication and the interference is more frequently occurred. When the range
of the area is 70 m, in M-Geocasting, approximately 61 sensor nodes participate in its flooding area;
however, there are only about 39 participating nodes in our scheme. In VLDD, as the area is wider,
it might have a lower possibility to receive an in-time data packet due to its passive data forwarding.
With the performance of the proposed scheme, we show that our proposed scheme could cover the
wider movable area by multiple unicast forwarding.
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Figure 7. Comparison of in-time data delivery ratio according to movable area range.

Figure 8 shows that the in-time data delivery ratio is affected by the radio range of the sensor
node. We vary the range from 15 m to 30 m. Our mechanism and VLDD show almost constant
performance, although the range is varied. It is because that our mechanism and VLDD do not
exploit the flooding. In M-Geocasting, as the range is wider, the number of one-hop neighbor nodes is
increased. With the larger number of neighbor nodes, the number of branches in flooding is increased;
however, the possibility of interference for each neighbors also increases dramatically. Therefore,
the performance of data delivery ratio is rapidly degraded.

Figure 8. Comparison of total in-time data delivery ratio according to radio range.
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4. Conclusions

Nowadays, Mobile Cyber-Physical Systems (MCPS) are widely exploited in various domains.
In this environment, the Mobile Sink Groups (MSG) perform collaborative work with a common goal.
Thus, data should be delivered to all mobile sinks in the group within a valid time. Traditionally,
data delivery schemes for MSG have been proposed; however, as the existing flooding-based data
delivery schemes have not been able to define end-to-end distance for each mobile sink, they struggle
to satisfy the real-time requirement. To solve this problem, we proposed a scheme to model the
MSG in a circular form, and to satisfy the real-time requirement for each member sink through data
delivery using virtual grids. First, the proposed scheme models the MSG as one center point and
radius, and defines the end-to-end distance based on the member sink furthest from the source node.
Through this definition, the source node could could calculate the delivery speed which will be
maintained during the data delivery. The data delivery process is largely divided into two phases:
the main forwarding phase, which passing through the center of the mobile sinks from source node,
and the branch forwarding phase at the branch point, which received the data through the main
forwarding phase. In addition, even if some mobile sinks deviate from the initially calculated radius
due to various environmental factors of MCPS, the connection of the sinks is ensured through the
inner/outer agent concept. Through this process, the proposed scheme could deliver data to all
member sinks in a timely manner. The performance evaluation results shows that the proposed
scheme is superior to the existing schemes in terms of real-time communication for MSG.

The proposed scheme could have achieved real-time data delivery for a single MSG; however,
there could be more than two MSG, independent single mobile sinks, and static sinks in the actual
MCPS environment depending on the application. Therefore, further studies on methods such as
multicasting are required to deal with the numerous applications of MCPS environments.
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Abstract: When developing an automobile control application, its scheduling parameters as well as
the control algorithm itself should be carefully optimized to achieve the best control performance
from given computing resources. Moreover, since the wide acceptance of the AUTOSAR standard,
where finer-granular scheduling entities (called runnables) rather than the traditional real-time tasks
are used, the number of scheduling parameters to be optimized is far greater than the traditional
task-based control systems. Hence, due to the vast problem space, it is not feasible to reuse existing
time-consuming search-based optimization methods. With this motivation, this paper presents
an analytical codesign method for deciding runnable periods that minimize given control cost
functions. Our solution approach, based on the Lagrange multiplier method, can find optimized
runnable periods in polynomial times due to its analytical nature. Moreover, our evaluation results
for synthesized applications with varying complexities show that our method performs significantly
better (12% to 59% of control cost reductions) than a state-of-the-art evolutionary algorithm. To the
best of our knowledge, this study is one of the first attempts to find runnable periods that maximize a
given system’s control performance.

Keywords: AUTOSAR; DAG; runnable scheduling; control-scheduling codesign; lagrange multiplier

1. Introduction

AUTOSAR is the de facto standard software architecture for automobile control systems, covering
a wide range of applications such as engine management, motor-driven power steering, and advanced
driver assistance systems [1–3]. In the AUTOSAR standard, a control system is designed as a set of
software components, which are the units of software packaging and deployment. Usually, multiple
software components are connected and communicate through the AUTOSAR runtime environment
(RTE). Each software component is also composed of a set of runnables, which are the smallest unit
functions for software development and scheduling. Runnables communicate with each other within
each software component and across different software components, using asynchronous message
passing interfaces provided by the RTE. As a result, a system can be modeled as a directed acyclic graph
(DAG) of runnables where data flow from sensors to actuators through the runnables in the DAG.

For runnable executions, each runnable is associated with an event source, which is usually a
periodic timer, and runnables with the same periods are grouped into periodic tasks for scheduling on
the AUTOSAR real-time operating system (RTOS). Runnable periods should be carefully optimized
since they are control knobs for balancing the trade-off between a system’s load and control
performance. For example, imagine a system with extremely short runnable periods. The system
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will then be much too heavily loaded, hence not schedulable since the runnables should execute with
extremely high frequencies. On the other hand, the short runnable periods, if realized, can produce
a high control performance due to fast data flows and high control frequencies. At the opposite
extreme, i.e., a system with extremely long runnable periods, it will be lightly loaded and hence easily
schedulable; however, its control performance will be significantly degraded due to slow data flows
and low control frequencies. In that sense, we need a method to find optimal runnable periods between
those two extreme cases.

However, in the automotive industry, runnable periods are usually decided in an ad-hoc manner
with time-consuming trials and errors [4], making it difficult to extract the optimal control performance
out of given hardware resources. To cope with this problem, this paper formulates a runnable periods
optimization problem for maximizing the control performance of a given system. Our previous
work’s initial approach was to use a simple combinatorial search method to find real optimal runnable
periods [5]. However, our preliminary experiment revealed that even for a small system with a dozen
runnables, since the optimization process cannot find solutions in polynomial times, it takes too much
time, making it impractical for complex industry applications.

To deal with this scalability problem, our approach is to develop an analytical method that
can find near-optimal solutions without time-consuming searches. For that, the first step is to pick
an appropriate control performance model as the optimization objective. Among various models
in the literature, we chose the linear control cost model from Bini and Cervin [6] that represents a
control system’s performance as an approximate linear cost function of its control period and delay [6].
This model has been used as a standard tool by many control-scheduling codesign studies [7–10].
The second step is to define the optimization constraint, that is, the schedulability constraint in our
problem. Since the AUTOSAR standard assumes a priority-driven scheduling algorithm, we use the
Liu and Layland (L&L) utilization bound method [11], which can be used for both the rate monotonic
(RM) and the earliest deadline first (EDF) scheduling algorithms. For the explanation purpose, the
EDF scheduling algorithm is mostly assumed throughout this paper, and later our method is extended
to the RM scheduling algorithm.

Based on the control cost function and the schedulability constraint, our specific problem is to find
the runnable periods that minimize the control cost while guaranteeing the schedulability constraint.
Since the control cost function is a function of control period and delay, it should be transformed
into a function of runnable periods. For that, we carefully investigate how runnable periods affect
the temporal behavior, i.e., control period and delay, of a control system, and develop a generalized
method for the transformation.

