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Air pollution is one of the major environmental health problems that people face
nowadays, affecting everyone in the world. The World Health Organization has estimated
that, in 2016, ambient air pollution caused 4.2 million premature deaths worldwide, in both
cities and rural areas, while household air pollution caused 3.8 million deaths, mainly in
low and middle-income countries [1].

Usually, citizen exposure to air pollutants is calculated based only on concentrations
of pollutants monitored using air quality monitoring stations from environment national
agencies. These monitoring stations focus on outdoor air quality and, most of them, are
located in urban centres. However, this approach fails to account for all components of
exposure since:

• There is a high variability of air pollutant concentrations within a city, depending on
the city topography and the existence (or not) of specific pollution sources (such high
traffic areas);

• The time–activity patterns and the use of spaces are very heterogeneous within the
population;

• People spend around 90% of their time in indoor environments;

Therefore, human exposure during a full day cannot be reflected only by outdoor
exposure and should consider all micro-environments where individuals spend their time
(e.g., home, workplace, transports, leisure, and others) and the time spent in them.

Moreover, the characterization of air pollutants in indoor and outdoor environments
is essential to understand the integrated human exposure to them and, thus, to improve
those exposure assessments.

The Special Issue “Integrated human exposure to air pollution” aimed to increase the
knowledge about human exposure in different micro-environments or when citizens are
performing specific tasks, to demonstrate methodologies for the understanding of pollution
sources and their impact on indoor and ambient air quality, and, ultimately, to identify the
most effective mitigation measures to decrease human exposure and protect public health.
Taking advantage on the latest available tools, such as internet of things (IoT), low-cost
sensors and a wide access to online platforms and apps by the citizens, new methodologies
and approaches can be implemented to understand which factors can influence human
exposure to air pollution. This knowledge made available to the citizens, along with the
awareness of the impact of air pollution on human life and earth systems, can empower
them to act, individually or collectively, to promote behavior changes aiming to reduce
pollutants’ emissions.

Overall, this Special Issue gathers fourteen peer-reviewed and open access articles
that provide new insights regarding these important topics within the scope of human
exposure to air pollution. A total of five main areas were discussed and explored within
this special issue, which are described below, and, hopefully, can contribute to the advance
of knowledge in this field.

Int. J. Environ. Res. Public Health 2021, 18, 2233. https://doi.org/10.3390/ijerph18052233 https://www.mdpi.com/journal/ijerph
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1. New Methodologies to Assess Human Exposure

In recent years, the use of low-cost sensors for assessing environmental parameters
was a landmark regarding personal exposure assessments due to their portability, low price
and easy handling, allowing to add multi sensors to monitor different parameters, along
with global positioning system (GPS) sensor and transmission of acquired data to online
platforms. Such combination allows to gather different types of information/data in cloud
environments, usually in a great amount, which contributed to the concept of big data in
the field of human exposure assessments regarding air pollution. However, a critical issue
on the use of such type of monitoring devices is their validation towards reference methods
to assure the reliability of results.

A study conducted in Texas (USA) [2] focused on this issue where low cost particle
sensors (targeting suspended particulate matter) were developed, calibrated and tested in
real life conditions. The developed monitoring unit used an Arduino interface, a commer-
cially available dust sensor (namely, Sharp GP2Y1010AU0F), a Global Positioning System
(GPS) sensor (to provide the location of the measurements) and a communications module
to transmit data to an online platform. The authors also provided a historical and critical
overview of the evolution of these types of low-cost sensors and their performance, based
on a literature review. The dust sensors employed in the monitoring units were calibrated
regarding a reference aerosol monitor, using a mixing chamber and generation of sodium
chloride particles, where the sensors showed standard deviations for replicate measure-
ments of 3-6 μg/m3. To show the applicability of the developed set-up, measurements in
real life conditions were conducted both at indoor and outdoor environments in Lubbcok,
Texas. Analysis of the results allowed to identify, for instance, increased exposure levels to
particulate matter nearby restaurants and when cooking at home. The gathered data also
allowed to build maps with spatial location of the monitored PM levels.

Using a case study in Madrid (Spain), a new methodology, based on the Internet
of Things (IoT) approach and using low cost sensors of air pollutants (PM2.5, CO2 and
VOC) along with available outdoor air quality data, was proposed for estimating personal
air pollution exposure (PAPE) [3]. Individual’s PAPE was estimated based on combined
outdoor and indoor data with spatio-temporal activity patterns. The understanding of
instantaneous PAPE, by means of a forecasting approach, may be useful for individual
awareness, as for example, to decide travel routes in order to minimize their exposure,
as it was shown in this case study. Overall, this study provided a new framework for
an Air Quality Decision Support System (AQDSS), taking advantage of the nowadays’
technologies and showing its applicability.

2. Citizens Empowerment Regarding Air Pollution

The importance of public awareness on air pollution issues and its impacts was high-
lighted in a study conducted in Shanghai (China), where the relationship between air
pollution levels and the expression of concern of the city’s residents was evaluated [4].
Using information of a period of two thousand days (with a daily frequency) (from 2013 to
2019) regarding the air quality index provided by the local environmental monitoring sta-
tions and an index about the internet searches of the residents based in selected keywords,
an empirical analysis was conducted using a vector autoregression model.

Using this strategy, three main findings were reported about the awareness levels
of citizens regarding this topic: (1) degradation of air quality was perceived by citizens
within one day; (2) information regarding air quality issues in another major city (Beijing)
conducted to a concern on the inhabitants of Shanghai about local air quality; and (3) higher
concern levels of the citizens had a beneficial impact on local air quality, which can be
explained by their environmental awareness that promoted pro-environmental behaviors,
along with public pressure toward governmental actions to tackle air pollution. This study
highlights the importance of knowledge transfer about air pollution and their impacts
to the citizens, which is reflected by a higher awareness level that may lead to actions to
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improve air quality and, consequently, to minimize citizens’ exposure to air pollutants and
its negative impacts on human health.

3. Outdoor Pollution Sources

Identifying pollution sources is crucial to define mitigation measures to improve air
quality at specific locations. In urban areas, one of the main pollution sources is traffic
and several cities worldwide are implementing traffic restrictions taking into account the
vehicles category and their pollution potential. One example is the multi-year progressive
traffic policy implemented in an extended limited traffic zone of the municipality of Milan
(Italy) that started in the beginning of 2019, with the restriction of circulation of some classes
of highly polluting vehicles (Euro 0 petrol vehicles and Euro 0 to 3 diesel vehicles). Another
important step in these processes is a continuous evaluation of those measures in order to
improve them or change them according to the desired results. For this reason, monitoring
data is essential along with statistical tools which can provide information regarding trends
and forecast outcomes. Such type of analysis was conducted for the Milan case [5], where
the early-stage impact of this policy on two specific vehicle-generated pollutants (namely,
total nitrogen oxides (NOx) and nitrogen dioxide (NO2)) was evaluated.

For this, daily environmental data gathered by Lombardy Regional Agency for En-
vironmental Protection (ARPA Lombardia) was divided in pre-policy data (from 2014 to
2018) and in the early-stage policy assessment (focusing on eight months of data after the
policy implementation). Several factors were considered in the evaluation of models, such
as weather conditions, socio-economic factors and pollutants’ concentration in neighboring
cities. Despite the fact that the results showed an average reduction of concentrations after
the policy implementation, this study highlighted that these changes could be due to other
factors than the policy implementation, taking into account that the evaluated short time
window may not reflect the citizens’ adaptation to the new rules. Moreover, a negative
impact on air quality of some specific areas was found which may be explained by the
congestion of public transport buses (promoted by the restrictions) and by the change of
the traffic temporal dynamics (since the aforementioned restriction is limited to business
hours). Overall, this study characterized the initial phase of the policy implementation,
where future assessments should be done to assess its impact when fully implemented,
and, additionally, hourly data should also be considered to understand the hourly traffic
dynamics and their impact on the local air quality.

A study conducted in Setúbal (Portugal) provided a ten year evaluation (2003–2012)
of local air quality trends (focusing on PM10, PM2.5, O3, NO, NO2 and NOx) and identified
potential pollution sources of particulate matter, using a source apportionment technique,
namely Positive Matrix Factorization [6]. Overall, air quality improved over the years with
a decreasing trend of air pollutant concentrations, with the exception of O3. However,
despite this improvement, levels of PM10, O3 and nitrogen oxides still do not fully comply
with the requirements of European legislation and the guideline values of World Health
Organization (WHO). This study identified the main anthropogenic sources contributing
to local PM levels as traffic, industry and wood burning, highlighting the need to address
the sources by specific mitigation measures in order to minimize their impact on the local
air quality.

Taking into account that road dust resuspension is a current air quality management
challenge in Europe, a study conducted in Viana do Castelo (Portugal) focused on this
issue and characterized road dust samples collected in suburban and urban streets, defined
PM10 emissions factors for different road types and identified the main anthropogenic
contributions to them [7]. Estimated PM10 emission factors ranged from 49 mg·veh−1·km−1

(asphalt) to 330 mg·veh−1·km−1 (cobble stone). Road dusts in urban streets revealed the
contribution from traffic emissions (regarding the levels of Cu, Zn and Pb), while in
suburban streets, the contribution from agriculture practices was highlighted by As levels
in the finest road dust fraction. Hazard quotients were also assessed and a probability of
induction of non-carcinogenic adverse health effects in children was found due to ingestion
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of Zr, while As in the suburban street was found to represent a human health risk of
1.58 × 10−4, which reveals the need for adoption of local mitigation measures.

Besides chemical pollutants, air pollution also includes atmospheric bioaerosols, such
as bacteria and yeasts. To understand how human hazard to these microorganisms changed
over time, their temporal evaluation (focusing on a temporal gap of 10 years) was assessed
in the South Western Siberia [8]. Bioaerosol samples obtained in 2006–2008 and 2012–2016
were characterized (by means of growth, morphological and biochemical properties) and
the indices of hazards for both bacteria and yeasts were calculated. Overall, hazard
to humans of culturable microorganisms in the atmospheric aerosol has not changed
significantly over these 10 years (trends are undistinguishable from zero with a confidence
level of more than 95%) despite a noticeable decrease in the average annual number of
culturable microorganisms per cubic meter (6–10 times for the 10 year period).

Particulate matter (PM) pollution is a common environmental problem in urban areas
and, in particular, in urban areas with fast development. In order to understand how the
economic growth, urbanization and industrialization affect PM levels, a study targeted
the specific case of Liaoning Province (China) where it evaluated PM levels and socio-
economic indicators during a period of 16 years (from 2000 to 2015) [9]. Applying statistical
tools, such as Granger causality test, it was shown that, in terms of the causal interactions,
economic activities, industrialization and urbanization processes all showed positive long-
term impacts on changes of PM2.5 levels. In terms of contributions, industrialization
contributed the most to the variability of PM2.5 levels in studied sixteen years, followed
by economic growth. These outcomes highlight the need for policy makers to explore
more targeted policies to address the regional air pollution issue considering the local
development characteristics.

4. Indoor Pollution Sources

Indoor micro-environments are the environments where humans spend most of their
daily time. Therefore, it is important to understand the different mechanisms that can
increase indoor concentration levels (from outdoor infiltration and human activities to
specific emissions from products—such as candles—or materials used in within buildings)
in order to identify the best measures to decrease the exposure associated to them.

Smoking is a worldwide concern, both regarding direct or indirect health issues and
also regarding its contribution to the deterioration of indoor air quality. In the last years, the
use of electronic cigarettes (e-cigarettes) and heat-not-burn tobacco (HNBT) has been widely
adopted as popular nicotine delivery systems (NDS), mainly among adult demographics. A
study aimed to understand the effect on indoor air quality by traditional tobacco cigarettes
(TCs) and new smoking alternatives, focusing in a multi-pollutant approach (particulate
matter, black carbon—BC, carbon monoxide—CO—and carbon dioxide—CO2) in two real
life scenarios: home and car [10]. Results showed that particle emissions between the
different NDS were significantly different, with TCs corresponding to higher PM10 and
ultrafine particle concentrations and HNBT corresponding to the lowest levels registered.
Considering that black carbon and CO are released by combustion processes, significantly
lower levels were found for e-cigarettes and HNBT since no combustion occurs during their
use. However, despite the fact that the new generation of cigarettes results to substantially
lower levels of air pollutants compared to TCs, their use still constitutes a source of indoor
air pollutants, which should be tackled.

Several actions can be taken in order to reduce indoor air pollutants. For instance,
in some countries, such as South Korea, filter-type air purifiers are used to eliminate fine
particulate matter from indoor environments. A study assessed the performance of this
type of solution to reduce particulate matter levels in a person’s breathing zone, according
to two approaches: a movable air purifier responding to the movement of persons in the
room or a fixed air purifier [11]. The results showed a decrease of 51 μg/m3 and 68 μg/m3

from the implementation of these two strategies, respectively.
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5. Health Impacts of Human Exposure to Air Pollution

Understanding the health impacts of air pollution by means of statistical models is
an important step to provide to the scientific community, policy makers and citizens in
general the knowledge about the real burden of human exposure to air pollutants. This
valuable information is, certainly, the foundation for promoting behavior change and public
acceptance to the implementation of measures to tackle the human exposure. Therefore,
improving such type of assessment models is very important in order to provide the most
accurate and reliable information. Considering only outdoor concentration of air pollutants
as a surrogate for total population exposure and neglecting micro-environments where
people spend most of their time, may lead to biased and under-evaluated outcomes.

A study focused on this issue on the Greater London Area (UK) [12], including
different micro-environments where people spend time at (based on time-activity and
housing stock data), identified a misclassification of 1174–1541 mean predicted mortalities
attributable to PM2.5 exposure in the studied area when only outdoor concentration was
considered. Indoor exposure to PM2.5 was found to be the largest contributor to total
population exposure concentrations accounting for 83%, followed by the exposure in the
London Underground with 15%, despite the time spent on it being only 0.4%. Overall,
this study confirmed that increasing the models’ complexity and incorporating relevant
micro-environments regarding the potential human exposure can significantly reduce the
misclassification of health burden assessments.

The use of statistical models can also be employed to explore potential associations
between exposure to air pollutants and health outcomes to highlight potential causal
relationships. A study conducted in Wuhan city (China) evaluated the time-series of air
pollutants (PM2.5, PM10, SO2, NO2, CO and O3) and focused on the tuberculosis’ incidence
in order to identify its potential association with short-term exposure to air pollution, based
on kriged data and single and multi-pollutant models [13]. Single pollutant models showed
that an increase of 10 μg/m3 in concentrations of PM2.5, PM10 and O3 promoted an increase
of the associated tuberculosis risk, while in the multi-pollutant model, only PM2.5 showed
a statistically significant effect on tuberculosis incidence. Despite the complexity of the
mechanism linking air pollution and tuberculosis incidence, this study provides insights
on potential associations, which should be explored in future research.

A cross-sectional study conducted in Selangor (Malaysia) focused on assessing the
allergy and lung inflammation promoted by exposure to different indoor pollutants (PM2.5,
PM10, NO2 and CO2) in scholar environments, based on marker expression on eosinophils
and neutrophils [14]. A total of 96 students from eight suburban and urban schools
answered to standardized questionnaires and their fractional exhaled nitric oxide (FeNO)
was evaluated, along with allergic skin prick test and sputum induction (which was
later analysed for the expression of CD11b, CD35, CD63 and CD66b on eosinophils and
neutrophils). By using chemometric and regression analysis, it was found that exposure to
PM2.5 and NO2 was likely associated with the degranulation of eosinophils and neutrophils,
following the activation mechanisms that led to the inflammatory reactions.

Adverse birth outcomes (stillbirth, preterm births and low birth weight) due to expo-
sure to household air pollution from unclean cooking fuel in Nigeria were also assessed
in a study using Bayesian models, taking into account geographic variability [15]. Using
data obtained in a national cross-sectional survey, unclean fuel was the primary source
of cooking for 89.3% of the women and the risk of stillbirth was significantly higher for
mothers using this type of cooking fuel. It was also found that mothers who attained at least
primary education had reduced risk of stillbirth, while for the increasing age of the mother
the risk of stillbirth increased. Geographical differences were also found with mothers
living in the Northern states having a significantly higher risk of adverse births outcomes.
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Abstract: Low-cost, portable particle sensors (n = 3) were designed, constructed, and used to monitor
human exposure to particle pollution at various locations and times in Lubbock, TX. The air sensors
consisted of a Sharp GP2Y1010AU0F dust sensor interfaced to an Arduino Uno R3, and a FONA808
3G communications module. The Arduino Uno was used to receive the signal from calibrated dust
sensors to provide a concentration (μg/m3) of suspended particulate matter and coordinate wireless
transmission of data via the 3G cellular network. Prior to use for monitoring, dust sensors were
calibrated against a reference aerosol monitor (RAM-1) operating independently. Sodium chloride
particles were generated inside of a 3.6 m3 mixing chamber while the RAM-1 and each dust sensor
recorded signals and calibration was achieved for each dust sensor independently of others by direct
comparison with the RAM-1 reading. In an effort to improve the quality of the data stream, the effect
of averaging replicate individual pulses of the Sharp sensor when analyzing zero air has been studied.
Averaging data points exponentially reduces standard deviation for all sensors with n < 2000 averages
but averaging produced diminishing returns after approx. 2000 averages. The sensors exhibited
standard deviations for replicate measurements of 3–6 μg/m3 and corresponding 3σ detection limits
of 9–18 μg/m3 when 2000 pulses of the dust sensor LED were averaged over an approx. 2 min data
collection/transmission cycle. To demonstrate portable monitoring, concentration values from the
dust sensors were sent wirelessly in real time to a ThingSpeak channel, while tracking the sensor’s
latitude and longitude using an on-board Global Positioning System (GPS) sensor. Outdoor and
indoor air quality measurements were made at different places and times while human volunteers
carried sensors. The measurements indicated walking by restaurants and cooking at home increased
the exposure to particulate matter. The construction of the dust sensors and data collected from this
research enhance the current research by describing an open-source concept and providing initial
measurements. In principle, sensors can be massively multiplexed and used to generate real-time
maps of particulate matter around a given location.

Keywords: air quality; crowd-sensing; crowd-sourced sensing; environmental analysis; pollution;
particulate matter; dust sensor; human exposure; Arduino; wireless networks; IoT

1. Introduction

1.1. Summary of Problem

High concentrations of air pollution are due to fine solids, gases, or liquid aerosols locally releasing
into the atmosphere or being produced at a faster rate than the environment can dilute, absorb,
or dissipate the material [1]. If the rate of production is sufficiently high, substances can build up and
reach a high concentration in the air that can contribute to a host of adverse health effects for humans
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such as cardiovascular mortality and respiratory distress [2–6]. Miller et al. found an increase of
10 μg/m3 in particulate matter mass concentration was associated with a 14% (95% confidence interval,
3%–26%) increase in nonfatal cardiovascular events and with a 32% (95% CI, 1%–73%) increase in fatal
cardiovascular events [7]. Exposure to air pollution whether long or short can lead to asthma, decreased
lung function, and infections of the respiratory system. Goss et al. found PM2.5 was associated with
statistically significant declines in lung function and an increase in the odds of two or more pulmonary
exacerbations in patients >6 years of age with cystic fibrosis [8]. Woodruff et al. found that each
10 μg/m3 increase in PM2.5 was associated with a near doubling of the risk of post neonatal death
because of respiratory causes [9]. Hoek et al. found the risk of cardiopulmonary mortality nearly
doubled for individuals who lived within 100 m of a freeway or within 50 m of a major urban road [10].
Clearly, particulate matter presents a clear and present danger to human health.

Aerosols are found everywhere including in the air over oceans, deserts, mountains, forests
and ice, with the most abundant being from natural sources such as sea-spray and wind-blown soil
dust [11]. For instance, dry areas of North Africa emit 800 Tgy−1 of soil dust each year and summertime
winds can transport the Saharan dust across the Atlantic Ocean, the Caribbean, and to southern North
America [12–15]. Urban areas add to the airborne particulate mass through direct emissions into the
atmosphere and through emitting gases that can react in the atmosphere to form secondary aerosol.
A significant body of research has gone into understanding and controlling the chemical and physical
transformations that lead to secondary aerosol formation [16–18]. Despite the great success of air
quality improvement programs implemented in Western cities over the preceding 50 years, urban
environments typically have higher levels of particulate pollution compared to rural locations as cities
remain global hubs of fossil fuel combustion and direct emissions [19–23]. An emerging threat is found
in some of the world’s poorest cities as the World Health Organization (W.H.O.) has recently reported
98% of cities in low and middle income countries with more than 100,000 inhabitants do not meet
WHO air quality guidelines [24]. Aerosols are also present indoors and homemakers in economically
disadvantaged environments can often be exposed to very high levels of particulate matter when
using home cook-stoves to prepare meals [25,26]. Monitoring and controlling human exposure to
PM2.5 remains a crucial scientific challenge and this focus requires the continued development and
application of portable and low–cost sensing platforms for widespread application.

1.2. Current Work in the Field

Historically, PM2.5 concentrations have been measured using either inertial impactors, filter based
sampling, or sophisticated laboratory-based measurement devices [27–31]. However, such approaches
are either too expensive, too labor intense, too slow, too limited in scope, or all of the above to address
the needs of the problem. A new paradigm is needed in which many end users can access accurate,
real-time data at very low cost to society [32,33].

Several brands (Shinyei, Sharp, Nova, Plantower, Wuhan, Alphasense, Air Beam, etc.) of low-cost
electronic sensors that use light scattering can be used to monitor particulate matter disbursed in air.
These sensors come at different price points and sizes but are designed to use low power and can
operate at high measurement frequency. The common limitation in the sensors is the accuracy and the
reproducibility of the data, and very limited ability to measure particles below 200–300 nm in diameter
due to low scattering cross section. In addition, low-cost sensors often have limited linear dynamic
range, and often plateau or ‘max out’ at a few hundred microgram per cubic meter concentration.
This feature of devices may underestimate the impact of high exposure events.

Currently, one of the most successful integrated approaches to particulate matter monitoring is
called Airbeam (habitatmap.org). In this project, a palm-sized device costing $250 measures particulate
pollution that a user is exposed to by a light scattering method and transmits data to a co-located
Android device through a Bluetooth connection. The wireless connection on the secondary device and
an Android OS App is used to ‘AirCast’ collected data to a central data server and maps are created by
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combining various end users’ data streams. The integrated approach demonstrates the potential of the
crowd-sourced architecture.

The excitement generated by the initial emergence of low-cost sensing platforms such as ‘Airbeam’
has led the Environmental Protection agency (EPA) of a major North American country to begin
evaluating the performance of low-cost sensors co-located with sensors their government considers
“reference” and “equivalent” methods (see https://www.epa.gov/air-sensor-toolbox). In an exclusive
project, in 2019 this EPA began a study aimed to tackle questions about long-term performance of
low-cost air sensors, an area that is rarely (if ever) explored in academic settings. The exclusive group
of EPA funded staff are currently evaluating six different models of low-cost air sensors, placed at
seven diverse locations throughout states within North America. The locations have diverse climates
and air quality conditions, assuring that the project produces a dataset that investigators may use to
assess how weather conditions affect sensor signals and long-term performance.

In Gunawan et al., a suite of portable sensors (PM2.5, PM10, CO, O3) were used in Malaysia to
derive the local air pollution index (API) at an end user’s location [34]. The API was reported to
the user in nearly real-time thru an LCD display. For carbon monoxide a model MQ-9 sensor was
employed, while ozone was monitored with the MQ-131 gas sensor. The Sharp dust sensor was used
to measure PM10 while a Shinyei PPD42NS was used to derive PM1-2.5. The set-up was controlled
by the Arduino microcontroller, and the authors reported a cellular modem and Global Positioning
System (GPS) card could be added if desired. However, wireless communication was not a focus of the
work. Unfortunately, the authors were unable to perform proper calibration of each sensor and had
to rely on suggested calibration equations from the manufacturer. In addition, laboratory validation
measurements were not completed and data quality unassessed.

In Reilly et al., an affordable monitoring device costing ≈$280 was constructed [35]. The device
can send and collect data to a real-time mapping program wirelessly using the Global System for
Mobile Communications (GSM) to a server, or as a text message to people nearby. The device consisted
of the Redboard Arduino clone, a GSM board, a carbon monoxide sensor, an ozone sensor, and Sharp
dust sensor for particulate matter (PM), a fan to promote airflow, and instrument case. While the
authors report successful implementation of their device, environmental sensors were not calibrated nor
rigorously tested in a laboratory. Instead, the authors used the recommended calibration equations from
the product manufacturers to convert electrical signal to environmental measurement. Suspiciously
high and constant PM levels were reported (approx. 150 μg/m3) and ozone levels did not exhibit the
characteristic diurnal pattern that is observed nearly everywhere in the troposphere. Consequently,
despite the approach being successfully implemented, the quality of environmental sensor results
is questionable.

In Zamora et al., Plantower AMS A003 sensors were tested in the laboratory to measure particulate
matter of various composition in a series of well-defined and controlled experiments [36]. The sensors
were precise; however, when the sensor results were compared with a reference method, accuracy
varied as a function of aerosol composition and humidity. The sensors were highly precise with a R2

values greater than 0.86 for all sources. However, the accuracy had a large range from 13% to greater
than 90% compared with reference instruments, depending upon aerosol type. The sensors were more
accurate when the particulate matter was spherical and smaller than 1 μm in size. The sensors’ accuracy
was greatly affected by the humidity. The work of Zamora et al. contributes significantly to the field
because it draws attention to the limits of single angle nephelometry to estimate PM mass concentration
vis-à-vis the aerosol composition and shape. While the sensors were able to provide usable data when
in motion or in high or low temperatures, the focus of this manuscript was refreshingly on data quality.
Results suggest that portable sensors should be calibrated versus an accepted reference method using
authentic aerosol as a sample.

Liu et al. takes this approach by examining performance of Nova particulate matter sensors
(SDS011) [37]. The sensors were tested on ambient samples in Oslo, using a co-located, official air
quality monitor as a reference method. All of the sensors had results that were similar including

9



IJERPH 2020, 17, 843

inter-sensory correlations with R2 values greater than 0.97. Again, high humidity greatly affected the
sensors. There was a linear relationship between the sensors and the reference monitor. However,
the R2 varied over the range of 0.55 to 0.71. When a data correction using relative humidity and
temperature was used, the R2 value for each sensor increased from 0.71 to 0.80, 0.68 to 0.79 and 0.55
to 0.76, respectively. These sensors were also limited by the environmental conditions and can have
high error if used outside of the manufacturer specifications. This work draws attention to the need
to calibrate versus an accepted gravimetric reference method with authentic aerosol and the need to
correct measurements (or at least flag them) for conditions of high humidity.

Liu et al. have compared Shinyei, Sharp, and Oneair optical sensors in laboratory experiments with
polydisperse particles of a variety of compositions, concentration, and mean size [38]. These authors
found the mass concentration normalized response of all optical sensors clearly changed with mean
particle size even when considering the narrow range of very small particles between 70–95 nm.
The composition of particles was even more crucial—particles of methylene blue, sodium fluorescein,
and sodium chloride all produced sensitivities differing by at least 50% (with NaCl being lowest).
These results clearly demonstrate that choice of calibrant aerosol is crucial for obtaining accurate sensor
mass calibrations. The current manuscript is not exempt from such considerations or potential errors.

1.3. Contribution of the Current Work

The current study aims to build upon previous work from our laboratory in which a field-portable
device for logging PM2.5 mass concentration data was developed [39]. The previous device also used
the Arduino, and a Sharp sensor with nephelometric detection, but logged all collected data to an SD
card. This prevented real-time feedback to the user and complicates integrating/multiplexing many
sensors together to form a network of streaming data. This limitation has recently been addressed thru
our laboratory’s development of an open-source data acquisition platform we have called logIT that
wirelessly transmits data over the 3G cellular network [40]. Source code to implement logIT is available
online for the user community [40]. The logIT platform has allowed multiplexing multiple sensors
(here n = 3) to demonstrate multi-user simultaneous measurements of PM exposure throughout a
mid-sized city. In addition, we build upon the previous literature work using the Sharp GP2Y1010AU
dust sensors [34,35] by performing laboratory measurements to characterize and constrain device
performance. This was not reported in [34,35] and results presented within this manuscript will allow
the community to make more informed decisions regarding the performance characteristics of Sharp
GP2Y1010AU dust sensors. The current manuscript also serves as a companion article to [38], as the
current work highlights signal to noise considerations and intercomparisons of individual Sharp dust
sensors themselves, while Liu et al. [38] provide much more through insight into calibration of low-cost
sensors against a gravimetric equivalent method and the crucial effect of calibrant composition and size.

2. Methodology

Three Arduino Uno R3 ($14.99 USD each), FONA808 modules (Adafruit, $49.95 USD each)
and dust sensors (GP2Y1010AU0F $15.23 USD each) were purchased and used as received without
modification. The dust sensor is a nephelometric sensor illuminating sample with a near infrared LED
with a wavelength of 860 nm and collecting light at 120 degrees from incident illumination as depicted
in Figure 1A. The dust sensors were affixed to circuit boards with cyanoacrylate and wired into Arduino
‘stackable shields’ in house by laboratory staff. Stackable shields plug into the Arduino board directly
by using header pins for both electrical and mechanical connection. The wiring connections used
are illustrated in the circuit diagram of Figure 1B. The FONA808, Arduino Uno, and dust sensors
were mounted into plastic project boxes as depicted in Figure 1C. For user comfort, a lanyard was
attached to each box. The Arduino Uno was used to control FONA808 modules and dust sensors.
FONA808 communication modules were used for reporting the particulate matter concentration to a
Thingspeak.com channel. Technical details of this process [40]. The data was collected in real time and
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logged to Thingspeak.com until downloaded for analysis. All the calibrations were performed with
wireless communication with 9V power supply powering the dust sensor modules.

Figure 1. (A) Photo and drawing of Sharp GP2Y1010AU0F dust sensor. (B) Wiring schematic for the
dust sensor and FONA module to the Arduino (C) Photograph of the portable project box containing
the dust sensor, FONA module and Arduino. The project box is 12 cm × 9 cm × 6.5 cm and has a mass
of 250 g.

The Sharp dust sensors produce an analog voltage as output signal. To convert the analog
signal to a meaningful PM concentration, the dust sensor must be calibrated against references before
making meaningful measurements. A commercial device, the reference aerosol monitor (RAM-1) from
Monitoring Instruments for the Environment (MIE, Inc., Billerica, MA, USA) was chosen as a reference
method to calibrate each sensor. The RAM-1 actively samples aerosol using a pump and estimates
concentration using the light scattering principle. The RAM-1 analysis is not an EPA equivalent method
for PM2.5. We have performed four trials in which the RAM-1 sensor was used to compare the indicated
concentration of a sodium chloride test aerosol within a chamber with gravimetric determination of
aerosol mass concentration. A 37 mm quartz filter was used to collect a sodium chloride test aerosol at
15 SLPM using a mass flow controller and vacuum pump. Gravimetric measurements of (average)
concentration over the sampling period could be obtained and compared directly with the RAM-1
values. For these 4 trials we find that the RAM reading is on average 107% (Std Dev. = 67%) of the
gravimetric result with n = 4.
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For calibration, all Sharp dust sensors were placed inside a 3.6 m3 volume chamber lined with a
fluoropolymer (FEP). Each dust sensor was individually calibrated in the 3.6 m3 chamber. A single jet
atomizer (TSI 9302) generated sodium chloride particles into the chamber with an atomizer pressure of
20 psi. The flow of particles entering the chamber was 5.7 L min−1. The jet generated polydisperse
sodium chloride particles into the chamber. After approximately 2 min, sufficient aerosol was produced
and the atomizer jet was shut off for the remainder of the experiment. The relative humidity inside
the chamber under these conditions was measured to be < 20%, indicating presence of a dry aerosol.
Experimental runs at high relative humidity were not attempted, and performance under these
conditions not explored in this study. The calibration data was then collected for 4–5 h as the initially
high particle concentration dissipated due to impaction on the chamber walls. For each point in
time, the individual sensors were compared to the indicated concentration of the reference aerosol
instrument (RAM) placed inside the chamber. Each dust sensor was calibrated individually, and the
process was repeated for each sensor. All of the data from the dust sensors were uploaded to the
ThingSpeak channel in real time using the FONA808 module.

3. Results and Discussion

3.1. Optimizing Delay Time

The Sharp dust sensors operate by turning on a near-IR LED, waiting a user-specified delay period,
and then sampling the scattered light signal prior to cycling the LED off again. The entire measurement
cycle can be completed in under a millisecond and this measurement cycle can repeat itself many times.
Indeed, signals can be averaged to improve limits of detection (see section below). The LED is turned
on by a HI/LO (5 - 0 Volt) transition at a digital pin on the microcontroller, and a delay prior to signal
acquisition is then initiated. While Sharp recommends a delay time of 280 μsec prior to collection of
data in product literature, we have systematically studied the effect of delay time on sensitivity (slope
of calibration line). Figure 2 reports the results of this study. As observed, measurements suggest
that a 220 microsecond delay after the LED trigger allowed optimal sensitivity to be achieved for
the individual sensors tested in this study. The cause of the shift in optimum delay time from the
manufacturer’s recommendation is not known. However, differences in stray capacitance between our
apparatus and the manufacturer’s test bed may be the cause. The result suggests end users may wish
to optimize delay time for their own application. Regardless of the cause, the delay time has been
optimized to provide maximum sensitivity for this study.

3.2. Sensor Calibration Results

Figure 3 illustrates plots of dust sensor signals vs. indicated PM mass concentration for the three
dust sensors used in this study. In these experiments, signal from a commercial PM mass concentration
monitor (RAM) was used as the reference/accepted concentration. Our analysis is limited in we assume
no error, uncertainty or imprecision is present in the RAM data stream. For all sensors, there was
a linear and positive correlation (R2 > 0.92) observed between the concentration (μg m−3) and dust
sensor signal to 500 μg m−3. A linear-least squares best-fit line was added to each dataset and used to
determine the slope and intercept for each sensor. The slopes were 0.491, 0.446, and 0.506 digital counts
per μg m−3 for sensors 1, 2 and 3. Since the Arduino analog acquisition is a 10 bit device operating
over a full span of 1024 steps from 0 to 5 V, a digital step corresponds to 4.88 mV/count. Therefore, our
sensors were observed to produce between 0.217 and 0.247 V per 100 μg/m3 or roughly half of the signal
specified by the product data sheet for the Sharp dust sensor which specifies 0.5 V signal per 100 μg/m3

of PM mass concentration [41]. The exact cause of this discrepancy in sensitivity remains unclear.
However, we note that Liu et al. [38] previously observed sodium chloride aerosol produced a much
lower signal compared to other compositions. Varying the size distribution or particle shape of the test
aerosol will lead to differences in differential scattering cross-section at 120 deg. and consequently,
the observed slope of calibration lines. Emerging research on low-cost dust sensors [36,38] has provided
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clear evidence that the light scattering method can be subject to large biases when projecting mass
concentrations when calibrations were conducted against aerosol with different properties (refractive
index, shape, size, composition) than the ambient type encountered at a particular location or for a
particular application. As such, this could be responsible for the low sensor responses we report.

Figure 2. Plot of Sharp GP2Y1010AU0 dust sensor sensitivity vs. delay time prior to signal acquisition.
The sensitivity is the slope of the best-fit calibration line when signal was plotted vs. PM mass
concentration (μg/m3). The optimal delay of 220 microseconds was employed for subsequent
measurements. Error bars represent ±1σ of replicate trials.

Figure 3. Calibration plots for sensors 1–3. Observed signal from the Sharp GP2Y1010AU0 dust
sensors vs. PM concentration indicated by the RAM reference method for laboratory generated
polydisperse NaCl aerosol. Observed signal is the digital count assigned by the Arduino board during
analog-to-digital conversion. Differences were found in slope and intercept between the sensors tested,
and R2 > 0.92 observed. Relative humidity within the 3.6 m3 chamber during calibration was < 20%.

3.3. Effect of Signal Averaging

Since the data acquisition cycle for a single pulse of the LED is very short (ms time), averaging
many pulses from the LED is an attractive approach to enhancing detection limits for the Sharp dust
sensors. Code can easily be added to the Arduino sketch to accomplish signal averaging in the onboard
memory of the microprocessor on the fly. Only the averaged result is then reported in the data stream.
A study was carried out in which an air blank was analyzed, and the number of LED pulses averaged
together were 100, 200, 500, 1000, 1500, 2000, 5000, and 10,000 individual pulses. Data points were
reported for each average and the standard deviation (σ) of replicate averages computed. Then,
the limit of detection (L.O.D.) for each sensor was computed by using the 3σ standard. As observed
in the black trace of Figure 4, as the number of LED pulses averaged increased to roughly n = 2000,
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the measurement L.O.D. decreased an order of magnitude for all the sensors tested. Interestingly,
averaging approx. 2000 pulses only marginally affects the total time required to report a single data
point (shown in blue data series) because the wireless communication protocol alone requires nearly a
minute on average to complete its reporting cycle. Figure 4 also demonstrates that if additional LED
pulses > 2000 were averaged together, there were only marginal additional gains in limit of detection
achieved. However, the time required for data acquisition when n > 2000 began to linearly increase
with the number of averages since wireless communication was no longer the rate limiting step under
these conditions. Consequently, 2000 averages were used in subsequent monitoring activities. Under
these conditions, the standard deviation and limit of detection for the three sensors were between
σ = 3–6 μg/m3 and L.O.D. = 9–18 μg/m3, respectively. These results indicate that Sharp dust sensors
and microprocessor mediated signal averaging can be used to track PM pollution within environments
where substantial particle pollution is expected. This could include routine workplace monitoring
or personal exposure monitoring for citizens living in urban centers where levels regularly exceed
25–30 μg/m3. However, it should be noted that the method we describe herein is not sensitive enough
for monitoring in all environments (see below). Further improvements in precision, limits of detection,
and sensor accuracy are still required to bring ambient portable sensing to its full potential.

3.4. Precision of Dust Sensors

Figure 5A reports a histogram of observed percent difference between individual Sharp dust
sensor measurements and the reference method (RAM) measurements for test sodium chloride aerosol
within a laboratory chamber. Figure 5 includes data points from all 3 Sharp dust sensors. Here,
the percent difference was computed as (Sharp sensor measurement–reference measurement)/reference
measurement and the result expressed as parts-per-hundred relative difference. As observed in
Figure 5A, results were observed to follow a normal distribution. A Gaussian fit to the data indicated a
standard deviation of σ = 30.8 for the entire dataset. This result suggests, considering all data, Sharp
sensors report concentrations within 30.8% of the reference value about 68% of the time. The standard
deviation also allows end users to define confidence intervals for their data points. In Figure 5B,
a plot of percent difference between Sharp dust sensor and the reference measurement is plotted vs.
the indicated PM mass concentration for the reference method. This plot indicates that the largest
relative discrepancies between dust sensor indicated mass and reference monitor mass occurred when
PM mass concentration was < 40 μg m−3. Above this mass loading, relative difference between
the dust sensor and reference monitor was very frequently < 20%. Considering only data collected
when PM > 40 μg m−3, the average percent difference between a Sharp dust sensor and reference
measurement for single point comparison was 5.8% and the median absolute percent difference was
15.2%. This result indicates that unmodified Sharp dust sensors offer best precision when PM mass
loadings are relatively high (e.g., PM > 40 μg m−3).

3.5. Monitoring Experiments

The ultimate goal of this work is to improve understanding of human exposure to PM pollution
through creating and implementation of a network of multiplexed, portable PM sensors. In this
manuscript, we report a limited scope proof-of-concept application by having laboratory personnel
carry the three dust sensors around Lubbock, TX. The staff engaged in normal life activities during
sampling in an effort to demonstrate that data from multiple sensors can simultaneously be streamed
to a Thingspeak channel, while the end user can access information about his/her own exposure in
nearly real-time via a public Thingspeak web link. Figure 6 reports example time-series monitoring
data that end users encountered during the effort. As observed, spikes in PM mass loadings were
encountered by the users during random life events such as walking near an individual smoking
cigarettes, cleaning an apartment space, burning incense at home, or cooking. It is often difficult to
accurately parameterize exposure during such casual life experiences in models of human exposure to
PM pollution, and portable PM sensors have great promise to improve quantification of PM for such
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circumstances. In an effort to improve understanding of human exposure in different environments
we have performed measurements of PM mass concentration at a variety of locations and report a
summary of these measurements in Table 1 of this manuscript. While a wide range of PM levels were
encountered across locations (and even at single locations through time), the reported levels begin to
improve understanding of typical levels of human exposure in various environments. For instance,
results have suggested that human exposure to PM is often quite high near any cooking operation, or at
some restaurants. The use of low-cost, portable sensors to uncover and document such knowledge can
be used to develop exposure control strategies for workers in these environments.

Figure 4. The effect of number of LED pulses averaged (N) on the limit of detection (black squares) for
sensors 1–3. The second y-axis (blue) presents the seconds required to acquire and report data for the
specified number of averages.
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Figure 5. (A) Histogram of percent difference between individual Sharp GP2Y1010AU0 dust sensor
measurements and the reference method measurements (RAM-1) for test sodium chloride aerosol
within a chamber. A Gaussian fit to the data indicated σ = 30.8 for the entire comparison dataset.
(B) Plot of percent difference between Sharp dust sensor and the reference measurement plotted vs. the
indicated PM mass concentration for the reference method.

Figure 6. Sample monitoring results for end users during the trial implementation. Real-time personal
exposure monitoring allows improved understanding of the times, locations, and extent of high
exposure events. The sensors were in the same room adjacent to the end user during the events.
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Another goal of future research is to begin documenting the temporal and spatial behavior of
aerosol levels at specific locations. Figure 7 presents a map of PM levels encountered by end users as
they carried the portable sensors with them through their daily routines. Since the platform developed
transmits GPS coordinates along with PM levels, data from multiple sensors can be combined and
plotted. Such plots can ultimately be used to better understand the spatial dynamics of particle pollution
within a city, and comprehensive datasets can better educate the public in regard to differences in
pollution exposure between regions of a city or neighborhoods. However, the results presented in this
manuscript do not represent such an achievement. Understanding temporal and spatial averages for
PM concentrations at specific locations is a complex task that can only be accomplished through many
more measurements than what we report within this paper.

Table 1. Summary of results for locations tested.

Range of Concentration (μg/m3) Statistical Indices (μg/m3)
Place/Activity Maximum Minimum Mean Conc. Median Conc.

Driving 159 Below L.O.D. 15 Below L.O.D.

Living Space Location 1 84 Below L.O.D. Below L.O.D. Below L.O.D.
Location 2 186 Below L.O.D. Below L.O.D. Below L.O.D.
Location 3 113 Below L.O.D. 27 18

Parking Lot Location 1 28 Below L.O.D. Below L.O.D. Below L.O.D.
Location 2 48 29 34 33
Location 3 25 Below L.O.D. 18 19
Location 4 16 Below L.O.D. Below L.O.D. Below L.O.D.

Church Location 1 Below L.O.D. Below L.O.D. Below L.O.D. Below L.O.D.

Room Renovation Location 1 85 14 28 25

Workshop Location 1 70 Below L.O.D. Below L.O.D. Below L.O.D.

Restaurant Location 1 346 20 46 39
Location 2 44 Below L.O.D. 24 24
Location 3 24 Below L.O.D. Below L.O.D. Below L.O.D.
Location 4 81 Below L.O.D. 46 47

Grocery Stores Location 1 25 Below L.O.D. Below L.O.D. Below L.O.D.
Location 2 22 Below L.O.D. 17 17
Location 3 41 Below L.O.D. 26 26
Location 4 Below L.O.D. Below L.O.D. Below L.O.D. Below L.O.D.

University building inside 39 Below L.O.D. Below L.O.D. Below L.O.D.
outside 18 Below L.O.D. Below L.O.D. Below L.O.D.

Coffee shop Location 1 25 Below L.O.D. 16 16
Location 2 17 Below L.O.D. Below L.O.D. Below L.O.D.
Location 3 Below L.O.D. Below L.O.D. Below L.O.D. Below L.O.D.

Note: Table 1 data is not representative of exposure in all specified microenvironments. Human exposure to PM is
highly circumstantial based upon an individual’s specific experience.
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Figure 7. Maps of Lubbock, TX with user sampled PM single-point data superimposed. Mobile sensors
transmitted GPS coordinates and dust sensor PM measurements to a webserver, and maps were created
from data. Map in (A) is approx. 40 km wide by 28 km high. Map in (B) is zoomed to illustrate
specific locations sampled by users during their experiences. Data point colors describe an individual
observation PM mass concentration in μg m−3 and are not meant to represent trends or averages.

4. Conclusions

Low-cost dust sensor modules (n = 3) were constructed using an Arduino Uno R3, a FONA808
module and a Sharp dust sensor. The modules employed the LogIt platform our laboratory has
previously developed to wirelessly transmit GPS and particle mass concentration data to a web
server [40]. The dust sensor was calibrated in the lab against a commercial optical PM mass
concentration monitor and subsequently used to monitor the air quality in Lubbock, TX during daily
activities, such as walking, cooking, sleeping, sweeping, traveling or working. The concentration of
particulate matter was collected in real time with GPS coordinates. The optimal limits of detection for
the unmodified Sharp dust sensors tested ranged from 8 μg m−3–17 μg m−3. The particulate matter
concentration remained relatively low, and constant during outside measurements, but data had
moderate spikes inside dwellings during certain activities. High concentrations were often observed
near restaurants. Multiplexing the sensors (using many simultaneously) can better constrain human
exposure to PM, and subsequently better determine health effects of particle pollution.

In the future, our sensors should be calibrated and challenged against additional aerosol
compositions and size distributions to improve performance and reliability. Because particle size
distribution and composition may affect sensor response we advocate for direct calibration of the Sharp
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sensors alongside real-time EPA federal equivalent methods such as the TEOM or beta-attenuation
monitor using authentic aerosol as the sample. Such direct comparison/calibration on authentic aerosol
typical of a specific location will provide best performance. Additionally, the state of the science can be
advanced by developing in-field calibration protocols for the low-cost sensors to routinely assess and
check sensor calibrations.
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Abstract: This paper proposes a framework for an Air Quality Decision Support System (AQDSS),
and as a proof of concept, develops an Internet of Things (IoT) application based on this framework.
This application was assessed by means of a case study in the City of Madrid. We employed different
sensors and combined outdoor and indoor data with spatiotemporal activity patterns to estimate the
Personal Air Pollution Exposure (PAPE) of an individual. This pilot case study presents evidence
that PAPE can be estimated by employing indoor air quality monitors and e-beacon technology
that have not previously been used in similar studies and have the advantages of being low-cost
and unobtrusive to the individual. In future work, our IoT application can be extended to include
prediction models, enabling dynamic feedback about PAPE risks. Furthermore, PAPE data from this
type of application could be useful for air quality policy development as well as in epidemiological
studies that explore the effects of air pollution on certain diseases.

Keywords: Personal Air Pollution Exposure (PAPE); air pollution monitoring; IoT; Air Quality
Decision Support System; health impact

1. Introduction

Pollution and various forms of ecosystem contamination continue to be pressing issues across the
globe [1]. China’s rapid increase in urbanization in the last three decades, for example, has resulted into
environmental challenges where air pollution is the leading problem [2]. Protecting the environment,
therefore, is a serious undertaking that faces businesses and governments today. In recent years,
there has been increasing pressure on institutions to measure and report environment-related
parameters [3]. For this reason, there has been a significant increase in the number of reporting
instruments used globally, of which sustainability reporting instruments account for the largest share
owing to government regulations [4].

Environmental sustainability now underpins the policy-building initiatives of government
institutions and businesses alike. In developed countries such as those of the European Union (EU),
air pollution damage, which brings about a direct threat to public health, is expected to rise in the
next decade. This has compelled the EU governments to give priority to air pollution level reduction
above any other climate change policy plans [5]. In developing countries, however, there are still
inadequate air quality policies and environmental monitoring plans. This is a major concern primarily
because these are the regions that are more susceptible to increasing levels of air pollution [6]. There is
therefore a challenge in finding economical solutions to monitor pollution levels and other relevant
health parameters.
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IJERPH 2019, 16, 3130

Air pollution from both outdoor and indoor sources constitutes the greatest environmental risk
to human health around the globe [7]. About seven million premature deaths were attributed to air
pollution in 2014, based on an estimate by the World Health Organization (WHO). It is projected
that, by 2050, outdoor air pollution will be the number one cause of environment-related deaths
worldwide [8]. For these reasons, governments across the globe have started to monitor the levels of
major air pollutants, especially in metropolitan and urban areas.

In addition, people spend around 90% of their time indoors, and human exposure to indoor air
pollutants may occasionally be more than 100 times higher than outdoor pollutant levels, according
to the United States (US) Environmental Protection Agency (EPA). Indoor air pollution is equally
detrimental, as statistics show that 4.3 million people per year die from exposure to household
air pollution [9]. Exposure to poor indoor air is a significant cause of productivity loss in the US,
as productivity decreases by 0.5 to 5% per workplace, generating a loss of 20 to 200 billion US dollars
annually [10].

Monitoring Personal Air Pollution Exposure (PAPE), which refers to the amount (μg) of pollution
being inhaled by an individual, has been a topic of growing interest worldwide, not only as a result
of global health policies, but more importantly, due to the interest in understanding its effects on
various cardiovascular and respiratory diseases. These diseases have been documented widely in
existing epidemiological studies [11,12]. Nevertheless, this traditional evaluation of PAPE has not been
directly undertaken for individuals, but rather for groups of people exposed to the annual average
concentrations of pollution that are indicated by a network of fixed-site outdoor monitors.

Existing studies on the association of air pollution with different diseases [13,14] recognize the
importance of measuring PAPE among individuals. By monitoring activity patterns, it is possible
to establish correlations between different populations or levels of socioeconomic status and PAPE.
Although there are novel methods to measure and model these exposures, the great variability in
PAPE remains a major challenge [15] and provides a compelling case for research on the effects of air
pollution on health. Dias and Tchepel [16] suggest that, in order to assess personal exposure, not only
the spatial-temporal variability of urban air pollution should be taken into account but also the indoor
exposure and the individual time-dependent activities should be measured.

The recent advances in data technology are expected to play major roles in the next decade,
permitting easier access and analysis of data [1]. The Internet of Things (IoT), which is defined as the
network of various ubiquitous devices that are capable of computation and communication over the
Internet, has been gaining recognition in the development of advanced applications in the healthcare
sector [17]. This wave of digital innovation is driving the healthcare industry and paving the way
for cheaper, smaller and more efficient wearable technologies that monitor health indicators in real
time [18].

Health systems around the world are under pressure to come up with economical solutions to
existing problems [18]. These sensor technologies, coupled with sophisticated analytics, have the means
to improve process efficiency and achieve cost reductions [19]. With this kind of digital innovation,
an economical and scalable application can be built to help developing countries to measure PAPE and
other health parameters to improve their current health risk assessment systems.

Although there was initially a concern about sharing private information from sensor technologies
or other similar devices, the general public has started to accept the use of digital services, even for
sensitive information such as health data [20]. In fact, in a consumer survey performed by Price
Waterhouse Coopers in 2015, 83% of respondents indicated that they were willing to share data to
aid in the diagnosis and treatment of diseases [21]. With this collaborative support from the general
public, exploring IoT applications to test sensor-driven projects can greatly facilitate advances in the
healthcare industry [22]. Insights gained from the surveillance of vital health information, such as
PAPE, can establish a foundation for predictive, preventive, and personalized healthcare systems [18].
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In line with these trends in the healthcare industry, this paper seeks to propose a framework for
an Air Quality Decision Support System (AQDSS) and to develop an IoT application that measures
PAPE based on this framework. The four sections of this paper are organized as follows. The first
section provides a literature review of studies on key air pollutants, determination methods for air
pollutants, and PAPE estimation techniques as well as the current opportunities and challenges in the
field. The second part discusses the methodology, which includes the proposed framework and an IoT
application that was tested by means of a case study. This is followed in the third part by the analysis
and a discussion of the results of the case study. The fourth part presents conclusions that highlight
the study’s important contributions and directions for future research.

2. Literature Review

2.1. Key Air Pollutants

The key air pollutants that are currently being monitored by agencies such as the WHO, the EPA
in the United States, and the European Environment Agency (EEA) in Europe, are particulate matter
(PM10 and PM2.5), ozone (O3), nitrogen oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO),
sulfur dioxide (SO2), volatile organic compounds (VOC), and benzene (C6H6). They are also frequently
studied in academic research [23,24]. Although there is a substantial amount of monitoring data
available for each of these pollutants. PM10 and PM2.5 are considered to be the most widely studied air
pollutants in the existing environmental risk and health literature. This is because PM poses one of the
greatest risks to human health [25].

The indoor environment is a critical domain where an average person spends an estimated
90% of his or her time [26]. Thus, indoor air pollution is more likely to account for total population
exposure than pollution from the outdoor environment [27]. While individuals are spending more
and more time indoors, an assessment of the health impact of indoor air pollution has not been
studied as extensively as the impact of outdoor air pollutants. One of the main reasons for this is
the lack of indoor air quality monitoring information [28]. There are primary indoor air pollutants,
which are recommended based on the EU (2008) directive for Clean Air and the WHO [28]. They are
schematically listed as benzene, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic
hydrocarbon, radon, trichloroethylene, and tetrachloroethylene. In the research community of indoor
air quality monitoring and assessment, particulate matter, carbon dioxide, carbon monoxide, ozone,
nitrogen oxide, formaldehyde, benzene, total volatile organic compound (TVOC), polycyclic aromatic
hydrocarbon, and other VOCs have been extensively studied [29,30].

2.2. Determination Method for Air Pollutants

Most workspaces or industrial environments still apply traditional measuring strategies to assess
occupational health and safety. These strategies are mainly based on the EPA Compendium of
Methods [31] and the International Organization for Standardization (ISO) method, which rely on
complex sampling and analysis techniques. These methods, such as Method-10A and IP-3A, require
domain experts to prepare diffusive or passive samplers and are frequently replaced with new ones
due to the limited equipment lifespan. Subsequently, the collected samplers are separated by gas
chromatography and measured by mass-selective detector or multidetector techniques in a remote
laboratory [32]. Moreover, to measure multiple pollutants, the equipment for each pollutant has to be
prepared or bought from different manufacturers, which can lead to issues about data manipulation
and integration. These aforementioned elements of the traditional measuring strategy restrict the
sampling time to a short-term basis [33]. As indoor air quality varies from time to time due to changes
in working conditions, human activity, and weather conditions, short term sampling cannot cover all
kinds of variations. Therefore, long-term monitoring has become a need in the research community
and practical applications such as Occupational Safety and Health (OSH) management.
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The rapid development of IoT and sensor techniques enables light, low-cost, and real-time
pollution monitoring solutions. The integration of IoT and the sensor network in air quality monitoring
addresses the aforementioned gaps: short-term monitoring and complex air monitoring solutions.
Recent studies on the development of indoor air quality monitoring systems have been undertaken on
PM, carbon dioxide (CO2), CO, and VOC. Moreover, IoT-based indoor air monitoring devices such as
Foobot and AirVisual are already commercially available on the market.

2.3. IPAPE Measurement Techniques

As noted previously, there is a growing interest in measuring PAPE at the individual level.
At present, there is a wide range of low-cost sensor technologies [34] that can be leveraged to implement
large scale monitoring networks by means of complex measurement techniques [35]. PAPE requires
tracking of a person’s activity patterns to learn the time and location of their exposure to pollution
concentrations as well as the duration of exposure and nature of the pollutants. This is necessary to
understand the probable effects on health of the exposure [36].

The different PAPE measurement techniques that have been developed in the last decade can
be grouped into three categories. The first group is the traditional method in which pollution data
are collected from fixed-site outdoor monitors and assigned to the home address of the individual
through spatial interpolation techniques. Examples include Land Use Regression (LUR) [37], Inverse
Distance Interpolation [38], and the geostatistical Kriging algorithm [39]. Numerical models, such as
the Community Multiscale Air Quality (CMAQ) model and the Urban Atmospheric Dispersion
model (DAUMOD), were proposed for regional air pollution modeling prediction in previous
studies [40]. However, the expensive computational cost and failure to capture pollution variability
make them inadequate for the application of modeling in real time in urban areas where there are
severe photochemical pollution conditions. Graz Lagrangian Model (GRAL) is another advanced
mathematical model that can handle the motion of pollution in buildings and complex terrains [41].
A major drawback of these types of models, however, is the need to have accurate information about
emissions, meteorological data, and the structural and geographical figures of the area, which may not
always be available in high resolution [42]. While the performance of the spatial interpolation methods
may significantly drop in dynamic terrains such as in urban environments, they have still been used
widely in recent studies [43,44] of areas where the detailed information needed for complex numerical
models (e.g., street-based monitoring) is still unavailable.

In summary, these methods are inadequate, as they do not address the issue of the individual’s
spatio-temporal PAPE variability [45] and neglect indoor air pollution. Accordingly, this has led
researchers to explore new techniques that can provide more accurate measures of PAPE.

The second group of techniques, which is built on the traditional method but addresses the issue
of exposure variability, takes into account the activity patterns by tracking an individual’s location.
It incorporates indoor pollution data based on the amount of time spent indoors. A commonly used
indoor pollution measurement method is the indoor/outdoor ratio [37]. Other techniques, such as
modeling based on data from vehicle type and emissions have also been proposed [46]. With respect
to activity tracking, different tools have been used in studies to track the location and activity patterns
of an individual. These include Global Positioning Systems (GPS) [35], public WiFi networks [37], and
accelerometers [45]. A common characteristic shared by these activity tracking tools is the use of a
mobile device, particularly a smartphone. This mobile technology has proved to be an enabling tool in
the health industry with its ability to access data anytime from anywhere [47]. Although this group
of PAPE measurement techniques is an improvement from the first group, it still faces the issue of
pollution variability and measurement accuracy with its reliance on fixed-site outdoor monitors and
indoor/outdoor ratios alone [48].

The last group of techniques stems from the two previously discussed groups but further
captures the issue of indoor pollution measurement accuracy and the spatio-temporal resolutions
of data from fixed-site outdoor monitors. The periodic measurements by these fixed-site outdoor
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monitors by nature have low spatial resolution and do not address the issue of variability in pollution
concentration [49]. Since the indoor environment has a much greater impact on human health than the
outdoor environment [50], it is essential to have solutions that can provide more accurate measures of
indoor air pollution instead of employing the traditional method of using the indoor/outdoor ratio.

Personal exposure measurements can be performed directly and indirectly [51]. Passive samplers
are widely used in personal sampling, since they have the merits of being light, electricity-free, and
wearable. Passive samplers exist for nitrogen dioxide, carbon monoxide, VOC, ozone, sulfur dioxide,
and formaldehyde [52]. Due to sampler lifespan, the sampling time usually lasts from a few days up
to one week [53].

On the other hand, using a micro-environmental model is an indirect way of assessing personal
exposure. In daily life, people move around and are exposed to various levels of pollutants in various
locations. The term “micro-environment” is defined as a chunk of air space with a homogeneous
pollutant concentration [54]. Such a micro-environment can be an indoor location (bedroom, kitchen,
etc.) or workplace location (meeting room, office, printing room, etc.). The spatio-temporal individual
time-activity crossing in micro-environments is tracked through questionnaires or time-activity
diaries (TADs).

The key to measuring individual pollution exposure is to track an individual’s activities in both the
space and time dimensions. GPS technology is the ideal technology, and it has been used successfully
for this purpose. Some well-designed integrations of GPS devices and portable pollution monitors
have been proposed by some studies [35,55] to determine the potential exposure at the individual level.
However, in indoor environments, GPS technology does not function as well as it does outdoors.

Therefore, more extensive approaches have been developed such as the use of mobile sensors
(i.e., handheld, USB-pluggable smartphone sensors, wearable sensors) to monitor PAPE indoors.
Studies [56,57] that have included this group of PAPE measurement techniques have managed to
address the most relevant issues of pollution variability by employing mobile sensors. Beacon
technology offers a promising solution for indoor location tracking. Furthermore, the use of
indoor monitors instead of mobile sensors, which are often used in similar studies, eliminates the
inconvenience of carrying a device around. The use of an indoor monitor and e-beacons also enables
unobtrusive and low-cost collection of pollution data for multiple individuals, in contrast to a mobile
sensor, which only collects data for a single individual.

2.4. Opportunities and Challenges

Although continuous technological advancements have enabled researchers to propose solutions
that provide measures of PAPE, the issue about the cost and scalability of such methods remains
to be addressed. The most recent approach, as discussed in the third group of PAPE measurement
techniques, employs mobile sensors that the individual carries around. Although these mobile sensors
are able to provide better spatial resolution of pollution data, the willingness of individuals to carry
these sensors is still a challenge, in addition to the cost and scalability issues of the method.

The trade-off between cost and quality of pollution data continues to be a point of discussion
among studies. The proposed PAPE measurement techniques that are currently available in the
literature are limited to PAPE estimation alone and, therefore, fail to provide a more comprehensive
view of the entire AQDSS. Thus, there is an opportunity to further explore the use of existing
technologies to enable the development of a more comprehensive PAPE measurement technique
that is able to provide a preventive, predictive, and personalized system.

Within similar studies on the measurement of PAPE, there are some proposed conceptual
frameworks [35,36] and system architectures [56,58]. However, they are centered primarily on PAPE
measurement and the potential health impacts. In this paper, we present a comprehensive framework
that encompasses not only PAPE measurement but provides a holistic view of the entire AQDSS. As a
proof of concept for this framework, we also develop a low-cost and unobtrusive IoT application for
measuring PAPE that addresses the gaps in the currently available solutions.
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3. Methodology

3.1. Framework

Figure 1 shows the proposed framework for an AQDSS. There are three key stakeholders identified,
namely the individual, the healthcare industry, and the government. The three pillars at the center
represent the elements that are directly linked to the government. They include pollution laws, sectorial
regulations, and incentives, all of which make up the air quality monitoring policies of the government.

Figure 1. Proposed framework for the Air Quality Decision Support System (AQDSS).

As pointed out previously, these government regulations play an important role, as they largely
support and drive policies that enable the measurement and access to air quality data.

The other two stakeholders are the individuals and the healthcare sector, which form the apex of
the framework. They are supported by five layers of activities, as illustrated by the pillars on both
sides. The first three on the left correspond to the analysis of past data to estimate PAPE and their
related health impacts. The two pillars on the right represent future possibilities of forecasting PAPE
and the associated health risks.

Although the estimation of PAPE is fundamental to the entire AQDSS, its associations with
forecasting and as a predictive health risk assessment system are noteworthy. Air quality forecasting
techniques are already being explored in current research [59,60] in environmental modeling literature,
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where their important contributions to the development of control measures to prevent damage to
human health have been highlighted.

This proposed framework can be adopted to aid in the development of an AQDSS and various
IoT applications. For instance, consider a mobile application that allows an individual to select the
best route to travel from home to work that minimizes the risk to pollution exposure. This could be
achieved by employing different modeling techniques to continuously analyze real-time air quality
data and forecast PAPE values for each of the possible routes to the destination. Actual PAPE data
that are stored in the database can also be used for epidemiological studies and air quality policy
development. This could be one of the applications of the proposed framework when all identified
pillars are fully employed. In this paper, however, as a proof of concept, we focus mainly on PAPE
measurement (pillar 2) in accordance with the system architecture that is illustrated on the base of the
framework. In order to manage sensor data in an interoperable way, this implementation considers
the Web Service Description Language provided by the Sensor Observation Service v2.1 (SOS) from
the SOS-OGC consortium. This standard defines a Web service interface which allows observation
queries, sensor metadata, as well as representations of observed features. Furthermore, this standard
defines a means to register new sensors and to remove existing ones. Also, it defines operations to
insert new sensor observations. The feasibility was assessed through the developed case study.

3.1.1. System Architecture

As indicated in the framework, the base shows the set of activities that are related to the gathering
and management of all air quality and personal data. This groundwork is required for the entire
system to function. There are five different sources of data. They are the (S1) outdoor pollution
monitors, (S2) location tracking application, (S3) indoor pollution monitors, (S4) e-beacons, and (S5)
meteorological monitors. S1 and S2 are intended for outdoor pollution modeling, and S3 and S4 are for
indoor pollution modeling. We also consider meteorological data, as they are relevant for air quality
prediction studies [60,61].

