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Preface to "Advances in Condition Monitoring,
Optimization and Control for Complex Industrial
Processes”

Complex industrial automation systems/processes place high demands on system operation
performance and reliability. Recent advances in monitoring, optimization, and control techniques
have enabled an improved understanding of systems dynamics and an enhanced achievement of
reliable monitoring and control in complex industrial processes. This Special Issue, composed
of state-of-the-art review paper and intensive research papers, has highlighted advances in this
field. This collection demonstrates the versatility of the area, ranging from theoretical algorithms

to experimental implementation of complex industrial processes.

Zhiwei Gao, Michael Z. Q. Chen, Dapeng Zhang
Editors
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Complex industrial automation systems and processes, such as chemical processes, man-
ufacturing systems, wireless network systems, power and energy systems, smart grids
and so forth, have greatly contributed to our daily life. Complex engineering systems are
rather expensive, with a high requirement for system reliability and control and production
performance [1,2]. As a result, there has been increasing demand in the complex industries
to develop reliable condition-monitoring techniques to monitor real-time system status
and promote advanced optimization algorithms and resilient control methods to ensure
the desired control and operation performance. Recently, artificial intelligence, data-driven
techniques, cyber-physical systems, and cloud and cognitive computation have further
stimulated research and applications of monitoring, optimization, and control techniques.
This Special Issue aims to provide a platform for researchers and engineers to report
their recent results, exchange research ideas, and have an overview of emerging research
and application directions in condition monitoring, optimization, and advanced control
for complex industrial processes. There are 25 papers included in this Special Issue after a
rigorous review process, which are presented in Table 1 according to their categories.

Table 1. Categories of the papers included in the Special Issue.

Condition Control
Categories Monitoring & Avbplications Optimization
Resilient Strategies PP
Papers [3-11] [12-20] [21-27]

Condition Monitoring and Resilient Strategies for Complex Industrial Processes

Condition monitoring is the process of monitoring system parameters in an industrial
process to identify a significant change that is indicative of a developing fault. Condi-
tion monitoring can be regarded as fault detection, which can tell whether the system
is healthy and when a fault occurs. Along with condition monitoring and fault detec-
tion, fault isolation is used to find out which component is faulty, and fault identification
aims to determine the size and type of the faults, which is important evaluation on the
severity degree of a fault. Prognosis aims to predict the remaining useful life of a system
or component. Condition monitoring, fault diagnosis and prognosis play a key role for
predictive maintenance. Resilient methods are used to accommodate the faults so that the
system can operate with a tolerant performance degradation. As a result, condition moni-
toring and resilience strategies are paramount to improve the reliability, safety, availability,
and productiveness of an industrial automation process. Gao and Liu in [3] provided a
comprehensive overview on condition monitoring, fault diagnosis, and prognosis and
resilient design on wind turbine energy systems. Condition monitoring and fault diagnosis
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approaches were reviewed following the categories of model-based approaches, signal-
based methods, knowledge-based techniques, and the hybrid of the approaches above.
Prognosis methods were surveyed following the classes of model-based and data-based
methods, and their combination. Resilience strategies were overviewed based on the sets
of passive and active techniques and their combinations. The comparisons on different
techniques were discussed, and their advantages and disadvantages were commented
on. Both gear-box coupled generator-based (i.e., doubly fed induction generators) wind
turbine systems and direct-drive generator-based (e.g., permanent-magnet synchronous
generators) wind turbine systems were reviewed in an unified framework. An overview
of further research directions in this field was also provided. The comprehensive survey
paper with 106 references will much benefit the researchers and engineers so that they can
get insight into this field conveniently.

Fu et al,, in [4] integrated fast Fourier transform (FFT) and uncorrelated multilinear
principal component analysis (UMPCA) techniques for fault detection and classification
of a 4.8 MW wind turbine benchmark system under five faulty scenarios. By using the
detailed comparison studies, the effectiveness of the proposed algorithm was illustrated
and demonstrated. It concluded that, among all the used algorithms in this paper, the FFT
showed a significantly positive impact on the improvement of the performance of the fault
diagnosis and classification. Moreover, it showed that the proposed FFT plus UMPCA
algorithm can also recognize the differences between the data within the same class.

A control chart plays an important role in production processes for monitoring the
quality of the products and preventing defects. Aslam et al., in [5] addressed a control-
chart algorithm to monitor the mean time between two events using a belief estimator
under the neutron-sophic gamma distribution. The proposed control chart approach was
demonstrated to be more effective to detect the causes of the variations in the process than
the conventional chart using classical statistics under uncertain environments.

In [6], Xie et al., determined the key parameters of the Holmquist—Johnson-Cook (HJC)
constitutive model for coal by using a series of experimental tests, which were important
to understand the occurrence mechanism and predict coal-rock dynamic disasters. By
implementing split Hopkinson pressure bar (SHPB) experiments and simulation studies
on the impact damage of the coal using ANSYS/LS-DYNA software, the reliability of the
HJC constitutive model parameters for briquette were analyzed and validated. The HJC
constitutive model parameters were used to analyze impact damage of the tunnel face in
simulations; it was shown that the failure process of the coal seam in the roadway was
visually present. The results of this paper would benefit understanding of the mechanism
of coal-rock dynamic disasters better.

Operation conditions of the flotation process can be reflected by the features of the
froth image in a zinc flotation process, where the bubble size is the most evident feature.
In the paper authored by Tang et al. [7], the bubble size cumulative distribution function
was adopted as a new feature of the froth image, and the estimation approach for the
cumulative distribution function of the bubble sizes was addressed. The froth image
features would change continuously with time, caused by the change of the reagent dosage.
The relationship between the time series of the bubble size cumulative distribution function
and the reagent dosage was analyzed, and a nonlinear relationship model between the
dynamic feature vectors and the dosage of reagent in the flotation process was established.
The industrial experiment results demonstrated the effectiveness of the proposed approach
for operation condition monitoring.

It is important but challenging to find out the load state of a wet ball mill during the
grinding process. In the work by Cai et al. [8], a novel approach for mill load identification
was proposed by synthesizing empirical wavelet transform, multiscale fuzzy entropy, and
adaptive evolution particle swarm optimization probabilistic neural network classification.
The feasibility of the presented method was verified using grinding experiments, which
showed that overall recognition rate was as high as 97.3%, outperforming the existing
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methods in the literature. It concluded that the addressed method can accurately identify
and monitor different load states of a ball mill.

Taking the Xiashanmao coal mine as an engineering object, the stress distribution
coal seam mining process was investigated by Sun et al. [9]. Using the new technology
of gob-side entry retaining by roof cutting without pillar, the mechanical model of the
roof structure was established. Implementing numerical simulation, the distributions of
strike and lateral abutment pressure of the working faces were obtained. Mine pressure
monitoring data were used to verify the proposed methods, showing the consistency
between the simulated results and monitoring results.

Modern power systems are usually complex and high-nonlinear, which can be mod-
elled as directed graphs. The graphs can be divided into communities, and it is thus of
interest to find out an optimal community to alleviate cascading failure propagation. In [10],
Hu and Lee proposed three low-degree-node-based link-addition strategies to optimize
the original topology, by considering islanding characteristics and node vulnerability. An
evaluation index was addressed to measure impacts from sequential attacks on the network.
The results of this paper would benefit design of an optimal power network to mitigate
power system cascading failures.

Modern industrial systems are prone to cyber-attacks due to potential vulnerabilities
of the underlying entities in systems. It is important for a system to have resilience so
that it can recover to a normal state under attacks. In the paper authored by Ibrahim and
Alsheikh [11], a hybrid attack graph was introduced to deal with system resilience under
various attacks. By using the hybrid attack graph, the evolution of both logical and real
values of system parameters can be captured under attack and recovery actions, where the
hybrid attack graph was generated automatically and visualized using Java-based tools.
The effectiveness of the results was illustrated by a communication network example.

Control Applications for Complex Industrial Systems

Thin coal seam mining is significant but challenging as it is subjected to small working
space, low-level automation and drilling deviation. In the work authored by Ji and Liu [12],
an integration of nonlinear adaptive backstepping controller and disturbance observer
was addressed for position tracking control to achieve directional drilling on a coal auger.
A stability analysis of the deviation control system was proved using Lyapunov stability
theory. An electro-hydraulic servo displacement control experiment was set up to validate
the proposed control strategy. The addressed control strategy would benefit technical
breakthrough on horizontal directional drilling for thin coal seam mining.

Boost control for a variable geometry turbocharger-equipped diesel engine is a chal-
lenging task due to its strong coupling with the exhaust gas recirculation system and large
delays. In the paper authored by Hu et al. [13], as one of the powerful model-free deep
reinforcement learning algorithms, the deep deterministic policy gradient algorithm was
used to track the target boost pressure under transient driving cycles. It showed that the
proposed algorithm can achieve a satisfactory transient control performance from scratch
by autonomously learning the interaction with environments. It is worthy to point out the
proposed strategy can adapt to varying environment and hardware aging over time owing
to its capability of self-learning on-line.

There is a growing demand for temperature control of thermal processing systems.
In the paper authored by Xu et al. [14], a novel slow-mode-based control approach was
presented for multipoint temperature control systems, where the temperature differences
and the transient responses can be regulated, ensuring the outputs of the fast modes to
follow that of the slow mode. The experiments were implemented under a DSP control
platform. The proposed control algorithms were demonstrated to be effective compared
with the conventional PI control methods.

In the paper authored by Xu et al. [15], a pole-zero cancellation method was proposed
for temperature control in heating process systems, where the temperature differences and
transient properties of all points can be adjusted by implementing dead time difference



Processes 2021, 9, 664

compensation and pole-zero cancellation with the feedforward reference model. Compared
with conventional control approaches, the control efficiency of the proposed approach
was well-demonstrated.

Voltage source converters can regulate active and reactive power rapidly, which
has many applications such as in renewable energy systems and so on. In the paper
by Jiang et al. [16], a novel optimal nonlinear adaptive control scheme was proposed
to control voltage source converters. An extended state observer was used to estimate
uncertain perturbations, and the perturbation compensation was implemented through
state feedback. The proposed control strategy can ensure a consistent control performance
even when operation conditions are varied. A hardware experiment was implemented to
demonstrate the effectiveness of the proposed control design.

Steam /water loop is an important part of a steam power plant, which operates in
harsh environments. As a result, it is challenging to design an effective controller to deliver
satisfactory control performance for steam/water loop systems. Motivated by the above,
Zhao et al., in [17] studied the feasibility of a distributed model predictive control strategy
for steam /water loop systems. A multiple objective model predictive control approach was
addressed to improve computing speed. The stability and convergence of the system under
distributed model predictive control was discussed. Simulation tests were carried out on a
steam/water loop system with five different sub-loops, demonstrating the effectiveness of
the proposed control strategy.

The raceway reactor is the most common reactor on an industrial scale as it has
advantages such as simplicity of operation and low cost for maintenance. In the work
by Rodriguez-Miranda et al. [18], an event-based control architecture for PID controllers
was presented, which aims to tune classical time-driven PI parameters for pH control,
and then to build on event-based abilities while keeping the initial PI control design.
The proposed event-based PI controller can achieve better performance by reducing the
actuator effort and saving costs relevant to gas consumption, compared with the traditional
on-—off controllers.

In the paper authored by Ohrem et al. [19], control structure analysis and controller
design were addressed for a novel multipipe separator, in order to enhance efficient
production of hydrocarbons on the seabed in waters. PI controllers and model reference
adaptive controllers were designed for different control loops. The proposed control
methods were implemented and tested on a prototype of the separator concept, showing
the effectiveness and drawing resultant conclusions.

In the paper authored by Zhang and Gao [20], an online data-driven approach was
presented to improve the conversion efficiency of a refrigeration system under varying
load conditions. A reinforcement learning approach was used to find out optimal actions
using online data in the process level, and a coarse model was developed to evaluate
action values. The actions were achieved as preset variables by implementing a single
loop control. The effectiveness of the proposed approach was demonstrated by simulation
studies on a test bed.

Optimization for Complex Industrial Processes

The paper authored by Tang et al., addressed a case study on optimization of the
support design for a tunnel boring machine—an excavated coal mine roadway in Zhangji,
China in [21]. An improved rock constitutive model of the roadway surrounding rocks was
derived, and an updated failure criterion was presented based on laboratory rock tests. The
proposed model and the failure criterion were used in simulation studies, and an optimal
roadway support design was proposed based on simulation analyses. The feasibility and
effectiveness of the support design was verified by in situ monitoring results.

Distributed generation systems play an important role in modern power networks. It
is noticed that if the placement and sizing of the distributed generation systems were not
selected properly, it would cause power system safety hazards. As a result, it is of signifi-
cance to have a proper design for the placement and sizing of the distributed generators. In
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References

the work by Liu et al., in [22], an improved genetic algorithm was proposed to optimize the
siting and sizing of the distributed generation units. The proposed optimization algorithm
was demonstrated to be effective via various simulation experiments.

Han et al., proposed a novel optimization algorithm, by combining a simulated
annealing algorithm-based Hopfield neural network algorithm and local scheduling rules,
to solve the flexible flow shop scheduling problem with a public buffer [23]. The addressed
local scheduling rules were used to control the moving process of the workpieces, reduce
the production blockage, and improve the efficiency of the workpiece transfer. Based on a
simulation using actual production data, the proposed method was proved to outperform
the conventional methods in searching efficiency and optimization target.

In the work by Han et al. [24], a scheduling problem in a flexible flow shop with setup
times was investigated, where practical constraints of the multiqueue limited buffer were
taken into account in the addressed model. An improved compact genetic algorithm with
local dispatching rules was presented, which was verified by using the real data from a
bus manufacture production line, showing satisfactory performance.

In the work by Li et al., Aspen Plus software was used to simulate and optimize the
separation of the aqueous acetonitrile solution by pressure swing distillation [25]. The
total annual cost was used as the objective function, and the tray number, reflux ratio, and
feeding position were the design variables to be optimized. Moreover, pressure swing
distillation optimizations were compared with and without full-heat integration process. It
concluded that it was more economical to separate the acetonitrile and water mixture by
pressure swing distillation with full-heat integration.

In the paper authored by Cao et al. [26], reactive power optimization was investigated
for large-scale power systems. A novel transfer bees optimizer was used, where Q-learning
was employed to construct the learning mode of bees in order to improve the intelligence
of bees through task division and cooperation. The simulation results demonstrated the
proposed optimization algorithm possessed better convergent performance compared with
the traditional artificial intelligence algorithms.

In the paper authored by Gao et al. [27], grouping semiconductor wire bonding
equipment was investigated using processing task matching. Ahead of establishing the
associated relationship between devices, a clustering by fast search and find of density
peaks (CFSFDP) algorithm was addressed to cluster device attribute information and
achieve the maximum number of groups of device sets, so that the resulting device groups
can be obtained. The experimental results demonstrated that the improved equipment
grouping method with CFSFDP algorithm outperformed the conventional methods. The
equipment utilization of the bonding process segment was improved, and a good dynamic
grouping was achieved so that the efficiency of the entire semiconductor production line
was improved correspondingly.
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Abstract: Wind energy is contributing to more and more portions in the world energy market.
However, one deterrent to even greater investment in wind energy is the considerable failure
rate of turbines. In particular, large wind turbines are expensive, with less tolerance for system
performance degradations, unscheduled system shut downs, and even system damages caused
by various malfunctions or faults occurring in system components such as rotor blades, hydraulic
systems, generator, electronic control units, electric systems, sensors, and so forth. As a result,
there is a high demand to improve the operation reliability, availability, and productivity of wind
turbine systems. It is thus paramount to detect and identify any kinds of abnormalities as early as
possible, predict potential faults and the remaining useful life of the components, and implement
resilient control and management for minimizing performance degradation and economic cost, and
avoiding dangerous situations. During the last 20 years, interesting and intensive research results
were reported on fault diagnosis, prognosis, and resilient control techniques for wind turbine systems.
This paper aims to provide a state-of-the-art overview on the existing fault diagnosis, prognosis, and
resilient control methods and techniques for wind turbine systems, with particular attention on the
results reported during the last decade. Finally, an overlook on the future development of the fault
diagnosis, prognosis, and resilient control techniques for wind turbine systems is presented.

