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1. Introduction

This Editorial presents the paper collection of the Special Issue (SI) on Smart Urban
Water Networks. The number and topics of the papers in the SI confirms the growing
interest of operators and researchers for the new paradigm of Smart Networks as part of
the more general Smart City. The SI showed that digital information and communication
technology (ICT), with the implementation of smart meters and other digital devices,
can significantly improve the modelling and the management of urban water networks,
contributing to a radical transformation of the traditional paradigm of water utilities. The
paper collection in this SI includes different crucial topics such as reliability, resilience, and
performance of water networks, innovative demand management, and the novel challenge
of real time control and operation, along with their implications for cyber-security. The
SI collected fourteen papers that provide a wide perspective about solutions, trends, and
challenges in the contest of smart urban water networks. Some solutions have already
been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and
water demand disaggregation and forecasting) while further investigations are required
for other methods, e.g., the data-driven approaches for real time control. In all cases, a new
deal between academia, industry, and governments must be embraced to start the new era
of smart urban water systems.

The deployment of digital information and communication technologies (ICTs) in
different aspects of urban life has contributed to generating the notion of the Smart City [1],
recently recognized in the scientific and technical international community as a city where
the use of ICT allows making “the critical infrastructure components and services—which
include city administration, education, healthcare, public safety, real estate, transportation,
and utilities—more intelligent, interconnected, and efficient” [2]. The implementation of
new monitoring and control sensor technologies and the availability of high computational
power changed the traditional approach to studying, designing, and managing water

Water 2021, 13, 501. https://doi.org/10.3390/w13040501 https://www.mdpi.com/journal/water
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systems and enabled the development of new data-driven approaches fed by big data. The
availability of low-cost devices, controlled by remote systems, is pushing the operators
of urban water systems to fill the technological gap with other network utilities (i.e.,
electricity, gas, Internet, etc.), as reported in [3]. This transformation, triggered by ICTs, has
also generated the new concept of the smart water network (SWAN) as a key subsystem of
the Smart City.

In the more general framework of Industry 4.0, the recent development of Internet
of Things (IoT) technologies applied to smart grids opens further novel opportunities in
the management of water network systems and beyond. At the current state, it is possible
to imagine novel solutions based on digital innovations to study, analyze, assess, and
improve traditional approaches for leakage reduction, pressure management, optimal
maintenance, water quality protection from accidental and intentional contamination,
network calibration, water use identification, water demand modelling and management,
water network partitioning, adaptive and dynamic control, as well as the new challenges
raised in the digital era (e.g., cyber-security). This leads to a transformation of the traditional
operational criteria and contributes to an increase in the resilience of urban water systems.
In addition, by analyzing the cross-links between the urban water infrastructure and other
systems (i.e., power grids, urban drainage, smart homes, etc.) it is possible to account for
multi-sectoral interconnections in planning and management decisions for more resilient
Smart Cities.

The objective of this Special Issue is to gather contributions advancing scientific and
technical methodologies, technologies, and best practices that advance smart urban water
networks by leveraging the increasingly available computational power in simulation, IoT
systems, and smart meter devices. Through this open access journal, a wide community of
researchers, operators, and water utilities can have access to a collection of recent cutting-
edge contributions showing how some key operational challenges of water networks can
be improved by coupling ICT technologies, physically-based mathematical procedures and
data-driven techniques (i.e., identification, optimization, complex network theory, etc.). In
other terms, this will foster the digitization of urban water networks towards the concept
of smart cities and societies.

The papers in this Special Issue provided heterogeneous contributions to the topics
proposed by the Editors in the call, showing a large variety of implemented and potential
solutions, current trends, and challenges that remain open for future research. In the follow-
ing sections, the paper collection is presented, highlighting the main proposed novelties.

2. Special Issue Paper Collection

The keywords suggested by the Editors of this Special Issues tried to identify some
potential fields of applications that are being transformed by digital innovation in smart
urban water networks. In this editorial, it is worth reporting some of them to attest the
effort of synthesis and offer to researchers and operators a possible map of innovation in
current cutting-edge research on urban smart networks, with topics including: optimal
network design and management, novel modeling approaches, application of IoT, adaptive
automatic control of urban water network, machine learning and big data for water utilities
management, characterization and modeling of water demands at different spatial and
temporal scales, divide-and-conquer techniques for water network partitioning, innovative
metrics for resilience computation, actions to protect water distribution network from acci-
dental and intentional contamination, novel approaches for water safety plans, data-driven
water demand modeling, non-intrusive load monitoring, water and energy nexus, end use
disaggregation of water consumption, water demand user profiling, behavioral modelling
and water-energy demand management, innovative decision support systems, hydroin-
formatic applications, innovative intermittent uses in drought periods, pump and turbine
implementations, disaggregated pricing and tariff policing, and cyber-security applications.

Many of these concepts were addressed and discussed in the papers collected in this
Special Issue, which was mainly dedicated to water distribution networks but, as will be
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shown below, also hosted some contributions on water drainage systems, highlighting how
the digital transition is affecting all subsystems involved in the urban water cycle.

Specifically, the Special Issue on Water Journal collected 12 papers, which in this edito-
rial and, consistently, in the on-line paper collection, are categorized in four main topics:
(1) Reliability, Resilience, and Performance, (2) Smart Urban Water Demand Management,
(3) Smart Real Time Control and Operation, and (4) Cyber-Security in Water Systems.

Two further contributions bring the total number of submitted papers to 14: a timely
review on the Smart Water Systems, inserted as the overview of the Special Issue; and a review
on the state-of-the-art literature on cyber-security in the water sector, which systematically
presents the existing works in this fast growing field and identifies outstanding issues.

2.1. Overview on Smart Water Systems

The first paper of the Special Issue offered the opportunity to rethink the framework
of smart water systems. The design and construction of such smart water systems are still
not standardized enough for massive applications, and there is a lack of consensus on the
overall transformative framework.

Some authors identified from their comprehensive literature review on smart water
techniques the lack of a general architecture and a systematic framework to successfully
guide real-world deployment of smart water systems [4]. To fill this gap, they suggested a
novel approach consisting of five layers: (i) instrument layer, (ii) property layer, (iii) function
layer, (iv) benefit layer, and (v) application layer, including two newly-defined metrics,
i.e., smartness and cyber wellness. Therewith, the aim of the authors was to stimulate the
implementation of smart water systems in practice as a joint work of academia, industry
and government.

2.2. Reliability, Resilience and Performance

Some papers of the Special Issue deal with the subtopic of reliability of water networks.
In these papers, some specific water network management issues, including network
partitioning, and protection from contamination and other critical events are addressed,
and a comparative analysis of some reliability indices was also provided.

Another interesting problem faced in the Special Issue is the optimization of fault
examination in water distribution networks. It is essential to automatically detect faults
(e.g., leaks, blockages) in water distribution systems to avoid or reduce the loss of resources,
non-revenue water, and operational costs. In [5] was proposed an inverse transient-based
optimization approach to identify such faults. They tested their approach with models
of two hypothetical water distribution systems and found that their algorithm is proven
reliable and efficient in detecting faults. In the paper [6], the authors reviewed the state-
of-the-art literature on water networks partitioning in district metered areas (DMAs) and
provided a comprehensive overview of existing methods and approaches. They classified
these methods in two steps: clustering algorithms (dividing the network) and dividing
procedures (identifying the optimal positions of gate valves and flow meters). Six of the
most widely adopted clustering algorithms were presented and discussed in-depth, and
future research gaps were identified (e.g., considering devices, such as pumps, operations
under abnormal conditions).

Furthermore, [7] presented a strategy for reducing the impacts of contamination events
in water distribution systems. The authors developed a hybrid strategy which is based on
water network partitioning and the installation of sensors. By testing the framework on
a real water distribution system, they showed how to reduce the impact of any kind of
critical events.

Finally, in the literature, there are numerous reliability indices to evaluate the perfor-
mance of water distribution systems. However, the choice of which one to use is often
challenging, as they rely on different assumptions and some of them are correlated. In this
regard, a very useful comparative analysis of reliability indices and hydraulic measures
was carried out by [8], who investigated nine different reliability indices and six different
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hydraulic measures with 17 hypothetical networks with various topological features under
different supply scenarios. They found that selecting the indices according to the defined
goals is essential and, accordingly, give guidance on how to choose the right indices for
different water network configurations.

2.3. Smart Urban Water Demand Management

The Special Issue hosted some papers on the topic of water demand management,
which is showing an increasing interest in the technical and scientific community.

A comprehensive review of urban water consumption datasets at multiple spatial and
temporal scales was proposed by [9]. The recent technological developments and increasing
number of pilot studies in smart water metering is resulting in an increasing availability
of high-resolution metering datasets for research applications. Motivated by the need for
tracking the type and accessibility of the existing water consumption datasets in the rapidly
evolving field of smart metering, the authors reviewed and collected available dataset
sources and classified them according to spatial and temporal scale, and dataset accessibility.
In the work [9], the authors found that the existing datasets are very heterogeneous in terms
of temporal and spatial scales, and they can serve different purposes depending on the scale
of interest, data resolution, and related analytics, including, for instance, water demand
forecast, end use disaggregation, behavioral modeling. After assembling the catalogue of
existing smart meter datasets and characterizing them with the above mentioned criteria,
the authors formulated a series of recommendations to support future research efforts and
encourage the open access publication of smart water meter data.

A spatial aggregation effect on water demand peak factor was also in the Special Issue.
The single water consumption is a random and highly volatile process. However, when
aggregating a large number of consumers, temporal, but also spatial trends and patterns,
can be observed. In the work [10] the peak factor for the water demand consumption
as a function of spatial data aggregation on the basis of the statistical analysis of data of
1000 households was investigated. They found an empirical relation for estimating the peak
factors. Furthermore, they proposed a procedure to analyze smart meter data regarding
the occurring water demand peak factors and give guidance for network operators on how
to process their data for design and operation.

In another contribution based on a least square support vector machine [11], the
authors established a forecasting chaotic time series for short-term water demand with a
forecasting horizon of one day and a time step length of 15 min. To improve the quality of
the forecast, they transformed the time series of differences between the forecasted and
measured data to a chaotic time series and implemented an error correction module to
improve the accuracy. By testing this hybrid model on three real-world supply areas, they
showed an improvement of the obtained forecasting solutions regarding mean absolute
percentage error.

Another interesting paper on the smart water grid for micro-trading rainwater was
proposed in the special issue by [12]. While there might be a local urban water shortage,
local excess water might be available in supply areas. For non-potable water, some authors
proposed to establish a smart water grid which allows to trade rainwater on a local level [12].
For doing that, they envisioned a distribution network connecting residential rainwater
tanks that would enable to buy and sell rainwater on a local level (e.g., for irrigation
purposes), and which would be monitored and controlled via numerous smart water
sensors. In a hydraulic feasibility study, they analyzed these micro-trading and showed
that water and energy savings are feasible across different climates.

2.4. Smart Real Time Control and Operation

Some papers inserted in the Special Issue regarded the innovative topic of implemen-
tation of real time control and operation of smart devices in water networks. This aspect
represents one of the main operational challenges for water utilities to definitively shift
towards the paradigm of a smart water network.
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A first contribution of this section of the Special Issue dealt with the optimal placement
of pressure sensors using fuzzy logic. Indeed, smart pressure sensors can be used to
detect leakage in water distribution systems. However, it is challenging to find a suitable
location for such sensors to gain the maximum benefit, while considering budget and other
constraints. In [13] the optimal placement of pressure sensors in water distribution systems
was investigated by considering the nodal sensitivity to leakage, data uncertainties and
node entropy in order to cover a maximum area by a sensor. The authors successfully
showed the application of their approach to a benchmark system and also to a real-world
case study.

In the work of [14], the authors presented an interesting application on real-time
pressure control by analyzing different stochastic consumptions. As known, pressure
management in water distribution systems is important to supply water in sufficient
quantity and quality in a cost efficient and reliable way. If there is an excess pressure in a
water distribution system, pressure control valves can be used, but the challenge is to cope
with many different water consumption states. The researchers performed a numerical
investigation of flow-dependent pressure controllers from the literature and assessed their
performance based on a stochastic demand model to mimic realistic conditions. They found
that different controller schemes perform quite similar. Therefore, they suggested using
the scheme with a simple structure without performing any forecast of future demand.

2.5. Cyber-Security in Water Systems

One paper regarded the very interesting topic of the state of the art of cyber-security in
water systems [15]. It is clear that also in water systems the evolution from isolated bespoke
systems to those that use general-purpose computing hosts, IoT sensors, edge computing,
wireless networks, artificial intelligence, and IoT devices will increase significantly the risk
of cyber-attacks. The authors highlighted the importance of protecting water infrastructure
from malicious entities that can conduct industrial espionage and sabotage against these
systems. The review of [15] focused on the aspects of the system vulnerability, of the
actual measures, and the perspective to improve the cyber-security of water systems. The
authors found that the majority of cyber-security studies were carried out on drinking
water systems, others on drinking water treatment systems, and only a few on non-
drinking water systems (i.e., canal automation systems used for irrigation and wastewater
systems). However, while the impacts of cyber-physical attacks are increasingly discussed
in the literature, only few studies address the problem of how to efficiently protect micro
components in smart water systems. Therefore, it was concluded that further works should
specifically focus on making smart water systems reliable and safe. To successfully enable
smart water systems in practice, future research should focus on efficiently protecting
micro components by including cyber-physical components in the resilience assessment of
urban water systems.

Finally, the last two papers hosted in the Special Issue were not fully aligned to the
topic of water distribution networks, but they are very interesting in the more general
paradigm of smart networks and big data collection with innovative smart sensors.

The first paper proposed the usefulness of hydrological time-series water depth clus-
tering that can be extended to other smart measures. Specifically, clustering of recorded
information is a meaningful statistical method to gain knowledge out of a multitude of
real-time measured data. For urban drainage systems, where an increasing number of
sensors are installed, this information might also be of great interest for the detection and
forecasting of flooding events. The researchers [16] investigated how data-driven unsu-
pervised machine learning algorithms can be used to group hydraulic-hydrological data
of measurements in storm water drainage systems. By investigating different clustering
and performance evaluation methods, suggestions are given about what kind of method
should be applied according to the type of detection events (e.g., short-duration or long
duration). This can be implemented as a flood early warning system.
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Although not aligned to the topic of water distribution network, the last paper on
IoT for wastewater treatment plants also provided useful suggestions to the technical
and scientific community about the application of wireless sensor networks that can be a
promising approach for different fields of urban water management. In [17] was presented
a low-cost IoT system for water quality monitoring for wastewater treatment plants at a
close-to-market stage. With a novel ion chromatography detection method, they integrated
and tested a nitrate and nitrite analyzer under real conditions. The results of comparing
laboratory and low-cost IoT systems revealed the reliability of the proposed device.

3. Discussion

The interest of researchers for the Special Issue was high with 14 published papers
(4 review papers and 10 research papers).

The review papers showed that some topics, such as innovative procedures for water
network partitioning [18], smart meters and tools for water demand measuring [19], end
use disaggregation and forecasting [9], and applications for cyber-security [15] are already
available for water utilities. However, as appropriately reported in [4], and confirmed
by [15], more coordination between academia, industry, and government is required to
guide real world deployment of smart urban water systems. In order to meet the demands
of industry and government and successfully turn this new paradigm into practice, the
researchers [4] showed that it is necessary to obtain a consensus from conceptual, technical,
and practical perspectives. However, also for more consolidated innovations (like softwares,
best practices, and procedures) no comprehensive consensus exists. Accordingly, the five-
layer framework proposed by the authors aims to simplify the implementation of smart
water technologies in novel solutions and case studies, and, for the first time, to better
characterize the peculiar features of smart water systems.

Besides presenting new approaches and solutions to smart water networks, the works
presented in this SI also highlight the open challenges that should be prioritized in fu-
ture research.

First, the achievement of a shared definition of resilience of water systems and a
shared formulation performance indices for the management represent a key priority to
further advance the concept and standardization of smart water networks. In fact, with the
help of smart meters and the analysis of big data it will be possible to define novel metrics
and consequently improve calibration phases and maintenance plans and better face water
crisis periods through water demand management. With reference to the latter point,
this Special Issue highlights that the technologies and the methodologies proposed are
mature to start pilot sites on a large scale. It is worth highlighting that in [4] was identified
that widely applied concepts of resilience of urban water infrastructure are lacking smart
components and that there is a need for novel concepts for smart water systems as these
are even more complex than traditional systems. By defining two conceptual metrics
(smartness and cyber wellness), a first step in this direction was taken, but comprehensive
further research is required to successfully tackle these short-comings in current smart
water applications.

Further, the more advanced challenges delineated in the SI are the topic regarding
real-time control and operation of water systems, also with the possibility to activate
dynamic changes in the network operation using smart devices controlled in real-time (e.g.,
regulation valves, on-off valves).

The availability of a large amount of data collected by smart sensors in IoT frame-
work brings up valuable information and knowledge from the system and speeds up
the spreading of data-driven applications in water industries. Some solutions offer new
visions when well calibrated hydraulic models are difficult to obtain. In these cases, it
could be possible by analyzing the learning system behavior only using data collected from
hydraulic, maintenance, and economic information (i.e., length of pipes, diameter, type of
material, age, flow, costs, etc.) and the know-how of the operators recorded in maintenance
journals (i.e., date and time, type and causes of disservice) without any physical modelling.
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This aspect is very interesting and data-driven approaches also represent a new challenge
for the future of smart water systems.

4. Conclusions

This Special Issue shows that the multi-faceted paradigm of smart urban water net-
works can be declined in different ways and applications. While the digital transformation
of water networks still presents several open challenges, many solutions can be considered
ready to be implemented by water utilities and operators. However, the technological trans-
fer from research laboratories to the water market is still slow for many reasons, mainly
due to the delay of the standardization processes and a common regulatory framework.

Overall, the papers collected in this SI offer to the technical and scientific community
a wide overview of the solutions and possibilities offered by the implementation of smart
meters, IoT, innovative modelling, and simulation approaches fostered in the last years
by the availability of high computational power and new digital technologies. The digital
transition of water networks towards smart systems is an ongoing and incremental process.
Yet, radical changes have been already observed in the last years and more advances
leveraging the state of the art, including the contributions presented in this SI, can be
expected if a new deal between academia, industry, and governments will be embraced to
reap and materialize all the benefits of the digital transformation.
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Abstract: Service quality and efficiency of urban systems have been dramatically boosted by various
high technologies for real-time monitoring and remote control, and have also gained privileged space
in water distribution. Monitored hydraulic and quality parameters are crucial data for developing
planning, operation and security analyses in water networks, which makes them increasingly reliable.
However, devices for monitoring and remote control also increase the possibilities for failure and
cyber-attacks in the systems, which can severely impair the system operation and, in extreme
cases, collapse the service. This paper proposes an automatic two-step methodology for cyber-
attack detection in water distribution systems. The first step is based on signal-processing theory,
and applies a fast Independent Component Analysis (fastICA) algorithm to hydraulic time series
(e.g., pressure, flow, and tank level), which separates them into independent components. These
components are then processed by a statistical control algorithm for automatic detection of abrupt
changes, from which attacks may be disclosed. The methodology is applied to the case study
provided by the Battle of Attack Detection Algorithms (BATADAL) and the results are compared
with seven other approaches, showing excellent results, which makes this methodology a reliable
early-warning cyber-attack detection approach.

Keywords: water distribution systems; cyber-attack detection; blind sources separation; FastICA

1. Introduction

In recent decades, urban areas all over the world have not stopped growing and
becoming increasingly dense. Consequently, virtually all urban services are in dire need to
become more efficient and accessible to all citizens. Water distribution systems (WDSs),
which are obviously among the main urban components, have undergone many changes.
In this paper, we focus on the connection between WDS physical and cyber layers, thus
turning WDSs into cyber-physical systems. The physical layer of a WDS (pipes, valves,
pumps, reservoirs, etc.) can be remotely controlled and monitored by the cyber layer, which
allows the implementation of predictive control, and early-warning systems in case of
anomalies. As a result, the efficiency of urban water systems is improved.

Cyber-physical systems may considerably improve the operation of water companies,
but they will also increase the possibilities for system failure. This is chiefly because cyber
layers can include gates that may be easily violated during various kinds of attacks (e.g.,
information access for damaging the entire water distribution process) [1]. Attackers can
access programmable logic controllers and change pump and valve schedules, operational
points, and/or corrupt data in SCADA systems. This could threaten the creation and
expansion of smart cities that depend on the reliability of cyber systems [2].

Water 2021, 13, 795. https://doi.org/10.3390/w13060795 https://www.mdpi.com/journal/water
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Scenarios of cyber-physical attacks in water systems have already become a reality.
According to the United States Department of Homeland Security, in 2015, 25 cyber-
attacks were disclosed in various water systems [3]. In Israel, three attacks happened
between 2019 and 2020. The first attack in 2019 managed to change the free chlorine level
and, consequently, harmed the water quality of the system. In 2020 the attacks changed
pumping operational points, bringing high pressure to the system and associated increasing
leakage [4]. In their Systematic Review of the State of Cyber-Security in Water Systems,
Tuptuk et al. [5] compile a set of cyber-physical attacks occurred between 2000 and 2020
that have been made public. Most of them were remotely performed and even a recent one
used cryptocurrency mining for the attack. The examples of cyber-attacks in the USA and
Israel show that despite a system may be highly protected, attackers manage to find their
ways to enter the system and eventually produce chaos. Consequently, even virtually fully
secure SCADA systems need additional mechanisms to try to close any access gate to the
system and minimize the impact of any security breach.

With the aim of improving the reliability of cyber-physical systems, special attention
has been given by researchers to the topic, as shown by the promotion of dedicated
events. One milestone on cyber-physical system analysis applied to water systems was
the International Workshop on Cyber-Physical Systems for Smart Water Networks, in
2015 [6]. The works in that conference mainly focused on data acquisition via SCADA
system and the security of the system. Nevertheless, no cyber-physical failure detection
methodologies were proposed. However, recently, the detection of malicious attacks in
WDSs has become a problem highly faced by researchers and managers, and has been
the subject of recommendations from various protection agencies (e.g., Environmental
Protection Agency—EPA, from USA). The main objective of this kind of developments
is the reduction of the system vulnerability, thus narrowing the potential damage to the
physical layer.

Considering the importance of the problem, the Battle of the Attack Detection Algo-
rithms (BATADAL) [7] was organized in a special session of the World Environmental and
Water Resources Congress, in Sacramento, California on 21–25 May 2017. The challenge
was proposed for comparing possible approaches in detection attacks. Several solutions,
concisely described in the next section, were presented.

According to the above-mentioned systematic literature review [5], the vast majority
of works in cyber-attack detection, including the ones presented in BATADAL, are based
on machine learning, developing classifiers or auto-encoder algorithms. However, the
authors of [5] pinpoint the need for targeting at other fields of study for building increased
confidence on the algorithms. An alternative, exploited in other research fields, is the
use of signal-detection models. These kinds of models handle a mixture of true signal
and noisy data. When applied for cyber-attack detection, the main objective of a signal-
detection model is to separate attack from normal data, which helps detect abnormal
situations accurately and efficiently. One example of signal-processing data applied to
detect anomalies in cyber-physical systems is the application of Independent Component
Analysis (ICA) [8]. This algorithm separates original signals into components or sources
by suitably demixing them. The demixing and consequent separation of signals can help
highlight anomalies, thus easing their identification.

Moreover, for automatic identification, the application of statistical control processes
such as cumulative sum (CUSUM) and abrupt change point detection (ACPD) have shown
to be very useful tools.

Considering the substantial number of applications of ICA for anomaly detection
problems in various research fields, and the simultaneous lack of applications in water
distribution, this paper proposes a two-stage algorithm for cyber-attack detection in water
distribution systems. In the first stage, hydraulic time series acquired by a SCADA system
are processed by the ICA algorithm. The resulted signals, so-called sources, are highly
affected by cyber-attacks, as shown in the results. This feature is used for automatic
detection in the second stage, using an ACPD algorithm. The methodology is applied
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to the BATADAL case study, and the results are compared, under the same framework,
including case study, objectives and metrics, with other approaches presented in the
Battle. All seven attacks hidden on the test data sets used in the event are detected by this
methodology, thus resulting in a reliable early-warning cyber-attack detection algorithm.
Regarding the limitations of this approach, we must mention that some attack scenarios
have been detected too late, which is a limitation, otherwise, typical of any detection
evaluation methodology. However, overall, the methodology can be considered a novel
non-machine-learning-based approach in the field of cyber-attack detection in WDSs.

2. Related Work

The recent literature presents several data analysis and computational modelling
techniques aimed at developing early-warning systems for cyber-attack detection in water
systems. For example, in [9] a classification algorithm is developed using Support Vector
Machines for identifying cyber-attacks in water systems. The authors propose a simple one-
class classification approach based on a truncated Mahalanobis distance. The algorithm is
tested on a real dataset from a water distribution system in France. Hidden Markov chains
are used in [10] for analyzing and detecting anomalies in the SCADA system of a water
supply system. Normal behavior was first modelled and then modified with generated
abnormal data to simulate potential attack detection. Not only water distribution systems,
but also water treatment plants have been used for investigating cyber-attacks. Attacks in
Programmable Logic Controllers (PLC) are designed by [11] for better comprehension of
the impacts in the produced water.

In BATADAL, seven solutions, coming from research groups from all over the world,
were presented, which were ranked based on time-detection and classification accuracy of
the events. As our approach in this paper is directly competing with those seven solutions,
to make it clear its novelty, we concisely describe the methodologies used in the other
solutions. Those contributions together with several papers derived from the event, which
we also mention later, can be considered a state-of-the-art literature on the subject, which
can be enlarged with [5].

A two-stage method based on feature vector extraction and classification was proposed
in [12]: vector extraction was applied to multidimensional hydraulic data, and safety
classification was performed by random forests, the machine-learning algorithm developed
by [13]. In [14] recurrent neural networks (RNNs) were used for hydraulic state estimation
of network district metered areas and, based on the RNN output, a statistical control
process was applied for detecting abrupt changes in the residual time series.

The authors in [15] use first operational variables to check whether physical and/or
operating rules have been violated, and the generated set of flagged events feeds a deep
learning method based on a convolutional variational auto-encoder to calculate the proba-
bility for measured data being anomalous.

In [16] also two detection methods were proposed: one evaluates consistency of the
SCADA data and verifies the relation between actuator rules (e.g., pump/valve operation)
and the measured data; then, the second method uses principal component analysis (PCA)
for separating the hydraulic time series into normal and abnormal data.

A three-stage detection method was presented in [17]: the first step detects outliers
in the data, focusing on single sensor analysis; the second stage employs a multilayer
perceptron to detect SCADA data nonconformity to normal operation; and the third stage
finds anomalies affecting multiple sensors.

Another three-module method was presented in [18]: the first module evaluates the
consistency of the data against the set of control rules; the second applies statistical analysis
to identify anomalous behaviors; then, the anomalies are confirmed by the third module,
which finds correlations between hydraulic variables.

Finally, a model-based approach using EPANET for hydraulic simulations was devel-
oped in [19]; analyses of the residual time series between simulated and measured data
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from SCADA system detected the anomalies, and a multilevel classification algorithm was
implemented to classify the residual time series into normal and abnormal events.

BATADAL opened a fruitful discussion among various research groups around the
world. Following the cyber-attack detection paradigm, new approaches have been pre-
sented in the literature after that Battle. For example, work [1] points to multisite detection
approaches based on simultaneous analysis for an efficient warning system. In this work
the authors present a joint data-model-based approach for cyber-attack detection: the
model of the water network is used for inference from the observational data. Explor-
ing the capacity of machine-learning techniques, in [20] a model for detecting anomalies
in a water system controlled by SCADA using various machine-learning techniques is
presented. The model classifies events including physical failures and cyber-attacks. As
another example, research [21] has tested a set of machine-learning algorithms, highlighting
the performance of extreme learning machine for classifying normal and abnormal data
from multisite sensors.

Despite many devoted efforts to detect cyber-attacks on WDSs in recent years, the
primary focus, as observed in the literature, has been mainly on machine learning and
optimization techniques. The techniques of signal-processing for cyber-physical attack
detection is still not well explored in the literature, especially in water distribution.

Work [22] investigates the application of Independent Component Analysis (ICA) for
stealthy false data attack detection without prior knowledge of any power grid topology.
The separated signal by ICA is used for detecting virtually unobservable attacks. The
authors in [23] apply ICA for obtaining the fundamental traffic components and, in a
second stage, the components are classified by machine-learning-inferred decision trees.
Still on ICA applications, work [24] develops an algorithm to characterize hidden structures
in fused residuals. Suppression of possible noisy content in residuals—to decrease the
likelihood of false alarms—is achieved by performing the residual analysis solely on the
dominant parts of a so-called demixing matrix.

In the water resources field, ICA has been applied to drought analysis, exploring
hydrological data [25]. Also, in [26] the application of ICA to assess and estimate leakage
in water distribution networks is proposed. The algorithm is tested on data acquired in a
leakage experimental platform. Water demand is forecasted using a principal component
model, and ICA is applied for developing climate predictors in [27].

Once demixed by ICA, source signals can be treated for automatically detecting
anomalies, and this inspired us to apply ICA and then ACPD to the automatic detection
of cyber-physical attacks. In this line, still within urban hydraulics, but with a different
purpose, automatic identification of pipe bursts has been developed using statistic control
processes applied to hydraulic parameters (e.g., pressure nodal pressure and flow in
pipes) [28] or jointly to water demand forecasting [29]. Also, to improve the capacity
of burst and leakage detection, work [30] proposes ACPD applied to filtered signals of
consumption data.

After the Introduction, the structure of the paper is the following. The Materials and
methods are presented in the next section. Then a section is devoted to the case study, and
includes the obtained results and a discussion. The paper closes with the Conclusions section.

3. Materials and Methods

The methodology for cyber-attack detection proposed in this paper is based on two
separate techniques. The first one comes from the signal-processing field and applies a
Blind Source Separation (BSS) algorithm, which makes use of Independent Component
Analysis. This technique produces the segregation of the original measured signals, affected
by the attacks, into independent components. These components can be detected using a
statistical control method, which corresponds with the other technique in this work: an
abrupt change point detection algorithm is applied to the separate signals to accurately
detect the start and the end times of the attacks, which helps characterize the attacks. Let
us first concisely describe these techniques.
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3.1. Independent Component Analysis-ICA

ICA is a methodology for multivariate signal-processing based on the statistical inde-
pendence property. ICA techniques seek to uncover the independent source signals from a
set of observations that are composed of linear mixtures of the underlying sources. The
sources are the data projected onto some new axes that must be discovered. Accordingly,
this process is known as blind source separation, a category of algorithms that try to
decompose mixed signals into their original sources. A classical example of separation of
a mixed signal is the cocktail party in which a band is playing [31]. Invited people to the
cocktail are not listening each instrument of the band separately, but the combination of
all the instruments, voices and noises of the environment. Is it possible to separate each
sound’s source captured by the microphones? To answer the question, BSS algorithms are
proposed that try to isolate each source.

Let us consider N time series each consisting of M samples (measured points). The
aim is to find a transformation of these time series into a new representation in which
independent components are identified and separated.

Formally, we represent the N measured time series

Xi = (xi1, xi2, · · · , xiM)T , i = 1, · · · , N (1)

compactly by a matrix X whose rows are the transposed time series

X =

⎛
⎜⎝

x11 x12 · · · x1M
...

...
. . .

...
xN1 aN2 · · · xNM

⎞
⎟⎠. (2)

This N × M matrix is supposed to be a linear combination of the original signals,
which can also be represented by another N × M matrix S with similar structure to X, i.e.,
the rows of S are the transposed of the original time series Si = (si1, si2, · · · , siM)T . The
linear combination may be expressed by

X = AS, (3)

where A, so-called mixing matrix, is the matrix representing the linear transformation.
Keeping the analogy of the cocktail party, X corresponds to the sounds listened by the
guests and S to the original sounds. The main objective of ICA is to determine the mixing
matrix A and the original sources S. This task is formulated as an inverse and dual problem.
First, a demixing matrix W must be found and then, based on this matrix, the source vector
is calculated by

S = WX. (4)

Since the problem is highly underdetermined, the direct calculation of W or A is not
possible. An estimate Y ≈ Ŝ of the sources is made instead by calculating a demixing
matrix W, which acts on X such that

Y = WX = Ŝ. (5)

and W ≈ A−1.
To perform this approximation, the process in the ICA algorithm uses some factoriza-

tion of the observed data (mainly singular value decomposition), and high order statistics
(such as the fourth moment, kurtosis) to measure signal-noise separation. From a statistical
point of view, the separated signals must be independent, and the independent compo-
nents must have a non-Gaussian distribution [32]. Based on this non-Gaussian nature,
to calculate W, most ICA methods estimate the inverse of A, allowing the calculation of
the source vector. The trick behind this process is to find that A−1 that maximizes the
non-Gaussian nature of the independent components. Usually, this process is done based
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on maximum-likelihood estimation, maximization of the output entropy or minimization
of mutual information in the output [33].

In this paper, the non-Gaussian nature is measured based on the the concept of
negentropy, as presented and discussed by [32] in the algorithm called fastICA. The idea
behind negentropy comes from the Information Theory. Gaussian-distributed data has
entropy H equal to zero, while non-Gaussian-distributed data has non-negative entropy.
Negentropy J is calculated as:

J(x) = H(xgauss)− H(x)), (6)

where xgauss is a Gaussian random variable with the same covariance as x.
The fastICA algorithm is based on a fixed-point scheme for finding W ≈ A−1 through

maximization of the negentropy. In addition, based on that matrix, it is possible to approxi-
mately rebuild the source vector as written in (5).

3.2. Abrupt Change Point Detection-ACPD

After sources separation by fastICA, it is expected that one of the sources will be
affected by the cyber-attack. For detecting this change, an algorithm of abrupt change point
detection (ACPD) is applied. ACPD is performed by evaluating one or more statistical
parameters of the time series, so-called control variables.

For a formal definition, following the ACPD algorithm proposed by [34], let us first
identify, among the separate signals provided by fastICA, that one that best represents
the kind of signal we are interested in. In our case, we must identify that series mainly
representing non-periodic behavior. Let Y(1) = (y11, y12, ..., y1M)T , one of the signals
obtained by (5), be our series of interest, where M is the size of the time series. The
algorithm tries to identify the various, say m, change points in this time series, which are
positioned at indexes τ1, ..., τm. Each position τi corresponds to an integer value between 1
and M − 1 and splits the time series into intervals [τi, τi+1].

A common approach to estimating τ = (τ1, ..., τm) is by minimizing the objective
function:

m+1

∑
i=1

f (τi, τi+1) + βp(m), (7)

where f (τi, τi+1) is a cost function related to the time series in the interval [τi, τi+1]. Several
cost functions have been proposed in the literature, such as log-likelihood [35], quadratic
loss or cumulative sums [36]. Moreover, βp(m) is a penalty function to avoid overfitting.
The most common choice, according to [34], is a linear variation p = βm. This constraint
allows the method to estimate a vector τ corresponding to a trade-off between the mini-
mization of the cost function (found by a large-size τ) and the minimization of the penalty
function (found by a small-size τ) [37].

The entire process can be summarized as follows:

• A point is chosen and the time series is divided into two intervals.
• For each interval, a control variable (mean, standard deviation, root-mean-square,

etc.) is computed.
• For each point within the interval, deviations of control variables are computed.
• The deviations are summed for all the intervals to calculate the total residual error,

and the objective function (7) is evaluated.
• Vary the division point to minimize the total residual error.

The result of this process is exactly the set of components of τ. For this work, each
component of the source’s signal Y found by fastICA obtained by (5) is evaluated by the
ACPD algorithm, and the vector τ corresponds to the start and the end times of an attack.
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3.3. Automatic Detection of Cyber-Attacks in WDSs

Following the formalization given for fastICA and ACPD algorithms, this section
presents the application of both methods for disclosing cyber-attacks in WDSs. First,
based on the available data set, the input time series for fastICA are selected. Hydraulic
measurements (e.g., pressure, flow and tank level) are considered in this work as input
data, which are combined to get the best input arrangement. After a trial-and-error process,
we have identified that decomposing the signal into two components will be enough
to suitably identify the effects of the attacks. Indeed, the results presented for the case
study confirm this assumption. From the software development point of view, the data is
processed in Python language and makes use of the package SKLEARN.

The non-periodic component of the demixed signal is then used as the input for the
ACPD algorithm. This second process is responsible for automatically identifying the start
and end time of the anomalies, thus allowing the disclosure of the attack. The output of this
process is the exact interval of time where the water network was subjected to an attack.
With this outcome, it is possible to apply the performance evaluation metrics considered
in BATADAL, and then, to compare the ability of the proposed algorithm with other
approaches. In this stage, the demixed data is processed in the MATLAB programming
environment, and makes use of several tools in the toolbox of Signal-processing. For a
better understanding, Figure 1 presents the flowchart of the complete methodology.

Figure 1. Flowchart of the complete methodology for disclosing cyber-attacks applying fastICA and
ACPD algorithms.

3.4. Performance Evaluation

In addition to the BATADAL data sets, the performance evaluation also follows the cri-
teria and metrics presented in [7], namely time-to-detection (TTD) and single classification
rate (SCR).

TTD is the time required by the algorithm to find an attack and can be calculated as:

TTD = t0 − td, (8)

where t0 is the time when an attack is detected, and td is the time when the attack really
started. When an attack is detected, TTD varies in the interval [0, Δt], where Δt is the total
attack duration. For calculating the total TTD under several attack scenarios, work [7]
presents a score for the specific attack detection calculated by (9):

STTD = 1 − 1
na

na

∑
i

TTDi
Δti

, (9)
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where na is the number of attack scenarios.
An ideal algorithm for cyber-attack detection must be able not only to quickly disclose

the attacks, but also to not produce false positive warnings. For evaluating the accuracy of the
algorithm, the true positive rate, TPR (10), and the true negative rate TNR (11), are calculated
based on a confusion matrix. Both rates are combined for calculating the SCR (12):

TPR =
TP

TP + FN
, (10)

TNR =
TN

TN + FP
, (11)

SCR =
TPR + TNR

2
, (12)

where TP and TN are the numbers of true positive and true negative time stamps, respec-
tively. FP and FN are the numbers of false positive and false negative time stamps.

Criteria (9) and (12) are considered by [7] and the final score S is calculated as a
weighted sum of STTD and SCR (13)

S = γSTTD + (1 − γ)SCR, (13)

the real number γ being used to build a suitable convex combination. For equally weighted
criteria γ = 0.5.

4. Case Study

The methodology presented in this paper is applied to the case study posed in
BATADAL [7], which uses the water network D-town (Figure 2) and considers poten-
tial attacks to pump stations and pressure and tank level sensors, as indicated in the figure.
The network is composed of 429 pipes, 388 junction nodes, 7 tanks, 1 reservoir, 11 pumps
and 5 valves.

Three data sets are provided by BATADAL generated via epanetCPA [38], a MATLAB
toolbox for cyber-attack design and hydraulic simulation. Please note that due to obvious
security reasons, studies of cyber-physical attacks are usually conducted using simulated
data that reproduce real-world conditions [5]. In the case of BATADAL, hourly pressure,
flow, tank level and control device status are provided in the data sets. The first data set
corresponds to one year of data without cyber-attacks. The second data set is based on
a set of 492 h. This data set unfolds an entire, well-labeled cyber-attack, and other six
cyber-attacks partially or completely hidden. Finally, the third data set has 7 new attacks
distributed along 407 h of data.

The application of the methodology starts by selecting the combination of data to be
used as input for fastICA from the available data. Since the water network is naturally
divided into small district metered areas according to its topology, eight combinations of
data are used as input for the ICA algorithm. These combinations consider the hydraulic
connections of the system and are summarized in Table 1.

Table 1. Description of control and measuring devices for fastICA application

Combination Measured Element Type of Data

A J300, J289 Pressure
B J307, J302 Pressure
C V2, T2, J422 Flow, Tank Level and Pressure
D T1, PU1, PU2, PU3 Tank Level and Flow
E J256, T3, PU4, PU5 Pressure, Tank Level and Flow
F J415, T4, PU6, PU7 Pressure, Tank Level and Flow
G J306, T5, PU8, PU9 Pressure, Tank Level and Flow
H J317, T6, T7, PU10, PU11 Pressure, Tank Level and Flow
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Figure 2. D-town water network topology highlighting potential attack locations.

Using the combinations presented in Table 1, the algorithm fastICA is applied, which
separates each combination into 2 (approximate) sources. To illustrate the signal separation,
Figure 3a presents the original data for combination B, and Figure 3b presents the separated
signals, split into two sources. In the separated sources (Figure 3b), an abnormal trend of
the time series is discovered in the test data set.

This behavior is repeated for other combinations. One source has a periodic trend, as
a typical behavior of a WDS, while the second source is similar to a random noise. This
second one is, usually, highly affected by the attacks and is considered by the detection
algorithm to identify abrupt changes.

For automatic detection of the changes in the separated signals, ACDP is applied.
The algorithm evaluates the second source, highly affected by the attacks, and allows a
more accurate detection of the anomalies. Applying ACDP to the sources obtained from all
combinations (Table 1), the start and end time indexes of the attacks are obtained.

The entire process may be summarized as follows. First, a combination of hydraulic
time series is selected and is processed by fastICA (Figure 4a); this algorithm splits the time
series and produces two sources that are processed by ACDP (Figure 4b). Finally, ACDP
is launched to locate the time interval when the attack occurred (Figure 4c), allowing the
water company to start actions for mitigating the impacts of the attack. Figure4c shows
in detail the attack corresponding to combination F. It is possible to observe the delay in
detecting the attack (interval between the first black and the green lines). As described
in [7], this attack is related to changes of tank T4 signal. Even though these changes are
not easily identified in the original data, as shown in Figure 4a, after fastICA processing,
source signal 1 clearly reveals the change in data, allowing ACDP to disclose the attack.
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(b) Separated signals from J307 and J302

Figure 3. Comparison between mixed and separated pressure signal—combination B.

Still for illustrating the joint capability of fastICA and ACDP, Figure 5a shows original
measured data of pumps PU8 and PU9, node J306 and tank level T5. The joint process by
fastICA and ACDP applied to the corresponding test data set reveals that no attacks are
found in the sources. This fact corroborates the accuracy of the algorithm, mainly in terms
of false positives minimization, since according to [7], there were no attacks occurring in
the test data set.

The ACDP applied to all sources and combinations for the test data set resulted in
the identification of 7 cyber-attacks, i.e., all the attacks were disclosed by the proposed
methodology. Figure 6 presents the confusion matrix with the numbers of TP, TN, FP
and FN.

Based on the confusion matrix, it is possible to calculate TPR = 0.966 and TNR = 0.980,
resulting in a SCP = 0.973. Compared to the seven teams that presented solutions
for BATADAL, the value of SCP is the second higher, the first team having obtained
SCP = 0.975, virtually identical. Comparing the TPR, the methodology of the present
work gets the highest scores, showing its efficiency to find abnormal scenarios.
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Figure 4. Complete data processing, illustrating fastICA and ACPD applied to Combination F.
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Figure 5. Original and processed data for combination G.
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Figure 6. Confusion matrix for the test data set presenting the number of true positives and negatives
on the main diagonal and the false negatives and false positives on the counterdiagonal

The results in terms of TTD, are summarized in Table 2. Four out of the seven
attacks are detected immediately or in a maximum of 1 h later. The rest is detected in a
maximum of 10 h later, as shown in the table. Based on these values, the score for the other
metric proposed in BATADAL, namely STTD, is calculated, resulting in 0.913. Compared
to the other teams, this value is the lowest and shows that despite the accuracy of the
methodology, for some abnormal scenarios, early warnings cannot be suitably obtained.
Based on both metrics SCR and STTD the final score is calculated, resulting in 0.973. This
final score is the second highest, when compared with the seven teams that presented
solutions in BATADAL.

Table 2. Summarized results for the test data sets presenting start and end time date for each attack

Attack Label Start Date Start Time End Date End Time

8 16 January 2017 10 19 January 2017 4
9 30 January 2017 8 2 February 2017 2
10 9 February 2017 3 10 February 2017 9
11 12 February 2017 11 13 February 2017 17
12 24 February 2017 9 28 February 2017 3
13 10 March 2017 13 13 March 2017 16
14 26 March 2017 3 27 March 2017 1

5. Conclusions

The security of water distribution systems has become increasingly complex due to the
rapid rise of telemetry and remote controls. The growing number of reported cyber-attacks
in WDSs has also created an important need for new, fast and efficient methodologies for
early-warning systems that help guarantee WDS security.

Most efforts devoted to detecting cyber-attacks in WDSs have primary focused on
machine-learning and optimization techniques. Statistical analysis of measured data can
provide valuable results for quick detection of anomalies. However, as attested in [5],
studies from other fields are necessary to build confidence in the models. In this paper, we
focus on signal-processing. Among the signal-processing techniques based on statistical
analysis, fastICA is explored in this work. FastICA has shown to be a powerful tool for
hydraulic data analysis, mainly under abnormal conditions. The signal separation follows
a trend, where one signal is more related to a typical periodical oscillation of the system,
and the second one is more related to a random process. The latter is highly affected by
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abnormal conditions and, consequently, it is a possible input for detection algorithms. The
application of fastICA to hydraulic time series (e.g., tank level) allowed to clearly highlight
the attacks against the studied water system. These attacks cannot be easily disclosed in
the original time series; however, this task becomes easier after processing the data by a
BSS algorithm.

Change point detection algorithms are useful for automatic statistical changes in time
series, and can be used for early-warning systems. In this work, the ACPD algorithm is
applied to the separate signals resulted from fastICA for automatically defining changes
in data, which are seen to correspond to cyber-attacks. The methodology applied to the
BATADAL case study resulted in the detection of the seven attacks with high accuracy and
few false positives. We claim that the methodology can be perfectly applied to any real
system, as long as the water utility can measure at least one of the hydraulic parameters,
namely flow, pressure and tank level.

Nevertheless, some attack scenarios have been detected too late, which is a limitation,
otherwise typical of most risk evaluation methodologies. Special attention to this kind of
attacks should be paid, requiring more investigation for developing ultimate conclusions
about the global efficiency of the methodology. Future works, more than ratifying the
efficiency of detection algorithms, should go deeper into the cyber-physical problem,
investigating the causes of the attacks, optimally placing grids of dedicated sensors, and
timely responding to prevent the occurrence of damage. Optimal sensor placement is still
an only recently and partially formed subject. Accordingly, efforts should be devoted to
expanding and enriching this field by producing novel and efficient methodologies to help
fully develop this field of research.
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Abstract: Water availability is increasingly stressed in cities across the world due to population
growth, which increases demands, and climate change, which can decrease supply. Novel water
markets and water supply paradigms are emerging to address water shortages in the urban
environment. This research develops a new peer-to-peer non-potable water market that allows
households to capture, use, sell, and buy rainwater within a network of water users. A peer-to-peer
non-potable water market, as envisioned in this research, would be enabled by existing and emerging
technologies. A dual reticulation system, which circulates non-potable water, serves as the backbone
for the water trading network by receiving water from residential rainwater tanks and distributing
water to households for irrigation purposes. Prosumer households produce rainwater by using
cisterns to collect and store rainwater and household pumps to inject rainwater into the network at
sufficiently high pressures. The smart water grid would be enabled through an array of information
and communication technologies that provide capabilities for automated and real-time metering of
water flow, control of infrastructure, and trading between households. The goal of this manuscript
is to explore and test the hydraulic feasibility of a micro-trading system through an agent-based
modeling approach. Prosumer households are represented as agents that store rainwater and pump
rainwater into the network; consumer households are represented as agents that withdraw water from
the network for irrigation demands. An all-pipe hydraulic model is constructed and loosely coupled
with the agent-based model to simulate network hydraulics. A set of scenarios are analyzed to
explore how micro-trading performs based on the level of irrigation demands that could realistically
be met through decentralized trading; pressure and energy requirements at prosumer households;
pressure and water quality in the pipe network.

Keywords: rainwater harvesting; water trading; dual reticulation; decentralized water supply;
water distribution system; agent-based modeling; urban water management; smart city

1. Introduction

Urban water utility systems around the world are increasingly pressured by limited water
resources, growing urban demand, and impacts from climate change. The United Nations projects
that, by 2025, 1.8 billion people will be living in regions with absolute water scarcity, and two-thirds of
the world population could be living under water-stressed conditions [1]. Supply-side strategies for
urban water management are limited in water-scarce regimes, because they require large investments
to construct new infrastructure and develop new resources. Demand-side strategies, on the other
hand, extend existing resources by reducing demands through conservation campaigns, pricing
strategies, and restrictions. Demand-side strategies that rely on continued demand reduction, however,
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are ultimately limited by hardened demands that cannot be reduced further. As water scarcity in
urban centers increases with population growth and climate change, new technologies, advanced
management strategies, and diverse water sources must emerge to create new efficiencies in water
supply and use. Innovative programs can utilize new technologies and data that have emerged as part
of smart cities initiatives [2]. For example, smart meters provide capabilities to collect sub-hourly water
flow and consumption data in real-time [3], and automated control systems operate infrastructure
components remotely and efficiently [4–6].

This manuscript explores a novel management strategy for improving water efficiency in urban
areas by supplementing non-potable purposes of the total demand using alternative water sources.
A smart water grid is presented here as a water network that is shared by multiple diverse users,
who can either produce or consume water. The concept presented in this manuscript builds on an
existing dual reticulation system, which pumps non-potable reclaimed water back to a community
via a second parallel pipe network and reduces demands for high quality treated water, as compared
with a conventional urban water cycle (Figure 1a,b). We propose that the existing non-potable water
network can be used as a smart water grid to facilitate micro-trading, where households can exchange
water within a peer-to-peer network. Households generate water through rainwater harvesting,
putting rainwater “back on the grid” by pumping water into the non-potable water infrastructure
system, and purchase water from neighbors by withdrawing water from the pipe network. Smart
technologies, such as smart meters, blockchain, smart contracts, and automated infrastructure, would
provide the necessary capabilities to allow real-time trading within a smart water grid. Within a smart
city paradigm, a rainwater micro-trading program re-envisions the urban water cycle by allowing
households to act as prosumers, who produce and sell water within their community (Figure 1c).
By allowing households to trade rainwater, a new efficiency is introduced in the water cycle that offsets
requirements to treat and pump reclaimed water from a centralized facility. This offset can create
energy savings and save reclaimed water for use in other non-potable applications.

In the energy sector, micro-trading has been demonstrated as a viable market for decentralized
resource production, in which households can generate energy through solar photovoltaic cells,
store energy in batteries, and sell and transmit excess energy to neighbors through existing power
distribution infrastructure [7,8]. Micro-trading water has a number of nuanced constraints that may
limit its adoption by utilities and community members. For example, new infrastructure at households
is needed to enable storage, sensing, treatment, and trading water, and household participation may
vary based on climate and economics. The research presented in this manuscript focuses on the
performance of centralized infrastructure and takes a simulation-based approach to evaluate the effects
on water savings, energy savings, nodal pressure, and water quality. Reclaimed water networks
are designed to maintain pressures and flows, and performance of a smart water grid may decrease
due to new flows associated with produced water. The ability of prosumers to contribute water to
a non-potable water network is facilitated by household-level pump systems, and the introduction
of these decentralized flows into a pipe network affects flows and pressures in the network. High
pressures in the network can limit the contribution of water from households that must overcome
pressure heads through small pumps, and low pressures may emerge in times of low production and
high demands. This research also evaluates savings in energy and water associated with a smart water
grid. Micro-trading can reduce demands for produced reclaimed water, resulting in water savings.
The energy required to run household pumps across a network, however, must be compared with the
energy requirements of treating and pumping water from a centralized facility.
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(a) Conventional urban water infrastructure.

(b) Dual reticulation system.

(c) Smart water grid.

Figure 1. (a) Conventional urban drinking water, wastewater, and stormwater systems. (b) A dual
reticulation system closes the loop in the urban water cycle by treating wastewater and providing it for
non-potable household uses. Effluent flows from the wastewater facility are reduced. (c) A smart water
grid increases water efficiency in the urban water cycle by allowing households to contribute rainwater
to the dual reticulation system. Effluent and stormwater flows are reduced.
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The goal of this manuscript is to explore the feasibility of a smart water grid based on the
performance of the centralized infrastructure and energy demands. This research develops a simulation
framework that couples agent-based modeling and hydraulic models to test energy consumption,
water consumption, and nodal water pressure in a smart water grid. Agent-based models simulate
the individual behaviors and interactions of a population of agents to explore emergent system-level
dynamics [9,10]. Agent-based modeling has been applied in water resources management to simulate a
population of water consumers as agents with the purpose of exploring the emergence of system-level
performance due to micro-level interactions [11]. A few studies couple agent-based models with
hydraulic simulation to explore how changes in household demands affect system-level performance,
such as pressure and flow directions [12–14]. Further, agent-based modeling has been applied to
simulate markets for trading natural resources [11,15–17], and recent research applied agent-based
modeling to simulate how households trade solar generated energy in a peer-to-peer energy market [8].
In the formulation developed in this research, consumer households are simulated as agents that
exert irrigation demands, and prosumer households are simulated as agents that store rainwater,
and pump rainwater into a pipe network. A hydraulic model is developed of a reclaimed water
network that serves a small community of non-potable water consumers and prosumers. Output from
the agent-based model specifies flows into and out of the water network at each node, and these outputs
are used as negative and positive demand patterns for the hydraulic model. The modeling framework
is applied for an illustrative case study that was developed based on realistic infrastructure data. Water
consumption, nodal pressure, and energy consumption are evaluated for the network of water users
for scenarios with and without micro-trading. System performance is tested for 126 scenarios across
different climates and concentrations of prosumers to explore how precipitation and participation
affect feasibility. The results demonstrate that a smart water grid is feasible, generating energy and
water savings that vary in magnitude based on local climate and the level of community participation.

2. Background

2.1. Dual Reticulation Networks

Only a fraction of water used for urban purposes needs to be potable quality, and reclaimed
water can serve as an alternative water source for non-potable applications [18]. Reclaimed water
is wastewater that has been treated to levels lower than potable water quality and can be used
for nonpotable applications, including washing, cooling, gardening, toilet flushing, and lawn
irrigation [19]. Reclaimed water can be provided to a large group of consumers through a dual
reticulation system, which includes two parallel pipe networks: the primary water network distributes
potable water, and the secondary network conveys reclaimed water [20]. A centralized utility typically
manages water reclamation programs to ensure that treatment standards are met and to distribute
reclaimed water. Dual reticulation programs have been implemented in cities in the United States,
Japan, and Australia [21]. Reclaimed water products can help conserve high-quality water produced
by utilities for essential purposes.

Dual reticulation systems impose high capital costs, but costs can be offset by a reduction in
demands that are exerted on aquifers and surface water sources, leading to improved ecosystem health
and drought resilience [22]. While it is difficult to quantify the externalities in a cost-benefit analysis of
non-potable water systems [23,24], dual reticulation systems can offset the use of potable water, creating
savings in utility energy costs for water treatment [25]. Energy savings can be sufficient to offset the
capital costs required for building a dual pipe infrastructure [26]. Dual reticulation systems may also
create benefits by reducing the need for infrastructure investment for the main potable system [27]
and systematically encouraging conservation by adding new value to water. The cost-benefit analysis
of dual reticulation systems, however, can vary widely based on the characteristics of a location,
such as infrastructure design, topography, energy sources, quality of source water, and existing
infrastructure [28]. The distance between users and a water reclamation plant and the amount of

28



Water 2020, 12, 3075

uphill pumping can limit the feasibility of dual systems. A study of four U.S. cities that recycle
water found that there were significant economic barriers to implementing dual-reticulation systems.
Challenges were cited, including diminishing returns, due to the lack of additional large consumers of
nonpotable water near the treatment plant; commitments to return treated effluent for instream flows;
more efficient options for selling recycled water for cooling and industrial processes; lack of clear and
convergent regulations around water reuse programs [22].

2.2. Rainwater Harvesting Systems

Rainwater harvesting systems can be installed at the household level to capture roof runoff,
providing an alternative source to meet non-potable water demands [29]. Harvesting rainwater is
a millennia-old agricultural practice, with increasing implementation in modern cities with large
population demands, including in Adelaide and Addis Ababa [29,30]. Rainwater harvesting is used
widely because it provides easy collection with low cost, treatment, and maintenance requirements [31].
Captured rainwater can be applied on-site or on a larger scale for community purposes, and communal
rainwater tanks may be economically feasible [32]. Rainwater harvesting may be feasible for individual
users, subject to the specific water demand and roof area [31,33], but its economic feasibility may be
limited for some households because it does not provide a continuous supply of water and needs to
be supplemented with other sources [34]. As an alternative source, however, rainwater can provide
significant volumes of water, and it is estimated that up to 80% of rainfall could be harvested from
urban rooftops in the U.S. [35]. For example, a study of California water indicates that recycling
irrigation runoff water (priced at ($0.43–1.21 per 1000 gallons) was a cost-effective alternative to using
the region’s municipal water ($2.39–2.91 per 1000 gallons) [36]. Rainwater harvesting has other benefits,
and it can reduce stormwater infrastructure costs by reducing peak flows. Liang et al. [37] showed that
implementing smart rainwater harvesting systems reduces peak system flows by 35% to 85%.

There are practical limitations and costs that prevent the transition to the wide-scale use of
rainwater infrastructure. Rainwater harvesting is shown to have long payback periods before benefits
outweigh costs, with economic returns that are very sensitive to local policy, water quality concerns,
and government rebates [38,39]. Grants from local initiatives and environmental agencies can reduce
capital costs. For example, rebates of $0.50 per gallon of installed tank capacity were used to incentivize
rainwater harvesting in Barbados [38]. The costs and benefits indicate that green infrastructure
solutions have market value and should be strongly considered, though the economics of purchasing
tanks and pumps, as required in the smart water grid, may need economic incentives to encourage
wide-spread adoption. The system that is proposed in this research creates a new efficiency in the
use of rainwater by providing the means to share rainwater within a community and creating a
reliable source of non-potable flows by integrating rainwater harvesting within a reclaimed water
reticulation system.

2.3. Micro-Trading in Water Markets and Smart Technologies

Economists have argued that scarce water can be allocated more efficiently through water
markets, rather than through centralized control [40]. Large-scale water rights markets have been
operating for decades among utilities and agricultural users [41], and new markets that trade conserved
water are emerging as a strategy for demand-side management to create value and new incentives
around conservation activities [42,43]. Decentralization of water services is seen as an approach to
support a sustainable future for urban water management [44,45], where water can be supplied or
treated at small-scale plants, rather than at centralized locations. Efficiencies may be gained through
decentralized systems because water or wastewater does not need to be transported over long distances,
and resources can be re-used to meet demands on-site. A few studies explore decentralized markets for
water supply that allow for trading among households. Haddad [46] proposed a cap-and-trade water
program among residential end-users, where a cap is used to grant each customer with use-rights to
available water. Water conservationists could sell or rent unused use-rights, and customers would
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be heavily penalized for using water in excess of their use-rights. Water customers would call a toll
free number to execute transfers through a specially-trained broker. Haddad’s micro-trading system
was criticized based on the complexities of making initial allocation of use-rights to users; expected
sizeable transaction costs; lack of household expertise and willingness to engage in a market; impact
of a water-use market on economic development in the area [47,48]. More recently, a decentralized
water supply system was developed in Western Australia, in which consumers contribute recycled
water, including stormwater and greywater, to a groundwater resource through garden bores [49].
By contributing recycled water, consumers become prosumers and gain credits in their water use
accounts. The program is enabled through smart meters, which record water consumption and
contributions at 10-minute intervals, and the shallow aquifer provides a pathway in the urban water
cycle among households and utility.

The viability of micro-trading has been enabled by the emergence of blockchain technology in
water markets. Blockchain technology is an information and communications technology (ICT) capable
of addressing some of the challenges in implementing peer-to-peer markets [50]. A blockchain is
a distributed ledger that provides a platform for digital transactions without a trusted third-party
organization [51,52]. Data structures are both immutable and cryptographically verifiable, promising
security, accuracy, authentication and traceability of transactions [53]. Blockchain can also reduce
transaction costs associated with third-party brokers, though some fees may be necessary to maintain
a critical centralized infrastructure [8]. Smart contracts can be used with blockchain, where smart
contracts work as simple scripts encoded on the blockchain that contain predefined directions for
automating workflows on recorded data and finalizing the settlement of financial transactions between
buyers and sellers [54]. Smart contracts automate micro-trading to allow for rapid reconciliation
between consumers and prosumers and reduce the time and associated cost of trading, which
may increase participation. As an emerging technology, blockchain has applications in water
resources management, supporting data sharing among utilities with assurances of confidentiality
and commercial sensitivity; linking flowmeter sensor data with water resources mapping, billing,
and operations; facilitating trading and tracking of water credits among large-scale users; allowing
households to buy water in a market of competitive water providers; serving as a stable currency to
enhance security of water supply [55–57]. Blockchain provides a ledger system that can support
peer-to-peer markets for micro-trading water, and a few examples exist to date. Melbourne,
Australia, has proposed a rainwater micro-trading program that would be under-girded by blockchain
technologies [55]. The program would assign apartments with a quota of free rainwater from a
communal tank, and excess rainwater would be conveyed to a large water recycling plant to supply
treated water for non-drinking uses [58,59]. In another example, a proof-of-concept model was
developed to simulate blockchain-enabled trading of virtual water among homes, where water could
be sold by low-consuming households to households that want to exceed a daily limit on water
consumption [60]. Similar to Haddad’s cap-and-trade system [46], customers would trade water rights.
Whereas Haddad’s program would allow customers to trade water on a monthly or seasonal basis,
the market proposed by Alcarria et al. [60] relies on smart meters, blockchain, and smart contracts,
and the functionality of these technologies would allow customers to make daily decisions about
trading water.

The smart water grid proposed in this research would rely on smart connected technologies,
similar to the systems described above. Smart water meters are needed to record the exact flow rate
and time of consumed and produced water. Water that is available during times of peak demands is
inherently of higher value than water that is available at times of low demand. Prosumers can invest
in large tanks to store water and release it during periods of high consumption, and precise meters are
needed to record high resolution of trades. Automated infrastructure components, such as digitally
operated pumps and valves, are needed to update flows into the network from prosumers when a trade
is negotiated. Blockchain and smart contract technologies are needed to support micro-trading. Unlike
other micro-trading systems described above, however, the smart water grid relies on a centralized pipe
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network to convey traded rainwater among households, and the focus of this research in on a feasibility
analysis to explore how the hydraulics of the pipe network would be affected by decentralized buying
and selling of rainwater. The feasibility of a smart water grid will also be affected by the availability
and functionality of smart technologies, including blockchain and smart contracts, and the effects
of benefits and costs of infrastructure, new technologies, and water and energy savings on market
efficiency. While market efficiency and smart technologies are not included in the modeling framework
that is described in this research, they should be explored in future research to further test the feasibility
of the smart water grid.

2.4. Agent-Based Modeling for Water Infrastructure

Agent-based modeling simulates the behaviors and micro-interactions of a population of
autonomous and heterogenous agents to model and study system-level phenomena [9,10].
Agent-based modeling has been applied to simulate a range of water resources planning problems
by representing water users, stakeholders, and decision-makers as agents to capture decisions
and behaviors around water use, water supply, wastewater services, and stormwater runoff [11].
Agent-based models have been applied to represent a population of residential water users that
adapt their water consumption based on economics, climate, policies, and social influence [61–71].
These models simulate household decisions to use water and reduce consumption by adopting
water-efficient technologies and restricting water use. Some frameworks couple agent-based modeling
with the water supply system to capture feedback between the availability of water resources and
decisions to conserve water [64–67,70]. Other agent-based models couple a population of agents with
the hydraulic simulation of a water distribution system to evaluate how network flows are impacted
by changing demands. Models capture water use changes during a water supply contamination event,
based on exposure to the contaminant, communication from public officials, and social influence
of peers [12,13,72–77]. Another set of studies uses agent-based modeling coupled with hydraulic
simulation to evaluate how flows in a reclaimed water network and a potable water network change
as customers adopt or resist water reuse programs [14,27,78]. Agent-based modeling has also been
applied to model trading within natural resource markets, where agents use cost information to seek
trades, negotiate, and adapt their preferences for trading permits with other agents. A few modeling
studies couple an agent-based model with a water quality simulation model to assess water quality
impacts of permit-trading strategies on river and estuary systems [11,15]. Other agent-based models
capture the decisions of polluters to bid and sell permits in an emissions market, and these models are
applied to assess the effect of trading on air quality [16,17]. More recently, an agent-based modeling was
applied to simulate peer-to-peer markets by modeling households as agents that buy and sell energy in
a residential smart energy grid [8]. In the research presented in this manuscript, agent-based modeling
is loosely coupled with hydraulic simulation modeling to assess network performance metrics that
are affected by agent behaviors to trade water. A simple market is simulated, where consumer agents
buy rainwater when it is needed for irrigation, and prosumer agents meet demands when they have
rainwater that is stored. The price of rainwater is not considered in this simulation, because the focus
of the model is on the hydraulic feasibility of the network when trades are made. Additional research
is needed to develop cost information and simulate how households make decisions to participate,
bid, and execute micro-trades in a rainwater market.

3. Agent-Based Modeling Framework

The modeling framework presented in this research loosely couples an agent-based model
with a hydraulic simulation model (Figure 2). The agent-based model represents households as
either consumers, which purchase water and withdraw it from the system, or prosumers, which
pump collected rainwater into the network when a buyer has committed to purchase the water.
Prosumer water input and consumer demands are used to modify an input file for the hydraulic
simulation, which calculates water flows and pressures in the pipe network based on production and
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consumption of water at households. The agent-based model is described following the Overview
Design Details (ODD) protocol [79]. The ODD protocol provides a clear and succinct approach to
describe agent-based models by describing purpose, entities, state variables, and scales as part of
the Overview; process overview and design concepts as part of the Design; input, initialization,
implementation, and submodels as part of the Details.

Figure 2. Agent-based modeling framework couples consumer and prosumer agents with a reclaimed
water network. Image credit: Water Tank by Carlos Ochoa from the Noun Project.

3.1. Overview

3.1.1. Purpose

The purpose of the agent-based model is to simulate rainwater trading among consumer and
prosumer agents facilitated through a reclaimed water network and to evaluate how water resources,
energy consumption, and hydraulic performance of the network are affected by micro-trading.

3.1.2. Entities, State Variables, and Scales

Agents represent individual prosumer and consumer households. Each consumer agent is
assigned a lawn area to calculate irrigation demand and is assigned a time of day for exerting demand.
Prosumer agents are each assigned a rainwater tank volume capacity, a catchment area, and a small
pump with a given exit pipe diameter, length, and roughness coefficient to add harvested rainwater to
the hydraulic network. Parameters are used as input to the model (Table 1). State variables are updated
dynamically (Table 2). For each prosumer, tank storage is updated due to precipitation, flushing
requirements, and water released into the network. The model operates on an hourly time scale.

Three system-level state variables are used to represent the depth of hourly precipitation (Pt), total
precipitation depth over the preceding 24-h period (BP24), and the time step at which rain begins (TR).

Table 1. Parameters for consumer and prosumer agents.

Agent Parameter Description Setting for Case Study

Consumer TIc Time of day for irrigation demand Section 3.3 and Figure 3 [80]
Consumer DI Daily irrigation demand Equation (8)
Consumer f Irrigation factor 1.0
Consumer k Crop factor 0.7
Consumer ET Evapotranspiration 281.25 mm/month
Consumer ρ Household density 721 housing units/km2

Consumer U Ratio of unpaved land 0.9
Consumer L Irrigable area of lawn 494.9 m2 (Equation (10))
Consumer and Prosumer A Roof area 46.5 m2 [81]
Prosumer F Required first flush 1.62 L/m2

Prosumer V Rainwater harvesting tank capacity 5392 L [82]
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Table 2. State variables for consumer and prosumer agents.

Agent State Variable Description Calculation

Consumer Dt,c Hourly demand Step 3
Consumer CQt,c Flows received from centralized system Step 4
Consumer WAt,c Water age at node in the network Step 6
Consumer and Prosumer TWt,c,g Traded rainwater Step 4
Prosumer St,g Rainwater storage Step 2
Prosumer VFt,g Flushed volume Step 2
Prosumer Qt,g Flow from household pump Step 4
Prosumer ht,g Pressure at node in the network Step 6

3.1.3. Process Overview and Scheduling

The following steps are executed at each hourly time step, t, of the simulation. The execution time
step is labeled tE. The agent-based model requires hourly precipitation (Pt) as input.

Step 1. Update system-level state variables. Based on the value of Pt, the values for BP24 and
TR are updated. The precipitation over the preceding 24-h period (BP24) is a binary variable that takes
a value of one if there is a precipitation greater than zero in 24-h period before the execution time:

BP24 =

{
1, if ∑tE−1

t=tE−24 Pt > 0

0, otherwise
(1)

where t is the time step and tE is the current execution time step. Rain time, TR, is the first time step
when the precipitation is greater than zero if the precipitation over the preceding 24-h period is zero.

TR = tE, if PtE > 0 & BP24 = 0 (2)

Step 2. Prosumer agents update rainwater storage values. Each prosumer agent g calculates
rainwater storage volume, St,g, at time t based on the runoff from the roof catchment and the volume
of water flushed for the first flush diversion:

St,g = min(V, St−1,g + Pt × A − VFt,g) (3)

where A is the roof area; V is the capacity of the rainwater tank; VFt,g is the volume of water flushed
from the rainwater tank at time step t for agent g. Prosumers can accumulate a maximum volume of
water equivalent to the capacity of the rainwater tank (V); any excess volume is released as runoff.
If no precipitation falls in the previous 24 hours before a distinct rain event begins, the prosumer agent
is required to discard a first flush volume. The volume of rainwater that should be flushed (VFt,g)
ensures that a prosumer agent flushes a volume equal to F × A after the rain event begins, where F is
the required first flush rate, and A is the roof area. The agent can flush the total volume (F × A) over
multiple time steps, if needed.

VFt,g =

{
min(St,g, F × A − ∑tE

t=TR VFt,g), if ∑tE−1
t=TR VFt,g < F × A

0, otherwise
(4)

Step 3. Consumer agents exert irrigation demands. If no precipitation fell in the previous 24 h
(BP24 = 0), each consumer agent c exerts a daily irrigation demand (DI) at time step TIc. The hourly
demand exerted by each consumer agent c is assigned using Equation (5):

Dt,c =

{
DI, if t = TIc & BP24 = 0

0, otherwise
(5)
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The value of DI is calculated to initialize the model, as described in Section 3.4.1.
Step 4. Prosumer and consumer agents trade rainwater. Each consumer agent with non-zero

demand at time step t is randomly paired with a prosumer agent with St,g > 0. A consumer agent c
receives traded water (TWt,c,g) from prosumer agent g up to its demand, Dt,c. If the consumer agent
has a non-zero volume of unmet demand, it is randomly matched with other prosumer agents until
the total volume of traded water it receives is equal to Dt,c or until no prosumers have stored rainwater.
For time steps when prosumers cannot meet consumer demands, consumer demands are met using
water that was reclaimed through the centralized treatment plant. The flow (Qt,g) that a prosumer
pumps into the network at each time step is the sum of traded water (TWt,c,g) that is purchased by
consumer agents.

Qt,g =
Ct,g

∑
c=1

TWt,c,g (6)

where Ct,g is the number of consumers that prosumer g supplies at time step t. The total volume of
water purchased by consumer agent c is supplemented by flows from the centralized system (CQt,c) at
time step t to meet its demand:

Gt,c

∑
g=1

TWt,c,g + CQt,c = Dt,c (7)

where Gt,c is the number of prosumers that sell water to consumer agent c at time step t.
Step 5. Increase time step. In this step, tE = tE + 1. The agent-based model is executed to

simulate trades for a total of T time steps to simulate a one-month period. If the simulation time is
reached (e.g., tE = T) go to Step 6. Otherwise, go to Step 1.

Step 6. Execute hydraulic simulation model. The dataset of negative demands (Qt,g for all
prosumers) and positive demands (Dt,c for all consumers) are used as input for the hydraulic simulation
model. Section 3.4.2 details the method for running the hydraulic simulation model.

Step 7. Calculate hydraulic effects and energy consumption for the infrastructure system.

Methods for calculating energy consumption and water age are described in Sections 3.4.3
and 3.4.4, respectively.

3.2. Design Concepts

3.2.1. Decision-Making

Agents use simple heuristics to make decisions. Prosumer agents are uniformly sampled to meet
consumer water demands until consumer water demands are met or no prosumers have rainwater
remaining in their tanks. Consumer agents do not use information about network location, amount
of available water, or cost associated with purchasing water to select a prosumer agent for trading.
Prosumers are simple reactive agents and release water when matched with consumer agents.

3.2.2. Stochasticity

There is little stochasticity in consumer and prosumer behaviors. Households in the network are
randomly assigned as consumer and prosumer agents, and consumer agents select among prosumers
with uniform probability to buy water.

3.2.3. Sensing

Consumer agents know the volume of water that is stored by each prosumer agent, and both
consumer and prosumer agents have exact information about precipitation depths.
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3.2.4. Interaction

Consumer and prosumer agents exchange water directly. Trades are not constrained by spatial
location, and any prosumer agent can trade with any consumer agent. Consumer agents do not interact
with other consumer agents, and prosumer agents do not interact with other prosumer agents.

3.3. Details: Initialization, Input, and Implementation

The agent-based model is initialized with 2016 households, using a pre-specified ratio of
prosumers to consumers. Parameter values are specified in Table 1. Values for the first flush volume as
reported in the literature (e.g., Gikas and Tsihrintzis [83]), and rainwater harvesting regulations [84,85],
vary in the range of 0.11–1.02 L/m2. The value used in the prosumer model represents a conservative
estimate of first flush. All tanks are empty at the beginning of the simulation, and the number of hours
since the previous flush is set to 24, which forces prosumer agents to flush tanks before beginning
trades. Each prosumer agent is assigned a household pump model, with a pump efficiency of 75%.
Consumer households are each assigned a time of day to irrigate their lawns (TIc), derived from the
diurnal irrigation pattern for dual-reticulated systems reported by Willis et al. [80]. For each discrete
value of TIc, Figure 3 specifies the number of consumer agents that are randomly selected from the
pool of consumer agents without replacement and assigned the selected value for TIc. For example,
if the consumer agent pool consists of 100 agents, then TIc = 19 for 21 randomly selected agents.
The agent-based model requires hourly precipitation data as input, which are needed to calculate
demands and trades at hourly intervals.

Figure 3. Consumer agents are assigned a value for TIc using the distribution of values shown here.

The agent-based model is implemented in Multi-Agent Simulator Of Neighborhoods
(MASON) [86], a Java-based discrete-event multi-agent simulation library. The code is published
by Ramsey [87]. The output from MASON was used to create input for the hydraulic simulation
submodel, which is described below.
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3.4. Details: Submodels

3.4.1. Consumer Daily Irrigation Demand Submodel

The consumer daily demand volume, DI, is calculated using the outdoor water demand
model [88].

DI =
f × L × ((k × ET)− r)

days
(8)

where f is an irrigation factor indicating frequency of watering; L is the irrigable lawn area (m2); k is a
crop coefficient; ET is evapotranspiration (mm/month); r is effective rainfall (mm/month); days is the
number of days per month. Effective rainfall represents the precipitation that penetrates the soil and
thereby reduces the water demand of plants. It is calculated as a function of total measured monthly
rainfall Pmonth (mm/month) [88], as:

r =

⎧⎪⎨
⎪⎩

Pmonth if Pmonth < 25 mm
0.504 × Pmonth + 12.4 if 25 ≤ Pmonth ≤ 152 mm
89.0 if Pmonth > 152 mm

(9)

The monthly demand value is converted and reported as a daily demand. The irrigation factor ( f )
is set at 1.0, because it is assumed all households that opt to connect to the system are frequent
irrigators. The crop coefficient (k) is set as 0.7 to represent lawn. The value of L (irrigable lawn area) is
calculated as

L = (
1
ρ
− A)× U (10)

where the household density is ρ (unit per m2), roof area is represented as A (m2), and the ratio of
unpaved land is U (dimensionless).

3.4.2. Hydraulic Simulation Submodel

The pipe network is simulated using EPANET, which is a software application that calculates
the movement and fate of drinking water constituents within water distribution systems [89].
Each household (consumer or prosumer agent) is represented in the network using three nodes:
one node represents the street-level metered connection to the non-potable water network; a second
node represents the irrigation demand node; a third node represents the negative demand node that
allows a household to contribute rainwater to the network. The negative demand node represents
an onsite rainwater harvesting tank and a pump that is used to put rainwater back into the network.
The dataset of negative demands, or positive flows into the network (−Qp,t), are placed at negative
demand nodes, corresponding to each prosumer and time step. The dataset of positive demands (Dc,t)
are placed at irrigation demand nodes, corresponding to each consumer and time step. Demands are
used to modify the EPANET input file, and the hydraulic model is run for a one-month period to
calculate network flows and pressure values.

3.4.3. Energy Consumption Submodel

Energy requirements for the water infrastructure network are based on three energy components:
energy consumed by prosumers to pump rainwater into the network (Eprosumers), energy used to pump
water from the centralized treatment plant (Esystem), and energy required to treat wastewater (Etreat).
The total energy required by the system (Etotal) is the sum of the three components. Energy is reported
in kilowatt hours (kWh).

The energy consumed by the prosumers to pump water into the network is calculated as:

Eprosumers =
G

∑
g=1

T

∑
t=1

γ × Qt,g × ht,g × Δt (11)
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where γ is the specific weight of water (kN/m3); Qt,g is the flow rate of pumped water from prosumer
g, as defined above (m3/s); ht,g is the pressure head at the negative demand node for prosumer g at
time step t, which is the head required by the pump (m); G is the number of prosumers in the system;
T is the number of simulated time steps; Δt is the time step, or one hour in this application.

The energy consumed to pump water from the centralized system is calculated as:

Esystem =
T

∑
t=1

γ × QS,t × Ht × Δt (12)

where QS,t is the flow rate of water pumped from the reservoir to the system (m3/s); Ht corresponds
to the head (m) gained by the pump at time step t.

The volume of reclaimed water that is offset by rainwater contributions can result in energy
savings through a reduction in the volume of water that must be treated. Treating water to high
standards is energy intensive, and supplementing the reclaimed water network with rainwater
decreases the volume of wastewater that water treatment facilities need to process for household
consumption. The energy required to treat wastewater can vary based on influent water quality,
facility hydraulics, and treatment processes employed, and a value of 0.343 kWh/m3 is adopted in this
study [25]. The energy required to treat wastewater is calculated as:

Etreat = etreat × VO (13)

where VO is the total volume of treated water that is pumped into the system over the simulated time;
etreat is the unit energy required to treat wastewater (0.343 kWh/m3).

3.4.4. Water Age Submodel

The water age of the system is a surrogate metric for water quality [90]. Water age is calculated
using water quality calculations in EPANET, which are executed at small time steps to reduce error.
The weighted water age is calculated using Equation (14) at consumer nodes across the network.

WAS =
∑C

c=1 ∑TWA
t=1 bc,t × Dc,t × (WAc,t − WAlim)

∑C
c=1 ∑TWA

t=1 Dc,t
(14)

where WAS is the weighted average water age above the limit for the system (hours). The acceptable
limit for water age (WAlim) is 48 h [90]. WAc,t represents the water age at consumer node c and time
step t, reported in hours. The binary variable bc,t represents if the water age at node c and time step
t exceeds the limit, where kc,t = 1 if the water age is greater than the limit, and kc,t = 0 otherwise.
The time step for calculating water quality is 15 min, and the total number of time steps (TWA) is 2880
for simulation of a 30-day month.

4. Virtual Network: Wolfpack City

“Wolfpack City” was developed as a virtual non-potable water distribution network (Figure 4)
with realistic hydraulic design parameters and is used in this research to simulate a micro-trading
program. It is assumed that each household receives potable water to meet high-quality end uses via a
separate potable water system that is not modeled in this framework; simulations for Wolfpack City are
specifically for non-potable water supply and demand. Wolfpack City represents a population of 2016
households, which exert irrigation demands based on rainfall and evapotranspiration. One demand
is exerted as a constant flow (0.0078 m3/s or 125 GPM) to represent an industrial demand, such as a
cooling process.
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4.1. Non-Potable Network System

Household elevations in Wolfpack City range from 282 to 312 m (Figure 4). The source represented
by a reservoir with a head of 297 m is a reclaimed water treatment plant and pumps water to the
network using a set of pumps and a tank. The pump station includes a main pump and eight
additional parallel pumps that are controlled by the water level of the tank. The main pump delivers
up to 0.0227 m3/s and a gained head of around 56 m. The parallel pumps operate to meet the
intermittent demand exerted by consumers and deliver up to 0.050 m3/s each. The pump efficiency is
simulated as 75%. The tank is initialized at full capacity.

Figure 4. Wolfpack City water model. Each terminal node represents 18 households, which are
represented using three nodes each: a meter node, positive demand node, and negative demand node.

4.2. Climate Data

Local climate data are needed to initialize rainwater harvesting tank storage and irrigation
demand values for Wolfpack City. We selected the location of Wolfpack City based on the maximum
potential rainwater yield at various locations across the U.S. using Equation (15) [91]:

Y = C × LA × RT × Pann (15)

where Y is maximum potential rainwater harvesting yield; C is a runoff coefficient, assigned a value of
0.75 [91]; LA is land area; RT is the percentage of land cover which is rooftop; Pann is average annual
precipitation. The percentage rooftop is calculated based on land area, housing density, and average
roof size [81,92]. We estimated the potential rainwater harvesting yield at 10 locations that are spread
across regions of the U.S. using publicly available land cover data [92] and thirty year precipitation
averages [93]. Cities that were included in the analysis are Baltimore, Maryland; Branson, Missouri;
Dallas, Texas; Denver, Colorado; Fargo, North Dakota; Phoenix, Arizona; Raleigh, North Carolina;
San Diego, California; Seattle, Washington. Cities that report the highest value for Y are Seattle (24.1
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million m3), Dallas (13.5 million m3), and Phoenix, Arizona (12.2 million m3).The values for each city
are shown in Appendix A (Table A1).

Seattle, Washington, was selected as a climate region for Wolfpack City, and observations of
precipitation and evapotranspiration in April 2020 are used to create climate scenarios. The data
used in this study were recorded at USGS Station 12113346 for Springbook Creek at Orillia, WA [92].
Over April 2020, evapotranspiration was recorded as 281.25 mm/month. Seattle’s household density
(ρ) is 721 housing units/km2, and other parameters needed for the agent-based model, such as roof size
and ratio of unpaved land to total land area, are determined using national averages (Table 1) [81,92].
Using Equation (10), consumer irrigable lawn area (LI) is calculated as 494.9 m2.

4.3. Modeling Scenarios

A set of scenarios are developed to explore the performance of the smart water grid for variations
in model characteristics. This analysis explores changes in the number of households that join
the market as prosumers to assess how many prosumers are needed to meet demands exerted
by consumers. The participation of households as prosumers varies from 0% to 100% of the total
number of households by increments of 5%. Households are randomly assigned as prosumer and
consumer agents to meet the scenario definition. This analysis also explores changes in precipitation,
as precipitation is expected to affect the amount of rainwater traded. Higher depths of rainfall and
more frequent precipitation events lead to greater volumes of water stored, but reduce the amount of
water needed for irrigation, as consumers do not exert demands immediately following precipitation
events. Precipitation scenarios are explored where the depth of rainfall at each hourly time step is
multiplied by a factor of 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0. The total number of time steps with precipitation
greater than zero is held constant to maintain consistency across simulations; for example, if 5.0 mm
is recorded during the first hour of Seattle’s April 2020 precipitation data, then a total of 15.0 mm
falls during that time step in a scenario with a precipitation factor of 3P. Evapotranspiration (ET)
values are held constant throughout all scenarios. According to the Blaney–Criddle equation, ET is
correlated with temperature, wind, and daylight hours, which we assume as constant across all
precipitation scenarios [94]. A total of 126 scenarios (six precipitation settings and 20 prosumer
settings) are generated, and scenarios are labeled as the percentage of households that participate as
prosumers in the market and the factor used to adjust rainfall depths. Each scenario was simulated
over the one-month horizon using MASON, which required approximately 40 s to run using a 3.1 GHz
Dual-Core Intel Core i5. Output from the agent-based model was used to create the input file depicting
the demands of that scenario for EPANET, which required approximately 6.7 min when run using a
2.9 GHz 4-Core Intel Xeon W-2102.

5. Results

The results presented below demonstrate the dynamics of water storage, water consumption,
energy consumption, and hydraulic performance for an example scenario. Subsequently,
the performance of the ABM and the network across all scenarios are reported and explored.

5.1. Scenario 20% − 1P

Scenario 20% − 1P simulates rainfall using Seattle’s April 2020 precipitation data (1P), and 20%
of agents (403 of 2016 total agents) are initialized as prosumers. The time series plots of precipitation,
irrigation demands and volume of traded rainwater pumped into the network are shown in Figure 5.
The simulated horizon includes six distinct rainfall events of varying volumes, followed by a reduction
in immediate irrigation demands. The reduction in irrigation demands represents that consumers
do not exert irrigation demands within 24 h of a rainfall event. Traded rainwater injections into the
reclaimed water network spike after this 24 h period. The highest peaks in irrigation demand each day
correspond with the irrigation patterns shown in Figure 3, peaking at hour 19 (or 7:00 p.m.) each day.
A total of 525 m3 of harvested rainwater are pumped into the system during the simulation, which is
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the equivalent of the daily water demand exerted by 141 consumer households (8.7% of consumers).
The volume of rainwater that is traded is a small fraction (less than 1%) of the total volume of water
consumed, as shown in Table 3. The flows of water produced at the treatment plant and consumed at
nodes for Scenario 20% − 1P are simulated using EPANET (Figure 6), demonstrating that the network
satisfies exerted demands without significant excess production; the difference in water produced
and water consumed is 7% of the water consumed (Table 3). For this scenario, six of the nine pumps
are turned on to meet demands. The centralized system maintains a minimum production volume
when consumer demands are zero to meet the constant demand of 0.0079 m3/s (or 20,477 m3 over the
one-month period).

The energy consumed for system-level pumping, reclaimed water treatment, and prosumer
pumping for Scenario 20% − 1P are calculated and compared with the energy required for Scenario
0% − 1P (no prosumers) in Table 3 to allow for the examination of energy savings between scenarios
with and without rainwater trading. The energy consumed by prosumers for household-level pumping
increases by 41 kWh when 20% of households function as prosumers, compared with Scenario 0%− 1P.
Residential demands are 20% lower in Scenario 20% − 1P, due to the number of consumers that switch
to prosumers. The increase in energy for household pumping corresponds to a decrease in energy
consumed by system-level pumping and treatment. There is a decrease of 2409 kWh in energy
consumed by system-level pumps for Scenario 20% − 1P, and a total reduction in energy consumption
of 11% when compared with Scenario 0% − 1P. Unit energy consumed is calculated as the total
energy required per unit volume of water produced by both centralized and decentralized processes
(Table 3). Unit energy provides an assessment of the energy efficiency of the system. The unit energy
for Scenarios 20% − 1P and 0% − 1P are the same value (0.37 kWh/m3), and the the addition of
403 prosumers to the network does not impact energy efficiency of meeting demands.