The data are extracted from the mentioned data sources and stored in a database management
system. Data mining, numerical modeling, and geostatistics, as shown in the center of the framework
are the key activities that support the entire system, as it is a continuous process to discover and
analyze spatio-temporal data.

3.1.2. PAPE Measurement

There are essentially three elements to consider when measuring PAPE. They are (1) outdoor
pollution, (2) indoor pollution, and (3) the individual’s location pattern. With respect to the outdoor
pollution, the mobile-phone-based tracking app provides the time and location data of the individual
in the outdoor environment. An outdoor pollution map is created by using potentially different
strategies, such as

• Numerical-modeling-based dispersion models [62,63],
• Big data, machine-learning-based models [60,64],
• Geostatistic-based techniques, like Kriging [65,66].

Each of these techniques has its specific advantages and limitations, and its consideration in
a specific application will support its choice. Actually, the latest family of methods has specific
advantages, as it is suitable for working with the fixed network of pollution stations the city has
implemented. Indeed, it also deals with the limitations of sparse data, as Data fusion can increase
the reliability of data as well as it can contribute to dealing with local effects like street canyons, etc.,
by using the street granularity-based IoT air quality stations some cities are deploying, such as Airbox
in Taipei [67] and Array of Things (AoT) sensor boxes in Chicago [68].
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For the duration of time that an individual is outdoors, the corresponding pollution data
are estimated by superimposing the developed outdoor pollution map over the collected location
pattern data.

For the indoor pollution, the e-beacons indicate the period when the individual is indoors, and
the indoor air quality monitors provide the corresponding air quality data, when available. Failing this,
outdoor information will be used by default. The integration of personal mobiles and fixed e-beacons
located in different indoor micro-environments enables the individual’s time-location information to
be understood. The corresponding time-location knowledge combined with location-specific indoor
air quality information collected from air monitoring devices can provide a detailed picture of personal
exposure in the indoor environment.

Both outdoor and indoor data are then integrated, and statistical modeling techniques are
employed to either estimate or forecast the individual’s PAPE.

3.2. Madrid Case Study

In order to assess the feasibility of the proposed IoT application that measures PAPE and
contributes to empowering users because of the relevant figures provided at the personal level,
we conducted a case study to analyze significant functionalities.

3.2.1. Study Area

The study area was the City of Madrid, which is the capital of Spain, as well as its largest
municipality. It was the first city in Spain to have air quality monitoring stations and has always been
at the forefront of the fight against air pollution. In response to the most recent EU directive (Directive
2008/50/EC) regarding the establishment of limits to major air pollutants, the Madrid government has
committed to maintaining acceptable pollution levels by continuous air quality monitoring.

The Madrid air pollution monitoring network consists of 24 fixed-site outdoor monitors (Figure 2).
The hourly averaged measurements of SO2, CO, NO, NO2, PM10, PM2.5, C6H6, toluene (C6H5–CH3),
hexane (C6H14), propene (C3H6), m-xylene, o-xylene, and methane (CH4) hydrocarbons can be
downloaded free of charge from the official open data website of the Ayuntamiento de Madrid [69].
Meteorological data, such as temperature, humidity, ultraviolet radiation, pressure, solar radiation,
rainfall, precipitation, diffuse solar radiation, global radiation, wind speed, and wind direction can
also be accessed through the website of the Agencia Estatal de Meteorologia [70].

Figure 2. Air Quality Monitoring Network of Madrid.
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3.2.2. Data Collection

In this case study, S1, S2, S3, and S4 data sources were used and meteorological data were
excluded (see Figure 1). We had one individual volunteer whose activities were monitored during the
study period.

For this particular case, Madrid does not yet implement the street-based pollution monitoring
strategy, but based on similar studies [43,44], the research team adopted the geostatistics-based
approach, as it becomes linear scalable with time and is suitable for integrating additional data sources.
Therefore, outdoor pollution figures were downloaded from the mentioned open data website of
Madrid City Hall. For location tracking, we used the mobile app Moves [71] in which time, location,
and activity were accessed through an open Application Programming Interface (API). Other similar
open source mobile apps are widely available, such as OwnTracks [72], Miataru [73], and Geo2Tag [74].

For the indoor pollution, Foobot indoor monitors were used. One of them was placed in the
individual’s workplace, as this is where she spends most of her indoor time. The indoor pollution
data were retrieved from Foobot’s API [75]. The e-beacon devices were placed in proximity to the
indoor monitors. They helped us to determine whether the individual was within the indoor vicinity.
The e-beacon data were broadcasted through Eddystone, an open-source beacon format, and were
retrieved through an app that we developed in Cordova [76]—a free and open-source platform for
building mobile applications.

All of these data sources promote the scalability of the proposed IoT application, as most are
publicly available without charge. The only costs incurred were for the indoor monitor and e-beacons.
E-beacons, however, are low-cost, small enough to attach to any surface, and are finding an increasing
number of location-based applications in various industries such as retail and transportation as well as
in households [77]. Hence, beacon technology offers a promising solution for indoor location tracking.

All data that were collected from the mentioned data sources were processed as indicated in the
Data in Brief Collection documents that were submitted to the journal for this paper. The developed
code can be also found in a public repository [78].

The selection of the pollutants used for the PAPE estimation was based primarily on the data
provided by the devices, which also agreed with the data on the most common air pollutants that have
been widely studied previously [23,24]. Table 1 shows the available pollutants for each of the data
sources used.

Table 1. Available Pollutants for each Data Source.

Source Pollutant Unit

PM2.5 μg/m3

Indoor Monitor CO2 ppm
VOC ppb

PM2.5 μg/m3

PM10 μg/m3

CO μg/m3

Outdoor Monitor NO2 μg/m3

SO2 μg/m3

O3 μg/m3

NOx μg/m3

3.2.3. Outdoor Pollution Modeling

Existing studies of PAPE essentially rely on modeling techniques in which data collected
from fixed-site outdoor monitors are used to estimate pollution at specific geographic locations.
To create an outdoor pollution map, there are several alternative methods. These include using
micro meteorological numerical-based models (WRF, CMAQ, etc.) [79], or machine-learning-based
models [64]. However, for the sake of simplicity and considering the computational costs and the
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number of potential users, we adopted some classical but still cost-effective approaches like the Inverse
Distance Weighting (IDW), Simple Kriging, Ordinary Kriging, and Co-Kriging algorithms.

Table 2 shows the formulae and main characteristics of these techniques in which ẑ0 is the
measured value at the prediction location, λi is the weight of the measured value at the ith location,
and Xi is the measured value at the ith location. The parameters that were tuned are also indicated in
the table.

All three methods estimate the value at a particular location by assigning a weight of the
surrounding known values and calculating the weighted sum of the data. These techniques differ
mainly in the calculation of the assigned weight λi. Kriging, which is a geostatistical method, offers
advantages over other interpolation techniques, as it provides an interpolation error estimate, and it is
an exact interpolation. The interpolations are based on weights that do not depend on data values [80].
The advantages of the deterministic interpolation technique IDW, on the other hand, are that it is simple,
intuitive, and computes the interpolated values quickly [81]. We created the outdoor pollution map by
employing these three interpolation techniques in R, an open-source statistical modeling software.

Table 2. Techniques Used for Outdoor Pollution Modeling.

Technique IDW Simple Kriging Ordinary Kriging Co-Kriging

Formula ẑ0 = ∑n
i=0 λiXi ẑ0 − c = ∑n

i=0 λi(Xi − c) ẑ0 = ∑n
i=0 λiXi ẑ0 = ∑n

i=0 λiXi + ∑n
j=0 β jtj

Characteristics The weight, λi,
depends solely on the
distance to the
prediction location.

Assumes a constant and known
mean c of the samples. The
weight, λi, depends on the use
of a fitted model to the
measured points, the distance to
the prediction location, and the
spatial relationships among the
measured values around the
prediction location.

Condition that ∑n
i=0 λi = 1

assumes a constant and
unknown mean of the
samples. The weight, λi,
depends on the use of a
fitted model to the measured
points, the distance to the
prediction location, and the
spatial relationships among
the measured values around
the prediction location.

tj is the secondary
regionalized variable which
is co-located with the target
variable tj. The weight β j
assigned to tj varies between
0 to 1.

Parameters Idp
0.1, 0.3, 0.5, 0.8, 2, 5

Sill
1, 10, 100, 250, 500, 600, 700, 800, 900
Range 0.1, 0.5, 1, 10, 20, 50, 80
Nugget
0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 200, 50
Beta
0.05, 0.12, 0.2, 0.5, 0.9, 1.5, 3, 1
Variogram Model: Gaussian,
Circular, Exponential

1. Optimal Parameters and Model Selection

In order to select the optimal parameters and the best modeling technique for each of the hourly
outdoor pollution datasets, a 5-fold cross validation was performed to avoid overfitting. For each
of the 24-hourly datasets and each of the three modeling techniques and all combinations of their
respective parameters, the selection of optimal values was based on the root-mean-squared-error
(RMSE) metric. The dataset was separated into two parts, training and testing, which were used
to fit the model and calculate errors, respectively. The parameters and the model that provided
the least RMSE were selected.

For the Simple and Ordinary Kriging techniques, the weights λi were derived by fitting a
covariance function or variogram. First, a graph of the empirical variogram was plotted and
a model was fitted to the points based on this plot. Table 3 shows the different models and
functions from which to choose when fitting a model to the empirical variogram. Based on the
5-fold cross validation, the Gaussian Model was selected as the optimal configuration.
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2. Outdoor Pollution Map

Similar to [43], an hourly outdoor pollution map was created that was based on the identified
optimal parameters and modeling technique for each respective hour. Figure 3 shows an example
of the pollution maps based on the PM2.5 pollution data on 2017-03-24. It shows that, from
midnight to the morning at around 6:00, the highest pollution levels consistently occurred in
the southwestern part of the city and moved towards the north with maximum levels that
ranged from 8 to 12 μg/m3. Concurrently, high pollution levels were also experienced in the
northwestern part of the city at midnight and in the northeastern part at 01:00 in the morning.

The selection of time frequency (hourly-based in this case) also impacts the accuracy, depending
on how spiky the pollution looks. In Madrid, the pollution sources are strongly related to traffic
and then variations are smooth [82]. Therefore, hourly-based frequency is a rather convenient
basis for calculations.

Table 3. Available Pollutants for each Data Source.

Model Function

Circular semivar(d) = c0 + c(1 − 2
π cos−1( d

α ) +
√

1 − d2

α2 0 < d ≤ α

semivar(d) = c0 + cd > α
sermivar(0) = 0

Spherical semivar(d) = c0 + c( 3d
2α − 1

2 (
d
α )

3
0 < d ≤ α

semivar(d) = c0 + cd > α
sermivar(0) = 0

Exponential semivar(d) = c0 + c(1 − e
−d
r ) d > 0

sermivar(0) = 0

Gaussian semivar(d) = c0 + c(1 − exp(−d2

r2 )) d > 0
sermivar(0) = 0

d = distance between two locations, c0 = y-intercept, α = range.

3.2.4. Indoor Pollution Modeling

The main data sources used to model the indoor pollution were the e-beacons and indoor
monitor. The timestamps recorded from the e-beacons provide the time when the individual was
detected indoors.

In this study, we refer to “indoor” as the work location, since the indoor monitor was only
present at the individual’s workplace. The “outdoor” environment, on the other hand, refers to any
other location outside the workplace. To obtain the corresponding pollution values during these
periods, each of these timestamps was matched to the closest timestamp logged from the Foobot
device. As illustrated in Figure 4, the pollution values were then aggregated in time periods based on
Equation (1) on the assumption that, if the difference between two sequential timestamps recorded on
the e-beacons was more than 10 min, the individual was outdoors and a new indoor period would
start. For instance, in Figure 4, from 2017-03-24 at 14:37:46 to 2017-03-24 at 14:44:59, the pollution levels
were aggregated, since the timestamp immediately following 2017-03-24 at 14:44:59 is 2017-03-24 at
14:59:00 and the difference is longer than 10 min. Therefore, during the period between 2017-03-24 at
14:44:59 and 2017-03-24 at 14:59:00, the individual was outdoors and the new indoor period resumed
at 2017-03-24 14:59:00.

Similarly, micro-environments (office, printing room, meeting room) in the workplace could be
replicated by deploying e-beacons and air monitoring devices in all available micro-environments.
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Figure 3. Co-kriging interpolation of PM2.5 on 24 March 2017.

The PAPE Exposure(p) in period p inhaled by the individual was calculated by multiplying the
pollution value SZ(p) by the respective minute ventilation (VE) value using Equation (2).

SZ(p) =
n

∑
t=i

1
2
(Zti+1) + Zti )(ti+1 − ti) (1)
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where ti+1 − ti < 10 mins, and SZ(p) is the fully aggregated pollution value during the period from
time ti to tn. This period is named p.

Exposure(p) = SZ(p) ∗ VE (2)

where VE ∈ (VER, VEW, VERT, VEC)
VER = VE for activity type “run”;
VEW = VE for activity type “walk”;
VERT = VE for activity types “rest” and “transport”;
VEC = VE for activity type “cycle”.

Figure 4. Aggregation of Indoor Pollution Values.

3.2.5. Indoor and Outdoor Pollution Integration

The individual’s location was tracked through the Moves mobile application. The recorded data
from this tracking app include the starting and ending times, latitude, longitude, and activity type,
as shown in Table 4. To obtain the corresponding pollution values for these periods, the time and
location records were matched against the interpolated values from the created outdoor pollution
map. The resulting outdoor pollution data were then matched against the aggregated indoor pollution
values in Figure 4, in which the outdoor data were replaced by the corresponding indoor data.

Table 5 shows the resulting individual’s indoor and outdoor PAPE values for PM2.5 with the
respective period (i.e., starting and ending times), location (i.e., longitude and latitude), environment
type (i.e., indoor or outdoor), activity type (i.e., transport, rest, walk, run, cycle), and minute
ventilation (VE). The PAPE values are indicated in its last column ”Exposure”.

VE (m3/min) measures the volume of gas inhaled by an individual. It varies with the type of
activity. The type of activity or travel mode may have a significant effect on the exposure values [83,84]
and, hence, it is important to account for VE. We obtained the VE values from a study done by [85] on
human inhalation rates. The types of activities in the tracking app include “transport”, “walk”, “run”,
and “cycle” and are based primarily on the speed of movement of the individual. In this study, for
the time periods that lack one of these types of activity data, we assumed that the individual was at
“rest” (i.e., sleeping, sitting, etc.). Since VE is based primarily on the body movement of the individual,
we used the same VE values for both activity types “transport” and “rest”.

3.2.6. Practical Application

To illustrate a possible IoT application [86,87] that can be developed using the proposed
framework, we identified different travel routes and their corresponding forecasted PAPE values [60]
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that give the individual an opportunity to select a travel route that minimizes the risk of exposure
to pollution.

As an example, we selected an entry in Table 5 for the time period 12:04:30 to 12:23:44 on
24 March 2017, in which the individual was outdoors and in transport mode. During this selected
period, by using the starting and ending location data that the tracking app provided, we identified
alternative routes using the ggmap package in R.

From this package, the estimated travel time and route locations (i.e., latitude and longitude) were
obtained. Then, based on these specific time and location data, the corresponding pollution values
were taken from the previously interpolated outdoor pollution values.

Table 4. Data from Tracking App.

Start Time End Time Latitude Longitude Activity

2017-03-24 00:00:00 2017-03-24 11:55:37 40.4612 −3.7093 Rest
2017-03-24 11:55:37 3/24/2017 11:59:20 40.4592 −3.7106 Walk
2017-03-24 11:59:20 3/24/2017 12:04:30 40.4571 −3.7118 Rest
2017-03-24 12:04:30 3/24/2017 12:23:44 40.4486 −3.7006 Transport
2017-03-24 12:23:44 3/24/2017 19:52:00 40.4400 −3.6894 Rest
2017-03-24 19:52:00 3/24/2017 20:08:40 40.4506 −3.6994 Transport
2017-03-24 20:08:40 3/24/2017 21:13:07 40.4612 −3.7093 Rest
2017-03-24 21:13:07 3/24/2017 21:21:55 40.4594 −3.7105 Walk
2017-03-24 21:21:55 3/24/2017 22:32:59 40.4575 −3.7117 Rest
2017-03-24 22:32:59 3/24/2017 22:42:51 40.4594 −3.7105 Walk
2017-03-24 22:42:51 3/25/2017 00:00:00 40.4612 −3.7093 Rest

Table 5. Integrated Indoor and Outdoor Personal Air Pollution Exposure (PAPE).

Start End Latitude Longitude
PM2.5 Environment Activity

VE Exposure
(μg/m3 * min) (m3/min) (μg)

2017-03-24 0:00 2017-03-24 11:55 40.461 −3.709 5354.15601 Outdoor Rest 0.00893 47.81261
2017-03-24 11:55 2017-03-24 11:59 40.459 −3.711 13.9543 Outdoor Walk 0.01326 0.18503
2017-03-24 11:59 2017-03-24 12:04 40.457 −3.712 20.08333 Outdoor Rest 0.00893 0.17934
2017-03-24 12:04 2017-03-24 12:23 40.449 −3.701 111.43482 Outdoor Transport 0.00893 0.99511
2017-03-24 13:16 2017-03-24 14:03 40.43999 −3.68938 268.65655 Indoor Rest 0.00893 2.3991
2017-03-24 14:03 2017-03-24 14:37 40.44 −3.689 347.06125 Outdoor Walk 0.01326 4.60203
2017-03-24 14:37 2017-03-24 14:44 40.43999 −3.68938 28.72532 Indoor Rest 0.00893 0.25652
2017-03-24 14:44 2017-03-24 14:59 40.44 −3.689 141.90761 Outdoor Walk 0.01326 1.88169
2017-03-24 14:59 2017-03-24 15:58 40.43999 −3.68938 273.87957 Indoor Rest 0.00893 2.44574
2017-03-24 15:58 2017-03-24 16:09 40.44 −3.689 80.2915 Outdoor Walk 0.01326 1.06467
2017-03-24 16:09 2017-03-24 17:00 40.43999 −3.68938 275.25632 Indoor Rest 0.00893 2.45804
2017-03-24 17:00 2017-03-24 17:12 40.44 −3.689 70.15613 Outdoor Walk 0.01326 0.93027
2017-03-24 17:12 2017-03-24 17:41 40.43999 −3.68938 253.86892 Indoor Rest 0.00893 2.26705
2017-03-24 17:41 2017-03-24 17:56 40.44 −3.689 63.02457 Outdoor Walk 0.01326 0.83571
2017-03-24 17:56 2017-03-24 18:32 40.43999 −3.68938 278.09301 Indoor Rest 0.00893 2.48337
2017-03-24 18:32 2017-03-24 18:46 40.44 −3.689 85.27723 Outdoor Walk 0.01326 1.13078
2017-03-24 18:46 2017-03-24 19:19 40.43999 −3.68938 193.88363 Indoor Rest 0.00893 1.73138
2017-03-24 19:52 2017-03-24 20:08 40.451 −3.699 182.9052 Outdoor Transport 0.00893 1.63334
2017-03-24 20:08 2017-03-24 21:13 40.461 −3.709 626.14768 Outdoor Rest 0.00893 5.5915
2017-03-24 21:13 2017-03-24 21:21 40.459 −3.711 68.61289 Outdoor Walk 0.01326 0.90981
2017-03-24 21:21 2017-03-24 22:32 40.457 −3.712 414.90097 Outdoor Rest 0.00893 3.70507
2017-03-24 22:32 2017-03-24 22:42 40.459 −3.711 51.34302 Outdoor Walk 0.01326 0.68081
2017-03-24 22:42 2017-03-25 0:00 40.461 −3.709 6.56381 Outdoor Rest 0.00893 0.05861

4. Results and Discussion

4.1. Outdoor Pollution Model Performance

The adopted modeling technique based on geostatistics [65,66] using hourly-based data [43] from
the fixed network of pollution stations can be interpolated by using different techniques, and criteria
for technique selection is needed. Therefore, a cross validation with the leave out strategy was adopted.
Based on the 5-fold cross validation performed for each of the three modeling techniques, among the
24 hourly datasets of PM2.5 captured on 34 March 2017, the Simple Kriging technique proved to be the
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best model with a selection occurrence of 13, followed by the Ordinary Kriging with 10, Co-kriging
with 7, and IDW with 1, out of 24 datasets. Our results agree with previous studies such as [88], where
Simple Kriging outperformed Co-Kriging, and [89], in which Simple Kriging turned out to be the best
model for estimating NO2 and PM10.

It can be argued that some local effects like turbulence around buildings, roughness of
constructions, and some other aspects impact the accuracy of the estimation. The techniques used in
such dimensions can be those related to the integration of meteorological, chemical and transportation
numerical modeling (WRF and CMAQ models), with the limitations of being able to precisely estimate
the boundary conditions as well as to properly model the city configuration (buildings, trees, surface
properties, etc.). When running with high spatial resolution, they produce good results, although
the quality is slightly reduced and numerical stability becomes an issue [90]. Another potential
contribution could be to use artificial-intelligence-based models to estimate pollution levels. In these
fields, the authors have already made significant contributions. Actually, some papers [91] have shown
the competitive advantage of these methods over those based on numerical simulations. However,
to keep the implementation interoperable and extendable, interpolation was finally adopted, because
it can easily be enriched with the data fusion option based on IoT-based, street level pollution sensors.

4.2. Device Performance

To validate the fully aggregated indoor pollution values (SZ(p)) obtained from the indoor monitor
and e-beacon devices, they were matched against the pollution data that were measured simultaneously
during the study period using a portable air pollution monitoring tool- Atmotube [92] that was carried
by the individual.

Figure 5 shows the indoor VOC values measured from the Atmotube and the Foobot monitor
on 2017-03-31. It can be seen that there is significant measurement variance between the two
devices. Nevertheless, the measured values follow the same trend. There is no consistent Air Quality
Index (AQI) provided for comparing the pollution values measured by each device. In agreement
with [93], the AQI scales differ across countries, organizations, and devices, and this presents an
obstacle for comparison and invalidates its usability, which emphasizes the need for a standardized
awareness procedure.

Figure 5. Indoor VOC Values from Atmotube and Foobot for 2017-03-31.
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Variance in measurements can be attributed to the differences in calibration and measurement
methods that were used by these sensors (see Figure 5). However, this situation partially unveils
the observed difficulties in getting people aware of the real importance of pollution, as someone can
exhibit different figures for the same pollutants at the same place and point in time. Actually, it is
another strong point to have a common framework such as the one proposed in this paper, because it
mainly fosters transparency and then allows interpolated or modeled values for outdoor pollution
over time at a particular place to be compared with local, privately owned sensors from both outdoor,
and indoor locations. From such observations where different local sensors can indeed participate,
a better understanding about outliers and commonalities and trends can be derived.

4.3. PAPE Values

Figure 6 illustrates a color map of the average PM2.5 levels (μg/m3) for one day, in which the
range of the specific values is presented on a color scale on the right. The location pins indicate the
environment, activity type, time percentage (%), and the respective amount of PM2.5 (μg) that the
individual was exposed to within the indicated time duration. It can be seen that the individual spent
most of the day (62.78 %) outdoors (i.e., outside the workplace) on the northwest side of the city where
the highest daily average pollution level of 12 μg/m3 was concentrated, and this resulted in a total
PM2.5 exposure of 52.7 μg.

Figure 7 shows the one day PM2.5 exposure levels by activity type. Based on this plot,
the individual spent most of the day (88.13%) at rest and was exposed to approximately 70 μg
of PM2.5 during this period. PM2.5 exposure values within a selected time period on the same day are
also plotted in Figure 8, which shows that the individual had the highest pollution exposure at 15:32 in
the afternoon during this selected period.

Figure 6. One Day PM2.5 Exposure Per Location, Activity Type, and Time Percentage.
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From this analysis, the value of people being able to figure out the distribution of the total intensity
of pollutants based on their activity becomes evident, as this method can make them aware of the
real dimension of the problem and avoid classical myths, like the idea that most of the pollution is
acquired outdoors (see Figure 6). While there are similar studies such as in [87], where the authors
demonstrated the cleanest air routing algorithm for path navigation by calculating the PM2.5 exposure,
they mainly focused on pollution acquired outdoors and not indoors.

Since information is the key aspect in having the opportunity to make proper decisions,
the advantage of such an integrated framework that is able to integrate not only outdoor conditions
but also indoor ones when available becomes more evident. This can also have an impact not only at
the individual level by making everyone aware of their exposed pollution levels but at an aggregated
level as well, because the public health dimension is impacted when buildings are seen as actionable
regarding the indoor conditions. Therefore, KPIs can be adopted by considering the gradient between
outdoor and indoor levels per area of occupancy of the buildings. By having systematic monitoring
inside, the management dimension can be adopted.

Figure 7. One Day PM2.5 Exposure by Activity Type Percentage.

Figure 8. Indoor PM2.5 Exposure Values Across Time. (DeltaT = 1 min).
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4.4. Alternative Travel Routes

Similar to [87,94], another non-neglectable dimension that is possible to consider is the impact in
terms of transportation decisions. Figure 9 shows different routes that one individual can take when
moving from one location to another, and the corresponding aggregated pollution and exposure values
are provided in Table 6. These values were predicted on the basis of the individual’s activity data
for 24 March 2017 from 12:04:30 to 12:23:44. The most frequent one adopted by the user was labeled
“Actual”, while the other potential routes were named A to C.

In this example, the better individual route will is B, as it causes the least amount of PAPE at
0.769 μg, which is 22.75% lower than the actual exposure of 0.995 μg. However, the decision process
can be more complex, because there will certainly be some time duration uncertainties, which will
consequently result in uncertainty about the total PAPE value of each alternative route.

Figure 9. Alternative Travel Routes.

Although most of the tools that give routing solutions for transportation problems are based
on duration, some of them have the capability of filtering them out based on pollution exposure
outdoors [87,94]. In terms of added value, this contribution enables alternatives to be ranked based on
estimated pollution levels both outdoors and indoors, provided that pollution data is also available
inside public transportation modes such as trains, buses, and subways. In these cases, as forecast
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for pollution is needed, machine-learning-based models that infer outdoor pollution values need to
be used.

Table 6. Total PM2.5 and Exposure Values of the Different Routes..

Route PM2.5 (μg/m3 * min) Exposure (μg)

A 89.34 0.80
B 86.08 0.77
C 100.17 0.89

Actual 111.43 0.99

4.5. Limitations

Due to the lack of publicly available air quality information for other indoor areas such as shops,
buses, cars, metros, etc., outdoor pollution data from the fixed-site outdoors information must be used
in such cases. If there are more available resources, additional monitoring IoT devices in other indoor
areas will provide greater accuracy. In most cases, good results demand good inputs, and existing data
are replaced whenever better data become available. Quality improvements can be expected from
those actions. Smart city empowered data sharing platforms such as IOTA Tangle [95] would boost
IoT-based indoor air quality resource availability.

Accuracy for outdoor pollution estimation is another known limitation, both because of the time
frequency resolution of available data and because of the interpolation errors. It would be possible
to implement Weather Research and Forecasting (WRF) models such as the CMAQ. This decision
requires significant effort, not only because of using the appropriate Digital Elevation Model (DEM)
required to represent the landscape and building configuration, which is a complex task, but because
it requires the boundary conditions to be realistic. This means adopting pressure and wind speed
conditions for all surfaces external to the volume of interest. These situations need to be updated
regularly throughout the day, as environmental conditions change as well. Indeed, numerical stability
conditions must be carefully managed in this case as well.

For future applications, the best solution for environments will come from both the increasing
deployment of dense (e.g., street-level) IoT-based air quality sensors and the prosperity of the data
sharing platform, which can increase the available data and, consequently, will increase the accuracy.

5. Conclusions

This paper (1) proposed a framework for an AQDSS and (2) developed an IoT application based
on this framework. The feasibility of the IoT application in measuring PAPE was evaluated through a
case study. In comparison to mobile sensors that were used in previous studies, this IoT application
has higher scalability, because it involves minimal cost and intrusion to the individual. This pilot case
study also presents evidence that PAPE can be estimated by employing indoor monitors and e-beacon
technologies that have not been used previously in similar studies.

Using our proposed framework as a general guideline, the IoT application that we developed can
be further extended to include prediction models that will allow an individual to make smart decisions
when it comes to PAPE risk. Furthermore, PAPE data obtained from the application can be used in air
quality policy development as well as in epidemiological studies to explore the correlations of PAPE
with certain diseases.

We faced difficulties during the extraction and integration of data from multiple devices, which
highlights the importance of choosing the right technologies to use when developing such IoT
applications. There was an observed variance among the different devices, which can be attributed to
device calibration and the measurement techniques used. Future research should, therefore, explore
these issues and identify emerging technologies that permit seamless data integration and more
accurate PAPE measurements.
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Abstract: This study explored the relationship between the actual level of air pollution and residents’
concern about air pollution. The actual air pollution level was measured by the air quality index
(AQI) reported by environmental monitoring stations, while residents’ concern about air pollution
was reflected by the Baidu index using the Internet search engine keywords “Shanghai air quality”.
On the basis of the daily data of 2068 days for the city of Shanghai in China over the period between
2 December 2013 and 31 July 2019, a vector autoregression (VAR) model was built for empirical
analysis. Estimation results provided three interesting findings. (1) Local residents perceived the
deprivation of air quality and expressed their concern on air pollution quickly, within the day on
which the air quality index rose. (2) A decline in air quality in another major city, such as Beijing,
also raised the concern of Shanghai residents about local air quality. (3) A rise in Shanghai residents’
concern had a beneficial impact on air quality improvement. This study implied that people really
cared much about local air quality, and it was beneficial to inform more residents about the situation
of local air quality and the risks associated with air pollution.

Keywords: air pollution; public concern; air quality index; Baidu index; Shanghai

1. Introduction

According to the World Health Organization (WHO), 91% of the world’s population lives in
areas where air pollution exceeds the safety limits [1]. Air pollution negatively affects both human’s
daily life, such as emotional and physical health, and sustainable economic growth, such as labor
productivity and tourism (e.g., [2–5]). However, air pollutants are not always visible, which might
lead to the public being unaware of pollution. Prior studies have indicated that the public perception
of air pollution might be inconsistent with objective air quality, which was evaluated using scientific
indices such as PM2.5 and PM10 [6]. A potential reason is that individuals’ perceived air quality could
differ on the basis of their sociodemographic status, including gender, age, education, knowledge,
and health status (e.g., [7,8]). Therefore, perhaps there exists a gap between objective and subjective
measures of air quality.

There are two important reasons why the relationship between the actual level of air pollution
and residents’ concern about air pollution should be examined. On the one hand, ignorance or
underestimation of the severity of air pollution potentially poses a threat to residents’ health since it
could increase the probability of long term exposure to air pollutants. For instance, it was reported that
90% of residents in Hong Kong would not stop their outdoor activities in the face of poor air quality [9].
Whether residents’ concern about air pollution could correctly reflect the actual pollution level has
become a critical question. On the other hand, a high level of public awareness regarding air pollution
might contribute to political and social enthusiasm for the enforcement of environmental protection
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behaviors and policies. Larson [10] reported that the concurrent rise of online platforms in China has
become a positive force for environmental data transparency in China. Kay et al. [11] provided further
evidence showing that social media are capable of empowering the government to respond to the air
pollution problem to ensure social stability. More recently, Lu et al. [12] stressed that public concern
about air quality might have a more direct impact than perceived air pollution in influencing people’s
behaviors and the actions of the community, production sectors, and the government. Therefore,
how Chinese residents responded to air pollution should be carefully examined. In particular, more
studies are needed to analyze the relationship between the actual level of air pollution and residents’
concern about air pollution, given the importance of public concern in shaping public health and
environmental regulation practices.

The purpose of this study is to examine whether and to what extent actual air pollution is
correlated with residents’ concern about air quality in Shanghai, China. Shanghai was chosen
as the target city in this study since it is one of the largest and most developed cities in China.
Although Shanghai has a high level of economic and social development, its air pollution issue is
considerable. According to the Shanghai Environmental Bulletin published by the local government,
during the year 2018, air quality was classified as “good” on only 93 days. In 2017 and 2016,
the numbers were 58 and 78, respectively. By the end of 2018, Shanghai’s air pollution was even
reported to be worse than that of Beijing [13], which is well known for its air pollution problem.
However, it seems that most attention has been centered on air pollution issues in Beijing in recent years.
Public opinion on air pollution from Shanghai residents should be examined since it might maintain
pressure on governments to roll out environmental regulations to reduce air pollution effectively and
efficiently. From another perspective, understanding Shanghai residents’ concern about pollution is
valuable in providing residents with useful advice about public health and environmental protection.

In this study, actual air quality was measured by the air quality index (AQI) reported by
environmental monitoring stations. Residents’ concern about air pollution was measured using the
Baidu index for the online search keywords “Shanghai air quality”. Baidu index data were provided
by Baidu, which is the most popular Internet search engine in China. The index was calculated on
the basis of the search volume for a specific search item on a daily basis within a specific region.
The Baidu index has been widely used to predict public health issues (e.g., [14–17]) and tourism flows
(e.g., [18–20]) in China. Similar to its usage in public health and tourism studies, the Baidu index is
also applicable in measuring the degree of public concern about air pollution [12]. This point will be
discussed in detail later in the literature review section.

Figure 1 shows the logarithmic values of the actual AQI (blue curve) in Shanghai and the Baidu
index (yellow curve) for “Shanghai air quality”. The sample period spanned from 2 December 2013 to
31 July 2019, covering 2068 days. The 30-day moving average values of the variables are also displayed
to more clearly show varying trends. It can be observed that both the AQI and the Baidu index followed
a similar cyclical pattern with apparent fluctuations. The correlation coefficient between logarithmic
AQI and the Baidu index was 0.432, indicating a statistically significant positive correlation.

Although Figure 1 provides preliminary visual evidence on the relationship between actual
air pollution and residents’ concern about air pollution, a basic correlation analysis is not sufficient.
To better understand the relationship, the following three research questions are proposed. (1) To what
extent and how soon could the actual air pollution level influence public concern about air quality?
(2) Does a decline in air quality in another major city, such as Beijing, affect public concern about air
quality in Shanghai? (3) Could public concern about air quality and the level of actual air pollution
reciprocally influence each other? A vector autoregression (VAR) model was applied to answer these
research questions due to its high ability to capture linear interdependencies among multiple variables
over time.

It is expected that this study could add to the air pollution literature by examining the reciprocal
interactions between public concern about air pollution and the actual degree of air pollution. From a
practical perspective, it could help the municipal government of Shanghai better understand the
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degree of public concern about air quality and better assess the current environmental management
practices. This study also provides insights into the spillover effects that the actual air pollution in
other major tourist cities in China might have on public concern about air quality in Shanghai.

Figure 1. Actual air pollution and residents’ concern about air pollution in Shanghai from 2 December
2013 to 31 July 2019.

The rest of this paper is organized as follows. Section 2 presents a literature review and
develops the hypotheses. Section 3 describes the empirical model and the data used in the analyses.
The estimated results of the empirical model are reported in Section 4. Section 5 discusses the main
findings and implications of the results. Section 6 concludes the paper and talks about limitations and
directions for future research.

2. Literature Review and Hypothesis Development

2.1. Air Pollution: Actual Level, Perceived Level, and Public Concern

Actual air quality levels are measured by scientific techniques, and they are reported in the forms
of different air pollutant indicators such as PM2.5 (particulate matter with a size of 2.5 micrometers or
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less) and SO2 (sulfur dioxide), or comprehensive indices such as AQI and API (air pollution index)
constructed using the air pollutant indicators. Generally speaking, there is not much controversy on the
proper measurement of actual air quality level, and scientists can measure it objectively and accurately

People’s perception of air quality is subjective. Traditionally, researchers have used questionnaire
surveys to collect data on perceived air quality level and people’s displeasure with air pollution
(e.g., [21–23]). Some of the literature reported that perceived and actual levels of air quality are strongly
correlated. For example, Atari et al. [24] conducted a community health survey in the “Chemical Valley”
in Sarnia, Ontario, Canada, and they observed a significant correlation between odor annoyance scores
and modeled ambient pollution. Peng et al. [22] analyzed the data for over 5000 valid respondents
in 62 cities, on the basis of the China Social Survey 2013, and reported a congruence of perceived
and actual air pollution. Similar findings were reported by some other studies, such as for Northeast
England [25], for Switzerland [26], and for China [27].

However, some of the literature found that perceived air quality is not strongly related to actual
air quality. For instance, Egondi et al. [21] focused on two slums in Nairobi, Kenya, on the basis of a
cross-sectional study of 5317 individuals. They reported that the majority of respondents were exposed
to air pollution. However, the perceived air pollution level was low among residents. This implied
the need for promoting public awareness on air pollution. Focusing on the city of Wuhan in China,
Guo et al. [7] reported that most persons they surveyed believed that air quality had become worse,
though statistics of measured air pollutants over the period of 2010–2014 did not actually show that
trend. During the period of 2005–2006, Semenza et al. [23] surveyed the residents of two U.S. cities,
Portland and Houston. They reported that the residents’ perception of poor air quality was not related
to PM2.5 or ozone indicators. On the basis of a sample of 200 people interviewed in London in 1999,
Williams and Bird [28] reported that public perception of air quality was not a reliable indicator of
actual air pollution levels in the investigated areas. The inconsistency between actual and perceived
level of air quality was also reported by Berezansky et al. [29] for Haifa, Israel, by Brody et al. [30] for
Texas in the U.S., and by Kim et al. [31] for Seoul, South Korea.

A notable recent study was by Lu et al. [12]. They used the correlation-analysis technique to
study the relationship between actual PM2.5 concentration and public concern about haze in five large
Chinese cities for the period between 2013 and 2017, where public concern was measured by the
Baidu index. They reported that short term fluctuations in actual pollution level and concern about
pollution were strongly and positively correlated, but long term annual trends of these two variables
were opposite.

Overall, the literature has not provided a consensus on whether the public could correctly perceive
air quality and whether public concern about air pollution concurs with the actual level of air pollution.
There are two possible explanations of this disagreement in the literature. First, different studies
were based on different samples. Since social and individual characteristics strongly affect people’s
viewpoints [31–33], it is natural to see that perceptions of some groups are consistent with actual air
quality, but some other groups tend to over- or under-estimate the level of air pollution. Second, public
perceptions vary over time. Along with the development of information technology, improvements in
education, and the propagation of mass media, the public receives increasing levels of information on
the current situation and importance of air quality. Therefore, many people might not have perceived
and been concerned with air pollution problems in the past, but they have changed their minds in
recent years.

In this study, we focus on the city of Shanghai. Shanghai is one of the most important and
developed cities in China. In 2018, Shanghai’s GDP per capita exceeded 20,000 U.S. dollars, which
was close to that of Greece and Slovakia. Shanghai has a large population size of over 24 million
residents, close to the population of a middle sized country such as Australia. As the financial center
of China, many companies have their headquarters in Shanghai. Shanghai has good educational
resources, including 64 universities. As an international city, Shanghai is visited by approximately nine
million (person-times) inbound tourists annually. Therefore, on average, Shanghai residents have the
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knowledge and ability to perceive the importance of clean air and to worry about pollution if they feel
that air quality has declined. Accordingly, the first research hypothesis in this study was established:

Hypothesis 1. Deprivation of air quality in a local area raises the public concern about the air pollution
problem.

Furthermore, since the Internet has allowed information to flow swiftly across regions, news
about air pollution in one major city could quickly propagate and might cause mental or even physical
responses of residents in another city. In this study, Beijing, the capital of China, was used as a study
area because it is notorious for its severe air pollution (it is also important to note that other major
tourist cities, including Nanjing and Guangzhou, are also examined in the robustness check section). If
Beijing’s AQI rose to an unhealthily high value, the residents in Shanghai might also want to check
the air quality in their local area after they receive the information about Beijing. Thus, the second
research hypothesis was built:

Hypothesis 2. Deprivation of air quality in another major city raises public concern about the air pollution
problem in the local city.

2.2. Importance of Air Pollution Awareness and Concern

People’s concern about air pollution is largely due to the health risks it has [21,34,35]. People’s
concern about air quality promotes people’s avoidance of the polluted environment. For instance,
people tend to limit their social activities on polluted days [36]; people are unwilling to buy houses
located in polluted areas [29,37,38]; and tourists flow from polluted to less polluted cities [39,40].

Public concern about air pollution generates pressure on the government to implement
policies to promote better air quality. Environmental perception and concern also promote more
pro-environmental behaviors [41,42]. Tam and Chan [43] further examined the association between
environmental concern and behavior across 32 countries (China was not included), and they indicated
that the association was weaker in countries with stronger distrust and belief in external control.
To better understand the strength of this association in the case of Shanghai, the third research
hypothesis was built:

Hypothesis 3. Public concern about the air pollution problem pushes people or governments to take actions to
reduce air pollution.

2.3. Applicability of the Baidu Search Index to Measure Residents’ Concern about Air Pollution

Internet search engines enable quick access to information. Do et al. [44] indicated that tracking
online search behavior using relative search volumes was an effective way to gauge public interest.
A number of researchers have used the search index as a proxy of issue salience or attention in the
public. The majority of search-volume data are extracted from two dominant engines, Google and
Baidu. For example, Caputi et al. [45] noticed a significant public interest in heat-not-burn tobacco
products on the basis of Google trends data. Do et al. [44] utilized Google trends data to assess public
awareness on protected wetlands in South Korea. Mellon [46] found that Google trends data could be
used to measure the salience of four issues (fuel prices, economy, immigration, and terrorism) in the
United States. Search index data have also been used to predict tourism flows (e.g., [18–20,47]).

Given the fact that the Baidu search engine occupies a dominant market share in China, the Baidu
search index has become a useful proxy for Chinese residents’ interest and concerns. In Li et al. [16],
Baidu search query data were found to be a reliable indicator for monitoring and predicting the
HIV/AIDS epidemic in China. Liu et al. [48] used the Baidu index to assess people’s awareness of
avian influenza A(H7N9) in Zhejiang, China. Using the Baidu index, Yang et al. [49] found that the
daily average PM2.5 concentration had a weak impact on public awareness of lung cancer risk in China.

51



IJERPH 2019, 16, 4784

Lu et al. [12] used the Baidu index to measure public concern about haze in five large Chinese cities.
Given that the use of the search index has been extensively applied in multiple disciplines as a method
for surveillance, monitoring, and measuring interest on and concern about specific topics, this study
adopted Baidu index data to measure residents’ concern about air pollution in China.

3. Methods

3.1. Model

This study is based on time series data relevant to air pollution in Shanghai. VAR analysis,
a powerful tool in modeling complex time series, was used in this study. Beyond basic correlation
analysis or the ordinary least squares (OLS) regression technique, the VAR model treats all variables
as endogenous and contains time lagged variables. Thus, the VAR model can measure the reciprocal
reactions among different variables and lagged and persistent effects. The following reduced form
VAR model was built:

yyyt = ccc +
p

∑
i=1

AAAiyyyt−i + εεεt, (1)

where yyyt is a vector of endogenous variables in period t, ccc is the intercept vector, AAAi refers to the
autoregressive coefficient matrix that captures system dynamics, and εεεt is the residual term. Lag order
p of the model is selected on the basis of some statistical criteria that are discussed later.

Besides the variables of AQI and the Baidu index in Shanghai, the AQI in Beijing was also included
in the model as a potential explanatory variable that might affect Shanghai residents’ concern about
air pollution. Indeed, in modern times, information is highly mobile via different channels. People’s
views and opinions are impacted by not only situations in their local area but also by things occurring
in other districts.

Therefore, in this study, vector yyyt = [AQIt, AQIBeijing
t , BaiduIndext]

′
was used. It contains three

variables: AQIt, daily air quality index in Shanghai; AQIBeijing
t , air quality index in Beijing; and

BaiduIndext, the Baidu index for keywords “Shanghai air quality”. As usual, all three variables were
log transformed to mitigate potential scaling problems. Hence, variable variations are expressed as
percentage changes.

3.2. Data for Measuring Actual Air Pollution

Daily AQI data used to measure actual air pollution level in Shanghai are publicly available
from the website of the China Air Quality Online Monitoring and Analysis Platform: https://www.
aqistudy.cn. AQI is a synthesized index reflecting the degree of pollution in ambient air, calculated
using the measured data for several major air pollutants (PM2.5, PM10, CO, NO2, O3, SO2) according to
the guidelines of the official environmental protection sector. A low AQI value indicates a low degree
of air pollution, and a high AQI value implies a high degree of air pollution.

The daily AQI values of 2068 days over the period between 2 December 2013 and 31 July 2019 in
Shanghai were retrieved to measure actual air pollution in Shanghai. Additionally, in order to answer
the second research question of whether the decline in air quality in another major city, such as Beijing,
affects the public concern about air quality in Shanghai, the daily AQI data of Beijing during the same
period were also retrieved. Data prior to 2 December 2013 were not included in this study due to
data unavailability.

3.3. Data for Measuring Residents’ Concern about Air Pollution

The Baidu index was utilized to measure residents’ concern about air pollution in Shanghai.
The Baidu index data were provided by Baidu, Inc., and they are publicly available from the web
page: http://index.baidu.com. Baidu is the most popular Internet search engine that occupies a major
market share in China. The Baidu index is calculated on the basis of the search volume for a specific
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search item on a daily basis at the municipal, provincial, and national levels [16]. A high (low) value of
the Baidu index for a certain item indicates that many (few) persons searched for information on the
item and cared about the relevant topic. Compared to self-administrated survey methods, the Baidu
index has two advantages in measuring the degree of public concern about air pollution. First, it
covers a wide range of study samples. Since Baidu dominates the search engine market in China, its
Baidu index could reflect the aggregate behaviors of most Chinese Internet users. Second, the Baidu
index data are available at a daily frequency for several years. This property enabled us to examine
not only the long term trend, but also short term fluctuations of public concern about air pollution.

In this study, the Baidu index was restricted within the district of Shanghai in order to rule
out individuals who were not living in Shanghai, but were still interested in Shanghai’s air quality.
The keywords “Shanghai air quality” (“shanghai kongqi zhiliang” in Chinese) were selected as
the searched-for item. Other related search terms, such as “Shanghai haze” (“shanghai wumai” in
Chinese) and “Shanghai PM2.5” (“shanghai pm2.5” in Chinese) were also tested for robustness checks.
Consistent with the sample period for the AQI data, the Baidu index data between 2 December 2013
and 31 July 2019 were exploited.

Table 1 shows the summary statistics of the variables used in the analyses. In the table, both the
original level and logarithmic value of variables are shown. In the VAR estimation, the logarithmic
values were used to mitigate potential scaling problems.

Table 1. Summary statistics.

Variable Observations Mean Std. Dev. Minimum Maximum

AQI original 2068 81.27 38.95 20 468
logarithmic 2068 4.30 0.44 3.00 6.15

AQIBeijing original 2068 108.24 68.01 21 500
logarithmic 2068 4.51 0.58 3.04 6.21

BaiduIndex original 2068 1351.33 1375.95 212 15,858
logarithmic 2068 6.95 0.67 5.36 9.67

4. Results

This section reports the results of the empirical analyses. This section first explains how the
optimal lag order for the VAR model was selected. Then, this section reports the core estimation
results, focusing on the impulse response figures of different variables and forecast error variance
decomposition (FEVD) estimates. After that, several robustness checks on the results are conducted.

4.1. Selection of Optimal Lag Order

Before estimating a VAR model, it is necessary to choose the optimal lag order for the model on
the basis of lag order selection statistics. Table 2 reports useful statistics. It shows that different criteria
suggest different selections of lag order. The LR (likelihood ratio), FPE (final prediction error), and AIC
(Akaike’s information criterion) statistics suggested to use eight lags. Differently, the HQIC (Hannan
and Quinn information criterion) suggested six lags, and SBIC (Schwarz’s Bayesian information
criterion) suggested three lags. Since three of these five criteria suggested to use eight lags in the
model, eight lags were initially selected for VAR estimation. In the robustness check section, situations
using three and six lags are examined, and they demonstrated robust results.
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Table 2. Lag order selection statistics for vector autoregression (VAR) model. LR, likelihood ratio; FPE,
final prediction error; AIC, Akaike’s information criterion; HQIC, Hannan and Quinn information
criterion; SBIC, Schwarz’s Bayesian information criterion.

lag LR FPE AIC HQIC SBIC

0 0.022541 4.72123 4.72424 4.72944
1 4890.7 0.002112 2.35356 2.36559 2.38638
2 177.43 0.001955 2.27609 2.29715 2.33353
3 72.068 0.001904 2.24981 2.27990 2.33188 *
4 62.367 0.001863 2.22826 2.26737 2.33494
5 43.078 0.001841 2.21607 2.26421 2.34737
6 42.971 0.001819 2.20394 2.26110 * 2.35986
7 34.426 0.001804 2.19596 2.26215 2.37649
8 28.796 * 0.001795 * 2.19071 * 2.26593 2.39587
9 11.875 0.001800 2.19369 2.27793 2.42346
10 13.575 0.001804 2.19584 2.28911 2.45023

Note: * indicates optimal lag order selection according to each statistic.

4.2. Estimation Results

In order to generate meaningful estimation results, the whole VAR system must be stable. Figure 2
shows that all eigenvalues were inside the unit circle. This indicates that the established VAR
system satisfied the required stability condition, and it could be relied on to analyze interactions
among variables.
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Figure 2. Eigenvalue stability condition.

Since the estimation results of a VAR model are rarely only explained by the estimated coefficients,
the analyses primarily focused on impulse response figures (IRFs). Figure 3 shows the impulse
response figures based on the estimated coefficients.
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The three subfigures in the first row of Figure 3 show the responses of variables to an
orthogonalized, one unit, positive shock of (logarithmic) AQI in Shanghai. As shown in Figure 3(i.a),
after such an AQI shock, AQI notably increased. As displayed in Figure 3(i.b), the AQI in Beijing
fluctuated a little bit, but variation was quite small and not statistically significant. Figure 3(i.c) notably
shows that, in response to the AQI shock, the Baidu index rose significantly. To observe the response
more clearly, this subfigure was amplified and is displayed in Figure 4(i). It is clear that the AQI
shock immediately raised the Baidu index without any time lag. The response was persistent and
significantly positive even after ten days. Therefore, Hypothesis 1 is supported. The residents in
Shanghai really cared much about the ambient air quality. As air quality deteriorated, Shanghai citizens
expressed more concerns about local air pollution, as reflected by the increase in the Baidu index.

The three subfigures in the second row of Figure 3 show the variable responses to a positive shock
of (logarithmic) AQI in Beijing. In Figure 3(ii.a), an increase in Shanghai’s AQI was observed. This
could be explained by the spatial spillover effects of air pollution, as discussed in previous studies
reporting the spatial interactions of air pollution among different regions (e.g., [50–52]). Figure 3(ii.b)
shows that Beijing’s AQI increased persistently. An important finding was that, as demonstrated by
Figure 3(ii.c), the Baidu index for Shanghai’s air quality rose in response to air pollution in Beijing.
This implied that Shanghai residents’ concern about local air quality increased after they observed
that Beijing’s air quality became worse. This graph was amplified and is displayed in Figure 4(ii).
As demonstrated in that graph, one day after Beijing’s AQI increased, the Baidu index for Shanghai’s
air quality began to increase. This increase was persistent for five days. The Baidu index returned to
its original value after the sixth day. Therefore, Hypothesis 2 is supported. Air pollution problems in
another large city indeed tend to increase the residents’ concern about air pollution in Shanghai.
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Figure 3. Impulse response figures (IRFs). Note: Each subfigure with the title of “X→Y” demonstrates the
response of variable Y to an orthogonalized positive shock of variable X. In other words, X is an impulse variable,
and Y is a response variable. One period in the figure denotes one day.
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The subfigures in the last row of Figure 3 demonstrated the variable responses to a positive
shock of the (logarithmic) Baidu index. Figure 3(iii.a) presents the interesting finding that the AQI
in Shanghai actually decreased after the Baidu index increased. In order to observe the details more
clearly, this impulse response figure was amplified in Figure 4(iii). As can be seen from the graph,
one day after an increase in the Baidu index, the AQI in Shanghai was below its initial level. This
phenomenon lasted for two days. After that, the AQI returned back to its initial level. This finding
supports Hypothesis 3. If public concern about air pollution intensified, people would take action to
ameliorate air quality or, at least, avoid aggravating pollution and wait for the air quality to naturally
improve. Figure 3(iii.b) demonstrates that the Baidu index had no significant impact on Beijing’s AQI.
Figure 3(iii.c) demonstrates the persistency of the increase in the Baidu index.

Table 3 shows FEVD estimates for the Baidu index. As can be seen from the table, generally,
within the horizon of fourteen days, local AQI explained around 30%–40% forecast error variance of
Shanghai residents’ concern about air pollution. The AQI in Beijing explained roughly 5% variance.
The rest was explained by the Baidu index itself. Obviously, local air quality was quite important
in forecasting fluctuations of the Baidu index. Air quality in another famous city could also partly
explain changes in the Baidu index for Shanghai’s air quality. These support previous findings that
were obtained by observing impulse response figures.

Table 3. Forecast error variance decomposition (FEVD) estimates for the Baidu index.

Forecast Horizon
FEVD of the Baidu Index

AQI AQI (Beijing) Baidu Index

0 0 0 0
1 0.334 0.003 0.663
2 0.404 0.008 0.588
3 0.406 0.037 0.557
4 0.395 0.054 0.551
5 0.386 0.056 0.558
6 0.374 0.056 0.570
7 0.369 0.055 0.576
8 0.358 0.053 0.589
9 0.347 0.051 0.603
10 0.337 0.049 0.614
11 0.328 0.048 0.624
12 0.320 0.047 0.633
13 0.312 0.047 0.641
14 0.305 0.046 0.649

4.3. Robustness Analyses

In this subsection, we outline several robustness checks that were conducted on previous
estimation results. First, whether results were sensitive to the selection of the search engine keyword
for the Baidu index was examined. Second, alternative sample periods were considered. Third,
alternative selections of lag orders in the VAR model were inspected. Lastly, whether air quality in
other cities aside from Beijing affected the public concern about air pollution in Shanghai was further
investigated. The impulse response figures are displayed in the subfigures of Figure 5.

4.3.1. Alternative Baidu Index Keyword

In previous analyses, the keywords “Shanghai air quality” (“shanghai kongqi zhiliang” in Chinese)
were relied on to derive the Baidu index. Next, another search term, “Shanghai haze (“shanghai wumai”
in Chinese), was utilized to get the Baidu index. The results are shown in Figure 5(i.a–i.c). It is apparent
that the AQI in Shanghai positively affected the Baidu index; the AQI in Beijing positively affected
the Baidu index for Shanghai; and a rise in the Baidu index tended to depress the AQI in Shanghai.
Thus, the previous findings of this study remained unchanged. In addition, other search terms such as
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“Shanghai PM2.5”, “air quality”, “haze”, and “PM2.5” were checked, and similar results were generated.
To save space, the results using those alternative keywords are not reported here. The Supplementary
Material attached to this paper provides additional information to demonstrate the robustness of
the study results to the selection of Baidu index keywords. In the Supplementary Material, it is
shown that the Baidu index values for different keywords were strongly correlated, indicating that
different keywords actually reflected highly consistent online searching behaviors and provided
similar information. Moreover, the Supplementary Material demonstrates the IRFs for the keywords
“Shanghai PM2.5” (which had the lowest correlation coefficient with “Shanghai air quality”, compared
to other candidate keywords), which were almost the same as the IRFs shown in Figure 3.

4.3.2. Shorter Sample Period

The baseline analyses were based on the sample period between 2 December 2013 and 31 July
2019. It was admitted that the level of the Baidu index was not only determined by the degree of
public interest on the specific topic, but also influenced by some other factors such as the changes
in the market share of the Baidu search engine, total number of Internet users, and Internet users’
habits. The longer the sample period was, the larger the impact those alternative factors might have.
As pointed out by Lu et al. [12], the long term annual trend of public concern about air pollution
probably had characteristics different from those of short term fluctuations in air pollution. To mitigate
this issue and inspect whether the study results were robust to the selection of the sample period,
a shorter sample period from 1 January 2017 to 31 July 2019 was considered. Results are presented
in Figure 5(ii.a–ii.c), which are similar to those that have previously been derived. Other subsample
periods, such as between 1 January 2018 and 31 July 2019, were also checked. Results were analogous,
but are not reported here to save space.

4.3.3. Alternative Selection of Variable Lag Order

Previously, eight lags of variables were selected for the VAR model according to the LR, FPE,
and AIC statistics. Since the HQIC and SBIC suggested to use different lags, the model was re-estimated
on the basis of the alternative selections of lag order. According to the SBIC, three lags might be suitable.
The corresponding impulse response figures are demonstrated in Figure 5(iii.a–iii.c). Notably, these
new impulse response figures did not shake the previous statements in this study. Other lag orders,
such as six, to follow the suggestion by HQIC, were also tested. Similar results were obtained.

4.3.4. VAR Model with AQI in Another City

Previous analyses used a VAR model containing the AQI variable in Beijing. Next, whether results
were sensitive to the selection of this specific city was checked. The city of Nanjing was taken instead
of Beijing. Nanjing is one of the largest and most important cities in East China. The obtained impulse
response figures are demonstrated in Figure 5(iv.a–iv.c). Compared to the baseline results, it was found
that situations would be similar if Nanjing rather than Beijing were selected. Moreover, circumstances
using the AQI in Guangzhou, which is the largest city in South China, were also inspected. Results
were similar, but not reported here.

Overall, robustness checks strengthened the findings of this study. Hypotheses 1–3 were
all supported.
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5. Discussion and Implications

The estimation results in this study provided three interesting findings. First, local residents
perceived the deprivation of air quality and expressed their concern about air pollution quickly,
within the day on which the air quality index rose. This supported previous studies that found a
strong correlation between perceived and actual level of air quality (e.g., [22,24]). It was implied that
air quality is consistently monitored and assessed by Shanghai residents and that they show high
awareness of air pollution. This also lends support to the finding by Yan et al. [36] that people who live
in richer and more polluted cities are more likely to perceive air pollution. In addition, the concurrent
rise of social media platforms in China might also contribute to this strong association. These platforms
provide a way to share news and public opinions quickly. Media alerts on AQI would trigger heated
debate and discussion on air quality, as well as information seeking behavior.

Second, a decline in air quality in another major city, such as Beijing, also raised the local concern
about air quality in Shanghai. This was plausible because air pollutants could be transported by
wind, causing pollution to spread over an extensive region within a short time interval. Prior studies
have provided evidence that air pollution has a negative spatial spillover impact on neighboring
cities’ public health [50]. Given the fact that Beijing is 1200 km away from Shanghai, air pollution in
Beijing might not directly cause health problems in Shanghai. However, it increases public concerns
on air pollution.

Third, a rise in Shanghai residents’ concern had a beneficial impact on air quality improvement.
On the one hand, this could be explained by prior findings revealing that environmental concerns
could promote people’s pro-environmental behaviors [41,42]. On the other hand, public concerns
about air pollution could force governments to take actions to improve air quality [11,12]. It has been
reported that China has curbed industrial emissions, restricted the use of cars on the road, and shut
down coal mines in large cities such as Beijing, Shanghai, and Guangzhou [53].

This study contributed to the air pollution literature by empirically examining the reciprocal
relationship between public concern about air quality and actual air quality using data on a daily
basis. Different from prior studies that relied on survey data to measure perceived air quality,
this study utilized a big data based dataset dating back to 2013 to conduct more accurate analyses.
Additionally, this study performed VAR analysis rather than only basic correlation analysis, which
helped demonstrate the rapidness and persistency of the rise in public concern about air pollution.

From a practical perspective, it was implied that providing timely air quality indices to residents
could be a powerful tool to raise public awareness on air pollution to take steps for pollution mitigation.
The government could utilize online search engines as a tool for displaying more information and
advice explaining how people can minimize their contribution to air pollution during residents’
keyword search process. When observing a significant drop in air quality, the government should
initiate immediate actions to tackle air pollution by providing information explaining how people
can minimize their exposure to polluted air and which air pollution reduction strategies have been
implemented in order to prevent excessive concerns on pollution. Furthermore, displaying AQI in
other major Chinese cities could be utilized by local governments to promote local residents’ awareness
of air pollution and, subsequently, support for environmental protection.

6. Conclusions, Limitations, and Future Research

Using Shanghai as a case study, this study empirically examined the interactive relationship
between actual level of air pollution and residents’ concern about air pollution on the basis of the
daily Baidu search index and AQI data. This study highlighted that residents in Shanghai expressed
immediate concerns about air pollution as long as the air quality in Shanghai or in other major Chinese
cities got worse. The study results also suggested that raising awareness on air pollution would
motivate individuals or the government to carry out actions to improve air quality.

In evaluating the significant findings from this study, two major limitations need to be
acknowledged. First, this paper focused on the circumstances in only one city because of difficulties
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in data collection. If we can collect data for a larger number of cities in the future and use the panel
VAR approach, we could re-examine the findings based on Shanghai. A dataset covering more regions
could also allow us to investigate possible heterogeneities across different regions, which may provide
further policy implications. Second, as a preliminary exploration, this study only considered three
variables in the VAR model because other variables were not available on a daily frequency. There is no
doubt that some other factors may also be influential in the relationship between actual air pollution
level and public concern about the problem. In the future, more variables may be introduced into the
model as long as the data availability problem is overcome.
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Abstract: Most urban areas of the Po basin in the North of Italy are persistently affected by poor air
quality and difficulty in disposing of airborne pollutants. In this context, the municipality of Milan
started a multi-year progressive policy based on an extended limited traffic zone (Area B). Starting on
25 February 2019, the first phase partially restricted the circulation of some classes of highly polluting
vehicles on the territory, in particular, Euro 0 petrol vehicles and Euro 0 to 3 diesel vehicles, excluding
public transport. This is the early-stage of a long term policy that will restrict access to an increasing
number of vehicles. The goal of this paper is to evaluate the early-stage impact of this policy on
two specific vehicle-generated pollutants: total nitrogen oxides (NOx) and nitrogen dioxide (NO2),
which are gathered by Lombardy Regional Agency for Environmental Protection (ARPA Lombardia).
We use a statistical model for time series intervention analysis based on unobservable components.
We use data from 2014 to 2018 for pre-policy model selection and the relatively short period up to
September 2019 for early-stage policy assessment. We include weather conditions, socio-economic
factors, and a counter-factual, given by the concentration of the same pollutant in other important
neighbouring cities. Although the average concentrations reduced after the policy introduction, this
paper argues that this could be due to other factors. Considering that the short time window may
be not long enough for social adaptation to the new rules, our model does not provide statistical
evidence of a positive policy effect for NOx and NO2. Instead, in one of the most central monitoring
stations, a significant negative impact is found.

Keywords: air pollution; oxides; traffic; state space; milan; area b; cross validation; policy intervention
analysis; counter-factual; unobservable components

1. Introduction

Air quality monitoring is one of the major challenges that European institutions jointly with
national and local administrations are facing in terms of environmental protection. In particular,
the 2008 European Air Quality Directive (AQD) 2008/50/EC [1] requires EU Member States to design
appropriate air quality plans for zones where the air quality does not comply with the AQD limit
values. In the last few decades, European countries implemented various modeling methods to assess
the effects of local and regional emission abatement policy options on air quality and human health [2].
On the one side, they include scenario approaches, in which running a chemical-physical simulation
model with and without a specific emission source allows for quantifying the impact on air quality
levels [3,4]. On the other side, they also include more comprehensive and multidisciplinary approaches,
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such as Integrated Assessment Models (IAM), which combine simultaneously many features of the
economy, society, and scientific findings. These models are based on the combination of multiple
mathematical tools and allow for assessing the impact of environmental policies or to improve the air
quality control system. Typical tools are the full cost-benefit analyses [5], in which abatement measures,
costs, and benefits are expressed in monetary units, optimization, and spatial analysis [6,7].