After the transformation, the Lagrange multiplier method is used to find the optimal runnable
periods. Note that the Lagrange multiplier is a well-known optimization method for constrained
optimization problems. As it provides an analytical method without any problem space search,
our method can find the optimal runnable periods regardless of the size and the complexity of a
target system. The detailed optimization process is explained in three steps beginning from the most
uncomplicated application model to the general DAG model for the explanation purpose. Although
our solution cannot find the real optimal solutions due to a heuristic applied during the optimization,
our evaluation results for small systems show that the performance loss is marginal compared with
the real optimal solutions. Moreover, even for large systems, our method performs better compared
with a state-of-the-art optimization method.

This paper’s contributions can be summarized as follows:

• We formulate a problem of AUTOSAR runnable periods optimization in the context of
control-scheduling codesign, which we consider to be one of the first such attempts;

• For the above problem, we present a Lagrange multiplier-based analytical method for DAG-based
AUTOSAR control applications, which can find near-optimal solutions in polynomial times.

The rest of this paper is organized as follows: Next section provides related work. In Section 3,
the background is given and the problem is described. Sections 4 and 5 introduce our preliminary
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works for limited application models. Then, Section 6 describes our analytical solution for the general
DAG model. Section 7 evaluates our method. Finally, Section 8 concludes this paper.

2. Related Work

Periods selection problem. Control-scheduling codesign methods have been developed in the
literature to improve a control system’s performance through optimizing its scheduling parameters.
In this regard, Seto et al.’s seminal work [12] first presented a periods selection problem assuming that
the control performance can be expressed as an exponential decay function of sampling periods and
that the tasks are scheduled under a dynamic-priority scheduling algorithm. The periods selection
problem was extended to fixed-priority systems by finding the finite set of feasible period ranges using
a branch and bound-based integer programming method [13]. Later, Bini and Di Natale [14] proposed
a faster algorithm that finds a sub-optimal periods assignment, which can be used for task sets of
practical size that are not solvable by previous methods due to high computing demands. Du et al. [15]
presented an analytical solution using the Lagrange multiplier method and an online algorithm for
overloaded situations. Fu et al. [9] developed a heuristic algorithm for multicore processors.

Delay-aware approaches. A common assumption of the above studies regarding the periods selection
problem is that the control performance is only affected by sampling rates, i.e., task periods, of a
control system. However, delays between sensing and actuation also have significant effects on control
performance. With this motivation, Bini and Cervin [6] incorporated each task’s delay into their
optimization cost function. In their work, to find the optimal periods assignment, cost functions are
approximated as linear functions of control period and delay, and the delay is also approximated
assuming the fluid model scheduler. Through the approximations, they proposed an analytical solution.
Xu et al. [16] extended this approach for systems with harmonic periods.

Periods and deadlines selection problem. Wu et al. [8] formulated an optimization problem for
selecting both task periods and deadlines simultaneously for EDF-scheduled systems. They showed
that we can upper bound the amount of delays and jitters each task can experience by regulating
relative deadlines of tasks. The cost function is assumed to be a nonlinear function of period and
deadline of each task. Based on that, a two-step approach was proposed, which first fixes periods and
later tries to minimize deadlines exploiting unused resources. Tan et al. [10] proposed an algorithm that
simultaneously adjusts periods and deadlines assuming EDF-scheduled linear–quadratic–Gaussian
(LQG) controllers. They showed that their algorithm is more robust with various workloads than
the previous method. Cha et al. [17] proposed a heuristic algorithm for the periods and deadlines
selection problem with arbitrary nonlinear control cost functions for systems scheduled by the RM
scheduling algorithm.

Cause-effect chain analysis. The above studies commonly assume independent real-time tasks,
where there is no data dependency among tasks and each task is responsible for its dedicated control
target plant. To deal with practical automobile control applications composed of tasks with complex
dependencies, DAG-based control applications had been studied in the context of cause-effect chain
analyses of real-time tasks [18–21]. Even though they are using tasks instead of runnables, their system
model is similar to ours. However, they address the opposite direction of our optimization problem,
which is to analyze end-to-end delays for a DAG of tasks with given periods. Besides, [22] analyzed
end-to-end delays of an engine management system, which is given as a DAG of runnables.

AUTOSAR system optimization. In automobile control systems based on the AUTOSAR
standard, each control application is designed as a DAG of fine-granular runnables with more
complex data dependencies compared with traditional real-time task-based systems. In this
context, Long et al. [23] developed a runnable placement and scheduling method considering the
inter-runnable communication overhead in an electronic control unit (ECU). Monot et al. [24]
proposed an algorithm for sequencing and scheduling runnables for multicore ECUs. Saidi et al. [25]
studied the runnable-to-core mapping problem using the integer linear programming (ILP) technique.
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Kehr et al. [26] developed a method for migrating a legacy AUTOSAR application to a multicore
processor while minimizing energy consumption.

AUTOSAR runnable scheduling. However, the above studies about AUTOSAR applications
commonly assume that runnable periods are given a priori, which is not valid in the industry practice.
With this motivation, runnable periods optimization problem was first formulated in our previous
research paper by Kim et al. [5], which proposed a combinatorial search method that is useful only for
small systems due to its high computing demands. Choi et al. [27] partly solved the scalability problem
using an analytical method only for limited application structures. These two papers are precursors to
this paper and will be thoroughly explained even in more depth and detail in Sections 4 and 5 for the
self-completeness of this paper. This paper then further extends our previous works by presenting a
more general solution that applies to arbitrarily-shaped complex DAG-based AUTOSAR applications.

3. Background and Problem Description

3.1. System Model

This paper assumes an automobile control application based on the AUTOSAR standard. Figure 1
shows an example system where the application is composed of N software components

{C1, C2, · · · , CN}. (1)

Each software component Ci is also composed of |Ci| runnables where |Ci| denotes the number
of runnables in Ci. Note that a runnable is the smallest unit function in the AUTOSAR standard.
As shown in the figure, runnables, denoted by ris, are connected with directed edges representing data
dependencies among them. Thus, the whole system can be thought of as a DAG of runnables without
explicitly specifying which software component each runnable belongs to. A DAG G is formally
defined as

G = (V, E ⊂ V × V) (2)

where the set of vertices V is a set of n nodes or runnables {r1, r2, · · · , rn} where n = ∑N
i=1 |Ci| and E

represents a set of directed edges or links among them. There exists a directed edge (rj, rk) ∈ E if and
only if the runnable rk has a data dependency on the runnable rj. Then, each i-th runnable ri is defined
by a tuple

ri = (pi, ei) (3)

where pi is its period and ei is the worst-case execution time. Among the runnables, we assume that r1,
the sensor runnable, plays a special role of collecting data from sensors, and rn, the actuator runnable,
is responsible for controlling actuators. Thus, G has only one source node r1 and one sink node rn.
Our system model assumes that, in an ECU, there is only one CPU running a single control application
described by G, where the ECU handles only a single control target plant, which is common in the
automotive industry’s federated architecture [28,29]. Note that eis are given properties of the system,
whereas pis are controllable parameters. Thus, the runnable periods

(p1, p2, · · · , pn) (4)

should be decided before integrating the runnables on the AUTOSAR platform. Once pis are decided,
runnables with the same pis are grouped and consolidated into RTOS tasks, which are scheduled
following the scheduling strategy of the RTOS.

For communications between runnables, an asynchronous sender-receiver communication is
used [30]. In this communication method, a sender runnable periodically generates its output in a
shared memory buffer with its own period, then a receiver runnable asynchronously reads the data in
the memory buffer with its own period. When multiple writes occur to the same memory location
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without any reading operation from the receiver, the most recent data are always overwritten in the
buffer. For further discussions afterward, we formally introduce the following definitions:
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Figure 1. Our directed acyclic graph (DAG)-based system model with N software components and n
runnables where each runnable ri is annotated with its period pi and worst-case execution time ei.