Figure 5. Precipitation, irrigation demand volume, and traded rainwater volume for Scenario 20%− 1P.

Pressure is affected by reductions in consumer demands and the injection of water at terminal
nodes through household-level pumping. The maximum pressure in the network occurs when no
demands are exerted and is the same value for Scenarios 0% − 1P and 20% − 1P. As shown in Table 3,
the minimum pressure when 20% of households are prosumers is slightly increased, compared to
Scenario 0% − 1P. The distribution of pressures at a time step with low pressures is shown in Figure 7.
The time step shown is 9 p.m. on a day that is preceded by 24 h without rainfall, and pressures remain
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at or near the minimum (7 m). In the central area of the city, elevations cover a 30 m range, and the
pressures are around 20 m at nodes that are located at high elevations. The southern section of the
network is at a lower elevation, and pressures remain in the range of 25–35 m during this period of
relatively low pressure.

Figure 6. EPANET output reports flow of water produced by the treatment facility and flow of water
consumed at nodes for Scenario 20% − 1P.

Table 3. Metrics reported for Scenarios 0% − 1P and 20% − 1P.

Scenario
0% − 1P

Scenario
20% − 1P

Volume of water consumed (m3) 187,679 154,269
Volume of water produced (m3) 183,895 164,015
Volume of traded rainwater (m3) 0.00 525.06
Energy consumed by prosumer pumping (Eprosumers) (kWh) 0.00 40.97
Energy consumed by system-level pumping (Esystem) (kWh) 20,836 18,427
Energy consumed by treatment (Etreat) (kWh) 47,307 42,193
Total energy consumed (Etotal) (kWh) 68,143 60,661
Unit energy consumption (kWh/m3) 0.37 0.37
Water age (WAS) (h) 20.15 19.23
Minimum pressure (m) 3.00 6.30
Maximum pressure (m) 70.71 70.71

Water age is calculated for Scenarios 20% − 1P and 0% − 1P using Equation (14), calculated over
all irrigation nodes, and is reported to explore water quality. It is expected that the water age of
Scenario 20% − 1P would be higher than the water age of Scenario 0% − 1P, because the injection of
water at households may increase the residence time of water in the system, and there are fewer agents
consuming water in the network. The water age of Scenario 20% − 1P is marginally less than the water
age of Scenario 0% − 1P (a difference of less than 1 h). This difference may be due to the process of
calculation. The water age is calculated only at consumer nodes, and there are fewer households acting
as consumers in Scenario 20% − 1P, leading to a marginal reduction in water age. In addition, the age
of water entering the system due to household-level pumping is initialized at zero hours, which does
not account for the time that the water resides in the household-level rainwater harvesting tank.
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Figure 7. Lowest nodal pressures for Scenario 20% − 1P at 9:00 p.m. on a day with no rainfall in the
previous 24 h.

5.2. Performance Analysis across All Scenarios

The total volume of traded rainwater, total number of trades, and percentage of irrigation demand
met for each of the 126 scenarios (six levels of precipitation and 21 levels of prosumers) are shown in
Figure 8. For all scenarios where no agents are prosumers (0%) or all households are prosumers (100%),
no trades occur because of the homogeneity of agents. For all other scenarios, an increase in rainfall
volume corresponds to an increase in volumes of trades (Figure 8a) and number of trades (Figure 8b).
During higher precipitation volume scenarios, prosumer agents can harvest higher volumes of
rainwater, which allows some consumer agents to satisfy demands through trading. For higher
precipitation, the peaks in volume and number of trades correspond with lower percentages of
prosumer agents. During scenarios with precipitation volume 1P, for example, the maximum volume
of traded rainwater corresponds with a prosumer ratio of 80%, compared to 50% for precipitation
volume 4P. This is because for lower rainfall depths, a higher number of prosumers are needed to
participate in the market to offset the demand exerted by a consumer. The highest number of trades
occur for scenarios with precipitation volume 1P. Consumer agents buy rainwater from multiple
prosumers at each time step to meet demands, leading to a high number of trades (Figure 8b). At low
precipitation depth, 0.5P, the number of trades is relatively low, because prosumer agents are unable
to harvest higher volumes of rainwater, resulting in reduced ability to trade. The volume of rainwater
that is traded decreases for higher numbers of prosumer agents because fewer agents are consumers
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to exert demands. The system does not meet total irrigation demands for any of the 126 scenarios
(Figure 8c), however, because irrigation demands of consumers are substantially higher than harvested
rainwater volumes. Across all precipitation volumes, the highest percentage of demand that is met
through trading occurs when 95% of agents are prosumers.

(a) Volume of traded rainwater.

(b) Total number of trades.

(c) Percent of consumer demand met via trades.

Figure 8. Total volume of traded rainwater (m3), total number of trades, and total percentage of
irrigation demand satisfied by traded rainwater across 126 scenarios of varying rainfall depth and
percentage of prosumer agents.
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EPANET simulations were used to evaluate energy consumption, pressure, and water age.
The amount of energy consumed by household-level pumping (Figure 9a) follows the same pattern as
the volume of traded rainwater (Figure 8a) with the highest consumption of energy at high rainfall
depths and around 50% prosumers. Scenarios with lower percentages of prosumer agents and low
rainfall volumes require more system-level energy consumption (Figure 9b). System-level energy is
orders of magnitude greater than energy consumed by household-level pumping, and there is a large
reduction in system-level energy requirements for higher numbers of prosumers. This trend emerges
because prosumer agents do not irrigate, which reduces the energy requirements of pumping from
decentralized locations. Energy consumed for treatment is high for this system, approximately twice
the energy required for pumping. Treating wastewater to non-potable standards is an energy-intensive
activity, and these numbers reflect that cost. In this research, we assume that the volume of wastewater
is treated to match the unmet demands in the systems, and the energy cost of treating excess wastewater
that is not needed for reuse is not included in this framework. However, wastewater that is released to
the environment or used for other recycling purposes would also need to be treated, and a holistic
assessment of the interconnections between water, wastewater, and reclaimed water systems may
use an alternative approach to holistically account for energy costs. Based on the sum of energy
requirements for the smart water grid system (Figure 9d), a higher number of prosumers leads to
higher savings in energy.

(a) Prosumer pumping energy consumption. (b) System-level pumping energy consumption.

(c) Treatment energy consumption. (d) Sum of energy consumption.

Figure 9. Energy consumption for (a) prosumers for pumping water at households, (b) system-level
pumping, (c) treatment of water at the treatment plant, and (d) the sum of energy consumption for
prosumers, system-level pumping, and water treatment.

The system’s unit energy is calculated as the energy consumed by three processes (household-level
pumping, system-level pumping, and treatment) per unit volume of water produced by the centralized
system and prosumer pumping (Figure 10). Unit energy is used to represent the efficiency of the
system in meeting demands. For scenarios of high percentages of prosumers and high precipitation
depths, the water contributed by prosumers reduces the amount of water required by the centralized
system, leading to higher energy efficiency. For example, unit energy generally increases across
1P scenarios, which corresponds with the reduction in treatment and pumping energy shown in
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Figure 9b,c. Household-level pumps inject water in the network at peak demand times, which offsets
the need to use the additional pumps that operate in parallel to the main pump. As a result, the number
of pumps that operate to provide water from the centralized system decreases with increasing numbers
of prosumers (nine pumps are needed for 0–5% prosumers; seven pumps: 10–15%; six pumps: 20–25%;
five pumps: 30–40%; four pumps: 45–60%; three pumps: 65–80%; two pumps: 85–95%; one pump:
100%). Further, pumping water from terminal nodes in the network requires less energy than pumping
from the centralized treatment plant, as there is less head loss to overcome when the water is pumped
from near-by terminal nodes.

Unit energy does not increase monotonically across the 1P scenarios, however, because of the
infrastructure complexities of water production. For some 1P scenarios, water production exceeds
demands on the centralized system by up to 18%, while in others, water production drops to 91% of
the demand exerted on the centralized system (that is, total demand minus the demands that are met
by household-level pumping). In cases where the water demanded exceeds the water produced by the
centralized system, the water storage tanks meet the remaining demand because they are initialized
at full capacity. At 80% prosumers, the system reaches a minimum unit energy, and, subsequently,
the energy required per unit volume increases with increasing percentages of prosumers. This trend
mirrors the change in volume of traded rainwater across scenarios of increasing numbers of prosumers,
shown in Figure 8a, which reaches a peak at 80% prosumers for the 1P scenario. When consumers
comprise less than 20% of agents, they demand less water than prosumers produce when tanks are full.
Because low volumes of water are traded and the bulk of demand is at the constant demand, which is
met by the centralized system, the system requires higher unit energy. Higher precipitation depths (2P,
3P, 4P, and 5P scenarios) lead to improved energy efficiency because prosumers can produce more
water to offset demands. Increasing the volume of water that can be provided by prosumers increases
benefits to both water and energy savings through the smart water grid.

Figure 10. Energy consumed per unit volume of water produced. Energy is calculated as the sum of all
three energy expenditures: household-level pumping, centralized pumping, and treatment. Produced
water is calculated as the sum of water produced by the centralized system and the water produced by
prosumer agents.

The minimum and maximum pressure across all consumer irrigation nodes and over all time
steps are reported for each scenario. The minimum pressure across the scenarios varies between 5.0
and 30 m of head (Figure 11), while the maximum pressure is approximately the same at around 50
m for all scenarios. The minimum pressure is low at high numbers of consumers (low percentage of
prosumers). Scenarios where the minimum pressure values fall below 7 m (approximately 10 psi) may
be considered as infeasible because the pressure is not high enough to meet irrigation purposes. For 1P
rainfall scenarios, scenarios are infeasible until the percentage of prosumer agents reaches around 30%.
When the number of prosumers is lower than 30%, consumers require a large volume of water from
the centralized system, and pressures in the central part of the system drop to values less than 7 m.
With higher precipitation depths, the amount of water that is provided by prosumer agents increases,
resulting in relatively higher minimum pressure values. For higher precipitation scenarios, prosumers
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contribute high volumes of water, leading to increasing pressure. For example, for 5P rainfall scenarios,
approximately 15% of agents need to be prosumers to ensure a feasible system.

Figure 11. Minimum head (m) across consumer nodes for all scenarios.

As the number of prosumers increases, there are benefits in energy savings and meeting pressure
requirements, as shown above. There is, however, an expected drop in water quality based on the
residence time of water in the network. As the system has intermittent consumption for irrigation
purposes, water age increases in scenarios with high precipitation values and high percentages of
prosumers (Figure 12). Water age values represent the average number of hours exceeding the water
age requirement of 48 h, and this number is between 20 and 30 h when the percentage of prosumers is
less than 80%. The effect on water age does not grow significantly until the percentage of prosumers
reaches 80%, and water age increases dramatically with additional prosumers. Tradeoffs among water
age, energy consumption, and pressure may govern how a water micro-trading market should be
designed. Results show for 1P scenarios, that water saving is at a maximum at 80%; unit energy
is minimum at 80%; pressure requirements constrain the network to function only if 30% or more
households join as prosumers; water age requirements may constrain the percentage of prosumers to
less than 80%.

Figure 12. Water age calculated for all scenarios using Equation (14).

6. Discussion

This study proposes and tests the hydraulic feasibility of a smart water grid for micro-trading
rainwater through a peer-to-peer non-potable water market that allows residential households to
capture, use, sell, and buy rainwater within a network of water users. In this research, we explore the
impact of the depth of rainfall and the distribution of consumers and prosumers on the performance
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metrics that are used to evaluate the hydraulic feasibility of the smart water grid. In related research,
an agent-based modeling framework was developed to explore how the numbers of prosumers and
consumers affect performance of a peer-to-peer household-level energy trading market, and results
demonstrated that the presence of too many prosumers in the market led to market inefficiencies [8].
In the smart water grid, however, the volume of water that is required by consumers for irrigation is
much higher than the volume of water that is produced by prosumers. Prosumers could not completely
satisfy consumer demands for any of the simulated scenarios, and production from the centralized
system was required to meet demands.

The volume of water that is produced by prosumers drives the performance of the smart water
grid, with respect to both water and energy savings. The total volume of traded water increases and
the energy required to pump demands decreases for scenarios with higher numbers of prosumers
and higher rainfall depths, leading to a more energy efficient system. The energy requirements at
households to pump water from rainwater tanks is lower than the energy required at the system level
to pump the same volume of water from the water treatment plant. Pumping water from the central
treatment plant requires the operation of extra parallel pumps, which are not needed when prosumers
contribute water to the system. In addition, water that is pumped into the network at terminal nodes
by prosumers does not need to overcome headlosses or elevation losses when consumer nodes are
located nearby. Energy savings are also associated with treating smaller volumes of wastewater to
nonpotable standards. In this model, the efficiencies of household pumps and systems were assumed
to be equal (75%). Household pumps, however, may more realistically have lower efficiency than
large pumps, which would change the analysis of energy consumption. The model developed in
this research does not account for energy requirements of onsite treatment that could be required at
prosumer households to treat rainwater. It is expected, however, that treatment of rainwater to meet
nonpotable standards would require much less energy than treatment of wastewater. Pressure and
water quality constraints are also explored in this research, as they are affected by increased trading
and show tradeoffs based on the number of prosumers. For the simulations conducted in this research,
consumer and prosumer agents are assigned randomly at nodes across the network, and the results
are specific to one random realization. Further research can explore how clustering of consumer or
prosumer agents at nodes in the network could affect pressure, energy, and water age through multiple
realizations of initializing consumer and prosumer agents.

In this research, rainfall and evapotranspiration the data that are used to simulate demands are
from the Seattle, WA, USA area, and we explore how higher precipitation can lead to a more efficient
market. The modeling framework presented in this manuscript uses the theoretical outdoor water
demand model, which may overestimate the amount of water required by households. Other climates
may lead to differences in rainwater exchanges, and new methods for estimating irrigation may be
needed to more accurately represent household behaviors.

6.1. Smart Technologies

The system that is conceptualized in this research would be possible through smart technologies
that can record and account for water flows and peer-to-peer transactions in real-time. Smart water
flow meters are needed to sense and record water contributed to and withdrawn from the water
network at each household on sub-hourly time steps. AMI that includes smart water flow sensors can
allow urban water managers to accurately and continuously account for non-potable water use and
pumping [95]. Blockchain technologies can be applied to create a ledger to record transactions between
peers, and smart contracts can be built on top of a distributed ledger to facilitate the settlement of
water trades. Automated valves and pumps would be needed to automatically execute trades by
releasing water at the household into the network. The integration of these technologies creates a
smart water grid that enables new water and energy savings through decentralized water sources.
These technologies were not modeled as functioning entities in this framework, and future research
can explore how these technologies would be adopted and would function in a smart water grid.
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Introducing this array of new technologies can create new vulnerabilities to failure that may occur
due to internet disruption, power outages, and malfunctioning controllers. Fail-safe protocols and
technological solutions are needed to account for loss of water or trades that are not fulfilled.

6.2. Semi-Centralized Infrastructure

The smart water grid is a semi-centralized system and relies on both decentralized and centralized
infrastructure to provide diverse sources of non-potable water. A pre-existing dual reticulation system
is required as part of the envisioned system to circulate non-potable water that is generated at lower
water quality for end uses such as irrigation and flushing toilets. Constructing a secondary pipe
network within an existing water supply system is typically cost-prohibitive, and implementation
of the smart water grid may be better incorporated into new systems, such as the network that
is conceptualized for Fisherman’s Bend near Melbourne, Australia [59]. A smart water grid for
micro-trading rainwater could also be implemented using a shared aquifer [49] or water trucks to
provide conveyance of traded water. Micro-trading rainwater can also use a water rights structure,
where households buy the rights to use rainwater from a community source. Rainwater harvesting
provides a sustainable source of water by recycling runoff; however, rainwater is an unreliable source,
and it is likely that rainwater would be unavailable at times when irrigation water is needed most, such
as during droughts. By taking a semi-decentralized approach that incorporates rainwater tanks into a
reclaimed water network, diverse sources are utilized to meet potable demands. Diverse portfolios of
water sources can lead to reliable water supply systems [96], and the smart water grid would meet
demands during low rainfall by circulating reclaimed water and reusing rainwater when it is available.
Other benefits of decentralized water management associated with a smart water grid may include
offsetting household energy costs [97] and reducing stormwater flows [37].

6.3. Peer-to-Peer Markets and Cost-Benefit Analysis

Criticisms of Haddad’s early depiction of micro-trading [46] argued that households may not
have the expertise, interest, or time to trade water [47]. Haddad argued that households regularly
make complex decisions around finances and could readily bid on water prices [48]. A smart water
grid would involve transaction costs and costs associated with rainwater tanks and smart meters,
creating considerable economic barriers. Research around a peer-to-peer energy trading market
found that households were engaged in bidding on energy, but they became disengaged due to
the structure of transaction costs that created market inefficiency [8]. The buy-in for consumers to
invest in rainwater cisterns and pumps could contribute to challenges in implementing a smart grid,
as researchers have demonstrated that the payback period of rainwater harvesting systems alone
can be 20–30 years [31,98]. Water resources are projected to become increasingly scarce [1], however,
and a study conducted in India suggests that people, particularly in drought-prone areas, may be
willing to invest in rainwater harvesting systems or other creative and environmentally-friendly
water alternatives [99]. As described above, rainwater harvesting alone provides an intermittent
source of water, and the cost-benefit analysis of purchasing a rainwater harvesting tank and pump
to join a smart grid would be altered, because participants are granted access to continuous water
supply. It is expected that micro-trading could function as an efficient market in a water-scarce urban
environment. Further analysis is needed to explore the cost and benefits associated with the economics
of the infrastructure and participation in the water market. The agent-based model can be extended in
further research to capture economic decisions of households to join the market and to buy and sell
water. New modeling mechanisms can be included in the framework to capture the interplay among
demands, climate, trading adaptations, and infrastructure performance.

6.4. Water Quality

Water reuse programs have historically been challenged in garnering public support, due to
the “yuck factor”, or perception that treated wastewater is dirty or unsafe [100,101]. Water quality of
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water withdrawn through the smart water grid should be managed to mitigate public health risks and
enhance positive perceptions of water quality. The quality of rainwater is generally accepted as high
enough for irrigation and toilet flushing, especially when first flushing is used to remove contaminants
that are washed off of roofs [38,83]. The quality of harvested water is expected to degrade, however,
as the water moves through a pipe network and is stored in a tank. We include a first flush diversion
that would improve the quality of water entering the network, but further research is needed to
better represent the quality of water that is pumped from rainwater harvesting tanks and the fate and
transport of contaminants in the network. Filtration and treatment systems can be installed at the
point-of-entry, and research is needed to explore how to enhance household expertise in the operation
and maintenance of treatment technology. For example, new research explores how real time control
of the operation of biofilters can improve microbial removal from stormwater [102].

7. Conclusions

Smart water sensors can be integrated with water distribution infrastructure, distributed ledger
technology, smart contracts, and automated control to support novel decentralized water markets to
improve water savings in urban environments. This research demonstrates how a semi-decentralized
water supply system can create water and energy savings by deploying existing smart city technologies
and decentralized infrastructure within a centralized reclaimed water distribution system. In this
research, we report the feasibility of a reclaimed water system that is augmented by prosumers, who
pump harvested rainwater into the network at decentralized nodes. We construct an all-pipe hydraulic
model for a hypothetical community to simulate demands exerted for non-potable uses at households
and to evaluate hydraulics in the dual reticulation network. An agent-based modeling approach is
developed to simulate household behaviors, including storing, pumping, trading, and withdrawing
non-potable water. The agent-based model is loosely coupled with hydraulic modeling, and negative
and positive demands of prosumers and consumers are used to modify input to the pipe network model.
The simulation framework is applied using climate parameters for a location in the northwest U.S.,
which was selected based on the potential yield expected from rainwater harvesting, and a theoretical
outdoor water demand model is used to simulate irrigation demands at households. Multiple scenarios
are explored to demonstrate the feasibility of peer-to-peer non-potable water trading, and tradeoffs
among the volume of traded water, energy savings, satisfaction of pressure constraints, and water
quality are explored. The smart water grid is a complex system, and energy outcomes emerge based on
reductions in the volume of water required by households, the volume of water provided by prosumers,
and the dynamics of centralized water distribution infrastructure. The water and energy efficiency of
scenarios depends on the reduction in the volume of water that is provided by the centralized system
through traded rainwater. Higher volumes of water produced by prosumers increases both water and
energy savings. Analysis demonstrates that there is a lower bound on the number of households that
should participate as prosumers to meet pressure requirements, and an upper bound on prosumers to
protect water quality. This research develops a novel water management system designed to further
the use of decentralized infrastructure and smart city technologies in improving the sustainability of
the built environment.
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Appendix A

Table A1. Maximum potentialrainwater harvesting yield values for 10 U.S. cities.

City State LA (km2) RT (%) Pann (cm) Y (million m3)

Baltimore Maryland 209.6 19.7% 29.1 12.0
Branson Missouri 53.4 2.2% 28.3 0.3
Dallas Texas 881.9 8.2% 18.7 13.5
Denver Colorado 396.3 10.1% 29.4 11.7
Fargo North Dakota 126.4 5.5% 13.7 1.0
Phoenix Arizona 1338.2 6.1% 14.8 12.2
Raleigh North Carolina 370.1 6.6% 29.4 7.2
San Diego California 842.2 8.5% 8.8 6.3
Seattle Washington 217.4 19.8% 56.0 24.1
Tulsa Oklahoma 509.6 5.1% 27.7 7.2
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Abstract: As sensor measurements emerge in urban water systems, data-driven unsupervised
machine learning algorithms have drawn tremendous interest in event detection and hydraulic
water level and flow prediction recently. However, most of them are applied in water distribution
systems and few studies consider using unsupervised cluster analysis to group the time-series
hydraulic-hydrologic data in stormwater urban drainage systems. To improve the understanding of
how cluster analysis contributes to flooding location detection, this study compared the performance
of K-means clustering, agglomerative clustering, and spectral clustering in uncovering time-series
water depth dissimilarity. In this work, the water depth datasets are simulated by an urban drainage
model and then formatted for a clustering problem. Three standard performance evaluation metrics,
namely the silhouette coefficient index, Calinski–Harabasz index, and Davies–Bouldin index are
employed to assess the clustering performance in flooding detection under various storms. The results
show that silhouette coefficient index and Davies–Bouldin index are more suitable for assessing
the performance of K-means and agglomerative clustering, while the Calinski–Harabasz index only
works for spectral clustering, indicating these clustering algorithms are metric-dependent flooding
indicators. The results also reveal that the agglomerative clustering performs better in detecting
short-duration events while K-means and spectral clustering behave better in detecting long-duration
floods. The findings of these investigations can be employed in urban stormwater flood detection
at the specific junction-level sites by using the occurrence of anomalous changes in water level of
correlated clusters as flood early warning for the local neighborhoods.

Keywords: smart stormwater; machine learning; cluster analysis; data science; flooding detection

1. Introduction

Urban drainage systems (UDSs) are the infrastructures constructed to provide conveyance ability
and storage capability for drainage overflow mitigation, surface inundation reduction, and pollutant
removal. However, the existing UDSs, whose functionality can only serve for a limited number of years,
might degrade and even deteriorate as time goes by [1]. In recent years, retrofitting the traditional
UDSs with water-level sensors, velocity meters, and flow sensors has been widely adopted as an
adaptive and cost-effective solution for flooding challenges [2,3]. The deployed sensors can measure
the water quantity and quality data in a real-time way, which now makes it feasible for decision-makers
and stakeholders to foresee the potential flood events and locate the vulnerable sites, which supports
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decision making. The need to understand the emerging data is crucial for forecasting flash floods,
reducing sewer overflows, and detecting flooded sites [4–6]. Interpreting big water data for flood
detection is attracting increasing attention from researchers [7–10] and can be employed to reduce
potential flood damages.

In the last decade, many scholars have introduced several machine learning techniques to
investigate the available water resources and hydrological datasets [11–13]. The major machine learning
algorithms employed for flood detection are support vector machines [14,15], neuro-fuzzy [16], adaptive
neuro-fuzzy inference systems, multilayer perceptron [17], random forest [18], and classification and
regression trees [19]. Bowes et al. compared long short-term memory and recurrent neural networks
by using a time-series of groundwater table data in the city of Norfolk, Virginia [20]. They explained
that a long short-term memory neural network is better than the recurrent neural network in predicting
groundwater level, but takes about three times longer to train the model. Hu et al. applied a boosted
decision regression tree to detect drainage floods with over 90% accuracy in combined sewer systems of
Detroit city, Michigan [21]. Li proposed a data-driven fuzzy neural method for reducing downstream
urban flooding volume and showed that with an enhanced genetic algorithm optimization the regression
deviations could be reduced from 0.22 to 0.07 [22]. However, the majority of these studies have focused
on supervised learning (i.e., when a known outcome is used to train the model), and unsupervised
machine learning algorithms (UMLA) are not commonly used in stormwater UDSs.

Clustering algorithms are a data-driven technology without considering the classification standard
of different risk levels and thereby provide more objective and reasonable results [23]. Therefore, cluster
analysis, one of the key unsupervised machine learning methods, has been applied in many fields,
including pattern recognition, image analysis, data compression, and anomaly detection [24]. However,
its applicability in urban flood detecting is yet to be fully investigated. In general, cluster analysis is
based on identifying similarities between observations. If a water quantity or quality event happens
in the water system, these observations are likely to be highly dissimilar to other observations [25].
The increment in dissimilarity would lead to these observations being considered as outliers, and thus
detected as anomalies. Although cluster analysis has been extensively discussed in municipal topology
classification and water distribution network simplification [26,27], the ability of UMLA methods to
group time-series data at UDSs is still unknown, and the most appropriate methods to assess these
algorithms are unclear. Keogh and Lin concluded that clustering time-series data is meaningless,
but this argument does not cover the similarity-based clustering algorithms such as K-means and
agglomerative clustering [28]. In contrast, Chen demonstrated that similarity-based cluster analysis
could be successfully applied to sequence datasets by using different distance measures [29,30].
Wu et al. adopted the clustering algorithm [24], developed by Rodriguez and Laio [31], to detect
the short-duration pipe burst with a 0.61% false positive in water distribution systems. Xing and
Sela selected SCI (silhouette coefficient index) and CHI (Calinski–Harabasz index) as the metrics to
evaluate K-mean clustering (KC) performance in clustering time-series water pressure data and they
finally identified the number of clusters for the pressure sensor placement [32]. However, it was
unclear why they chose these two indexes as the UMLA performance metrics. Previous studies from
the computer science field have demonstrated the differences and similarities among the popular
performance evaluation indices such as SCI, CHI, and DBI (Davies–Bouldin index) [33–35]. However,
there is no systematic study of how these apply to time-series data from UDSs.

Floods are one of the most hazardous natural events in the world. The short response time against
flood events makes them challenging for the hydrologists, and as a result, floods cause loss of life,
economics, infrastructure, and property worldwide annually [36,37]. Researchers are trying to promote
flooding indicators to identify flooding locations ahead of extreme storm events. There are several
hydro-meteorological indicators, such as temperature, humidity, and precipitation, which are related
to flood events. The most widely used indicator is hydraulic water level since it can be efficiently
and continuously monitored and forecasted to facilitate floods early detection and warning [38]. To
efficiently capture the flood events, the flooding water level should be well investigated.
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In this study, clustering algorithms, including KC, agglomerative (AC), and spectral clustering
(SC), are applied for the urban flood tracking. A storm water management model (SWMM) is
established to represent the real-world stormwater urban drainage systems, located in Sugar House
neighborhood, Salt Lake City, UT, USA. Three evaluation indices are used to test the performance
analysis of the clustering algorithms, namely SCI, CHI, and DBI. The whole research is driven by
the hypothesis that the clustering of time-series water level data has the potential to facilitate flooding
location detection in the Sugar House Area. The investigations provide answers to various inter-related
research questions: (1) What is the performance of different clustering algorithms in capturing
the floods? (2) Which metrics are the most suitable for assessing cluster model performance based on
hydraulic-hydrologic data in UDSs? (3) Which features of flood time-series data (length, volume and
variability) are the most influential for flooding detection, and how does the choice of data feature
affect the clustering performance in localizing the flooding sites?

To answer these questions, it is necessary to explore how UMLA groups time-series water depth
data, and which assessment score can best represent UMLA performance. However, challenges to
implement UMLA with time-series data still exist. Firstly, it is essential to re-format the time-series
water depth datasets to make them suitable for clustering problem. This difficulty is associated with
the second research question above since the features of datasets determine how we re-structure
the data frame [39]. Secondly, the connection between the number of clusters and the clustering
model performance is another obstacle. As it is still unknown how to correlate clustering performance
and the number of clusters in the stormwater systems, it is necessary to build such a theoretical
relationship for a practical application like the flooding detection herein [40]. Therefore, the study
aims to improve the understanding of how UMLA facilitates detecting hydraulic anomaly according
to the characteristics of water depth datasets in urban drainage networks.

The layout of the study is as follows: (1) build KC, AC, and SC algorithms to group the time-series
water depth data; (2) use UMLA metrics, including SCI, CHI, and DBI, to evaluate these algorithms; (3)
compare the best number of clusters obtained by each method; (4) investigate the relationship between
model performance of flooding detection and water depth data characteristics (see Figure 1 for details).
We start by describing the implementation of different UMLA methods, followed by the research
methodology with an overview of the real-world case study, performance metrics, and simulation
scenarios for cluster analysis. Then, we present the results, discussion, and finally, the conclusions.

 

Figure 1. Representing the workflow of the whole study.
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2. Materials and Methods

This study was organized in four steps: (i) time-series data preprocessing; (ii) clustering modeling
implementation; (iii) clustering performance assessment; (iv) applications analysis of clustering results
for urban floods detection. The workflow of the methods can be found in Figure 1.

2.1. Description of Unsupervised Machine Learning Algorithms

Current machine learning techniques mainly fall into two groups: supervised and unsupervised
learning [41]. The UMLA is a self-organization method to find patterns in unlabeled data. Cluster
analysis is, a subset of UMLA methods, and in general, is based on the principle of grouping similar
observations and segmenting dissimilar observations [42]. Anomalous data points that differ from
others may then be filtered [43]. A large number of clustering algorithms exist, including K-means,
Affinity Propagation, and Mean Shift. In this research, we employed the SCI, CHI, and DBI to assess
the performance of the cluster, because of their accuracy and wide applicability in a similar type of
studies [44–46].

2.1.1. K-Means Clustering

K-means clustering (KC) is a centroid-based unsupervised clustering algorithm, originally
designed for signal processing. It is the most widely applied method of cluster analysis in data
mining [33]. K-means aims to partition the inputs into k clusters. Given a set of observations (x1, x2, ...,
xi) for p variables, the algorithm runs as follows:

(1) Choose k initial centroids, each defined by a value for each of the p variables. These are chosen
randomly, often by simply choosing k observations.

(2) Assign each observation to the centroid it is most similar to. The similarity is generally measured
as the Euclidean distance between the observation and centroid in parameter space.

(3) Once all observations are assigned, re-estimate the centroids location as the mean of the p variables
of all observations assigned to that centroid.

(4) Repeat until the algorithm stabilizes (minimize the within-cluster sum of squares).

The goal then is to minimize kC� the within-cluster sum of squares:

argminμ,C

k∑
�=l

i∑
xi∈C�

||xi − μ�||2 (1)

where k is the number of cluster centers and {μ�}, � = 1, . . . , k are the cluster centroids C�μ�μ�C�.
The total intra-cluster distance is the total squared Euclidean distance from each point to the center of
its cluster, and this is a measure of the variance or internal coherence of the clusters [47]. This can be
used to assess the stability of the solution. When this falls below a predefined threshold, the algorithm
stops. The algorithm is often run multiple times with different random initialization of cluster centroids
to avoid sub-optimal problems in convergence. The clustering solution with the lowest sum-of-squares
is chosen as the final output.

However, the choice of k is challenging when model performance metrics are not available. Often,
an initial value of k is chosen, then the algorithm is repeated for higher and lower values. To improve
the efficiency of discovering the best k value, a score (SCI, CHI, DBI)-based performance assessment
method is recommended in many prior studies [42].

2.1.2. Agglomerative Clustering

Agglomerative clustering (AC) is one of the main forms of hierarchical clustering. These algorithms
do not provide a single partitioning of the data but instead provide a full hierarchy of cluster solutions
from all observations in a single cluster (i.e., k = 1) to all observations in individual clusters (i.e., k
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= n) [48]. In contrast to KC, hierarchical methods allow existing clusters to be split or merged, with
the result that smaller clusters are related to large clusters in a hierarchy. The rules governing which
clusters are again based on their distance or similarity. The AC algorithm consists of the following
steps:

(1) Start with each data point as its own cluster.
(2) Select the distance metric and linkage criteria to calculate the dissimilarity between pairs

of observations.
(3) Link together the two clusters with the minimum dissimilarity.
(4) Continue this process until there is only one cluster.

A key decision in the AC algorithm is the calculation of dissimilarity between clusters. In this
study, we used Euclidean distance [47], and the Ward linkage, which measures the distance between
the cluster centroids, similar to the K-means clustering method. The equations for Euclidean distance
and Ward linkage are defined by Equations (2) and (3), respectively:

||a− b||2 =

√∑
I

(ai − bi)
2 (2)

where a and b mean the Euclidean vector; ai and bi are the point position for the Euclidean vector; i is
the number of vectors.

dij = d
(
{Xi},

{
Xj
})
=
∣∣∣∣∣∣∣∣Xi −Xj

∣∣∣∣∣∣∣∣2 (3)

where dij is the squared Euclidean distance between point i and point j; Xi and Xj are Ward’s vectors.
The resulting hierarchy of clusters can be represented using a dendrogram plot [48]. The detailed

introduction of the dendrogram plot can be found in Section 2.3.5 below.

2.1.3. Spectral Clustering

Spectral clustering (SC) is an unsupervised learning technique based on graph theory, where SC
takes advantage of graph information from the spectrum to find the number of clusters [49]. Unlike
the previous methods that tend to prioritize clusters by proximity, SC aims to identify observations
that are linked, and therefore may not form classical spherical groups in parameter space. The SC
algorithm is as follows:

(1) Create a similarity matrix S between observations. This is the complement to the dissimilarity
matrices used in other methods, and here is calculated as the negative Euclidean distance.

(2) Create an adjacency matrix A, representing the graph or connectivity between observations. This
is a transformation of S, where for each observation, we find the k nearest neighbors (i.e., with
the highest similarity). If observations i and j are considered to be neighbors, we set Aij = Sij. If
not, we set Aij = 0.

(3) Create a degree matrix D, where the diagonal values are the degree of connectivity for each
observations, given as diag{D} = ∑n

i, j Aij, i, j=1, 2,3, ..., n

(4) Next, calculate the graph Laplacian matrix L. This can be normalized or unnormalized. Here, we
use the unnormalized: L = D − A

(5) The clustering solution is then found by eigendecomposition of the Laplacian, and selecting the k
smallest eigenvectors. Consequently, these result in a perfect separation of the observations.
K-means is then run on these eigenvectors, to get the final cluster assignment of each observation:
L(N×N) = D−A

As SC performs dimensionality reduction before clustering data points, it is a very flexible
approach for complex data sets. However, the similarity matrix generated by SC may include negative
values, which can be problematic for grouping time-series points.
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2.1.4. Summary and Comparison of Clustering Algorithms

In general, it is difficult to recommend a single algorithm as being the most suitable for clustering,
particularly with data that is uncertain and of poor quality, such as the features of pipe flow or
water level data used here [41]. It is, therefore, advisable to use several algorithms and compare
their performance for specific applications. Here, we use KC, SC, and AC to discover the unknown
subgroups in simulated water depth data of UDSs’ junctions. Table 1 summarizes the advantages and
disadvantages of these algorithms from review papers [24,33,44].

Table 1. Clustering algorithm information summary.

Models Definition Pros Cons

K-means
Clustering

A kind of vector
quantization, partition

data points into clusters
by minimizing

the intra-cluster distance.

(1) Fast, easy-to-understand, and
wide applications;
(2) Stable for time series data;
(3) Simple and efficient
optimization performance;
(4) Suitable for huge datasets.

(1) Number of
clusters;
(2) Spherical
assumption.

Agglomerative
Clustering

A kind of hierarchical
clustering for merging
clusters according to

a measure of data
dissimilarity.

(1) Stable runs
(2) Reasonable dendrogram cut-off
nodes;
(3) Clusters growth without
globular assumption;
(4) Good performance for
time-series data;
(5) No need to know the correct
clusters’ number.

(1) Number of
clusters;
(2) Slow
implementation;
(3) Cluster with
polluted noise.

Spectral
Clustering

A kind of graph
clustering based on

the distances between
points.

(1) Stable due to the data
transformation;
(2) No purely globular cluster
assumption;
(3) Easy to implement.

(1) Number of
clusters;
(2) Slow performance;
(3) Cluster with
polluted noise.

2.2. Clustering Model Implementation

The SWMM model was run six times, once with each of the rainfall scenarios described above. We
collected the simulated time-series water depth from each node in the stormwater drainage network
for cluster analysis. As there are 60 junctions in the SWMM model, this results in a matrix where
each column represents a single time step with a 5-min interval, and each row (60 rows) stands for
a junction or node in the network. We then used the principal component analysis (PCA) to reduce
the dimensionality of this matrix. PCA uses the eigendecomposition of the correlation matrix to identify
a small set of principal components that represent the majority of variance in the original data [50].
Here, we used correlations between the time-series at different nodes to reduce the column of matrix to
2, which means the number of timesteps is compressed to 2 principal components. Finally, the dataset
matrix is configured with 60 rows and 2 columns under each modeling scenarios. The datasets used
in this work are not large, and for computational costs are limited. While other techniques for data
reduction exist (e.g., correspondence analysis, factor analysis, or non-metric multi-dimensional scaling),
we used PCA due to the assumed linear response of the water depth values. Although the reduction of
dimensionality might cause data loss or an undesirable relationship between score axes, PCA indeed
helps reduce computation time and remove redundant data features in the following cluster analysis.

All clustering algorithms were then run using this set of two principal components shown in
Figure 2, with the following set up:

(1) K-means: We initially set the number of clusters (k) to 2 for each modeling scenarios. The algorithm
was repeated ten times with different random initialization, and a maximum of 5 iterations was
used to converge the algorithm.
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(2) Agglomerative clustering model: We used Ward linkage, as this is robust to outliers and unequal
variance in the data. As only ‘Euclidean’ supports ‘Ward’ linkage distance computation. If ‘Ward’
linkage is used for cluster distance computation, ‘Euclidean’ would be the best way to measure
the data dissimilarity [51]. Thus, the cluster distance calculation method and dissimilarity metric
among sample points are set to be ‘Ward’ and ‘Euclidean’ distance, respectively. The resulting
hierarchy was cut to provide 2 clusters.

(3) Spectral clustering: The algorithm was used to identify 2 clusters, using the unnormalized
graph Laplacian.

   

(a) (b) (c) 

Figure 2. Principal component scores for the two components (x_pca means the first component score;
y_pca means the second component score) by K-mean under varying rainfall scenarios: (a) 3 h’ duration
rainfall, (b) 12 h’ duration rainfall, (c) 48 h’ duration rainfall. The principal component scores are used
to examine if these two clusters are reasonably distinguished from each other clustering (gray circles
the blue and red dots assigned to the closest cluster).

In Figure 2 below, there is no sample marginal overlapping, which indicates the cluster classification
is reasonable with respect to grouping the time-series water level data. Additionally, the isolated
dots in the subplots of Figure 2 present the dissimilarity of the water depth datasets under this event,
indicating these isolated dots might be the potential flooded junctions, which help the decision-makers
to pre-screen the vulnerable sites in the drainage networks.

2.3. Clustering Model Evaluation and Validation

Unlike the supervised machine learning algorithms that compare the predicted and actual values
to compute the model accuracy, the UMLA assess performance directly on the characteristics of
the clusters that were obtained. The performance then depends on data features selected, data
preprocessing, and parameter settings such as the distance function to use, a density threshold, or
the number of expected clusters, which can be modified according to the varying datasets and object
inputs. As a result, there is rarely a single obvious solution for clusters, and cluster analysis is an
iterative process of knowledge discovery or interactive multi-objective optimization that involves trial
and failure, aimed to obtain the desired results [52–55].

Several indices, including SCI, DBI and CHI, are employed to measure the relative performance
of clustering algorithms. In general, these metrics provide an assessment of how the data variance is
partitioned. An ideal cluster solution will have low intra-cluster variance (i.e., all observations should
be similar within a cluster) and high inter-cluster variance (the clusters should be well separated).

2.3.1. Silhouette Coefficient Index

The silhouette coefficient index is an example of model-self-evaluation, where a higher SCI score
relates to a model with better-defined clusters [56]. This score is bounded between −1 for incorrect
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clustering and +1 for well-formed clusters. Scores around zero indicate overlapping clusters. The SCI
is defined for each observation, which can be calculated as Equation (4):

SCI =
m− n

max(m, n)
(4)

where the SCI is for a single observation; m is the mean distance between an observation and all
other observations in the same class; n is the mean distance between the same observation and all
observations in the next nearest cluster. The SCI has the advantage that it can be used to examine
how well individual observation are clustered, or an estimate can be obtained for each cluster or
for the whole cluster solution by averaging across a cluster or the entire dataset, respectively. An
estimate can be obtained for each cluster or for the whole clusters solution. A set of samples is given as
the mean of the SCI for each sample, and it would be relatively higher when clusters are dense and
well separated [57].

2.3.2. Calinski-Harabasz Index

The CHI is calculated as the ratio of the between-clusters dispersion average and the within-cluster
dispersion [58], penalized by the number of clusters (k). A higher CHI score indicates better-defined
clusters (i.e., dense and well separated). CHI for a set of k clusters is calculated as:

CHI =
Tr(Bk)

Tr(Wk)
× N − k

k− 1
(5)

where N is the number of points in our data; k is the number of the cluster; Tr represents dispersion
matrix; Bk is the between-group dispersion matrix, and Wk is the within-cluster dispersion matrix. Bk
and Wk are defined by the following equations:

Wk =
k∑

q=1

∑
x∈Cq

(
x− cq

)(
x− cq

)T
(6)

Bk =
k∑
q

nq
(
cq − c

)(
cq − c

)T
(7)

where Cq is the set of points in the cluster q, cq is the center of the cluster q, c is the center of the whole
data set which has been clustered into k clusters, nq is the number of points in the cluster q.

2.3.3. Davies-Bouldin Index

The DBI can also be used to evaluate the model, where a lower DBI relates to a model with better
separation between the clusters [59]. The index is defined as the average similarity (Rij) between each
cluster k and the next closest (i.e., most similar) cluster. The DBI is calculated as Equation (8):

DBI =
1
k

k∑
i=1

maxi� j
(
Rij
)

(8)

where DBI is the Davies–Bouldin index. Zero is the lowest possible score. Values closer to zero indicate
a better partition. k is the number of the cluster. Rij is the similarity measure which features per
Equation (9):

Rij =
si + sj

dij
(9)

where si is the average intra-distance between each point of cluster i and the centroid of that cluster
representing as cluster diameter; dij is the inter-cluster distance between cluster centroids i and j; Rij
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is set to the trade-off between inter-cluster distance and intra-cluster distance. The computation of
DBI is simpler than that of SC since this index is computed only with quantities and features inherent
to the dataset [60]. However, a good value reported by DBI might not imply the best information
retrieval [55].

2.3.4. Intra-Cluster Distance

Intra-cluster distance (ICD) is the distance between two samples belonging to the same cluster.
Three types of intra-cluster distance, including complete diameter distance, average diameter distance,
and centroid diameter distance, are popular in prior studies. As the number of clusters increase,
individual clusters become more homogenous, and the ICD decreases. At a certain point, the decrease
in distances becomes negligible. Plotting this distance against k usually results in an inflection point or
elbow point where this occurs, and can be used to identify the optimal value of k [61]. The number
of clusters is chosen at this point, hence the "elbow criterion." Here we use the centroid distance to
represent ICD, given as double the average distance between all of the objects:

Δ(S) = 2
{∑

x∈S d(x, T)
|S|

}
(10)

T =
1
|S|
∑
x∈S

x (11)

where Δ(S) is the centroid diameter distance of the formed cluster representative S; x is the samples
belonging to cluster S; d(x, T) is the distance between two objects, x and T; |S| is the number of objects
in cluster S.

2.3.5. Dendrogram

A dendrogram is a visualization in the form of a tree that shows the hierarchical relationship
like the order and distance (dissimilarity) between samples [62]. The individual samples are located
along the bottom of the dendrogram and referred to leaf nodes. The hierarchical clusters are formed
by merging individual samples or existing lower-level clusters. In a dendrogram, the vertical axis
is labeled distance and refers to a dissimilarity measure between individual samples or clusters.
Generally, in a dendrogram, horizontal lines can be regarded as places where clusters merge, while
vertical lines show the distance at which lower-level clusters were merged, forming a new higher-level
cluster. The dissimilarity measure between two groups is calculated as Equation (12):

Dis = 1−C (12)

where Dis means the dissimilarity or distance among objects and C means the correlation degree
between clusters.

If clusters are highly correlated to each other, they will have a correlation value close to 1. To
that, Dis = 1 − C will be given a value close to zero. Therefore, highly related clusters are nearer to
the bottom of the dendrogram. Those clusters that are not correlated have a correlation value close to
zero. Clusters that are negatively correlated will give a distance value larger than 1 in the dendrogram.
The dendrogram can be used to visually allocate correlated objects to clusters or to detect outliers
and anomaly in a diagram [47]. In the dendrogram, each sample is treated as a single cluster and
then successively combines pairs of clusters until all clusters have been merged into a single cluster.
In this process, the dendrogram shows how the aggregations are performed from bottom to top of
the dendrogram statically. This procedure allows the cut-off points to flexibly and efficiently represent
the number of clusters. Therefore, this study used the number of cut-off points in the dendrogram to
validate the cluster number of the agglomerative clustering.
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2.4. Study Area and Data Description

A real-world urban stormwater system located in Salt Lake City, UT, U.S., was selected as the case
study, shown in Figure 3. This study case, with an area of 81-ha, is semi-arid, and has soil composed
of four primary types: alluvial fan, artificial fill, silt and clay, and sand and gravel deposits. The soil
surrounding the study area is classified as hydrologic soil groups B and C, with low infiltration capacity,
which has a relatively poorly draining surface. Due to climate change and urbanization, the studied area
has suffered from floods more frequently than 1990s, and the increase in the magnitude and duration
of the storm events has pushed the resulting stormwater system out of service. This urban drainage
network was represented by a rainfall-runoff SWMM model. SWMM is a state-of-art tool developed to
help support local, state, and national stormwater management objectives to reduce runoff, discharge,
and improve stormwater quality [63,64]. It has been widely used all over the world in similar type
of investigations including stormwater runoff, combined and sanitary sewers, and other drainage
systems [65–67]. Figure 3 shows the components of this SWMM model, which includes one rain gauge,
60 junctions, 61 conduits, two outfalls, and seven sub-catchments, while the groundwater interflow,
water evaporation, snowmelt, and manhole hydraulic loss are neglected during the simulation [68].

Figure 3. Study area located in the northern Utah state (left-top sub-figure: 1 degree roughly means 106
kilometer), the U.S. and the topological view of the stormwater urban drainage system model plotted
by the PCSWMM v.7.3. (major sub-figure, scale unit is kilometer).

For this study, we created 6 artificial precipitation series according to the Chicago distribution
method in PCSWMM v.7.3, and then imported them as modeling inputs. The distribution for
the synthetic rains is shown in Figure 4. These rainfalls with durations of 3 h, 12 h, to 48 h and
return periods ranging from 2-year to 5-year almost contain all typical features and characteristics of
real storms in the study area. Additionally, rainfall measurements for two real rainfall events were
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collected to test the clustering algorithm. These rain records from 5 May 2015 rainfall event and 8 July
2015 rainfall event are representative for the typical real storms under average climatic conditions
in the study area. Compared with water depth generated by the artificially designed rainfall data,
the time-series water depth produced by the real-world storms contains more non-stationarity and
noise. Nevertheless, the obtained findings are subsequent validated with real rain records.

Figure 4. Distribution plots of artificially designed rainfalls with different return periods and
rainfall duration.

3. Results

3.1. Clustering Performance Evaluation

3.1.1. K-Means

A detailed investigation was carried out to assess the performance of the clustering algorithms.
Figure 4 shows how three performance metrics SCI, CHI and DBI change with different cluster numbers
when using K-means to cluster the time-series water depth data. Values for the CHI value increase
with higher cluster numbers, whereas the SCI and DBI values fluctuate. The SCI and DBI values
show opposite trends, reflecting the different methods by which they are calculated (see Section 2.3
above). In particular, Figure 5b,c show that the best solution is with eight clusters, reflected in
the largest SCI value and smallest DBI value. These results suggest that the SCI and DBI are more
suitable to assess the performance of K-means, while any peak in the CHI related to cluster quality
is eclipsed by the influence of increasing the number of clusters. Based on the SCI and DBI value in
Figure 5a, the optimal number of clusters is six for the two year-3 h and five year-3 h rainfall scenarios.
The differences in the optimal number of clusters in Figure 5a–c indicate that rainfall duration has
impacts on the number of clusters when utilizing K-means to group time-series water depth datasets.
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(a) 

  
(b) 

  

(c) 

Figure 5. Performance evaluation for K-means Clustering with different cluster numbers under
synthetic rainfall scenarios including (a) 3-h (left 2-year and right 5-year), (b) 12-h (left 2 year and right
5 year), and (c) 48-h duration (left 2 year and right 5 year).

3.1.2. Agglomerative Clustering

Figure 6 shows the same results but based on the use of Agglomerative Clustering (AC) to group
the time-series water depth data. As with the K-means results (Figure 5), the CHI value increase with
the number of clusters for all scenarios from short-duration to long-duration rainfall. Again, it is
difficult to identify an optimal number of clusters, and this suggests that the CHI is not suitable for
ascertaining the best clustering solution with these data. In contrast, the SCI and DBI show clear peaks
in their values. Figure 6a shows that 16 clusters result in the maximum SCI close to 0.76 and minimum
DBI with 0.38. Figure 5c shows a peak in SCI values (~0.6) for eight clusters, with a corresponding

66



Water 2020, 12, 2433

minimum in the DBI value (<0.4). However, Figure 6b shows that eight clusters could produce
the largest SCI (~0.62) and the lowest DBI (~0.40) with the two year-12 h rainfall duration scenario (left
subplot), but that 16 clusters are the optimal solution for the two year-12 h rainfall (SCI ~0.58 and DBI
~0.38; right subplot). In summary, the best cluster solutions AC algorithms are 16, eight, and eighteen
under 3 h, 12 h, and 48-h duration rainfalls, respectively. Comparing the left subplots with the right
subplots (Figure 6) provides evidence that the cluster number for the best AC performance remains
the same, although the return period has been shifted from two-year to five-year. The rainfall return
period (annual exceedance probability) was found to be less related to the number of clusters.

  

(a) 

  

(b) 

  
(c) 

Figure 6. Performance evaluation for Agglomerative Clustering with different cluster numbers under
synthetic rainfall scenarios including (a) 3-h (left 2-year and right 5-year), (b) 12-h (left 2-year and right
5-year), and (c) 48-h duration (left 2-year and right 5-year).
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3.1.3. Spectral Clustering

Figure 7 shows the results obtained for different cluster numbers using Spectral Clustering to
group the time-series water depth data. In contrast to the two previous methods, the SCI values
decrease as the number of clusters increase. For the 12 and 48 h scenarios, this index identifies solutions
at about 6–7 clusters, but no clear optimal solution is identified in the shorter scenarios (panel a).
This suggests that this index is unsuitable for assessing this algorithm. The DBI values show greater
variation as the number of clusters change, although minima can be observed at 6 to 7 clusters for most
scenarios. The CHI values no longer show a linear increase, but show clear peaks, although usually for
higher numbers of clusters than the DBI identifies. The highest CHI values (275 for 2 year-12 h and
190 for 5 year-12 h) are all generated by the SC with 13 clusters. For the for two year-48 h and five
year-48 h scenarios, the largest CHI values are approximately 200 and 270, respectively, in both cases
for 12 clusters.

  
(a) 

  
(b) 

  
(c) 

Figure 7. Performance evaluation for Spectral Clustering with different cluster numbers under synthetic
rainfall scenarios including (a) 3-h (left 2-year and right 5-year), (b) 12-h (left 2-year and right 5-year),
and (c) 48-h duration (left 2-year and right 5-year).
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3.2. Clustering Performance Testing

The analysis of cluster performance in the previous section is based on synthetic rainfall datasets,
due to lack of water depth data in the drainage network. However, the use of noise-free synthetic
data may have a significant impact on the results obtained [69], and our results may not represent
real storm situations or current climate conditions. In contrast, the trends identified here might be
masked by time series noise, making it more difficult to identify optimal solutions. In order to validate
that the results obtained from designed rainfalls can also be applied to non-stationary real-storms, we
evaluate the performance of the clusters in grouping flooding water depth datasets generated by two
real flood events described below.

The left plot in Figure 8 indicates that the best number of clusters for the 5 May 2015 event
(Figure 8a) and 8 July 2015 event (Figure 8b) are five and four, respectively. Increasing the number of
clusters beyond this causes both the SCI and the DBI to decline. The distribution of different clusters
obtained is shown in the PCA plots in the right panel of Figure 7. These show that the cluster analysis
resulted in a good separation of the storm events (indicated by the lack of overlap between the gray
circles).It should be noted that both subplots 8a and 8b have an isolated cluster on the top. This is
the only cluster composed of one sample, which means the water depth from the corresponding
junction is significantly distinguishable to others. One possible reason for this phenomena is that
the flooding or overflow events have occurred, triggering a very different signal in water depth at this
location. Besides, as the rainfall duration increases from 3 h (the 5 May 2015 storm) to 24 h (the 8 July
2015 storm), the reduction in the number of clusters selected is in line with the results of Section 4,
supporting the negative correlation between the number of clusters and event duration.

  
(a) 

  
(b) 

Figure 8. Cluster analysis test for time-series water depth generated by (a) 5 May 2015 flooding event;
(b) 8 July 2015 flooding event (gray circles same to clusters), (x_pca means the first component score;
y_pca means the second component score; The principal component scores are used to examine if these
two clusters are reasonably distinguished from each other clustering).
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3.3. Cluster Number Validation

The dendrogram plots are also used to validate the number of clusters. Figure 9 shows
the dendrogram plots obtained from applying the AC algorithm to the flooding water depth data.
Generally, the cut-off point should be at least 70% dissimilarity between two clusters or cutting where
the dendrogram difference is most significant [69]. The number of clusters was selected by using
a distance threshold of 0.9 distance or 90% dissimilarity, and this is plotted as a horizontal cut-off line
in all dendrograms of Figure 9. The cross points (highlighted as green X in dendrogram) between
the cut-off line and dendrogram leaves identify the accepted clusters. In Figure 9, one point identified
by the cut-off line (junction 8; highlighted as red X in dendrogram) was considered as an outlier in
the dendrogram and excluded. In practice, this algorithm might be helpful for anomaly detection
in the sensor monitoring network. For instance, real-time monitoring is built to capture the varying
different features of measurements as much as possible within a limited number of sensors [70,71].
Further, the clusters represent different parts of the hydrological network and can be used to help
target locations for sensor deployment to observe overflow and flood events in the field.

  

(a) 

  
(b) 

  
(c) 

Figure 9. Dendrogram (green X representing acceptable cluster; red X representing unacceptable
cluster) for comparing agglomerative cluster numbers between 2-year return period (the left subplots)
and 5-year return period (the right subplots) rainfall scenarios. (a): left 2 year-3 h; right 5 year-3 h; (b):
left 2 year-12 h; right 5 year-12 h; (c): left 2 year-48 h; right 5 year-48 h.
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The vertical comparisons among the subplots of Figure 9a–c disclosed that the appropriate cluster
numbers for 3 h, 12 h and 48 h rainfall scenarios are quite similar: eight, nine, and nine, respectively.
Meanwhile, comparing cluster solutions for different time periods (e.g., left and right plot of Figure 9a,
the number of clusters and their structure is remarkably similar, implying that the event return period
has fewer impacts on AC model performance. This supports the conclusions reached with the synthetic
time series, that the AC model performance noticeably depends on the flooding duration but not
the event return period (exceedance probability).

This study adopted intra-cluster distance as the metric to assess the effects of flooding duration
and return period (exceedance probability) on the performance of the K-means and Spectral Clustering
algorithm. Figure 10 shows the results of this comparison, with the decay in the intra-cluster distance
as the number of clusters increases. A notable elbow point (the cross between red dashed line and
intra-distance curves) can be seen at the four clusters, as the decrease in distances becomes much
smaller. Using the elbow criterion described in Section 2.3.4, this suggests that four clusters are the best
solution. Increasing the number of clusters beyond this would result in a little additional gain for
the extra complexity of the solution. Figure 10 shows that the intra-cluster distance changes in a similar
way for all six rainfall scenarios, and that the intra-cluster distance is close in those rainfalls with
the same duration. For example, the solid purple line with purple circle markers (representing two
year-3 h rainfall scenario) overlaps the red dashed line with the red circle markers (representing five
year-3 h rainfall scenario). However, there are still some differences between scenarios with different
rainfall duration. Notably, the intra-cluster distance increases as the rainfall duration decreases (the
distance for the ‘3 h’ duration rainfall is the largest, followed by the ‘12 h’ cases, and then the ‘48
h’ scenarios). As a metric for clustering performance, intra-cluster distance is therefore useful in
determining how well these algorithms group the water depth time-series. These results suggest that
the K-means and spectral clustering algorithms work best with longer duration rainfalls, implying that
the longer event duration produces greater similarity in the water depth at different junctions. This,
coupled with the larger set of observations from a longer period, results in better formed individual
clusters. Wu et al. have shown that these cluster methods work optimally when trained on massive
datasets, which is supported by the results herein [72].

 

Figure 10. Cluster Intra-distance for comparing the effects of rainfall duration and return period on
the performance of K-means and Spectral model (elbow point is the cross between the red dash-line
and curves) under 6 synthetic rainfall scenarios (‘yr’ represents year while ‘hrs’ stands for h).
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4. Discussions

4.1. Clustering Parametric Discussion

Previous cluster-based studies have mainly focused on detecting pressure, demand, pipe burst,
infrastructure damage, and illicit intrusion in water distribution systems [71–73]. In the cluster analysis
here, the features, such as the length of time-series water depth from UDSs, are found to be negatively
correlated with the number of clusters. This finding has been validated by the dendrogram cut-off
points in those designed rainfalls and also by the cluster center mapping based on real storm events.
The similar results between the artificial (noise-free) and practical (noise-polluted) scenario infer
that event duration (data length) overwhelms the event exceedance probability (data magnitude) in
the cluster number identification, which agrees with the findings from [25,72]. Increasing the number
of clusters often results in many more errors. One extreme case is that the zero error happens when
each data point is equal to every cluster. Intuitively, the choice of the best number of clusters can be
interpreted into a trade-off between the maximum reduction of complexity of the data with a single
cluster and maximum accuracy by assigning each data point to its cluster. For long time series, we
suggest starting with a small number of clusters and increasing the number, testing the performance at
each increase.

In addition to the determination of the number of clusters, the structure of datasets may also
affect the clustering model performance. KC and SC algorithms are able to robustly group water depth
datasets from longer duration flood events. However, there is a limited relationship between algorithm
performance and annual exceedance probability. The sharply rising trend (Figures 4–6) demonstrates
that the CHI is not suitable to identify the best number of clusters in the KC and AC algorithms, but
that the SCI and DBI work quite well and give comparable results (Figures 4–6). In contrast, the CHI
works well in identifying the optimal cluster number with the SC algorithm. This difference reflects
the different nature of the algorithms: KC and AC are based on simple dissimilarity measures between
observations, whereas the SC is based on a graph representing connectivity. This is because that DBI
evaluates intra-cluster similarity among every data point and inter-cluster differences among each
group. Similarly, the SCI measures the distance between each data point and the centroid of the cluster
it was assigned to. An SCI value close to 1 is always good, and a DBI value close to 0 is also good
whatever clustering you are trying to evaluate. However, the CHI is not normalized, and it is difficult
to compare two values of the CHI index from different data sets.

4.2. Implications of Clustering Application

This study provides an understanding of different clustering algorithms, applicability with
different datasets, and an assessment of cluster solutions in flood detection strategies. For instance,
as water level is one of the inferential indicators of local flood events, clusters with abnormal water
level can be identified as early warning signals of flooding. As new data become availabel during
monitoring, these can be assigned to the most similar cluster. Decreasing dissimilarity to abnormal
cluster therefore indicates increasing likelihood of flooding. In Figure 8, we observed that there
is one isolated dot for each subplot. These separated points represent the highly dissimilar water
depth data, indicating the possibility of triggering flood events. These same cases are also captured
in the dendrogram of Figure 9 which presents that the junction 8 highlighted with red cross might
be the source of anomalous water level. One reasonable explanation for the anomalous cluster is
the resultant flooding or overflow events occuring around the corresponding location. More attention
are recommended to investigate if this location is flooded. Thus, it can be seen that classifying these
points as anomalies is helpful for narrowing down the spatial searching domain from network-level to
node-level, and consequently also reducing the timing and efforts in identifying the flooded locations
in the complex network system [74–76]. We concluded that the occurrence of anomalous changes in
water level in UDSs could be a timely reminder of the upstream or downstream overflow events for
the neighborhoods. Our findings also explain how the characteristics of the dataset (notably length
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and magnitude) influence the number of clusters. This information could be employed to detect urban
flood events using water depth datasets in other real drainage networks [66,67]. These clustering
algorithms aim to efficiently capture the urban drainage flooding locations providing a basis for
managing the existing drainage structures and developing sustainable urban drainage networks in
urbanized areas [77].

4.3. Limitations and Future Work

Although this study has identified some clear differences in the application of cluster analysis,
there are several limitations. Firstly, the majority of scenarios used time-series water depth datasets
generated by model simulation. As these are smooth and noise-free, the results may not scale to field
application. However, we found similarities between the results with the limited set of observed rainfall
series used here, notably in the use of the different indices, but tend to result in a smaller number of
clusters. Further work should apply these methods to a wider set of observed data to reduce the input
(meteorological) uncertainties and meteorological variances if such data becomes available [36,37,78,79].
The possible integration of ensemble prediction system (EPS) and data assimilation techniques might
be of interest for future work, which could provide help for estimating forecast uncertainty via
a linear combination of suitable meteorological variances and uncertainties linked to the rainfall and
hydraulics [80,81]. Secondly, as this paper only focuses on exploring usefulness of clustering model
implementation and performance evaluation, analysis of errors and sensitivity analysis of water level
datasets are recommended for to improve the reliability of results. Future work will concentrate on
the application of these methods, including water-level sensor placement, combined sewer overflow
detection, and urban flooding prediction. Since the dendrogram enables the AC algorithm to detect
outliers in time-series water depth datasets, this can be used to help guide sensor deployment on
vulnerable sites for observing overflow and flood events in the field [76]. It is planned to consider
strengthening the connection between the theoretical results and field application by conducting
a cluster analysis to optimize the sensor monitoring network for flooding detection at UDSs.

5. Summary and Conclusions

In the age of ‘smart stormwater,’ the increased deployment of sensors to monitor water level
characteristics is resulting in rapidly accumulating data. It is becoming crucial to understand and
promote methods to handle these big datasets to help in flood detection and control. This study
aims to promote understanding of how cluster analysis facilitates the interpretation of the unlabeled
time-series water depth data for flooding location detection at the stormwater urban drainage systems.
In this work, three indexes, including silhouette coefficient index, Calinski–Harabasz index, and
Davies–Bouldin index, were used to evaluate the performance of three popular unsupervised cluster
analysis models namely K-means clustering, agglomerative clustering and spectral clustering. A
real-world stormwater urban drainage systems SWMM model was applied to test the performance of
clustering algorithms in capturing urban floods. Five conclusions were drawn below:

(1) Silhouette coefficient index and Davies–Bouldin index are suitable metrics to measure
the performance of K-means and agglomerative clustering model when subject to identify
the number of clusters for the best performance. However, the Calinski–Harabasz Index is found
to be more favorable to assess the performance of the spectral clustering model in grouping
time-series water depth datasets for urban drainage flooding detection.

(2) In K-means and spectral clustering models, the number of the clusters for maximizing model
performance is highly related to the dataset length (flooding duration) but is slightly associated
with the dataset magnitude. There is a negative correlation between the number of clusters and
the length of datasets.
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(3) The short-period water depth data can be well-grouped by the agglomerative clustering model.
In contrast, K-means and spectral clustering models are better able to handle time-series water
depth datasets from long-duration storm scenarios.

(4) This research work provides insight into unlabeled hydraulic data-driven techniques by
conducting clustering experiments. The outcomes are useful for researchers to select
the appropriate clustering model and to choose the corresponding performance metrics for
specific urban flooding applications.

(5) The detailed analyses in this work provide guidance concerning how to use cluster solutions
to isolate or prescreen vulnerable locations for flooded location detection strategies. The water
level in isolated clusters can be considered as the floods early warning for the local residents.
The occurrence of anomalous changes in water level in urban drainage systems could be a timely
reminder of the upstream or downstream flood events for the surrounding neighborhoods.
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Abstract: The performance of water distribution networks (WDNs) can be quantified by several types
of hydraulic measure. In design and operation of a WDN, sufficient consideration should be given
to system performance, and it would be inefficient to separately consider individual characteristics
of hydraulic measures. Instead, various reliability indices have been developed and utilized to
evaluate the performance of WDNs; however, deciding which index to use according to a particular
WDN situation has not been investigated in sufficient depth. In this regard, this study analyzes
the correlation between representative reliability indices and hydraulic measures to propose the
most adequate reliability index according to the desired system performance in various situations.
Specifically, six hydraulic measures representing system performance were selected from the viewpoint
of redundancy, robustness, and serviceability. In addition, nine indices for estimating system reliability
were classified based on theoretical backgrounds such as hydraulic, topological, entropic, and mixed
approaches. The correlations between the nine indices and six measures were analyzed using 17 sample
hypothetical networks with different layouts, under three water supply scenarios, and the overall
evaluation results for each reliability index are presented through multi-criteria decision analysis.

Keywords: comparative analysis; hydraulic measure; multi-criteria decision analysis (MCDA);
reliability index; water distribution network (WDN)

1. Introduction

The expected performance of an infrastructure system can be interpreted through the concept of
“system reliability”, which quantifies marginal capacity to fulfil the users’ requirements. In a water
distribution network (WDN), the system reliability indicates the stable performance of supplying
required water with adequate service pressure. Here, the specific performance of WDN could be
assessed by representative hydraulic measures.

Wildavsky [1] defined “resilience”, one of the most important performance parameters of WDNs,
as the capacity to cope with unanticipated dangers after they have become manifest and learning
to bounce back. Subsequently, Comfort [2] defined resilience as the capacity to adapt existing
resources and skills to new situations and operating conditions. For theoretical concepts of reliability,
Maier et al. [3] suggested first-order estimators such as reliability, vulnerability, and resilience of water
quality service in rivers, and Bruneau et al. [4] summarized the seismic resilience of an infrastructure
system into 4 R’s: robustness, redundancy, resourcefulness, and rapidity. For reliability assessment
of WDNs, several studies [5–7] compared the performance of different WDNs using simple types of
representative hydraulic measure such as average surplus head, minimum surplus head, and supplied
demand. Moreover, Marlim et al. [8] divided and formulated the reliability objectives of a WDN’s
user service into social, economic, hydraulic, and water quality, and Markov et al. [9] also found that
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the performance of a WDN could be measured via users’ satisfaction and proposed a serviceability
indicator to quantify this.

However, any individual hydraulic measurement is too fragmentary to be applied as the objective
for WDN design and operation; hence, a large number of studies have been attempting to formulate
a single “synthetic” index using various theoretical approaches. Wagner et al. [10] were the first
to introduce and apply the concepts of mechanical and hydraulic reliability approaches to WDNs.
Mays [11] also defined mechanical reliability as network topology evaluating system connectivity,
given failure conditions, and hydraulic reliability as the ability of a system to meet the required water
demand and pressure under normal and abnormal conditions. Later, Ostfeld [12] categorized WDN
reliability evaluations into topological, hydraulic, and entropic backgrounds.

With regard to the hydraulic approach, Todini [13] developed the resilience index (RI),
which represents the surplus and required energy in a WDN, whereas Jayaram and Srinivasan [14]
developed a modified resilience index (MRI) with a different energy composition. Later, Liu et al. [15]
and Jeong et al. [16] identified that a topographical relationship alters the reliability of the network
performance, and proposed mixed reliability indices, a pipe hydraulic resilience index (PHRI) and a
revised resilience index (RRI) by incorporating hydraulic and topographical approaches.

Within topological methods, research using a geometric approach [17–19] was performed, leading
to different measures for estimating network reliability such as network efficiency (NE), average degree
(AD), and link density. Creaco et al. [7] found that network performance is represented by the uniformity
of pipe diameters in loop structures and developed a uniformity coefficient as the topological index.
Moreover, Prasad and Park [6] also proposed a mixed reliability index, namely network resilience
index (NRI), considering diameter uniformity along with the existing resilience index.

Regarding entropic reliability approaches, Awumah et al. [20] proposed an entropy reliability
index by formulating water supply diversity in a WDN, and Tanyimboh and Templeman [21] developed
and applied flow entropy (FE) into a WDN study based on the entropy concept of Shannon [22].
Raad et al. [23] suggested another mixed reliability index incorporating hydraulic and entropic
approaches and compared four different reliability indices using performance measures in a benchmark
network. Moreover, Jeong and Kang [24] suggested a hydraulic uniformity index (HUI), which is a
mixed reliability index considering uniformity of the hydraulic gradients of pipes within a WDN.

However, the previously mentioned reliability indices have a bias towards certain system
performances as influenced by their theoretical background. For example, in a recent study by
Paez et al. [25], the correlation between different indices was analyzed through five arbitrary
network designs. In addition, Tanyimboh et al. [26] investigated the correlations between surrogate
reliability/redundancy measures (e.g., FE, RI, NRI) and surplus power factor with hydraulic reliability
in hypothetical WDNs. In the most recent study of Sirsant and Reddy [27], the correlation between a
reliability index and hydraulic and mechanical performance was also analyzed based on an optimally
designed network and multipurpose functions of design cost, entropy, resiliency, and combined indices.

Eventually, it is necessary to appropriately examine which reliability index best reflects each
type of system performance according to various situations and purposes required in the design and
operation of WDNs. To that end, in this study, the correlations between representative reliability
indices and hydraulic measures under three abnormal conditions (pipe failure; demand increase;
fire flow) are analyzed for various types of application networks. Through these simulations, it was
intended to determine the most adequate reliability index for evaluation of WDN performance in
various abnormal water supply conditions.

The rest of this paper is organized as follows. The following section provides an overview of the
proposed correlation analysis, and details of the hydraulic measures and various reliability indices are
also described. Section 3 explains the design process of application networks and three application
scenarios, and the application results and analyses are provided in Section 4. Finally, the conclusions
of the study are summarized in Section 5.
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2. Methodology

2.1. Overview of Correlation Analysis

In this study, representative reliability indices and hydraulic measures were classified and estimated
for application networks following the procedure shown in Figure 1. First, nine reliability indices are
selected and estimated through a base scenario representing normal operating conditions. Meanwhile,
hydraulic measures show the change in performance of the system under abnormal conditions
(as compared with normal conditions), and thus six hydraulic measures according to performance
properties were selected and simulations were performed according to three scenarios representing
“abnormal” conditions. The overall framework can be summarized as follows: (1) categorization
of hydraulic measures and reliability indices, (2) establishing synthetic application networks,
(3) calculation of the measures and indices in normal/abnormal water supply conditions for each
application network, (4) correlation analysis between the measures and indices, and (5) multi-criteria
decision analysis (MCDA) for evaluation of reliability indices.

Figure 1. Correlation analysis between reliability indices and hydraulic measures. RI: resilience index,
MRI: modified resilience index, API: available power index, AD: average degree, NE: network efficiency,
FE: flow entropy, PHRI: pipe hydraulic resilience index, RRI: revised resilience index, NRI: network
resilience index.

2.2. Hydraulic Measures

Hydraulic measures are an indication of the water supply’s status in the system, which directly
represents the performance of a WDN. In this study, the properties that can ensure the performance of
a WDN were classified as redundancy, robustness, and serviceability, and change in performance was
quantified based on two hydraulic measures of each property. Detailed descriptions of the concept of
each performance property and the selected hydraulic measures are presented below.

2.2.1. Redundancy Measures

Redundancy used to be defined as substitutable capacity such as excessive backup [4] and the
extent captured by the loops [28] in WDN design. In this study, network average surplus head (Red1)
and minimum surplus head (Red2) under abnormal conditions were used as measures to indicate
the redundancy of the system. Here, the surplus head refers to the head supplied in excess of the
required head at each node (i.e., total head, subtracting elevation and minimum required pressure
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head); it can be shown that the higher the values of Red1 and Red2, the higher the network redundancy.
The detailed calculation of redundancy measures can be presented as follows:

Red1 =

∑nnode
j=1

(
Hj −Hreq, j

)
nnode

(1)

Red2 = min
{
Hj −Hreq, j

}
, j = 1, 2, . . . , nnode (2)

where nnode is the number of nodes; Hj is the total head at node j; and Hreq,j is the minimum required
head at node j.

2.2.2. Robustness Measures

Robustness represents the capacity of a system to withstand a given level of stress or demand
without suffering degradation or loss of function [4]. Hence, robustness performance keeps the
variability of losses within a narrow band [29]. In this study, network average pressure maintenance
(Rob1) and minimum pressure maintenance (Rob2) under abnormal conditions (as opposed to normal
conditions) were used as measures to reflect the robustness of the system. Herein, pressure maintenance
refers to the ratio between nodal pressure under abnormal and normal conditions (i.e., pressure under
abnormal conditions divided by the pressure under normal conditions), and it can be understood
that the higher the values of Rob1 and Rob2, the stronger the robustness of the network. The detailed
calculation of robustness measures can be expressed as follows:

Rob1 =
1

nnode

nnode∑
j=1

Hj, abnormal

Hj, normal
(3)

Rob2 = min
{Hj, abnormal

Hj, normal

}
, j = 1, 2, . . . , nnode (4)

where Hj,normal and Hj,abnormal are the total heads at node j in normal and abnormal water supply
conditions, respectively.

2.2.3. Serviceability Measures

Serviceability represents users’ satisfaction with a system’s functionality, depending on several
factors such as the vulnerability of system components, topology, and operation scenarios [9]. In this
study, the available demand ratio (Ser1) and number of supplied nodes (Ser2) under abnormal
conditions were used as measures to represent the serviceability of the system. Herein, the available
demand ratio indicates the ratio between the nodal supplied demand under abnormal and normal
conditions (i.e., supplied demand under abnormal conditions divided by the desired demand),
and supplied node refers to a node in which all desired demands are satisfied. Therefore, it can be
understood that the higher the values of Ser1 and Ser2, the better the serviceability of the network.
The detailed calculation of serviceability measures can be presented as follows:

Ser1 =

∑nnode
j=1 Qj, avl∑nnode

j=1 Qj
(5)

Ser2 =
nnode∑
j=1

Aj where Aj =

{
1 i f Qj, avl = Qj
0 otherwise

(6)

where Qj is the water demand at node j; Qj,avl is the supplied water demand at node j; and Aj is the
water availability indicator of node j.
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2.3. Reliability Assessment Index

A reliability index can be defined as an indicator calculated by system states such as elements,
measurements, and structural characteristics. So far, various indices have been proposed through
hydraulic, topological, and entropic approaches in search of a comprehensive understanding of
the reliability of a system, and furthermore, these indices have been combined with each other or
developed in numerous other forms. In this study, nine representative reliability indices were selected,
and they were analyzed as to how well they reflect changes in hydraulic measures according to
abnormal conditions. The following is a description of the concept and specific calculation for each
reliability index.

2.3.1. Hydraulic Reliability Index

The resilience index (RI) quantifies WDN reliability based on system power such as input,
dissipated, and surplus power. In a looped network, the goal is to provide more power (energy per
unit time) at each node than is required, in order to have a sufficient surplus to be dissipated internally
in case of failures. This surplus can be used to characterize the resilience of the looped network,
i.e., its intrinsic capability for overcoming sudden failures [13]. In other words, RI is the ratio of surplus
power excluding the minimum required power at the node with the total system power supplied;
the detailed calculation method can be expressed as

RI =
γ
∑nnode

j=1 Qj
(
Hj −Hreq, j

)
γ
∑nsource

s=1 QsHs + γ
∑npump

p=1 QpHp − γ∑nnode
j=1 QjHreq, j

(7)

where γ is the specific weight of water; Qs is the inflow at source s; Qp is the pumping flow at pump p;
Hs is the total head at source s; Hp is the pumping head at pump p; nsource is the number of sources;
and npump is the number of pumps.

The modified resilience index (MRI) quantifies the reliability of a WDN based on system power,
similarly to RI. In particular, MRI uses only required and surplus power to calculate the index and could
be used to compare the uncertainty handling of one network relative to another, which is essential in
design and rehabilitation problems [14]. A detailed calculation method for MRI is given as follows:

MRI =
γ
∑nnode

j=1 Qj
(
Hj −Hreq, j

)
γ
∑nnode

j=1 QjHreq, j
(8)

The available power index (API) quantifies the WDN reliability using total available power and
input power. Here, the available power represents the output power at demand nodes; while the
unavailable power includes the power dissipated due to pipe friction losses and various minor losses
in the network [15]. The detailed calculation method of API is given as

API =
γ
∑nnode

j=1 QjHj

γ
∑nsource

s=1 QsHs + γ
∑npump

p=1 QpHp + γ
∑ntank

t=1 QtHt
(9)

where Qt denotes the inflow at tank t; Ht is the total head at tank t; and ntank is the number of tanks.

2.3.2. Topological Reliability Index

The average degree (AD) is a convenient geometric index for quantifying system reliability based on
the number of node and pipe elements. It implies that network reliability is proportional to the diversity
of link (i.e., pipe) elements and paths. If a network has too few pipes, there will be many isolated nodes
and clusters with a small number of nodes. As more pipes are added to the network, the small clusters
are connected to larger clusters [18]. The calculation method of AD can be presented as follows:
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AD =
2× npipe

nnode
(10)

While many topological indices, including AD, quantify connectivity of networks using only the
number of nodes and pipes without distinction of their layouts, Latora and Marchiori [17] suggested
an index, called network efficiency (NE), that quantifies the average efficiency of paths. The NE can be
calculated as an average distance between two generic nodes and is expressed by Equation (11).

NE =
1

nnode(nnode− 1)

nnode∑
j=1

nnode∑
j∗ = 1
j � j∗

1
djj∗

(11)

where djj* is the shortest path length from node j to node j*.

2.3.3. Entropic Reliability Index

Shannon [22] derived the informational entropy function as a statistical measure of the amount of
uncertainty that a probability distribution represents. The flow entropy (FE) proposed by Tanyimboh
and Templeman [21] is another representative entropic reliability index available for WDNs. Prasad
and Tanyimboh [30] suggested that this measure can better represent multi-source networks, and it
was observed that, as the FE increases, the network becomes more reliable. The detailed calculation
method of FE can be presented by Equations (12)–(15).

FE = E0 +
nnode∑
j=1

PjEj (12)

Pj =
Tj

T
(13)

E0 = −
nsource∑

s=1

Qs

T
ln
(Qs

T

)
(14)

Ej = −
Qj

Tj
ln
(Qj

Tj

)
−
∑

ji ∈ NDj

Qji

Tj
ln
(Qji

Tj

)
(15)

where Tj is the total flow reaching node j; T is the sum of the nodal demands; NDj denotes the set of all
pipe flows emanating from node j; and Qji represents the flow rate at pipe i from node j.

2.3.4. Mixed Reliability Index

The pipe hydraulic resilience index (PHRI) focuses on nodal water head and simultaneously
considers the hydraulic gradient between upstream and downstream nodes; hence, it can be categorized
as a mixed reliability index based on hydraulic and topographical aspects. The detailed calculation
method for PHRI can be presented as Equations (16)–(19).

PHRI =

∑npipe
i=1 (Si)∑npipe

i=1 (Ai + Si)
(16)

Si =
1
2

(
Hds,i −Hds,req,i

)
Lpro,i (17)

Si + Ai =
1
2

(
Hus,i −Hds,req,i

)
Lpro,i (18)
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Lpro,i =

√
L 2

i −
(
Zus,i −Zds,i

)2
(19)

where Hds,i is the total head at the downstream node of pipe i; Hus,i is the total head at the upstream
node of pipe i; Hds,req,i is the minimum required head at the downstream node of pipe i; Li is the
length of pipe i; Zds,i is the elevation at the downstream node of pipe i; and Zus,i is the elevation at the
upstream node of pipe i.

The revised resilience index (RRI) is the mixed reliability index based on hydraulic and
topographical approaches. Although the calculation method for RRI is identical with MRI, RRI
applies the hydraulic gradient representing network topography when calculating the minimum
required head at downstream nodes [16]. The calculation method for RRI is as shown in Equation (20).

RRI =
γ
∑nnode

j=1 Qj

(
Hj −H∗req, j

)
γ
∑nnode

j=1 QjH∗req, j

(20)

where H*
req,j denotes the actual minimum required head at node j.

The network resilience index (NRI) is another mixed reliability index incorporating network
topology into the formulation of RI. In WDNs, reliable loops can be ensured, if the pipes connected to
a node are not widely varying in diameter. NRI incorporates the effects of both surplus power and
reliable loops [6]. The detailed calculation method of NRI is as shown in Equations (21) and (22):

NRI =
γ
∑nnode

j=1 CjQj
(
Hj −Hreq, j

)
γ
∑nsource

s=1 QsHs + γ
∑npump

p=1 QpHp − γ∑nnode
j=1 QjHreq, j

(21)

Cj =

∑npipej

i=1 Di

npipej ×max{Di} (22)

where npipej is the number of pipes connected with node j; and Di denotes the diameter of pipe i.

2.4. Multi-Criteria Decision Analysis

Since each index may fit different scenarios and performance aspects, it can be seen that
comprehensive comparative analysis is difficult to achieve. Thus, multi-criteria decision analysis
(MCDA) can be applied for drawing quantitative and comprehensive conclusions in complex decisions
with multiple criteria. In urban water infrastructure, MCDA techniques such as weighted sum model
(WSM), weighted product model (WPM), analytic hierarchy process (AHP), technique for order of
preference by similarity to ideal solution (TOPSIS), and ‘elimination et choix traduisant la realité’
(ELECTRE) are used [31]. Gheisi et al. [32] applied MCDA methods such as WSM, WPM, and TOPSIS
to five reliability indices as a way of determining the optimal pipe layout and diameter designs in a
hypothetical WDN and claimed that WSM can be easily applied to MCDA of WDN.

3. Applications

3.1. Application Networks

In this study, to consider various types of network, application networks of various layouts were
designed for the same region. Specifically, as shown in Figures 2 and 3, for a region with 25 demand
nodes distributed in a grid format, application networks were configured with 17 different layouts,
which ranged from the most-looped P-41 layout with all of the 41 pipes arranged to the most-branched
P-25 layout with only 25 pipes arranged. All 17 networks supply the 25 demand nodes from a single
source with a total head of 45 m.
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Figure 2. Configuration of application grid network (P-41).

Figure 3. Optimally designed application network layout.
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Base demand at all nodes was equal at 9.49 m3/h, and 17 networks were designed by applying an
hourly peaking factor (HPF) of 2.25 to produce design flow. Here, a multi-objective genetic algorithm
(MOGA) was applied with decision variables of pipe layout and diameters, objective functions of
design cost (minimization) and reliability indices (maximization), and a constraint of satisfying the
minimum required pressure (15 m). Finally, 17 optimally designed networks were selected from
the P-41 to P-25 layout considering distribution of reliability-index values. Figure 2 shows the node
elevation and pipe length of the P-41 network, and the optimal layouts of the P-40–P-25 networks can
be comprehensively viewed in Figure 3.

3.2. Application Scenarios

In this study, four scenarios, including a normal condition, were constructed to simulate
performance change under abnormal conditions. The simulation of each scenario was performed using
the pressure driven analysis (PDA) module provided by EPANET 3 [33], a WDN analysis software.
The specific water supply conditions according to the four scenarios applied in this study are described
in the following subsections.

3.2.1. Base Scenario

In the base scenario corresponding to a normal operating condition, a daily peaking factor (DPF)
of 1.80 was applied to the base demand to simulate daily water usage. The hydraulic measures under
the base scenario serve as the reference values of performance changes according to the subsequent
abnormal scenarios and are used for calculation of the nine reliability indices as summarized in Table 1.
Note that the higher reliability index value indicates a higher system reliability.

Table 1. Reliability index values of 17 application networks in the base scenario.

Network Layout
Reliability Index

RI MRI API AD NE FE PHRI RRI NRI

P-25 0.31 0.32 0.65 2.00 0.59 1.18 0.77 0.06 0.26
P-26 0.40 0.41 0.70 2.08 0.54 1.55 0.84 0.07 0.36
P-27 0.40 0.42 0.70 2.16 0.60 2.26 0.81 0.04 0.35
P-28 0.41 0.43 0.70 2.24 0.60 2.14 0.82 0.15 0.35
P-29 0.55 0.57 0.77 2.32 0.64 3.74 0.85 0.16 0.46
P-30 0.62 0.64 0.81 2.40 0.70 3.04 0.88 0.17 0.52
P-31 0.50 0.52 0.75 2.48 0.71 4.16 0.90 0.19 0.41
P-32 0.51 0.53 0.75 2.56 0.77 4.99 0.90 0.20 0.41
P-33 0.56 0.58 0.77 2.64 0.78 5.33 0.92 0.27 0.44
P-34 0.81 0.84 0.90 2.72 0.80 5.93 0.96 0.59 0.66
P-35 0.82 0.85 0.91 2.80 0.91 5.92 0.96 0.58 0.64
P-36 0.84 0.87 0.92 2.88 0.86 6.21 0.97 0.61 0.66
P-37 0.80 0.82 0.90 2.96 0.94 6.81 0.96 0.53 0.61
P-38 0.73 0.75 0.86 3.04 0.89 8.82 0.94 0.41 0.57
P-39 0.88 0.91 0.94 3.12 0.97 8.93 0.98 0.60 0.69
P-40 0.89 0.92 0.94 3.20 0.98 8.98 0.98 0.67 0.69
P-41 0.89 0.92 0.94 3.28 0.99 9.22 0.98 0.69 0.74

RI: resilience index, MRI: modified resilience index, API: available power index, AD: average degree, NE: network
efficiency, FE: flow entropy, PHRI: pipe hydraulic resilience index, RRI: revised resilience index, NRI: network
resilience index.