In areas such as Northern Italy, where the industrial transition in the 1990s reduced coal burning
and sulphur concentration, the large majority of environmental studies focus their attention on
toxic pollutants that are produced by thermic vehicle engines and house heating plants. These are
known to generate serious health effects [8]. Total nitrogen oxides (NOx), nitrogen dioxide (NO2),
and particulates matters (PM10 and PM2.5) belong to this class.

According to the above EU rules, governments adopted standards and quantitative limits
for pollutant emissions to make economic agents responsible and implement abatement policies.
In particular, the maximum concentration for NOx and NO2 is set to 40 μg/m3 annual average and 200
μg/m3 hourly not to be exceeded more than 18 times in a single year. Figure 1 represents the average
concentration levels of NO2 in Europe for the year 2018. The Po basin in Northern Italy stands out as a
heavily polluted area with difficulties in pollution management. The negative impact on society is not
limited to health only. There is increasing evidence showing that bad air quality in general, and high
NO2 concentrations in particular, impact the economy, including finance [9] and tourism [10].

© 2020 Mapbox © OpenStreetMap
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Figure 1. Annual average NO2 concentrations (μg/m3) in Europe during 2018. Levels are expressed in
μg/m3. Source: European Environmental Agency

The present paper analyses the introduction of the first phase of an air quality control policy
in the municipality of Milan, which started on 25 February 2019 and directly acts on traffic rules.
The administration defined an extended limited traffic zone, named Area B (https://www.comune.
milano.it/aree-tematiche/mobilita/area-b), where the access and circulation for the most polluting
vehicles, as well as those longer than 12 meters, have some partial restrictions, enforced by a monitoring
system of entrance gates controlling each license plate and imposing a fine on unauthorized vehicles.
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The access prohibition concerns Euro 0 petrol vehicles and a large part of Euro 0, 1, 2, and 3 diesel
vehicles, with specific exemptions for public transport, itinerant traders, and residents, and it is active
from Monday to Friday during business hours (from 7:30 a.m. to 7:30 p.m.), except holidays. According
to the municipality of Milan, the share of cars registered in the Milan metropolitan area and involved in
the restrictions in 2019 is close to 17%, while the share of freight transport vehicles is around 53% [11].
Area B is a progressive policy divided into various phases, which will concern an increasing number
of vehicle classes. In terms of NOx emissions, the administration expects a reduction of 4–5% per year
until 2022 and a reduction of 11% between 2023 and 2026. The policy will be fully operative within
October 2030.

Area B extends the previously existing limited traffic zone, Area C, which covers just the
historical city centre. The physical coverage of the two restriction zones is represented in Figure 2,
which highlights the arrangement of both within the city borders. Area B covers almost the entire area
of the city, excluding extreme peripheral districts.

Statistical literature on air quality grew up sharply in the last decades. Two main statistical
modeling directions have been developed. One has a focus on pollutants concentration and the other
on human exposure. Regarding the latter, recent advances are based on crowdsourced data, such as
smartphone data modeling [12]. Regarding pollutants concentrations, increasing attention is being
given to latent component models; see, as an example [13] and for the problem of misalignment.
In particular, the use of the INLA-SPDE approach for misalignment between pollutant concentration
and epidemiological data [14] and PCA based methods with missing data [15].

When the territory under study is large and spatial correlation is important, spatio-temporal
models are appropriate. See, for example, the multivariate state space approach of Calculli et al. [16],
which is capable of handling jointly PM10, NO2 and weather variables, the approach of
Menezes et al. [17] for modeling daily NO2 trends in Portugal. Moreover, the land-use regression
model (LUR) under a state space approach has been used for modeling air pollution in Tehran [18].
Despite this growing spatial literature, time series analysis methods have been recently developed to
understand the effect of meteorology on pollutant concentration [19], which will be the main focus of
this paper.

The previous Milan limited traffic zone, known as Area C, has already been treated in literature
by Fassò [20], who analyzed its introduction through spatio-temporal models, by Invernizzi et al. [21],
who considered its impact on black carbon, and by Percoco [22] who considered its effect on traffic.
Moreover, similar problems have been studied for London "sulphur-free zone" [23] and the "low
emission zone" in Munich [24]. In Fassò [20], the author considered both particulates and nitrogen
oxides and observed the presence of a more pronounced permanent reduction of the latter within the
restricted area, despite the data showing a strong spatial variability depending on the type of pollutant.
This is consistent with the known emissions pattern of particulate matters and nitrogen oxides. The
latter are mainly primary gaseous pollutants and can be directly attributed to anthropogenic sources,
such as car traffic and house heating. Moreover, from the so-called INEMAR emission inventory [25],
in Milan province, 68% of NOx and only 41% of PM10 are due to road traffic. Hence, in this first study
of Area B, we will take into account NOx and NO2 and postpone the analysis of PM10 and PM2.5 to
further research. To adjust for confounding factors, we will consider weather conditions in Milan, the
main calendar events, and the concentration levels of oxides observed in neighbouring towns, as in a
pseudo-treatment-control approach.

The study aims to identify and quantify variations in pollutant levels due to the above described
Area B. Hence, the present paper will try to investigate and test the following two scientific hypotheses:

Hypothesis 1. The introduction of Area B achieved significant changes in pollution concentration for the city
of Milan;
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Hypothesis 2. The variation occurred homogeneously on the territory and the stations do not show spatial
variability of the effects.

The first hypothesis aims to quantify the impact of the policy on pollution levels measured by
several air quality stations scattered around the city and to assess whether this evidence is significantly
supported by the data. The impact is evaluated both regarding the statistical significance of the
estimates, the absolute magnitudes of the coefficients, and their signs. From the policy maker
perspective, the expected coefficients should be negative, indicating a reduction effect on concentrations
due to the car traffic restrictions. However, given the complexity of the phenomenon, a change of
opposite sign cannot be ruled out either. The second research hypothesis is dedicated to the comparison
of the estimates for the considered stations: the effect can be considered homogeneous when the sign
and the magnitude of the coefficients for all the stations are similar.

The paper is structured as follows. Section 2 describes the dataset and the methodologies used
for the analyses. In particular, we briefly explain the composition of both weather and air quality
monitoring systems in Milan, available data sources, and metadata information. Then, we present the
methodologies implemented for the preliminary analysis and the state space approach to time series
analysis for air quality data. Section 3 reports and discusses the empirical results of the estimated
models and their implications. Section 4 concludes the paper discussing the two research hypotheses
in light of what emerged from the data analysis and gives some hints for future research developments.

Figure 2. Monitoring system in Milan. Air quality stations (blue points): Marche (501), Verziere
(528), Senato (548), Liguria (539) and Città Studi (705). Weather stations (red points): Lambrate (100),
Zavattari (503), Brera (620), Feltre (869), Rosellini (1327), Juvara (502), and Marche (501).

2. Materials and Methods

In this section, we present the structure of the ARPA dataset and briefly introduce the
methodologies implemented for the analyses. Section 2.1 introduces the data source for the Milan case
study and the spatio-temporal structure of the data and provides a brief description of the variables
taken into consideration. Section 2.2 designs the preliminary analysis, which introduces a temporal
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treatment-control experiment to highlighting the differences in concentration levels before and after
the policy intervention. Section 2.3 gives a detailed overview of the use of state space models in time
series analysis for the study of air quality data, including also a specific subsection for model selection
and policy intervention.

2.1. Data

2.1.1. Air Quality and Weather Monitoring Network in Milan

Data on pollution and weather conditions of Lombardy are collected from the Lombardy Regional
Agency for Environmental Protection (ARPA Lombardia), which makes a large open data portal fully
available to users (https://www.dati.lombardia.it/). The agency manages a diffuse monitoring system
distributed among the regional territory and counting on hundreds of monitoring stations collecting
intra-daily information on climate and pollution through sensors.

Installed within the borders of Milan are seven weather monitoring stations and five air quality
monitoring stations. Air quality stations are classified according to a taxonomy system that identifies
the type and function in the network. The stations Liguria (ARPA code 539), Marche (ARPA code 501),
Senato (ARPA code 548), and Verziere (ARPA code 528) are urban traffic control units: sensors installed
near important roads and intersections in order to accurately quantify the pollution generated by
traffic. The station Città Studi (ARPA code 705) is instead of type urban background, that is, the station
is located in such a position that the level of pollution is not mainly influenced by specific sources but
by the integrated contribution of all the upwind sources at the station with respect to the predominant
directions of the winds on the site [8]. The seven weather stations are Marche (ARPA code 501),
Lambrate (ARPA code 100), Zavattari (ARPA code 503), Brera (ARPA code 620), Feltre (ARPA code
869), Rosellini (ARPA code 1327), and Juvara (ARPA code 502).

Figure 2 georeferences on the map the exact position of each station and allows for identifying
the position with respect to Area B and Area C. Air quality stations are represented as blue points,
while weather stations are the red points. Marche station (ARPA code 501), in the upper side of the
map, is the only one to collect both weather and pollution data and is represented with a double label,
the first one blue and the second red.

The spatial distribution of the stations is not uniform: air quality stations cover northern, eastern,
central, and southern parts of the city, leaving the western districts uncovered; climate stations cover
in detail the city centre and all the northern neighbours but are not installed in the south.

2.1.2. Temporal Coverage, Pollutants, and Weather Measures

The analysis presented in this paper takes into account daily measures from 1 January 2014 to 30
September 2019, generating an overall sample of 2099 daily observations.

The whole, the monitoring system provides information about many urban pollutants, such as
carbon dioxide, particulates, and oxides. All the pollutants are measured as μg/m3. As already stated
in the Introduction, we focus our attention on concentrations of total nitrogen oxides (NOx) and
nitrogen dioxide (NO2), which are mainly primary gaseous pollutants, hence considered as proxies of
pollution emissions due to human activities, first of all car traffic.

Weather stations provide measures of local temperature (◦C), rainfall (cumulated mm), humidity
(%), global radiation (W/m2), wind speed (m/s), and wind direction. The wind direction is expressed
in clockwise degrees from 0◦ to 360◦; for example, 90◦ identifies winds going from east to west.
To make results easier to interpret, we decide to aggregate the measurements on wind direction and
speed by constructing a set of new variables that describe the average speed in the four quadrants
of the compass rose. The Northeast quadrant (QNE) corresponds to degrees between 0 and 90, the
Southeast quadrant (QSE) to degrees from 90 to 180, the Southwest quadrant (QSW) to degrees from 180
to 270 and the Northwest quadrant (QNW) to the remaining values lying between 270 and 360 degrees.
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These measures will be used in the modeling part to capture local weather conditions specific to
the city of Milan. Instead of using the data referring to the weather station closest to each air quality
station, we preferred to aggregate each of the climate variables through a daily city average valid for
each pollution station. In this way, the subsequent models will be fully comparable guaranteeing the
maximum possible spatial coverage.

2.1.3. Anthropogenic Activities

Human activities, and therefore the quality of the air we breathe, are often affected by calendar
events that are recorded based on national, local, and religious holidays and weekends. Calendar
effects are captured by a set of covariates, which identify the weekends and the main Italian holidays,
both religious and secular. Holidays are collected in a dummy variable named Holidays, while the
weekends are contained in a dummy variable named WeekEnd. Specific effects related to the behavior
of people can be observed when holidays coincide with the weekend; therefore, we considered two
terms of interaction between the two dummies. The interaction terms include those holidays that
fall on Saturday, denoted as Saturday:Holiday, and those on which they fall on Sunday, which is
Sunday:Holiday.

For a correct assessment of the effects of the traffic policy on pollutants concentrations in Milan,
it is necessary to purify the estimates from any external weather or socio-economic effects overlapping
with the policy and which may hence alter policy effects. This operation is accomplished by introducing
a counter-factual term into the models represented by the pollution levels observed in other cities
surrounding Milan. We considered seven important urban centres located in the Lombardy Po Valley
area, which show socio-demographic and economic characteristics and weather conditions similar
to Milan, but which cannot be directly affected by the limited traffic zone. These urban centres are
Bergamo (East), Brescia (far East), Cremona (far Southeast), Lodi (Southeast), Pavia (South), Saronno
(North) and Treviglio (East). As reported in Figure 3, the considered candidates cover a large territory
surrounding Milan in all the directions while maintaining a sufficient distance to be considered
independent in terms of traffic.

2.2. Methods: Average and Median Difference before and after the Policy

Figure 4 shows the temporal evolution of yearly average and median concentrations in the period
preceding and following the entry into force of the policy for each control units located in Milan.
According to the figure, starting from 2015, the city of Milan recorded a generalized reduction of
concentration levels especially in peripheral areas, such as Marche and Liguria. Observed mean values
for 2019 present a further reduction of concentrations rather apparently anomalous and significant.
The comparison between the levels of NOx and NO2 pairs for each station shows obvious common
trends between the two pollutants both considering the annual average and median values. Averages
and medians follow similar temporal patterns, but focusing on nitrogen oxides sensors, it is possible
to note that the medians are significantly smaller than the averages, highlighting the heavy-tailed
characteristic of the distribution (positive asymmetry) and the presence of extreme values. Following
these facts, an interesting question to investigate is if, and how much, the greater difference observed
in 2019 can be attributed to traffic restrictions, or if it is due to a general de-carbonization trend that
the city is experiencing, or to weather variations not considered yet.
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Figure 3. Georeferentiation of counter-factual candidates. Geographical positioning of the counter-
factual candidates with respect to Milan.

Figure 4. Pollutant levels in Milan (μg/m3). Observed concentrations levels of NOx and NO2 between
2014 and 2019 with yearly average and median values. Values are expressed as μg/m3.

Before investigating the factors and causes that may have generated these sharp reductions,
we perform a preliminary analysis of the concentration levels pre-and-post policy, in order to quantify
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the changes observed in 2019 both in Milan and in the other centres. Since air quality data present
outliers and heavy-tail distributions given by extreme events, the only use of average values for
central tendency estimation can provide misleading results. Therefore, we compare the central values
obtained both considering the sample mean and the sample median, which is notoriously a more
robust indicator if outliers occur [26,27].

The comparison is performed through the computation of two statistics based on the difference
of central tendency indicators. The first statistic computes the difference between the average of the
observations gathered after the policy intervention and the average of observations referring to the
sub-period 2014–2018. The second statistics consists of computing the difference between median
concentration levels observed in 2019 and before that year. The difference in average concentrations is
denoted by dAVG, whereas the difference in median concentrations is denoted as dMED. Since both
sub-periods are treated as independent of each other, from the statistical perspective, the statistics are
assimilable to unpaired samples statistics.

Both statistics use the observations collected between 25 February and 30 September of each
year, with a total length of 214 days. Approaches of this type can be framed in a context of
treatment-control analysis, in which the data referred to the year 2019 constitute the treatment group,
while the observations collected between 2014 and 2018 compose the control group. Control data
refer to a 5-year-period; therefore, the concentrations measured on the same calendar day are
aggregated into a single representative value calculated as the daily average concentration of
the period 2014 to 2018. Denoting as cij the observed pollutant concentration during the day j,
where j = 25 February, ..., 30 September, of the year i, where i = 2014, ..., 2018, the average for a generic

calendar day j is computed as cj =
∑2018

i=2014 cij
5 .

Let U = {uj, j = 1, 2, ..., 214} be the treatment observations and V = {vj, j = 1, 2, ..., 214} the
control observations, the difference of averages is defined as dAVG = AVG(U)− AVG(V) and the
difference of medians is calculated as dMED = MED(U)− MED(V), where AVG(.) is the temporal
sample mean and MED(.) is the temporal sample median.

2.3. Methods: Time Series Modeling Using a State Space Approach

In this section, we discuss the time series models used to identify the policy effect, the estimation
algorithms, and the related inference. Firstly, we introduce a brief description of the basic structural
model (BSM) using a state space approach for time series analysis and the estimation algorithm
based on the Kalman filter [28,29]. Then, we present a three-step procedure used to select the most
representative model in terms of predictive power and quality of fit. As a last step, we explain how the
policy intervention is included in the models and how it should be interpreted.

2.3.1. Basic Structural Model for Air Quality Data

According to their physical characteristics, air pollution concentrations time series are often
characterized by seasonality, high persistence [30,31], strong right skewness with uni-modal
distribution, and scale invariance [32]. Therefore, we analyze the concentrations using the basic
structural model [33,34] augmented by deterministic regressors for weather conditions and
socio-economic features.

BSM is defined as a simple unobservable components model composed by local linear trend
(LLT), stochastic seasonality, and irregular (white noise) component. LLT describes both the temporal
evolution of the series level and its slope, while the seasonal component aims to capture cyclical
behaviors given by natural and anthropogenic phenomena. We modeled the seasonal component
using a trigonometric form for daily data, hence with period s = 365, and considering only a few
harmonics given the very regular and almost deterministic behavior of the series. This fact avoids the
risk of a model over-parametrization.
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Let {y1, y2, ..., yn} be the time series of the observed pollution concentrations in logarithmic scale,
the state space form of BSM without regressors is composed by the following equations:

yt = μt + γt + εt , (1)

where εt ∼ N(0, σ2
ε ) is the measurement error and

LLT (Level) : μt = μt−1 + βt−1 + ηt , ηt ∼ WN(0, ση) , (2)

LLT (Slope) : βt = βt−1 + ζt , ζt ∼ WN(0, σζ) , (3)

Stochastic seasonality : γt =
k

∑
j=1

γj,t , (4)

where k ≤ ⌊ s
2
⌋

is the number of included harmonics and γj,t is the non-stationary stochastic cycle[
γj,t
γ∗

j,t

]
=

[
cos(2π j/s) sin(2π j/s)
−sin(2π j/s) cos(2π j/s)

] [
γj,t−1
γ∗

j,t−1

]
+

[
ωj,t
ω∗

j,t

]
, (5)

ωt ∼ WN(0, σ2
ω) and ω∗

t ∼ WN(0, σ2
ω) are white-noise processes with mean zero and variance σ2

ω.
Equation (1) is called measurement equation and describes the evolution of the observed

series as the sum of the underlying components, while Equations (2)–(4) are named transition
equations. Equations (2) and (3) compose the LLT and describe respectively the unobservable
processes of the level and the slope, whereas Equation (4) describes the trigonometric seasonality
evolution. Weather, socio-economic factors, and policy intervention will be included in the models
adding a set of deterministic components to the measurement Equation (1). Since the BSM with
Gaussian errors belongs to the class of Gaussian linear models, the estimation step has been
performed using the Kalman Filter algorithm, an iterative procedure, which allows estimating
simultaneously the unobservable components and the model’s parameters by maximizing the Gaussian
likelihood function.

When dealing with Gaussian linear state space models, the parameters estimated using a
maximum likelihood (ML) approach inherit the asymptotic properties of ML estimators [29].
The distribution of the MLE is asymptotically approximated using a Gaussian distribution, which
allows deriving the usual asymptotic confidence intervals and t-tests for significance. Assuming a
significance level of 5%, the estimates are statistically significant if the standardized value lies outside
of the interval [−1.96,1.96], obtained using the quantiles of a Standard Normal distribution. Moreover,
since the dependent variable is expressed in logarithmic scale, the coefficients have to be interpreted
as relative increases or decreases in concentration levels due to a unitary increase in the explanatory
variable.

2.3.2. Three-Step Model Selection

We now propose a three-step procedure for model selection, which considers multiple rules based
on cross-validation, information criteria, and stepwise regression. To avoid estimation bias due to the
policy introduction, all the steps are computed using only the observations before the introduction of
Area B that is, from 1 January 2014 to 24 February 2019.

Step 1 is designed for selecting the most predictive seasonal component, defined in Equation (4),
comparing different model specifications, which consider a varying number of harmonics k for the
trigonometric function. Specifically, we fit 10 alternative models for each station: in each of them, the
trigonometric seasonality is modeled by an increasing number of harmonics ranging from k = 1 to
k = 10. The use of an increasing number of sinusoids, in our case up to 10, allows the modeling of
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complex seasonality with strong variations within short periods, but at the same time increases the
model complexity.

Once the seasonal component has been selected, step 2 introduces in Equation (1) a counter-factual
term xt able to capture weather and socio-economic factors common to the Po basin and affecting the
air quality of Milan. In our approach, the counter-factual candidates are the time series introduced
in Section 2.1.3 and which refer to the measurements of pollutant concentrations in seven important
cities around Milan. The new measurement Equation can be written as follows:

yt = μt + γt + θxt + εt , (6)

where xt is the logarithm of the counter-factual time series and θ is its coefficient, μt follows
Equations (2) and (3), and γt follows the specification obtained by step 1. The expected sign of
θ is positive: higher levels of air pollution should correspond to high values in nearby cities due to
similar conditions.

In step 3, we identify the best subset of calendar events and weather covariates, capturing
residual variations not yet covered by the counter-factual or by the latent components. These residual
variations are estimated by the smoothed observation disturbances from Equation (6) that is ε̂t,
and describe residual patterns that have not been explained by the persistence of series, the seasonality
or characteristics common to nearby territories of the region.

Relevant weather and calendar covariates are selected through a backward-forward stepwise
regression algorithm, which uses as a starting model the auxiliary linear regression expressed in
Equation (7). The equation represents the full model which sets up the smoothed observation errors ε̂t

as dependent variable and the weather conditions and calendar events as covariates:

ε̂t = τ1Holidays + τ2WeekEnd + τ3Saturday : Holidays + τ4Sunday : Holidays

+ τ5Temperature + τ6Rain f all + τ7Radiation + τ8Humidity

+ τ9WindSpeedQNE + τ10WindSpeedQNW + τ11WindSpeedQSW + τ12WindSpeedQSE

+ et ,

(7)

The stepwise regression is set up twice for each station: in one case, it selects the model according
to the Akaike’s Information Criterion (AIC), while, in the other, it uses the Bayesian Information
Criterion (BIC). The algorithm starts estimating the full model and computes the AIC or the BIC.
Iteratively, it drops out the predictors one at a time; at each step, it computes the new information
criterion and considers whether the criterion is improved by adding back in a variable removed at a
previous step. The procedure ends when the reintroduction of each omitted variable does not improve
the information criteria.

In the first two steps, we select the seasonal component and the counter-factual term by fitting and
comparing alternative models based on Equations from (1) to (4) according to their predictive power
and their ability to adapt adequately to the observed data. The first principle, which tests the predictive
power of the models, relies on the minimization of the cross-validated mean square forecasting error
(MSFE) evaluated for up to 10-step-ahead forecast horizon, that is, ŷt+h ∀ h = 1, 2, ..., 10, while the
second compares the models in terms of estimation quality. The latter computes both corrected Akaike’s
Information Criteria (AICc) and BIC intending to select the model that minimizes both. To identify a
unique model for all the stations located in Milan, we proceed to a global comparison, both graphical
and analytical, of the two blocks of indicators, giving attention to the overall performances and not
focusing only on individual outputs.

According to the cross-validation principle for time series [35,36], we split the full time series
into two subsets: a training set for model estimation and a test set for evaluating the out-of-sample
forecast performances. The training set includes all the measurements until 24 February 2018, while
the test set contains observations relative to the sub-period 25 February 2018–24 February 2019, for a
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total count of 365 out-of-sample observations. The exclusion of observations after the start of the traffic
restrictions makes it possible to obtain unbiased estimates of the policy effects avoiding overlapping
with other unidentified factors. Before starting the iterative loop, the model to evaluate is estimated
just on time using the observations included in the original training set. At the end of the estimation,
the cross-validation algorithm is iteratively implemented as follows. For each iteration, the algorithm
extracts the first ten observations available in the test set, generating a forecasting set, and computes
three quantities: the 1-to-10 step-ahead forecasts that is ŷt+h ∀ h = 1, ..., 10, the forecast errors
ŷt+h − yt+h and the quadratic forecast errors (ŷt+h − yt+h)

2. The first out-of-sample observation is
discarded and the set of forecasting observations is updated right-shifting the forecast horizon by 1
unit and adding the new observation. These operations are repeated for a number of times equal to
the length of the test set, in our cases 365 times. The algorithm returns the output of 365 different
sequences of 1–10 step-ahead forecasts; for each step-ahead h = 1, 2, ..., 10, the MSFE is calculated as

MSFE(h) =
∑365

j=1 (ŷt+h−yt+h)
2

365 .

2.3.3. Policy Intervention Analysis

The introduction of new rules or limitations to individual behaviors can lead to the co-existence
of multiple effects with different structure, such as simultaneous immediate changes and adaptive
changes that take a long time before visible effects occur. Take into consideration that this fact leads
to implement intervention analysis, which includes both permanent and transitory effects. Further
details and examples of ARMA-like transfer function applied to intervention analysis are available in
Pelagatti ([29]).

The policy intervention is modeled through the combination of two individual effects: (1) a
permanent effect, estimated by δ1 that measures the level shift of pollutant concentrations given by
the treatment and modeled as a step dummy, which is D1t, which assumes a value equal to 1 starting
from 25 February 2019; (2) a transitory effect, estimated by δ0 and evolving according to a first-order
difference dynamics of the type

wt = λwt−1 + δ0D2,t, (8)

where D2,t is a impulse dummy, which assumes value equal 1 for 25 February 2019 and 0 otherwise
and λ measures the persistence of the transitory effect. The sum of the two effects returns the total
effect, which expresses the estimated overall reduction or increase in air pollutant levels generated
by the policy. The measurement equation after the three-step model selection and augmented by the
policy intervention is eventually expressed as follows:

yt = μt + γt + θxt + ZtΦ + δ1D1t + wt + εt , (9)

where yt is the logarithm of pollution concentrations in one of the stations in Milan, xt is the logarithm
of pollution concentrations in the optimal counter-factual station, μt is the LLT evolving according
to Equations (2) and (3), γt is the optimal seasonal component selected in step one, Zt is a matrix
containing the set of optimal subset of weather and calendar covariates selected in step 3, and Φ is the
associate vector of coefficients.

2.3.4. Software

All the statistical computations and figures have been carried out using the statistical software
R [37]. For state space models estimation, the KFAS package [38] was used. Cross-validation,
forecasting, and model selection codes have been developed by the authors. The graphic elaborations
were obtained by using the packages ggplot2 [39] and sf [40].
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3. Results

In this section, we present and comment on the empirical results relating both to the differences
between pre-and-post policy averages and medians and to the policy intervention analysis for the
Milan Area B case study. Section 3.1 shows the variations in concentration levels of NOx and NO2

for all the stations installed in Milan and for the other seven cities around it. Section 3.2 presents
the model selection results, the values of the selection criteria, and the final model specifications.
Section 3.3 reports the empirical estimates of the policy effects obtained through the basic structural
model augmented by the policy intervention.

3.1. Average and Median Differences

Empirical differences of concentrations levels for all the considered stations are presented
in Table 1. For both nitrogen oxides and nitrogen dioxide, using the difference of mean and median
respectively, it reports the estimates of the difference between the average (the median) concentrations
for the year 2019 and the average (the median) concentrations of the same period for the years
2014–2018.

Table 1. Differences between the average concentration level of the sub-period 2014–2018 and the
treatment period 2019. Differences are expressed in μg/m3.

Station Name
Nitrogen Oxides Nitrogen Dioxide

dAVG dMED dAVG dMED

Milano city stations
Città Studi 0.94 −0.43 −2.63 −4.26

Liguria −25.59 −26.91 −19.49 −20.71
Marche −17.29 −22.00 −11.53 −13.37
Senato −14.99 −13.84 −10.46 −9.73

Verziere −2.66 −5.00 −4.35 −5.78

Other urban centres in Lombardy
Bergamo −11.56 −8.90 −5.11 −4.07
Brescia −4.61 −6.39 −3.46 −4.12

Cremona 3.47 1.10 1.53 0.85
Lodi −5.99 −7.62 -1.85 −2.57
Pavia −14.75 −17.77 −7.75 −9.28

Saronno −7.96 −7.84 −8.66 −8.87
Treviglio 0.06 −3.71 2.25 0.39

The estimates highlight large negative differences in oxides concentrations between 2019 and the
period 2014–2018, both in the metropolitan area of Milan and in almost all the surrounding towns.
Particularly heavy reductions, and similar to those in Milan, were recorded in the cities of Bergamo
(East) and Pavia (South). The simultaneous abatement inside and outside Milan confirms the presence
of a general decreasing trend in the aggregate levels of pollutants for the Lombardy Po basin as already
indicated by the previous figures.

The differences registered in Milan are relevant both in suburban districts, such as the stations
Liguria (West) and Marche (North), and in the historical centre at the Senato station. For those
monitoring stations, the reductions are larger than 16 μg/m3 for NOx and 10 μg/m3 for NO2. In general,
the differences between the averages and between the medians are quite similar, but in many stations,
the reductions for the medians are stronger than the average differences. This fact is related to the
skewed and non-symmetric characteristics of the distribution involved, as shown also in Figure 4.
The above considerations on average and median pollution abatement are valid for both pollutants,
in fact, the stations where the greatest differences are recorded for nitrogen oxides are the same for
nitrogen dioxide.

These preliminary results do not allow for identifying the causes of the reductions and to state if
they depend on common causes related to the environment and climatic factors or if they have been
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generated by the introduction of the new policy in Milan. The next section will attempt to investigate
the variations through the modeling of possible environmental and anthropogenic factors able to
influence the air quality of the city.

3.2. Model Selection

3.2.1. Step 1: Detection of the Seasonal Components

Results relative to the first step of model selection are summarized in Figures 5 and 6, which show
the evaluation criteria for all the stations. For each station, the plots are organized in paired-panels; the
left panel represents the 10-steps-ahead MSFE as a function of the forecast horizon and the number
of harmonics modeling the seasonality (scale colour); the right panel shows the AICc–BIC pairs for
each model. The optimal number of harmonics to model the seasonality is identified as the one that
evaluates the minimum pair of AICc and BIC and returns the lowest MSFE curve. Both the estimates
for NOx and NO2 for the city of Milan agree unanimously in the selection of the model in which the
seasonality is composed by a single harmonic (k = 1); therefore, it can be rewritten as

Optimal seasonal : γt = γ1,t , (10)

where γ1,t is [
γ1,t
γ∗

1,t

]
=

[
cos(2π/365) sin(2π/365)
−sin(2π/365) cos(2π/365)

] [
γ1,t
γ∗

1,t

]
+

[
ω1,t
ω∗

1,t

]
, (11)

ωt ∼ WN(0, σ2
ω) and ω∗

t ∼ WN(0, σ2
ω).

Figure 5. Model selection-Step 1-NOx. Seasonal component selection for the five nitrogen oxides
stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the number of harmonics.
Right panel: AICc and BIC pairs for each model.
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Figure 6. Model selection-Step 1-NO2. Seasonal component selection for the 5 nitrogen dioxide stations
in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the number of harmonics. Right
panel: AICc and BIC pairs for each model.

3.2.2. Step 2: Detection of the Counter-Factual Component

After selecting the seasonal component, we proceed to the selection of the counter-factual term.
Estimates are summarized in Figures 7 and 8, which show the results for NOx and NO2. The plots
are graphically organized like those related to step one, with the difference that the MSFEs and the
AICc-BIC pairs are functions of one of the seven counter-factual candidates instead of the number of
harmonics. The selection criteria follow the same rules used for the previous step.

The search for the optimal counter-factual term requires greater attention and detail than in the
previous step as the minimizers are not unique. According to the plots, there is a restricted set of
stations that are good candidates for the counter-factual role. The set includes the following cities:
Treviglio, Pavia, Saronno, and Cremona. In particular, Pavia’s station achieves one of the best forecast
and fitting performances for almost all the stations in Area B for both NO2 and NOx. Based on this
last consideration, we select as the counter-factual term for future models the air quality monitoring
station of Pavia, located South to Milan. Therefore, the final specification of the basic structural model
will include as counter-factual term the logarithm of the concentrations in Pavia, xt = log(Paviat).
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Figure 7. Model selection-Step 2-NOx. Counter-factual term selection for the five nitrogen oxides
stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the candidate. Right
panel: AICc and BIC pairs for each model.

Figure 8. Model selection-Step 2-NO2. Counter-factual term selection for the five nitrogen dioxide
stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the candidate. Right panel:
AICc and BIC pairs for each model.
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3.2.3. Step 3: Detection of the Weather and Calendar Factors

The last step of model selection aims to select the optimal subset of local weather and calendar
regressors after having selected the optimal unobservable components, common weather, and
socio-economic factors, captured by the counter-factual. For each station and pollutant, the best
models are reported in Tables 2 and 3.

Table 2. Model selection-Step 3-NOx: Best subset of covariates using backward-forward stepwise
algorithms for NOx.

Marche Verziere Senato Liguria Citta Studi

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Holidays � � � � � � � � � �
Week-End � � � � � � � � � �
Saturday:Holidays � � � � �
Sunday:Holidays � � � � � � � � � �
Wind speed QNE

Wind speed QSE �
Wind speed QSW � � � � � � � � � �
Wind speed QNW � � � � � �
Temperature

Rainfall � � � �
Global radiation � �
Humidity

Note: symbol �indicates that the regressor is selected within the best subset of covariates.

Table 3. Model selection-Step 3-NO2: Best subset of covariates using backward-forward stepwise
algorithms for NO2.

Marche Verziere Senato Liguria Citta Studi

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Holidays � � � � � � � � � �
Week-End � � � � � � � � � �
Saturday:Holidays � � � � � �
Sunday:Holidays � � � � � � � � �
Wind speed QNE

Wind speed QSE

Wind speed QSW � � � � � � � � � �
Wind speed QNW � �
Temperature

Rainfall � �
Global radiation � � � �
Humidity � �

Note: symbol �indicates that the regressor is selected within the best subset of covariates.

As expected, BIC-based models, being more parsimonious, retain fewer covariates than AIC-based
models. Following this fact, we will use the BIC-selected models, but we now discuss some details
about the selection process. Concerning the calendar, both criteria include in almost all cases the
holidays, week-end, and Sunday holidays effects. AIC suggests adding also the interaction term
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between Sunday and holidays. Even if the interaction between Saturday and holidays is not always
included, the final model will take into account the full set of calendar events and their interactions.

Regarding weather covariates, except for the wind speed, none of the others is included within
the final models. Winds blowing from Southwest (QSW) are always selected and those coming from
Northwest (QNW) are often included, and hence kept in the final model. Moreover, temperature,
rainfall, solar radiation, and humidity are considered only by the AIC. This fact can be explained by
the presence of the counter-factual, which captures not only common characteristics in terms of human
behaviour and air quality conditions but also homogeneous climatic conditions common to all the
areas considered.

3.2.4. Final Model Specification

Based on the results of the three-step model selection procedure, the final specification of the BSM
augmented by the policy intervention can be expressed using the following model:

Measurement : yt = μt + γt + θxt + φ1Holidays + φ2WeekEnd

+ φ3Saturday : Holidays + φ4Sunday : Holidays

+ φ5WindSpeedQSW + φ6WindSpeedQNW

+ δ1D1t + wt + εt ,

(12)

where εt ∼ N(0, σ2
ε )

Seasonal component : γt = γ1,t , (13)

Level : μt = μt−1 + βt−1 + ηt ηt ∼ WN(0, σ2
η) , (14)

Slope : βt = βt−1 + ζt ζt ∼ WN(0, σ2
ζ ) , (15)

Transitory policy : wt = λwt−1 + δ0D2,t , (16)

where yt is the logarithm of pollution concentrations in one of the stations located in Milan and
xt = log(Paviat) is the logarithm of pollution concentrations in Pavia.

3.3. Basic Structural Model and Policy Intervention

In this section, we show the numerical results obtained using state space modeling to estimate
both permanent and transitory effects generated by the introduction of Area B controlling for local
weather conditions, anthropogenic effects, and common areal trends.

The maximum likelihood estimates of the coefficients and the components’ variances for the five
air quality monitoring stations installed in Milan are reported in Tables 4 and 5. The results appear
to be coherent both for nitrogen oxides and nitrogen dioxide. First, the models identify statistically
significant and positive coefficients for the counter-factual term, highlighting its capability to capture
socio-economic and climatic factors common to neighbouring areas and coherent with the expected
sign. Second, weekends and holidays exert a negative effect on concentration levels probably due to
the reduction in the movements and productive activities of the city in those days. Their interactions
are almost everywhere not statistically significant but with a positive sign and always less than the
sum of the individual effects of the weekend and holidays. This fact underlines how the holiday
weekends enjoy more contained effects of emission reductions compared to generic weekends of the
year. Third, as to be expected, winds blowing from the West (QSW and QNW) greatly reduce the amount
of pollutants all over the city with peaks over 40% to 50%.
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Table 4. ML estimates of BSM parameters and variances for NOx.

Parameter Marche Citta Studi Liguria Verziere Senato

log(Pavia) θ 0.51 *** 0.93 *** 0.73 *** 0.66 *** 0.57 ***
(0.01) (0.02) (0.02) 0.02 (0.01)

Holidays φ1 −0.06 *** −0.02 −0.05 * −0.10 *** −0.09 ***
(0.03) (0.04) (0.03) (0.03) (0.03)

WeekEnd φ2 −0.11 *** −0.09 *** −0.09 *** −0.17 *** −0.15 ***
(0.01) (0.02) (0.01) (0.01) (0.01)

Saturday:Holidays φ3 0.10 0.17 0.04 0.10 0.14 ***
(0.08) (0.13) (0.10) (0.14) (0.05)

Sunday:Holidays φ4 0.09 ** 0.09 0.12 * 0.08 0.10 ***
(0.05) (0.08) (0.06) (0.05) (0.03)

WindSpeed QSW φ5 −0.44 *** −0.20 *** −0.56 *** −0.30 *** −0.27 ***
(0.01) (0.02) (0.02) (0.02) (0.01)

WindSpeed QNW φ6 −0.31v*** −0.27 *** −0.12 *** −0.20 *** −0.12 ***
(0.01) (0.02) (0.01) (0.01) (0.01)

Level variance σ2
η 0.0047 0.0065 0.0037 0.0038 0.0027

Slope variance σ2
ζ 0.0000 0.0000 0.0000 0.0000 0.0000

Seasonality variance σ2
ω 0.0000 0.0000 0.0000 0.0000 0.0000

Error variance σ2
ε 0.0298 0.0745 0.0437 0.0370 0.0308

Note 1: values in parenthesis are standard errors. Note 2: * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 5. ML estimates of BSM parameters and variances for NO2.

Parameter Marche Citta Studi Liguria Verziere Senato

log(Pavia) θ 0.36 *** 0.85 *** 0.69 *** 0.65 *** 0.55 ***
(0.01) (0.02) (0.02) (0.02) (0.01)

Holidays φ1 −0.06 *** −0.08 *** −0.08 *** −0.10 *** −0.08 **
(0.02) (0.03) (0.02) (0.02) (0.03)

Week-end φ2 −0.06 *** −0.10 *** −0.09 *** −0.14 *** −0.11 ***
(0.01) (0.01) (0.01) (0.01) (0.01)

Saturday:Holidays φ3 0.06 0.18 *** 0.06 0.14 ** −0.09 ***
(0.05) (0.08) 0.07 (0.06) (0.02)

Sunday:Holidays φ4 0.08 *** 0.11 *** 0.11 *** 0.06 0.10 ***
(0.03) (0.05) (0.04) (0.03) (0.03)

WindSpeed QSW φ5 −0.35 *** −0.13 *** −0.42 *** −0.23 *** −0.18 ***
(0.01) (0.01) (0.01) (0.01) (0.01)

WindSpeed QNW φ6 −0.17 *** −0.16 *** −0.08 *** −0.13 *** −0.08 ***
(0.01) (0.01) (0.01) (0.01) (0.01)

Level variance σ2
η 0.0051 0.0065 0.0046 0.0044 0.0024

Slope variance σ2
ζ 0.0000 0.0000 0.0000 0.0000 0.0000

Seasonality variance σ2
ω 0.0000 0.0000 0.0000 0.0000 0.0000

Errors variance σ2
ε 0.0093 0.0282 0.0182 0.0154 0.0114

Note 1: values in parenthesis are standard errors. Note 2: ** p < 0.05, *** p < 0.01.

The short-term impacts adjusted for common anthropic and weather factors are summarized in
Table 6, which shows the estimated permanent and transitory effects for each station in Milan expressed
in logarithmic scale, hence interpretable as relative variations in concentrations levels. None of these
two coefficients identifies an improvement of the considered pollutant concentrations. Moreover, the
permanent effect (δ1) is always positive and in some cases moderately statistically significant. This
means that, compared to the generally decreasing areal trend, Milan air quality went worst. It is worth
observing that the most significant results are obtained at the Senato station, which is located in the
already existing Area C, hence already subject to some car traffic restrictions.
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Such a result could be justified by the presence of multiple causes. As a first justification, we are
approaching the initial phase of a progressive policy and the time elapsed since its outset may be too
short to assess any significant impacts on pollutant levels. This fact is consistent with the forecasts
expected by the municipality of Milan about the reductions in nitrogen oxide levels; in fact, the first
significant reductions should be observed starting from 2022 [11]. Furthermore, since we are dealing
with limitations to human behavior and social perception of new norms, it is not always clear how
agents adapt to changes. The deterioration in the air quality of the centre could be linked to new traffic
congestions in that area or to a panic shock of drivers, who need time to understand the functioning
of the restrictions and adapt their behavior, exactly as in situations mismanagement of individual
and organizational changes [41,42]. Eventually, the recent climate changes and the extreme weather
conditions that affected the Po valley, such as temperatures higher than the seasonal average and
extreme atmospheric events, could increase the noise present in the data and thus mask the real
repercussions of the limitations.

Table 6. Estimated permanent and transitory effects in log scale on NOx and NO2 for each station.

Stations Effect
Nitrogen Oxides Nitrogen Dioxide

Estimate S.E. t-Statistic Estimate S.E. t-Statistic

Senato Perm. eff. δ1 0.38 0.19 2.03 ** 0.29 0.12 2.40 **
Trans. eff. δ0 −0.12 0.16 −0.76 −0.14 0.11 −1.25

Verziere Perm. eff. δ1 0.26 0.21 1.27 0.22 0.15 1.50
Trans. eff. δ0 −0.01 0.18 −0.05 −0.06 0.14 −0.40

Liguria Perm. eff. δ1 0.12 0.22 0.54 0.20 0.16 1.25
Trans. eff. δ0 −0.02 0.19 −0.10 −0.10 0.15 −0.67

Marche Perm. eff. δ1 0.15 0.19 0.80 0.23 0.13 1.82 *
Trans. eff. δ0 −0.11 0.17 −0.63 −0.19 0.13 1.56

Citta Studi Perm. eff. δ1 0.35 0.29 1.19 0.25 0.19 1.30
Trans. eff. δ0 0.08 0.25 0.30 0.02 0.18 0.10

Note 1: * p < 0.10, ** p < 0.05.

4. Conclusions

This paper analyzed the early-stage effects on air quality of the new traffic policy in Milan, the
so-called Area B. The concentrations of nitrogen oxides (NOx) and nitrogen dioxide (NO2), which are
mainly primary pollutants, have been considered as proxies of pollution emissions.

The first hypothesis in the introduction inquires about the presence of a significant effect on the
air quality of the city. As a first point, the preliminary results show that concentrations during spring
and summer 2019 are lower than during the same seasons in the previous five years, hinting for a
reduction effect due to the policy. On the other side, a similar reducing trend has been observed in
various neighbouring cities around Milan, which belong to a homogeneous meteorological, social,
and economical cluster within the Po valley. Their similar behavior is used here as an areal common
trend capturing both weather and anthropogenic components. Our approach, which adjusts for local
weather conditions and the areal common trend, does not provide a further reduction effect for any
station comparing to this trend. Instead, in Senato station, which is inside the historical city centre and
was already covered by Area C, the estimates provide a strong, but moderately statistically significant,
increase for both considered pollutants. This is coherent with the fact that the restriction introduced is
very limited as it concerns just some classes of old vehicles, which are a small percentage of the entire
vehicle pool, both in terms of number of cars and emissions.

Since the first research hypothesis is confirmed just to a minor extent and with an opposite sign
with respect to what was expected, the second research hypothesis, concerning the homogeneity of the
possible effects, assumes now only a technical scope. It is confirmed just for what concerns the positive
direction of the changes, but not for their significance. In fact, among all the estimated permanent
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effects, only Senato station is significant at 5%. Moreover, the estimated transitory effects are always
not significant at any confidence level.

The above facts hint that, compared to the common trend of the considered area, Milan air quality
is improving slowly, and, in this sense, the first phase of Area B seems to have a negative effect on air
quality. Due to the limited scope of this first phase and its progressiveness, it is not unexpected to find
a limited or a zero effect. Nonetheless, the negative effect needs some more explanations.

Although finding the ultimate motivation for this is not the aim of this paper, a discussion follows.
Firstly, the statistically significant increase found is limited in space and is located inside the previously
introduced restricted Area C. It may be possible that this further restriction increased congestion of
public transport buses, which are often very old vehicles, or to the aforementioned adaptation shocks.
This could explain only a part of the results. In fact, this first point is also related to the other sources
of nitrogen oxides. According to INEMAR [25], road traffic is about 68% of the total emissions. Hence,
a transition to house heating green techniques slower in Milan comparing the other considered cities
could have an influence on this result. Moreover, also the other stations experienced a comparative
deterioration of air quality and the second-worst station is Città Studi, which is an urban background
station, hence with limited relation to local traffic congestion. Second, the increase due to road traffic
may have temporal dynamics. Since the traffic restriction is limited to business hours, there may be an
increase in congestion early in the morning and in the late evening, affecting the daily average.

In conclusion, although environmental protection policies are in general a fundamental step for
sustainability improvement, in some cases, they may not be sufficient or their implementation may be
misleading. In our case, we considered only the early-stage of a policy, which is progressive in time.
Hence, the results of this paper may be regarded as physiological, provided that they characterize only
the initial part of the policy implementation and are improved soon. It follows a recommendation to
the municipal government to develop the policy more strongly.

Additional research could be developed in the future. In particular, the effect on traffic congestion
inside Area C could be investigated further using historical data related to the vehicle movements
crossing the access points. Moreover, the use of a multivariate approach, which includes other
pollutants such as PM10 and PM2.5, and spatio-temporal modeling could highlight hidden effects,
which are not visible considering the single stations. Eventually, the extension to hourly data could
consider both the presence of intra-daily effects and explaining the spatial dynamics related to traffic.

Author Contributions: Conceptualization, P.M., A.F., M.P. and M.M.; methodology and formal analysis, P.M., A.F.
and M.P.; software, P.M. and M.P.; data curation and original draft preparation, P.M.; literature review, P.M. and
A.F.; review and editing and validation and supervision P.M., A.F., M.M. and M.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the editors and three anonymous referees for their comments and
suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. European Parliament. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008
on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, 29, 169–212.

2. Thunis, P.; Miranda, A.; Baldasano, J.M.; Blond, N.; Douros, J.; Graff, A.; Janssen, S.; Juda-Rezler, K.;
Karvosenoja, N.; Maffeis, G.; et al. Overview of current regional and local scale air quality modeling
practices: Assessment and planning tools in the EU. Environ. Sci. Policy 2016, 65, 13–21. [CrossRef]

3. Cuvelier, C.; Thunis, P.; Vautard, R.; Amann, M.; Bessagnet, B.; Bedogni, M.; Berkowicz, R.; Brandt, J.;
Brocheton, F.; Builtjes, P.; et al. CityDelta: A model intercomparison study to explore the impact of emission
reductions in European cities in 2010. Atmos. Environ. 2007, 41, 189–207. [CrossRef]

4. Vautard, R.; Builtjes, P.H.J.; Thunis, P.; Cuvelier, C.; Bedogni, M.; Bessagnet, B.; Honoré, C.; Moussiopoulos,
N.; Pirovano, G.; Schaap, M.; et al. Evaluation and intercomparison of Ozone and PM10 simulations by

84



IJERPH 2020, 17, 1088

several chemistry transport models over four European cities within the CityDelta project. Atmos. Environ.
2007, 41, 173–188. [CrossRef]

5. Gao, J.; Yuan, Z.; Liu, X.; Xia, X.; Huang, X.; Dong, Z. Improving air pollution control policy in China—A
perspective based on cost–benefit analysis. Sci. Total Environ. 2016, 543, 307–314. [CrossRef]

6. Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Guariso, G.; Gianfreda, R.; Maffeis, G.; Thunis, P.; White, L.;
Triacchini, G. An integrated assessment tool to define effective air quality policies at regional scale. Environ.
Model. Softw. 2012, 38, 306–315. [CrossRef]

7. Vlachokostas, C.; Achillas, C.; Moussiopoulos; Hourdakis, E.; Tsilingiridis, G.; Ntziachristos, L.; Banias, G.;
Stavrakakis, N.; Sidiropoulos, C. Decision support system for the evaluation of urban air pollution control
options: Application for particulate pollution in Thessaloniki, Greece. Sci. Total Environ. 2009, 407, 5937–5948.
[CrossRef]

8. European Environmental Agency. Air Quality in Europe-2019 Report; EEA Technical Report 10/2019;
European Environment Agency: Copenhagen, Denmark, 2019. Available online: https://www.eea.europa.
eu/publications/air-quality-in-europe-2019 (accessed on 7 February 2020).

9. Liu, Z.; Zhao, L.; Wang, C.; Yang, Y.; Xue, J.; Bo, X.; Li, D.; Liu, D. An Actuarial Pricing Method for Air
Quality Index Options. Int. J. Environ. Res. Public Health 2019, 16, 4882. [CrossRef]

10. Xu, X.; Dong, D.; Wang, Y.; Wang, S. The Impacts of Different Air Pollutants on Domestic and Inbound
Tourism in China. Int. J. Environ. Res. Public Health 2019, 16, 5127. [CrossRef]

11. Municipality of Milan. Delibera Giunta Comunale n. 1366/2018 del 02/08/2018; Municipality of Milan: Milan,
Italy, 2018. Available online: https://www.comune.milano.it/aree-tematiche/mobilita/area-b#collapse_
article_u7LTldfp1A6d (accessed on 7 February 2020).

12. Finazzi, F.; Paci, L. Kernel-based estimation of individual location densities from smartphone data.
Stat. Model. 2019. [CrossRef]

13. Fassò, A.; Porcu, E. Latent Variables and Space-Time Models for Environmental Problems. Stoch Environ.
Res. Risk Assess 2015, 29, 323–324. [CrossRef]

14. Cameletti, M.; Gómez-Rubio, V.; Blangiardo, M. Bayesian modeling for spatially misaligned health and air
pollution data through the INLA-SPDE approach. Spat. Stat. 2019, 31, 100353. [CrossRef]

15. Vu, P.T.; Larson, T.V.; Szpiro, A.A. Probabilistic Predictive Principal Component Analysis for Spatially-
Misaligned and High-Dimensional Air Pollution Data with Missing Observations. arXiv 2019,
arXiv:1905.00393.

16. Calculli, C.; Fassò, A.; Finazzi, F.; Pollice, A.; Turnone, A. Maximum likelihood estimation of the multivariate
hidden dynamic geostatistical model with application to air quality in Apulia, Italy. Environmetrics 2015,
26, 406–417. [CrossRef]

17. Menezes Piairo, H.; Garcia-Soidan, P.; Sousa, I. Spatial-temporal modellization of the NO2 concentration
data through geostatistical tools. Stat. Methods Appl. 2015, 25. [CrossRef]

18. Taghavi-Shahri, S.M.; Fassò, A.; Mahaki, B.; Amini, H. Concurrent spatiotemporal daily land use regression
modeling and missing data imputation of fine particulate matter using distributed space-time Expectation
Maximization. Atmos. Environ. 2019, 117202. [CrossRef]

19. Chen, L.; Guo, B.; Huang, J.; He, J.; Wang, H.; Zhang, S.; Chen, S.X. Assessing air-quality in
Beijing-Tianjin-Hebei region: The method and mixed tales of PM2. 5 and O3. Atmos. Environ. 2018,
193, 290–301. [CrossRef]

20. Fassò, A. Statistical assessment of air quality interventions. Stoch. Environ. Res. Risk Assess. 2013, 27,
1651–1660. [CrossRef]

21. Invernizzi, G.; Ruprecht, A.; Mazza, R.; De Marco, C.; Močnik, G.; Sioutas, C.; Westerdahl, D. Measurement
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Abstract: Understanding air pollution in urban areas is crucial to identify mitigation actions that
may improve air quality and, consequently, minimize human exposure to air pollutants and their
impact. This study aimed to assess the temporal evolution of the air quality in the city of Setúbal
(Portugal) during a time period of 10 years (2003–2012), by evaluating seasonal trends of air pollutants
(PM10, PM2.5, O3, NO, NO2 and NOx) measured in nine monitoring stations. In order to identify
emission sources of particulate matter, PM2.5 and PM2.5–10 were characterized in two different areas
(urban traffic and industrial) in winter and summer and, afterwards, source apportionment was
performed by means of Positive Matrix Factorization. Overall, the air quality has been improving over
the years with a decreasing trend of air pollutant concentration, with the exception of O3. Despite this
improvement, levels of PM10, O3 and nitrogen oxides still do not fully comply with the requirements
of European legislation, as well as with the guideline values of the World Health Organization (WHO).
The main anthropogenic sources contributing to local PM levels were traffic, industry and wood
burning, which should be addressed by specific mitigation measures in order to minimize their
impact on the local air quality.

Keywords: air pollutants; particulate matter; monitoring; seasonality; chemical characterization;
source apportionment

1. Introduction

Air pollution is considered one of the main environmental problems that countries face nowadays
taking into account its adverse effects on human health and on the environment [1]. Ambient air
pollution alone kills around three million people every year, mainly from noncommunicable diseases.
Only one person in ten lives in a city that complies with WHO Air quality guidelines [2].

Policies implemented at regional and national level targeting the limitation of emissions have led
to acceptable air quality levels across Europe regarding some air pollutants [3], but others still raise
concern, such as particulate matter, nitrogen dioxide and ozone [4].

Air pollutants are emitted by natural and anthropogenic sources; they may either be released
directly (primary pollutants) or formed in the atmosphere (as secondary pollutants); they may be
formed and transported over long distances or produced locally. Effective measures to decrease the
impacts of air pollution require a good understanding of its sources, how pollutants are transported and
transformed in the atmosphere, and how they affect humans, ecosystems, the climate, and subsequently
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IJERPH 2020, 17, 5447

society and the economy [5]. A regular monitoring program of air pollutants is therefore a crucial tool
of successful environmental management.

Setúbal (Portugal) includes an area of high population density, anthropogenic industrial activities,
traffic and protected natural areas. Moreover, the region also exhibits high levels of pollution. Several
studies have already shown that local activities have a significant impact on the air quality due to:
(i) emissions of air pollutants originating in industrial processes [6–8], (ii) dust fugitive emissions from
the harbors [9,10], and (iii) intense traffic of heavy duty vehicles [11].

The present study provides a long-term assessment (ten years) of the air quality in Setúbal and
aims to identify the main sources of air pollution. Evaluation of the temporal variability of several air
pollutants (PM10, PM2.5, O3, NO, NO2 and NOx) was performed and a comprehensive characterization
of particulate matter levels was conducted, along with the identification of pollution sources, using the
Positive Matrix Factorization (PMF) model.

2. Materials and Methods

2.1. Study Area

This study was conducted in Setúbal (south-west Portugal), a coastal city sited where the river
Sado flows into the Atlantic Ocean. Setúbal district covers an area of 230 km2 and it has a total
population of 135,000 inhabitants [12]. The city of Setúbal is located next to two protected natural
areas (Sado Estuary Reserve and Arrábida Park, which belong to the protected area Natura 2000
network) and with one of the most important industrial areas in the country. This industrial area
includes: (i) different types of large industry (such as the production of fresh and dry baker’s yeast,
a slaughterhouse, a powerplant, and fertilizers, pesticides, cement and chemical industries), (ii) harbors,
and (iii) heavy duty vehicle traffic due to transport of raw materials and products to the harbors
and industries.

2.2. Monitoring of Air Pollutants by Air Quality Monitoring Networks

Air quality data were obtained from three different air monitoring networks, namely from the
Portuguese Environment Agency (APA-QUALAR, with 4 stations), the EDP company (two stations)
and the SECIL company (three stations), for the period 2003–2012. Moreover, a field campaign was
organized in this study to conduct PM sampling where two monitoring stations were established
(“Industrial Mitrena” and “Quebedo”).

These monitoring stations were classified as rural background, urban background, suburban
background, suburban industrial, urban traffic and suburban traffic. Figure 1 presents the location
of the air quality monitoring stations and Table 1 provides a description of each monitoring station,
with details of the monitored pollutants and measuring period.

 

Figure 1. Location of the monitoring stations of the Setúbal area (Portugal): urban background (3 and
4), urban traffic (2), suburban traffic (6), rural background (5), suburban background (8 and 10) and
suburban industrial (1, 7 and 9).
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These monitoring stations provided hourly data for the air pollutants NO, NO2, NOx, PM10,
PM2.5 and O3. Not all monitoring stations provided data for all pollutants nor for all the study
period. Different measuring/monitoring methods were applied according to the air pollutant, namely
beta-attenuation for PM10 and PM2.5, chemiluminescence for NO, NO2 and NOx, and UV photometry
for O3, as defined by European legislation [13].

2.3. Particulate Matter Sampling and Characterisation

2.3.1. Sampling Sites and Methodology

PM sampling was done simultaneously in two different sampling sites within the study area and
during two seasons of 2011 (winter: from 17 to 31 January–15 sampling days; summer: from 19 August
to 2 September–14 sampling days). One sampling site was located at in urban traffic station (Quebedo)
and the other sampling site was located in an industrial site (Mitrena). Figure 1 and Table 1 include
these sampling sites, their location and other information.

Coarse and fine particulate matter were sampled using low volume Gent collectors (University
of Gent, Gent, Belgium) equipped with a Stacked Filter Unit (SFU) and a PM10 pre impactor stage.
The SFU carried two 47 mm Nuclepore®polycarbonate filters, one in each of its two different stages.
Air flow rate was set to 15–16 L·min−1, allowing the collection of coarse particles in the first stage
(particles with aerodynamic diameter (AD) between 2.5 and 10 μm-PM2.5–10, using a 8 μm pore size
filter) and of fine particles in the second stage (particles with AD < 2.5 μm-PM2.5, 0.4 μm pore size
filter) [14]. Filter sampling was conducted during periods of 12 h (day and night periods).

2.3.2. Gravimetric Analysis

PM loads in filters were measured by gravimetry in a controlled clean room (class 10,000), with the
following conditions: (20 ± 1) ◦C and relative humidity of (50 ± 5) %, after 48 h equilibrium. Nuclepore
filters were weighted on an UMT5 Comparator balance (Mettler Toledo GmbH, 2000, Greifensee,
Switzerland), an ultra-micro balance with a 0.1 μg resolution. Filter weight was measured before and
after sampling and each final weight was accepted as the average of three measurements only if the
variability between them was less than 5%.

2.3.3. Chemical Analysis

Sampled filters were cut into two halves, with each one being used for a specific technique for a
specific chemical analysis: (i) chemical elements were quantified by Instrumental Neutron Activation
Analysis using the k0 methodology (k0-INAA); and (ii) water soluble ions were assessed by Ion
Chromatography (IC).

Regarding k0-INAA, after being rolled up and put in a clean thin aluminum foil, each half filter
was irradiated for a period of 5h in a Portuguese Research Reactor, using a thermal neutron flux of
1.03 × 1013 cm−2·s−1, as established in the procedure described elsewhere [15]. After being removed
from the aluminum foil, irradiated samples were stored in polyethylene containers and two gamma
spectra were measured using a hyper-pure germanium detector (the first measured three days after
irradiation and the second after four weeks).

For application of the k0 methodology, comparators were co-irradiated with samples, namely,
0.1% Au–Al discs. This methodology allowed the quantification of 13 chemical elements, namely As,
Ce, Co, Cr, Fe, K, La, Na, Sb, Sc, Se, Sm and Zn. Blank filters were processed as regular samples and
their concentrations were subtracted from the sampled filters. Quality control was done with the
analysis of the reference material NIST-SRM 1633a (Coal Fly Ash) simultaneously with the samples
and evaluation was performed using established procedures [16,17].

Regarding IC, a total of three anions (Cl−, NO3
− and SO4

2−) and five cations (Na+, NH4
+, K+,

Mg2+ and Ca2+) were assessed using an established methodology [18]. For this, sampled and blank
filters were extracted (using 5 mL of ultrapure water in an ultrasonic bath (Branson 3200, Brookfield,
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Connecticut, USA) for 45 min) and, afterwards, extracts were filtered using a pre-washed Whatman 41®

filter (Whatman International Ltd, Maidstone, England). The extract liquid filtered was then analysed
by IC, using a Dionex® DX500 system with an isocratic pump IP20, a conductivity detector (CD20)
equipped with Peaknet® software (Dionex Corporation, Sunnyvale, CA, USA). For the anionic mode,
the used chromatograph had an anion guard column IonPack AG14 (Dionex Corporation, Sunnyvale,
CA, USA), an analytical column IonPack AS14 and an anion suppressor ASRSR Ultra 4 mm. Using a
flow rate of 1.2 mL·min−1, the eluent was a 3.5 mmol·dm-3 Na2CO3 + 1 mmol·dm−3 NaHCO3 buffer
solution. For analysis of cations, the chromatograph had a CSRS 300-II-4mm cation suppressor, a guard
column Ion Pack CG12 and an Ion Pack CS12 column. Using a flow rate of 1.0 mL min−1, the eluent
was a methane-sulfonic acid (MSA) 20 mM solution. The used injection volume was 100 μL and 25 μL
for anions and cations, respectively.

Measurements were conducted after the chromatograph daily calibration using calibrators
with mass concentrations fit to apply the linear regression model. All data were subtracted by the
blanks values.

2.4. Meteorological Data

Hourly meteorological data (wind direction, wind speed, precipitation, temperature and relative
humidity) were measured by two automatic weather stations, one located in the monitoring station
“Subestação” (operated by EDP, registering data from January 2004 to December 2009) and the other
located in the monitoring station “HOSO” (operated by SECIL and registering data from January 2010
to December 2012). For the PM sampling campaigns in 2011, an automatic weather station was used
to gather meteorological data during the sampling periods, located in the suburban industrial site
(“Mitrena”). The wind rose and pollution dispersion maps were created using the Openair project
software [19].

2.5. Air Quality Index

Air Quality Indexes provide for the public an easy way to understand the levels of air pollutants in
their area and to gain insights regarding their associated effects on health. Ultimately, this information
aims to raise the awareness of citizens towards air quality and thus to change their behavior or take
mitigation measures in order to minimize their exposure. Several indexes are currently used worldwide
(for example, the European Air Quality Index in Europe [20], the Air Quality Index in USA [21] or the
Air Quality Index in China [22]), but no general methodology has been adopted [23]. The Portuguese
Environment Agency also uses an index in order to provide information about air quality to the citizens
(the QualAr Index [24]).

In order to provide an understanding of the temporal evolution of air quality in the study area,
an Air Quality Index was calculated based on the 10 years’ analysis of pollutants (2003–2012). This index
was defined as described in Table 2, with a total of five categories, ranging from “Very good” to “Very
poor”. Three main air pollutants were considered (NO2, O3 and PM10), but if available two additional
pollutants were also used (SO2 and CO). The pollutant with the worst index class, in terms of highest
concentrations, was responsible for the global Air Quality Index.

Table 2. Air Quality Index categories and their pollutants range (values in μg·m−3).

Index Class
Mandatory Pollutant Auxiliary Pollutant

NO2 (1 h) O3 (1 h) PM10 (24 h) SO2 (1 h) CO (8 h)

Very good [0–99] [0–59] [0–19] [0–139] [0–4999]

Good [100–139] [60–119] [20–34] [140–209] [5000–6999]

Moderate [140–199] [120–179] [35–49] [210–349] [7000–8499]

Poor [200–399] [180–239] [50–119] [350–499] [8500–9999]

Very poor ≥400 ≥240 ≥120 ≥500 ≥10,000
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2.6. Statistical Analysis and Source Apportionment

Statistical analysis was performed using the STATISTICA software version 13 (StatSoft Europe
GmbH, Hamburg, Germany). For the analysis of the results variance, non-parametric statistics at a
significance level of 0.050 were selected. Mann-Whitney tests were used to assess significant differences
between datasets.