Keywords: wind turbine; energy conversion systems; condition monitoring; fault diagnosis;
fault prognosis; resilient control

1. Introduction

In order to enhance the capability of harvesting wind energy, wind turbines have
become larger, but more complex and expensive. It would cost 3.3 million pounds
per megawatt for installing offshore wind turbines, and spend 1.25 million pounds per
megawatt for installing on-shore wind turbines. Working under harsh environments and
varying load conditions, wind turbine systems are unavoidably subjected to a variety of
anomalies and faults. As is known, the operation and maintenance cost for a wind turbine
is relatively high, especially for one built offshore. The operation and maintenance costs for
onshore and offshore wind turbines, respectively, make up 10-15% and 20-35% of the total
life costs in wind turbine systems [1,2]. Therefore, there is a high demand in wind energy
industries to improve the reliability, safety, availability, and productiveness of the wind tur-
bine systems. One of the important techniques is condition monitoring and fault diagnosis,
which is to monitor whether a system is healthy, detect any faults or malfunctions in their
early stages, determine where the faults occur, and assess the severity of the faults so that
appropriate actions can be taken in order to avoid further damages and even dangerous
situations in wind turbine systems. Prognosis is a technique to predict potential faults,
and estimate the remaining useful life of wind turbine systems so that timely predictive
maintenances and repairing can be scheduled. Resilient control is a technique to minimize
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the effects from the faulty components or unexpected disruptions so that the wind turbine
system can work with tolerant performance degradation under some abnormal conditions.
During the past two decades, essential studies were carried out in the area of monitoring,
fault diagnosis, prognosis, and resilient control for wind energy systems, which were well
documented in the survey papers [3-22]. Table 1 presents some existing survey papers
categorized by years and topics. Specifically, non-destructive testing methods of wind
turbines at manufacture and in-service were reviewed in [3], aiming to inspect potential
flaws in wind turbines. In [4], a brief review was provided for condition monitoring and
fault diagnosis for various subsystems and components, such as doubly-fed induction
generators, blades, and driven trains. Condition and performance monitoring techniques
were surveyed in [5], with focus on blades, rotors, generators, and braking systems. In [6],
a variety of condition monitoring and fault diagnosis algorithms for wind turbine systems
were overviewed. [7] provided a brief discussion of advantages and limitations of different
monitoring and diagnosis methods specified in each subsystem. In [8], the review focused
on condition monitoring and diagnosis for wind turbine components using signal process-
ing methods. In [9], condition monitoring techniques were reviewed, respectively, from
off-line and on-line viewpoints. In [10], condition monitoring techniques for wind turbines
were overviewed with discussions on trends and challenges in wind turbine maintenance.
In [11], typical faults in wind turbines were discussed and structure condition monitoring
and fault diagnosis approaches were inspected. Off-shore wind turbines have received
much more attention in wind turbine industries recently, owing to high capability for power
generations. In [12], health monitoring and safety evaluation for off-shore wind turbines
were surveyed with a focus on blades, tower, and foundation in off-shore wind turbine
systems. In [13], wind turbine main bearings were reviewed from the angles of design,
operation, modeling, damage mechanism, and corresponding fault diagnosis methods. In
the two-part survey papers [14,15], wind turbine components and their potential faults, and
fault diagnosis algorithms were reviewed from the viewpoint of signal processing. In [16],
machine learning based condition monitoring and diagnosis approaches were surveyed.
In [17], an overview was presented for condition monitoring, fault diagnosis, and operation
control (including online maintenance and fault tolerant control) on electric power conver-
sion systems in direct-drive wind turbines. In [18], major failures in off-shore wind turbines
such as grid failure, yaw system failure, electrical control failure, hydraulic failure, blade
failure, and gearbox failure, were discussed and possible prognosis approaches for the
failures were commented. For low-speed bearings and multistage gearbox faults in wind
turbines, diagnosis and prognosis approaches were overviewed in [19] according to the
applicability to wind turbine farm-level health management. In [20], a concise and specific
review was carried out on prognosis and remaining useful life estimation methods for
critical components in wind turbines. In [21], a state-of-the-art review for fault prognosis
and predictive maintenance was documented. In [22], a brief review for fault tolerant
control approaches in wind turbine systems was provided. In [23], a concise review was
given on diagnosis, prognosis, and resilient control for wind turbine systems. From Table 1,
one can see the majority of the review papers was focused on condition monitoring and
fault diagnosis, and there were very few overview papers dealing with prognosis and
resilient control. Moreover, the survey papers mainly concentrated on single topic, either
diagnosis or prognosis or resilient control. It is noted that [23] was a unique review paper
covering all the monitoring and diagnosis, prognosis, and resilient control. However, [23]
is actually editorial review for 23 papers included in a special issue. Consequently, this
motivates us to provide a comprehensive review on fault diagnosis, prognosis, and resilient
control for wind turbine systems in a single paper, which would benefit the readers to
appreciate the current state of the art of heath monitoring and management and control in
wind turbine conversion systems.
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Table 1. Review papers on monitoring and diagnosis, prognosis, and resilient control for wind
energy systems.

Years Monitoring and Diagnosis Prognosis Resilient Control
2000s [3,4,6,71
2010s [5,8-17,23] [18-21,23] [17,22,23]

The rest of this paper is organized as follows: In Section 2, the structure and typical
faults of wind turbines are introduced, and the schematic methodologies of fault diagnosis,
prognosis and resilient control are illustrated briefly. Section 3 presents a comprehensive
survey of condition monitoring and fault diagnosis methods of wind turbines in terms
of four categorizations from the viewpoint of different types of information redundancy,
namely, model-based techniques, signal-based techniques, knowledge-based techniques,
and hybrid techniques. Recent development of wind turbine prognosis and resilient control
approaches will be reviewed in Sections 4 and 5, respectively. Finally, Section 6 concludes
the work and proposes an overlook about future research about maintenance operation of
wind energy systems.

2. System Overview and Fault Modes of Wind Turbines

A wind turbine system is a complex electromechanical system that converts wind
energy to electrical energy. A wind turbine constitutes various subsystems and components
such as blades, rotor, gearbox, generator, yaw, tower, controller, anemometer, break, and
so forth. A typical structure of a wind turbine system is shown in Figure 1. Wind flows
force the blades and rotor to run, which rotates the main shaft and speeds up through
the gearbox to drive the generator, converting wind energy into mechanical energy, and
further to electrical energy. Pitch angles can be regulated to adapt the change of wind
speed, while the yaw system can align turbine with the direction of the wind identified by
the anemometer. The controller is used to ensure to generate desired electricity, and the
housing (or “nacelle”) is mounted at the top of a tower to cover most of these components.

Blade

Main shaft Nacelle Housing Anemometer

~ Pitch

2 ] Controller
T— % 47 Generator
e, . Gearbox

Wind

Tower

Figure 1. Wind turbine systems.

In practice, wind turbine components are prone to malfunctions or faults due to either
ephemeral events or aging degradation, leading to system interruptions and economic
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losses. Unexpected abnormal behaviors of wind turbines can be categorized into faults and
failures. A fault is recognized as an unacceptable deviation of the system structure or the
system parameters from the nominal situation, whereas a failure is defined as inability of
a system or a component to fulfil its function [24,25]. The pie chart in Figure 2 shows the
percentages of the typical faults in wind turbines, and the main causes of the typical faults
are summarized in Table 2. If an unexpected fault is not detected in the early stage and a
timely action is not taken, it may cause consequent failures.

Rotor Blade
7%

Plant Control System
18%

Generator
4%
Structural Parts/Housing
4%

Rotor Hub
5%
Drive Train
2%

Gear Box
4%

Mechanical Break
6%

Hydraulic System
10% 9%

Figure 2. Percentages of typical faults in wind turbines [26].

Table 2. Typical faults in wind turbines [1,14,18].

Types of Faults Causes of Faults

Corrosion of blades and hub; crack; reduced stiffness; increased surface roughness;

Faults on blades and rotors deformation of the blades; errors of pitch angle; and imbalance of rotors, etc.

Imbalance and misalignment of shaft; damage of shaft, bearing and gear; broken shaft;

Faults on gearbox high oil temperature; leaking oil; and poor lubrication, etc.

Excessive vibrations of generator; overheating of generator and bearing; abnormal noises;

Faults on generator and insulation damage, etc.

Faults on bearing Overheating; and premature wear caused by unpredictable stress, etc.
Faults on main shaft Misalignment; crack; corrosion; and coupling failure, etc.
Hydraulic faults Sliding valve blockage; oil leakage, etc.
Faults on mechanical braking system Hydraulic failures; and wind speed exceeding the limit, etc.

Poor quality control during the manufacturing process; improper installation and loading;

Faults on tower .
harsh environment, etc.

Faults on electrical systems/devices

Broken buried metal lines; corrosion or crack of traces; board delamination;
component misalignment; electrical leaks; and cold-solder joints, etc.

Malfunction or physical failure of a sensor; malfunction of hardware or the communication link;

Faults on sensors i -
and error of data processing or communication software, etc.

10
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It is noticed that wind turbine generators can be classified into gear-box coupled wind
turbine generators (e.g., doubly-fed induction generators) and direct-drive wind turbine
generators (e.g., permanent-magnet synchronous generators). Although Figures 1 and 2
and Table 2 include gearbox, this survey paper will review fault diagnosis, prognosis, and
resilient control approaches for both geared and gearless wind turbine systems.

Condition monitoring is defined as a process to monitor operation parameters of
machinery in order to identify significant changes as an indication of a developing fault.
Fault diagnosis aspires to detect the occurrence of faults, locate the faulty components, and
identify the types, magnitudes, and patterns of the faults at an early stage, and the three
tasks aforementioned are named as fault detection, fault isolation, and fault identification,
respectively. Prognosis aims at predicting remaining operation time before faults result in
failures, while resilient control is to design control laws such that the adverse influences
from faults can be mitigated, ensuring the system to work normally even under faulty
conditions, which may not necessarily induce an immediate component replacement or
repairing for non-vital faults. The schematic diagram of the three issues is illustrated in
Figure 3, where f;, f;, and f; denote actuator faults, process or component faults, and sensor
faults, respectively; v, 1, and y are, respectively, the reference inputs, control inputs and
measurement outputs. Based on recorded input and output data, fault diagnosis can be
implemented to detect and locate the faulty components. The recorded data can be further
used for fault prognosis and remaining useful life prediction. Based on fault diagnosis and
prognosis information, resilient controls and decisions can be carried out to mitigate the
adverse influences from the faults. By implementing appropriate fault diagnosis, prognosis,
and resilient control strategies, the reliability and safety of wind turbine systems can be
enhanced, and the maintenance cost and downtime can be reduced, which are of significant
importance to achieve economic operation and increase productivity.

| Plant I |

v u Wind 4
Actuator turbine »

system

I
4)' Fault Diagnosis scheme |(—:—

A
—>| Fault Prognosis |~ =] -)| Resilient Control |<——

Figure 3. Schematic diagram of fault diagnosis, prognosis and resilient control.

3. Fault Diagnosis of Wind Turbines

Condition monitoring aims to check operation parameters of wind turbines to provide
an early indication of faults, and fault diagnosis is conducted to detect, locate, and identify
occurring faults, which allows us to plan system repair strategies prior to complete failures.
Condition monitoring is actually kind of fault detection, therefore in this paper we will
survey condition monitoring and fault diagnosis within a framework. From the viewpoint
of different types of the information redundancy, fault diagnosis can be categorized into
mode-based methods, signal-based methods, knowledge-based methods, and hybrid
methods by combining the three above-mentioned methods.
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3.1. Model-Based Fault Diagnosis for Wind Turbine Systems

Model-based fault diagnosis is suitable for non-stationary operation for wind turbines.
This method requires models of wind turbine systems established by using either physical
principles or systems identification techniques. In [27], a versatile wind velocity model
was established, delivering a capability of simulating a wide range of wind variations
and usual disturbances. In [28], a dynamic model was derived to simulate a doubly fed
induction generation (DFIG) wind turbine with a single-cage and double-cage description
of the generator rotor, and a characterization of its control and protection circuits. In [29],
an industrial standard simulation tool, namely PSCAD/ EMTDC, was used to address
dynamic modeling and simulation of a grid connected variable speed wind turbine. A
4.8 MW wind turbine benchmark model was originally addressed in [30] for a generic
three-blade horizontal variable speed wind turbine with a full converter coupling, and the
model was described with more detail in [31]. Based on wind turbine modeling software
FAST, a 5SMW enhanced wind turbine benchmark model was built in [32] by considering
more realistic wind inputs and nonlinear behavior of aerodynamics. The wind turbine
models have facilitated the development and applications of model-based fault diagnosis
for wind turbine systems.

A schematic diagram of model-based fault diagnosis is depicted by Figure 4. The basic
idea for model-based fault diagnosis is to provide the same inputs to the real-time wind
turbine and wind turbine model, and monitor the differences between the real-time wind
turbine outputs and model outputs. If the difference or called residual is zero or less than a
preset threshold, the wind turbine is under healthy conditions. Otherwise, the real-time
wind turbine outputs are inconsistent with the model outputs, which indicates a fault occurs
in wind turbine systems. It is noticed that wind turbine models usually suffer modeling
errors, and real-time turbine systems are subjected to external disturbances and varying
loads, the aforementioned simple detection strategy may cause considerable false alarm rate.
In order to reduce false alarm rate and improve fault detection and diagnosis performance,
great efforts were paid to developing effective diagnosis algorithms so that the residual
was sensitive to faults but robust against modeling errors and external disturbances.

Faults

Input Output

ma  Wind Turbine =

y

e

Model based
diagnosis

Residual
Evaluation

algorithm

Diagnostic decision
Diagnostic decision

Figure 4. Schematic diagram of model-based fault diagnosis.

One of the most popular approaches is observer based fault detection approach. The
key idea is to design an observer to estimate the model output, and monitor the residu-
als between the wind turbine outputs and the estimated model outputs. Optimization
approaches are used to find a suitable observer gain to enhance the fault effects on the
residuals but attenuate the influences from uncertainties to the residuals. In [33], a Lu-
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enberger observer based fault detection algorithm was addressed to detect actuator and
sensor faults for a linearized 3SMW wind turbine system, where parameter eigenvalue
assignment approach and evolutionary algorithm were amalgamated to search an optimal
observer gain so that the residual was sensitive to faults but robust against noises and
perturbations. In [34], a fault diagnosis method was presented for multiple open-circuit
faults in back-to-back converters of a permanent magnet synchronous generator (PMSG)
drive for wind turbine systems where a Luenberger observer and adaptive threshold were
used to ensure a reliable diagnosis independent of drive operation conditions. Motivated
by the challenges to handle nonlinearities and partially known properties, which are dif-
ficult for mathematical modeling of wind turbines, Takagi-Sugeno (T-S) fuzzy models
have drawn much attention by approximating nonlinear dynamics by using weighted
aggression of a set of linear models valid around selected operating points, such that the
complexity of the nonlinear problems can be decreased to linear range. In [35], a T-S fuzzy
model was established for a 4.8 MW benchmark wind turbine, and the corresponding
residual based fault diagnosis methodology was developed based on developed fuzzy
representation. In [36], a T-S fuzzy model was built for a 4.8 MW wind turbine system, and
a fault estimator was addressed to estimate actuator and sensor faults, where an augmented
system approach, robust observer technique, and linear matrix inequality optimization
method were integrated to ensure a robust fault estimation for generator torque actuator
fault and rotor speed sensor fault against modeling errors and noises. Time-varying model
has been a powerful alternative to describe wind turbine system dynamics. In [37], a
time-varying model was created for a 4.8 MW wind turbine system where the blade pitch
angle, tip-speed ratio, and rotor speed were the scheduling parameters to be updated
real-time. Based on the time-varying model, an augmented time-varying observer was
addressed to estimate parameter fault and actuator fault in wind turbine systems. In [38],
internal model was used to describe wind turbine dynamics where uncertainties were
located in the parameters bounding their values by intervals. Internal observers were then
designed for a 5 MW wind turbine system, and fault detection was achieved by checking if
the real-time measurements fall inside the estimated output interval.

In parallel with the observer, Kalman filter also plays an important role in fault
detection and diagnosis for wind turbine systems where process and measurement noises
are assumed to be random since wind turbine dynamics are more or less subjected to
random noises in either wind speed or measurements. Kalman filter has a similar structure
with observers, associated with various statistic tools (e.g., generalized likelihood ratio test),
the nature of the faults can be extracted by testing on whiteness, mean, and covariance
of the residuals [39]. In [40], for a three-blade horizontal axis wind turbine, a system
identification algorithm was used to establish a state-space linearized model, and a Kalman
filter based diagnosis algorithm was then addressed to detect additive and multiplicative
sensor faults. Cascaded Kalman filters were addressed in [41] to detect faults in wind
turbines which can achieve fast detection but may fail under low fault-to-noise signal ratio
scenario. In order to capture more accurate means and covariance of faults, unscented
Kalman filter [42] was employed to identify three fault modes, namely, gearbox faults,
lubrication oil leakage, and pitch damages.

The parameter estimation approach was based on the assumption that the faults were
reflected in the physical parameters, such as oil temperatures and electrical voltages of
the systems. In this approach, residuals are computed as the parameter estimation errors,
which are used to check the consistency of the estimated parameters with real process
parameters. [43] presented an adaptive parameter estimation based fault diagnosis method
to detect and isolate faults in wind turbine hydraulic pitching systems. In [44], a nonlinear
parameter estimation approach was addressed for wind turbine generators by monitoring
temperature trend. This method is straightforward if the model parameters have an explicit
mapping with the physical coefficients. However, the diagnostic performance strongly
depends on the accuracy of the measured parameters, which would be a constraint of
this approach.
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3.2. Signal-Based Fault Diagnosis for Wind Turbine Systems

Signal-based methods rely on appropriate sensors installed in wind turbines, rather
than explicit input-output models. Sensors measure wind turbine signals such as electrical
signals, vibration, and sound signals. Signal processing techniques are used to extract
symptoms which are highly reflected by corresponding faults. The symptoms of real-time
signals are checked with the symptoms of healthy signals from prior knowledge and
experiences so that a diagnostic decision can be made. A schematic diagram is shown in
Figure 5 to describe signal-based fault diagnosis approach. In general, signal-based fault
diagnosis can be classified into time-domain method, frequency-domain approach, and
time-frequency technique.