3.2.2. Scenario 1: Single-Pipe Failure

In Scenario 1, based on the base scenario flow condition, a single-pipe failure, in which each
pipe is sequentially closed one by one, is constructed. Here, since all the pipes are closed once each,
the probability of failure can be assumed to be the same. Therefore, changes in the performance of
the entire system were calculated by averaging the measured changes of individual nodes over all
failure cases.
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3.2.3. Scenario 2: Water Consumption Increase

In Scenario 2, a scenario of increasing water consumption according to climate change and
population growth was assumed. A study by Pachauri and Meyer [34] predicted that the global
average temperature would increase by about 2 ◦C by 2050 according to the RCP (Representative
Concentration Pathway) 8.5 climate change scenario of the Intergovernmental Panel on Climate Change
(IPCC). Kenney et al. [35] found that daily water consumption increased by 2% for average temperature
increases of 0.56 ◦C. Furthermore, Hoornweg and Pope [36] predicted that the population of major
metropolitan cities in the world will increase by about 43.1% from 2025 to 2050, according to the shared
socioeconomic pathways (SSP) scenario. Therefore, in this scenario, it is assumed that the base demand
will increase by 41.5%, from 9.49 to 13.43 m3/h, according to the climate change and population growth
prediction. Here, a DPF of 1.80 was also applied to establish the daily water usage condition.

3.2.4. Scenario 3: Fire Flow

In Scenario 3, adding to the base scenario flow condition, fire flow demands are sequentially
generated at each node. It is assumed that fire occurs once for each node, and the probability of fire
outbreak is the same in all cases; therefore, the performance change according to Scenario 3 can be
identified through the average of the measured changes according to the simulation of individual fire
flows. The Ontario Ministry of the Environment and Climate Change (OMOECC) [37] estimated fire
flow demand according to the supply population of a WDN as shown in Table 2. Since the equivalent
population of each node according to the base demand of the application network is approximately
1000, the fire flow demand at each node was applied as 230.4 m3/h. Table 3 presents a brief summary
of each design condition, the base scenario and the three abnormal scenarios introduced above.

Table 2. Estimation of fire flow requirements (OMOECC [37]).

Equivalent Population Nodal Base Demand (m3/h) Suggested Fire Flow (m3/h)

500–1000 4.6 136.8
1000 9.2 230.4
1500 13.8 284.4
2000 18.3 342.0
3000 27.5 396.0
4000 36.7 450.0
5000 45.8 518.4
6000 55.0 572.4

Table 3. Application scenarios comparison.

Scenario
Base Demand per

Node (m3/h)
Peaking
Factor

Peak Demand per
Node (m3/h)

Description

Design 9.49 2.25 21.35 Network design condition
Base 9.49 1.80 17.08 Base condition for normal operation

Scenario 1 9.49 1.80 17.08 Single-pipe failure
Scenario 2 13.43 1.80 24.17 Water consumption increase
Scenario 3 9.49 1.80 17.08 Fire flow at single node

4. Results

4.1. Correlation between Reliability Indices and Hydraulic Measures

For 17 application networks, a total of 54 correlations were analyzed through the results of nine
reliability indices calculated in the base scenario and the results of six hydraulic measures collected
in Scenarios 1–3. As all reliability indices and hydraulic measures indicate that the higher the value,
the more superior the reliability and performance of the network, it can be concluded that the larger
the derived correlation coefficient, the better the index is at reflecting system performance.
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4.1.1. Results for Scenario 1: Single-Pipe Failure

Figure 4 and Table 4 show the correlation between reliability indices and hydraulic measures
according to the application of Scenario 1. In Figure 4, the points in the scatter plot represent the
reliability index values and hydraulic measures derived from each of the 17 networks (x-axis—Reliability
index; y-axis—Hydraulic measure), and Table 4 summarizes the correlation coefficients calculated
from each scatter plot. The plots and table values indicated in yellow are index-measure combinations
with relatively high correlation coefficients of 0.95 or higher.

Figure 4. Scatter plots of Scenario 1 (x-axis—Reliability index; y-axis—Hydraulic measures). The plots
highlighted in yellow show high correlation coefficient of 0.95 or higher.

Table 4. Correlation coefficients for Scenario 1.

Hydraulic Measure
Reliability Index

RI MRI API AD NE FE PHRI RRI NRI

Redundancy
Red1 0.98 0.98 0.98 0.96 0.94 0.92 0.95 0.97 0.98

Red2 0.97 0.97 0.97 0.96 0.96 0.93 0.93 0.98 0.95

Robustness
Rob1 0.83 0.83 0.83 0.92 0.88 0.90 0.88 0.86 0.82
Rob2 0.95 0.95 0.95 0.98 0.98 0.95 0.97 0.94 0.92

Serviceability
Ser1 0.93 0.93 0.93 0.93 0.91 0.91 0.98 0.89 0.91
Ser2 0.93 0.93 0.93 0.96 0.95 0.94 0.97 0.94 0.91

Note: The values highlighted in yellow indicate high correlation coefficient of 0.95 or higher.

In Scenario 1, a broken pipe causes increment of flow and head loss to substitute paths.
The hydraulic indices (RI, MRI, and API) are proportional to excessive nodal pressure in normal water
demand conditions. When the pipe is broken, the network which has bigger excessive pressure remains
more backup pressure after the event, thus the redundancy measures (Red1 and Red2) have relatively
high correlation with the hydraulic indices (R values are 0.98 and 0.97, respectively).

The topological indices (AD and NE) quantify the diversity of water paths. For the pipe failure
scenario, therefore, these indices show relatively high correlation with all measures indicating good
representation of system performance under the specific condition (R values are higher than 0.95 for
Red2, Rob2, and Ser2).

The entropic index (FE) quantifies the diversity and relative uniformity of flow distribution.
When a pipe is isolated, the higher flow diversity leads to better adaptation against rapid increase of
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water flow. However, increased flow occurs in limited local paths, thus the overall correlation with the
measures is relatively low compared to other indices.

Among the mixed indices (PHRI, RRI, and NRI), PHRI shows good correlation, especially with
the serviceability measures (R values are 0.98 for Ser1 and 0.97 for Ser2). For a pipe isolation condition,
a network with a lower hydraulic gradient gets better service. RRI and NRI are calculated in a similar
way to RI, thus, they also show high correlation with the redundancy measures, but have a relatively
low correlation with other measures.

4.1.2. Results for Scenario 2: Water Consumption Increase

Figure 5 and Table 5 show the correlation between reliability indices and hydraulic measures
according to the application of Scenario 2. In Scenario 2, system-wide increased water consumption
causes an increment of flow and head loss in all pipes; that is, a system-wide stress is produced under
this scenario. This mainly affects the branch-type networks (P-25–P-33) and significantly reduces
the measures of Red2 and Rob2 that are related to the minimum nodal pressure as seen in Figure 5
(see scatter plots in second and fourth rows).

Figure 5. Scatter plots of Scenario 2 (x-axis—Reliability index; y-axis—Hydraulic measures). The plots
highlighted in yellow show high correlation coefficient of 0.95 or higher.

Table 5. Correlation coefficients for Scenario 2.

Hydraulic Measure
Reliability Index

RI MRI API AD NE FE PHRI RRI NRI

Redundancy
Red1 0.99 0.99 0.99 0.92 0.92 0.88 0.93 0.97 0.99

Red2 0.94 0.94 0.94 0.87 0.88 0.83 0.85 0.97 0.93

Robustness
Rob1 0.99 0.99 0.99 0.92 0.92 0.89 0.94 0.96 0.98

Rob2 0.94 0.94 0.94 0.87 0.87 0.83 0.85 0.96 0.94

Serviceability
Ser1 0.94 0.94 0.94 0.89 0.88 0.87 0.95 0.88 0.93
Ser2 0.97 0.97 0.97 0.91 0.91 0.88 0.95 0.93 0.95

Note: The values highlighted in yellow indicate high correlation coefficient of 0.95 or higher.

The hydraulic indices (RI, MRI, and API) show great correlations with the measures overall
(in range of 0.94–0.99) under Scenario 2. The higher value of the hydraulic indices implies that the
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networks have excessive pressure, thus providing redundancy, guaranteeing maintenance of pressure,
and allowing better serviceability.

In contrast, the topological indices (AD and NE) and entropic index (FE) show relatively low
correlation with the performance measures under Scenario 2 in which overall flows increase without
changes in network connectivity/layout and flow paths.

For the mixed indices, PHRI quantifies the serviceability well, while RRI represents the redundancy
and robustness measures well. It is noteworthy that RRI has a strong correlation with Red2 and Rob2
(R values are 0.97 and 0.96, respectively), which cannot be seen in other indices under Scenario 2.

4.1.3. Results for Scenario 3: Fire Flow

Figure 6 and Table 6 show the correlation between reliability indices and hydraulic measures
according to the application of Scenario 3. In Scenario 3, node-assigned fire flow causes increment of
flow and head loss along a specific flow path from the source to the node at which the fire occurred.
As seen in Figure 6 and Table 6, overall, the correlation coefficients in Scenario 3 are less than those of
the other two abnormal scenarios.

Figure 6. Scatter plots of Scenario 3 (x-axis—Reliability index; y-axis—Hydraulic measure). The plots
highlighted in yellow show high correlation coefficient of 0.95 or higher.

Table 6. Correlation coefficients for Scenario 3.

Hydraulic Measure
Reliability Index

RI MRI API AD NE FE PHRI RRI NRI

Redundancy
Red1 0.99 0.99 0.99 0.91 0.90 0.87 0.90 0.96 0.99

Red2 0.93 0.93 0.93 0.90 0.91 0.86 0.86 0.96 0.93

Robustness
Rob1 0.91 0.91 0.91 0.80 0.78 0.77 0.76 0.89 0.92
Rob2 0.92 0.92 0.92 0.89 0.91 0.86 0.85 0.94 0.91

Serviceability
Ser1 0.91 0.91 0.91 0.90 0.91 0.88 0.84 0.92 0.90
Ser2 0.97 0.97 0.97 0.91 0.90 0.88 0.94 0.92 0.97

Note: The values highlighted in yellow indicate high correlation coefficient of 0.95 or higher.

Overall, the hydraulic indices (RI, MRI, and API) and mixed hydraulic index (NRI) show higher
correlations (R values are in the range of 0.90–0.99) compared to other indices (in the range of 0.76–0.91).
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It is interesting to observe that RRI shows strong correlation with Red2 and Rob2 under Scenarios
1–3 (R values are always ranged in 0.94–0.98). It should be noted that Red2 and Rob2 measure the
minimum pressure at critical nodes and RRI represents the resilience of the network while maintaining
the minimum required head.

The topological indices (AD and NE), entropic index (FE), and a hydraulic-gradient based mixed
index (PHRI) show relatively low correlation with the measures under the fire-flow scenario; none of
them yield a correlation coefficient of greater than 0.95.

4.2. Multi Criteria Decision Analysis (MCDA)

In this study, MCDA was performed using WSM by assigning equal weights to all six
performance measures. Here, two different MCDAs are conducted: a scenario-based MCDA and a
performance-based MCDA. The scenario-based MCDA aims to find the optimal indices representing
the individual abnormal conditions; while the performance-based MCDA intends to find the best
fit indices for individual performance such as redundancy, robustness, and serviceability. Finally, a
comprehensive evaluation of individual indices is achieved by combining both MCDA results.

4.2.1. Scenario-Based MCDA

Table 7 shows the MCDA results of nine indices according to different scenarios. In Scenario 1,
AD and PHRI showed high correlation coefficients from MCDA, which indicates that these indices
appropriately quantify the system performance under the single pipe failure condition. In a similar
way, under Scenario 2 (system-wide water consumption increase), hydraulic indices (RI, MRI, and API)
show great performance; while for Scenario 3 (single-node fire flow), the hydraulic indices still show
better performance than other indices but, overall, correlation coefficients were lower than those of the
other scenarios.

Table 7. Correlation coefficients obtained by scenario-based MCDA.

Abnormal Scenario
Reliability Index

RI MRI API AD NE FE PHRI RRI NRI

Scenario 1 0.93 0.93 0.93 0.95 0.94 0.93 0.95 0.93 0.92
Scenario 2 0.96 0.96 0.96 0.90 0.90 0.86 0.91 0.95 0.95

Scenario 3 0.94 0.94 0.94 0.89 0.89 0.85 0.86 0.93 0.94

Average 0.94 0.94 0.94 0.91 0.91 0.88 0.91 0.94 0.94

Note: The values highlighted in yellow indicate high correlation coefficient of 0.95 or higher.

4.2.2. Performance-Based MCDA

Table 8 shows the MCDA results of nine indices according to the system performance. For system
redundancy quantification, the hydraulic indices (RI, MRI, and API) and two mixed indices
(RRI, and NRI) showed great performance in all scenarios. Regarding the robustness context, the overall
correlation coefficients are relatively low, which indicates that the applied indices are inadequate to
represent the system robustness under the applied scenarios. For measuring system serviceability,
the hydraulic indices and PHRI, showed relatively good results.

Finally, the combined MCDA results can be obtained via the averages of Tables 7 and 8 (assuming
equal weights for WSM). As seen, among the applied nine indices, the hydraulic indices (RI, MRI,
and API) and the hydraulic-based mixed indices (RRI, and NRI) showed high correlation coefficients
(i.e., 0.94) and are considered as the optimal indices to quantify the system performance under the
applied abnormal scenarios and hydraulic measures.
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Table 8. Correlation coefficients obtained by performance-based MCDA.

System Performance
Reliability Index

RI MRI API AD NE FE PHRI RRI NRI

Redundancy 0.97 0.97 0.97 0.92 0.92 0.88 0.90 0.97 0.96

Robustness 0.92 0.92 0.92 0.90 0.89 0.87 0.88 0.93 0.92
Serviceability 0.94 0.94 0.94 0.92 0.91 0.89 0.94 0.91 0.93

Average 0.94 0.94 0.94 0.91 0.91 0.88 0.91 0.94 0.94

Note: The values highlighted in yellow indicate high correlation coefficient of 0.95 or higher.

5. Conclusions

In this study, correlations between hydraulic measures and reliability indices were analyzed to
evaluate the ability of reliability indices to reflect system performance. To that purpose, six (hydraulic)
measures of redundancy, robustness, and serviceability and nine reliability indices based on hydraulic,
topological, entropic, and mixed approaches were selected. Correlation analyses were performed using
the 17 optimally designed hypothetic WDNs under three abnormal operation scenarios. To obtain
a comprehensive evaluation of individual indices, an MCDA based on WSM was performed as a
post-analysis. Based on the results obtained in the study, the following conclusions can be drawn:

1. In the single-pipe-failure scenario, the topological indices (AD and NE) and mixed index (PHRI)
were found to be the best at the quantification of network performance.

2. In the demand increase scenario, the hydraulic or mixed hydraulic indices (RI, MRI, API, RRI,
and NRI) were found to be the best at representation of network performance.

3. In the fire flow scenario, the hydraulic indices (RI, MRI, and API) were found to be best at
representation of network performance in terms of redundancy and serviceability. It was found
that NRI represents very close correlation trends with the hydraulic indices in all scenarios.

4. For redundancy quantification, the hydraulic or mixed hydraulic indices (RI, MRI, API, RRI,
and NRI) showed the best performance.

5. For robustness quantification, all indices showed relatively low correlation with the measures,
indicating that the applied indices do not sufficiently reflect system robustness.

6. For serviceability quantification, the hydraulic indices (RI, MRI, and API) and PHRI were found
to best reflect network performance.

7. From the combined MCDA, the hydraulic or mixed hydraulic indices (RI, MRI, API, RRI, and
NRI) were found to be the optimal indices to quantify the system performance under the applied
abnormal scenarios.

Prior to using any reliability index for the design and operation of a WDN, it is essential to select
an adequate reliability index suitable for the goals of the designer/operator, and the results of this
study can contribute to that purpose. In addition, the proposed comparative analyses are expected
to be useful in research on index development that can better reflect various network performances.
Future study should consider the needs of water managers for scenario development reflecting
real operational conditions and the selection of reliability indices and hydraulic measures. Further
comparative analyses, including various reliability indices and hydraulic measures for a number of
WDNs with diverse sizes and layouts, are a fruitful area to pursue as a future study. Through the
proposed comparative analysis, it is anticipated that the best fit reliability indices can be suggested and
developed for quantification of WDN performance.
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Abstract: A methodological framework for the estimation of the expected value of hourly peak
water demand factor and its dependence on the spatial aggregation level is presented. The proposed
methodology is based on the analysis of volumetric water meter measurements with a 1-h time
aggregation, preferred by water companies for monitoring purposes. Using a peculiar sampling
design, both a theoretical and an empirical estimation of the expected value of the peak factor and of
the related standard error (confidence bands) are obtained as a function of the number of aggregated
households (or equivalently of the number of users). The proposed methodology accounts for
the cross-correlation among consumption time series describing local water demand behaviours.
The effects of considering a finite population is also discussed. The framework is tested on a pilot
District Metering Area with more than 1000 households equipped with a telemetry system with 1-h
time aggregation. Results show that the peak factor can be expressed as a power function tending to an
asymptotic value greater than one for the increasing number of aggregated households. The obtained
peak values, compared with several literature studies, provide useful indications for the design and
management of secondary branched pipes of water distribution systems.

Keywords: cross-correlation; data spatial aggregation; finite population effect; metering; sample
mean; sampling design; standard error; stochastic analysis; water demand peak factor; water
distribution networks

1. Introduction

In the last decades, the understanding and prediction of water consumption have become a
focal point of EU policies and directives, with the general aim of supporting safe access to drinking
water and basic sanitation services to the people. In this context, the estimation of water demand in a
distribution system is a key issue when applying management strategies to reduce costs and preserve
the resource [1].

The water demand of a single user exhibits a random and pulsing behaviour; however,
the aggregation of a large number of consumers is able to highlight trends, seasonal cycles, and the
possible existence of peaks. Such quantities usually have different values and features according to
the scales of the measured or aggregated data (hourly, daily, weekly, monthly, seasonally, yearly).
The estimate of peak values is crucial to design drinking water distribution networks, in order to
obtain reliable systems, able to provide a good level of service in terms of demands and pressures [2].
The knowledge of water consumptions and of the relative peak values is also required in many
applications where the simulation of the system functioning is needed, whose results are strongly
affected by demand uncertainty [3–6].
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The estimation of hourly or sub-hourly peak demand due to residential uses has been widely
studied adopting different methods and techniques. Top-Down Deterministic Approaches (TDAs)
provide empirical relationships based on the number of users for the estimation of the hourly
or sub-hourly demand peak factor, defined as the ratio between the maximum and mean flow.
TDAs usually focus on the whole network, analysing the water consumption of the total served
population. The first relationships [7,8] estimated the dependence on the population of the instantaneous
peak factor in sewer systems. Some research found that the hourly peak factor can be considered
constant when the population is lower than a fixed threshold, while it decreases when the users exceed
the threshold value [9]. Those empirical equations for wastewater peak factors tend to be restricted to
a minimum population of one thousand and a maximum population of one million. More recently,
a formula was proposed for characterizing the mean value of the peak water demand for small towns
through statistical inferences on a large database [10], providing a lower estimate compared to the
Babbitt’s formula [7]. Moreover, investigated the effect of the data time sampling interval on the
evaluation of the peak factor was investigated [10]. The dependence of peak factors on the number of
users was also the subject of investigations [11], to provide empirical relationships for the estimation of
the parameters of the Gumbel probability distribution, able to represent the stochastic behaviour of
peak water demand.

Bottom-Up Approaches (BUAs) try to reconstruct nodal demands generating a large number of
synthetic realizations of individual users’ consumptions described by a stochastic variable. It has
been proved that at the fine temporal scale the nodal demand takes the shape of a pulse [12]. In this
context, temporal trends of instantaneous nodal consumptions are reconstructed aggregating demands
produced by stochastic pulse generation methods, such as the Poisson Rectangular Pulse (PRP)
(e.g., [13–18]) or the cluster Neyman-Scott Rectangular Pulse (NSRP) (e.g., [4,19,20]). A single pulse
is associated with each demand event, whose arrival time is described through a Poisson process.
In the proposed methods, pulse duration and intensity have been generated assigning different
specific probability distributions: Normal [15], exponential [4,19–21], log-normal [12] for the duration;
exponential [4,15,19,20], Weibull [21], log-normal [12] for the intensity. More recently, a method was
proposed to account for the correlation between pulse duration and intensity, which led to some
improvement in pulse consistency [22].

To apply these methods, model parameters need to be assigned. The parameters’ values can be
obtained using measured pulse features obtained by monitoring consumptions with an ultra-high time
resolution [12,17,18] or reproducing statistical properties of aggregated consumptions, when they are
known at a higher temporal step (1 min or larger) [19,23].

In this context, Blokker E.J.M., et. al., [24,25] proposed the SIMDEUM model for the reconstruction
of water consumptions starting from the micro-components of water demand. The PRP model was used,
but different distributions were adopted to generate the pulses produced by the different household
fixtures and users. Then, for its parametrization, knowledge is required about the occupants’ habits
and about the end uses of the fixtures obtained from a survey of the considered households. This can be
done, for example, by analysing the water end-users that drive peak daily demand and examining their
diurnal demand patterns using data obtained from high resolution smart meters [26]. The PRP and
SIMDEUM models have similar performances [27], with the former prevailing at the single household
scale and the latter prevailing in case of multiple households. In all cases, BUAs require a significant
computational effort and, for their parametrization, a detailed knowledge of the consumptions at a
small spatial scale is required.

More recently, proposed a probabilistic approach was proposed for a reliable estimation of the
maximum residential water demand represented by a single variable [28], showing the reliability of the
log-normal and Gumbel distributions in representing peak water demand during the day. The authors
suggested practical equations for the estimation of the expected value and coefficient of variation of
the daily peak factor and investigated time scaling effects.
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Many studies investigated the influence of the acquisition time step in water demand
modelling [23,29,30]. In this context, analysing water consumption data recorded at time intervals
from 5 min to one hour, a significant effect of the sampling time step was observed [31] and new
equations were derived for the evaluation of the peak value. A comparison of the instantaneous
estimate of the maximum demand obtained at a 1 s time step through a BUA with the one computed
from hourly average estimates using a TDA was also performed [32]. As expected, results showed that
the latter gives small demand values, especially at small spatial aggregation scales, while at increasing
aggregation levels the difference decreases, because the random fluctuations tend to be smoothed with
consequently smaller peak values.

The effect of spatial aggregation is less studied. First attempts investigated the effect of both
time step and spatial aggregation on the cross-correlation between nodal demands, however limiting
the analysis to a group of five and ten houses [33]. Results highlighted an increase in correlation for
increasing spatial aggregation, while a decrease of the standard deviation was observed.

In the last decades, the rising development of smart meters systems for household water
consumption monitoring provided new modelling perspectives [34,35]. Smart metering can provide
data recordings at different levels of accuracy, from 1 s to hours, depending on the characteristic of
the system and on the objective of the investigations [36,37]. With a reasonable economic impact,
water companies started with the installation of smart water meters, usually placed in a large number
of households and collecting hourly measurements. In fact, water companies are mainly interested
in controlling and understanding aggregated consumptions in order to make decisions on pricing
strategies, on future interventions, and on consumption reduction. Some approaches have been
recently proposed for modelling demand patterns using measurements at large time steps [38–41].

A first objective of the present study is to understand how water companies can obtain information
about the estimate of the peak factor, starting from measurements realized for different purposes on
large networks with an hourly temporal scale. The paper presents a methodology for performing a
statistical analysis of hourly data in order to analyse the behaviour of the hourly peak demand values as
a function of spatial data aggregation using a high number of measurements. The considered test-case
is a large-size District Metering Area of the water distribution network of Naples (Italy) equipped with
a smart metering system, which provided water demand measurements performed with a one hour
time aggregation on more than 1000 households for one year [39,40]. The main novelty of the study
lies in the complex sampling design adopted, which allows treating hourly peak factors as stochastic
variables for each fixed number of aggregated meters, accounting for possible cross-correlation and
finite population effects. In this way, the main statistics (including expected values and variability) of
the peak factor can be obtained as a function of the size of the considered group of users, and compared
with other literature indications adequately scaled to account for different time scales. The main goal
of the research is to provide the operators with a procedure for understanding the reliability of the
network in terms of demand and pressure at different levels of users’ aggregation using available
data. This information is particularly useful to analyse the behaviour of old water networks, where
the operating conditions may differ from the ones considered at the design stage, or to design future
measures to improve the system management, such as the creation of District Meter Areas.

The paper is structured as follows. Section 2 describes the District Metering Area under
investigation and the collected measurements, the main objectives and features, and the methodological
framework of the analysis. Section 3 reports the outcomes, while Section 4 provides a discussion about
the applicability of results. Finally, significant conclusions are drawn in Section 5.

2. Materials and Methods

2.1. The District Metering Area

The area under investigation is “North Soccavo” (Figure 1), which is one of the administrative
neighbourhoods of the Municipality of Naples (Italy), counting about 20,000 inhabitants. The area was
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selected by the local water company as the pilot case for the implementation of a District Metering
Area. The reason for this particular choice lies in the observation that this area is connected by a
single branch to the water network of the City, which makes it particularly prone to be distrectualized.
In recent years, the local water company connected all the existing water meters with a telemetry
system, allowing for the automatic radio collection of consumed water volumes at a 1-h time step.
The connection involved water meters related to both single and multiple households, as well as
commercial activities and public buildings.

Figure 1. Pilot area: Water distribution network, water meters, and census particles.

Data referring to the year 2016 have recently been the subject of a multi-purpose research focusing
on the prediction of water demand patterns, useful for the local water company to define management
and leakage detection strategies [39,40,42]. The findings, based on hourly consumption data collected
from 1 January to 31 December 2016, highlighted the following issues:

1. The neighbourhood is mainly residential. Of the total K = 4253 water meters, about 86% serve
flats, apartments, and other inhabited buildings, whereas 14% have a non-residential purpose
(commercial activities, public offices, and schools).

2. Not all the consumption time series collected by the telemetry system were suitable for
the analyses. An anomaly/outlier detection procedure was applied, based on the use of the
Completeness-Continuity Triangle (CCT) and on the application of the MAD criterion at different
time aggregation levels. Such a strategy enabled the identification and subsequent removal
of unreliable hourly data or the entire time series having a large number of outliers and/or
missing values, as shown in [42]. Focusing on residential water meters serving single households,
a number of 1162 passed the proposed anomaly/outlier detection procedure. Those data are used
in the present research.

3. Focusing on the connections serving single households, a reduced number of significant patterns
showing the annual cycle of water demand was detected [39]. Specifically, in the pilot area five
patterns were identified representing different clusters of consumption behaviours. Figure 2
shows that those patterns are significantly similar at large aggregation levels (e.g., monthly),
only differing because of the consumption in August. This occurs because most of the people in
Italy spend their holidays in August, and this produces a decrease in consumptions. However,
the trends are different depending on the number of vacation days that is, in turn, proportional to
the income level; a cluster without reduction, corresponding to users taking no summer holidays,
can also be observed. Such a behaviour is expected to repeat cyclically every year. Removing the
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August consumption, no further seasonal cycle can be observed, and the five patterns in Figure 2
show no significant differences in the remaining months. As a consequence, if August data
is discarded, daily discharges can be considered a random variable with no deterministic
dependence. As far as the daily cycle is concerned, three different non-dimensional patterns were
identified corresponding to Sundays, Saturdays, and Mondays–Fridays, respectively [40].

4. For residential connections, scaling laws were proposed [40] providing the mean hourly
discharges and related standard deviations as a function of the number of aggregated households.
The regression parameters depend on the characteristics of the specific dataset in terms of
single-user behaviour and cross-correlation structure.

Figure 2. Average nondimensional patterns for the five main different clusters of consumption
behaviours observed in the pilot area (Qm and Qa are the monthly and annual discharges, respectively).

The scaling laws proposed for the pilot area [40] are a function of the number of aggregated
households, instead of the number of consumers, because the information about the number of
people “hiding” behind each water meter was known only for a few cases. In the present paper,
however, this information was derived by intersecting the spatial distribution of residential water
meters (Figure 1), with the number of inhabitants at the census scale. As a result, the average number
of users per connection ranges from 2.8 to 3. This uncertainty is caused by the delay between the date
of the census survey (2011) and that of data collection (2016), and to a small number of water meters
that still missed their connection with the telemetry system by the end of 2016.

2.2. Rationale and Structure of the Analysis

In the present paper the hourly water consumption database collected within the pilot area is
used to obtain a comprehensive sample of hourly peak factors. Such a database can be potentially
used to draw significant information allowing for the prediction of fundamental statistics of hourly
peak demand such as central values, variability, and probability distribution. This research particularly
focuses on the first issue, namely the sample mean of peak factors and related statistics.

As mentioned in the previous sections, peak factors in water networks can be deeply influenced
by the amount and behaviour of consumers. Any statistical analysis should comply with the fact
that the peak factors’ values and the related statistics could be affected by the number and quality
of the aggregated time series. For instance, if the network serves a small number of users, there is a
large possibility that those consumers will highlight similar behaviours, resulting in higher peak factor
values. On the contrary, if the network serves a large number of consumers, different behaviours are
expected and this translates in a global water demand more homogeneously distributed within the
day, with smaller values of peak factors.

The peak factors evaluation in water networks usually consists of understanding how peak
factors change under a progressive aggregation of the users, namely in finding a mathematical or
statistical dependence of peak factors on the number of users Nu. Synchronicity of consumption
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behaviours is usually accounted for by means of the cross-correlation among consumption time series.
Those considerations imply that, when Nu is small, a dependence can be found not only on how many
but also on which time series is going to be aggregated. In other words, results may deeply vary
according to the specific performed selection of consumers. On the contrary, when Nu is large, results
are expected not to be significantly altered whichever time series is selected.

To overcome this issue and to investigate the statistical structure of peak factors in a way that is
reliable, rigorous, and robust, the following sampling design is proposed. A discretized number N of
households is set and, for each of them, the N time series (each corresponding to a water meter) with
size D (corresponding to the considered monitored days) are extracted from the consumption database
of the pilot area and aggregated. For each N, the operation is repeated M times, allowing the same
water meters to be extracted in different samples, whereas, for each sample, extraction is performed
without replacement. In this way, N artificial populations are obtained (one for each aggregation level)
and M representative samples with size D are available. Finally, for each N, the main focus concerns
the analysis of the following quantities assumed as the most important when using the concept of peak
factors for the design or verification of water networks:

• Expected value of the sample mean of hourly peak factors;
• Standard error of the sample mean of hourly peak factors.

To correctly address the above-mentioned items, the usual sampling theory (e.g., [43]) cannot be
adopted straightforwardly. The first reason lies in the observation that each random sample consists of
a time series made up of a number D of independent realizations of the variable of interest (hourly peak
factor), but there could be a non-negligible cross-correlation among the M samples that has to be taken
into account. In this perspective, literature provides suggestions about including cross-correlation in
the analyses [44].

The second reason is that the effect of a finite population must be taken into account. In this
perspective, literature suggests that the classic sampling theory should be adopted when the population
fraction ψ (namely the ratio of the amount of extracted data to the maximum number of available
data, or, in other words, the ratio of sample size to finite population size) is small [45]. Indeed, in this
condition, sample sizes comparable with the population size provide unnaturally small variabilities,
since different samples will contain the same elements when ψ→ 1 , with a progressive degeneration
of the variance [45]. In turn, this could result in the need for very large and expensive databases to
investigate large aggregation levels. For large ψ values, in case of sampling without replacement,
suitable correction factors should be applied when estimating standard errors from the population
variance, whereas the effect of a finite population on central values is usually considered negligible [45].
Especially concerning the variance of sample means, a correction factor, usually referred to as the
Finite Population Correction Factor (FPCF) [45,46], a function of the population fraction, should be
used when relating this quantity to the population variance. In the present research, the investigated
population is characterized by two different dimensions, namely the number of monitored days D
and the number of aggregated households N. For the adopted sampling design, D is the sample size,
directly affecting computations, but the scientific interest mainly lies in understanding the effect of N,
which, in turn, acts as a hidden variable with no explicit mathematical effect.

2.2.1. Parameter Definition

Let qh,i(d) be defined as a random variable which describes the water volume consumed by a
single household i within a specific hour h of a specific day d; if D is the number of days with hourly
registrations, the recorded sample for the hour h is made up of a maximum of D data. M random
samples of N households are drawn from the database of Nmax households (1 ≤ N ≤ Nmax) so that each
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household can belong to different samples, but every household can only be extracted once within
each sample. The aggregated water demand for each day d at hour h of the random sample m is:

Qm
h,N(d) =

N∑
i=1

qh,i(d) h = 1, . . . , 24 (1)

For a group of N households, the hourly peak water demand Qm
p,N(d) of the random sample m for

each day d is defined as:
Qm

p,N(d) = max
h=1,...,24

[
Qm

h,N(d)
]

(2)

where Qm
μ,N(d) is the daily mean water demand of the random sample m for a group of N households

for each day d, expressed as:

Qm
μ,N(d) =

∑24
h=1 Qm

h,N(d)

24
(3)

Then, for a group of N households, the dimensionless hourly peak water demand factor CPm,N(d)
of the random sample m for each day d is defined as:

CPm,N(d) =
Qm

p,N(d)

Qm
μ,N(d)

(4)

By the adopted notation, CPm,N(d) stands for a CP value belonging to the m-th sample of size N
and referring to day d. According to the purpose of the analysis, it could be either seen as part of a
sub-sample of size D made up of all the daily observations of CP within one specific sample m, or,
alternatively, it can be considered as part of a sub-sample of size M made up of all the observations
referring to one specific day d across all the extracted samples. In all cases, CPm,N(d) is a single
realization drawn from the population of the random variable CPN with expected value μN.

2.2.2. Expected Value, Variance, and Distribution of the Sample Mean

For a group of N households, the sample mean of the hourly peak water demand factor related to
a sample m of size D is:

CPm,N =

∑D
d=1 CPm,N(d)

D
(5)

If CPN is an independent random variable, the mean (i.e., the expected value) of the sample means
CPm,N coincides with the population mean μN:

μN =

∑M
m=1 CPm,N

M
(6)

Literature suggests an empirical relationship between μN and the number N of aggregated
households in the following form [7,10,11,16,28]:

μN =
a

Nb
+ c (7)

where, a, b, and c are the estimated regression coefficients. c is the horizontal asymptote of the function,
representing the expected value of the sample mean of peak factor CPN for a very large N.
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According to the classic sampling theory, the standard deviation of the sample mean, usually
referred to as, “standard error of the sample mean” [47], ESD,N, is directly related to the population
variance and to sample size D:

ES2
D,N = Var

{
CPm,N

}
= Var

⎧⎪⎪⎨⎪⎪⎩
∑D

d=1 CPm,N(d)
D

⎫⎪⎪⎬⎪⎪⎭ = 1
D2

D∑
d=1

Var
{
CPm,N(d)

}
=
σ2

N
D

(8)

where σ2
N is the population variance of CPN.

If the random variable CPN is normally distributed, the sample mean will be normally distributed
too, with CPm,N ∼ N(μN, ESD,N) independently of sample size D. Otherwise, based on the central limit
theorem, when the dimension of the random sample becomes sufficiently large (D≥ 30), the distribution
of the sample mean can be approximated by a normal distribution independently of the specific
distribution of the random variable CPN. To verify the normality of the sample mean CPm,N, well-known
statistical tests can be adopted such as the Kolmogorov-Smirnov (KS) test [48].

If the random variable CPN is not independent (as will be demonstrated in the present paper),
Equation (6) is still valid, whereas the standard error of the sample mean can be estimated according to
the following Equation [45] that explicitly accounts for the covariance matrix:

ES2
D,N = Var

⎧⎪⎪⎨⎪⎪⎩
∑D

d=1 CPm,N(d)
D

⎫⎪⎪⎬⎪⎪⎭
=

D∑
d=1

Var
{
CPm,N(d)

}
D2 +

D∑
i=1

D∑
j = 1
j � i

Cov
{
CPm,N(i), CPm,N( j)

}
D2

=
1

D2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D∑

d=1
Var
{
CPm,N(d)

}
+

D∑
i=1

D∑
j = 1
j � i

Cov
{
CPm,N(i), CPm,N( j)

}
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where the first term sums up the cross-sample variance for each day d, and the second term sums up
the cross-correlation among pairs of samples.

Equation (9) estimates the standard error of sample means. When sample data are extracted from
a finite population, as in the present paper, the values of the standard error can be influenced and
underestimated, because there is a high probability that the same elements are extracted from the
total population. Indeed, for N = Nmax Equation (9) gives a null value for the standard error, which is
a degeneration caused by the fact that the M samples are made up of exactly the same CPN values.
Instead, for an infinite population, a finite, although small, value for the standard error should be
expected even for very high N values.

In case there is no spatial correlation among water demands, the covariance term in Equation (9)
is null and the variance collapses back to Equation (8), with an inverse dependence on sample size D.
In any other case, also accounting for the finite population effect (i.e., a null asymptotical value for ES)
the dependence of ES on D can be formulated for each N in the generic form:

ESD = α1 ×Dβ1 (10)

where the coefficients depend on the structure of the spatial correlation [30,41]. Since Equation (10)
can be applied for each fixed N, the following general equation is proposed to consider the additional
dependence of the variance on N:

ESD,N =
α1 ×Dβ1

(α2 + N)β2
(11)
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When the distribution of the sample mean CPm,N for a group of N households is (at least
approximately) normal, the lower and upper limits

[
CPm,N

]
p

of a confidence interval centered on the

mean μN, for a predefined probability p, are:[
CPm,N

]
p
= μN ± ξp × ESD,N (12)

where ξp is the normal p-th quantile; the standard error ESD,N can be estimated as the square root of
either Equation (8) or Equation (9), or directly by its empirical approximation provided by Equation (11),
based on the probability distribution of random variable CPN. If the sample mean CPm,N is normally
distributed, substituting in Equation (12) the 2.5-th and 97.5-th normal percentile values ξp = ±1.96,
the 95% confidence interval is obtained.

2.2.3. Variability of Peak Coefficient among Weekdays

The water demand can show different trends between working days and weekends, and this can
affect the maximum daily water demand. For the investigated dataset, water consumption exhibits
a significant weekly cycle, and water demand was clustered in three groups: weekdays, Saturdays,
and Sundays [40].

To verify if the sample mean of hourly peak factors has a day-to-day variability, the ANOVA test
is used, which is able to identify significant differences in the central values of different groups [49].
In the present study, seven groups, one for each day of the week, are defined and the related sample
means are estimated by Equation (6). For each group, summation in Equation (6) is only extended to
the days Di with i = 1, 2, . . . , 7 (1 =Mondays, 2 = Tuesdays, . . . , 7 = Sundays). In other words, for each
value of N, seven groups of M sample means are evaluated. It is worth noting that the mean of all the
7 ×M sample means coincides with the population mean μN.

As highlighted in the previous sections, the statistical behaviour of peak factors is influenced by
the number N of aggregated households; thus, it is expected that the outcomes of ANOVA show a
similar dependence. Specifically, for small N values any differences of the peak factor values among
the days of the week could be covered by the high peak demand variability. In turn, those differences
could become more evident for higher N values, when peak demand variability is lower due to the
stabilization of the aggregated water demand pattern.

3. Results

The methodology proposed in the previous sections was applied to the water consumption
database of the pilot area, made up of Nmax = 1162 connections, each corresponding to a registered
consumption time series. The analysis was initialized by setting 50 different values of N to be tested,
ranging between 1 and 1162 (Table 1). For each N, M = 150 samples of N time series were randomly
extracted from the consumption database and aggregated. Then, for each aggregated series, hourly
peak demand factors CPm,N(d) were computed for the m-th sample by means of Equation (5). The total
number of available monitored days Dmax in the 2016 database is equal to 322; thus, for each day of the
week, the maximum number of monitored days is 46 (Table 1).

The computation of sample means CPm,N by means of Equation (6) was performed gathering
CPm,N(d) values in seven groups according to the day of the week. Then, the ANOVA test was
performed to highlight possible differences in the behaviour of peak factors during the week. Figure 3
shows the results of the ANOVA test as box-plots of peak factor sample means for two different values
of aggregated households N = 10 and N = 1000. ANOVA outcomes highlight that there are significant
differences in terms of expected values of sample means between the weekdays, the Saturdays, and the
Sundays, so that three clusters can be identified, coherently with findings shown in [40]. Moreover,
as expected, those differences are more and more evident the higher the N value and can be considered
statistically significant starting from N = 5–10.
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Table 1. Cluster definition and relevant parameters.

Cluster 1 2 3 4

Day Saturdays Sundays Weekdays All Days

Dmin 30
Dmax 46 46 230 322
Nmin 1
Nmax 1162

Equation (7)

a 1.763
b 0.670
c 1.573 1.611 1.536 1.552

R2 0.998 0.997 0.997 0.998

Equation (11)

α1 0.274 0.293 0.300 0.274
β1 0
α2 −0.726 −0.632 −0.665 −0.695
β2 0.5
R2 0.999 0.997 0.999 0.999

Figure 3. Box-plot of hourly peak factor sample means for the different days of the week and for two
different numbers of aggregated households: (a) N = 10 and (b) N = 1000.

Figure 3 also shows that weekends are characterized by an expected value of peak factors higher
than the weekdays. This could be explained considering that, during the weekend, people tend to
adopt predictable schedules, translating in more homogeneous consumption behaviours, leading to
more synchronous water uses and, therefore, producing more coherent water demand diurnal patterns.
Finally, Figure 3 demonstrates that the differences among the three clusters are statistically significant
and should be accounted for in further analyses. As a consequence, in the following sections four
clusters will be investigated separately: Cluster 1, made up of Saturdays (Dmax = 46); Cluster 2, made
up of Sundays (Dmax = 46); Cluster 3, made up of the remaining weekdays (Dmax = 230); Cluster 4,
made up of all the days of the week (Dmax = 322). This last cluster is considered in order to better
understand the significance of cluster separation in evaluating the statistics of interest.

3.1. Sample Mean: Expected Value, Standard Error, and Scaling Laws

According to the proposed methodology, the analysis of hourly peak factor sample means consists
of the estimation of the expected value, associated standard deviation, and confidence band.

For each N value, M sample means CPm,N were computed by means of Equation (5) and the
corresponding expected values μN were estimated by means of Equation (6); then, the empirical
relation between N and μN was found by calibrating parameters in Equation (7). Sample means and
expected values are shown, for each Cluster, in Figure 4 as a function of the number of aggregated
households. Table 1 shows the estimated values of the regression coefficients a, b, and c and the value
for the coefficient of determination, which is very high for all Clusters. Figure 5a shows the comparison
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between the observed expected values, computed by means of Equation (6), and the predicted expected
values, obtained from Equation (7), for all Clusters. It is evident that points gather almost perfectly
along the 1:1 line, showing a high accordance between the observed and the predicted values, with just
a slight deviation for the highest mean values, corresponding to N = 1.

Figure 4. Sample means, expected values, and confidence bands as a function of the number of
aggregated households for: (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d) Cluster 4.

Figure 5. (a) Accordance between expected values of sample means estimated by Equations (6)
and (7) for all the Clusters. (b) Comparison among calibrations of Equation (7) performed on the
different Clusters.

Table 1 and Figure 5b show that the regression curves of the four Clusters are very similar, with
only a different value for the c coefficient, which represents the expected value of hourly peak demand
factor for a large number of households. As Figure 4 shows, this asymptotic value can be considered
attained for N > 100–200 for every Cluster. Figure 5b and Table 1 also show that the highest asymptotic
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expected value is observed for the Sundays Cluster, followed by the Saturdays, and the Weekdays
Clusters. Cluster 4 shows intermediated values.

As Figure 4 shows, for a fixed N, the M sample means CPm,N show a non-negligible variability,
which can be quantified by means of the standard error ESD,N. In order to compute standard errors,
the regression coefficients in Equation (11) were calibrated for each Cluster by using the estimate
of ESD,N provided by Equation (9), and their values are shown in Table 1 along with the very high
coefficient of determination. To capture the dependence of ESD,N on both N and D, different values
of D were tested in the range Dmin–Dmax, where Dmin = 30 was set to ensure normality, as previously
mentioned. However, in all cases the dependence on D resulted to be negligible with respect to the
aggregation level, with very small values for the exponent β1, that was approximated to zero for all
Clusters (Table 1). Moreover, Table 1 shows that for all the Clusters β2 resulted equal to 0.5, with a
simplification in the proposed regression equation.

Figure 6 shows, for each Cluster, the regression curve provided by Equation (11) as well as the
standard errors estimated as the square root of Equation (9) for three different values of D (Dmin, Dmax,
and intermediate value depending on Dmax). Coherently with the approximation β1 = 0, no effect of the
number of recording days can be observed, with all the points gathering along the regression curve,
with just a slight deviation for N = 1.

Figure 6. Standard errors of the sample mean estimated by Equation (9) and predicted by Equation (11)
for three different D for: (a) Cluster 1; (b) Cluster 2; (c) Cluster 3; (d) Cluster 4.

As a goodness-of-fit measure, Figure 7a shows a comparison between the squared standard error
estimated by means of Equation (9) and the values predicted by Equation (11) for all the Clusters,
with regression coefficients shown in Table 1. The points in Figure 7a gather almost perfectly along
the 1:1 line, ensuring an extremely satisfying prediction of the sample mean standard deviation by
Equation (11). Figure 7 shows a comparison among the prediction curves of the standard error as a
function of N for the different Clusters for D =Dmax. It can be observed that the four curves show small
differences for small values of N, which become negligible for N > 100–200. Coherently, in the same
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range of N, the prediction curve for μN reaches its asymptotic value for all the Clusters, which suggests
an extreme accuracy in the estimation of the expected value of the sample mean for N > 100–200.
On the other hand, this can be regarded as an effect of investigating a finite population. Indeed,
if the same N values were analysed based on a more extended database (i.e., if a higher number
of recorded households were monitored), higher values for the standard error would possibly be
expected. Moreover, for N = Nmax, each of the M samples is made up of the same elements, so that the
M estimates of the sample mean are equal, and the standard error of the sample mean is equal to zero.

Figure 7. (a) Accordance between the standard error estimated for D = Dmax by Equations (9) and (11)
for all the Clusters. (b) Comparison among calibrations of Equation (11) performed on the different
Clusters for D = Dmax.

The empirical estimates of the standard error were adopted in Equation (12) to obtain the
95% confidence band centred on the expected value of the sample mean, as shown in Figure 4.
Confirming the previous evidence, the confidence band reduces as N increases, with an amplitude that
can be considered negligible for N > 100–200.

3.2. Sample Mean: Probability Distribution and Final Considerations

The assumption of normality was verified for sample sizes D≥ 30 independently on the distribution
of the original sample variable CPN. However, in order to highlight the possible effect of a finite
population, the normality assumption was checked for each Cluster and each value N <Nmax by means
of the Kolmogorov-Smirnov (KS) test [48]. For N = Nmax no probability distribution can be defined
since the variance is null.

The KS test was run under two different assumptions for the distribution of the sample mean:

• normal distribution with unknown mean and variance parameters m and s (“assumption 1”);
• normal distribution with m = μN, estimated by means of Equation (6), and s = ESD,N, estimated

as the square root of Equation (9) (“assumption 2”).

Figure 8 shows the results of the Kolmogorov-Smirnov test for the two considered assumptions,
in terms of percentage of samples passing/not passing the KS test for the four Clusters. It can be
observed that under assumptions 1 and 2 the KS test is passed for all the Clusters for all the tested N
values. This proves that the sample means are rigorously distributed by means of a normal model with
the mean and variance correctly estimated by Equations (6) and (9), respectively. This also confirms
that the estimation of the probability distribution of the sample mean is not affected by any finite
population effect.
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Figure 8. Percentage of samples passing/not passing the Kolmogorov-Smirnov test for the four tested
Clusters under (a) assumption 1 and (b) assumption 2 for the underlying normal distribution of
sample means.

Finally, for Cluster 2, Figure 9 shows a comparison between the empirical frequency and the
normal probability models under the two assumptions, for the values N = 60 and N = 500; for these
values, the KS test is passed under both assumptions. It can be noted that the CDF curves representing
assumptions 1 and 2 are overlapped, highlighting the accuracy of the theoretical estimators adopted
for the expected value and the standard deviation. Those results are shown for Cluster 2 but can be
extended to all the Clusters.

Figure 9. Empirical vs. theoretical probability distributions of sample means for Cluster 2 under two
different assumptions for the underlying normal model: (a) N = 60 and (b) N = 500.

4. Discussion

4.1. Comparison with Literature

In this paragraph the results obtained from the presented analysis are compared with previous
literature analyses. Different literature deterministic relationships for peak factor evaluation have been
inspired by the following well known Babbitt’s formula [7] deduced for domestic wastewater:

CP,B =
5( Nu

1000

)0.2 (13)

where Nu is the number of users, usually ranging between one thousand and one million in a population,
as previously mentioned. The Babbitt’s relationship was successively reformulated [28] as:
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μNu(Δt) = KCP(Δt) × 10
Nu0.2 (14)

Equation (14) is valid for 250 < Nu < 1250, and was originally obtained analysing data measured
with a 1-min frequency (KCP = 1). KCP is a reduction coefficient that takes into account the effect of
the time aggregation scale for time steps higher than 1 min. The results of the above relationships are
compared with Equation (7), herein rewritten in terms of number of users Nu assuming that each meter
serves 2.9 inhabitants on average, and considering the parameters corresponding to all the days of the
week (Cluster 4 in Table 1):

μNu =
3.60

Nu0.67 + 1.552 (15)

Differently from Equation (15), Equations (13) and (14) do not exhibit any asymptote.
For Nu = 500 and Nu = 1000, Table 2 reports: (i) The values of the peak factor estimated by

Equation (15); (ii) the values obtained by adopting Equation (13), and (iii) the values obtained by
adopting Equation (14). In Equation (14), considering the experimental field data reported in [28], KCP
is assumed to be equal to 0.65 for a sampling time step of 60 min. Table 2 highlights that the Babbitt’s
formula overestimates the peak factor [10], while the prediction obtained with the present analysis is
comparable with the estimate of the formula proposed by [28]. In particular, the values obtained with
Equation (14) are within the uncertainty range of Equation (7).

Table 2. Hourly peak factor values estimated with different relationships.

Nu Equation (15) Equation (13) Equation (14)

500 1.61 6.60 1.87
1000 1.59 5.00 1.63

Forcing Equation (15) to assume a structure similar to Equation (14), it can be approximated by
the following expression:

μNu =
4.3

Nu0.18
(16)

where the exponent for the number of users is very similar to the one in the empirical relationship in
Equation (14) proposed by [28].

As previously mentioned, differently from the empirical literature relationships, the proposed
Equation (7) for the evaluation of the hourly peak coefficient tends to an asymptotic value as the
number of household increases. A similar result was also obtained by [16], who derived an estimation
of the instantaneous peak factor using a probabilistic approach to describe the residential water use
based on the Poisson Rectangular Pulse (PRP) model and adopting the Gumbel distribution for the
extreme values. The asymptotic value can be assumed to be equal to the asymptotical hourly peak
factor for a growing population [11]. Analyses performed on different towns in Italy showed that the
asymptotic value ranges between 1.5 and 1.7 [11], similarly to the one deduced herein.

For a number of users varying between 3 and 3000, Equation (15) predicts a peak factor ranging
between 3.3 and 1.55, which is the asymptotic value. Those values are also comparable with the range
1–5 reported in [26] considering the results of recent studies in different countries. The obtained values,
smaller than the one provided by the empirical Babbitt’s relationship, may be ascribed to a different
kind of analysis and/or to a change in consumption behaviours compared to 30–50 years ago.

4.2. Applicability Example

The proposed procedure helps the operators in understanding the reliability of a network in terms
of demand and pressure at a different level of the users’ aggregation using hourly meter data. It can be
adopted for understanding if peak values are changed with respect to the ones considered at the design
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stage, for planning DMAs and for verifying the behavior of existing networks in case of problems in
the branched pipes where a lower number of household is served.

As noted above, Equation (15) tends to an asymptotic value as the number of households increases
(N > 100–200). This means that for looped networks, which serve more than about 600 inhabitants,
the peak value can be considered equal to the asymptotic value. Conversely, when considering a single
mainline serving different small groups of households, the variability of the peak factor should be
accounted for. The synthetic following example shows an application of the proposed formulation in
verifying a branched pipe serving different groups of households. Figure 10 shows the main line with
six nodes and Table 3 reports the number of households (each represented by a water meter) assumed
connected to each node, and the corresponding number of users under the assumption that each meter
serves 2.9 inhabitants.

Figure 10. Sketch of a schematic mainline with six nodes serving different groups of households.

Table 3. Example data.

Node N Nu Link CP Qm (L/s) Qp (L/s)

1 60 174 L1 1.60 36 59
2 32 93 L2 1.62 24 40
3 40 116 L3 1.64 18 29
4 30 87 L4 1.68 9.7 16
5 15 43 L5 1.81 3.6 6.6
6 3 9 L6 2.41 0.61 1.5

For a total number of 180 served households, equivalent to 522 users, Equation (15) provides a
peak factor (CP) equal to 1.60, which is the value that should be considered for designing the pipe L1.
Indeed, while link L1 serves 180 households, L6 serves only three of them. Assuming a water supply of
0.07 L/s per inhabitant, Table 3 reports, for each link, the peak value obtained by means of Equation (15),
μNu , as well as the corresponding mean, Qm, and peak, Qp, discharge. A correct evaluation of the
hourly peak factor is important for designing the trunks of branch pipes, where an underestimation of
the discharge may produce situations of pressure deficit. Conversely, an overestimation of the pipe
diameter may produce low velocity and an increase of the water age with a consequent decay of water
quality [50]. Concluding, the performed study highlights that the peak factor changes drastically in the
interval 1 < N < 100, and this change has to be carefully considered for a correct design of branch pipes.

5. Conclusions

The proposed analysis provides a methodological framework to investigate the main features
of water demand hourly peak factors based on hourly consumption data. The main objective is the
estimation of the sample mean of hourly peak factors, the associated standard error (allowing for the
definition of confidence bands), and its probability distribution. Those quantities are investigated in a
perspective of spatial aggregation: For each considered aggregation level, artificial populations are
created by aggregating multiple consumption time series and analysing the related statistics.

Theoretical expressions for the sample mean and for the standard error are provided (Equations (6)
and (9), respectively), where the standard error expression accounts for the cross-correlation among
samples. Moreover, empirical relations of the sample mean and standard error as a function of the
number of aggregated households or meters (or users) are also provided (Equations (7) and (11),
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respectively). Concerning the probability distribution, sample means can be considered normally
distributed, with model parameters effectively estimated by Equations (6) and (9).

The outcomes of the research in terms of mean peak factor are consistent with previous literature
analyses focusing on similar or higher-resolution consumption datasets. In addition, the confidence
band suggests a high accuracy of its estimation. The structure of the dependence on the aggregation
level suggests the presence of an asymptotic value for a high number of users, as also suggested by
some recent literature works.

The research confirms the possibility of using 1 h-aggregation consumption datasets for the
analysis of water demand peak factors and provides a general framework to perform the stochastic
analysis for aggregated consumption data. The empirical relation for the estimation of the expected
value of the hourly peak factor has a general validity, although regression parameters’ values are
a reflection of the specific consumptions of the pilot area. General validity can be also extended
to Equation (11) for the estimation of the standard deviation if the effect of a finite population is
neglected. Indeed, results showed that the finite population condition does not affect the probability
distribution of sample means, which remains normal, but it may affect the amplitude of the confidence
bands, which could be underestimated. The proposed methodology will be further applied on other
distribution systems. Moreover, additional investigations about the effect of spatial correlation on the
coefficient of variation of peak discharges, as well as the quantification of the peak factor variance,
will be the object of future research.

As a final remark, the structure and the coefficients of the empirical relationship described by
Equation (7) for the expected value of the hourly peak water demand factor allows formulating the
following general considerations, that can be of significant aid in the design and verification of water
distribution networks.

1. Several relationships provided by the literature asymptotically tend to zero as the number of
households increase; conversely, in the present research the peak factor asymptotically tends to a
constant value greater than one.

2. The asymptotic value is reached for values of the number of households N of about 100–200
(approximately corresponding to a number of users Nu of about 300–600); conversely, the increase
in the peak factor mainly affects only the secondary pipe networks of the urban centres which
serve a reduced number of users.

3. The secondary pipe networks generally consist of a branched pipe structure, which is more
sensitive to the flow variation than looped networks; in this case, the peak factor must be
adequately considered for design purposes.
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Abstract: Short-term water demand forecasting plays an important role in smart management and
real-time simulation of water distribution systems (WDSs). This paper proposes a hybrid model for
the short-term forecasting in the horizon of one day with 15 min time steps, which improves the
forecasting accuracy by adding an error correction module to the initial forecasting model. The initial
forecasting model is firstly established based on the least square support vector machine (LSSVM),
the errors time series obtained by comparing the observed values and the initial forecasted values is
next transformed into chaotic time series, and then the error correction model is established by the
LSSVM method to forecast errors at the next time step. The hybrid model is tested on three real-world
district metering areas (DMAs) in Beijing, China, with different demand patterns. The results show
that, with the help of the error correction module, the hybrid model reduced the mean absolute
percentage error (MAPE) of forecasted demand from (5.64%, 4.06%, 5.84%) to (4.84%, 3.15%, 3.47%)
for the three DMAs, compared with using LSSVM without error correction. Therefore, the proposed
hybrid model provides a better solution for short-term water demand forecasting on the tested cases.

Keywords: water demand forecasting; hybrid model; error correction; chaotic time series; least
square support vector machine

1. Introduction

One critical factor in planning, design, operation, and management of water distribution system
(WDS) is satisfying quality water demand at reasonable pressure [1–3]. An accurate hydraulic model of
WDS will help water utilities to improve their operation ability and management effectively. Because
the WDS hydraulics are driven by consumer demands, it is necessary to estimate consumer demands
prior to performing hydraulic evaluation [4]. Water demand at a given time in the future is usually
related to historical water consumption and meteorological factors such as humidity, air temperature,
and wind velocity [5]. Water demand forecasting plays an important role in activities of the WDS such
as water production, pump station operation, real-time modeling, and other strategic decisions of
water management [1,6].

The water demand forecasting models can be categorized into long-term and short-term models
according to the forecast horizon (i.e., the time period that the water demand will be forecasted) and
forecast frequency (i.e., the time step that the water demand forecasts are performed within the time
period) [7]. The long-term forecasting model (1 to 10 years’ forecast horizon) pays more attention
to the plan and design of WDSs. The short-term forecasting model (1 day to 1 month’s forecast
horizon) targets the real-time water demands of the existing WDSs, which is generally used for daily
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operation of water plants and pump stations [8]. In this study we focus on the short-term model.
The accurate model for short-term water demand forecasting with a forecast frequency ranging from
daily to sub-hourly is an essential support for optimal scheduling and better decision marking for
WDS management [9].

Many studies have proposed forecasting models for short-term water demand forecasting,
which can be generally classified into traditional methods and learning algorithms [9]. Early works
used traditional statistical models to settle this problem, such as liner regression, exponential smoothing,
and auto regressive integrated moving average (ARIMA) [7]. These models have been widely applied in
practice because they are simple to understand and implement. Whereas, the traditional models are not
always able to accurately predict the nonlinear changes of water demands. Recently, more sophisticated
models that use machine learning algorithms and artificial intelligence have been utilized to address
this problem. The models utilizing machine learning algorithms are typical data-driven nonlinear
models, which are mainly based on historical data to establish the relationships between water demand
and related variables (e.g., previous water consumption, air humidity, and temperature).

A number of data-driven models that use machine learning algorithms have been developed
for short-term water demand forecasting, such as artificial neural networks (ANN) models [10–12],
support vector machine models (SVM) [13–16], project pursuit regression models [1,17], and random
forests [18]. Herrera et al. [1] conducted a comparison of these aforementioned models, and found
that the SVM model has the most accurate results. Khan and Coulibaly [15] performed a comparison
between SVM, ANN, and seasonal autoregressive model in forecasting lake water levels, and the results
indicated the SVM model outperforms the other two. The main reason is because the SVM exhibits
inherent advantages in formulating cost functions by using structural risk minimization principle
instead of the empirical risk minimization of ANN [19].

SVM maps the nonlinear trends of input space to linear trends in a higher dimensional space and
recognizes the subtle patterns in complex datasets by using a learning algorithm [20]. The least squares
support vector machine (LSSVM) is an extension of SVM which involves equality constraints instead
of inequality constraints and works with a least squares cost function [21,22]. Due to the equality
constraints, the LSSVM reduces the computational complexity by solving a set of linear equations rather
than the quadratic programming problem in standard SVM. Chen and Zhang [14], Herrera et al. [1],
and Praveen and Bagavathi [23] established an LSSVM-based model to forecast hourly water demand;
it was found that the LSSVM model has better generalization ability than ANN. Other examples of
LSSVM applications include river flow estimation [24], discharge-suspended sediment estimation [25],
and pipeline network failure estimation [26]. When forecasting water demand with the LSSVM-based
model, Chen and Zhang [13] utilized the Bayesian framework to determine the model parameters
(namely, the regularization constant and the width of the RBF kernel). Their case study showed that
parameter determination by Bayesian method is faster than that of cross-validation [26,27].

Both the traditional models and the learning algorithms have achieved promising results in their
own linear or nonlinear domains, whereas, none of them are universally suitable for all circumstances.
To improve the performance of the forecasting models, the hybrid models combining two or more
different algorithms/models are developed by some studies. Zhang [28] established the hybrid model
with ANN and ARIMA to forecast time series, in which the ARIMA model was firstly used to predict
the linear part of the data, then ANN was performed to model the errors between the linear part and
the observed data (i.e., the nonlinear part of the data). The application results of three benchmark time
series data showed that the hybrid model improved forecasting accuracy more than the independent
models. Odan and Reis [7] associated the Fourier series (FS) to ANN for hourly water demand
forecasting. ANN were used to model the errors of the FS forecast (i.e., the difference between the
FS model and the observed data). Brentan et al. [29] proposed a hybrid model based on SVM and
adaptive FS, where SVM firstly provided the initial forecasting and then the adaptive FS was utilized
to model the errors between the initial forecasting and the observed data. Thus, the nonlinear and
periodical behavior of water demand can be captured by the SVM and FS model, respectively.
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In addition to FS, the chaotic time series method gives the possibility of detecting instability
phenomena hidden behind random-looking phenomena, which has been widely used in short-term
time series forecasting of rainfall, traffic, and other fields. For example, Dhanya et al. [30] examined
the chaotic characteristics of daily rainfall data of the Malaprabha basin, India, and they established
a daily rainfall prediction model based on the theory of chaotic time series. Liu et al. [31] combined
chaos theory with SVM to perform short-term prediction of network traffic. Yang et al. [32] proposed
an improved fuzzy neural system based on chaotic reconstruction technology for short-term load
forecasting of electric power systems, and the application showed that the chaotic technology-based
model performs better than the conventional neural network model. So far, chaotic time series has
rarely been implemented to forecast water demand, and its performance in this field is unknown.

As aforementioned, with the help of error correction of the initial forecasting, hybrid models could
perform better than any individual model [7,28,29]. Therefore, it is worthwhile to integrate the chaotic
time series method in the hybrid forecasting model and investigate their performance. This paper aims
to achieve better predictions of short-term water demand by presenting a hybrid forecasting model
which couples the chaotic time series with LSSVM in the error correction module. Specifically, it will:

• Present the framework, methods, and performance indicators of the hybrid forecasting model,
• Test the hybrid model’s accuracy based on case studies of three real-world DMAs in Beijing WDSs,
• Verify the effectiveness of the model by comparing it with the results of other models, including

ARIMA, LSSVM without error correction, and LSSVM using Fourier series for error correction.

2. Methodology

2.1. Research Framework

The historical water consumption and calendar data are used as the model inputs in this study,
as many researchers have proved that the hourly and 15-min forecasting model only considering
historical water consumption data is able to achieve reliable forecast results [9,33,34]. Further, this study
tests the model’s capability of forecasting without real-time meteorological (e.g., temperature, humidity,
and wind speed) data which is usually unavailable in real-time or highly uncertain. Admittedly, there
are studies considering meteorological data for hourly water demand forecasting (e.g., Al-Zahrani et
al. [35] and Brentan et al. [29]), but there is no proof that use of meteorological data can significantly
improve the prediction accuracy without increasing the complexity of the method.

This study addresses the problem of short-term water demand forecasting with the prediction
horizon of 24 h with time intervals of 15 min. Firstly, historical water demand data from DMA cases
are collected, and the features of the historical data are extracted to select valuable information as the
inputs of the forecasting model. Then the forecasting model is trained and tested using the historical
water demand data and will be rebuilt every 24 h on the basis of an updated data set. When applying
the forecasting model, the newly observed water demand data are collected at 15-min intervals.
The historical data set always maintains the same size and is updated once a day by adding the newly
observed data and deleting the earliest data.

There are 96 time steps in the water demand forecasting for one day ahead. The water
demand forecasting for each time step in one day ahead is performed as follows: (1) Establish
the forecasting model by LSSVM according to the historical water demand data (see Section 2.2,
Section 2.3, and Section 3.2). (2) Predict the water demand at the first future time step (15 min) on the
forecasting day by the forecasting model; the model inputs for the 15-min prediction are provided
by the historical data. (3) Predict the water demand at the second future time step (30 min) on the
forecasting day; the model inputs for the 30-min prediction are obtained from the newly observed
data at 15 min and the historical data. (4) The input data for the 45-min prediction is obtained from
the newly observed data at 30 min, the observed data at 15 min, and the historical data, and so on.
This stepwise data updating procedure is shown Figure 1. It should be noted that the model parameters
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of the forecasting model remain unchanged for the 96 time steps, but the model inputs for different
time steps are updated as illustrated in Figure 1.

Figure 1. Water demand data processing procedure.

The hybrid forecasting model is mainly constituted of two parts, namely the initial forecasting
module and the error correction module. The framework of the hybrid model is shown in Figure 2.
The outline of the initial forecasting module is actually similar to the traditional water demand
forecasting model. The difference between the hybrid model and the traditional one is the error
correction module.

 
Figure 2. Hybrid framework for water demand forecasting.
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In the initial forecasting module, historical water demand data and other relevant information
are firstly collected into a data set with the time step of 15 min. After identification and processing of
abnormal data, data features are extracted to provide valuable information to the forecasting model
inputs. Furthermore, the nonlinear relationship between the historical water demand data and the
demand at the next time step is constructed by LSSVM training, which provides the initial forecasting
model F(y) of water demand. Then, the forecasted water demand ŷt+1 at the future time (target time)
t + 1 is obtained by the initial forecasting model. The errors of the initial forecasting model on the
training data at historical time steps (1, . . . , t) is expressed as:

ei = yi − ŷi (1)

where ei is the error of the initial forecasting model at the time step i (i = 1, . . . , t); yi is the observed
water demand at time step i; ŷi is the output value of the initial forecasting model at time step i. Note
that, t + 1 is the first target time step at which the water demand is unknown and needs forecasting.

The error correction module has three steps. Firstly, the error time series (e1, e2, . . . , ei, . . . , et)
from the initial forecasting model is transformed into a chaotic time series. Secondly, the LSSVM is
adopted to establish the relationship between the errors of the initial forecasting at next time step and
the chaotic time series at current and previous time steps, which provides the error forecasting model
f (e). Thirdly, the forecasted error for the target time t + 1 is obtained and used to correct the initially
forecasted demand value as follows:

ŷH,t+1 = ŷt+1 + êt+1 (2)

where ŷH,t+1 is the water demand forecasting by the hybrid model, in other words, the final output of
water demand forecasting at the target time t + 1; ŷt+1 is the forecasted water demand by the initial
forecasting model F(y); and êt+1 is the forecasted error by the error forecasting model f (e).

2.2. Initial Forecasting Model by LSSVM

SVM has been widely applied in several areas including pattern recognition, regression, nonlinear
classification, and function estimation. LSSVM is originated from SVM and first proposed by
Suykens and Vandewalle [21], which is believed, takes a computational advantage over standard
SVM by converting quadratic optimization problem into linear equations. In the field of water
demand forecasting, the LSSVM is used to establish the nonlinear relationship between model inputs
and outputs.

Consider a given training set of N samples (Xi; yi)(i = 1, . . . , N), where Xi denotes the ith input
vector in n-dimensional space (Xi = (X1i, . . . , Xni)∈Rn) and yi is the corresponding desired output value
(i.e., the observed value) of the ith sample. The nonlinear function between the inputs and outputs can
be given as below [19,26,36]:

ŷi(Xi) = ωTϕ(Xi) + b (3)

where ŷi is the model output corresponding to the sample i, the nonlinear transformation function ϕ(*)
maps the Xi to the m-dimensional feature space, ω is the m-dimensional weight parameter vector, and
b is the bias parameter (ω∈Rm, b∈R).

Equation (3) provides the initial forecasting model of water demand, in other words,
the relationship between the model input and output, where the input data is Xi = (Qt, Qt–1,
Qt–2, Qt–95, Qt–191, Qt–671) and the output ŷi is the forecasted water demand Qt+1 at the target time t +
1. Detailed description of model input data selection is presented the Section 3.1.
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Considering the complexity of minimizing the model errors between yi and ŷi, in the LSSVM, the
parameters ω and b in equation (3) can be estimated according to the structural risk minimization
principle [19,36]:

min J(ω, ξ) =
1
2
ωTω+

1
2
γ

N∑
i=1

ξ2
i (4)

where γ is the regularization constant determining the tradeoff between the training error and the
generalization performance, ξi is a slack variable denotes model error.

The solution of the optimization problem (Equation (4)) can be obtained by Lagrange
function [19,36]. Then the LSSVM model for the non-learner function in Equation (3) is finally
turned into:

ŷ(X) = f (X) =
N∑

i=1

αiK(Xi, X) + b (5)

where αi (i = 1, . . . , N) is the Lagrange multiplier and can be evaluated by γ, K(Xi, X) is the kernel
function. The radial basis function (RBF) kernel is one of the most popular kernel functions, and is
used in this study as below:

K(Xi, X) = exp
(−||Xi −X||2

2σ2

)
(6)

where σ is the width parameter that reflects the radius enclosed by the boundary closure.
It is worth mentioning that, at this point, Equation (3) is transformed into Equation (5) which

can be directly established though the training samples (Xi; yi) (i = 1, . . . , N) and model parameters σ
and γ. Therefore, establishing an LSSVM model with RBF kernel involves the selection of RBF kernel
width σ and the regularization constant parameter γ. Among the available methods for parameter
tuning of LSSVM such as the cross-validation method [19], the grid search method [26], and Bayesian
framework-based inferring [13,37], the Bayesian approach with three levels of inference is chosen for
parameter tuning of LSSVM in this study.

2.3. Error Forecasting Model Based on Chaotic Time Series

Chaos is a quasi-stochastic irregular motion possibly appearing in deterministic nonlinear dynamic
systems [38]. Since various nonlinear systems exhibit chaotic features, chaos theory is widely used
in nonlinear system analysis to detect deterministic relationships hidden behind random-looking
phenomena, and has been increasingly used in time series analysis [30,31]. According to the delay
coordinate embedding technique, the underlying dynamical system can be faithfully reconstructed
from stochastic time series under fairly general conditions [39]. Therefore, a one-to-one correspondence
can be established between the reconstructed and the true but unknown dynamical systems [40].

Given a scalar time series of model errors e = (e1, e2, . . . , eN) with time step Δt, and N is the number
of elements in the time series, the element ei (i = 1, . . . , N) is computed by Equation (1). According
to the procedure of phase space reconstruction, the scalar time series e is transformed in phase space
as follows:

E1 =
(
e1, e1+τ, e1+2τ, . . . , e1+(m−1)τ

)
E2 =

(
e2, e2+τ, e2+2τ, . . . , e2+(m−1)τ

)
. . .

EM =
(
eM, eM+τ, eM+2τ, . . . , eM+(m−1)τ

) (7)

where τ is the delay time, it could be several times of Δt; Ei (i = 1, . . . , M) is a chaotic vector in the phase
space, m is the embedding dimension of the phase space, M = N–(m–1)τ is the number of phase point.

Takens [39] has proved that the chaotic attractor of a time series would be revealed in the phase
space if the parameters τ and m are properly selected. The dimension parameter m is usually larger than
three, to entirely reveal the underlying information of the time series [31]. Among existing methods
for determining parameters τ and m, the coupled-cluster (C-C) method [41] is used in this study.
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In the case of chaotic systems, the Lyapunov exponent (λ) gives a system the sensitivity to initial
conditions and determines the total predictability of the system, and a positive λ indicates the system is
chaotic [42]. Therefore, the reconstructed time series (E1, E2, . . . , EM) is tested for the chaotic signature
through the maximum Lyapunov exponent which is evaluated by Wolf’s algorithm [43].

In the phase space of a chaotic system, the dynamic information could be interpreted in the form
of m-dimensional mapping as [30]:

EM+1 = f (EM) (8)

where EM is the state at current time, EM+1 = (eM+1, eM+1+τ, eM+1+2τ, . . . , eM+1+(m−1)τ) is the state at
future time. Note that, the last element eM+1+(m−1)τ of EM+1 is exactly the next element ek+1 of the error
series e which needs to be forecasted. Therefore, the phase point Ei(i = 1, 2, . . . , M) further evolves into
Ei+1, and there is a determinism mapping function between ei+1+(m−1)τ (i.e., the last element of Ei+1)
and Ei as follows:

ei+1+(m−1)τ = f (Ei) = f
(
e1, e1+τ, e1+2τ, . . . , e1+(m−1)τ

)
(9)

According to the properties shown in Equations (8) and (9), the chaotic time series can be utilized
for prediction, and then the LSSVM approach described in Section 2.3 can be used to establish the
nonlinear functions in Equation (9). The model input data and output data for LSSVM training are
shown as follows:

Xerror =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

EM−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦; Yerror =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
e2+(m−1)τ
e3+(m−1)τ
eM+(m−1)τ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

where Xerror is the input data with the dimension of (M–1) × m, Yerror is the output data with the
dimension of (M–1) × 1.

Note that, due to M = N–(m–1)τ, the last element of Yerror is actually eN, in other words, the last
element of the error time series e. After the nonlinear function of Equation (9) is established by LSSVM,
one can predict the future element of e at next time step through eN+1 = f (EM).

2.4. Performance Indicators of Forecasting Models

In terms of accuracy evaluation of water demand forecasting models, variety of measures are
available to characterize the performance of the models [1,7,9]. This study adopts four widely
used indicators as evaluation criteria, including the mean absolute error (MAE), the mean absolute
percentage error (MAPE), the root means square error (RMSE), and the coefficient of determination
(R2). The equations of these aforementioned indicators are shown as follows:

MAE =
1

N f

N f∑
i=1

∣∣∣yi − ŷi
∣∣∣ (11)

MAPE =
1

N f

N f∑
i=1

∣∣∣yi − ŷi
∣∣∣

yi
× 100% (12)

RMSE =

√√√√
1

N f

N f∑
i=1

(yi − ŷi)
2 (13)

R2 = 1−
∑N f

i=1(yi − ŷi)
2

∑N f

i=1(yi − y)2
(14)

where yi and ŷi are the observed value and the predicted value of water demand at time i, respectively;
y and ŷ are the corresponding mean values; Nf is the number of forecasted time steps, which is equal
to 96 for the water demand forecasting problem with a one day horizon and a frequency of 15 min.
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3. Case Study

3.1. Data Feature Extraction and Model Inputs

The historical water demand data from three actual DMAs (namely, DMA1, DMA2, and DMA3)
in Beijing, China, were collected and used to train and test the forecasting model. On the inlet of the
DMA, the water demand data were metered with the unit of m3 and recorded every 15 min; then the
data were transferred to the database of the Beijing Water Works in real time. The water consumption
pattern and the composition of customers in DMA1 is very different from that in DMA2 and DMA3;
DMA1 includes more than 10,000 residential customers, 168 business customers, and 68 industrial
customers. The number of water customers in DMA2 and DMA3 are 1822 and 1936, respectively; water
customers in DMA2 and DMA3 are mostly residential and there are also some business customers.
The statistics of the three DMAs’ water consumption data are show in Table 1. The three DMAs’ water
consumptions at different times in one week are shown in Figure 3. From the weekly curves of water
demands in Figure 3, one can see the different demand patterns of the three DMAs, for example,
there is no obvious peak hour in the evening for DMA1, and there are no obvious morning peak hours
on weekends for DMA3.

Table 1. Characteristics of water demand data in 2018 for the three case study district metering areas
(DMAs).

DMAs Date of Data
Minimum

(m3/h)
Maximum

(m3/h)
Mean
(m3/h)

Standard
Deviation

(m3/h)

Coefficient
of Variation

DMA1 1 November–26 December 120.00 2224.00 1192.03 467.81 0.39
DMA2 1 November–26 December 16.88 67.04 35.85 19.97 0.30
DMA3 17 June–11 August 28.48 95.12 63.45 15.14 0.24

 

Figure 3. One-week water consumption curves of the case study DMAs. (a) DMA1; (b) DMA2,
and (c) DMA3.

In total, 8 weeks’ data were collected from the water demand record in 2018 for training and
testing the forecasting model. The data set contains 5376 observations for each DMA. Seven weeks’
data were used as training data, while the last week’s data were used for model testing. When using
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the hybrid framework to predict the water demand at 96 time steps on the next day, the water demand
data of the current day and previous days were used for model training, for example, the historical
water demand data of the previous 49 days were used for model training to predict the demand on the
50th day, and the water demand data of the previous 50 days were used for model training to predict
the demand on day 51, and so on.

When selecting the input data for the forecasting model from the historical water demand data,
Guo et al. [9] categorized the historical data into three fragments, namely, recent time, near time, and
distant time, and selected five time-steps in each time fragment as the input data. Herrera et al. [1]
selected the historical water demand data at three time-steps including the current time, the previous
time, and the target time in the previous week as the input data. Ordan and Reis [7] selected six
time-steps including four continuous time-steps before the target time, the target time on the previous
day, and previous week. According to these literatures, the historical water demand at the current time,
the previous time, the target time on the previous day, and the previous week are usually adopted as
the model input data in the short-term water demand forecasting. In this study, to better model the
characteristics of the water demand time series, a correlation analysis [7] is performed based on the
data of three DMAs to find the data that is highly related to the water demand data at the target time
from the historical water demand data. Furthermore, various combinations of the related data are
tested as the input for the forecasting model, and the following combination is identified as having
the best performance, in other words, three continuous time-steps before the target time (Qt, Qt–1,
Qt–2), the target time on the previous one day and two days (Qt–95 and Qt–191), and the target time on
the previous week (Qt–671). Therefore, the historical data set (Qt, Qt–1, Qt–2, Qt–95, Qt–191, Qt–671) is
adopted as the input data for the initial forecasting model in this study.

3.2. Model Setup

In addition to the hybrid forecasting model proposed in this study, two other forecasting models
are established to make comparisons with and to validate the performance of the proposed hybrid
forecasting approach. As summarized in Table 2, the hybrid model H_LSSVM_Chaos is the one
established by the hybrid framework of this study (see Figure 2), and the other two are a single
forecasting (S_LSSVM) and a hybrid forecasting model (H_LSSSVM_FS), respectively. The single
forecasting model S_LSSVM uses the traditional prediction procedure without error correction
module, in other words, only the initial forecasting module is used. The hybrid forecasting model
(H_LSSVM_Chaos and H_LSSSVM_FS) adopts both the initial forecasting module and the error
correction module. The model inputs of the initial forecasting module are the feature data extracted
from the historical water demand data, while the model inputs of the error correction module are the
error series of the initial forecasting model. The error series can be evaluated according to Equation (1)
and the flowchart in Figure 2. In the hybrid forecasting model, the initial forecasting module is the
same one applied in the single forecasting model.

Table 2. Characteristics of forecasting models.

Models Forecasting Category Model Inputs

S_LSSVM Single forecasting Feature values of historical water demand data
H_LSSVM_Chaos Hybrid forecasting Chaotic time series of the errors of the initial forecasting

H_LSSVM_FS Hybrid forecasting Scalar time series of the errors of the initial forecasting

The hybrid model H_LSSSVM_FS uses the Fourier series as the forecasting model of the error
time series in the error correction module, which is similar to the approach used by Brentan et al. [29]
and Ordan and Reis [7]. Model inputs of the hybrid models’ error correction modules are based on the
errors of the initial forecasting by the S_LSSVM model.

For the error correction module in the H_LSSVM_FS model, the error time series of the previous
seven days (i.e., 672 values) is used to compute the coefficients of the Fourier series; the number of
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harmonics of FS is set to 336. The LS-SVMlab Toolbox developed by Brabanter et al. [44] is used to
train the forecasting models by LSSVM, and the three-Level Bayesian inferring method is adopted for
parameter tuning of the LSSVM. Table 3 displays the model parameters for the application of LSSVM
and chaos methods. Parameters γ and δ2 in Table 3 were obtained by Bayesian method for the LSSVM
model training. In addition, m and τ are the essential parameters for chaotic time series construction.

Table 3. Model parameters for the application of LSSVM and chaos methods.

Models DMA ID γ δ2 m τ

S_LSSVM
1 0.1431 5.7407 - -
2 0.0378 12.5104 - -
3 0.0457 13.4042 - -

H_LSSVM_Chaos
1 0.5827 5.7680 4 9
2 2.7872 4.5586 4 8
3 3.1269 6.1330 3 11

3.3. Application Results

3.3.1. Overall Performance

Figure 4 compares the observed water demand with the forecasted water demand using the
S_LSSVM, H_LSSVM_Chaos, and H_LSSVM_FS models at 15 min steps for one day ahead. It can
be seen that the predicted water demand by the three models is consistent with the trend of the
observations, and the hybrid models perform better than the single forecasting models (S_LSSVM)
during the periods of water demand fluctuations. As quantified below by the model performance
indicators, the H_LSSVM_Chaos models provide the closest estimates to the corresponding observed
water demand during most of the peak periods.

 

Figure 4. Water demand forecasting for one day ahead with the time step of 15 min. (a) Water demand
of DMA1 on 26 December; (b) water demand of DMA2 on 26 December; and (c) water demand of
DMA3 on 11 August.
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Table 4 gives the overall performance of the different forecasting models for the three DMAs in
Beijing. It can be seen that the H_LSSVM_Chaos provides a higher accuracy than the other two models
according to the performance indicators R2, MAE, MAPE, and RMSE. The single forecasting model
S_LSSVM is the least accurate.

Table 4. Performance indicators of forecasting models on testing data.

Models DMA ID R2 MAE (m3/h) MAPE (%) RMSE (m3/h)

S_LSSVM
1 0.9654 54.43 5.64 68.61
2 0.9722 1.31 4.06 1.76
3 0.9447 2.70 5.84 3.31

H_LSSVM_Chaos
1 0.9711 47.92 4.84 62.66
2 0.9817 1.08 3.15 1.43
3 0.9701 1.86 3.47 2.44

H_LSSVM_FS
1 0.9626 56.35 5.44 71.30
2 0.9782 1.18 3.33 1.56
3 0.9533 2.20 3.72 3.05

Among the three DMAs, the prediction accuracy to DMA1 is slightly worse than to DMA2 and
DMA3, for example, the MAPEs of (DMA1, DMA2, DMA3) of the H_LSSVM_Chaos models and the
H_LSSVM_FS models are (4.84%, 3.15%, 3.47%) and (5.44%, 3.33%, 3.72%), respectively. The reason
is that the composition of the water customers in DMA1 is relatively complex, not only including
residential users, but also a large number of commercial and industrial users. The statistical parameter
COV of DMA1′s water demand data is 0.39, which is the largest one among the three DMAs. Larger
COV indicates a high level of water demand floating and makes the demand pattern more difficult
to capture. As a result, even using the error correction module, the hybrid model H_LSSVM_Chaos
only reduced the MAPE of DMA1 from 5.64% to 4.84%, which is less than the reductions for the
other DMAs. Moreover, because the water consumptions in DMA2 are mostly residential demands
which thus lead to a simple water demand pattern, the prediction results for DMA2 give the highest
accuracy. Therefore, as for the error correction module performance on short-term water demand
forecasting, the DMAs with simple customer composition have better prediction accuracy when using
error correction module.

3.3.2. Comparisons Between the Hybrid Forecasting Models

Figure 5 shows the error forecasting by the error correction module in the hybrid models.
Compared to the water demand data in Figure 4, the errors of initial forecasting in Figure 5 have a
large number of fluctuations, in other words, the value of errors has a greater frequency of change.
In addition, the complex and disorderly change in the peak values of the error data are also shown in
Figure 5; there is no obvious rule on the occurrence time of the peak value, such as peaks at the time
steps (7, 45, 71, 75) in Figure 5a. The results in Figure 5 can be summarized as follows:

• The error forecasting models based on the chaos method and the FS method can both obtain more
reasonable prediction results in some periods where the error data changes mildly, such as time
steps 5 to 23 and 60 to 72 in DMA2, and 10 to 24 in DMA3.

• The prediction accuracy of the two methods is relatively low in the periods where the error data
change frequently, such as time steps 33 to 55 in DMA1, 24 to 34 in DMA2, and 35 to 53 in DMA3.
It should be noted that even in these hardly predictable time steps, however, the predictions from
the chaos method is closer to the errors of the initial prediction than the FS model, e.g., for the
error predictions at time steps 30 to 55 in the three DMAs, the MAEs obtained by chaos method
and FS model are (47.54, 1.17, 2.40) and (64.53, 1.84, 3.15), respectively.

• At some time steps, the error predictions from the FS method are larger than the errors of initial
prediction, which leads to misleading corrections to the initial forecasting, such as the time steps
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32, 33, and 62 to 64 in DMA1; time steps 32, 46, 55 and 50 in DMA2; time steps 30 to 35, 80 and 86
in DMA3. While this kind of misleading correction is not much in the chaos method.

In general, the chaos method performs better than the FS method in predicting such a complex
fluctuated error time series, and the practice also proves that the errors predicted by the chaotic method
are closer to the initial errors in the three DMAs.

 

Figure 5. Comparison between the errors of the initial forecasting and the predicted errors. (a) DMA1
on 26 December; (b) DMA2 on 26 December; and (c) DMA3 on 11 August.

The statistics of absolute percentage errors (APE) between the single forecasting model S_LSSVM
and the hybrid models are provided in Figure 6. From the mean, median, maximum, and minimum
values of APEs of the predictions for the three DMAs in Beijing, the H_LSSVM_Chaos models perform
better than that of the S_LSSVM models. Therefore, the hybrid framework using the LSSVM and
chaotic time series gives more accurate predictions. The hybrid models using LSSVM and Fourier
series did not always perform as well as the H_LSSVM_Chaos. The MAPEs of the H_LSSVM_FS
model for DMA1 is 5.44%, which is better than that of the single forecasting model S_LSSVM 5.68%.
Whereas, other statistics of the H_LSSVM_FS model in DMA1, such as the 75-percentile value and the
maximum value of the APE, are similar or even worse than that of the S_LSSVM. The reason is that the
H_LSSVM_FS model performs a misleading correction for the severely fluctuated time steps, as shown
in Figure 5a. For DMA2, although the mean and median APEs of the H_LSSVM_FS models are similar
to that of the H_LSSVM_Chaos models, the overestimates of the errors during the time steps 38 to 58
in Figure 5b by the FS method are still notable. Therefore, more attention should be paid when using
the error correction module in short-term water demand forecasting.
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Figure 6. Statistics of the absolute relative errors for different forecasting models.