The Positive Matrix Factorization (PMF) model was used to identify the pollution sources
contributing to PM levels [25]. PMF is a popular receptor model used for source apportionment studies,
which decomposes the data matrix into two sub-data matrixes (factor profiles and factor contributions)
without prior knowledge of the profiles of pollution sources [26]. PMF was applied to the datasets of
PM sampled in “Quebedo” and “Mitrena”. Data below the limit of detection (LoD) were replaced by
LoD/2 and the uncertainties were set to 5/6 of the LoD.

3. Results and Discussion

3.1. Meteorological Data

A brief summary of the meteorological data measured during the period 2004–2012 is provided
in Table S1 (supplementary material). The average monthly temperature ranged from 12 ◦C in
January/February to 27 ◦C in July/August. The average temperature and relative humidity (RH)
in Setúbal, during the period 2004–2012, was 16.4 ◦C and 70.3%, respectively. The average annual
accumulated precipitation was 900 mm. Rainfall was more frequent during autumn and winter.

The wind patterns in the study area varied according to the location of the meteorological station
and the season, as shown in Figure 2.

 

Figure 2. Seasonal wind roses at weather stations Subestação (left, during 2004–2009) and HOSO
(right, during 2010–2012).

At Subestação, the main wind directions were predominantly from N and SW in summer and
spring, while in winter and autumn they were from NNE. At HOSO, the predominant wind directions
were from NNW and WNW. Overall, winds measured in HOSO were weaker than those registered at
Subestação. This fact may be explained by HOSO’s location at the bottom of the mountain chains of
Arrábida, which may protect the station from prevailing north and northwest winds.
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As shown in Figure 3, for the PM sampling campaigns, the prevailing winds were from NNE in
winter and from NNW and WSW in summer. In winter period, a mean temperature of 12 ◦C and a
mean relative humidity of 74% were registered, while in summer a mean temperature of 22 ◦C and a
mean relative humidity of 61% were registered.

 
Figure 3. Wind roses during the PM sampling campaign in winter (left) and summer (right) seasons.

3.2. Air Quality Index (AQI)

Figure 4 provides the temporal evolution of the AQI in the study area, from 2003 to 2012. Overall,
it is possible to observe a clear trend of better air quality indexes along the years, with the index “Good”
increasing from 150 days per year in 2004 to more than 250 days per year in 2012. The index “Poor”
showed a higher peak in 2005 with around 80 days per year and, afterwards, a decreasing trend with
around 10 days per year in 2012. During the studied period, almost no days registered a “Very Poor”
index, with the exception of a few days in the first four years. However, the number of days with a
“Very good” index showed a slight increase over the years, with 2012 having around 20 days.

Figure 4. Air Quality Index registered in Setúbal area from 2003 to 2012.

One possible cause for this improvement in the Air Quality Index, especially after 2007, is the
reduction of energy consumption, a consequence of the world economic crisis that affected the country,
a trend that has already been observed in other Portuguese cities, like Lisbon and Porto, for pollutants
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such as PM10 and NO2 [27]. Adding to this factor, the geographic position of the study area, which is
influenced by clean air masses from the Atlantic Ocean [28], may potentiate this improvement since it
contributes to good dispersion conditions of pollutants from local industrial and urban sources.

3.3. Temporal Patterns of Air Pollutants

3.3.1. Annual Trends

Figures 5–7 present the annual variability of PM2.5 and PM10, O3 and NO, NO2 and NOX,
respectively, during the studied period. When applicable, the number of exceedances taking in
account the limit values and air quality guidelines established in the standards defined in Table S2
(supplementary material) are also included.

Figure 5. Annual average, exceedances and maximum daily average for PM10 (left) and PM2.5 (right)
during the period 2003–2012 for Sétubal area. Red line stands for the established limit values (LV) or
air quality guidelines (AQG).

Figure 6. Maximum daily eight hours concentrations of ozone and number of exceedances during the
period 2003–2012 at Setúbal area. Red line stands for the established limit values (LV).

94



IJERPH 2020, 17, 5447

Figure 7. Annual concentrations of nitrogen compounds during the period 2003–2012 for Setúbal area.
Red line stands for the established limit values (LV).

The urban traffic station located in Quebedo presented the highest annual PM10 concentration with
a mean value of 34 μg·m−3 for the period 2004–2012, whereas the average PM10 concentration in all the
studied stations was 25 μg·m−3. The annual averaged PM10 concentrations were always below the limit
value of 40 μg·m−3, established by EU Directive 2008/50/EC. The annual threshold of 35 exceedances
regarding the limit of 50 μg·m−3 during a 24 h period, established by EU legislation, was surpassed
only in two monitoring stations: the urban background monitoring station “Camarinha” (in 2003, 2005
and 2006) and the urban traffic monitoring station “Quebedo” (from 2004 to 2007). After 2007, no
monitoring stations surpassed the annual limit of 35 exceedances regarding the established daily PM10

concentration of 50 μg·m−3. However, occasionally, very high daily levels of PM10 were measured in
several monitoring stations, for instance, the suburban industrial “HOSO” reached a daily concentration
slightly above 260 μg·m−3 in 2009. Figure 5 shows a decreasing annual trend of the PM10 levels from
2005 to 2008.

Considering the annual guide value of 20 μg·m−3 for PM10 levels recommended by the World
Health Organization (WHO) [29], exceedances were observed in all the studied years, for at least one
of the studied monitoring stations. The suburban background monitoring station “Tróia” was the only
one that presented annual values always below this guideline value (for a total of four years with
data). Monitoring stations “Camarinha”, “Quebedo”, “Arcos” and “P. Sado” always presented annual
values above 20 μg·m−3 for all monitored years. Moreover, 71%, 60% and 75% of the monitored years
above the mentioned threshold were found in the monitoring stations “Subestação”, “Fernando Pó”
and “HOSO”, respectively. In 2011, a study focused on the analysis of trends of air quality in Europe
from 2002 to 2011 [30] and revealed that 33% of the urban population in EU-27 lived in areas where the
daily limit value for PM10 was exceeded and 88% of urban dwellers were exposed to PM10 levels that
exceeded the WHO AQG for the protection of human health.

Regarding fine particulate matter (PM2.5), the annual limit value of 25 μg·m−3 defined by EU
legislation was not reached in any of the studied monitoring stations. However, regarding the WHO
AQG that establishes a guideline value of 10 μg·m−3 for the annual concentration, only two monitoring
stations surpassed this value, namely “Tróia” in 2009 and “HOSO” in 2010. Regarding the maximum
daily average of 25 μg·m−3 defined also by the WHO AQG, all monitoring stations presented higher
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values in all studied years (2008 to 2012), except the monitoring station “HOSO” in 2009. It is relevant
to highlight the trend of a decreasing inter-annual variability of PM10 levels, while the levels of PM2.5

show a stable profile during the studied years.
Figure 6 presents the variability of ozone levels and its exceedances of the established limit value

of 120 μg·m−3 (8 h) during the studied period. The highest concentrations were monitored in the
suburban traffic monitoring station “Subestação”, with a total of 115 exceedances in 2007 surpassing
the annual limit of 25. Regarding the eight hours mean, all monitoring stations presented values above
the threshold of 120 μg·m−3 at least once per year. For the period between 2002 and 2011, in Europe
14% of the urban population was exposed to O3 levels above the EU target value for protecting human
health [30]. Higher O3 concentrations are more pronounced in Mediterranean countries from southern
Europe, due to the more favorable meteorological conditions for its formation such as higher biogenic
emissions in summertime, higher insolation, lower deposition under hot and dry conditions and
intensive recirculation of air masses [31,32].

Figure 7 presents the levels of nitrogen compounds during the studied period. The WHO AQG
for NO2 is similar to the European annual limit value of 40 μg·m−3, which was surpassed only once in
2008 in the monitoring station “Subestação”. For NOx, the monitoring station “Quebedo” registered
annual mean levels of almost twice the annual limit value from 2005 to 2008, and after 2008 measured
levels decreased to values slightly higher than the annual limit. The monitoring stations “Camarinha”
(in 2005, 2007, 2009 and 2010), “Tróia” (in 2009) and “Subestação” (in 2010) also registered values
above this threshold. For NO, the annual levels at all monitoring stations were always below the
value of 20 μg·m−3. The decrease in NOx compared to NO2 suggests that the proportion of NO2 in
NOx in ambient air has increased. This can be explained by the fact that in the older diesel engines
approximately 95% of NOx emissions were NO and only 5% were NO2. However, in the new diesel
passenger cars, both engine size and exhaust after treatments (e.g., catalytic converters) increased the
level of NO2 emissions [33].

Overall, the annual variability of the pollutants shows a decreasing trend, except for ozone.
This decrease in pollutant levels is probably due to the implementation of cleaner technologies in
the industry, the development of less polluting vehicles and the impact of the economic crisis that
promoted the decrease of production and closure of some industrial units in the study area [27].

3.3.2. Monthly Trends

The seasonal variability of pollutants concentrations may provide inputs regarding the processes
leading to their production. Figure 8 presents the mean monthly levels of the pollutants measured in
the monitoring stations between 2003 and 2012.

Ozone concentrations present a clear seasonal trend with high levels during summer. This season
has ideal weather conditions for the formation of this atmospheric oxidant: warm temperatures,
sunlight and high emissions of precursor pollutants (NOx and volatile organic compounds - VOC) that
lead to high levels of ozone [32].

The monthly variation of NO, NO2 and NOx concentrations followed the opposite trend with
lower levels during the summer. The stronger vertical atmospheric mixing in summer helps the
dispersion and mixture of pollutants, which contributes to lower NO levels [34]. The apparent NO2

seasonal variation was probably due to NO2 depletion during the tropospheric O3 formation, which is
higher in summer [35,36]. It is also important to highlight the high peak of NOX levels in March
registered at the monitoring station “Subestação”. For PM, the monthly average concentrations did
not present a clear trend.
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Figure 8. Mean monthly levels of PM10, PM2.5, O3, NO, NO2 and NOx registered in the monitoring
stations during the period 2003–2012 for Setúbal area.

3.3.3. Hourly Trends

The daily patterns of the studied pollutants are presented in Figure 9. Regarding particulate
matter, it is possible to observe different daily profiles depending on the type of monitoring station.
“Quebedo” monitoring station is defined as an urban traffic type and it showed higher concentrations
of PM10 during vehicle peak hours, which highlights traffic influence (mainly due to resuspension [37]).
However, it is also possible to observe a similar trend in the stations “Camarinha” (urban background)
and “Fernando Pó” (rural background), which highlights traffic contribution to their PM levels, despite
being classified as background stations.

Overall, in the monitoring stations influenced by traffic, it is possible to observe two daily peaks
during weekdays for PM10 and PM2.5 concentrations: the first between 7:00 and 10:00 and the second
higher one observed between 20:00 and 1:00. This behavior reflects the association of these pollutants
with traffic and the poor dispersion conditions during the evening hours, which are characterized
by strong atmospheric stability and light winds [38,39]. During the weekend, this pattern is not
observable, indicating the lower traffic influence in this period.

The monitoring stations under the influence of industry (“HOSO” and “Praias Sado”) presented a
different behavior of PM10 levels. PM emissions in industrial areas are a complex mixture of stationary
and diffuse emissions associated with general site operations such as stocking and transportation of
raw materials [40].

Traffic influence can also be confirmed regarding the daily pattern during weekdays of NO,
NO2 and NOx where a high level related to traffic peak hours could be found. This is mainly visible
in vehicle peak hours at monitoring stations with traffic influence, such as “Quebedo” (urban traffic)
and “Subestação” (suburban traffic), and also at monitoring stations considered as urban background
(“Camarinha” and “Arcos”), and this is clearly related to engine combustion emissions [41].

NO concentrations were higher in “Quebedo”, “Subestação”, “Arcos” and “Camarinha” than
in the other stations. “Quebedo” and “Arcos” presented a strong correlation with each other (0.82).
These stations have two daily peaks: the first between 7:00 and 9:00 and the second between 17:00 and
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19:00 reflecting the morning and evening rush hours. The trend in “Subestação” was characterized by
only one NO peak between 7:00 and 9:00 and two NO2 peaks in the morning and afternoon, which may
indicate a larger influence of the traffic source and NO emissions during the morning that resulted
in lower NO2/NOx ratios. In the afternoon, the site was less affected by traffic, which increased the
NO2/NOx ratio due to the oxidation of NO.

Figure 9. Hourly levels during weekdays (top) and weekends (bottom) of PM10, PM2.5, O3, NO2, NOx

and NO registered in the monitoring stations during the period 2003–2012 at Setúbal area.
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A relevant difference between weekdays and weekend is possible to observe for the levels of
NO, NO2 and NOx. During weekends the levels go down by half during the peak hours in the urban
stations, when compared with weekdays, which highlights the traffic source of these pollutants.

Regarding ozone, the hourly trends indicate that this pollutant is directly related to the presence of
solar radiation, showing lower values in the evening. Since O3 is a secondary pollutant, which means
that it is not emitted directly into the atmosphere, its production is achieved in the presence of sunlight
by photochemical reactions between NOx and VOCs, explaining the observed pattern. Overall,
O3 levels did not differ significantly among the studied monitoring stations.

3.4. Characterisation of Particulate Matter

In order to understand the pollution sources of particulate matter affecting the study area,
a sampling campaign of fine (PM2.5) and coarse (PM2.5–10) particles was conducted during two different
seasons (winter and summer) in 2011 at two different study sites. This section presents the seasonal
evaluation of PM levels, their chemical characterization and the source apportionment.

3.4.1. Mass Concentrations

PM levels at both studied monitoring stations (“Quebedo” and “Mitrena”) during daytime
and nighttime are shown in Figure 10 for winter and summer, along with their compliance with
European legislation.

Figure 10. PM concentrations (fine and coarse fractions) sampled in “Quebedo” (left) and “Mitrena”
(right) monitoring stations, during winter and summer. Red and blue dash lines stand for the daily
limit value of PM10 (50 μg·m−3) and annual limit value of PM2.5 (25 μg·m−3), respectively, established
by European legislation.

In the urban monitoring station “Quebedo”, levels of fine particles ranged from 2 to 35 μg·m−3

with a mean value of (12.7 ± 8.1) μg·m−3 during the winter period, while during the summer period
PM2.5 levels ranged from 4 to 21 μg·m−3 with a mean value of (9.9 ± 4.5) μg·m−3. Only two exceedances
of the limit value of 25 μg·m−3 were registered in winter and both occurred during the night period.
Regarding the coarse fraction, mean levels of (11.7± 8.2) μg·m−3 and (16.2± 6.7) μg·m−3 were registered
during winter and summer, respectively. PM10 levels ranged from 3 to 55 μg·m−3 during winter with a
mean level of 22 μg·m−3 and from 14 to 53 μg·m−3 during summer with a mean level of 26 μg·m−3.
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Only two exceedances to the daily PM10 limit value of 50 μg·m−3 were registered, one in each sampling
season, but both during the night period.

In the industrial monitoring station “Mitrena”, PM2.5 levels ranged from 2 to 36 μg·m−3 with
a mean value of (13.0 ± 9.6) μg·m−3 during winter, while during summer levels ranged from 2 to
19 μg·m−3 with a mean value of (9.4 ± 4.1) μg·m−3. These levels were very similar to the ones registered
in the “Quebedo” monitoring station. Regarding the coarse fraction, the mean levels registered in
Mitrena (16.4 ± 11.7) μg·m−3 during winter were higher than in Quebedo, principally during the night.
This can be explained by the fact that in the industrial site the PM emissions from industry (mainly
fugitive emissions) occur during 24 h, while the influence of non-exhaust traffic emissions in the urban
area occurs mainly during the day. PM10 levels ranged from 4 to 62 μg·m−3 during winter with a mean
value of 29 μg·m−3, while in summer PM10 levels ranged from 7 to 52 μg·m−3 with a mean value of
25 μg·m−3. In winter, six exceedances of the daily PM10 limit value of 50 μg·m−3 were registered (five
during the night period and one during daytime), while during summer only one exceedance was
recorded (during the night period).

3.4.2. Chemical Characterisation

Tables 3 and 4 present the characterization of both fractions of particulate matter (PM2.5 and
PM2.5-10) sampled in “Quebedo” and “Mitrena” monitoring stations, respectively, regarding the mass
concentrations and the content of chemical elements and water soluble ions.

For both monitoring stations, the most abundant ions in the fine fraction (PM2.5) were SO4
2−,

NO3
− and NH4

+, which are associated with secondary aerosols [42], resulting from emissions of
industry activities and traffic [43]. In the coarse fraction (PM2.5–10), the main components were Cl− and
Na+, which are typically associated with a sea salt source [26], and Ca2+, which is associated with a
crustal origin [42].

The Mann-Whitney test showed that in “Quebedo” only Ca2+, in both fractions, and NH4
+, in the

coarse fraction, presented significant differences between day and night. The higher concentrations
of Ca2+ during the day are probably due to dust re-suspension associated with traffic [37]. NH4

+

presented higher concentrations overnight. In the industrial monitoring station “Mitrena”, no significant
differences between day and night concentrations were found.

During summer in “Quebedo”, considerably high concentrations were registered for: (1) SO4
2−,

due to the strong solar radiation that increases temperature and stimulates the formation of OH
radicals, thus promoting the formation of secondary sulphates [44]; (2) La and Sm in the coarse fraction,
which are associated with increased dust re-suspension in the dry period; and (3) NO3

− in the coarse
fraction, which can be partly attributed to the reaction of HNO3 with mineral species, such as calcium
carbonate and sea salt to form Ca(NO3)2 and NaNO3, respectively. These reactions are prevalent in the
warm season, while in winter NO3

− preferentially reacts with NH3 to form NH4NO3 [45]. During
winter, high concentrations of NO3

− were observed in the fine fraction and a strong contribution
from the wood burning used in dwellings for house heating was also observed corroborated by high
concentrations of K and Sb observed in both fractions and as in the fine fraction when compared with
summer [26,46].

In the “Mitrena” monitoring station, an increase of NO3
− levels in the fine fraction during winter

and in the coarse faction during the summer was observed. SO4
2− only presented high concentrations

in summer for the coarse fraction. As, Sb, Zn and K showed significantly high concentrations in winter
for the fine fraction.
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Figure S1 (supplementary material) provides the comparison between the PM levels and its
components found in both monitoring stations, which allows us to understand the existence of local
or non-local sources for PM. High correlations between both monitoring stations, along with similar
levels in both, were found regarding SO4

2−, NO3
− and NH4

+, which are from secondary aerosols,
along with the ions Na+ and Cl−, which are associated with sea salt spray [42]. These correlations
suggest that these species and elements are from non-local sources. Low correlations were found for Zn,
Sb, As, Cl–, Ca2+, Fe, Sm, K+ and Cr between both monitoring stations, revealing that there were local
sources contributing to the air concentrations of these species. Cr was not associated with a preferential
sampling station, indicating the existence of multiple sources for this element. As, Zn, Cl−, Ca2+ and
K+ presented higher concentrations in “Mitrena”, indicating the existence of local sources for these
species. Sb, Fe and Sm had high levels in “Quebedo” urban traffic monitoring station, probably due to
the contribution of vehicles traffic, namely due to tire and break wear and road dust re-suspension [42].

3.4.3. Identification of Emission Sources

In order to identify and assess the contribution of emission sources to the sampled PM levels,
a source apportionment study was conducted using the PMF model. Figure 11 presents the contribution
of the different sources for the PM levels, where six main chemical sources were identified in both
PM2.5 and PM10. Figure S2 (supplementary material) provides the mass contribution of the assessed
sources to the PM levels of each sampling period.

Figure 11. Source contributions (in %) to PM10 (top) and PM2.5 (bottom) mass sampled in the monitoring
stations “Quebedo” and “Mitrena”.
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Regarding PM2.5, the six main chemical profiles/factors assessed were the following:

(1) Factor 1 was associated with soil since a high association with typical soil elements was found,
namely Ca, Sc, Sm and La [42]. This crustal source contributed, on average, to 8% of the total
PM2.5 mass in “Quebedo” and 15% in “Mitrena”. The contribution of this source was higher
during daytime probably due to the resuspension related to traffic and due to an increase of the
activities dealing with materials handling in the industrial area (“Mitrena”).

(2) Factor 2 presented high associations between the water-soluble ions NH4
+ and SO4

2− and the
elements Co and Se, which are associated with secondary aerosols [47]. This source made an
average contribution of 26% to the total PM2.5 mass in both monitoring stations. In both sites,
a higher contribution was found in summer than in winter and contribution during day and
night was similar.

(3) Factor 3 was associated with sea salt spray since a high association was found between the
water soluble ions Na+, Mg2+ and Cl−, which are associated with this source [42]. This source
contributed around 15% to the total PM2.5 mass in both monitoring stations, with a higher
contribution during summer probably due to the more intense sea breeze and the dominant S/SW
winds registered during that season (Figure 3).

(4) Factor 4 was characterized by water soluble ions K+ and Cl- and by As, which are associated with
wood burning [48]. This source made a high contribution during the winter in both monitoring
stations due to the use of wood burning for house heating. Overall, this source contributed,
on average, 15% and 17% to the total PM2.5 in “Quebedo” and “Mitrena”, respectively.

(5) Factor 5 was associated with a traffic source due to the high association between Sb, NO3
-, As and

Fe. NO3
- is associated with car emissions and As and Sb are typically from mechanical abrasion

of brakes and tires [37,42,49]. Fe may be associated with dust resuspension since this element is
typically associated with crustal sources [42]. The traffic contribution was higher in “Quebedo”
(34%) than in “Mitrena” monitoring station. In both monitoring stations, the contribution of this
traffic source was higher in winter than in summer.

(6) Factor 6 was characterized by Cr, which represents the industrial contribution [50] that was,
on average, 3% and 2% for the monitoring stations “Quebedo” and “Mitrena”, respectively.

For PM10, the same sources were identified, with the exception of the contribution of wood
burning and with the identification of a new source of Ca2+. This calcium source is probably from
the cement industry [41] that exists in the area of Setúbal. Overall, the contribution of this source
to the total PM10 was 27% and 15% in monitoring stations “Quebedo” and “Mitrena”, respectively.
The traffic contributed to 32% of PM10 load in “Quebedo” and 13% in “Mitrena”. The industrial
emissions characterized by Cr and sea salt spray contributed, on average, to around 11% to the total
PM10 in both sites. The secondary aerosols contributed to, on average, 13% and 26% of the total PM10

in “Quebedo” and “Mitrena”, respectively.

4. Conclusions

This study allowed an understanding of the temporal evolution of the air quality during a period
of ten years (2003–2012) in Setúbal, an urban area with a high influence of industrial activities. Overall,
the air quality index has been improving during the studied period. Setúbal has a set of climate
variables, which favors good dispersion of pollutants and, ultimately, confer good air quality in this
region despite strong industrial emissions.

With the exception of ozone, all pollutants have demonstrated a decreasing trend, probably due
to the implementation of cleaner technologies in the industries, the development of less polluting
vehicles; during the study period, the global economic crisis situation also had an impact on the region,
which promoted a decrease in production and the closure of some industrial units. However, despite
this trend, some pollutants still presented exceedances of the European and WHO guidelines, namely,
particulate matter (PM2.5 and PM10), NOx and ozone.
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Characterization of PM2.5 and PM10 levels in the area allowed the identification of the main
sources contributing to local PM levels, namely, traffic, industry and wood burning, which should be
addressed by specific mitigation measures in order to minimize their impact on local air quality.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/15/5447/s1,
Figure S1: Spearman correlations between PM and PM components sampled in the studied monitoring stations:
“Quebedo” (urban traffic type) and “Mitrena” (industrial type). All elements/ions are displayed in ng·m−3 and
PM mass concentration is displayed in mg·m−3, Figure S2: Contribution of each source to total PM10 mass (top)
and total PM2.5 mass (bottom) sampled in the monitoring stations Quebedo and Mitrena, Table S1: Statistical data
(yearly mean [minimum-maximum]) of meteorological variables (relative humidity and temperature, with the
number of measurements, n) registered in the two meteorological stations during the monitoring period of
2004–2012, Table S2: Air quality limit and target values established by the European Commission’s Directive
2008/50/EC [51] and air quality guidelines (AQG) defined by the World Health Organization (WHO) [29].
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Abstract: Road dust resuspension, especially the particulate matter fraction below 10 μm (PM10),
is one of the main air quality management challenges in Europe. Road dust samples were collected
from representative streets (suburban and urban) of the city of Viana do Castelo, Portugal. PM10

emission factors (mg veh−1 km−1) ranging from 49 (asphalt) to 330 (cobble stone) were estimated
by means of the United Stated Environmental Protection Agency method. Two road dust fractions
(<0.074 mm and from 0.0074 to 1 mm) were characterised for their geochemical, mineralogical and
morphological properties. In urban streets, road dusts reveal the contribution from traffic emissions,
with higher concentrations of, for example, Cu, Zn and Pb. In the suburban area, agriculture practices
likely contributed to As concentrations of 180 mg kg−1 in the finest road dust fraction. Samples
are primarily composed of quartz, but also of muscovite, albite, kaolinite, microcline, Fe-enstatite,
graphite and amorphous content. Particle morphology clearly shows the link with natural and traffic
related materials, with well-formed minerals and irregular aggregates. The hazard quotient suggests
a probability to induce non-carcinogenic adverse health effects in children by ingestion of Zr. Arsenic
in the suburban street represents a human health risk of 1.58 × 10−4.

Keywords: road dust; traffic; PM10 emission factors; enrichment index; human health risk

1. Introduction

Particulates that are deposited on a road, usually called “road sediments”, “street dust” or
“road dust”, are significant pollutants in the urban environment because they contain high levels
of toxic metals and organic contaminants, such as polycyclic aromatic hydrocarbons [1,2]. These
materials can be pulverised by the passing traffic and become aerolisable, making up a significant
fraction of atmospheric particles. Another process contributing to the atmospheric particle loads is the
resuspension of road dust, which is due to traffic induced turbulence, tyre friction or the action of the
wind. Amato et al. [3] reported that local dust accounted for 7%–12% of the particulate matter <10 μm
(PM10) concentrations at suburban and urban background sites in southern European cities and 19%
at a traffic site, revealing the contribution from road dust resuspension. In the case of particulate
matter <2.5 μm (PM2.5), the percentages decreased to 2%–7% at suburban and urban background
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sites and to 15% at the traffic site. Results for southern Spain indicated that road dust increased PM10

levels on average by 21%–35% at traffic sites, 29%–34% at urban background sites heavily affected
by road traffic emissions, 17%–22% at urban-industrial sites and 9%–22% at rural sites [4]. In the
urban area of Lanzhou, China, fugitive road dust was found to contribute to 24.6% of total PM2.5

emissions [5]. In Harbin, located at the north region of China, road dust represented 7% to 26%
of PM10 [6]. In Delhi, road dust is the largest contributor to PM10, accounting for 35.6%–65.9% [7].
As motor exhaust emissions decay as a result of increasingly strict limits, the relative importance of
emissions from resuspension and wear (brakes, tyres and road pavement) will grow. These emissions
are recognised as non-exhaust sources. It has been estimated that in 2020 non-exhaust sources will
represent about 90% of total road traffic emissions [8].

Long-term exposure to traffic-generated dust was estimated to cause every year 1.5 to 2 million
premature deaths (mostly women and children) in low-income countries [9]. There is increasing
awareness and concern of the potential adverse impacts of dust on health in high- and middle-income
countries. A systematic literature review of articles on road dust and its effects on health was recently
carried out by Khan and Strand [2]. The components of road dust particles have been associated with
multiple health effects, in particular on the respiratory and cardiovascular systems. The list of health
effects reported in the reviewed articles included chronic obstructive pulmonary disease, asthma,
allergy, carcinoma, emergency cardiovascular disease issues, increased mortality due to cardiovascular
disease, low birth weight and non-specific carcinoma. Numerous studies on the costs and efficacy of
various products (e.g., suppressants) aimed at reducing road dust have been undertaken in the USA,
Canada, Australia, New Zealand, South Africa and several European countries [9–12].

The amount of dust that is generated and then re-settles on the road surface depends on various
factors including traffic speed, vehicle weight, local road conditions and rainfall. In regions with
scarce precipitation, such as the Mediterranean countries, road dust resuspension is one of the major
sources triggering PM10 exceedances. The composition of dust presents huge geographical and
seasonal variations, so it is difficult to create a universal chemical fingerprint for this source [13].
To more accurately apportion the contribution of road dust to the atmospheric particulate matter
levels, to better assess health risks, and to establish cause-effect relationships by seeking potentially
toxic constituents, specific road dust chemical profiles should be obtained for each region or location.
Moreover, to account for this source in pollutant inventories, appropriate emission factors are required.
In Europe, some information on the chemical composition, mainly elemental, of resuspendable road
dust samples from Barcelona, Girona and Zurich [14], four of the most polluted Polish cities [15],
Oporto [1], and Paris [16], have been documented. This paper aims to present not only emission factors
and the chemical composition, but also the mineralogical and morphological characteristics of road
dust, as well as an assessment of health risks, in a medium-sized city with low-pollution levels for
which no previous study has been conducted.

2. Methodologies

2.1. Sampling

Road dust samples were collected in September and October 2018 on representative streets of
Viana do Castelo (latitude: 41◦41′35.63′′ N; longitude: −8◦49′ 58.33′′ W), the most northern Atlantic
city in Portugal with a population of about 40,000 in the most central urbanised area, although the
municipality as a whole reaches 90,000 inhabitants. The city is located between Santa Luzia hill and
the mouth of the river Lima. Its major industries are related to naval construction and repair, with one
of the few large shipyards still in operation. It is also home to a large cluster of wind green electricity
and car-parts industries. The old downtown streets are closed to traffic.

Three streets were selected for road dust sampling (Figure S1):
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(S1) Suburban context—Rua Alto Xisto is a street with cobbled pavement made of granite cubes in
a residential area on the outskirts of the city. One side of the street consists of terraced houses. The other
side is flanked by an agricultural farm with some animals, and vineyard, corn and potato cultivation;

(S2) Urban context—Local road within the campus of the Higher School of Technology and
Management. It is composed of stone mastic asphalt pavement and located a few meters from the
beach and the shipyards;

(S3) Urban context—Avenida Combatentes da Grande Guerra is a central artery connecting to the
train station. It is an avenue with shops, services and an elementary school. Its cobbled pavement is
made of granite cubes.

The selection of streets was carried out in collaboration with the city council. It was considered
that the urban area could be subdivided into three sectors: (i) a residential area with a lower population
density and some agricultural influence, (ii) a central area with a higher volume of traffic where the
main commercial activities and public services take place, (iii) and another area on the coast line, also
with busy streets, but with industrial influence. For each sector, a street representing the dominant
pavements and traffic was chosen. The various samplings took place on 3 weekends in September
and October 2018 and implied the traffic cut by the police authorities. Road dust was collected on
delimited lane sections using a vacuum cleaner, following the procedure described by the United
Stated Environmental Protection Agency (USEPA) in its AP-42 document [17]. In each street, several
subsamples were obtained by vacuuming segments of 20 m in length and width corresponding to
the lanes. The collection of the first subsample started at a distance of 50 m from the intersection
with another street. Distances of approximately 50 m were maintained between sampled segments.
The weight of subsamples ranged from about 200 to 600 g. For each road, a composite sample from a
minimum of 3 incremental subsamples was created.

2.2. Geochemical, Mineralogical and Morphological Characterisation

After sampling, the vacuum cleaner bags were stored in polyethylene bags and brought to the
laboratory, where the USEPA methodology for analysis of surface/bulk dust loading samples was
followed [18]. Samples were wet sieved with addition of distilled water through standard Taylor
screens, dried at ~40 ◦C, and weighed in a microbalance with 1 μg sensitivity. While particles >1 mm
were rejected, the fraction <0.074 mm (F1) and that between 0.0074 and 1 mm (F2) were retained for
further analyses.

The chemical composition of the road dust fractions was determined by X-ray fluorescence
(XRF) using an Axios PW4400/40 X-ray (Marvel Panalytical, Almelo, The Netherlands) fluorescence
wavelength dispersive spectrometer. The limit of detection (LOD) (i.e., the concentration at which
it is possible to distinguish the signal from the background) is provided in Table 1. Mineralogy was
determined by X-ray diffraction (XRD) using a X’Pert-Pro MPD diffractometer (Marvel Panalytical,
Almelo, The Netherlands) with a Cu-Kα radiation at 45 kV, 40 mA, and with a step size of 0,02◦2θ,
in 2◦–90◦ 2θ angle range. A Hitachi S-4100 scanning electron microscope (SEM) equipped with a
Quantax 400 Energy Dispersive Spectrometer (EDS) (Bonsai Advanced, Madrid, Spain) was used for
point and area chemical analyses. Particle size distributions of road dusts were determined by X-ray
sedimentation technique with a Sedigraph III Plus grain size analyser (Micromeritics Instrument Corp.,
Norcross, GA, USA). This technique for determining the relative mass distribution of a sample by
particle size is based on two physical principles: sedimentation theory (Stokes’ law) and the absorption
of X-radiation (Beer-Lambert law). Precision and accuracy of analyses and digestion procedures were
monitored using internal standards, certified reference material and quality control blanks.
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2.3. Estimation of Emission Factors

Road dust emission factors (EFs) were estimated using the equation outlined in the AP-42A
document of USEPA [19] for paved roads:

EF = k (sL/2)0.65 × (W/3)1.5 − C, (1)

where:
EF = PM10 emission factor (g veh−1 km−1),
k = particle size multiplier for particle size range and units of interest (0.46 g veh−1 km−1 for PM10),
s = surface material silt content, defined as particles that pass through a 200-mesh screen, which

corresponds to 74 μm (%),
L = surface material loading, defined as mass of particles per unit area of the travel surface (g m−2),
W = average weight (tons) of the vehicles travelling the road (a value of 2 tons was assumed),
C = emission factor for 1980’s vehicle fleet exhaust, brake wear and tyre wear (0.1317 g veh−1 km−1

for PM10).

2.4. Enrichment Index

The enrichment index (EI) of an element is based on its concentration and the concentration of
a reference element. The latter is chosen based on its low occurrence variability in order to identify
geogenic and anthropogenic contributions. Due to the abundant natural occurrence on Earth’s crust,
Al was selected for this study. EI was calculated as follows:

EIx =
(
X/Cre f

)
sample/

(
X/Cre f

)
crust, (2)

with EIx is the enrichment index of the element X, X the concentration of the element and Cref the
concentration of the reference element (Al). The Earth’s crust individual elemental composition
was taken from Riemann and Caritat [20]. EI < 1 indicates no enrichment (natural contribution),
1 ≤ EI <3 minor anthropogenic enrichment, 3 ≤ EI < 5 moderate anthropogenic enrichment, 5 ≤ EI < 10
moderately severe anthropogenic enrichment, 10 ≤ EI < 25 severe anthropogenic enrichment,
25 ≤ EI < 50 very severe anthropogenic enrichment, and EI ≥ 50 extremely severe anthropogenic
enrichment [21].

2.5. Human Health Risk Assessment of Exposure to Potential Toxic Elements in Road Dust

A human health risk assessment assumes that residents, both children and adults, are directly
exposed to potential toxic elements through three different routes: ingestion, dermal absorption and
inhalation of particles [22–24]. For road dust, it was assumed that intake rates and particle emission
are similar to those established for soils. Equations (3)–(5) were used to estimate the chronic daily
intake (CDIroute, ingestion and dermal in mg kg−1·d−1; inhalation in mg m−3 for non-carcinogenic
effects, and μg m−3 for carcinogenic effects) of each exposure route and for separated elements:

CDIing−nc =
C × IngR× EF× ED

BW ×ATnc
× 10−6, (3)

CDIdrm−nc =
C× SA× SAF×DA× EF× ED

BW ×ATnc
× 10−6, (4)

CDIinh−nc =
C× InhR× EF× ED
PEF× BW ×ATnc

, (5)

where, C (mg kg−1) is the concentration of the element in road dust, IngR is the ingestion rate (200 and
100 mg d−1 for children and adults, respectively), InhR is the inhalation rate (7.6 and 20 m3 d−1 for
children and adults, respectively), EF is the exposure frequency (180 d yr−1), ED is the exposure
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duration (6 and 24 years for non-carcinogenic effects in children and adults, respectively, and 70 years
is the lifetime for carcinogenic effects), BW is the average body weight (15 and 70 kg for children and
adults, respectively), ATnc is the averaging time for non-carcinogenic effects (AT days = ED × 365),
SA is the exposed skin area (2800 and 5700 cm2 for children and adults, respectively), SAF is the
skin adherence factor (0.2 and 0.07 mg cm−2 for children and adults, respectively), DA is the dermal
absorption factor (0.03 for As and 0.001 for other elements), and PEF is the particulate emission factor
(1.36 × 109 m3 kg−1) [22–26].

For each element and route, the non-cancer toxic risk was estimated by computing the chronic
hazard quotient (HQ, Equation (6)) for systemic toxicity [24]. A HQ less than or equal to 1 indicates
that adverse effects are not likely to occur, and thus can be considered to have negligible hazard, while
HQ > 1 suggests that there is a high probability of non-carcinogenic effects to occur. To estimate the
overall developing hazard of non-carcinogenic effects, it is assumed that toxic risks have additive
effects. Therefore, it is possible to calculate the cumulative non-carcinogenic hazard index (HI), which
corresponds to the sum of HQ for each pathway (Equation (7)) [27].

HQroute =
CDIroute

R f Droute
, (6)

HI =
∑

HQ = HQing + HQdrm + HQinh, (7)

with RfD being the chronic reference dose (values estimated as given in RAIS) [24].
The probability of an individual to develop any type of cancer over his lifetime (Risk), as a result

of exposure to the carcinogenic hazards, was computed for each route according to Equation (8).
The carcinogenic Total Risk is the sum of risk for each route (Equation (9)). A cancer risk below
1 × 10−6 is considered insignificant, being this value the carcinogenic target risk. A risk above 1 × 10−4

(a probability of 1 in 10,000 of an individual developing cancer) is considered unacceptable [22–24,27]:

Riskroute = CDIroute ×CSFroute, (8)

Total Risk =
∑

Risk = Risking + Riskdrm + Riskihn

= CDIing−ca ×CFSing + CDIinh−ca × IUR +
CDIdrm−ca×CSFing

ABSgi
,

(9)

CDIinh−ca =
c× IngRadj × EF

ATca
× 10−6, (10)

IngRadj =
EDchild × IngRchild

BWchild
+

(EDresident − EDchild) × IngRadult

BWadult
, (11)

CDIinh−ca =
C× EF× ET × ED
PEF× 24×ATca

, (12)

CDIdrm−ca =
c×DAd × EF×DSFadj

ATca
× 10−6, (13)

DSFadj =
EDchild × SAchild × SAFchild

BWchild
+

(EDresident − EDchild) × SAadult × SAFadult

BWadult
(14)

where CSF is the chronic slope factor (ingestion, (mg kg−1 d−1)−1; dermal, CSFing/ABSgi), ABSgi is the
gastrointestinal absorption factor, IUR is the chronic inhalation unit risk ((μg m−3)−1), DFSadj is the
soil dermal contact factor-age-adjusted (362 mg yr kg−1 d−1), ATca is the averaging time carcinogenic
effects (AT days = LT × 365) and ET is the exposure time (8 h d−1) [27].
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3. Results and Discussion

3.1. PM10 Emission Factors

For granite cube paved streets, very close PM10 emission factors were found: 277 mg veh−1 km−1

(central avenue, S3) and 330 mg veh−1 km−1 (street on the outskirts of the city, S1). On the asphalt
paved street (S2), a much lower PM10 emission factor was obtained (49 mg veh−1 km−1). Using an
in-situ resuspension chamber, PM10 emission factors in the range 12.0–29.4 mg veh−1 km−1, averaging
18.6 mg veh−1 km−1, were determined for asphalt roads in the city of Oporto [1]. However, a much
higher value of 1082 mg veh−1 km−1 was estimated for a cobbled pavement in the same city. According
to the researchers, this great emission factor was due to the very high roughness of cobblestones, which
may have promoted the build-up of road sediments. Moreover, the joints between granite cubes filled
with soil may have constituted an additional source of resuspendable dust. Following the USEPA
methodology, PM10 emission factors for typical urban roads in Milan within 13–32 mg veh−1 km−1

were recently reported, which were found to be in the central range of the literature values in
Europe [28]. Based on micro-scale vertical profiles of the deposited mass, PM10 emission factors from
5.4 to 9.0 mg veh−1 km−1 were obtained at inner-roads of Paris, whilst a higher value was estimated for
the ring road (17 mg−1 veh−1 km−1) [16]. Based on a literature review, Boulter et al. [29] summarised
the available information on emissions from road dust resuspension for the United Kingdom, USA,
central and northern Europe. Differences in emission factors may be associated with local factors,
such as road pavement type, regularity of street washing and precipitation events. On the other hand,
while in Southern Europe high solar radiation is usually recorded, favouring the mobility of deposited
particles, winter sanding or salting of roads and the use of studded tyres in Scandinavian and Alpine
regions may promote the enhancement of road dust loadings. Road PM10 emission factors documented
for Europe are, in general, lower than those reported for the USA. However, it must not be forgotten
that American databases are older than European ones.

3.2. Geochemical Characterization of Dust and Enrichment Index

Road dusts are known for their heterogeneous mix with diverse natural and anthropogenic
origins. The composition can vary depending on geographical location, resuspended soil, atmospheric
deposition and anthropogenic sources, which include traffic related particles such as metallic
components, eroded road pavement, but also building construction and demolition, and power
generation [14,30].

Cluster analysis of the XRF results (Figure S2) of the studied samples (S1 suburban environment
influenced by agricultural activities; S2 and S3 urban streets) confirmed the chemical difference
between the two analysed fractions (F1 with samples <0.074 mm; F2 with sizes >0.074 mm and <1 mm).
Elemental concentrations (Table 1) revealed Si as the most representative constituent, followed by
Al > K > Fe > Ca > Na. The highest Si content was found in F2 (fraction >0.074 mm and <1 mm).
The enrichment index (Figure S3) suggests a low influence of anthropogenic activities in both size
fractions (EI < 1.5). Crustal erosion and parent materials (e.g., Variscan granite parent rock) may also
influence the concentrations of other elements, such as Fe, Al, Mg, Mn, Rb, Na, Ti, Mo, V and Zr [31].
Previous studies suggest that heavy metals such as Mn, V, Cu, Fe, Ni, Pb and Zn are linked to traffic
emissions [32,33]. Low enrichment indices (<3) were also obtained for manganese, indicating a major
natural source. However, this element is used in fuel additives, aluminium based alloys offering a
high corrosion resistance and formability, vehicle applications, such as inner panels, and heater and
radiator tubes.
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Table 1. Summary descriptive statistics of elements analysed in two size fractions of road dusts from
three selected locations. Concentrations in mg kg−1.

LOD
F1 F2

min–max Med ± SD min–max Med ± SD

Al 0.50 64,013–95,874 75,836 ± 13,150 54,873–67,749 66,241 ± 5748
As 4.06 28–180 35 ± 70 12–21 18 ± 3.5
Ba 6.90 270–560 390 ± 119 250–490 290 ± 105
Br 0.78 37–62 49 ± 11 7.7–17 11 ± 4.0
Ca 0.50 17,146–58,412 19,669 ± 18,887 9,806–27,938 13,687 ± 7795
Cl 0.50 3090–11,610 6890 ± 3485 220–400 330 ± 74
Cr 1.96 48–230 210 ± 81 49–67 60 ± 7.5
Cu 2.84 95–870 260 ± 333 31–210 42 ± 82
F 0.60 920–1350 1170 ± 176 1160–1640 1220 ± 214
Fe 0.50 27,613–39,895 35,188 ± 5059 17,353–18,633 18,416 ± 559
Ga 0.94 14–18 15 ± 1.5 9.6–12 10 ± 0.8
K 0.60 31,969–48,614 43,318 ± 6943 38,146–47,095 43,102 ± 3661

Mg 0.50 5947–6887 6610 ± 395 2883–5030 3920 ± 877
Mn 5.62 472–488 480 ± 6.3 248–279 263 ± 13
Mo 0.78 1.3–2.9 2.1 ± 0.7 2.9–11 6.9 ± 3.3
Na 0.50 10,416–14,214 10,638 ± 1740 8583–16,454 10,349±3372
Ni 2.00 15–29 16 ± 6.2 4.4–8.7 5.7 ± 1.8
P 0.60 3561–5158 3 749 ± 713 1554–2453 1667 ± 400

Pb 1.72 81–310 86 ± 107 37–79 40 ± 19
Rb 0.64 230–350 240 ± 54 200–250 220 ± 21
S 0.50 2908–19,384 4870 ± 7348 1173–1970 1950 ± 371

Sb 4.18 nd nd 5.1–35 5.2 ± 14
Si 0.50 175,454–239,759 229,176 ± 28,153 312,012–320,823 316,480 ± 3597
Sn 3.02 35–75 36 ± 19 19–25 23 ± 2.6
Sr 0.72 90–250 190 ± 66 55–350 76 ± 134
Ti 0.50 3717–5809 4310 ± 880 2668–2836 2668 ± 79
U 1.22 3.5–4.1 3.6 ± 0.3 8.5–13.2 11.2 ± 1.9
V 2.78 10–23 15 ± 5.2 28–47 38 ± 7.6
W 3.70 nd nd 7.7–25 16 ± 8.7
Zn 1.28 680–1870 1180 ± 488 160–510 220 ± 153
Zr 0.80 270–550 360 ± 117 41–74 70 ± 15.0

F1—fraction <0.074 mm; F2—fraction >0.074 mm and <1 mm; min—minimum; max—maximum; med—median;
SD—standard deviation; nd—not detected.

Iron, with higher concentrations in fraction F1 (max = 39,895 mg kg−1), showed comparable
results to those obtained for road dusts in Xi’an [34], Shanghai [35], Hong Kong [35], Beijing [35],
Delhi [36] and Madrid [37], suggesting a significant geogenic contribution, which is confirmed by
EI < 3. Elements such as Al, Fe, Ti, Zr and Na have a potential source in soil resuspended dusts and
marine spray (EI < 3). The anthropogenic contribution may be linked to the application of these
elements in the production of metal alloys commonly used in vehicles (e.g., Fe as a major component of
steel and associated rust); Al alloys associated with other elements such as Mg, Mn and Cu to reduce
vehicle weight; alloys with Mn to avoid corrosion and deformation; sulphides (such as Sb2S3, MoS2 and
SnS) and sulphates such as barite (BaSO4) applied in brakes; titanium oxide (TiO2) used as a pigment
in white paints; and aluminium oxide and iron oxides also employed in brakes [33,38]. The detection
of Zr may be, in part, related to vehicle exhaust emissions, since ceria/zirconia (CeO2/ZrO2) mixed
oxides have become an essential component of three-way catalysts [39]. Asphalt materials are usually
rich in Al, Si, K, and Ca, with smaller amounts of Fe, S, Mg, Zn, and Ti [40]. Elements such as P and K
are commonly used in agriculture activities (e.g., phosphate, potassium nitrate). Higher concentrations
of these elements were found in samples from the suburban location, indicating the contribution of the
surrounding agricultural environment to road dust. The median concentrations of lead, chromium
and copper in samples of urban streets, particularly in F1 fraction, were similar to those of other
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studies (e.g., Thessaloniki [41], Shiraz [42], Urumqi and Zhuzhou [43]). Lead, chromium and copper
concentrations in the ranges 48–375, 2.0–498 and 47–995 mg kg−1, respectively, have been reported for
street dusts of different cities on various continents [44], and references therein.

The enrichment index of Zn in the finest fraction (F1) ranged from 10.6 to 43.5, with a moderate
(suburban location) to very severe anthropogenic enrichment (urban streets). Zn has been reported
to be present as a minor constituent of silicate minerals and linked to fly-ash particles and to traffic
related materials. Tyre rubber (ZnO and Cu/Zn layers formed during vulcanisation) and break wear
resuspended particles are major sources of Zn, together with Cu, in urban areas [45]. Zn is also used as
engine oil additive. Sternbeck et al. [46] suggested that fuel combustion may be a significant source of
Zn. Nickel is a ubiquitous natural metal, used in the production of stainless steel and other nickel
alloys with high corrosion and temperature resistance. It is considered a tracer of oil combustion [47].
The high concentration of Ba is likely related to brake wear since BaSO4 (barite) is used as filler for
brake lining materials [48].

Antinomy concentrations revealed a very high enrichment index (F1 = 29.3; F2 = 158) in road
dust from the central avenue (S3). This is a busy street with frequent braking, especially in front of
the elementary school. Since there is no dedicated parking, parents stop at the lane to drop off or
pick up their children. Antimony increases the hardness and mechanical strength of lead and is a
significant metallic component in brake linings. It is also used in batteries and antifriction alloys, as
additive in some types of oils, and applied in semiconductors and Sb2O3 in rubber vulcanisation flame
retardants [40,49]. Cooper in the coarser fraction (F2) of samples from urban streets showed an EI
of 73.6 and 18.6, while the corresponding value for the suburban location was 5.3. This element is
commonly associated with traffic related activities, e.g., a component of brake pads wear. A mean
Cu/Sb concentration ratio of 6.3 was obtained, in line with the 4.6 ± 2.3 diagnostic criteria proposed by
Sternbeck et al. [46] for brake wear particles.

The maximum lead concentration in the coarse fraction did not exceed the minimum value
recorded in the finest fraction. The highest concentration was found in the city centre (310 mg kg−1),
while the minimum was recorded in the suburban area with rural influence (81 mg kg−1). According
to Ferreira [50], the concentration of Pb in natural soils in this region is in the range 30–45 mg kg−1.
Thus, the higher values observed in the present study suggest anthropogenic sources. This element
presented an EI of 22.1 in fraction F2 from urban locations, whilst a value of 4 was determined for the
suburban area. Lead and lead compounds are used in batteries and as pigments in paints. It has been
documented that lead weights, which are used to balance motor vehicle wheels, are lost and deposited
in urban streets, that they accumulate along the outer curb, and that they are rapidly abraded and
ground into tiny pieces by vehicle traffic [51]. Lead oxide is a component of brake friction materials [15].
Its elevated concentrations in urban dust could be a consequence of common use of PbO4 as a gasoline
additive in Portugal until the year 2000. Most of Pb is bound to stable fractions and only a negligible
percentage is mobile, which contributes to its long persistence in the environment [15,45]. Tin revealed
high EI, ranging from 11.6 in road dust samples from the suburban location to 36.3 in samples from
urban streets. Tin was found to be one of the major elements in bulk brake pad samples, as well in
airborne nano/micro-sized wear particles released from low-metallic automotive brakes [52]. Urban
samples revealed a high W anthropogenic enrichment (EI up to 20.9). Tungsten is linked to break pads
and tyre wear [53]. The abundant use of Br as flame retardant in several types of materials may explain
the high EI of this element (23.3 and 47 in F1 of urban samples) [54].

An arsenic concentration of 180 mg kg−1 (EI = 72.7), six times higher than in urban samples,
was observed in fraction F1 of the suburban sample. Arsenic rich particles in this road dust sample
may originate from resuspended agricultural soil. It should be borne in mind that the street where
the sampling took place is flanked by a farm. In addition to the abundant natural origin, there are
many agricultural sources of arsenic to the soil, from pesticide application, livestock dips, organic
manure to phosphate fertilisers [55]. Elemental As is used in the manufacture of alloys, particularly
with lead (e.g., in lead acid batteries) and copper. Arsenic compounds are also extensively used in
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the semiconductor and electronics industries, in catalysts, pyrotechnics, antifouling agents in paints,
among others. Fossil fuel combustion is considered a major contributor of anthropogenic As emissions
to the air (mainly AsIII). Arsenic is present in the air of suburban and urban areas mainly in the
inorganic AsV form. Background concentrations in soil range from 1 to 40 mg kg−1, with a mean value
of 5 mg kg−1 [56], much lower than the levels found in this study.

3.3. Mineralogical Composition

The mineralogy of the two particle size fractions of the road dust samples was compared. X-ray
diffraction results showed that road dust samples consist primarily of mineral matter accounting for a
minimum of ~60%. The most abundant mineral was quartz [SiO2], especially in the coarse fraction.
Quartz has higher structural hardness than other minerals preventing physical weathering and abrasion
of road surfaces. Other minerals also present were muscovite [KAl3Si3O10(OH)2], albite [NaAlSi3O8],
kaolinite [Al2Si2O5(OH)4], microcline [KAlSi3O8], Fe-enstatite [(Fe,Mg)2Si2O6] and graphite [C]. Minor
proportions of calcite [CaCO3] and rutile [TiO2] were also observed, mostly in the coarse fraction of
road dust collected in the suburban location. Clay forming minerals increase with the decrease of
particle size. A significant proportion of amorphous content was detected in all samples, particularly
in the finest fraction. This content may originate from weathered minerals, clays with low detection
limit, organic matter and anthropogenic sources [57].

The bulk composition suggests that the SiO2 content of all samples reflects the abundance of
leucocratic phases (quartz and feldspar) in the coarser fractions of road dust, while Fe, Ti and Mg
indicate the higher abundance of melanocratic phases (biotite, garnet and hornblende) in the finer
fractions. The ternary diagram Al2O3/CaO+Na2O+K2O/FeO+MgO (Figure 1) [58] of the studied
samples defines three compositional trends, suggesting slightly different sources for each location.
The composition of road dust from the suburban street (S1) reveals a feldspars/muscovite trend,
S2 (urban) plots in the feldspars/biotite, and S3 (central avenue) in the feldspars/biotite with more
compositional Ca. Feldspars are the most abundant mineral in all fractions. The ternary diagram
Al2O3/CaO+Na2O/K2O suggests that all samples are closer to K-feldspar composition than plagioclase,
and present also high content of micas (lever rule). This graphical analysis is in line with the XRD
analysis, being quartz the most abundant mineral that is not plotted in these ternary diagrams.

The chemical index of alteration (CIA = (Al2O3/(Al2O3+CaO*+Na2O+K2O)) × 100, where CaO*
is CaO if CaO < Na2O, but if CaO > Na2O, CaO = Na2O) [58,59] indicates: (a) low weathering if
50–60; (b) intermediate weathering if 60–80; and (c) intense weathering when >80 [60]. The coarser
fraction of road dust from urban streets (S2 and S3) reveal a low weathering, with CIA = 57.3 and 58.4,
respectively. The same road dust fraction of the sample collected at the suburban location (F2 of S1)
indicate a low intermediate weathering with CIA = 61.6. The finest fractions (F1) of all samples present
intermediate weathering, ranging from 61.3 to 67.6.

To assess the alumina abundance compared to other major cations, the index of compositional
variation (ICV = ((Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2)/Al2O3) was calculated [61,62].
Minerals such as kaolinite, illite and muscovite present ICV < 1, whereas minerals such as plagioclase,
K-feldspar, biotite, amphiboles and pyroxenes have ICV > 1. The road dust sample from the suburban
location influenced by agricultural activities, for both size fractions, presented an ICV < 1 (0.84 and
0.92), while the urban samples S2 and S3 revealed an ICV > 1 for both fractions (1.06 to 1.73), indicating
an enrichment in rock forming minerals. The limitation of using the elemental composition to identify
road dust sources should be noted, as not only the natural but also the anthropogenic contribution
must be considered.
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Figure 1. Ternary diagrams (a) Al2O3—CaO+Na2O+K2O—FeO+MgO, and (b) Al2O3—CaO+Na2O
+K2O—FeO+MgO of the studied samples (adapted from [58]). Stars plotted indicate the average
composition of the Earth’s crust and granite [20]. S1—suburban street, cobbled pavement; S2—urban
street, asphalt pavement; S3—central avenue, cobbled pavement.

3.4. Morphology

The SEM analysis revealed the presence of well-formed minerals and irregular aggregates, with
abundant silicate minerals and an un-sorted mixture of geogenic and anthropogenic particles (Figure 2).
Particles with irregular and subangular to angular shapes, including plate like morphology, with
variable chemical composition that comprises Fe, Cu, Zn, S, Al, Ti and Sb, suggest abrasion processes
on their formation, such as tyre, break and pavement wear and vehicle corrosion interfaces. Rounded,
longish and plate-like particles were also found. Although some of the particles present a larger size,
they are formed by several smaller particles, usually <10 μm, which are composed of a mixture of
anthropogenic and natural substances. It is known that brake abrasion generates particles containing
Zn, Cu, Ti, Fe, Cu, and Pb, and other specific compounds such as sulphate silicate and barium sulphate.
Particles from tyre abrasion comprise Cd, Cu, Pb, and Zn [63,64]. Silicates and Fe oxides/hydroxides
tied to Cl/S can also be associated with traffic or resuspension. Particles with spherical morphology
are produced in high-temperature processes (e.g., asphalt and industry/metallurgy). Silicate and
iron plerospheres and cenospheres in fly ashes were also found, with typical Si-Al-Fe-Cu-Ca and
Fe-Si-Al-Na compositions. Although carbon could not be calculated due to the SEM analysis technique,
its presence was confirmed by the XRD analyses. Asphalt paving, or bituminous, materials are mainly
made of carbonaceous components (e.g., saturated hydrocarbons, aromatics, asphaltenes, etc.) that
are mixed with mineral aggregates. In addition to metals, particles from brake-pad and brake-disc
abrasion consists of carbon fibres and graphite, while particulate material from tyre wear comprises
various carbonaceous constituents (organic compounds such as natural rubber copolymer, organotin
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compounds, and soot) [64]. Particle size indicates that road dust might be an important source of
resuspended atmospheric particulate matter associated with non-exhaust emissions (e.g., brake, tyre,
and road wear), as suggested in previous studies [65]. The size of most of the non-exhaust particles is
commonly much larger than that of exhaust particles, since its formation comprises processes such as
corrosion, crushing and mechanical abrasion.

Figure 2. SEM images and composition of anthropogenic and geogenic road dust particles:
(a–f) plerospheres, cenospheres, aggregates, plate like particles and fibrous steel with considerable
plastic deformation and fragmentation; (g) irregular aggregates; (h) porous Ca-Si-Fe rich particle;
(i,j) well-formed minerals.
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3.5. Grain Size Distribution

The grain size distribution of road dusts is presented in Figure 3. Results show a similar pattern
for both suburban (S1) and urban areas (S2 and S3) with a marked unimodal distribution. The mass
volume of particles peaked in the range from 10 to 106 μm, although small modes, barely noticeable,
were observed below 5 μm. Particles < 100 μm can easily be resuspended in the wake of passing
traffic or by the blowing wind and might enter the mouth and nose while breathing. Particulate matter
of 10 and 2.5 μm or less in diameter (PM10 and PM2.5, respectively) can get deep into the lungs and
some may even get into the bloodstream. Urban sample S3 presented a higher percentage of PM10,
with S3PM10 37.8% > S1PM10 27.2% > S2PM10 25.0%, while PM2.5 represented a smaller fraction, with
4.5% (S3) > 3.0% (S1) > 2.7% (S2) of the total mass volume. A literature review by Grigoratos and
Martini [66] documented unimodal mass size distributions of brake wear PM10, with a mass weighed
mean diameter of 2–6 μm. On the other hand, tyre wear PM10 often exhibits a bimodal distribution with
one peak lying within the fine particle size range and the other one within the coarse range (5–9 μm).
It is estimated that almost 40%–50% by mass of generated brake wear particles and 0.1%–10% by mass
of tyre wear particles is emitted as PM10. In terms of mass, more than 85% of diesel particulate exhaust
emissions are below 1 μm. Gasoline vehicles emit an even higher proportion of smaller particles than
diesel vehicles [67].

 

Figure 3. Size distribution (%) of road dust particles, Ø < 106 μm.

3.6. Human Health Exposure Assessment

The hazard quotient (HQ), or non-carcinogenic effects, suggest that ingestion is the major route of
children’s exposure to road dusts, with HQing ≈ HI (Figure 4), both by hand-to-mouth common habits
and by resuspended particles. Dermal and inhalation routes can be considered negligible. Fraction F1
revealed a higher probability to induce non-carcinogenic health effects in children. The HI values for
adults were approximately an order of magnitude lower than those for children. For both children
and adults, Zr is the element that most contributes to possible non-carcinogenic effects. Adverse
health effects may occur mostly by ingestion of resuspended particles (children: F1 HQing-Zr ≈ HI
ranging from 27.51 to 553.10; F2 HQing-Zr ≈ HI ranging from 5.66 to 8.71; adults: F1 HQing-Zr ≈ HI
ranging from 2.52 to 5.13; F2 HQing-Zr ≈ HI ranging from 0.38 to 0.69). Studies suggest that Zr and
its compounds represent a risk for pulmonary health effects (benign) potentially associated with
short-term exposure [68].
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Figure 4. Non-carcinogenic chronic hazard quotient (HQ) of Al, As, Cu, F, Fe, Mn, Rb, V and Zr by
ingestion in children and cumulative non-carcinogenic hazard index (HI). Logarithmic scale.

The probability of an individual to develop any type of cancer over lifetime (Risk) by As (RiskAs)
content in fraction F1 of the suburban sample is 1.58 × 10−4 (Table 2), a Risk above the acceptable
target of 1 × 10−4 proposed by USEPA [24], so the adoption of local measures is suggested. Fraction
F2 of the same sample showed a RiskAs = 1.58 × 10−5. RiskAs values of 3.07 × 10−5 and 2.46 × 10−5

were obtained for fraction F1 of road dust from urban streets, while the corresponding values for
fraction F2 were 1.84 × 10−5 and 1.05 × 10−5. These cancer risks are in the range for which management
measures are required. The dermal risk for As in all samples and fractions was also within this range.
Arsenic and its inorganic compounds are classified as carcinogenic to humans since 2012 [69]. The Pb
content in fraction F1 of sample S3 is also indicative that, by the ingestion pathway, it may pose a risk
(2.24 × 10−5) to human health.

Table 2. Estimated human health risk for elements As and Pb.

F1 F2

ID ing inh drm Total ing inh drm Total

S1

As 1.38 × 10−4 1.2038 × 10−7 2.0238 × 10−5 1.5838 × 10−4 1.3838 × 10−5 1.2038 × 10−8 2.0238 × 10−6 1.5838 × 10−5

Pb 5.8538 × 10−7 1.5038 × 10−10 – 5.8638 × 10−7 2.6738 × 10−7 6.8738 × 10−11 – 2.6738 × 10−7

total 1.3838 × 10−4 1.2038 × 10−7 2.0238 × 10−5 1.5938 × 10−4 1.4038 × 10−5 1.2038 × 10−8 2.0238 × 10−6 1.6138 × 10−5

S2

As 2.6838 × 10−5 2.3338 × 10−8 3.9338 × 10−6 3.0738 × 10−5 1.6138 × 10−5 1.4038 × 10−8 2.3638 × 10−6 1.8438 × 10−5

Pb 6.2238 × 10−7 1.6038 × 10−10 – 6.2238 × 10−7 2.8938 × 10−7 7.4338 × 10−11 – 2.8938 × 10−7

total 2.7438 × 10−5 2.3538 × 10−8 3.9338 × 10−6 3.1438 × 10−5 1.6438 × 10−5 1.4138 × 10−8 2.3638 × 10−6 1.8738 × 10−5

S3

As 2.1438 × 10−5 1.8638 × 10−8 3.1438 × 10−6 2.4638 × 10−5 9.1838 × 10−6 7.9938 × 10−9 1.3538 × 10−6 1.0538 × 10−5

Pb 2.2438 × 10−5 5.76 × 10−10 - 2.24 × 10−5 5.71 × 10−7 1.47 × 10−10 – 5.71 × 10−7

total 2.3738 × 10−5 1.92 × 10−8 3.14 × 10−6 2.68 × 10−5 9.75 × 10−6 8.13 × 10−9 1.35 × 10−6 1.11 × 10−5

F1—fraction <0.074 mm; F2—fraction >0.074 mm and <1 mm; ing—ingestion; inh—inhalation; drm—dermal.