Faults

Input Wind Turbine —> Output

Signal
Processing

Symptom
Analysis Checking Diagnostic
Consistency decision

Prior
knowledge

Figure 5. Schematic diagram of signal-based fault diagnosis.

Time-domain signal-based fault diagnosis utilizes time-domain parameters reflecting
component malfunctions or failures such as root mean square, peak value, and kurtosis
straightforwardly to monitor wind turbine dynamics. In [45], a fault diagnosis approach for
multiple open-circuit faults in two converters of permanent-magnet synchronous generator
drives for wind turbine application was presented by using the absolute value of the
derivative of the Park’s vector phase angle as a fault indicator.

Frequency-domain signal-based fault diagnosis approaches use a variety of spec-
trum analysis techniques, such as discrete Fourier transformation (DFT) which can be
calculated by using fast Fourier transformation (FFT) [46,47], to transform a time-domain
waveform into its frequency-domain equivalence, consequently used for monitoring and
fault diagnosis. In [46], a two-stage fault diagnosis algorithm for wind turbine gearbox
was addressed, where FFT was utilized to convert raw time-domain vibration signals to
frequency spectrum, and kurtosis values were used to compute severity factors and levels
by comparing with desired frequencies of the non-fault conditions. In [47], gear tooth
damages were detected by checking gear vibration spectra.

In order to improve the processing ability for signals, time-frequency analysis ap-
proaches, by combining both time-domain waveform and corresponding frequency spec-
trum, have received much attention. In condition monitoring and fault diagnosis of
wind turbines, commonly used time-frequency analysis techniques include wavelet trans-
forms [48-50], Hilbert transform [51,52], Wigner-Ville distribution (WVD) [53], and short-
time Fourier transform (STFT) [54], and so forth. Wavelet transform is applicable to non-
stationary signals to enhance signal-to-noise ratio (SNR). Continuous wavelet transform
was used for faulty symptom extraction, while discrete wavelet transform was employed
to achieve noise cancellation in [48,50]. Hilbert transform is usually combined with other
tools, such as Empirical Mode Decomposition (EMD) and time synchronous average (TSA)
to reduce the influences from noises and uncertainties. Specifically, Hilbert-Huang trans-
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forms (HHT), which is an improved scheme by employing Hilbert transform and EMD,
was utilized in [51] to detect gear-pitting faults. [52] utilized a time synchronous average
(TSA) to extract periodic waveform from noisy signals in vibration signals when faults were
detected by Hilbert transform. STFT and TSA were combined in [54] and spectral kurtosis
was used to detect tooth crack faults. In practice, the aforementioned methods are often
jointly used to achieve better diagnosis performances. For example, [53] proposed Morlet
continuous wavelet transforms to handle extra noises and Smoothed Pseudo Wigner-Ville
distribution (SPWVD) spectrum to cope with cross terms. Taking both advantages of
wavelet transform and EMD, empirical wavelet transform (EWT) was adopted in [55] for
generator bearing fault diagnosis.

Signal-based monitoring methods do not need to establish an explicit of mathematical
model for wind turbine system. It is easily implemented by using various signal processing
techniques. In general, it is suitable for monitoring and diagnosing rotating components
of wind turbines, such as wheels and bearings of gearbox, bearings of generator and
main bearing.

3.3. Knowledge-Based Fault Diagnosis for Wind Turbine Systems

Different from model based and signal based diagnosis methods which reply either
prior mathematical model or known signal pattern, knowledge-based approach relies on
a large volume of historical data available and symbolic and computational intelligence
techniques to extract knowledge base, representing dependency of system variables explic-
itly. A diagnostic decision is made by checking the consistency between the knowledge
base and the real-time operation behavior with the help from a classifier. The schematic
diagram of knowledge-based fault diagnosis is shown in Figure 6. From the perspective of
extraction process of historical knowledge, knowledge-based fault diagnosis methods can
be classified into qualitative approaches and quantitative approaches.

lFauIts
Process input Process output
Wind Turbine

Training &
Learning Checking

Historical data Consistency &
Classifier

Knowledge Base

A

Diagnostic decision
Figure 6. Schematic diagram of knowledge-based fault diagnosis.

A Root cause and fault tree analysis approach and expert system-based method can be
generally regarded as qualitative knowledge approaches for condition monitoring and fault
diagnosis [56,57], which have been successfully applied to wind turbines systems [58-61].
Specifically, [58] utilized fault tree analysis to describe a set of potential system failures,
and cost-priority-number values were calculated to evaluate the severity of faults. In [59],
a fuzzy fault tree analysis approach was addressed for risk and failure mode analysis
in offshore wind turbine systems, where expert knowledge was expressed using fuzzy
linguistics terms, and grey theory analysis was then integrated to determine the risk priority
of the failure modes. In [60], fault tree analysis was employed to identify possible causes of
top event, and expert system was then designed to implement diagnosis for gear box in a
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wind turbine. In [61], a fuzzy expert system was introduced by setting rules to determine
the levels of faults of wind turbine gear box.

Quantitative, knowledge-based methods can be either statistical-analysis-based or
non-statistical-analysis-based. Due to using a large amount of historical data, knowledge-
based approaches here are often called data-driven approaches. Commonly used statistical
data-driven fault diagnosis techniques include principal component analysis (PCA) [62],
independent component analysis (ICA) [63], subspace aided approach (SAP) [64], fisher
discriminant analysis (FDA) [65], and support vector machine (SVM) [66,67], and so on.
The basic idea for PCA, ICA, SAP, and FDA is to use a variety of dimensionality reduction
approaches to preserve significant trends of original data set in order to achieve promising
results in fault extraction. The SVM is a nonparametric statistical method which can
be used to capture faulty response of wind turbines owing to its excellence capability
for classification. In [66], least squares SVM was used to train function of weather and
turbine response variables; and distinguish faulty conditions from healthy conditions.
Associated with appropriate nonlinear kernels tested on dataset, statistical-analysis-based
approaches can attain more accurate and reliable identifications. For instance, in [67], a
comparative study was carried out to demonstrate advantages of a kernel-based SVM
diagnosis approach in wind turbines compared with traditional methods. In addition to
statistical data-driven diagnostic techniques, non-statistical approaches, such as neural
network (NN) [68,69] and fuzzy logic (FL) [70], are widely used to carry out fault diagnosis
and condition monitoring for wind turbines. FL is an approach of partitioning a feature
space into fuzzy sets and utilizing fuzzy rules for reasoning, which can essentially provide
approximate human reasoning. Cluster center fuzzy logic approach was used in [70] to
estimate wind turbine power curve. A well-trained NN has an ability of making intelligent
decisions even when noises, system disturbances, and corrupted data are present. In [71], a
deep neural network based fault detection approach was presented for direct-drive wind
turbine systems. In [72], a fault diagnosis algorithm was proposed by using multiple
extreme learning machines (ELM) layers to achieve feature learning and fault classification.

The aforementioned statistic and non-statistic data-driven fault diagnosis techniques
have their own advantages and disadvantages. In practice, these methodologies are often
used jointly. For instance, FL-based methods require extensive expert knowledge of the
system, which may be difficult to be derived. NN is ideal for situations like this, where
the knowledge, describing the behavior of the system, is stored in a large volume of
quantitative datasets. However, the output is difficult to back-track due to the black-box
data processing structure which causes slow convergence speed. Recent developments
have shown an interest in adaptive Neuro-Fuzzy Inference System (ANFIS) to integrate
these two methods, so that better fault diagnosis performances can be achieved. The joint
method, addressed in [73], proved to be faster than NN in monitoring abnormal behaviors
in wind turbines. Additionally, several data-driven algorithms, including PCA, k-nearest
neighbor algorithms, and evolutionary strategy were combined to monitor operation of a
wind farm in [74].

3.4. Hybrid Fault Diagnosis for Wind Turbine Systems

Model-based fault diagnosis method has excellent fault detection, fault isolation, and
fault identification capability from a system level when a system model is available. Due
to the nature of off-line design and on-line implementation, model-based fault diagnosis
approach has excellent real-time performance. Signal-based approaches are independent
of explicit mathematical models, which mainly focus on measurement outputs and require
less knowledge about input signals. Nevertheless, it is not realistic to install sensors on all
components of wind turbines from the viewpoint of economic cost, and space and weight
consideration. Knowledge-based (data-driven) approaches relay on historical data and
symbolic and computational intelligence, and supervisory control and data acquisition
(SCADA) and smart sensors equipped in wind farms make data-driven approach feasible
and attractive. It is noted that it is time consuming for training and learning. Recently,
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hybrid approaches by adopting more than one of the approaches are usually used to
enhance fault diagnosis performance for wind turbines.

In [75], FFT was used to spot the main frequency of disturbances, and evolutionary
algorithm was employed to seek an optimal observer gain to minimize the effects in the
estimation error from dominant disturbances as well as low-frequency faults so that a
robust fault estimation algorithm was developed for a 5 MW wind turbine system. The
work in [75] is a combination of signal-based and model-based methods.

In [76], artificial neural network was used to estimate nonlinear term in wind turbine
model, and linear matrix inequality optimization was addressed to find an optimal observer
gain so that a robust actuator fault estimation was achieved for 4.8 MW wind turbine
Benchmark system. In [77], fault detection and isolation for wind turbines were addressed
by using a mixed Bayesian/Set-membership, where modeling errors were described as
unknown but bounded perturbations from the viewpoint of set membership method,
while measurement noises were characterized as bounded noises following a statistical
distribution. The approaches in [76,77] are actually a hybrid of model-based and data-
driven approaches.

Vibration signals in rotational parts of wind turbines are nonstationary and no-
Gaussian, and fault samples are usually limited. In order to solve the issue above, [78]
proposed a fault diagnosis algorithm based on diagonal spectrum and SVM where diagonal
spectrum can be used to extract fault features from the vibration signals, and SVM can
realize fault classification effectively. In [79], FFT method and uncorrelated multi-linear
principal component analysis technique were integrated to achieve an effective three-
dimensional space visualization for fault diagnosis and classification under five actuator
and sensor faulty scenarios in a 4.8 MW wind turbine benchmark system. The methods
of [78,79] are essentially a hybrid of signal-based and data-driven based approaches.

4. Prognosis for Wind Turbine Systems

Prognostics is a process to predict the progression of a deviation of a system from
expected normal operating condition into a failure and estimate the remaining useful life
of wind turbines. Based on various fault diagnosis and condition monitoring strategies,
health status of wind turbines can be assessed and degradation patterns can be indicated,
which allow a prognostic scheme to be introduced to predict when machine will fail. A
schematic diagram of fault prognosis is depicted in Figure 7. When a system performance
degradation (i.e., the performance departs from the normal performance) is recognized,
remaining useful life (RUL) estimation will be implemented. Prognosis approaches can be
generally classified into model-based, data-driven, and hybrid approaches. Model-based
prognosis methods use physical and mathematical expressions to describe the degradation
trend, and identify the performance degradation from real-time monitoring, and estimate
the RUL of wind turbines. Data-driven approaches use historical data and machine learning
techniques to train and learn system performance dynamics, identify current performance
degradation from rea-time data, and predict the RUL of wind turbines. Hybrid approach is
a combination of the two approaches in order to obtain a better prognosis.

Input Output
S— Wind Turbine —>

Degradation
Detection

RUL
Estimation

Figure 7. Schematic diagram of fault prognosis.
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4.1. Model-Based Prognosis for Wind Turbine Systens

As wind turbines are subject to strongly varying loads which make the components
fatigue during operation, predicting their reliable lifetime is of significance. Different fatigue
models for lifetime prediction were proposed, including fatigue life models [80,81] and
progressive damage models [82,83]. Fatigue life models are based on a well-known S-N
curve to describe allowable cycles of failures. Prediction of fatigue life from the random load
spectrum was addressed in [80,81] for medium-scale and small-scale wind turbine blades,
respectively, using S-N curves. In progressive damage models, variables that describe the
deterioration of the composite component were selected to assess damages. [82] presented
a reduced order model to predict the occurrence and progression of damages in blades
by integrating Thine-wall beam and progressive failure analysis. A progressive damage
model, based on the cohesive zone concept with mixed-mode bilinear constitutive law, was
addressed in [83] for analyzing fatigue of the adhesive joint root of the wind turbine blades.
In [84], a probabilistic damage-growth model was utilized to characterize performance
degradation of individual wind turbine, and failure prognosis informed decision-making
tool was developed.

4.2. Data-Driven Prognosis for Wind Turbine Systems

One promising data-driving technique for prognosis of wind turbines is adaptive
neuro-fuzzy inference system (ANFIS), which is a hybrid learning algorithm by integrating
the best features of fuzzy systems and artificial neural networks. [85,86] developed ANFIS-
based pitch faults prognosis for a wind farm composed of 26 wind turbines, incorporated by
a priori knowledge of six known faults to train the system. Artificial intelligence systems, by
integrating fuzzy logic, neural networks, and expert systems, were utilized for predictive
maintenance of the wind turbine gearbox in [61]. Another popular methodology for
prognosis successfully implemented in wind conversion systems is genetic algorithm (GA),
inspired by Darwinian evolutionary models, which was used in [87], such that blade
pitch faults can be predicted 5-60 min in advance. Moreover, a number of data mining
approaches, consisting of NN, ensemble NN, standard classification, and regression tree,
boosting tree algorithm, and SVM were cooperated in [88] to achieve fault prediction at
three levels, namely, identification of existence of a fault, prediction of the severity of the
fault, and prediction of specific fault.

4.3. Hybrid Prognosis for Wind Turbine Systems

Since prognosis of a problem is more challenging than diagnosis, it is common to inte-
grate different types of approaches. For instance, in [89], a model was derived to describe
mathematical relationship between lubrication, oil degradation, and particle contamination
level, and a particle filtering technique-based RUL prediction tool was used to achieve
lubrication oil prognosis by means of predicting state values in terms of probability density
function (PDF). This method is a hybrid of model-based and data-driven method.

5. Resilient Control of Wind Turbine Systems

Resilient control strategies aim to mitigate the influences from unexpected faults
(rather than failures) or unexpected dynamics (e.g., unknown delays) such that the overall
function of the wind turbines can be maintained, although the operation and produc-
tion performance may be reduced but tolerated. There are two types of resilient control
approaches: passive resilient control and active resilient control.

A schematic diagram of resilient control for wind turbines is depicted by Figure 8,
where f;, fo, and fs denote the actuator faults, parameter (or process) faults, and sensor
faults, respectively. In passive resilient control, a fixed controller is designed that tolerates
all considered faulty conditions (or abnormalities) of the plant. This approach requires no
on-line detection of the abnormalities, and is therefore more attractive computationally.
However, a passive resilient control would be invalid if an unexpected abnormality oc-
curred that was not considered in the design. In active resilient control, the controller is
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reconfigured by control laws that react to abnormalities based on information extracted by
real-time monitoring and diagnosis scheme. Once a fault or abnormality is identified, effec-
tive configuration strategies can be conducted to attenuate the impact of the abnormalities
on the wind turbine systems.

Input Output

Actuator Wind Turbine [r—

I
T

Real-time
monitoring &
diagnosis

Resilient control

Figure 8. Schematic diagram of resilient control.

5.1. Passive Resilient Control

In [90], a passive resilient control strategy was addressed to avoid saturation caused
by potential faults in 5SMW wind turbine, and the key idea used was to manipulate the
reference power and generator speed set-points hysterically. In [91], wind turbine system
was described by linear parameter varying (LPV) system, and a robust control strategy was
developed so that the system was resilient against a fault in a pitch system without need
of the information from monitoring and fault diagnosis. In [92], a passive, fault tolerant
cooperative control scheme was presented for a wind farm under power generation faults
where fuzzy model reference control was used in a cooperative framework. In [93], a robust
super-twisting algorithm-based control scheme was designed for a large floating offshore
wind turbine disrupted by wind turbulence and pitch actuator faults, so that a tolerant
operation was procured.