Definition 1. (Paths) For a DAG G = (V, E), there is a finite number of directed paths from the source node
r1 to the sink node rn. We assume that there are m paths in G, which is denoted by

P(G) = {P1, P2, · · · , Pm}. (5)

Then, a path is formally defined as an ordered set of runnables beginning with r1 and ending with rn in which
all runnables are distinct and every pair of adjacent runnables is joined by a directed edge in E. From now on,
for the notational convenience, when we refer to a path P ∈ P(G), it can denote the ordered set of runnable
indexes (1 ≤ i ≤ n) as well as the runnables themselves depending on the context.

Definition 2. (Length) For a path P ∈ P(G), its length is defined as

∑
i∈P

pi, (6)

which is the sum of runnable periods following a specific path P. When data flow through several paths in
parallel, the speed of a data flow is collectively determined by the runnable periods in each path through which
the data are flowing, considering our inter-runnable communication method.

Definition 3. (Weight) For a path P ∈ P(G), its weight is defined as

∑
i∈P

ei, (7)

which is the sum of runnable execution times following a specific path P. Thus, a path’s weight is a representative
metric for the amount of computing resource demand of the path.

Definition 4. (Critical Path) Given a DAG G with its paths P(G), its critical path is defined by the path
found in

argmax
P∈P(G)

∑
i∈P

pi, (8)

which is the path with the longest length. Without loss of generality, we assume that there is only one critical
path in each DAG.

Definition 5. (Heaviest Path) Given a DAG G with its paths P(G), its heaviest path is defined by the path
found in

argmax
P∈P(G)

∑
i∈P

ei, (9)
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which is the path maximizing the sum of eis for the runnables in the path. The intuition behind the heaviest path
is that it indicates the path that consumes the maximum amount of CPU time for a single execution of paths.
Without loss of generality, we assume that there is only one heaviest path in each DAG.

3.2. Control Performance Model

A control system’s performance can be defined in many different aspects. For example,
its robustness to external disturbances, control stability, and control error can be such performance
metrics. In general, a control system’s performance is affected by its timing behavior as well as the
control algorithm itself [31]. In this paper, we assume that the control algorithm is given as a fixed
system property. Thus, our control performance model is about how the system’s temporal properties
affect the control performance. More specifically, we consider two distinct temporal properties: control
period and end-to-end delay of the target control system.

In the AUTOSAR timing extensions, two latency constraints are defined: (i) data age timing
constraint and (ii) reaction time constraint [20,32,33]. The specification states that when an actuator
command is periodically produced, its source input (sensing) value’s age should be maintained within
a specified timing constraint. The reaction time constraint is also considered when an external event,
such as pressing a button, should be reacted within a specified timing constraint. In this paper, since
we are considering periodic workloads, the data age timing constraint is considered.

Based on the timing model, there are several ways to build a control performance model. One is
to measure the resulting performance of the system by artificially controlling the temporal parameters.
Simulation tools [34,35] can also be used to predict the control performance when we cannot directly
measure the system under investigation. To provide a more general model, Bini and Cervin [6]
introduced a linear control cost function as

J(T, Δ) = αT + βΔ (10)

where T is the control period, and Δ is the end-to-end delay from the sensors to the actuators. Note that
α and β are constants that define the characteristics of the control target plant. Figure 2 shows an
example control cost function. The intuition behind it is that if we give control commands to the
actuator more often (frequently), its control cost gets smaller, and in the same manner, if we decide the
control command with more fresh (recent) sensor data with shorter delays, the cost gets smaller, again.
In general, the cost function J can be a nonlinear function of T and Δ, however, it can be approximated
as a linear function as in [6–10,16]. In this paper, we use this linear approximate control cost function
as the optimization objective.
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Figure 2. Control cost function, which is a linear function of the system’s control period and delay [5].
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3.3. Schedulability Constraint

The runnables {r1, r2, · · · , rn} are implemented as RTOS tasks, where runnables with the same
period are grouped together and sequentially executed inside a task body when the task is scheduled
on a CPU. As most RTOSes only support implicit deadline tasks, their relative deadlines (= periods)
should be guaranteed to satisfy runnable-level periodic timing requirements, i.e., pis. For that, in this
paper, we use the L&L utilization bound method, which guarantees the schedulability of a given
system if the system utilization is less than or equal to a specific threshold value (i.e., utilization bound)
for each scheduling algorithm. For example, the RM scheduling algorithm’s utilization bound is
roughly 69.3%, and the EDF scheduling algorithm’s utilization bound is 100% [11]. We chose to use
EDF for its simplicity, where its schedulability condition can be formally expressed as follows:

U(p1, p2, · · · , pn) =
n

∑
i=1

ei
pi

≤ 1. (11)

Although we mainly use the EDF scheduling algorithm throughout this paper, since most scheduling
algorithms support the utilization bound method for the schedulability test, we can easily apply our
optimization method to other scheduling algorithms like the RM scheduling algorithm. Section 6.5
will deal with this issue in more detail.

3.4. Problem Description

With the system and control performance models and the schedulability constraint presented
above, our problem can be defined as follows: With a given AUTOSAR control system composed
of DAG-structured runnables {r1, r2, · · · , rn} and a linear control cost function J(T, Δ) regarding the
control target plant, find the optimal runnable periods (p1, p2, · · · , pn) that minimize the control cost
while satisfying the system’s schedulability constraint. More formally, our problem is as follows:

minimize
p1,p2,··· ,pn

J(T, Δ)

subject to U(p1, p1, · · · , pn) ≤ 1.
(12)

In this paper, we try to find the theoretically optimal real numbered runnable periods, without
explicitly considering neither the grouping of runnables into predefined periodic tasks nor the
scheduling granularity (e.g., integer constraints) of a specific RTOS. However, our solution can be used
as a baseline foundation for further practical applications after considering the implementation details
imposed by a specific RTOS.

4. Analytical Solution for Linear Path Graphs

4.1. LPG Model

Instead of directly going for a general solution, let us begin by solving our optimization problem
for a subset of the DAG model, and later extend the solution step by step towards a generalized
one. This section specifically deals with the linear path graph (LPG) model, which is for graphs with
runnables {r1, r2, · · · , rn} such that the edges are given by E = {(ri, ri+1)|1 ≤ i ≤ n − 1}. Figure 3
shows an example LPG with n runnables and n − 1 edges between them.
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Figure 3. Linear path graph (LPG) model.
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4.2. Transformation of Control Cost Function

When solving the optimization problem in the LPG model’s scope, the first step is to redefine
the control cost function as a function of the free variables of the optimization problem, i.e., runnable
periods (p1, p2, · · · , pn). For the transformation of J(T, Δ) in Equation (10) into a function of runnable
periods, our strategy is to define both T and Δ using only runnable periods considering the LPG
model’s runnable execution and data flow patterns.