4. Conclusions

Road dust resuspension is one of the major sources causing PM10 exceedances, with detrimental
effects on climate and human health. It has been demonstrated that emission inventories must use
locally determined emission factors as these vary not only with weather and road conditions, but also
with vehicle fleet. This study offers the first experimental estimates for road dust emission factors
in the region of Viana do Castelo. A PM10 emission factor of 49 mg veh−1 km−1 was derived for an
asphalt-paved road, which is in the range of values documented for the same type of pavement in a
few other southern European cities, while much higher emissions (around 300 mg veh−1 km−1) were
found for cobble stone streets. Although sampling took place in only three streets, these were carefully
selected to represent different sectors of the city. On the other hand, because composite samples were
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obtained from multiple road segments and the fact that the emission factors of the present study
are similar to those determined in a previous work for several streets in Oporto, also an Atlantic
city with comparable pavements and traffic fleet, the representativeness of the values now estimated
is broadened.

The chemical composition and the enrichment indices suggest an anthropogenic contribution of
traffic-related elements, such as Br, Cl, Cr, Cu, P, Pb, S, Sn, W and Zn, especially to the finest road dust
fraction (F1, <0.074 mm) from urban streets. In these locations, the fingerprint of marine spray is also
identified with higher concentrations of Cl, Na and Mg. Samples from the suburban area presented
an extremely severe anthropogenic enrichment in the finest fraction for the element As, possibly
linked to agricultural activities and fossil fuel combustion. Quartz was mostly present in the coarser
fraction, in which it was the most abundant mineral. Other minerals derived from natural sources
were also observed (muscovite, albite, kaolinite, Fe-enstatite and graphite), as well as a significant
amount of anthropogenic-related materials (amorphous). SEM and EDS analyses indicated that the
main constituents in the amorphous content originated from non-exhaust traffic sources (brake, tyre
and road abrasion) and from fuel combustion.

The estimation of non-carcinogenic health risks due to exposure to heavy metals indicated that
children may experience adverse effects due to ingestion of the finest size fraction of road dust.
For the suburban location, the risk associated with the ingestion of this finest road dust was above the
acceptable target proposed by USEPA. Other samples and size fractions presented a risk by ingestion
and dermal contact within a range indicating that management measures are required.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/5/1563/s1,
Figure S1. Location of the sampling sites; parameters used in the calculations of Sections 2.3 and 2.4; Figure S2.
Cluster analysis of the XRF results of road dust samples (S1 suburban environment influenced by agricultural
activities; S2 and S3 urban streets); Figure S2. Enrichment index for elements detected in road dust fractions
(F1—below 74 μm, F2—between 74 μm and 1 mm).
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Abstract: One of the most important components of atmospheric aerosols are microorganisms.
Therefore, it is necessary to assess the hazard to humans, both from individual microorganisms which
are present in atmospheric bioaerosols as well as from their pool. An approach for determining the
hazard of bacteria and yeasts found in atmospheric bioaerosols for humans has previously been
proposed. The purpose of this paper is to compare our results for 2006–2008 with the results of
studies obtained in 2012–2016 to identify changes in the characteristics of bioaerosols occurring over
a decade in the south of Western Siberia. Experimental data on the growth, morphological and
biochemical properties of bacteria and yeasts were determined for each isolate found in bioaerosol
samples. The integral indices of the hazards of bacteria and yeast for humans were constructed for
each isolate based on experimentally determined isolate characteristics according to the approach
developed by authors in 2008. Data analysis of two datasets showed that hazard to humans of
culturable microorganisms in the atmospheric aerosol in the south of Western Siberia has not changed
significantly for 10 years (trends are undistinguishable from zero with a confidence level of more
than 95%) despite a noticeable decrease in the average annual number of culturable microorganisms
per cubic meter (6–10 times for 10 years).

Keywords: atmospheric aerosols; bioaerosols; culturable bacteria; long-term trends; hazard for human

1. Introduction

Human exposure to air pollution is among major health problems. Some pollutants can be easily
monitored, doses obtained by individuals may be calculated and the results of such exposure may
be predicted if the “dose–effect” dependencies are known. These dependencies are not known for
most bioaerosols. An atmospheric bioaerosol is omnipresent part of atmospheric aerosols, accounting
for up to 95% of their total number or up to 80% of their mass [1–4]. The peculiarity of atmospheric
bioaerosols is, besides the usual effects of aerosols on atmospheric processes and climate [5–7], the
ability to cause or provoke various infectious or non-infectious diseases in humans [5,8–12]. The most
important component of atmospheric bioaerosols is microorganisms. Since microorganisms are usually
hazardous to humans, it is important to be able to assess what this hazard is in each air sample. It is also
important to be able to track the change in this hazard in the air of controlled points over time. Modern
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molecular biological methods can quite quickly reveal the biological diversity of microorganisms
present in a sample [13–27], but for the vast majority of known microorganisms, their danger to humans
has not been studied. Therefore, an approach that is based on growth, morphological and biochemical
properties of culturable microorganisms (even if a microorganism has never been isolated from the
natural environment early or most of its properties have not been studied) may be very useful.

We have previously proposed such an approach for determining the hazard of bacteria and yeasts
found in atmospheric bioaerosols for humans and demonstrated its capabilities using the available
experimental data as an example [28]. In the framework of the developed approach, a dimensionless
integral index of the hazard to humans of microorganisms isolated from atmospheric bioaerosols was
constructed, which is the product of four lower-level dimensionless integral indices characterizing
the complex properties of the microorganism. One of them is an integral index of the concentration
of culturable bacteria in an aerosol sample. Other components of the integral index of the hazard of
microorganisms to humans are [28]:

• an index that evaluates the pathogenicity or hazard of individual isolates of microorganisms
to humans;

• an index that evaluates the resistance of microorganisms to adverse environmental factors;
• an index that evaluates the resistance of microorganisms to antibiotics or other drugs.

Obviously, the more culturable microorganisms (identical or different) are in the air, the more
dangerous they are to humans. The value normalized to the maximum number of culturable
microorganisms in all samples studied (or in one sample; in this case, of course, this index is equal to
1) represents the first index [28]. The second index assesses the hazard (pathogenicity or conditional
pathogenicity) of microorganisms to humans. Its normalized value reaches 1 for pathogens and is
strictly equal to zero for completely non-pathogenic microorganisms. This index is based on the
morphological and biochemical properties of microorganisms and allows us to predict their individual
or collective pathogenicity in the range of 0 to 1. The third normalized index assesses the resistance
of microbial cells to adverse environmental factors. It considers their growth, morphological and
biochemical properties. The more resistant the microorganism is in the external environment, the
greater the likelihood of it entering the human body and maintaining the ability to trigger negative
reactions. Finally, the fourth index is determined by the resistance of microorganisms to the action of
antibiotics or other drugs. The higher this resistance, the more difficult it is to overcome the negative
effects of microorganisms in the body and, consequently, the higher the hazard of such a microorganism.
The approach proposed in [28] was illustrated using experimental data obtained in 2006–2008.

Changes occurring in nature (climate change, atmospheric processes changes, changes of habitats
areas of animals, insects and vegetation, changes in water systems [29–34]) should also be manifested
in changes in the abundance and biodiversity of bioaerosols in the atmosphere.

Western Siberia is a region in which global climatic changes are clearly manifested: permafrost
thawing, decrease in snow cover time, temperature increase, powerful greenhouse gas emissions [35–45].
At the same time, changes in the state of health of the population of the region caused by these climatic
changes are poorly studied (see, for example, [37,46,47]). The method we developed allows us to assess
the change in the hazard to humans of cultivated microorganisms located in atmospheric aerosols, and
as a result, the influence of this factor, which undoubtedly affects the health of the population of the
region. Thus, the aim of this work is to obtain new data on the hazard to humans in the context of
ongoing climate change, both for individual microorganisms (only bacteria and yeasts in this paper),
which are present in atmospheric bioaerosol, as well as their pool, and compare the results with
the results obtained previously. This study includes two on-ground sampling sites where a person
breathes directly and where the presence of microorganisms is largely determined by local sources of
bioaerosols. In addition, microorganisms in the atmosphere at altitudes of up to 7 km were studied
and its bioaerosol composition was largely determined by bioaerosols remote sources.
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2. Materials and Methods

To ensure the comparability of the results obtained in 2006–2008 and in 2012–2016, materials and
methods used were mainly the same as described in [28]. These materials and methods which were
used in 2006–2008 and in 2012–2016 are described in details below, and their differences are highlighted
in special Section 2.4.

2.1. Atmospheric Air Sampling

Sampling of atmospheric air was carried out at three points in the studied region: on the site of the
FBRI SRC VB "Vector" of Rospotrebnadzor (Vector), 4 times a day (the sampling starts at 10:00, 16:00,
22:00 and 4:00 on the next day) in the middle of the month; in the Klyuchi village, once a season for 7
consecutive days (usually the sampling starts at 8:00–9:00); about 50 km south of Novosibirsk using the
“Optik-E” laboratory (Aircraft, Figures 1 and 2) on one of the last days of each month. A map showing
the position of two sampling points and a typical flight trajectory of a laboratory airplane is shown
in Figure 3. The “Optic-E” laboratory mounted on an Antonov-30 aircraft (Figure 2, see also [48–51])
for 2006–2008 session includes device for bioaerosol sampling and additional devices for registration
of physical and chemical aerosol characteristics, meteorological conditions, etc. [48,52]. Isokinetic air
sampling was performed through the special inlet outside the cabin (inserts in Figures 2 and 3) [48,53]
at cruising speed of aircraft approximately 360 km/hour. The operation of the air intake with reduced
dynamic pressure is based on the principle of Venturi. Further, outboard air with a pressure equal to
the air pressure inside the aircraft cabin was supplied to a stand with impingers (Figure 4), into which it
was sampled for analysis of the presence and concentration of culturable microorganisms. It is obvious
that both the device for outboard air intake and the tubes leading to the impinger are characterized by
a certain percentage of losses of aerosol particles during their transportation. However, since both the
intake air device and the length of the tubes are unchanged in all samples, these losses are the same
for all samples. The samples were taken during daytime (usually the time of flight was in interval
12:00–15:00) over the Karakan pine forest (sees Figure 3) successively at eight altitudes: 7000, 5500,
4000, 3000, 2000, 1500, 1000, and 500 m [28]. To create sterile conditions, before each sampling or each
flight, all incoming tubes were rinsed with ethanol.

 

Figure 1. Photo of Antonov-30 aircraft. Insert is the samplers’ inlets.
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Figure 2. Photo of Tupolev-134 aircraft. Insert is the samplers’ Inlets.

 

Figure 3. The map of sampling sites and aircraft’s flight typical trajectory.

Stainless steel impingers with a critical nozzle [28] (its analogue is described in [54]) were used for
air sample collection. These devices (manufactured by JSC “Experimental-design bureau of biological
precision engineering”, Kirishi, Russia) maintain a constant flow rate at a pressure differential of more
than 4 × 104 Pa of air through the device. An A-D1-04 pump (JSC “Kot”, St. Petersburg, Russia)
was used to pump air samples through the impinger. Fifty milliliters of noncolored Hanks’ solution
(SIGMA) was used as a sorbing fluid. Above-ground samples were taken at the flow rate of 50 ±
5 L/min for 30 minutes and altitude samples for 5 or 10 minutes (10-minute sampling was used during
2006–2008 and 5-minute sampling was used during 2012–2016) at each altitude. The retention efficiency

130



IJERPH 2020, 17, 1651

of this impinger for aerosols of more than 0.3 μm exceeds 80% making up a constant value of 90% ±
15% for particles with a diameter of more than 2 μm.

 

Figure 4. Photo of two impingers (red circles) at a sampling stand of microorganisms located in
atmospheric aerosol.

2.2. Culturable Microorganisms’ Concentration

The concentrations of culturable microorganisms were determined by standard microbiological
methods. Samples were seeded onto Petri dishes containing agarized media. LB [55] was used to
detect saprophyte bacteria; depleted LB medium (diluted 1:10) was used to isolate microorganisms
inhibited by the excess of organic substances, starch–ammoniac medium [56] was used to detect
actinomyces; soil agar was used for soil microorganisms, and Sabouraud medium [56] was used for
lower fungi and yeast. Successive sample dilutions were prepared when necessary. The seedings were
incubated in a thermostat at a temperature of 28–30 ◦C for 3–14 days. Some isolates were additionally
incubated at a temperature of 6–10 ◦C in 2012–2016. Phase contrast light microscopy was used for
the study of morphological characteristics of bacteria (live cells and fixed Gram-stained ones too) and
its colonies. Taxonomic groups the detected microorganisms referred to were determined according
to [57–59]. Nucleotide sequences of PCR products corresponding to the fragments of 16S rDNA gene
was performed for some bacteria [60,61]. The numbers of culturable microorganisms in samples were
calculated according to standard methods [62]; the number of microorganisms was averaged over
3–4 parallels of samples 4–5 seeded on different media.

2.3. Microorganisms’ Biochemical and Morphological Characteristics

2.3.1. Pathogenic Properties of the Isolates

Isolated microorganisms were tested for the presence of the following signs of pathogenicity:

• plasma-coagulase activity was determined by placing a loop of the test culture in a test tube
with 0.5 mL of rabbit citrate plasma diluted with 0.9% sterile sodium chloride solution and
incubating the suspension at 37 ◦C for up to 24 hours; a positive reaction was determined by
plasma coagulation [28];

• hemolytic activity was determined by seeding cultures on nutrient agar containing 5% defibrinated
blood and the seeding was incubated at 37 ◦C for 24–48 hours; a positive result was the presence
of hemolysis zones around the grown colonies [59];
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• fibrinolytic activity was determined by sowing 0.25 mL of an 18–20-hour broth culture of the test
strain in test tubes containing 0.1 mL of citrate plasma, 0.4 mL of 0.9% sodium chloride, 0.25 mL of
0.25% CaCl2 solution; tubes with suspension were kept in an incubator at a temperature of 37 ◦C
for 15–20 minutes; a clot formed in a test tube with a positive reaction (the presence of fibrinolysin)
liquefies after the next two hours of incubation in a thermostat; the test culture does not have
fibrinolytic properties if the clot persists, as in the control tube, where the culture was not added;

• gelatinase activity was determined by sowing microorganisms by injection in test tubes with
meat–peptone broth containing 12% gelatin, kept in an incubator for up to 20 days; a liquefaction
of the nutrient medium is noted in the presence of the gelatinase enzyme [57].

2.3.2. Growth Characteristics of Bacteria at Increased Salt Concentration

The resistance of the studied microorganisms to high salt concentrations was determined when
they were sown on a complete nutrient medium with the addition of NaCl at concentrations of
1%, 5% or 10%. After incubation at the optimum temperature, the range of resistance of the tested
microorganism to the concentration of salts in the nutrient medium was established by the nature of
growth or its absence.

2.3.3. The Determination of Enzymatic Activity of Isolated Bacteria

Isolated microorganisms were tested for the presence of the following signs of enzymatic activities:

• proteolytic activity was determined by plating the studied microorganisms on an agar medium
containing milk casein (milk agar); to prepare agar with casein, two components were prepared:
3% “hungry” agar (distilled water + 3% agar), sterilized at 1 atm for 30 minutes, and 12% milk
sterilized at 1 atm for 20 minutes; then, agar was cooled to 50–55 ◦C, mixed with milk heated to
the same temperature under aseptic conditions in a 1: 1 ratio, and poured into Petri dishes; after
solidification of the medium, cultures were streaked and incubated under optimal conditions;
the formation of transparent hydrolysis zones around crops in casein-containing agar indicated
protease production [57];

• the amylolytic activity of cultures of microorganisms was determined when they were streaked
on starch–ammonia agar; after incubation in a thermostat for 24–48 hours, the grown cultures in
the dishes were poured into 5 mL of Lugol’s solution; the appearance of bright areas around crops
within 3–5 minutes is a positive result;

• determination of lecithinase and lipase activity was carried out by two methods:

1. seeding cultures with a stroke on yolk nutrient agar, for the preparation of which, under
aseptic conditions, in yolk of molten and cooled to 50–55 ◦C fish-peptone agar (FPA) medium,
yolk from a chicken egg is introduced; then medium is thoroughly mixed and poured
into Petri dishes; the studied culture is streaked, incubated at the required temperature
for 24–48 hours and the result is taken into account; when observed in an oblique light,
lipase production was judged by the formation of a pearly shiny hydrolysis zone on agar
around grown colonies; lecithinase (phospholipase) hydrolyzes the yolk lecithin; as a result
of the precipitation reaction, a turbid whitish zone forms around the lecithin-fermenting
colonies [57];

2. plating cultures on a complete LB or RPA medium with 1% Tween-20 or Tween-40 and 0.01%
CaCl2 as a substrate; sown cultures were incubated in a thermostat for 3–4 days and the
result of the presence or absence of hydrolysis zones was determined [57];

• testing of cultures for the production of alkaline phosphatase was carried out using a reaction
mixture of the composition: 0.3 mL of 0.85% NaCl added to 0.3 mL of substrate solution containing
0.04 M glycine buffer pH 10.5 and 0.01 M disodium-n-nitrophenyl phosphate (Sigma); the reaction
mixture was incubated at 37 ◦C for 3 hours; Positive reaction manifested itself as yellow staining
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of the reaction mixture [59]; enzyme activity was determined within 3 hours of incubation by
absorption on Uniplan apparatus (Russia) with a color filter at the wavelength of 450 nm.

• nuclease activity was determined by streaking cultures on RPA medium with the addition of an
aqueous DNA solution to a final concentration of 2 mg/mL; before filling the medium, a sterile
solution of CaCl2 (0.8 mg/mL) and 0.01% toluidine blue were added to the Petri dishes; in the case
of the formation of DNase, a pink colored zone arose around the bacterial culture [59];

• the concentration of plasmid DNA in the strains was determined with screening method using a
standard procedure; cells from a solid medium were suspended with a loop in 100 μl of buffer
(50 mM Tris pH 8.0, 50 mM Na2-EDTA, 15% sucrose), 200 μl of alkaline solution (0.2 N NaOH,
1% SDS) and 150 μl of 3 M sodium acetate pH 5.0 were added, and centrifugation was performed
for 5 minutes on a desktop centrifuge, then 1 mL of 96% ethanol was added to the sediment.
The obtained DNA was analyzed in 0.8 % agarose in Tris-borate buffer pH 8.0 [48];

• when screening the strains for the presence of restriction endonucleases, individual colonies
collected from a solid culture were suspended in 100–200 μl of TEN-buffer (0.1 M Tris, pH 7.5, 0.01
M EDTA, 0.05 M NaCl), lysocime and triton X-100 were used to destroy the cell wall of bacteria;
the obtained cell extract was used for analysis for the presence of restriction endonucleases. DNAs
of phages λcI857 and T7 were used as substrates for hydrolysis; electrophoresis of DNA after
restriction was performed in 1% agarose (Sigma) [63]; the presence of restriction endonucleases in
microorganism strains was revealed by the appearance of discrete fragments of substrate DNA in
electrophoregram in UV light.

2.3.4. Microorganisms’ Antibiotic Resistance

The sensitivity of microorganisms to antibiotics was determined by diffusion using the discs
method [57]; the concentration of antibiotics in the discs used was: ampicillin (10 μg/disk), neomycin
(30 μg/disk), benzyl-penicillin (100 U/disk), levomycetin (30 μg/disk), carbenicillin (100 μg/disk),
canamycin (30 μg/disk), oleandomycin (15 μg/disk), rifampicin (5 μg/disk), streptomycin (30 μg/disk),
polymxin (300 U), erythromycin (15μg/disk), lincomycin (15μg/disk), oxacillin (10μg/disk), gentamycin
(10 μg/disk), tetracycline (30 μg/disk), vancomycin (30 μg/disk), amikacin (30 μg/disk), netilmycin (30
μg/disk), monomycin (30 μg/disk). Note that lists of antibiotics used were not the same for 2006–2008
and for 2012–2016.

2.4. Changes in the Methods Used in the 2006–2008 and 2012–2016 Studies

1. A Tupolev-134 aircraft (Figure 3) was used for sounding of the atmosphere since 2011 [64].
The speed of this aircraft was maintained at the level of the Antonov-30 aircraft to maintain stable
operation of the air intake. For sampling air containing microorganisms, the same impingers were
used on both airplanes and in on-ground sampling; Figure 4. As noted above, the sampling time
for airborne atmospheric sounding was 10 minutes for 2006–2008 and 5 minutes for 2012–2016.

2. When analyzing samples by cultural methods in 2012–2016, in addition to the cultivation
temperature of 28–30 ◦C, some isolates were additionally incubated at the temperature of 6–10 ◦C.

3. And the last difference between the methods of samples analysis in the 2006–2008 and 2012–2016
investigations-the lists of antibiotics the sensitivity of isolates to which was determined are
slightly different. For 2012–2016, the sensitivity of isolates was determined for a larger number of
antibiotics, but this was done for not all identified isolates.

2.5. Data Analysis and Statistics

The initial data for all measured values for which lower-level integral indices were calculated
using the formulas published in [28] and these integral indices themselves are given in Supplementary
Materials (Tables S1–S12 and List of description). The average values of the integral indices and their
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standard deviations from the mean are given in these tables for each year of observation. Additionally,
the maximum values of the corresponding integral for each year are given.

In Table S13, the integral index of hazard of bacteria and yeasts found in atmospheric bioaerosols
for humans are calculated from the lower level integral indices for each of the isolates according to
the procedure described in [28]. Furthermore, using the method of regression and ANOVA analysis
(built-in Microsoft Excel software), a statistical analysis of the data was carried out. All analysis results
were obtained at a reliability level of 95%.

3. Results

Based on characteristics of isolated microorganisms using the methods described above, four
indices were calculated, which form the integral index of the hazard of microorganisms found out in
atmospheric aerosols for humans. These indices were calculated both for each isolate and averaged for
each year of research.

Let us compare the data presented in [28] with the results obtained in this research using the
same methods. It should be noted that due to resource constraints for the company 2012–2016, not
all the characteristics of the identified isolates were investigated, as it was done during the company
2006–2008. However, according to the authors’ opinion, the results obtained on a truncated set of
characteristics quite clearly demonstrate the changes occurring in the pool of cultured microorganisms
isolated from atmospheric aerosols in the south of Western Siberia.

3.1. Long-Term Trends of Average Annual Concentrations of Culturable Microorganisms in the Atmospheric
Aerosol of the South of Western Siberia

Figure 5 shows the long-term trends of average annual concentrations of culturable microorganisms
in the atmospheric aerosol of southern Western Siberia. In constructing this graph, we used the results
published in [65] and our own data obtained after the publication of this paper.

 

Figure 5. Trends of average annual concentrations of culturable microorganisms in the atmospheric
aerosol in the south of Western Siberia. The average annual values with root mean square deviations
(standard deviations) from the mean are given.

Long-term observations of the concentrations of culturable microorganisms (bacteria, fungi and
yeasts) in the atmosphere indicate that the average annual values of these concentrations have a
pronounced tendency to decrease. In particular, from 2008 to 2016, this decrease is at least three times.

It should be noted that, for the concentration of cultuarable microorganisms in atmospheric
aerosols in the south of Western Siberia, the intra-annual variability was revealed [65]. Figure 6
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presents the data for 2001–2016 values averaged for each month of years 2001–2016, normalized to the
corresponding annual average. As can be seen from this graph, the differences between the maximum
and minimum concentrations are on average up to three times. Naturally, for each sampling, the
concentration of microorganisms depends not only on the revealed dependence, but also on the specific
meteorological conditions, the effect of which on this concentration can be very significant.

 

Figure 6. Intra-annual variability of concentrations of culturable microorganisms in the atmospheric
aerosol of the south of Western Siberia. The average values for a given month for the entire observation
period and the standard deviations from the average are given.

It should be noted that the data used to construct the integral index characterizing the concentration
of isolates in the air make up only part of the raw data used to construct Figures 5 and 6. This is due to
the fact that, to construct the integral index characterizing the concentration of specific isolates in the
air, only data on the concentrations of bacteria and yeast, but not all culturable microorganisms, are
used. To calculate the total concentration of culturable microorganisms in the air, data are used on all
grown colonies in the seeded sample, but not all colonies succeed in obtaining isolates suitable for
further studies, namely, isolate concentrations are used to construct the corresponding integral indices,
and finally, Figures 5 and 6 are constructed for data for 2001–2016, and data obtained for a smaller
number of years were used to construct integral indices.

3.2. Sustainability of Culturable Microorganisms in the Environment

The results of determining the integral index of resistance of microorganisms to adverse
environmental factors are summarized in Table 1 for annual mean values and standard deviations
from them.

Table 1. The annual average values and standard deviations from them of the integral index of the
microorganisms’ resistance to adverse environmental factors values.

Sampling Site Values 2006–2007 2007–2008 2012 2013 2014 2015 2016

Vector
Average 0.359 0.372 0.324 0.247 0.244 0.135 0.252

Standard deviation 0.223 0.206 0.256 0.243 0.229 0.132 0.209

Klyuchi Average 0.315 0.335 0.452 0.399 0.381 0.354 0.354
Standard deviation 0.216 0.182 0.246 0.222 0.215 0.108 0.149

Aircraft
Average 0.307 0.399 0.567 0.380 0.415 0.405 0.431

Standard deviation 0.212 0.222 0.333 0.191 0.137 0.125 0.176
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As follows from the analysis of the data presented in Table 1 and in Supplementary Materials (see
Tables S1–S3, S13) for the sustainability index of culturable microorganisms in the atmospheric aerosol
of the south of Western Siberia, differently directed trends are observed for different sites of observation.
Changes in the sustainability index of culturable microorganisms in an atmospheric aerosol in the
south of Western Siberia do not exceed 1.1–1.75 times for 10 years of observations. However, given
the fairly large scatter of data for each year of measurement relative to average values, these changes
cannot be considered non-zero.

There are those isolates among the isolates of bacteria and yeasts that have values of the
microorganism sustainability index in the environment from 0 to 1 and the average annual values
of the indexes are at the level of 0.2–0.45. Note that the maximum index values close to or equal to
1 exist for a small number of bacteria and yeasts, not in every sample, and not even in every year
(Supplementary Materials, Tables S1–S3).

Thus, the obtained experimental data do not reliably reveal differences at a reliability level of 95%
between the sustainability indexes of culturable microorganisms in the atmospheric aerosol of the
south of Western Siberia determined for 2006–2008 and for 2012–2016. At a 95% reliability level, all
three trends are significantly indistinguishable from zero.

3.3. Potential Pathogenicity of Culturable Microorganisms in the Atmospheric Aerosol of the South of Western
Siberia

The results of determining the integral index of potential pathogenicity of pathogenicity of
culturable bacteria and yeast for humans in an atmospheric aerosol in the south of Western Siberia are
summarized in Table 2 for annual mean values and standard deviations from them.

Table 2. Annual average values and standard deviations from them of the integral index of potential
pathogenicity of culturable bacteria and yeast in an atmospheric aerosol in the south of Western Siberia.

Sampling Site Values 2006–2007 2007–2008 2012 2013 2014 2015 2016

Vector
Average 0.239 0.239 0.315 0.202 0.213 0.374 0.292

Standard deviation 0.148 0.121 0.177 0.117 0.146 0.177 0.175

Klyuchi Average 0.209 0.275 0.232 0.205 0.210 0.371 0.175
Standard deviation 0.132 0.139 0.187 0.138 0.134 0.197 0.175

Aircraft
Average 0.235 0.270 0.306 0.247 0.203 0.409 0.303

Standard deviation 0.139 0.150 0.196 0.130 0.116 0.182 0.177

As follows from the analysis of the data shown in Table 2 and in Supplementary Materials (see
Tables S4–S6, S13), there is no noticeable positive trend in the index of the potential pathogenicity of
cultivated microorganisms in the atmospheric aerosol for air samples taken at the site of Klyuchi only.
This increase from 2006 to 2016 is 1.5 times. The obtained experimental data do not reliably reveal
differences at a reliability level of 95% in indices of potential pathogenicity of culturable microorganisms
in the atmospheric aerosol of the south of Western Siberia determined in 2006–2008 and in 2012–2016 for
the Klyuchi sampling site. At a 95% reliability level, all three trends are significantly indistinguishable
from zero.

The average annual level of this index for all isolates was 0.2–0.4, while only a few of the
microorganisms detected over the entire period had indices of the potential pathogenicity of culturable
microorganisms in the atmospheric aerosol, approaching but not reaching 1.

3.4. Culturable Microorganisms’ Resistance to Antibiotics

The results of determining the integral index of antibiotic resistance of culturable bacteria and
yeast in an atmospheric aerosol in the south of Western Siberia are summarized in Table 3 for annual
mean values and standard deviations from them.
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Table 3. Annual average values and standard deviations from them of the integral index of culturable
microorganisms ’resistance to antibiotics bacteria and yeast in an atmospheric aerosol in the south of
Western Siberia.

Sampling Site Values 2006–2007 2007–2008 2012 2013 2014

Vector
Average 0.207 0.206 0.170 0.195 0.152

Standard deviation 0.181 0.129 0.173 0.208 0.107

Klyuchi Average 0.262 0.245 0.265 0.239 0.144
Standard deviation 0.211 0.146 0.106 0.231 0.107

Aircraft
Average 0.232 0.206 0.200 0.314 0.278

Standard deviation 0.184 0.149 0.188 0.319 0.207

The situation for this index is similar to the situation with the sustainability index of culturable
microorganisms in the atmospheric aerosol of the south of Western Siberia. The trends of this index
are multidirectional and over 8 years of observations of changes in the culturable microorganisms
in the atmospheric aerosol in the south of Western Siberia resistance to the action of antibiotics do
not exceed 1.5 times (Table 3 and Tables S4–S6, S13 in Supplementary Materials). Note that in 2015
and 2016, experimental studies on resistance to antibiotics of isolates from atmospheric aerosol have
not been conducted. Given the fairly large scatter of data relative to the average values for each year
of measurement, these changes can be considered indistinguishable from zero. Thus, the obtained
experimental data do not reliably reveal differences at a reliability level of 95% between the indices of
culturable microorganisms in the atmospheric aerosol in the south of Western Siberia resistance to
antibiotics determined in 2006–2008 and in 2012–2014. At a 95% reliability level, all three trends are
significantly indistinguishable from zero.

Among the identified isolates, there are both those that are susceptible and resistant to all studied
antibiotics. It was found that the proportion of isolates sensitive to the action of all antibiotics or
resistant to the action of no more than one antibiotic did not change significantly during the period
studied. In 2006–2008, there were from 33% to 42% of such isolates, and in 2012–2014 there were from
28% to 42%. Two isolates, which are resistant to all studied antibiotics (11 out of 11) or 0.21%, were
detected at all observation sites in 2006–2008 and in 2012–2014 there were three such isolates (8 out of
8, 9 out of 9, and 15 out of 15), or 0.95%, Supplementary Materials (Tables S10–S12). Consequently, the
number of microorganisms that are most resistant to the action of antibiotics over 8 years has increased
more than four times, while the indices of culturable microorganisms in the atmospheric aerosol in the
south of Western Siberia resistance to the action of antibiotics have not changed.

The sources of atmospheric microorganisms, besides vegetation, animals, and human activity, are
soil and water; most likely, bioaerosols should contain a similar percentage of bacteria resistant to the
action of antibiotics. Indeed, about the same percentage of bacteria resistant to the action of at least
one of the antibiotics studied was found for the water system [66–71] and in the soil [69,72].

3.5. Integral Index

The results of the determination of the integral index of hazard for humans of culturable bacteria
and yeast in an atmospheric aerosol in the south of Western Siberia are summarized in Table 4 for
annual mean values and standard deviations from them.

As already noted, this integral index is the product of the 4 indices described above (see
Tables S1–S12 in Supplementary Materials). However, for some isolates of microorganisms, some
indices were not determined, therefore, the average annual indices of this index for the corresponding
year were substituted for the calculation. These values in the relevant cells of Table S13 in Supplementary
Materials are highlighted in light blue. In general, the average annual values of this index are not
large and are in the range of 0.001–0.007. Recall that for individual pathogenic microbial isolates
that are sustainable in the environment and do not possess antibiotic resistance, this index equals 1.
Consequently, there are very few such pathogenic microorganisms in the atmospheric aerosol of the
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south of Western Siberia (see Table S13 in Supplementary Materials). Moreover, the maximum value of
this integral index over all the time of research for isolates from all observation sites is only 0.1074.
At the same time, a fairly large number of isolates was found in the samples, for which the integral
index is strictly equal to zero (see Table S13 in Supplementary Materials). Here is interesting situation:
when the concentration of one of the isolates is very high (normalized index about 1) other indices are
low; and when, for example, pathogenicity index is high, other indices are low. Hence, the integral
index is not large for all studied isolates. The dependence of integral index for monthly averages is
pronounced for 2006–2008 when the number of isolates is large for many months [28]. The isolates
number for 2012–2016 is low, they are found not in every sample. So, integral index for monthly
averages is not representative in 2012–2016 (Supplementary Materials, Tables S1–S13 for 2012–2016).

Table 4. The annual average values and standard deviations from them of the integral index of hazard
of culturable bacteria and yeast in an atmospheric aerosol in the south of Western Siberia.

Sampling Site Values 2006–2007 2007–2008 2012 2013 2014 2015 2016

Vector
Average 0.0035 0.0007 0.0001 0.0011 0.0003 0.0001 0.0018

Standard deviation 0.0110 0.0017 0.0002 0.0026 0.0008 0.00015 0.0061

Klyuchi Average 0.0010 0.0047 0.0002 0.0005 0.0001 0.0007 0.0032
Standard deviation 0.0045 0.0109 0.0003 0.0009 0.0002 0.0012 0.0057

Aircraft
Average 0.0016 0.0019 0.0000 0.0000 0.0037 0.0004 0.0018

Standard deviation 0.0034 0.0058 0.0001 0.0001 0.0059 0.0004 0.0024

As follows from the data presented in Table 4, all long-term trends of these integral indices are
unidirectional, showing a tendency to decrease; however, the magnitude of this decrease is almost
indistinguishable from zero at a reliability level of 95%. Based on this, one can conclude that in 10 years
of research, the hazard to humans of microorganisms isolated from atmospheric aerosols of the south
of Western Siberia remains almost unchanged.

As it was mentioned above, the large scatter of the experimentally determined values included in
this index (see Table S13 in Supplementary Materials) makes it possible to speak only of the tendency
of a small decrease in the integral index of the hazard of microorganisms isolated from atmospheric
aerosols in the south of Western Siberia for humans. This decrease is primarily due to a decrease in the
observed average annual number of culturable microorganisms in atmospheric aerosols in the south of
Western Siberia.

4. Discussion

As it was mentioned above, a long-term series of bacteria and yeast concentration observations
have not been presented in the literature for other regions of the world; therefore, the results presented
in Figure 5 refer only to the south of Western Siberia. A similar result is described in [73] for 2014–2018
for fungi yearly averaged concentrations in the air in France: the decrease is about 1.5 times. At the
same time, an increase in the average annual concentrations of fungi of the genera Aspergillus and
Penicillium in Derby, UK, in 1970–2003 was recorded in [74]. As for the intra-annual dynamics of
changes in the concentrations of bacteria and yeast, there is information in the literature, although
such long-term observations that are presented in this paper are also absent in the literature. It should
be noted that for different microorganisms (strains, genera, kingdoms), these dynamics can vary
significantly. In particular, in many cases, the concentration of culturable bacteria in a warm season is
higher than in a cold one [75–86], but there are also opposite examples [80,87–91].

The noted decrease in the average annual concentrations of culturable microorganisms in the
south of Western Siberia is probably associated with the ongoing climate changes, which are manifested
in a change in the location and power of bioaerosol sources, pathways of predominant transport of
bioaerosols in the atmosphere, etc.

There is also no information in the literature about the change over time of microorganism
characteristics that are included in the index of potential pathogenicity of culturable microorganisms
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in the atmospheric aerosol and in the index of their sustainability in the atmospheric aerosol to adverse
environmental factors. Similar comprehensive studies have not been conducted previously.

With regard to antibiotic resistance, the literature presents data indicating that there is a tendency
to an increase in the number of bacteria resistant to the action of antibiotics over time, see, for
example, [92–96]. In the collections of bacteria isolates collected over a long period of time, the
latest trend can be traced reliably [97,98]. Moreover, more and more isolates with multiple antibiotic
resistances are detected in nature [99–102].

It should be noted that while for ground-based observation points, the obtained data directly
provide an assessment of the hazard to humans of microorganisms in the air. Let us remind the reader
that a large portion of aerosol particles in the on-ground atmospheric layer originated from local
sources. It is difficult to relate the results to any particular place on the Earth’s surface for high-altitude
observations. Bioaerosols found in high-altitude samples of atmospheric air originated mainly from
long-distance sources and can, due to the stochastic nature of their movement in the atmosphere, reach
the surface at completely different points. In addition, during the transfer process, some microorganisms
can simply be inactivated, or at least lose their ability to grow under cultivation conditions.

It should be noted that it is not easy to build the dynamics of the monthly change of all the
above-mentioned indices because of their very high variability and a small number of identified
microorganisms for some months. Very weak dependencies can be observed only.

All the results presented in Section 3 have very high variability for both the average annual values
of integral indices and the values of these indices for individual isolates. This is due to the properties
of an atmospheric aerosol, which is a complex mixture of particles of various compositions. These
particles enter the atmosphere from various terrestrial sources of inorganic, organic or biological nature,
and are also formed in the atmosphere during nucleation processes. While in the aerosol, particles
are continuously transformed under the influence of changing temperature and humidity, due to the
presence of volatile compounds in it, capable of entering into chemical interactions with particles under
the influence of solar radiation, etc. These factors can lead to inactivation of microorganisms in the
particles. It is also necessary to consider the processes of particle deposition (sedimentation, washout
by precipitations). Because of this, the concentration and composition of an aerosol in the atmosphere
can vary greatly in samples that are close in time or in distance. For example, in [65], it was mentioned
that two air samples taken during aircraft sounding of the atmosphere (a difference of 1000 m in height
and 15 minutes in time) contain radically different compositions of microorganisms. This also leads to
the fact that, if the average annual dependencies of the total concentration of microorganisms shown in
Figure 5 have a relatively small dispersion, the attempt to construct similar dependencies for individual
phylums and lower taxonomic groups was unsuccessful due to the extremely large concentration
dispersion [103]. All of the above is particularly pronounced in Siberia with its sharply continental
climate, many local sources of bioaerosols (forests, meadows, swamps, industrial production) and
the prevailing direction of the winds, which bring a lot of dust (and soil microorganisms to it) from
north-western Kazakhstan to Western Siberia. Moreover, the authors are not sure that an increase in the
number of samples analyzed for each month (season) will noticeably affect a decrease in the variance
of the result and, therefore, an increase in the reliability of the dependencies identified in this article.

The approach proposed in [28] made it possible, for the first time, to quantitatively compare the
potential danger to humans of the totality of microorganisms in various samples of atmospheric air.
Using this unique approach, it was possible to assess the change in potential danger to humans over
10 years of observation at different points in Western Siberia. Currently, the authors are not aware of
any other approaches that allow such estimates.

At the same time, the authors do not pretend to the universality of the method used in this article
for assessing the hazard to humans of culturable bacteria and fungi located in atmospheric aerosol.
The algorithm for estimating integral indices proposed in [28] is not exhaustive and, probably, there
are still some characteristics of cultivated microorganisms (morphological, cultural, biochemical, and
biophysical) that refine the constructed integral indices. In addition, the weight values of the various
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characteristics of microorganisms by which integral indicators are calculated may also need to be
clarified, and finally, an approach similar to that proposed for bacteria and yeast was not developed
for micromycetes. Therefore, the results obtained in this article reflect the hazard to humans of only
bacteria and yeast present in the aerosol, but not for all culturable microorganisms. In addition, not all
microorganisms are easily cultivated under standard conditions. The method used simply cannot be
implemented for unculturable microorganisms.

5. Conclusions

Summing up the conducted research, one must conclude that, despite a noticeable decrease in
the average annual number of culturable microorganisms in the atmospheric aerosol in the south of
Western Siberia, the hazard of these bacteria and yeasts to humans has not practically changed for
10 years. Thus, neither passing climatic changes in the world, nor changes in the antibiotic resistance
and sustainability of culturable microorganisms in the environment have affected the hazard to humans
of bacteria and yeasts found in the atmospheric aerosol in the south of Western Siberia.

The authors published in 2012 [28] an approach on how to estimate the hazard of bacteria and
yeasts in atmospheric aerosols to humans, but no similar investigation has been conducted elsewhere
in the world. Usually, the data of experiments are given in the literature, in which the effect of a specific
bioaerosol that has penetrated the respiratory tract is studied, see, for example [104]. It is clear that
such an approach is difficult to use to characterize a large number of bioaerosol samples. The authors
hope that very important studies on risks of human exposure to microorganisms in the air will be
estimated using our approach [28] and will be published, not only for Western Siberia; the authors also
hope that a longer study of the properties of culturable microorganisms in atmospheric aerosols will
reliably confirm the identified weak dependencies in the future in the south of Western Siberia.
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Abstract: With China’s rapid development, urban air pollution problems occur frequently. As one of
the principal components of haze, fine particulate matter (PM2.5) has potential negative health effects,
causing widespread concern. However, the causal interactions and dynamic relationships between
socioeconomic factors and ambient air pollution are still unclear, especially in specific regions. As an
important industrial base in Northeast China, Liaoning Province is a representative mode of social
and economic development. Panel data including PM2.5 concentration and three socio-economic
indicators of Liaoning Province from 2000 to 2015 were built. The data were first-difference stationary
and the variables were cointegrated. The Granger causality test was used as the main method to test
the causality. In the results, in terms of the causal interactions, economic activities, industrialization
and urbanization processes all showed positive long-term impacts on changes of PM2.5 concentration.
Economic growth and industrialization also significantly affected the variations in PM2.5 concentration
in the short term. In terms of the contributions, industrialization contributed the most to the variations
of PM2.5 concentration in the sixteen years, followed by economic growth. Though Liaoning Province,
an industry-oriented region, has shown characteristics of economic and industrial transformation,
policy makers still need to explore more targeted policies to address the regional air pollution issue.

Keywords: air pollution; fine particulate matter; economic growth; urbanization; industrialization;
Granger causality test

1. Introduction

Since implementing the reform and opening-up policy in 1978, China has been experiencing a
rapid process of social and economic development, attracting worldwide attention [1,2]. With the
development of China’s urbanization process, the population influx into cities, the consumption
of resources and the transformation of the economic structure have caused a variety of social and
environmental impacts [3,4]. Among them, air pollution is particularly prominent because it is closely
associated with negative health effects [5,6].

In recent years, one of the primary pollutants most affecting China has been fine particulate matter
(PM2.5). PM2.5 refers to small particles or droplets in the air less than 2.5 microns in aerodynamic
diameter [7,8]. PM2.5 easily binds to toxic and harmful substances due to its small size, long atmospheric
residence time and extensive atmospheric transportation and seriously affects human health [9,10].
PM2.5 exposure in 2015 was estimated to result in 8.9 million deaths globally, among which 28%
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occurred in China [11]. To cope with severe and persistent PM2.5 pollution and to meet pollutant
concentration targets [12,13], it is urgent and necessary to explore the influence of human factors
on PM2.5 [14–16]. Hao and Liu [17] used a spatial lag model and spatial error model to investigate
the socioeconomic influencing factors of urban PM2.5 concentration in China. The results showed
that the number of vehicles and the secondary industry had significantly positive effects on PM2.5

concentration in cities. Wang et al. [18] found a positive correlation between PM2.5 concentrations and
urban area, and population and proportion of secondary industry, and determined the existence of an
inverted U-shaped relationship between economic growth and PM2.5 concentration. Existing studies
have confirmed the contributions of socioeconomic factors to PM2.5 pollution in China [13,19,20];
however, the dynamic relationships and causal interactions between them are still not well understood,
especially in specific regions. The Granger causality test determines the causal relationships between
variables based on the chronological order in which the events occurred [21]. The method has been
widely used in the empirical analysis of the relationships between energy, environment, economic and
social development, etc. [22–24]. As an important administrative unit of a country, “province” usually
provides unified and periodic suggestions to the cities under its jurisdiction, but relevant studies at
this scale were few. Understanding the principal environmental issues in each stage of development
holds great significance for the formulation and implementation of pollution policy, and also for the
improvement of public health in China with PM2.5 as the primary pollutant.

In this paper, the panel data from 2000 to 2015 in Liaoning Province that combine a satellite derived
PM2.5 concentration data set and socioeconomic data were established. The panel Granger causality test
was used as the main method to quantitatively test the causality among economic growth, urbanization,
industrialization and PM2.5 concentration. This study provides an idea for the formulation of regional
periodic pollution control objectives which is significant to regional pollution control.

2. Materials and Methods

2.1. Study Area

Liaoning Province is located in Northeast China, covering an area of 148,000 km2, including
14 prefecture-level cities (Figure 1). The population is 43.82 million, including 29.52 million urban
residents. Liaoning Province is a region in Northeast China where cities characterized by heavy
industry are concentrated.

In Liaoning Province, the secondary industry accounted for 48.12% of the total GDP in 2015, with
the province ranking 5th among the 31 provinces in China. In April 2015, TomTom, the Dutch traffic
navigation service provider, released a global traffic congestion ranking, and Shenyang, the capital
of Liaoning Province, ranked 29th [25]. According to data from the China National Environmental
Monitoring Centre, 11 out of 14 cities in Liaoning Province experienced severe air pollution in
November 2015. Therefore, there is an urgent need to study the relationships and interactions between
socioeconomic factors and ambient pollution in Liaoning Province.
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Figure 1. Location and cities in the study area.

2.2. Data

The annual PM2.5 concentrations from 2000 to 2015 in the panel data were extracted from the
global PM2.5 concentration with a spatial resolution of 0.01◦ (http://fizz.phys.dal.ca/~{}atmos/martin/
?page_id=140#V4.CH.02) [13,26–28]. The global PM2.5 concentration data set was implemented by
the atmospheric chemistry driven model GEOS-Chem. The algorithm in the model combines the
aerosol optical depth obtained from multi-sensor products with the data from surface monitoring
stations [13,29,30]. The correlation coefficient of the estimated and regulatory monitored PM2.5

concentration was 0.81 [28]. To avoid uncertainty in the subsequent analysis caused by abnormal or
missing values in the data, the three-year average was used as an annual average. The average PM2.5

concentrations from 2000 to 2015 in 14 prefecture-level cities were extracted and calculated by city
boundaries (Figure 2).

Referring to relevant studies, we selected GDP per capita (GDPPC), the proportion of urban
impervious surface area (UIS) and the value added by industry as a percentage of GDP (IND) to
represent the economic growth, urbanization and industrialization of each city, respectively [22].
The panel data on the economic growth and industrialization of the fourteen prefecture-level cities
in Liaoning Province from 2000 to 2015 were collected from the China City Statistical Yearbook.
Because China has cancelled the agricultural and non-agricultural household registration system since
2014, to avoid abnormal fluctuation of time series data, the proportion of urban artificial impervious
surface area rather than the traditional proportion of urban population was used to express the
urbanization level of each city [31]. The spatial resolutions of 30 m urban artificial impervious area data
were obtained from Fine Resolution Observation and Monitoring of Global Land Cover (FROM-GLC,
http://data.ess.tsinghua.edu.cn/urbanChina.html) [31,32]. The GDPPC data were converted to constant
prices, and all data were logarithmically transformed to stabilize the time series data and reduce the
heteroscedasticity when performing empirical tests (lnPM2.5, lnGDPPC, lnUIS and lnIND).
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Figure 2. Spatial distribution of surface PM2.5 concentrations in Liaoning province from 2000 to 2015.

2.3. Methodology

The procedure for estimating the causal relationships between PM2.5 and the above socioeconomic
factors using the panel data from 2000 to 2015 included five steps: the unit root test, panel cointegration test,
panel fully modified least squares (FMOLS) regression, Granger causality test, variance decomposition
and impulse response. The details are as follows:

A unit root test checks whether the unit root exists and if a time series variable is non-stationary [33].
If there is a unit root in the time series variable, it will lead to a pseudo-regression in subsequent
regression analysis [34]. The null hypothesis is defined as the existence of a unit root, and the variables
are non-stationary. In this study, the methods of Levin, Lin and Chu (LLC) and Im, Pesaran and Shin
(IPS) were used for testing.

A panel cointegration test is used to test whether there is a long-term stable equilibrium relationship
between variables. In this study, the Pedroni method was used to test the cointegration relationship
between the socioeconomic variables and PM2.5 concentrations [16].

The panel FMOLS regression designed by Phillips [35] is utilized to provide the optimal estimations
of cointegrating regressions [36]. This method modifies least squares to account for the autocorrelation
effects and the endogeneity in the regressors due to the existence of a cointegration relationship [35,37].
In this study, the panel FMOLS regression was used to explore the trends and directions of lnGDPPC,
lnUIS and lnIND in lnPM2.5 in the long term. The relationship between variables was expressed by the
following equation, Equation (1):

lnPM2.5it = α+ β1lnGDPPCit + β2lnUISit + β3lnINDit + εit (1)
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where i and t represent the city and the time indexes in the panel, as shown by subscripts i (i = 1, . . . , 14)
and t (t = 1, . . . , 16), respectively. α is the intercept; βs are partial coefficients of lnGDPPC, lnUIS and
lnIND; and εs refer to errors.

The panel vector error correction model (VECM) was used to investigate the direction and
Granger causal relationships between the variables in the panel in the short or long term. In this
study, short-term causality represented weak Granger causality because the dependent variable only
responds to the short-term shocks of the stochastic environment (a stochastic environment refers to the
agent’s actions and does not uniquely determine the outcome), whereas long-term causality referred to
the independent variable’s response to the deviation from long-term equilibrium [22,38]. Generally,
short-term causality affected 1–2 periods, while long-term causality represented the casual relationship
of the whole period from 2000 to 2015 [22]. The short-term Granger causality depended on the
χ2-Wald statistics of the coefficient significances of the lagged terms of the explanatory variables [38].
The long-term Granger causality was determined by the error correction term (ECT) significance. If the
variables are cointegrated, then the coefficients of the ECTs are expected to be at least one or all negative
and significantly different from zero [22].

Variance decomposition explains the amount of information each endogenous variable contributes
to the other variables in the autoregressions. The impulse response function indicates the effects of a
shock to one innovation on current and future values of the endogenous variables [38,39]. The Cholesky
decomposition technique was used in the VECM to determine the contribution of one variable on
another and estimate how each variable responds to the changes in the other variables [22].

The above methods were realized in the software EViews 8.0 (IHS Global Inc., Englewood, CA,
USA), and relevant statistical principles were followed according to the user guide [40,41].

3. Results

3.1. Data Description

The PM2.5 concentrations data used in the study were extracted from the global data set provided
by Van Donkelaar, Martin, Brauer and Boys [28]. In his study, sample points outside North America
and Europe had precision with a correlation coefficient of 0.81 and a slope of 0.68. However, given the
regional differences, the precision of the data involved in the study in Liaoning Province was yet to
be verified.

Only in 2013 did the monitoring of particulate matter begin in various cities of China. Among them,
cities in Liaoning Province started to have stable and continuous monitoring data from May 2014.
Therefore, we selected the 76 regulatory stations that monitored PM2.5 values in 2015 for verification,
and the correlation coefficient was 0.7 (Figure 3). Additionally, Peng, Chen, Lü, Liu and Wu [29] compared
45 sample points values from published studies and the corresponding remote-sensing values in China,
with 78.7% correlation. Therefore, it is reasonable to believe that the data can reflect the variation of PM2.5

concentrations in the region and can be used for the following analysis.
The PM2.5 concentration, GDPPC, UIS and IND of fourteen cities in Liaoning Province from 2000

to 2015 were selected; the descriptive statistics are summarized in Table 1.

Table 1. Description of the panel data from 2000 to 2015.

Variable Obs. Mean Std. Dev Min Max

PM2.5 (μg/m3) 224 36.60 8.24 18.81 54.57
GDPPC (Yuan, RMB) 224 37,142.14 23,905.06 6184.72 121,457.46

UIS (%) 224 13.32 7.65 2.06 33.95
IND (%) 224 55.13 9.51 37.09 83.60
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Figure 3. Scatter plot of regulatory stations that monitored PM2.5 concentrations and remote-sensed
PM2.5 concentrations. Dashed red lines represent a 95% confidence interval of the fitting line.

Since 2000, PM2.5 concentration has been on the rise in fourteen cities in Liaoning Province, except
for a temporary decrease from 2009 to 2012, and after 2014, the concentration also weakened (Figure 4).
Increasing trends also occurred in the GDPPC and UIS, but after 2013, the economic growth of most
cities slowed down or even declined. The changes of UIS in fourteen cities were basically stable,
and most cities showed faster increasing trends after 2009. Regarding IND, the proportions in all cities
decreased after 2012, indicating a characteristic of industrial transformation, or that the contribution of
industrialization to economic growth has declined.

 
Figure 4. Data of PM2.5 concentrations (A), GDP per capita (GDPPC) (B), proportion of urban
impervious surface area (UIS) (C) and the value added by industry as a percentage of GDP (IND) (D)
of fourteen cities in the panel that changed over the time series from 2000 to 2015.3.2. Panel Unit Root
Test Results.
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3.2. Panel Unit Root Test Results

The results (Table 2) showed that not all the variables in the panel were stationary at the levels;
however, the four variables were basically stationary at the first difference. Therefore, we can reject the
null hypothesis and assume the panel variables were stationary at the first difference.

Table 2. Panel unit root test results.

Variable
Level 1st Difference

Intercept Intercept and Trend Intercept Intercept and Trend

Levin, Lin and Chu (LLC)

lnPM2.5 −7.4320 *** −2.6757 *** −6.6609 *** 1.8893
lnUIS −0.3350 −3.3226 *** −6.8751 *** −7.2374 ***

lnGDPPC −13.618 *** 1.2149 −5.9671 *** −17.066 ***
lnIND 1.4858 2.3637 −8.8109 *** −6.2508 ***

Im, Pesaran and Shin (IPS)

lnPM2.5 −3.9769 *** −0.5582 −5.9219 *** −5.0734 ***
lnUIS 5.0142 −1.0338 −5.2980 *** −4.2049 ***

lnGDPPC −5.7427 *** 4.40875 −4.7635 *** −11.892 ***
lnIND 2.1611 4.9270 −6.2508 *** −6.3221 ***

Note: Significance: * 0.1, ** 0.05, *** 0.01.

3.3. Panel Cointegration Test Results

The results (Table 3) showed that six statistics could significantly reject the null hypothesis that
there was no cointegration relationship; that is, a long-term stable cointegration relationship between
PM2.5 concentration and explanatory variables existed in our panel data.

Table 3. Panel cointegration test results using the Pedroni methods.

Pedroni

Alternative Hypothesis: Common AR Coefs. (Within-Dimension)

Statistic Prob. Weighted Statistic Prob.
Panel v-Statistic 1.2492 0.1058 1.0894 0.1380

Panel rho-Statistic 0.0337 0.5134 −0.0132 0.4947
Panel pp-Statistic −1.9136 ** 0.0278 −1.8940 ** 0.0291

Panel ADF-Statistic −2.1804 ** 0.0146 −2.5478 *** 0.0054

Alternative Hypothesis: Individual AR Coefs. (Between-Dimension)

Statistic Prob.
Group rho-Statistic 1.6771 0.9532
Group pp-Statistic −1.7092 ** 0.0437

Group ADF-Statistic −3.0995 *** 0.0010

Note: Significance: * 0.1, ** 0.05, *** 0.01.

3.4. Panel Fully Modified Least Squares (FMOLS) Regression Results

The results are shown in Table 4, indicating that economic growth, urbanization and industrialization
all had long-term positive effects on changes in PM2.5 concentrations in the sixteen years.
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Table 4. Panel fully modified least squares regression results.

Variable Coefficient Std. Error t-Statistic

lnGDPPC 0.2620 *** 0.0025 104.2593
lnIND 0.2236 *** 0.0021 107.5758
lnUIS 0.0094 *** 0.0009 9.8713

R2 = 0.492128, Adj. R2 = 0.487221; Significance: * 0.1, ** 0.05, *** 0.01.

3.5. Panel Granger Causality Test Results

Table 5 showed that all the coefficients of ECT (-1) of variables were significant; that is, bidirectional
and long-term causal relationships existed between both variables in the panel. According to the
χ2-Wald statistics, bidirectional short-term causal relationships between PM2.5 concentrations and
GDPPC were found in the structure. In addition, one-way short-term causalities were found from IND
to PM2.5 concentrations and UIS, from GDPPC to IND and UIS and from PM2.5 concentrations to UIS.
A more visual and clearer figure is shown (Figure 5) based on the above results.

Table 5. Panel Granger causality test results.

Dependent
Variable

Independent Variables

Short-Run Causality (χ2-Wald Statistics) Long-Run Causality

ΔlnPM2.5 ΔlnGDPPC ΔlnUIS ΔlnIND ECT (−1) t-statistics
ΔlnPM2.5 6.2655 ** 1.7088 5.2909 * −0.0665 *** −5.6409

ΔlnGDPPC 12.0662 *** 0.9156 2.3951 −0.0704 *** −3.2335
ΔlnUIS 6.1390 ** 14.3349 *** 9.3067 *** −0.0272 ** −2.3615
ΔlnIND 2.6420 14.4685 *** 1.0221 0.0072 *** 2.8231

Significance: * 0.1, ** 0.05, *** 0.01.

Figure 5. Diagram of the causal relationships between PM2.5 concentrations, GDP per capita (GDPPC),
the proportion of urban impervious surface area (UIS) and the value added by industry as a percentage
of GDP (IND).

In the panel, all socioeconomic variables caused the variations of PM2.5 concentrations in Liaoning
Province, especially economic growth, which not only influenced changes in pollutant concentrations
in the long and short term but also affected the changes in industrialization and urbanization in the long
and short term. Additionally, industrialization directly caused changes in pollutant concentrations in
the long and short run and caused variations in urbanization in the short and long term (Figure 5).
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3.6. Variance Decomposition and Impulse Response Analysis Results

The results of the variance decomposition analysis in Table 6 compared the contribution of each
variable to the changes in PM2.5 concentration. In the panel, the variances of PM2.5 concentration were
mostly explained by its own standard shock (80.95%) in the 16-year period, while the contributions
from the GDPPC, IND and UIS to the PM2.5 concentration were 9.20%, 9.56% and 0.29%, respectively.

Table 6. Variance decomposition analysis results of pm2.5 concentrations in the panel.

Period S.E. lnPM2.5 lnGDPPC lnIND lnUIS

Variance Decomposition of lnPM2.5:

1 0.068920 100.0000 0.000000 0.000000 0.000000
2 0.097998 98.17410 1.265334 0.488164 0.072398
3 0.114122 97.05163 2.419547 0.366743 0.162078
4 0.123131 95.67872 3.687611 0.410396 0.223269
5 0.128520 94.08125 4.921052 0.746677 0.251024
6 0.132068 92.35911 6.035212 1.349410 0.256273
7 0.134648 90.63484 6.970944 2.143034 0.251183
8 0.136672 89.00029 7.711078 3.044643 0.243994
9 0.138337 87.50652 8.266401 3.988203 0.238875
10 0.139744 86.17206 8.662361 4.928241 0.237340
11 0.140948 84.99492 8.928941 5.836583 0.239554
12 0.141987 83.96262 9.095029 6.697198 0.245149
13 0.142889 83.05865 9.185900 7.501821 0.253625
14 0.143674 82.26610 9.222504 8.246885 0.264513
15 0.144360 81.56939 9.221616 8.931577 0.277415
16 0.144962 80.95495 9.196351 9.556689 0.292006

The impulse responses result presented in Figure 6 showed that the responses of the PM2.5

concentration to itself decreased because of shocks from decreasing UIS and IND in the first two years.
Then, from the fifth year, the response of the PM2.5 concentration continued to decrease because of
shocks from decreasing GDPPC and decreasing IND in the latest seven years.

Figure 6. Results of the impulse response of lnPM2.5 to Cholesky one S.D. innovations of the variables.
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4. Discussion

4.1. The Analysis of Relationships between PM2.5 and Socio-Economic Development in Liaoning Province

Studies have shown that changes in fine particulate pollution concentrations in China are
influenced by natural factors and human activities [42,43]. Therefore, to explore the impacts of
urban socioeconomic factors on PM2.5 concentrations, we selected three indicators: urban GDP
per capita, the proportion of urban impervious surface area and the value added by industry as a
percentage of GDP, representing economic growth, urbanization and industrialization, respectively,
which were assumed to be the most significant socioeconomic factors affecting PM2.5 concentrations in
China. In our results, all selected socioeconomic variables were long-term causalities of the changes
of PM2.5 concentrations, and economic growth and industrialization also significantly affected the
variations in PM2.5 concentrations in the short term. The variance decomposition results showed
that industrialization was the determinate factor affecting PM2.5 concentration variations in Liaoning
Province, which was basically the same with the results found by Li, Fang, Wang and Sun [22], but only
five cities in Liaoning Province were included in their industry-oriented panel, and the study period
and indicators were different from ours. This further confirmed the attribute of Liaoning Province as a
socio-economic mode of industry-oriented development.

Liaoning Province is an area in Northeast China where cities characterized by heavy industry are
concentrated. Equipment manufacturing, the coal industry, the metallurgy industry and commodity
production are the strengths of Liaoning Province [44]. For a long time period, heavy industry had
been the main driving force of economic growth of most cities in Liaoning Province, promoting the
rapid urbanization process. The concentrating population and developing economies would also
motivate the urban industrial activities [45]. However, with the popularization and development
of technology, the pressure of market competition increases. As a result, the supply of products in
Liaoning Province far exceeds the market demand, and the problem of overcapacity is becoming
increasingly serious [44]. Following the third scientific and technological revolution, the new science
and technology industry, represented by electronics, computers, biological engineering, etc., seriously
impacted traditional industries, resulting in a decline in the proportion of primary and secondary
industries and leading to the rise of emerging industries such as the internet industry. However,
in Liaoning Province, the tertiary industry only accounted for 38.7% of GDP in 2013, 5.8% less than the
national average [46]. In 2015, the tertiary industry as a percentage of GDP rose to 46.06%, with major
growth, basically equal to the national average. The slowdown in economic growth (Figure 4B) and
the increase in the proportion of the tertiary industry indicated that adhering to the transformation
of economic structure and industrial structure is a policy with both opportunities and difficulties.
However, in recent years, the PM2.5 concentration has declined (Figure 4A), further proving the validity
of industrial structure transformation.

4.2. The Analysis of Environmental Kuznets Curve (EKC)

Although industrialization contributed the most to the PM2.5 concentration changes in the sixteen
years in Liaoning Province, the contribution of economic growth dominated a longer period (Table 6).
Moreover, some relationships between the economic growth and PM2.5 concentration changes were
also noteworthy, such as the feedback effects in the Granger causality test (Figure 5) and fluctuations in
the impulse response of shocks (Figure 6). Therefore, we constructed a regression model based on
the Environmental Kuznets Curve (EKC) theory to study the relationship between economic growth
and PM2.5 pollution. Grossman and Krueger [47] found that an inverted U-shaped relationship
existed between economic growth and environmental pollution [48]. With a low level of economic
development in a country or region, the degree of environmental pollution is relatively low, and with an
improved economic level, the degree of environmental pollution intensifies. However, when economic
development reaches a certain level, that is to say, reaches an “inflection point”, environmental quality
gradually improves thenceforth with the increase in income.
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Our result of the EKC regression between GDPPC and PM2.5 is shown in Figure 7. According to
the model equation, when the GDPPC was equal to CNY 74.8 thousand, the pollution reached the
inflection point, and a decreasing trend appeared. Referring to the panel data, we found that the
data of GDPPC higher than the turning point mainly appeared in the later periods of the time series,
and the value added by industry as a percentage of GDP declined. The EKC result further proved that
economic growth did not always increase PM2.5 concentrations in Liaoning Province, suggesting that
changing economic growth mode was a correct choice for pollution control.