5.2. Active Resilient Control

Fault estimation and compensation have proven a powerful tool for resilient control
design and implementation. In [36], a 4.8MW wind turbine system was approximated by a
Takagi-Sugeno fuzzy model. By using an augmented unknown input observer, actuator and
sensor faults were estimated, and signal compensation techniques were used to mitigate
the effects from the actuator faults on the system dynamics and the influences of the
sensor faults on the system outputs. It was proved and demonstrated that the existing
controllers with compensation can ensure a tolerant operation of the wind turbine under
predefined low-frequency actuator and sensor faults. The approach in [36] can deliver
both real-time fault diagnosis (fault estimation) and resilient control, but there is no need
for an on-line controlupdate. A hydraulic press drive unit may cause unknown delays
of the pitch dynamics, which has adverse effects on wind turbine operation performance.
In [94], an augmented observer was proposed to estimate a perturbed term caused by
unknown delays of the pitch system, and a sensor compensation technique was addressed
to mitigate the adverse effect of the unknown delay on the pitch output dynamics in a
4.8 MW wind turbine system. In [95], a disturbance observer was addressed to estimate
pitch actuator fault, and a fault tolerant control with actuator compensation was designed
to achieve tolerant operation of a 5MW wind turbine, under a pitch actuator fault. In [96],
an adaptive sliding mode observer was addressed to estimate a pitch actuator faultin a
wind turbine, and the estimated fault signal was used to compensate the effects from the
actuator fault. In [97], a perturbation observer was used to estimate time-varying external
disturbances including grid faults, voltage dips, and intermittent wind power inputs, and a
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nonlinear adaptive control with compensation was used to enhance the fault ride-through
capability for a full-rated converter wind turbine. In [98], an adaptive sliding mode tolerant
controller with compensation was addressed to alleviate the fluctuations in rotor speed,
generator speed, and generator power under faulty conditions in a SMW wind turbine
system. In [99], an adaptive tolerant control algorithm, with the aid of fault estimation,
was presented for wind turbines subjected to effectiveness loss faults in pitch actuators.
In [100], a tolerant control strategy was proposed for wind turbine systems under bias
faults of converter actuators in a 2 MW wind turbine system, in which fault detection and
estimation were achieved by using residual filter and fault estimator, and receding horizon
control technique was used to reconfigure control parameters so that the turbine health
such as maximum power and less fatigue reduction was attained under faults.

In [101], a resilient configuration of doubly fed induction generator (DFIG) in 1.5 MW
wind turbine was addressed to achieve tolerant operation under various kinds of grid
faults, where nine-switch converter was used to replace conventional six-switch converter,
and appropriate control algorithm was designed to ensure a seamless fault-ride through
under grid faults. Power converter is recognized as one of the most fragile parts in wind
turbine conversion systems, which contributes about 14% of the downtime of a wind
turbine. In [102], a fault-tolerant operation strategy against switch faults was addressed
where an additional power switch leg was used to replace a faulty leg using fault diag-
nosis information and corresponding control algorithms. In [103], a fault tolerant control
method was addressed for direct-drive wind turbine systems under open circuit faults in
machine side converters by regulating SVPWM switching patterns. It is evident that the
aforementioned techniques are model-based active resilient control techniques.

In [104], a data-driven resilient control approach was addressed for a wind turbine
benchmark system. Specifically, a residual generator was constructed directly identified
from the input and output data, which should be sensitive to faults. The residual was
embedded into the control loop to mitigate the effects from the faults and achieve tolerant
operation performance under faulty conditions. In [105], a data-driven fault tolerant
control scheme was presented for wind turbine systems in which the residual generator
was included in the control loop so that the key performance indicator (e.g., the quality of
produced power) was maintained in the admissible range under faulty conditions. In [106],
a data-driven fault tolerant control approach was developed for 10 MW off-shore wind
turbines, where a subspace algorithm was employed to identify a linearized-dynamics of
the wind turbine, and an adaptive repetitive control law was formulated to mitigate faulty
induced loads.

6. Conclusions and Overlook

The presented paper has provided a comprehensive survey covering three crucial
topics, namely fault diagnosis, prognosis, and resilient control, of wind turbines, which are
beneficial to maintain operation, improve energy productivity, prolong the life of usage
and enhance system safety.

For fault diagnosis, it has been reviewed following the categories of model-based,
signal-based, knowledge based, and hybrid approaches. Model-based monitoring and
diagnosis approaches need a mathematical model to describe explicit relationships between
system inputs and outputs in wind turbine systems, which are effective and powerful to
carry out real-time monitoring and fault diagnosis from a system level. How to develop an
accurate mathematical model and how to enhance the robustness of the model-based fault
diagnosis algorithms against modeling errors and external disturbances, and sensitivity to
the faults monitored are the key factors for model-based fault diagnosis approaches. Ow-
ing to off-line design, and on-board implementation, model-based monitoring, and fault
diagnosis algorithms have excellent real-time performance. Signal-based monitoring and
diagnosis approaches do not need system models, but rely on measurement signals from
sensors, which are convenient for implementation. The measured signals are mainly depen-
dent on system outputs, but with less attention on inputs, signal-based approaches would
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be sensitive to external disturbances and load changes. Knowledge-based approaches do
not need to establish an explicit mathematical model, but use historical data to train and
search in order to represent an implicit relationship among the variables. Knowledge-based
approaches are effective for monitoring and diagnosis for both system-level faults and
structural faults in wind turbines. A knowledge-based approach is highly dependent on
the quality of the recorded data, and is time-consuming for training and searching. The
three approaches above have own advantages and disadvantages, it would be a better
solution to integrate them to lead a hybrid design and implementation to achieve a reliable
and effective monitoring and diagnosis for wind turbines.

For prognosis and remaining useful life prediction, it has been reviewed following
model-based, data-based, and hybrid approaches. Model-based method needs to derive
an explicit physical or mathematical expression to describe the performance degradation
trend, and the remaining useful life is estimated once upon the performance degradation
status is identified by real-time monitoring. A model-based method needs a thorough un-
derstanding on how a physical parameter or symptom relates the performance degradation.
Data-driven methods reply on historical run-to-failure data, but do not need a mathematical
model. It would be difficult to obtain sufficient and reliable run-to-failure data in practice,
particularly for wind turbines as they are expensive, and the machines generally stop before
a collapse happens. It would be a better solution to integrate model-based and data-driven
based prognosis approaches for an effective and reliable fault prediction. Compared with
condition monitoring and fault diagnosis approaches, prognosis and remaining useful
life estimation need much more research and development due to the complexity of wind
turbine systems.

For resilient control, it has been surveyed following the categories of passive resilient
control method and active resilient control method. Passive resilient control approaches
do not need the information of healthy status in wind turbines, but design a robust
controller so that the stability and operation of wind turbines are robust against both
disturbances and faults. Resilient passive control is simple to implement, but generally
has limited tolerant capabilities to accommodate faults. Active resilient control approaches
need the information from real-time monitoring and fault diagnosis, and the controllers are
reconfigured to mitigate the adverse effects from the faults, and achieve a tolerant operation
performance. Active resilient control approaches are more attractive as they are integrated
with fault diagnosis, which can effectively adapt to faulty conditions by appropriate control
configurations in terms of monitored faults. It is noticed that the majority of resilient
control approaches for wind turbines systems are model-based, and only a few works use
data-driven approaches. It is encouraged to develop data-driven based resilient control
approaches for wind turbine systems with the aid of large amount of data available and
machine learning techniques.

Recently, offshore wind turbines have received much more attention, owing to their
capabilities for capturing larger wind power compared with on-shore wind turbines. Off-
shore wind turbines are classified into fixed-foundation offshore wind turbines and floating
offshore wind turbines. Floating offshore wind turbines can be installed in deep water
over 50 m, which can harvest more and steadier wind power, and have less environment
effect. As a result, floating offshore wind turbines will be being invested more and more,
and would dominate wind turbine industries in the future. Due to the limited accessibility
and a more complex structure integrated with wind turbine machine, mooring lines and
floating platform, it is challenging but promising to further stimulate the research and
development of real-time monitoring and fault diagnosis, prognosis and remaining useful
life prediction, and resilient control for floating off-shore wind turbines to improve the
reliability, availability, and productiveness.

In addition, wireless sensory and distributed networked wind farms would bring new
opportunities and challenges for reliability and safety of wind turbine systems. Diagnosis
and resilient control against cyber-attacks in wind turbine systems would be a promising
research topic in the near future.
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We have tried to comprise as many up-to-date references for fault diagnosis, prognosis,
and resilient control for wind turbines as possible. Woefully, it is impossible to include
all the existing publications due to the limit of space. We hope this review paper can
bring a light to the researchers and engineers so that they can get insight into this field
conveniently.
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Abstract: In response to the high demand of the operation reliability and predictive maintenance,
health monitoring and fault diagnosis and classification have been paramount for complex industrial
systems (e.g., wind turbine energy systems). In this study, data-driven fault diagnosis and
fault classification strategies are addressed for wind turbine energy systems under various faulty
scenarios. A novel algorithm is addressed by integrating fast Fourier transform and uncorrelated
multi-linear principal component analysis techniques in order to achieve effective three-dimensional
space visualization for fault diagnosis and classification under a variety of actuator and sensor
faulty scenarios in 4.8 MW wind turbine benchmark systems. Moreover, comparison studies are
implemented by using multi-linear principal component analysis with and without fast Fourier
transform, and uncorrelated multi-linear principal component analysis with and without fast Fourier
transformation data pre-processing, respectively. The effectiveness of the proposed algorithm is
demonstrated and validated via the wind turbine benchmark.

Keywords: fault diagnosis; fault classification; fast Fourier transform (FFT); multi-linear principal
component analysis (MPCA); uncorrelated multi-linear principal component analysis (UMPCA);
additive white Gaussian noises (AWGN); wind turbine systems

1. Introduction

With the development of advanced technologies to increase production, modern industrial
systems become more complex and expensive. The components of industrial systems are prone to
malfunction, which could bring unanticipated economic costs due to unscheduled shutdown and
repair/maintenance. Therefore, it is of particular interest to design effective fault diagnosis and fault
classification approaches to automatically monitor the behaviour of industrial systems and prevent
damage caused by unexpected faults. Motivated by environmental considerations and the shortage of
fossil fuels, wind turbines, as one of renewable energy sources, have contributed to a large portion of
the world’s power production [1,2]. As a clean energy, wind energy has been significantly exploited
via the onshore and offshore wind turbines. By the end of 2019, the overall installation capacity
of all wind turbines worldwide reached 651 GW, and European countries contributed to 205 GW.
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Moreover, wind power contributed 15% electricity generation in Europe and 20% electricity production
in the UK in 2019 [3].

Wind farms consisting of hundreds of wind turbine units are being established in many different
locations around the country, for instance, in offshore, arctic, and desert regions. In recent years,
some different topologies of generators, such as doubly fed induction generators (DFIGs) and permanent
magnet synchronous generators (PMSGs), are widely utilized in wind turbine systems. However,
like any other industrial systems, wind turbines are sophisticated and prone to faults. It is observed
that the operation and maintenance costs for onshore and offshore wind turbines make up 10~15%
and 20~35%, respectively, of the total life costs of wind energy conversion systems. Furthermore,
wind turbine systems are complex and expensive; therefore, there is a high demand for improving
the reliability and availability, and reducing unscheduled down time in wind turbine industries [4].
Motivated by the above, monitoring and fault diagnosis for wind turbine systems have received wide
attention in wind turbine industries [5-9].

Fault diagnosis approaches can be classified into model-based, signal-based, and knowledge-based
methods. The model-based fault diagnosis approach requires a well-established model of practical
processes developed by either physical principles or systems identification techniques. By checking the
residual between the model output and the real-time process output, the decision for fault diagnosis
can be made [10,11]. Signal-based fault diagnosis is relying on appropriate sensors, whose locations
are normally installed in plant components. The faults in the process are reflected in the measured
signals, and the time-domain, frequency-domain, or time-frequency-domain techniques are used to
extract features. By checking the consistency between the features of the real-time process and the
prior knowledge on the symptoms of the healthy system, a diagnostic decision can be made [12].
Knowledge-based approaches utilize a large volume of historic data available to train universal
estimations or approximations on behalf of implementing to recognize faulty conditions [13]. Itis worthy
to point out that the knowledge-based approach more depends on the data processing and data-based
learning, including processing historical data and real-time data. Therefore, the knowledge-based fault
diagnosis approach is often called the data-driven approach [14,15].

Machine learning techniques play an important role for data-driven fault diagnosis. Generally
speaking, machine learning techniques can mainly be classified into three categories, which are
unsupervised, semi-supervised, and supervised learning algorithms, respectively [16]. Unsupervised
machine learning aims to learn structure in the data, such as sparse or low-dimensional feature
representation [17-20]. According to the tasks of the supervised machine learning, such as prediction
and classification, the aim is to learn a knowledge base, on the basis of the known or labelled examples
of the target pattern [21,22]. Semi-supervised machine learning represents a class of algorithms that
include both supervised and unsupervised tasks [23-25].

It is noted that the dataset generally has a great volume of data with existence in high-dimensional
space. Feature extractions thus play an important role in data-driven fault diagnosis [26-29] as well as
dimensionality reduction for the samples/datasets. The geometric distribution of the datasets in
high-dimensional space can be analyzed in order to effectively extract significant features. There are
several methods to solve this problem and one of the most popular techniques is the principal
component analysis (PCA) algorithm [30-34]. The PCA, as an unsupervised learning technique,
is a statistical procedure that utilizes an orthogonal transformation to convert a set of correlated
variables into linearly uncorrelated variables, namely principal components [35]. The number of
principal components should be generally less than the number of the original variables [36-38].
The transformation in the PCA is carried out in a way so that the first principal component has the
largest possible variance, and each succeeding component in turns has the highest variance possible
under the constraint that it is orthogonal to the preceding components [39]. As a result, the PCA has
become a popular tool for fault detection and fault classification on the basis of a large volume of
high-dimensional experimental samples/datasets [40—42].
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A wind turbine system is a complex industrial system, and the operation condition is harsh.
Therefore, the conventional PCA technique may become invalid for fault diagnosis and fault
classification in wind turbine systems subjected to multiple faults. As a result, there is a strong
motivation to develop advanced PCA-based fault diagnosis and classification techniques for wind
turbine systems. In this study, uncorrelated multi-linear principal component analysis (UMPCA) is
integrated with FFT data preprocessing to form an algorithm, which is applied to a 4.8 MW wind
turbine benchmark system for fault diagnosis and classification. Furthermore, comparison studies
are carried out to demonstrate the effectiveness of the proposed algorithm by comparing with the
known algorithms.

The rest of this paper is organized as follows: In Section 2, the fundamentals of the 4.8 MW
wind turbine benchmark model are introduced, and actuator and sensor faults of wind turbines are
explained. In Section 3, An algorithm integrated with FFT and UMPCA techniques is addressed for
dimensionality reduction and feature extraction. Experimentation designs are proposed in terms of
different topologies of the actuator and sensor faults of wind turbines in Section 4. Simulation studies
are illustrated in Section 5. In order to demonstrate the effectiveness of the addressed FFT plus UMPCA
method, the simulated studies of the fault diagnosis and classification for wind turbines respectively
by using MPCA, FFT plus MPCA, and UMPCA are also discussed. Finally, this paper is ended by
summarizing the conclusions in Section 6.

2. Wind Turbine Benchmark Systems

A wind turbine is a complex electro-mechanical system that converts wind energy to electrical energy.
Most wind turbines are horizontal three-bladed unites, which are composed of blades, low-speed and
high-speed shafts, gearbox, generator, yaw, tower, brake, and controller, and so forth. A typical structure
of the wind turbine is depicted by Figure 1. The wind flow in the nature drives the blades and rotor to
rotate, converting wind energy to mechanical energy. The rotor drives the generator via the high-speed
shaft so that the mechanical energy is converted into electric energy. The pitch angle is controlled to adapt
to the varying wind speed to achieve the desired output power. The functionality of the yaw system
contributes to align the turbine with the direction of the wind detected by the anemometer.

Low-Speed

Shaft Anemometer

Gear Box

Controller
Wind Generator

Direction

Pitch

Rotar

Wind
Direction

Figure 1. A schematic diagram of the wind turbine system.
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A benchmark model of a 4.8 MW wind turbine system was developed in [43,44], which has
been widely used for the algorithm validation in control and fault diagnosis. The definitions of the
parameters of the benchmark model are shown in Table 1.

Table 1. Parameters of the 4.8 MW wind turbine benchmark system [43,44].

Symbol Definition Symbol Definition

Br Pitch angle Reference O Torsion Angle
Tor Generator Torque Reference C Damping Ratio

B Pitch Angle Ba Torsion Damping Coefficient
wg Generator Rotating Speed By Generator External Damping
Wy Rotor Angular Speed B, Rotor External Damping
Tg Generator Torque Cq Torque Coefficient
age Generator and Converter Parameter Jg Generator Moment of Inertia
Nat Efficiency of Drive Train Tr Rotor Moment of Inertia

A Tip-Speed-Ratio Kyt Torsion Stiffness

Wy Natural Frequency Ng Gear Ratio

p Air Density R Rotor Radius

The diagram of the 4.8 MW wind turbine benchmark system is shown by Figure 2, which is
composed of the blade and pitch subsystem, drive train subsystem, generator and convertor subsystem,
and controller, respectively.

vw Tr Tg
Blade & . . Generator &
Pitch System Dixe,Taln Converter
o, @,
v Tg,m
B |8 1| T
r ' m a) P ga
gam" %
Controller

y?

r

Figure 2. Block diagram of the 4.8 MW benchmark wind turbine model.

The wind turbine benchmark system has an external input (e.g., varying wind speed), two control
reference inputs composed of the reference pitch angle (8,) and generator torque reference (tg,).