Control period T can be formally defined, from a plant’s perspective, as a regular time interval
between consecutive actuation instances. However, due to the jitter caused by preemption delays
among concurrent runnables, the intervals may vary for each actuation instance. Thus, we consider
the longest time interval as the worst-case period T. For LPG-based applications, T can be defined as
double the actuator runnable rn’s period pn, which is

T = 2pn. (13)

The worst-case scenario happens when a certain instance of rn is scheduled at the beginning of its
period, whereas, in the next instance, rn is scheduled at the very end of its period. Assuming that
actuation commands are emitted at each completion of rn instances, the time interval between the
actuation commands gets to the longest as possible in that particular scenario, which is 2pn. It can
be argued that en should be considered, and the exact worst-case time interval should be 2pn − en.
However, note that since en is the worst-case execution time, real execution times can be much smaller
than en; thus, for simplicity’s sake, we do not take en into consideration when defining T.

The end-to-end delay Δ is defined as the time taken for new sensor data to go through runnables
until arriving at the actuator. According to the data flow architecture of our system model, the sensor
runnable r1 sends out its output to its neighboring runnables with its own period p1. Then,
the neighboring runnables also send out their outputs with their own periods. With these repeated
transmissions, new sensor data originating from the source node r1 gradually propagate through the
runnables toward the sink node, i.e., the actuator runnable rn. After rn finally receives the updates,
it can decide its actuation commands based on the new sensor data. In an LPG-based application
where data flow through only a single path from r1 to rn, the worst-case end-to-end delay Δ can be
calculated as

Δ = 2p1 + 2p2 + · · ·+ 2pn = 2
n

∑
i=1

pi. (14)

The worst case happens as in the following: a runnable ri−1 emits its output for ri at a certain time t.
Unfortunately, however, ri begins just right before t, reading the previous (old) output of ri−1. Let us
assume that ri is scheduled at the very beginning of its period at that time. Then, unfortunately again,
the next instance of ri is scheduled at the very end of its period, reading the new data and emitting its
output at the end of the period (i.e., t + 2pi). In the above scenario, the time taken for the data to go
through ri is double the ri’s period 2pi. Assuming this scenario happening for every runnable in the
path, the end-to-end delay Δ becomes double the sum of all the runnable periods as in Equation (14).
By combining Equations (13) and (14), the control cost function in Equation (10) is transformed into
as follows:

J(p1, p2, · · · , pn) = 2αpn + 2β
n

∑
i=1

pi. (15)

4.3. Finding the Optimal Runnable Periods

For visual understanding of the optimization process, let us pick an example system with only
two runnables {r1, r2}. Then, the transformation of the control cost function is illustrated in Figure 4.
In the left-hand side, the original control cost function is depicted, which is transformed into a function
of p1 and p2 as in the right-hand side by Equation (15). Then, Figure 5 illustrates the optimization
process where the schedulability constraint and the transformed control cost function are shown upon
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the two-dimensional problem space of p1 and p2. In the figure, our optimization objective is to find the
lowest point in the control cost plane that is inside the green schedulable area. This concept can be
generally extended to n-runnable systems in n-dimensional problem spaces. In general, our original
optimization problem in Equation (12) can be transformed into the following using the transformed
control cost function:

minimize
p1,p2,··· ,pn

J(p1, p2, · · · , pn) = 2αpn + 2β
n

∑
i=1

pi

subject to U(p1, p2, · · · , pn) =
n

∑
i=1

ei
pi

≤ 1.
(16)
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To analytically solve the transformed optimization problem, the Lagranage multiplier method is
applied. For the first step, a Lagrange function is formulated as follows:

L = 2αpn + 2β
n

∑
i=1

pi − λ

(
n

∑
i=1

ei
pi

− 1

)
. (17)

Then, we take the partial derivatives of L with respect to p1, p2, · · · , pn, and λ, respectively and set
them to zeros as follows:

∇L =

(
∂L
∂p1

,
∂L
∂p2

, · · · ,
∂L
∂pn

,
∂L
∂λ

)
= 0, (18)
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which in turn is expanded to the followings:

∂L
∂p1

= 2β +
e1

p2
1

λ = 0,

∂L
∂p2

= 2β +
e2

p2
2

λ = 0,

· · · ,

∂L
∂pn

= 2(α + β) +
en

p2
n

λ = 0,

∂L
∂λ

= −
(

n

∑
i=1

ei
pi

− 1

)
= 0.

(19)

Then, by isolation λ in the left-hand side of the first in Equation (19), we have

λ = −2βp1
2

e1
, (20)

which can be applied to the remaining of Equation (19) except the last one. As a result, p2, p3, · · · ,
and pn are given in terms of p1 as in the second to the last of the followings:

p1 =
n−1

∑
i=1

√
e1ei +

√
(α + β)e1en

β
,

p2 = p1

√
e2

e1
,

· · · ,

pn−1 = p1

√
en−1

e1
,

pn = p1

√
βen

(α + β)e1
.

(21)

Additionally, p1 is given as the first of the above by replacing p2, p3, · · · , and pn in the last of
Equation (19) with the second to the last of the above. Then, by Equation (21), we can find the real
optimal runnable periods for arbitrary LPG-based applications.

5. Analytical Solution for Linear Multipath Graphs

Based on the method for the LPG model explained in Section 4, this section goes one step further to
a more complex application model having multiple independent data flows from sensors to actuators.

5.1. LMG Model

When designing automobile control applications, there are cases where a simpler data flow model
is preferred instead of using the complex DAG model. The most common such case is when there are
several independent parallel data flows from sensors to actuators. In Figure 6, r1 is the sensor runnable
and rn is the actuator runnable. Between them, there are m paths where each runnable in the middle
part {r2, r3, · · · , rn−1} belongs to only one specific path among them. To distinguish such a particular
application architecture from general DAGs, we specifically call them the linear multipath graph (LMG)
model. Although the LMG model can be applied to a limited range of applications, it is meaningful
since there is an increasing need for integrating independent control algorithms to develop integrated
control systems or multi-functional ECUs [36–38]. In such new systems, sensor data propagate through
multiple independent paths of runnables to the actuators.
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Figure 6. Linear multipath graph (LMG) model with m independent paths identified by edges with
different colors [27].

5.2. Transformation of Control Cost Function

For the optimization, the objective function J(T, Δ) in Equation (10) should be transformed into a
function of runnable periods (p1, p2, · · · , pn). For that, in the same way in Section 4.2, the period T is
transformed into as follows:

T = 2pn. (22)

For the end-to-end delay Δ, however, we cannot simply reuse the method in Section 4.2 since we have
multiple paths with possibly different lengths. Thus, Δ should be defined as the length of the longest
path among them to represent the worst-case end-to-end delay. More specifically, let us remind that Pi
denotes the i-th path of m independent paths {P1, P2, · · · , Pm}. Then, Δ is defined as follows:

Δ = max
1≤i≤m

(
∑
j∈Pi

2pj

)
. (23)

Thus, our original optimization problem is transformed into as follows:

minimize
p1,p2,··· ,pn

J(p1, p2, · · · , pn) = 2αpn + β max
1≤i≤m

(
∑
j∈Pi

2pj

)

subject to U(p1, p2, · · · , pn) =
n

∑
i=1

ei
pi

≤ 1,

(24)

where unlike the LPG model, the max operator introduces nonlinearity making it difficult to develop
an analytical solution. Fortunately, however, due to the LMG model’s workload characteristics, we can
simplify the problem by defining an equilibrium state, which is to be obtained to find the optimal
runnable periods in the LMG model. The equilibrium state of an LMG can be defined as follows:

Definition 6. (Equilibrium state) For a set of m paths of a given LMG G, which is denoted by P(G) =

{P1, P2, · · · , Pm}, G is in its equilibrium state if and only if

∑
i∈P1

pi = ∑
i∈P2

pi = · · · = ∑
i∈Pm

pi. (25)

Theorem 1. (Equilibrium state theorem) If G is an LMG with its optimal runnable periods, G is always in
its equilibrium state.