3.4. Discussion

In the initial forecasting module and error correction module of the hybrid forecasting framework,
the forecasting models are established by LSSVM. The successful implementation of the LSSVM
model depends on the precision of model parameters (i.e., γ and δ2). In this study, the three-level
Bayesian evidence inferring method is adopted to infer LSSVM model parameters. To investigate
the influence of model parameters on the performance of LSSVM models, the application of the
S_LSSVM model on DMA2 is taken as an example. With the same model input data, Table 5 shows
the model performances to different model parameters which are obtained by the 1-level Bayesian
inferring, 3-level Bayesian inferring, and the grid search algorithm. These parameters are computed
by the LS-SVMlab Toolbox [45]. As Table 5 shows, after 3-level inferring, the Bayesian evidence
method catches reasonable model parameters with moderate computation burden. The grid search
algorithm provides the best performance, but it takes the longest computation time. As shown
in Table 4, the hybrid model H_LSSVM_Chaos model using 3-level Bayesian inferred parameters
performs even better than the grid search algorithm built S_LSSVM model. The computation time of
the H_LSSVM_Chaos model is about 1 time (including initial forecasting and error correction) longer
than the 3-level Bayesian built S_LSSVM model, which is much shorter than that of the grid search
algorithm built S_LSSVM model (Table 5). Therefore, the hybrid framework using 3-level Bayesian
built LSSVM for initial forecasting and error time series forecasting is suitable for the short-term water
demand forecasting.

Table 5. Performances of the S_LSSVM model with different parameters with application to DMA2.

Methods
Model Parameters Model Performance Indicators

Computation Time (s)
γ δ2 R2 MAE (m3/h) MAPE (%) RMSE (m3/h)

1-level Bayesian inferring 0.0183 13.6763 0.9632 1.56 4.98 2.03 179
3-level Bayesian inferring 0.0378 12.5104 0.9722 1.31 4.06 1.76 1253

Grid search 0.1097 0.7515 0.9809 1.13 3.38 1.46 3685

The hybrid model (H_LSSVM_Chaos) is also compared to the traditional ARIMA model,
and Table 6 shows the results on the three DMAs. The development of the ARIMA models
follows the procedure described by Adamowski [45]. The parameters of the ARIMA are trained and
tested based on different combinations, the number of autoregressive parameters (p), the number of
difference (d) and the number of moving average parameters (q) are set as (3, 1, 1). Note that, the same
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set of historical water demand data are used to build the H_LSSVM_Chaos and ARIMA forecasting
models; the historical data before the forecasting day are used to establish the forecasting models.

Table 6. Performance comparison between the auto regressive integrated moving average (ARIMA)
and the hybrid forecasting models.

DMA ID Forecasting Date Forecasting Models R2 MAE (m3/h) MAPE (%) RMSE (m3/h)

1 26 December
ARIMA 0.9656 55.43 5.53 68.34

H_LSSVM_Chaos 0.9711 47.92 4.84 62.66

2 26 December
ARIMA 0.9723 1.31 3.83 1.76

H_LSSVM_Chaos 0.9817 1.08 3.15 1.43

3
11 August ARIMA 0.9687 1.92 3.44 2.50

H_LSSVM_Chaos 0.9701 1.86 3.47 2.44
8–10 August

(mean values)
ARIMA 0.9687 1.90 3.49 2.44

H_LSSVM_Chaos 0.9772 1.64 3.00 2.08

As shown in Table 6, the H_LSSVM_Chaos model perform better than the ARIMA model on
DMA1 and DMA2, for example, the MAPEs (DMA1, DMA2) of the H_LSSVM_Chaos model and the
ARIMA model are (4.84%, 3.15%) and (5.53%, 3.83%), respectively. Whereas, the application results
of DMA3 show some variations: (i) on the forecasting day August 11, the H_LSSVM_Chaos has a
similar result to the ARIMA, for example, the R2 and MAPEs of the two models are (0.9701, 0.9687)
and (3.47%, 3.44%), respectively; (ii) on the forecasting days from August 8 to 10, the H_LSSVM_Chaos
perform better than the ARIMA, for example, the three days’ MAPEs of the H_LSSVM_Chaos and
the ARIMA are (3.48%, 2.81%, 2.71%) and (4.03%, 3.10%, 3.35%), respectively. The reason for the
variations is that August 11 is Saturday while August 8 to 10 are weekdays. As shown in Figures 3c
and 4c, for DMA3, the water consumption curve on Saturday is different and more complex than that
of weekdays. The distinctive water consumption curve on Saturday results in fewer training samples
for establishing the forecasting model, which affects the forecasting accuracy for Saturday. However,
the overall performance of the H_LSSVM_Chaos model is still better than the ARIMA model, despite
the variations in the forecasting accuracy on Saturday. These comparisons verified the validity of the
H_LSSVM_Chaos model.

Generally, one single model could not identify the underlying patterns for every case, and the
hybrid framework including different models is able to capture different aspects of the available
information for prediction [5,46]. The LSSVM method in the initial prediction module captures
nonlinear relationships between the discontinuous feature data (Qt, Qt–1, Qt–2, Qt–95, Qt–191, Qt–671) of
the historical water demand data set and the water demand Qt+1 on the forecasting day; the chaotic
time series method in the error correction module captures the continuous and periodic changes from
the errors of the initial forecasting module.

4. Conclusions

Short-term water demand forecasting with the horizon ranges from sub-hourly to daily plays
an important role in the field of optimal operation of pump stations and online hydraulic simulation
of water distribution systems. To obtain more accurate predictions, this study proposes a hybrid
framework with the error correction module which uses the chaotic time series, and investigates the
performance of the framework in the short-term water demand forecasting with one day ahead and a
15-min time step. The hybrid framework is developed by integrating two modules, namely, the initial
forecasting module and the error correction module. The initial forecasting model is established by the
least squares support vector machines (LSSVM). In the error correction module the errors forecasting
model is established by LSSVM using chaotic time series of error data from initial forecasting.

The hybrid model is implemented in the water demand forecasting of three actual district metering
areas (DMAs) in Beijing, China, and the application results of the hybrid model are comparable to that
of other two models including the forecasting model without error correction and the hybrid model
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using Fourier series for error correction. From the case study results, the following conclusions could
be drawn:

• In most instances, the hybrid models perform better than the forecasting model without error
correction. The error correction module performs better in the short-term water demand
forecasting than the DMAs whose composition of customers is simple. A simple composition of
customers indicates a simple water consumption pattern and less peak fluctuations in the water
consumption curves.

• Due to the capability of detecting the underlying instability characteristics of time series, the error
correction module using chaotic time series performs better than the Fourier series in predicting a
complex disordered time series of errors.

• For the periods of frequent and disordered peak fluctuations in the error time series, the
performance of the error correction module is not good, and the error forecasting model based
on Fourier series may lead to unreasonable forecasts by misleading the corrections to the initial
forecasting. As a result, more attention should be paid to the features of the error time series when
using the error correction module.

In the presented study, the hybrid forecasting framework is tested by three actual DMAs in Beijing
with different characteristics. Further work on other DMAs are needed to test and verify the robustness
of the hybrid forecasting framework, and much more effort is needed to test the performance of chaotic
methods in mining the characteristics of the disordered peak fluctuated data. This study only tested
the proposed model for the 24 h forecast horizon, whereas, the hybrid forecasting framework is not
limited to the forecast horizon of one day, there is a potential to implement the model to a much longer
forecast horizon and frequency, such as one week ahead with a time step of 6 h. Then the feature data
for model training obtained from the historical data set should be adjusted accordingly.

Author Contributions: Conceptualization, S.W. and B.H.; methodology, H.H. and B.H.; validation, S.W., H.H.,
B.H., and K.D.; formal analysis, H.H., B.H., and K.D.; investigation, H.H., B.H., and K.D.; resources, S.W., H.H.,
B.H., and K.D.; writing—original draft preparation, H.H. and B.H.; writing—review and editing, S.W. and K.D.;
visualization, B.H. and K.D.; supervision, S.W.; project administration, S.W. and B.H.; funding acquisition, S.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Major Science and Technology Program for Water Pollution Control
and Treatment, grant number 2017ZX07108-002.

Acknowledgments: The authors would like to thank the editors and reviewers for bringing the paper to a scientific
standard for inclusion in the journal.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Herrera, M.; Torgo, L.; Izquierdo, J.; Pérez-García, R. Predictive models for forecasting hourly urban water
demand. J. Hydrol. 2010, 387, 141–150. [CrossRef]

2. Anele, A.; Hamam, Y.; Abu-Mahfouz, A.; Todini, E. Overview, comparative assessment and recommendations
of forecasting models for short-term water demand prediction. Water 2017, 9, 887–898. [CrossRef]

3. Chen, J.; Boccelli, D.L. Demand forecasting for water distribution systems. Procedia Eng. 2014, 70, 339–342.
[CrossRef]

4. Qin, T.; Boccelli, D.L. Estimating distribution system water demands using Markov chain Monte Carlo.
J. Water Resour. Plan. Manag. 2019, 145, 04019023. [CrossRef]

5. Donkor, E.A.; Mazzuchi, T.A.; Soyer, R.; Alan Roberson, J. Urban water demand forecasting: Review of
methods and models. J. Water Resour. Plan. Manag. 2014, 140, 146–159. [CrossRef]

6. Chen, J.; Boccelli, D.L. Forecasting hourly water demands with seasonal autoregressive models for real-time
application. Water Resour. Res. 2018, 54, 879–894. [CrossRef]

7. Odan, F.K.; Reis, L.F.R. Hybrid water demand forecasting model associating artificial neural network with
Fourier series. J. Water Resour. Plan. Manag. 2012, 138, 245–256. [CrossRef]

131



Water 2020, 12, 1683

8. Pacchin, E.; Gagliardi, F.; Alvisi, S.; Franchini, M. A comparison of short-term water demand forecasting
models. Water Resour. Manag. 2019, 33, 1481–1497. [CrossRef]

9. Guo, G.; Liu, S.; Wu, Y.; Li, J.; Zhou, R.; Zhu, X. Short-term water demand forecast based on deep learning
method. J. Water Resour. Plan. Manag. 2018, 144, 04018076. [CrossRef]

10. Crommelynck, V.; Duquesne, C.; Mercier, M. Daily and Hourly Water Consumption Forecasting Tools Using
Neural Networks. In Proceeding of the AWWA’s Annual Computer Specialty Conference, Nashville, TN,
USA, 12–15 April 1999; pp. 665–676.

11. Jain, A.; Ormsbee, L. Short-term water demand forecast modeling techniques—Conventional Methods
Versus AI. Am. Water Work. Assoc. 2002, 94, 64–72. [CrossRef]

12. Bougadis, J.; Adamowski, K.; Diduch, R. Short-term municipal water demand forecasting. Hydrol. Process.
2005, 19, 137–148. [CrossRef]

13. Chen, L.; Zhang, T.Q. Hourly water demand forecast model based on Bayesian least squares support vector
machine. J. Tianjin Univ. 2006, 39, 1037–1042.

14. Chen, L.; Zhang, T.Q. Hourly water demand forecast model based on least squares support vector machine.
J. Harbin Inst. Technol. 2006, 38, 1528–1530.

15. Khan, M.S.; Coulibaly, P. Application of support vector machine in lake water level prediction. J. Hydrol. Eng.
2006, 11, 199–205. [CrossRef]

16. Braun, M.; Bernard, T.; Piller, O.; Sedehizade, F. 24-Hours demand forecasting based on SARIMA and support
vector machines. Procedia Eng. 2014, 89, 926–933. [CrossRef]

17. Dahl, C.M.; Hylleberg, S. Flexible regression models and relative forecast performance. Int. J. Forecast.
2004, 20, 201–217. [CrossRef]

18. Chen, G.; Long, T.; Xiong, J.; Bai, Y. Multiple random forests modelling for urban water consumption
forecasting. Water Resour. Manag. 2017, 31, 4715–4729. [CrossRef]

19. Tripathi, S.; Srinivas, V.V.; Nanjundiah, R.S. Downscaling of precipitation for climate change scenarios:
A support vector machine approach. J. Hydrol. 2006, 330, 621–640. [CrossRef]

20. Ghalehkhondabi, I.; Ardjmand, E.; Young, W.A.; Weckman, G.R. Water demand forecasting: Review of soft
computing methods. Env. Monit Assess. 2017, 189, 313. [CrossRef]

21. Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9,
293–300. [CrossRef]

22. Suykens, J.A.K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines
robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [CrossRef]

23. Vijai, P.; Bagavathi Sivakumar, P. Performance comparison of techniques for water demand forecasting.
Procedia Comput. Sci. 2018, 143, 258–266. [CrossRef]

24. Samsudin, R.; Saad, P.; Shabri, A. River flow time series using least squares support vector machines.
Hydrol. Earth Syst. Sci. 2011, 15, 1835–1852. [CrossRef]

25. Kisi, O. Modeling discharge-suspended sediment relationship using least square support vector machine.
J. Hydrol. 2012, 456–457, 110–120. [CrossRef]

26. Aydogdu, M.; Firat, M. Estimation of failure rate in water distribution network using fuzzy clustering and
LS-SVM methods. Water Resour. Manag. 2014, 29, 1575–1590. [CrossRef]

27. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression.
Neural Netw. 2004, 17, 113–126. [CrossRef]

28. Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003,
50, 159–175. [CrossRef]

29. Brentan, B.M.; Luvizottom, E.; Herrera, M.; Izquierdo, J.; Pérez-García, R. Hybrid regression model for near
real-time urban water demand forecasting. J. Comput. Appl. Math. 2017, 309, 532–541. [CrossRef]

30. Dhanya, C.T.; Nagesh Kumar, D. Multivariate nonlinear ensemble prediction of daily chaotic rainfall with
climate inputs. J. Hydrol. 2011, 403, 292–306. [CrossRef]

31. Liu, X.; Fang, X.; Qin, Z.; Ye, C.; Xie, M. A Short-term forecasting algorithm for network traffic based on
Chaos theory and SVM. J. Netw. Syst. Manag. 2010, 19, 427–447. [CrossRef]

32. Yang, H.Y.; Ye, H.; Wang, G.; Khan, J.; Hu, T. Fuzzy neural very-short-term load forecasting based on chaotic
dynamics reconstruction. Chaos Solitons Fractals 2006, 29, 462–469. [CrossRef]

33. Bakker, M.; Vreeburg, J.H.G.; van Schagen, K.M.; Rietveld, L.C. A fully adaptive forecasting model for
short-term drinking water demand. Environ. Model. Softw. 2013, 48, 141–151. [CrossRef]

132



Water 2020, 12, 1683

34. Cutore, P.; Campisano, A.; Kapelan, Z.; Modica, C.; Savic, D. Probabilistic prediction of urban water
consumption using the SCEM-UA algorithm. Urban. Water J. 2008, 5, 125–132. [CrossRef]

35. Al-Zahrani, M.A.; Abo-Monasar, A. Urban residential water demand prediction based on artificial neural
networks and time series models. Water Resour. Manag. 2015, 29, 3651–3662. [CrossRef]

36. Van Gestel, T.; Suykens, J.A.; Baesens, B.; Viaene, S.; Vanthienen, J.; Dedene, G. Benchmarking least squares
support vector machine classifiers. Mach. Learn. 2004, 54, 5–32. [CrossRef]

37. Van Gestel, T.; Suykens, J.A.; Baestaens, D.E.; Lambrechts, A.; Lanckriet, G.; Vandaele, B. Financial time
series prediction using least squares support vector machines within the evidence framework. IEEE Trans.
Neural Netw. 2001, 4, 809–821. [CrossRef]

38. Li, D.; Han, M.; Wang, J. Chaotic time series prediction based on a novel robust echo state network. Trans.
Neural Netw. Learn. Syst. 2012, 23, 787–799. [CrossRef]

39. Takens, F. Detecting strange attractors in turbulence. In Lecture Notes in Mathematics; Rand, D.A., Young, L.S.,
Eds.; Springer: Berlin, Germany, 1981; Volume 898, pp. 366–381. [CrossRef]

40. Lai, Y.C.; Ye, N. Recent developments in chaotic time series analysis. World Sci. Publ. Co. 2003, 13, 1383–1422.
[CrossRef]

41. Kim, H.S.; Eykholt, R.; Salas, J.D. Nonlinear dynamics, delay times, and embedding windows. Phys. D
Nonlinear Phenom. 1999, 127, 48–60. [CrossRef]

42. Dhanya, C.T.; Nagesh Kumar, D. Nonlinear ensemble prediction of chaotic daily rainfall. Adv. Water Resour.
2010, 33, 327–347. [CrossRef]

43. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series.
Phys. D Nonlinear Phenom. 1985, 16, 285–317. [CrossRef]

44. De Brabanter, K.; Karsmakers, P.; Ojeda, F. LS-SVMlab Toolbox User’s Guide Version 1.8; Katholieke Universiteit
Leuven: Leuven, Belgium, 2011; p. 115.

45. Adamowski, J.F. Development of a short-term river flood forecasting method for snowmelt driven floods
based on wavelet and cross-wavelet analysis. J. Hydrol. 2008, 353, 247–266. [CrossRef]

46. Wang, X.; Sun, Y.; Song, L.; Mei, C. An eco-environmental water demand based model for optimising
water resources using hybrid genetic simulated annealing algorithm. Part II: Model application and results.
J. Environ. Manag. 2009, 19, 2612–2619. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

133





water

Article

On the Use of an IoT Integrated System for Water
Quality Monitoring and Management in Wastewater
Treatment Plants

Ramón Martínez 1, Nuria Vela 2, Abderrazak el Aatik 2, Eoin Murray 3, Patrick Roche 3 and Juan

M. Navarro 1,*
1 Research Group in Advanced Telecommunications (GRITA), Universidad Católica de Murcia (UCAM),

30107 Guadalupe, Spain; rmcarreras@ucam.edu
2 Applied Technology Group to Environmental Health, Universidad Católica de Murcia (UCAM),

30107 Guadalupe, Spain; nvela@ucam.edu (N.V.); aaatik@ucam.edu (A.e.A.)
3 Research & Development, T.E. Laboratories Ltd. (TelLab), Tullow, Carlow R93 N529, Ireland;

emurray@tellab.ie (E.M.); proche@tellab.ie (P.R.)
* Correspondence: jmnavarro@ucam.edu

Received: 10 February 2020; Accepted: 3 April 2020; Published: 12 April 2020

Abstract: The deteriorating water environment demands new approaches and technologies to
achieve sustainable and smart management of urban water systems. Wireless sensor networks
represent a promising technology for water quality monitoring and management. The use of
wireless sensor networks facilitates the improvement of current centralized systems and traditional
manual methods, leading to decentralized smart water quality monitoring systems adaptable to
the dynamic and heterogeneous water distribution infrastructure of cities. However, there is
a need for a low-cost wireless sensor node solution on the market that enables a cost-effective
deployment of this new generation of systems. This paper presents the integration to a wireless
sensor network and a preliminary validation in a wastewater treatment plant scenario of a low-cost
water quality monitoring device in the close-to-market stage. This device consists of a nitrate and
nitrite analyzer based on a novel ion chromatography detection method. The analytical device is
integrated using an Internet of Things software platform and tested under real conditions. By doing
so, a decentralized smart water quality monitoring system that is conceived and developed for
water quality monitoring and management is accomplished. In the presented scenario, such a
system allows online near-real-time communication with several devices deployed in multiple water
treatment plants and provides preventive and data analytics mechanisms to support decision making.
The results obtained comparing laboratory and device measured data demonstrate the reliability of
the system and the analytical method implemented in the device.

Keywords: smart city; water quality monitoring; Internet of Things; wireless sensor networks;
water treatment plant; data analytics; nitrate; nitrite

1. Introduction

Water is a scarce and precious resource that is being put under pressure due to the fast-growing
population that is extracting too much water and polluting our rivers, lakes, and groundwater with
municipal, agricultural, and industrial wastes. Climate change, loss of biodiversity, unsustainable
use of natural resources, and environmental pressures have a negative impact on water quality and
quantity which are inextricably linked, with over extraction causing low river flows, low ground water
levels, and drying up of wetlands. The deteriorating water environment, accelerating the shortage of
water and affecting human health, has become an important problem that restricts the development
of cities.

Water 2020, 12, 1096; doi:10.3390/w12041096 www.mdpi.com/journal/water135
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One of the most important environmental problems today is, undoubtedly, the contamination of
water by nitrates, especially in areas with significant agricultural activity, as occurs in the southeast of
Spain [1,2]. The nitrates are natural components of soil and water, both surface and underground,
which come, in part, from the decomposition of nitrogenous organic matter, although their presence in
the soil and in aquifers increases with the use of nitrogenous fertilizers and manure in areas with a
high level of agricultural activity. Farmers invest large amounts of nitrogenous fertilizers in the fields
to maintain adequate production and increase yields. Most of these are not absorbed by plants, so they
settle in the soil and gradually filter through it, reaching groundwater. Similarly, these compounds
can circulate through surface runoff and cause contamination problems in surface, fresh, or marine
waters [3].

An excessive contribution of nutrients in surface waters, especially nitrogen and phosphorus,
gives rise to a rapid proliferation of aquatic vegetation, as a consequence of oxygen depletion on the
surface, which favors the appearance of eutrophication processes [4]. The Mar Menor (Region of
Murcia, southeast of Spain) has been in the news in recent years due to the eutrophication, which refers
to the processes of the ecosystem originated by the enrichment of nutrients of the water, especially
nitrogen and/or phosphorus [5,6]. This situation, added to by the fact that most of the effluents from
the wastewater treatment plants (WWTP) in this area are used for irrigation in agriculture, implies
an increase in responsibility of the water industry to adopt a more sustainable management of urban
water systems for this type of compound [7]. One of the most effective approaches to address this
challenge of sustainability is wastewater treatment, in which water quality monitoring (WQM) plays a
key role.

WQM can be described as a method for periodically sampling and analyzing water conditions
and characteristics [8]. This method forms the basis for water environmental management, as it is vital
to monitor source waters and the aquatic systems that receive inputs from industrial waste and sewage
treatment plants, stormwater systems, and runoff from urban and agricultural lands [9]. Similarly,
domestic sewage and water flows resulting from chemical processes and waste in industry and
sanitation should be monitored in wastewater treatment plants that purify the water to decontaminate
it before releasing it into the sea (or other large bodies of water), or be used for other applications
such as irrigation, and to detect possible toxic or radioactive discharges [10]. Wastewater, also known
as sewage, contains more than 99% water and is characterized by volume or rate of flow, physical
condition, chemical constituents, and the bacteriological organisms that it contains. The quality of
treated wastewater is defined by physical-chemical parameters such as pH, temperature, conductivity,
turbidity, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Organic Carbon
(TOC), Total Suspended Solids (TSS), and nitrogen and phosphorus compounds [11,12]. From an
environmental perspective, the concentrations of phosphate, nitrate and nitrite in water are crucial due
to their role in eutrophication. They are important analytes for environmental, food and human health
monitoring and thus their detection and quantification is essential [13]. The sensor implemented in this
paper within the developed integrated system for water quality monitoring is a low-cost device that
consists of a nitrate and nitrite analyzer based on a novel ion chromatography detection method [14].

Wastewater treatment is an important component in the water cycle, as it ensures that the
environmental impact of human usage of water is significantly reduced. Wastewater treatment plants
(WWTPs) use a series of treatment stages to clean up the contaminated water so that the treated
effluent is safely discharged to inland water, estuaries and the sea. Wastewater treatment consists
of several processes (physical, biological, and chemical) that aim to reduce nitrogen, phosphorous,
organic matter, and suspended solids content [15]. The purpose of WQM is to support the control of
these processes by accurately monitoring water parameters (e.g., nitrate, nitrite, phosphate, and pH)
mainly in the influent and effluent of each WWTP. Specifically, WQM performs (i) the detection
and quantification of these parameters in the influent wastewater that could affect the treatment
processes, providing the plant operator with valuable information to foresee such effects, and (ii) the
analytical control of the effluent to verify that the treated waters comply with the standards required
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by the current regulations [16], ensuring the environmental sustainability of water. In the European
context, environmental legislation requires improvements in water quality and effluent discharged
to waterways due to the Water Framework Directive [17] and related Directives, e.g., the Urban
Wastewater Treatment Directive [18] and the Nitrates Directive [19]. The need for compliance with
these Directives has created a demand among Government Monitoring Agencies and legislative bodies
throughout Europe for frequent monitoring, both temporally and spatially. Traditional WQM methods
involve the manual collection of water samples at different locations, followed by laboratory analytical
techniques in order to characterize the water quality. Such methods take a long time and are no
longer considered efficient. Although these methodologies analyze physical, chemical, and biological
agents, they have several drawbacks: (i) poor spatiotemporal coverage [20], (ii) they are labor intensive
and high cost (labor, operation, and equipment), and (iii) the lack of near-real-time water quality
information to enable critical decisions for public health and environment protection [21]. Therefore,
there is a need for WQM systems that enable reliable performance of WWTPs through effective data
management and the online near real-time monitoring capability. The WQM system presented in
this work is tested in a wastewater treatment real scenario and reported results are compared with
analytical techniques values.

In the recent years, the vision of the Internet of Things (IoT) [22] augmented with advances
in software technologies, such as service-oriented architecture (SOA), software as a service
(SaaS), cloud computing, and others, has stimulated the development of smart water quality
monitoring systems (SWQMSs) [23,24]. These systems combine technologies and components
from microsystems (miniaturized electric, mechanical, optical, and fluid devices) with knowledge,
technology, and functionality from disciplines like biology, chemistry, nanosciences, and cognitive
sciences. Fortunately, the use of IoT software platforms helps to overcome the challenges associated
with the broad set of technologies, systems, and design principles of the IoT [25,26]. SWQMSs are
a new generation of systems architecture (hardware, software, network technologies, and managed
services) that provides near-real-time awareness based on inputs from machines, people, video streams,
maps, news feeds, sensors, and more that integrate people, processes, and knowledge to enable
collective awareness and decision making where devices can offer more advanced access to their
functionality [27]. As such, event-based information can be acquired, and then processed on-device
and in-network. This capability provides new ground for approaches that can be more dynamic
and highly sophisticated and that can take advantage of the available context (readings of water
quality parameters). For this reason, SWQMSs allow to optimize the performance of the WWTP in
particular and the treatment system in general achieving a smart wastewater management. Wired
SWQMSs are still the main approach to monitor the parameters in existing wastewater treatment
plants. However, this type of system has the drawbacks of high cost, poor expansion capability
and difficult maintenance due to inefficient operating environment [28]. In order to overcome these
previously mentioned drawbacks, a cost-effective decentralized SWQMS is designed in this work,
using a low-cost water quality monitoring device that is integrated in an IoT software platform and in
a Wireless Sensor Network (WSN) [29].

Wireless Sensor Networks have proven to be a very effective technology for numerous
environmental monitoring applications. WSNs currently enable the automatic monitoring of air
pollution [30], noise pollution [31–33], forest fires [34], climatological conditions [35], and much more
over wide areas, something previously impossible. The use of WSNs for WQM is particularly appealing
due to the low cost of the sensor nodes and hence the cost-effectiveness of this solution. These simple
and low-cost networks allow monitoring of processes remotely, in near-real-time and with minimal
human intervention. Considerable research has been conducted to monitor water quality through the
development of WSNs. Adu-Manu and Pule [36,37] study and analyze recent developments in the
sensor devices, data acquisition procedures, communication and network architectures, and power
management schemes of WSNs to maintain a long-lived operational SWQMSs. Adamo [38] presents
a SWQMS that supports to strategic decisions concerning critical environment issues of the marine
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ecosystem by implementing an smart buoy prototype designed for in situ and in continuous space-time
monitoring of water temperature, salinity/conductivity, turbidity, and chlorophyll-a concentration as
biological indicators of water eutrophication. Jiang [39] developed a WSN based on ZigBee technology
for online auto-monitoring of the water temperature and pH value of an artificial lake.

In the field of wastewater treatment, WSNs represent a promising technology because of their
rapid deployment and their ability to acquire, process and transmit data at a number of distributed
sampling points. The application of WSNs to WQM has opened up a new avenue of research towards
the development of decentralized SWQMSs that evolve with the changing wastewater infrastructure
to meet the water requirements of smart cities [40–42]. These decentralized SWQMSs (i) offer
great potential for cost reduction, (ii) allow for precise matching of growing wastewater capacity
requirements, (iii) take advantage of the relative homogeneity of wastewater streams at their point
of origin, (iv) do not need large sewer systems nor require extensive networks for the distribution of
treated water, and (v) present probability of failure significantly lower than that of failure of centralized
system. The advent of WSNs allows the replacement of traditional WQM methods or the expansion of
existing wired SWQMS. Tadokoro and Wang [43,44] describe the design of SWQMSs using wired and
wireless technologies for online near-real-time supervisory, control, and data acquisition (SCADA) of
wastewater treatment processes. The designs conceived support many functions directed at multiple
wastewater treatment plants, such as decentralized control, centralized management, remote diagnosis
and fault early warning. Regarding WSNs sensor nodes, there is research work focused on the
design of devices to monitor diverse parameters. In this sense, the work presented by Geetha [24]
is based on the single-chip TI CC3200 microcontroller to monitor pH, conductivity, water level and
turbidity and upload them to the Ubidots cloud. Reference [45] is based on Arduino to monitor pH,
conductivity and dissolved oxygen and upload them to the ThingSpeak cloud, whereas the work
presented by Saravanan [46] is based on Arduino to monitor flow, temperature, color, and turbidity,
and upload them to the SWQMS cloud server. However, the prototypes cited previously are far from
the close-to-market stage.

This paper presents the integration to a WSN and a preliminary validation in a wastewater
treatment plant scenario of a low-cost water quality monitoring device in the close-to-market stage.
This device consists of a nitrate and nitrite analyzer based on a novel ion chromatography detection
method. The analytical device is integrated using an Internet of Things software platform and tested
under real conditions in a wastewater treatment plant scenario. By doing so, a decentralized SWQMS
conceived and developed for wastewater quality monitoring and management is accomplished.
This investigation is part of an ongoing research project, referred to as LIFE EcoSens Aquamonitrix [47],
which aims to validate and optimize this solution to achieve a low-cost, fully automated in situ analyzer
for environmental water monitoring ready to be launched in the market after the project.

The paper is structured as follows. After this introduction, Section 2 describes the analytical
device, the IoT software platform, the developed SWQMS called the EcoSens Aquamonitrix System,
and the methodology followed for the validation of the system implemented in a real wastewater
treatment scenario. In Section 3, the features of the EcoSens Aquamonitrix System are shown and the
results obtained from the experiments to validate the analytical device are discussed. Finally, Section 4
presents the general conclusions of this study and proposes future work.

2. Materials and Methods

The proposed integrated system encompasses the analytical device that was connected to an
IoT software platform, henceforth IoT platform, via a wireless sensor network. The description of
the device design is highlighted in Section 2.1. Section 2.2 presents the IoT platform and discusses
the middleware that supports the system. Section 2.3 describes the implementation of the IoT water
quality monitoring system in a wastewater treatment plant scenario. Finally, Section 2.4 details the
methodology followed in this investigation for a preliminary validation of the system.
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2.1. Device

The core of the analytical device is a portable ion chromatography (IC) system based on the
method previously reported by Murray [14]. This system employs a novel design of a ultraviolet (UV)
light-emitting diode (LED)-based optical detector which enables cost-effective direct in situ detection
of nitrite and nitrate in natural waters. The automated portable IC system is described in detail by
Murray [48]. The main functional blocks of the system are depicted in Figure 1 and each component is
subsequently described.

Figure 1. Functional block diagram highlighting core components of analytical system.

The sample intake system is comprised of a 12 V high flow pump and a reservoir. The pump draws
sample from the water source filling the reservoir. The sample intake pump runs at the beginning of
each analysis cycle for 30 s. The pump module is responsible for loading sample into the system and
pumping the eluent through the ion exchange column and detector for analysis. The pump module
consists of four 3D printed syringe pumps, three of which are used for eluent delivery, whereas the
fourth syringe pump draws sample from the reservoir. Once full, the syringe pumps empty at a
set flow rate enabling chromatographic analysis and analyte detection. The optical detection cell
consists of a low-cost, UV absorbance detector which incorporates a 235 nm LED and photodiode [14].
The photodiode is coupled with an ADS1115 analogue to digital converter (ADC). The signal from
the photodiode (0–3.3 V) is sampled every 50 ms by the ADC which communicates with the systems
microcontroller via I2C protocol. A HTU21D-F temperature and humidity sensor is used to measure
the internal parameters of the analyzer. The sensor communicates over I2C and the readings are logged
once at the beginning of every cycle.

The system is powered from a portable battery (Voltaic V88), which has a capacity of 24
Ampere-hour and supplies 12 Volts to the embedded system. The battery is charged from an alternating
current source with a supplied adapter. The system can operate on battery alone for short periods of
time, however, for long term deployments the unit runs from the battery while it is charging. This setup
allows the system to function for up to 5 days on battery alone at an hourly sampling frequency, if the
main power supply fails.

The analyzer is housed within a Peli 1510M Mobility Case (see Figure 2a). The case is water
resistant, crushproof, dust resistant, and features a pressure equalization valve to balance interior
pressure. The modular design of the system facilitates maintenance and exchange of components,
without affecting the functioning of the other modules (see Figure 2b).

139



Water 2020, 12, 1096

(a) Outer case (b) Internal layout

Figure 2. Design of the device.

An embedded system based on the Teensy 3.6 microcontroller unit is used to automate all
functionality of the system. The firmware allows the unit to operate independently without user
interaction once set up. A real-time clock wakes the system at a defined interval upon which system
sampling and analysis functions begin to execute.

In this work, to add the connectivity with the wireless sensor network, an IoT solution associated
with the system is implemented using a Raspberry Pi Zero W (Rpi) connected to a SimCom SIM800
Quad-Band GSM/GPRS integrated component. Raw signal transmission is acquired in real-time via
an RS232 serial connection between the microcontroller and Rpi. The raw data is processed at the end
of each IC run and used to calculate retention time and peak area of nitrate and nitrite. These values
are transmitted via the SIM800 module. A small buffer of processed data are stored on the RPi unit in
the event of a data transmission failure. The IoT devices attempt to transmit the buffered data at the
end of subsequent IC runs.

2.2. IoT Platform

The IoT platform applied in this research is based on the middleware called thethings.io [49].
As shown in the Figure 3, the architecture of the IoT platform has been structured in five layers.
The aspects of IoT middleware which are relevant for the understanding of the developed system are
described below.

Figure 3. Architecture of the IoT platform.
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At the lowest layer are the assets and devices. Assets are the reason for the development of
IoT applications. The assets of interest are the real-world objects and entities subject to monitoring,
as well as having digital representations and identities. Assets are instrumented with embedded
technologies that bridge the digital realm with the physical world, and that provide the capability
to monitor the assets as well as providing identities to the assets. Sensors and actuators in various
devices, e.g., Wireless Sensor Networks, provide the main functional capabilities of sensing and
embedded identities.

The second layer corresponds to the information management middleware, which is based on
the specification of an information model and an Application Program Interface (API) based on the
Representational State Transfer (REST) software architectural style (see Zhou [27]), as well as the
adoption of communication protocols to manage and exchange information. All the information
handled by the IoT platform is modeled by defining an information model composed of seven types of
entities. Figure 4 illustrates these entities, as well as the relationships between them.

Figure 4. Entity relationship diagram. All the information handled by the platform is modelled by
defining an information model composed of seven types of entities.

An entity can refer to hardware, that is called thing, e.g., IoT device, or software, that is called
resource, e.g., hosted in the device, and to high-level abstractions, that are called product, that group
entities of different types, e.g., product can have different types of things. An organization-type
entity represents an account associated with the IoT platform and is uniquely identified by a
name. An organization has applications. Applications are characterized by a pair <name_app, id>.
Applications have products and users. Users are characterized by a pair <email, permissions>. Products
are identified by a triplet <id, name_product, payload>. Each product has things also characterized by
triplets <name_thing, thingid, thingtoken>. Finally, things have resources and descriptions. Descriptions
are semantic data (metadata) characterized by a pair <$geo, $settings>. The attributes of the resources
are data associated with a date and time grouped in triplets <key, value, datetime>. The values of
these attributes become the information of the system.

The IoT platform provides a complete backend solution to develop IoT applications through an
easy and flexible REST API, which allows the mediation between a large number of services. Table 1
shows the operations at thing level supported by information management middleware. Moreover,
the IoT platform is agnostic to hardware, being possible to integrate any hardware platform. To do this,
it is necessary to use the supported protocols [27,50]: Hypertext Transfer Protocol (HTTP), Websockets,
Message Queue Telemetry Transport (MQTT), User Datagram Protocol (UDP), Transmission Control
Protocol (TCP), or Constrained Application Protocol (CoAP). Regarding serialization formats, such as
JavaScript Object Notation (JSON), Messagepack, and Protocol Buffers, are supported.

The third layer of the platform architecture is responsible for data ingestion and storage. Ingestion
consists of getting data from producers, e.g., IoT devices, and making them available to consumers,
e.g., IoT applications. For this purpose, a component called message broker is used. This component
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is based on Redis technology [51]. Producers send data to the message broker using the information
management middleware. The data is pushed to the temporary storage of the message broker.
The temporary storage consists of a cache that allows later stages (e.g., analytics) a simple and quick
access to the incoming data. In doing so, producers can publish messages and consumers can consume
them quickly using Redis database engine, which means real-time data management. The message
broker persists the information published by the producers in two data warehouses called DB Time
series and object repository that use NoSQL Cassandra [52] and MongoDB [53] technologies, respectively.
The time series built from the attributes of the system resources, <key, value> pairs, are stored in the
DB Time series. The rest of the information is stored in the object repository. The biggest challenge for
the message broker is to be able to dispatch the received requests. For this purpose, a memory and
CPU cluster are available. The management of these resources is automated thanks to the application
of auto-scaling tasks [54].

Table 1. Description of the thing operations used in this research.

Operation Description

Thing Activate Activates a thing with an activation code. The result is a thing_token,
which can be requested at any time from the control panel.

Thing Write Writes the data records from the thing to the specified thing_token.

Thing Read Returns the resource values by specifying the resource_key of the
corresponding thing_token.

Get resources Return the names of the resources from the thing.

At the fourth layer, the IoT middleware allows the modeling of data by scientists who perform
analytical tasks to discover valuable insights hidden in the big data stored in the platform. In this
analytical architecture, three types of mechanisms can be distinguished: functions, jobs, and triggers.
Functions are fragments of code executed using a call from the RESTful API. Functions can be
invoked by triggers and jobs. This mechanism is useful for encapsulating logic hosted in the cloud.
The execution of functions is limited to 15 s. Jobs are executed automatically each predefined time
period. Jobs are used to process data in order to generate key performance indicators (kpis) and analytics
by aggregating event data. The execution of the jobs is limited to 5 min. Triggers are executed when an
event occurs after using the RESTful API, e.g., thingWrite request. Triggers enable alarms to be sent
through various methods (e-mail, short message service (SMS), twitter or voice calls). Triggers also
allow the creation of aggregated resources or events for the calculation of kpis and analytics using jobs.
Triggers execution is limited to 2 s.

The IoT platform provides the cloud code API (see Table 2) and the Cloud Code Sandbox to execute
JavaScript code associated with triggers and jobs. The cloud code sandbox uses Jailed [55]. Thanks to
this library, it is possible to launch an independent and secure sandbox for each request (trigger or job).
In addition, Jailed allows to export a set of external functions into the sandbox.

Table 2. Description of the cloud code API operations used in this research.

Operation Description

analytics.events Allows to create and retrieve events.

analytics.kpis Allows to create custom kpis.

thethingsAPI Allows to read and write from/to an IoT device resource, call
functions from triggers and jobs and get the things from a product.

At the top of the architecture is the user interface, which provides to the user data monitoring and
management capabilities. For this purpose, both a dashboard system and a global online management
panel are accessible from anywhere. The dashboard system incorporates widgets from libraries and
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proprietary that allow their customization to get the best possible response in the visualization of
information. There are three levels of dashboard: main, application, and insight. The main dashboard
displays the metrics of the applications and IoT devices, and their activity. The applications show the
measurements of a subset of devices and their activity. Finally, the insight dashboard displays the
measurements and activity of an IoT device related to an application. Therefore, the dashboard system
can monitor the information associated with IoT applications: data from resources, kpis, device status,
alarms, and other information.

After presenting the device (see Section 2.1) and the IoT platform, the integration process that
results in a smart water quality monitoring system is addressed in the following section by describing
a decentralized use case in the field of wastewater treatment.

2.3. EcoSens Aquamonitrix System in a WasteWater Treatment Domain

A distributed scenario is assumed in the wastewater treatment domain, e.g., WWTPs in many
regions or countries. This is a complex IoT scenario, as it involves the management of a large
number of sensors. The sensors are hosted in the devices, see Section 2.1, developed with the aim of
collecting, processing and transmitting data associated with assets (nitrate and nitrite concentrations).
The proposed scenario demands a solution that allows to integrate, manage and scale a large number
of IoT devices and users. In order to meet these requirements, the EcoSens Aquamonitrix System has
been implemented in a wastewater treatment plant scenario. This smart water quality monitoring
system (SWQMS) depicted by Figure 5 is powered by the IoT platform described in the Section 2.2 to
leverage the potential of wireless sensor networks and the sensor, see Section 2.1.

In the EcoSens Aquamonitrix System, the integration of the device with the IoT platform
is achieved thanks to the information management middleware (see layer 2 of IoT architecture).
Specifically, it uses an operation, henceforth thingSend, as a result of versioning the RESTful API to
send the water quality data collected by the devices to the platform. This feature is useful because
it allows to customize the body of the request and provides a special URL (endpoint) to access the
HTTP parser, a Web service in charge of decoding and preprocessing the information. In this way,
this innovative system takes advantage of the new functionalities offered by the Internet of Things
based on the architecture studied in the Section 2.2. The devices are deployed in the influent and
effluent of each WWTP. The devices communicate with the cloud via the mobile network, using the
General Packet Radio Service (GPRS). At the top of the Figure 5 is the cloud, where instances of the
components message broker, DB Time series, Object repository, and Cloud Code SandBox have been deployed.
As a starting point, it is supposed the creation of an organization entity in the system. This entity has
associated a user with administrator permissions. There are five different processes involved in the
operation of the SWQMS: system initialization, capture and storage of information, information
modeling, data analytics and visualization, and management of information. These processes are
described below.

System initialization

1. The administrator sends a request to the message broker from the platform’s user interface (things
manager) to create a product. The message broker creates a product entity in the object repository.
This entity is used to group the resources and things of the system.

2. Each device sends a thingActivate request, see Table 1, to the message broker. As a result,
a unique identifier (thingToken) is created and transmitted to the device. For each request
received, the message broker creates a thing entity in the object repository.

3. The administrator sends a request to the message broker from the user interface of the platform
for the creation of an IoT application. The message broker creates an application entity in the
object repository.

4. The administrator sends as many requests to the message broker as users to be registered in the
system. As a result, a number of user entities is created in the object repository.
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Note: step 2 can also be performed by the administrator using the thingActivate operation of the
RESTful API or by sending a request from the user interface to create a thing.

Figure 5. EcoSens Aquamonitrix Smart Wastewater Quality Monitoring System.

Capture and storage of information

5. Water quality data is acquired by sensors and collected by IoT devices. The IoT devices add
spatial and temporal information to the data. The information is transmitted to the message
broker using the thingSend operation.
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6. When the information of an IoT device is published in the message broker, there is an event that
notifies the consumer, in this case an HTTP parser. The HTTP parser decodes and preprocesses
the message broker information to obtain the nitrate and nitrite measurements as well as the
alarms. The alarms are generated if nitrate and nitrite concentrations exceed the allowed limits of
50 mg/L and 5 mg/L, respectively [56]. Note that other customized alarm levels are allowed.

7. The thingWrite operation, see Table 1, is used to store in the two system databases the
information decoded and preprocessed: <key, value> pairs and associations of the nitrate, nitrite,
and alarms resources.

Information modeling

8. The platform provides the RESTful API (see Table 1) and and other services, e.g., thingSend
operation, used by both the administrator and the IoT devices to create or update entities. Entities
represent different levels of abstraction (see Section 2.2). The mapping is done in the object
repository, which records the associations between the system entities such as resource, thing,
product, application, etc.

9. The information preprocessed by the HTTP parser, see step 6, is stored in the time series database
of the system. This data warehouse provides the perfect infrastructure for mission-critical data.

Data analytics

10. In the Cloud Code SandBox, several jobs, such as hourly, daily, weekly, and monthly, have been
implemented to get the system information using thingRead and exploit it through operations
of the cloud code API, see Table 2. As a result, different kpis, e.g., mean, maximum, minimum,
and standard deviation, related to nitrate and nitrite concentrations are obtained.

11. In a similar way to the alarms generated by the HTTP parser, the kpis are modeled as resources
and stored using thingWrite in the time series database of the system.

12. Triggers are released when events occur after the thingWrite operations of the HTTP parser.
13. The use of triggers allows to notify alarms by e-mail, short message service, twitter or voice calls.

Visualization and management of the information

14. Finally, the visualization and management of the information is achieved through a user interface,
which consists of a web service that takes advantage of the information stored in the system.
The data sent by IoT devices and the alarms generated by the HTTP parser are published
instantaneously, while key performance indicators calculated during the data analytics process are
shown according to the job frequency (hourly, daily, weekly, or monthly). In this way, the interface
provides to the user with valuable knowledge about water quality for decision making. Note that
the interface has a functionality that allows exporting the data sets in csv, jpeg, and excel formats.

In summary, the EcoSens Aquamonitrix System is water quality aware: the information collected
from the sensors is decoded, preprocessed, and modeled for processing, analysis, and knowledge
extraction. This knowledge supports decision making by government agencies responsible for
environmental protection and wastewater plant operators. The achieved behavior is possible thanks to
the orchestration of the IoT services provided by the IoT platform, which allows the resources associated
with the IoT devices to be searchable, accessible, and usable, thus maximizing their interaction with
the user interface.

2.4. Integrated System Demonstration and Validation

Once the general integrated system has been applied to a IoT use case scenario in the
wastewater treatment domain (see Section 2.3), a system customization has been developed for
its demonstration and validation in real conditions. For these purposes, the experiments detailed
in Sections 2.4.1 and 2.4.2 have been designed and carried out.
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2.4.1. IoT System Demonstration in a Wastewater Treatment Scenario

The first experiment consisted of demonstrating the features implemented at the IoT application
level. To do this, eight devices have been deployed in four WWTP located in the Region of Murcia
(Spain): Alcantarilla, Molina de Segura, Los Alcázares, and San Pedro del Pinatar. A device has been
placed at influent and effluent of each plant. During the test, devices have collected data related
to nitrate and nitrite concentrations during the month of May 2019, twice a day, regardless of their
location. This sampling frequency is appropriate for water quality monitoring applications, hence the
term near-real-time. Note that the sampling frequency for traditional manual water quality monitoring
techniques is usually once a week. The data transmitted by the devices are captured, stored, analyzed,
and finally represented through the user interface by means of different customizations that compose
the IoT application hosted in the system platform. In Section 3.1, all the customizations implemented
in the integrated system are presented.

2.4.2. Detection Method Validation

The second experiment has focused on the preliminary validation in real conditions of the ion
chromatography detection method in which the analytical device is based. To do this, nitrate and
nitrite values collected by a device deployed in a WWTP and available on the IoT platform have been
compared with experimental data analyzed in laboratory tests carried out with the usual procedures.

Sampling collection

The WWTP is located in Alcantarilla (Murcia, SE Spain) at the coordinates 37◦55′39′′ N 1◦14′28′′ W.
This locality has an estimated population of 41,622 people in 2018. The plant has a design flow that
exceeds 13,000 m3/day corresponding to 151,667 population equivalent. The treatment included the
following steps; (i) mechanical pretreatment, (ii) aerobic biological process as secondary treatment with
active sludge with double stage, (iii) coagulation and flocculation, and (iv) sand filter and disinfection
with ultraviolet in closed pipes. The device was placed in the wastewater effluent (see Figure 6).

(a) Installation of the device (b) Device deployed in the effluent

Figure 6. Device deployment in Alcantarilla wastewater treatment plant (WWTP).
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The sampling procedure involved the acquisition of the analytical data obtained by the sensor
daily (average value of 3 daily readings) and the analytical data obtained from 3 daily samples of
effluent that were integrated and subsequently analyzed in the laboratory. The samples were stored at
4 ◦C until further analysis. The sampling was carried out during the month of March 2019, and eight
samples were compared in the following days 1, 4, 8, 12, 14, 18, 20, and 22.

Analytical determination by portable IC

The prototype analytical device is a portable ion chromatography (IC) system based on the
method previously reported by [14] as mentioned in the Section 2.1. Therefore, the study parameters
have been extracted from this paper. Concretely, these parameters are Limit of Detection (LOD), Limit
of Quantification (LOQ), Range, Linearity, Repeatability, and Accuracy.

Analytical determination by standardized method

Nitrate and nitrite were analyzed using ion chromatography. Water samples of effluent were
filtered through a 0.2 μm Minisart® Plus syringe membrane filter (NY, USA). The available analytical
standards for sodium nitrite, sodium nitrate, and sodium carbonate provided by Panreac (Barcelona,
Spain). Distilled, de-ionized water (DDW, 18Ω cm−1) was used in all sample preparation procedures.

The samples were injected into the IC system consisting of a Metrohm pump (Herisau,
Switzerland) coupled by a transfer line to a Metrohm conductimetric detector (Herisau, Switzerland).
The column used was Metrosep A Supp 7, Metrohm (Herisau, Switzerland). The injection volume was
20 μL and the mobile phase flow (Na2CO3, 3.6 mM) was 0.7 mL.min−1. The anions were identified and
quantified according to their retention times (13.90 min ± 0.4 min and 21.19 min ± 0.5 min for nitrite
and nitrate, respectively).

Statistical analysis

The statistical software SigmaPlot version 13 (Systat, Software Inc., San Jose, CA, USA) [57] was
used to verify the correlation between the results obtained by the sensor and the experimental data,
the average were compared by an hypothesis test (p > 0.05).

3. Results and Discussion

In this section, the proposed solution for water quality monitoring and management in distributed,
dynamic, and complex scenarios such as water distribution systems (WDSs) in cities is analyzed.
The evaluation will be detailed in two sections. In Section 3.1, all the customizations implemented
in the integrated system are presented. In Section 3.2, the results obtained from the experiment to
validate the detection method employed by the integrated system are shown and discussed.

3.1. Integrated System Customization

The general integrated system has been instantiated for a IoT use case scenario in the wastewater
treatment domain. To achieve this, it was necessary to carry out tasks including deployment of
devices in WWTP, integration with the IoT platform, implementation of data analysis algorithms, and
alarm calculation functions, as well as customization of widgets for the representation of information.
This section describes the features of the implemented IoT application that allow to visualize the
information of the customized system and, therefore, to demonstrate the appropriateness of this smart
water quality monitoring and management solution.

Before starting the presentation of the results, it is necessary to mention that eight devices transmit
water quality data to the system cloud where it is decoded, stored, and processed (see Section 2.4.1).
Therefore, eight thing-type entities (one per device) have been created in the system (see Section 2.3,
step 2 of the system initialization process). In the customized system, a thing has four types of
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resource: nitrate, nitrite, alarms, and kpis. These resources and the values of their associated attributes,
see Section 2.2, become the information of the developed system.

The IoT application provides customized features for online and near-real-time monitoring
and management of water quality data associated with the influent and effluent of each WWTP.
These customized features are arranged in two levels of dashboard: application and insight.
The application level shows the measurements of all devices (things) deployed and their activity,
whereas the insight level displays the measurements and activity of a single device. To begin with,
the main implemented features of the application dashboard are explained. From this dashboard, it is
available the product map to visualize the geographical location of the devices deployed. Figure 7a
illustrates the four clusters of devices related to the WWTPs instrumented. Moreover, if one of these
clusters is clicked, that area is automatically zoomed. For instance, if the Los Alcázares WWTP cluster
is clicked, the two devices deployed in this facility are displayed. Figure 7b shows the thing detail
window, which appears if an device on the product map is clicked. The detail window displays the
latest nitrate and nitrite concentration values stored in the system as well as the alarms and kpis
computed by the HTTP parser and jobs executed on the Cloud Code Sandbox.

(a) Clusters of IoT devices deployed (b) Device detail window

Figure 7. Product map.

Another widget implemented in the application dashboard is the general table, see Figure 8.
This feature provides information about the WSN deployed. Specifically, for a given IoT device,
e.g., PortableSensor1, it shows information about the last transmission of the associated device (3 h
ago), the latest values of the attributes related to nitrate and nitrite resources (0.52 mg/L and 0.15 mg/L,
respectively), the location of the IoT device (Alcantarilla WWTP), and a higher level of detail regarding
its deployment (influent final pretreatment).
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Figure 8. General table. This feature provides information about the Wireless Sensor Network
(WSN) deployed.

Figure 9 depicts the implementation of two widgets that simplify the tasks for monitoring
and maintenance of the system. The first widget, Figure 9a, shows the alarms associated with all
the things. Note that the data shown has been simulated as no alarms were generated during the
system test. The second widget is called an actuator as it allows to modify the location (latitude
and longitude) and metadata associated with a thing (thing name, thing description, serial number,
and other metadata). Figure 9b shows the use of the actuator to set the location and the name associated
with the PortableSensor8 thing.

(a) Alarms (b) Actuator

Figure 9. Widgets developed to ease monitoring and maintenance tasks.

The IoT application provides different mechanisms implemented to navigate towards the insight
dashboard associated with a thing. For instance, this second level of dashboard can be visualized by
clicking on a thing name in the general table (see Figure 8) or through the product map detail window
(see Figure 7b). The insight dashboard provides a set of customized widgets that display information
associated with the thing: metadata, alarms for high levels of nitrate and nitrite, the latest value of
nitrate and nitrite concentrations acquired as well as graphs. By default, each graph shows the latest 14
values of at least one resource between nitrate, nitrite, alarms, and kpis. Among these kpis, information
is displayed about the average, maximum, minimum, and standard deviation processed at different
frequencies (hourly, daily, weekly, and monthly). In addition, it is possible to zoom in and out of the
graphs to display a specific range of data representation or to filter by date to visualize or download a
certain range of values. Figure 10 depicts a widget layout to monitor water quality in terms of nitrate
concentrations of the Los Alcázares WWTP. The water quality data shown in Figure 10 corresponds to
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the week from 13 to 19 of May 2019 by the PortableSensor5 and PortableSensor6 devices deployed in
the influent (Figure 10a,b) and the effluent (Figure 10c,d) of the plant, respectively. Note that in the
current set-up, devices collect data a maximum of three times a day, but a more frequent sampling can
be configured remotely.

(a) Nitrate values (Influent) (b) Daily average (Influent)

(c) Nitrate values (Effluent) (d) Daily average (Effluent)

Figure 10. Water quality monitoring of the Los Alcázares WWTP.

Figure 10a,c shows the measurements of nitrate parameter acquired in the influent and effluent
during the mentioned time period. In these customized widgets, it is possible to display accurate
information about the values by placing the cursor over each point on the graph. In general, the nitrate
values obtained in the influent are lower than those of the effluent. This fact can be appreciated in
more detail in Figure 10b,d, which illustrate the daily averages of nitrate concentrations for the two
measurement sites. Note that the maximum values obtained for the average kpi in the influent and
effluent are 0.76 mg/L and 0.96 mg/L, respectively. In both cases, these are low values. Moreover,
the weekly average obtained is 0.56 mg/L (influent) and 0.86 mg/L (effluent). These values are far
from the alarm threshold of 50 mg/L specified by European regulations [56]. The deployment of
the network has been extended in other facilities located around Europe (Spain, Finland, Ireland,
and Portugal) showing its scalability and good performance in the collection and processing of data in
near-real-time.

3.2. Device Measurements Validation

Nitrate concentrations in wastewater obtained from the standardized experimental method and
automatically through the device are shown in Figure 11a. In spite of the observed variations between
nitrate concentrations detected by the sensor and those analyzed by applying the experimental method,
from a statistical level, the test performed indicates that there are no significant differences between the
two methods (p = 0.432). In this sense, note that the average concentration in the eight days of sampling
was approximately 4.43 mg/L and 4.58 mg/L for the sensor and the experimental method, respectively.
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Sensor NO3
- 

Experimental NO3
-     

(a) Nitrate (b) Nitrite

Figure 11. Concentration in wastewater obtained from standardized experimental method (blue sky)
and automatically from the enhanced portable sensor (blue navy).

A similar behaviour is observed for the case of nitrite. In Figure 11b, the concentrations of this
parameter obtained from the sensor and those analyzed by applying the experimental method in the
eight days of sampling are shown. From a statistical level, there are also no significant differences
between the two methods (p = 0.395). The average concentration is approximately 2.90 mg/L and
3.09 mg/L for the sensor and the experimental method, respectively.

The study of the analytical validation parameters of both methods (LD (mg/L), LQ (mg/L),
Range (mg/L), Linearity (determination coefficient (R2)), Repeatability (relative standard deviation
(RSD%) of peak area and retention time), and Accuracy (%)) shows that the results achieved in the
sensor validation [14] are very similar to those obtained from the standardized experimental method
(Table 3). In this context, Figure 11 shows that the differences observed between the sensor data and
the experimental data (0.2–2.8 mg/L and 0.2–2.2 mg/L for nitrate and nitrite, respectively) are within
what is expected, taking into account the working ranges of each of the parameters for each of the
methods of analysis. Therefore, the concentrations analyzed by the device are valid and demonstrate
the potential of the system for portable analysis under real conditions, as the validation has been
conducted in a wastewater treatment plant effluent, with the influence that the matrix effect can have
on this type of waters.

Table 3. Analytical validation parameters for nitrate and nitrite obtained of device and standardized
experimental method.

Parameters Device Experimental

Nitrate Nitrite Nitrate Nitrite

LOD (mg/L) 0.04 0.007 0.1 0.003
LOQ (mg/L) 0.07 0.010 1.0 0.030

Range (mg/L) 0.07–75 0.01–15 1.0–100 0.030–100
Linearity (R2) ≥0.995 ≥0.995 ≥0.995 ≥0.995

Repeatability (RSD) 3.06–4.19 0.75–1.10 2.04–4.20 0.84–2.23
Accuracy (%) 91.2 92.2 93.4 91.6

4. Conclusions

In this paper, an integrated IoT system for water quality monitoring is conceived and customized
for its demonstration and preliminary validation in wastewater treatment use case. The proposed
system leverages an innovative low-cost analytical device at the close-to-market stage. The device
consists of a nitrate and nitrite analyzer based on a novel ion chromatography detection method and
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equipped with IoT communication capabilities to build a WSN. An IoT software platform is used to
integrate the analytical device. By doing so, a decentralized SWQMS adaptable to the dynamic and
heterogeneous WDSs of cities is achieved. This SWQMS is composed of a wireless sensor network and
an open cloud-based middleware.

A thoroughgoing analysis of the different layers of the conceived system is applied to proper
design of the customized system in the field of wastewater treatment. The implemented platform
provides near-real-time communication with devices and incorporates preventive functions and
data analytics that support decision-making. To achieve these features, five different processes
for the management and administration of the system by different organizations are implemented:
system initialization, capture and storage of information, information modeling, data analytics and
visualization, and management of information.

The results obtained from a real conditions wireless sensor network deployment in Murcia, Spain,
as part of the Ecosens Aquamonitrix project, show that the implemented system provides features for
online and near-real-time monitoring and management of wastewater quality parameters. The system
architecture is extensible to include other features. Moreover, the scalability of the IoT ecosystem
enables to increase both the number of sensor nodes and the storage and processing resources of the
IoT platform. Regarding the preliminary validation of the device, the developed method was used to
determine the content of nitrite and nitrate in the effluent of a WWTP. The results achieved show that
this method is reliable and fast working in a wide range for nitrates and nitrites determination as well
as avoiding the use of many reagents, some of which can be hazardous.

The advances features of the developed IoT integrated system will enable massive sensor
deployments in the water distribution systems of smart cities allowing end users to detect pollution
events and adverse trends in near real-time. Thus, the private or public entities in charge of water
quality monitoring and management will be able to act in a more efficient and effective way tackling
the problems detected (i.e., pollution sources), reacting to the problems more quickly and minimizing
the negative environmental impact.
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Abbreviations

The following abbreviations are used in this manuscript:

WWTP Wastewater treatment plant
WQM Water Quality Monitoring
BOD Biological Oxygen Demand
COD Chemical Oxygen Demand
TOC Total Organic Carbon
TSS Total Suspended Solids
IoT Internet of Things
SOA Service-Oriented Architecture
SaaS Software as a Service
SWQMS Smart Water Quality Monitoring System
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WSN Wireless Sensor Network
SCADA Supervisory Control And Data Acquisition
IC Ion Chromatography
UV Ultraviolet
LED Light-Emitting Diode
ADC Analogue to Digital Converter
Rpi Raspberry Pi Zero W
API Application Program Interface
REST Representational State Transfer
HTTP Hypertext Transfer Protocol
MQTT Message Queue Telemetry Transport
UDP User Datagram Protocol
TCP Transmission Control Protocol
CoAP Constrained Application Protocol
JSON JavaScript Object Notation
kpis key performance indicators
SMS Short Message Service
GPRS General Packet Radio Service
LD Limit of Detection
LQ Limit of Quantification
WDS Water Distribution System
RSD Relative Standard Deviation
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Abstract: Nowadays, optimal sensor placement (OSP) for leakage detection in water distribution
networks is a lively field of research, and a challenge for water utilities in terms of network control,
management, and maintenance. How many sensors to install and where to install them are crucial
decisions to make for those utilities to reach a trade-off between efficiency and economy. In this
paper, we address the where-to-install-them part of the OSP through the following elements: nodes’
sensitivity to leakage, uncertainty of information, and redundancy through conditional entropy
maximisation. We evaluate relationships among candidate sensors in a network to get a picture of the
mutual influence among the nodes. This analysis is performed within a multi-criteria decision-making
approach: specifically, a herein proposed variant of DEMATEL, which uses fuzzy logic and builds
comparison matrices derived from information obtained through leakage simulations of the network.
We apply the proposal first to a toy example to show how the approach works, and then to a
real-world case study.

Keywords: water distribution network; leakage; optimal sensor placement; sensitivity; uncertainty;
entropy; multi-criteria decision-making; DEMATEL

1. Introduction and Literature Review

Optimal sensor placement (OSP) for leakage detection in water distribution networks (WDNs)
currently represents an exciting and lively field of research, aimed at optimising processes of network
control, management, and maintenance [1].

With the explosion of the sensors market, and the consequent access to pressure sensors, various
technical questions appear for water utilities. The most important are how many sensors to install, and,
given a number of sensors, where to install them. There is a clear trade-off analysis to be performed
that aims to answer the first question. Having more sensors in the network means more data that can
be used to get more complete knowledge about the system. However, having more sensors also means
more money spent. As a result, economical reasons make the choice of a monitoring strategy a crucial
decision. The selection of good monitoring points may bring more and better information about the
system, for less money.

Considering the complex task of defining the position and number of sensors in a water network,
it is reasonable that there are many works in the literature presenting different approaches for the OSP
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problem. In this introduction we just focus on some of those most directly related to the approach we
present in this paper.

With the aim of finding leaks in water systems, a methodology for pressure sensor placement
based on sensitivity analysis is presented in [2]. The authors generate a sensitivity matrix based on
simulations of leaks, from which a signature matrix may be extracted. Genetic algorithms are then used
to maximise the isolation of leaks. In [3], a multi objective technique to find the optimal monitoring
points for leak detection, given a number of sensors, is applied. The sensitivity matrix is calculated
based on the percentage variation of pressure from the normal scenario to an abnormal one.

Hydraulic simulations are performed based on a body of input information, including pipe
roughness, nodal water demand, etc. The accuracy of the hydraulic state derived depends on the
quality of the input information. Since many inputs are not directly measured, uncertainty analysis
is often needed. For example, the authors of [4] modify the work of [2], by adding nodal demand
uncertainty analysis to build the sensitivity matrix.

Additionally, in [5], uncertainties coming from water demand in the network are included.
The authors use genetic algorithms to investigate optimal sensor placement based on the sensitivity
matrix and residual vectors.

To simulate small leaks in water distribution systems, a demand driven approach (DDA) can
be used, modelling the leak as a function of only the pressure. Of course, for large leaks and pipe
bursts, a DDA has a set of limitations. If the anomaly leads the system’s pressure under the minimal
operational pressure, the total demand cannot be supplied. In [6], an optimal pressure sensor placement
methodology based on nodal entropy is presented. The authors simulate anomalies using a pressure
driven approach (PDA) and compare the results with DDA simulations. Using the entropy method,
the authors rank the nodes with high entropy as the best monitoring points.

The sensitivity matrix is widely used in works of OSP. However, the use of that matrix without
considering other parameters can lead to the concentration of sensors in a reduced region of the
network, which leads to significant coverage reduction. To cope with it, in [7], it is combined the
sensitivity matrix with the maximisation of the entropy related to the sensor network. The entropy’s
maximisation guarantees better spread of the sensors, according to the authors. Optimisation
approaches are also widely applied to locate optimal monitoring points. In [8], an approach to
minimise the distance of localised leaks based on sensors’ data is developed. A pre-defined number of
sensors is used as a constraint for the optimisation problem. A genetic algorithm is used to find the
optimal number of sensors and their strategic monitoring position. Aiming to maximise the number of
failures detected, the authors in [9] present an optimal sensor placement using a minimum test cover
(MTC) with approximated solutions. The authors develop a new augmented greedy algorithm for
solving the MTC problem.

The main purpose of this paper is to evaluate relationships among pressure sensors in a network
to get as complete as possible an understanding of their mutual influence, and thus identify those
candidate nodes to host sensors that may have bigger impact on the network information. The ultimate
aim is to guarantee better network control by optimising the number of sensors and their location in
the network. Identifying those network nodes that capture bigger influence can be strategic, since
variations on those nodes may directly reflect variations on other nodes in the system, and this will
eventually reduce the investment in sensors.

We claim that a multi-criteria decision-making (MCDM) approach may effectively support the
problem being faced. A methodology that appears to be best suited to such an aim is the decision
making trial and evaluation laboratory (DEMATEL), first implemented by Fontela and Gabus [10,11].

DEMATEL is helpful when dealing with complex systems, such as water networks, since they
are characterised by many aspects/elements directly or indirectly interdependent with each other,
and this condition makes hard many decision-making tasks. As asserted, for example, in [12], the use
of DEMATEL supports the visualisation of interferences existing among the relevant aspects of a
given problem, thereby helping comprehensive understanding of the intensity and direction of direct
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and indirect relations for each pair of factors under study. This technique deals with interactions
through a step-by-step approach [13]; it has been widely applied in the literature for management
problems characterised by the presence of heavy interdependence among elements [14–17]; and
many developments of its application have been proposed in a wide number of fields (see [18–20],
among others).

To address the stated problem, we herein propose a new approach within the framework of the
fuzzy DEMATEL method. The fuzzy DEMATEL represents a development of the traditional crisp
DEMATEL, extended by Wu and Lee [21], and makes use of elements of the fuzzy set theory [22] for
better managing uncertainty affecting input evaluations.

As stated in [23], criteria should be analysed under uncertain conditions when working in vague
contexts. Additionally, after stating that decision-making processes are human activities mainly
accomplished in uncertain environments, in [24] it is emphasised as the crisp DEMATEL can reflect
information only in a partial way. The authors consider the usefulness of applying fuzzy theory
to extend the traditional method, so that judgements of preference can be translated into fuzzy
numbers, after having been expressed by decision-makers through the adoption of a specific fuzzy
linguistic scale.

From that angle, the author of [25] agrees with the fact that making use of fuzzy numbers
minimises subjective bias, and for this reason, the fuzzy DEMATEL has to be preferred to the traditional
crisp version when it comes to real-world applications. After presenting a literature review related to
the various fields of fuzzy DEMATEL application, the author applies this methodology to determine
those critical aspects having a major impact on local sustainable development through adaptive reuse
projects. The authors in [26] also highlight difficulties in making decisions in a fuzzy environment,
especially when complex selection criteria are involved. The authors propose fuzzy DEMATEL to
determine the most influential factors when evaluating/selecting suppliers, finding that the aspect of
financial stability has the highest impact on project implementation. Additionally, in [27], use is made
of fuzzy DEMATEL to design a formal framework to use as a driver during the process of business
strategy formulation. The authors also stress that the integration with other methodologies is useful to
overcome subjectivity of evaluations, and to generally optimise final results of analyses. With regard
to the field of critical infrastructures, in [28], it is proposed a hybrid MCDM approach based on fuzzy
DEMATEL for failure risk assessment to capture the dynamic nature of opinions provided by a team
of experts.

To the best of the authors’ knowledge, fuzzy DEMATEL has been scarcely applied in the sector
of water network management so far. Water networks are really complex systems made of many
interconnected elements, such as tanks, pumps, valves, treatment facilities, and hundreds or even
thousands of kilometres of underground pipes [29]. Critical components of networks are characterised
by the presence of strong degrees of interdependence, which have a huge impact on the quality of the
final service, especially when it comes to minimising operation failures. For this main reason, not only
does a fuzzy DEMATEL-based application appear suitable to dealing with the type of stated problem,
but it also may represent a powerful approach to fuel the process of OSP.

This paper suggests a novel way to face the OSP problem, based on a new modified version of the
traditional fuzzy DEMATEL. Our proposal addresses two main issues: (1) Reducing the huge amount
of time often spent during the stage of collection of expert evaluations; and (2) making evaluations
as objective as possible, despite that they are represented by fuzzy numbers. To pursue this twofold
objective, we herein propose to replace the input matrices of expert linguistic assessments with a single
input matrix of linguistic assessments related to a suitable quantitative parameter that expresses the
degree of influence between pairs of elements. Even though such a new development is herein applied
to the OSP process in a WDN, we claim that it can be extended to other kinds of complex problems.

The paper is structured as follows. After this introduction, including some literature reviewing
and stating of the significance of the problem for the water supply field, Section 2, devoted to materials
and methods, provides a concise description of the elements involved in the problem under analysis
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and presents the novel approach we propose, aimed at getting the final ranking of nodes showing
those most convenient for hosting sensors. Section 3 provides a numerical example in which the
proposed approach is applied, for exemplification purposes, to a very small WDN of the benchmark
literature, whereas Section 4 shows the results for a larger network, including comparisons with two
optimisation-based OSP methods. Lastly, Section 5 gives the conclusions and raises likely future
developments of research.

2. Materials and Methods

This section describes the methodologies and the elements involved we propose to apply in
water network monitoring. The section is divided into three sub-sections: sensitivity matrix for leak
detection, redundancy analysis for optimal sensor placement, and DEMATEL-based approach to
establish interdependence among sensors without the need for reliance on expert judgements. In this
last regard, we propose a simple but effective modification within the framework of the traditional
fuzzy DEMATEL procedure, specifically related to the step of input data collection, with the purpose
of achieving much more objective results by reducing the uncertainty derived from the collection of
human judgements.

2.1. Sensitivity Matrix for Leak Detection

Installing sensors in the network to find anomalies requires the identification of strategical points,
which should be as sensitive as possible to anomalies. Considering normal operation, the pressure at
a node i at a time step t is denoted PN

j . If an anomaly (e.g., a leak) is simulated as an increase of the
demand at a given node i, the sensitivity at node j related to that anomaly at node i can be written as

si,j =
PN

j − Pi
j

qi
, (1)

where Pj
j is the pressure at node j at time step t, under the anomaly occurring at node i; qi is the leakage

flow at node i.
The sensitivity matrix is calculated by simulating leaks at all nodes in the network. Row i of this

matrix expresses the sensitivity of column nodes j to leaks qi at node i.
Several works have been proposed in the literature to model leakage in water networks [30,31].

In general, leakage can be modelled as a nonlinear function of pressure. The software Epanet2.0 [32],
used in this research, models a leak through an emitter, and the flow is written as:

qi = β · Pi
α, (2)

where β is the emitter coefficient, and α is the emitter exponent. The values of α and β depend on
the leakage geometry, external environment, and other parameters. In this work, based on the the
well-known orifice equation, the value of α is defined as 0.5. The emitter coefficient is discussed in the
case study section.

Given a comprehensive representation of the network, especially focusing on its nodes, we assume
that each node can potentially host a sensor, and proceed by quantitatively calculating the degree of
interdependence between sensors in pairs. This approach aims to identify those nodes exhibiting great
interdependence with the others, and thus, of most strategic value. Placing sensors in those nodes
rather than in others would actually increase the control capability of the entire network.

Within this perspective, we propose a MCDM approach based on a modified fuzzy DEMATEL
technique, presented later on.
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2.2. Redundancy Analysis for Optimal Sensor Placement

For optimal sensor placement, not only the most sensitive nodes should be monitored, as it is also
important to maximise the coverage of the sensor network. In general, the more spread-out the sensors
are, the higher the coverage. In this sense, a joint analysis of sensitivity and entropy can help improve
the final sensor network.

From a physical approach, entropy is a property that measures the order/disorder level in a
system. Mathematically, the entropy H(X) can be calculated as the product of the mass probability
function p(x) of a variable X times the logarithm of its inverse:

H(X) = ∑
x∈X

p(x) · ln
1

p(x)
. (3)

Considering the sensitivity matrix S composed by the elements si,j (1), and following the proposal
of [7], the function p(x) is written as:

p(x) =
ai

∑n
i=1 ai

, (4)

where
ai = max si, (5)

and si is the ith row of matrix S.
In this sense, the entropy is calculated based on maximal sensitivity for a given leakage level.
Anomalies occurring in the network can be observed by one sensor and not by others. This is

an important point for optimal sensor placement to optimise the coverage of the sensor network.
The conditional entropy H(Y|X) has been used to measure the redundancy of data and was applied to
sensor placement as presented by [33]. The conditional entropy represents the remaining entropy of a
variable Y given the entropy of another variable X.

For sensor placement, in [33], it is shown that the increase of the total entropy leads to a wider
coverage of the network. The increase of the total entropy can be reached by maximising the conditional
entropy, expressed as:

H(Y|X) = ∑
x∈X,y∈Y

p(x, y) · ln
p(x)

p(x, y)
, (6)

H(Y|X) = − ∑
x∈X,y∈Y

p(x, y) · ln p(x, y) + ∑
x∈X,y∈Y

p(x, y) · ln p(x), (7)

H(Y|X) = H(X, Y) + ∑
x∈X

p(x) · ln p(x) = H(X, Y)− H(X). (8)

A new matrix can be written, where the maximal sensitivity is used to calculate the probability
function p(x) (Equation(4)) and then the conditional entropy (Equation (8)). The new matrix of
conditional entropy is used to measure the influence of setting a new sensor in the network. Or,
in other words, the influence of a monitoring node on the others.

2.3. DEMATEL-Based Approach to Establish Interdependencies Among Sensors

In [34], the DEMATEL procedure is defined as an ad hoc approach transforming relations existing
among causes and effects of elements into an intelligible system model. Of course, as in the solution
of most problems, it is necessary to accomplish a previously detailed study of the problem under
analysis, to clearly define the general objective and the main elements to be taken into account. This
accomplished, the traditional (crisp) DEMATEL method follows a procedure consisting on a number of
steps. These steps are conceptually recalled here (readers can study them further, for example, in [12],
among many other sources).
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• Collecting in non-negative matrices the judgements provided by the experts about the influence
of one element over another; one matrix per expert.

• Aggregating those matrices into a single one, called direct relation matrix (DRM).
• Calculating the total relation matrix (TRM) by normalising first and then suitably manipulating

the DRM so as to aggregate indirect influences.
• Drawing an influential relation chart to visually identify causal relationships among the

considered elements.
• Deriving the final ranking of elements according to their prominence, which gives the global

impact each element has over the others.

In the next subsections we shortly describe first the fuzzy DEMATEL procedure, and then
introduce the modification we propose within the structure of the method, and justify the
associated advantages.

2.3.1. Fuzzy DEMATEL

As already underlined, the fuzzy version of DEMATEL is more suitable than the crisp version to
reduce uncertainty, and get more reliable results. We describe now the steps to implement the method
as it exists in the literature. After having highlighted the general objective of the decision-making
problem and the elements to be evaluated, and properly chosen the group of experts, the procedure is
the following.

1. Defining the fuzzy linguistic scale that will be used to assess the elements belonging to the system.
Judgments must be collected by pairwise comparing all the elements to express the influence of
one element, i, over another, j, and vice versa. To such an aim, in [21], it is defined the linguistic
variable “influence” through five linguistic terms of evaluation, each one associated to a positive
triangular fuzzy number (TFN) (aij, bij, cij). TFNs expressing those evaluations are given in
Table 1.

Table 1. Fuzzy linguistic scale for the linguistic variable ”influence”.

Linguistic Evaluation Corresponding TFN

No Influence (NI) (0, 0, 0.25)
Low Influence (LI) (0, 0.25, 0.5)
Medium Influence (MI) (0.25, 0.5, 0.75)
High Influence (HI) (0.5, 0.75, 1)
Extreme Influence (EI) (0.75, 1, 1)

2. Aggregating judgements attributed by decision makers, and defuzzifying the collected
assessments to get the crisp DRM. Among the wide range of defuzzification methods in the
literature, in [21] it is suggested making use of the converting fuzzy data into crisp scores (CFSC)
algorithm, introduced by [35]. This is a five-step procedure for deriving a single and aggregated
crisp DRM, D = (dij) (a squared n× n matrix), from the k matrices of input (k being the number of
involved experts), each one containing the TFNs expressing the linguistic assessments provided
by the experts.

3. Normalising the obtained DRM and calculating the TRM. The normalised DRM, Z = (zij), can
be obtained by means of Equations (9) and (10):

Z = s × D, (9)
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s being a positive number slightly smaller than

min

(
1

max1≤i≤n ∑n
j=1 dij

,
1

max1≤j≤n ∑n
i=1 dij

)
. (10)

After deriving matrix Z, it is possible to proceed to the calculation of the TRM, T = (tij),
as follows:

T = Z(I − Z)−1, (11)

I being the identity matrix. This matrix represents the build-up of mutual direct and indirect
effects among elements, since T, being the sum of all the powers of Z, reflects both direct
and indirect effects among elements (note that the series of powers of Z is convergent (see,
for example, [36]), since, because of Equation (10), the spectral radius of Z is smaller than 1).

4. Building the relational chart on the plane “prominence” (horizontal axis) versus “relation”
(vertical axis). Values of prominence (A + B) and relation (A − B) can be derived from matrix T,
by calculating the sums of the rows, A, and the sums of the columns, B:

A =
n

∑
j=1

tij, (12)

B =
n

∑
i=1

tij. (13)

The resulting mapping represents the core of the methodology, since just by observing the
positions of the elements in the four quadrants of the plane, it is possible to establish which
elements have: (i) high prominence and high relation; (ii) low prominence and low relation;
(iii) high prominence and low relation; and (iv) low prominence and high relation. This distinction
is very useful to understand how interdependence among the elements is organised, and thus to
establish future lines of intervention. Moreover, relations among elements are visually represented
by means of arrows: two elements are linked by an arrow if the corresponding value of the TRM
overcomes a given threshold, herein calculated by averaging all the values of the TRM [37].

5. Ordering in a decreasing way the elements of the decision-making problem, according to their
corresponding values of prominence, to obtain a structured ranking. The ”prominence” of an
element indicates how much it influences the others, thereby providing a global measurement of
its importance. Values of "relation" are instead useful to cluster factors into groups of causes or
effects. If the "relation" value corresponding to an element is positive, that means that it has to be
considered as a cause, while as an effect otherwise.

2.3.2. Modified Fuzzy DEMATEL: Improvements and Advantages

After the above preliminaries, this subsection presents the novel modified fuzzy DEMATEL,
which will be applied to solve a simple case by example, and then to address a real-world case study.

As already stressed throughout the paper, we apply the method to the specific OSP problem.
However, the application can be extended to use cases of other nature.

The modification proposed regards the first two steps of the procedure sketched in the previous
section, while keeping invariant the remaining last three steps, which are actually shared also by the
crisp version of the method. Specifically, we propose to bond the linguistic variable “influence” with a
measurable parameter, quantitatively expressing the degree of interconnection among the network
elements. In other terms, once defining and numerically calculating this parameter for each pair of
elements, we propose to fix five numerical intervals, corresponding to the linguistic assessments and
related TFNs of Table 1.
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The flowchart of Figure 1 provides a detailed description of the steps of the new procedure.
We summarise next the main advantages derived from our modified fuzzy DEMATEL.
First of all, the first step of the traditional procedure requires one to undertake a long process

of feedback exchange with as many experts as possible, in order to accomplish a reliable acquisition
of data. Each expert is asked to fill in a non-negative input matrix, providing subjective evaluations
about the degree of influence between pairs of elements. It is evident as this stage may be highly
time-consuming and scarcely precise. Moreover, experts can pairwise compare just a limited number
of elements because they may doubt some evaluations. Obviously, it is nonsense to ask someone to
pairwise compare hundreds of elements. This is the case with many real, complex problems involving
a plethora of factors, which cannot be reduced if effective decisions have to be made. The traditional
DEMATEL-based approach cannot be applied in such cases. Instead, our modified fuzzy DEMATEL
may take into account very large sets of elements, since linguistic assessments are directly correlated
to the numerical values taken by the chosen parameter of interest, according to which the input matrix
can be easily compiled.

1st STAGE

 Collecting input data and obtaining the DRM 

2nd STAGE

 Following the traditional procedure

1.1. Definying the precise boundaries of analysis and the elements to be pairwise
compared.

1.2. Choosing a quantitative and measurable parameter, to be linked to the degree of
influence that each element has over another one.

1.3. Deriving five intervals to be referred to the linguistic assessment of the variable
of influence.

1.4. Substituting the numerical values measured for the parameter with the TFNs
correspondent to the linguistic evaluation associated to the specific interval.

1.5. Defuzzifing the obtained fuzzy matrix to obtain the DRM.

2.1. Normalising the obtained DRM and calculating the TRM.

2.2. Constructing the relational chart through the horizontal axe of ”Prominence”and
the vertical axe of ”Relation”.

2.3. Obtaining the final ranking of elements by ordering  in  a  decreasing  way  their
correspondent values of prominence.

Figure 1. Flowchart of the modified fuzzy DEMATEL procedure.

Moreover, our solution permits one to better manage vagueness, since the collected data refer to a
measurable parameter, not to personal opinions of experts, and the consequent use of fuzzy numbers
further reduces uncertainty due to measurement errors.
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Lastly, our proposal gives back directly a single fuzzy DRM, which will require just a simple
operation of defuzzification, without aggregating data coming from many matrices of input issued by
many experts.

Once this single matrix is defuzzified and normalised, the application continues through the
same steps of the traditional method (from the TRM till the final ranking of elements and their
graphical representation).

3. Numerical Example

In this section we apply the proposed procedure, as an example, to a very small WDN. Using this
small network means indeed to deal with a small number of elements to be evaluated, and then with a
small number of matrices. This enables us to show the calculations of our procedure step-by-step.

The small network used as the numerical example is known as a two-loop network [38] (Figure 2).
This network has six junctions, eight pipes, and one reservoir. Classically, the network is used as a
benchmark for optimal design in water distribution systems. For this example, the optimally designed
network is used, and a demand curve with residential features has been added. This allows the
simulation of the network for 24-h. Leaks are created using emitters node by node. An emitter
coefficient equal to 1 has been used, in accordance with [39], which investigated the effects of the
emitter coefficient on different geometries and hydraulic head loads to simulate leaks. Observe that
the authors established an interval to simulate single leaks varying from 0.5 to 8.

Figure 2. Topology and nodal demand for the 2-loop network.

Considering the size of the network, certainly only one sensor should be installed. Given the
simplicity of the problem we only maximise the sensitivity, thereby using just the sensitivity matrix as
the input for the fuzzy DEMATEL.

Table 2 details the linguistic evaluations of influence (associated to the TFNs of Table 1) referring
to the two-loop network nodes, each one possibly hosting a sensor. Each element has been codified as
Ni (i = 1, . . . , 6). Tables 3 and 4 respectively present the defuzzified DRM and the corresponding

165



Water 2020, 12, 493

TRM, this last one also presenting the final ranking of elements. For ease of replication, we specify that
the graded mean integration approach has been applied to get the crisp values dij of the DRM matrix:

dij =
aij + 4bij + cij

6
. (14)

The obtained results shown as the nodes occupying the first positions of the ranking (N6, N5,
N4) are more suitable to host sensors because they have higher associated sensitivity. By assuming
this condition, the monitoring capability can be enhanced in the considered network. From the
hydraulic point of view, these nodes can be identified as those presenting lower pressure during the
hydraulic simulations.

Figure 3 shows the final chart graphically showing interdependencies. As it is possible to
note, the first three nodes of the ranking are in the first quadrant, being characterised by both high
prominence and relation.

Table 2. Linguistic evaluations of input.

Elements N1 N2 N3 N4 N5 N6

N1 NI NI NI NI NI NI
N2 NI NI NI NI NI NI
N3 NI NI NI LI LI LI
N4 NI NI LI NI MI MI
N5 NI NI MI MI NI HI
N6 NI LI MI MI HI NI

Table 3. Defuzzified direct relation matrix (DRM).

Elements N1 N2 N3 N4 N5 N6

N1 0.042 0.042 0.042 0.042 0.042 0.042
N2 0.042 0.042 0.042 0.042 0.042 0.042
N3 0.042 0.042 0.042 0.250 0.250 0.250
N4 0.042 0.042 0.250 0.042 0.500 0.500
N5 0.042 0.042 0.500 0.500 0.042 0.075
N6 0.042 0.250 0.500 0.500 0.750 0.042

Table 4. Total relation matrix (TRM) and final ranking.

Elements N1 N2 N3 N4 N5 N6 A + B A − B Ranking

N1 0.027 0.034 0.065 0.065 0.072 0.072 0.667 0.000 N6
N2 0.027 0.034 0.065 0.065 0.072 0.072 1.026 −0.359 N5
N3 0.050 0.088 0.250 0.341 0.379 0.379 3.723 −0.751 N4
N4 0.068 0.132 0.490 0.400 0.643 0.643 4.612 0.139 N3
N5 0.081 0.164 0.681 0.681 0.583 0.837 5.616 0.436 N2
N6 0.083 0.241 0.686 0.686 0.842 0.588 5.715 0.535 N1
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Figure 3. Relational chart.

4. Case Study

In this section, we apply the proposed approach to a moderate-size real-world water network,
to check its effectiveness and applicability.

The proposed methodology is applied to the JYN network [40]. The network is composed by 300
nodes and two reservoirs. The mean inlet flow is around 2800 L/s. Figure 4 presents the topology of
the network and the mean pressure at the nodes.

Figure 4. Topology and nodal mean pressure of JYN network.