The wind speed is shown in Figure 3, from which one can see the wind speed ranges from 5 to
20 m/s, with the peak spike over 25 m/s, showing a good coverage of the operation conditions under
a healthy situation.
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Figure 3. Wind speed sequence used in the benchmark wind turbine under fault-free condition.

In this study, we focus on the actuator faults and sensor faults of the wind turbines. Suppose that
u(t) is the control input, f4(t) is the actuator fault, and ug(t) is the actuation signal applied to the
system; y(t) is the measured output, fs(t) is the sensor fault, and yg(#) is the output from the system.
It is clear that ug(t) = u(t) + fa(t), and y(t) = yr(t) + fs(t). As a result, the faults f4(t) and fs(t)
will divert the performance of the system states and outputs from the normal. The topologies of the
actuator faults and sensor faults are depicted by Figure 4.

Actuates Faylis FAULT TOPOLOGIES FOR
¢ O] 4.8 MW WIND TURBINE
BENCHMARK SYSTEMS
Input Actuators Actuation
u@) | P Ter | owo
@ Actuator Faults in Wind Turbines
Sensor Faults
i, 1)
Output Sensors Measured

—»
Y20 B W, O, T, OQutput y(®

& Sensor Faults in Wind Turbines

Figure 4. Topologies of the faults in the 4.8 MW wind turbine benchmark system: (a). Actuator faults,
and (b). Sensor faults, respectively.

3. Methodology
3.1. Data Set Construction

The 4.8 MW wind turbine benchmark system has four measurement outputs, namely the pitch
angle j3, the generator rotating speed wy, the rotor angular speed w;, and generator torque 7,. By using
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the measurement outputs above, the data set recorded from each measurement, denoted by s, wgs, wys,
and Tgs, can be obtained as follows:

Bs1 Pz o ,3517/ [ Wges11  Wgs12 " Wgsly
Bs21 Ps2 vt Psay Wges21  Wgs22  *° Wes2y
Bs=| . o e RN, Wes = ) ; ) € RNy
Bsn1 BsN2 c Bsny | WgsN1 @WgsN2  ***  @WgsNy 1)
Wrs1l  Wrs12 "0 Wrsly Tgsll  Tgs12  *°* Tgsly
W21 Wrs22 0 Wrs2y Tgs2l  Tgs22  *°° Tgs2y
wys = ERNYY, o= € RN
. . .. : & : . .
WrsN1  @WrsN2  *°° WrsNy TgsN1  TgsN2  ***  TgsNy

where N is the number of the measurement points recorded, and y is the number of the measurement
scenarios. Specifically, for each measurement output, the dataset is recorded under y operation
scenarios (including the fault-free condition, and various faulty conditions), and N measurement
points are documented at each scenario. As a result, the original data set can be described by:

Bs

X = ng e RV, )
rs

Tgs
where N = 4N.

3.2. Data Set Pre-Processing

In order to enhance the feature extraction capability, the time-domain data is pre-proceeded to
generate frequency-domain data with a reshaping expression.
According to the original data-set model X defined in (2), we can rewrite it as:

X111 X120 Xy
Xo1 X vt Xy
X=[x % - x]=| . 7 ©)
N W Ny
T
where X; = [ Xy Xt Xy ] ,i=1,2,---,y,and [T represents the transpose of the vector [-].

The Fourier transform of X; can be calculated as follows:
y Brg(e-1)
Xi(k) = thie N , 4)

wherek=0,1,2,---, N-1.
In terms of (4), the discrete-time Fourier transform can transform a sequence of N numbers
X1j X -+ Xy; intoasequence of complex numbers X;(0), X;(1), ---, X,‘(N - 1), which can also
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be denoted by the symbols fi(l), fl.(z), e, j‘i<N). By arranging the sequence of the complex numbers as
a vector, we have:

X;‘(O) X1i fi(l)
X;(1) X2i f(z)
. =Qf Wi = | p 5)
x(N-1 : )
( ) *Ni i
where:
1 1 1 1
—pm —jin -2(N-1)x
1 e N e N .- e N
Q= , (6)
_pN-)r  —jaN-Dn _p(N-1)’n
1 e N e N .- e N

and Q) is called the Fourier transform base. Itis clear thati =1, 2, ---, yin (5).

The Fourier transform above can be calculated by using the fast Fourier transform algorithm [45,46].
The fast Fourier transform algorithm treats the columns of a matrix as vectors and returns the Fourier
transform vector for each column, leading to a Fourier transform matrix.

Taking magnitude and reshaping the vector in (5), one can obtain the matrix expression as follows:

'fi(l)' |fi<’+1)' M((1—1>r+1>|
F = 'fi(.z)’ f,-<r+2>‘ ‘ﬂ((Z—l.)r+2)| eR™i=1,2,--, 7, ”

where r indicates the number of rows, [ stands for the number of columns, ()| represents the absolute
value or magnitude of the complex number (+), and N = Ir. By determining two parameters r and I,

the frequency-domain data of the wind turbine can be described as follows:
{71 F=IF, Fape. Fipe.. Fyl} € RO ®)

Therefore, the dataset has been reformatted as a tensor data expression. From (8), one can see the
dataset has y samples, and the size of each sample is 7 X I.

The reshaping process of the obtained data set above can be described by the flowchart in Figure 5.
From this figure, one can see the data vector (e.g., X; = [ X1 X vt Xy ]T, i=1,2 -,
is projected into a frequency-domain space relying on the Fourier transform base, and the tensor
representation is further generated in terms of (7) and (8).
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Figure 5. Reprocessing and reshaping of the experimental data.

3.3. Dimensionality Reduction and Feature Extraction for Wind Turbines by Using the Uncorrelated
Multi-Linear Principal Component Analysis Method

The multi-linear principal component analysis (MPCA) technique [47], which belongs to one of
the unsupervised machine learning algorithms, is usually to cope with the tensor expression dataset.
However, some of the correlations of the principal components amongst the projected directions are
neglected to some extent, which means the final features obtained by MPCA would be redundant.
In contrast to other multilinear PCA techniques, such as MPCA, two-dimensional PCA, and so
forth, UMPCA seeks a tensor-to-vector projection, which can capture the maximum number of the
uncorrelated multilinear features [39,48]. In this paper, UMPCA is thus used to extract the significant
features of the 4.8 MW benchmark wind turbines.

The n-mode product of a tensor ¥ by a matrix U is denoted by ¥ x, U [39,48].

Suppose the dataset {z(p), i=1, 2,..., y} represents the pth principal components
(e.g., low-dimensional features), where z;(p) is the projection of the ith data sample F; by the p-th

T
elementary multi-linear projection (EMP) U, = {(u;")) ,n=1,2,..., Q}, where Q represents the

number of projection directions. As a result, the formula of z;(p) can be described as follows [39,48]:

T
zi(p) = F; ngl {(u;(?n)) ,n=1,2..., Q}, i=1,2,...,7. )

The objective of the UMPCA methodology is to seek U, that projects F; into a feature subspace to
determine a tensor-to-vector projection, whose functionality will guarantee the implementation for the
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maximum direction of the original data sets, and the significant features extracted are uncorrelated.
Based on the above, the variance can be calculated by [39,48]:

y

s = Y=t -5 (10)

i=1

Y L
wherez, = ), Z’i—,p), Let 1, denote the pth coordinate vector, describing the training sample in the pth
i=1

EMP space. The ith component of ki, equals the p-th component of z;, that is, /1, (i) = z;(p).
T
(n)

In order to determine a set of projection directions U, = {(up ) ,n=1,2,..., Q} to maximize

the variance and generate uncorrelated features, the cost function can be given as follows [39,48]:

T
{(u;(jn)) ,n=1,2,.., Q} = argmaxSZTp
11)

T
s.t.{u;,">} -uf,") =1, and (

where P is the dimensionality of the projected space, and:

%:{ Loifp=aq (12)

0, otherwise.

In terms of the background of the benchmark wind turbine in Section 2 and the fundamental
principle of the UMPCA [39,48] mentioned above, the specific procedures of the significant feature
extraction for wind turbines can be illustrated as follows.

>)T,

)

Step 1: Explore the first projection direction U; = {(ugn n=12,..., Q} by maximizing Sle.

Step2: Compute the second project direction u; = {(ug T, n=1,2,..., Q} by maximizing SZT2
subjected to hg hy =0.

Step3: Determine the third project direction uz = {(u(n>)T, n=1,2,..., Q} by maximizing

SZT3 subjected to hghz =0.

T
;;1)) n=12,..., Q},P =4, .-+, P,by maximizing

SZTP subjected to hghq =0, wheng=1,2,---,p-1

Step 4: Calculate the p-th project direction u, = {(u

Step 5: Based on all the obtained project directions from the steps above, the final features can be
obtained by:

T
zi:Fixngzl{(u;”)) n=1,2..., Q} i=1,2,..., 7. (13)
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3.4. FFT Plus UMPCA Algorithm

The specific procedures of the dimensionality reduction and feature extraction based on FFT plus
the UMPCA technique for wind turbines can be described as follows:

Algorithm 1

Input: Date set {T | F = [Fl, F,...,F,..., Fy]}.

Output: Significant features
P

=Fx, {(uf,”)T, n=12..., Q} Li=1,2,..., 9.
p=1
(i)  Step 1: Collect the original data set X by (2)
(i)  Step 2: Pre-process the data set by using Fourier transform base to construct the tensor dataset by (7)
and (8).
(iii) Step 3: Calculate the projection directions Uy, Uy, ---, Up;

(iv) Step 4: Project the FFT data space into a vector subspace by using
T P
z;=F; X;?:l {(u;,n)) ,n=1,2,..., Q} ,i=1,2,..., y. As aresult, for the tensor dataset 7,
=1
P ’ s
the resultant UMPCA feature vector z can be given as z = ngl {(u;n)) ,n=1,2,..., Q}

p=1

4. Experimentation Designs

4.1. Brief Description and Definition

In this section, in order to validate the applicability of the proposed methodology for fault
diagnosis and fault classification in wind turbine systems, five different topologies of experimentation
are addressed subsequently. Furthermore, actuator and sensor faults are simultaneously considered in
each group of experiment. The size of each data set is 1000 x 440,001.

For the simplicity of the description for the subsequent experimentations, we define some
abbreviations for different types of faulty conditions in two actuators and four sensors. ‘A1’ represents
the first actuator relevant to the pitch angle reference (;); ‘A2’ stands for the second actuator relevant to
the generator torque reference (7g,); ‘S1” is the first sensor to measure the pitch angle (), ‘S2’ indicates
the second sensor to measure the generator rotating speed (wg), ‘S3’ stands for the third sensor to
measure the rotor angular speed (w;), and 'S4’ defines as the fourth sensor to measure the generator
torque (tg). The detailed information is shown in Table 2.

Table 2. Symbols and acronyms of the actuator and sensor for 4.8 MW wind turbines.

Actuator Sensor

Symbol Br Tor B wg Wy Tg
Acronym Al A2 S1 S2 S3 S4

In addition, ‘FF’ indicates fault free. ‘EL’,'SWD’, and ‘RN’ represent effectiveness losses, sinusoidal
wave disturbances, and random numbers, respectively. Their combination, including ‘EL + SWD’,
‘EL + RN, ‘'SWD + RN’, and ‘EL + SWD + RN, are also taken into consideration.

The other abbreviations of the parameters for faulty signals are defined as follows,
whose specifications are explained in Table 3:

(1) “EL": Percentage (P);
(2) ‘SWD’: Amplitude (A) and Bias (B), namely A/B
(3) ‘RN’: Mean (M), and Variance (V), namely M/V;

36



Processes 2020, 8, 1066

(4) ‘EL + SWD': Percentage (P), Amplitude (A), and Bias (B), namely P/A/B;

(5) ‘EL + RN': Percentage (P), Mean (M), and Variance (V), namely P/M/V;

(6) ‘SWD + RN": Amplitude (A), Bias (B), Mean (M), and Variance (V), namely A/B/M/V;

(7) 'EL + SWD + RN": Percentage (P), Amplitude (A), Bias (B), Mean (M), and Variance (V),
namely P/A/B/M/V.

Table 3. Operation Conditions, Parameters, and Acronyms for 4.8 MW Wind Turbine Systems.

Operation Conditions Abbreviations Parameters Acronyms
Fault Free FE - -
Effectiveness Losses EL Percentage P
Sinusoidal Wave . .
Disturbances SWD Amplitude & Bias A/B
Random Numbers RN Mean & Variance M/V
Effectiveness Losses + Percentage +
Sinusoidal Wave EL + SWD cenage + P/A/B
X Amplitude + Bias
Disturbances
Effectiveness Losses + Percentage + Mean +
Random Numbers EL +RN Variance PMIY
Sinusoidal Wave Amplitude + Bias +
Disturbances + Random SWD + RN plitude T blas A/B/M/V
Mean + Variance
Numbers
Effectiveness Losses +
Sinusoidal Wave Amplitude + Bias +
Disturbances + Random EL +SWD + RN Mean + Variance PIABMN

Numbers

4.2. Experimental Statement

In the experiment, the fault signals are shown in Table 4. For instance, the effective loss (EL)
of every single actuator or sensor is selected as 1%, 2%, 3%, ... , 19% and 20% of the normal value,
respectively, which means there are 20 faulty cases for the typical fault EL. More detailed information
on other faults can refer to Table 4.

Table 4. Actuator and sensor fault signals: Experimentation design.

Actuator and Sensor Faults

Faulty Name of Actuator Sensor
Conditions Parameters
ﬁ r Tgr ﬁ wg Wy Tg
EL P 1.00-20.00%
SWD A 0.01-0.20 5.20-9.00 0.01-0.20 5.20-9.00 0.01-0.20 5.20-9.00
B 0.10-2.00 501-520 0.10-2.00 50.10-52.00  0.01-0.20 501-520
RN M 0.10-2.00 1.00-20.00 0.10-2.00 1.00-20.00 0.01-0.20 1.00-20.00
v 0.20-2.10 91.00-110.00  0.20-2.10 1.10-2.05 0.01-0.20 91.00-110.00

By P/A/B—From 1.00%/0.01/0.10 to 20.00%/0.20/2.00;

Tqy: PJA/B—From 1.00%/5.20/501 to 20.00%/9.00/520;

: P/A/B—From 1.00%/0.01/0.10 to 20.00%/0.20/2.00;
EL+SWD  P/AB ) p/A/B—From 1.00%/5.20/50.10 to 20.00%/9.00/52.00;

wr: PJA/B—From 1.00%/0.01/0.01 to 20.00%/0.20/0.20;

Tg: PJA/B—From 1.00%(5.20/501 to 20.00%/9.00/520.

Bt B/M/V—From 1.00%/0.10/0.20 to 20.00%/2.00/2.10;
Tg: P/M/V—From 1.00%/1.00/91 to 20.00%/20.00/110;
B P/M/V—From 1.00%/0.10/0.20 to 20.00%/2.00/2.10;
EL+RN  PMV ) . B/M/V—From 1.00%/1.00/1.10 to 20.00%/20.00/2.05;
@y: PIM/V—From 1.00%/0.01/0.01 to 20.00%/0.20/0.20;
T+ P/M/V—From 1.00%/1.00/91 to 20.00%/20.00/110.
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Table 4. Cont.

Actuator and Sensor Faults

Faulty Name of

Actuator Sensor
Conditions Parameters

Br Tgr B wg Wy Tg
Br: A/B/M/V—From 0.01/0.10/0.10/0.20 to 0.20/2.00/2.00/2.10;
Tg,r: A/B/M/V—From 5.20/501/1.00/91 to 9.00/520/20.00/110;
B: A/B/M/V—From 0.01/0.10/0.10/0.20 to 0.20/2.00/2.00/2.10;
wg: A/B/M/V—From 5.20/50.10/1.00/1.10 to 9.00/52.00/20.00/2.05;
wy: A/B/M/V—From 0.01/0.01/0.01/0.01 to 0.20/0.20/0.20/0.20;
Tg: A/B/M/V—From 5.20/501/1.00/91 to 9.00/520/20.00/110.

Br: P/A/B/M/V—From 1.00%/0.01/0.10/0.10/0.20
to 20.00%/0.20/2.00/2.00/2.10;
T P/A/B/M/V—From 1.00%/5.20/501/1.00/91
to 20.00%/9.00/520/20.00/110;
B: P/A/B/M/V—From 1.00%/0.01/0.10/0.10/0.20
to 20.00%/0.20/2.00/2.00/2.10;
wg: P/A/B/M/V—From 1.00%/5.20/501/1.00/1.10
to 20.00%/9.00/52.00/20.00/2.05;
w;: PJA/B/M/N—From 1.00%/0.01/0.01/0.01/0.01
to 20.00%/0.20/0.20/0.20/0.20;
7 P/A/B/M/V—From 1.00%/5.20/501/1.00/91
to 20.00%/9.00/520/20.00/110.

Supplementary Explanations: (i). AWGN signals are introduced to each faulty condition, and the number of
AWGN signals is equal to 50; (ii). For f,, the EL is increased from 1.00 to 20.00% with an increase of 1.00%, and the
Amplitude of the SWD increases from 0.01 to 0.20 with an increase by 0.01, and the Bias varies between 0.10 and
2.00 with the interval of 0.10, gradually, as well as the Mean of RN increases from 0.01 to 0.20 with an increase by
0.01, and the Variance increases between 0.20 and 2.10 with the interval of 0.10.