Figure 7. Scatter plot and Environmental Kuznets Curve (EKC) fitting line between PM2.5 concentrations
and GDP per capita.

4.3. Implications for Regional Air Pollution Management

Through the study on the relationships between socioeconomic factors and PM2.5 concentration
changes in Liaoning Province from 2000 to 2015, we found that the industrialization and economic
growth were the main causes affecting the PM2.5 concentration changes from the perspective of
short-term impacts and long-term contributions. As the traditional pillar industry of economic growth
in Liaoning Province, the contributions of the secondary industry to regional pollution is predictable.
According to the above data and results, we also found that the dependence of economic growth on
the secondary industry in Liaoning Province was weakened, and the EKC curve also showed that
economic growth did not always lead to the increase in PM2.5 concentrations. In 2014, the number of
days of severe pollution (150–250 μg/m3) in Shenyang reached 22 days; in 2018, the number of days of
severe pollution was only 2 days. Although there is still a big gap between China’s pollution level and
the world standard, the improvement of atmospheric environment is obvious. This informs us that
the transformation of economic structure is effective for the management of atmospheric pollution.
However, improving energy efficiency and developing and utilizing clean energy is the key direction
of taking into account both economic growth and environmental protection [49,50].

Among the socioeconomic variables, the urbanization process only showed the long-term impact
on PM2.5 concentration changes, and the contribution was weak. In other words, the urban expansion
and population growth had little direct effects on the changes of PM2.5 concentration, but indirectly
affected the changes through economic growth and the industrialization process [19]. The causality
diagram (Figure 5) showed that PM2.5 changes, industrialization and economic growth also affected
the urbanization process in both the short and long term. As the level of urbanization in each period
is closely related to the pollution exposure [51], the goal of “new-type urbanization” is not only to
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emphasize the rapid urbanization, but also to meet the health needs of residents [52]. Therefore,
the study on relationships between regional environment and socioeconomic factors is necessary for
the phased management of regional pollution, and more variables may be added according to the data
availability and research objectives.

4.4. Limitations

The study results have explained the impacts of socioeconomic development on PM2.5

concentrations and the causal relationships among them to a large extent in Liaoning Province;
however, there are still some limitations. For example, the surface PM2.5 data used in this study are
the longest time series pollutant data available at present, but there is also a possibility that the lower
spatial resolution of the data has affected the accuracy of the assessment results. If better data could
be obtained (i.e., higher spatial resolution and longer time series), it would be beneficial to further
explore the causes of regional and internal pollution differences in the future. On the other hand,
complex coupling relationships among economic growth, urbanization, industrialization and PM2.5

concentrations were observed in this study. Determining how to decouple these relationships to further
develop targeted solutions that tackle the pollution issue remains a challenging and urgent task. In the
future, it is also necessary and meaningful to study and compare the relationships between policies and
environment in other regions such as agriculture- or service-oriented areas and comprehensive areas.

5. Conclusions

In the panel data used in this study, the variables were all cointegrated. The Granger causality test
results showed that economic growth, industrialization and urbanization were all long-term causalities
of the changes of PM2.5 concentrations, and economic growth and industrialization also significantly
affected changes in PM2.5 concentrations in the short term. The results of variance decomposition and
the impulse response analysis showed that industrialization was the most important variable affecting
PM2.5 concentrations. However, controlling only one socioeconomic factor to slow pollution growth is
not feasible because there are either long-term or short-term and either bidirectional or unidirectional
relationships among them. Though Liaoning Province has shown characteristics of economic and
industrial transformation, it is also necessary to formulate more targeted policies to solve the problem
of regional air pollution.
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Abstract: The use of electronic cigarettes (e-cigarettes) and heat-not-burn tobacco (HNBT), as popular
nicotine delivery systems (NDS), has increased among adult demographics. This study aims to assess
the effects on indoor air quality of traditional tobacco cigarettes (TCs) and new smoking alternatives,
to determine the differences between their potential impacts on human health. Measurements of
particulate matter (PM1, PM2.5 and PM10), black carbon, carbon monoxide (CO) and carbon dioxide
(CO2) were performed in two real life scenarios, in the home and in the car. The results indicated that
the particle emissions from the different NDS devices were significantly different. In the home and car,
the use of TCs resulted in higher PM10 and ultrafine particle concentrations than when e-cigarettes
were smoked, while the lowest concentrations were associated with HNBT. As black carbon and CO
are released by combustion processes, the concentrations of these two pollutants were significantly
lower for e-cigarettes and HNBT because no combustion occurs when they are smoked. CO2 showed
no increase directly associated with the NDS but a trend linked to a higher respiration rate connected
with smoking. The results showed that although the levels of pollutants emitted by e-cigarettes and
HNBT are substantially lower compared to those from TCs, the new smoking devices are still a source
of indoor air pollutants.

Keywords: indoor air quality; e-cigarettes; heat-not-burn tobacco; traditional smoking products;
tobacco smoke; passenger cars

1. Introduction

There is a scientific and medical consensus that cigarette smoking is causally related to lung cancer,
heart disease, emphysema and other serious diseases in smokers [1]. Every year, about 8 million
people worldwide die from tobacco use [2], and its consumption has been consistently declared as
the leading cause of morbidity and mortality in the world [3]. Tobacco smoke is a complex mixture
of numerous toxic and carcinogenic substances, containing more than 8000 chemicals produced by
distillation, pyrolysis and combustion reactions when tobacco is burnt during both the smoldering and
puffing of a cigarette [4].

Convincing scientific evidence has been available for a long time from experimental and
epidemiological studies demonstrating that exposure to environmental tobacco smoke (ETS), called
secondhand smoke (SHS) or passive smoke, also causes respiratory and heart diseases including lung
cancer in adult nonsmokers [5]. In 2017, 1.22 million deaths were caused by SHS [2] (approximately
15% of the deaths linked to tobacco). In children, SHS interferes with lung development, promotes
allergic sensitization and asthma, and increases the risk of sudden infant death syndrome [6,7].
The International Agency for Research on Cancer has classified ETS as carcinogenic [5].
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Following smoking bans introduced in many countries prohibiting tobacco smoking in public
spaces to minimize exposure, the tobacco industry initiated major investments in promoting new
(sometimes unregulated) products for consumers. These products were advertised as more appealing
than traditional cigarettes (TCs) in terms of social tolerance and health risks. Beliefs that these new
products are useful as cessation tools are associated with elevated odds of use in locations where TCs
are prohibited [8].

Examples of new smoking products are electronic cigarettes (e-cigarettes), which are
battery-powered devices that produce an aerosol from a water-based solution, and heat not-burn
tobacco (HNBT), which has been described as a hybrid between TCs and e-cigarettes.

Investigations (some of them developed by the tobacco industry) concluded that although these
products are still not entirely safe, they can be considered harmless compared to TCs and, if regulated
and controlled, a method to quit addiction to TCs [9–11].

Despite these claims, some research results suggest that inhaling propylene glycol-containing
e-cigarette aerosols may have adverse health effects, especially in the respiratory and cardiovascular
systems [12,13]. Vaping indoors can also release vegetable glycerin, nicotine, aldehydes and heavy
metals at levels that may pose a health risk to others [14,15]. In the United States, during 2019, more
than 2000 people developed serious lung damage in a poisoning outbreak associated with the use of
vaping devices, and 39 people have died from the condition. The United States Centers for Disease
Control and Prevention has recently identified vitamin E acetate, an ingredient added to illicit vaping
liquids, as the main cause. Recent research has also shown that HNBT produces toxic compounds
(e.g., formaldehyde), which are inhaled together with the aerosol [16]. It is also unclear if these new
products reduce or increase nicotine addiction [17]. It has been suggested that they can change the
epidemiological perception of smoking and likely attract adolescents into smoking dependence [18–20].

Due to the increasing popularity of e-cigarettes and HNBT as alternatives to TCs, the World Health
Organization (WHO) recognized the importance of monitoring and closely following the evolution of
new tobacco products, including products with potentially “modified risks”. There is a need for further
documentation and research about the emissions, impacts on indoor air quality, potential health risks
for passive smokers and benefits of the new devices [21]. This study evaluated the levels of particles,
black carbon, carbon monoxide and carbon dioxide during the smoking of e-cigarettes, HNBT and TCs
in homes and cars to assess the potential exposure of smokers and non-smokers.

2. Materials and Methods

2.1. Sampling Sites Description

Home measurements were performed in the sitting room of an occupied flat located in Lisbon,
Portugal (Figure 1). The sitting room had a volume of 73 m3 and was decorated with typical home
furniture. During the experiments, the room was occupied by two people. The air quality monitoring
equipment was placed 1.5 m away from the smoker with probes and absorption tubes pointed upwards,
at a height of approximately 1 m from the floor. Subjects were told to smoke as usual and not to blow
directly onto the equipment.

Car measurements were performed inside a medium volume car (Diesel Opel Corsa, from 2007)
traveling on a low traffic intensity route of 4.95 km at a mean speed of 34 km/h. The route was located
in the municipality of Loures, Portugal, between the neighborhoods of Bobadela and São João de Talha
(Figure 1). The real time monitors were placed in the back seat of the car, in open boxes that were
fastened with seatbelts to prevent their slipping. The probes or absorption tubes of the various devices
were positioned in the area corresponding to the breathing zone of a child. The study was carried out
with two occupants in the car: a driver (the smoker) and a non-smoking passenger seated in the front
passenger seat.
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Figure 1. Top: measurement locations within the Lisbon metropolitan area (Portugal)—car route in
Loures municipality (right, top) and location of the studied flat in Lisbon municipality (right, middle).
Bottom: arrangement of the measuring instruments in the home (left and center) and car (right).

2.2. Smoking Devices

Three different types of NDS were used in this work, all used by volunteer smokers:
Traditional cigarettes (TC) are comprised of a blend of dried and cured tobacco leaves which are

rolled into a thin rolling paper for smoking. TCs burn at temperatures of around 800 ◦C, generating
smoke that contains harmful chemicals. This work used two types of cigarette of a commonly smoked
brand in Portugal, Chesterfield blue (TC1) and Chesterfield menthol (blue caps) (TC2).

E-cigarettes are battery-powered devices that produce an aerosol, from a water-based solution,
containing a mixture of nicotine, glycerin, propylene glycol and flavoring chemicals, differing depending
on the commercial brand. This work used two different types of e-cigarette: the one most common
in the USA (JUUL: Slate JUUL, 4.5V, 8W, 5% nicotine pods) and that in Europe (Vape: IStick TC40W,
nicotine free liquid).

Heat-not-burn tobacco (HNBT) is comprised of a small cigarette made of elements that include a
tobacco plug, hollow acetate tube, polymer-film filter, cellulose-acetate mouthpiece filter, and outer and
mouth-end papers. It is equipped with electronics that heat specially prepared and blended tobacco,
just enough to release a flavorful nicotine-containing vapor but without burning the tobacco. HNBT is
heated up to temperatures below 350 ◦C in an effort to produce lower amounts of air toxicants [22].
This work used the iQOS from Philip Morris International, which is the most popular brand in Europe
and America.

2.3. Measurement Equipment and Protocol

Continuous measuring portable monitors were used to carry out measurements of indoor
concentrations of smoking related pollutants:

The DustTrack DRX monitor (8533 model, TSI, Dallas, TX, USA) was used to measure the
concentration of particles in a size range between 0.1 to 15 μm. It is a multi-channel, battery-operated,
data-logging device, which uses a light-scattering laser photometer that allows the simultaneous
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measurement of size-segregated mass fraction concentrations corresponding to PM1, PM2.5, respirable,
PM10, and total PM size fractions. The resolution of the equipment is ±0.1% of the reading or
0.001 mg/m3.

The CPC TSI 3007 was used to measure the number concentration of ultrafine particles (UFP)
with a size range between 0.01 and 1.0 μm (PM0.01–1). It operates by drawing an aerosol sample
continuously through a heated saturator, in which alcohol is vaporized and diffused into the sample
stream. Together, the aerosol sample and alcohol vapor pass into a cooled condenser where the alcohol
vapor becomes supersaturated. Here, particles grow quickly into larger alcohol droplets and pass
through an optical detector where they are counted. The accuracy of the equipment is ±20%, and the
resolution is 0.001 μg/m3.

The MicroAethalometer AE51 (AethLabs, San Francisco, CA, USA) was used to measure black
carbon. In the AE51, the air sample is collected by a T60 filter medium (Teflon coated glass fiber).
During operation, the microprocessor makes optical measurements, measures and stabilizes the airflow,
and calculates the mass concentration of black carbon. The measurement is performed at 880 nm,
and the concentration is obtained by the rate of change in the absorption of the transmitted light due to
the continuous deposition of black carbon in the filter and the determination of the attenuation of the
source light. The measurement precision is ±0.1 μg/m3, at a 150 ml/min flow rate, and the resolution is
0.001 μg.

The TSI 7545 (7545 model, TSI, Dallas, TX, USA) was used to simultaneously measure and log
CO, using an electro-chemical sensor, and CO2, with a non-dispersive infrared sensor. The accuracy of
the CO and CO2 concentrations is ±3% of the reading, and the resolution is 0.1 ppm for CO and 1 ppm
for CO2.

In homes, an initial non-smoking scenario was recorded for 2 hours and used as a control.
Afterwards, each NDS was continuously measured for 2 hours divided into eight 15-minute intervals.
Each interval consisted of NDS being smoked with 10 “puffs” for 5 minutes leaving a 10-minute decay
period between smokes.

In cars, the measurement for each NDS was made by completing three repetitions composed of
three different individual laps (Figure 2). Lap A consisted of a “cleaning lap” where all windows
were open and there was no smoking; Lap B was a “blank/control lap” where all windows were
closed except for the driver’s, which was opened halfway, with no smoking; and Lap C consisted of a
“smoking lap”, which replicated the conditions of the blank/control lap (all windows closed except for
the driver’s) with smoking. During Lap C, measurements were registered separately for the complete
lap (measurements C1), which included the pollutants’ decay, and only during the smoking period
within the lap, beginning when the cigarette was lit until it was turned off (measurements C2). Each lap
lasted between 8 and 10 minutes in which 10 “puffs” were taken per NDS, for an average smoke time
of 3 minutes and with a 7-minute decay period. To maintain the external conditions, the study test
drives took place outside of the traffic peak period.

 

Figure 2. Car measurement methodology.
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2.4. Emission Factors

Emission factors for the air pollutants emitted in homes were calculated using Equation (1) [23]:

EF = (Cave * ACH * V)/(nave), (1)

where EF is the emission factor of TCs, e-cigarettes or HNBT in μg/h; Cave is the timed-average pollutant
indoor concentrations during the smoking session (μg/m3); nave is the number of TCs, e-cigarettes or
HNBT being smoked during the average unit smoking time; ACH is the air change per hour (h−1);
and V is the room volume (m3).

Black carbon concentrations were used to calculate the ACH as it is a conservative and stable
pollutant, according to Equation (2) [23]:

ACH = (lnCini − lnCend)/t, (2)

where Cini is the initial concentration of black carbon (ng/m3), Cend is the final concentration of black
carbon (ng/m3), t is the total time (h) and ACH is the air change per hour (h−1).

2.5. Statistical Analysis

The analysis of the variance of the results was performed by non-parametric statistics for a
significance level of 0.05. The Mann–Whitney U test was used to test whether two independent groups
are likely to derive from the same population, considering the null hypothesis that the two samples
have the same median. Therefore, this test assessed whether observations in one sample tend to be
larger than observations in the other, such as in the case of air pollutant concentrations associated
with the different types of smoking product, the air pollutant levels for the background and smoking
periods, and the contribution of the particles’ sizes to the PM10 for the different NDS. The statistical
calculations were performed using the Statistica software.

3. Results and Discussion

3.1. Home Scenario

A comprehensive evaluation of the levels of smoking related pollutants in a home while TCs and
new smoking products (e-cigarettes and HNBT) were being smoked was performed. The concentrations
of the measured indoor air pollutants are summarized in Table 1, and the basic statistics are summarized
in Table S1 of the Supplementary Materials.
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3.1.1. Particulate Matter

Figure 3 depicts the contribution of each particle size fraction (PM1, PM1–2.5, PM2.5–10) to the
PM10 for the studied NDS and control. The Mann–Whitney test showed that there was a significant
difference between the contributions of the three particle size ranges to the PM10 in the non-smoking
and NDS trials. PM1 was the dominant size fraction for TCs (98.6%), e-cigarettes (91.1%) and HNBT
(92.1%) followed by PM2.5–10 (TCs: 1.2%, e-cigarettes: 6.5% and HNBT: 6.8%), whereas in the control,
the contribution of the coarsest particles to the PM10 mass increased to 43.9%.

Figure 3. Contribution of each particle size fraction (PM1, PM1–2.5, PM2.5–10) to the PM10 in the home
discriminated by NDS.

The use of TCs led to the highest increase in PM1 (3470 ± 1570 μg·m−3), PM2.5 (3480 ± 1570 μg·m−3)
and PM10 (3480 ± 1570 μg·m−3) concentrations, followed by the e-cigarettes (PM1: 1350 ± 1510 μg·m−3;
PM2.5: 1370 ± 1520 μg·m−3; PM10: 1380 ± 1520 μg·m−3) and HNBT (PM1: 80.6 ± 51.3 μg·m−3; PM2.5:
81.6 ± 51.3 μg·m−3; PM10: 87.8 ± 51.7 μg·m−3). The Mann–Whitney test showed that the concentrations
were significantly different between all types of cigarettes and that PM10 concentrations measured
during the smoking of TCs, e-cigarettes and HNBT were significantly higher than the levels measured
in the non-smoking period (165, 64 and 4 times higher, respectively).

Another study on smoke exposure [23] also described higher PM concentrations for TCs than
for e-cigarettes and HNBT. However, during the smoking of TCs, Ruprecht et al. [23] obtained PM1,
PM2.5 and PM10 concentrations 10, 23 and 2 times lower than those measured in the present study,
respectively. Schober et al. [24] also measured lower PM2.5 levels associated with the smoking of
e-cigarettes (197 μg·m−3) than those in the present study.

The differences between the NDS are likely caused by the fact that in TCs, there is a combustion at
a temperature <800 ◦C, which is lower than the temperature needed for complete combustion (around
1300 ◦C), while e-cigarettes and HNBT are only heated. According to Jiang et al. [25], heating tobacco
or e-liquids result in 95% less substances emitted than those produced by the combustion that occurs
in TCs. Schober et al. [26] showed that the vaping of the e-cigarettes releases more particles than
the use of HNBT. E-cigarette aerosols contain fine and ultrafine liquid particles that are formed from
supersaturated propylene glycol vapor, which can penetrate into the respiratory system and cause
oxidative stress and inflammatory reactions [27]. Pisinger and Dossing [28] mentioned the irritation of
the respiratory tract, evidence of an inflammatory process, a dry cough and an impairment of lung
function as short term effects of vaping.

The guidelines defined by the World Health Organization and the limit values according to the
Portuguese legislation for indoor air quality (PM2.5: 25 μg·m−3; PM10: 50 μg·m−3) were exceeded for
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TCs (139 and 70 times higher for PM2.5 and PM10, respectively), e-cigarettes (54 and 27 times higher)
and HNBT (3.2 and 1.7 times higher).

Figure 4 shows the temporal trends of PM10 levels measured during TC, e-cigarette, and HNBT
consumption. The PM10 concentrations associated with the TC and e-cigarette trials presented a
rapid increase above the background, while for HNBT, the increment was less pronounced but still
visible. PM10 peaks of more than 8000 μg·m−3 were reached for e-cigarettes and TCs. For TCs, PM10

levels showed a long decay period, causing an accumulation for each additional cigarette smoked,
whereas for both e-cigarettes and HNBT, PM10 showed a faster decay and no sign of accumulation.
Protano et al. [29] described a similar behavior, since a 1 hour time interval after each smoking each TC
was not enough to allow the PM concentration to decrease to the background levels. According to
Martuzevicius et al. [30], e-cigarette aerosols have been shown to have a half-life 100 times shorter than
TC emissions. The rapid evaporation of liquid droplets from e-liquids is the main reason for the quick
decay and the lack of atmospheric accumulation of PM during the use of e-cigarettes.

Figure 4. Temporal trends for the PM10, UFP, BC, CO and CO2 measured during Traditional Cigarettes
(TC), e-cigarette and Heat-not-burn tobacco (HNBT) consumption in the home.
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The PM1, PM2.5 and PM10 emission factors were the highest for TCs, followed by e-cigarettes
and HNBT. The emission factors calculated by Ruprecht et al. [23] for TCs were lower for PM1

(320 ± 132 μg·min−1) than those calculated in this study (844 μg·min−1), but higher for PM2.5 and PM10

(1480 ± 570 and 1540 ± 570 μg·min−1, respectively) than the ones calculated here (845 and 846 μg·min−1

for PM2.5 and PM10, respectively). The same study found that both the e-cigarette and HNBT emission
factors were non-detectable, significantly differentiating themselves from the elevated values obtained
for the present work.

3.1.2. Ultrafine Particles

The Mann–Whitney test showed that the UFP number concentrations were significantly higher during
all the smoking sessions than during the background, but the levels for TCs (110,000 ± 36,000 particles·cm−3)
stood out compared with those for e-cigarettes (37,800 ± 19,000 particles·cm−3) and HNBT
(35,700 ± 11,500 particles·cm−3). The levels for TCs, e-cigarettes and HNBT were 23.4, 8.1 and 7.6
times higher than background, respectively. The UFP concentrations were higher when combustion
was occurring i.e., during TC use [25]. This fact explains why both e-cigarettes and HNBT showed
lower UFP concentrations compared to TCs.

Atmospheric UFP are mainly composed of organic compounds, trace metal oxides and elemental
carbon [31]. Ruprecht et al. [23] found that for selected metals, trace elements and organic compound
emission factors varied between TCs, e-cigarettes and HNBT. This means that the type of NDS used
highly influences the UFP number concentration. Avino [32] also showed that during a TC test,
the increase in the particle number concentration is due to the emission during the smoking activity of
particles with a mode of roughly 100 nm, while the e-cigarettes emit particles sized with a mode of
about 30 nm.

The UFP number concentrations for TCs and HNBT were similar to those measured by
Ruprecht et al. [23] (123,000 ± 37,000 and 27,700 ± 10,300 particles·m−3, respectively). For e-cigarettes,
Ruprecht et al. [23] measured concentrations 4.4 times lower (8660 ± 560 particles·m−3) and
Schober et al. [24] obtained concentrations 1.6 times higher (61,700 ± 16,000 particles·m−3) than
in the present study. The discrepancies found are likely due to high variability in emissions due to the
types of equipment and e-liquid being used. Schober et al. [24] used a Red Kiwi (second generation
e-cigarette), which is larger and has more wattage than the Elips Series C (second generation e-cigarette)
used by Ruprecht et al. [23] and smaller than the third generation e-cigarettes used in this study.
Moreover, Zhao et al. [33] also showed that the heating coil temperature, puff duration and puff flow
rate in e-cigarettes influence the number concentration of the particles.

The real-time UFP number concentration plot presented in Figure 4 shows an initial cumulative
behavior in TCs that reaches a plateau at around 150,000 particles per cm3. The UFP temporal pattern
for e-cigarettes and HNBT shows a behavior similar to the one obtained by Protano et al. [29], which is
characterized by non-accumulation and rapid decay.

The UFP emission factors were the highest for TCs, followed by e-cigarettes and HNBT.
The emission factors obtained for TCs, e-cigarettes and HNBT by Ruprecht et al. [23] (130 × 1010,
1.1 × 1010 and 5.3 × 1010 particles per min) were much higher than those obtained in the present study.

3.1.3. Black Carbon

The highest black carbon concentrations were measured while TCs were being smoked
(13.2 ± 5.2 μg·m−3), followed by e-cigarettes (4.3 ± 10.4 μg·m−3) and HNBT (1.2 ± 0.7 μg·m−3),
which are values approximately 63, 20 and 5.6 times higher than those in the non-smoking trials,
considering the values presented in Table 1.

Black carbon particles are produced due to the incomplete combustion of carbon-containing
materials [34]. As the tobacco or tobacco-derived products within TCs are burned at temperatures
below the 1300 ◦C threshold needed for complete combustion to occur [25], these NDS have been
directly identified as black carbon emission sources [35,36].
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On the other hand, probably due to the fact that they evaporate a liquid charge rather
than combusting it, studies conducted by van Drooge et al. [37] and Ruprecht et al. [23] have
shown no connection between the use of e-cigarettes and black carbon emissions. According to
van Drooge et al. [37], the difference between the black carbon concentrations recorded during
the non-smoking and e-cigarette smoking scenarios are directly linked to outdoor black carbon
concentrations, thus indicating that black carbon is not an emission of the e-cigarette vapor. This is
the reason why in the study by Ruprecht et al. [23], the temporal patterns show lower black carbon
concentrations during e-cigarette smoking than in the control test, similarly to in the present work.

Figure 4 shows that the black carbon measured during the TC smoking trials presented an
initial cumulative behavior, reaching a plateau around 20.0 μg·m−3. Both e-cigarettes and HNBT had
non-cumulative effects and rapid decays, besides the high spikes observed.

3.1.4. Carbon Monoxide

The Mann–Whitney test shows that the use of TCs led to a significant increase in CO levels in
homes to 4.2± 1.8 mg·m−3, a concentration 2.5 above background levels without smoking. The smoking
of HNBT and e-cigarettes had no effect on the CO concentration, as already demonstrated by previous
studies [9,24,37], because CO is a byproduct of the incomplete combustion of carbonaceous matter that
occurs in TCs [38]. The real time CO concentration plotted in Figure 4 shows that both e-cigarettes and
HNBT had a steady, non-cumulative behavior, unlike the TCs, which had a cumulative and incremental
behavior without reaching a plateau.

None of the NDS surpassed the guidelines defined by the World Health Organization nor the
limit values according to Portuguese legislation (10 mg·m−3 for 8 h; 30 mg·m−3 for 1 h).

3.1.5. Carbon Dioxide

The CO2 concentrations were 2890 ± 660 mg·m−3 for e-cigarettes, 2640 ± 680 mg·m−3 for HNBT
and 2220 ± 520 mg·m−3 for TCs; approximately 1.6, 1.5 and 1.2 times higher than control levels,
respectively. All the NDS as well as the control scenario (also with two occupants) exceeded the
recommended World Health Organization CO2 maximum concentration (1800 mg·m−3).

The real time CO2 measurements (Figure 4) show similarities in the incremental behavior of all
the NDS and the control. The concentrations steadily increased, reaching almost double their initial
values after one hour and roughly thrice after two hours, indicating that exhalations during NDS use
did not increase CO2 concentrations in peak increments as with other pollutants. A study conducted
by Sadjadi and Minai [39] states that this increase in CO2 concentrations is related to an increase in the
respiration rate of smokers as a response to inflammation in order to compensate for the decrease in
oxygen inhalation during smoking rather than to the emissions originating from NDS use.

3.2. Car Scenario

Smoking in the interior of cars is of particular concern for the smoker and other non-smoking
passengers, principally for the most susceptible such as children and pregnant woman, because the
concentrations of potentially harmful substances are expected to be high due to the reduced volume
of the cabin. The mean concentrations measured during the test drives are summarized in Table 2,
and for the basic statistics, Table S2 from the Supplementary Materials can be consulted.
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Table 2. Air pollutant average concentrations measured in the car for traditional cigarettes (TC1 and
TC2), e-cigarettes (JUUL and Vape) and heat-not-burn tobacco (HNBT).

NDS Lap
PM1

(μg.m−3)
PM2.5

(μg.m−3)
PM10

(μg.m−3)
UFP

(particles.cm−3)
BC

(μg.m−3)
CO

(mg.m−3)
CO2

(mg.m−3)

TC1
Control 46.2 49.5 57.2 31,733 0.83 0.81 1059

Smoking 963 967 973 141,000 2.11 3.02 1130

TC2
Control 43.4 45.3 49.7 42,700 1.46 1.10 1090

Smoking 905 907 912 142,000 6.11 4.12 11,900

JUUL Control 19.2 21.1 24.5 28,500 0.57 0.43 883
Smoking 129 131 134 47,800 1.15 0.82 982

Vape Control 21.0 21.8 23.3 17,600 0.59 0.43 956
Smoking 1150 1170 1170 56,300 0.70 1.09 1090

HNBT
Control 14.5 15.9 18.3 7940 0.61 0.45 925

Smoking 23.3 24.7 26.7 22,100 0.46 0.74 1020

3.2.1. Particulate Matter

Figure 5 depicts the contribution of each particle size fraction (PM1, PM1–2.5, PM2.5–10) to the
PM10 for the studied NDS during the different laps. Although no difference was observed between
the cleaning and control laps, the Mann–Whitney test indicated a significant difference between the
non-smoking and the NDS trials. For the NDS, PM1 was the dominant size fraction for TC1 (98.3%),
TC2 (99.2%), JUUL (95.3%), vape (97.9%) and HNBT (87.9%), with negligible contributions from the
other two fractions. In the control, the two coarser fractions (PM1–10) have a significantly higher
contributions during the smoking periods, representing between 9.8% and 21.5% of the PM10 mass.

Figure 5. Contribution of each particle size fraction (PM1, PM1–2.5, PM2.5–10) to the PM10 in the car
discriminated by NDS.
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The highest PM10 concentrations were measured while the vape was smoked (1170 ± 1160),
followed by TC1 (973 ± 597 μg·m−3), TC2 (912 ± 881 μg·m−3), JUUL (134 ± 190 μg·m−3) and HNBT
(26.7 ± 22.7 μg·m−3). The Mann–Whitney test showed that the PM10 concentrations were significantly
different for all the types of cigarette except for TC1 and TC2, between which significant differences
were not observable.

Figure 6 shows the temporal evolution of the PM10 concentrations. There is an incremental
and cumulative behavior for TC1 and TC2, reaching a plateau at around 1000 μg·m−3 before the
concentrations start to slowly decrease back to control levels. The JUUL, vape and HNBT time patterns
show significant concentration spikes during use but then rapid decreases in concentration.

Figure 6. PM10 concentrations measured in the car during traditional cigarette (TC1 and TC2),
e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.

Geiss et al. [40] measured PM in the vehicle cabins and obtained an average PM2.5 concentration
in the cars of 26.9 μg·m−3, similar to those found in the control level measurements in the present study.
Schober et al. [26] studied NDS emissions in seven different vehicles and observed higher mean PM2.5

concentrations for TCs (64–1990 μg·m−3) when compared to vape (8–490 μg·m−3), HNBT (6–34 μg·m−3)
and control (4–11 μg·m−3). In the present study, the e-cigarette vape showed the highest mean levels of
PM2.5 and PM10, even when comparing with TCs.

3.2.2. Ultrafine Particles

The highest UFP concentrations were measured while TC2 were being smoked
(142,000 ± 42,000 particles·cm−3), followed by TC1 (141,000 ± 56,000 particles·cm−3), vape
(56,300 ± 39,700 particles·cm−3), JUUL (47,800 ± 12,700 particles·cm−3) and HNBT
(22,100 ± 16,800 particles·cm−3). These values are 3.3, 4.4, 3.2, 1.7 and 2.8 times higher than those in
the control scenario, respectively.

TC1 and TC2 showed a longer decay period than the other NDS. Clear spikes were observed for
JUUL, HNBT and vapes when “puffs” were taken, but the patterns did not show accumulation and
had rapid decays (Figure 7).
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Figure 7. Ultrafine particle concentrations measured in the car during traditional cigarette (TC1 and
TC2), e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.

The UFP concentrations measured during TC1 and TC2 consumption were significantly higher
than for the other NDS, likely due to the combustion that occurred. As previously stated, TCs burn at
temperatures of 800 ◦C, which leads to incomplete combustion, while vape, JUUL and HNBT are only
heated. TC1 and TC2 also contain heavy metals and hydrocarbons [41], both of which can be found in
the chemical composition of atmospheric UFP [31].

The study developed by Schober et al. [26] showed that TCs also presented the highest
UFP levels (ranging from 24,300 to 236,000 particles·cm−3), but with HNBT (mean value of
37,900 ± 38,100 particles·cm−3, ranging from 16,700 to 124,000 particles·cm−3) having higher UFP
levels than e-cigarettes (mean value of 31,000 ± 24,100 particles·cm−3, ranging from 10,200 to
74,000 particles·cm−3) in 71% of the cases.

3.2.3. Black Carbon

The black carbon concentrations were the highest for TC2 (6.1 ± 4.0 μg·m−3), followed by TC1
(2.1 ± 0.9 μg·m−3), JUUL (1.2 ± 0.6 μg·m−3), vape (0.7 ± 1.0 μg·m−3) and HNBT (0.5 ± 0.3 μg·m−3),
representing levels 4.2, 2.5, 2.0, 0.4 and 0.7 times higher than those in the control scenario, respectively.
The incomplete combustion that occurs in TCs explains the comparably higher concentrations obtained
for this type of NDS.

The real time black carbon concentrations presented in Figure 8 show an incremental behavior
during the use of TC1 and TC2 and a steady decrease after smoking. The JUUL presented a
non-cumulative effect, a rapid decay and spikes in concentrations during its use. Both the vape and
HNBT patterns showed a non-cumulative effect and rapid decay like the pattern for JUUL, but no
spikes in concentrations were observed.
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Figure 8. Black carbon concentrations measured in the car during traditional cigarette (TC1 and TC2),
e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.

The concentrations in the present study were lower than the black carbon concentrations measured,
in vehicles from non-smokers, by Lee et al. [42] (1.9 μg·m−3), Cunha-Lopes et al. [43] (5.1 ± 7.3 μg·m−3)
and Correia et al. [44] (5.5 ± 5.9 μg·m−3), except for TC1 and TC2. Onat et al. [45] measured a set of
indoor pollutants in different commuting vehicles in Istanbul and registered, for cars, an average black
carbon concentration of 2.3 ± 1.3 μg·m−3 with closed windows, similar to the results obtained in this
study for TC1. Fruin et al. [46] showed that driving behind vehicles in traffic with open windows has a
significant effect on the black carbon exposure. This work measured very high levels of black carbon
in cars driving behind transit buses reaching up to 92 μg·m−3. This would mean that black carbon
concentrations in vehicles can be much more related to the outdoor environment rather than to indoor
sources, even with a significant emitting source such as an NDS.

3.2.4. Carbon Monoxide

Statistical tests showed that the CO concentrations for TC1 (3.0 ± 1.5 mg·m−3) and TC2
(4.1 ± 1.6 mg·m−3) were significantly higher than for vape (1.1 ± 0.3 mg·m−3), JUUL (0.8 ± 0.1 mg·m−3)
and HNBT (0.7 ± 0.3 mg·m−3). Figure 9 shows an incremental and cumulative behavior for TC1
and TC2. E-Cigarettes, JUUL and HNBT show a steady behavior regarding concentrations, with no
increases or accumulation occurring during their use. The observed differences are likely linked to the
incomplete combustion processes in TC1 and TC2.

Northcross et al. [47] measured CO concentrations in cars during the smoking of TCs and obtained
an average concentration of 2.8 ± 1.0 mg·m−3 when all windows were half open, while a study
conducted by Dirks et al. [48] measured CO concentrations in vehicles ranging from 0.7 to 3.2 mg·m−3,
depending on the window conditions and the ventilation setting in the car.
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Figure 9. Carbon monoxide concentrations measured in the car during traditional cigarette (TC1 and
TC2), e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.

3.2.5. Carbon Dioxide

The CO2 concentrations were the highest during TC2 consumption (1190 ± 50 mg·m−3), followed
by TC1 (1130 ± 90 mg·m−3), vape (1090 ± 60 mg·m−3), HNBT (1020 ± 60 mg·m−3) and JUUL
(982 ± 43 mg·m−3).

Smoking is linked with an increase in respiration rate, which increases CO2 concentrations in
indoor environments (Figure 10).

Figure 10. Carbon dioxide concentrations measured in the car during traditional cigarette (TC1 and
TC2), e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.
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Goh et al. [49] measured CO2 concentrations ranging between 810 and 1080 mg·m−3 in cars, similar
to the results for the cleaning laps in the present study. The same study obtained CO2 concentrations
for two occupants (with all the windows closed) of 2160 mg·m−3 nine minutes after the beginning
of the experiment. Even without smoking, these values are almost twice the levels measured in the
present study for TC2 (1190 mg·m−3).

4. Conclusions

Although traditional tobacco smoking has been in decline since the 1980s, newer generations of
NDS have been steadily increasing in popularity ever since they were introduced into the market in
2013. This accelerated growth, together with their recent appearance, has led to an impendent need for
studies to be developed measuring the effects of such.

The present study allowed the evaluation of the concentrations of smoke pollutants, more
specifically, the particulate matter and gases originating from different types of NDS in real life scenarios
where smoking is still common among electronic nicotine delivery systems users, which consider these
a safer option than TCs.

The results showed that although the levels of pollutants emitted by e-cigarettes and HNBT are
substantially lower compared to those from TCs, the new smoking devices are still a source of indoor
air pollutants. All smoking options are avoidable sources of indoor pollutants, and to protect the
health of smokers and non-smokers, they should not be used in homes and cars.

The presented results pertain to a single brand of HNBT and specific brands of e-cigarettes and
may not represent the possible variability among different brands or manufacturers. Additionally,
the configurations of the equipment as well as the e-liquid charges used for each e-cigarette may not
represent other brands or configurations of these devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/10/3455/s1,
Table S1: Concentrations of air pollutants measured in the home for traditional cigarettes (TC1 and TC2),
e-cigarettes (JUUL and Vape), and HNBT, Table S2: Concentrations of air pollutants measured in the car for
traditional cigarettes (TC1 and TC2), e-cigarettes (JUUL and Vape), and HNBT.
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Abstract: Fine particulate matter entering the body through breathing cause serious damage to
humans. In South Korea, filter-type air purifiers are used to eliminate indoor fine particulate matter,
and there has been a broad range of studies on the spread of fine particulate matter and air purifiers.
However, earlier studies have not evaluated an operating method of air purifiers considering the
inflow of fine particulate matter into the body or reduction performance of the concentration of fine
particulate matter. There is a limit to controlling the concentration of fine particulate matter of the
overall space where an air purifier is fixed in one spot as the source of indoor fine particulate matter
is varied. Accordingly, this study analyzed changes in the concentration of indoor fine particulate
matter through an experiment according to the discharging method and location of a fixed air purifier
considering the inflow route of fine particulate matter into the body and their harmfulness. The study
evaluated the purifiers’ performance in reducing the concentration of fine particulate matter in
the occupants’ breathing zone according to the operation method in which a movable air purifier
responds to the movement of occupants. The results showed the concentration of fine particulate
matter around the breathing zone of the occupants had decreased by about 51 μg/m3 compared
to the surrounding concentration in terms of the operating method in which an air purifier tracks
occupants in real-time, and a decrease of about 68 μg/m3 in terms of the operating method in which
an air purifier controls the zone. On the other hand, a real-time occupant tracking method may face a
threshold due to the moving path of an air purifier and changes in the number of occupants. A zone
controlling method is deemed suitable as an operating method of a movable air purifier to reduce the
concentration of fine particulate matter in the breathing zone of occupants.

Keywords: particulate matters (PM); air purifier; experiment; real-time monitoring unit; transfer unit;
occupant; breathing zone

1. Introduction

Recently, high levels of fine particulate matter are observed in the atmosphere of the East
Asian regions, including South Korea, regardless of the season due to rapid economic growth and
industrialization, causing adverse effects on the body [1,2]. The inflow of outdoor particulate matter
into the indoor space is causing deterioration of the indoor air quality. According to the World
Health Organization, 3.8 million people a year die prematurely from illness attributable to household
air pollution [3]. Particulate matter is classified into PM10, which has particulate matter less than
10 μm and PM2.5, which has particulate matter less than 2.5 μm [4]. Particles, in general, are filtered
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using the cilia or respiratory tract and cannot enter the lung when they are under the body, but fine
particles of small size can penetrate the lung and accumulate in the alveoli. Particles accumulated in
the alveoli cause an inflammatory response and generate active oxygen, causing necrotized tissues.
When particles accumulate in the bronchial tubes, they cause phlegm and cough as well as drying of
the bronchial mucosa, which can easily allow penetration of germs and leave people with chronic lung
conditions vulnerable to infectious diseases like pneumonia [5,6]. In particular, fine particulate matter
less than 2.5 μm have been reported to cause diseases such as angina, stroke, and heart attack [7–10].
This indicates that fine and ultrafine particulate matter penetrating the body through breathing can
cause serious damage to the body.

Filter-type air purifiers are used to control indoor fine particulate matter in South Korea, and
there has been a broad range of studies on air purifiers and fine particulate matter. However, previous
studies focused on the purification effects caused by the airflow rate and filter grade of air purifiers
and have not evaluated the operating method of air purifiers that considers the inflow path of fine
particulate matter into the body and the breathing zone of occupants or the performance in reducing the
concentration of particulate matter [11–19]. As various sources cause indoor fine particulate matter [20],
operating a fixed air purifier can reduce the average concentration of indoor fine particulate matter,
but the reduction effect against fine particulate matter in local areas such as the breathing zone of
occupants is inadequate. Contrarily, we thought that delivering purified air discharged from the air
purifier to the breathing zone of occupants by changing the discharge angle of the air purifier and
attaching a transfer unit can reduce the concentration of fine particulate matter in the air that occupants
breathe regardless of the average concentration of particulate matter in indoor spaces.

Accordingly, this study considered the inflow of fine particulate matter into the body and their
harmfulness and analyzed changes in the concentration of indoor fine particulate matter according to
the discharge method of a fixed air purifier and changes in the concentration of indoor fine particulate
matter through the experiment, and the study evaluated the reduction performance of fine particulate
matter in the breathing zone of occupants according to the operation method in which a movable air
purifier responds to the movement of occupants.

2. Materials and Methods

2.1. Experiment Equipment and Method

The experiment was conducted indoor after sunset to minimize changes in indoor temperature
caused by solar radiation. Figure 1 shows the experimental space and installation locations of the
experiment’s equipment. The size of the experiment space is 7.0 m (L) × 10 m (W) × 2.8 m (H), and the
volume is 196 m3. The experiment space was divided into four artificial zones, and the particulate
matter (PM) concentration measuring devices were installed in the center of each zone. Pollutants
were set to be generated from a height of 1.2 m from the center of the hallway wall. Table 1 shows
the experiment devices used in this study. The target pollutant was a Polystyrene Latex (PSL) 2 μm
standard solution, which was mixed with distilled water and sprayed in the space with the aerosol
generator. The scanning electron microscope [21] was used to observe and analyze the particle shape of
PSL, and the result showed the particle had an even spherical shape of 2.0 μm (SD ± 3%), as shown in
Figure 2. The TES-5322 model was used for concentrating the PM concentration, and the measurement
accuracy of the PM2.5 concentration is below ± 5μg/m3 when less than 50 μg/m3, and below ± 10%
when greater than 50 μg/m3. The H13 grade filter that can filter out particles greater than 0.3 μm by
99.95% was applied.

184



IJERPH 2020, 17, 5561

 
(a) (b) 

Figure 1. Experimental space and location of experiment equipment. (a) Experimental space; (b) Location
of experiment equipment.

Table 1. Equipment and materials for experiment.

Purpose Model Quantity

Air purifier Mi Air 2 1
PM measuring device TES-5322 5
Thermo-hygrometer TR-72WF 4

Anemometer TSI 9565 1
PM2.5 generating device Aerosol generator 1

Standard particle solution Polystyrene Latex
(Standard particle 15 mL) 3

Air supply and flow control of aerosol generator Compressor (AM 400D) 1
Water removal of aerosol air supply Dryer (TX15K) 1

 

Figure 2. Expanded picture of standard solution through a scanning electron microscope (SEM).
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The height of the PM concentration measuring device for measuring changes in the concentration
of fine particulate matter in the breathing zone of occupants was set to 1.5 m by considering the
breathing area of occupants while standing.

2.2. Arrangement of the Air Purifier Considering Draft

There are methods to control the concentration of various indoor pollutants such as fine particulate
matter, including generation control, elimination control, and dilution control. If fine particulate matter
is the target pollutant, the concentration can be controlled by eliminating the source or collecting
fine particulate matter dispersed in the space. Therefore, the most effective method for reducing the
concentration of indoor fine particulate matter is to locate and operate an air purifier close to the source
of pollutants. However, outdoor fine particulate matter can flow in through openings or cracks in the
building, and fine particulate matter are generated from a variety of activities by occupants, including
cooking, exercising, and ventilation. Thus, the source of pollutants cannot be easily characterized.
Furthermore, many measurement sensors are required to detect the source of the indoor fine particulate
matter early [22–25]. This study selected a method of delivering air discharged from the air purifier
toward the breathing zone of occupants to improve the reduction performance of the concentration
fine particulate matter by operating the air purifier. In this case, occupants could inhale purified air
regardless of the source. Contrarily, occupants could feel discomfort from drafts if the velocity of air
currents is extremely high, and therefore, this needs to be considered. Gong et al. performed the study
on the allowable wind velocity range needed for finding human recognition for the local airflow, under
isothermal and non-isothermal conditions, and designed individual ventilation of the tropical regions
through the experiment, and suggested that a wind velocity of minimum 0.3 m/s and maximum 0.9 m/s
is acceptable based on the comfort of occupants [26].

This study set the installation height of the PM2.5 measuring device to 1.5 m by considering the
breathing area of occupants while standing. In the case where purified air is discharged toward the
breathing zone of occupants, the air purifier was arranged to maintain the velocity of the discharged air
that reaches the 1.5 m-high measuring device at 0.8 m/s, as shown in Figure 3. The speed set here takes
the precedence over the performance of reducing fine dust concentrations in the breathing zone and
not over the human thermal comfort. The air purifier used in this study inhales air from the bottom
and discharges from the top, and if the discharge angle is changed toward the breathing zone of the
occupants, the velocity may change due to the pressure loss. Accordingly, a separate discharge outlet
was made with a 3D printer to form the same face velocity regardless of the discharge angle, and it is
shown in Figure 4.

Figure 3. Air purifier of discharge direction toward breathing.
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(a) 

 
(b) 

Figure 4. Discharge outlet made with a 3D print.: (a) Discharged upward (b) Discharged toward
occupants.

2.3. Real-time Monitoring and Transfer Unit Production Using an Arduino Board

To reduce the concentration of fine particulate matter in the breathing zone of occupants through
the operation of an air purifier, it is necessary to respond to the movement of occupants or monitor
real-time changes of the concentration of fine particulate matter, as well as changes in the discharge
angle of the air purifier. A data communication module for real-time monitoring of the measurement
sensor for indoor fine particulate matter and a remote transfer unit for the air purifier were produced.
Figure 5 shows the overview of the data communication module system, and Figure 6 shows the
diagram of the remote transfer unit.

Figure 5. Overview of the data communication module system.

Figure 6. Diagram of the Arduino-based remote transfer unit.

The PM2.5 concentration value monitored through the camera sensor is transferred to the server
via ESP 32 WiFi module. Whether the air purifier needs to be moved is determined based on the PM2.5

concentration data received, and if its movement is necessary, the remote transfer unit sends a signal to
the Arduino board to move it.
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Figure 7 shows the data communication module and remote transfer unit for real-time monitoring
of the movable air purifier made for the experiment of this study.

  
(a) (b) 

Figure 7. Data communication module and remote transfer unit used in the experiment: (a) Data
communication module, (b) Remote transfer unit.

3. Measurement Experiment with Fixed Air Purifier

3.1. Case Setting

This experiment was conducted to evaluate the air purifiers’ performance in reducing the
concentration of fine particulate matter in the breathing zone of occupants according to the location of
the fixed air purifier and the direction of the discharged air. The air purifier was operated to make
the background PM2.5 concentration of the experimental space to be less than 30 μg/m3. As shown in
Figure 8, the experiment generated pollutants through the aerosol generator after 10 min from the
start of measurement, and the air purifier was operated for 150 min through a remote control after
30 min from the operation of the aerosol generator. The generation of pollutants was discontinued
after 90 min.

Figure 8. Experiment progress.

The case conditions according to the location of the air purifier and changes in the direction of
discharge are shown in Table 2. In Case 1, the air purifier of upward discharge is located in the center,
and it is the control group to compare with other cases in which the location and discharge direction
of the air purifier were changed. In Case 2, the air purifier of the upward discharge was located on
the nearby wall that was 1.4 m away from the P 4 (Point 4) measuring device and was set to analyze
the reduction of the concentration of fine particulate matter in the breathing zone of occupants by
installing the purifier near occupants regardless of the location of the pollutant source.
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Table 2. Experiment case conditions.

Cases
Variables

1 2 3 4

Location of air purifier A B A B

Direction of discharge Upward Toward point 4

Initial PM concentration 27 μg/m3 26 μg/m3 29 μg/m3 30 μg/m3

Temperature/Relative Humidity 25 ± 2.2 ◦C/28 ± 1.8%

Case 3 and 4 were set to analyze the reduction of the fine particulate matter in local areas according
to changes in the discharge direction of the air purifier. Case 3 set the direction of the discharge from
the central location toward the P 4 measuring device as in Case 1, and the wind velocity of the air
current reaching the P 4 measurement point was 0.23 m/s. Case 4 installed the air purifier near the
occupants while changing the direction of the discharge, and the wind velocity of the air current
reaching the P 4 measurement point was 0.81 m/s. The wind velocity value was the average value
measured every 10 s for a total of 60 times with TSI 9565 (TSI Inc., Shoreview, MN, USA; Velocity).

3.2. Experiment Results

Figure 9 shows changes in the PM2.5 concentration according to the time by measurement point of
each case. The changes in the concentration of fine particulate matter in the local areas according to the
location of the air purifier were compared and analyzed with the results of Case 1 and Case 2. In all the
measurement points of Case 1 and 2, the PM2.5 concentration has increased according to the pollutants,
and the rising curve of the PM2.5 concentration was maintained consistently. When the generation of
pollutants was discontinued, the PM2.5 concentration was decreased by the air purifier. In Case 1, the
average PM2.5 concentration difference in P 1 (Point 1), P 2 (Point 2), P 3 (Point 3), and P 4 (Point 4) was
about 25 μg/m3 from 40 min to 100 min. This is due to the distance from the source of pollutants to the
measurement points. In Case 2, the PM2.5 concentration in P 4 that is close to the air purifier of the
upward discharge was higher than the PM2.5 of the other measurement points. This was due to the
movement of pollutants to the discharge outlet of the air purifier. In Case 3, P 4 also had the highest
PM2.5 concentration and this meant that the P 4 point assumed as the breathing zone of the occupants
did not fall within the influence of purified air discharged from the air purifier. The concentration
of PM at points other than point P 4 was lower than that of P 4, but compared to Case 1, the PM
concentration in P 3 decreased by 21 μg/m3, whereas points P 1 and P 2 maintained similar levels.

Meanwhile, the average PM2.5 concentration in P 4 from 40 min to 100 min was about 77 μg/m3

lower than other measurement points. In particular, the PM2.5 concentration in P 4 was maintained at
less than 50 μg/m3 since the operation of the air purifier, and it reached 30 μg/m3 within 20 min after
discontinuing the operation of the aerosol generator. It could be believed that the concentration of
PM at point P 3 increased due to the diffusion of pollutants from the pollution source, and points P 1
and P 2 were similar to that of Case 1. Thus, the air purifier must be located near occupants, and the
breathing zone of occupants must be located within the influence of purified air discharged from the
air purifier to reduce the concentration of fine particulate matter in the breathing zone of occupants.
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Figure 9. Comparing PM2.5 concentrations by measurement points (Case 1–4).

4. Measurement Experiment with Movable Air Purifier

4.1. Operating Method of Movable Air Purifier

In this section, the real-time monitoring device and the remote transfer unit were applied to
allow the air purifier, which delivers purified air to the breathing zone of occupants, to respond to
the movement of occupants and the reduction performance of fine particulate matter in the breathing
zone of occupants was evaluated. In addition, the experiment was conducted through the real-time
occupant tracking method and the zone controlling method by considering the threshold according to
the moving path of the air purifier.

4.1.1. Real-Time Occupant Tracking Method

Firstly, a controlling method of tracking occupants to reduce the concentration of fine particulate
matter in the breathing zone of occupants, regardless of the surrounding concentration was set.
The performance evaluation of this method was conducted through the measurement experiment.

The target experimental space and location for measuring the PM2.5 concentrations were the
same as those in the experiment conditions of Section 2, but an additional device for measuring the
concentration of fine particulate matter was installed at the P 5 (Point 5), which was an assumed
breathing zone of the occupant. The measuring device for the concentration of fine particulate matter
and the movable air purifier were fixed in the location, which was assumed as the breathing zone of
the occupants. Figure 10 displays an implementation of a controlling method of tracking occupants in
real-time. For the experiment, the aerosol generator and the air purifier were operated at the same time
after 10 min from starting the recording of each measurement device, and the operation of the aerosol
generator was discontinued after 190 min. The movement of the measuring device in the breathing
zone of the occupants was set to move to random points every 15, 20, and 30 min to analyze the
reduction effect of the concentration of fine particulate matter in the breathing zone of the occupants in
terms of controlling the real-time tracking of occupants.

4.1.2. Zone Controlling Method

Meanwhile, a method of controlling occupant tracking of a movable air purifier has limitations
in its actual use. such as the moving path of the air purifier or changes in the number of occupants.
Accordingly, the study conducted a measurement experiment for performance verification by setting
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the moving locations of the air purifier by zone, which allows the air purifier to move to the set
location with the high concentration of fine particulate matter or the area where occupants are located
and reduce the concentration of fine particulate matter in the breathing zone of occupants within
that area. The experimental space and the locations of the device for measuring the concentration
of fine particulate matter are the same as those in the measurement experiment for the occupant
tracking method.

 

Figure 10. A method of implementing the air purifier that tracks occupants in real-time.

As shown in Figure 11, the experiment generated pollutants after 10 min from the start of
measurement, and the air purifier was operated at the same time. The generation of pollutants was
discontinued after 190 min. Figure 12 shows the moving path and location of the air purifier, and the
air purifier was set to be located near the walls of each zone using the moving path of the wall.

 

Figure 11. Experiment Progress (Real-Time Occupant Tracking Method and Zone Controlling Method).

Figure 12. Moving path of the air purifier that controls zones.
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The air purifier was relocated every 30 min to analyze changes in the concentration of indoor fine
particulate matter, according to the moving path and location (Figure 13).

Figure 13. Location of the air purifier at each time and moving path from the previous location
(Zone Controlling Method).

4.2. Experiment Results

Figure 14 shows changes in the PM2.5 concentration by measurement point according to the
operation of the air purifier that tracks occupants in real-time.

Figure 14. Comparing PM2.5 concentrations by measurement points according to the operation of the
air purifier that tracks occupants.
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The PM2.5 concentrations were compared and analyzed at P 5 (Point 5), which is considered as
the breathing zone of occupants and continuously received purified air currents discharged from the
air purifier and other measurement points. The PM2.5 concentrations at all measurement points had
increased after 10 min from the start of the measurement and reached about 100 μg/m3 at P 1, P 2,
and P 4 at 40 min. The upward slopes of P 5 and P 3, which were closest to the discharge outlet of
the air purifier, were relatively low compared to those of other points and showed concentrations of
40 μg/m3 and 55 μg/m3, respectively. During the overall experiment time, the average concentration at
P 5 was reduced by 51 μg/m3 compared to the average concentration at other measurement points,
which demonstrated that the operation of an air purifier that tracks occupants in real-time could reduce
the concentration of fine particulate matter in the breathing zone of occupants even if the concentration
of fine particulate matter in the surrounding area is high. In addition, the concentration of fine
particulate matter in measurement points near the discharge outlet was lower than other measurement
points. This means the operation of an air purifier that tracks occupants in real-time could reduce
the concentration of fine particulate matter in the breathing zone of occupants regardless of the
surrounding concentration of fine particulate matter. The result of measuring the PM2.5 concentration
at measurement points near the discharge outlet proves that the concentration of fine particulate matter
could be reduced if the location is close to the air purifier and is within the influence of the purified air
discharged from the air purifier.

Figure 15 shows changes in the PM2.5 concentration according to the time of each measurement
point with the operation of the air purifier that controls zones through the set moving path.

 

Figure 15. Comparing PM2.5 concentrations by measurement points according to the operation of the
air purifier that controls zones.

The PM2.5 concentration in all the measurement points between 10–70 min located in the back
of the room without moving an air purifier had increased to a similar level, reaching an average of
128 μg/m3 concentration at 70 min.

At 70–100 min, when the moved air purifier was located at the P 4 wall point, the average PM2.5

concentration at P 4 was about 56 μg/m3 for 30 min, and the PM2.5 concentration at P 1, P 2, and
P 3 were 129, 133, and 172 μg/m3, respectively. The reason for the high PM2.5 concentration in P 3
was because pollutants generated from the aerosol generator were spread to the P 3 point due to the
direction of the air current discharged from the air purifier. At 100–130 min, when the air purifier was
located by the nearby wall of P 3 using the same moving path, a similar result for 70–100 min was
observed. The average PM2.5 concentration in the P 3 point was about 60 μg/m3 for 30 min due to
controlling of purified air discharged from the air purifier. P 4 showed the highest level of 161 μg/m3.
At 130–160 min when the air purifier was located at the nearby wall of P 1, the PM2.5 concentration at
P 1, which was affected by the purified air discharged from the air purifier, was about 56 μg/m3 for
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30 min, and the PM2.5 concentrations at the P 2, P 3, and P 4 points were 153, 124, and 145 μg/m3 for
30 min, respectively. At 160–190 min, the PM2.5 concentration in P 3, which was controlled by purified
air discharged from the air purifier, was 55 μg/m3 for 30 min, and the PM2.5 concentrations at P 1, P 2,
and P 4 were 125, 129, and 151 μg/m3 for 30 min, respectively. The average concentration of the fine
particulate matter from 70 min to 190 min in measurement points within the influence of purified
air discharged from the air purifier was reduced by about 68 μg/m3 compared to other measurement
points. This is due to the decreased removal rate of fine particulate matter in the breathing zone of the
occupants for the corresponding time because the air purifier for controlling zones moves around.

5. Conclusions

This study performed measurement experiments to evaluate the reduction performance of fine
particulate matter concentration in the breathing zone for a method of delivering purified air discharged
from an air purifier to the human breathing zone. The results are as follows:

The method of installing a fixed air purifier at a location adjacent to occupants without changing the
discharged direction cannot improve the performance in reducing the concentration of fine particulate
matter within the breathing zone of occupants; the method of delivering purified air discharged from
an air purifier can better reduce the concertation of fine particulate matter in the breathing zone of
occupants compared to the concentration of fine particulate matter in the surrounding area, but if the
distance from the air purifier to the controlling point is distant and so the velocity of airflow is not
sufficient, there is no effect in reducing the fine particulate matter concentration.

In the case of a mobile air purifier, the real-time occupant tracking method was effective in terms
of reducing the concentration of fine particulate matter in the breathing zone of occupants by 51 μg/m3

compared to the surrounding PM concentration, but there are limits in actual use regarding the moving
path of the air purifier or the change in the number of occupants. On the contrary, the operation of the
movable air purifier showed that the fine PM concentration of the occupant’s respiratory zone to be
68 μg/m3 lower than other measurement points. Thus, it is more effective to divide the target space by
zone and move an air purifier around considering the number of occupants and the mobility of an
air purifier.

This study compared and evaluated an air purifier’s performance in reducing the concentration of
fine particulate matter in the breathing zone of occupants against measurement points of other zones
by setting measurement points of each zone in one place when delivering purified air discharged from
an air purifier. However, the level of reduction performance of fine particulate matter could differ
according to the range of influencing purified air currents within the same zone. In addition, in the
case of the zone controlling method, there are also limitations regarding the moving path and the
distance between the occupants. Accordingly, a follow-up study on the range of purified air currents
discharged from an air purifier, method of expanding the range, method of installing air purifier on the
ceiling, and changing control mode according to the number of occupants will be conducted in future.
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Abstract: Exposure to PM2.5 has been associated with increased mortality in urban areas. Hence,
reducing the uncertainty in human exposure assessments is essential for more accurate health burden
estimates. Here, we quantified the misclassification that occurred when using different exposure
approaches to predict the mortality burden of a population using London as a case study. We developed
a framework for quantifying the misclassification of the total mortality burden attributable to exposure
to fine particulate matter (PM2.5) in four major microenvironments (MEs) (dwellings, aboveground
transportation, London Underground (LU) and outdoors) in the Greater London Area (GLA), in 2017.
We demonstrated that differences exist between five different exposure Tier-models with incrementally
increasing complexity, moving from static to more dynamic approaches. BenMap-CE, the open
source software developed by the U.S. Environmental Protection Agency, was used as a tool to
achieve spatial distribution of the ambient concentration by interpolating the monitoring data to the
unmonitored areas and ultimately estimating the change in mortality on a fine resolution. Indoor
exposure to PM2.5 is the largest contributor to total population exposure concentration, accounting for
83% of total predicted population exposure, followed by the London Underground, which contributes
approximately 15%, despite the average time spent there by Londoners being only 0.4%. After
incorporating housing stock and time-activity data, moving from static to most dynamic metric, Inner
London showed the highest reduction in exposure concentration (i.e., approximately 37%) and as
a result the largest change in mortality (i.e., health burden/mortality misclassification) was observed
in central GLA. Overall, our findings showed that using outdoor concentration as a surrogate for total
population exposure but ignoring different exposure concentration that occur indoors and time spent
in transit, led to a misclassification of 1174–1541 mean predicted mortalities in GLA. We generally
confirm that increasing the complexity and incorporating important microenvironments, such as the
highly polluted LU, could significantly reduce the misclassification of health burden assessments.

Keywords: PM2.5; population exposure; tier-models; health burden misclassification; BenMap-CE

1. Introduction

There is growing evidence that air pollution and specifically fine particulate matter (PM2.5)
contribute significantly to health burden and further, there is a close relationship between long-term
air pollution exposure and adverse health effects in urban populations [1,2]. The assessment of Global
Burden of Disease (GDB) indicated that PM2.5 contributed 4.24 million deaths globally in 2015 [3].
Assessments of human health effects attributed to an air pollutant are dependent on the magnitude of
human exposure to that pollutant. Thus, the accuracy of a health burden assessment is determined
by the uncertainty of predicted population exposure. Quantifying the population exposure to air
pollution is subject to several challenges:
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The spatiotemporal variability of ambient concentration is strongly influenced by emissions
dynamics, predominantly from road transport, (such as peaks in traffic-related pollution during rush
hours), meteorological conditions, which determine the transport and dilution of air pollutants and
local conditions such as the urban form (e.g., the presence of high buildings can reduce the dispersion
of the pollutants), which are the most important factors leading to significant variation of air pollutants
in urban areas.

The proportion of outdoor air infiltrated to indoor microenvironments (MEs) is influenced by
different housing designs and patterns of behaviour inside the building.

The spatiotemporal variability of people’s activity (population time–activity patterns) in various
MEs [4].

Around 75% of European populations live in cities, with a highly variable range of activities
carried out at different times and in different places [5]. The quality of data, or the absence of key
components within an epidemiological exposure assessment, is likely to affect the magnitude and
significance of the prediction misclassification in a health burden assessment (Figure 1).

Figure 1. Schematic diagram of an exposure assessment structure for health burden misclassification.