Proof of Theorem 1. If G is with its optimal runnable periods while not in the equilibrium state, we can
increase runnable periods that do not belong to the critical path, without affecting the end-to-end
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delay. Then, the increased runnable periods will make a lower system utilization, which can be used
to further decrease the end-to-end delay by shortening runnable periods in the critical path. Thus,
we can conclude that G is not with the optimal runnable periods, which is a contradiction.

By the equilibrium state theorem, we can narrow down the problem space without sacrificing the
optimality by excluding non-equilibrium states from the problem space. To express the equilibrium
state more efficiently, Δ is re-expressed by breaking it into three parts as

Δ = 2p1 + max
1≤i≤m

⎛
⎝∑

j∈P̂i

2pj

⎞
⎠+ 2pn (26)

with a helper notation P̂i = Pi − {1, n}. Then, to explicitly express the equilibrium state, we define a
new notation p∗ as in the following:

p∗ = ∑
i∈P̂1

pi = ∑
i∈P̂2

pi = · · · = ∑
i∈P̂m

pi, (27)

which is an aggregate variable representing the path length of the middle part in the equilibrium state.
Then, by using p∗, Δ can be re-expressed from Equations (26) and (27) as follows:

Δ = 2(p1 + p∗ + pn). (28)

Finally, the control cost function J(T, Δ) from Equation (10) is rewritten as a function of (p1, p∗, pn) by
Equations (22) and (28) as in the following:

J(p1, p∗, pn) = 2αpn + 2β(p1 + p∗ + pn). (29)

With this transformed control cost function J(p1, p∗, pn), our original problem of n runnable periods
is transformed into a problem of three free variables (p1, p∗, pn). Then, once they are decided, p∗ is
distributed to runnables along each path. For that, we use a heuristic that runnables with larger eis are
assigned with longer pis. More specifically, we assign pis strictly proportional to eis. Following this
assignment rule, runnable periods pjs for each P̂i are decided as follows:

∀i ∈ [1 .. m] ∀j ∈ P̂i : pj =
ej

∑
k∈P̂i

ek
p∗. (30)

5.3. Transformation of Schedulability Constraint Function

This subsection transforms the schedulability constraint function in Equation (11) to a function of
(p1, p∗, pn). First, the original function U(p1, p2, · · · , pn) is re-expressed by breaking it into three
parts, and the middle part is arranged by grouping the runnables by the paths they belong to.
The new expression can be simply comprehended as the sum of m per-path sums of utilizations
as in the following:

U(p1, p2, · · · , pn) =
e1

p1
+

(
e2

p2
+ · · ·+ en−1

pn−1

)
+

en

pn

=
e1

p1
+

m

∑
i=1

⎛
⎝∑

j∈P̂i

ej

pj

⎞
⎠+

en

pn
.

(31)
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Then, to transform each i-th per-path utilization sum into a function of p∗, Equation (30) is applied to
eliminate pj as in the following:

∑
j∈P̂i

ej

pj
= ∑

j∈P̂i

ej
ej

∑ k∈P̂i
ek

p∗
= ∑

j∈P̂i

∑ k∈P̂i
ek

p∗

=
∣∣P̂i

∣∣ ∑ k∈P̂i
ek

p∗
=

∑ k∈P̂i

∣∣P̂i
∣∣ ek

p∗

(32)

where
∣∣P̂i

∣∣ denotes the number of elements in the ordered set P̂i. Finally, our utilization constraint is
transformed into as follows:

U(p1, p∗, pn) =
e1

p1
+

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

p∗
+

en

pn
≤ 1.

(33)

5.4. Finding the Optimal Runnable Periods

After the transformation of the control cost function and the schedulability constraint function,
our runnable periods optimization problem for the LMG model can be formulated with the three free
variables (p1, p∗, pn) as follows:

minimize
p1,p∗ ,pn

J(p1, p∗, pn) = 2αpn + 2β(p1 + p∗ + pn)

subject to U(p1, p∗, pn) =
e1

p1
+

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

p∗
+

en

pn
≤ 1.

(34)

To solve the optimization problem, a Lagrange function is formulated as follows:

L = 2αpn + 2β(p1 + p∗ + pn)− λ

⎛
⎜⎜⎜⎜⎝

e1

p1
+

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

p∗
+

en

pn
− 1

⎞
⎟⎟⎟⎟⎠ . (35)

Then, we take the partial derivatives of L with respect to p1, p∗, pn, and λ, respectively and set them
to zeros as follows:

∇L =

(
∂L
∂p1

,
∂L
∂p∗

,
∂L
∂pn

,
∂L
∂λ

)
= 0, (36)
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which in turn is expanded to the followings:

∂L
∂p1

= 2β +
e1

p2
1

λ = 0,

∂L
∂p∗

= 2β +

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

p2∗
λ = 0,

∂L
∂pn

= 2(α + β) +
en

p2
n

λ = 0,

∂L
∂λ

= −

⎛
⎜⎜⎜⎜⎝

e1

p1
+

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

p∗
+

en

pn
− 1

⎞
⎟⎟⎟⎟⎠ = 0.

(37)

Then, the first, second, and third of Equation (37) are rearranged by isolating λ in each left-hand side
as follows:

λ = −2β
p2

1
e1

,

λ = −2β
p2∗

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

,

λ = −2(α + β)
p2

n
en

.

(38)

Then, by combining the first and second of Equation (38), we have the following:

2β
p2

1
e1

= 2β
p2∗

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

=⇒ 1
p∗

=
1
p1

√√√√√√
e1

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

. (39)

By combining the first and third of Equation (38), we have the following:

2β
p2

1
e1

= 2(α + β)
p2

n
en

=⇒ 1
pn

=
1
p1

√
α + β

β

√
e1

en
. (40)

By replacing 1
p∗ and 1

pn
in the last of Equation (37) with the findings in Equations (39) and (40), we have

the following:

1
p1

⎛
⎜⎜⎜⎜⎜⎝e1 +

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

√√√√√√
e1

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

+ en

√
(α + β) e1

βen

⎞
⎟⎟⎟⎟⎟⎠ = 1. (41)
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Finally, from Equations (39)–(41), we have the following solution:

p1 = e1 +

√√√√e1

m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek +

√
(α + β)e1en

β

p∗ = p1

√√√√√√
m

∑
i=1

∑
k∈P̂i

∣∣P̂i
∣∣ ek

e1

pn = p1

√
βen

(α + β) e1
.

(42)

We have one remaining step of deciding (p2, p3, · · · , pn−1). For that, we distribute p∗ to runnables
in each path in proportion to their eis as in Equation (30). It is also worth noting that even with the
equilibrium state theorem, we cannot find the real optimal solutions since we lose the optimality while
distributing p∗ with a heuristic. Nevertheless, we can find high-quality solutions close to the real
optimal runnable periods. Interested readers are referred to our previous work [27].

6. Generalized Analytical Method for Directed Acyclic Graphs

This section generalizes the previously explained methods for the LPG model and the LMG model
to the general DAG model. Both methods are not usable for a general DAG-based application for their
limited applicability. In particular, since our method for the LMG model assumes that there is no such
runnable that belongs to different paths at the same time, it is not applicable to DAGs with at least one
such runnable. If we forcibly try it, Equation (30) may yield two different, hence, conflicting results for
such runnables. Thus, we need a separate method for the DAG model.