During the day, the nodal demand varies. This fact makes the calculation of the sensitivity matrix
hard. This complexity does not come from the computational effort, but because of the choice of the
time step used. To avoid this decision, an extended period simulation is conducted, and the sensitivity
time series is represented as a fuzzy number in the format (μ − σ, μ, μ + σ), where μ is the mean value
of si,j and σ is the standard deviation. For leakage simulations, an emitter coefficient equal to 1 is
adopted as discussed on the numerical example.

For a better understanding of the conditional entropy effect, the sensitivity and the conditional
entropy matrices are presented in Figure 5a,b. The sensitivity parameter concentrates the nodes with
highest scores around the node 300 (north-west side of the network), while the conditional entropy
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allows concentrations to be more scattered, giving higher scores to other nodes. A comparison between
both can be drawn from this joint Figure 5.

Using solely the sensitivity matrix for sensor placement can lead to a concentration of nodes in
zones of greater sensitivity. Despite the network sensitivity being maximised in this situation, there is
no guarantee of good coverage. In contrast, the conditional entropy matrix, where the probabilities are
calculated using the sensitivity matrix, as explained in Section 2.2, distributes the information along
other sensitive zones, thereby guaranteeing improved scattering of sensors.

This can be achieved with the use of the fuzzy DEMATEL algorithm applied to the conditional
entropy matrix. Using this algorithm enables us to obtain the rankings of nodes and identify those with
lower influence on the others. This ranking is used to select a set of nodes to be monitored. The main
interest of the methodology comes from combining the selection of high sensitivity nodes, based on
the sensitivity matrix, with the lowest influencing nodes; namely, those minimising redundancy.

(a) Sensitivity index for JYN’s network

(b) Conditional entropy for JYN’s network

Figure 5. Comparison between sensitivity and conditional entropy for JYN’s network. (a) Sensitivity
index for JYN’s network; (b) conditional entropy for JYN’s network.

Considering the solution ranking obtained from fuzzy DEMATEL, Figure 6 presents, for the sake
of simplicity, a scenario for just four sensors and their location in the water network.

An interesting property related to the hydraulic conditions of the network is that all the sensors
are installed in low pressure zones. Usually, low pressure zones are more sensitive to changes in the
network, so they have greater sensitivity than other zones. To check the improvement obtained from
the use of the conditional entropy with respect to the performance using just the sensitivity matrix,
Figure 7 presents the application of the fuzzy DEMATEL method using just the fuzzy sensitivity
matrix, for the same scenario with four sensors. The concentration of sensors in the lowest pressure
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zone of this network can be observed. This zone is also the one identified as the most sensitive by
Equation (1). The use of the conditional entropy provides a more widespread distribution of sensors
(see Figure 6). Of course, the low pressure zone (excessively) identified by just the sensitivity matrix is
not missed when the conditional entropy is used. In addition, this methodology avoids the redundancy
of information derived from the concentration of sensors in that low pressure zone, as illustrated in
Figure 7, with a more widespread distribution of the four sensors.

Figure 6. Layout of a sensor network with four sensors using the conditional entropy as input for
fuzzy DEMATEL.

Figure 7. Layout of a sensor network with four sensors using only the sensitivity as input for
Fuzzy DEMATEL.
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To further evaluate the difference between both solutions, the global sensitivity, which means
the sum of the greatest sensitivity of each sensor, and the total entropy of the system, are calculated.
Global values for these two metrics are calculated using only the columns of the sensitivity matrix
corresponding to the sensors’ positions. Using the conditional entropy as input for the fuzzy DEMATEL
method, the global sensitivity equals 4.1985, while using as input the sensitivity matrix, the global
sensitivity equals 5.4381. In terms of the total entropy, the conditional entropy leads to a value of
5.2990, while just the sensitivity matrix results in 4.7560. In both cases, the conditional entropy-based
approach outperforms the results of the sensitivity matrix alone.

To compare the proposed methodology with two classical optimisation approaches, agent swarm
optimisation [41] is applied as an optimisation engine.

Among the various published papers presenting optimisation-based approaches for sensor
placement, we consider here [7], which applies a bi-objective optimisation, maximising the sensitivity
of the sensors’ network and the entropy of the system. In [7], the sensitivity is defined as in Equation (1),
and the entropy as in Equation (3). Given a solution for the sensor placement problem, X = (x1...xk),
it is possible to take the corresponding k-columns of the sensitivity matrix S. Using this new sensitivity
submatrix Sk, it is possible to identify, for each simulated leak, the most sensitive sensor, as in
Equation (5). Then the sensors’ network sensitivity and entropy objective functions are calculated as:

F1 = ∑
x∈X

a(x). (15)

F2 = ∑
x∈X

p(x) · ln
1

p(x)
. (16)

Finally, to apply single objective optimisation, the authors of [7] combine normalised values of F1

and F2.
IngeniousWare®, in a modification of the methodology in [7], created a plugin for WaterIng©,

software for optimising pressure sensor placement in water systems. In this case, the entropy based
function is modified to guarantee a better spread of sensors in real networks (unpublished results).

The methodology of [7] and the commercial software WaterIng© are used, fixing a number of four
sensors, as in the case study solved with the fuzzy DEMATEL approach. With the methodology of [7],
the total sensitivity of the sensors’ network results in 4.2261 and the total entropy in 5.5912, which
are similar results to those obtained with the fuzzy DEMATEL approach. This is because, in general,
the sensors are placed in the same region in both cases. WaterIng© produces a sensitivity value of
5.4920 and a total entropy of 5.3195. This approach produces better values for both sensitivity and
entropy. Comparing the four approaches, the modified entropy approach proposed by IngeniousWare®

manages to get the best values for both objective functions. Nevertheless, the fuzzy DEMATEL
approach of this paper gives results which are comparable with [7], but without the need of running
any optimisation process. Table 5 summarises the results obtained in this research.

Table 5. Comparison table for the four considered approaches.

Method Global Sensitivity Global Entropy

Fuzzy Dematel Conditional Entropy 4.1985 5.4381
Fuzzy Dematel Sensitivity 5.2990 4.7560
Optimisation following [7] 4.2261 5.5912

Optimisation plugin WaterIng© 5.4920 5.3195

Let us finally emphasise that the relation between the number of sensors and the global sensitivity
is a good indicator for decision makers about the number of sensors to be installed. Figure 8 presents
the increase of sensitivity with the increase of the number of sensors in the network. The bigger
increases for small numbers of sensors, and an asymptotic trend for larger numbers of sensors may be
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verified. The graph in Figure 8 also shows how by increasing the number of sensors beyond a certain
point does not entail a corresponding relevant increase in monitoring.

Figure 8. Sensitivity vs. number of sensors for the network under study.

5. Conclusions

Given the fundamental role played by water networks in daily life and business activities,
the present research focuses on suitably operating, managing, and maintaining these assets. In this
regard, the problem of optimal sensor placement has been faced with the aim of improving the
operations of monitoring and the control of the networks.

Most used methods calculate the sensitivity matrix for a specific simulation time, usually the
highest consumption time. The fuzzy DEMATEL handles extended period simulations, suitably
transformed into fuzzy numbers. The approach enables us to have information for many horizon
simulations, making sensor placement more robust. Other possible applications of fuzzy DEMATEL
are the simulations of several leakage scenarios with different emitter coefficients. In that case,
the sensitivity matrix could be built considering from small to large leaks.

The use of the sensitivity matrix to generate a conditional entropy helps guarantee the spread of
sensors in the network. A clear improvement is found, as observed from the comparisons between
results from global sensitivity and global entropy of the sensor network, as shown in the case study.

The use of fuzzy DEMATEL for optimal sensor placement helps water companies identify the
most suitable monitoring points. Using conditional entropy, the spread of sensors is guaranteed by
using the last positions of the DEMATEL ranking. One important positive point of this approach is
the absence of optimisation, which usually requires prior knowledge of the number of sensors to be
installed. With the presented fuzzy DEMATEL approach, the sensors’ network can be implemented in
steps, without requiring new simulations.

The fuzzy DEMATEL approach presented in this paper produces similar results to the ones
obtained with the optimisation algorithm in [7]. Both methodologies use sensitivity and entropy to
place sensors in the network. The main advantage of fuzzy DEMATEL hinges on the final rank obtained:
this rank enables placing new sensors without performing new simulations. In optimisation-based
approaches, adding new sensors requires new simulations. Incidentally, the approach of WaterIng©
finds a solution with better results for both sensitivity and entropy.
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Possible future developments of the presented research may regard further investigations about
how to choose other quantitative parameters to collect input data. For example, the proposed modified
version of the fuzzy DEMATEL may be integrated with other MCDM methodologies to identify
a suitable set of parameters, all related to relationships of influence among the considered factors.
The selection of the number of sensors should also be further investigated, so as to provide the utilities
with a Pareto-like solution enabling them to select the most appropriate number, an aspect not treated
in this paper. Such a joint process made of (multi-objective) optimisation plus MCDM methods can
be a way of identifying the optimal number of sensors, using the ranking provided for the fuzzy
DEMATEL methodology herein developed.
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Abstract: This paper proposes a combined management strategy for monitoring water distribution
networks (WDNs). This strategy is based on the application of water network partitioning (WNP)
for the creation of district metered areas (DMAs) and on the installation of sensors for water quality
monitoring. The proposed methodology was tested on a real WDN, showing that boundary pipes,
at which flowmeters are installed to monitor flow, are good candidate locations for sensor installation,
when considered along with few other nodes detected through topological criteria on the partitioned
WDN. The option of considering only these potential locations, instead of all WDN nodes, inside a
multi-objective optimization process, helps in reducing the search space of possible solutions and,
ultimately, the computational burden. The solutions obtained with the optimization are effective
in reducing affected population and detection time in contamination scenarios, and in increasing
detection likelihood and redundancy of the monitoring system. Last but most importantly, these
solutions offer benefits in terms of management and costs. In fact, installing a sensor alongside the
flowmeter present between two adjacent DMAs yields managerial advantages associated with the
closeness of the two devices. Furthermore, economic benefits due to the possibility of sharing some
electronical components for data acquisition, saving, and transmission are derived.

Keywords: water distribution monitoring; optimal sensor placement; water network partitioning;
topological centrality

1. Introduction

Installing an efficient monitoring and control sensor system gives the possibility to carry out main
tasks on Water Distribution Network (WDN) management and protection. Securing these critical
infrastructures is a crucial task for ensuring society’s welfare and prosperity. In fact, WDNs are
strongly vulnerable to malicious and intentional actions [1] since they are made up of thousands
of exposed elements. From a practical and economic point of view, securing all the apparatuses is
not feasible. Thus, the design of an effective and cost-effective quality monitoring system represents
a crucial management strategy for ensuring the delivery of good quality water to users. Optimal
sensor placement becomes a necessary step for satisfactory water quality monitoring systems, also

Water 2019, 11, 1315; doi:10.3390/w11061315 www.mdpi.com/journal/water175
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allowing identification of the source contamination [2]. These systems should provide a fast and
accurate detection, distinguishing between normal variations and contamination events; furthermore,
they should be economical, easy to integrate into network, and reliable [3]. This problem has been
extensively studied for the past 20 years and several approaches have been proposed to identify optimal
locations of sensors (Byoung et al. (1992) [4] defined the concept of maximum coverage to locate
sensors formulating the problem as integer programming problem; using the same objective as the
maximum coverage, Kumar et al. (1997) [5] employed a mixed-integer programming method; Watson
et al.(2004) [6] used a mixed-integer linear programming model, showing that the problem of sensor
placement must simultaneously consider multiple design objectives; Berry et al. (2005) [7] pointed out
the difficulty of solving sensor placement by means of integer programming optimization; Ostfeld and
Salomons (2004) [8] studied the problem in unsteady conditions using a genetic algorithm framework
integrated with EPANET; Uber et al. (2004) [9] used a greedy heuristic solution methodology providing
a heuristic (non-optimal) solution procedure scalable to large networks, taking into account uncertainty
in threat scenario). The problem received lots of attention especially after the events of 11 September
2001. However, although many research works have been carried out in this field, the challenge of the
optimal sensor placement is still open in many aspects, such as identification of optimal sensor locations
and evaluation of performance and applicability to real-world scenarios. Models and algorithms for
solving this arduous problem include deterministic and stochastic optimization techniques, optimizing
one (Kessler et al. (1998) [10] defined the total volume of contaminated water consumed ahead of
detection; Ostfeld and Salomons (2005) [11] enhanced previous study by taking into account the
randomness of flow rate of the intruded pollutant, stochastic demands, and reaction time of the sensors;
Berry et al. (2009) [12] incorporated into a mixed-integer programming formulation the probability
of sensor failure) or more objectives (McKenna et al. (2007) [13] demonstrated the importance of
considering sensor failure rates showing the trade-off between the sensor detection limit and the
number of sensors; Dorini et al. (2008) [14] considered four objectives in the model and used a
noisy cross-entropy sensor locator algorithm to find the optimal solution; Huang et al.(2008) [15]
considered three objectives in their formulation solved by using a competent genetic algorithm while
the contamination events were simulated by a development of Monte Carlo method; Propato and
Piller (2006) [16] used a mixed-integer linear program methodology including notions of statistical
and uncertainty analysis in the design process; Wu and Walski (2008) [17] combined four objectives
into a single objective), such as detection likelihood, expected contaminated water volume, affected
population, detection time, and the contaminated population. The interested reader can refer to Hart
and Murray (2010) [18,19] for a review of this topic. The optimal sensor placement problem was
also dealt with at the Battle of the Water Sensor Networks (BWSN) [20]. The main difficulty is that,
given WDN complexity, efficient numerical techniques are needed to support optimal monitoring
system design and the huge number of all potential contamination events in a WDN makes the
problem computationally intractable (as each of these events is characterized by a different injection
location, duration, mass rate, and starting time). Indeed, the optimal sensor placement in a network
represents a combinatorial optimization problem that has been proven to be NP-hard [21]. For example,
Krause et al. (2008) [22] showed that, using 30 parallel processors, it took 8 days to simulate random
contamination events that could occur at 5 min intervals over a 24 h period from any of the 12,527 nodes
in a medium-sized distribution network. In recent years, new concepts in sensor network design have
been studied; Sankary and Ostfeld (2016) [23] investigated the possibility of adopting a mobile wireless
sensor network to wirelessly transmit data to fixed transceivers in real time; Rathi et al. 2016 [24]
proposed a novel strategy for the selection of contamination events with associated risk to be used in
design of sensor network; Zheng et al. 2018 [25] investigated the characteristics of the sensor placement
strategy effectiveness using several metrics, and providing guidance for selecting the most appropriate
strategy for the preparedness for contamination events.

On the other hand, the “divide and conquer” concept has recently been gaining attention in
the field of WDNs, showing to be one of the most efficient management strategies. The option of
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dividing large-scale networks into smaller and manageable subsystems, called district metered areas
(DMAs), offers undisputable advantages for the monitoring and control of consumption, pressure,
leakage, and water resource quality. In the scientific literature, numerous works were dedicated to the
design of DMAs. Most of them are based on the application of decomposition algorithms [26,27] based
on graph [28–32] and spectral theories [33,34], multi-agent method [35], social network theory [36],
modularity index [37–39]. Though being significant contributions to the field, the works mentioned
above are mostly focused on DMA design. Therefore, they fail to analyze the positive effects brought by
the creation of DMAs to WDN management, for reducing the impacts of potential contamination events.

The global aim of this paper is to provide a general management framework for WDN monitoring,
while exploring the benefits of water network partitioning (WNP) for:

• reduction in inauspicious consequences of contamination (both accidental and intentional) in
terms of limitation of contaminated areas (direct action);

• optimal placement of quality sensors (indirect action).

While the analysis of the former aspect is presented hereinafter as a follow-up of the work
of Ciaponi et al. (2018) [40], the analysis of the latter aspect is entirely novel. In this context, the
possibility of installing some or all sensors at boundary pipes will be considered, resulting in a two-fold
advantage: numerical, due to the reduction in the research space of possible candidate solutions for
sensor installation, and managerial, due to easiness of access and to cost savings for the possibility of
sharing some electronical components for data acquisition, saving, and transmission.

In the following sections, first the methodology is presented, followed by the applications to a
real case study, testing different scenarios and comparing different sensor locations with four water
quality-based parameters, in order to validate the results.

2. Materials and Methods

The methodology used in this work is the combination of two main procedures, used for WNP
and sensor placement, respectively. These procedures, both derived from the scientific literature,
are described in the following Sections 2.1 and 2.2, respectively. Section 2.3 deals with the postprocessing
of the sensor placement solutions obtained in Section 2.2.

2.1. Procedure 1—WNP

According to Perelmann et al. (2015) [41], WNP is carried out in two main phases: (a) clustering,
in which the optimal shape and size of the clusters are defined by minimizing the number of edge
cuts (boundary pipes) and by simultaneously balancing the number of nodes of each cluster, and (b)
dividing, in which clusters are separated from each other by closing isolation valves at some boundary
pipes and installing flow meters at the remaining boundary pipes.

In this work, the clustering layout is obtained exploiting the properties of the normalized Laplacian
matrix L =D − A, in which D is the diagonal matrix containing the node degree ki of each node, and A

is the adjacency matrix. In this matrix, the elements aij = aji = 1 if nodes ni and nj are connected by a
pipe; otherwise, aij = aji = 0. Shi and Malik (2000) [42] demonstrated that through the first C smallest
eigenvector of the normalized Laplacian matrix, the relaxed version of the min-cut problem can be
solved. In fact, it corresponds to the minimization of the Rayleigh quotient. If C is the number of
clusters in which the network must be divided, the first C smallest eigenvectors of the Laplacian matrix
are considered and used to create a new matrix UnxC. A k-means algorithm is applied to the rows of
UnxC for grouping the nodes of the network in C clusters. The main trick is to change the representation
of the nodes in the eigenspace of the first C eigenvectors, which enhances the cluster-properties of
the nodes in such a way that they can be trivially detected in the new representation. The spectral
clustering algorithm proved to show a superior performance to other clustering procedures, in that the
provided clustering layout features both a well-balanced cluster size and a minimum number of edge
cuts [43]. The main spectral clustering steps in the case of a WDN are described by Di Nardo et al.
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(2018b) [44]. The graph of the WDN can be considered un-weighted (every connection between the
nodes has the same importance, aij = aji = 1) or weighted (the value aij = aji can be related to pipe
features, such as diameter d and length l). In the applications of this work, aij and aji were set at
1. The optimal number of clusters C (from a topological point of view) in which to subdivide the
network is chosen as a function of the number n of nodes, according to the relationship Copt = n0.28 [45].
The clustering phase provides the optimal cluster layout and, as a result, the edge-cut set, consisting of
a group of Nec boundary pipes between clusters. In correspondence to each boundary pipe, the flow
transfer between the adjacent clusters must always be known, if it is larger than zero, in order to make
the dividing effective. Therefore, the choice must be made whether either a gate valve must be closed,
or a flow meter must be installed in the generic boundary pipe. Following this choice, the sum of
closed gate valves (as numerous as Ngv) and installed flow meters (as numerous as Nfm) must be equal
to Nec. Closing gate valves has the effect of reducing the service pressure and, therefore, leakage in the
WDN. However, if service pressure falls below the desired threshold value hdes, this negatively impacts
on WDN reliability. In this work, the trade-off between leakage and WDN reliability was explored
through the bi-objective optimization, performed through the NSGAII genetic algorithm [46]. In this
optimization, several decisional variables equal to Nec was considered, to encode, inside individual
genes, gate valve closure (gene value equal to 1) or flow meter installation (gene value equal to 0) at
boundary pipes. The first objective function f1 to minimize was the daily leakage volume Vl (m3):

f 1 = Vl (1)

where Vl is calculated as the sum of the temporal integral of the nodal leakage outflows, evaluated as a
function of nodal pressure heads through the Tucciarelli et al. (1999) [47] formula.

The second objective function f2 relates to the global resilience failure index GRF index proposed
by Creaco et al. (2016) [48] to represent the instantaneous power surplus/deficit conditions of the WDN.
In fact, GRF is dimensionless and is the sum of the resilience (Ir) and failure (If) indices evaluated at the
generic instant of WDN operation:

GRF = Ir + I f =
max
(
qT

userH− dTHdes, 0
)

QT
0 H0 − dTHdes

+
min
(
qT

userH− dTHdes, 0
)

dTHdes
(2)

where d and quser are the vectors of nodal demands d (m3/s) and water discharges quser (m3/s) delivered
to users, respectively, at WDN demanding nodes. In this work, quser was evaluated as a function
of d and pressure head h (m) at each node though the pressure-driven formula of Tanyimboh and
Templeman (2010) [49], with calibration proposed by Ciaponi et al. (2014) [50]. H and H0 are the vectors
of nodal heads (m) at demanding nodes and sources, respectively. Hdes is the vector of desired nodal
heads, which are the sum of nodal elevations and desired pressure heads hdes (m). Finally, Q0 is the
vector of the water discharges leaving the sources. The GRF index has the advantage of being within
range [−1, 1]. Higher values of GRF indicate higher power delivered to WDN users and, therefore,
higher service pressure. With reference to WDN daily operation, the second objective function f2 to
maximize was calculated with the following relationship, as suggested by Creaco et al. (2016) [48]:

f2 =median(GRF) (3)

The choice of the median value of GRF is because Creaco et al. (2016) [48] proved it to give
a suitable and concise representation of a sequence of operation scenarios in the extended period
simulation of the WDN. Both f1 and f2 can be calculated by applying a pressure-driven WDN solver
(e.g., that of Creaco et al. 2016 [48]). They are mutually contrasting objectives: in fact, as the number
of closed gates grows, f1, which has to be minimized, decreases. At the same time, f2, which has
to be maximized, decreases as well due to the decreasing service pressure. This creates a trade-off
between the two objectives, which takes the form of a Pareto front of optimal solutions, that is a
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group of solutions from which to select the final solution for the partitioning. To this end, additional
criteria, such as the partitioning cost or demand satisfaction, can be adopted. In fact, the Pareto front of
optimal solutions can be re-evaluated in terms of other functions, such as number Nfm of flow meters
and demand satisfaction rate Ids. In fact, Nfm is a surrogate for the partitioning cost [34], whereas Ids
represents the effectiveness of the service to WDN users. The latter index can be calculated as:

Ids =
wd
wtot

(4)

where wd (m3) and wtot (m3) are the delivered water volume and the WDN demand, respectively.
Variable wd can be calculated starting from the temporal integral of the water discharge quser delivered
to the users at each node.

2.2. Procedure 2—Optimal Sensor Placement

Let a set S of potential contamination events considered in the analysis, each of which featuring a
certain location, starting time, duration, and total mass, be defined. In this context, sensor placement
was formulated as a bi-objective optimization problem [51], in which the first objective function is
f3 = Nsens (number of installed sensors), as a surrogate for the installation cost for WDN monitoring,
while the second objective function is:

f4 = pop =

∑S
r=1 popr

S
(5)

The objective function f 4 is related to the contaminated population popr before the first detection
of the generic r-th contamination event. This corresponds to the sum of the inhabitants served by the
contaminated nodes and can be evaluated using the EPANET quality solver [52], using an unreactive
contaminant. The EPANET quality solver can be applied to the flow field obtained following procedure
1. If the r-th event is not detected, popr includes all the nodes crossed by the contamination till the whole
contaminant mass leaves the WDN. Though numerous objective functions can be used for the optimal
installation of sensors, the population exposed to contamination was chosen as the objective function
to minimize along with the number of sensors. This choice was made because, compared to other
potential objective functions (such as detection likelihood and sensor redundancy), the population
exposed to contamination represents more directly the impact of contamination, which is the most
meaningful from the viewpoint of risk assessment and mitigation. The time interval Δtreact for the
activation of emergency operations is set to 0 hr hereinafter for simplifying purposes. This means that
contamination is assumed to stop instantaneously after its detection. However, Δtreact can be set to
other values without loss of validity of the whole methodology. The function f4 is therefore the average
value pop of popr. In the bi-objective optimization, functions f3 and f4 are minimized simultaneously
through the NSGAII genetic algorithm [46]. In fact, the minimization of the former reduces the sensor
cost while the minimization of the latter impacts positively on the system security. In the population
individuals of NSGAII, the number of genes is equal to the number of network nodes where sensors
can be installed. Each gene can take on the two possible values 0 and 1, which stand for absence and
presence of the sensor in the node associated with the gene, respectively.

In this paper, four options for sensor locations on the partitioned network were tested:

1. Option 1, sensors can be installed at all nodes (typical greedy approach);
2. Option 2, sensors can be installed only at the hydraulically upstream nodes of the boundary pipes;
3. Option 3, sensors can be installed at the most central nodes of each district, identified through

topological considerations;
4. Option 4, sensors can be installed at the hydraulically upstream nodes of the boundary pipes and

at the most central nodes of each district.
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In the last two cases, the idea is to take advantage from the study of WDN topology in order to
define which nodes are potential candidates for sensor installation, according to their connectivity
centrality. In this paper, the most central nodes were defined using the betweenness centrality [53],
defined starting from the shortest paths in a graph. The shortest path σ(s, t) between two nodes s
and t is the connecting path with the lowest number of links (or the minimum sum of the weights
associated with its links in the case of weighted graph). The betweenness centrality of a node i is
defined as the sum of the ratios of the number of shortest paths between nodes s and t passing through
i to the total number of shortest paths between nodes s and t. It is a measure of the influence of a
node i over the flow of information between other nodes. In this paper, for each cluster, the nodes
with the highest value of betweenness centrality were selected as possible sensor locations alone
(Option 3) or in combination with boundary nodes (Option 4). Options 2, 3, and 4 aim to investigate the
possibility of limiting the search for optimal sensor locations to the hydraulically upstream nodes of
the flow meter-fitted boundary pipes and to the most central nodes of each district. This choice leads
to significant computational simplifications, due to the reduction in the search space. This offers the
possibility of better facing the problem of optimal sensor placement also for big-size WDNs (for which
the number of all potential scenarios makes the problem computationally intractable). Furthermore,
the strategy of locating all or some sensors in the same stations as boundary flowmeters offers easiness
and cheapness of inspection and maintenance.

2.3. Procedure 3—Comparison of Sensor Placement Solutions

Sensor placement solutions were evaluated using the following four contamination impact
indicators. The first is function f4 in Equation (5), followed by functions f5, f6 and f7 reported in the
following Equations (6)–(8), respectively.

The function f5 is the detection likelihood (i.e., the probability of detection):

f5 = Ps =
1
S

∑S

r=1
dr (6)

where dr = 1 if contamination scenario r is detected, and zero otherwise; and S denotes the total number
of the contamination scenarios considered.

The function f6 is the detection time. For each detected contamination scenario, the sensor
detection time corresponds to the elapsed time from the start of the contamination event, to the first
identified presence of a nonzero contaminant concentration. If tj is the time of the first detection
(referred to the j-th sensor location), the detection time (td) for the solution for each contamination
event, is the minimum among all present sensors td = min(tj); the characteristic detection time of the
solution is defined as the mean of all td for the contamination scenarios detected by at least one sensor:

f6 = mean(td) (7)

Finally, the function f7 is the sensor redundancy. In a generic scenario, the variable Red corresponds
to the number of sensors (including the first) that detect the contamination within 30 minutes from the
first detection; the redundancy Red of the solution is defined as the mean of all the values of redundancy
Red for all the considered contamination scenarios:

f7 = Red = mean(Red) (8)

which contributes to the safety of the monitoring systems, especially in the case of sensor failures or
false positive/negative detection, conferring a higher reliability.

As for the choice of the objective functions, it must be remarked that theoretically more than two of
them could be inserted in the same optimization framework. However, to prevent this framework from
becoming overly complex, we preferred to keep only two objective functions (number of sensors and
exposed population) in the optimization framework, while other assessment criteria (e.g., detection
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likelihood, detection time, and sensor redundancy) will be considered in the postprocessing of the
optimal solutions.

3. Case Study

The methodology described above was tested on the WDN of Parete [54], which is a small town
located in a densely populated area to the south of Caserta (Italy), with population of 11,150 inhabitants.
This WDN has 182 demanding nodes (with ground elevations ranging from 53 m a.s.l. to 79 m a.s.l.),
282 pipes and 2 sources with fixed head of 110 m a.s.l. A uniform desired pressure head hdes = 19 m
was assumed for the demanding nodes, coming from the sum of the maximum building height in the
town, which is 9 m in Parete, and 10 m, as prescribed by the Italian guidelines. Reference was made to
the day of maximum consumption in the year when the total nodal demand ranges from 7.6 L/s at
nighttime to 77.2 L/s in the morning and midday peaks, with an average value of 36.3 L/s. The leakage
volume of the networks in the day of maximum consumption adds up to 930 m3 (about 23% of the
total outflow from the sources). The number of users connected to each WDN node was derived based
on its average nodal demand.

4. Results and Discussions

In this section, the results of the procedures described in Sections 2.1–2.3 are reported. The first
step is the definition of an optimal water network partitioning. In this regard, the clustering phase
was applied to produce 5 DMAs. The choice of 5 DMAs was made because the formula Copt = n0.28

proposed by Giudicianni et al. (2018) [45] to calculate the optimal number of clusters yields Copt = 4.3
for this WDN. The number of nodes for each DMA are DMA1 = 20, DMA2 = 35, DMA3 = 39, DMA4 = 41
and DMA5 = 49, with Nec = 21. For the dividing, the optimization through NSGAII yielded the Pareto
front reported in Figure 1a, showing, as expected, growing values of median(GRF) with Vl growing.
In fact, both variables are growing functions of the service pressure in the WDN. Figure 1b,c report the
number Nfm of flow meters and the demand satisfaction rate Ids, respectively, re-evaluated from the
Pareto front and plotted against Vl. Globally, Figure 1b highlights that the higher values of Nfm tend to
be associated with the high values of Vl. This is because Vl tends to grow when fewer gate valves are
closed (and then more numerous flow meters are installed) at the boundary pipes. Finally, Figure 1c
shows that Ids tend to grow with Vl increasing, since both variables are increasing functions of the
service pressure.

From the graphs in Figure 1, the solution with the lowest value of Nfm (= 8), highest number of
closed valves Ngv (= 13), which ensures Ids = 100%, was finally chosen. An important remark to be
made is that among the several advantages of the WNP, the adopted partitioning solution enables
also reducing leakage, from 930 m3 (for the un-partitioned layout) to 895 m3 (partitioned solution
with 13 gate valves closed and 8 flow meters installed). This corresponds to a 3.7% leakage reduction
without negatively affecting Ids and GRF. In fact, for this solution median(GRF) is equal to 0.32, very
close to the value of 0.36 for the un-partitioned network. The layout of the partitioned layout is
reported in Figure 2. The optimal sensor placement is then carried out. The following assumptions
were made for the construction of the set S of contamination events considered in the optimization:

• all the 182 demanding nodes were considered to be potential locations for contaminant injection;
• 24 possible contamination times in the day (hour 0, 1, 2, . . . , 22, 23);
• single value of the mass injection rate equal to 350 g/min;
• single value of the injection duration equal to 60 min.
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Figure 1. Dividing phase considering the clustered graph of the Parete WDN (Variant 1). Pareto front
of optimal solutions in the trade-off between daily median (GRF) index and leakage volume Vl (a),
re-evaluated solutions in terms of number of flow meters Nfm (b), and of demand satisfaction rate Ids

(c). In all graphs, the selected solution is highlighted with a grey vertical line.

The values reported above for mass injection and duration were sampled from those proposed by
Preis and Ostfeld (2008) [55], using the procedure of Tinelli et al. (2017) [51], with the objective to obtain
a representative smaller set of significant contamination events. Due to the previous assumptions, the
total number S of contamination events was 182 × 24 × 1 × 1 = 4368.

The water quality simulations were run for 2 days of WDN operation to make sure that even
contaminants injected close to the sources at the last instant of the first day had enough time to leave
the network. In the optimization for sensor placement, the partitioned WDN layout was indicated as
Var1 to differentiate it from the original layout (Var0). Therefore, according to the three optimization
options described in Section 2.2, optimizations were organized as follows:

1. Var1Op1: Optimal sensor placement on the partitioned WDN allowing sensor installation on all
nodes (182 potential locations);

2. Var1Opt2: Optimal sensor placement on the partitioned WDN allowing sensor installation only
on the nodes hydraulically upstream from the flowmeter fitted boundary pipes (8 potential
locations);

3. Var1Opt3: Optimal sensor placement on the partitioned WDN allowing sensor installation only
on the most central nodes of each district (15 potential locations, i.e., three locations for each
district, which feature a much higher betweenness centrality value than the other nodes);
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4. Var1Opt4: Optimal sensor placement on the partitioned WDN allowing sensor installation on the
nodes hydraulically upstream from the flowmeter fitted boundary pipes and on the most central
nodes of each district (23 scenarios).

Figure 2. WDN partitioning into 5 DMAs.

Compared to Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4 reduce the group of potential sensor
locations respectively by 96%, 92% and 87%, resulting in a research space reduction which helps in
diminishing the computational burden. The three optimizations were compared with the benchmark
Var0Opt1, where all the 182 potential sensor locations are explored in the original layout. Table 1 shows
the optimization framework, made up of 5 runs. In all of them, NSGAII was applied with a population
of 200 individuals and a total number of 200 generations.

Table 1. Framework of optimizations for sensor placement in the Parete WDN.

Option
Variant 0

(Un-Partitioned)
Variant 1

(Partitioned)

1 (all nodes) Var0Opt1 Var1Opt1
2 (only boundary nodes) - Var1Opt2

3 (only central nodes) - Var1Opt3
4 (boundary nodes + central nodes) - Var1Opt4

For the optimizations that consider all nodes as potential sensor locations (Var0Opt1, Var1Opt1),
the slow convergence of NSGAII was initially remarked towards interesting solutions for water utilities,
which are solutions with a reasonably low number of sensors in comparison with the total number of
demanding nodes. This problem was solved by implementing inside NSGAII a heuristic algorithm
to correct solutions with numerous sensors, that is Nsens > 20. In this heuristic algorithm, for each
NSGAII solution violating Nsens = 20, a random integer number within the range (1, 20) is generated,
representing the target number of sensors for that solution. Then, starting from the initial value of
Nsens, the least effective sensors in terms of pop are removed one by one to reach the target. Though
increasing the computation time for each NSGAII generation by about 30 times, this algorithm proved
to solve the issue of slow convergence. This heuristic algorithm was not applied to the optimizations
Var1Opt2, Var1Opt3 and Var1Opt4. This made the NSGAII optimizations in the two latter applications
much lighter from the computational viewpoint.
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Figure 3a reports the Pareto fronts obtained in optimization Var0Opt1, on the un-partitioned
layout, and in optimizations Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4, on the partitioned layout.
As expected, these fronts in Figure 3a show decreasing values of pop as Nsens increases up to 20.
However, for high values of Nsens, the additional benefit of a further sensor installed in the network
tends to decrease, as already pointed out by Tinelli et al. (2017) [56]. In the present work, Nsens = 6
appears to be the threshold of benefit for the installation of an additional sensor, slightly to right of the
knee of the Pareto fronts (which lies around Nsens = 3).

Figure 3. For the original un-partitioned WDN (Var0Opt1), reported as benchmark, and for the
partitioned WDN (Var1Opt1, Var1Opt2, Var1Opt3 and Var1Opt4), Pareto front of optimal sensor
placement solutions in the trade-off between Nsens and contaminated population pop (a), re-evaluated
solutions in terms of Nsens and detection likelihood Ps (b), Nsens and detection time Tmean (c), and Nsens

and redundancy Red (d).
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Another point to highlight is that for the partitioned network, the contaminated population
corresponding to the case of zero installed sensors (pop = 2458) is lower than the corresponding
contaminated population for the un-partitioned WDN (pop = 2806) as shown in Table 2.

Table 2. Simulation results in terms of exposed population from the four optimizations for sensor
placement in the Parete WDN, considering Nsens up to 6.

Nsens Var0Opt1 Var1Opt1 Var1Opt2 Var1Opt3 Var1Opt4

0 2806 2458 2458 2458 2458
1 1438 1274 1274 1274 1274
2 982 919 953 974 953
3 789 648 741 679 653
4 667 559 638 598 569
5 589 500 572 561 515
6 514 462 564 548 472

This points out the first advantage of the partitioning: by reducing the average number of possible
paths in the network (due to the closure of some pipes), it produces a reduction in the contaminated
population by around 12.4%. This is due to the reduction in the spreading of contamination (direct
action). Furthermore, the WNP also enhances the results of optimal sensor placement (indirect action).
As is shown in Table 2 for Nsens ≤ 6, pop for the un-partitioned WDN (Var0Opt1) is always higher
than pop for the Var1Opt1 for all the number Nsens of sensors installed in the network. The minimum
value of pop = 462 is for Var1Opt1. Var1Opt2 (sensors allowed only upstream from boundary pipes),
Var1Opt3 (sensors allowed only on topologically central nodes in DMAs) and Var1Opt4 (sensors
allowed upstream from boundary pipes and on topologically central nodes in DMAs) give similar
results to Var1Opt1 up to Nsens = 2. For Nsens > 2, Var1Opt2 and Var1Op3 degenerate while the good
performance of Var1Opt4 persists. This is evidence that constraining sensor installation only upstream
from boundary pipes or on topologically central nodes may lead to remarkably sub-optimal solutions.
However, the combination of locations upstream from the boundary pipes and of topologically central
nodes offers a good set of potential locations in the problem of optimal sensor placements. Figure 3b–d
report the results of the reprocessing of the optimal solutions in terms of detection likelihood, detection
time, and redundancy as a function of Nsens. Along with Figure 3a, they give indications on the
effectiveness of the solutions obtained in the NSGAII runs. Globally, the Var1 solutions obtained on the
partitioned graph, especially Var1Opt1, Var1Op2, and Var1Opt4, tend to perform better in terms of
pop, detection time, and sensor redundancy. Conversely, they feature slightly worse values in terms
of detection likelihood. This may be because the optimization was carried out considering pop as
objective function, which is slightly contrasted with detection likelihood [56]. In fact, the former
variable mainly contributes to the system’s early warning capacity whereas the latter contributes to the
system safety. As for Figure 3, it must be remarked that the curves in Figure 3a are Pareto fronts while
those in the other Figure 3b–d are obtained by reprocessing the optimal solutions in terms of other
assessment criteria. Since these curves are not Pareto fronts, they are not strictly monotonous. Figure 4
shows the sensor placement solutions obtained for Nsens = 6 with three optimizations (Var0Opt1,
Var1Opt1, and Var1Opt4). In this context, it must be noted that the Var1Opt4 solution has three of the
six sensors placed close to flowmeters (the other three sensors are in the most central nodes according
to the betweenness centrality). This solution yields managerial and economic benefits, due to the
closeness of some sensors to installed flow meters and due to the possibility of sharing some electronical
components for data acquisition, sharing, and transmission. Summing up, the Var1Opt4 solution
represents a quasi-optimal solution in the explored trade-off between pop and Nsens, while offering
significant potentials for improved management. Another advantage compared to the Var0Opt1 and
Var1Opt1 solutions with Nsens = 6 is that it was obtained at a much lower computation cost (about
1/30), due to the research space reduction mentioned above for Options 2–4. Overall, the advantages
in terms of computational lightness during the optimization as well as the possibility of inspecting
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and maintaining sensors in proximity to flow meters make solutions obtained in Opt4 preferable from
the water utilities’ viewpoint. The results highlighted that nodes close to flow meters used for the
monitoring of DMAs, which must always be easily accessible sites, represent good sensor locations for
WDN monitoring from contaminations, when they are inserted into an optimization framework that
also includes topologically central nodes inside DMAs. As for the optimal positions of the sensors
in Var1Opt1 (partitioned network and all nodes as potential candidates) and Var1Opt4 (partitioned
network and sensor installations restricted to entry points and central nodes in DMAs), it must be
remarked that many locations are similar in the two cases (see Figure 4). This corroborates the fact that
entry points and central nodes in DMAs are good candidate locations in the present case study.

Figure 4. Optimal location of 6 sensors in (a) original un-partitioned WDN (Var0Opt1), (b) partitioned
WDN (Var1Opt1), and (c) partitioned WDN (Var1Opt4).

5. Conclusions

In this work, a methodology that combines WNP and optimal sensor installation was proposed,
to investigate the benefits of the “divide and conquer” technique for the monitoring of WDNs from
contamination events (direct action), and for the effectiveness of optimal sensor placement (indirect
action). The applications concerned a real Italian WDN, which was first partitioned into 5 DMAs.
Optimal sensor solutions were searched for on the original un-partitioned WDN and on the partitioned
layout, in the trade-off between number of installed sensors and affected population for an assigned
set of contamination events. Further optimizations were carried out by restricting sensor installation to
some pre-selected nodes (nodes hydraulically upstream from the flow meter-fitted boundary pipes
and central nodes). The results showed that, for a given number of installed sensors, the monitoring
stations installed in the partitioned layouts offer better monitoring performance. On the other hand,
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the option of considering locations in proximity to flow meters and at most central nodes as the only
potential locations in the context of optimal sensor placement has the following advantages:

1. almost identical performance in terms of WDN monitoring, compared to the option of considering
all nodes as potential locations;

2. money savings thanks to the possibility of sharing some electronical components for data
acquisition, sharing, and transmission;

3. easiness of access to the sensors for maintenance;
4. reduction in the search space and, therefore, in the computational complexity in the optimizations

for optimal sensor placement;
5. easier identification of the area from which the contamination starts with the subsequent

possibility of isolating the district, assuring a higher resilience of the system to the spreading of
the contamination.

With regards to the last issue, it must be noted that the calculations of the present work were carried
out on a simple though real WDN. Therefore, the benefits are expected to be much larger in the case
of big-size WDNs, for which the problem of optimal sensor placement may become computationally
infeasible. Indeed, the topics analyzed in this paper fully match the future research directions identified
by Ostfeld et al. (2008) [20] during the Battle of the Water Sensor Networks. In fact, specific reference
was made to the problems of aggregation, i.e., the possibility of using a reduced but still significant
sample of nodes for investigations into water quality, multi-criteria analysis of sensor performance,
choice of optimal number of sensors and multiple use of boundary pipes (for both monitoring flow
between DMAs and detecting potential contaminations).

Though topologically central nodes have been considered in this analysis along with DMA
entry points, another attractive option is made up of critical sink nodes with lowest head inside
DMAs, in which water quality parameters are already monitored. Future works will be dedicated
to exploring the solution of critical sink nodes. Future work will be dedicated to investigating how
results change when other objective functions from those used in the present work are considered.
The methodology presented in this paper will be refined in the future considering also other benchmark
networks. Adopting different clustering algorithms and centrality metrics could affect the results;
to better investigate the influence on the solutions, new algorithms will be applied. Another aspect
that deserves to be further investigated concerns the assumptions made for the definition of the
representative set of contamination scenarios. Other prospects could concern the issues of restoration
after the generic contamination and of constructing mega-monitoring stations on which to locate all the
management devices (chlorine stations, pressure valves, etc.). This will be done with reference to specific
real contaminants, while abandoning the simplifying assumption of unreactive and conservative
contaminant adopted so far.
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Abstract: This research introduces an inverse transient-based optimization approach to automatically
detect potential faults, such as leaks, partial blockages, and distributed deteriorations, within pipelines
or a water distribution network (WDN). The optimization approach is named the Pipeline Examination
Ordinal Symbiotic Organism Search (PEOS). A modified steady hydraulic model considering the
effects of pipe aging within a system is used to determine the steady nodal heads and piping flow
rates. After applying a transient excitation, the transient behaviors in the system are analyzed using
the method of characteristics (MOC). A preliminary screening mechanism is adopted to sift the
initial organisms (solutions) to perform better to reduce most of the unnecessary calculations caused
by incorrect solutions within the PEOS framework. Further, a symbiotic organism search (SOS)
imitates symbiotic relationship strategies to move organisms toward the current optimal organism
and eliminate the worst ones. Two experiments on leak and blockage detection in a single pipeline that
have been presented in the literature were used to verify the applicability of the proposed approach.
Two hypothetical WDNs, including a small-scale and large-scale system, were considered to validate
the efficiency, accuracy, and robustness of the proposed approach. The simulation results indicated
that the proposed approach obtained more reliable and efficient optimal results than other algorithms
did. We believe the proposed fault detection approach is a promising technique in detecting faults in
field applications.

Keywords: fault identification; hydraulic transient; inverse transient analysis (ITA); water distribution
network; optimization approach

1. Introduction

1.1. Background and Problem Statement

Water distribution networks (WDNs) in modern cities are usually large-scale, with complex
systems and limited instrumentation. Water may be lost due to system aging, poor maintenance,
and improper operations. The effective management of a water supply may be a serious engineering
problem faced by cities, and rapid urbanization and infrastructure aging are expected to intensify in the
future [1]. Faults in the pipeline system may not only cause problems in water resource management,
but may also induce economic problems such as lost revenue or extensive repair times [2]. The faults
in a pipeline or a WDN may be divided into three types: Leak, blockage, and deterioration, which
may induce various problems. Leaks in pipelines and WDNs may cause large economic losses. Water
supply networks leak an average of 20% of their water supply and lose an estimated U.S. $9.6 billion
each year [3]. This may also affect environmental health and safety [4–6] and create water quality
problems, such as equipment failure, problematic operations management, and errors in pipeline
design [4,7–9]. If a pipeline has blockages, this will reduce the pipe carrying capacity of the system
and there will be severe safety problems [10]. Pipeline deterioration may not impose imminent threats
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to the operation of pipeline systems, but it may reduce water transmission efficiency [11] and create
water quality problems [12]. Hence, fault detection in WDNs is an important task in the community of
water supply engineers.

1.2. Literature Review

Due to different data collection methods, the fault identification problem may be classified into
the following two categories: Steady-state methods and transient analysis. Steady-state methods, such
as vibration analysis, pulse-echo analysis, and acoustic reflectometry, were developed in previous
studies for leak isolation [13–16], blockage detection [17–20], and deterioration determination [21–23].
These methods deliver a large number of results with high precision. However, they are usually
developed based on some indispensable customized hardware with a long-term operation, which
may lead to high costs [24]. In contrast, the application of the transient-based approach is simple and
efficient [25,26]. In transient analysis, a pressure wave with appropriate bandwidth and amplitude is
intentionally injected into the system [27]. The faults in the system, such as leakage, blockage, and
deterioration can easily affect the head changes in the system when they are compared to those in
a steady-state condition. The system responses can be freely obtained through a simple operation.
However, this has a big drawback because the pressures created by a transient event may be too high
to damage pipelines or even cause catastrophic failure in pipelines.

The heuristic algorithm is capable of searching for global optimal solutions [28]. It is therefore
commonly used for detecting leaks in WDNs. Vítkovský et al. [29] combined a genetic algorithm
(GA) with inverse transient analysis (ITA) to detect leaks and to calibrate friction factors in water
pipelines. A GA was utilized to replace the Levenberg–Marquardt (LM) method used in Reference [30]
to minimize the difference between calculated and measured heads. Vítkovský et al. [31] considered
the shuffled complex evolution (SCE) algorithm to be an optimization tool in ITA for detecting single
and multiple leaks in a pipeline system using laboratory observations with various errors (i.e., data
errors, model input errors, and model structure errors). They indicated that a model structure error
was the most possible limiting factor in field tests of ITA application. Jung and Karney [32] contrasted
the performance of a GA and particle swarm optimization (PSO) in leak detection and friction factor
calibration in a developed WDN model. They found that PSO provided faster convergence and
produced better results than the GA. Haghighi and Ramos [33] exploited a central force optimization
(CFO)-based approach as an inverse problem solver for leak detection in a benchmark leaking pipe
network (reported in References [30,31]). The CFO-based approach exhibited excellent accuracy in
identifying the friction factor and detecting the leaking node. Covelli et al. [34] highlighted the
susceptibility of aged and high-pressure zones in leakage occurrences in WDNs and applied a GA
to determine the optimal number, positioning, and setting of pressure reduction valves for reducing
background leakages within the network.

Blockage detection is a crucial issue in aged pipelines and pipe networks in energy, chemical, and
water industries. A blockage consists of chemical or physical depositions [26] or a valve that has only
been partially reopened. It may cause system failures and an increase in water leakage due to the
high-pressure redistribution within the system [35]. On the issue of blockage detection development,
Wang et al. [10] detected discrete blockages in pipes by analytically using the transient damping of
different frequency harmonics. However, detection of the blockage location was not mentioned in
their study. Mohapatra et al. [36] developed a technique for detecting partial blockages in a single
pipeline using the frequency response method. The patterns and numbers of peaks were used in the
pressure frequency response of the system to detect blockage locations and estimate the effective size
of two partial blockages. Lee et al. [37] numerically determined the properties of blockage-induced
oscillations using the Fourier transform of the inverted peak magnitude in the frequency response
diagram. Meniconi et al. [35] investigated two transient-based methods, pressure signal analysis and
frequency response analysis, to detect a partial blockage in experimental pipes. The results showed
that the former was more accurate in detecting the location of the blockage, while the latter was
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more reliable in predicting the severity of the blockage. Duan et al. [38] examined wave–blockage
interactions under unsteady flow in pressurized pipelines. They revealed that an extensive blockage
might change resonant frequencies and amplitudes, but a partial blockage might only affect resonant
amplitudes. Lee et al. [27] used analytical, numerical, and experimental methods to investigate the
importance of signal bandwidth in fault detection. They suggested that both low and high bandwidth
signals should be considered in a transient-state system. A low bandwidth signal was used to identify
the regions of suspected damage, while the fault’s location and properties were pinpointed by the high
bandwidth signal.

The condition of the pipe wall in pressurized pipelines changes with their age or operating
condition. Pipe wall deterioration may be due to corrosion, material erosion, and external pressures
with system aging. At present, the transient-based approach is recognized as a potential tool for
the noninvasive detection of discrete and distributed deterioration in pressurized pipelines [39].
Many previous studies have investigated deterioration detection technologies for water transmission
pipelines. Stephens et al. [40,41] applied fluid transients and ITA to detect changes in the thickness of
a pipe wall in a field test. They mentioned that the loss of cement mortar lining could lead to wall
corrosion and significant changes in wave speed. Hachem and Schleiss [42] presented a transient-based
approach to determine the stiffness of a pipe segment and identify the location of a structurally
weak segment of a single pipeline. The location and length of the weak segment were identified
using two mean wave speed values and the travel time of the reflections from a weak segment.
Gong et al. [43] applied time-domain reflectometry (TDR) analysis to detect distributed deterioration
in an experimental water transmission pipeline in a laboratory. They found that the size of the pressure
wave reflection from a deteriorated section could be affected by any change in the pipeline impedance of
the deteriorated section. Recently, Gong et al. [44] developed a new transient pressure wave generator
using controlled electrical sparks. They provided high-frequency waves and improved the incident
signal bandwidth. The location and length of thinner wall sections in an experimental pipeline system
were then determined through a TDR technique.

1.3. Objective

Multiple fault detection in pipeline systems or WDNs using ITA is considered to be a troublesome
issue because a large amount of input data and computation time is required. Moreover, the computation
time and searching space in the optimization process may be enormous, especially for a complicated
WDN with multiple faults. This paper presents a novel and efficient transient-based approach for
multiple fault detection, including leak detection, partial blockage identification, and distributed
deterioration determination, in a single pipeline or a WDN. An ITA-based hybrid heuristic approach
called the Pipeline Examination Ordinal Symbiotic Organism Search (PEOS) was developed based
on a combination of an ordinal optimization algorithm (OOA) and a symbiotic organism search
(SOS). The proposed approach can simultaneously determine information on various faults via inverse
calculation. Two experimental single pipeline cases and two numerical tests with different pipe
network configurations were considered to examine the performance and capability of the proposed
approach. The performance of PEOS was further compared to different optimization algorithms to
demonstrate its accuracy and efficiency in predicting fault information. The reliability and robustness
of the proposed approach for fault detection in a complicated WDN (considering data collection issues)
was further validated.

2. Methodology

2.1. Pipe Network Simulation

EPANET is a widely used public software package for modeling hydraulic and water quality
behavior in pressurized pipe systems. However, it needs an external functionality to model water
leakage in a system in simulations [45]. Moreover, it is not easy to simulate the hydraulic behavior of
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a pressurized pipe system with blockages or deterioration. In order to simulate steady-state water
head distribution in a network with various faults, we therefore developed a heuristic optimization
algorithm called a pipe network symbiotic organism search (PNSOS) based on the algorithm for
pipe network simulated annealing (SA) introduced by Yeh and Lin [46]. The SOS was adopted here
to replace the SA in order to deal with a complex network for the sake of computational efficiency.
The PNSOS is an efficient tool in estimating the steady-state nodal head and flow rate for a given pipe
network system with faults before a transient operation. The Hazen–Williams (H–W) equation is then
used to express the relationship between the flow rate and head loss for each pipe [47,48]. The modified
loss coefficient (Kij(t)) in the H–W equation for a pipe at used year t is defined as

Kij(t) =
10.66667 · Lij

CHW
ij (t)1.851852 ·D4.870370

i j

, (1)

where ij is defined from node i to node j for the variable, Lij is the length (m) of the pipe, and Dij is
the internal pipe diameter (m). The modified H–W coefficient CHW

ij (t) (for modeling the effect of pipe
aging) is defined as [49]

CHW
ij (t) = 18− 37.2 log

( e0i j(t) + t× aij(t)
Dij

)
, (2)

where t is the used year of the pipe, e0ij(t) is the initial roughness (mm) of the pipe, and aij(t) is the
roughness growth rate (unique per year) in the pipe at year t. The following equations are used in the
proposed approach to calculate the values of e0ij and aij [49]:

log
(
e0i j(t)

)
=

CHW
ij (t− 1) − 18

−37.2
+ log

(
Dij
)
, (3)

aij(t) =
10(

0.5CHW
ij (t−1)−18

−37.2 ) ×Dij − e0i j(t)
50

. (4)

For a new installed pipe (i.e., t = 0), the value of CHW
ij (t− 1) in Equation (3) is considered to be the

initial value of the H–W coefficient at the time of pipe installation (i.e., CHW
ij (0)). Thus, the modified

H–W coefficient for each pipe could be iteratively obtained. On the basis of Equations (1)–(4), the flow
rate Qij(t) (m3/s) in each pipe at year t could be expressed as

Qij(t) =
[

ΔHij

Kij(t)

]0.54

, (5)

where ΔHij is the frictional head loss in a pipe. The equation of mass conservation at node i could be
written as

MCi(t) =
∑nn

j=1
Qij(t) + QIi(t), (6)

where nn is the number of total neighbor nodes to node i, and QIi(t) is the demand or the source at
node i. The flow rate is positive for flow out of node i and negative for flow into node i, while QIi is
positive for inflow and negative for outflow. The objective function used in the PNSOS is defined as

Minimize
∑nd

i
(MCi(t))

2, (7)

where nd is the total number of nodes needed to estimate the nodal heads and flows in a network
system.
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2.2. Hydraulic Transient Model and Faults in the Pipeline

The unsteady pressurized flow in a pipe network with a known steady-state nodal head and flow
rate can be described by a pair of partial differential equations, written as [50]

gA
∂H
∂x

+
∂Q
∂t

+
f

2DA
Q|Q| = 0, (8)

∂H
∂t

+
a2

gA
∂Q
∂x

= 0, (9)

where g is the acceleration of gravity, A is the pipe cross-sectional area, H is the piezometric head,
x is the distance along the pipe, Q is the volume flow rate, t is the time, D is the diameter of the pipe,
a is the wave speed, and f is the friction factor, which can be described in steady-, quasi-steady-,
or unsteady-state conditions. The friction factor was considered to be steady with a value of 0.02, since
this study was numerical verification-oriented. Readers can refer to related studies regarding unsteady
friction [51,52]. Equations (8) and (9) are respectively the momentum and continuity equations.
By means of the method of characteristics (MOC) and the finite difference method, both equations can
be solved with appropriate initial and boundary conditions. Then the hydraulic transient heads and
flow rates along the pipelines are solved.

Three kinds of faults (i.e., leaks, partial blockages, and distributed deterioration) are considered
and discussed. Both leaks and blockages could be described by the simple orifice equation and
implemented as an internal boundary condition in the MOC analysis as [53]

QO = CdOAO
√

2gΔHO, (10)

where QO is the volumetric flow rate through the orifice, CdO is the discharge coefficient of the orifice,
AO is the orifice area, and ΔHO is the head loss across the orifice. The leaks represent the flow loss
through the offline orifice with no head loss, while the blockages represent the head loss through the
inline orifice with no flow loss.

The volumetric flow rate QL through leakage is denoted as [53]

QL = QU −QD = CdLAL

√
2g(HP −HOut − z) with HP = HU

P = HD
P , (11)

where QU and QD are the volumetric flow rates upstream and downstream of the leakage, respectively;
CdLAL is the discharge coefficient of leakage times the leak area of the orifice; HP and Hout are respectively
the heads at the leak and outside the leak; z is the pipe elevation at the leak; and HU

P and HD
P are

respectively the heads upstream and downstream of the leak. The outside head is generally considered
to be the atmospheric pressure head and is hence set to zero [53]. The initial value of CdL is set to unity,
and the elevation z is assumed to be zero.

Similarly, a discrete (partial) blockage is treated as an inline valve with a constant opening area.
The upstream and downstream of the blockage satisfy the continuity conditions of the head and flux.
The volumetric flow rate QB through the blockage is expressed as [53,54]

QB|QB| = 2g(CdBAB)
2(HU

P −HD
P ) with QB = QU

B = QD
B , (12)

where QU
B and QD

B are respectively the flow rates upstream and downstream of the blockage; and
CdBAB is the discharge coefficient times the orifice area of the blockage. Note that Equation (12) is a
simple model to approximate a blockage of any shape and length [53].

Deterioration (e.g., pipe wall damage or pipeline corrosion) often introduces a decrease in pipe
wall thickness, which in turn introduces a change in the pipeline impedance and wave speed, defined
as [39,43]

Bim
i = ai/(gAi), (13)
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where Bim
i , ai, and Ai are respectively the impedance, wave speed, and pipe cross-sectional area of ith

reach. Their values are known in the MOC analysis.

2.3. Ordinal Optimization Approach (OOA)

Ho et al. [55] introduced the key cogitation of the OOA to reduce the process of searching for
global optimal solutions blindly. Ordinal comparison and goal softening procedures are the major
processes employed in the OOA. The approach looks for reliable and satisfactory solutions by searching
through the relative rankings of each solution instead of directly evaluating the optimal solution in a
complex optimization model. Thus, relatively better solutions are selected and used in the optimization
process, and the best solution can be obtained without meaningless calculations and iterations of the
worst solutions.

2.4. Symbiotic Organism Search (SOS)

The SOS algorithm [56] is an evolutionary metaheuristic algorithm inspired by actual biological
interactions in nature, such as mutualism, commensalism, and parasitism. Like other population-based
algorithms (e.g., a GA and PSO), the SOS shares the following similar features: (1) Control parameters
should be properly settled before operation; (2) it has operators to enhance or improve candidate
solutions via the interaction of each solution; (3) it has a selection mechanism to determine the
current optimal solution in the solution domain and preserve the current best solution during the
process [56,57]. Furthermore, the SOS algorithm requires no algorithm-specific parameters. Only the
initial ecosystem (population) size and the maximum number of iterations are needed.

In short, the organisms (solutions) in the ecosystem are guided toward the current best organism
in mutualism and commensalism states, while the parasitism state is used to prevent the organisms
trapping in a local optimal solution. These three states are repeated until the stopping criterion is
achieved. Details about the SOS algorithm are given in the Supplementary Materials.

2.5. Inverse Transient Analysis (ITA)

The ITA introduced by Pudar and Liggett [58] was developed by minimizing the errors between
the measured and calculated system state variables (i.e., pressure or flow rates). Various potential
faults with unknown parameters (fault information) are tested in a numerical simulator until the
measured state variable traces match the calculated ones [4]. A heuristic algorithm is a useful tool for
the numerical simulators of ITA because it can explore global or near-global optimum solutions in
the search space in an affordable time [28]. However, the ITA method relies on an accurate transient
model of the system. A model consisting of transient and boundary conditions with correct system
parameters is needed in ITA for obtaining a reliable transient response in the system [5]. The pressure
measurements are theoretically more suitable than the volume measurements (i.e., flow rate) because
the response of the pressure is more sensitive than that of the flow rate in the ITA [59]. Transient flow
is not easy to precisely measure in practice with a very high sampling rate, when only the pressure can
be measured. The objective function F in the proposed approach for fault detection is defined as

F = Min
∑m

j=1

∑n

i=1

(
Ho

ij −Hs
ij

)2
, (14)

where m is the total number of observation points in the network; n is the total amount of data at an
observation point; and Ho

ij and Hs
ij represent the ith observed and simulated heads at observation point

j, respectively. Thus, an ITA model was set up for a pipe network, in which head specifications were
computed as a function of unknown variables (fault information), e.g., Lp, LL, CdLAL, Bp, BL, CdBAB, Dp,
DL, LD, aD, and AD (listed and defined in Table 1).
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2.6. Development of PEOS

The PEOS is a hybrid heuristic algorithm combining the screening procedure of OOA and the
heuristic algorithm SOS to automatically determine fault information in WDNs. The overall operational
architecture and steps of PEOS are briefly given below (also in Figure 1):

1. Import the network configurations;
2. Randomly generate candidate solutions (CASes) with different fault information consisting of the

unknown variables listed in Table 1;
3. Rearrange the network configurations, since the new fault points (leaks and blockages) and/or

new fault pipe reaches (deterioration parts) are added;
4. Use PNSOS to calculate the optimal steady-state nodal heads and piping flow rates within a given

WDN for each CAS;
5. Generate hydraulic transient events and apply the MOC to obtain the transient head distribution

of each CAS;
6. Utilize Equation (14) to calculate the CASes’ objective function values (OFVs) and rank them.

The top 5% of CASes with smaller OFVs are selected for the next step;
7. Consider the selected CASes to be initial organisms for the ecosystem of the SOS used in the

pipe examination;
8. Execute the fault detection procedure, in which the organisms containing fault information

continually move forward to the current best solution (Xbest), with optimal fault information due
to the three states of the SOS;

9. Check whether the optimization process satisfies the stopping criterion. If so, the fault detection
procedure is then terminated and moves to the next step. Otherwise, the searching process
goes on.

The first stopping criterion is defined as the absolute difference between two successive optimal
OFVs (in Equation (14)), which is always less than 10−4 within four iterations. The second criterion for
fault detection is the iteration reaching the specified maximum limit.

Table 1. Fault information to be determined.

Variable Description

Leak
Lp Leak pipe number
LL Leak location

CdLAL Discharge coefficient times the leak area of the orifice
Blockage

Bp Blockage pipe number
BL Blockage location

CdBAB Discharge coefficient times the open orifice area of the blockage
Deterioration

Dp Deterioration pipe number
DL Deterioration location
LDi Length of ith distributed deterioration reach
aDi Wave speed of ith distributed deterioration reach
ADi Pipe cross-sectional area of ith distributed deterioration reach
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Figure 1. Flowchart of the Pipe Examination Ordinal Symbiotic Organism Search (PEOS).

2.7. Benchmark Evolutionary Algorithms

To validate the ability of the proposed approach in obtaining global optimal fault information, the
performance of PEOS will be further compared in a later section to other evolutionary algorithm-based
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approaches, including a pipe examination genetic algorithm (PEGA), pipe examination particle swarm
optimization (PEPSO), and a pipe examination symbiotic organism search (PESOS).

PEGA and PEPSO are benchmark pipe examination techniques that were developed based on
the evolutionary algorithms of GA and PSO. A GA and PSO are employed as optimization tools to
substitute the algorithm SOS uses in PESOS. PEGA uses a process involving selection, crossover, and
mutation to evolve a population of potential solutions toward improved solutions. In PEPSO, the
potential solutions, called particles, fly through the problem space by following the current optimum
particle. Each particle’s movement is influenced by its local best-known position and is also guided
toward the global best-known positions in the search space. The readers may refer to References [29,60]
for detailed discussions on the use of GAs. In addition, more detail about the application of PSO can
be obtained in References [32,61]. The other benchmark approach is PESOS, which is a simplified fault
detection approach similar to PEOS but without the preliminary elimination procedure (i.e., the OOA)
for the initial organisms. The initial solutions of PEGA, PEPSO, and PESOS are randomly generated
from feasible solution domains with corresponding upper and lower bounds. The control and specific
parameter settings for each algorithm are listed in Table 2.

Table 2. Specific parameters for each algorithm, with NP = 10, 20, or 50, and Miter = 10,000 or 20,000.

PEGA PEPSO PESOS and PEOS

m = 0.01 w = 0.9~0.7 No specific
parameters requiredc = 0.8 v = Xmin/10~Xmax/10

g = 0.9 -

Note: NP = population size/ecosystem size; Miter = maximum iteration; m = mutation rate; c = crossover rate;
g = generation gap; w = inertia weight; v = limit of velocity.

3. Laboratory Experiments and PEOS Simulations

3.1. Experiment Configurations

Two cases of experimental reservoir pipe valve (RPV) systems with leaks or blockages that have
been reported in the literature were adopted to verify the applicability of PEOS. The first case was
carried out in a specially constructed RPV system at Imperial College (IC), London [62]. The system had
a pump and tank upstream and a valve at the downstream end. The valve was a transient generation
point, and pressure signals were also measured there at the same time. The IC pipe was made of
high-density polyethylene (HDPE) with an inner diameter of 50.6 mm and a length of 272 m. Two
leaks with different orifice sizes of 1.21 × 10−5 m2 and 1.50 × 10−5 m2 occurred at the locations of
65.95 m and 146.32 m, respectively: This was measured from upstream. These two leak orifices were
very small, and the discharge coefficient was considered to be one. Thus, the CdLALs for the two leaks
was respectively 1.21 × 10−5 m2 and 1.50 × 10−5 m2. The initial flow rate downstream was 1 L/s.

The second case was carried out at the Water Engineering Laboratory (WEL) at the University of
Perugia, Italy [63]. A pressurized tank upstream of the system supplied the pipe, and a valve was
located at the downstream end for data measurement and transient generation. The WEL pipe was also
made of HDPE, with an inner diameter of 93.3 mm and a length of 164.93 m. A partial blockage was
located at 88.96 m, measured from upstream. The partial blockage was simulated by an inline valve
with a diameter of 38.8 m, and thus the CdBAB was 1.18 × 10−3 m2. The initial flow rate downstream
was 2.57 L/s.

3.2. PEOS Simulation

In the PEOS application, the IC pipeline system was divided into six series segments with seven
nodes. Each segment was assigned a pipe number from 1 to 6 from upstream to downstream. The first
five segments had the same length, 50 m, and the last segment had a length 22 m. Two leaks, L1 and L2,
which occurred 65.95 m and 146.32 m from the upstream end, were respectively placed in segments
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2 and 3. The WEL pipeline system was partitioned into four series segments with five nodes. From
upstream to downstream, the segments were given a pipe number from 1 to 4. Segments 1 to 3 had
the same length, 50 m, and the last one was 14.93 m. A blockage named B1 was located at segment 2
and was 88.96 m from upstream. A valve was set at the last downstream node for measurement and
transient generation for both pipeline systems. The distance interval (Δx) was considered to be 2 m
to divide each segment for PEOS to search for leaks. The simulation durations for the IC and WEL
pipeline systems were selected to be 15 and 5 s, respectively.

The temporal head distributions predicted by the PEOS for the IC and WEL pipeline systems
were respectively displayed in Figure 2a,b. Both predicted temporal head distributions exhibited
oscillatory patterns almost identical to the experimental data, indicating that the transient events
in the IC and WEL pipeline systems could be precisely simulated by PEOS. Fault information was
successfully identified, with the initial values listed in Table 3. In the IC pipeline system, L1 and
L2 were respectively detected at 66 m in segment 2, with CdAs = 1.23 × 10−5 m2, and at 146 m in
segment 3, with CdAs = 1.52 × 10−5 m2. Blockage B1 in the WEL pipeline system was identified at 88 m
in segment 2, with CdBAB = 1.20 × 10−3 m2. The leak and blockage locations in both systems were
accurately determined by the proposed approach. The largest relative difference (E) between the actual
CdLALs/CdBAB and the predicted one was 1.69% for detecting blockage B1 in the WEL pipeline system.
The relative differences were insignificant in both systems. The success of PEOS in fault detection
indicated that PEOS performs excellently in a pipeline system.

 

Figure 2. The simulated head distributions at the valve for (a) the Imperial College (IC) pipeline and
(b) the Water Engineering Laboratory (WEL) pipeline.

Table 3. The predicted and actual fault information for the two pipeline systems.

IC pipeline
L1 L2

Lp LL (m) CdLAL (m2) E (%) Lp LL (m) CdLAL (m2) E (%)

Actual 2 15.95 1.21 × 10−5 - 3 46.32 1.50 × 10−5 -
PEOS 2 16 1.23 × 10−5 1.65 3 46 1.52 × 10−5 1.33

WEL pipeline
B1

Bp BL (m) CdBAB (m2) E (%)

Actual 2 38.96 1.18 × 10−3 -
PEOS 2 38 1.20 × 10−3 1.69

Note: E = relative difference between the predicted CdLAL/CdBAB and the actual one.
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4. Fault Detection in a Synthetic Pipe Network

4.1. Simulation Setup and Pipe Network Configuration

A synthetic benchmark WDN (pipe network A) was adopted from Reference [46] to test the
applicability of PEOS in fault detection. The associated simulation followed the concept of district
metering areas (DMAs), implying that the inflow and outflow of the pipe network system were steady
and completely understood. User demands in the pipe network were considered to be constant and
could be separated through continuous observation of mass conservations of flow measurements.
Pipe network A, shown in Figure 3, is composed of 11 pipes, 9 nodes (with 7 in continuous outflow),
1 potential leak, 1 partial blockage, and 1 distributed deterioration reach. Notice that the characters
“N”, “P”, “L”, “B”, and “D” represent the node, pipe, leak point, blockage point, and distributed
deterioration reach, respectively. The properties of the pipes and nodes of pipe network A are listed in
Table 4. The pipe material was considered to be cast iron with an aging effect on the material. Thus,
the initial H–W coefficient CHW(0) for each pipe was 130. The H–W coefficient considering the effect of
pipe aging (CHW(t)) for each pipe was calculated through Equations (2)–(4) and is given in the last
column of Table 4. The initial wave speed a0 of all pipes was postulated as 1000 m/s [25], except for
the faulty parts. The impedance of each pipe was calculated by Equation (13) and is given in Table 4.
Node N1 was the water supply node, with a constant inflow rate of 400 L/s and a constant head of
120 m. In addition, continuous discharges at N2, N3, N4, N5, N6, N8, and N9 had rates of 80, 40,
35, 35, 40, 80, and 80 L/s, respectively. The leak L1 was located at P11, 300 m away from N3, with
CdLAL = 2.50 × 10−4 m2 and QL = 3.0 L/s. A partial blockage B1 was placed at P10, 200 m away from
N9. It blocked about 20% of the cross-sectional area of P10, and thus the CdBAB was 5.6 × 10−2 m2.
In addition, a distributed deterioration reach, D1, occurred at a segment of P1 and was 200 m away
from N2. The length and cross-sectional area of D1 were respectively designed to be 80 m and 0.071 m.
Its wave speed was assumed to be 800 m/s, and thus the impedance was calculated as 1148.98 s/m2 from
Equation (13). In the simulation, N8 was treated as the transient generation and data measurement
point for the simulation of a sudden closure of the valve. The total transient simulation time was
considered to be 30 s, with a simulation time interval (Δt) selected as 0.01 s. Thus, the initial Δx was
10 m for the nondeterioration reach and further changed with the wave speed of the deterioration
reach. The transient operation was fixed to 5 s for a simulation of the complete closure of the valve.

Table 4. The characteristics of the synthetic water distribution network (WDN) (pipe network A).

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P1 N1 N2 300.0 1000.0 1442.60 10 108.2
P2 N2 N3 300.0 1000.0 1442.60 15 90.2
P3 N3 N4 250.0 1100.0 2077.35 10 105.7
P4 N1 N4 400.0 1250.0 811.47 15 92.2
P5 N4 N5 200.0 500.0 3245.86 5 112.1
P6 N5 N6 400.0 400.0 811.47 5 114.2
P7 N7 N6 200.0 500.0 3245.86 5 112.1
P8 N4 N7 350.0 400.0 1059.87 5 113.6
P9 N7 N8 350.0 600.0 1059.87 5 113.6
P10 N8 N9 300.0 1100.0 1442.60 10 108.2
P11 N3 N9 300.0 1250.0 1442.60 15 90.2

In the following section, the performance of the proposed approach is validated and compared to
the other evolutionary algorithm-based approaches mentioned in Section 2.7. The maximum iteration
(Miter) was 10,000. Notice that all of the results presented in the following sections were performed on
a personal computer with an Intel 2.8 G i5-8400 CPU and 32 GB of RAM.
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Figure 3. Configuration of pipe network A with a sectional view of P1.

4.2. Validation and Application of PEOS

The steady-state nodal heads and piping flow rates of pipe network A were solved by PNSOS
in 52 s. The transient head distributions were further predicted by three benchmark algorithms and
the proposed approach. Temporal transient perturbations were observed at N8 by applying different
approaches with the various NP displayed in Figure 4a–d, and the predicted results are given in
Table 5. The figures show that the transient perturbations fluctuated between 20 and 140 m with
similar oscillatory patterns over 30 s. Figure 4a,b shows that PEGA and PEPSO overestimated the
transient perturbations for the case NP = 10 due to an overestimation of the leakage area size by both
algorithms. Such results reflect that the WDN contained a larger total flow rate at the beginning of
transient perturbations. Moreover, the blockage at P10 was not detected by either PEGA or PEPSO.
Thus, the transmission of water and pressure may not have been affected by the blockage, resulting in
the accumulated volumes of water at N8 being higher than other cases when the transient operation
point was closed. The predicted head was also overestimated in the case of PEGA for NP = 20.
The calculations in both PEGA and PEPSO were forced to stop because they reached the maximum
iteration, Miter = 10,000, in the cases of NP = 10 and 20. In contrast, the temporal transient perturbations
displayed in Figure 4c,d were precisely reconstructed by two SOS-based approaches for all cases of
ecosystem size. Deterioration, a blockage, and a leak were detected at P1, P10, and P11, respectively.
Table 5 shows that the deterioration, blockage, and leak information was also accurately predicted by
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two SOS-based approaches. The results prove that those two SOS-based approaches are capable of
obtaining optimal fault information even after using fewer initial organisms, reflecting that PESOS and
PEOS had great abilities in obtaining the best solution even when using less input data and guessing
values. This may have greatly reduced the searching process and computation times. Moreover,
Figure 5a,b displays the predicted results of PEOS for impedance and wave speed along P1 and P10,
respectively. Both a partial blockage and a deteriorated section can also be identified from the plots of
the predicted distributions of the impedance and wave speed in Figure 5. The successful numerical
simulation validated the proposed approach to detecting various faults in WDNs.

 
Figure 4. Temporal transient perturbations at N8 of pipe network A predicted by (a) PEGA, (b) PEPSO,
(c) PESOS, and (d) PEOS with various NP.
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Figure 5. Impedance and wave speed along (a) P1 and (b) P10, determined by PEOS.

The present techniques were further executed five times to guarantee the reproducibility of
the predicted result and to test its efficiency, accuracy, and robustness for obtaining the optimal
solution. The NP was fixed at 50 for all algorithms, and thus all approaches were ensured to deliver
accurate predictions, as the results demonstrate above. Table 6 delineates the performance of PEOS
and other approaches (five times) in obtaining the optimal fault information of pipe network A.
PEGA, PEPSO, and PESOS took about 331.2, 302.2, and 105.4 min and 8072, 7604, and 3882 iterations,
respectively, to obtain optimal results over a five-time average. In contrast, PEOS took about 50.6
min and 1382 iterations to complete the searching process and obtain the optimal result. Apparently,
PEOS outperformed PEGA and PEPSO, not only in computation time but also in convergence speed.
The computational efficiency of PEOS was approximately 84.7% and 83.2% better than PEGA and
PEPSO. The computational efficiency of PEOS in fault detection in the WDN significantly improved as
a result of using the OOA and SOS. In addition, PEOS saved about 52.8% in computing time and 64%
in iterations compared to PESOS, indicating that the OOA could significantly speed up optimization
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computation by reasonably avoiding blind searches and unnecessary objective function evaluations in
the optimization process. PEOS had superiority over the other methods in its fast convergence and
effective computation. It also gave more accurate results than the other evolutionary-based algorithms.

Table 6. The performances of the four algorithms.

Method Round
CPU Time

(min)
Average Time

(min)
Iterations

Average
Iterations

PEGA

1 325

331.2

8021

8072
2 346 8216
3 322 8124
4 324 7983
5 339 8016

PEPSO

1 310

302.2

7502

7604
2 308 7551
3 312 7669
4 294 7606
5 287 7710

PESOS

1 101

105.4

3789

3882
2 107 4012
3 108 3883
4 110 3810
5 101 3915

PEOS

1 56

50.6

1415

1382
2 49 1371
3 46 1337
4 52 1396
5 50 1391

Note: CPU time is the computation time.

5. Faults Detection in Large-scale WDN

5.1. Simulation Setup and Large-Scale WDN

PEOS further demonstrated its accuracy and robustness in fault detection on a large-scale drinking
WDN by considering different data collection issues. Figure 6 displays the structure of pipe network
B with various faults. Pipe network B was modified from Reference [64] with the data of the pipe
characteristics listed in Table 7. The pipe network consisted of 74 pipes and 48 nodes, including
11 continual consumption nodes, 2 water supply nodes, and 2 constant-head reservoirs. All pipes were
considered to be long-term used cast iron pipes. Hence, the initial H–W coefficient CHW(0) and wave
speed a0 for all pipes in pipe network B were 130 and 1000 m/s, respectively. The CHW(t) for various
pipes was also calculated by Equations (2)–(4) and is listed in the last column of Table 7.

Table 7. The characteristics of the large-scale WDN (pipe network B).

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P1 N48 N1 950.0 240.0 143.86 5 120.5
P2 N34 N33 900.0 60.0 160.29 10 113.5
P3 N2 N46 1450.0 1830.0 61.75 0 130.0
P4 N43 N2 1150.0 3550.0 98.17 0 130.0
P5 N41 N45 1450.0 1220.0 61.75 0 130.0
P6 N45 N46 1450.0 640.0 61.75 0 130.0
P7 N42 N43 900.0 60.0 160.29 10 113.5
P8 N41 N43 900.0 60.0 160.29 10 113.5
P9 N44 N43 1000.0 50.0 129.83 10 114.6
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Table 7. Cont.

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P10 N42 N2 900.0 3660.0 160.29 10 113.5
P11 N41 N42 900.0 60.0 160.29 10 113.5
P12 N42 N44 1000.0 60.0 129.83 10 114.6
P13 N40 N42 900.0 800.0 160.29 10 113.5
P14 N37 N41 1450.0 3140.0 61.75 0 130.0
P15 N38 N43 1150.0 3140.0 98.17 0 130.0
P16 N39 N44 1650.0 3140.0 47.69 0 130.0
P17 N38 N36 900.0 60.0 160.29 10 113.5
P18 N38 N39 1000.0 60.0 129.83 10 114.6
P19 N36 N40 800.0 2300.0 202.87 10 112.8
P20 N38 N37 900.0 60.0 160.29 10 113.5
P21 N35 N38 1150.0 4050.0 98.17 0 130.0
P22 N36 N37 900.0 60.0 160.29 10 113.5
P23 N33 N36 800.0 4050.0 202.87 10 112.8
P24 N34 N37 1150.0 4050.0 98.17 0 130.0
P25 N33 N35 900.0 60.0 160.29 10 113.5
P26 N34 N35 900.0 60.0 160.29 10 113.5
P27 N25 N32 800.0 2150.0 202.87 10 112.8
P28 N32 N33 800.0 180.0 202.87 10 112.8
P29 N23 N34 1450.0 2980.0 61.75 0 130.0
P30 N25 N35 1450.0 2980.0 61.75 0 130.0
P31 N31 N30 1650.0 12,000.0 47.69 0 130.0
P32 N22 N24 950.0 670.0 143.86 10 114.0
P33 N29 N28 1000.0 60.0 129.83 10 114.6
P34 N30 N29 1650.0 13400.0 47.69 0 130.0
P35 N13 N11 900.0 80.0 160.29 10 113.5
P36 N11 N15 950.0 4290.0 143.86 5 120.5
P37 N12 N14 900.0 4290.0 160.29 5 115.7
P38 N13 N12 50.0 60.0 51,933.76 10 102.6
P39 N10 N11 970.0 2590.0 137.99 5 120.5
P40 N11 N12 50.0 60.0 51,933.76 10 102.6
P41 N6 N12 900.0 2960.0 160.29 5 115.7
P42 N7 N13 1150.0 2960.0 98.17 0 130.0
P43 N9 N8 1150.0 2280.0 98.17 0 130.0
P44 N8 N10 950.0 370.0 143.86 5 120.5
P45 N8 N7 1000.0 90.0 129.83 0 130.0
P46 N6 N7 50.0 60.0 51,933.76 10 102.6
P47 N5 N6 900.0 1610.0 160.29 5 115.7
P48 N6 N8 50.0 60.0 51,933.76 10 102.6
P49 N3 N5 950.0 1350.0 143.86 5 120.5
P50 N4 N8 50.0 2960.0 51,933.76 10 102.6
P51 N47 N3 950.0 6530.0 143.86 5 120.5
P52 N3 N4 900.0 60.0 160.29 10 113.5
P53 N48 N47 950.0 230.0 143.86 5 120.5
P54 N48 N4 950.0 7200.0 143.86 5 120.5
P55 N27 N26 1000.0 60.0 129.83 10 114.6
P56 N29 N27 1150.0 3200.0 98.17 0 130.0
P57 N26 N25 1450.0 4300.0 61.75 0 130.0
P58 N28 N26 1150.0 3200.0 98.17 0 130.0
P59 N22 N23 800.0 80.0 202.87 10 112.8
P60 N23 N25 750.0 90.0 230.82 0 130.0
P61 N18 N23 950.0 2050.0 143.86 5 120.5
P62 N21 N22 800.0 2380.0 202.87 10 112.8
P63 N20 N23 1150.0 3050.0 98.17 0 130.0
P64 N19 N21 50.0 670.0 51,933.76 5 105.8
P65 N18 N19 50.0 60.0 51,933.76 10 102.6
P66 N19 N20 50.0 60.0 51,933.76 10 102.6
P67 N17 N19 800.0 1830.0 202.87 10 112.8
P68 N18 N20 900.0 60.0 160.29 10 113.5
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Table 7. Cont.

Pipe
Node

Diameter (mm) Length (m) Impedance (s/m2) Year Used (year) CHW(t)
From To

P69 N14 N17 800.0 1950.0 202.87 10 112.8
P70 N15 N18 950.0 3780.0 143.86 5 120.5
P71 N16 N14 50.0 60.0 51,933.76 5 105.8
P72 N16 N15 900.0 60.0 160.29 10 113.5
P73 N13 N16 1150.0 4290.0 98.17 0 130.0
P74 N14 N15 50.0 60.0 51,933.76 5 105.8

Figure 6. Configuration of the large-scale WDN (pipe network B).
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N1 was the first reservoir with a constant-head of 138.9 m, and the second reservoir N2 had a
constant-head of 91.4 m. The inflow rates at nodes N9 and N31 were both 1620.33 L/s. The consumption
rates at nodes N10, N14, N17, N21, N25, N30, N32, N37, N45, N46, and N47 were respectively 23.15,
17.36, 162.04, 74.07, 104.17, 12.73, 92.59, 138.88, 254.63, 196.76, and 16.2 L/s. Three leaks were separately
located at different pipes. Leak L1 was at the middle of P19 and was 1150 m away from N36. Leak L2
was located at P32, 0 m away from N22, implying that leak L2 occurred exactly at N22. Leak L3 was
960 m away from N12 and was located at P41. The CdLAL values for L1, L2, and L3 were respectively
2.00 × 10−4, 1.00 × 10−4, and 1.20 × 10−4 m2. In addition, QLs was 2.0, 1.0, and 1.5 L/s for L1, L2, and
L3, respectively. Two partial blockages, B1 and B2, were respectively situated at P23 and P39. B1 was
200 m away from N33 and blocked 20% of the cross-sectional area of P23, while B2 was 600 m away
from N10 and blocked 15% of the cross-sectional area of P39. Hence, the CdBAB values of B1 and B2
were 4.0 × 10−1 m2 and 6.0 × 10−1 m2, respectively. Moreover, two distributed deterioration reaches,
D1 and D2, occurred at P62 and P67, respectively. D1 was located at P62, 400 m away from N22, while
D2 was located at P67, 600 m away from N19. The length, wave speed, impedance, and cross-sectional
area of D1 were respectively 40 m, 800 m/s, 163.2 s/m2, and 0.50 m2, while those of D2 were 30 m,
600 m/s, 122.4 s/m2, and 0.50 m2. The properties of the two deterioration reaches are shown in Figure 6
as well. The outflow node N17 was considered to be the transient operation and data collection point
for pipe network B. The Δt was also selected to be 0.01 s. Thus, the initial Δx was also considered to be
10 m for the intact pipe reach and was further altered with different wave speeds in the deterioration
reach. Because the WDN scale was large and complicated, the transient wave may have taken more
time to arrive at the fault points/parts. The total simulation time increased to 60 s. A total of 6001 data
points should be collected and used in a complete simulation. Two different cases with different data
collection issues were considered to test the reliability of the proposed approach for fault detection in
a large-scale WDN. NP was chosen to be 50, and Miter was updated to 20,000 for possible enormous
iterations. The transient excitation period was chosen as 5 or 10 s for the simulation of the complete
closure of the valve.

5.2. Case Description and Error Criteria

Three cases were selected to test the capability of PEOS in fault detection in a complex pipe
network such as pipe network B, considering the effects of limited observations, measurement errors,
and inappropriate transient operation. Case 1 used less data, with a low frequency of 0.1 s (i.e., 10%
of the original sampling frequency) to represent instrument limitations in the field survey, and thus
601 data points were collected and used in the simulation of case 1. In case 2, measurement errors
were added to the 601 low-frequency data points to depict the uncertainty in data collection. Notice
that the white noise ε was normally distributed, with a zero mean and a standard deviation of 0.01
m, which was generated as a random measurement error that was added to each data point in case 2.
The observation heads with errors were defined as

Ho
εi j = Ho

ij + ε. (15)

Case 3 was designed under the same sampling frequency as case 1, but the transient operation
time was extended to 10 s to address the effects of an inappropriate transient operation. There were
601 data points collected after 10 s of transient operation that were used in the simulations of case 3.