Traditionally, epidemiological studies relied on centralized ambient concentration measurements
of limited monitoring sites [6–10]. This is likely to lead to an exposure error, since several monitoring
studies have suggested that air pollution data from a single site can represent only a small surrounding
area especially in urban environments, due to pollutants’ spatial heterogeneity [11,12]. Ambient air
pollutant concentration can be estimated in several ways such as through field observations, statistical
modelling such as land-use regression (LUR) and air quality dispersion models (AQM) that can use
various spatial resolutions [13]. Willers et al. [14] indicated that using air quality data measured
at a single site and assuming that exposure across cities was the same, could cause considerable
misclassification of exposure. In their study, they examined the difference in mortality risk between
neighborhoods in the city of Rotterdam and found that the mortality risks between neighborhoods had
a difference of up to 7%. By utilizing land use regression techniques and air quality models, several
studies have managed to demonstrate that an increased spatial resolution of the exposure concentration
could lead to significantly different exposure or health burden estimates [15–18]. Similarly, Punger and
West [19] assessed the effect of spatial resolution to population-weighted PM2.5 concentrations in the
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U.S. by utilizing the Community Multiscale Air Quality (CMAQ) model. They found that population
exposures, maximum concentrations and standard deviations all reduced at coarser resolutions.
At 408 km resolution, exposure and maximum concentration were 27% and 71% lower, respectively
than those at 12km resolution. Attributable mortality also reduced as the resolution became coarser.
Several studies have shown that coarse resolutions might result in lower mortality attributed to
PM2.5 [20]. Fenech et al. [21] concluded that total mortality estimates were sensitive to model resolution
up to ±5% across Europe, whereas Korhonen et al. [22] found that, considering only local sources of
primary PM2.5, the mortality reduced by 70% in the whole country (Finland) and 74% in urban areas
when the resolution changed from 250 m to 50 km.

Apart from the exposure misclassification due to the different levels of spatiotemporal resolution
of outdoor concentration, there are other significant contributors, in particular the infiltration of
outdoor pollutants to indoor MEs and different time-activity patterns in MEs. As particles infiltrate
and persist indoors, where people living in urban areas spent over 80% of their daily time [23], most
of the exposure to PM2.5 actually occurred in the indoor microenvironments [23–25]. The fraction
of ambient PM2.5 that infiltrates indoor microenvironments can vary due to particle size, building
characteristics, meteorological conditions and human activities [26]. Consequently, relying on outdoor
measurements alone can therefore lead to exposure misclassification. Moreover, variations in the time
spent in various MEs (e.g., outdoors, indoors, vehicles, subway) also influence population exposure
to outdoor-generated PM2.5 due to the spatial variability of both outdoor concentrations and the
indoor transport of ambient PM2.5. Baxter et al. [27] compared four different approaches to PM2.5

exposure prediction, where each model was of a different complexity. In their study they focused
on the heterogeneity in exposures but did not investigate the influence on health effect predictions.
They suggested that geographic heterogeneity in both housing stock (and thus a relatively consistent
Air Change Rate) and human activity patterns contribute to significant heterogeneity in ambient
PM2.5 exposure both within and between cities that is not demonstrated by stationary monitors.
Ma et al. [28] compared three different types of PM2.5 exposure estimates to illustrate the differences
in exposure levels between estimates obtained from different approaches. They found that the daily
average PM2.5 exposures for residents with different activity patterns may vary significantly even
when they were living in the same neighborhood. Several studies have also investigated the correlation
between outdoor PM2.5 and mortality, although their results are skewed by the fact that people spend
the majority of the time indoors. Ji and Zhao [29] used existing epidemiological data on ambient
PM2.5-related mortality to estimate mortality associated with indoor exposure to outdoor-generated PM.
This was the first attempt to quantify that relationship and their results indicated that outdoor PM had
substantial effects on health caused by exposure within indoor MEs. Recently, Fenech and Aquilina [30]
used the annual mean PM2.5 concentrations derived from local fixed monitoring stations to estimate
the PM2.5-related mortality in the Maltese Islands. They found that the attributable fraction of all-cause
mortality associated with long-term PM2.5 exposure ranged from 5.9% to 11.8%, indicating that PM2.5

concentration is a major component of attributable deaths. Azimi and Stephens [31] used a modified
version of the common exposure-response function and developed a framework for estimating the
total U.S. mortality burden attributed to exposure to PM2.5 of both indoor and outdoor origins. They
found that residential exposure to outdoor-generated PM2.5 accounted for 36% to 48% of total exposure,
indicating that efforts to mitigate mortality associated with exposure to PM2.5 should consider indoor
pollution control as well.

That of particular importance is how different exposure approaches impact long-term health
burden/mortality predictions and the magnitude of the resultant impact. We made multiple comparisons
between refined ambient PM2.5 exposure surrogates (that account for important factors such as the
infiltration and time-activity) and the fixed-site monitor PM2.5 concentrations to indicate the importance
of including more dynamic data to epidemiological studies and to demonstrate how more complex
modelling approaches modify mortality predictions. By using BenMap-CE we were able to provide the
spatial distribution of health outcomes influenced by the exposure misclassification. While a number
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of studies have already investigated exposure misclassification when using different approaches and
others have estimated health effects based on specific exposure metrics, the aim of this work is to move
one step further and answer the question: how much is the misclassification that occurs when using
different exposure approaches to predict health burden?

2. Materials and Methods

This work aims to quantify the long-term health burden misclassification that occurs when different
PM2.5 exposure metrics are utilized. An ecologic design was used to generate associations between air
pollution exposure and health outcomes. We investigated the Greater London Area (GLA), building
on recent exposure studies that have explicitly estimated London population exposure using hybrid
dynamic models [32]. Here, we have described five different exposure Tier-models of incrementally
increased complexity are considered by gradually including data of important MEs, such as infiltration
rates of the different dwelling types and the London Underground, where London’s population spend
most or part of their daily time. The London Travel Demand Survey (LTDS) space-activity data
were categorized into three major ME groups. The analysis estimated the magnitude of the change
(i.e., avoided or incurred) in mortalities when moving from the central-site monitored concentrations as
a surrogate for population exposure (Tier-model 1) to more refined exposure Tier-models. The original
ambient PM2.5 concentrations were based on average hourly data measured by 23 monitoring stations
located in the GLA [33] and the examined MEs were: i) indoors (i.e., home-indoor), ii) aboveground
transportation iii) the London Underground and iv) outdoors. The following sections describe the
structure of the methodology and the development of each component.

2.1. Developing Tier Models to Estimate Human Exposure

To capture different exposure assessment methods that have been used in epidemiology,
we developed five different Tier models of increased complexity, moving from static to more
dynamic approaches (Table 1). This method was separated into two parts: i) The microenvironments
and time-activity patterns were classified and calculated based on the derived information; ii) the
time-activity information was matched with corresponding microenvironmental concentrations to
estimate the dynamic time-weighted exposure. The exposure time was considered costly and the
metrics estimated the annual hourly-average PM2.5 exposures, which were then used as an input for
BenMap-CE [34].

Table 1. Tier models for assessing the time-weighted exposure.

Tier Models Exposure Equation Approach

Tier model 1 E = Cout Outdoors only
Tier model 2 E = Cind Indoor only
Tier model 3 E =

∑
Cout*Fi *xi, Indoor only (dwellings)

Tier model 4 E = (Cout*tout) +(
∑

Cout*Fi *xi)*tind + (
∑

Cout* Fj)*
tabg + (Cundg*tundg)

Outdoor + Indoor + Transportation
(abg. and undg.)

Tier model 5 E = (Cout* tout) + [(
∑

Cout*Fi *xi)*tind] + (
∑

Cout* Fj)*
tabg + (Cundg-hvac*tundg-hvac)+(Cdeep-undg *tdeep-undg)

Outdoor + Indoor + Transportation
(abg., deep-line + subsurface undg)

The Tier-model stages and the respective approaches are briefly described below.
Tier model 1: Outdoor

E = Cout, (1)

where E is mean exposure and Cout is mean outdoor concentration of PM2.5.
Hourly readings were extracted from the London Air Quality Network (LAQN) [33]. LAQN

consists of automatic monitoring equipment in fixed cabins, which measures air pollution at breathing
height. It provides electronically available data on concentrations of major urban pollutants and has
been used in several studies [35,36]. The ratified concentration data from 23 available monitoring
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stations in GLA were downloaded and added to BenMap-CE. Only the monitors that could provide at
least 70% of the data for the whole year were selected. The ambient concentration was considered as
representative of the total population exposure.

Tier model 2: Indoor
E = Cin, (2)

where Cin is the mean indoor (i.e., home-indoor) concentration.
This Tier model utilized the information of the spatially distributed concentration and the total

average Indoor/Outdoor (I/O) ratio in GLA to estimate the exposure inside the residence [37].
Tier model 3: Indoor (dwellings)

E =
∑

Cout* Fi* xi, (3)

where Fi is the infiltration rate of each dwelling type (i) and xi is the frequency (%) of this type
in London.

In this study, all the indoor environments were combined into one single ME (i.e., home-indoor)
without considering other indoor environments, such as office or commercial buildings, due to the
lack of infiltration data. Subsequently, the I/O ratios that we used also represented offices and other
indoor places, assuming that the I/O ratios for other indoor MEs had the same values as domestic home
buildings [32]. The I/O ratios of London’s housing stock were obtained from Taylor et al. [37]. In their
study they estimated the Indoor/Outdoor ratio of 15 building archetypes. We grouped these archetypes
into five main dwelling types in response to available housing stock data in Middle-Super-Output-Area
resolution obtained from the Mayor of London, Datastore [38]: i) flat, ii) bungalow, iii) terraced,
iv) semi-detached and v) detached (Table 2). The frequency of each type could be calculated from the
number of properties in the GLA, which represented 98.7% of the housing (The average I/O ratio was
assigned to the unknown 1.13%). Figure 2 shows the annual average I/O ratios of PM2.5 concentration
in the GLA. The average ratios, including all dwelling types and their frequency, ranged from less
than 0.54 to 0.59. The highest ratios were observed in Outer London, whereas the lowest ratios were
observed in Inner and South West London, probably due to the newer building stock and the large
number of flats in large buildings (London Datastore), where the available surface for infiltration was
considerably smaller.

Table 2. London’s dwelling group type descriptions, frequency in stock and average Indoor/Outdoor
(I/O) ratios.

Dwelling Type Frequency % I/O Ratios Total Average I/O Ratio (All Dwellings)

Bungalow 1.81 0.63

0.56

Flat 50.4 0.54
Terraced 28.1 0.56

Semi-detached 14.5 0.585
Detached 4.06 0.585
Unknown 1.13 0.56

Tier model 4: Outdoor + Indoor + Transportation (aboveground and underground)

E = (Cout* tout) + (
∑

Cout*Fi *xi) * tind + (
∑

Cout* Fj) * tabg + (Cundg* tundg), (4)

where (j) is each aboveground transport-ME (tMEs) and tout, tind, tabg and tundg is the fractional
time spent (%) annually outdoors, indoors, aboveground tME and London Underground (LU) tME,
respectively.

This Tier-model includes transportation as an additional microenvironment, where an urban
population spends time during the day. This ME was categorized into aboveground and underground
transportation. Aboveground transportation refers to car, bus and train, whereas underground to
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London subway. By separating transportation into 2 groups we were able to evaluate the influence
of a highly polluted ME, like the London Underground (described in the next section), on the total
population exposure concentration.

 
Figure 2. Map of annual average Indoor/Outdoor (I/O) ratios used in our study.

The space–time–activity data for our study were based on the London Travel Transport Agency
(LTDS) of Transport for London (TfL) [39] for the period between 2005 and 2010 (Table 3). The data
were generated from the interviews of approximately 8000 households per year, providing very useful
information about their daily time–activity patterns, including travel modes and trip times. The data
were scaled to represent the population of London, excluding children under five years old [32].

Table 3. Summary table of the time–activity data.

Microenvironments (Groups) Mode/Place Time Spent (%)

Outdoor
Walking 1.3
Cycling 0.1

Transportation (public/private) Bus 0.7

Indoor

Car 1.6
Rail 0.2

Underground/DLR 0.4
Home, office, other indoor 95.7

According to Smith et al. [32], the average daily percentage of time spent indoors was 95.7 %,
whereas people spent 2.5%, 0.4% and 1.4% in aboveground transportation, London Underground
and outside (walking or cycling), respectively. This proportion of time spent indoors also includes
approximately 20% of surveyed people, who did not leave their house. In this study, these percentages
were used as annual averages for the whole population over five years old, including the different
times spent during weekdays and weekends.

For the in-vehicle exposure of the aboveground sub-microenvironment, we calculated the PM2.5

concentration by solving the mass balance equation [30]:

dCin / dt = λwin * (Cout − Cin) − ηλHVAC * Cin − Vg * (A’ / V) * Cin + Q/V, (5)

where Cout is the outdoor concentration around the vehicle, Cin the concentration inside the vehicle,
λwin and λHVAC are the hourly air exchange rates from the windows and mechanical ventilation system,
respectively, n is the filter removal efficiency taking values between 0–1, Vg is the deposition velocity
in (m/h), A’ is the internal surface area, V is the volume of the vehicle and Q is the in-vehicle particle
emission rate in μg/h. To solve this equation, the same values with Smith et al. [32] were used except
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for the concentrations and the commuter’s surface was derived from Song et al. [40], in order to
calculate A’.

Tier model 5: Outdoor + Indoor + Transportation (aboveground and underground→ deep lines +
subsurface lines).

The time-weighted exposure equation associated with this Tier model stage is:

E = (Cout* tout) + [(
∑

Cout* Fi * xi) * tind] + (
∑

Cout* Fj) * tabg + (Cundg-hvac * tundg-hvac)
+ (Cdeep-undg * tdeep-undg),

(6)

In the 5th and most complex Tier model, the same procedure as in Tier 4 was followed but the
London underground microenvironment was further divided into subsurface and deep lines to reflect
the significant difference in concentration on two types of lines. The use of mechanical ventilation in
the subsurface lines results in much lower PM2.5 concentrations than the deep lines due to air filtration
(explicitly described in the next section). Hence, by dividing the underground into two subgroups
we were able to improve the exposure estimates and to examine the contribution of a very highly
polluted microenvironment to the total exposure. The proportion of time spent in each of those two
subcategories was assumed according to the number of annual journeys completed in each line during
2017, where 77% were made by the deep-line underground and 33% by the subsurface.

PM2.5 Concentration in the London Underground

As the London Underground microenvironment was unable to be accurately represented by
the outdoor measurements, due to its high concentration of PM2.5 and its limited connection to the
outside world, a series of air pollution measurements were conducted inside the London Underground.
The PM2.5 measurements took place on five major London Underground platforms and trains (Bakerloo
line, Circle line, Central line, District line and Victoria line) by using the portable DustTrak II Aerosol
Monitor 8534, a light scatter laser photometer, which could provide a large number of real-time
readings. The current selection of the lines was decided in order for both the deep without mechanical
ventilation lines and the subsurface with HVAC lines to be represented by our measurements.

Our original intention was that the measurements would reflect the cold and the warm period
of 2017. Hence, the experiment was conducted during the morning and the afternoon for one week
in February and one week in July. The average concentration in the London Underground for the
whole year was very high, approximately 218 μg/m3, albeit when we grouped the lines into deep
without HVAC lines (Central, Bakerloo and Victoria) and subsurface lines with HVAC (Circle, District)
we noticed a remarkable difference between the two concentrations (70.2 μg/m3 for the subsurface
lines and 365.6 μg/m3 for the deep lines). The PM2.5 concentration levels in the unmeasured lines
were assumed to be similar to these measured. The classification of the unmeasured lines was made
according to their depth and ventilation system.

In the London Underground, Seaton et al. [41] reported higher platform concentrations of
480 μg/m3. Recently, Smith et al. [42] assessed day to day variation in LU concentrations and compared
them with those above ground. During their campaign, 22 repeat journeys were made on weekday
mornings over a period of five months. They found that the subsurface ventilated District line
had the lowest PM2.5 concentration levels (i.e., mean 32 μg/m3) and the deep unventilated Victoria
line the highest (i.e., mean 381 μg/m3), while the mean concentration in the LU, according to their
measurements, was 302 μg/m3. Although their monitoring method and equipment were different from
those used in this study and the sampling period was longer, their findings do not differ significantly
from ours. Even though the station measurements in the UK are limited, most of the studies made so
far have measured approximately two times higher concentrations in the London Underground than
in other undergrounds worldwide [43,44], probably due to its age and the limited ventilation systems.
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2.2. Simulating PM2.5 Exposure Concentration and Estimating Health Impact Using BenMap-CE

The environmental Benefits Mapping and Analysis Program—Community Edition (BenMap-CE)
is a powerful Geographical Information system (GIS)-based program that estimates the health effects
associated with the change in air quality [34,45]. These data consisted of a middle layer super output
areas (MSOA) map of GLA, the derived monitoring data and London’s population data, in order to
estimate the health impact. BenMap-CE provides three interpolation methods: the closest monitor,
the fixed radius, and Voronoi Neighbour Averaging (VNA). Among the incorporated methods, VNA
was the most suitable for our case, covering the unmonitored areas and giving the best spatial
distribution of the concentration.

After uploading the essential data and determining the appropriate Health Impact Function
(HIF) for our analysis, we were able to quantify the health impact misclassification (i.e., change in
all-cause mortality, either incurred or avoided) resulting from the exposure metric differences. In this
study, the following long-term health impact function was used to estimate the change in all-cause
mortality [46]:

ΔY = Y0* (1 − e−βΔPM) * Pop, (7)

where ΔY is the change in health effect, Y0 is the baseline mortality rate (the mortality rate at minimum
risk concentration), β is the unitless beta coefficient, ΔPM is the change in the exposure rates between
Tier 1 and the other Tier models (Tier 1 is the base case) and Pop is the exposed population.

One limitation of the aforementioned effort to estimate the health impact of indoor air pollution
is the use of the mortality effect estimate (i.e., beta coefficient) that is usually taken directly from the
epidemiology literature on the studies conducted for outdoor air pollution. Therefore, to account
for that fact, some studies on the health effects of outdoor-generated PM2.5 introduced a method for
modifying the mortality effect estimate (i.e., beta coefficient) based on the average infiltration factor
combined with the mean fraction of time spent in indoor MEs [13,47,48]. However, the application
of the adjusted coefficient is solely for the component of indoor PM2.5 of outdoor origin and not
of indoor PM2.5 in total. The way indoor particle sources are treated has a larger impact than the
adjustment of the coefficient for the outdoor-generated fine particles and remains an evidence gap
of considerable public health importance. In another study, Logue et al. [49] used a central estimate
of the beta coefficient for premature mortality related to both indoor- and outdoor-generated PM2.5,
which was directly derived from the epidemiology literature. In our case, due to the mobile monitoring
conducted in the LU and the distinct function of BenMap-CE, a central mortality effect coefficient
from Pope et al. [50] was used as an input. The mortality effect coefficient was utilized to generate
BenMap’s health impact functions in the direction of estimating the change in estimates of mortality
(either avoided or incurred) when using different exposure metrics. Furthermore, we estimated the
percentage decrease in the predicted avoided cases when moving from the less complex (static) metrics
to more dynamic metrics.

3. Results

3.1. Exposure Metrics Summary

The highest annual average exposure concentration was approximately 13.1 μg/m3 for Tier model
1. Tier model 2 and Tier model 3 indicated that the exposure that occurred indoors was much lower
than outdoors due to the infiltration rates of the buildings, resulting in annual average exposure
concentrations of 7.18 μg/m3 and 7.26 μg/m3, respectively. There was an approximately 45% reduction
between Tier 1 and Tier 3. This result clearly suggests that spending long periods of time indoors,
reduces the exposure to outdoor-generated air pollution. The incorporation of transportation and
predominately the highly polluted London Underground in Tier model 4 resulted in an elevated
exposure concentration (8.28 μg/m3), pinpointing that even though the time spent in transit is only
2.9%, this microenvironment has a significant contribution to the total exposure. By dividing the

204



IJERPH 2020, 17, 1099

London Underground into subsurface with HVAC and deep line without HVAC, we were able to
quantify the impact of the most highly polluted ME on the total exposures (the deep-line underground).
Tier 5 showed an approximately 0.30 μg/m3 higher exposure concentration (8.60 μg/m3) than Tier 4,
where an average concentration for the whole underground was used (Table 4).

Table 4. Annual exposure calculated in each model stage.

Tier Models Annual Exposure (μg/m3) Standard Deviation (+/– μg/m3)

Tier model 1 13.07 1.2
Tier model 2 7.18 0.66
Tier model 3 7.26 0.66
Tier model 4 8.3 0.67
Tier model 5 8.6 0.67

PM2.5 exposure concentration maps for each Tier-model stage were created by BenMap-CE
showing how the exposure was distributed across GLA. Figure 3a,b illustrate the spatial distribution
of the annual exposures in Tier 1 and 5. The maps of Tiers 2, 3 and 4 are included in the Supplementary
Information (Figure A1a–c in the Appendix A.1). The highest exposure concentrations occurred
in Inner London for both Tier 1 and Tier 5 (15.4 μg/m3 and 10.1 μg/m3, respectively), whereas the
lowest exposures were observed in Western GLA (less than 10.9 and less than 7.10 μg/m3 for Tier
1 and 5, respectively). The incorporation of indoor infiltration along with time-activity data led to
an overall mitigation of the exposure concentrations in GLA when Tiers 2, 3, 4 and 5 were used. After
the utilization of our most complex model, Tier 5 had the highest difference observed at the centre
with approximately 37% (Figure 3c), while average reduction in GLA was approximately 34%. Inner
London continued to show the highest values (Figure 3b), although the infiltration factors in Inner
London were lower than in the outskirts. This could be due to the much higher outdoor concentrations
in Inner GLA than in the Outer. In Inner London, the higher number of sources of anthropogenic
and traffic-related pollutants, including PM2.5, generate significantly higher ambient pollution levels.
Several studies suggest that traffic pollutants are elevated above background concentrations around
major roads and highways [13,51]. The percentage of exposure concentration reduction in Tiers 2, 3
and 4 after comparison with our baseline exposure concentration (Tier 1), is illustrated in Figure A2a–c
in the Appendix A.2. Apart from proximity to roads, fewer green spaces and the densely constructed
city center may also contribute to the higher levels of outdoor particulate pollution [52–54]. Urban
populations are subject to daily activity patterns, so that exposure is not a static phenomenon but should
be quantified as a function of concentration and time [4]. Therefore, by assigning people’s exposure to
a single location (e.g., at their residence) and ignoring highly polluted MEs such as the subway, it is
unlikely to accurately represent total exposure. Hence, by gradually incorporating time-activity data
and indoor MEs, the spatial variability of the exposure concentration across GLA increased. Since we
used annual average time-activity data for the entire GLA, time-activity could not change the spatial
pattern of the exposure. In our case, the spatial variability of the housing stock and I/O ratios across
GLA were the main reasons for any increase in the spatial variability of the exposure concentration.

Figure 4 presents the contribution of each examined microenvironment to the total exposure
estimated by Tier-model 5. Indoor exposure concentration is clearly the dominating contributor
(approximately 83%) to the total exposure (due to the time that people spent there–95.7%) followed
by the deep-line underground ME (14%) albeit people spent on average only 0.31% of their annual
time. According to our measurements, the PM2.5 concentration in deep underground lines was around
28 times higher than the outdoor levels, which rationalized the high contribution of that ME to total
exposure. In contrast, London population spent only 1.4% of its annual time outside and the outdoor
ME contributed only 2% to the total exposure concentration. The findings described above indicate
that outdoor PM2.5 levels are unlikely to accurately represent the total exposure of an urban population
like in London.
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a) 

 

 

b) 

c) 

Figure 3. Maps of annual distributions across the Greater London Area (GLA): (a) Tier-model 1
annual mean PM2.5 exposure concentration (μg/m3), (b) Tier-model 5 annual mean PM2.5 exposure
concentration (μg/m3), and (c) percentage of the PM2.5 exposure concentration difference between
Tier-model 1 and Tier-model 5.
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Figure 4. Contribution of each microenvironment (ME) to the total exposure. Indoor exposure shows
the greater contribution followed by the deep underground lines.

3.2. Epidemiological Implications and Health Impact Misclassification

Because in epidemiology the concentration from central-site monitors is used as a proxy for the
exposure to air pollution, we selected Tier 1 as our reference and compared it with the estimates
of Tiers 2, 3, 4 and 5. The mean change in the estimates of all-cause mortality when applying Tier
model 2 was predicted to be 1541 (95% CI: (427–2633)) deaths, while when using Tier 3 exposure
concentration estimates the death cases were reduced to 1521 (95% CI: (421– 2598)). The impact on
mortality when applying the 4th Tier model, which included the transportation microenvironments
(tMEs), was estimated to be 1257 (95% CI: (347–2151)) cases. Due to the significance of the deep-line
underground, the most complex Tier model 5 presented the lowest number of cases compared with the
other 3 metrics (Tiers 2, 3 and 4). Namely, once Tier 5 was applied the prediction for the estimated
avoided mortalities were 1174 (95% CI: (324 – 2010)). We can assume that the calculated change in
mortality represents the potential health burden misclassification that might occur when changing
the exposure metrics to assess the population exposure. Subsequently, we were able to estimate
the percentage decrease in predicted mortalities when altering the exposure metric’s complexity.
The substantial changes in avoided mortality predictions indicate that using a static exposure approach
in a study might lead to significant uncertainty in a health burden assessment. As anticipated, the
predicted mortality was significantly reduced when increasing the model complexity. The highest
changes were observed in Tier-model 2 and 3, due to the time that people spent indoors in urban
areas, the big difference between outdoor and indoor exposure and the absence of highly polluted
transportation MEs, pinpointing the importance of taking into serious consideration the exposure
that occurs inside buildings when estimating health effects. The model predicted most avoided cases
when Tier 2 was applied and while increasing complexity the cases showed a decrease of 1.95%, 18.4%
and 23.8% for Tier 3, 4 and 5, respectively. As explained above, the London Underground contributes
significantly to the total average exposure concentration of the study population by increasing the
estimates. Therefore, we can securely presume that this is the main reason for the high decrease in
avoided mortalities when Tier 4 and, predominantly, Tier 5 were used in BenMap-CE.

All results are summarized in Table 5.
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Table 5. Change in the annual mean estimates of mortality (predicted avoided mortalities) between the
different exposure metrics and decrease between the estimated change in mortality predictions.

Tier Models 2.5th percentile 97.5th percentile Mean Decrease (%)

Tier models 1–2 427 2633 1541
Tier models 1–3 421 2598 1521 1.95
Tier models 1–4 347 2151 1257 18.4
Tier models 1–5 324 2010 1174 23.8

Looking at the spatial distribution of the predicted change in mortalities shown in Figure 5
(Tier 1–Tier 5) we can notice that the biggest change in mortality occurred in central GLA. Several
factors could explain this result such as the outdoor PM2.5 concentration, the housing stock (I/O ratios)
and the population. As described above, after the inclusion of the time-activity data there was an
overall reduction in exposure concentration because people usually spend most of their time (>95%) in
indoor MEs (excluding transportation), where the concentration of outdoor PM2.5 is lower than the
measured ambient levels. Because the health impact function used by BenMap-CE is a concentration
response function, the amount of the reduced exposure concentration determines the fraction of the
mortality reduction. In our case, knowing that moving from Tier 1 to Tier 5 would result in a greater
reduction of exposure concentration that appeared in central GLA (Figure 3c), we could presume that
the high outdoor PM2.5 concentration and the building type of that area, were largely responsible for
the mortality change. The similar distribution patterns between Figures 3c and 5 also supported this
argument. As already shown in Figure 2, the infiltration factors of the buildings there were lower than
the rest of the GLA, leading to higher mitigation of the exposure concentration. In the Appendix A.3,
Figure A3a–c show the spatial distribution of the predicted change in mortality between Tier 1 and
Tiers 2, 3 and 4, respectively.

 

Figure 5. Spatial distribution of the predicted change in the estimates of mortality burden
misclassification (in death cases) between Tier model 1 and Tier model 5.

Overall, these outcomes demonstrate the importance of the complexity of an exposure metric
when incorporated into an epidemiological study. Here, we proved that indoor MEs such as the home
and the subway are governing human exposure to air pollution and any possible absence in a metric is
likely to cause considerable misclassification of the magnitude of mortality.

4. Discussion

Due to the limited time most people spend outside, the amount of ambient concentration of PM2.5

that people are directly exposed to is likely to be different based on variation in people’s behavior and the
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performance characteristics of the buildings they are occupying [55]. Consequently, spatial variability,
time-activity and losses due to outdoor-to-indoor transport are all sources of exposure uncertainty in the
epidemiological analysis, when fixed-site monitor concentrations are used as surrogates for exposure
to air pollution. In this work we established a more comprehensive understanding of population
exposure concentration and the impact that different exposure metrics can make on all-cause mortality
predictions. We showed that the I/O ratios and individual’s patterns of movement play a key role in
estimating exposure to PM2.5 and that transportation-MEs, predominately the highly polluted London
Underground, are important in accurately establishing exposure. We demonstrated that subway and
Indoor MEs make a significant contribution to the exposure misclassification and therefore mortality
change predictions. Azimi and Stephens [31] highlighted the importance of including indoor MEs
when estimating the total exposure and the need for a better understanding of how the infiltration
factors vary by building type in order to improve the exposure estimates and reduce the uncertainty.
Based on field measurements, they found that exposure to PM2.5 of outdoor origin inside the residence
contributed around 67% to the total U.S. mortality burden. In our analysis, we found that the Indoor
environment contributed approximately 83% to the total mortality burden in London. The difference
in our results may be explained by the different MEs considered in each study. As our aim was to
quantify the misclassification and give an insight into how the absence of significant MEs from an
exposure assessment could increase the uncertainty, we mainly focused on the different infiltration
factors of home types and the LU. Martins et al. [56] determined the PM2.5 exposure and estimated
the daily PM2.5 dose during Barcelona subway commuting. They estimated that the PM2.5 dose
received by an adult in the subway contributed approximately 46% to the total daily dose in the
respiratory tract. In our study, LU contributed approximately 15% to the total health burden. Due to
the different methods used and different health endpoints, their results cannot directly be compared to
ours. However, their outcomes indicate the non-trivial contribution from subway ME on health effects
estimates. Several studies have compared static (home address-based) with more dynamic air pollution
methods and proved that there is a reduction in average total exposure levels in urban areas with
related characteristics as GLA [32,57]. Tang et al. [57] used a staged modelling approach to evaluate
the use of static ambient concentrations as exposure estimates and examined the impact of dynamic
components on estimated air pollution exposure. They found that the mean population exposures in
Hong Kong for their full dynamic model were approximately 20% lower than the ambient baseline
estimates of the static approach. Smith et al. [32] combined a dispersion modelling approach with
building infiltration factors and travel behavior in order to create the London Hybrid Exposure Model
(LHEM). They found that their model’s estimates were around 37% lower for PM2.5 than the static
approach (residential address-based). Similarly, by adopting a staged modelling approach to evaluate
the effect of including dynamic components to our exposure models we found that the absence of
mobility and infiltration factors in the static Tier-model 1 led to an overestimation of annual PM2.5

population exposure. Overall, the exposure estimates of our most complex model (Tier 5) were around
34% lower than those of the static baseline model (Tier 1). These findings were different from Tang
et al.’s [57] study but very similar to the LHEM study, mainly because the study population was the
same and similar travel behavior data was used. Recently, Singh et al. [58] quantified the population
exposure to PM2.5 concentrations in London and assessed the importance of including movement and
indoor infiltration to total population exposure. They found that their refined exposure assessment
predicted 28% lower total population exposure than the traditional static exposure method. As in
this study, the time-activity data were derived from the LTDS [39] and the study area was London.
However, the small difference between their results and ours could be explained by the different
datasets used for the infiltration factors and the different concept used for the key MEs (e.g., the London
Underground). Results from other similar studies are difficult to find as we compare different exposure
estimates during the same time period (2017) in an effort to examine the effect on all-cause mortality
predictions. We showed that using a static exposure metric instead of a more dynamic approach
(based on time-activity data and indoor infiltration) to predict the mortality in the GLA population
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would lead to an overestimation of 1174–1541 mean predicted estimates of mortality attributed to
PM2.5. Ebelt et al. [59] found for several health outcomes associated with cardiopulmonary diseases,
analyses with ambient exposures resulted in larger effect estimates. These results strongly supported
their original hypothesis that the reduced exposure misclassification resulting from the utilization
of ambient exposures instead of ambient concentrations provide more precise estimates of effects
in epidemiology.

This work provides further understanding as to the impact of an exposure assessment on
the mortality predictions and helps to mitigate the uncertainty in health risk assessments of air
pollution. As a result, it would be possible to increase the efficiency of regional or local air quality
management strategies.

Limitations and Future Work

The current study contains several limitations. Only some of the deep and subsurface underground
lines were monitored and only for a small sampling period. In this study, we assumed that these
measurements also represented the corresponding lines that were not measured. Moreover, only
23 monitoring stations were available for PM2.5 and their locations were not uniformly spread across
the study area. Consequently, this may have affected the simulation accuracy and the interpolated
ambient concentration estimates in the unmonitored areas that were far from the stations that might
have contained higher uncertainty. Furthermore, another limitation was the assumption that the Indoor
microenvironment and the average dwelling I/O ratios also represented the office and commercial
buildings. The toxicity of PM2.5 was not included, but mainly because it was out of the scope of the
study to investigate the toxicity of the particles.

The space–time–activity data is based upon the London Travel Demand Survey for the period
2005–2010 and may not be fully accurate locally, spatially and temporally, for the year 2017. Moreover,
the annual average of the time-activity data that we used, assuming that people followed the typical
daily mobility patterns for the whole year, may have increased the uncertainty in our models, because
those data might not have accurately represented a part of the population. Since the main body of our
study was based on averages and the population was not divided into different age groups, our health
burden predictions may be less accurate for special groups of people that have different behaviours
(e.g., ill or elderly that spend most of the day inside their residence).

Parameters that could affect particle infiltration, such as differences in indoor-outdoor air pressure
due to the impact of the surrounding micro-environment, and the existence and efficiency of mechanical
filtration, were not the focus of the current study and were therefore not investigated.

In the future, this study could be improved by conducting further measurements in the London
Underground and for larger periods of time. Simple sensitivity tests could be made in order to check
each model’s response and how the misclassification affects our estimates. As the next stage of this
work we could investigate how this framework applies to other cities with higher ambient PM2.5

concentrations and different indoor characteristics (such as interventions-PACs, HVAC). Taking into
consideration that each urban area may have different characteristics, it is important to examine
how the incorporation of the local urban or building features could make an impact on exposure
concentration estimates and health burden predictions.

5. Conclusions

The use of ambient centralized monitoring concentrations as a surrogate for people’s exposure
may not provide an accurate representation in a population study. In this study we developed a static
exposure approach, commonly used in epidemiology, as our baseline metric and by incrementally
enhancing the metric we were able to report the potential impact that the application of different
metrics would have on a health outcomes assessment. We demonstrated that studies focusing on
centralized monitoring ambient concentrations may show reduced ability to detect the true associations
between exposure to PM2.5 and health effects due to inadequate spatial variability of the concentration
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and the absence of people’s mobility. The magnitude of the misclassification related to the inclusion of
indoor MEs and the metric’s complexity was large relative to the dynamic nature of human exposure
to air pollution.

This analysis illustrates the significance of allowing for population activity and indoor infiltration.
The indoor ME showed the highest contribution to the total population exposure (i.e., 83%), while the
LU contributed approximately 15%, although people spend only 0.4% of their time there. Consequently,
all our models showed lower total exposures than the traditional exposure approach that assumes
that the PM2.5 concentrations outside the residence are representative of the total population exposure.
Particularly, our most complex and accurate Tier-model estimated an approximately 34% lower mean
exposure concentration compared with using simply an outdoor concentration.

The exposure misclassification due to home infiltration and underground ME is likely important
in assessing the health burden in an urban area because people in cities spend the majority of their
time inside the residence or workplace and the pollution concentrations that occur underground are
remarkably high. The misclassification between the traditional exposure approach to estimate health
outcomes and our most dynamic metric was found to be 1174 mean predicted mortalities in GLA, with
the highest numbers observed in Inner London.

Overall, by quantifying the health burden misclassification we managed to pinpoint the importance
of developing a metric that can adequately represent the study population concerned and showed
that the use of more dynamic data in epidemiology could significantly increase the accuracy of health
impact assessments.
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Appendix A

Appendix A.1. Spatial Distribution of Exposure Concentration

Figure A1 shows the spatial distribution of exposure concentrations estimated by Tier-model 2,
Tier-model 3 and Tier-model 4.

a) 

Figure A1. Cont.
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c)

)

Figure A1. Map of GLA showing the spatial distribution of the annual mean exposure concentration
(μg/m3): (a) Tier 2, (b) Tier 3 and (c) Tier 4.

In Tiers 2 and 3, although the exposures range similarly, we can see different distribution patterns
across GLA. The inclusion of the I/O ratios of the different dwelling types increased the spatial resolution
of the exposure concentration, while in Tier 2 (Figure A1a) the spatial distribution was similar to our
baseline Tier-model 1 (Figure 3a) due to the average infiltration factor that was used. Figure A1c is
presenting higher exposure concentrations than Figure A1a,b due to the incorporation of the highly
polluted transportation MEs such as LU. In all three maps, central GLA showed the highest exposure
concentrations because of the high ambient PM2.5 concentrations in that area.

Appendix A.2. Percentage of Exposure Concentration Reduction across GLA

The percentage of reduction in exposure concentration after using Tier 3 and Tier 4 are shown in
Figure A2a,b.

After including the I/O ratios of the different dwelling types (Tier 3), Central and South-eastern
GLA had the highest reduction (between 45.5% and 47.6%), while in Figure A2b, Central and parts
of the Southern GLA showed the highest percentage of mitigation (up to approximately 39.4%).
As shown in Figure 1, Central and South-eastern GLA had the lowest I/O ratios. Because in Tier 3
transportation and outdoor MEs were not considered and people were assumed to spend 100% of their
time indoors, the percentage of the reduction was mainly driven by the infiltration factors. However,
after increasing the complexity and including outdoor and transportation MEs, the percentage of
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reduction was also strongly influenced by the ambient PM2.5 concentration in each area, in addition to
the infiltration factors.

b)

)

Figure A2. Percentage (%) of exposure concentration reduction between Tier 1 and: (a) Tier 3
and (b) Tier 4.

Appendix A.3. Spatial Distribution of the Predicted Avoided Mortality

The annual mean predicted avoided mortality due to the utilization of Tiers 2, 3 and 4 is illustrated
in Figure A3a–c.

Figure A3a–c show similar spatial distribution of the predicted avoided mortality. As anticipated,
the number of predicted mortalities after using Tiers 2 and 3 was higher, because the concentration-
response function used by BenMap-CE to calculate the mortality was affected by the reduction (or
increase) of the exposure concentration. The absence of the time-activity data in Tier 2 and Tier 3 led to
an underestimation of the total exposure concentration and as a result the exposure difference between
those models and our baseline model (Tier 1) was higher.
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b) 

c) 

a) 

Figure A3. Map of the Greater London Area showing the spatial distribution of the mean avoided
mortality (in death cases): (a) Tier 1–2, (b) Tier 1–3, (c) Tier 1–4.
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Abstract: Tuberculosis (TB) has a very high mortality rate worldwide. However, only a few studies
have examined the associations between short-term exposure to air pollution and TB incidence.
Our objectives were to estimate associations between short-term exposure to air pollutants and TB
incidence in Wuhan city, China, during the 2015–2016 period. We applied a generalized additive
model to access the short-term association of air pollution with TB. Daily exposure to each air pollutant
in Wuhan was determined using ordinary kriging. The air pollutants included in the analysis were
particulate matter (PM) with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5),
PM with an aerodynamic diameter less than or equal to 10 micrometers (PM10), sulfur dioxide
(SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ground-level ozone (O3). Daily incident
cases of TB were obtained from the Hubei Provincial Center for Disease Control and Prevention
(Hubei CDC). Both single- and multiple-pollutant models were used to examine the associations
between air pollution and TB. Seasonal variation was assessed by splitting the all-year data into
warm (May–October) and cold (November–April) seasons. In the single-pollutant model, for a
10 μg/m3 increase in PM2.5, PM10, and O3 at lag 7, the associated TB risk increased by 17.03% (95%
CI: 6.39, 28.74), 11.08% (95% CI: 6.39, 28.74), and 16.15% (95% CI: 1.88, 32.42), respectively. In the
multi-pollutant model, the effect of PM2.5 on TB remained statistically significant, while the effects of
other pollutants were attenuated. The seasonal analysis showed that there was not much difference
regarding the impact of air pollution on TB between the warm season and the cold season. Our study
reveals that the mechanism linking air pollution and TB is still complex. Further research is warranted
to explore the interaction of air pollution and TB.

Keywords: tuberculosis; infectious disease; air pollution; time-series; Poisson regression; kriging
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1. Introduction

Tuberculosis (TB) is one of the top ten deadly diseases in the world [1]. In 2016, there were about
10.4 million people diagnosed with TB worldwide, and 1.7 million people died from the disease [1].
Seven developing countries, China, India, Indonesia, Nigeria, the Philippines, Pakistan, and South
Africa, account for 64% of the total cases [1]. As one of the countries with the highest number of TB
cases, China has been working hard to lower the incidence of TB and has successfully reduced the
TB-related mortality by 80% from 1990 to 2010 [2]. Despite this progress, China still has an estimated 1
million new cases each year [3] and faces serious drug-resistant TB epidemics [4]. China’s estimated TB
incidence rate was 63/100,000 in 2017, ranking the 28th globally [3]. In Hubei Province where Wuhan is
located, the reported incidence of TB in 2017 was 68.3/100,000, ranking ninth in the nation [5]. As the
capital of Hubei Province and the largest city in central China, Wuhan also has a high incidence of TB.
In 2017, 5952 new cases of tuberculosis were reported in Wuhan, with an estimated incidence of about
54.64/100,000 [5].

Previous studies have identified air pollution as one of the possible risk factors for TB. Most of
these studies have focused on indoor exposure, which has been well summarized in several review
articles [6–9]. These articles reveal that the use of biomass fuels (e.g., scrap lumber, crops, and manure)
and fossil fuels (e.g., coal and diesel) are two environmental risk factors for TB infection. Tremblay
(2007) studied the relationship between coal consumption and TB disease using historical statistics
and proposed a hypothesis that the combustion of coal and possibly town gas aggravated the TB
epidemics. Fullerton et al. (2008) claimed that the aggregated evidence from different studies across
the world supports a causal relationship between biomass smoke exposure and the development
of TB. Besides biomass and fossil fuels, tobacco smoking is also recognized as a non-communicable
environmental risk factor for TB [10,11]. Compared with studies that have linked air pollution to TB in
an indoor environment, fewer studies have focused on outdoor environments where the pollution
level is relatively lower.

In epidemiologic studies that specifically investigated the associations between TB and ambient
air pollution, the air pollutants associated with tuberculosis were not the same, and their effects varied
across studies. Jassal et al. (2013) and You et al. (2016) found a positive association between exposure
to ambient particulate matter (PM) with aerodynamic diameter of ≤ 2.5 μm (PM2.5) and the risk of TB.
Zhu et al. (2018) observed a positive association of PM with an aerodynamic diameter of ≤ 10 μm
(PM10) with the incidence of TB. Zhu et al. (2018) and Xu et al. (2019) found that gaseous pollutants
sulfur dioxide (SO2) and nitrogen dioxide (NO2) were positively associated with the risk of TB, though
the effects were modified by age and gender in the former study. In addition to those reported positive
associations [12–15], other studies found no or weak associations [16,17], and one study even reported
a protective effect of ambient SO2 on TB [18]. This inconsistency warrants further epidemiological
studies on the topic. There are some possible mechanisms to explain the link between air pollution and
the increased risk of TB. These mechanisms include (1) both gaseous pollutants and PM may trigger the
disease by weakening the immune system (e.g., affecting T cells or impairing macrophage function);
(2) oxidative stress and inflammatory reactions induced by air pollution may result in damage to the
respiratory tract or lung epithelial cells; and (3) the direct transport of bacteria and those attached to
particles infect the healthy population [19,20]. These mechanisms are discussed in more detail in the
discussion section.

Researchers studying the health effects of ambient air pollution often rely on monitoring data that
are routinely collected at ground environmental monitoring stations [21]. Typically, the collected data
are averaged across the study area as a proxy measure to represent the exposure of the study population,
resulting in measurement bias. Alternatively, spatial interpolation methods such as inverse distance
weighting (IDW) and kriging are used to estimate ambient air pollution. Kriging can utilize the data
collected at given positions (e.g., air monitoring stations) to predict the concentrations at unmeasured
locations. In the past decades, kriging has been broadly used for mapping air pollution levels [22,23]
and to estimate exposures in epidemiologic studies [24–26]. In the current study, we estimated air
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pollution levels using kriging and applied generalized additive models to assess associations between
short-term exposure to ambient air pollutants and TB incidence in Wuhan city, China, during the
2015–2016 period.

2. Methods

2.1. Study Location

Wuhan, with a population of 10.6 million and an area of 8594 km2, is the largest city in central
China and the capital city of Hubei Province. Wuhan has 13 administrative districts. As of 2014,
Wuhan’s gross domestic product (GDP) per capita reached 15.6 thousand U.S. dollars, making it one of
the fastest growing cities in China [27]. However, its urbanization and industrialization have exposed
local residents to a high level of air pollution. For example, the annual average concentration of
PM2.5 in Wuhan was 106.5 μg/m3 as of 2017, which was significantly higher than that of other cities
with similar economic development levels [27]. Figure 1 shows the geographical location of Wuhan,
provincially-designated air sampling stations, and population by administrative districts.

Figure 1. Map of Wuhan. The red pentagram represents monitoring stations. Population density by
district is represented by gradient color.
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2.2. Air Pollution and Meteorological Data

The monitoring data used in the present study were collected by the Hubei Provincial
Environmental Quality Supervision and Administration Bureau (http://www.hbemc.com.cn/). All air
pollutants were measured based on a 24-h sampling schedule, except for ozone, which was collected
using an 8-h schedule. In the current study, rather than calculating daily average concentrations for
each air pollutant across multiple monitors as many studies usually do, we used kriging, a spatial
interpolation method for exposure assessment, to estimate daily levels of ambient air pollutants
including PM2.5, PM10, SO2, NO2, carbon monoxide (CO), and tropospheric ozone (O3) in Wuhan
city. Although our interest was the Wuhan metropolitan area, we did include monitoring data from
all sampling sites in Hubei Province to increase the statistical stability of our analysis. This led to a
total of 51 monitoring sites included in the analysis, with 10 sites in Wuhan and an additional 41 sites
across Hubei Province. We used ordinary kriging to determine the concentration of each air pollutant
on each day for the Wuhan metropolitan area throughout the entire study period from 2015 to 2016.
Specifically, kriging values generated from concentrations of air pollutants collected at the monitoring
sites were first exported to a raster. The centroid of a given county or city was then used as the point
data (represented by the geographical coordinates) to extract the interpolation results corresponding
to the output raster. The analysis was repeated for each air pollutant on each day throughout the
study period to obtain the complete exposure data set. It must be emphasized that kriging was used
for predicting exposures, not TB incidence. The analysis was achieved using ArcMap 10.3 (ArcGIS.
Version 10.3. Environmental Systems Research Institute, Redlands, CA, USA).

Daily meteorological data including temperature and relative humidity were collected at Wuhan
Tianhe International Airport and obtained from https://rp5.ru/Weather_in_the_world.

2.3. TB Data

Daily TB incidence data were obtained from the Hubei Provincial Center for Disease Control and
Prevention (Hubei CDC) for the 2015–2016 period. Hubei CDC collects information on a total of 39
infectious diseases that are legally regulated in China. Information on infectious diseases is collected
at multiple levels, including health care institutions, individual practitioners, and rural doctors. Upon
the collection of infectious disease information, designated epidemic reporters will diagnose infectious
disease patients or suspected patients according to the latest diagnostic criteria for infectious diseases
(Chinese Center for Disease Control and Prevention, 2008). In short, a chest X-ray is a common method
for detecting tuberculosis, but the following tests are needed to confirm the diagnosis. First, check the
patient’s sputum for Mycobacterium tuberculosis to confirm the diagnosis. Second, use a lung X-ray
examination to diagnose the location, scope, and nature of the disease. Third, conduct a tuberculin
test. A positive test indicates infection. County-level CDCs will review the information collected to
ensure the quality of the data and then file it online in the Infectious Disease Reporting Information
Management System. We extracted data from this online reporting system and used the International
Classification of Disease, 10th revision (WHO, 2007), to identify TB cases (coded as A15.0–A15.3;
A16.0–A16.2).

Ethics approval and consent to participate: The study was approved by the Ethics Committee of
Wuhan University School of Medicine.

2.4. Statistical Analysis

We used ageneralized additive model (GAM) to relax the assumption of linearity between
predictors and response variables. GAM is the most widely used method in air pollution epidemiology
because it allows for nonparametric adjustment of nonlinear confounding effects of seasonality, trends,
and weather variables. Variables such as temperature and humidity can be controlled in the model
by specifying a spline, a function to smooth the parameters for predicting the optimizing results [28].
We used GAMs to examine the associations between daily incidence of TB and daily concentrations
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of air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in Wuhan during the 2015–2016 period. We
also examined the potential seasonal variation by stratifying the data set during warm (May–October)
and cold (November–April) seasons. Typically, time-series data are “overly dispersed”, which means
the variance in a data set exceeds the mean. To account for overdispersion, the daily TB counts were
assigned by quasi-Poisson distribution, a common way to deal with over-dispersed data. We used
natural cubic spline functions to adjust for the time-varying variables. Specifically, the daily average
temperature and relative humidity were adjusted with 3 degrees of freedom (df). The long-term and
seasonal effects were adjusted with 8 df per year of data. Also included in the model is day of week
(DOW), which is a set of indicator variables shown on each day of the week. The selection of covariates
and df were based on a previously published study [25]. To explore the lag structures between incident
TB and each air pollutant, a single-day lag model was examined from lag 0 through lag 14. The “lag”
is defined as the time between the reporting of a TB case and days of exposure prior to this reporting.
To report the results, we calculated the relative risk (RR) of TB associated with a 10 μg/m3 increase in
each pollutant concentration, with corresponding 95% confidence intervals (CIs).

To test the robustness of the results, we performed two sensitivity analyses. In the first sensitivity
analysis, we used different df values for long-term effects (e.g., 4, 6, 10, and 12 df per year). In the
second sensitivity analysis, we adopted different temperature and humidity values in our model (e.g.,
values at t-1 and the cumulative effect calculated by three-day moving averages) to test whether the
results were different from those calculated using daily averages in the current model.

We used SAS (version 9.3; SAS Institute Inc., Cary, NC, USA) to combine TB data, meteorological
data, and air pollution data, as well as generate descriptive statistics. Our time-series analysis used the
R (version 3.0.2; http://R-project.org) statistical package “mgcv” to establish the model and calculate
the results.

3. Results

Overall, there were 12,648 incident cases of TB included in our analysis during this two-year study.
The cumulative incidence rate of TB was 1.3% in Wuhan during the 2015–2016 period. Table 1 shows
the descriptive statistics for TB incident cases, air pollutants, and meteorological data. On average,
there were 17 incident cases of TB per day. The average daily number of TB was the highest during
spring season (March, April, and May), whereas the lowest was observed in winter months (December,
January, and February). Air pollutant data were close to completeness, with only 9 days missing.
Daily average concentrations of air pollutants were all higher during the cold season than in the warm
season. The respective daily mean and standard deviation of PM2.5 concentration were 58.94 μg/m3 and
35.41 μg/m3, lower than those of PM10 (89.34± 42.16 μg/m3). The highest level of PM2.5 was observed in
January (113.4 μg/m3) while the lowest was observed in July (29.7 μg/m3). For gaseous pollutants SO2,
NO2, CO and O3, the daily mean concentrations were 15.32, 38.61, 1.03 and 119.23 μg/m3, respectively.

We fit a separate model to the relative risk (RR) of TB incident cases for each air pollutant at
lag 0 through 14 and present the results in Figure 2. The single-day lag models show that the effect
of air pollutants on TB was greatest at lag 7. Among them, PM2.5, PM10, and O3 were statistically
significantly (p < 0.05) associated with TB. We therefore report our time-series analysis results based on
exposure at lag 7 because of this lag structure. The effect of air pollutants on TB at lag 7 is presented
in Table 2. For a 10 μg/m3 increase in PM2.5, PM10, and O3, the TB risk increased by 17.03% (95% CI:
6.39, 28.74), 11.08% (95% CI: 6.39, 28.74), and 16.15% (95% CI: 1.88, 32.42), respectively. We also fit a
multi-pollutant model including all pollutants simultaneously to assess whether associations found
in single-pollutant models were confounded by the presence of co-pollutants. After controlling for
co-pollutants, the association of PM2.5 with TB was still robust and remained statistically significant.
The effect estimates were slightly attenuated for all remaining pollutants in the multi-pollutant model.
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Figure 2. Relative risks (and 95% CIs) of TB incidence associated with an increase of 10 μg/m3 in air
pollutant concentrations at lag 0–14 days in Wuhan, China, during the 2015–2016 period.

The season-specific effects of each air pollutant on TB are presented in Table 2 and further
illustrated in Figure 3. We did not observe an obvious trend in seasonality between the warm season
(May–October) and the cold season (November–April). The associations between PM2.5 and TB were
statistically significant (p < 0.05) for both warm and cold seasons. The effect of NO2 on TB during the
cold season was also statistically significant (p < 0.05). It is noteworthy that dividing the data into
warm and cold seasons reduced the sample size and led to an expanded confidence interval.
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Table 2. Increased risk of TB and corresponding 95% CIs associated with 10 μg/m3 increase in air
pollutants a on the 7th lag day for single- and multi-pollutant models.

Pollutant
Single Pollutant Model Multi-Pollutant Model b

All-Year Warm Season c Cold Season All-Year

PM2.5 1.17 (1.06, 1.28) d 1.13 (1.01, 1.26) 1.22 (1.06, 1.40) 1.20 (1.02, 1.41)

PM10 1.11 (1.01, 1.22) 1.12 (0.99, 1.26) 1.12 (0.99, 1.27) 0.98 (0.84, 1.15)
SO2 1.08 (0.97, 1.20) 1.11 (0.96, 1.29) 1.08 (0.94, 1.24) 1.00 (0.86, 1.16)
NO2 1.06 (0.97, 1.16) 1.13 (1.02, 1.24) 1.03 (0.91, 1.16) 0.97 (0.84, 1.12)
CO 1.09 (0.97, 1.21) 1.07 (0.94, 1.22) 1.10 (0.97, 1.24) 0.96 (0.82, 1.12)
O3 1.16 (1.02, 1.32) 1.11 (0.95, 1.30) 1.16 (0.99, 1.35) 1.11 (0.95, 1.30)

a PM2.5 = particulate matter (PM) with an aerodynamic diameter less than or equal to 2.5 μm, PM10 = PM with an
aerodynamic diameter less than or equal to 10 μm, SO2 = sulfur dioxide, NO2 = nitrogen dioxide, CO = carbon
monoxide, O3 = ground-level ozone; b The effect of each pollutant was adjusted for all the remaining pollutants;
c Warm season =May–October; Cold season =November–April; d Statistically significant associations are shown
in bold.

Figure 3. Relative risks (and 95% CIs) of TB incidence associated with an increase of 10 μg/m3

in air pollutant concentrations by season (all-year, warm season [May–October] and cold season
[May–October]) at lag 7 in Wuhan, China, during the 2015–2016 period.
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4. Discussion

In this study, we conducted a time-series analysis to estimate short-term effects of air pollution on
TB incidence in Wuhan city during the 2015–2016 period. We found that the effect of air pollutants
on TB was greatest at lag 7. PM2.5 and PM10, and O3 were statistically significantly associated with
the increased risk of TB at the 7th day’s exposure. We fitted a multi-pollutant model to adjust for the
possible confounding from the presence of co-pollutants. Our results showed that the effect of PM2.5

on TB remained robust after the adjustment while the effects for the rest of the pollutants were reduced
or remained almost unchanged (O3). The seasonal analysis showed that the impact of air pollution on
TB was not that different between the warm season and the cold season.

One noteworthy finding of this research is that the effect of air pollution on TB was greatest
at lag 7. The surprising consistency observed in lag 7 may be due to the ubiquitous collinearity
among the pollutants, that is, the effect of any pollutant on TB actually reflects the effect of another
or a combination of several pollutants on TB. Our results are contrary to many previous studies in
which the effect was larger in early lags (typically at lag 0–3). This is likely due to the incubation
period of the TB bacterium Mycobacterium tuberculosis. Our finding agrees with a previously published
article in which significant associations between respiratory infection and PM10/PM2.5 were observed
at lag 9–10 days and 7–8 days, respectively [29]. Chen et al. (2017) also reported a lagged effect
of PM2.5 on influenza and attributed this to the incubation of the influenza virus [30]. Considering
that the incubation period of the TB bacterium varies from weeks to decades [18], it is possible that
exposure to ambient air pollution shortened the incubation period and accelerated the progress of the
disease. Many previous studies have provided a theoretical basis for this hypothesis. Animal studies
and cellular-level studies suggest that biomass smoke impairs alveolar macrophage function [31–33].
PM2.5 contains heavy metals that may damage macrophages, resulting in weakened phagocytosis [33].
It has been suggested that air pollutants PM2.5, CO, NO2, and SO2 can modify the regulation of tumor
necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) [9,33–35], which functions to induce
macrophage activation [33,34]. Consequently, the damaged system may lead to an increased incidence
of TB [6]. Additionally, studies have found that bacteria and viruses can attach to particles in the air
and be inhaled into the respiratory system [36–38]. This makes the mechanism even more complex as
one cannot judge if infection occurred before or during exposure to air pollution.

We observed a statistically significant association between PM2.5 and PM10 and TB in our analysis.
We noted that another study in Wuhan also examined the relationship between short-term exposure to
air pollution and the risk of TB [15]. However, our research differs from theirs in three ways. First, the
two studies used different statistical models. We used GAM, and they used distributed lag non-linear
models (DLNMs). Second, exposure to air pollution was measured differently. We used ordinary
kriging to estimate the exposure, whereas they used data collected from air monitoring stations directly.
Third, our study conducted seasonal analysis, and they did not. Possibly due to these differences, the
results of the two studies are also different. They observed the effects of NO2, SO2, CO, and PM2.5

on the risk of TB, while we only observed the effects of PM on the risk of TB. In addition, their study
had more years of data and was, therefore, easier to detect significant statistical associations, which
could explain the differences in results between the two articles. Because no consensus has been
reached on which combination of co-pollutants should be included in the multi-pollutant model [39],
we included all air pollutants in the model. After the adjustment, the effect of PM2.5 on TB remained
robust, while the effects of other pollutants were attenuated. However, the attenuated effects of other
pollutants in the multi-contaminant model may be due to the collinearity between the pollutants,
which does not necessarily mean that they have no effect on TB. This finding is consistent with previous
epidemiologic studies on TB and ambient PM2.5 [12,13]. Nevertheless, the interpretation should be
regarded with caution, as the presence of collinearity cannot be ignored to influence the association.
Our results showed certain degrees of positive correlations between pairs of air pollutants (r: 0.59 to
0.80). Therefore, a single-pollutant model might be more reasonable for these types of data. We also
observed positive but insignificant associations between gaseous air pollutants and TB. As mentioned
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earlier, CO, NO2, and SO2 all have roles in impairing the normal function of alveolar macrophages and
result in an increased number of TB cases. Additionally, NO2 and SO2 can form ammonium sulfate
and ammonium nitrate by naturally occurring chemical processes and can form part of PM and then
further threaten human health [39].

Weather, especially temperature and humidity (or dew point temperature), are factors that can
confound the relationship between health effects and air pollution at both the long- and short-term
timescales. Temperature and humidity can be correlated with both air pollutants and health
effects such as infectious diseases. We used GAM, a type of semiparametric model, to control
for temperature and humidity. The semiparametric model combines the advantages of both parametric
and nonparametric models, allowing for explicit parameter items that include exposures of interest
and smooth nonparametric items such as temperature and humidity. The adjustment was achieved by
using the smooth functions of temperature and humidity in the model. The smoothness of a model fit
is controlled by the number of knots used, which was determined by the number of degrees of freedom
assigned to each function. It has been reported that the potential confounding effect of temperature on
short-term time scales may be less pronounced than long-term time scales, and the association between
air pollution and health effects is relatively insensitive to the choice of the temperature model [40].

This article showed that TB incidence was highest in the spring. Despite that the underlying
mechanism remains unknown, several factors may explain this phenomenon. First, people will
reduce outdoor activities during the cold season. Consequently, the overcrowded, humid, and low
airflow indoor environment makes TB easier to spread [41]. Meanwhile, more indoor activities reduce
ultraviolet light exposure that can kill microorganisms [41]. Second, the decrease in human serum
vitamin D in winter will increase the infection and re-activation of TB [42]. In addition, delays in
seeking health care after the onset and diagnosis may also result in delayed reporting from the winter
to the following spring [41]. This also led to misclassification of the actual exposure date. Our seasonal
analysis suggested that the effects of air pollution on TB during the cold and warm seasons are not
significantly different, which may mean that the increase in TB during spring is related to the indoor
environment and is less associated with outdoor air pollution.

We examined the seasonal variation by splitting the all-year data into warm (May–October) and
cold (November–April) seasons. There was no clear trend that the effect of air pollutants on TB was
influenced by season. The effect estimates of SO2 and NO2 during the warm season were slightly higher
than during the cold season. Certain factors may explain this phenomenon. First, during the warm
season, people tend to go outdoors more often than during the cold season, so they are exposed to
more ambient air pollutants as compared to the opposite. Second, more outdoor activities increase the
possibility of TB infection, as elevated levels of airborne Mycobacterium tuberculosis may be present in
the air. We also observed that the effect estimates of PM2.5, PM10, CO, and O3 during the warm season
were slightly lower than during the cold season. This was consistent with findings of another study
that the effect of ambient PM2.5 on TB was most significant during winter [13]. The study explained
that staying indoors during high ambient air pollution episodes would lead to an increase in human
contact and thus the increased risk of TB transmission. The same hypothesis was given elsewhere as
well [43]. Therefore, the real mechanism is not yet clear and warrants more related research.

A feature of this study is the use of kriging to estimate the concentration of air pollution. Kriging has
been broadly used to estimate ambient air pollution levels in epidemiological studies [22,24,25,44,45].
However, only a small part of the literature used kriging to study TB. Many such studies used kriging
for the detection of TB clusters for animals and humans [46–48].

To the best of our knowledge, no studies have used the exposures estimated by kriging to conduct
time-series research on TB. We attempted to use kriging to overcome a long-standing limitation existing
in the epidemiology of air pollution, that is, to average the pollution level across the study area as the
proxy for the population exposure level. By using kriging, we hope to reduce the misclassification
raised by the simple averaging method. Nevertheless, it must be pointed out that kriging itself
also has limitations. The accuracy of prediction using kriging largely depends on the number of
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monitoring stations. Due to a low ratio of monitoring stations to total land area, prediction error
is quite possible. Furthermore, kriging also assumes isotropy, that is, it assumes uniformity in all
directions. This obviously ignores the impact of the real environment (such as the built environment) on
exposure [49]. A previous study compared the values estimated by kriging with the values estimated
by the Assessment System for Population Exposure Nationwide (ASPEN) model and found that the
former was generally smaller than the latter [21]. As estimates from the ASPEN model yielded a
good agreement with monitoring data in multiple studies [21], it is considered more reliable than
kriged values. In China, we do not have an air pollution prediction model similar to the ASPEN for
comparison; thus, the accuracy of the prediction results is still uncertain.

Limitations and Implications

Our study has several limitations. First, our ecological study design cannot capture exposure
levels at an individual level, resulting in exposure misclassifications. Second, two years of data assume
a small sample size and may reduce the statistical power for the detection of significance. Compared
to studies with many years of data, this led to overly wide confidence intervals. Previous studies have
reported that many air pollutants are statistically significantly associated with TB. However, we only
found that there was a statistically significant association of PM2.5, PM10, and O3 with TB. Third, our
O3 data were collected 8 h per day, while other pollutants were collected based on a 24-h sampling
schedule. This will cause bias in our results. Fourth, due to the lack of data, some factors that can lead
to confounding or effect modification, such as gender, age, socioeconomic status, and so on, have not
been included in the analysis, which may result in bias in results. Fifth, because TB patients may not
be able to seek health care immediately after they become ill, and it takes time from the diagnosis to
the reporting of a case, the results of this article are affected by this unavoidable measurement error.
Lastly, the existence of collinearity among air pollutants may create bias and affect the magnitude of
the estimated associations. Considering the above limitations, caution is needed in interpreting the
results of the article.