6.1. DAG Model and Its Challenge

The DAG model is already explained in Section 3.1. Hence this subsection just highlights how
it is different from the LPG model and the LMG model and presents a challenge that does not exist
in the previous models. As noted earlier, there is only one path in the LPG model, making it easy to
define the system’s end-to-end delay. In the LMG model, even though there are multiple paths, we can
use the equilibrium state theorem to simply represent them together by their identical path length in
the middle part, denoted by p∗. Figure 7a shows a simple DAG that is not an LPG nor an LMG. In the
figure, note that r4 belongs to the following two different paths: < r1, r2, r4, r7 > and < r1, r4, r7 >. As
a runnable period cannot be zero, the former is always longer than the latter. Thus, unlike the LMG
model where we can always make an equilibrium state, we cannot always make an equilibrium state
in the DAG model.
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Figure 7. An example of DAG explaining the concept of the critical path with rc.
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6.2. Transformation of Control Cost Function

With the above challenge, let us transform the control cost function to a function of runnable
periods. For the period T, we can use the same method as for the LPG model and the LMG model
since it is only concerned with the actuator runnable rn. Thus, T is transformed into as follows:

T = 2pn. (43)

Unfortunately, however, when transforming the end-to-end delay Δ, we cannot simply reuse
the method for the LMG model in Section 5.2 since we cannot be sure that an equilibrium state can
be made. To handle this challenge, let us begin with the general definition of Δ as in the following,
assuming m paths {P1, P2, · · · , Pm}:

Δ = max
1≤i≤m

(
∑
j∈Pi

2pj

)
. (44)

For example, in Figure 7a, there are four paths, P1 =< 1, 2, 3, 7 >, P2 =< 1, 2, 4, 7 >, P3 =< 1, 4, 7 >,
and P4 =< 1, 5, 6, 7 >. Among them, it is apparent that P3 cannot be the critical path since it is always
shorter than P2. However, among P1, P2, and P4, we cannot be sure which is the longest since all of
them can be the critical path according to how we decide pis.

To overcome this challenge, we propose to employ a heuristic with a clear rule regarding
which path should be the critical path. For that, with given eis, we employ a heuristic described
by the following:

pi ∝ ei, for 2 ≤ i ≤ n − 1. (45)

Certainly, the most important benefit from making pis simply proportional to eis is that we can simply
decide the critical path based on the path weights (See Definition 3) such that we can choose the
heaviest path (See Definition 5) as the critical path. For example, in Figure 7a, the weights of paths,
P1 to P4, are calculated as 15, 17, 13, and 10, respectively. Then, P2, specified by the red color, turns
out to be the heaviest path. By the heuristic, it is used as the critical path. The intuition behind this
heuristic is that we give longer periods to runnables with longer execution times to evenly distribute
the system utilization across runnables, eliminating possible bottlenecks. Note that p1 and pn are
excluded in Equation (45) as they have no effect on deciding the critical path.

For further explanations, we introduce a new notation rc, which is defined as the set of runnables
in the critical path excluding r1 and rn. Figure 7b shows rc= {r2, r4}. Then, let us think as if rc is a
virtual composite runnable combining its member runnables just like the ellipse covering r2 and r4 in the
figure. Then, the critical path can be thought of as a three-runnable ordered set < r1, rc, rn >. For rc,
let us also define ec and pc as in the followings:

ec = ∑
i∈rc

ei (46)

and
pc = ∑

i∈rc

pi. (47)

Based on the above notations, Δ can be defined as follows:

Δ = 2(p1 + pc + pn), (48)

which makes the control cost function as follows with Equation (43):

J(p1, pc, pn) = 2αpn + 2β(p1 + pc + pn). (49)
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Then, regarding how to derive p2, p3, · · · , and pn−1 from pc, we use the following assignment rule
following Equation (45):

pi =
ei
ec

pc for 2 ≤ i ≤ n − 1. (50)

Under the above assignment rule, the followings are ensured:

• pis are always proportional to eis;
• The length of the critical path excluding r1 and rn is equal to pc;
• The length of any other path is always shorter than pc.

As an example, in Figure 7b, we can find that ec = e2 + e4 = 12 and pc = p2 + p4. Once pc is decided,
each pi can be derived as in the followings according to Equation (50):

p2 =
4

12
pc, p3 =

6
ec

pc, p4 =
8
12

pc, p5 =
2
12

pc, and p6 =
3
12

pc. (51)

6.3. Transformation of Schedulability Constraint Function

The schedulability constraint in Equation (11) uses a function of n runnable periods. Thus, it is
transformed into a function of the three free variables (p1, pc, pn), following the rule in Equation (50)
as follows:

U(p1, p2, · · · , pn) =
e1

p1
+

(
e2

p2
+ · · ·+ en−1

pn−1

)
+

en

pn
=

=
e1

p1
+

(
e2

e2
ec

pc
+ · · ·+ en−1

en−1
ec

pc

)
+

en

pn

=
e1

p1
+ (n − 2)

ec

pc
+

en

pn
.

(52)

Now, the utilization function U(p1, p2, · · · , pn) can be replaced by a function of (p1, pc, pn) as in
the following:

U(p1, pc, pn) =
e1

p1
+ (n − 2)

ec

pc
+

en

pn
. (53)

6.4. Finding the Optimal Runnable Periods

Based on the control cost function in Equation (49) and the utilization function in Equation (53),
our runnable periods optimization problem for the DAG model can be formulated with the three free
variables (p1, pc, pn) as follows:

minimize
p1,pc ,pn

J(p1, pc, pn) = 2αpn + 2β(p1 + pc + pn)

subject to U(p1, pc, pn) =
e1

p1
+ (n − 2)

ec

pc
+

en

pn
≤ 1.

(54)

To solve the optimization problem, a Lagrange function is formulated as follows:

L = J(p1, pc, pn)− λ(U(p1, pc, pn)− 1)

= 2αpn + 2β(p1 + pc + pn)− λ

(
e1

p1
+ (n − 2)

ec

pc
+

en

pn
− 1

)
.

(55)

Then, we take the partial derivatives of L with respect to p1, pc, pn, and λ, respectively and set them to
zeros as follows:

∇L =

(
∂L
∂p1

,
∂L
∂pc

,
∂L
∂pn

,
∂L
∂λ

)
= 0, (56)
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which in turn is expanded to the followings:

∂L
∂p1

= 2β +
e1

p2
1

λ = 0,

∂L
∂pc

= 2β + (n − 2)
ec

p2
c

λ = 0,

∂L
∂pn

= 2(α + β) +
en

p2
n

λ = 0,

∂L
∂λ

= −
(

e1

p1
+ (n − 2)

ec

pc
+

en

pn
− 1

)
= 0.

(57)

Then, the first, second, and third of Equation (57) are rearranged by isolating λ in each left-hand side
as follows:

λ = −2β
p2

1
e1

,

λ = −2β
p2

c
(n − 2)ec

,

λ = −2(α + β)
p2

n
en

.