SWD+RN  A/BM/V

EL + SWD

+ RN P/A/B/M/V

In this section, five groups of experiments of multiple actuator and sensor faults are discussed:

(i)  Scenario I: single actuator and three sensor faults, “1AF + 3SFs’; Types of fault: C% . Ci =8
(i) Scenario II: single actuator and four sensor faults, ‘1AF + 4SFs’; Types of fault: C% . Cj“ =2
(iii) Scenario III: two actuators and two sensor faults, ‘2AFs + 2SFs’; Types of fault: C% . Ci =6
(iv) Scenario IV: two actuators and three sensor faults, 2AFs + 3SFs’; Types of fault: Cg . Ci =4
(v) Scenario V: two actuators and four sensor faults, 2AFs + 4SFs’; Types of fault: C% . Ci =1.

These scenarios are further illustrated by Figures 6-8. From Figure 6, one can see there are eight
combinations of actuator and sensor faults under Scenario I, and two combinations in Scenario II.
Figure 7 describes Scenario III and Figure 8 explains Scenarios IV and V, respectively.

Actuator & Sensor Fault Classification

Actuator Sensor
A1 A2 $1 s2 S3 s4
ﬂ}’ Tg T ﬁ a)g a)l‘ Tg
Fault Classification --- Combination With

Single Actuator & { Three / Four Sensors }

A1+ {S1+S2+83} :A2+(s1+sz+ss}
A1+{S1+S2+S4} | A2+(S1+S2+54}
1AF+3SFs A1+{S1+S3+S4} | A2+{S1+8S3+S4}
A1+{S2+S3+S4} | A2+{S2+S3+854}

fmqm—————— W N

A1+{S1+82+83+84} |
1AF + 4SFs | A2 +{S1+S2+S3+84} |

Scenario |

Scenario Il

Figure 6. Experimentation design for actuator and sensor fault classification, under Scenario I
(1AF + 3SFs) and Scenario IT (1AF + 4SFs).
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Actuator & Sensor Fault Classification

Actuator Sensor
A1 A2 $1 $2 $3 s4
IB " Tg ,r ﬁ a)g @, Tg

Fault Classification --- Combination With
Two Actuators & Two Sensors

{A1+A2}+{S1+852)
{A1+A2}+{S1+8S3)
Scenario I {A1+A2}+{S1+8S4}
2AFs + 2SFs {A1+A2}+{S2+83}
{A1+A2}+{S2+8S4}
{A1+A2}+{S3 +S4}

Figure 7. Experimentation design for actuator and sensor fault classification, under Scenario III (2AFs + 2SFs).

Actuator & Sensor Fault Classification

Actuator Sensor
A1 A2 81 82 83
ﬂ % Tg T ﬁ a)g a)r Tg

Fault Classification --- Combination With
Two Actuators & { Three / Four Sensors }

{A1+A2}+{S1+S2+S3}
Scenario IV {A1+A2}+{S1+S2+8S4}
2AFs + 3SFs {A1+A2}+{S1+S3+84}

{A1+A2}+{S2+S3+S4}
Scenario V
2AFs + 4SFs {A1+A2}+{S1+S2+S3+S4}

Figure 8. Experimentation design for actuator and sensor fault classification, under Scenario IV
(2AFs + 3SFs) and Scenario V (2AFs + 4SFs).

In order to evaluate the feasibility and capability of the proposed FFT + UMPCA algorithm,
the MPCA, UMPCA, and FFT + MPCA techniques are also discussed and analyzed. The datasets of
the experiments using the algorithms MPCA, UMPCA, FFT + MPCA, and FFT + UMPCA, respectively,

are shown in Tables 5 and 6. In Table 5, X{VIP CA X{\fﬂj CA X{\ﬁp CA X%P CA and XMPCA are the tensor

datasets for the MPCA algorithm under scenarios I, I, ITI, IV and V, respectively. X{JMP CA XILI’MP CA

X]LIIIMP CA XK,MP CA X%,[MP CA denote the tensor datasets for the UMPCA algorithm under scenarios I, II, I1I,

IV,and V, respectively. In Table 6, XfFT#»MPCA/ XﬁFTJrMPCA/ Xﬁ§T+MPCA' X55T+MPCA/ and X€FT+MPCA

represent the tensor datasets for the FFT + MPCA algorithm under scenarios I, II, III, IV, and V,

respectively. XfFT+ LIMPCA, XﬁFT+ LIMPCA/ XﬁlfT+ UMPCA/ XfFT+ UMPCA/ and XI\Z/FT+ UMPCA are the tensor

\Y
datasets for the FFT + UMPCA algorithm under scenarios I, II, I, IV, and V, respectively.
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Table 5. Datasets of experimentations with AWGN noises based on different topologies of the
data-driven methodologies: MPCA and UMPCA.

Data Sets with AWGN Noises Based on Different Topologies of
Name of

Experimentation Types Data-Driven Methodologies

MPCA UMPCA
FE + 1AF + 3SFs 9 X{VIPCA € R1440,000x4x9000} XIUMPCA € R122,000x80x9000}
FF + 1AF + 4SFs 3 XMPCA ¢ RI440,000x4x3000} XUMPCA ¢ RI22,000x80x3000)
FF + 2AFs + 2SFs 7 XMPCA ¢ RI440,000x4x7000} XUMPCA ¢ Ri22,000x80x7000}
FF + 2AFs + 3SFs 5 XMPCA ¢ RI440,000x4x5000) XUMPCA ¢ RI22,000x80x5000)
FF + 2AFs + 4SFs ) XMPCA ¢ RI440,000x4x2000} XUMPCA ¢ RI22,00080x2000}

Table 6. Datasets of experimentations with AWGN noises based on different topologies of the
data-driven methodologies: FFT + MPCA and FFT + UMPCA.

Data Sets with AWGN Noises Based on Different Topologies of
Name of

¢ . Types Data-Driven Methodologies
Experimentation
FFT + MPCA FFT + UMPCA
EF + 1AF + 3SFs 9 XFFT+MPCA ¢ RISSOB00x4x9000)  FFTHUMPCA ¢ R{100x220x80x9000)
FF + 1AF + 4SFs 3 XFFT+MPCA ¢ RISSOXB00x:3000)  FFT-HUMPCA ¢ R{100x220x80x3000)
FF + 2AFs + 2SFs 7 XFFT+MPCA ¢ p(550x800x4x7000)  yFFT+UMPCA  Rp{100x220x80X7000}
111 it

FF + 2AFs + 3SFs 5 XFETHMPCA ¢ RISS0X800x4:5000]  RFET+UMPCA ¢ R{100x220x50x5000)
FF + 2AFs + 4SFs 5 XFFTHMPCA ¢ RISSOXB00xx2000)  FFT-HUMPCA ¢ R{100x220x80x2000)

Simulations were operated under the environment of Windows Server 2016 Technical Preview
5 OS and software MathWorks MATLAB R2018a, and run on a server with DELL PowerEdge C6100
4 Nodes Server Dual Intel Xeon 5670, Hex-Core, 2.93 GHz CPU, 384 GB memory, and 3 TB storage
(Overall: 48-Core CPU, 1.50 TB Memory, and 36 TB Storage).

5. Simulation Results

5.1. Time-Domain Space Characteristics of Wind Turbine Benchmark Systems

The curves displayed in Figure 9a—-d show the time-domain responses of the four measurement
outputs f, wg, @y, and 7g under fault-free, and various faulty conditions of the actuator and sensor faults,
including ‘EL’, ‘'SWD’, ‘RN, ‘EL + SWD’, ‘EL + RN’, 'SWD + RN’, and ‘EL + SWD + RN’, respectively.

From Figure 9a-c, one can see that the curves are difficult to distinguish between fault-free
and faulty situations. In Figure 9d, from 0-2300 s, it is impossible to find differences among the
fault-free and faulty cases. From 2300-4400 s, one can see the fault-free curve is distinguishable from
the faulty curves; however, it is hard to see the differences between the faulty curves. As a result,
fault classification and diagnosis techniques are needed. It is noted that the overall simulated time
of the 4.8 MW wind turbine benchmark system is 4400 s with the interval of 0.01 s. Consequently,
the dimension of each experimental sample is 440,001.
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(a) Output response of the pitch angle f under healthy and faulty conditions, respectively.
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(b) Output response of the generator speed w, under healthy and faulty conditions, respectively.
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(c) Output response of the rotor speed w, under healthy and faulty conditions, respectively.

Figure 9. Cont.
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(d) Output response of the generator torque 7, under healthy and faulty conditions,
respectively.

Figure 9. Output responses of four sensor outputs f, wg, wy, and 7, respectively, under healthy and
multiple faults operation conditions occurring between 0 and 4400 s: (a—d).

5.2. Feature Extractions and Fault Classifications for Scenario I

’

Data Set for Scenario I: In this data set, it includes ‘FF’ samples and eight types of ‘1AF + 3SFs
samples. The detailed information is shown in Figure 6—Scenario I. In order to validate the
effectiveness of the proposed algorithm by comparison, four types of tensor datasets are established,
which are Xi\/IPCA € RI440,000x4x9000} XIUMPCA € RI22,000x80x9000} XfFT+MPCA € RI550x800x4x9000}
and XIF FIHUMPCA ¢ RI100x220x80x9000} respectively. The detailed information can be found in Tables 5 and 6.

For Xf/fp CA ¢ RI440000x4x9000}; “440,000” represents the dimensionality of the feature subspace,
‘4’ stands for the dimensionality of the parameter subspace, and ‘9000" illustrates the dimensionality
of the sample subspace; for X}’IMP CA ¢ RI122,000x80x9000}. “22 00(’ represents the dimensionality of the
feature subspace, ‘80" stands for the dimensionality of the parameter subspace, and “9000” illustrates
the dimensionality of the sample subspace.

For XIHE THMPCA ¢ RIS50x800x4x9000};  The original data set X; € R#40000x36000} js nrojected

into a frequency-domain subspace and reshaped into a tensor data representation XIF FI+MPCA ¢

RIP50x800x4x9000} for the FFT + MPCA algorithm, where ‘4’ stands for the dimensionality of the
parameter subspace, ‘9000” illustrates the dimensionality of the sample subspace, and ‘500 x 800" is
the size of the reshaped feature matrix. For XIF FTHUMPCA ¢ R1100x220x80x9000}; The original data set
X1 € RI#40,000x36,000} j5 projected into a frequency-domain subspace and reshaped into a tensor dataset
XFFTHUMPCA ¢ R{100x220x80x9000} for the FFT + UMPCA algorithm.

Fault classification under scenario I is shown by Figures 10 and 11. Comparing Figure 10 with
Figure 11, one can see that the three-dimensional space visualization results in Figure 11 are better
than those in Figure 10. One can see, in Figure 11, that only two types of faulty condition cannot be

distinguished, which are ‘{A1 & (S2 + S3 + S4)}" and "{A2 & (52 + S3 + S4)}’, respectively.
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Figure 10. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to single actuator fault and three sensor faults under AWGN noises, using (a) MPCA and (b)
UMPCA, respectively.
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Figure 11. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to single actuator fault and three sensor faults under AWGN noises, using (a) FFT + MPCA
and (b) FFT + UMPCA, respectively.
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Specifically, from Figure 10a, the data generally cluster in three large groups, by using the MPCA
algorithm, indicating a poor classification performance. To see the details, one can see one of the
overlapping occurs between ‘Fault Free’ and ‘{A1 & (S1 + S3 + S4)}’, and the other exists between
{Al & (52 + S3 + S4)} and “{A2 & (S2 + S3 + S4)}’. Moreover, the rest of the five classes of faulty
situations indistinguishably cluster together. From Figure 10b based on the UMPCA, the visualized
results cluster around more groups, but are still unsatisfactory for classification.

From Figure 11a,b, one can see that both methods, that is, FFT + MPCA and FFT + UMPCA,
can successfully classify seven classes of faulty/heathy conditions. It is noticed that the spatial
distance amongst these generated features in Figure 11a is closer than that in Figure 11b in the
corresponding three-dimensional space. In other words, there are larger distances between different
faulty data in Figure 11b comparing with Figure 11a, indicating a better classification performance of
the FFT + UMPCA algorithm. As a result, it is evident that the proposed FFT + UMPCA algorithm
outperforms the MPCA, UMPCA, and FFT + MPCA for fault classification under scenario I.

5.3. Feature Extractions and Fault Classifications Based under Scenario I

’

Data Set for Scenario II: In this data set, it is composed of ‘FF’ samples and two types of ‘1AF + 4SFs
samples. The detailed information is shown in Figure 6—Scenario II. In order to evaluate the
effectiveness of the proposed algorithm by comparison, four types of datasets are constructed,
which is XMPCA ¢ R[44O,000><4><3OOOE, XEIMPCA e R[22,OOO><8O><3OOOI, XEFT+MPCA c R(550><800><4><3000},
and XIFIF THUMPCA ¢ RI100x220x80x3000}  respectively. All the detailed information can be found in
Tables 5 and 6.

For XMPCA ¢ RI#40000x4x3000]; *440,000” represents the dimensionality of the feature subspace,
‘4’ stands for the dimensionality of parameter subspace, and ‘3000” illustrates the dimensionality of
the sample subspace. For XILIIMP CA ¢ RI22000x80x3000}; 3 000" represents the dimensionality of the
feature subspace, ‘80" stands for the dimensionality of the parameter subspace, and “3000” illustrates
the dimensionality of the sample subspace.

For Xﬁp THMPCA ¢ RIS50x800x4x3000); The original data set Xy € RI#40000x12000} jg projected into

a frequency-domain subspace and reshaped into a tensor dataset XIFI}T THMPCA ¢ RIS50x800x4x3000} for the

FFT + MPCA algorithm. For X]/T+UMPCA ¢ RI100x220x80x3000}; The original data set Xy € R1440.000x12,000}

XFFT+ UMPCA e
I

is projected into a frequency-domain subspace and reshaped into a tensor dataset
R1100x220x80x3000} for the FFT + UMPCA algorithm..

In this section, Figures 12 and 13 illustrate the three-dimensional space visualization performance
for fault classification for wind turbine systems subjected to an actuator fault and four sensors
faults simultaneously under AWGN noises, respectively using MPCA, UMPCA, FFT + MPCA,
and FFT + UMPCA. From the simulated result observation, all types of faulty condition can only
be successfully classified by using the FFT + MPCA and FFT + UMPCA methodologies. Therefore,
FFT has a positive impact on the improvement of the performance of the dimensionality reduction and
feature extraction.

Specifically, from Figure 12a,b, the data sets cluster in a distributive way, although the UMPCA
performs a bit better in classification. Encouragingly, from Figure 13a,b, the data sets cluster in
three clear groups, indicating a clear fault classification and diagnosis for the three faulty/healthy
conditions concerned. From Figure 13b, it is interesting to observe the data in the same group shape
distinguishably. It is noted that faulty data in this study includes seven types of faults, such as
effectiveness loss, sinusoidal faults, and random number disturbances and so forth, and the fault-free
data are subjected to stochastic noises. Therefore, the classification by using the FFT + MPCA can
recognize the difference between the data in the same large group. In other words, Figure 13b can also
reflect the intrinsic properties of the original samples of the 4.8 MW wind turbine benchmark system.
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Figure 12. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to single actuator and four sensor faults under AWGN noises, using (a) MPCA and (b)
UMPCA, respectively.
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Figure 13. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to the single actuator and four sensor faults under AWGN noises, using (a) FFT + MPCA and
(b) FFT + UMPCA, respectively.
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5.4. Feature Extractions and Fault Classifications under Scenario 111

’

Data Set for Scenario I1I: In this data set, it includes ‘FF’ samples and six types of 2AFs + 2SFs
samples. The detailed information is shown in Figure 7—Scenario III. In order to validate the
effectiveness of the proposed algorithm by comparison, four types of datasets are addressed,
which is X%PCA € RI440,000x4x7000} XEIIA/IPCA € RI22,000x80x7000} XIFII;T+MPCA € RI550x800x4x7000)
and X[ TTUMPCA ¢ RUI00X220XE0<7000]  respectively. All the detailed information can be found in
Tables 5 and 6.

For Xfﬁp CA ¢ RI440000x4x7000}; 440,000 represents the dimensionality of the feature subspace,
‘4’ stands for the dimensionality of the parameter subspace, and ‘7000” illustrates the dimensionality
of the sample subspace. For XILI[IMP CA g RI22,000x80x7000}; 22 000" represents the dimensionality of the
feature subspace, ‘80" stands for the dimensionality of parameter subspace, and ‘7000” illustrates the

dimensionality of the sample subspace.