In order to evaluate the effects of limited observations and measurement errors on the results
predicted by the proposed approach, two error criteria, the standard error of the estimate (SEE) and
mean error (ME), were considered. The SEE is a measure of the accuracy of predictions, defined
as the square root of the sum of squared errors between the observed and predicted heads divided
by the number of degrees of freedom, which equals the number of observed data points minus the
number of unknowns. The criterion ME is the average of the sum of errors between the observed and
simulated heads.
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5.3. Results and Error Analysis

The steady-state hydraulics of pipe network B were predicted by PNSOS in 309 s, and the transient
event was then generated by closing the valve at N17. The transient head distributions for cases 1–3
were therefore measured at N17. Table 8 shows the results of fault detection for cases 1–3. In case 1, the
information about deterioration reaches D1 and D2 was accurately determined with its corresponding
parameters. The locations of three leaks and two blockages were also precisely detected by PEOS. It is
noteworthy that leak L2 at node N22 was isolated by the proposed approach, indicating that PEOS was
capable of handling the case of pipe junction leakage. In case 1, the E between the actual CdLALs/CdBAB
values and the predicted ones was insignificant. Table 9 shows the values of the ME and SEE, which for
case 1 were 3.41 × 10−6 m and 1.27 × 10−4 m, respectively. The results denote that the predicted heads
were not affected by the use of limited observations. The results for case 1 and the small ME and SEE
values indicate that PEOS had the potential to deliver moderately good results in a field survey even
when only a few observations were available. The success of using fewer measurements indicates that
PEOS may not be restricted by instrument limitations. In addition, the data measurement period can
therefore be reduced, and the system impact due to a transient event may be slight while using PEOS.

Table 8 shows that PEOS provided relatively good results for deterioration detection in case 2.
The locations of the deterioration segments, determined at 390 m for P62 and 610 m for P67, deviated
slightly from the actual ones, which were instead located at 400 m for P62 and 600 m for P67. The lengths
of D1 and D2 were accurately determined. The impedances for D1 and D2 were respectively estimated
as 162.0 and 121.5 s/m2, with corresponding wave speeds of 794.3 and 595.8 m/s. For leak and blockage
detection in case 2, the predicted locations of three leaks and two blockages were close to the real
locations, implying that the measurement errors may not have affected location detection. There were
errors in the predictions of CdLAL and CdBAB in case 2. The relative differences between the predicted
CdLAL values and the actual ones were about 6%, 2%, and 5.83% for L1, L2, and L3, respectively.
The relative differences between the determined CdBAB values and the real ones were about 5.25% for
B1 and 4.17% for B2. The results showed that the predicted CdLAL values and CdBAB may have been
more sensitive than location to measurement errors. This was due to the fact that the OFVs used in
PEOS for fault detection were directly related to the head difference (i.e., Equation (14)), which may
have been directly influenced by the change in leak area and blockage area. The MEs and SEEs for
case 2 are listed in Table 9 and were respectively 1.73 × 10−4 m and 6.35 × 10−2 m, which were both two
orders larger than those of case 1. Such a result indicates that measurement errors may have affected
accuracy in determining the leak area and blockage area. Thus, data uncertainty should be of concern
as an important issue in fault detection in a large-scale pipe network or in future field applications.

In case 3, leaks, blockages, and deterioration segments were also accurately determined by PEOS,
with its associated parameters listed in Table 8. The locations of various faults were precisely detected
by PEOS. The sizes of leaks and blockages were slightly overestimated compared to case 1, with the
largest relative difference, 2.5%, for L3. The values for the ME and SEE for case 3 were respectively
3.29 × 10−6 m and 1.12 × 10−4 m, as shown in Table 9. The results indicate that the predicted heads
were not affected, while the transient operation was inadequate. Note that the concept of ITA is to
minimize errors between the measured and calculated system state variables. Measurements with an
unsuitable transient operation still work well based on the objective function of ITA. The results of case
3 reveal that PEOS can provide good predictions when using different transient operation durations.
However, a rapid transient operation is recommended, because it produces large system response data,
thus improving the performance of the ITA [31].
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6. Conclusions

This paper demonstrates an inverse transient-based heuristic optimization approach called PEOS
for pipe examination in a pipeline or pipe network system. The application of PEOS was verified
by two experimental RPV systems in the literature, and PEOS was further applied to identify fault
information in synthetic pipe networks. PEOS was used to detect faults in an experimental pipeline
(carried out at Imperial College London) and in a pipeline at the Water Engineering Laboratory at
the University of Perugia. The head distributions predicted by PEOS agreed well with those from
the experiments reported in the literature. The leak and blockage information in both systems was
accurately determined by the proposed approach. The results indicated that PEOS provided good
predictions in fault detection in a real pipeline system.

The proposed approach was further compared to three evolutionary-based algorithms in fault
detection in a synthetic benchmark pipe network. Temporal head distribution and fault information
were accurately predicted by PEOS and agreed well with the actual ones, even when using only 10
initial input organisms. PEOS on average took about 50.6 min and 1382 iterations to obtain the optimal
results, which is significantly faster than other algorithms. The results indicated that the OOA made the
proposed approach avoid most unnecessary calculations of incorrect solutions and quickly converge to
the optimal result via three states of SOS. In other words, PEOS not only provided predictions with
better accuracy and robustness, but also performed better at computational efficiency. The proposed
approach with these two advantages obviously outperformed other algorithms.

To illustrate the applicability of PEOS in fault detection in real-world problems, a large-scale
WDN with three data collection statuses was considered as a field study to represent practical issues.
The results indicated that PEOS performed well in solving the fault detection problem, considering
the effects of limited observations and measurement errors in a complicated WDN. The effect of
limited observations on the estimated result was not significant, but the measurement errors induced
some inaccuracy. When the observations contained measurement errors, the predicted CdLAL and
CdBAB had slight deviations compared to the actual ones, indicating that PEOS could achieve good
results if the measurements were well collected. Moreover, the results revealed that inappropriate
transient operation may not have affected the performance of PEOS in predicting head distribution
and fault information.

In summary, we demonstrated via the simulations that PEOS has the ability to simultaneously
detect various faults in a pipeline and pipe networks and can outperform other existing
evolutionary-based algorithms. Another superiority of PEOS over competing algorithms is the
small number of parameters that must be tuned. Fault information can be precisely predicted even
when observations are collected with issues. The cases presented in this study were for relatively
simple pipe system configurations and operations. Extending the current work from numerical
simulations to solving the problems of real-world complicated WDNs would be an interesting direction
for further research.

Supplementary Materials: The details of the SOS algorithm are available online at http://www.mdpi.com/2073-
4441/11/6/1154/s1.
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Abstract: The control of pressure at a remote critical node using a pressure control valve is a
highly effective way to attain pressure management. To perform real-time control, various kinds
of controllers can be used, including flow-dependent controllers. These controllers calculate valve
setting adjustment based both on the deviation of the pressure from the set-point and on the flow rate
at the valve site. After putting all the flow-dependent controllers present in the scientific literature
within the same framework, this paper presents a numerical comparison of their performance
under realistic conditions of stochastic demand. Two controllers were selected for the comparison,
namely the simple LCF (parameter-less proportional controller with known constant pressure control
valve flow); and LVF (parameter-less controller with known variable pressure control valve flow),
which uses a flow rate forecast. Indeed, this study considered an upgrade of LVF, in which the flow
rate forecast was tailored to the conditions of stochastic demand. The application in a specific example
network proved the performance of these controllers to be quite similar, although LCF was preferable
due to its simple structure. For LCF, the average pressure at the critical node had a clear relationship to
the consumption pattern. LVF outperformed when the hourly variation dominates the fluctuations in
the flow. The conditions under which this out-performance occurred are comprehensively discussed.

Keywords: hydraulic modelling; pressure control valve; pressure management; remote real-time
control; stochastic consumption; water distribution system

1. Introduction

Decreased pressure reduces water leakage from pipes, lowers pipe burst frequency and may
reduce water consumption [1]. The device that is by far the most widely used to reduce pressure in a
water distribution system (WDS) is a pressure control valve (PCV): commonly a pressure reducing
valve (PRV) [2,3].

A closed-loop technique uses measurements in the WDS, while an open-loop technique does not.
Earlier advanced pressure management techniques, with the first being the simplest, include: (1) time
modulation (open-loop) [1]; (2) flow modulation (closed-loop) [4,5]; and (3) remote node modulation,
which is not real-time (closed-loop) [6]. These earlier techniques reduce the pressure better than a
classical PCV with no controller, but do not reduce the pressure as low as possible.

A WDS node where the pressure is sensitive to PCV adjustment, and whenever possible, also has
the lowest pressure, is called a critical node (CN) [7]. To keep the pressure at the CN continually
constant [8], the PCV setting must be changed in real-time, i.e., not manually, intermittently or only
at specific times. This is usually accomplished by adjusting the setting every time-step, where the
time-step is typically of the order of minutes [7].

Water 2019, 11, 422; doi:10.3390/w11030422 www.mdpi.com/journal/water217
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The remote real-time control (RRTC) technique strives to make the pressure throughout the WDS
as low as possible [9,10], by attempting to set the pressure at a remote CN in real-time to a low and
constant target set-point value [11,12]. This is made possible by recent advances in the availability of
wireless technology [13–15].

A laboratory experiment demonstrated how RRTC with a PRV can be attained by use of a
controller [16]. An example of a field demonstration is the one in the district of Benevento, Italy [10].

The controllers in [7,17,18] only use the pressure measurement at the CN. Controllers that also
use the flow rate through the PCV, taking changes in WDS conditions into account, were subsequently
developed [19–23]. The water flow rate in a pipe equipped with the PCV needs to be measured.

Consumption in a real WDS is stochastic in nature. Recently, several numerical RRTC
studies take this into account: either approximating it as random fluctuations [18], or using a
comprehensive bottom-up approach [22,23]. This paper reports numerical results on two closely related
flow-dependent PCV controllers in the latter approach. One of these was formulated and studied for
the first time with stochastic consumption, because this may critically affect the controller’s viability.

2. Head-Loss Controller

In this and the next section, a derivation of various controllers, outlining assumptions made, is
presented. This is done in an effort to bring them all together and to put them in the same rigorous
framework. The aim is to emphasise that the controllers are important from the viewpoint of hydraulic
theory. Particularly, the derivation is within the context of a WDS where there is not significant
time-dependence on a time-scale shorter than the control time-step Tc, or on a time-scale of a few Tc

(see Appendix A).
Let H̃ be the head-loss across the PCV, and H the head at the CN. It can be argued from the

Newton–Raphson numerical method (see Appendix A) that an appropriate controller, called the
“head-loss” controller [21], would calculate the adjusted head-loss

H̃i+1 = H̃i − Si (Hi − Hsp) (1)

from the current head-loss H̃i. Here, Hsp is the target set-point head of the CN; and the notation and
sensitivity Si are defined in Appendix A (see also [24]). The information at iteration i determines the
next iteration i + 1. The iterations are separated by Tc. The value of Si varies for different iterations,
and is impractical to determine for a real-world WDS without a hydraulic model [21]. When the
CN head depends very sensitively on the PCV head-loss, Si = −1 for a PRV. Using this value in
Equation (1) yields the controller employed in [9,11,20].

Equation (1) represents the choice of controller, from the viewpoint of theory [12,19,21,23].
However, the controller evaluates hydraulic quantities at a specific time, and hence is not sensible for
quantities that exhibit significant time-dependence.

3. Controllers Based on Known PCV Flow Rate

A PCV is conventionally modelled by [17,19,20]:

H̃ =
ξ

2g
v2 v =

Q
A

(2)

where ξ is the (dimension-less) PCV head-loss coefficient, v is the water velocity, Q is the flow rate
through the PCV, A is the area of the port opening within the PCV, and g is the acceleration due to
gravity. Substituting Equation (2) into Equation (1) implies that the adjusted head-loss coefficient can
be calculated as

ξi+1 = ξi

(
vi

vi+1

)2
− 2gSi

v2
i+1

(Hi − Hsp) (3)
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from the current head-loss coefficient ξi. Equation (3) can be used as the very general form of a
controller, as conceived in [23] for Si = −1. It is called the “general parameter-less controller with
known variable PCV flow” (GVF). It is parameter-less, because it contains no tunable parameter.
Specifically, Si is not tunable.

The right hand side of Equation (3) is separated into two parts. The first part does not involve the
future (does not depend on vi+1), and is important because it does not require modelling the future.
The second part is the remainder (denoted by Φ and Ψ). Separating Equation (3) into these parts yields

ξi+1 = ξi − 2gSi

v2
i

(Hi − Hsp) + Φi + Ψi (4)

where
Φi = −ξi fi Ψi =

2gSi

v2
i

fi (Hi − Hsp) fi = 1 − 1(
1 + Δvi

vi

)2 (5)

with Δvi ≡ vi+1 − vi. All dependence on the future in the remainder part is through the dimensionless
fi, and hence through Δvi, which needs to be modelled.

Neglecting Δvi leads to a controller with

Φi ≈ 0 Ψi ≈ 0 (6)

Equations (4) and (6) define the “parameter-less proportional controller with known constant
PCV flow” (LCF) [21]. With Si = −1, it is first derived in [19]; and is also called “valve resistance”
(RES) control [11,20].

Another controller can be obtained by only keeping the dominant terms in Φ and Ψ, which are
linear and up to first order in the difference terms. fi is proportional to Δvi. Hence, Ψi is the only term
in Equation (4) that is proportional to two difference terms (Δvi and Hi − Hsp) and can accordingly be
neglected. fi can be evaluated to lowest order in the difference term Δvi, leading to a controller with

Φi ≈ −2ξi
vi

Δvi Ψi ≈ 0 (7)

Equations (4) and (7) define the “parameter-less controller with known variable PCV flow” (LVF),
first derived in [21].

4. Modification of Controllers: Stochastic Consumption

In a real WDS, there is usually significant time-dependent behaviour due to stochastic water
consumption. For this situation, the controllers need to be modified, so that a hydraulic quantity
evaluated at a specific time is postulated to be replaced by an average. Let Z(ti−n, ti) be the average
of Z in the time interval from ti−n = ti − nTc to ti. Then, it is natural to define the controllers in
Equations (3)–(7) to be used with Hi and vi replaced by H(ti−1, ti) and v(ti−1, ti), respectively, as done
in [11,22] for the LCF controller with Si = −1. Similarly, Si is replaced by S(ti−1, ti).

The future change Δvi can be modelled by estimating it from the past. Since Δvi is a velocity
change in an interval Tc, it is proposed that it should be replaced in Equation (7) by

v(ti−n, ti)− v(ti−2n, ti−n)

n
(8)

Hence, n is an indicator of how far back the past mean values are used to predict the future.
For each n, the corresponding LVF controller is denoted LVFn.
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5. Numerical Study in the Example WDS

Controllers LCF and LVF were applied to the RRTC of a network in northern Italy (see skeletonised
layout in Figure 1), which caters to about 30,000 inhabitants. This network has already been used for
investigations in the area of pressure management [19,22,25].

Figure 1. Example water distribution system.

The network consists of a single source node (node 27), although networks with more sources
could also be considered. There are 26 demanding nodes with ground elevation of 0 m a.s.l. and
32 pipes. The network can be considered as a single pressure zone, because of its size and the uniform
ground elevation.

The references above give further details about the characteristics of the network. The source
node has a head varying around 40 m a.s.l. [22]. A single DN300 plunger valve is the PRV, located at
the end of pipe 26-11. The PRV has the head-loss coefficient ξ(α) given by

ξ = 10c1−c2 log10(1−α) (9)

where data from the valve manufacturer allow the coefficients c1 = 1.5 and c2 = 2.8 to be calculated.
The setting α is adjusted by the controller; and is constrained to range from 0 (completely open) to 0.95
(nearly completely closed). The maximum value α = 0.95 was chosen consistent with the real use of
control valves, the objective of which is to modulate flow, rather than to interrupt it. However, it must be
noted that this upper boundary does not affect the results of the simulations, as shown below.

The lowest pressure values during the day are found at node 1, which was hence selected as the
CN where pressure control was applied. The RRTC of the PCV was performed to enable the pressure
head at the CN to be near the target set-point head of Hsp = 25 m.

The bottom-up approach detailed in [22,25] was used to obtain the consumption for each node.
This approach is based on consumption pulse generation through the Poisson model [26], considering
pulse duration and intensity to be dependent random variables, both of which are expressed through
the beta distribution. The pulse arrival rate at each node was calculated to obtain the expected average
nodal demand, while considering the pattern of total demand observed in the WDS in a single day.
More details of the bottom-up approach for demand generation are presented in [22], along with the
parameter values used for demand generation.

To describe the hydraulics of the WDS, the model described in [22] was used. This model enables
the unsteady flow modelling of the WDS and the accurate reproduction of the hydraulic behaviour
of the valve. Compared to other software available in the market, this proprietary model has the
advantage of considering unsteady flow pipe resistances, thus yielding more realistic results.
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6. Results

Since preliminary investigations proved that Si = −1 gave good results, this value was kept
throughout all the calculations. As an example of the results, Figure 2 reports calculations over a day
for LCF with Tc = 3 min. The instantaneous and averaged flow-rate Qav through the PCV, valve setting
and instantaneous pressure at the CN are shown. As for the flow-rates, these values include the WDS
pulsed demand [22] (Figure 4) and leakage, which added up on average to approximately 20% of the
total output from the source. As for the valve setting, it must be noted that it always stayed far from
the lower and upper boundaries, attesting to the proper regulation behaviour of the valve.

(a)

(b)

(c)

Figure 2. (a) Flow-rate Q every second and its value Qav averaged over 3 min; (b) valve setting α

(evaluated every 3 min); and (c) ressure head H every second.
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The LVF controller models the future from the past. All LVFn controllers that use velocities
for a period 2nTc ≤ 42 min into the past were investigated. A different method from Equation (8),
which uses a regression fit of past Qav values to predict the future flow, has also been proposed [23].

Let |e|mean and emean denote the average of |H − Hsp| and H − Hsp, respectively, where H is
evaluated every second. These two performance measures determine the deviation of the pressure at
the CN from the target set-point. In accordance with [22], the primary measure was |e|mean. In addition,
let the performance measure Σ|Δα| be the sum of the actuator setting absolute corrections evaluated
at each iteration. This is a measurement of the wear and tear on the PCV due to setting changes.
Performance is the best when the performance measures are as low as possible.

Undesirable behaviour due to PRV self-interactions was observed for Tc ≤ 1 min [22], thus Tc =

3, 5 and 10 min were considered. Of the time-steps studied, Tc = 3 min gave the lowest |e|mean for both
LCF and LVF. The results for the full 24-h period with this time-step are now discussed.

For LVFn, |e|mean and Σ|Δα| decreased monotonically as n increased (Figure 3). Evidently,
decreases became insignificant nearing n = 7. It was also found that this monotonic decrease happened
in each individual hourly period. The best performing LVFn was hence LVF7, which uses velocities
for a period 42 min into the past. However, |e|mean and Σ|Δα| were perfectly reasonable for LVF3, if a
controller looking less into the past were desired.

(a)

(b)

Figure 3. Results for LVFn with Tc = 3 min over one day: (a) |e|mean; and (b) Σ|Δα|. For n = 1, 2, the
values are out of range at 11.1 and 7.4, respectively.
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For the day, |e|mean(LVF)−|e|mean(LCF) = 0.016 m, thus LCF outperformed insignificantly.
Evaluating a similar difference for Σ|Δα|, it was found that LCF outperformed LVF7 by a tiny 0.85%.

It is interesting to determine the variation of the pressure deviation during the day. Comparison
with the consumption pattern can more easily be done by evaluating hourly averages, in order to
reduce the effect of stochastic fluctuation in consumption. In Figure 4, |e|mean is shown as a function of
time. It is noticeable that the results for LCF and LVF7 are very similar at a certain time, and that there
is apparently random variation from hour to hour. This suggests that |e|mean has significant stochastic
fluctuation. On the other hand, emean as a function of time shows clear patterns (especially for LCF),
and appears to be less dependent on stochastic fluctuation (Figure 5a).

Figure 4. |e|mean evaluated during an hour period preceding the time of the datum shown Tc = 3 min.

(a)

Figure 5. Cont.
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(b)

Figure 5. emean evaluated during an hour period preceding the time of the datum shown (Tc = 3 min):
(a) emean; and (b) out-performance of LVF7 over LCF, defined using emean. Out-performance is positive
if the emean of LVF7 is nearer to 0 than the emean of LCF.

Assume that the flow rate through the PCV in Figure 2a is fitted by a smoothly varying Qtrend,
which indicates the trend in the flow rate (the hourly variation). The results for LCF in Figure 5a have
an interesting pattern. Qtrend increased noticeably during 5–8 h and 17–20 h. Accordingly, emean was
negative for the points in Figure 5a representing these hours. In addition, the deviation of emean from
zero was largest for the period 6–7 h when the rate of change of flow was the largest of the entire day.
The flow decreased noticeably during 0–1 h and 20–24 h. Fittingly, emean was positive for the points in
Figure 5a representing these hours.

All of these observations for LCF were consistent with a related study predicting that the
deviation of the pressure is approximately proportional to −Q′/Q in the context of non-stochastic
consumption [27], where Q′ is the rate of change of Q.

For non-stochastic consumption, numerical results for LCF were previously pointed out to suggest
that the deviation is driven by −Q′ [21]. This can be confirmed by Figures 7, 10, 12 and 13 of [11],
and in the pressure shown in Figure 7 (7-RES) [12]. For stochastic consumption, this behaviour can
also be seen in Figure 7b of [22].

Figure 5a shows that LVF7 was less prone than LCF to deviate significantly from the target
set-point pressure. Figure 5b indicates that LVF7 substantially outperformed LCF during Hours 5–8.
This coincided with the hours when Qtrend changed the most quickly. In addition, during the second
fastest flow change during 20–24 h, LVF7 outperformed LCF.

The sum of the out-performance amounts for each hour in Figure 5b was 0.028 m. Hence, with the
performance measure emean, LVF7 outperformed LCF insignificantly over the day. Taking into account
the results from all three performance measures, it is fair to say that the performance of LVF7 was the
same as LCF over the entire day.

7. Discussion

Water consumption shows stochastic fluctuation in a real WDS. There are also unsteady flow
processes that can cause sudden variations in flow and pressure [4,5,28]. For RRTC, the effect on a
proportional-integral controller of adding random consumption fluctuation at each time-step Tc to
smooth water consumption is initially studied in [18]. The bottom-up approach used in this work
incorporates both fully stochastic consumption fluctuation and unsteady flow processes.
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From the viewpoint of the derivation of the controllers, LVF should at first glance be an
improvement on LCF. However, LVF depends on a future change Δvi, which can only be modelled by
estimating it from the past [11]. The way to decrease the effect of stochastic fluctuation in consumption
is to estimate Δvi by looking far into the past (Figure 3). However, relying on the far past is undesirable,
as shown by the case of no fluctuation. (Assuming Q is a smooth function of time, estimating Δvi
from the most recent past velocities should be the most accurate). Hence, the larger is the fluctuation,
the greater is the performance of LVF weakened.

The performance of LVF relative to LCF depends on a large number of factors. For a given WDS,
these were argued to include |Q′

trend| at a certain time. It is postulated that this is to be compared
to the magnitude of the average fluctuation at a certain time. The following study indicates what
happens if |Q′

trend| dominates the fluctuations. For non-stochastic consumption, LVF1 was found to
strongly outperform LCF at almost all times in two WDSs (Figures 3, 5 and 6 of [27]). In another study,
a controller that uses future flow forecasting (LCb [23]) shows a clear advantage above the case when
the future forecasting is neglected (LCa), when the fluctuations in consumption are small compared to
its hourly variation. The advantage is obtained for a flow rate that has smaller fluctuations and much
larger hourly variation than in Figure 2a.

In the current study for Tc = 3 min, it was found that LVF7 outperformed LCF when |Q′
trend| was

large at a certain time. On the other hand, LVF7 and LCF performed the same during the entire day,
for the assumed consumption pattern. However, it is expected that LVFn can outperform over the
entire day (for some n) when there are more hours when |Q′

trend| dominates the fluctuations, or there
are hours when |Q′

trend| strongly dominates the fluctuations.

8. Conclusions

Of the three time-steps considered, 3 min was used because it gave the best performance for the
example network and consumption. Extensive care was taken to construct this realistic example,
for which the flow-dependent LCF and LVF7 controllers were found to have the same overall
performance. However, since LVF7 was more complicated, LCF Was preferable, and should be
considered as the controller of choice.

The performance of the LVF controller relative to LCF is expected to be better when:

1. The magnitude of the average stochastic fluctuation in consumption decreases.
2. There are many hours with a sizeable magnitude of the rate of change of the flow rate through

the valve |Q′
trend|.

3. There are hours with a large |Q′
trend|.

Unless the factors listed above are particularly favourable, the flow-dependent controller,
which does not require modelling the future (LCF here), is an adequate choice with stochastic
consumption, even though it may not perform as well as the controller that requires modelling
the future (LVF here). This remains true even in the case where it is preferable or necessary to replace
the sensitivity with a dimension-less tunable parameter [23].

Further research can address ways to improve controllers that model the future.
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Appendix A. Notation and Derivation of Head-Loss Controller

Let tc i be a time period which differs from iteration to iteration; and tc i < Tc. At time ti, the PCV
head-loss, velocity, flow rate and head-loss coefficient are, respectively, H̃i, vi, Qi and ξi; and the head
at the CN is Hi. For all quantities X listed here, except ξ, Xi is defined as the quantity X(t) evaluated at
t = ti. The PCV adjustment process commences soon after time ti, and continues until time ti + tc i,
when the PCV is completely adjusted to the new coefficient ξi+1. At time ti+1 ≡ ti + Tc, the coefficient
is still ξi+1; and the head-loss, velocity and flow are denoted by H̃i+1, vi+1 and Qi+1, respectively.

The Newton–Raphson numerical method has as its goal to find z such that f (z) = 0, i.e., find the
root of a function of one variable. z is found by the iteration [29]

zi+1 = zi − f (zi)

f ′(zi)
(A1)

For the sake of argument, assume a WDS with no time-dependence, with only changes in H̃
allowed. Identifying z with H̃ and defining f (H̃) = H(H̃)− Hsp means the goal is to find H̃ such
that H(H̃) = Hsp, as required [30]. Applying Equation (A1) leads to Equation (1). At this point, i is
simply an iteration variable, with no notion of time attached to it. For the method to be applicable, f ,
and hence H, must be a continuous and differentiable function of H̃. The iteration i can be chosen to
refer to time ti, because the WDS has no time-dependence. Particularly, the sensitivity

1
Si

≡ dH
dH̃

(A2)

is evaluated at time ti.
In a general WDS with time-dependence, a head-loss controller can then be postulated (not

derived) by applying Equation (1) even when there is time-dependence. The more there is
time-dependence from one iteration to the next, over a few iterations, the less reliable the head-loss
controller is expected to be. Such situations are when there is significant time-dependence on a
time-scale shorter than Tc, or on a time-scale of a few Tc.
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Abstract: Critical infrastructure systems are evolving from isolated bespoke systems to those that
use general-purpose computing hosts, IoT sensors, edge computing, wireless networks and artificial
intelligence. Although this move improves sensing and control capacity and gives better integration
with business requirements, it also increases the scope for attack from malicious entities that intend
to conduct industrial espionage and sabotage against these systems. In this paper, we review the
state of the cyber-security research that is focused on improving the security of the water supply and
wastewater collection and treatment systems that form part of the critical national infrastructure. We
cover the publication statistics of the research in this area, the aspects of security being addressed,
and future work required to achieve better cyber-security for water systems.

Keywords: smart water systems; cyber–physical security; cyber-security; cyber–physical attacks

1. Introduction

Water is becoming scarcer. According to the United Nations World Water Development
Report published in 2018 [1], nearly half the world’s population, around 3.6 billion people,
face water-scarcity for at least one month per year, and it is expected that over 5 billion
people will suffer some water shortage by 2050. The World Bank estimates that around
45 million cubic meters of water are lost each day in developing countries, costing over
US$3 billion per year [2]. This loss is mainly due to inefficient infrastructure, ageing
infrastructure that leaks, and non-revenue water due to lack of billing or inaccuracies in
costing such as metering issues [2]. It affects both developed and developing countries.
In England and Wales 2954 million litres of water are leaked each day from distribution
networks and supply pipes [3].

Climate change, water pollution, increasing urbanisation and population growth,
ageing and inefficient infrastructure, compliance with tighter regulation and water quality
standards are some of the challenges faced by water sector in seeking to maintain their
services. To resolve these challenges, water and wastewater providers are moving towards
smart water systems [4–6] that are reliable, efficient and that support real-time decision-
making. This is particularly true in the UK, where the UK government has established
strategic priorities for the period from 2020 to 2025 aimed at securing long-term resilience
in the water industry; these are supported by major investments by water companies and
providers [7,8].

Water systems are a type of cyber–physical system (CPS) that integrate computa-
tional and physical capabilities to control and monitor physical processes. In the past,
water system security was achieved largely through isolation, limiting access to control
components. However, with the emergence of IoT, water systems, as with other critical
infrastructure services, are increasingly using a smart systems philosophy. This promotes

Water 2021, 13, 81. https://doi.org/10.3390/w13010081 https://www.mdpi.com/journal/water
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the incorporation of IoT and analytics into industrial control systems (ICS) to improve
the sensing and control capacity and ensure better integration with business processes.
Collectively, this is known as the Industrial Internet of Things (IIoT), often labelled Industry
4.0, in which IoT is applied to industrial applications. It relies on connecting multiple
layers of cyber–physical systems to facilitate autonomous decentralised decision-making
and to improve the use of real-time data and predictive analytics to promote reliability,
efficiency and productivity. With these technological advances, water systems that collect,
treat, transport and distribute water to customers are undergoing a similar transformation,
becoming highly connected and facing new technological challenges in the drive to provide
safe water reliably.

ICS deployment often follows a hierarchical architectural approach that is sometimes
characterised using the Purdue reference model [9], as shown in Figure 1. This spans
multiple layers, encompassing the variety of equipment and communication protocols and
the range of goals and complexity that are likely to be found in these environments [9].

Level 5, the enterprise network, is the level at which business decisions are made,
and in which the regular corporate systems (enterprise desktops and servers) operate.
At Level 4, the site business planning and logistics applications and systems are found.
At Level 3, the operations network, operations management systems such as domain
controllers, data collection servers (historians) and application servers are found. Level 2,
supervisory control, consists of devices that monitor and control the process at the lower
levels. Typically, these consist of supervisory interfaces for the operators, engineering
workstations, and distributed control servers that monitor and control various parts of
production. At Level 1, controllers monitor and control a set of devices autonomously
and/or based on decisions that come from the supervisory system. They receive inputs
from instrumentation equipment (e.g., field devices) such as sensors, and send output sig-
nals to other devices (actuators). Level 0 is where the actual process takes place, containing
the sensors and actuators connected via a fieldbus network.

Figure 1. Purdue reference model with SWAN layers.
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According to the Smart Water Networks Forum (SWAN) [10], a global non-profit
hub consisting of international water companies, academics, regulators, and other water
experts, smart water networks are the “entire system of data technologies connected to or
serving the water distribution network [and] it is informative to separate its components
into layers.” These layers [10] are similar to those found in Purdue reference model,
as indicated in Figure 1:

• Level 1: Physical layer is composed of physical devices that provide the distribution
and delivery of water services. This includes pipes, pumps, valves, reservoirs and
endpoints for delivering water.

• Level 2: Sensing and control layer is composed of equipment and sensors responsi-
ble for gathering measurements for monitoring and controlling water delivery and
distribution; and remote-controlled actuators to remotely operate water networks.

• Level 3: Collection and communications layer provides the data collection, transmis-
sion, and storage between layer 2 and level 4 where the instructions for sensors and
actuators are computed. All network protocols used for data transfer are found in
this layer.

• Level 4: Data management and display layer is responsible for gathering and manag-
ing data from different sources. Supervisory control and data acquisition (SCADA)
systems, control systems, visualisation systems and tools such as human-machine
interface (HMI), data storage repositories and control systems are found in this layer.
This is where decisions taken by upper layers are interpreted into control and other
commands such as settings for devices at lower layers.

• Level 5: The data fusion and analysis layer is where raw data is processed into
information and where the “smart” emerging technologies are deployed. These
include modelling and optimisation systems, network infrastructure monitoring,
and other supporting and decision support systems for managing water networks.

The adoption of network communication, the increasing use of commercial-off-the-
shelf (COTS) components and the deployment of wireless systems in Purdue and SWAN
architecture layers bring new security challenges as they have the potential to expose
water systems to a wide variety of adversaries. The number of reported attacks targeting
cyber–physical systems that are critical for national infrastructure services has been on
the increase and, as the evidence from successful attacks such as Stuxnet [11], DuQu [12],
BlackEnergy [13] and Havex [14] shows, such attacks can have catastrophic consequences.
The criticality of water to human life and the ecosystem means that water systems are an
obvious target for political, military and terrorist actors [15,16].

Table 1 reports some of the incidents against water infrastructure services that have
been made public. These indicate the potential for successful attacks to exploit a wide
variety of vulnerabilities and so cause both direct disruption of services and damage
to control equipment and communication networks that, in turn, may affect essential
services. The broader impacts of such attacks lie in the health of both the public and
the ecosystem, as well as in financial and reputational losses for the companies affected.
Hassanzadeh et al. [17] report a review of 15 water incidents, including some of the attacks
summarised in Table 1. A widely referenced source for cyber-security incidents in the water
sector is the work carried out by Industrial Control Systems Cyber Emergency Response
Team (ICS-CERT) in the United States. This tells us that, in 2015, the US Department of
Homeland Security (DHS) recorded 25 cyber-security incidents from the water sector [18].
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Table 1. Past attacks on water systems.

Reference Year Target Attribution Infection Vector Details Impact

Israel’s water
system [19] 2020 OP Hacktivist/ Nation

state Unknown

Israeli government
reported cyber-attacks
against water supply and
treatment facilities and
urged these facilities to
change passwords.

Unknown.

Northern Colorado [20] 2019 OP Cybercrime Ransomware Locked access to technical
and engineering data.

Disruption, took about
three weeks to unlock
data.

Cryptojacking [21] 2018 OP Cybercrime Cryptocurrency
mining

Cryptocurrency malware
installed on HMI on the
SCADA network.

Unknown.

Kemuri water [22] 2016 OP Hacktivist Remote access
Accessed PLC responsible
for controlling water
treatment chemicals.

Engineers were able to
identify and reverse the
changes made to process
control parameters.

Bowman Avenue
Dam [23,24] 2016 OP Hackers/ Nation state Remote access

According to US
authorities, hackers linked
to Iranian Armed Forces
infiltrated ICS of Bowman
Avenue Dam and accessed
the SCADA for the dam.

Data exfiltration and
over $30k on
remediation costs.
Physical damage was
not possible due to
disconnected sluice
gates.

Florida Wastewater [25] 2012 IT Ex-Employee Remote access
Stolen login credentials
were used to access
district’s computer system.

Deleting and modifying
information.
Ex-employee was
arrested on account of
computer crime.

Tehama-Colusa
Canal [26] 2007 OP Ex-employee Physical access

Installed malware on
SCADA system
responsible for controlling
agricultural irrigation [26].

Damage to equipment,
and additional unknown
amount of monetary loss
due to replacing
production.

Harrisburg water
plant [27] 2006 IT Hackers Remote Access

Compromised and
installed malware on an
employee’s laptop which
could have been used as an
entry point to reach water
treatment system.

Unknown.

Maroochy Shire [28,29] 2000 OP Ex-employee of a
contractor Physical access

Masqueraded as a
controller using stolen
equipment and sent fake
commands to the pumping
station.

Approximately 800,000
litres of sewage was
released into the
environment, harming
local parks and rivers,
impacting public health,
killing marine life,
and caused large
monetary loss.

Cyber-attacks against infrastructure services are often not made public and attribution
of these incidents can be a complex and uncertain process, requiring well-developed
skills and capabilities [30] to identify the actors. Nevertheless, publicly reported incidents
show that the sources of cyber-attacks against water systems appear to include a wide
variety of actors. These include hacktivists who perform cyber-attacks often based on a
political ideology; disgruntled former employees seeking revenge; cybercriminal networks
motivated by monetary gain; and hacker hobbyists who attack for fun, curiosity, or the
desire for recognition [31]. Other potential adversaries include nation-state-sponsored
attacks for political gain and industrial espionage; rival organisations or companies seeking
business advantage; terrorist groups attacking national security; and insiders motivated by
problems at work, political or monetary gain, fear/coercion or just for the thrill or fun.

The current history of incidents suggests that the design and performance of advanced
targeted attacks against operational processes (OP) require actors with more than just
IT skills [32]. Until recently, most of the cyber-attacks against cyber–physical processes
were carried out by insiders, with most of the remainder conducted by nation states.
In other words, most attacks have been conducted by those with the knowledge, skills and
resources needed to cause a real physical impact. More recently, however, there has been
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an increasing incidence of cyber-criminals targeting industrial processes, with the aim of
installing ransomware [33].

In this paper, we present a systematic literature review and evaluate the current state
of cyber-security of cyber–physical systems within the water sector, focusing on process
control layers, as the corporate IT layers are primarily affected by security problems covered
by traditional information security. Our aim is to identify what is being done, by whom,
where, how and what aspects of cyber-security are being covered.

The remainder of this paper is structured as follows. Section 2 provides brief overview
of cyber–physical system security. Section 3 describes the research questions and method-
ology used for carrying out the systematic review. Key research findings are reported and
discussed in Section 4. Section 5 highlights the limitations of existing studies and discusses
some direction for future research. Finally, Section 6 concludes the paper.

2. Cyber–Physical Systems

The term “cyber–physical system” (CPS) was first coined by Helen Gill at the Na-
tional Science Foundation (NSF) in 2006 to describe “physical, biological and engineered
systems whose operations are integrated, monitored, and/or controlled by a computa-
tional core” [34]. Since then, CPS have attracted significant research effort, including
initiatives in Industry 4.0, the Internet of Things and the Industrial Internet of Things.
As computer scientist Edward A. Lee points out [35], terms such as the Internet of Things
(IoT), Industry 4.0, the Industrial Internet (II), Machine to Machine (M2M), the Industrial
Internet of Things (IIoT) and other similar terms have been strongly connected with CPS,
and sometimes used interchangeably and sometimes for specific sectors (e.g., Industry 4.0
for manufacturing). However, these terms cover “implementation approaches (e.g., the
“Internet” in IoT) or particular applications (e.g., Industry 4.0)” [35]. CPS are found in a
broad range of sectors including health care and medicine, materials, manufacturing, auto-
motive, aerospace, utilities, chemical, civil infrastructure and transportation [34]. Despite
the differences in interpretation, many industry sectors share common technologies and,
by extension, share similar concerns relating to their security. A common concern for all
these sectors in adopting new enabling technologies for CPS is to ensure security in the
face of cyber-attacks.

2.1. Securing Cyber–Physical Systems

The National Institute of Standards and Technology (NIST) defines cyber-security
as “the process of protecting information by preventing, detecting and responding to
attacks” [36]. The prevention of attacks against information technology systems is defined
in terms of three security goals: confidentiality, integrity and availability, known as the CIA
triad. These goals are also applied to CPS to maintain security.

Confidentiality ensures data or system resources “are not disclosed to unauthorised
individuals, processes, or devices” [37]. The operation of CPS requires, inter alia, data
from instrumentation devices, controllers, supervisory control systems, monitoring and
safety systems. Unauthorised access to this data is potentially useful for preparing and
implementing attacks and for industrial espionage. Integrity deals with “guarding against
improper information modification or destruction, and includes ensuring information non-
repudiation and authenticity” [38]. Violating integrity could interfere with the operation of
CPS and undermine the reliability and safety of the CPS process. Availability deals with
“timely, reliable access to data and information services for authorised entities” [39]. Many
CPS are continuous systems and loss of availability can cause systems to shut down and
interrupt the production process. Usually, integrity and availability are the most important
concern for critical cyber–physical systems [40], but the priority given to each of these
security goals depends on the risks associated with loss of these properties in the context
of a particular system.

Cyber–physical systems have control properties that need to be maintained. These
include stability, observability, controllability, safety and efficiency [41], as well as accuracy,
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responsiveness, rapid disturbance rejection and low control effort. Security attacks aimed
at sabotaging CPS involve the manipulation of these properties; thus, the maintenance
of these properties, even when the system is under attack, is an essential component of
ensuring the security of CPS.

2.2. Attacks against Cyber–Physical Systems

Figure 2 shows the typical components of a networked CPS. The controller is given
a process reference (Setpoint-SP) as the desired process output to maintain. The sensor
measures the output of the physical process (Measured Process Value-PV) and sends this
over a network to the controller. The controller (for example a PLC) receives these values,
compares the PV against the desired SP reference value, calculates a control command
(Manipulated Variable-MV) and sends this, through the network, to the actuator. The actu-
ator acts on this command and outputs a physical control action that modifies the process.
Attacks against CPS involve attacking components of CPS to achieve either data exfiltration,
which involves gathering sensitive information about the CPS, or sabotage, which involves
disrupting the process.

Adversaries use a range of tools to carry out attacks against elements of Figure 2.
These include attacks that compromise sensors, actuators and controllers to modify their
settings or configurations so that incorrect signals are sent to relevant components; for
example, incorrect control commands from controller to actuator or incorrect PVs from
sensor to controller. Attacks can be carried out against the network: modifying the data in
transit (replaying old data, dropping data, injecting false data); denying or delaying the
flow of data (e.g., DoS, jamming attacks); or impersonating another actor (for example IP
and ARP spoofing and communication hijacking). Eavesdropping attacks against networks
can be carried out to gather information related to the operation of CPS, such as identifying
communication protocols, open ports, hosts and applications, and sniffing network traffic.
Physical attacks can be carried out against CPS components, e.g., to modify the location of
devices; change device calibration; install rogue devices on the network; install malware
via portable devices (e.g., USB sticks); cause changes in sensor values by manipulating the
physical environment of the devices; and cause physical damage to devices.

The success of an attack depends on the resources and skills available to adversaries
as well as system vulnerabilities and the absence of appropriate independent layers of
protection designed to prevent mal-operation due to operator error, random equipment
failure or cyber-attack. Vulnerabilities are typically introduced into CPS due to: poor
security design; insecure network communication protocols; insecure backdoors and
holes in the virtual or physical network perimeter; insecure software and hardware; poor
management of security or ineffective policies and inappropriate physical access [40].
To exploit a CPS, a highly motivated adversary with high skills and resources can purchase
zero-day vulnerabilities that are, by definition, not yet public, as seen in the past (e.g.,
Stuxnet [11]).

Figure 2. Typical cyber–physical system.

Adversaries have a wide variety of motivations, and impact goals depend on these
motivations. Potential impacts include process disruption; damage to production, equip-
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ment, safety and the environment; data disclosure; data loss; disruption to assets; injuries
and loss of life; damage to reputation; and financial damage.

2.3. Security Measures for Cyber–Physical Systems

Security mechanisms to protect systems against malicious behaviour can be divided
into three main categories: preventive, reactive and responsive measures. Preventive measures
are security controls implemented to prevent attacks such as authentication; access control;
network segmentation; maintaining confidentiality and integrity of transmitted data and
in storage using cryptographic techniques; patching software vulnerabilities; deploying
usable and effective security management policies that defines roles and procedures for
managing and maintaining security; personnel awareness and training programs to under-
stand threats; and measures for protecting the supply chain [40]. Reactive or detection-based
measures are security controls implemented to identify attacks and anomalous behaviour
such as intrusion/anomaly-based monitoring and detection for process and host; antivirus
and other malware monitoring tools; and safety management systems. After an attack is
detected, response strategies include measures to reduce damage; for example, reconfigur-
ing the network; restricting access to network; systems or devices; deploying designed-in
redundancies; and shutting down the system.

3. Methodology for Systematic Review

Our aim in this paper is to review and gain an understanding of cyber-security re-
search targeted at protecting cyber–physical systems in the water sector, thence to identify
areas that require future research. The Preferred Reporting Items for Systematic Reviews
(PRISMA) [42] guidelines were followed, as illustrated in Figure 3. A set of question
research questions were devised to analyse and evaluate the relevant publications. A set
of electronic databases and a search strategy was designed to identify the publications.
Inclusion and exclusion criteria were used to assess the eligibility of each publication. The el-
igible publications were then manually inspected to extract relevant evidence for analysis.

Figure 3. Systematic literature review process, adapted from [42].

3.1. Research Questions

To identify, classify and evaluate the existing cyber-security work within water sector,
a set of research questions were identified.

• RQ1 How did the number of publications change over the years? To understand the
publication trends over the years, and to understand if the topic is gaining more
research focus with moves towards IIoT and Industry 4.0. Answering this question
might also enable us to see any trends that might have motivated more work from the
research community.

• RQ2 What is the geographic distribution of these studies? To understand by whom and
from where these studies are being conducted. Answering RQ2 will help to determine

235



Water 2021, 13, 81

countries investing the least and most in research in these areas, and why this could
be the case. Security of national infrastructure services such as water often require a
joint effort from academia, governmental bodies and industry.

• RQ3 What is the distribution of academic, governmental and industry studies? To identify the
level of involvement, and the support of government and industry in research studies.
Answering this question will enable assessment of whether relevant government
and industry bodies are participating in these studies. Their involvement is crucial
for these studies, as they are essentially the clients that will deploy and implement
security solutions.

• RQ4 What are the target venues for publishing these studies? To identify publication
venues targeted by these studies. Answering this question will help to identify the
top target venues for publication, and gain some understanding of the maturity and
quality of publications by analysing the rating of the journals and conferences.

• RQ5 Which security aspects are covered in these studies? To understand the security
themes of interest, proposed solutions and focus of these studies. Answering this
question will inform the security problems that are being solved.

• RQ6 Can one classify security aspects in RQ5 further? To see if there are popular areas of
research that can be classified further. If there are popular research aspects, answering
this question could help to compare different approaches.

3.2. Identification of Sources and Search Term

The search strategy for identifying publications was primarily through online databases:
Springer Link, IEEE Xplore, ACM, Science Direct and ASCE library. These are the most
common libraries for publishing conference proceedings and journal publications within
the field of cyber-security in cyber–physical systems. Google Scholar returned articles that
were covered in these databases; however, we also used it to identify relevant publications
that appeared in other databases or venues. The search strings used for the databases were
“water and cyber-security” or “cyber-security”. Table 2 shows the search string for each
database. When a basic search on databases returned many papers, advanced searching was
used to filter irrelevant papers. For example, searching Google Scholar using combinatorial
search keywords such as “water” AND “cyber-security” resulted in a high number of
papers (over 17,900) that were not relevant to this systematic review. Instead, the search was
limited to terms appearing in the title: “water” and “cyber” to identify studies that primarily
focused on cyber-security of water systems. A list of security keywords was also used in
conjunction, to search the databases for relevant publications. These qualifiers included:
water, integrity, confidentiality, availability, integrity, authentication, authorisation, access
control, threat, vulnerabilities, attacks, and detection. However, these failed to capture any
new publications. Searching was limited to publications that had been published from
2000 to 2020.

Table 2. Search string used for each data source.

Source Search String

Springer
where the title contains: Water AND with at
least one of the words: cyber-security OR
cybersecurity

ACM Digital Library [Document Title: water] AND [[Abstract:
cyber-security] OR [Abstract: cybersecurity]]

IEEE Xplore “All Metadata”: water cyber-security

ScienceDirect
Find articles with these terms: cyber-security
OR cybersecurity, title, abstract, keywords:
water

ASCE Library water AND (cyber-security OR cybersecurity)

Google Scholar allintitle: water cyber
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Figure 4 shows the number of publications retrieved from online databases. Duplicates
were removed from this pool of publications and the remaining publications were included
for further review.

To complement online database searching, a manual review of reference lists of eligible
papers and any notable journals (e.g., Water and Environment Journal), conferences (e.g.,
World Environmental and Water Resources Congress) and workshops (e.g., International
Workshop on Cyber–Physical Systems for Smart Water Networks) was carried out to
identify any relevant publications that might have been missed in the database search.

Figure 4. Publication selection process.

3.3. Criteria for Selection of Papers

Selection criteria for identifying publications for systematic review were as follows:

• Must address cyber–physical systems in water.
• Must have a technical content and address cyber-security.
• Must be peer-reviewed and must have appeared in an international journal, conference

or workshop.

Books, book chapters, theses, editorials, feature or opinion pieces, essays, govern-
mental and industry guidelines, other non-peer-reviewed or non-research publications,
non-English publications, and publications appearing in local conferences, workshops or
journals were excluded from the search. Review papers were not included in the analysis,
but their content was analysed in the manual reference search and, where relevant, they
are mentioned.

3.4. Paper Inspection

Online database searching resulted in 888 publications, and details of these were
exported into a CSV file for further processing. After removing any duplicates, the re-
maining peer-reviewed publications published in internationally recognised conferences,
workshops or journals were selected for further inspection. Selection of the eligible list
of publications for analysis was based on inclusion and exclusion criteria by inspecting
title and abstract, and text skimming. As a result, a set of 64 publications was finalised for
analysis to answer the research questions.
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3.5. Extraction of Appropriate Information

To analyse the content of the publications, the reviewed publications were classified
into categories according to application domains, date of publication, number of citations,
publication type, publication venue, affiliation, authors’ countries of affiliation, and security
aspects covered by the publication. Citation numbers for publications retrieved through
online databases were not always accurate, so Google Scholar was used as a cross reference
to retrieve the citation numbers. The data extracted was recorded in an Excel spreadsheet
to facilitate analysis.

4. Analysis of Results

4.1. Publication Trends

Figure 5 shows the application domains of the security studies. The majority of
studies were carried out on drinking water systems: 39 studies focused on security of water
distribution systems (WDS) including water distribution networks; 3 studies included
water supply and distribution systems; and 2 studies focused on water supply systems.
Another 16 studies investigated security of drinking water treatment systems. Only four
studies focused on non-drinking water systems: 3 studies focused on canal automation
systems used for irrigation; and one study covered wastewater systems. There is a clear
imbalance between studies covering water systems designed to provide drinking water
versus those designed for other forms of water.

Figure 5. Application domains.

Figure 6 shows the timeline of publication. The earliest publication found dates from
2004, but most of the research effort (56 papers) was published after 2015. Answering RQ1,
there has been increasing interest in the security of water systems over the years, likely as a
result of the emergence of new resources and corresponding effort that made use of them.

These resources include the deployment of two important testbeds: the Secure Water
Treatment (SWaT) testbed [43] and water distribution testbed (WADI) [44], and associated
datasets [45] at the iTrust Centre for research in cyber-security at Singapore University of
Technology and Design [46], and the BATADAL (BATtle of the Attack Detection Algorithms)
competition organised by iTrust center and their international collaborators [47] to detect
cyber-attacks against water distribution systems (WSD). This corresponds to a period
(post 2016) in which associated open-source attack detection has become more available
and European Commission (EC) projects such as FACIES (online identification of Failure
and Attack on interdependent Critical InfrastructurES) [48] and STOP-IT [49] have been
investigating physical and cyber-security of critical water infrastructures. This trend is
supported by the number of publications per country involved in these projects.
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Figure 6. Number of publications over the years.

Figure 7 shows the distribution of studies per country based on the location of the
authors. If the authors of the publication were located in multiple countries, for example
several authors from Singapore and one author from Israel, both countries were added
to the statistics. Figure 7 provides an answer to RQ2 indicating that most of the existing
research has been carried out by authors in countries that have made investments in this
area: Singapore and their collaborators (Israel, USA) and countries involved in projects
funded by the EC.

Figure 7. Country of publication based on location of authors.

Figure 8 shows the results to answer RQ3. Most of the research has been carried out by
academia (85.1%); 6.8% was based in private organisations that provide security consulting
services; 6.8% is provided by independent or public funded research organisations; and one
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paper (1.4%) was supported by a government agency. Interestingly, we failed to identify
any research papers that were co-written with authors from water companies.

Figure 9 illustrates the distribution of publications based on venue type. Most publi-
cations (54.7%) were published in conferences, 31.2% were published in journals and the
remaining 14.1% were published in workshops. Table 3 shows the publication venues for
these papers. To answer RQ4, the most targeted conference is the World Environmental and
Water Resources Congress with 11 papers published; the remaining conference papers were
published in a wide range of conferences. The International Workshop on Cyber–Physical
Systems for Smart Water Networks, which was established in 2015 and brings together
researchers and engineers working on smart water systems, is the most targeted workshop.
The most popular journal targeted for publishing security-related papers for water systems
is the Journal of Water Resources Planning and Management, published by the American
Society of Civil Engineers since the early 1990s. There was not enough data to reliably
investigate the role of the conference and journal influencing the publication citations.

Figure 8. Affiliation of authors.

Figure 9. Venues for publication.

Figure 10 shows the results for RQ5, the security aspects covered by the publications.
Most of the existing work focuses on detection mechanisms. The availability of datasets
such as SWaT and WADI [45] has encouraged more research in this area. 31 papers
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investigated detection models; 10 papers investigating attacks against water systems and
determining their impact; 9 papers on simulation or testbeds; 5 papers used modelling
approaches for security analysis; 3 papers developed approaches for risk and resilience
management; 2 papers were on datasets; 2 papers covered case studies; 2 papers examined
benchmarking; a single paper addressed the development of a security framework; and
another paper looked at improving security monitoring capabilities for water systems.
In the following sections, we introduce the security aspects covered by the publications
and provide a review.

Figure 10. Security aspects covered by publication.

Table 3. Publication venues.

Type Name Count

conference World Environmental and Water Resources Congress 11
workshop International Workshop on Cyber-Physical Systems for Smart Water Networks 6

journal Journal of Water Resources Planning and Management 5
journal Journal of Environmental Engineering 3

conference IEEE International Conference on Software Quality, Reliability and Security 3
conference International Conference on Critical Information Infrastructures Security 2
conference ACM on Asia Conference on Computer and Communications Security 2

journal IEEE Transactions on Control Systems Technology 2
workshop International Workshop on the Security of Industrial Control Systems and CPS 1
workshop International Workshop on Critical Information Infrastructures Security 1
workshop IEEE/ACM International Workshop on Software Engineering for Smart CPS 1
workshop ACM Workshop on Cyber–Physical Systems Security and Privacy 1

journal Water Resources Management 1
journal Water Research 1
journal Journal of Systems Science and Systems Engineering 1
journal International Journal of Critical Infrastructure Protection 1
journal IEEE Transactions on Dependable and Secure Computing 1
journal IEEE Signal Processing Magazine 1
journal IEEE Design and Test 1
journal Human-centric Computing and Information Services 1
journal Future Internet 1
journal Environmental Modelling and Software 1

conference Pipeline Division Specialty Congress 1
conference International Symposium on Computer Science and Intelligent Control 1
conference International Conference on Technology Trends 1
conference International Conference on Harmony Search Algorithm 1
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Table 3. Cont.

Type Name Count

conference International Conference on Critical Infrastructure Protection 1
conference International Conference on Auditory Display 1
conference IFIP TC 11 International Conference on ICT Systems Security and Privacy Protection 1
conference IFAC Conference on Cyber–Physical and Human Systems 1
conference IEEE/ACM Int’l Conference on Cyber, Physical and Social Computing 1
conference IEEE Pacific Rim International Symposium on Dependable Computing 1
conference IEEE International Symposium on High Assurance Systems Engineering 1
conference IEEE International Conference on Machine Learning and Applications 1
conference IEEE International Conference on Data-Mining Workshops 1
conference IEEE International Conference on Big Data 1
conference ACM international conference on Hybrid systems: Computation and Control 1
conference Annual Computer Security Applications Conference 1

4.2. Classification of Studies

Existing studies were categorised into the following areas: testbeds, simulation and
datasets; cyber-attack models; cyber-attacks detection models; model-based security analy-
sis; risk and resilience management; security frameworks; and security benchmarks and
case studies. These categories help to answer RQ6, showing type of research contributions.

4.2.1. Testbeds, Simulation and Datasets

As it is typically neither possible nor safe to carry out cyber-security research studies
that include attacks on operational cyber–physical systems, researchers have been us-
ing testbeds and simulation to reproduce the operation and characteristics of real-world
systems. A number of testbed and simulation platforms have been proposed for the se-
curity of water systems. Table 4 outlines reported tools that have been used to support
security research for water systems, including developing datasets for testing intrusion
detection and validating mitigation techniques. The most widely known and reputable of
these are the Secure Water Treatment (SWaT) testbed [43] and water distribution testbed
(WADI) [44], both of which were implemented and deployed at iTrust Centre for research
in cyber-security at Singapore University of Technology and Design [46]. SWaT consists of
a six-stage water treatment process: raw water processing, chemical dosing, ultrafiltration,
water purification (reverse osmosis) and backwashing [46]. The testbed also includes a real
layered communication network consisting of layer 0 (sensors, actuators, PLCs) and layer
1 (SCADA, HMI, workstation and historians) of the Purdue model, using both wired and
wireless network protocols. The WADI testbed is composed of set of tanks (e.g., reservoir
tanks, consumer tanks, raw and returned water tanks), chemical dosing systems, and sup-
porting equipment for water storage and distribution. WADI was designed as an extension
to the SWaT [46] testbed and, by combining the capabilities of both testbeds, researchers
were able to form a complete and fully functional water treatment, storage and distribution
testbed for security research. Both testbeds were designed with international collaborators
and engineers from the water sector and the combination has facilitated investigations
that include the cascading effects of cyber-attacks between different components of the
two testbeds. Researchers have also provided the cyber-security research community with
datasets [45] containing normal operation and attack scenarios to allow detection methods
to be evaluated. These datasets are multivariate time-series collected from real-time data
sources such as sensors and actuators. One of the widely studied datasets in cyber-security
research is the SWaT dataset [50] containing normal data streams collected from 51 sensors
and actuators collected over 7 days, and attack data consisting of 41 attacks carried out over
a period of 4 days. The WADI dataset [45] contains data from 123 sensors and actuators
collected over a period of 14 days, and two days with attacks. Given the care in their design
and their uniqueness, it is no surprise that a significant amount of research has been carried
out using these testbeds and datasets. The iTrust Centre also runs schemes for other local
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and international researchers to request access to testbeds, subject to availability and an
hourly charge.

Table 4. Testbeds and simulation tools used for cyber-security studies.

Publication Details Dataset

WaterBox (2015) [51]

A small-scale cyber–physical testbed designed for an in-lab environment
to simulate smart water networks using components designed from
acrylic, Arduino boards, small-scale sensors (pressure sensor, flow meter)
and a motorised valve (using a small stepper motor).

-

SWaT (2016) [43,46]

An operational small-scale water treatment testbed with real cyber and
physical equipment to investigate cyber-security research in 2015 by
Singapore University of Technology and Design. It consists of a six-stage
water treatment process with the modern-day components.

Available [45,50]

WADI (2016) [44,46]
A testbed launched by Singapore University of Technology and Design
funded in 2016 as an extension of SWaT testbed to form a complete water
treatment, storage and distribution system.

Available [45]

epanetCPA (2016) [52,53] EPANET-based toolbox that is designed to assess the impact of
cyber–physical attacks. -

FACIES (2017) [54]
A water distribution system prototype funded by EU project FACIES
based on a small fictitious city distributing water to different residential
areas with a reservoir represented as tanks of different sizes.

-

RISKNOUGHT (2018) [55–57]
A cyber–physical stress testing platform leveraging EPANET software
library to simulate the physical process and a custom network model for
SCADA system.

Water storage control (2018) [58]

A SCADA testbed simulating water storage control consisting of water
tank, PLC, historian, HMI, water level sensors and actuators (pumps and
valve). The testbed was used to evaluate machine learning detection
models against reconnaissance, command injection, and DoS attacks.

-

Other identified testbeds include WaterBox [51], a small-scale cyber-physical testbed
designed as an in-lab facility built using Arduino boards, pressure sensors, flow meters,
motorised valves, and acrylic structure to simulate smart water networks to carry out exper-
iments related to water systems research including cyber-security and control optimisation.
Teixeira et al. [58] developed a SCADA testbed system designed for controlling a water
storage tank, simulating the process of water treatment and distribution, to test developed
solutions such as machine learning based cyber attack detection models. This testbed
includes a PLC (Schneider model M241CE40), HMI, water tanks, water pumps, valves, and
sensors for water levels, and uses Modbus communication protocol. Miciolino et al. [54]
reports FACIES testbed, emulating a water supply and distribution system for a fictional
city to study security of water systems as part of EU project FACIES. The testbed consists
of acrylic water tanks, sensors and actuators that are connected to PLCs (Modicon M340,
Schneider), a SCADA system and a HMI. The communication protocol used by SCADA
and PLC is Modbus over TCP protocol.

Simulation tools developed to study security of water systems include EPANET
[59] based tools: epanetCPA [52,53], a simulation toolbox designed for simulating water
distribution networks; and RISKNOUGHT (2018) [55–57] developed by STOP-IT project
as a “cyber-physical stress testing platform for water distribution networks” including
functionalities to simulate the flow of information between physical (hydraulic model) and
cyber layers (SCADA networks).

4.2.2. Cyber-Attack Models

The modelling of attacks is an important part of cyber-security research, because it
helps in understanding: the vulnerabilities of cyber–physical systems; the resources re-
quired to carry out successful attacks; the impact of attacks; and the resilience of counter-
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measures. Over the past decade, attacks against cyber–physical systems have attracted
increased interest from the security research community to understand the resources
required for attackers to carry out effective attacks.

We identified several papers that developed attack models to examine the behaviour
of water systems and the impact of attacks. In [60], researchers investigated stealthy
attacks that could cause damage while evading detection. They assumed an attacker with
advanced skills and developed resources such as system dynamics, system diagnostic
schemes, and the ability to manipulate PV (sensor) data. Attacks were carried out on the
Gignac (Southern France) canal network’s SCADA system. Researchers were able to design
attacks that evaded the diagnostic scheme, which was based on unknown input observers
for fault detection and isolation.

Adepu and Mathur [61] investigated single-point cyber-attacks against SWaT testbed
and proposed attack detection based on system response to the attacks. Adepu et al. [62]
and Tomic et al. [63] investigated jamming attacks against wireless communications in
water systems. In [62], researchers carried out attacks against different parts of the SWaT
testbed and, in [63], researchers used the Waterbox testbed [51] to investigate the robustness
of process control schemes against jamming attacks using different attack strategies. Such
attacks have the potential to halt or slow down a process and cause components to fail [62].

Robles-Durazno et al. [64] investigated memory corruption attacks against a PLC
used in a water supply process, demonstrating their research using a Festo MPA rig.
Researchers investigated memory corruption attacks in three location: attacking PLC
inputs by overwriting memory allocated to connected sensors; attacking PLC outputs
by overwriting memory for actuators; and attacking PLC working memory, targeting
runtime code that contained setpoint variables. Researchers proposed a detection model
based on monitoring energy consumption and voltage signals of sensors and actuators.
Amin et al. [65] demonstrate stealthy deception attacks against SCADA systems used
within water infrastructures.

RISKNOUGHT [55–57] simulation platform developed interaction between physi-
cal processes, and the computational and networking layers to simulate a range of cy-
ber–physical threats including cyber-attacks targeting sensors, actuators, PLCs, SCADA
and historians, causing physical damage to hydraulic components such as pumps, valves
and pipes. Similarly, Taormina et al. [66] included a range of attack scenarios with the
epanetCPA [53] toolkit to simulate cyber and physical attacks that target sensors, actuators,
PLCs and SCADA, and communication between these components.

Erba et al. [67] investigated adversarial machine learning against ICS used in water
distribution systems using WADI and BATADAL datasets. They present two models for
concealment attacks to evade detectors that were trained using deep neural networks:
(i) a white box attacker that has knowledge of the system and detection model and uses
optimisation to generate adversarial samples that are close to the normal operating values
of sensors; and (ii) a black box attacker, where the attacker has no knowledge of the
detection and uses deep neural networks to learn the behaviour of expected ICS behaviour
and produce adversarial sensor readings that resemble real data.

4.2.3. Cyber-Attack Detection Models

Designing effective detection techniques for cyber–physical systems is an important
and dynamic area of research. A general list of cyber–physical systems detection models is
reported in [68]. In this section, we review models proposed for detecting cyber-attacks in
water systems.

A wide variety of approaches have been used to detect abnormal behaviour in water
systems. These approaches are illustrated in Table 5. These can be divided into: model-
based detection, which tries to model the physical evolution of systems; machine learning
models, which learn representative characteristics of a system using data; and statistical
models, which use statistical analysis to detect attacks.
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Table 5. Papers related to the cyber-attackattack detection.

Publication Attacks
Application

Environment
Dataset Detection Model

Amin et al. [69] deception attacks
against PVs

a simplified canal
hydrodynamic model - model-based

Adepu and
Mathur [70–73] bias attacks [74] SWaT testbed - model-based:

invariants

Yoong and Heng [75] - SWaT testbed - machine learning
invariants

Miciolino et al. [54] DoS, replay FACIES - standard deviation

Zohrevand et al. [76] attacking water flow water supply system
operational water
supply system in

Canada
hidden Markov model

Ahmed et al. [77]
false data injection and

zero-alarm attacks
against PVs and MVs

simulation: EPANET - model-based

Moazeni and
Khazaei [78] - simulation: MATLAB

OPTi toolbox - model-based: MINLP

Inoue et al. [79] deception attacks
against PVs and MVs - SWaT LSTM and one-class

SVM

Hindy et al. [80] DoS, spoofing physical testbed - classic machine
learning methods

Studies using
BATADAL dataset [47]

deception attacks,
replay against PVs and

MVs
- BATADAL

autoencoders [81,82],
MLP and PCA [83,84],
data-mining [85,86],

NARX [87], rule-based
and deep learning [88],

model-based
(MILP) [89,90],

model-based(feature
extraction and random

forest) [91], PCA,
EWMA and RBC [92],
ensemble (SOD, LOF

and QDA) [93],

Kadosh et al. [94] deception attacks,
replay C-Town, E-Town WDSs BATADAL and

generated dataset SVDD

Bakalos et al. [95]
deception attacks

against PVs, physical
intrusions

water infrastructure
SCADA systems STOP-IT TDL-CNN

Min et al. [96] deception attacks
against PVs and MVs simulation: EPANET - ANN

Macas et al. [97] deception attacks
against PVs and MVs - SWaT deep autoencoders

Zou et al. [98] - WDS in US -
data-driven estimation
(ANNs) and one-class

SVM

Ghaeini and
Tippenhauer [99] network attacks SWaT testbed - deep packet inspection

Amin et al. [69] propose a theoretical model-based detection scheme based on hydro-
dynamic models to detect cyber-attacks against sensor measurements and other anomalous
behaviour in canal systems. Adepu and Mathur [70] used the SWaT testbed to detect
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cyber-attacks using invariants, the physical conditions that must be true for a process at a
given state. Researchers test their approaches using a selection of bias attacks, in which
attackers modified sensor outputs and actuator commands by adding a small constant
each time [74]. Researchers extended their work in [71,72] to detect bias attacks [74] against
sensors and actuators using physics-based invariants for each state of the process, derived
from process design for both single-point attacks happening at a single stage, and multiple
point attacks that affect multiple sensors and actuators at a single stage [72], and proposed
a distributed attack detection method in [73] to detect coordinated cyber-attacks. Yoong
and Heng [75] proposed a security framework to develop and evaluate machine learn-
ing invariants to detect anomalies, and tested their framework using the SWaT testbed.
They used an autoregressive model with exogenous inputs (ARX) combined with group
searching to construct machine learning invariants to detect anomalies. The proposed
framework is capable of being tested in real-life water treatment plants without causing
any disturbances.

Miciolino et al. (2017) [54] proposed a fault detection and network anomaly-based
detection models for FACIES testbed by monitoring data generated by sensors and network
traffic between PLCs and SCADA which uses Modbus over TCP protocol. Detection uses
standard deviation between the normal behaviour and actual observations. Normal be-
haviour of sensors and network traffic is determined by using statistical averages calculated
using data from normal runs.

Zohrevand et al. (2016) [76] used a hidden Markov model (HMM) to design an
anomaly-based detection model for a water supply system. Training data was collected
from a SCADA-based water supply system in the City of Surrey in British Columbia
(Canada) between 2011 and 2014. Working with domain experts, researchers generated
anomalous cases and inserted these into the normal data as potential attack data. Four
anomalies were constructed by targeting the flow capacity of water: maximum flow,
minimum flow, continuous overflow and frequent overflow. Ahmed et al. (2017) [77]
used EPANET to simulate a water distribution network to demonstrate a model-based
attack detection technique. Detection involves determining the input-output dynamical
model of the water distribution network as a set of Linear Time Invariant (LTI) equations.
A Kalman Filter is then used to estimate the state of the physical process. The difference
between actual measurements and estimations are used to obtain residuals which are then
fed into a change detection procedure, CUSUM (cumulative sum control chart) to identify
abnormal behaviour. Generated attacks include false data injection (sending modified
PVs to controller; and sending false signals to actuators); and controller zero-alarm attack
where the attacker changes sensor measurements in such a way that residuals do not cause
any alarms. Moazeni and Khazaei [78] proposed a mixed integer nonlinear programming
(MINLP) approach to estimate state variables, and tested this on a simulated 6-node water
distribution system modelled using the MATLAB OPTi toolbox.

Many machine learning techniques, both supervised and unsupervised, have been
used to detect anomalous behaviour. Inoue et al. [79] used a SWaT dataset [50], which
consists of 41 cyber and physical attacks [45] against sensors, actuators and controllers
including modifying PVs and MVs. Researchers used unsupervised learning approaches
from deep learning (long short-term memory neural networks) and one-class support
vector machines to detect anomalies.

Hindy et al. [80] built a water system testbed composed of two water tanks, a PLC,
a Modicon M238 logic controller, pumps and five sensors that measures various water
levels and the presence of water in the tanks. The testbed has two mode of operation,
simulating water distribution, and storage. Sensor measurements are sent to the control and
monitoring units using the Modbus protocol. Anomalous behaviour is generated as a result
of cyber-attacks (DoS, spoofing), system faults and physical attacks (e.g., humans hitting
tanks). Classic machine learning algorithms are used to classify anomalous behaviour and
affected components using the data gathered and reported by the PLCs. These algorithms
are logistic regression, Gaussian naive Bayes, k-nearest neighbors (K-NN), support vector
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machine (SVM), decision trees and random forests [80]. They report that the K-NN model
achieved the highest accuracy.

Several teams participated in the BATADAL challenge competition [47], developing at-
tack detection for the fictitious C-Town water distribution network (WDN) benchmark [100].
This was built using the epanetCPA water distribution modelling toolkit, and presented
at the 2017 World Environmental and Water Resources Congress organized by the En-
vironmental and Water Resources Institute of the American Society of Civil Engineers
(EWRI/ASCE). Three datasets [45], one with normal operational data, and two datasets
(one for training, one for testing) containing cyber-attacks, were given to each competing
team. Generated cyber-attacks were deception attacks (against PVs and MVs and SCADA
data) and replay attacks. Taormina and Galelli [81,82] used autoencoders (deep neural
networks) in detecting attacks. Abokifa et al. [83,84] proposed a detection approach com-
posed of three layers to detect anomalies in the BATADAL datasets; first removing outliers
using statistical analysis then, using a feed forward artificial neural network (ANN), a mul-
tilayer perceptron (MLP) to identify anomalies and, finally, principal component analysis
(PCA) to identify multiple affected sensors. Giacomoni et al. [85] developed two detection
approaches based on data-mining. The first of these is a method using actuator rules to
ensure readings from the SCADA are within defined normal ranges. The second method
uses an optimization routine that extracts low-dimensionality components of the data,
and thereby separates normal operation data from attack data. Pasha et al. [86,101] also
used a data-mining approach on BATADAL datasets based on extracting control rules,
pattern recognition, PCA, and relationship between hydraulic and system parameters.
Brentan et al. [87] applied autoregressive networks with exogenous inputs (NARX), a re-
current neural network. Housh and Ohar [89,90] used physical simulation to model the
system to detect cyber-attacks. Their model-based approach uses mixed integer linear
programming (MILP) to estimate the hydraulic processes of the water distribution systems
under normal operating conditions to produce expected errors between the actual mea-
surements and estimated model. The difference between the expected and actual value is
used to detect attacks. Chandy et al. [88] developed an ensemble model comprising two
models to detect attacks for the BATADAL detection challenge competition. The first uses
physical and operational rules and violations to generate events. The second uses these
events along with raw data to train a deep learning model, a convolutional variational
autoencoder, to detect attacks. Aghashahi et al. [91] first extracted features related to the
characteristics of the attack and no-attack data by using a covariance matrix and distance
measure of every data point. Then, a random forest classifier was used to classify these
characteristics as attack and normal operation. A detailed description of the competition
and a discussion of results can be found in [47]. MarcosQuiñones-Grueiro [92] combined
widely used signal processing techniques, PCA, the adaptive exponential weighted moving
average chart (EWMA) and the reconstruction-based contribution (RBC) method to detect
attacks and to diagnose the area of the network that was under attack using the BATADAL
dataset. Ramotsoela et al. [93] used the BATADAL dataset to evaluate some of the tradi-
tional anomaly detection approaches to detect attacks in WDS, and proposed an ensemble
technique. The proposed ensemble technique combines the subspace outlier degree (SOD)
algorithm, a distance-based shared nearest neighbors approach designed to detect outliers
in high-dimensional data [102] and a local outlier factor (LOF) algorithm [103] to detect
outliers in low-dimensional data. Both algorithms are run in parallel for each predicted
datapoint and feed their outputs to a quadratic discriminant analysis (QDA) process to
classify datapoints into anomalous or normal. Kadosh et al. [94] used a support vector data
description (SVDD) classifier to propose a one-class cyber-attack detection model to detect
attacks in WSD using both the BATADAL dataset and epanetCPA.

Bakalos et al. [95] developed a cyber-attack detection approach for water systems
using multimodal data fusion and adaptive deep learning. Multimodal data fusion involves
combining different channels of information, including visual data from thermal camera
streams, Wi-Fi reflection, and ICS data. The weight attached to each of these streams of
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data is determined through a deep learning model process. The proposed adaptive deep
learning approach uses a tapped delay line (TDL) convolutional neural network (CNN)
with autoregressive moving average [95]. The data used to evaluate the approach is from
STOP-IT project.

Min et al. [96] used an artificial neural network to detect attacks against a water distri-
bution network using the EPANET simulator [84]. Macas et al. [97] used an “unsupervised
attention-based spatio-temporal autoencoder for anomaly detection (STAE-AD)” model
to detect attacks against water infrastructures using the SWaT dataset. Zou et al. [98]
proposed a hybrid model making use of an MLP and a one-class SVM. MLP was used to
forecast measurement parameters, and prediction errors were used to train a one-class SVM
to classify outliers; finally, Bayesian sequence analysis was used to detect contamination
attacks against water distribution systems.

Majority of cyber-attack detection models reviewed focus on detecting anomalous
behaviour by monitoring and analyzing physical process variables, and failed to monitor
industrial control network traffic and use this knowledge to detect cyber-attacks. Ghaeini
and Tippenhauer [99] proposed a hierarchical monitoring intrusion detection system
(HAMIDS) for ICS to collect network events in different layers of industrial networks.
HAMIDS extends the Bro, an open-source tool for monitoring and analyzing network
traffic. IDS sensors are installed on different layers of industrial networks to monitor
network events. These events are then aggregated and processed in a central cluster to
detect malicious behaviour. HAMIDS was validated using a range of network attacks (e.g.,
ARP poising, network flooding and man in the middle attacks) against SWaT testbed.

Proposed detection approaches are evaluated for effectiveness using (i) operational
data from real-world systems; (ii) testbeds; and (iii) simulation. Existing studies show a
wide variety of techniques that were applied to detect cyber-attacks against water systems;
however, making a reliable comparison among detection approaches is not feasible due to a
lack of common performance metrics and/or missing reported performance data, different
datasets and sizes.

4.3. Model-Based Security Analysis

Several research studies focused on using modelling approaches to analyse the security
of water systems and to identify vulnerabilities.

Kang et al. [104] proposed a model-based security analysis for a water treatment
system. Testing their approach on SWaT, they modelled the interaction between the
physical plant and controller using approximate, discrete models to discover and explore
potential attacks. The model is constructed using a first-order modelling language Alloy to
capture, as state transition rules, connections among various components and the behaviour
of the plant.

Motivated by malware techniques that hide critical information from operators while
executing an attack (e.g., Stuxnet), Patloll et al. [105] proposed a multiple security domain
non-deducibility (MSDND) model [106] using belief, information transfer and trust (BIT)
logic [107] to identify critical information that attackers may hide. BIT logic is used to rea-
son about the reliability of data moving between entities, defined as the belief and trust one
entity has in information received from another entity. A system is decomposed into com-
ponents, and each component that could change the state of the state is treated as a separate
domain. Requiring development of invariants, an information execution flow across these
domains starting from source to destination is monitored to identify when vulnerabilities
that have been exploited have resulted in invariant violation. Mishra et al. [108] proposed
an agent-based modelling framework to model critical CPS and their interdependencies,
to understand the impact of attacks on interconnected critical infrastructures; they evalu-
ated the application of the model to a water distribution system and used invariant-based
method [70] to generate rules to detect attacks.

Taormina et al. [66] and Hunter et al. [109] proposed a modelling approach to quantify
the hydraulic behaviour of the system (such as tank overflow, variation in pumps) under
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cyber–physical attacks by defining components of a system, and specifying attack variables
(starting time, duration). They give simulation results using the epanetCPA toolbox and
the C-Town network [100].

4.4. Risk and Resilience Management

A small number of studies worked on methods to support risk and resilience management.
Moraitis et al. [110] describes a methodology to quantify the impact of cyber–physical

attacks on water distribution networks. The methodology is based on quantifying failures
described under categories (magnitude, propagation, severity, crest factor, rapidity) against
user-defined service levels. A proposed model is demonstrated using the C-Town WDN.

Jeong [111] discusses the development of a risk management framework for water
infrastructure against intentional attacks, including cyber-attacks based on vulnerability
assessment and consequence assessment of attacks. The proposed vulnerability assess-
ment involves the development of a hierarchical structure of the system to identify all
water infrastructure components, using expert knowledge and fuzzy hierarchical analysis.
The recommended consequence assessment is based on the time to restore the system to its
normal operation, and the areas affected by the attack, and the expected damage is based
on attacker’s and defender’s capabilities.

Shin et al. [112] investigated resilience strategies against water CPS. Resilience is
characterized in terms of four capabilities [112]: (i) ability to withstand disruption; (ii) ab-
sorptive capability (if disruption is unavoidable then minimize undesirable consequences;
(iii) adaptive capability (adjusting to disrupted and undesirable conditions); (iv) restorative
capability (recover quickly to completely normal operation). A resilience metric is proposed
to measure the resilience of water systems against cyber-attack, and the C-town benchmark
water distribution system is used as a case study to demonstrate the proposed metric.

4.5. Security Frameworks

Modern water treatment infrastructures consist of interconnected systems layered
in a hierarchy, such as a supervisory layer consisting of SCADA systems, and a control
layer composed of PLCs, sensors and actuators. Data flows occur between these layers via
multiple communication networks. Mathur [113] proposes a multilayer security framework
composed of seven layers of countermeasures applied to different network layers to
secure water treatment systems. Proposed countermeasures include attack prevention
mechanisms (firewalls), attack detection mechanisms (intrusion detection systems, process
anomaly detection), and post-attack mechanisms that could bring the process back to a
normal or manageable state. A partial implementation of the proposed framework was
tested on the SWaT testbed.

4.6. Security Benchmarks and Case Studies

TNO (Netherlands Organisation for Applied Scientific Research—an independent
research organisation) and the NICC (the Netherlands Infrastructure Cybercrime unit),
carried out a study [114] to understand the current state of cyber-security of process control
in the drinking water sector in the Netherlands. Researchers report that a large variance
of security posture was found among organisations; the data collected exposed serious
weaknesses in each company. As the study contained sensitive national data, confidentiality
of the organisations was maintained and the reported analyses were based on artificially
aggregated data. The study was effective and resulted in the development of good practices
for SCADA security for drinking water organisations, which are available both in Dutch
and English [115]. Building on this work, Burghouwt et al. [116] measured the cyber-
security state of the 19 water management organisations in the Netherlands through an
improved questionnaire. Researchers identified a lack of uniformity on security postures
between organisations, partly due to ineffective management of security responsibilities.
They designed and built DESI [116], a simulator to demonstrate cyber–physical attack
scenarios and improve cyber-attack knowledge.
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A case study paper was presented in [117] investigating access control mechanisms
in industrial control systems conducted on the WADI testbed, to show how the lack of
effective access control could lead to malicious behaviour. Researchers revealed that a lack
of access control in network protocols, systems and field devices used in ICS is making
these systems vulnerable to attacks.

A critical case study for security of water systems is the Marooch water breach in-
cident. Slay and Miller [29] discusses this incident and reports the lessons learned from
the incident emphasising the need for effective, reliable and economically viable security
countermeasures including intrusion detection systems for SCADA networks, better man-
agement of security policies and procedures, investment in security training for staff, and a
wider and sustainable collaboration between academia, industry, vendors and government
agencies to tackle existing and future security threats.

4.7. Security Monitoring Capabilities

One of the papers identified dealt with improving security monitoring capabilities for
water distribution systems. In [118], researchers propose sonification, data in audio, to help
system operators avoid cognitive overloading with visual information to raise alarms for
cyber-attacks on water distribution systems. Motivated by prior work on sonification,
designed to improve monitoring capabilities, researchers designed a sonification system
to reduce the overload of human operators faced with visual channels, to support better
decision-making for a water facility by sonifying the outputs of an anomaly detection
model. Current anomaly detection models are represented as visual diagrams showing
anomalous data points at a given time and often an alarm is raised when a threshold
is reached.

5. Open Issues and Future Research Areas

Results obtained from the systematic review show that research has made a signifi-
cant contribution to the security of water systems. In the following sections we discuss
limitations of existing studies and highlight some areas for future research.

5.1. Building Testbeds for Water Systems

Much of the existing research in this area involves a pool of resources (SWaT and WADI
testbeds, epanetCPA toolbox, and datasets) provided by the iTrust Centre for research in
cyber-security. Researchers associated with the iTrust Centre demonstrate the importance
of developing and providing access to a real physical testbed for carrying out security
research. Most of the existing studies have focused on drinking water systems, primarily
those responsible for water distribution. Given the diversity of water and wastewater
systems, more work in this area would provide obvious benefits, especially through
testbeds involving water systems such as sewer and wastewater systems, and irrigation
systems; these could be used to further validate the applicability of existing research.
Although of immense value, building and maintaining realistic operational testbeds is not
an easy task and requires significant and ongoing access to resources, skills and people.

5.2. Threat and Attack Models

Existing attack models primarily make use of manual and single-point attacks tar-
geting single measurement variables (sensor readings) or control commands. However,
stealthy attacks, those trying to cause damage and at the same time remain undetected,
may necessitate multi-point attacks if they are to evade detection mechanisms and oper-
ators. This area is starting to receive increased attention from researchers investigating
the security of CPS [67]; however, more effort is required to understand how these attacks
can be performed and what the limits on their effectiveness might be. Consequently, few
studies have verified the effectiveness of existing detection models against these attacks.
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5.3. Attack Detection Models

Many studies designed to detect attacks against water CPS use machine learning-
based anomaly detection models, in which normal operational data is the primary (or sole)
resource as there is often insufficient anomalous data to create models using supervised
approaches. It is not readily possible to compare the performance of existing detection
models, or to determine their generality or the reproducibility of their results. This is
due both to a lack of datasets, leading to poor diversity in assumptions and plant models,
and to a lack of common performance metrics. Where common datasets and performance
metrics have been used, as in the case of, say, the SWaT and WADI datasets, reported
results suggest that deep learning-based anomaly detection models perform better than
conventional anomaly detection models. However, further studies are required to build
confidence that such performance improvement is real.

As is usually the case with intrusion detection studies for CPS, the effectiveness of
the proposed solutions were measured using conventional performance metrics, including
accuracy, precision, recall, F-score, false positives and false negatives. These performance
metrics were not designed for multivariate time-series datasets of CPS, in which anomalies
usually occur in bursts [119]. Even when using these conventional performance metrics,
some fail to report false positives and none of the studies reported detection latency, which
is an important metric for critical systems [68] as early detection is critical for CPS.

Over the last decade, there has been an increase in number of CPS applying deep
learning models to detect anomalous behaviour and datasets such as BATADAL, SWaT
and WADi have contributed to some of these studies. However, studies from other fields
have shown that machine learning-based approaches are rather vulnerable to accidental
or intentional corruption of training data sets; thus, say, adversarial attacks can influence
detection outcomes [120]. At the same time, there is a significant number of research studies
that focus on improving the robustness of such models [121]. At present, however, such
work is invariably targeted at other fields of study, most notably computer vision, and we
are yet to understand the possible risks in the application of learning models to CPS.

The generation of attack or anomalous behaviour for testing detection models is
often done manually. Typically, measurement values or control signals are modified,
and performance data is collected both with and without these variations. However,
such an approach assumes that the modifications are representative of those that will be
experienced in reality, and this assumption is tenuous at best. Furthermore, over time,
CPS actuators and sensors degrade as a result of ageing and become more prone to noise.
As a result, normal behaviour is itself non-stationary and it will be necessary either to use
richer training sets and models that capture temporal change, or to use online learning.
The latter is again vulnerable to changes induced by an adversary that are intended to
pervert the detection mechanism. There is therefore a pressing need to increase the attention
paid to the practicalities associated with actual deployment, including the usability and
maintainability of proposed detection models.

Identifying anomalous behaviour should ideally be followed by the raising of an
alert that identifies the potential cause and so determines a strategy to be followed for
mitigation. However, existing studies often stop at detection. Future work is therefore
required to investigate approaches that identify the root cause of anomalous behaviour,
locate compromised devices and respond and mitigate further damage in a timely manner.

5.4. Collaboration with Industry

Although several studies have consulted with engineers who have experience in
dealing with water systems, we failed to identify any publications that were written by
industry. There is currently a lack of collaborative work between industry and academia in
this area. Securing water systems requires a multidisciplinary effort that involves both the
designers and operators of these systems and academics working at the leading edge of
technology to ensure that security research pushes the boundaries of the possible while
remaining applicable and usable.
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6. Conclusions

In this paper, we have systematically reviewed the existing peer-reviewed research
efforts to secure water systems, and have identified limitations in those research efforts
and possible future directions for securing next generation of smart water CPS. This study
provides guidance for understanding the existing security research for developing secure
smart water systems.

In comparison to other utilities such as electricity, the security of water systems has
not received much research attention in the past, but this is changing, and there has been an
increase in the number of studies since 2016 supported by EC research and innovation fund-
ing programs and international funding opportunities. The studies reviewed in this paper
are encouraging, but they require further work for validation and deployment on real water
systems. Most of the existing studies, including testbeds, simulation tools and datasets,
have focused on drinking water treatment, supply and distribution. Further studies are
required to build testbeds, simulation and datasets that investigate security of non-drinking
water sectors such as wastewater treatment systems, stormwater management and systems
for agriculture and irrigation.