(58)

Then, by combining the first and second of Equation (58), we have the following:

2β
p2

1
e1

= 2β
p2

c
(n − 2)ec

=⇒ 1
pc

=
1
p1

√
e1

(n − 2)ec
. (59)

By combining the first and third of Equation (58), we have the following:

2β
p2

1
e1

= 2(α + β)
p2

n
en

=⇒ 1
pn

=
1
p1

√
(α + β)e1

βen
. (60)

By replacing 1
pc

and 1
pn

in the last of Equation (57) with the findings in Equations (59) and (60), we have
the following:

1
p1

(
e1 + (n − 2)ec

√
e1

(n − 2)ec
+ en

√
(α + β)e1

βen

)
= 1. (61)

Finally, from Equations (59)–(61), we have the following solution:

p1 = e1 +
√
(n − 2)e1ec +

√
(α + β)e1en

β

pc = p1

√
(n − 2)ec

e1

pn = p1

√
βen

(α + β)e1
.

(62)

After finding the optimal (p1, pc, pn), the remaining runnable periods (p2, p3, · · · , pn−1) should be
decided, too. For that, the assignment rule in Equation (50) is used.

6.5. Applying Our Method to Other Scheduling Algorithms

Thus far, we assumed the EDF scheduling algorithm for the underlying RTOS scheduling.
However, other scheduling algorithms such as RM are also widely used in the automotive industry.
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With this motivation, this subsection explains how we can apply our method to different scheduling
algorithms. Fortunately, most real-time scheduling algorithms provide a schedulability analysis
method based on the L&L utilization bound, where if the system utilization is less than or equal to
a specific threshold value called a utilization bound, denoted by UB, the system is guaranteed to be
schedulable. As noted earlier, UB for EDF is 100%, whereas UB for RM is 69.3%. Then, the schedulability
condition is formally expressed as follows:

U(p1, p2, · · · , pn) =
n

∑
i=1

ei
pi

≤ UB. (63)

Then, our optimization problem is slightly changed from Equation (54) to the following using UB in
the schedulability constraint:

minimize
p1,pc ,pn

J(p1, pc, pn) = 2αpn + 2β(p1 + pc + pn)

subject to U(p1, pc, pn) =
e1

p1
+ (n − 2)

ec

pc
+

en

pn
≤ UB.

(64)

Then, its Lagrange function is also modified as follows:

L = J(p1, pc, pn)− λ(U(p1, pc, pn)− UB)

= 2αpn + 2β(p1 + pc + pn)− λ

(
e1

p1
+ (n − 2)

ec

pc
+

en

pn
− UB

)
.

(65)

Solving the above Lagrange function yields the following solution:

p1 =
e1 +

√
(n − 2)e1ec +

√
(α+β)e1en

β

UB

pc = p1

√
(n − 2)ec

e1

pn = p1

√
βen

(α + β)e1
.

(66)

From the above, (p2, p3, · · · , pn−1) are decided by the assignment rule in Equation (50). Note that we
can apply our method to any scheduling algorithm whose schedulability analysis can be conducted by
the L&L utilization bound method.

6.6. Algorithm

Algorithm 1 shows a complete procedure for finding optimal runnable periods for a given
DAG by our analytical method. As inputs, the algorithm accepts (i) a list of worst-case execution
times for n runnables, (ii) a list of m paths in the DAG, (iii) α and β of a given control cost function,
and (iv) a utilization bound UB. The algorithm just needs a list of paths instead of the entire structure
of the DAG. Thus, the algorithm itself does not consider generating paths from a DAG. As an output,
the algorithm returns a list of optimal runnable periods. Note that the algorithm’s computational
complexity is just O(n × m), which is caused when finding the heaviest path in line 3. This polynomial
time complexity makes our analytical method practical for use with large systems.
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Algorithm 1: Find optimal runnable periods for a DAG
Input: E =< e1, e2, · · · , en >: list of runnable execution times
Input: P =< P1, P2, · · · , Pm >: list of paths
Input: (α, β): coefficients of a control cost function
Input: UB: utilization bound
Output: < p1, p2, · · · , pn >: optimal runnable periods
Function FindOptimalRunnablePeriods(E, P, α, β, UB):

1 n ← |E| /* n: number of runnables */
2 m ← |P| /* m: number of paths */

3 ec ← max
P∈P

(
∑

i∈P
ei

)
− (e1 + en)

4 p1 ←
e1 +

√
(n − 2)e1ec +

√
(α + β)e1en

β

UB

5 pc ← p1

√
(n − 2)ec

e1

6 pn ← p1

√
βen

(α + β)e1

7 for i ← 2 to n − 1 do

8 pi ←
ei

ec
pc

9 return < p1, p2, · · · , pn >

6.7. Applying Our Method to Conventional Task-Based Systems

Many control applications, but for the automotive industry, are still designed as a set of periodic
real-time tasks. Thus, it can be beneficial if we can apply our runnable periods optimization method to
such traditional control systems. For that, we first classify them into two different categories. The first
is for systems with independent tasks with multiple target plants [12,14,15] and the second is for
systems composed of periodic tasks with DAG-based data dependencies [18–20].

Note that the applications in the second category have a strong resemblance to our assumed
system model. If we simply assume one-to-one mappings from runnables to tasks, our method for
the runnable periods optimization can be applied to systems with periodic tasks without much
modifications. However, the applications in the first category cannot make use of our method
due to their disagreeing application model with ours. However, for those applications, traditional
control-scheduling codesign methods [9,12–15] can be used instead.

7. Evaluation

This section specifically evaluates our optimization method for the general DAG model. Readers
interested in the evaluation results for the LPG and LMG models are referred to [27]. More specifically,
we evaluate our optimization method by answering the following questions:

• Q1: Is our analytical method able to find near-optimal runnable periods?
• Q2: Is it practical to find real optimal solutions by the exhaustive search method?
• Q3: Is our method practically competitive when optimizing large systems?

7.1. Evaluation Method

For the evaluation, we have to consider the following: (i) workload synthesis, (ii) control cost
functions, (iii) optimization algorithms, and (iv) performance metrics. In the remainder of this
subsection, the above topics are discussed to explain our evaluation method.
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Workload synthesis. As representative AUTOSAR workloads, a total of nine DAGs are artificially
synthesized. Among them, the first six DAGs in Figure 8 are relatively small ones with four to six
runnables, whereas the remaining three DAGs in Figure 9 are with a relatively large number of
runnables ranging from 12 to 25. Note that the DAGs are manually generated, however, understand
that the resulting DAGs are purely random without any unfair bias. The small DAGs are used to test
the optimality of our method since we can find the real optimal solutions for those small DAGs in
Figure 8. On the other hand, we cannot find the real optimal solutions for the large DAGs in Figure 9
due to the vast problem space. However, although we cannot evaluate the optimality of our method
with the large DAGs, they are still useful when evaluating our method in comparison to other heuristic
optimization methods. Each DAG in the figures is labeled by a notation (nR, mL) representing its
size and complexity, where nR denotes n runnables and mL denotes m links (or edges) between them.
Basically, with larger n and m, DAGs become more and more complex. For example, the DAG in
Figure 8a is labeled by (4R, 5L), which has four runnables and five links, and the DAG in Figure 9c,
labeled by (25R, 34L), has 25 runnables and 34 links. For each DAG, we generate 100 sets of random
runnable execution times uniformly distributed in the range of [20 ms, 150 ms].

Control cost functions. As our optimization objective, we use a linear control cost function as
in Equation (10), which is a function of the control period (T) and the end-to-end delay (Δ). As a
representative control cost function, we use the following as our default control cost function, unless
otherwise stated:

J(T, Δ) = 0.01T + 0.01Δ. (67)

Note the above control cost function has two coefficients α = 0.01 and β = 0.01. Here, however,
the relative ratio of α and β is more important than their absolute values since the ratio represents the
control cost function’s relative sensitivity to the control period and the end-to-end delay. By using
the same values for α and β in our default control cost function, the control cost is equally sensitive
to the control period and the end-to-end delay. To represent other scenarios with varying relative
sensitivities, we also use varying αs and βs in the range of [0.01, 0.05].