For XFFT+MPCA c R[550><800><4><7000}. R|44O,000><28,000
il :

| is projected into
550%800x4x7000}

The original data set Xy €
a frequency-domain subspace and reshaped into a tensor dataset Xﬁf THMPCA ¢ Ri
for using the FFT + MPCA algorithm. For XIFI§T+UMP CA ¢ RI100x220x80x7000}; The original data set
Xy € R1440,000x28,000} jg projected into a frequency-domain subspace and reshaped into a tensor dataset
XEFTHUMPCA ¢ Ri100x220x80x7000} for the FFT + UMPCA algorithm.

In this section, Figures 14 and 15 exhibit the three-dimensional space visualization performance
for fault classification for wind turbine systems subjected to two actuator faults and two sensor faults
simultaneously under AWGN noise corruption, respectively by using MPCA, UMPCA, FFT + MPCA,
and FFT + UMPCA.
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(a) Classification using MPCA

Figure 14. Cont.
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Figure 14. Three-dimensional space visualization performance for fault classification for wind turbines

subjected to two actuator and two sensor faults under AWGN noises, using (a) MPCA and (b)
UMPCA, respectively.
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Figure 15. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to two actuator and two sensor faults under AWGN noises, using (a) FFT + MPCA and (b)
FFT + UMPCA, respectively.

From Figure 14a, it is shown that two large groups are formed in the corresponding
three-dimensional space based on the MPCA method. It is observed that the overlapping occurs
between ‘{(Al + A2) & (S1 + S3)}" and ‘{(Al + A2) & (S3 + S4)}’, and another overlapping happens
among ‘Fault Free’, {(Al + A2) & (S1 + S2)}, ‘{(Al + A2) & (S1 + S4)}’, "{(Al + A2) & (S2 + S3)})’,
and ‘{(Al + A2) & (52 + S4)}’. From Figure 14b based on the UMPCA technique, the visualization
performance, with more formed data groups, is slightly better than that using the MPCA but is far
from acceptable for classification.

Seven classes of faulty/healthy situations were successfully classified respectively by using the
FFT + MPCA shown in Figure 15a and FFT + UMPCA exhibited by Figure 15b. More interesting,
Figure 15b can clearly reflect the intrinsic properties of the original samples of the wind turbines,
which indicates the FFT + UMPCA approach can also sense different types of faults in every single
faulty situation.

5.5. Feature Extractions and Fault Classifications Based under Scenario IV

Data Set for Scenario IV: In this data set, it consists in ‘FF' samples and four types of
2AFs + 3SFs’ samples. The detailed information is shown in Figure 8—Scenario IV. In order to
evaluate the effectiveness of the proposed algorithm by comparison, four types of datasets are
determined: X%PCA € RI440,000x4x5000} XK]MPCA € RI22,000x80x5000} Xf\I;T+MPCA € RI550x800x4x5000}
and XIF\fT'*'UMP CA ¢ RI100x220x80x5000}  respectively. All the detailed information can be found in
Tables 5 and 6.

For X?{I/P CA ¢ RI440000x4x5000}; 440,000" represents the dimensionality of the feature subspace,
‘4’ stands for the dimensionality of the parameter subspace, and ‘5000" illustrates the dimensionality
of the sample subspace. For XK/MP CA g RI22000x80x5000}; 22 000" represents the dimensionality of the
feature subspace, ‘80" stands for the dimensionality of the parameter subspace, and ‘5000" illustrates
the dimensionality of the sample subspace.
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For X[[THMPCA ¢ RISS0x800x4x5000); The original data set Xiy € RI#0000x20000} jg projected into
a frequency-domain subspace and reshaped into a tensor representation XF5T+MP CA ¢ RI550x800x4x5000)
for the use of the FFT + MPCA algorithm. For Xf\fT*'UMP CA ¢ RI100x220x80x5000}; The original data
set Xy € R#40000x20,000} j5 projected into a frequency-domain subspace and reshaped into a tensor
representation XIF\fT'*' UMPCA ¢ RI100x220x80x5000} for the implementation of the FFT + UMPCA technique.

In this subsection, Figures 16 and 17 exhibit the three-dimensional space visualization performance
for fault classification for wind turbine systems subjected to two simultaneous actuator faults and three
simultaneous sensors under AWGN noise corruptions, by using the MPCA, UMPCA, FFT + MPCA,
and FFT + UMPCA algorithms, respectively.
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Figure 16. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to two actuator and three sensor faults under AWGN noises, by using (a) MPCA and (b)
UMPCA, respectively.
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Figure 17. Three-dimensional space visualization performance for fault classification for wind turbines

subjected to two actuator and three sensor faults under AWGN noises, (a) FFT + MPCA and (b)
FFT + UMPCA, respectively.

From Figure 16a based on the MPCA, the data are clustering around three large sets, while in
Figure 16b using the UMPCA, the data are clustering in a more distributed way. Both of the visualized
results in Figure 16a,b fail to classify and diagnose the faults.
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From Figure 17ab, faulty conditions can be successfully classified by both FFT + MPCA
and FFT + UMPCA algorithms. Specifically, it is worthy to point out that the corresponding
three-dimensional space visualization behaviours in Figure 17a,b shape differently in comparison with
Figure 16a,b, respectively. From what is exhibited in Figure 17a, one can see that the FFT + MPCA
methods outperform the MPCA. The reason behind this is that the intrinsic structures of the
obtained experimental data sets were reconstructed by using Fourier transform bases. Additionally,
these samples are mapped into the multi-dimensional frequency-domain subspace, which means the
visualized performance/behaviour are different from the MPCA-based circumstances. Furthermore,
the performance of the FFT + UMPCA in Figure 17b is much better than that based on the UMPCA in
Figure 16b. Consequently, the FFT has a positive impact on the improvement of the performance of the
fault classification and diagnosis. From Figure 17b, one can see that the FFT + UMPCA approach can
also recognize the differences of data in the same group.

5.6. Feature Extractions and Fault Classifications Based under Scenario V

Data Set for Scenario V: In this data set, it is combined by ‘FF’ and ‘2AFs + 4SFs’ samples. The detailed
information is shown in Figure 8—Scenario V. In order to validate the effectiveness of the proposed
algorithm by comparison, four types of datasets are built: XMPC4 ¢ RI#0000x4x2000]  xUMPCA ¢
R{ZZ,OOOXSOXZOOO]’ XffFTJrMPCA e R[550X800X4X2000], and XI\:]FT+UMPCA e R{100><220><80><20005, respectively.
All the detailed information can be found in Tables 5 and 6.

For X\’\;”j CA g RI440000x4x2000}; 440,000 represents the dimensionality of the feature subspace,
‘4’ stands for the dimensionality of the parameter subspace, and 2000” indicates the dimensionality
of the sample subspace. For X\L/[MP CA g RI22,000x80x2000}; 22 000" represents the dimensionality of the
feature subspace, ‘80" stands for the dimensionality of the parameter subspace, and ‘2000” represents
the dimensionality of the sample subspace.

For X{fTHMPCA ¢ RISS0x800x4x20001; The original data set Xy € RI#0000x80001 js projected into

a frequency-domain subspace and reshaped into a tensor dataset Xf/F THMPCA ¢ RI550x800x4x2000)

for the use of the FFT + MPCA algorithm. The original data set Xy € R#40000x8000} jg projected
into a frequency-domain subspace and reshaped into a tensor representation Xf/F THUMPCA ¢
R1100x220x80x2000} for the FFT + UMPCA technique.

Figures 18 and 19 show the three-dimensional space visualization performance for fault
classification for wind turbine systems subjected to two simultaneous actuators faults and four
simultaneous sensors faults corrupted by AWGN noisy signals, respectively using different algorithms,
such as MPCA, UMPCA, FFT + MPCA, and FFT + UMPCA.

From Figure 18a based on the MPCA, the faulty-data cluster in 10 groups, and one of them is
overlapped with the fault-free data, indicating unsuccessful fault classification. From Figure 18b
based on the UMPCA technique, the visualization performance is relatively better than that using
the MPCA, as there is no overlapping between the faulty-data and fault-free data. However,
the performance in Figure 18b is still not satisfactory, since the distances between the faulty-data are
too large and the distances between the fault-free data and some of the faulty-data are quite close.

From Figure 19a, one can see that FFT + MPCA method has a much better classification performance
than the MPCA, shown in Figure 18a, as the faulty data and fault-free data are clearly classified into
two separated groups by using FFT + MPCA. Comparing Figure 19b by using FFT + UMPCA to
Figure 18b via the UMPCA, the faulty data and fault-free data are separated into two large groups
in Figure 19b, showing a clear classification between the faulty data and fault free data. As a result,
it is evident that the FFT has a positive impact on the improvement of the performance of the fault
classification and diagnosis. In addition, from Figure 19b, the data in the same group are not clustered
so close compared with Figure 19a. As the faulty data is a combination of the data subjected to different
types, such as effectiveness loss, sinusoidal fault signal, random number disturbances, and so forth,
this means the FFT + UMPCA can sense the difference between these data.
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Figure 18. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to two actuator and four sensor faults under AWGN noises, using (a) MPCA and (b)
UMPCA, respectively.
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Figure 19. Three-dimensional space visualization performance for fault classification for wind turbines
subjected to two actuator and four sensor faults under AWGN noises, using (a) FFT + MPCA and (b)
FFT + UMPCA, respectively.

It is noted that the MPCA approach determines a tensor-to-tensor projection that captures most of
the signal variation present in the original tensor representation, whereas, the UMPCA method uses
the tensor-to-vector projection. For the MPCA technique, some of the correlations of the principal
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components among the projected directions are neglected to some extent. Compared with MPCA,
UMPCA can exclude the possibilities of getting significant features with similar geometric structures,
depending on the methodology of tensor-to-vector projection. The reason behind is that the UMPCA
algorithm concentrates on extracting and determining the uncorrelated principal components rather
than the conventional principal components in the MPCA technique. Moreover, the FFT preprocessing
technique can enhance the data classification capability of the UMPCA. As a result, this is why the
proposed FFT + UMPCA can effectively classify the fault under all five scenarios above.

6. Conclusions

In this paper, fast Fourier transform (FFT) and uncorrelated multi-linear principal component
analysis (UMPCA) techniques were integrated for fault classification of the 4.8 MW benchmark wind
turbine systems subjected to multiple actuator and sensor faults under five scenarios of actuator and
sensor faults. The detailed comparison studies were carried out, and the effectiveness of the proposed
algorithm was well demonstrated. It is worthy to point out, among all the used algorithms, the FFT
has a positive impact on the improvement of the performance of the fault diagnosis and classification.
The proposed FFT plus UMPCA algorithm can not only classify the various classes of faulty conditions
but can also recognize the differences between the data within the same class.

In the future, it is of interest to investigate data-driven fault prognosis and remaining useful life
prediction for wind turbine systems. It is also promising to enhance fault diagnosis and prognosis
performance by using hybrid methods (by integrating various data-driven fault diagnosis/prognosis
methods or even by combining model-based approaches and data-driven based methods).
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Abstract: In this paper, we developed a control chart methodology for the monitoring the mean
time between two events using the belief estimator under the neutrosophic gamma distribution.
The proposed control chart coefficients and the neutrosophic average run length (NARL) have been
determined using different process settings. The performance of the proposed chart is compared
with the control chart under classical statistics in terms of NARL using the simulation data and
real example. From comparisons, it is concluded that the proposed chart is efficient, effective and
adequate to be used under uncertainty environment than the chart under classical statistics.

Keywords: control chart; fuzzy logic; neutrosophic statistic; incomplete data; belief statistic;
gamma distribution

1. Introduction

The control chart is an important tool of Statistical Process Control (SPC) used in production
processes for monitoring the quality of the products and effective in defect prevention. The diagnosis
and correction of many production problems which often cause huge loss to the production unit can
substantially be improved with the utilization of the effective control chart technique [1]. Once the
control chart is established from the initial observations of the interested quality characteristic normally
known as the Phase-I control limits and revised according to monitoring parameters with the prime
objective of the maintaining the repute of the product in the market and the profit maximization.
In the quick monitoring of the quality of the product in this era of fast technology, being used in
the production units, a minute delay can result in the production of a huge amount of defective
items or items which need reworking. To maintain the production process at the required quality
level, the continuous improvement of the production process and the identification of sources of
the variation are the prime objectives of any process monitoring scheme [2]. Vigilant monitoring is
demanded by the production process to identify the root cause and preventing it from reoccurring
of unwanted situation. The Shewhart control charts are technically the most sophisticated tool for
monitoring such unusual changes in the processes Montgomery [3]. The tool of a control chart is used
for the need of conducting timely corrective action if any abnormality creeps into the production
process [4]. Fuzzy transformation methods to determine the tightness of the inspection for the linguist
data are a valuable development [5]. The belief estimator has been thoroughly defined and discussed
by Fallah Nezhad and Akhavan Niaki [6]. Variable control charts are developed when the characteristic
under study is continuous in nature. The best-fitted distribution is the normal distribution for the
continuous data when collected in groups or when the form of the distribution is known. In general,
there are many instances when the data are not collected in the form of the groups or the shape of the
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distribution is skewed or unknown. When this occurs then the use of normal distribution may lead
to erroneous results. The most commonly suggested distribution for this type of data is the gamma
distribution. The study of control charts using the gamma distribution has been explored by many
authors, for instance, see references [7—13]. The Shewhart control charts also known as the classic
control charts are used to analyze variations in the quality characteristic when the collected data are
quite exact and precise. However, the collected data may not always be so clear and exact in practice.
We observe that uncertainty is a natural phenomenon which is associated with the human world, for
which researches are continuously struggling for devising chart to address the uncertainty through
probability theory or the fuzzy set theory. Also, the data collected from the human subjectivity cannot
be treated as the exact numeric data and the construction of the control limits based upon such data
will lead to erroneous conclusions. The construction of the control chart for such vague data can be
best represented by using the most common logic of fuzzy control charts [14]. The fuzzy logic deals
with data of the situation, which is, not clear, ambiguous or not well defined. The fuzzy logic is a
special case of the neutrosophic statistic (see Smarandache [15]). In the literature of quality control,
the fuzzy control charts are developed when the data are vague, incomplete, ambiguous and not well
defined [16]. The notion of fuzzy sets was exposed by Zadeh [17]. The use of the fuzzy concept in
the control chart literature started when Wang and Raz [18] published their paper. They applied two
approaches to the construction of control charts for linguistic data. The linguistic data can provide
thorough investigation than the binary classification used in attribute control charts. Raz and Wang [19]
provided more results from the findings of Wang and Raz [18]. Taleb and Limam [20] proposed three
sets of membership functions with different degrees of fuzziness for the fuzzy and probabilistic models
using the average run lengths for comparisons. Kanagawa and Tamaki [21] developed control charts
for the process average and process variability based on linguistic or imprecise data. Erginel and

Sentiirk [22] developed the fuzzy control chart for monitoring the food industry using fuzzy X and S.
El-Shal and Morris [23] suggested a fuzzy rule-based algorithm for quality improvement monitoring
through control charts. Rowlands and Wang [24] studied the fuzzy logic operation and its functioning
in the control chart literature. Giilbay and Kahraman [1] used the a-cut control charts for the tightened
inspection of observation for the fuzzy sets. Aslam [25] developed a sampling plan for the Neutrosophic

statistics under the process loss index. Senturk and Erginel [26] constructed the fuzzy X-Rand X-5
charts with the a-cuts. Sentiirk [27] developed the fuzzy regression control chart for the a-cut fuzzy
numbers. Kaya and Kahraman [28] proposed a fuzzy control chart for process capability analysis
based upon fuzzy measurements. Broumi and Smarandache [29] studied the correlation coefficient of
the interval Neutrosophic set. Senttirk and Erginel [16] developed a fuzzy exponentially weighted
moving average chart for univariate data with a real case application.

As mentioned by Smarandache [30] that the neutrosophic logic which considered the measure
of indeterminacy is an extension of the fuzzy logic. The neutrosophic statistics which is based on
neutrosophic numbers is the generalization of classical statistics and has been used under uncertainty,
see Smarandache [31] and Smarandache [32]. The Neutrosophic statistics is the extension of the classic
statistics used to analyze the data of vague, undefined, imprecise, incomplete, and indeterminate nature
in opposition to the clear, certain, and crisp observations or parameters in which classical statistics is
suitable, (see [32] and [25]). Due to wide application of the neutrosophic statistics, several authors applied
itin various fields. Neutrosophic Statistical Numbers were introduced in [32], page 11. Chenetal. [33] and
Chen et al. [34] introduced the neutrosophic statistical numbers to measure the rock roughness. Aslam [25]
introduced the neutrosophic statistical quality control. Aslam [35] proposed a neutrosophic reliability
plan. Aslam [36] designed the plan for the exponential distribution using neutrosophic statistics.
Aslam [37] presented a neutrosophic attribute sampling plan. Aslam et al. [38] proposed the attribute
control chart using neutrosophic statistics. Aslam et al. [39] worked on neutrosophic variance chart.
Aslam et al. [40] proposed the chart for the gamma distribution under the neutrosophic statistics.
Aslam [41] proposed the plan with measurement error in uncertainty. Aslam and Arif [42] worked on
sudden death tests under the uncertainty. Aslam and Raza [43] designed the neutrosophic plan for
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multiple manufacturing lines. Peng and Dai [44] has given the bibliographic review of the Neutrosophic
statistics for the last two decades. Peng and Dai [45], initiated a new axiomatic definition of single-valued
neutrosophic distance measure and proposed a novel measure. More literature on Neutrosophic can be
seen in [46-51].