Finally, development of a comprehensive usable security framework that covers
different aspects of security, from prevention to detection, response and mitigation requires
a multidisciplinary approach involving academia-industry-government cooperation.
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Abstract: Over the last three decades, the increasing development of smart water meter trials and
the rise of demand management has fostered the collection of water demand data at increasingly
higher spatial and temporal resolutions. Counting these new datasets and more traditional aggregate
water demand data, the literature is rich with heterogeneous urban water demand datasets. They are
characterized by heterogeneous spatial scales—from urban districts, to households or individual wa-
ter fixtures—and temporal sampling frequencies—from seasonal/monthly up to sub-daily (minutes
or seconds). Motivated by the need of tracking the existing datasets in this rapidly evolving field of
investigation, this manuscript is the first comprehensive review effort of the state-of-the-art urban
water demand datasets. This paper contributes a review of 92 water demand datasets and 120 related
peer-review publications compiled in the last 45 years. The reviewed datasets are classified and
analyzed according to the following criteria: spatial scale, temporal scale, and dataset accessibility.
This research effort builds an updated catalog of the existing water demand datasets to facilitate
future research efforts end encourage the publication of open-access datasets in water demand
modelling and management research.

Keywords: urban water consumption; water demand data; water data accessibility; data resolution;
smart meter

1. Introduction

Population growth, urbanization, and climate change are expected to increase the
stress on freshwater resources and the burden over urban water systems [1–3]. Adaptive
planning and management strategies are thus needed to address seasonal or prolonged
water scarcity in drought-prone areas and meet water demands with reduced operational
expenditure, overall increasing the resilience of critical urban water network infrastructure
systems [4].

In the last decades, demand-side management has increasingly emerged as a key
approach to complement traditional water supply operations [5]. Different water demand
management strategies (WDMS) have been proposed in the literature to foster water
conservation and more efficient water demands [6,7]. These include technological, financial,
legislative, maintenance, and educational interventions [8]. The rise of demand-side water
management has motivated the development of more and more sophisticated technologies
and mathematical models to monitor, characterize, and predict water demands at different
spatial and temporal scales, and capture the existing relationships between water demand
and its potential climatic and socio-demographic determinants [9–11].

At the coarser urban and suburban scales, the state-of-the-art literature is rich with
studies focused on improving the efficiency of water distribution network (WDN) opera-

Water 2021, 13, 36. https://dx.doi.org/10.3390/w13010036 https://www.mdpi.com/journal/water

259



Water 2021, 13, 36

tions (e.g., [12–14]). In these studies, water demands are often considered as a stationary
or seasonal input to the hydraulic model of the WDN, with a spatial level of aggregation
referred to the city or the district scale. Such spatial scales are typically relevant for infras-
tructure planning, WDN design, and WDN partitioning. More recently, various techniques
for water demand forecasting have also been proposed in the literature. They include
regression analysis, time series analysis, and techniques based on black box models, in-
cluding different Artificial Neural Network architectures (e.g., [15]). Demand prediction
models have been developed at different spatial and temporal scales, with the majority of
the studies focusing on urban and suburban scales, and temporal resolutions spanning
from hourly to monthly intervals (e.g., [16–18]). A disruptive phase in the development of
water demand studies is represented by the advent of smart metering technologies [8,19].
The development of smart meters allowed gathering water demand data with an unprece-
dented level of spatiotemporal detail. Water demand data became potentially available at
the spatial scale of individual households and data logging intervals of a few seconds [20].
While understanding the full range of potential benefits of smart meters for water utilities
and customers is still a topic for active discussion [21], the variety of studies in the literature
based upon smart meter data demonstrates the diversity of data-driven opportunities that
high-resolution smart meter data opened up in the context of water demand modelling and
management. These include, e.g., water demand profiling and customer segmentation [22],
post meter leak detection and water loss management [23], end use studies for fixture-
level water demand breakdown and detailed demand forecasting [24], and behavioral
studies [25].

The continuously increasing amount of smart meter trials and demand modelling and
management studies since the middle of the 1990s [8] suggests that several high-resolution
water demand datasets have been recently compiled. The availability of high-resolution
datasets opens up several opportunities for advanced applications, including the devel-
opment of water end use disaggregation algorithms and machine learning techniques for
user profiling. Such applications could benefit from open datasets to enhance compar-
ative applications, benchmarking, and facilitate the development of general algorithms
trained on combined datasets with water consumption data from different sources and
locations. High-resolution datasets, considered in combination with the more traditional
water demand datasets gathered at coarser spatial and temporal resolutions would repre-
sent a valuable resource for researchers and scientific efforts targeting the development
and validation of mathematical models of water demand at different spatial and temporal
scales, or the development of advanced smart metering analytics.

Yet, information and metadata on individual water demand datasets are scattered
in the literature, and to the authors’ knowledge, a comprehensive review of the existing
datasets is still missing. Existing data are frequently difficult to access or use, and existing
literature reviews on urban water consumption focus on demand modelling or other data-
driven applications, rather than on analyzing the heterogeneity of existing datasets, their
spatial and temporal scales, and accessibility. Motivated by the recent development and
availability of datasets gathered with increasingly high spatial and temporal resolution,
the aim of this paper is to gather information on the datasets to identify current trends
and gaps and help future data-driven research, along with research benchmarking and
reproducibility.

This review contributes the first effort of classification and analysis of 92 water de-
mand datasets and 120 related peer-review publications that have been compiled in the last
45 years to monitor urban water consumption data at different spatial and temporal scales
and provide data for water demand modelling and management studies. We characterize
the reviewed datasets according to their heterogeneous spatial and temporal scales, and
investigate their accessibility. Moreover, since digital disruption has transformed the elec-
tricity industry earlier and some lessons learned may apply also in the water or multi-utility
sectors [26], we additionally explore similarities and differences between the reviewed sub-
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set of high-resolution water demand datasets and 57 comparable high-resolution electricity
demand data.

We thus analyze the reviewed datasets and publications to address these five research
questions (see Figure 1):

Q1. How are the existing urban water demand datasets distributed across different spatial
scales?

Q2. How are the existing urban water demand datasets distributed across different tem-
poral scales?

Q3. What are the main domains of application of the reviewed datasets, within water
demand modelling and management studies?

Q4. What is the access policy for the reviewed datasets?
Q5. Is there any synergy with comparable datasets in the electricity sector?

1. WATER DEMAND DATASETS - SPATIAL SCALES

Q1: How are water demand datasets
distributed across different spatial scales?

CITY         DISTRICT       HOUSEHOLD      END USE

2. WATER DEMAN DATASETS - TEMPORAL SCALES

1s            5m       10m       30m      1h      1 d

Q3: What are the main domains of application
of the reviewed datasets, within water demand
modelling and management studies?

3. DATASET ACCESSIBILITY

Q4: What is the access policy for the reviewed datasets? 
. 

OPEN RESTRICTED NOT 
AVAILABLE

4. WATER-ENERGY NEXUS
Q5: Is there any synergy with datasets in the electricity 
sector? 

y y gy

Q2: How are water demand datasets
distributed across different temporal scales?

Figure 1. State-of-the-art water demand datasets review: summary of the research questions and
multi-stage analysis.

The ultimate goal of this review is to compile an updated catalog of the existing
water demand datasets and facilitate future research efforts in this rapidly evolving field of
investigation. Researchers performing water demand studies could refer to this review to
identify data readily available in formats, spatial scales, and temporal scales that suit their
research needs. This review will finally also help identifying water demand datasets that
are accessible free of charge, in the attempt to promote further publication of open-access
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datasets to foster reproducible research, benchmarking, and the development/validation
of existing software tools to generate reliable and realistic synthetic data [27–29].

The paper is structured as follows. The dataset review methods and the considered
spatial and temporal scales are presented in Section 2; an overview of the dataset search
outcomes is presented in Section 3; Sections 4–6 analyzes the reviewed datasets in terms of
(i) spatial scales, (ii) temporal scales, and (iii) accessibility; Section 7 analyzes similarities
and synergies between some of the reviewed water demand datasets and alike electricity
demand datasets; finally, Section 8 draws some final remarks and directions for follow-up
research.

2. Datasets Review Methods

To address the research questions formulated in Figure 1, we searched for water
demand datasets collected at different spatial and temporal scales and referenced in
the peer-reviewed scientific literature on water demand modelling and management.
We searched on different web search engines and scientific databases, namely, Google
Scholar (https://scholar.google.com/), Mendeley (https://mendeley.com/), Mendeley
Data (https://data.mendeley.com/), and data.world (https://data.world/datasets/). We
followed the following 3-step procedure:

1. We searched for the following combinations of keywords on Google Scholar and
Mendeley: Water demand/Water consumption/Household water demand/Residential
end use water/Residential water consumption/Residential water demand/Water
demand data/Water demand dataset/Water demand data set/Water demand forecast-
ing/Water demand city/Water demand district/Water end-use/Water consumption
patterns/Domestic water use/Urban water demand/Water use behavior/District
water demand.

2. We searched for the following combinations of keywords on Mendeley Data and
filtered the obtained results to include only two data types, i.e., “Dataset” and
“Data Repositories”: Water demand/Water consumption/Household water con-
sumption/End use water consumption/Urban water consumption/Urban water
demand/District water demand/Water supply demand.

3. We searched for open datasets in data.world, an online catalog for data and analy-
sis. We restricted our research to datasets included in the data topic “water” and
selected only datasets mentioned in peer-reviewed articles. More specifically, we
searched for the following combinations of keywords: Water demand/Water con-
sumption/Residential water consumption/Domestic water demand/Demand man-
agement.

In addition to the datasets retrieved with the above search, we included in this review
other high-resolution datasets retrived from two articles strongly focused on residential
water demand, i.e., [30,31].

After compiling an inventory with the datasets and related publications retrieved with
the above search methods, we reviewed, classified, and critically analyzed the inventory
according to three main criteria: (i) spatial scale (Section 4), (ii) temporal scale (Section 5),
and dataset accessibility/access policy (Section 6).

Spatial and Temporal Scales of Interest

Depending on the spatial scale of interest, different metering and monitoring tools
for water consumption data gathering can be adopted. For instance, end use metering
usually requires ad hoc, customized, solutions [20,32], while household or district water
consumption can be monitored with commercial flow meters [33]. Datasets collected at
different spatial scales will thus represent different levels of aggregation of water demand
and will possibly have implications on data privacy and ownership (e.g., water utilities vs
individual water consumers). Numerous benefits can derive from high-resolution data,
both for water utilities and water consumers [21]. Such data enable, for instance, accurate
modelling of water demand patterns, peaks, and anomalies (e.g., leaks) [28]. However,

262



Water 2021, 13, 36

large and high-resolution data implies also several potential drawbacks, e.g., privacy
concerns, need for cloud resources for data storage and new skills for data analytics [34].
We identified four scales of interest for urban water consumption monitoring and analysis,
from the coarser to the finer:

• City. We refer to a city as an urban centre with its own government and administration.
The city scale can be composed of multiple districts and it includes the whole water
distribution network.

• District. A district is a component of an urban center. The district spatial scale refers to
a group of residential buildings in one or more municipalities. In many cases, districts
coincide with the water network district meter areas (DMAs), i.e., sub-regions of a
water network delimited by closing boundary valves. In the case of small cities or
villages, the district and city scale can coincide.

• Household. The household scale implies a single dwelling, or a single-family residential
building connected to an individual water meter. In this category we also include
multi-family homes, when connected to one water meter. Depending on the type
of household, its water consumption can be attributed to indoor usage only or both
indoor and outdoor usage.

• End use. The end use scale refers to an individual water fixture within a single apart-
ment/household. End uses can refer to indoor (e.g., shower, dishwasher, toilet, etc.)
or outdoor uses (e.g., garden, swimming pool, etc.).

In this review, we keep into account the spatial scale dependencies of the reviewed
datasets and classify them according to the three suburban scales included in the city level:
District, Household, and End Use. In the literature, the spatial scale of interest is related to
the type of application that requires water demand datasets (WDDs). WDDs at the district
scale, for instance, are mainly used to investigate water network partitioning [35,36], com-
pute water balances [37], assess the hydraulic performance of the network system [38], and
perform leakage identification and localization [39,40]. The level of aggregation of these
WDDs depends on the network configuration and/or DMA design, and often refers to wa-
ter demands at network nodes [41,42]. At the household scale, WDDs represent domestic
water demands and are primarily used to build descriptive and predictive models of water
demand, estimate demand peak timing and magnitude to inform water network opera-
tions, and inform conservation campaigns and demand management interventions [43,44].
Finally, at end use scale, WDDs are used to improve our understanding of residential
water consumption behaviors, develop disaggregation models to estimate the share of
household water consumption of individual fixtures, develop customized water demand
management strategies and billing reports, and overall increase customer engagement and
help water utilities and customers promote efficient water usage [45,46]. In keeping with
the different spatial and temporal scales considered in this study, this review includes both
water consumption data retrieved with digital water meters and data measured with low
resolution meters or retrieved from water bills [47–49]. Furthermore, when a dataset or
publication considers multiple spatial scales, we classify it according to the finest level of
data granularity.

Beside the spatial dimension, we also explore how datasets differ in terms of temporal
scale (or time sampling frequency). Previous literature has shown that water demand data
gathered at monthly or quarterly resolution is mainly used to inform strategic regional plan-
ning and to calculate water bills [11], while a number of additional applications, including
post-meter leak detection and water end use disaggregation can be enabled by sub-daily
data (e.g., recorded with a time sampling frequency of 1 h or a few minutes/seconds) [28].
Here, we characterize the datasets collected at the district, household, and end use scales
according to their time sampling resolution, with primary focus on daily and sub-daily
frequencies. We consider datasets to have a low resolution when they include data with
a daily or lower time sampling frequencies (e.g., monthly). In turn, we consider as high
resolution datasets those gathered with a sub-daily frequency (e.g., hourly, 1 min, 10 s).
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3. Overview of Dataset Search Outcome

As an outcome of the dataset search explained above, we retrieved information on
92 unique datasets referenced in 120 scientific works, which in the last 45 years contributed
to the literature on water demand modelling and management. The complete catalogue of
the datasets and publications reviewed in this study is publicly available at [50]. We have
also stored it in a public GitHub repository where pull requests can be submitted, so that
our dataset collection can be collaboratively updated as more datasets become available
(the repository is accessible at https://github.com/AnnaDiMauro/WDDreview).

A general overview of the reviewed datasets (Figure 2) suggests that, first, the majority
of the reviewed datasets contain water consumption data at high spatial resolutions (i.e.,
end use and household). Second, the temporal distribution of the reviewed publications
(Figure 3) is skewed to the right, with a major increase of household and end use studies
after 2010. This is likely due to the increasing development of smart meter technologies
during the period 2011–2015 [8], following the pioneering studies and prototypes that first
appeared in the 1990s (the first end use study reviewed dates back to the 1991–1995 interval
in Figure 3).

Finally the worldwide geographical distribution of the reviewed publications (Figure 4)
shows an uneven spatial distribution, with more than 50% of the reviewed studies located
either in the USA or Europe: 28% USA, 25% EU, 17% Australia and New Zealand, 13%
United Kingdom, 9% Asia, 6% Canada, 2% Africa.

A more detailed analysis on the distribution of the reviewed datasets across spatial
and temporal scales, along with a critical analysis on their accessibility, are presented in the
next sections.

Figure 2. Distribution of the 92 reviewed datasets across three spatial scales, i.e., district, household,
and end use.
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Figure 3. Five–year count of the 120 scientific publications reviewed in this study and
referencing the 92 reviewed datasets.

Figure 4. Geographical distribution of the 120 publications reviewed in this study.

4. Dataset Spatial Scales

To answer the first research question reported in Figure 1, we here investigate the
distribution of the 92 reviewed datasets across different spatial resolutions, along with
their implications for demand modeling and management.

As already reported in Figure 2, we identify only 20 datasets at the district scale.
Water demand data collected at this scale relate to specific areas of a water distribution
network. They are primarily used to monitor aggregate water demand patterns in the
network, or to provide input information to simulation models of water distribution
systems. Among these datasets, it is worth highlighting the presence of comprehensive,
multi-network datasets, such as the WDSRD database for research applications [51]. This
dataset includes data for over 40 different distribution networks, collected by the ASCE
Task Committee on Research Databases for Water Distribution Systems for the water
distribution system community to develop and test new algorithms for network design,
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analysis, and operations. A typical problem that requires such type of data is the optimal
sensor placement in a partitioned water distribution network [52]. This problem, consisting
of finding the optimal sensor location that minimizes the economic costs, while maximizing
the amount of information required for network operations and diagnosis, still represents
an open challenge for utilities and researchers [53,54]. The datasets classified in the district
spatial scale are generally gathered by water utilities for ad hoc analysis on specific case
studies within their controlled water network facilities. As the data ownership belongs
to water utilities, such data is generally not released to the public, but only released
to researchers under non-disclosing agreements. If demand data come from individual
household-scale water meters, privacy-protection schemes, e.g., data anonymization, are
usually required before data are actually shared.

The majority of the reviewed datasets was collected at the household (31 datasets)
or end use (41 datasets) scale. Datasets as such high spatial resolutions have been emerg-
ing in the literature in the last 20–30 years, driven by the increasing scientific interest
towards smart water metering technology. Smart meters can be defined as digital sensors
able to measure, store, and transmit water use data at the household level and with a
sub-daily temporal sampling resolution, down to a few seconds [28,55]. Mining smart
meter information with advanced data analytics is enabling new opportunities also for
developing automatic tools to estimate the water consumption of individual fixtures in
a household [56,57], quantify the impact of individual and collective human behaviors
on residential water consumption and water conservation [58], and acquire a better un-
derstanding on which socio-demographic determinants primarily drive residential water
consumption in different geographical contexts [59,60]. Water data at the household/end
use scale are of great interest for behavioral studies and provide key information for
fostering water conservation, designing water tariffs, promoting more sustainable uses
of resource, characterizing water demand during peak hours, and improving demand
forecasting and management capabilities [61]. These topics have been already extensively
reviewed in the literature, and several comprehensive reviews analyzed the usage and
benefits of smart metering for data collection and detailed water demand modelling and
management [8,21,62,63].

We report a detailed summary of the metadata of the datasets identified at the district,
household and end use scales in Tables 1 (district), 2 (household) and 3 (end use), sorted in
chronological order. These metadata include the year when the dataset first appeared in
the literature, its size (number of districts/households), time series length, time sampling
resolution, access policy (classified in Open (O), Restricted (R), Not Available (NA)), and
main goals and dataset applications in the related publications. When a dataset is found to
be open access, we include the link to the repository where it is stored at the time of this
review.

Some common features and trends can be identified from the information reported
in the three tables. First, there is an inverse correlation between the dataset size (or the
time series length) and the time sampling resolution. Datasets comprising hundreds or
thousands of homes (e.g., [48,49,64–66]) generally include data collected with a monthly or
daily time sampling resolution, while datasets with a sub-daily time sampling resolution
only include a few units or tens of homes (e.g., [67–69]). This may be attributed to the
experimental extent of most high-resolution studies, their usually short-term duration,
and the costs of deploying large-scale smart metering systems. Second, while datasets
collected at the district scale have been primarily used for WDN optimization, WDN design,
understanding the effects of socio-economic determinants on aggregate water demand,
and leak detection, we identify four categories of state-of-the-art studies that have used, so
far, datasets at the household scale listed in Table 2. These four categories, defined based on
the scope of the listed studies, are: water demand forecasting, water demand pattern recog-
nition, water conservation and customer awareness, and water end use disaggregation.
The problem of water demand forecasting has been investigated for decades with different
modelling techniques. Several recent applications exploit Artificial Neural Networks and

266



Water 2021, 13, 36

other machine learning techniques to predict future water demands [44,66,70] and use
this information to optimize water network operations or design water use efficiency
programs [49,71–73]. Eight studies can be included in this category, among those listed in
Table 2. A second category of studies (e.g., [31,74–76]) exploited household-scale water
demand data combined with pattern recognition techniques to inform effective water
allocation and reduce water demand to enhance urban water service infrastructure. Other
9 studies from those in Table 2 can be included in this category. Third, 11 datasets among
those in Table 2 were gathered as part of water conservation and customer awareness
research efforts and projects, including [65,77–79]. These studies investigate the potential of
smart meter technologies, often coupled with data analytics and digital platforms, for data
communication to water consumers, to increase users’ awareness on water consumption
and sustainable water usage behaviors. Finally, 3 household-scale datasets were primarily
used for water demand disaggregation to estimate water use at individual fixture levels
with a non-intrusive approach, i.e., coupling the data from a single-point smart meter with
a disaggregation algorithm and avoiding the installation of several intrusive sensors to
directly monitor the water consumption of each end use [64,80,81].

Water end use disaggregation can be identified as the link between WDDs at the
household and the end use level. Since intrusive smart meter installations at the end use
level turn out to be costly and unlikely acceptable and/or accepted by water consumers,
thus non-viable for large-scale deployments, non-intrusive techniques represent a valid
solution. Yet, non-intrusive end use disaggregation algorithms require ground truth
data collected at the fixture level, at least for a limited time span, for algorithm training,
validation, and performance assessment. For this reason, the majority of the reviewed
WDDs classified in the end use spatial scale (see Table 3) has been used to develop and train
different end use disaggregation algorithms, including machine learning-based algorithms
(see, for instance, [67,68,82,83]). Differently from the WDDs at the household scales, end
use datasets feature a short time series duration (a few days or weeks) and a high time
sampling resolution, with data collected primarily with a sampling frequency of 5–10 s.
These datasets, mainly collected in the last 10 years, usually include samples collected in
two heterogeneous periods (e.g., summer and winter) to account for the seasonal variations
of some end uses, e.g., outdoor water demand for irrigation. Whereas developing and
testing end use disaggregation methods remains the main purpose of collecting water
demand data at the end use level, some of the WDDs listed in Table 3 have been also
used to evaluate water consumer behaviors and attitudes toward individual residential
water uses (e.g., [84,85]), or test the effectiveness of water conservation strategies based on
appliance retrofit and efficiency upgrades [86,87], customized tariffs [88], and awareness
campaigns [89,90].
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5. Dataset Temporal Scales

In this section, we address Q2 (see Figure 1) by analyzing the temporal scale of the
92 reviewed WDDs, i.e., we investigate which time sampling resolutions characterize the
datasets spatially gathered at the district, household, and end use scales.

As defined in Section 2, water demand data can be recorded with a low resolution
characterized by daily or monthly time sampling frequency, or with high resolution, when
sub-daily measurements are recorded. The sampling represents a limiting factor for the
type of analysis that can be performed [28,115]. Considering the 92 WDDs included in this
review, the datasets gathered at the district scale mainly include data collected with a low
temporal resolution. These data, recorded with a daily, and more often, monthly, or coarser
temporal resolution, consist of measures obtained from billing reports, or periodic meter
observations. This is consistent with the main needs of the studies using such datasets
for, e.g., the estimation of aggregate water demand for water network design, the res-
olution of optimal sensor placement problems, and the optimization of water network
operations. Only some exceptions include data with a time sampling resolution of 15 min
(e.g., [94,100,107]). In turn, the household and end use datasets include data gathered with
higher time sampling resolution. The classification of these datasets based on their time
sampling resolution (Figure 5) reveals that the majority of the end use-scale datasets contain
data gathered with a sub-minute resolution, while most of the household-scale datasets
contain data recorded with a time frequency of 15 min to 1 day.
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Figure 5. Dataset count for different time sampling frequencies. Only the reviewed datasets gathered
at the household (gray) and end use scale (orange) are included.

The distribution of the end use datasets in Figure 5 is an empirical validation of
the findings of a previous study by Cominola et al. [28], which demonstrated that only
data gathered with time sampling resolutions of a few seconds or, at most, 1 min, can be
used to accurately estimate the contribution, peak, and time of use of individual water
fixtures, especially when multiple end uses are active. Besides facilitating accurate end
use disaggregation [67–69,156–158], such high resolution data also allow a detailed char-
acterization of consumer behaviors [77,155,159,160], and the design of customized water
demand strategies [88,123,142,161,162].

Conversely, the distribution of the household-scale datasets in Figure 5 confirms
that data sampled with lower frequency suffice for water demand pattern analysis at the
household level, i.e., with no detailed end-use analysis. Sub-daily resolution still allow
extracting water use patterns and recurring routines [28,66,76], identify anomalies [163],
and forecast water demand [49,104].
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Cross-correlating information on the time sampling resolution with the metadata
previously described in Tables 2 and 3, a trade-off between the time sampling resolution
and the size of a dataset emerges.

6. Data Accessibility

Open and free access to scientific datasets can provide valuable support to more
reproducible and reusable research [164]. The availability of benchmark datasets acces-
sible by different researchers worldwide would, for instance, help minimize redundant
experiments, facilitate benchmarked numerical results on common datasets, and foster
reproducibility and incremental research—which in turn drive innovation [165,166]. Yet,
data accessibility presents significant challenges in many research fields, due to data
ownership, sharing limitations, privacy concerns, technical data management, and secu-
rity risks [167]. Furthermore, currently available data often lack a standardized format
or organized database structure [167,168], or they might not be explicitly referenced in
scientific publications, and thus, can be hard to track. Considering the literature on ur-
ban water demand modelling and management, WDDs are usually collected as part of
large-scale scientific projects carried out by research groups or water utilities at the na-
tional and international level [77,86,99,169], or from spatially-constrained experimental
settings deployed with the main purpose of creating open-access datasets to be shared for
research activities [24,135,145,170].

Here, we aim to answer to Q4 (see Figure 1) and distinguish three main categories
of data accessibility to categorize the revised water consumption datasets, namely open,
restricted, and not available:

• Open WDDs are those available in the literature and downloadable from the web free
of charge (when available, the link to each dataset classified as open is reported in
Tables 1–3).

• Restricted datasets are those WDDs that are available online either only for purchase,
or by privately contacting authors/water utilities that own/have direct access to the
data.

• Not available WDDs are those used and/or cited in the literature (primarily in papers
published in the 1970s/80s/90s), but with no information on how to access them.

For the datasets reviewed in this paper, a trade-off emerges between dataset creation
and data availability. While there is an increasing amount of water demand data collected
at different spatial and temporal scales and related publications (see Figure 3), we found
that data sets accessibility is mostly restricted. The datasets we reviewed at the district
scale are usually provided by water utilities for specific projects or case studies. As they are
owned by water utilities and only released to scientists with non-disclosure agreements for
the duration of the relative project, their accessibility is usually restricted or not available.
Conversely, the datasets reviewed at the household and end use scales include at least some
open and many accessible, but restricted, datasets. Data anonymization, access restriction,
or access control filters are usually implemented to protect water consumers privacy [171].
While for many years synthetic household and end use data generation methods have been
developed because of limited data availability (e.g., [27,172]), there is an increasing trend
of open and restricted household/end use datasets, visible from the number of datasets
and access type over time in Figures 6 and 7. The sample of datasets and studies suggests
that digital technologies and experimental research are two factors that can foster data
availability. Indeed, the majority of the datasets that we classified with Restricted or Open
access, have been collected as part of experimental smart meter trials. In such a context,
data are often collected from a sample of volunteer households and are made available by
design as part of the research, thus they are not prevented from further usage by utility
regulations or ownership rights. Figures 6 and 7 are discussed in detail in the following
sections.

275



Water 2021, 13, 36

Figure 6. Household scale dataset count and accessibility over time.

Figure 7. End use scale dataset count and accessibility over time.

6.1. Household-Scale Datasets Accessibility

At the household scale (see Figure 6), there is a more than linear increase in dataset
creation. While the few datasets gathered between 1975 and 1995 are not available, almost
all those created between 1996 and the time of this review are accessible with restrictions.
This may be motivated by the utilities’ and researchers’ need to protect sensitive customer
data, even if they are usually anonymized, or by the interest to control the access to a
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potentially high-value asset constituted by a limited resource (household/smart meter
data, in this case). Only a few datasets gathered in the last 10 years are openly accessible to
the scientific community and the public. We found that this limited set of data is usually
composed of datasets delivered as outputs of specific research projects in the European
area, e.g., the EU-funded SmartH2O project [77] and the studies in London and the Thames
Valley [49,173].

6.2. End Use-Scale Dataset Accessibility

Consistently with the household-scale datasets, the majority of end use-scale datasets
has restricted access. Yet, some open end use datasets exist since the end of the 1990s.
As reported in Figure 7, it also seems that the last 5 years have witnessed an increase of open-
access datasets, compared to the total amount of end use datasets. While datasets collected
at the household scale are usually owned by utilities, end use datasets are usually collected
by researchers as part of experimental research efforts and smart meter/end use studies.
This is one of the reasons why more end use-scale datasets are open access, compared
with household-scale datasets. According to the experience of the authors, even those
datasets declared open are not often easy to access (e.g., download link is broken, website
is not updated), but some encouraging preliminary publications, e.g., ([24,170]) suggest
that further detailed high-resolution open datasets, collected in controlled environments
and provided with groud truth end use labels, will be soon available for research.

All the 41 end use-scale datasets reviewed in this paper have been referenced in at
least one peer-reviewed publication on water demand analysis or end use disaggregation.
However, a detailed analysis of the usage frequency of the different end use datasets (see
Figure 8) reveals that, after excluding those datasets with no identification name and used
only for ad hoc individual case studies and trial applications (“no name ” datasets in
Figure 8), only two datasets were used in more than 5 publications, namely the SEQ and
the GOLD COAST datasets. The SEQ dataset has been dominating the scientific scene of
the last years and contains the largest collection of sub-minute resolution data estimated
for different water end uses. It is the output of a residential end-use study carried out in
Australia, i.e., the South East Queensland Residential End Use Study (SEQREUS) [135]. The
SEQREUS project aimed to quantify and characterise the main water end uses in a sample
of 250 single homes. The SEQ dataset contains water demand with a resolution of 5 sec
obtained through the installation of smart meters at the household level. Moreover, end use
water demand estimations were achieved using a mixed disaggregation method combining
information on the smart metering equipment, household stock inventory surveys, and
flow trace analysis [127,144]. Three separate water end use analysis occurred during the
SEQREUS project. The first reading campaigns were conducted in the winter (14–28 June
2010); the second one was carried out in the summer (1 December 2010–21 February 2011);
the third one in winter 2011 (1–15 June). The SEQ dataset has been so far used in the
scientific community to investigate pattern recognition of water usage [174], assess the
impact of user awarness on water conservation [89], develop end use disaggregation
algorithms [175], and develop demand side management programs [83]. Similarly, the
GOLD COAST dataset includes data from the Gold Coast Watersaver End Use Project that
was conducted in winter 2008 [84]. It includes data for 151 homes located in the Gold Coast,
Australia. The project aimed to explore the degree of influence of household socioeconomic
features on end uses. The GOLD COAST dataset contains water demand with a time
sampling resolution of 10 seconds, obtained with high-resolution water meters and data
loggers to enable the identification of heterogeneous water end uses.
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Figure 8. Usage frequency of different reviewed end use datasets. Each dataset is labelled with its
name. The “no name” category includes datasets with no identification name and used only for ad
hoc individual case studies and trial applications.

7. Nexus Considerations: Outlook and Comparison with Datasets in the
Electricity Sector

Motivated by the strong link between water and energy flows in the urban
metabolism [176], as well as by the digital transformation of both the water and the
energy industry, coordinated actions that account for the water-energy nexus are receiving
increasing attention to archive sustainable resource management [177,178] and foster the
development of integrated multi-utility services driven by digital transformation [26]. An
increasing number of research studies investigated water and electricity correlations to
perform customer segmentation analysis and end use classification of residential water-
electricity demand data [22,69,145,179]. Most of these studies and other research efforts
on water end use disaggregation and water demand profiling were inspired by previous
advances in the electricity sector. With a more advanced and consolidated development
of smart metering and Internet of Things (IoT) technologies in the electricity sector, high-
resolution household and end use electricity datasets became available earlier than similar
datasets in the water sector. Indeed, smart meter developments in the water and electricity
sectors followed so far two different timelines and speeds of deployment. They also present
some technological differences affecting data gathering. The dependence of smart water
meters on their battery, for instance, limits their operating life and their data streaming
frequency, while electricity meters are fed by a power source by design.

Yet, we recognize some similarities, e.g., also in the electricity sector the availability of
end use datasets was pushed by research efforts on building, training, and testing different
end use disaggregation algorithms [180,181]. Moreover, while traditional energy system
modelling focuses on the national/international scale to assist utilities and authorities in
managing the electricity grid, smart electricity metering at the building level is aimed at
improving users’ awareness and promoting sustainable behaviours and energy savings
possibilities [182,183], similarly to water conservation and demand management in the
water sector. Also, similarly to the water sector, the temporal scale for electricity demand
data gathering is strictly related to the spatial scale. Daily or monthly electricity data are
usually required for demand modelling at national scale, while sub-daily resolution is
usually adopted for smart metering at building scale. At this fine scale, both water and
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electricity data are used to enhance the efficiency of consumer behaviors, improve demand
forecasting, foster money/resources-saving opportunities, investigate different customer
segments, and potentially design customized billing schemes [184,185].

Acknowledging that water and electricity demand modelling and management
present both differences and synergies, here we address the research question Q5 listed
in Figure 1. We cross-compare the accessibility of water and electricity datasets to assess
differences and similarities in data availability, while we do not aim to compare tools
for water/electricity modelling. Adopting similar research criteria to those explained in
the dataset review methods (Section 2), we retrieved 57 electricity datasets gathered at
the household or end use scale. Complete information on these datasets is reported in
Supplementary Tables S1 and S2.

We then compared them with the water datasets discussed in the previous section on
data accessibility. The outcome of this comparison is represented in Figure 9. The figure
reveals that, first, there is a slight majority of electricity datasets gathered at the end use
level. This is consistent with what emerges from the reviewed water datasets. Second, the
bar plot in Figure 9 shows that most of the electricity end use datasets we retrieved are
mainly open. It is worth noting that this might have been facilitated by the availability of
low cost and easy-to-install devices, such as smart sockets and Wi-Fi smart plugs, which
allow direct end use data gathering [186]. Moreover, the community of researchers working
on electricity Non-Intrusive Load Monitoring (NILM) has been very active and open in the
last years. The availability of many open end use datasets has been pushed by the need of
benchmarking the increasing amount of NILM algorithms on common datasets [187–189],
as well as by individual initiatives of some researchers making available data retrieved
from their household, or an experimental site equipped with appliance-level sensors,
e.g., [145]. Overall, we consider the research efforts in household and end use electricity
data collection and analysis as precursors of the trend that is developing in the water
sector during the last years. We expect that further developments in the water sector
will help fill the gap between available open electricity and water data at the household
and end use scales. Similar research will also foster the portability of algorithms and data
analytics originally developed for electricity application to water or combined water-energy
applications [190,191].

0 5 10 15 20 25 30 35

END USE Electricity

END USE Water

HOUSEHOLD Electricity

HOUSEHOLD Water

NUMBER OF DATASETS

OPEN RESTRICTED NOT AVAILABLE

Figure 9. Comparison between water and electricity dataset accessibility at the household and end
use scales.
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8. Discussion and Conclusions

In the last decades, demand-side water management emerged as a key strategy to
pursue efficient water demands and complement supply-side interventions to enhance the
overall resilience of urban water systems. The rise of demand-side water management,
coupled with the development of digital water metering technologies, has fostered the
collection of water demand data at increasingly higher spatial and temporal resolutions.
The availability of water demand data at the spatial scale of individual households or
end uses, and with a time sampling resolution of a few seconds or minutes, opened up
unprecedented opportunities to improve our understanding of water consumer behaviors
and modelling water demand. As a consequence of this transformative process, the
literature is now rich with urban water demand datasets collected over time with different
spatial and temporal resolutions, and archived with different levels of accessibility.

In this paper, we reviewed 92 water demand datasets and 120 related peer-review
publications compiled over the last 45 years. We analyzed the datasets and classified them
according to their spatial scale, temporal scale, and level of accessibility. Moreover, we
analyzed their domains of application within water demand modelling and management
studies, and compared them with similar datasets in the electricity sector. As a result of this
review and classification effort, we can summarize the following takeaways and address
the research questions introduced in Figure 1.

Q1. How are the existing urban water demand datasets distributed across different
spatial scales? We found that the majority of the reviewed datasets was collected at the
household (31 datasets) or end use scale (41 datasets). Only 20 datasets were identified
at the district scale. This is likely due to the increasing number of water demand studies
that developed after the advent of digital water meters. Moreover, the datasets gathered
at the district scale are usually owned by water utilities, which make them available to
researchers usually only temporarily and for ad hoc case study analyses.

Q2. How are the existing urban water demand datasets distributed across different
temporal scales? Focusing on the finest spatial scales analyzed, i.e., the household and
end use scales, we found that most of the analyzed datasets contain data sampled with a
time frequency in the range of 1 s to 1 day. Yet, differences exist: most of the end use-scale
datasets contain data gathered with a sub-minute resolution, while household-scale data
are characterized by time sampling resolutions of 15 min to 1 day. This is primarily due to
the high temporal resolution required by residential water end use disaggregation models.

Q3. What are the main domains of application of the reviewed studies, within wa-
ter demand modelling and management studies? Our review reveals that the datasets
reviewed at district level are mainly used to estimate aggregate demand patterns used in
water distribution networks models to investigate water network partitioning, hydraulic
performance, network anomalies, and leakage detection. Household-scale datasets have
been primarily used to develop data-driven models for water demand forecasting, as well
as for explorative analysis to identify water demand determinants. Consistently with our
findings for Q2, end use datasets are primarily gathered to develop, train, and validate
end use disaggregation algorithms. Both household and end use datasets have also been
used to inform water conservation/demand management programs and monitor their
effectiveness to change water demand patterns.

Q4. What is the access policy for the reviewed data sets? Most of the reviewed datasets
are not open access. Usually, they have a restricted access, i.e., are available for purchase,
or can only be obtained by contacting the researchers or water utilities that compiled and
own the dataset. However, some households- and end use-scale datasets became openly
available, primarily in the last 5 years. This is an encouraging signal for future data sharing
and research reproducibility.

Q5. Is there any synergy with comparable datasets in the electricity sector? Similarities
exist in the spatial and temporal scales of interest for both the water and the electricity sector,
and the amount of reviewed datasets is comparable. Yet, the datasets in these two domains
are still very different for what regard their accessibility. Open access datasets are more
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easily available in the electricity sector, primarily because of the extensive research efforts
developed in the last three decades on the problem of electricity end-use disaggregation.

Overall, this paper can provide researchers in the water demand modelling and man-
agement sector with useful information to identify data readily available in formats and
spatial and temporal scales that suit their research needs. We also identify a roadmap of
priorities to enable a complete disclosure of the information value of urban water demand
datasets. First, the scientific community would benefit from increased accessibility to
open data. We acknowledge that water demand data are sensitive and anonymization
and privacy-protection measures need to be undertaken before they can be made openly
available. Sharing high-resolution data, consumer data, and sensitive digital data imply
potential risks for the privacy and security of private or personal information. Sensi-
tive datasets could potentially be used by third parties for profit and intimidation, or to
intrusively track private activities [168]. In response to privacy and security concerns,
data protection regulations such as the General Data Protection Regulation (GDPR) imple-
mented by the EU in 2018 and other policies initiated after it in other countries worldwide
should be established at the regulatory level [192]. When guaranteed in compliance with
privacy protection and data security frameworks, an increasing availability of open access
datasets would guarantee better reproducible research, create opportunities for research
benchmarking, and foster more transparent and possibly collaborative development and
validation of analytic tools.

Second, this review is focused solely on water demand datasets, with primary focus on
the household and the end use scales, and only a general overview of possible applications
at different temporal and spatial resolutions is provided. Future work could look at system-
atically reviewing the different goals of existing urban water demand studies at different
suburban and urban scales, including those focused on outdoor water use [193], urban
landscape water conservation [194], economics and price influences [91], socioeconomic
factors and drivers of water demand [195], and metropolitan water planning [196]. Espe-
cially these last categories of studies and applications entail cross-domain analysis which
combine water consumption data with data from other sources (e.g., socio-economics,
climate, behavioral data). Beside requiring proper analytic tools for data analysis, proper
data management and sharing frameworks and protocols should be designed to facilitate
data fusion among private/public water utilities and the other stakeholders involved in
these inter-sectoral studies.

Third, the reviewed datasets are unevenly geographically spread worldwide (some
geographical hot spots in USA, Europe, and Australia were identified) and come with
different spatial and temporal resolutions. Research efforts aimed at quantitatively com-
paring water demand data (water consumption volumes, peaks, patterns) gathered across
different scales and geographical contexts would advance the generalization of water
demand models and contribute to upscale the findings from currently localized water
demand studies. In addition, important aspects related to the use of water consumption
data from different meters include data standardization and meter accuracy. Data from
various sources need a standardized format to facilitate and improve the use of WDDs
and increase data portability, interoperability, and overall data quality [197,198]. Moreover,
future research could focus on assessing and comparing datasets in the catalogue we have
built in this work in terms of measurement precision and accuracy.

Finally, we expect that the current challenges posed to the resilience of interconnected
critical infrastructure will foster efforts aimed at overcoming data silos and encourage the
development and transfer of multi-sectoral analytic tools to inform resilience planning
across sectors (e.g., smart electricity grids, green infrastructure), and scales [26].

Supplementary Materials: The complete catalog with the 92 state-of-the-art water demand datasets
and 120 publications reviewed in this paper is available on Zenodo (https://doi.org/10.5281/zenodo.
4390460 [50]) and in this public GitHub repository: https://github.com/AnnaDiMauro/WDDreview.
The complete list and metadata of the additional 57 electricity datasets at the end use and household
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scales that we reviewed in this paper is reported in Supplementary Tables S1 (end use scale) and S2
(household scale). The following are available online at https://www.mdpi.com/2073-4441/13/1/36/s1.

Author Contributions: All authors designed the research. A.D.M. compiled the catalog of the
reviewed datasets and peer-reviewed publications, and performed the review. A.D.M. and A.C.
(Andrea Cominola) analyzed the outcomes of the review. A.C. (Andrea Cominola), A.C. (Andrea
Castelletti), and A.D.N. supervised the research. All authors reviewed the manuscript. All authors
have read and agree to the published version of the manuscript.

Funding: The research was conducted as part of the activities financed with the awarding of the
V:ALERE: 2019 project of the University of Campania Luigi Vanvitelli.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huang, D.; Vairavamoorthy, K.; Tsegaye, S. Flexible design of urban water distribution networks. In Proceedings of the World
Environmental and Water Resources Congress 2010: Challenges of Change—Proceedings of the World Environmental and Water
Resources Congress 2010, Providence, RI, USA, 16–20 May 2010.

2. McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and
freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [CrossRef] [PubMed]

3. Wu, W.; Maier, H.R.; Dandy, G.C.; Arora, M.; Castelletti, A. The changing nature of the water—Energy nexus in urban water
supply systems: A critical review of changes and responses. J. Water Clim. Chang. 2020, 11, 1095–1122. [CrossRef]

4. Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015,
51, 4823–4839. [CrossRef]

5. Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.Y.; Spuhler, D.; Moy De Vitry, M.; Beutler, P.; Maurer, M. The Potential of
Knowing More: A Review of Data-Driven Urban Water Management. Environ. Sci. Technol. 2017, 51, 2538–2553. [CrossRef]
[PubMed]

6. Maggioni, E. Water demand management in times of drought: What matters for water conservation. Water Resour. Res. 2015,
51, 125–139. [CrossRef]

7. Stavenhagen, M.; Buurman, J.; Tortajada, C. Saving water in cities: Assessing policies for residential water demand management
in four cities in Europe. Cities 2018, 79, 187–195. [CrossRef]

8. Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. Benefits and challenges of using smart meters for advancing
residential water demand modeling and management: A review. Environ. Model. Softw. 2015, 72, 198–214. [CrossRef]

9. Giurco, D.; Carrard, N.; McFallan, S.; Nalbantoglu, M.; Inman, M.; Thornton, N.; White, S. Residential End-Use Measurement
Guidebook: A Guide to Study Design, Sampling and Technology; Technical Report; Institute for Sustainable Futures, UTS: Ultimo,
Australia, 2008.

10. Sharma, S.K.; Vairavamoorthy, K. Urban water demand management: Prospects and challenges for the developing countries.
Water Environ. J. 2009, 23, 210–218. [CrossRef]

11. House-Peters, L.A.; Chang, H. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water
Resour. Res. 2011, 47. doi:10.1029/2010WR009624. [CrossRef]

12. Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44.
doi:10.1029/2007WR006200. [CrossRef]

13. Seifollahi-Aghmiuni, S.; Haddad, O.B.; Omid, M.H.; Mariño, M.A. Long-term efficiency of water networks with demand
uncertainty. Proc. Inst. Civ. Eng. Water Manag. 2011, 164, 147–159. [CrossRef]

14. De Souza, E.V.; Costa Da Silva, M.A. Management system for improving the efficiency of use water systems water supply.
Procedia Eng. 2014, 70, 458–466. [CrossRef]

15. Mouatadid, S.; Adamowski, J. Using extreme learning machines for short-term urban water demand forecasting. Urban Water J.
2017, 14, 630–638. [CrossRef]

16. Firat, M.; Turan, M.E.; Yurdusev, M.A. Comparative analysis of neural network techniques for predicting water consumption
time series. J. Hydrol. 2010, 384, 46–51. [CrossRef]

17. Herrera, M.; Torgo, L.; Izquierdo, J.; Pérez-García, R. Predictive models for forecasting hourly urban water demand. J. Hydrol.
2010, 387, 141–150. [CrossRef]

18. Adamowski, J.; Fung Chan, H.; Prasher, S.O.; Ozga-Zielinski, B.; Sliusarieva, A. Comparison of multiple linear and nonlinear
regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods
for urban water demand forecasting in Montreal, Canada. Water Resour. Res. 2012, 48. doi:10.1029/2010WR009945. [CrossRef]

19. Gurung, T.R.; Stewart, R.A.; Sharma, A.K.; Beal, C.D. Smart meters for enhanced water supply network modelling and
infrastructure planning. Resour. Conserv. Recycl. 2014, 90, 34–50. [CrossRef]

282



Water 2021, 13, 36

20. Giurco, D.; Carrard, N.; Wang, X.; Inman, M.; Nguyen, M. Innovative Smart Metering Technology and Its Role in End-Use Measurement:
Assessing Policy Measures on Addressing Urban Water Scarcity in Can Tho City in the Context of Climate Uncertainty and Urbanization
View Project Developing a Truly Intelligent Water; Technical Report; Australian Water Association: Surfers Paradise, Australia, 2008.

21. Monks, I.; Stewart, R.A.; Sahin, O.; Keller, R. Revealing unreported benefits of digital water metering: Literature review and
expert opinions. Water 2019, 11, 838. [CrossRef]

22. Cominola, A.; Spang, E.S.; Giuliani, M.; Castelletti, A.; Lund, J.R.; Loge, F.J. Segmentation analysis of residential water-electricity
demand for customized demand-side management programs. J. Clean. Prod. 2018, 172, 1607–1619. [CrossRef]

23. Britton, T.C.; Stewart, R.A.; O’Halloran, K.R. Smart metering: Enabler for rapid and effective post meter leakage identification
and water loss management. J. Clean. Prod. 2013, 54, 166–176. [CrossRef]

24. Di Mauro, A.; Di Nardo, A.; Santonastaso, G.F.; Venticinque, S. An IoT system for monitoring and data collection of residential
water end-use consumption. In Proceedings of the International Conference on Computer Communications and Networks,
ICCCN, Valencia, Spain, 29 July–1 August 2019.

25. Sønderlund, A.L.; Smith, J.R.; Hutton, C.J.; Kapelan, Z.; Savic, D. Effectiveness of smart meter-based consumption feedback in
curbing household water use: Knowns and unknowns. J. Water Resour. Plan. Manag. 2016, 142, 04016060. [CrossRef]

26. Stewart, R.A.; Nguyen, K.; Beal, C.; Zhang, H.; Sahin, O.; Bertone, E.; Vieira, A.S.; Castelletti, A.; Cominola, A.; Giuliani, M.; et al.
Integrated intelligent water-energy metering systems and informatics: Visioning a digital multi-utility service provider. Environ.
Model. Softw. 2018, 105, 94–117. [CrossRef]

27. Blokker, E.J.; Vreeburg, J.H.; van Dijk, J.C. Simulating residential water demand with a stochastic end-use model. J. Water Resour.
Plan. Manag. 2010, 136, 19–26. [CrossRef]

28. Cominola, A.; Giuliani, M.; Castelletti, A.; Rosenberg, D.E.; Abdallah, A.M. Implications of data sampling resolution on water
use simulation, end-use disaggregation, and demand management. Environ. Model. Softw. 2018, 102, 199–212. [CrossRef]

29. Gargano, R.; Di Palma, F.; de Marinis, G.; Granata, F.; Greco, R. A stochastic approach for the water demand of residential end
users. Urban Water J. 2016, 13, 569–582. [CrossRef]

30. Scheepers, H.M.; Jacobs, H.E. Simulating residential indoor water demand by means of a probability based end-use model.
J. Water Supply Res. Technol.—AQUA 2014, 63, 476–488. [CrossRef]

31. Carragher, B.J.; Stewart, R.A.; Beal, C.D. Quantifying the influence of residential water appliance efficiency on average day
diurnal demand patterns at an end use level: A precursor to optimised water service infrastructure planning. Resour. Conserv.
Recycl. 2012, 62, 81–90. [CrossRef]

32. Sønderlund, A.L.; Smith, J.R.; Hutton, C.; Kapelan, Z. Using smart meters for household water consumption feedback: Knowns
and unknowns. Procedia Eng. 2014, 89, 990–997. [CrossRef]

33. Pericli, A.; Jenkins, J.O. Review of Current Knowledge Smart Meters and Domestic Water Usage Cover Page Image © Thames Water
Utilities Ltd Review of Current Knowledge; Technical Report; Foundation for Water Research: Marlow, NH, USA, 2015.

34. Zuiderwijk, A.; Janssen, M. The Negative Effects of Open Government Data—Investigating the Dark Side of Open Data; ACM
International Conference Proceeding Series; ACM: New York, NY, USA, 2014.

35. Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Tzatchkov, V.; Alcocer Yamanaka, V.H. Divide and conquer partitioning
techniques for smart water networks. Procedia Eng. 2014, 89, 1176–1183. [CrossRef]

36. Di Nardo, A.; Di Natale, M.; Di Mauro, A.; Martínez Díaz, E.; Blázquez Garcia, J.A.; Santonastaso, G.F.; Tuccinardi, F.P.
An Advanced Software to Manage a Smart Water Network with Innovative Metrics and Tools Based on Social Network Theory.
In Proceedings of the HIC 2018. 13th International Conference on Hydroinformatics, Palermo, Italy, 1–5 July 2018; Volume 3,
pp. 582–592. [CrossRef]

37. Knobloch, A.; Guth, N.; Klingel, P. Automated water balance calculation for water distribution systems. Procedia Eng. 2014,
89, 428–436. [CrossRef]

38. Massoud, T.; Zia, A. Dynamic management of water distribution networks based on hydraulic performance analysis of the
system. Water Sci. Technol. Water Supply 2003, 3, 95–102. [CrossRef]

39. Farah, E.; Shahrour, I. Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum
Night Flow. Water Resour. Manag. 2017, 31. doi:10.1007/s11269-017-1780-9. [CrossRef]

40. Bragalli, C.; Neri, M.; Toth, E. Effectiveness of smart meter-based urban water loss assessment in a real network with synchronous
and incomplete readings. Environ. Model. Softw. 2019, 112, 128–142. [CrossRef]

41. Mounce, S.R.; Boxall, J.B. Implementation of an on-line artificial intelligence district meter area flow meter data analysis system
for abnormality detection: A case study. Water Sci. Technol. Water Supply 2010, 10, 437–444. [CrossRef]

42. Di Nardo, A.; Di Natale, M.; Gargano, R.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Performance of partitioned water
distribution networks under spatial-temporal variability of water demand. Environ. Model. Softw. 2018, 101, 128–136. [CrossRef]

43. Pullinger, M.; Anderson, B.; Browne, A.L.; Medd, W. New directions in understanding household water demand: A practices
perspective. J. Water Supply Res. Technol.—AQUA 2013, 62, 496–506. [CrossRef]

44. Xenochristou, M.; Kapelan, Z.; Hutton, C.; Hofman, J. Smart Water Demand Forecasting: Learning from the Data. EasyChair.
In Proceedings of the HIC 2018 13th International Conference on Hydroinformatics Palermo, Italy, 1–5 July 2018; Volume 3,
pp. 2351–2358.

45. Salleh, N.S.M.; Rasmani, K.A.; Jamil, N.I. The Effect of Variations in Micro-components of Domestic Water Consumption Data on
the Classification of Excessive Water Usage. Procedia—Soc. Behav. Sci. 2015, 195, 1865–1871. [CrossRef]

283



Water 2021, 13, 36

46. Rathnayaka, K.; Malano, H.; Arora, M.; George, B.; Maheepala, S.; Nawarathna, B. Prediction of urban residential end-use water
demands by integrating known and unknown water demand drivers at multiple scales I: Model development. Resour. Conserv.
Recycl. 2017, 117, 85–92. [CrossRef]

47. Billings, R.B.; Day, W.M. Demand management factors in residential water use: The southern Arizona experience. J. Am. Water
Work. Assoc. 1989, 81, 58–64. [CrossRef]

48. Kenney, D.S.; Goemans, C.; Klein, R.; Lowrey, J.; Reidy, K. Residential water demand management: Lessons from Aurora,
Colorado. J. Am. Water Resour. Assoc. 2008, 44, 192–207. [CrossRef]

49. Rees, P.; Clark, S.; Nawaz, R. Household Forecasts for the Planning of Long-Term Domestic Water Demand: Application to
London and the Thames Valley. Popul. Space Place 2020, 26, e2288. [CrossRef]

50. Di Mauro, A.; Cominola, A.; Castelletti, A.; Di Nardo, A. [Database] Urban Water Consumption at Multiple Spatial
and Temporal Scales. A Review of Existing Datasets. 2020. Available online: https://doi.org/10.5281/zenodo.4390460.
doi:10.5281/zenodo.4390460. (accessed on 23 December 2020).

51. Hernandez, E.; Hoagland, S.; Ormsbee, L.E. WDSRD: A Database for Research Applications. University of Kentucky Libraries.
2016. Available online: https://uknowledge.uky.edu/wdsrd/ (accessed on 10 December 2020).

52. Di Nardo, A.; Di Natale, M.; Di Mauro, A.; Martínez Díaz, E.; Blázquez Garcia, J.A.; Santonastaso, G.F.; Tuccinardi, F.P.
An advanced software to design automatically permanent partitioning of a water distribution network. Urban Water J. 2020,
17, 259–265. doi:10.1080/1573062X.2020.1760322. [CrossRef]

53. Aral, M.M.; Guan, J.; Maslia, M.L.; Grayman, W.M. Optimization model and algorithms for design of water sensor placement in
water distribution systems. In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium 2006, Cincinnati,
OH, USA, 27–30 August 2006.

54. Casillas, M.V.; Puig, V.; Garza-Castañón, L.E.; Rosich, A. Optimal sensor placement for leak location in water distribution
networks using genetic algorithms. Sensors 2013, 13, 14984–15005. [CrossRef] [PubMed]

55. Mayer, P.W.; Deoreo, W.B.; Opitz, E.M.; Kiefer, J.C.; Davis, W.Y.; Dziegielewski, B.; Nelson, J.O. Residential End Uses of Water;
Aquacraft, Inc. Water Engineering and Management: Boulder, CO, USA, 1999.

56. Gilbertson, M.; Hurlimann, A.; Dolnicar, S. Does water context influence behaviour and attitudes to water conservation? Australas.
J. Environ. Manag. 2011, 18. doi:10.1080/14486563.2011.566160. [CrossRef]

57. Parker, J.M.; Wilby, R.L. Quantifying Household Water Demand: A Review of Theory and Practice in the UK. Water Resour.
Manag. 2013, 27, 981–1011. [CrossRef]

58. Jorgensen, B.; Graymore, M.; O’Toole, K. Household water use behavior: An integrated model. J. Environ. Manag. 2009,
91, 227–236. [CrossRef] [PubMed]

59. Fielding, K.S.; Russell, S.; Spinks, A.; Mankad, A. Determinants of household water conservation: The role of demographic,
infrastructure, behavior, and psychosocial variables. Water Resour. Res. 2012, 48. doi:10.1029/2012WR012398. [CrossRef]

60. Russell, S.V.; Knoeri, C. Exploring the psychosocial and behavioural determinants of household water conservation and intention.
Int. J. Water Resour. Dev. 2019, 36, 940–955. [CrossRef]

61. Willis, R.M.; Stewart, R.A.; Giurco, D.P.; Talebpour, M.R.; Mousavinejad, A. End use water consumption in households: Impact of
socio-demographic factors and efficient devices. J. Clean. Prod. 2013, 60, 107–115. [CrossRef]

62. Liu, A.; Mukheibir, P. Digital metering feedback and changes in water consumption—A review. Resour. Conserv. Recycl. 2018,
134, 136–148. [CrossRef]

63. Rahim, M.S.; Nguyen, K.A.; Stewart, R.A.; Giurco, D.; Blumenstein, M. Machine learning and data analytic techniques in
digitalwater metering: A review. Water 2020, 12, 294. [CrossRef]

64. Cole, G.; Stewart, R.A. Smart meter enabled disaggregation of urban peak water demand: Precursor to effective urban water
planning. Urban Water J. 2013, 10, 174–194. [CrossRef]

65. Tanverakul, S.A.; Lee, J. Residential water demand analysis due to water meter installation in California. In World Environmental
and Water Resources Congress 2013: Showcasing the Future—Proceedings of the 2013 Congress; American Society of Civil Engineers
(ASCE): Reston, VA, USA, 2013; pp. 936–945.

66. Duerr, I.; Merrill, H.R.; Wang, C.; Bai, R.; Boyer, M.; Dukes, M.D.; Bliznyuk, N. Forecasting urban household water demand
with statistical and machine learning methods using large space-time data: A Comparative study. Environ. Model. Softw. 2018,
102, 29–38. [CrossRef]

67. Srinivasan, V.; Stankovic, J.; Whitehouse, K. WaterSense: Water Flow Disaggregation Using Motion Sensors. In Proceedings of the
Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Seattle, WA, USA, 1–4 November 2011.

68. Kozlovskiy, I.; Schöb, S.; Sodenkamp, M. Non-intrusive disaggregation of water consumption data in a residential household. In
Lecture Notes in Informatics (LNI), Proceedings—Series of the Gesellschaft fur Informatik (GI); Gesellschaft fur Informatik (GI): Bremen,
Germany, 2016; Volume P-259, pp. 1381–1387.

69. Vitter, J.S.; Webber, M. Water Event Categorization Using Sub-Metered Water and Coincident Electricity Data. Water 2018, 10, 714.
[CrossRef]

70. Pesantez, J.E.; Berglund, E.Z.; Kaza, N. Smart meters data for modeling and forecasting water demand at the user-level. Environ.
Model. Softw. 2020, 125, 104633. [CrossRef]

71. Loh, M.; Coghlan, P. Domestic Water Use Study. In Perth, Western Australia 1998–2001. Hydro 2000: Interactive Hydrology;
Institution of Engineers: Barton, Australia, 2003; p. 36.

284



Water 2021, 13, 36

72. Nawaz, R.; Rees, P.; Clark, S.; Mitchell, G.; McDonald, A.; Kalamandeen, M.; Lambert, C.; Henderson, R. Long-Term Projections
of Domestic Water Demand: A Case Study of London and the Thames Valley. J. Water Resour. Plan. Manag. 2019, 145, 05019017.
[CrossRef]

73. Zounemat-Kermani, M.; Matta, E.; Cominola, A.; Xia, X.; Zhang, Q.; Liang, Q.; Hinkelmann, R. Neurocomputing in surface
water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects. J. Hydrol. 2020.
doi:10.1016/j.jhydrol.2020.125085. [CrossRef]

74. Joo, J.C.; Oh, H.J.; Ahn, H.; Ahn, C.H.; Lee, S.; Ko, K.R. Field application of waterworks automated meter reading systems and
analysis of household water consumption. Desalin. Water Treat. 2015, 54, 1401–1409. [CrossRef]

75. Loureiro, D.; Rebelo, M.; Mamade, A.; Vieira, P.; Ribeiro, R. Linking water consumption smart metering with census data to
improve demand management. Water Sci. Technol. Water Supply 2015, 15, 1396–1404. [CrossRef]

76. Lee, J. Residential water demand analysis of a Low-Income Rate Assistance Program in California, United States. Water Environ.
J. 2016, 30, 49–61. [CrossRef]

77. Rizzoli, A.E.; Castelletti, A.; Cominola, A.; Fraternali, P.; Diniz Dos Santos, A.; Storni, B.; Wissmann-Alves, R.; Bertocchi, M.;
Novak, J.; Micheel, I. The SmartH2O project and the role of social computing in promoting efficient residential water use: A
first analysis. In Proceedings of the 7th International Congress on Environmental Modelling and Software: Bold Visions for
Environmental Modeling, iEMSs 2014, San Diego, CA, USA, 15–19 June 2014; Volume 3, pp. 1559–1567.

78. Liu, A.; Giurco, D.; Mukheibir, P. Urban water conservation through customised water and end-use information. J. Clean. Prod.
2016, 112, 3164–3175. [CrossRef]

79. Nguyen, K.A.; Stewart, R.A.; Zhang, H.; Sahin, O.; Siriwardene, N. Re-engineering traditional urban water management practices
with smart metering and informatics. Environ. Model. Softw. 2018, 101, 256–267. [CrossRef]

80. Cardell-Oliver, R. Discovering water use activities for smart metering. In Proceedings of the 2013 IEEE 8th International
Conference on Intelligent Sensors, Sensor Networks and Information Processing: Sensing the Future, ISSNIP 2013, Melbourne,
Australia 2–5 April 2013; Volume 1, pp. 171–176.

81. Meyer, B.E.; Jacobs, H.E.; Ilemobade, A. Extracting household water use event characteristics from rudimentary data. J. Water
Supply Res. Technol.—AQUA 2020, 69, 387–397. [CrossRef]

82. Nguyen, K.A.; Zhang, H.; Stewart, R.A. Application of dynamic time warping algorithm in prototype selection for the
disaggregation of domestic water flow data into end use events. In Proceedings of the 34th IAHR Congress 2011—Balance and
Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th
Conference on Hydraulics in Water Engineering, Brisbane, Australia, 26 June–1 July 2011.

83. Bennett, C.; Stewart, R.A.; Beal, C.D. ANN-based residential water end-use demand forecasting model. Expert Syst. Appl. 2013,
40, 1014–1023. [CrossRef]

84. Willis, R.; Stewart, R.A.; Panuwatwanich, K.; Capati, B.; Giurco, D. Gold coast domestic water end use study. Water 2009,
36, 84–90.

85. Beal, C.; Makki, A.; Stewart, R. Identifying the Drivers of Water Consumption: A Summary of Results from the South East
Queensland Residential End Use Study. Sci. Forum Stakehold. Engag. Build. Linkages, Collab. Sci. Qual. 2011, 126–132.

86. Heinrich, M. Water End-Use and Efficiency Project (Weep)—A Case Study. In Proceedings of the SB07 Transforming Our Built
Environment, Auckland, New Zealand, 14–16 November 2007; Volume 136, p. 8.

87. Suero, F.J.; Mayer, P.W.; Rosenberg, D.E. Estimating and Verifying United States Households’ Potential to Conserve Water.
J. Water Resour. Plan. Manag. 2012, 138, 299–306. [CrossRef]

88. Gato-Trinidad, S.; Jayasuriya, N.; Roberts, P. Understanding urban residential end uses of water. Water Sci. Technol. 2011,
64, 36–42. [CrossRef]

89. Walton, A.; Hume, M. Creating positive habits in water conservation: The case of the Queensland Water Commission and the
Target 140 campaign. Int. J. Nonprofit Volunt. Sect. Mark. 2011, 16, 215–224. [CrossRef]

90. Liu, A.; Giurco, D.; Mukheibir, P. Advancing household water-use feedback to inform customer behaviour for sustainable urban
water. Water Sci. Technol. Water Supply 2017, 17, 198–205. [CrossRef]

91. Cassuto, A.E.; Ryan, S. Effect of price on the residential demand for water within an agency. JAWRA J. Am. Water Resour. Assoc.
1979, 15, 345–353. [CrossRef]

92. Russac, D.A.; Rushton, K.R.; Simpson, R.J. Insights into Domestic Demand from a Metering Trial. Water Environ. J. 1991,
5, 342–351. [CrossRef]

93. Molino, B.; Rasulo, G.; Taglialatela, L. Peak coefficients of household potable water supply. Water Resour. Manag. 1991, 4, 283–291.
[CrossRef]

94. Alvisi, S.; Franchini, M.; Marinelli, A. A stochastic model for representing drinking water demand at residential level. Water
Resour. Manag. 2003, 17, 197–222. [CrossRef]

95. Gato, S.; Jayasuriya, N.; Hadgraft, R.; Roberts, P. A simple time series approach to modelling urban water demand. Australas. J.
Water Resour. 2005, 8, 153–164. [CrossRef]

96. Worthington, A.C.; Higgs, H.; Hoffmann, M. Residential water demand modeling in Queensland, Australia: A comparative
panel data approach. Water Policy 2009, 11, 427–441. [CrossRef]

97. Gato-Trinidad, S.; Gan, K. Characterizing maximum residential water demand. WIT Trans. Built Environ. 2011, 122, 15–24.

285



Water 2021, 13, 36

98. Bakker, M.; Vreeburg, J.H.; van Schagen, K.M.; Rietveld, L.C. A fully adaptive forecasting model for short-term drinking water
demand. Environ. Model. Softw. 2013, 48, 141–151. [CrossRef]

99. Jolly, M.D.; Lothes, A.D.; Bryson, L.S.; Ormsbee, L. Research database of water distribution system models. J. Water Resour. Plan.
Manag. 2014, 140, 410–416. [CrossRef]

100. Boracchi, G.; Roveri, M. Exploiting self-similarity for change detection. In Proceedings of the International Joint Conference on
Neural Networks, Beijing, China, 6–11 July 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014;
pp. 3339–3346.

101. Ji, G.; Wang, J.; Ge, Y.; Liu, H. Urban water demand forecasting by LS-SVM with tuning based on elitist teaching-learning-based
optimization. In Proceedings of the 26th Chinese Control and Decision Conference, CCDC 2014, Changsha, China, 31 May–2
June 2014; pp. 3997–4002.

102. Avni, N.; Fishbain, B.; Shamir, U. Water consumption patterns as a basis for water demand modeling. Water Resour. Res. 2015,
51, 8165–8181. [CrossRef]

103. Vries, D.; Van Den Akker, B.; Vonk, E.; De Jong, W.; Van Summeren, J. Application of machine learning techniques to predict
anomalies in water supply networks. Water Sci. Technol. Water Supply 2016, 16, 1528–1535. [CrossRef]

104. Leyli-Abadi, M.; Samé, A.; Oukhellou, L.; Cheifetz, N.; Mandel, P.; Féliers, C.; Chesneau, O. Predictive classification of water
consumption time series using non-homogeneous markov models. In Proceedings of the 2017 International Conference on Data
Science and Advanced Analytics, DSAA 2017, Tokyo, Japan, 19–21 October 2017; Institute of Electrical and Electronics Engineers
Inc.: Piscataway, NJ, USA, 2017; Volume 2018-January, pp. 323–331.

105. Quesnel, K.J.; Ajami, N.K. Changes in water consumption linked to heavy news media coverage of extreme climatic events. Sci.
Adv. 2017, 3, e1700784. [CrossRef] [PubMed]

106. Di Nardo, A.; Di Natale, M.; Di Mauro, A.; Santonastaso, G.F.; Palomba, A.; Locoratolo, S. Calibration of a water distribution
network with limited field measures: The case study of Castellammare di Stabia (Naples, Italy). In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11353 LNCS, pp. 433–436.

107. Smolak, K.; Kasieczka, B.; Fialkiewicz, W.; Rohm, W.; Siła-Nowicka, K.; Kopańczyk, K. Applying human mobility and water
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Abstract: A water distribution network (WDN) is an indispensable element of civil infrastructure
that provides fresh water for domestic use, industrial development, and fire-fighting. However, in a
large and complex network, operation and management (O&M) can be challenging. As a technical
initiative to improve O&M efficiency, the paradigm of “divide and conquer” can divide an original
WDN into multiple subnetworks. Each subnetwork is controlled by boundary pipes installed with
gate valves or flow meters that control the water volume entering and leaving what are known as
district metered areas (DMAs). Many approaches to creating DMAs are formulated as two-phase
procedures, clustering and sectorizing, and are called water network partitioning (WNP) in general.
To assess the benefits and drawbacks of DMAs in a WDN, we provide a comprehensive review of
various state-of-the-art approaches, which can be broadly classified as: (1) Clustering algorithms,
which focus on defining the optimal configuration of DMAs; and (2) sectorization procedures, which
physically decompose the network by selecting pipes for installing flow meters or gate valves. We
also provide an overview of emerging problems that need to be studied.

Keywords: clustering; district metered area; network sectorization; water distribution network; water
network partitioning

1. Introduction

A water distribution network (WDN) supplies drinking water by maintaining pressures and flow
rates. As most of a WDN’s components are buried and comprise thousands to tens of thousands of
elements, operation and management (O&M) can be complex [1]. Increasing urbanization means
WDNs are constantly being upgraded and expanded. In large cities with aging networks, O&M is
becoming more challenging than ever before.

A critical O&M objective for utilities working on WDNs is improving the efficiency and efficacy
of the supply for a specified water demand at the lowest cost. In particular, efficacy requires reducing
water leakage and nonrevenue water, controlling uniform pressure, and ensuring sufficient pressure.
Leakage control is the most effective way to reduce water prices. The quantity of leakage is related to
system pressure, and reducing pressure reduces leakage. Utilities can apply a “divide and conquer”
paradigm to this challenge by dividing the original complex network into independently controlled
subnetworks called district metered areas (DMAs).

Most researchers agree that partitioning a network into DMAs offers many benefits [2–6]. These
actions may include but are not limited to: (i) Substantially reduce nonrevenue water by active leakage
control; (ii) simplify pressure management by setting off pressure reducing valves (PRVs); (iii) rapidly
identify burst pipes; (iv) district isolation in order to protect the rest of network from accidental or
malicious contamination events; and (v) potential creation of independent DMAs which exclusively
supplied from its own water sources for better control of water quality (e.g., there is no mixing of
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water from different sources). Moreover, for intermittent WDNs, where water is only supplied during
a certain time of a day, DMAs are transition processes that allow evolving intermittent WDNs to
continuous systems by enabling equitable water supply in each DMA [7]. Ciaponi et al. [8] recently
revealed the benefits of WNP not only for WDNs monitoring from contamination events but also for
the effectiveness of optimal sensor placement.

Despite these advantages, they come with trade-offs, such as the reduced redundancy in network
connectivity and the demotion of system pressure, which results in lower network preparedness for
emergencies such as fire-fighting, water suspension due to burst pipes. An additional concern is water
quality deterioration (i.e., water age growth) due to the reduction of available flow paths [9,10].

Because of the benefits brought about by DMAs, many utilities consider them an effective way
to achieve O&M objectives [2]. However, dividing an original network into suitable DMAs can
be challenging because of the intrinsic complexity of the WDN. In the past, before mathematical
methods were applied to DMA configuration, utilities designed DMAs according to administrative
boundaries (districts), main roads, the number of inhabitants, the economic level of leakage, or reservoir
(tank) locations [4,5], which did not account for global perspectives. However, with the advent of
mathematical models, hydraulic solvers can simplify the process and provide various approaches to
optimizing the creation of DMAs while considering operational constraints and objectives.

Today, water network partitioning (WNP) is used to divide networks into DMAs. WNP is a
heuristic process controlled by two phases: clustering and sectorization. The clustering phase is
the preformation of DMAs based on network connectivity and topology. It is implemented through
various algorithms such as graph theory, community structure, modularity-based algorithms, and
spectral algorithms [2,3] to form feasible DMAs and minimize the number of connections to each other.
Sectorization is an optimization process to locate flow meters and gate valves to maintain as high as
possible network performances while minimizing the economic costs [6].

In recent years, WNP has been explored in various studies. In the 18th Water Distribution System
Analysis Conference held in Colombia in July 2016, the “Battle of Water Networks” competition
focused on creating DMAs. The main objective was to optimize the design and operation of a system’s
main components by determining new DMAs for an existing WDN in Colombia, the E-Town network,
by taking into account costs, pressure uniformity, and water quality [3]. It was an opportunity for
researchers and practitioners around the world to solve a challenging problem in a full-scale WDN.
In addition, several methods have been proposed over the last decade for dividing a network into
DMAs. Various benchmark networks have also been developed to test the state-of-the-art methods.

A literature review identified more than 100 published studies that focused applying various
methodologies to WNP. After reviewing the main discussions and approaches in each paper, we
selected 95 papers to study in-depth and 27 related articles; they are all cited here. We found that
the methodologies proposed to date still have certain limitations in real-life applications. This paper
provides a comprehensive review of WDN management using DMAs to help water utilities improve
efficiency in O&M as well as support decision- and strategy-making processes. With this goal in
mind, we first reviewed the rules of DMA and analyzed the merits and demerits of the O&M of
DMAs. Second, we classified the methodologies proposed in recent studies of WNP processes into two
major categories, clustering algorithms and sectorization processes, and analyzed the advantages and
disadvantages of each method. Then, we highlighted the main indicators developed to quantify the
segmentation performances. Finally, we discussed some limitations of the approaches.

This paper is organized as follows. Section 2 presents the principle of DMA and its function in the
O&M of WDNs. Section 3 mainly reviews the clustering phase for the methods developed so far, and
Section 4 describes the sectorization procedure and discusses the currently applied algorithms. Various
indicators of DMA performance are described in Section 5. Finally, Section 6 draws conclusions and
discusses possible improvements in WNP approaches.
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2. Principles of District Metered Areas

The concept of DMA management was introduced by the United Kingdom water industry in
the early 1980s [2,5,11] (Figure 1). At that time, DMA was an area of a distribution system that was
specifically defined by the closure of valves and measurement of the quantities of water entering and
leaving the area. The first goal of DMA is early detection and management of water leakage in a
WDN [11]. Specifically, the measurement of night flow is analyzed to determine the level of leakage
within each DMA and locate the most beneficial places for leakage probes [4,10].

 

Figure 1. A schematic diagram of district metered areas.

Water leakage is a major concern for water utilities [12]. Leakage rate varies widely depending on
the country, region, and age of the system. It is reported to be as low as 3 to 7% in a well-maintained
system in the Netherlands, ranging from 10 to 30% in the United States and the United Kingdom,
however as high as 70% in some undeveloped countries [13]. Water loss in WDNs can be classified
as real loss and apparent loss in nature [14]. The real loss occurs from burst pipes or background
leaks due to continual seepage of water from network properties, such as pipe and valve fittings, or to
corrosion-induced perforation of pipes. The apparent loss includes the unauthorized consumption,
a product of meter-reading errors, water theft, and accounting errors. To estimate the leakage in a
DMA, the operator must monitor net minimum night flows in the system (when most consumers are
inactive) and compare it with legitimate night flows to assess the rate of real losses.

One of the major factors influencing leakage is the pressure in the water network [12]. To reduce
water losses, many utilities have changed from a passive approach (i.e., detection and repair) to
proactive approaches (i.e., heuristic processes and pressure-leakage relationships as developed by
Allan Lambert [15]) that indicate that the leakage rate of flow may increase or decrease with changing
pressure levels. The DMA concept was introduced to help proactively manage the number of invisible
water losses and detect the locations of failures based on the hydraulic characteristics of the WDN.

Researchers agree that dividing a network into DMAs is useful [4,16]. Most research assumes
that the benefits of DMAs are greater than the drawbacks [6,17–21]. WDN management through
DMAs has proven highly successful for leakage reduction, reportedly controlling up to 85% of national
water leakage in the UK [11,22]. Gomes et al. [23] showed that dividing a network into DMAs
allows for stable pressure management, which increases asset lifespans. Reduced pressure lowers
the frequency of potential pipe breaks, which consequently reduces real water losses. Gomes et al.
also proposed a method based on the minimum night-flow relationship with pressure to evaluate the
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benefits of pressure management using DMAs by predicting water losses before and after pressure
drops, estimating the reduction in energy consumption through billed water as well as the estimated
direct benefit of the pressure reduction process with DMAs [23]. Huang et al. [24] reported that DMAs
allow for rapid detection of burst pipes by studying the uniformity of daily water demand. They
applied a supervised learning algorithm to improve the positive effect of burst-event detection in
real-time operations. Savic and Ferrari [20,25] and Lifshitz and Ostfeld [26] have also illustrated the
effectiveness of implementing DMAs in WDNs with respect to reducing the frequency of pipe breaks.
To quantify the benefits of reducing burst frequency, Lambert et al. [15] proved that the percentage of
burst-frequency reduction relies on the proportion of pressure reduction obtained after setting up the
DMAs. Their study also revealed that controlling pressure not only reduces burst frequencies, but also
reduces leakage flow rates, extending the life of residual devices and reducing costs for both the water
utility and the customer.

Ferrari and Savic [25] showed that, depending on the specific alternative DMA layout used, burst
frequency can be reduced by approximately 53% to 60%. They also found that leakage reduction
ranged between approximately 26% and 59% after DMA set-up. Furthermore, as the closure of valves
completely isolates DMAs, it is possible to reduce the risk of chemical attacks or accidental events
throughout a network [6]. Isolating DMAs is also useful in component maintenance, replacement,
and repairs because closing boundary valves disconnects districts from other areas. Lifshitz and
Ostfeld [26] demonstrated that combining DMAs with PRVs creates a “knowledge and action” approach
to detecting and managing water leaks. PRVs reduce excess pressure and consequently reduce potential
water leaks without prior information on the positions of the leaks. Meanwhile, DMAs enable the
identification of possible locations of leaks and their potential amounts. A combination of the DMAs
and PRVs will complement each other to provide a better solution for leak management.

The main drawbacks of DMAs are deterioration of water quality compared with that of the
original network and the loss of system resilience against abnormal events. Water age is regarded as
a surrogate for simulations for evaluating the reduction of water quality [27]. Grayman et al. [10],
Diao et al. [19], and Di Nardo et al. [28] found that there was no significant change in the overall
water age metric before and after dividing a large-scale, looped WDN into DMAs. This is consistent
with previous studies by UKWIP [29] and WRc [30], which investigated the impact of WNP on water
quality management. Armand et al. [31] utilized surrogate hydraulic variables to evaluate the impact
of WNP on water quality and the likelihood of discoloration incidents. They reported that DMAs
can compromise overall water quality by increasing the average water age for a set of nodes with
dead-end-like hydraulic behavior. This also increased the likelihood of sedimentation in pipes due
to low flow velocity. However, water quality is reportedly not a critical criterion when designing
DMAs and water age is not a binding constraint [3,28]. Javier et al. [32] and Salomons et al. [33], who
conducted water balance analyses in a WDN, pointed out that the water volume stored in the network
was nearly half of the daily water consumption. It was therefore reasonable to assume that water
would be replaced twice a day in the network, which is a good indicator of water quality. By running a
hydraulic model to compare the network before and after DMA installation, no significant variations
of water age were seen throughout the whole network.

One of the other weaknesses when dividing networks into DMAs is the reduction in a system’s
redundancy [19,28] due to reduced availability of flow paths to connect supply sources and demand
nodes. The insertion of multiple gate valves and flow meters to isolate a DMA leads to increased head
loss due to increased friction [34]. This change can reduce system redundancy in terms of available
pressure throughout the network. Typically, several emergent cases, such as fire-flow supply and water
suspension due to a burst pipe would be issued in system operations. Table 1 summarizes the main
advantages and disadvantages of installing DMAs in WDNs.
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Table 1. Main advantages and disadvantages of district metered areas (DMAs).

Advantages Disadvantages

Improved burst detection and leakage identification Reduced resilience to failures

Advantaged subarea management and reduced NRW Reduced operational flexibility

Improved subarea pressure control Potential negative impact on water quality

Improved protection against contamination Security issues in peripheral areas and emergency cases

Reduced maintenance and repair costs High initial investment cost

Characterized demand curve, especially at night Reduced hydraulic redundancy

Several criteria should be considered when designing DMAs [11], such as

1. Maximum percentage of leakage allowed by the water utility;
2. Topography and number of properties per DMA;
3. Characteristics and topological taxonomy of WDNs;
4. Variations in nodal elevation, water demand, and pressure;
5. The number of flow meters and gate valves; and
6. Water quality considerations.

Depending on the existing network situation and leakage rates, each utility will have its own
criteria to set up economically efficient levels of leakage for each DMA. Once the level of leakage has
been determined, the utility can select the type of policy best suited for controlling leakage in the future,
the size and number of DMAs, and the staff required for the required policy. Dividing a network into
small DMAs will identify bursts quickly, maintain total leakage at a lower level, and reduce the time
required to identify device failures. However, this also leads to increased investment and operational
costs in terms of new flow meters and valves [11]. The international water association (IWA), as
corroborated by previous studies, reports that DMA size is expressed by the number of properties
(user flow meters) and varies between 500 and 5000 properties in urban areas [24]. Individual DMA
size can vary depending on local factors and system characteristics. While a DMA with fewer than
500 properties requires much more initial investment and incurs a higher maintenance cost, a large
DMA will face difficulty in discriminating small bursts and will suffer increased leakage location
times [4,5,11].

From a topological connectivity point of view, a set of complex network metrics was proposed
by Giudicianni et al. [35] to analyze the relationship between the metrics values and the topological
structures of WDNs. To optimize the number of DMAs in the network, the eigengap heuristic was
used to maximize the jump in spectrum of the Laplacian matrix. The study revealed that correlation
between the number of DMAs and network size approximatively follows a power law. Hence, the
optimal number of DMAs does not grow significantly with the network size. Such a relationship hints
that, from a connectivity point of view, the increase of WDN size has more effects on the size of the
DMA rather than the number of DMAs.

The number of water sources supplying each DMA also needs to be considered in the design
process, as each source must be fitted with a flow meter. Depending on the network type (branched
or looped), a DMA may be supplied by single or multiple sources and delivered consecutively or
in parallel to adjacent DMAs. As suggested by Di Nardo et al. [2], a technical and economic rule
is to minimize the number of installed flow meters and have a single flow meter for each DMA to
simplify the calculation of the synchronous water balance. To isolate a DMA from adjacent DMAs, gate
valves are installed in boundary pipes. However, installing gate valves may create more dead-ends
and reduce the pathways of water to the nodes, which may lead to deteriorating water quality [11].
Therefore, optimizing the number and location of flow meters and valves while decomposing the
original network into DMAs is necessary to minimize costs and optimize operational benefits.
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Determining and optimizing the number of DMAs is essential. However, defining the configuration
of DMAs is a demanding task because many different aspects of WDN performance must be
considered [20]. This is usually approached as a multi-objective optimization problem. Traditionally,
DMA design has been based on empirical data combined with trial-and-error methods. Recently,
the concept and approach for WNP have been explored in the literature. Several smarter and more
efficient approaches have been proposed to create optimal DMA layouts. Although the algorithms
applied in each study are different, the WNP process commonly consists of two phases, clustering and
sectorization [36,37].

3. Clustering to Create Feasible DMAs

Figure 2 summarizes the general procedures for WNP. The clustering phase is the initial process
that designs the shape and dimensions of DMAs based on the network topology. The goal is to
determine the optimal number of DMAs to balance the number of nodes in each cluster and to minimize
the number of boundary pipes (i.e., pipe cuts where gate valves or flow meters will be installed). The
algorithms applied include graph theory such as depth-first search (DFS) and breadth-first search
(BFS) [6,9,38,39], community structure [19,34,37,40], modularity-based procedures [41–44], multilevel
partitioning [17,37,45,46], spectral approaches [47–49], and multi-agent approaches [50–52]. This
paper focuses on explaining six major algorithms and how they are handled in clustering WDNs to
automatically create DMA configurations.

Figure 2. Steps of water network partitioning: (a) Overall main procedures, (b) steps for clustering,
and (c) steps for sectorization.

3.1. Graph Theory

Most of the existing clustering algorithms developed for WNP relate to graph theory. To gain a
deeper understanding of clustering algorithms, it is necessary to generalize some of the topological
characteristics and properties of a WDN. Readers unfamiliar with graph theory should refer to previous
studies [53,54].

WDN is a social infrastructure that allows water to flow along the pipes and communicate between
nodes in the network. The topology structure of WDNs is mapped onto an undirected or directed
graph and characterized by a pair of sets G = (V, E), where V is the vertex set representing junctions,
reservoirs, and tanks and n = |V| is the total number of vertices. E is the set of edges in response to
pipes, valves, pumps and m = |E| is the total number of edges. An undirected graph with edges is an
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unordered pair {v1, v2}, while a directed graph with edges is an ordered pair and the vertices v1, v2 are
called the endpoints of the edge.

A given network graph, and a WDN in particular, can be converted by an adjacent matrix A, which
is an n× n matrix, where Aij is the (i, j) element equal to 1 if vi is adjacent with vj, otherwise, Aij = 0.
A weighted graph can be represented mathematically by an adjacency matrix that has a certain weight
Wij assigned for each pair of vertices (i, j). The weights are usually non-negative, real numbers, and
they must satisfy Wij = Wji ≥ 0, if i and j are connected. Otherwise, Wij = Wji = 0. The nodal degree,
ki, is the number of edges attached to a vertex i. The degree of node i is defined as ki =

∑n
j=1 Aij for the

adjacency matrix A, and ki =
∑n

j=1 Wij for the weighted adjacency matrix W. From a topological point
of view and complex network theory, Giudicianni et al. [35] treated the WDN as a graph by using
several complex network metrics to characterize the topology of typical WDNs. It was a preliminary
process for better understanding the network itself, and provided the classical approach for partitioning
or/and designing the WDNs.

One of the graph theory algorithms applied to network clustering is DFS, which, as proposed
by Tarjan [55], allows for the exploration of the connectivity of a graph by traversing a node in the
network. The DFS algorithm is a recursive approach based on backtracking. It starts by picking a
root node in the network and then searches for nodes as far as possible along each path (in-depth
dimension) until there are no more adjacent nodes in the current path to traverse after backtracking to
the next path. In contrast, the BFS algorithm proposed by Pohl [56] starts at a root node and traverses
the graph broad-wise by first moving horizontally and exploring all the nodes of the current path and
then moving to the next path. Figure 3 shows how a DFS and a BFS work.

Figure 3. Diagram of depth-first search (DFS) and breadth-first search (BFS).

Tzatchkov et al. [38] applied the DFS and BFS to a WNP project in Mexico. DFS was used to
segment a whole network into independent sectors by identifying nodes belonging to each sector (i.e.,
each sector is supplied exclusively from its own water sources, and it is not connected to other sectors
in the network), and BFS was used to exam the set of disconnected nodes from any water sources, thus
obtaining the size and configuration of independent sectors in the WDN. More specifically, Perelman
and Ostfeld [39] and Lifshitz and Ostfeld [1] proposed a procedure for topology clustering based on
the DFS algorithm to identify strongly connected clusters that had at least one path in both directions
between them, while the opposing BFS algorithm was used to classify weakly connected clusters that
had only one directed path between a set of nodes (i.e., from node u to node v, but not from node v to
node u). The results were utilized for various purposes, such as contaminant prediction from a source
and spread of infection in a WDN [1]. Di Nardo et al. [6] proposed a method for optimizing water
network sectorization based on graph theory. DFS was used to find the independent sector combined
with a hierarchical approach developed by Di Battista et al. [57] to draw hierarchical levels of a tree
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graph corresponding to each source, creating isolated DMAs, each of which was supplied by its own
source and was disconnected from the rest of a network through gate valves.