Optimization algorithms. To evaluate the optimization performance of our method, for the
comparison purpose, we specifically consider the following three optimization methods:

• OUR: Near-optimal solutions found by our analytical optimization method;
• EXH: Real optimal solutions found by the exhaustive combinatorial search method;
• PSO: Solutions optimized by the particle swarm optimization (PSO) method [39].

More specifically, the EXH method searches through the discrete integer problem space within
[1 ms, 1000 ms] for each runnable period. We compare our method with the EXH method to evaluate
the optimality of our optimization method with small DAGs to answer the question Q1. To evaluate
the optimization performance with large DAGs as an answer to the question Q3, we compare our
method with the PSO method.

Performance metrics. We mainly use two optimization performance metrics: (i) absolute control
costs and (ii) normalized control costs. Absolute control costs are the raw control cost values resulting
from an optimization process, whereas normalized control costs are used to compare our method with
another algorithm, i.e., the EXH method and the PSO method. A normalized control cost is defined
as the relative ratio of our resulting control cost by letting another method’s result as 100%. Besides,
to evaluate the practicality of each optimization method, the optimization times are measured with
respect to varying application complexities. For the optimization, we use a workstation with an Intel
i7-9700k CPU with 64 GB RAM (Dell, Round Rock, TX, USA)
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Figure 8. Small DAGs with varying number of runnables (denoted by nR) and links (denoted by mL).
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Figure 9. Large DAGs used for evaluating the practicality of our method.

7.2. Evaluation Results and Discussion

Q1: Is our analytical method able to find near-optimal runnable periods? For the six DAGs from
Figure 8a–f, their normalized average control costs by the EXH method and our method are compared
in Figure 10. In the figure, our method shows near-optimal control costs with marginal performance
losses compared with the EXH method. The minimum control cost increase is just 1.1% and the
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maximum is 12.3%. One interesting point is that DAG (a) shows a significantly better performance
than the other DAGs. That is because our heuristic for selecting the critical path is always valid in
this particular DAG shape. Note that, in DAG (a), < r1, r2, r3, r4 > will be correctly chosen as the
critical path by our heuristic regardless of their execution times since every other path is a subset of
it. On the other hand, in other DAGs, there are multiple choices for the critical path. Nonetheless,
our method must bet on a certain path based on the given execution times. However, as shown in the
figure, the performance losses from the real optimal solutions are marginal.

Thus far, we have assumed the EDF scheduling algorithm. However, in the automotive industry,
the RM scheduling algorithm is also widely used for scheduling real-time tasks. In this regard,
Figure 11 compares the EDF case where the utilization bound is 100% and the RM case where the
utilization bound is 69.3%. More specifically, Figure 11a compares their normalized average control
costs across the six DAGs, each of which represents the relative optimization performance compared
with the EXH method. The figure shows that our method provides not much different optimization
results across the two scheduling algorithms. Figure 11b compares their absolute average control costs
where EDF shows a significantly lower average control cost since it can efficiently schedule workloads
with its higher utilization bound.

To investigate how varying control cost functions affect the optimization performance,
Figures 12a,b show normalized average control costs with varying αs and βs, respectively. As shown
in the figures, our method provides a consistent optimization performance with varying control cost
functions that represent various sensitivities to the control period and the end-to-end delay.
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Figure 10. Normalized average control costs of our method compared with the EXH method.
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Figure 11. Comparison of average control costs with the earliest deadline first (EDF) and rate monotonic
(RM) scheduling algorithms.
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Figure 12. Normalized average control costs with varying control cost functions.

Q2: Is it practical to find real optimal solutions by the exhaustive search method? By looking at
Q1’s results, one can argue that if we can use the EXH method to find real optimal runnable periods,
why not just use the EXH method instead of our method? However, this argument does not hold since
the EXH method is not usable for large DAGs due to the vast search space when n > 6. To answer
the question, we evaluate our optimization method in terms of the required time for the optimization
process. Table 1 shows the required optimization times for our method and the EXH method with
varying number of runnables. The numbers inside parentheses are projected numbers. As our method
finds the runnable periods by an analytical method, it shows negligible computational complexities as
predicted in Algorithm 1. With the EXH method, we can find optimal runnable periods in about one
month when the numbers of runnables is seven. However, after seven runnables, it is not feasible to
use the EXH method since it takes more than a year even for small and medium-size systems. Thus,
due to the scalability problem, the EXH method cannot be used for practical industrial applications,
whereas our analytical method can be used for large industry applications.

Table 1. Required optimization times.

Number of Runnables OUR EXH

4 0.012 ms 1 s
5 0.016 ms 90 s
6 0.022 ms 3 h
7 0.025 ms 21 days
8 0.031 ms (350 days)
9 0.036 ms (3.4 years)

10 0.042 ms (3065 years)

Q3: Is our method practically competitive when optimizing large systems? From Q1 and Q2,
we showed that (i) our analytical method works well with small systems and (ii) real optimal solutions
cannot be found for large systems. One remaining question is whether we can apply our analytical
method to large systems with sufficient optimization performance. To answer this question, we use
the three large DAGs with n = 12, 16, and 25, as in Figure 9. For the comparison, we additionally use
an evolutionary metaheuristic algorithm known as particle swarm optimization (denoted by PSO) that
searches an unknown vast problem space efficiently with swarm intelligence. To implement the PSO
method, we use the PySwarms library [40]. Figure 13 shows the normalized average control costs of
our method compared with the PSO method, letting the resulting control costs by the PSO method as
100%. As shown in the figure, our method shows significantly better results than the PSO method,
especially for the largest DAG case. We notice the decreasing trend of normalized average control
costs with the increasing complexity of DAGs. With the above results, we can claim that our analytical
method performs better than the traditional evolutionary optimization method.
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Figure 13. Normalized average control costs of our method for large DAGs compared with the
PSO method.

8. Conclusions

This paper formulates a runnable periods optimization problem for AUTOSAR control
applications and provides an analytical solution based on the Lagrange multiplier method. Our method
can find near-optimal solutions that maximize a given system’s control performance regardless of
the size and complexity of the application. Since the complexity of automobile control applications
is rapidly growing due to the recent development of various advanced driver assistance systems
and autonomous driving applications, it is no longer feasible to use traditional ad-hoc methods or
time-consuming search-based optimization algorithms. Due to the analytical nature of our proposed
runnable periods optimization method, we consider that our solution can be readily used in the
automotive industry when designing their complex industry-scale AUTOSAR control applications.

Although our method provides a promising solution for optimizing complex applications,
our method is only usable when the control cost is given or approximated as a linear function.
As the approximation can induce overestimated control costs, we plan to extend our optimization
method to nonlinear control cost functions in our future work.
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The following abbreviations are used in this manuscript:

RTE Runtime Environment
DAG Directed Acyclic Graph
RTOS Real-Time Operating System
L&L Liu and Layland
RM Rate Monotonic
EDF Earliest Deadline First
LQG Linear Quadratic Gaussian
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ILP Integer Linear Programming
LPG Linear Path Graph
LMG Linear Multipath Graph
PSO Particle Swarm Optimization

References
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