5. Conclusion

In summary, this study explored associations between short-term exposure to ambient air
pollutants and TB incidence in Wuhan city, China, during the 2015–2016 period. We found that the
impact of air pollutants on tuberculosis was greatest at the 7th day’s lag, and PM2.5, PM10, and O3

were significantly associated with an increased risk of TB. Considering that the health impacts of air
pollution and infectious disease are typically studied separately, the findings of this study not only add
to the literature regarding the short-term effect of air pollution on TB but also help us to understand the
mechanism of the interaction of air pollution and infectious disease. Future preventive efforts against
TB should consider the reduction of exposure to air pollution at the community or personal level.
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Abstract: Background: To explore the inflammation phenotypes following indoor pollutants exposure
based on marker expression on eosinophils and neutrophils with the application of chemometric
analysis approaches. Methods: A cross-sectional study was undertaken among secondary school
students in eight suburban and urban schools in the district of Hulu Langat, Selangor, Malaysia.
The survey was completed by 96 students at the age of 14 by using the International Study of Asthma
and Allergies in Children (ISAAC) and European Community Respiratory Health Survey (ECRHS)
questionnaires. The fractional exhaled nitric oxide (FeNO) was measured, and an allergic skin prick
test and sputum induction were performed for all students. Induced sputum samples were analysed
for the expression of CD11b, CD35, CD63, and CD66b on eosinophils and neutrophils by flow
cytometry. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde were measured
inside the classrooms. Results: Chemometric and regression results have clustered the expression of
CD63 with PM2.5, CD11b with NO2, CD66b with FeNO levels, and CO2 with eosinophils, with the
prediction accuracy of the models being 71.88%, 76.04%, and 76.04%, respectively. Meanwhile,
for neutrophils, the CD63 and CD66b clustering with PM2.5 and CD11b with FeNO levels showed a
model prediction accuracy of 72.92% and 71.88%, respectively. Conclusion: The findings indicated
that the exposure to PM2.5 and NO2 was likely associated with the degranulation of eosinophils and
neutrophils, following the activation mechanisms that led to the inflammatory reactions.

Keywords: lung inflammation; allergy; indoor pollutants; biomarkers; FeNO; eosinophil; neutrophil

1. Introduction

Exposure to indoor pollutants are strongly associated with increased morbidity and mortality,
mainly among school children who spend most of their time in the classrooms [1]. Reports have
shown that exposure to high concentration of particles, nitrogen dioxide (NO2), carbon dioxide (CO2),
ozone (O3), volatile organic compounds (VOCs), and fibres induce persistent airway inflammation,
which is mediated by the immune system [2,3]. Biomarkers, such as fractional exhaled nitric oxide
(FeNO), cytokines, chemokines, lipid mediators, enzymes, adhesion molecules, and other growth factors,
have been considered as the indicators of allergic airway inflammation [4]. The indicators that underlie
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the complex molecular pathways that regulate inflammation have not been fully elucidated; however,
numerous studies have reported that the process certainly involves the activation of eosinophils
and neutrophils [5,6]. They play roles in innate host defence via effector mechanisms, including
degranulation, DNA traps, and cytolysis, following the activation cascaded by diverse mediators [7].

Extensive investigation of the mediators that are implicated in allergy, lung inflammation,
and asthma has been documented but there was insufficient evidence available for the multi-dimensional
characters of the activation and degranulation markers expression of CD11b, CD35, CD63, and CD66b
on eosinophils and neutrophils. Activation markers, such as integrin Mac-1 (CD11b/CD18), L-selectin
(CD62L), CBRM1/5, ICAM-1 (CD54), PD-L1 (CD274), PSGL-1 (CD162), FcγRII (CD32), CD16, CD44,
and CD69, were shown to be upregulated on circulating or sputum granulocytes from asthma
patients [8,9]. Response to allergens and environmental stimuli among asthma patients had a
detrimental outcome and was characterized by the infiltration of different granule contents from
eosinophils and neutrophils following activation [10]. Eosinophils and neutrophils have four distinct
granules, namely azurophilic, secondary, tertiary, and secretary, which are formed throughout
development in the bone marrow [11]. Several models have demonstrated the link between
degranulation of these granules and pollutants exposure at different levels of stimuli with the expression
of CD11c, CD63, and CD66b [12,13]. At present, biomarkers help tailor the management of respiratory
illness and studies have highlighted precision therapy approaches based on disease mechanisms by
targeting the cytokines and chemokines [14,15]. Recently, advanced statistical analysis approaches,
such as hierarchical clustering and latent class analyses, have renewed the interest of researchers in
the investigation of airway translational inflammation phenotypes [16,17]. This new vision helps the
researchers to better understand and precisely describe the inflammatory phenotypes [18,19].

This study aimed to investigate the concentrations and sources of indoor pollutants in classrooms
located in the urban and suburban areas of Hulu Langat, Selangor, Malaysia. Moreover, it aimed to
predict the toxicodynamic effects of indoor pollutants in the classrooms towards marker expression on
the eosinophils and neutrophils in sputum samples by using chemometric analysis techniques.

2. Materials and Methods

2.1. Study Population

The study population was randomly sampled from eight secondary schools in Hulu Langat,
Selangor, Malaysia. The researchers of this study targeted school children at the age of 14 of which
they were randomly selected from four classrooms in each school. The total number of students who
received their guardian’s consent and was thus recruited in the study was 470. Among them, only 50
(10.6%) students were diagnosed with asthma by a doctor based on the survey questionnaire. Another
46 students out of the remaining 420 students were randomly selected as a potential control group.
The control group was selected among students who produced an adequate sputum cell count from
the same class and school. In total, 96 students were included in the final study group. Students with a
history of smoking in the last 12 months and students who received antibiotic treatments in the past
four weeks were excluded from this study. The school areas were classified as urban and suburban
by the Ministry of Education, Malaysia, based on the locale classification of the ecological measures.
The data collection from the clinical assessments and indoor air monitoring were carried out at the
same time in August until November 2018 and February 2019.

The researchers used the questionnaire adopted from the European Community Respiratory
Health Survey (ECRHS) and International Study of Asthma and Allergies in Childhood (ISAAC)
that are inclusive of questions on doctor-diagnosed asthma, allergies, and respiratory symptoms.
The self-administered questionnaire was distributed to the selected students in the same week of the
technical measurements. Subsequently, the researchers went through the questionnaires during a
face-to-face interview with the students to clarify any uncertainty. The doctor-diagnosed asthma in
this study is defined as having asthma medication, asthma attacks, and wheezes with breathlessness
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in the last 12 months, which were diagnosed by the physician [20,21]. This information was verified
during face-to-face interviews and telephone calls with the students’ respective guardians.

2.2. FeNO Assessment and Allergy Skin Test

FeNO measurement was performed by a chemiluminescence analyser (NIOX VERO, Circassia,
Sweden) as recommended by the American Thoracic Society/European Respiratory Society (ATS/ERS) [22].
The detection limits and accuracy for this device are 5–300 ppb and ±5 ppb, respectively. The students
were asked to inhale deeply through the mouthpiece attached to the patient filter and then slowly exhale
for about six to ten seconds at a constant flow rate (50 mL/s)—the single-breath technique. This process
was repeated at least twice to get an average value. Students were instructed to refrain from eating and
drinking for one hour before the FeNO assessment.

An allergy skin prick test was performed on the volar side of the forearm alongside Dermatophagoides
pteronyssinus (Derp1) (house dust mite), Dermatophagoides farina (Derf1) (house dust mite), Cladosporium
herbarium (fungi), Alternaria alternate (fungi), and Felis domesticus (cat) allergens in liquid form (Prick-Test
Diagnostic, ALK-Abelló, Madrid, Spain). The same amount of histamine (10 mg/mL) and normal saline
were used as the positive and negative controls, respectively. The reaction was measured after 15 min
of which the wheal diameter was recorded. The allergen’s wheal diameter of 3 mm was considered as
a positive control. Atopy was defined as a significant positive skin test reaction to at least one of the
applied allergens [23].

2.3. Sputum Induction and Processing

Sputum induction was conducted by the inhalation of a nebulised, sterile mixture of 4.5%
sodium chloride (hypertonic) and salbutamol 200 μg, followed by the coughing and expectoration of
airway secretions. For nebulisation, an ultrasound nebuliser (Model CUN60 Citizen System Japan
Co. Ltd., Tokyo, Japan) was was used as recommended [24] with a mouthpiece that fitted an output
of ∼1 mL·min−1 to achieve successful sampling. The induced sputum samples collected from the
respondents were kept in an icebox and further processed within two hours by using flow cytometry.
The method of processing sputum samples has been previously described [25]. In short, the sputum
sample was diluted with freshly prepared phosphate buffer saline and gently vortexed at room
temperature for homogenisation. These steps were repeated thrice. Subsequently, the sputum samples
were centrifuged at 800× g for 10 min. Next, cytospin slides of sputum cells were stained with
May–Grunwald–Giemsa for the cell differentiation count. Samples with >80% of squamous epithelial
cells were excluded for the flow cytometry analysis.

2.4. Flow Cytometry

The processed sputum sample at a concentration of 1× 106 cells in 100 μL was resuspended in 1 mL
of stain buffer (FBS) (BD PharmingenTM, San Diego, CA, USA) and washed twice in cold stain buffer
by centrifugation at 200× g for 5 min. Subsequently, the supernatant was removed, and the cell pellet
was resuspended in 300 μL of stain buffer. A volume of 100 μL aliquots of the cell suspension were
transferred into three different sterile polypropylene round-bottom tubes, and monoclonal antibodies
and isotype controls were added to the cells according to the manufacturer protocol. The cells were
immunostained with antibodies for neutrophil and eosinophil surface markers of PE-Cy 7 Mouse
Anti-Human CD11b/Mac-1, BB515 Mouse Anti-Human CD35, PE Mouse Anti-Human CD63, APC-H7
Mouse Anti-Human CD16, PerCP-Cy 5.5 CD41a, and Alexa Fluor 647 Mouse Anti-Human CD66b
purchased from BD Biosciences, US. The isotype controls of PE-Cy 7 Mouse IgG1, BB515 Mouse IgG1
K, PE Mouse IgG1 K, APC-H7 Mouse IgG1 K, PerCP-Cy 5.5 Mouse IgG1 K, and Alexa Fluor 647 Mouse
IgM K (BD Biosciences, US) were added to the cells. The cell samples were incubated for 15 min at
room temperature in the dark. Next, the cell samples were washed twice in 1 mL of stain buffer and
centrifuged at 300× g for 5 min. The supernatant was removed, and the cells were loosened up by
tapping the tube. Subsequently, the cells were carefully resuspended in 500 μL of the stain buffer.
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Samples without antibodies and isotype were used as the controls. Hereafter, the cells were analysed
by using the BD FACSCanto II flow cytometry instrument (BD Bioscience, US) equipped with blue, red,
and violet lasers. Compensation was set to account for spectral overlap between the four fluorescent
channels. The gating region was set so that less than 1% of the samples were stained with negative
controls. Data were processed by using FlowJo software (Version 10.1r1) [26,27].

The activation of eosinophils was measured by using CD11b (integrinαM), CD35 (CR1), and CD66b
(CEACAM-8). Meanwhile, CD11b was used as an activation marker for neutrophils. The degranulation
activity was measured by the expression of CD11b and CD63 for eosinophils as a marker for cyctalloid
(specific/secondary) and secretory (sombrero) vesicles, respectively. For neutrophils, the CD11b, CD35,
CD63, and CD66b markers were used as tertiary, secretory, azurophilic, and specific granule expression
markers in the degranulation activities [28]. Isotype controls were used as the positive control and
to address the background produced by non-specific antibody binding, whereas the Anti-Mouse Ig
K Negative Control Compensation Particle Set was used to optimise the fluorescence compensation
settings [29] (Figure 1).

    
(A) (B) (C) (D) 

    
(E) (F) (G) (H) 

Figure 1. Gating strategy to identify activated sputum granulocytes. (A) A forward-/side-scatter
(FSC/SSC) gate to identify the granulocytes. (B) The activated granulocytes were based on CD11b+.
(C) CD41a was gated with SSC to confirm that the activated granulocytes were neutrophils and
eosinophils. (D) Subsequently, the eosinophils (blue) and neutrophils (green) were separated based on
the expression of CD16− and CD16+ on SSC, respectively. The activation markers of CD11b, CD35,
CD63, and CD66b for eosinophils (E,F) and neutrophils (G,H) were based on the negative gates of the
isotype control for all antibodies.

2.5. Assessment of Indoor Air Quality in Classrooms and Building Inspection

Indoor pollutants and physical parameters, including temperature (◦C), relative humidity (%),
and carbon dioxide (ppm), were measured in the classrooms during learning session within an hour by
using a Q-TrakTM IAQ monitor (Model 7565 TSI Incorporated, Shoreview, MN, USA) with the average
log interval values over one minute. The accuracy of this device on temperature, relative humidity,
and CO2 are ±0.6 ◦C, ±3%, and ±50 ppm, respectively. The sampling for the particles was measured
by using a Dust-Trak monitor (Model 8532 TSI Incorporated, Shoreview, MN, USA) at a sampling
rate of 1.7 L/min with a resolution of 0.001 mg/m3 and detection limit of 0.001–150 mg/m3. The PPM
FormaldemeterTM htV-M (PPM Technology Ltd, Wales, UK) with accuracy of 10% at 2 ppm was used
to measure the concentration of formaldehyde. In each school, a total of four hours of measurements
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were taken from four randomly selected classrooms for a period of an hour each during the learning
session, as has been previously described [30–32]. The instruments used were placed one metre from
the ground in the centre of the classrooms. All instruments used were calibrated regularly. The NO2

(μg/m3) concentration was measured by using a diffusion sampler (IVL, Goteborg, Sweden) for a period
of a week. The sampler was place at height of approximately 2–3 m above the ground and returned
to the IVL Swedish Environmental Research Institute Laboratory (Goteborg, Sweden), an accredited
laboratory for further analysis. This measurement technique provides an average concentration of
NO2 in the air during a week, with a limit of detection (LOD) of 0.5 μg/m3 and a 10% (at the 95%
confidence level) measurement uncertainty [33]. A building inspection was carried out before the
indoor air quality assessments were obtained. Details on the building information, floor furnish,
furniture, and type of ventilation system were noted [34].

2.6. Ethical Statement

The Ethics Committee for Research Involving Human Subjects Universiti Putra Malaysia (JKEUPM)
has approved this study (JKEUPM-2018-189) and each of the students was given a written consent
form for their guardian’s approval.

2.7. Data Analysis

The descriptive analysis was carried out by Mann–Whitney tests using the Statistical Package for
the Social Sciences (SPSS) 25.0. The differences in biomarker expression between the doctor-diagnosed
asthmatic children and healthy children were made by using GraphPad Prism 8 for Windows.
Subsequently, a principle component analysis (PCA) and agglomerative hierarchical clustering (AHC)
were applied to explore the association and pattern recognition between the biomarker expression
and the concentrations of indoor pollutants. The final prediction models were generated by logistic
regression analysis in which the models’ performance was based on the coefficient of determinant,
overall accuracy, sensitivity, specificity, and the area under the curve (AUC) of the receiver operator
characteristics (ROC) [35]. The researchers used the standardized data of the indoor pollutants and
biomarkers in the chemometric and regression analyses. The multivariate analysis was carried out by
using the Statistical Package XLSTAT Evaluation 2019.2.3 (Addinsoft, New York, US).

3. Results

3.1. Data Analysis for the Personal and Clinical Characteristics of School Children

The study population was well-balanced between the doctor-diagnosed asthmatic children (52%)
and healthy children (48%), in which 60% of them were from urban schools. The majority of asthmatic
children tested positive for at least one of the allergens, with 74.0% of them sensitised towards house
dust mites (Derp1 and Derf1), followed by cat dander (30.0%) (Supplementary Table S1). The FeNO
levels were statistically higher among the doctor-diagnosed asthmatic children than healthy children
(p < 0.001). The researchers observed that the total percentage of eosinophil count in the sputum
samples was slightly higher in the doctor-diagnosed asthmatic children but not statistically different
between the two groups (p > 0.05) (Table 1).
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Table 1. Students’ characteristic and inflammation status for the doctor-diagnosed asthma and
control group.

Characteristics
Doctor Diagnosed

Asthma
(n = 50)

Healthy
(n = 46)

p-Value

Female (%) 44.2 55.8 0.094
Male (%) 61.4 38.6

Atopic (%) 65.0 35.0 <0.001 **
Non atopic (%) 30.6 69.4

Parental with asthma/allergy (%) 65.9 34.1 0.020 *
Parental without asthma/allergy (%) 41.8 58.2

School area—urban (%) 60.4 39.6 0.102
School area—suburban (%) 43.8 56.3

Clinical characteristics
FeNO levels (ppb) 56 (66.5) 23 (32.3) 0.002 *

Eosinophil count (%) 11.6 (11.3) 10.2 (9.2) 0.259
Neutrophil count (%) 11.6 (5.0) 13.4 (14.0) 0.130

Values are the median (IQR) for clinical characteristics. IQR = Interquartile range. * p < 0.05; ** p < 0.001.

Both the eosinophils and neutrophils expressed an activated phenotype in both groups of induced
sputum samples. The expression of CD11b was significantly upregulated in both their cell surfaces
among the doctor-diagnosed asthmatic children (p < 0.05). The expression of CD63 on the neutrophils
was also significantly higher in the sputum samples of the doctor-diagnosed asthmatic children as
compared to healthy children (p < 0.001). Samples from the doctor-diagnosed asthmatic children
with a high expression of CD11b (tertiary) and CD63 (azurophilic/crystalloid) on the eosinophil and
neutrophil surfaces indicated a moderately degranulated state of sputum granulocytes (Figure 2).

 

Figure 2. Expression profile of sputum granulocytes compared between the doctor-diagnosed asthmatic
and healthy school children. Expression of degranulation and activation markers on eosinophil (A,B)
and neutrophil (C,D). The expression of CD11b as the degranulation and classical activation marker is
displayed twice in this graph. * p < 0.05, ** p < 0.001.
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3.2. Levels of Indoor Pollutants and Building Inspection Data

All the classrooms were designed with natural ventilation, which is equipped with glass
windowpanes on both sides of the wall. The classrooms were equipped with an average of three ceiling
fans in each classroom. The schools were painted, and the floor surface was furnished with concrete.
There were bookshelves, whiteboard, and soft boards in every classroom. Some of the classrooms had
window curtains fixed on both sides of the class. The statistical analysis showed a significant difference
in all of the indoor environmental parameters between the urban and suburban schools (Table 2).

Table 2. Comparison of the environmental parameters between schools located in urban and
suburban areas.

Parameter

Urban
n = 16

Suburban
n = 16 p-Value

Median
(IQR)

Min Max
Median
(IQR)

Min Max

Temperature (◦C) 29.0 (2.0) 28.0 32.0 27.5 (1.0) 27.0 28.0 <0.001 **
Relative Humidity (%) 74.7 (9.5) 63.6 88.1 81.4 (7.5) 74.8 88.1 <0.001 **
Formaldehyde (mg/m3) 13.2 (9.3) 5.2 19.5 3.1 (5.2) 2.1 15.9 <0.001 **

CO2 (ppm) 453.0 (34.5) 417.0 468.0 455.5 (25.5) 402.0 471.0 0.462
NO2 (μg/m3) 32.0 (7.0) 15.0 45.0 19.0 (22.5) 16.0 48.0 <0.001 **

PM2.5 (μg/m3) 24.6 (2.4) 17.9 26.5 22.0 (1.9) 16.8 26.9 <0.001 **
PM10 (μg/m3) 41.6 (7.5) 34.7 48.0 37.0 (4.9) 32.3 44.9 <0.001 **

n = 32; IQR = Interquartile range, Min =Minimum, Max =Maximum. ** p < 0.001.

3.3. Chemometrics Analysis of the Biomarkers and Indoor Air Pollutants

A PCA was performed to explain the variance observed between the biomarkers and indoor
pollutants in a more efficient way. Prior to the PCA, Bartlett’s sphericity and Kaiser–Meyer–Olkin
(KMO) tests were conducted to determine the correlation difference and sampling adequacy, with both
measurements achieving the required levels. The PCA was applied with a normalization procedure
and the coefficient factor loadings produced also expressed the correlation between the variables [36].
The factor loadings of the four factors with eigenvalues >1 were extracted from the eosinophil and
neutrophil expression markers. A total of 39.0% of the variation for both Factor 1 and Factor 2 was
observed in the expression of markers on eosinophils tested with indoor pollutants. Moderate factor
loadings were identified for expression of CD11b and CD35, together with a strong factor loading for
the concentrations of NO2 and formaldehyde in Factor 1. In other words, the upregulation of CD11b
and CD35 expression in the eosinophils were associated with exposure to NO2 and formaldehyde;
in turn, Factor 2 had moderate factor loadings of FeNO levels, PM10, and PM2.5. Moderate factor
loadings were observed for FeNO levels, CD66b, and PM10 in Factor 3, with a total variation of 14.9%.
High factor loading of CD63 was observed in Factor 4, with a total variation of 13.0%. For neutrophils,
a strong factor loading of CD66b expression together with moderate factor loadings for FeNO levels,
CD11b, and CD63 were recorded in Factor 1, with a variation of 24.2%. Factor 2 showed a strong
factor loading for the concentration of formaldehyde together with a moderate factor loading for
the concentrations of CO2, PM10, and PM2.5, with 19.3% of the total variation. There were moderate
loading factors for expression of CD35 and the concentrations of NO2 and PM10 in Factor 3, with 14.3%
of the total variation. Factor 4 showed moderate factor loadings of CD11b expression and concentration
of PM2.5, with 13.2% of the total variation (Table 3).
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Table 3. Factor loadings using PCA for eosinophils and eosinophils. The moderate (0.5–0.75) and
strong (>0.75) factor loadings are highlighted in bold.

Biomarkers and
Indoor Pollutants

Eosinophils Neutrophils

F1 F2 F3 F4 F1 F2 F3 F4

FeNO levels 0.194 −0.575 0.501 0.235 0.653 −0.306 −0.108 −0.120
CD11b 0.528 0.083 −0.398 0.059 0.571 −0.053 0.175 0.685
CD35 0.559 0.129 0.432 0.348 0.337 0.213 0.612 −0.445
CD63 −0.193 0.379 0.070 0.732 −0.665 0.394 0.117 −0.288

CD66b 0.285 −0.465 0.561 −0.419 0.727 0.067 −0.235 −0.039
CO2 −0.346 −0.329 −0.456 0.084 −0.287 −0.506 0.123 −0.360
NO2 0.771 −0.116 −0.118 0.375 0.470 0.301 0.657 −0.412
PM10 0.102 0.582 0.584 −0.035 0.074 0.684 −0.523 −0.047
PM2.5 −0.053 0.699 −0.061 −0.490 −0.409 0.503 −0.099 0.502

Formaldehyde 0.788 0.380 0.100 0.123 0.322 0.746 0.467 −0.089
Eigenvalue 2.10 1.81 1.49 1.30 2.42 1.93 1.43 1.32

Variability (%) 21.0 18.1 14.9 13.0 24.2 19.3 14.3 13.2
Cumulative % 21.0 39.0 54.0 67.0 24.2 43.4 57.8 71.0

We further analysed the biomarkers and indoor pollutants to categorize them based on their
homogeneity levels using agglomerative hierarchical clustering (AHC). Our data showed the cluster of
markers and indoor pollutants from the PCA and AHC analyses were relatively identical. Three clusters
were generated for eosinophils, which consisted of CD66b, FeNO levels, and concentrations of CO2

in Cluster 1, with 98.4% of variance within-class; whereas Cluster 2 presented 56.5% of the variation
within-class for CD11b expression and concentrations of NO2 and formaldehyde. High (82.9%) variance
within-class was observed for CD35 and CD63 expression and concentrations of PM10 and PM2.5 in
Cluster 3; three clusters were also generated for neutrophils, which consisted of CD35, CD63, CD66b,
and concentrations of CO2, PM10, and PM2.5, with 95.7% of the variation within-class for Cluster 1.
The concentrations of NO2 and formaldehyde were grouped in Cluster 2 with 26.0% of the variation
within-class. Cluster 3 showed 56.7% of the variation within-class for CD11b expression and FeNO
levels. The clusters generated through this process confirmed the contributing factors in the PCA
earlier. This showed that exposure to CO2, PM10, and PM2.5 have resulted in degranulation of both
eosinophils and neutrophils, with upregulation of the markers for tertiary (CD11b), specific (CD66b),
and azurophilic/crystalloid (CD63). In this study, exposure to NO2 and formaldehyde also triggered
the activation of tertiary eosinophil surface markers (Figure 3A).

3.4. Binary Logistic Regression (LR)

Finally, models were built to predict the toxicodynamic effects of indoor pollutants towards
marker expression on the eosinophil and neutrophil in the sputum samples among doctor diagnosed
asthmatic children. For this objective, the researchers next used the binary logistic regression to
model the prediction with the potential confounders of gender, atopy, parental asthma/allergy status,
and area of schools. Cluster 1 showed an overall accuracy of 76.0% in predicting asthmatic children
by using CD66b expression markers on the eosinophil and FeNO levels in relation to CO2 exposure.
Meanwhile, the model generated for Cluster 2 showed a 76.0% accuracy and 68.0% sensitivity in
predicting asthmatic children by using the upregulation of CD11b expression on eosinophils in relation
to the NO2 exposure. In the model generated for Cluster 3, the upregulation of CD63 expression on
eosinophils and PM2.5 concentration was significantly associated (p < 0.05), with a 71.9% accuracy and
60.0% sensitivity. Similarly, the upregulation of the neutrophil expression markers, CD63 and CD66b,
was significant (p < 0.05), and could be predicted from the PM2.5 exposure with a 72.9% accuracy and
72.0% sensitivity. Overall, children with a status of atopy, parental asthma/allergy, and from urban
school were more likely to develop asthma (p < 0.05) (Table 4 and Figure 4).
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Figure 3. Agglomerative hierarchical clustering (AHC) analysis using the Ward linkage method and
using Euclidean distances to generate the clustering of degranulation and the activation of markers
and environmental pollutants measured inside classrooms for (A) eosinophils and (B) neutrophils.
The dotted line represents the pruning level to generate distinct clusters. § Activation marker for
eosinophils; # Activation marker for neutrophils.

Table 4. Summary of the binary logistic regression models based on the clusters generated in the
AHC analysis.

Variable B SE p-Value R2

Eosinophils

Cluster 1
Constant −0.860 0.409 0.035 * 0.494

FeNO Levels 0.615 0.222 0.006 *
CD66b −0.850 0.250 <0.001 **

CO2 0.457 0.191 0.016 *
Atopy 0.893 0.377 0.018 *

Parental Asthma/Allergy 0.643 0.319 0.044 *
Area—Urban 0.747 0.354 0.035 *

Cluster 2
Constant −0.109 0.536 0.840 0.504
CD11b 0.454 0.260 0.018 *
NO2 1.305 0.375 0.002 *

Formaldehyde −0.684 0.440 0.120
Atopy 0.993 0.378 0.009 *

Parental Asthma/Allergy 0.916 0.424 0.031 *

Cluster 3
Constant −1.387 0.462 0.003 * 0.377

CD35 −0.097 0.189 0.608
CD63 −0.080 0.166 0.042 *
PM10 −0.379 0.212 0.074
PM2.5 −0.378 0.181 0.037 *
Atopy 0.909 0.377 0.015 *

Parental Asthma/Allergy 0.842 0.350 0.016 *
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Table 4. Cont.

Variable B SE p-Value R2

Neutrophils

Cluster 1
Constant −1.039 0.490 0.034 * 0.510

CD35 −0.054 0.169 0.751
CD63 −0.632 0.256 0.014 *

CD66b −1.794 0.858 0.036 *
CO2 0.230 0.200 0.250
PM10 −0.253 0.218 0.244
PM2.5 −0.582 0.234 0.013 *
Atopy 1.134 0.439 0.010 *

Parental Asthma/Allergy 0.944 0.404 0.021 *
Area—Urban 1.348 0.514 0.009 *

Cluster 3
Constant −0.876 0.432 0.042 * 0.298

FeNO Levels 0.063 0.171 0.712
CD11b 0.390 0.197 0.047 *

* p < 0.05, ** p < 0.001.
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Figure 4. Receiver operating curve (ROC) for the models predicting an asthmatic or healthy child
classification based on the clusters generated in the AHC analysis. The corresponding predictors for
each curve are presented in Table 4. For eosinophils: (A) ROC for Cluster 1, (B) Cluster 2, and (C) for
Cluster 3. For neutrophils: (D) ROC for Cluster 1 and (E) for Cluster 3.
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4. Discussion

The role of biomarkers in airways is complex and specific, which is helpful in evaluating the
aetiology, characterisation of phenotyping, and treatment of allergy and lung inflammation [37]. In this
study, the FeNO levels were significantly higher among asthmatic school children, which are similar
with the studies conducted in China [38], Terengganu, Malaysia [39], and Penang, Malaysia [40].
The result showed that there was inflammation in the airways and the average value was above the
threshold of 50 ppb, which could reflect a high degree of inflammation. Liu et al. [41] and Carlsen
et al. [42] reported that there was a significantly positive relationship between the FeNO levels and
almost all pollutants, namely PM10, PM2.5, SO2, NO2, CO, and VOCs. This advocates a relationship
between the high levels of all pollutants measured inside the classroom of urban schools and the
high levels of FeNO among school children in this study. Some researchers estimated that FeNO is
positively correlated up to five-fold and two-fold when exposed to NO2 [43] and finer particles, such as
PM2.5 [44], respectively, which could be modulated by DNA methylation in the arginase–nitric oxide
synthase pathway [45,46].

The CO2 concentration in both school areas was below the recommended limit of 1000 ppm [47].
Similarly, the PM10 and PM2.5 concentrations were below the 24 h mean of the World Health Organisation
(WHO) guideline (PM10 = 50 μg/m3, PM2.5 = 25 μg/m3), the National Ambient Air Quality Standard
by USEPA (PM10 = 150 μg/m3, PM2.5 = 35 μg/m3), and the new Malaysian Ambient Air Quality
Standard 2018 Interim Target-2 (PM10 = 120 μg/m3, PM2.5 = 50 μg/m3) [48]. A few classrooms recorded
a concentration of PM2.5 that exceeded the value of 25 μg/m3, especially in the urban areas (37.5%)
compared to the suburban (12.5%) areas. The median level of NO2 for the urban and suburban areas was
also below the WHO guideline of 40 μg/m3 (annual mean), with only 18.8% and 25.0% of the classrooms
in the urban and suburban areas, respectively, exceeding the limit. Overall, the levels of indoor air
pollutants were below the guideline limits. This was due to the sufficient natural ventilation system
and a wider window design on both sides of the classroom, together with the adequately equipped
ceiling fans. The classroom design has a well-balanced ventilation that suits the temperature of the
equatorial region and is able to reduce the particles, NO2, and CO2 concentrations [49]. Additionally,
Silvestre et al. [50] reported that an opening of 56% of the classroom windows under natural ventilation
conditions was able to keep the CO2 concentration below 1000 ppm.

The schools, classrooms, and children were randomly selected from all secondary schools in the
Hulu Langat area, Malaysia. Thus, we concluded that this study was not seriously influenced by
selection bias. Moreover, Malaysia has a similar climate all year around; therefore, with the natural
ventilation flowing through the windows in the classrooms, the indoor and outdoor levels of pollutants
would be expected to be constant throughout the year. This is supported by several studies that have
determined equal indoor to outdoor (I/O) ratios for PM10, PM2.5, NO2, CO, and VOCs measured in
schools across Peninsular Malaysia [51–53]. Be that as it may, the cross-sectional study design utilized
here preludes making conclusions on causality.

In contrast to earlier findings, the total percentage of eosinophil and neutrophil counts in the
sputum sample was not statistically different between the doctor-diagnosed asthmatic children
and healthy children groups. Previous studies reported that the percentage of eosinophils and
neutrophils for asthmatic children was significantly different and in the range of 2.5–13.0% and 15–47%,
respectively [54–56]. Meanwhile, for healthy subjects, the percentages were in the range of 0.5–4.0%
and 24.1–37.0%, respectively [57,58].

There have been few recent studies on activation and degranulation marker expression in
the sputum samples of asthmatic children. The finding of this study confirmed that the sputum
granulocytes of the asthmatic children increased the expression of the classical activation markers,
CD11 and CD63, in both eosinophil and neutrophil cells, as reported by Tak et al. [28]. The upregulation
of these tertiary and azurophilic/crystalloid granules is associated with the circulating cytokines that
occur sequentially in response to the stimulus [59]. The mitogen-activated protein kinase (MAPK)
pathway is believed to be central to the degranulation process [60]. The present study failed to show
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the upregulation of CD35 expression on eosinophils. In accordance with the study by Berends et al. [61],
the downregulation of CD35 in the sputum of asthmatic children could be partly explained by the
absence of intracellular stores for CD35 on eosinophils and neutrophils. Another possible explanation
for this discrepancy was that CD35 is highly expressed on blood eosinophils or circulating granulocytes
and was only directly associated with antigen inhalation [62] or the lower threshold stimulus required
for cell activation [63].

The CD66b (CEACAM8) is a single-chain GPI-anchored glycoprotein and was recognised as an
exclusive degranulation marker for neutrophils [64]. CD66b is upregulated when neutrophils are
activated. The researchers of this study observed that the expression of CD66b was slightly upregulated
on the surface of eosinophils and neutrophils collected from the airways of asthmatic children as
compared to healthy children. It represents a normal activation pattern of neutrophils in relation to the
migration from the circulating blood in vessels [65]. The late-phase response of the neutrophils could
also possibly increase the CD11b, CD11b/18, CD35, CD64, and CD66b expressions [66]. The researchers
found one study that identified that CD11b, CD16, and CD66b were consistently expressed on the
neutrophils surface and were independent of their location and level of activation [67]. This could be
contributed by the increased levels of intracellular cyclic GMP that yielded upregulation in the CD63
and CD66b expression on neutrophils [68].

PCA and AHC are very helpful approaches for dimensionality reduction in proteomics data.
In this current study, these analytical approaches depicted similar group factors of biomarkers
and air pollutants. The final regression analysis generated relatively moderate prediction models.
The researchers noted that the upregulation of CD63 expression on both leukocytes and CD66b
expression on neutrophils was related to particle exposure. The likely risks were observed among
children under atopic and parental asthmatic/allergic conditions and children from schools located
in urban areas. This finding reinforces the previous in vitro study conducted by Jin et al. [69].
They suggested that particulate allergens potentiated the mast cells to modulate the recruitment
of eosinophils in the airways by internalising the particulate allergens into the CD63+ intracellular
compartments through an endolytic pathway. Another in vitro study reported that CD66b only
activated the neutrophils in the peptidoglycan challenge but did not upregulate the surface activation
of eosinophils [70]. This is the possible explanation of why CD66b expression is clustered and associated
with PM10 and PM2.5 in neutrophils but not with eosinophils in the AHC and regression analyses.
Likewise, the study conducted by Banerje et al. [71] using flow cytometry analysis reported that
there were increased CD35, CD16, and CD11b/CD18 expression on circulating neutrophils and a high
percentage of eosinophils in the sputum of adults who have been exposed to PM10 and PM2.5.

To the researchers’ knowledge, this study was the first study that explored the interrelation of
CD11b, CD63, CD35, and CD66b marker expression on eosinophils and neutrophils with different
parameters of air pollutants. This study revealed that CD11b was not clustered together with PM10 and
PM2.5. This result was coherent with the study conducted by Ishii et al. [72] using immunocytochemistry,
which showed that the expression of CD11b on alveolar macrophages was unaffected after two hours of
stimulation with PM10. They suggested that the adhesive interaction between CD11/CD18 on alveolar
macrophages with CD54 on the bronchial epithelial cells contributed to the amplification of cytokine
production from the alveolar macrophages. The chemometrics analysis in this current study was also
clustered and showed a significant relationship between the CD11b expression on eosinophils with
NO2, especially among asthmatic children under atopic and parental asthmatic/allergic conditions.
This finding was consistent with the review article by Hiraiwa and Eeden [73] and an in vitro study
reported by Hodgkins et al. [13]. They found that dendritic cells expressed an upregulation of CD11b
at 48 h during NO2-promoted allergic sensitisation. A study has shown that CD11b is directly involved
in cellular adhesion, which is expressed in many leukocytes, including neutrophil, monocytes, natural
killer cells, and macrophages. The migration of these leukocytes to the inflammation site will only take
place if the CD18 subunit is present [74]. The other possible roles of CD11b were reported by Medoff
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et al. [75] in their experiment in which the CD11b+ had critical roles in mediating the Th2 cell and
eosinophil recruitment in the airways via STAT6-dependent chemokine production.

This study also showed that the FeNO levels were positively correlated with the expression
of the activation (CD66b, CD11b) and degranulation (CD66b, CD11b) markers for both leukocytes.
This result is consistent with the results in the previous studies conducted by Guo et al. [76] and
Kobayashi et al. [77], who also indicated that FeNO levels were reflected by eosinophilic airway
inflammation [78]. In fact, the activated neutrophils can recruit the Th17/IL-17 and Th1 cells via
chemokine release [79] and cause neutrophil infiltration within the airways [80]. This finding also
reinforces that eosinophils and eosinophils are the binary indicators for the phenotyping of asthma.
It was found in previous studies that exposure to PM10 was significantly associated with the increased
levels of FeNO in healthy children tested on robust multi-pollutant models [41,81–83]. In line with this
report, the chemometric analysis results in this study provided further evidence on the positive effects
of PM10 on bronchial inflammation and resulted in the increase of FeNO levels among children.

The cluster approach used in this study, which is aimed at improving the interpretability of
the data, interestingly revealed that the formaldehyde and NO2 concentrations were in the same
factor, with a total variance of 26.0%. This finding confirmed that the formation of formaldehyde was
through the photochemical reactivity of NO2 in the air with VOCs generating different aldehydes [84].
Formaldehyde also originates from furniture made out of wood and plastics, plywood, textile,
table laminate, and consumer products, which is commonly available in the classroom [85]. As reported
by Hua [86], NO2 potentially originates from the process of fossil-fuel combustion, biomass burning,
and agricultural activities. Hereafter, all the schools in this current study are located very close to the
main road and industrial area, which was considered the probable sources of NO2 in the classrooms.
The researchers found that PM10 and PM2.5 were grouped together in the dimensionality analysis of
the PCA and AHC, and this indicates that both particles originated from the same source. The primary
sources of particles in the urban and suburban areas were industrial emissions, transportation, and traffic
emissions [87,88]. It was possible that the indoor particles also originated from the occupant’s activities
or re-suspension of deposited particles, soil materials from the school children’s shoes, skin flakes,
furniture fragments, and less frequent cleaning [89]. Children are at risk of day-long exposure to the
same indoor pollutants, not only at school, but also at home—which was reflected in the time spent
during non-school days. This possibility merits further investigation.

5. Conclusions

In conclusion, the chemometric analysis methods produced robust and immunologically
meaningful results, which clustered the degranulation markers (CD11b and CD63) expressed on
eosinophils with the concentration of NO2 and PM2.5. Besides that, the degranulation markers
expressed on the neutrophils, CD63 and CD66b, were clustered together with the PM2.5 concentration.
A further prospective study is now obligatory to validate the models generated from this current study.
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Abstract: Exposure to household air pollution (HAP) from cooking with unclean fuels and indoor
smoking has become a significant contributor to global mortality and morbidity, especially in low-
and middle-income countries such as Nigeria. Growing evidence suggests that exposure to HAP
disproportionately affects mothers and children and can increase risks of adverse birth outcomes. We
aimed to quantify the association between HAP and adverse birth outcomes of stillbirth, preterm
births, and low birth weight while controlling for geographic variability. This study is based on
a cross-sectional survey of 127,545 birth records from 41,821 individual women collected as part
of the 2018 Nigeria Demographic and Health Survey (NDHS) covering 2013–2018. We developed
Bayesian structured additive regression models based on Bayesian splines for adverse birth outcomes.
Our model includes the mother’s level and household characteristics while correcting for spatial
effects and multiple births per mother. Model parameters and inferences were based on a fully
Bayesian approach via Markov Chain Monte Carlo (MCMC) simulations. We observe that unclean
fuel is the primary source of cooking for 89.3% of the 41,821 surveyed women in the 2018 NDHS.
Of all pregnancies, 14.9% resulted in at least one adverse birth outcome; 14.3% resulted in stillbirth,
7.3% resulted in an underweight birth, and 1% resulted in premature birth. We found that the risk
of stillbirth is significantly higher for mothers using unclean cooking fuel. However, exposure to
unclean fuel was not significantly associated with low birth weight and preterm birth. Mothers who
attained at least primary education had reduced risk of stillbirth, while the risk of stillbirth increased
with the increasing age of the mother. Mothers living in the Northern states had a significantly higher
risk of adverse births outcomes in 2018. Our results show that decreasing national levels of adverse
birth outcomes depends on working toward addressing the disparities between states.

Keywords: cooking fuel; household air pollution; preterm births; perinatal mortality; low birth
weight; stillbirth; Nigeria

1. Introduction

Adverse birth outcomes (ABO) including low birth weight (LBW), preterm birth, and
stillbirths represent an unmet public health need in Nigeria. The World Health Organization
(WHO) classes infant birth weight of less than 2.5 kg as LBW [1]. LBW is a key risk factor
for morbidity and mortality as well as being a predictor of survival, normal growth, and
cognitive development in children [2,3]. In 2015, Nigeria had the third-highest number of
neonatal deaths, and an estimated 313,700 stillborn deaths, the second-highest globally,
and the highest number of maternal mortalities [4]. Hence, there is a need to explore the
high incidence rate of these ABO in Nigeria compared with other countries.

Household air pollution (HAP) is a prominent global public health concern and is a
leading environmental health risk globally [5]. In 2016, HAP was responsible for 7.7% of
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the global mortality [6]. It is estimated that 3.8 million premature deaths occur each year
from illnesses attributable to HAP [7]. Of these deaths, 27% were due to pneumonia, 27%
to ischaemic heart disease, 20% to chronic obstructive pulmonary disease (COPD), 18% to
stroke, and 8% to lung cancer [7]. HAP has also been linked to pulmonary tuberculosis [8],
eclampsia [9], and cataracts [10]. Regional variations in the particulate composition of HAP
has been reported within countries [11] and between countries [12], and may also depend
on locally accessible fuel type within regions [12,13]. Within Nigeria, geographic factors
also impact the rate of adverse birth outcomes as the North West region has a significantly
higher risk for LBW [3]. Hence, it is important to highlight the effect of regional variation
on the prevalence of ABO due to HAP. Additionally, some studies have shown that parental
employment, education level, and other indicators of socio-economic status are associated
with LBW [14,15].

A primary source of HAP is the use of unclean fuel in cooking [7]. Common chronic
respiratory symptoms, such as congestion and cough, are directly associated with the
hours spent cooking food [16]. Using unclean fuel is especially common in developing
countries where biomass fuel sources are more affordable than healthier alternatives such
as electricity, natural gas, and liquefied petroleum gas [17]. Biomass fuel includes wood,
crop residue, charcoal, coal, and dung [7]. The use of this type of fuel is most prevalent in
Africa and Southwest Asia where over 60% of households cook with unclean fuels [18,19],
and there is evidence of geographical disparities in its use [20]. Nearly 70% of the Nigerian
population cook with unclean fuel [21].

Global evidence suggests an association of HAP with increased pregnancy complica-
tions [22], preterm birth [23], and elevated risk of stillbirth [24,25]. It is hypothesized that
pollutants, including carbon monoxide, contained in HAP can be inhaled and absorbed
into the mother’s blood which could detrimentally affect the fetus [26,27]. HAP likely
potentiates ABO by promoting a pro-hypoxic phenotype including increased expression of
Hofbauer cells, syncytial knots, and a compromised chorionic vascular density in utero [28].
Uterine hypoxia has also been associated with morbidity and mortality [29]. Both Hofbauer
cells [30] and syncytial knots [31,32] have been associated with ABOs such as pre-eclampsia
and intrauterine growth retardation, while impaired chronic vascular density is linked to
embryonic death [33]. In Nigeria, a limited randomized control trial demonstrated the
increased risk of chronic hypoxia in pregnant women using unclean cooking fuel compared
to those using clean cooking fuel [28]. Another randomized trial showed an intervention
of ethanol as cooking fuel significantly increased mean birth weight and gestational age at
delivery [34]. This may also mitigate the risk of cardiovascular disease such as hyperten-
sion by downregulating the expression of tumor necrosis factor alpha, interleukin 6, and
interleukin 8 in pregnant women [35].

Here, we explore the impact of HAP on adverse birth outcomes, such as stillbirths,
pregnancy duration, and LBW in Nigeria. We will evaluate the geographic distribution of
the association to identify regions with more significant HAP effects on births. This study
will add to the existing literature by analyzing the impact of HAP on ABO in Nigeria while
accounting for geographic heterogeneity.

2. Materials and Methods

2.1. Data Source, Setting, and Variables

This study was based on the Nigerian Demographic and Health Survey (NDHS) phase
6 2013–2018 (hereafter, NDHS2018). NDHS is a cross-sectional nationally representative
survey that has been conducted every five years in Nigeria since 2003 [36]. The NDHS
is funded by the United States Agency for International Development as part of the
worldwide Demographic and Health Surveys Program [36].

Nigeria is a West African country situated between latitudes 4◦ and 14◦ N and longi-
tudes 2◦ and 15◦ E on the Gulf of Guinea, and has a total area of 923,768 km2 (Figure 1).
The NDHS2018 data collection occurred between 14 August and 29 December 2018, using
a two-stage stratified cluster sampling framework. Nigeria’s 36 states and capital territory
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were separated into rural and urban areas and further grouped into six geopolitical zones,
North-Central, North-East, North-West, South-East, South-West, and South-South, leading
to a total of 74 sampling strata [37]. Further details of the NDHS sampling design can be
found elsewhere [37]. Of the 40,666 occupied households selected for the sample, 40,427
were successfully interviewed, resulting in a response rate of 99% [37]. The resulting
dataset consisted of 41,821 individual women (age 15–49) and 127,545 birth records.

 
Figure 1. Map of Nigeria showing 36 states (plus federal capital territory) and the country’s six
geopolitical regions.

The outcome variables in this study were adverse pregnancy outcomes; birth sta-
tus (stillbirth or alive, stillbirths were identified as pregnancies that did not result in
the birth of a live child and included miscarriages), birth weight (children born under
2500 g were classified as LBW [1] or normal weight otherwise) and duration of pregnancy
(term birth vs. preterm birth). Preterm births included those born before 37 weeks or
8.515 months of pregnancy [38]. The main exposure variables measuring HAP were cook-
ing fuel type and mother’s smoking habit. Respondents were asked about the primary
source of fuel for household cooking. Responses included crops, animal dung, charcoal,
kerosene, straw/shrubs/grass, coal, wood, liquefied petroleum gas (LPG), biogas, electric-
ity, and natural gas. We classified LPG, biogas, electricity, and natural gas as “clean fuel”
and the rest as “unclean” as per WHO guidelines [7].

Other variables explored include socio-economic, demographic, and geographical
factors such as mother’s age, educational attainment (no education, primary, secondary,
higher), and wealth quintiles. As some mothers were identified with multiple birth records,
we also controlled for the mother’s effect on birth outcomes. This allowed us to account for
the correlation between children with the same mother. We used the states to identify the
effect of residence on adverse birth outcomes and the geopolitical regions as a fixed effect.
See Table 1 for the descriptive summaries of the characteristics of the study participants.
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2.2. Statistical Analysis

We used frequencies and percentages to describe categorical variables and means
and standard deviations for continuous variables. We tested the association between
cooking fuel type and categorical variables (smoking status, education, wealth status) using
Pearson’s chi-square test or Fisher’s exact test and presented the estimated prevalence
ratios (PR) with their 95% confidence interval (CI) [39,40]. We use a t-test to assess the
difference in mother’s age across adverse birth outcomes.

A Bayesian approach to generalized structured additive regression (STAR) [41–44]
was then used to estimate the association between adverse birth outcomes and HAP while
adjusting for other predictors and region-specific terms. For a specific health outcome for
child i, Yi, the structured additive regression model with predictors is formulated as:

Pr(Yi |predictors ) = h(ηi) (1)

Using an appropriate link, h(.), such as the probit link for ease of interpretation,

η = γ0 + γ1fuel + . . . + γkCOV + f1(mother’s cluster) + f2(mother’s age)
+ funstr(STATE) + fstr(STATE)

(2)

where γ1 . . . γk represents the fixed effect of the exposure cooking fuel variable and other
covariates (COV) such as mother’s age, mother’s education, household wealth quintile,
geopolitical regions) modelled with Gaussian priors for continuous variables and diffuse
priors for categorical variables; function f1 represents a random effect term for mother’s
cluster identification; f2 is the nonlinear effect of mother’s age on health outcome modelled
with Penalize splines. Bayesian Penalized-spline priors was specified for the regression
coefficients, f1 for mother’s random effect and f2, for the nonlinear effects mother’s age
with weakly informative inverse Gamma prior for the precision hyperpriors. funstr is the
unstructured spatial effect with random effects term for the states in Nigeria, while fstr
represents the structured spatial effect. We assumed i.i.d Gaussian random effects for the
states in Nigeria in the unstructured spatial effect, funstr(STATE) and specified Markov
random field prior for structured spatial effect, fstr(STATE).

A unique model was fitted for each adverse birth outcome: birth status, birth weight,
and pregnancy duration. All outcome variables were analyzed using STAR multivariable
logistic regression. Four models from simple to complex formulations were considered to
select important predictors for each adverse birth outcome. Positive coefficients correspond
to an increased risk for the modelled outcome. Model 1 includes the exposure variable,
types of cooking fuel, and spatial components (unstructured and structured). The mother’s
random effect was added to Model 1 to form Model 2. An additional nonlinear effect of the
mother’s age effect was added to formulate Model 3. For the fourth model (Model 4), we
included additional covariates, mother’s education, and geopolitical regions. We excluded
household wealth quintiles from the multivariable Model 4, due to issues with collinearity
with cooking fuel.

The Bayesian models were fitted via Markov Chain Monte Carlo (MCMC), carrying
out 25,000 iterations with a burn-in of 5000. Model selection was based on the smallest
deviance information criterion (DIC); we also report the posterior mean of deviance (D) and
the effective number of parameters (pD). The posterior mean (p.mean) and 95% credible
intervals (CrI) were presented for the parameters included in the model [45,46].

All statistical analyses were implemented in R software version 3.6.2 [47], with package
R2BayesX [41,42] and based on complete case data.

3. Results

3.1. Descriptive Summaries

Table 1 presents the descriptive summaries of the study population. Of the 41,821
women age 15–49 years surveyed (mean ± SD, 35.9 ± 7.9), 89.3% used unclean cooking
fuel as their primary source of cooking energy; however, only 0.2% of the respondents
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were smokers. A total of 127,545 birth records were included in the final analysis, out of
which 14.3% (18,220) of all pregnancies resulted in stillbirth, 7.3% (562) were identified
as LBW while 1.0% (408) of the children were born prematurely. There were significant
associations between cooking fuel type and mother’s age, mother’s education, wealth
quintiles, mother’s smoking status, pregnancy duration, birth status, and geographical
regions (Table 1). For example, compared to non-smoker, the prevalence ratio (PR) of
smokers in households exposed to unclean cooking fuel was 0.50 (95% CI: 0.30, 0.83)
compared to households using clean fuel. Similarly, compared to alive birth status, the
prevalence of stillbirth status was higher (PR = 2.40, 95% CI: 2.21, 2.62) for household
exposed to unclean cooking fuel compared to those in households using clean cooking
fuel. Households with low birthweight were 17% more likely to use unclean cooking
fuel, (PR = 1.17, 95% CI: 0.96, 1.43) however, this result was not statistically significant. In
contrast, households with premature birth were 63% less likely to use unclean fuel (PR: 0.47,
95% CI: 0.36, 0.62). Figure 2 shows the rate of adverse birth outcomes per 100 pregnancies
across the Nigerian states. Figure 3 shows the percentage of households primarily using
unclean cooking fuel. Northern states appeared to have higher rates of ABO and higher
dependence on unclean cooking fuel.

Figure 2. Geographical distribution of adverse birth outcomes. The prevalence is reported as the
number of adverse birth outcomes per 100 pregnancies. Adverse birth outcomes include stillbirth,
preterm or low birth weight (LBW).
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Figure 3. Geographical distribution of prevalence (%) use of unclean cooking fuel in Nigeria.

3.2. Association between HAP Exposure and Adverse Birth Outcomes

Table 1 and Table S1 summarize the relationship between the exposure variables and
the pregnancy outcome variables of interest independently.

3.2.1. Prevalence of Stillbirth

Among pregnancies that resulted in stillbirth (17,598 + 503), 97.2% were from house-
holds with mothers who used unclean cooking fuel and 2.8% of the pregnancies were from
households with mothers who used clean cooking fuel (Table 1 and Table S1). There was a
significant association between stillbirth and cooking fuel type (p < 0.001). Lower wealth
quintiles, older age, and low education levels were associated with a larger proportion of
reported stillbirths (p < 0.001). On the other hand, smoking was not associated with birth
outcomes (Table S1).

3.2.2. Birth Weight (Low Birth Weight vs. Normal Weight)

About 7.6% (442/5815) of mothers who used unclean fuel in this study had children
born with LBW compared to 6.5% (113/1746) of births from mothers who use clean fuel.
However, there was no significant association between the type of cooking fuel and birth
weight. The bivariate analysis shows that only the mother’s age and education level are
independently significantly related to LBW (Table S1). Mothers who have not attained a
secondary or higher education level had an increased risk of an underweight birth. The
smoking status of the mother was not significantly associated with any ABO.

3.2.3. Duration of Pregnancy (Preterm vs. Term Birth)

Preterm births accounted for 1.0% (408/39,738) of births in this study. Surprisingly,
the proportion of preterm births in households where mothers used unclean fuel (0.95%,
345/35,972) was significantly less than households where mothers used clean fuel (2.07%,
59/2856). Wealth status, education levels, and mother’s age were significantly associated
with preterm outcomes (Table S1).

3.3. Predictors of Adverse Birth Outcomes

Due to the small sample of mothers with smoking status, we focused only on cooking
fuel as the main exposure variable. As shown in Table S2, the model diagnostic statistics
for all models considered in this study for each birth outcome indicates that Model 4
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provides the best fit based on smaller DIC values for birth status and birth weight except
the duration of pregnancy where Model 3 had the smallest DIC value. Table 2 presents the
estimated posterior means and the 95% credible intervals (CrI) for Model 4 (which includes
spatial components, mother’s random effect term, the nonlinear effect of mother’s age, and
other covariates such as mother’s education and geopolitical regions) for each ABO.

Results from Model 4 show that mothers using unclean cooking fuel are significantly
at higher risk of stillbirth (0.14, 95% CrI: 0.08, 0.20) after adjusting for age, education, and
region (Table 2). It also indicates that an increased level of education is protective against
stillbirth, while an increase in mother’s age significantly increases the risk of stillbirth
(Figure 4A). Southern states tended to have a decreased risk of stillbirth and northern states
had an increased risk (Figure 4B–D). However, the use of unclean cooking fuel by mothers
was not significantly associated with any low birth weight and preterm birth. Women
with higher education had an increased risk of preterm compared to no education but no
association was found for low birth weight. Although there was a notable increase in the
risk of low birth weight and preterm birth with an increase in mother’s age, it was not
statistically significant (Figures 5A and 6A). Spatial disparities were noted in Figure 5B–D
and Figure 6B–D, generally suggesting increased risk in the northern parts of Nigeria.

Table 2. Parameter posterior mean and 95% credible interval (CrI) from multivariable analysis (Model 4) of adverse birth
outcomes.

Characteristics
Birth Status: Stillbirth vs.

Alive
Birth Weight: Low vs.

Normal
Pregnancy Duration:

Preterm vs. Term

p Mean (95% CrI) p Mean (95% CrI) p Mean (95% CrI)

Cooking Fuel
Clean (ref)

Unclean 0.14 (0.08, 0.20) −0.09 (−0.31, 0.10) −0.01 (−0.33, 0.31)
Education

No education (ref)
Primary −0.07 (−0.10, −0.03) 0.22 (−0.09, 0.49) −0.04 (−0.33, 0.34)

Secondary −0.23 (−0.26, −0.19) 0.37 (0.08, 0.68) 0.14 (−0.13, 0.42)
Higher −0.39 (−0.45, −0.32) 0.36 (0.06, 0.65) 0.58 (0.24, 1.94)
Region

North-Central (ref)
North-East 0.262 (0.01, 0.44) 0.10 (−0.622, 0.88) −0.01 (−0.64, 0.75)
North-West 0.36 (−0.02, 0.60) −0.52 (−1.21, 0.19) −0.42 −0.99, 0.09)
South-East −0.16 (−0.44, 0.07) 0.23 (−0.57, 0.94) −0.06 (−0.86, 0.70)

South-South −0.15 (−0.35, 0.05) 0.20 (−0.44, 0.77) −0.11 (−1.01, 0.57)
South-West −0.10 (−0.34, 0.15) −0.02 (−0.73, 0.67) 0.15 (−0.74, 0.77)
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Figure 4. Estimated posterior means of (A) nonlinear effects of mother’s age (black line) on birth
status (stillbirth vs. alive) with 95% and 80% credible intervals, (B) structured, (C) unstructured,
(D) total spatial effects for the state. The scales in (B–D) represents the range of the posterior mean
estimates of the spatial effect showing states with risk of stillbirth. The blue colour indicates low
estimates, while the red colour signifies the states with high estimates.

Figure 5. Estimated posterior means of (A) nonlinear effects of mother’s age (black line) on birth
weight (low birth weight vs. normal) with 95% and 80% credible intervals, (B) structured, (C)
unstructured, (D) total-spatial effects for the state. The scales in (B–D) represents the range of the
posterior mean estimates of the spatial effect showing states with risk of low birthweight. The blue
colour indicates low estimates, while the red colour signifies the states with high estimates.
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Figure 6. Estimated posterior means of (A) nonlinear effects of mother’s age (black line) on pregnancy
duration (preterm vs. term) with 95% and 80% credible intervals, (B) structured, (C) unstructured,
(D) total spatial effects for the state. The scales in (B–D) represents the range of the posterior mean
estimates of the spatial effect showing states with risk of preterm birth. The blue colour indicates low
estimates, while the red colour signifies the states with high estimates.

4. Discussion

We have shown that 89.3% of the mothers included in this study primarily used
unclean fuel for cooking. This suggests that a substantial proportion of the population is
still dependent on unclean cooking fuel for cooking in Nigeria. This is a significant public
health concern due to the associated risks associated with unclean cooking fuel [5–10,16].
In this study, we investigated the association between HAP and adverse birth outcomes,
while accounting for geographical heterogeneity and mother’s effect in our data. We were
able to control for the mother’s individual effect and analyze stillbirth, LBW, and preterm
outcomes. In the bivariate analysis, unclean cooking fuel was associated with a higher
risk of stillbirth and protective of preterm birth. This finding supports a previous study
based in Argentina that concludes that lower socio-economic status and education levels
are associated with higher rates of LBW and lower rates of preterm birth [15].

Our result indicates that HAP was associated with an increased risk of stillbirth but not
for LBW and preterm birth. Overall, northern states had a higher rate of unclean cooking
fuel use and a higher rate of adverse birth outcomes. Northern states were associated
with a higher proportion of stillbirths and LBW than the southern states. Previous studies
conducted in Nigeria showed a link between HAP and childhood acute respiratory tract
infections, which was a leading cause of deaths in children under 5 years [48,49]. Our study
extends these results to include the effects of HAP in Nigeria to adverse birth outcomes.
This study contributes to previous research on HAP’s association with pregnancy outcomes.
Relevant literature offers contradictory findings on the significance of unclean cooking
fuel when analyzing LBW. In a meta-analysis, it was concluded that indoor air pollution
increased the risk of LBW [27]. A study in Bangladesh reported that indoor solid fuel
use was significantly associated with LBW, but not with neonatal mortality or stillbirth
when controlling for demographic variables [22]. Our study concluded that HAP did not
significantly increase the risk of LBW. This may be due to the low prevalence of smoking in
our sample, as smoking is correlated to increased risk for LBW [50]. This finding coincides
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with a Ghanaian cohort study that failed to support an association between HAP and LBW
after adjusting for confounding variables [25].

Our study suggests that HAP is significantly associated with an increased risk for
stillbirth and is supported by a recent meta-analysis that concluded that HAP increased
the risk of stillbirth in developing countries [27]. However, other studies did not find a
significant relationship between HAP and stillbirth [22,25].In a cross-sectional study using
the 2007 Ghana Maternal Health Survey, the authors concluded that unclean cooking fuel
could be on the causal pathway between lower socio-economic status and stillbirth [24].
It is hypothesized that smoke produced from unclean cooking fuels contains pollutants,
including carbon monoxide, which can be inhaled and absorbed into the mother’s blood
and possibly cause detrimental effects on the fetus [26,27]. Our study suggests that these
effects on the fetus can result in an increased risk for stillbirth.

Poverty has also been suggested to be a key factor in preventing access to clean fuel
but also compounds the burden associated with HAP by worsening access to adequate
health care [51]. This may be a contributing factor to the regional disparity seen between
the mostly lower socio-economic demographic of the North compared to the mostly higher
socio-economic demographic of the South. For example, a previous study concluded
that the Northern region had the highest prevalence of underutilization of antenatal care
services [52–54] and lowest immunization uptake [53,55,56]. When geographic variation is
controlled for in the models, HAP continues to significantly increase the risk of stillbirth.
Addressing the use of unclean cooking fuel in Nigeria may lead to decreased rates of
stillbirth.

We acknowledge the following limitation in this study. The response rates for some
adverse birth outcomes were relatively low. There was a 100% response rate for stillbirth
outcomes, but there were low response rates for birth weight (6.1%) and pregnancy duration
(31.2%). The smoking status of the mother was only recorded in a small proportion
(0.2%) of mothers who identified as smokers. Reporting pregnancy in duration in months
could introduce measurement bias in our analysis. Measuring pregnancy duration in
weeks would result in a more accurate and sensitive model to variability in pregnancy
duration. We also could not distinguish when the pregnancy ended. There may be different
associations for perinatal mortality and miscarriages if analyzed separately. Amount of
time spent around HAP could contribute to the magnitude of its effect on adverse birth
outcomes, but we were unable to include this variable in this study. We could not control
for all possible confounding variables such as access to medical services, medical history,
and BMI.

Despite these limitations, this study has several strengths. As the study was based on
a large representative dataset, the 2018 Nigeria DHS, we are confident that our sample is an
excellent representation of the Nigerian population. The use of STAR models for analysis
allows for flexible modelling of possible nonlinear effects of independent variables and the
geographical effects of the data [41–43,57].

5. Conclusions

This paper studied the association between HAP and adverse birth outcomes using
the 2018 NDHS. It highlighted the risk of adverse birth outcomes due to mothers using
unclean cooking fuel. In order to decrease the prevalence of adverse birth outcomes in
Nigeria, efforts should address the dependence on unclean cooking fuel. Disparities in
Nigerian states account for disproportionate risks of stillbirth and LBW, even when the
effects of wealth and education are controlled for. This shows that decreasing national
levels of adverse birth outcomes depends on working toward addressing the disparities
between states.

Further research should be performed to analyze the effects that our study could not
control for, such as access to prenatal medical services, and the mother’s medical history.
This includes accounting for a combination of different fuels instead of studying only the
primary cooking fuel. Analyzing dose-response using the combination of cooking fuels
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would clarify the strength of the relationship between HAP and adverse birth outcomes.
As our study is a cross-sectional study, we cannot analyze causal pathways between HAP,
adverse birth outcomes, and other explanatory variables. Further research should be done
to study these causal pathways and include a larger selection of adverse birth outcomes, as
we limited our study to three outcomes.
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