Campbell et al. [58,59] proposed a more advanced orderly combination of a series of graphs to
generate a flexible method for defining feasible DMA layouts. They proposed dividing a network
into two components, a trunk network and a distribution network. To determine the scope of the
trunk network, the shortest path and the BFS concept were implemented. Once the trunk network
was determined, it was detached from the network, while the community detection algorithm was
adopted for the rest of network (distribution network) to define the best structural communities in the
distribution network, which is the configuration of sectors. The innovation of this study was that the
trunk pipes acted as entrances to each DMA and were not considered candidates for sectorization,
ensuring the reliability of the WDN. In a similar methodology proposed by Alvisi and Franchini [60],
BFS defined the location of possible nodes to form an assigned number of DMAs and then the shortest
path distance from each source to the nodes was simultaneously estimated to determine the set of
boundary pipes for each DMA. In the case of a WDN with numerous water sources, Scarpa et al. [9]
successfully applied a BFS algorithm to identify elementary DMAs in which each one was supplied
only by its own source.

Gomes et al. [61] proposed a systematic way to divide a WDN into suitable DMAs based on the
Floyd–Warshall algorithm [62] and user-defined criteria (e.g., pipe length and number of users in each
DMA). This method facilitated the creation of appropriate DMAs by finding the shortest distance from
source to nodes depending on the network flow direction at peak flow conditions. Compared with
BFS, this algorithm provided superior results, as it considered the shortest path of sources to every
other node in the network and identified the best path. The algorithm was repeated until the target
number of DMAs and user-defined constraints were met. Further adjustment could be carried out by
combining adjacent DMAs to minimize the number of boundary pipes as long as the user-defined
criteria are fulfilled.

3.2. Community Structure Algorithm

The community structure detection algorithm is a bottom-up hierarchical approach based on
graph theory and proposed by Newman and Girvan [63] and Clauset et al. [64]. It uses greedy
optimization of a quantity known as modularity (Q), which is defined in Equation (1). They used
the quality measure of network density to define the clusters, assuming that the density of a network
division was effective if there were many edges within communities (intraclusters) and only a few
between them (interclusters). Modularity index is a network property used as an indicator to quantify
the quality of graph division in the community. The clustering method is based on maximizing the
modularity index. Higher values of that metric are related to a community structure of the network,
which is significant if Q ≥ 0.3 [63,64]:

Q =
1

2m

∑
i j

[
Aij −

kikj

2m

]
δ
(
Ci, Cj

)
(1)

where δ
(
Ci, Cj

)
is the Kronecker delta coefficient, and δ

(
Ci, Cj

)
= 1 if vertices i and j are the same

community; otherwise δ
(
Ci, Cj

)
= 0.

If we assume that the fraction of pipes that have both start and end nodes belonging to the same
community is eii, and ai is the portion of pipes with at least one end node in the community i, then the
modularity can be formulated as:

Q =
∑

c
eii − a2

i . (2)

The change in the two communities i and j to increase modularity can be computed by [63]:

ΔQ = 2
(
eij − aiaj

)
. (3)
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The community structure algorithm is implemented following the steps listed in Figure 4.

Figure 4. Main steps for community structure algorithm clustering.

Diao et al. [19] first applied a community structure algorithm to detect clusters in a WDN. Their
study used a community structure to automatically create boundaries for DMAs. WDN was mapped
onto an undirected graph and community detection was implemented to maximize the modularity
matrix and find the hierarchical community structure that represented the DMAs of the WDN. In the
study, the authors determined the size constraint to be 300–5000 properties [10] for each community by
applying a heuristic approach, known as oriented dendrogram cutting.

Instead of identifying network communities by maximizing the modularity index, Campbell et al. [34]
proposed a procedure based on the idea that feedlines (i.e., a trunk network) should not be included
in sectorization schemes. This was identified by means of determining the “betweenness” of edges,
the flow, and the diameter analysis. The betweenness algorithm is a branch of graph theory that
defines the edge (i.e., pipe) that connects to many pairs of vertices (i.e., nodes) [63]. A random-walk
betweenness [19] can detect community segmentation with the highest modularity and a dendrogram
can set the size constraint for each community.

Similarly, Ciaponi et al. [40] offered a different approach that combined convincing practical
criteria when designing DMA as proposed by Morrison et al. [4]. Accordingly, automated identification
of DMAs was performed by identifying the prevalent transport service (main transmission pipes)
in WDNs and then each DMA, which was determined by the remaining distribution service pipes,
was directly connected with the main transmission pipes. The procedure decomposed subsystems
exceeding the threshold DMA size constraint owing to a modularity-based optimization algorithm.
The two approaches brought the boundaries of identification of DMAs closer to reality and supported
feasible alternative solutions to make more convincing decisions.

3.3. Modularity-Based Algorithm

The community structure algorithm uses a modularity index as a metric for the optimal design
of DMAs. However, the modularity index may not be representative for the WDN because it is
strongly affected by hydraulic properties (e.g., elevation, node demand, pipe diameter). Adopting the
classic formulation of a modularity index without considering the physical and hydraulic constraints
would therefore be artificial and misleading. Inspired by this approach, Giustolisi and Ridolfi [41]
proposed a modularity-based method for WDN segmentation that accounts for hydraulic network
properties to define WDN-oriented modularity. First, to formulate the modularity index for WDNs,
the proposed method focused on conceptual segmenting of the network close to the ending nodes
by using a topological incidence matrix and the number of pipes separating communities. This was
done to minimize the number of required pipe cuts. Despite being tailored for a WDN, WDN-oriented
modularity had an inherent limitation left over from the classic community detection algorithm.
Fortunato and Barthelemy [65] stated that the modularity index proposed by Giustolisi and Ridolfi
may fail to detect small communities if the community’s total edge number is smaller than

√
2m,

where m is the total number of edges in the network. To overcome such failures, Giustolisi and
Ridolfi [66] proposed that an infrastructure modularity index can improve the negative effect of the
inconsistency of modularity optimization. A new index is released through maximization of the
classic modularity index in the framework of the two-objective optimization, modifying the framework
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to overcome the resolution limit. Laucelli et al. [67] took a further step by developing a flexible
procedure for DMA planning based on Giustolisi and Ridolfi’s achievement with a conceptual cut
for segmentation. A two-step strategy was adopted for optimal sectorization design by maximizing
the WDN-oriented modularity index versus minimizing the number of conceptual cuts, where the
location of pipe cutting minimizes the number of devices to be installed. To determine the location of
flow meters and gate valves, DMA design was optimized based on each conceptual cut and returned
an optimal solution for each one, accounting for hydraulic behavior change in the network with
respect to maximizing the reduction of background leakage in each DMA. Using the WDN-oriented
modularity index, Simone et al. [68] developed a sampling-oriented modularity index to perform
optimal spatial distribution and assess the optimal number of pressure meters needed in a network
(i.e., sampling design) using a multi-objective optimization method to minimize pressure-meter cost
versus sampling-oriented modularity.

As mentioned in Section 2, DMAs are designed to detect and actively manage leaks. To
that end, pressure management is a fundamental and important factor affecting leak management.
Zhang et al. [42] developed a hybrid procedure by combining node pressure with modularity-based
community detection to segment a network into similar DMAs from a pressure aspect. However, to
improve the resolution limits of classical modularity, they used a random-walk theory similar to that
of Campbell et al. [34]. The random-walk theory allows for precise identification of communities with
greater or smaller differences in size and the automatic creation of a multiscale community [42]. To
illustrate the superiority of this method over previous methods, the results proposed by Diao et al. [19]
were compared. They demonstrated that different partition schemes result at a variety of random-walk
time periods because the variances of node pressure are integrated into the community. In Diao et al. [19],
variance was made immutable using a top-down search. Additionally, in the aspect of boundary pipes
proposed by the two respective methods, Zhang et al. [42] showed that the traditional modularity-based
community detection introduced by Diao et al. had more boundary pipes.

Most recently, Perelman et al. [37] combined three branches of graph theory to evaluate the
performance of each method. Global clustering, community structure, and graph partition were
applied to two WDNs in Singapore. Global clustering is a bottom-up algorithm for grouping points
concerning a measure of similarity defined for each pair of points. Community algorithms detect the
community structure in the network focused on the concept of edge betweenness. Graph partitioning
divides the graph into a predefined number of groups such that the number of edges crossing between
the groups is minimal [69]. The authors showed that the methods were compatible and applicable to
large networks, but the performance of each method was completely different and depended on the
number of clusters and the parameters selected for evaluation. They proposed multi-criteria metrics
based on visual and quantitative performance measures. Accordingly, a better approach would be to
minimize four metrics, such as (a) worst cut size, (b) total cut size, (c) cluster size, and (d) running time,
and maximize the metric in regard to (e) recurrence of inter-cluster edges [37]. The results demonstrate
that graph-partitioning generally outperforms clustering and the community structure methods in
terms of (a), (b), and (d), which implies that the number of flow meters needed to monitor the flow will
be minimized. On the contrary, the global clustering method indicated a good expectation in terms of
(e), while in terms of (c), the three methods showed similar results. Therefore, community structure
and the graph partitioning methods were more flexible and outperformed global clustering under
particular budget constraints.

Similarly, Di Nardo et al. [70] conducted a comprehensive analysis of two popular clustering
algorithms, such as the graph partitioning based on multilevel recursive bisection (MLRB) and the
spectral clustering based on the normalized cut algorithm. Applications to a real-life WDN in South
Italy revealed that the graph partitioning outperformed the spectral clustering in balancing the number
of nodes in each DMA. On the contrary, the spectral algorithm showed better performance than the
graph partitioning to minimize the number of edges cuts, thus it was more efficient in both hydraulic
and economic aspects. A similar study conducted by Liu et al. [71] explored the performance of three
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partitioning methods, including fast greedy [64], random walk [63], and multilevel recursive bisection
(MLRB) [72] using a spectrum of topology-based indicators.

As mentioned earlier, WDNs exhibit dynamic hydraulic behavior changes in the spatial and
temporal mode that are completely different compared to others. Most of the partitioning algorithms
lack exhaustive analyses of the similarity of the hydraulic and physical aspects in DMAs, such as the
number of nodes and balance in terms of water demand and pressure. It is therefore not sufficient to
offer a universal O&M solution to a utility. Awareness will make DMA segmentation more reliable
when physical properties and hydraulic behavior are considered in network partitioning. Realizing
the limitations of Diao et al. [19] and Ciaponi et al. [40], Creaco et al. [73] incorporated engineering
aspects (i.e., demand supplied along the pipe and pipe length) into WNP processes. However, unlike
Giustolisi and Ridolfi [41,66], they focused on applying heuristic procedures to improve the original
fast greedy partitioning algorithm to maximize the modularity index developed by Clauset et al. [64].
Two heuristic optimization techniques were developed and applied to the formulation of modularity
to perform different merging combinations. In the first technique, randomness was added to the
DMA merging process, which allows for the acquisition of numerous WDN-partitioning probabilistic
solutions while generating a higher modularity increment during the merging steps and a lower number
of boundary pipes compared with the traditional deterministic approach. The second technique
illustrated the trade-offs between various engineering aspects by embedding the former technique
inside a multi-objective genetic algorithm optimization [74].

Evaluation of DMAs scenarios after sectorization must also guarantee that hydraulic indicators
are at an acceptable or higher threshold compared with the original network. Because different criteria
lead to various DMA layouts, Brentan et al. [43,44] proposed a method that considers the relationship
between many technical criteria, such as demand and pipe length, to create different DMA scenarios.
The social community detection algorithm was used to define DMAs. To assess the performance of
DMA generation, a comprehensive analysis was proposed that considered performance indicators such
as resilience index, demand similarity, pressure uniformity, water age, cost, and energy consumption,
hopefully provides decision-makers with an optimal DMA configuration.

3.4. Multilevel Graph Partitioning

Multilevel partitioning [72] is a fundamental approach based on an analogy of graph theory and
graph-partitioning principles that uses parallel computing to allocate workloads among processors
to minimize communication and equally distribute the computational burden among them. Based
on that approach, the objective is to create subzones by equally distributing loads, such as DMA size,
pipe length, water demand, and flow [45]. Recently, much effort has been devoted to developing
techniques and heuristic procedures for optimal segmentation of a water network into isolated DMAs
by balancing pipe length, nodal demand, and flow within each DMA [16,37,45,46].

Sempewo et al. [45] presented an automated prototype tool for the analysis of network spatiality
to create analogy subzones based on balancing pipe length and demand at each zone using distributed
computing called multilevel recursive bisection (MLRB) for monitoring and controlling leakage in
the WDN. The core purpose of the MLRB algorithm was to design a highly effective method to deal
with parallel k-way partitioning of a graph in computer science. The successor application of MLRB
was mentioned by Di Nardo et al. [17,18,75]. They proposed a procedure adapting the traditional
phase of the MLRB to create an automated tool for smart water network partitioning (SWANP). In the
MLRB algorithm, three phases illustrating the computation of k-way partitioning in the graph are:
coarsening, partitioning, and uncoarsening with refinement [72]. The coarsening phase simplifies the
original graph by collapsing adjacent vertices in terms of maximally matching a graph with different
techniques. The next phase is partitioning. First, the network is subdivided into a two-way partition.
Each subgraph is then divided into bisections to obtain k-way partitioning. The boundary pipes that
have the start and end nodes in different subgraphs must be minimized for associated weights as well.
Finally, the uncoarsening phase, also known as the recovering and refining process, is completed by
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returning to the graphs in the first phase to reconsider constituent nodes. During each recovery level,
a local refinement optimization of the partition is applied to obtain more equal districts. Figure 5
visualizes the processes in the MLRB algorithm.

Figure 5. Different phases of a multi-level recursive bisection algorithm [72].

Alvisi [46] proposed a procedure for automated network sectorization using a combination of
the MLRB graph partitioning algorithm and hydraulic simulation. However, unlike the traditional
approach, it can simultaneously allocate the nodes to perform the best network partitioning into a given
number of DMAs and identify the best locations for flow meters and valves in the network. Perelman
et al. referred to a similar application [37] in which they used MLRB to compare performance in a WNP
with other approaches, such as community structure and global clustering. This approach can assign
weights to nodes and pipes that would otherwise not have been considered for the graph-clustering
algorithm where the network clustering phase was considered a topology characteristic. Moreover, in
terms of computational efficiency, MLRB showed advances in the uniform allocation of computation
processes, considering more than one object simultaneously while minimizing the volume of information
exchanged between them.

3.5. Spectral Graph Algorithms

Spectral graph theory is a mathematical approach to study the relationship of graph properties
by associating both linear algebra and graph theory to determine the eigenvalue and eigenvector
properties. Spectral clustering uses the spectrum in eigenvectors of the adjacent matrix to cluster
groups of points into communities [49,54]. In spectral clustering, the row of eigenvectors of the
Laplacian matrix for a pair of the nodes is similar if the nodes belong to the same cluster. Spectral-based
graph clustering has been implemented in many fields over the last decade, especially in computer
sciences, bioinformatics, and data analysis. Recently, in the field of WDN management, spectral graph
theory has been used to define an optimal cluster configuration, a preliminary analysis of network
vulnerability, and robustness through graph matrices eigenvalues [76,77] and a toolset for WDN
management has been proposed [49]. Several types of research have applied spectral graph theory for
WDN management, but in this subsection we focus on effective approaches that have been proposed
for water network clustering. The core idea of spectral clustering is the Laplacian matrix as defined by
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three equations. The first is the non-normalized Laplacian relationship, which solves a relaxed version
of the Ratiocut problem proposed by Von Luxburg [78]:

L = D−A, (4)

where D is a diagonal matrix of nodal degrees ki, D = diag(d), in which d = [k1, k2, . . . , kn]
T. A is the

adjacency matrix.
The other two matrices are normalized graph Laplacians, which are closely related and can be

defined as
Lsym = D−1/2LD−1/2 and (5)

Lrw = D−1L, (6)

where Lsym is a symmetric matrix proposed to solve the NCut problem [78] and Lrw is closely related to
a random walk, which can be used to solve the same problem.

The Laplacian matrix of an undirected graph has the following properties [78,79]

• L is symmetric and positive-semidefinite with eigenvalues λi ≥ 0 for all i.
• Every row sum and column sum of L equals zero.
• The smallest eigenvalue λ1 of L equals zero.
• L has n non-negative and the number of connected components in the graph equals the algebraic

multiplicity of λ1 = 0 ≤ λ2 ≤ · · · ≤ λn.

Aim of spectral graph partitioning is to divide graph G into p ≤ n subgraphs G1, G2, . . . , Gp. Then,

V = V1 ∪V2 ∪ · · · ∪Vp where Vi ∩Vj = ∅, i � j, (7)

Let Gk = (Vk, Ek) represents for subgraph k, in which k = 1, . . . , p and Vk is the set of vertices
of subgraph Gk. From Equation (7), an edge that has its endpoints in different vertex subsets is not
contained in any of the formed subgraphs Gk and is called an intercluster edge. Let a set of the
intercluster edges with one endpoint in Vk be denoted as Equation (8).

∂(Vk) :=
{
i j : i ∈ Vk and j � Vk

}
, (8)

Two different sets of edges can thus be distinguished as follows.

• intracluster edges: E1 ∪ E1 ∪ · · · ∪ Ep, and

• intercluster edges: ∂(V1) ∪ ∂(V2) ∪ · · · ∪
(
Vp
)
.

From the optimal bipartitioning of a graph point of view, minimizing the cut values are objective
functions. Von Luxburg [78] and Shi and Malik [80] proposed these functions to optimize cut value,
called ratiocut method and normalized cut method, in Equations (9) and (10), respectively.

min
V1,V2,..., Vp

∑p

k=1

vol(∂(Vk))

|Vk| , (9)

min
V1,V2,..., Vp

∑p

k=1

vol(∂(Vk))

vol(Vk)
, (10)

where vol(∂(Vk)) is the sum of the weights on the all intercluster edges in ∂(Vk); |Vk| is the number of
vertices in Vk; and vol(Vk) is the sum of the weights on the vertices in Vk.

Equations (9) and (10) are NP-complete problems, however, they can be relaxed to find approximate
solutions proved by Von Luxburg [78] and Shi and Malik [80] and reformed as Equations (11) and
(12) following

LU = UΦ for ratio cut (11)
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LU = DUΦ for normalized cut (12)

where Φ := diag
(
λ1,λ2, . . . ,λp

)
∈ Rp×p and U :=

[
u1, u2, . . . , up

]
∈ Rn×p.

Equations (11) and (12) are eigenvalue problems for p smallest eigenvalues λ1 = 0 ≤ λ2 ≤ · · · ≤ λp

of the Laplacian matrix L and their corresponding eigenvectors u1, u2, . . . , up.
The spectral clustering algorithm for a non-normalized Laplacian matrix can be described as

shown in Figure 6. For other normalized spectral clustering, refer to Reference [78].

Figure 6. Flowchart of a non-normalized spectral clustering algorithm.

Using the spectral clustering methods mentioned above, many studies have adopted the spectral
graph theory [47–49,81]. Di Nardo et al. [47] defined the optimal layout of DMAs in a real WDN. The
authors took into account both geometric features (i.e., connectivity) and hydraulic pipe features (i.e.,
diameter, length, conductance, flow) through weight-adjacency matrices, which led to significantly
different layouts of the DMAs. In particular, they compared different weighted spectral clustering (i.e.,
normalized versus non-normalized Laplacian) to determine the effectiveness of those approaches and
the optimal choice of weights.

One of the most useful approaches for handling WDN complexity is a graph spectral technique
(GST). Di Nardo et al. [49] pointed out that GST can analyze network topology by taking advantage of
the properties of some graph matrices, providing a complete toolset to evaluate the performance and
the evolution of networks. Based on two graph matrices (i.e., adjacency and Laplacian), the authors
highlighted that GST metrics and the algorithms accomplish some crucial tasks of WDN management
using topological and geometric information. In addition to the inherent ability to define the optimal
clustering layout proposed in the literature, GST assisted in the calculation of a surrogate index for
assessing topological WDN robustness using two indices, such as spectral gap and the algebraic
connectivity. Additionally, the spectral technique also provides a framework that ranks important
nodes in WDN to provide a useful approach to identify the location of valves or sensors or even
determine the most influential nodes in a network [49].

Similarly, Liu and Han [48] also proposed a strategy for automatic DMA design based on
spectral clustering and graph theory. The spectral algorithm was used to determine the best node
clusters, which correspond to the DMAs’ configuration based on steady-state simulations using
the peak-hour demand. The study proposed a method for DMA design that combines spectral
clustering, graph theory, and network centrality analysis. First, a combination of graph spectral
theory and k-mean clustering was implemented to generate the initial DMAs. Then, to improve the
cluster quality, a genetic algorithm (GA) was added to converge on a global optimum. To measure
network centrality, the eigenvector centrality [82] was used to identify the critical nodes, and edges
betweenness centrality [83] were adopted to measure the important pipes, creating a high-quality
cluster. Most recently, Zevnik et al. [81,84] proposed spectral graph partitioning based on a generalized
and normalized cut method and compared it with two known spectral methods (ratio cut and
normalized cut).
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In the field of machine learning, graph Laplacians are used not only for clustering, but also for many
other tasks, such as semi-supervised learning. Herrera et al. [52,85] demonstrated that graph-based
semi-supervised learning methods [86] can take into account various criteria for segmentation of WDNs
into DMAs. In this method, the kernel matrix [87] was first defined and then the adjacency matrix was
enriched by adding hydraulic data such as weight factors to transform the results into a kernel matrix.
The spectral clustering algorithm was adapted to this new matrix. Finally, graph-based semi-supervised
learning methods were conducted. A similar method was found in a study by Giudicianni et al. [36,88]
in which semi-supervised multiscale clustering was used to create dynamic DMAs. Compared with
methods that use only topological connectivity or vector information, semi-supervised clustering
showed improvement by integrating both forms, leading to the efficient development of robust DMAs.

Spectral clustering can take into account topological, geometrical, or hydraulic aspects as weight
factors, which allows for a careful consideration of alternative factors that can affect the goals of
the DMA design and provide a multidimensional view to help managers make better decisions.
However, for large-scale networks that have thousands of nodes and links, spectral clustering has
limited applicability and becomes infeasible due to the computational complexity of Q

(
n3
)

[52], where
n is the number of nodes.

3.6. Multi-Agent Approach

A multi-agent system (MAS) [89] is a loosely coupled network of autonomous problem solvers
composed of multiple interacting intelligent agents. Each agent works independently but can also
interact with others to solve potential conflicts through negotiation. The properties of MAS can be
described as follows.

1. Each agent has an imperfect standard or may lack the capacity for problem solving, and therefore
has a somewhat limited and unbalanced perspective;

2. There is no global information;
3. Data is decentralized; and
4. Computation is asynchronous.

MAS networks are suitable for handling multiple-problem approaches or multiple-agent solving
entities. Known as a complex system due to the joining of many physical devices, a WDN comprises
multiple parties with different goals, actions, and information and is a dynamic system. A small
change in behavior of the parties may result in unpredictable patterns in the entire system. WDNs
and multi-agents exhibit a strong similarity, and MASs can therefore provide solutions to distributed
applications, such as the problem of network partitioning, which is known to be complex and has
multiple constraints. MASs have been successfully applied to heterogeneity problems in the water field.
They have proven to be highly efficient at optimizing water networks, control systems for municipal
water, water pollution diagnosis, water quality enhancement, and water demand management [90].

In terms of WDN clustering, many elements must be simultaneously considered. A network
can be divided into elements, which are considered as agents that communicate with each other.
Izquierdo et al. [90] were the first to develop a suitable software environment to formulate DMA
segmentation in a WDN using a multi-agent approach. They proposed a likelihood method by running
a simulation as verification to divide networks into subsectors based on sources, nodes, and pipe
properties, which consider nodes and pipes as agents of a separate breed. This can be seen as a premise
to improve as well as implement the multi-agent methods in different studies. Herrera et al. [52]
assumed an a priori set of DMAs based on the homogeneity of the districts, which was related to the
source tanks in the network, where each reservoir was seeded for the corresponding DMAs. These
agents adopted a method of clustering by elicitation, linking their adjacent nodes to the source points,
and scanning the likelihood of each being assimilated into the corresponding DMA.

On the other side, Hajebi et al. [51] combined a k-means clustering method and multi-agent
approach to WNP. In particular, k-means graph clustering was used to divide the network topology into
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a predetermined number of clusters and then a MAS was implemented to negotiate the configuration of
the network by adjusting nodes on the boundary pipes of the corresponding clusters while considering
the hydraulic constraints. Compared with previous studies by Herrera et al. [50], differences in the
approaches are evident. In the former study, DMA layouts were determined based on the source points
of the network and expanded by negotiation, while the latter started from the geographical clustering
of the network and boundary pipes were modified to obtain the best hydraulic performance.

4. Sectorization to Locate Flow Meters and Valves

Immediately after forming DMAs from a clustering phase, it is important to optimize the state
of the boundary pipes, namely the position and number of gate valves and flow meters required
to achieve reliable DMA operation. This is also known as a decision support tool to help utilities
solve optimization problems while investigating the best trade-offs between the sectorization cost
of investment versus indicators of the benefit of DMA installation. The position of these devices
is important because closing a valve impedes hydraulic behavior and reduces network reliability.
After segmentation of a network into districts, the standard requirement of a network is still to
ensure adequate quantity and quality as well as appropriate pressure. Many algorithms and heuristic
procedures have been proposed to find the optimal solution for this phase, which is concerned primarily
with optimizing hydraulic performance and leak-reduction efficiency.

Many heuristic procedures are available to maximize the benefits of physical demarcation of a
water network into DMAs, but this work has been implemented largely with evolutionary algorithms,
which include single or multi-objective functions and are constrained by hydraulic or economic
conditions. In this section, we focused on the optimization approaches to discuss the sectorization
phase in WNP.

4.1. Single-Objective Optimization Approach

After a set of boundary pipes Nbp are defined in the clustering phase, the first objective is to
determine how many flow meters N f m and gate valves Ngv to insert along the boundary pipes. Most
researchers agree that fewer flow meters will reduce reconstruction and operating costs, as well as the
initial cost of installing the flow meters, which are often more expensive than gate valves [6,17,47,49].

In addition, the positions of the gate valves and flow meters have a significant effect on network
properties such as hydraulic performance, resilience index, leakage rate, and water quality. WDN
sectorization should therefore be considered as a multi-objective optimization problem to maximize
the benefits of implementing DMAs. However, to simplify computational demands, some hypotheses
or heuristic processes have been proposed to convert a multi-objective problem into a single objective
and apply evolutionary algorithms to achieve feasible or optimal solutions.

Because the number of feasible solutions is large, various heuristic optimization techniques have
been studied [6,91–94]. Although the objective functions and constraints are different among the various
approaches, they all aimed to achieve as high as possible a network performance after sectorization.
The total power of a WDN is classified into the dissipated power at pipes (i.e., internal power loss)
and the supplied power at node (i.e., external power supplied). Di Nardo et al. [6,17,18,49,92,95,96]
suggested the objective function to maintain the hydraulic performance of the network at the lowest
dissipated power that consequently maximizes the nodal supplied power by maintaining the nodal
head as high as possible after sectorization. The objective was defined in the following equation.

max

⎛⎜⎜⎜⎜⎜⎝γ
n∑
i

(zi + hi)Qi

⎞⎟⎟⎟⎟⎟⎠, (13)

where γ is the specific weight of water and zi, hi, and Qi are the elevation, pressure, and water
demand at node i, respectively. For a large and complex network, it is not easy to decide how many
flow meters should be positioned among boundary pipes due to the trade-offs between hydraulic

306



Water 2020, 12, 1002

performance and investment cost. To deal with this problem, Shao et al. [97] proposed a function that
converted a dual-objective problem (i.e., hydraulic performance and cost) to a single-objective problem
by considering the master-subordinate relationship of the two objective functions, which improved the
computational efficiency.

In addition, a changing flow due to pipe failure can cause changes in velocity, energy losses in
pipes, and pressure at nodes, especially in a looped network. This will cause changes in the pathway of
water particles to the nodes. Moreover, if a node is being supplied at the minimum required pressure,
it will not be able to provide the necessary flow and pressure. In the worst-case scenario, the network
must ensure a capacity to provide a surplus power to overcome system failures. This is an approach
proposed by Todini [98] to measure system resilience when redesigning a system or when system
malfunction occurs. Based on that criterion, when reconstructing the system by creating isolated DMAs,
several studies [34,36,46,60] have used a resilience index (Equation (14)) as an objective function for
sectorization optimization. The objective function can be maximized to indicate that a greater surplus
of available power leads to a higher network resilience such that:

Ir =

∑nn
i=1 Qi(hi − hmin)∑nr

r=1 QrHr −∑nn
i=1 Qihmin

, (14)

where nn and nr are the numbers of demand nodes and reservoirs, respectively; Qi and hi are water
demand and pressure at node i; Qr and Hr are the water discharge and total head of the source or tank
r; and hmin is the minimum required pressure for adequate service.

For cost analysis, Gomes et al. [99] proposed an optimization model to design DMAs based on
different decision-makers’ options to reduce the total cost. Referring to different future scenarios for
water demand (that will increase) and the infrastructure degradation forecasts, the cost of WNP was
assessed. An objective function aims to minimize the cost of DMA redesign and first considers the cost
of pipe reinforcement or replacement with flow meters and gate valves. Second, to ensure that the
model approximates reality, the cost function is multiplied by the weight or probability of occurrence
for each of the scenarios. A similar study that considers economic and energy criteria for DMA design
can be found in Di Nardo et al. [75].

For reducing the leakage in WDNs, Creaco and Haidar [100] proposed a linear programming
framework to optimize control valve settings. Accordingly, isolation valve closures, control valve
installations, and DMAs creation are simultaneously optimized to search optimal solutions in the
trade-off between installation costs, leakage, and demand uniformity across DMAs.

To solve the optimization problems mentioned above, evolutionary search algorithms have been
applied. The GA [101] has been widely implemented by Di Nardo et al. [6,47,75,91,95]. Meanwhile,
Shao et al. [97] improved the GA for faster and superior layout of flow meters and valves by modifying
crossover and mutation mechanisms. In addition, the simulated annealing algorithm was presented
by Gomes et al. [61,99,102].

4.2. Multiple-Objective Optimization Approach

WNP is a complicated task and must achieve many goals. Zhang et al. [42] proposed a
multi-objective optimizing approach for sectorization, in which three objective functions were used: the
number of boundary pipes, network pressure uniformity, and water age uniformity. Zhang et al. [103]
proposed a multi-objective optimization to obtain more reasonable schemes for sectorization of a
WDN by simultaneously considering pressure stability, water quality safety, and system reconstruction
costs. For pressure stability, the average pressure was minimized, but was still above the minimum
pressure. Water age is the time spent by a water parcel as it travels from a source to nodes in the
network, which represents the water quality in a WDN. Additionally, the costs of installing flow meters
and valves should be minimized depending on the size and number of DMAs. However, if only the
initial investment cost of these devices is considered, it is impossible to comprehensively evaluate the
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expense of the WNP. De Paola et al. [104] presented an objective function to deal with the total cost of
sectorization, which also involves water leakage costs and energy consumption by pump operations.

Even if we consider all the criteria in the process of network sectorization, it is impossible to
provide an optimal result due to trade-offs. The current partitioning techniques prioritize only a few
representative sets of criteria, and do not fully address the best practical problems of DMA design.
In an attempt to provide a comprehensive review of the criteria when dividing the network as close
as possible to reality, Hajebi et al. [105] considered two sets of objectives in the sectorization task,
the structural objective and hydraulic objective. For the structural objective, they considered the
minimum cut size and minimum boundary pipe diameter. For the hydraulic objective of the network
after segmentation, they considered four objectives, including minimization of the average excessive
pressure at nodes, minimization of dissipated power, minimization of elevation differences in each
DMA, and maximization of network resilience.

In another combination, a series of energy, operative, and economic criteria were optimized in the
sectorization process [58,59]. Five objectives were addressed concerning the minimum deviation of the
resilience index [95], which measures the capacity of the network to conquer system failures, the ability
of the system to ensure an appropriate service pressure in the whole network, and minimization of the
variation of the operational power, which assessed the reliability of a sectorization layout based on a
pressure target. Operative criteria were also formulated as objective functions of pressure at nodes.
When pressure dropped, a reduction in the leakage was expected. Variation of nodal pressure should
therefore be minimized. However, pressure at nodes after sectorization needs to be higher than the
minimum threshold required for service. To accommodate this constraint, a penalty cost for a nodal
pressure deficit was added. Finally, the cost criteria when performing sectorization are also important.
The cost of positioning and operation of flow meters are expected to be higher than that for boundary
valves. Therefore, an objective function to minimize the cost for installing and operating the devices
needs to be considered. Similarly, Brentan et al. [43] adopted a multilevel optimization concept to
reduce the complexity of sectorization. In their approach, two groups of the objectives were minimized.
The first one corresponded to structural costs, which were related to valve and flow meter installation,
while the second group reflected hydraulic performance, such as minimum pressure and maximum
resilience index.

Giudicianni et al. [88] recently developed a heuristic framework for dynamic partitioning of
WDNs using multi-objective functions to address different goals for saving energy, water, and
costs. Specifically, they proposed a method for zero-net energy management of a WDN using
microhydropower stations [106] along the boundary pipes during the day and a reduction of water
leakage at night.

To provide a comprehensive method for optimal DMA design, Galdiero et al. [107] proposed
a decision-support tool that focused on water network segmentation by considering two objective
functions. A total cost function including the initial cost for device investment and a daily cost
due to water leakages were considered to minimize and compared as trade-offs with changes in
hydraulic performance in terms of the maximum resilience index. To integrate different algorithms and
multi-objective functions to the development of a decision support tool, Di Nardo et al. [18] developed
advanced software called SWANP. A clustering model was implemented based on MLRBs, which
are multiagent approaches to water network clustering. In the sectorization phase, an optimization
algorithm was proposed using multi-objective functions to find optimal DMA configurations that
complied with the level of customer service and considered the minimum pressure and maximum
resilience index, and balanced the cost of investment and operation by minimum devices inserted
to achieve isolated DMAs. SWANP was written on a Python environment with a user interface and
was evaluated as an effective decision support system providing the manager with different optimal
layout solutions.

Many optimization algorithms have been applied to deal with discrete nonlinear combinations
and solve the multi-objective optimization of water network sectorization. NSGA-II [74] has been
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widely applied to multi-objective optimization problems. In terms of water network sectorization,
NSGA-II has been used in many studies [103–105,107] to obtain the Pareto front, which contains a set
of Pareto optimal solutions, thus providing support for managers charged with making more accurate
and reasonable decisions based on their priorities and objectives. Zhang et al. [42] implemented an
auto-adaptive many-objective algorithm [108] to solve the sectorization problem that shows some new
features compared with NSGA-II. Giustolisi and Ridolfi [41] used a multi-objective GA to support
network segmentation. Campbell et al. [58], and Gilbert et al. [94] applied an agent-swarm optimization
algorithm [109]. In addition, the combination of three optimization algorithms of GA, particle-swarm
optimization [110], and soccer-league competition [111] was suggested in Brentan et al. [44].

4.3. Iterative Approach

In addition to the described optimization methods, iterative methods were applied to the placement
of flow meters and valves [19,41,48,96]. An iterative method is a mathematical procedure that can
generate a feasible solution using an initial guess to generate a sequence of solutions. The result is
considered convergent when the initial set of criteria is met. Diao et al. [19] considered DMA size and
minimum pressure as criteria, and used them as constraints in the heuristic-based iterative method
to define the feedlines for each DMA. The approach determines the location of flow meters among
boundary pipes between DMAs. In addition, Liu and Han [48] proposed an iterative method based on
a heuristic procedure to determine the best location of flow meters subject to constrain head pressure
at nodes. The iterative method permits the selection of one flow meter based on the shortest path
from the source that can improve the pressure in each iteration. Di Nardo and Di Natale [96] inserted
a certain number of flow meters on boundary pipes and then designed a procedure to alternately
change the quantity and position of flow meters to achieve an optimal solution based on hydraulic
performance constraints testing.

4.4. Adaptive Sectorization for Dynamic DMAs

In normal working conditions, a DMA layout is permanent and optimized by WNP processes to
satisfy the hydraulic constraints and network performance indices. In abnormal cases, such as pipe
breaks, fire-fighting, and unexpected increases in water demand, permanent DMAs may produce
failures in preserving or maintaining regular water supplies. To adapt to such conditions and overcome
the drawbacks that a permanent DMA can cause, Giudicianni et al. [36,88] proposed creating dynamic
DMAs that allow for expansion of existing DMAs. That is, the small DMAs are dynamically aggregated
into larger ones using a semi-supervised clustering algorithm. This approach allows for a new
configuration that always includes former DMAs and maintains the set of boundary pipes at each
subzone. In some cases, by controlling the dynamic gate valves, the operator restores connectivity to
its original configuration and consequently helps the utility periodically desegregate.

In addition, Wright et al. [112] proposed a method of integrating the advantages of DMAs in
reducing leakage while improving network resilience and water quality by dynamically reconfiguring
network topology and pressure control through optimizing valve settings and boundary pipes status
using a sequential convex programming approach. The proposed approach leaned on the self-powered
multifunction network controllers that allowed adjustments of the network topology and continuously
monitored the dynamic hydraulics based on consumers’ actions (i.e., the varieties of the system’s water
demands). In low demand periods, original DMAs were preserved to capture the minimum night
flow within small isolated areas and maximize the ability to detect leaks. In peak demand periods,
DMAs were then aggregated into larger pressure-controlled zones to maximize the resilience index
and improve energy efficiency due to reduced internal losses that come with using larger DMAs. The
core idea here was inserting the network controller associated with dynamically reconfigurable DMAs
that allows a utility to monitor high-resolution, time-synchronized, dynamic pressure conditions
of the network. Similarly, Perelman et al. [113] used a linear programming approach to automate
reconfiguration of an existing WDN into DMAs. The network was reorganized into a star-like topology
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by identifying and decomposing the existing network into a main network and subnetworks based on
graph theory. Center nodes were located in main pipes and played an important role as key connections
between transmission main pipes with water sources and other nodes in the rest of the network. The
proposed method provided a flexible tool for water utilities by allowing only existing valves to be
closed, saving investment and operation costs for additional valve installations.

Ideas derived from DMAs’ limitations in emergencies, especially in the case of fire-fighting,
overcome this drawback. Di Nardo et al. [18,114] recently proposed a method that allows for the
redesigning of static DMAs to dynamic layouts. A heuristic procedure based on a GA was developed
to determine the number of gate valves that have to be motorized and remotely controlled to satisfy
hydraulic performance in a fire-fighting event. This practical technique provided system operators with
a quick decision-making tool to respond to unexpected incidents in the network and eventually leads to
a smart water management paradigm. Unlike the approaches proposed above, Santonastaso et al. [115]
developed a dynamic scheme for adjusting a WNP by accounting for the real positions of isolation
valves present in the WDN. To do this, the adjacency matrix of the WDN was changed and replaced
with a dual topology based on WDN sectorization and isolation valves. DMAs obtained in this
approach allowed topology matrix segments to merge while inter-DMA boundary pipes were forced
to be selected among the valve-fitted pipes that separated segments. Feasible DMAs were generated
that did not require additional isolation valves.

To visualize the procedure of WNP technique in the abovementioned different phases, Figure 7
illustrates the procedure of WNP for a real-life WDN in Parete town, South Italy [47,49]. In this case,
4 DMAs were generated in the clustering phase based on the normalized spectral algorithm, and a
heuristic procedure based on GA is applied in sectorization phase to locate the control devices while
maximizing the total nodal power of the network.

Figure 7. Illustration of the water network partitioning (WNP) procedure implemented to a water
distribution network (WDN) in Parete, South Italy (adapted from Di Nardo et al. [47,49]); (a) original
water network, (b) clustering phase, and (c) sectorization phase.

5. Performance Assessment of Water Network Partitioning

As mentioned in Section 2, the water network segmentation to DMAs is expected to bring
many benefits along with effective reduction measures for invisible water losses, manage pressure
uniformity, and prevent network contamination. However, in some cases, it may also decrease the
hydraulic performance and reliability of the network. To measure how this change affects network

310



Water 2020, 12, 1002

hydraulic behavior, performance indices (PIs) can quantify the benefits and drawbacks that DMAs
bring. A PI test allows for the evaluations of the performance of the original networks compared
with those of the divided networks. Most were estimated using a hydraulic simulation solver based
on the demand-driven analysis. Most studies applied multiple PIs to evaluate the effectiveness of
DMAs, such as resilience indices, pressure indices, uniformity indices, water quality indices, and fire
protection indices.

The first to be mentioned is the resilience metric, which monitors the power balance of a water
network, as proposed by Todini [98] in the form of Equation (14). According to this metric, WDN
resilience is defined as the capacity to overcome sudden system (hydraulic or mechanical) failure.
The resilience index is often used to evaluate the performance of a WNP as a comparison of network
power before and after the sectorization. Most studies have stated that the resilience index is not
significantly affected by network sectorization compared to its benefits [3]. Herrera et al. [116]
proposed a graph-theoretic approach by adopting the K-shortest paths algorithm [117] to assess the
resilience of larger-scale partitioned WDNs. To do this, all nodes in every DMA are aggregated into a
sector-node, where a new DMA-graph is represented by sector-nodes and edges that are abstracted
by sector-to-sector connectivity. A mapping function was used to transform the resilience of nodes
to a sector-scale resilience. They showed that the resilience of individual nodes in the DMAs closely
links to the corresponding sector-nodes resilience. This establishes a different way to identify DMA
configurations that have a major impact on the resilience index.

If a resilience index evaluates the overall performance of the network, hydraulic statistical indices
allow for the evaluation of the level of service that a water system supplies to its customers, providing
managers information on pressure change in terms of mean, minimum, maximum, and spatio-temporal
deviations. More specifically, Di Nardo et al. [118] proposed several indices, such as a mean pressure
surplus and mean pressure deficit compared with the design pressure.

On the other hand, water quality is measured by water age in a network and is influenced by
network topology, flow velocities, and pipe lengths. The age of the water affects residual chlorine
levels. Lower chlorine induces bacterial growth, and higher values indicate worse performance. Many
studies used the water age index as an indicator to assess the impact of DMA design on water quality.
Grayman et al. [10] and a series of studies by Di Nardo et al. [118] illustrate that after incorporating
DMAs into a WDN, there was no systematic difference in the computed average water age between
alternative scenarios. Although there can be significant variations in water age by node due to valve
closures, when considered as a whole, no homogeneous difference was found.

Meanwhile, partitioning a WDN into subnetworks with gate valves can prevent the spread
of contamination in the case of malicious attacks. Di Nardo et al. [28,119] proposed a method
that uses a simple backflow attack with cyanide to investigate the effects of network partitioning.
Grayman et al. [10] proposed an index to quantify the potential health impacts from contamination
incidents in the WDN.

Several hydraulic uniformity indices [44,48,120,121] have been developed to evaluate the
performance of DMAs. The size uniformity index reflects the cumulative demand deviation of
all DMAs compared with a hypothetical DMA with average demand, for which a smaller value
indicates a better performance. Pressure uniformity was suggested to guarantee that all nodes
belonging to a certain district would have similar pressure patterns. A lower index value indicates
better performance. Total head uniformity is also used to measure the variance of total heads along
the nodes, which has the same meaning as pressure uniformity. Liu and Han [48] proposed a
decision-making framework to determine the optimal DMA design by quantifying various indices,
such as DMA uniformity, modularity index, and resilience index. Similarly, evaluating the benefits
brought by DMAs in terms of cost-benefit analysis allows managers to make sensible decisions and
create functional and efficient DMAs. Ferrari and Savic [25] proposed a comprehensive method that
considers alternative DMA configurations to show the savings that utilities can obtain by considering
three indices related leakage reduction, burst-frequency reduction, and pressure-sensitive demand
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reduction compared with the original network. Pressure reduction across the network was the main
factor leading to reducing leakage and burst frequency. The study provided a decision-support tool for
economic performance analysis of various DMA layouts.

In the case of a fire, while water demand is high for fire-fighting at a few nodes, the network must
still have the capacity to supply enough water to users, especially during peak demand hours. This
superposition of demand creates energy-loss leaps in pipes, leading to lower pressures at that time.
Moreover, when creating isolated DMAs, some pipes feeding a district are closed and this could have
negative impacts on the amount of flow entering a DMA. To test this situation, Grayman et al. [10] and
Di Nardo et al. [118] developed a fire protection index based on the number of nodes with a pressure
lower than the required pressure designed for the fire-fighting event. Those results indicated that some
negative pressure values were occurring while most of the nodes had acceptable pressure. However,
a significant difference was found between looped and branched networks.

WDN is a dynamic system in which pressure can vary significantly due to variations in
water demand at nodes. Addressing spatial-temporal variability of water demand in the network,
Di Nardo et al. [122] proposed a procedure for WNP under stochastic water demand and quantified
its effects on hydraulic performance. The study revealed that by applying random variability of water
demand, the magnitude of pressure distribution within the network was affected significantly. This
led to a decrement of surplus pressure and network resilience compared with the constant-demand
condition. To create feasible DMAs, especially for a WDN characterized by a small deviation between
the surplus pressure and required standard pressure, spatial-temporal variability of water demand
should be considered in WNP.

6. Discussion and Future Work

This paper provided a comprehensive review of the relevant studies on WNP over the last decade.
The WNP procedure consists of two basic phases. First, the clustering phase involves the formation
of the sizes and dimensions of DMAs as well as the definition of the boundary pipes that feed or
interconnect DMAs. This phase is commonly associated with use of a clustering algorithm. In this
study, six commonly applied algorithms such as (i) Graph theory, (ii) community structure algorithm,
(iii) modularity-based algorithm, (iv) multilevel graph partitioning, (v) spectral graph algorithm, and
(vi) multi-agent approach, are presented and discussed in-depth to understand how they work and
handle in formation of the feasible DMA configurations. These algorithms are commonly based on
the graph theorem that relies primarily on the network’s topology. Since WDN is an infrastructure
system with particular properties, the water network clustering algorithm allows for tailoring by
appending weights to pipes or/and nodes to mimic distributing loads across the WDN. Many criteria
for DMA design, such as hydraulic performance, network topology, system reliability, water quality,
and cost-benefit ratio, are considered in this phase to minimize the number of boundary pipes and its
goal is to define the reasonable size and configuration of DMAs.

Second, the sectorization phase is a physical segmentation process that identifies the position of
gate valves and flow meters among the set of boundary pipes to satisfy operational constraints. This
task requires the designer to apply an optimization algorithm or heuristic procedures to ensure that the
locations of devices will have the least negative impact on the hydraulic performance of the network,
minimize the energy use and leakage and be cost-effective.

The improvements and innovations in WNP developed to date often come from innovative
approaches, either with the clustering algorithm or sectorization optimization. Those innovative
features have emerged from combinations of clustering algorithms and alternating with flexibility
or/and developing various objective functions based on the different criteria designs to propose a
heuristic procedure for creating the most reliable DMAs. Many different approaches have been
proposed for the automated creation of DMAs. However, several shortcomings remain to pursue in
the future.
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• Clustering is the crucial phase for WNP. Several algorithms and software tools were developed to
deal with the large-scale networks that are burdensome to tackle manually. Various engineering
aspects were embedded as weights to modulate WDN characteristics. More extensions of the
existing graph clustering algorithms to weighted networks would be of great interest, as well as
novel methods for clustering directed graphs.

• While there were many different approaches for the identification of DMAs in water networks,
few studies tackled to determine the optimal number of DMAs for a given network. It is an
open question and requires a decision-making procedure utilizing various network performance
quantification metrics.

• In the sectorization phase, it still lacks how to assess the pump and tank operations in the
partitioned network. Moreover, an approach to consider the consequences of device placements
to the leakage, energy use, and post-damage restoration should be studied quantitatively in
this phase.

• A demand-driven analysis (DDA) is generally used for WNP under the normal working condition
at peak hour demand. In DDA, the supplied demand is assumed to be independent of pressure and
this approach is valid when the pressure is above the minimum pressure requirement. In reality,
a WDN works more likely as a pressure-driven analysis (PDA), in which the nodal consumption
depends on the nodal pressure. Therefore, in pressure-deficient conditions (e.g., pipe failures,
fire-fighting, unexpected water demand increase), a PDA should be applied for the novel dynamic
WNP that adapts flexibly under the abnormal operating conditions.

• Last but not least, a WDN is supplied by single or multiple sources, with different elevations,
divergent intended pressure in each zone. It also can be expanded or replaced according to urban
planning needs. Further research should address the change of network’s topology, controlling
hydraulic uniformity in each zone as well as improving system resilience. Future research needs
to be conducted to improve the abovementioned limits and eventually to provide optimal DMA
layouts for efficient network operation and management.
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Abstract: Throughout the past years, governments, industries, and researchers have shown increasing
interest in incorporating smart techniques, including sensor monitoring, real-time data transmitting,
and real-time controlling into water systems. However, the design and construction of such a smart
water system are still not quite standardized for massive applications due to the lack of consensus on
the framework. The major challenge impeding wide application of the smart water network is the
unavailability of a systematic framework to guide real-world design and deployment. To address this
challenge, this review study aims to facilitate more extensive adoption of the smart water system, to
increase effectiveness and efficiency in real-world water system contexts. A total of 32 literature pieces
including 1 international forum, 17 peer-reviewed papers, 10 reports, and 4 presentations that are
directly related to frameworks of smart water system have been reviewed. A new and comprehensive
smart water framework, including definition and architecture, was proposed in this review paper.
Two conceptual metrics (smartness and cyber wellness) were defined to evaluate the performance
of smart water systems. Additionally, three pieces of future research suggestions were discussed,
calling for broader collaboration in the community of researchers, engineers, and industrial and
governmental sectors to promote smart water system applications.

Keywords: smart water system; framework; smartness; cyber wellness

1. Introduction

The world’s urban population has grown rapidly from 1.019 billion in 1960 to 4.117 billion in
2017 [1]. It is estimated that the population will reach 9.7 billion by 2050 [2]. The excessive population
growth will cause urgent water problems like water shortage and water quality degradation in urban
areas. In the 21st century, the global water sector faces quality and quantity challenges, which are
highly related to climate change and population growth [3]. The 2018 Global Risk Report shows that
most of the high risks (high-likelihood and high-impact) issues are water-related either directly or
indirectly and are currently being exacerbated by climate change [4]. Water crises have become one of
the five most significant risks in terms of their societal impacts. Additionally, the breaking of economic
growth and unbalanced urbanization can also contribute to water shortage [5,6]. It is predicted that
due to population and industrial growth the percentage of water scarcity will increase by 50% in
developing countries and decrease by 18% in developed countries by 2025 [7]. One upcoming water
scarcity event will occur in Cape Town, where it is supposed to be the first city to experience day zero
but will not be the last if these threats still hold [8,9].
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However, due to the growing complications of water-related issues such as water shortage, water
deterioration, and aging infrastructure, traditional techniques, and management for drinking water
supply have gradually shown their drawbacks and incapability to address these water issues [10].
Climate change and anthropic activities exacerbate the water issues by reducing water quantity
and deteriorating water quality. Especially, the limited effort on ecological maintenance results in
the pollution being increasingly found in the water distribution system for the public around the
world. There is an urgent need for modernized water supply technologies to alleviate current water
concerns by improving water supply efficiency and approaching sustainable water management
globally [11]. Traditionally, engineers and researchers get used to re-sizing water supply systems.
However, upgrading the existing water distribution network is time-consuming and costly. Instead,
retrofitting the water system with smart components such as sensors, controllers, and a data center
can achieve real-time monitoring, transmitting, and controlling in water systems for decision-makers,
which is a more cost-effective and sustainable approach to address the water challenges [12].

To date, automated control technology (ACT) and information communication technology (ICT)
are applied to tackle existing problems in water distribution networks, where both technologies play
critical roles in large-scale ACT and ICT applications. A number of study cases around the world
consider using smart water metering to monitor the water consumption and further track leakage and
pipe burst issues in water distribution networks [7]. The real-time measurements can be utilized to
improve the accuracy of hydraulic model calibration and forecasting. Real-time control is commonly
applied in pumping, valve operation, and scheduling. The water supply efficiency significantly benefits
from automatic control technology but the electricity energy efficiency needs optimization in practical
applicability. If matched with appropriate and effective ICT or ACT solutions, in the form of a smart
water system (SWS), city-wise water issues can be appropriately addressed and managed [13]. In SWS,
progress can be made via smart metering (real-time monitoring that transmits data to the utility) and
intelligent controlling (real-time feedback and action). For example, the Western Municipal Water
District (WMWD) of California utilities have used the SCADA system to manage real-time alarms and
automatically operate plants and networks [14]. The implementation of SCADA has been associated
with 30% savings on energy use, a 20% decrease in water loss, and a 20% decline in disruption [15].
In Brisbane City, Australia, the web-based communication and information system tools are used
by governments and municipalities to deliver relevant water information to the public, as well as
to provide early warnings [16]. Another SWS case is in Singapore, where a real-time monitoring
system called WaterWiSe was built, utilizing wireless sensor networks and data acquisition platforms
to improve the operational efficiency of the water supply system [17]. Moreover, in San Francisco, the
automated real-time water meters are installed among those communities for more than 98% of their
178,000 customers to transmit hourly water consumption data to the billing system via wireless sensing
networks [18]. This access to frequently updated water consumption information allows engineers
to detect water quality events and localize pipe leaks faster than traditional water systems that are
still using existing manually-read meters [19]. Given these ACT and ICT applications in water sectors,
smart water concepts therefore emerge and inspire SWS to be widely accepted by large amounts
of stakeholders.

The terms “smart water grid,” “smart water supply system,” “smart water system” or “smart
water network” have been widely spread. The concept of SWS in the urban water field is gaining
great impetus among academia, government, and industry, drawing attention from international
communities (SWAN, EWRI, HIC, and CCWI) to top-level organizations (IWA, AWWA, AWC-Asian
Water Council). Other international collaboration projects (e.g., i-WIDGT from EU [20], CANARY
from US [21], SEQ from the Australian water resources department [22], and Smart City reports [23])
are providing professional support to smart urban water infrastructure all over the world [24–26].
Although researches on SWS are speeding up to meet the demand of industry and government, the
conceptual, technical and practical gaps between providers and clients are still not well bridged.
The influences of SWS could be more significant and essential if priorities are precisely defined and
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implemented into sensing technology domains in water contexts [27]. As a consequence of the lack of
a systematic consensus from conceptual, technical, and practical perspectives, investigating the current
architectures, initiatives, and applications of SWS around the world must be required to help generate
a better understanding of the definitions, characteristics, and future trends of SWS. While review
studies related to SWS and smart grid areas have already been undertaken [28–31], a review of SWS in
conceptual and comprehensive prospects, with a further notification on the definition, architecture,
and metrics, is missing. To address this research gap, this paper is going to analyze the existing SWS
concepts, identify the possible metrics for SWS, and establish a more systematic SWS architecture, to
enlighten future research on its implementations.

This review paper is structured as follows: firstly, the current definitions and historical development
of SWS are presented and discussed in the introduction section, reviewing the evolution of SWS from
the past to the date and analyzing the weakness of the current water system. Secondly, given the
previous literature of SWS, a new architecture of SWS with five layers is put forward and demonstrated
explicitly. Then, by reconciling definitions and architectures, two metrics of SWS are proposed to
characterize its properties. Finally, recommendations on future research directions are given for smart
water system development.

2. Literature Review of SWS

SWS is a multidisciplinary term. A ScienceDirect search for “Smart” or “Intelligent” in the title,
abstract, and keyword gave a total of 31,527 article results. However, most of them belong to smart
transportation, smartphone, and smart grid fields. If “water” is included in the search, the number
goes down to 9847. Further searching “Smart Water System” made the results decline to 9517. By
adding “framework” to the “Smart water system” only 4026 articles remained. Given that searching
results, we conducted the literature review by considering relevant references from the selected papers.
The step-by-step literature searching rules were summarized below: (1) “Smart” or “Intelligent” in title,
abstract, and keyword with 31,527 article results; (2) “Smart Water” in title, abstract, and keyword with
9517 article results; (3) “Framework” and “Smart Water” in title, abstract, keyword, and body with
4026 article results; (4) “Structure”, “Layer”, “Framework” and “Smart Water” by manual filtering with
32 article results. These 32 final pieces of literature, including four article forms such as forums, papers,
reports, and presentations gain high popularity in multiple sources like Google Scholar, SCOPUS, and
ScienceDirect. All the papers come from the recent 10–15 years; they provide a wide presentation
of the smart water system for the readers, which include the typical arguments of the framework
of SWS. With insight from these literatures in Table 1, there are 17 papers, 10 technical reports from
different well-known organizations including the International Telecommunication Union [32], U.S
Environment Protection Agency [33], UK Department for International Development [34], UN Global
Opportunity Committee [35–38], and Colorado State University [39]. Four key presentations and one
International forum [40,41] are also taken into consideration in this review. As the number of studies
that we reviewed is limited, this paper does not cover all aspects of SWS.
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A graphical statistical data overview of the 32 selected literature is presented in Figures 1–4.
In Figure 1, these pieces of literature are classified into four types including the forum, presentation,
report and paper based on their literature formats. In Figure 2, they are reclassified into three
types—academia, industrial, and governmental based on their published organizations. As Figure 1
shows, paper and report take up the highest percentage while key presentations and forums occupy
only a small portion, which shows that current SWS studies are mainly documented by papers and
reports for efficient sharing. The 22 publications out of a total of 32 from academia in Figure 2 imply
that most SWS researchers are from universities and academic research institutions. There is a lack
of industrial and governmental inputs for such interdisciplinary work in the SWS field. In Figures 3
and 4, it is clear how the percentages of each type of publication weight in each classification group.
For example, in Figure 3, among those SWS papers, the highest percentage of publications are from
academia. In contrast to the data presented in Figure 3, Figure 4 shows the different picture that there
are equal numbers of all four literature formats in industrial publications.

 
0 5 10 15 20

Paper

Report

Presentation

Forum 1 

4 

10 

17 

Figure 1. Literature overview: the number of publications for smart water systems (SWS’s) definition.

 0 5 10 15 20 25

Govermental
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Academia

Figure 2. Literature overview: the number of the organization for SWS’s definition.
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Figure 3. Literature overview: the number of literature types for different organizations.
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Figure 4. Literature overview: number of studies for literature type.

The following is a list of works of literature related to the framework of the smart water system in
Table 1. We categorized these papers according to the smart water definition, structures (Instrument
layer, Property layer, Function layer, Benefit layer, Application layer), and metrics, which correspond
with the components of the proposed SWS framework below. The definition provides theoretical
support for SWS structures, and the metrics can be used to evaluate the SWS performance. These five
basic layers inside structures consist of a comprehensive SWS architecture. The relationship among
definitions, layers, and metrics make SWS work, which is considered as the reason for the literature
classification in this study. In Table 1, “Instrument” represents the instrument layer of SWS including
the physical and ACT and ICT components. “Property” means the property layer of SWS containing
the components like systems attributes. “Function” represents the function layer of SWS such as data
fusion in the data center. “Benefit” represents the benefit layer including features like water quality
security and energy saving. “Application” represents the application layer such as commercial and
educational applications. “Metrics” relate to the methods applied to evaluate the smart water system.
“Future research” stands for research direction recommendations regarding the smart water system.
Each reference might include but not all components (definition, layers, and metrics) of the smart water
system. A black solid circle was used to mark the elements that references have covered. It can be found
that most of the pieces of literature have definitions of SWS. However, none of them have covered all
key layers. Since SWS is built for different purposes, the structure of SWS may vary from case to case.
Furthermore, among all those pieces of literature that we reviewed, only 7 of them discussed metrics
for SWS. How to assess the performance of SWS was not fully explored based on currently available
literature. It was evident that there is still great potential to improve the consensus and understanding
of SWS. Table 1 also shows that over 90% of the relevant literature has recommended future research
directions for SWS. This paper will summarize these suggestions later in Section 5.
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3. A Systematic Framework of SWS

A systematic architecture of SWS is comprised of various layers working synergistically to perform
useful functions and applications [62]. Such a system can be represented as a set of components, with
specific properties and benefits. In past years, previous studies proposed various versions of SWS to
meet their particular demands. The combinations of SWS that are water management technologies and
ICT distinguished from traditional water management technologies were put forward [54]. However,
the scopes and characteristics of such SWS were not identified. Further, the term “SWG” refers to an
advanced smart water grid that includes real-time information sharing through smart measurement
and networking and a sustainable water distribution infrastructure [46]. The smart components in
SWG imply that a smart water network should comprise smart meters, smart valves, and smart
pumps by definition [28]. These smart elements including physical electronic parts, like sensors and
microcontrollers, communication protocols, and embedded systems are all folded in the concept of the
Internet of Things (IoT), which is the foundation of SWS [46]. The structure of SWS, therefore, should
contain three frameworks: the hierarchy framework, technical system, and function framework [61].

In the hierarchy framework and technical system, there are also numerous pieces required. An
easy-to-understand architecture of SWS would be preferred. The principals of the smart water network
were then explained [44]. This research can be segmented in various layers: (1) physical layer (like
pipes); (2) sensing and control layer (like flow) sensors and remote control; (3) data collection and
communication layer (like data transfer); (4) data management and display; (5) data fusion and analysis
(like analysis tool and even detection, leakage detection, and decision making). Nonetheless, these
layers still only contain physical and cyber components and a lack of improvement to the service
level. It was proposed that SWS contains 5 layers: physical layer, sensing layer, and control layer,
collection and communication layer, data management and display layer, and data fusion and analysis
layer [53]. They also put forward a bottom-up framework of SWS with 5 layers: sensing layer, transport
layer, processing layer, application layer, and unified portal layer, which are based on IoT and cloud
computing [53]. Another SWS composed of 4 stages was established to secure the vast amounts of
high-resolution assumption data and customized information [20].

The most widely accepted smart water architecture is characterized by five layers: the physical
layer, sensing, and control layer, collection and communication layer, data management and display
layer, and data fusion and analysis layer. Each segment covers a distinct function in the network [62].
However, all SWS introduced above are under debate since most of them are defined for one particular
purpose without complete demonstration. Some of them are for smart water targets, some stress
the innovation of mechanism, while others emphasize the application of ICT. Very few of in situ
frameworks for understanding SWS are comprehensive and directly applicable for education, research,
and public. They lack some critical elements like properties, metrics and case studies, and the ability to
guide future research directions. Hence, it is necessary to build a systematic framework of SWS to
further the understanding of SWS and accelerate the implementation of SWS. In this study, we adopt
and integrate some of the existing architectures to propose systematic architecture. Figure 5 illustrates
the authors’ conceptual representation of an orderly architecture of SWS within a systematic smart
water framework. There are five layers (from bottom to top: instruments layer, function layer, property
layer, benefits layer, and application layer) that are proposed in order to understand how systematic
architecture is implemented in the SWS framework. Although such a conceptual framework has not
been tested in the field, this provides the guidance for engineers to replicate the SWS according to their
purposes and application. For instance, a smart water test-bed for educational purposes can be built
on the lab by following the SWS framework, while the application layer might be unnecessary in this
case [63].
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Figure 5. A New Framework of Smart Water System.

3.1. Instruments Layer

Typically, the instruments layer of SWS should be composed of physical infrastructure
(network-level components) and cyberinfrastructure (internet-related hardware, software, and services).
Although the physical instruments are the basic structure of the water system, they cannot make it
smart or even data-enables only by itself. The cyberinfrastructure includes multiple intelligent devices
like smart sensors, smart pumps, and smart valves, etc. Their primary roles and application goals
are summarized in Table 2. The smart components of cyberinfrastructure are the elements in which
SWS differs from the traditional water distribution system. For example, traditional water distribution
systems with only physical instruments carry on pressure or flow data. Conversely, the SWS with
cyber instruments not only sends a flow or pressure signal, but their data steam including diagnostic
information also makes the SWS detect leaks more efficiently and automatically. Additionally, for the
integrated SWS, the interaction and relationship between physical and cyberinfrastructure should not
be ignored. Showing in Figure 5 below, physical instruments, including pipes, valves, and pumps
provide the structural basement for the placement and installation of cyber instruments like smart
meter and intelligent sensors (e.g., electromagnetic or ultrasonic). Meanwhile, physical infrastructures
are elements that produce the required data and information, which would be collected, transferred,
processed, and fused by internet-related hardware, software, and services. In return, the cyber
instruments can instruct the operation and maintenance of physical components by analyzing the
newly produced data and forecasting the system condition. For example, the automated meters are
bi-direction communication devices that can execute actions on devices (e.g., valve turn off and on) [23].
Furthermore, the different smart sensors might be designed to solve various problems (shown in
Figure 6) by operating systems discriminatively. Therefore, the components layer of SWS should
achieve both of the roles of physical infrastructure and cyber-infrastructure.
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Table 2. Components of Cyber-Infrastructure.

Components Roles Problems Solved

Smart Flow Sensors Monitor flow Water leakage, Pipe burst
Smart Pressure Sensor Monitor pressure Pressure instability, Water Loss, Energy Loss
Smart Valves “Bi-direction” operation Water leakage, Pipe burst
Smart Pumps “Bi-direction” operation Pressure unbalance, Energy loss
Smart Irrigation Controllers “Bi-direction” operation Water loss, Energy loss, Water Overuse
Smart Contaminant Sensor Monitor water quality Pipe deterioration, Water aging, Contaminant intrusion
Smart Flood Sensor Monitor flood volume Flood disaster, Water quality issues

Note: Bidrirection communication denotes the ability of the meter operator to “at a minimum, obtain meter reads
on-demand, to ascertain whether water has recently been flowing through the meter and onto the premises, and to
issue commands to the meter to perform specific tasks such as disconnecting or restricting water flow” [58].

Figure 6. Designing of Instruments layer.

3.2. Property Layer

The property of SWS can be understood as the ability to respond to threat, withstand attack, and
adapt more readily to failure risks, like connectivity, real-time, security, resourcefulness, and robustness.
These properties can be considered indicators of how smart the SWS is, and have to be quantified
either qualitatively or quantitatively through metrics. The metrics applied in the SWS assessment,
such as smartness, how efficient the SWS is towards real-time, and cyber wellness, how defensible
the SWS is against cyberattack, would be discussed in the next section. In this work, we proposed
that SWS based on components layer should have 4 properties: (1) Automation; (2) Resourcefulness;
(3) Real-time; (4) Connectivity. We designed the interaction between each other within the property
loop in Figure 7. For instance, automation is the foundation to achieve real-time and also real-time is
facilitated by connectivity. Resourcefulness is ensured by the automation and connectivity among
various IoT. One common sense is that these four properties might not be applied to each case of SWS,
and also, some researchers may consider SWS with other extra features, but these four demonstrate
what most SWS look like.
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Figure 7. Property layer designing.

Automation is the fundamental property, which means that SWS can perform the physical and
cyber components’ operation automatically once the relevant parameters are set manually. This is a
near-automatic process in the SWS since the application of ACT and ICT enables the SWS to execute
one-way or two-way orders without too many operators’ involvement. For the one-way control case
(e.g., by setting the sampling interval in the Arduino sketch), the smart sensor can modify the data
collecting frequency. As to the two-way control example, the real-time metering data fusion can help
provide feedback for the control center, where the data analytic tools, in turn, give instructions to
the opening status of smart meters, smart valves, or intelligent pumps. Further, automation can be
implemented not only for components providing functionality but also for operation mechanisms.
For example, when water problems happen in the operation process or the element itself, the smart
components notify the system center and then take action to avoid a crash. Additionally, with automatic
self-verification, the water utility can know when the sensor needs maintenance or re-installation [64].

Connectivity is also a fundamental property, which means the degree of interconnectedness or
duplication [56]. In a cyber-physical system like SWS, connectivity can be implemented by deploying
multiple sensors and software for monitoring the same physical processes [65]. SWS should be qualified
to connect with different software and hardware to make the system collect data, analyze data, and
share information publicly. For example, the SWS can be connected with the hydraulic model, GIS
platform, billing system, and Database Model.

Real-time is the core property of SWS, which can also be called system efficiency. The real-time
performance of SWS is characterized as online steps like online data monitoring, online data assimilation,
online modeling, online plotting, and online results output, despite offline performance included in
SWS. Real-time is the property that SWS obtains to achieve the required smart features [66]. However,
current research mainly focuses on real-time modeling. The real-time modeling of SWS is structured as
6 steps: (1) Communicate SCADA datasets; (2) Updating the network model boundary conditions
and operational statuses; (3) Pausing execution; (4) Generating the corresponding networks analysis;
(5) Waiting for the new SCADA measurements to reload the network model; (6) Return the network
simulation. Mentioned in the connectivity property, real-time modeling can be performed only by
connecting with data sources systems like SCADA with modeling tools like EPANET-RTX [60]. This
newly produced data from real-time hydraulic modeling can forecast results and calibrate the model
by comparing measurements and predicted values.

Resourcefulness is the final property, which means the SWS not only owns massive data storage
but also aims to timely exchange data for further analysis. This property of data exchange can also be
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interpreted as interoperability, which refers to the capability of units of an SWS to exchange and use
information and services with one another and interfaced external units [67]. SWS provides massive
information to an automation and security system, compared with the traditional instruments [58].
Typically, there are three types of source data open to the processor: spatial data, attribute data,
and multimedia data, which determine the database model designing. However, these data can
only be shared with the public and business after being analyzed by experts. Those processed data
would be input into the hydraulic model to produce forecasting data, and those visualized data
would be interpreted as valuable information such as early warning system, assessment of pipe
leakage/breaks, or identification of cyberattacks or for decision support [68]. Moreover, the processed
information or data would be transmitted back to the SCADA system and stored as instrument status
and diagnostic information.

3.3. Function Layer

Functions of SWS can be determined by the instrument layer and property layer since different
components and properties lead to different functions. For example, one SWS installed with flow and
pressure sensor would consider being featured with resourcefulness and can verify the pressure-driven
modeling analysis with enormous data collection resources [69]. In contrast, SWS is equipped with
temperature sensors functions predicting the infiltration rate in the water systems with available
temperature data [70]. Within the architecture of SWS, the function layer is localized in the connection
point between system’s property and metrics and plays a role in linking these two (shown in the
framework Figure 5). Thus, the function layer can be interpreted as the backbone of SWS that
includes functionalities of intelligent sensing, simulation, diagnosis, warning, dispatching, disposal,
and control [43]. However, this study does not demonstrate the status of a function layer on the whole
framework. Based on this function layer, this paper re-designs and specifies the function layer shown
in Figure 8, which includes data producing, data sensing, data processing, simulation operating, and
application supporting.

Figure 8. Function layer designing.

3.4. Benefit Layer

Retrofitting the traditional water supply system with smart devices brings many benefits such
as bill reduction for consumers, operation cost decreases for utility, and water loss declines [10]. In
this study, the benefit layer mainly contains four aspects including prolonging the asset life cycle,
increasing energy sustainability, optimizing pressure and water quality, obtaining real-time water
consumption shown in Figure 9 below. According to the benefits taxonomy by [71–73], the first two
can be considered as business benefits while the third one belongs to shared benefits. The last benefit is
classified as customer benefits.
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Figure 9. Benefits layer designing.

3.4.1. Prolong Asset Life Cycle and Cost Saving

As real-time property states, an SWS can integrate and analyze real-time monitoring data from
various instruments for decision-making support. Especially, monitoring data regarding pipelines,
valves, pumps, and tank conditions can be used to develop a risk-evaluated model for instrument
replacement or maintenance. This allows SWS to plan and schedule the replacement and rehabilitation
of the asset program efficiently as well as effectively so that the right assets can be replaced, repaired,
and rebuilt in a timely manner. Thus, the real-time monitoring of asset status could be regarded as
indicators of preventive maintenance and predictive replacement to prolong the assets’ life cycle and
cost savings [74–76].

3.4.2. Reduce Energy Loss and Improve System Efficiency

Energy is needed to extract, deliver, treat, and heat water for municipal, industrial, and agricultural
uses [77,78]. In the United States, the energy required to move and handle the water is estimated to
comprise 4% of total electricity consumption nationwide [79]. Knowing the quantity of water needed,
and accounting for any losses, utilities can produce less water. This will be reflected in lower energy
consumption as well as in water conservation. The energy loss and costs can be reduced by reducing
the amount of water needed to be pumped, transported, heated, or treated [80]. Leakage in the water
distribution system leads to additional energy required to pump and carry water to consumers as a
result. Smart water sensors can monitor online pressure and warn pressure changes or significant
pressure losses along with the water network, where utilities can remotely optimize the network
pressure to help save energy [57].

3.4.3. Optimize Pressure Supply and Water Quality

Real-time data allows SWS to enhance system planning and operations by monitoring the
hydraulic and water quality situation throughout the system [81]. On the one hand, the deficit pressure
in the water distribution system can be detected so that actions can be taken promptly to alleviate
the risk of pipe bursts. On the other hand, automated valve or smart gate operations can adjust the
operating status to prevent pipe burst and water leakage, which might compensate for instruments
changing process conditions or water treatment plant requirements [47]. Those data from SCADA and
hydraulic integration can also be used for foreseeing the negative operating consequences, predicting
future boundary conditions, and knowing the current system status in real-time, which empowers
operators and engineers to control the water systems more effectively.

The implementation of cyber instruments into the water system can be utilized for warning
pollutants intrusion. Continuous online monitoring for water quality indicators, such as free
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chlorine, total organic carbon, pH, conductivity, and turbidity, assist the effective response to a
water contamination incident and to mitigate further consequences. For example, the real-time
water quality issue detection system called CANARY can use advanced monitoring technologies and
enhanced surveillance instruments to collect, integrate, analyze, and communicate information that
provides a timely warning of potential contamination events [82].

3.4.4. Obtain Real-Time Water Consumption and Consumer Billing

SWS connected with the billing system and consumption system can display the metering
information on the end-user’s platform, like laptops, smartphones, or tablets via internet connection.
This real-time water consumption information helps customers to save water and costs [83,84]. As
the crux elements of SWS, the automated meter readings (AMR) and automatic meter infrastructure
(AMI) provide real-time feedback on water usage for customers. This enables customers to make
informed choices towards water-consuming habits and join in the water management activity. In
reverse, the change of demand pattern would help the engineers and operators to calibrate their model,
optimize pump and valves schedules [85], and modify the boundary conditions timely as efficiently as
accurately [47].

3.5. Application Layer

In the application layer, there are three aspects generally classified as the Public application,
Government application, and Business application shown in Figure 10. The application layer is
mainly user-oriented for decision-making support finally. These three kinds of applications can receive
feedback from the corresponding users like consumers, utilities and markets, or other terminals shown
in Figure 10 below.

Figure 10. Application layer designing.

The public application aims to share real-time data and information with consumers for their
feedback on billing and consumption, which is beneficial for water conservation and costs saving.
Besides, public awareness about this SWS and water conservation should be stressed. More community
involvement might be eliminated by providing citizens with more information regarding water
conservation and SWS. Manual flow meters reading and installation may cause problems like the
embarrassing access of individuals and invasion of government on private property [86]. SWS’s
technology development, combined with public awareness improvement, can reduce those risks.
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The government application targets water utilities, different users from public applications. As
the construction work of the water system, such as pipe replacement, instruments installation, and
data center establishment, is the responsibility of the water utility, the sensors deployed by the water
utility are helpful to take an insight of what is happening in SWS, and the collected sensor data would
be adopted to support government decision.

The last application is the business application. The current smart water market mainly focuses
on developing sensors and real-time software. But there are only a few standards or guidelines to
evaluate these intelligent products. The application and development of SWS can accelerate the
speed of evaluating the system on market feedback and build the rules of the smart water market.
Additionally, the application layer is dependent on the purpose of data acquisition. However, there is
no single protocol that can adequately suit all the applications and communication processes, and an
overall application protocol would be too complex to support efficient business processes. Therefore,
another business application is the on-going multi-protocol handing devices for specific purposes since
one proprietary single-manufacturer protocol would not be the best for interoperability in SWS. These
devices can stimulate communications by using the existing or coming protocols and also allow open
programmable interfaces that can be customized for market tests and feedback [55].

4. Metrics for SWS

The technical structure of SWS has a pyramid structure with core information on the top to ensure
system efficiency and security [87]. Figure 11 illustrates the features of such a technical structure. In
this general structure of SWS, the configuration of components and connections can be interpreted
as a network of cyber information (e.g., leak detection, discharge control, and noise recognition),
data compiling (e.g., real-time modeling, real-time controlling, and real-time sampling), and physical
instruments (e.g., sensors and loggers) domain. In Figure 11, nodes represent system components
while the links stand for the functional relationship between nodes. For instance, the bottom nodes
are connected with the intermedia nodes, which optionally means that the data from the sensor is
transmitted to SCADA via links. To better assess the SWS’s efficiency and security within these
domains, it is necessary to develop the metrics [45].

Figure 11. Illustration of a smart water system technical structure.

Before moving to the metrics discussion, the relationship between property and metrics should
be clarified. While metrics are refined from properties, and both metrics and properties might be
connected by functions, the application of SWS ultimately aims to assess the performance of SWS.
Therefore, properties can be seen as the inherent components of SWS whilst metrics are the manual
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product. Additionally, properties might determine the assessment indexes on a given SWS, while
metrics are those elements to achieve the terminal performance. For example, real-time modeling is a
crucial property of SWS, which makes measuring the efficiency of SWS one indicator for smartness.

Furthermore, the performance of data processing in the context of resourcefulness is related to
informational security. However, the effects of property layers on metrics are not certain without
specific analysis of a given system. In this section, the paper proposes two new conceptual metrics
(Smartness and Cyber wellness) for assessing two essential properties of SWS, efficiency and security,
and discusses how to define these two metrics and how they can be objectively built to deal with
threats of SWS.

A brief investigation of 27 reviewed academic studies was conducted to analyze the SWS metrics
shown in Figure 12, showing the number of studies (report and paper) for smartness scope and cyber
wellness scope. Smartness and cyber wellness are seldom discussed directly in previous articles and
reports. Most of them mention relationships with metrics or present the features of these two metrics.
Thus, we consider that these papers and reports listed should be included in the scope of the metric.
In the cyber wellness scope, cyber wellness only comes from the electrical and telecommunication
fields [30], which makes it necessary to translate the cyber wellness into water systems. Although
smartness has been described in the previous environmental studies, the vision is a little broader as
water systems are only a small part of the environment [87]. More efforts would be required to narrow
down the scope of smartness if it is applied in the water system sector.

 

0 5 10 15 20

Paper

Report

smartness scope cyber wellness scope

Figure 12. The number of studies for different metrics scope.

4.1. Smartness

In previous studies, researchers made many efforts in achieving smart performance in water
systems. The smart performance of SWS ought to expand to real-time modeling, real-time sampling,
and real-time controlling, etc., which aim to minimize the time delay between system input and system
output. It was revealed that the efficiency of data transmission would be promoted significantly
by using SCADA [88,89]. Nevertheless, SCADA system enables multiple connections with various
database and real-time modeling tools; the connection between the SCADA and offline or time-delay
modeling tools still makes the water system not so smart as to reduce the data acquisition time.
Some offline modeling tools like Hydraulic CAD and WATSYS can only process historical data, even
though they are commonly used for the hydraulic model. Even if the SCADA system and so-called
real-time simulation tools have been integrated into the water distribution system, it is still necessary
to further understand what makes the water system smart. Real-time modeling tool applications like
EPANET-RTX [90], LVVWD [91], and EPANET-CPS [92] actually need two steps to finish work: pausing
execution and waiting for the new SCADA measurements to reload and to update the boundary
condition [93]. The Pausing and Waiting takes typically 10 seconds and 14 minutes, respectively, which
makes smart modeling is close to being near real-time process [94].
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Thus, the time interval between system input and output, which is characterized as a time lag
equation, can be used to assess how much smart it is. Overall, to define the SWS is to establish
the mechanism for reducing time lag among those processes like real-time monitoring, real-time
transporting, real-time processing, real-time sampling, and real-time simulation in SWS. In this study,
the term “Smartness” is introduced to quantify the time lag reduction. The optimal levels of smartness
require trade-offs from the source to the end [87]. This way, the smartness used in Equation (1)
aims to minimize the system time costs from start input and terminal output. As smartness ensures
performance, efficiency, and expediency, the maximum of smartness will revolutionize the interaction
relationship between systems and engineers.

Smartness =min (Time lag: system input, system output) (1)

The unit for smartness is minutes; a smartness below 15 min can be acceptable while a smartness
over 15 min is unfavorable. Smartness can be used to assess the efficiency of the smart water system
when dealing and interpreting measurements from real-world systems.

4.2. Cyber Wellness

The scale IoT devices are growing even faster than the world’s population. There will be 20.4
billion connected devices by 2020, compared with 7.8 billion global population [95]. These numbers
highlight IoT’s significance in the fourth industrial revolution, also known as the digital economy,
where IoT is expected to deliver the “smarts” needed to address common everyday challenges in areas
such as education, healthcare, utilities, transportation, and public and residential buildings [96].

SWS has a number of logical sub-layers in the integration of physical components and IoT, where
sensors and actuators are deployed across the water distribution network to enable significant data
processes and real-time performance. However, the pursuit of smartness without considering data
authenticity and reliability would lead to information security issues. Many information safety issues
are from system integration [42]. Thus, security at both IoT and network-level is critical to the operation
of SWS [61]. Compared with physical network level components, these data-related smart sensors
and intelligent devices with larger importance are the heart of SWS, occupying the decision-making
resources. In comparison with the physical network level, the related data are easier to be chosen as the
hitting points and even more vulnerable to cyberattacks because the hackers or cyberattackers might
tend to crush the critical components of SWS or to steal the most crucial data saved in the database.

In this paper, we propose cyber wellness as one of the metrics to evaluate the information security
of SWS. Cyber wellness is first put forward in the International Telecommunication Union (ITU) to
describe the health level of information and communication technologies [97]. Continuously, cyber
wellness is also introduced into the education field to describe the health level of Internet users [88]. In
terms of information security, the emphasis from all cases is on how many of the IoT works well to
extract data and how long it will last to defend itself when a cyberattack happens. In this work, we
define the well-being level of information as “cyber wellness” in SWS. The goal of cyber wellness is,
therefore, to store data as much as possible before a cyberattack and to withstand cyberattacks as long
as possible at the same time shown in Equation (2):

Cyber wellness =max(Information security: capacity, endurance) (2)

Cyber wellness is unitless, usually ranging from 0% to 100%. The higher cyber wellness reflects that
the smart water system has more capacity to be against system failure and to prevent information loss.

5. Future Research Recommendations

A few challenges in the application of SWS are still waiting to be solved before the wide application
of a smart water system [47]. More coordination is needed for collective work from the academia,
industry, and government to enable smart techniques for public adoption. Based on the results of

338



Water 2020, 12, 412

this review paper and the work from different water organizations, several research directions are
recommended to help engineers, researchers, and the public to work on those challenges in a more
efficient and focused way.

5.1. Cyberattack to Smart Water Micro-Components

As the latest information and data center systems are vulnerable to hackers switching off the
power easily, the smart equipment being connected to the wider internet is revealed to be exposed to
cyberattack risks [98]. This finding reflects the current security problems in the IoTs are a significant
public concern. SWS, which is also on the basis of IoT, should not ignore this concern, and it is required
to build a strong defensive wall to cyberattacks [52]. However, there are few studies discussing the
protection of smart water micro-components. Different smart devices such as sensors, loggers, samplers,
and controllers play roles of varying importance in water systems, meaning that cyberattackers might
select the attacking intentionally in one specific case. In this way, we need to develop efficient methods
and technologies to benchmark the smart water micro-components protection efficiency. This will
budget the investment in the water system retrofitting where identical smart water micro-components
are required for different defense costs.

5.2. Resilience Incorporation into Smart Water System

The resilience concept has been incorporated into the traditional water distribution system,
rainwater harvesting system, storm drainage system, and wastewater system in some papers and
projects [99–102]. However, there are few papers discussing how to implement resilience in the
smart water system. The smart water system needs to be resilient since it involves more recovery
not only in physical components but also in the intelligent ones. In contrast to traditional water
systems, a smart water system has more complex connections with automatic and online operations.
Thus, the performance of SWS is determined by water, energy, and electricity availability. The
necessity of incorporating resilience into the smart water system to evaluate their recovery ability
and function efficiency are therefore very important. Incorporating the sub-resilience into the smart
water micro-components would also be a better way to quantify the recovery capacity of the whole
water system.

5.3. Smart Water (End-User) Data Disaggregation and Analysis

Real-time meter readings generate massive data that require good organization and powerful
analytics to extract useful information [103]. The high-resolution water data sampling can enable
end-user disaggregation to efficiently recognize the peak demand, pipe leakage, and breakage [104,105].
However, the smart water system field is still lacking proper data disaggregation and analysis tools.

The development of data analysis tools that utilize the processed data to obtain water consumption
information such as peak hourly consumption, end-uses, or comparative analysis is still at the formative
stage [106]. Multi-Resolution data availability can assist utilities in obtaining benefits from data
sampling and the cost of high-resolution metering, real-time data-model coupling, and maintaining
metering infrastructures [67,72]. These are the most critical challenges requiring urgent research
attention as the efficient end-user data analysis approach can benefit the customers’ billing and costs.
Such work will provide insight into future big water data management research and commercial
applications [107–109].

6. Conclusions

This paper has conducted a critical review of studies that deal with smart water techniques
applied in water systems, with a particular focus on the understanding of how to address the key
components for the framework of the smart water system (SWS). Four critical components composed
of the SWS (instrument layer, property layer, function layer, benefit layer, and application layer) and
two metrics (smartness and cyber wellness) are proposed to characterize SWS. In this review, a total

339



Water 2020, 12, 412

number of 32 literature including 1 international forum, 17 peer-reviewed papers, 10 reports, and 4
presentations, explicitly supporting the smart water system’s definition, architecture, and metrics, are
analyzed. The main conclusions drawn from this study can be summarized as follows:

1. The lack of consensus in the definition and architecture of a smart water system and metrics of
intelligent water system assessment is hindering the process of smart techniques entering the
water sector;

2. A systematic and comprehensive smart water system framework is put forward including critical
elements like the definition, architecture, metrics, and research directions, which can be directly
applicable for education, research, and public knowledge;

3. Two conceptual metrics (smartness and cyber wellness) to evaluate the performance of the smart
water system are proposed to characterize system efficiency and information security;

4. Existing challenges drive concentration on future research directions, and these future tasks can
be viewed as a synthetic work where the academia, industry, and government will join in together.

Overall, this review has defined what SWS is and established a systematic framework for SWS,
including architecture and metrics of SWS, which also shows that SWS has great potential to maximize
the benefits in water sectors over the coming decades. This study is useful for designing assessing, and
rehabilitating SWS when different goals are required in practical applicability in the field or lab. Future
research directions are also clarified for this cross-disciplinary work, to assist the water areas to move
towards a smarter future. As smart water technologies are under development, more real-world tests
will be needed to realize the full benefits of smart water system.
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