In this paper, a control chart scheme has been developed for monitoring the mean time between
two events under the neutrosophic statistics using the belief estimator for the NGD which according to
the best knowledge of the authors has not been explored by any researcher. It is mentioned here that
the proposed chart is reduced to the classical chart when no parameter is obtained as vague, imprecise,
indeterminate or incomplete. Gao, Cecati, and Ding [52] provided a sophisticated state-of-the-art
overview on data-driven and machine learning based fault detection and diagnosis approaches.
The proposed control chart will indicate the change in the process mean and will be helpful to correct
the fault during the process. The rest of the paper is organized as: the design of the proposed chart is
explained in Section 2. In Section 3 the simulation study of the proposed scheme has been discussed.
In Section 4 the application of the proposed chart has been explained by using a real-world example.
In the last section, the conclusion of the proposed chart has been described.

2. The Neutrosophic Gamma Distribution

The neutrosophic gamma distribution (NGD) is introduced by Aslam et al. [40]. Let Te([Tr, Ty
be the neutrosophic random variable (NRV) of size nye[n, ny] of the quality of interest that follows
the NGD, where T;, and Ty are the lower and upper failure times of the indeterminacy interval.
The neutrosophic cumulative distribution function (ncdf) of the NGD with two neutrosophic parameters
anelar, ay] and bye(br, by], where anelar,ay] is the shape parameter and byelbr, by] is the scale
parameter is given by

e bn by
P(TN < tN) =1- Z _ TNe[TL, Tu}, IlNe[IZL,Ilu}, bNG[bL, bu} 1)

The NGD is the generalization of the several distributions. The NGD reduces to neutrosophic
exponential distribution when aye([1, 1], see [36]. The NGD reduced to exponential distribution under
classical distribution when a;, = a; and by, = by;. According to Wilson and Hilferty [53] using the
transformation of Ty, = Tll\]/ 3 TI*VE[T’L, T&] in the NGD tends to form the approximate neutrosophic
normal distribution, see Smarandache [32], with the mean and variance can be described as:

b3 (ay + 1/3)
wry = E(Ty) = NT ; Tne[ T3, Ty, anelar,aul, byelbr, bul @)

T 2 T 1
GT;]—b}\,/S\/ (an + /3)_( (any +1/3

2
F(IZN) r(uN) )) ; uNe[aL,uu], bNE[bL, bu] (3)

So, the approximate neutrosophic normal distribution of T} ; T;\]e[T*, TU] is given as:

T(an) T(an) T(an)
anelar, ay], byelbr, by)

- N(b}fr(aN + 1/3),17%{3[”””] +2/3) (r(m +1/3) )2

); The|T7, Ty, @

3. Designing of the Proposed Chart

Suppose that a single observation of the quality of interest is collected at every iteration or subgroup
with nye[1, 1] then the kth observation of Tk,, and Ok, = Tn1, Tn2, TN3 - - - - - - , Tnk be defined as the kth
iteration. We define the posterior belief and the prior belief as B(OKN) and B(OKN_l) respectively with
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Oky = (TNK, OKN—I)- The new observed variable T}, = Tll\l/3; T;\Ie[TZ' Ta] is updated using B(OKN)
and B(OKN,l) for the posterior belief using the following equation
T;v’“T*N
B(OKN_1)e TN
T;\f”T;\]

B(OKN_l)eW + (1 - B(OKN—l))

B(Oky) = B(Tiy, Oxy-1) = s Tnel 7, T ©)

The variable Ty, is given without the subscript Ky just for the purpose of simplicity. Using a

new statistic based upon B(OKN) and B(OKN—l) suggested by Fallah Nezhad and Akhavan Niaki [6]
given as:

B(Oxky )
Ziy = —— L ®)
1-B(Oky)
The recursion relation is given as
TNTHTY,
Ziy = Ziy—1e N 7)

Let the initial value of B(Op) = 0.5 and Zy = 1 then according to Fallah Nezhad and Akhavan
Niaki [6] the statistic proposed below follows the normal distribution with mean 0 and variance
knelkr, ky]. Thus the neutrosophic lower and upper control limits of the proposed chart can be
written as:

UCLy = Ly vkn 8)
LCLy = —Ly vky )

Using the Equations (8) and (9) the control coefficient Lye[Ly, L] is computed for the specific
level of type-I error and the predefined in-control average run length values.

3.1. The Proposed Chart

The procedure of the proposed control chart can be summarized using the following steps:
Step 1: Measure the quality characteristic Tk, of the kth subgroup selected at random.
Find Ty = Tll<£/ % and then calculate

T, — ur
In(Zky) = In(Zgy—1) + K”UT—KNKN (10)

Step 2: If LCLy < ln(ZkN) < UCLy, Declare the process in-control and if ln(ZkN) > UCLy or

ln(ZkN) < LCLy then the process is declared as out-of-control.

For the purpose of calculating different measures of the in-control and out-of-control processes
we suppose that the scale parameter of the gamma distribution is not constant while other parameters,
i.e., shape parameter, is declared as a constant parameter. Let boy and by be the in-control and the
out-of-control values of the shape parameter respectively then the probability of declaring the process
as out-of-control when the process is in-control may be defined as

P((’)lltN = P{ll’l(ZkN) < LCLN'bN = bON} + P{ll’l(ZkN) > UCLN‘I?N = bON} )
(11

Vi Vi

—1- @N(UCLN) " cp(@



Processes 2019, 7, 209

where @ (x) denotes the cumulative distribution function of neutrosophic standard normal distribution,
see Smarandache [31].
Finally, Equation (11) reduces to

P, =1-®(Ly) + ®(-Ly) (12)

It is to be noted that P?

o 18 independent of Ky.

3.2. Neutrosophic Average Run Length for In-Control Process

As mentioned above the neutrosophic average run length (NARL) is defined as the average
number of samples before the process is indicated as the out-of-control. It is used very commonly
in the literature of the control chart for the evaluation and the comparison of the proposed control
chart [3]. Two types of ARLs has been used by the quality control researchers as the in-control ARL is
denoted by ARL( and the out-of-control is denoted by ARL; [54]. More literature on ARL can be seen
in references [55-62].

The NARLy of the proposed chart can be calculated as

NARLy =

(13)
out,N

3.3. Neutrosophic Average Run Length for Shifted Process

Now we develop the procedure for the shifted process. Here we suppose that a shift in the scale
parameter of the gamma distribution is introduced to observe the efficiency of the proposed scheme in
quick detection of this shift. It is to be noted that the NARL of the in-control process (NARLy) is some
predefined value of 200, 300, and 370 based upon the false alarm rate which is larger values while
NARL of the shifted process (NARL;) should be smaller values for the more efficient proposed chart.
Now let by = sby is the shift in the scale parameter of the gamma distribution with a shift constant is s.
Then the mean and variance of the T;\]e[Tz, T’{l] fort the shifted process can be determined as:

13 bON1/3 T(any + 1/3).

E(Ty|bin) = s o) Tyl T3 Ty (14)

T 2/3 r 1/3
Var(Ty|b) = 2% bon®? (ay + 2/ )_( (any + 1/3)

T(an) T'(an)

2
) },- Tye| 17, Ty ] (15)
Then the mean and variance of ln(ZkN) at byy can be calculated as:

T(ay +1/3) (51/3 _ 1)

T'(a
E[ln(ZkN)|b1N) = kN (@) ;kNe[kL/ ku} (16)
T(ay +2/3) (F(uN + 1/3))
T(ay) T(ay)
Var(ln(ZkN)|b1N) = kns?/3; knelke, ku] 7)

The probability of shifted process to declare as an out-of-control process at kth subgroup is
calculated as:

Piut,kN = P{ln(ZkN) < LCLN‘bN = blN} + P{lﬂ(ZkN) > UCLN‘bN = blN};kNdkL/kU}

18
= P{in(Zy,) < -Ln \/m‘bN = bin} + P{in(Zy,) > Ln «/mbN = blN};kNe[kL, kul (18)
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Finally, we have

e o i OO e k)
NV Iay +2/3) _(r(aN +1/3) )2 NI (ay +2/3) _(r(uN + 1/3))2
1 _q_ T(an ) T(ay ) T(an ) Tlan ) .
Pout,kN =1l-° Vins2/3 +9P Vins2/3 ’ (19)
knelkr, ku]

The probability of declaring out-of-control at (k + j)th subgroup when the process shift occurs at
k is expressed as

— = 1 1 1 1
P{RL - ]} - (1 - Pout,kN+1)(1 - Pout,kN+2) e (1 - Pout,kN+j—1 )Pout,kNJrj (20)
where RL is a random variable representing NARL;.
Therefore, ARL; under the proposed control chart is given as:
_pl 1 1 1 1 1
NARLy = Pout,kN+l + 2(1 - poltt,kN+1)Potlt,kN+2 + 3(1 - Pnltt,kN+1) (l - Pnltt,kN+2)paut,kN+3 e (20)

Note here that the formulae in Equation (1) to Equation (21) under the neutrosophic statistics is the
generalization of the formulae in Aslam et al. [63].

To determine the control coefficient Ly, NARL( denoted by (rnp)and the NARL; using the
above-mentioned methodology, the following stepwise algorithm can be described as:

Step 1: Choose a range of control coefficient Ly

Step 2: Calculate Ly such that ARLon > rno

Step 3: For a fixed level of ky and various shift constants s calculate P;u oy using Equation (19).

Step 4: Calculate the values of ARLyy for a fixed ky for various shift constants s.

Using the above mentioned methodology, an R-language code program was written and run for
different parameters such that aye[1, 1], ane[5, 5] and ane[10,10] and using different in-control NARL
values as rone[200, 200], rone[300,300] and rone[370, 370] and different shift levels as s = 4.00, 3.00, 2.80,
2.50, 2.25,2.00, 1.90, 1.80, 1.70, 1.60, 1.50, 1.40, 1.30, 1.20, 1.10, 1.00, 0.80, 0.75, 0.70, 0.60, 0.50, 0.40, 0.30,
0.25,0.15, 0.10, and 0.05. The NARL; values are determined and given in Tables 1-4.

Table 1. The values of neutrosophic average run length (NARL) when aye[1.95,2.05] and kye[3, 5.

kn [28071,2.8141] |  [2.935429416] |  [3.0003,3.0012]
s NARL

4.00 [1.28,1.06] [1.32,1.07] [1.34,1.07]
3.00 [1.76,1.24] [1.88,1.28] [1.95,1.31]
2.30 [1.98,1.34] [2.13,1.40] [2.22,1.43]
2.50 [2.50,1.58] [2.75,1.68] [2.89,1.73]
225 [3.27,1.97] [3.67,2.13] [3.91,2.22]
2.00 [4.75,2.74] [5.48,3.05] [5.92,3.22]
17.90 [5.74,3.28] [6.71,3.70] [7.29,3.93]
1.80 [7.13,4.05] [8:47,4.66] [9.28,4.98]
1.70 [9.18,5.24] [11.1,6.12] [12.26,6.61]
1.60 [12.32,7.12] [15.19,851] [16.96,9.28]
1.50 [17.4,10.34] [21.93,12.67] [24.76,13.98]
1.40 [26.08,16.27] [33.74,20.51] [38.61,22.94]
1.30 [41.89,28.25] [55.90,36.86] [64.99,41.90]
1.20 [72.12,54.92] [99.88,74.68] [118.35,86.58]
1.10 [127.96,115.71] [185.0,165.6] [224.15,196.69]
1.00 [200.02,204.41] [300.17,306.26] [370.82,371.83]
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Table 1. Cont.

kn [2807128141] |  [2935429416] |  [3.0003,3.0012]
s NARL
0.80 [152.58,98.67] [227.95,143.72] [281.1517231]
0.75 [119.34,67.59] [177.29,97.32] [218.11,116.09]
0.70 [90.73,45 44] [134.07,64.61] [164.56,76.64]
0.60 [49.26,19.71] [71.88,27.17] [87.73,31.78]
0.50 [24.63,8.22] [35.26,10.86] [42.65,12.45]
0.40 [11.21,3.44] [15.56,4.26] [18.55,4.75]
0.30 [4.64,1.60] [6.10,1.82] [7.09,1.95]
025 [291,1.22] [3.68,132] [419,137]
0.15 [1.27,1.00] [14,1.01] [1.49,1.01]
0.10 [1.03,1.00] [1.05,1.00] [1.07,1.00]
0.05 [1.00,1.00] [1.00,1.00] [1.00,1.00]
Table 2. The values of NARL when aye[1.95,2.05] and kye|8, 10].
kn [2.8071,2.8164] ‘ [2.9354,2.9436] ‘ [2.9997,3.007]
s NARL
400 [L.01,1] [.01,1] [L.01,1]
3.00 [1.07,1.02] [1.08,1.03] [1.09,1.03]
2.80 [1.11,1.04] [1.13,1.05] [1.14,1.05]
250 [1.23,11] [127,1.12] [1.29,1.13]
225 [1.43,1.22] [15,1.26] [1.54,1.28]
2.00 [1.86,15] [2.01,1.59] 2.1,1.64]
1.90 217,171] [2.38,1.83] 2519]
1.80 [2.63,2.02] [2.93221] [3.1,231]
170 [3.34,257] [3.8,281] [4.07,2.97]
1.60 [4.51,3.36] [5.25,3.83] [5.69,4.1]
150 [6.58,4.88] [7.87,5.72] [8.64,6.22]
140 [10.58,7.92] [13.06,9.6] [1457,10.61]
130 [19.27,14.85] [24.68,18.73] [28.06,21.11]
120 [40.86,33.47] [54.79,44.29] [63.76,51.16]
1.10 [99.7,91.45] [141.65,128.72] [169.75,153.39]
1.00 [200.01,205.94] [300.2,308.26] [370.01,379.03]
0.80 [63.82,47.69] [91.14,66.87] [109.64,79.63]
0.75 [39.6,27.68] [55.57,37.96] [66.28,44.72]
0.70 [244,16.13] [33.57,21.58] [39.66,25.12]
0.60 [9.26,5.74] [12.14,7.23] [14.01,817]
050 [3.69,2.34] [4.54,2.74] [5.07,2.98]
0.40 [1.71,1.27] [1.94,1.36] [2.08,1.42]
030 [1.09,1.01] [1.14,1.02] [1.16,1.03]
0.25 [1.02,1.00] [1.03,1.00] [1.03,1.00]
0.15 [1.00,1.00] [1.00,1.00] [1.00,1.00]
0.10 [1.00,1.00] [1.00,1.00] [1.00,1.00]
0.05 [1.00,1.00] [1.00,1.00] [1.00,1.00]
Table 3. The values of NARL when ayne[0.95,1.05] and kye(3, 5].
kn [2.8071,2.8142] ‘ [2.9352,2.9392] ‘ [2.9997,3.0056]
s NARL
400 [2.09,1.4] [2.24,1.45] [2.32,1.49]
3.00 [334,2.02] [3.71,2.17] [3.92,2.26]
2.80 [3.86,2.29] [4.33,2.49] [4.61,2.61]
250 [5.04,2.93] [5.78,3.25] [6.21,3.43]
2.25 [6.74,3.88] [7.88,4.38] [8.56,4.69]
2.00 [9.78,5.66] [11.74,6.58] [12.92,7.15]

65



Processes 2019, 7, 209

Table 3. Cont.

kn [2.807128142] |  [2935229392] |  [29997,3.0056]
s NARL
1.90 [11.71,6.34] [14.24,8.05] [15.76,8.81]
1.80 [1433,85] [17.66,10.15] [19.69,11.19]
1.70 [17.99,1091] [22.52,13.24] [2531,14.73]
1.60 [23.25,14.56] [29.63,18] [33.6,20.23]
150 [31.1,20.36] [40.43,25.71] [46.32,29.23]
140 [43.21,30.06] [57.47,38.92] [66.63,44.84]
1.30 [62.46,47.23] [85.32,62.95] [100.27,73.63]
1.20 [93.37,78.73] [131.5,108.66] [156.99,129.57]
.10 [140.64,134.1] [204.74,192.56] [248.65,234.62]
1.00 [200.02,204 48] [300.01,303.91] [370.04,377.32]
0.80 [238.37,175.18] [365.34,260.87] [455.85,324.45]
075 [220.33,142.4] [338.02,211.22] [422.1,262.24]
0.70 [197.09,112.31] [302.88,166.02] [378.67,205.82]
0.60 [147.18,65.42] [227.51,95.98] [285.52,118.6]
0.50 [101.86,34.98] [158.66,50.71] [200.09,62.32]
040 [64.33,16.86] [100.95,23.93] [127.95,29.12]
030 [35.38,7.15] [55.76,9.77] [70.97,11.66]
0.25 [24.24,4.43] [38.16,5.86] [48.62,6.88]
0.15 [8.68,1.64] [13.36,1.93] [169,2.13]
0.10 [4151.12] [6.10,1.20] [7.59,1.26]
0.05 [1.60,1.00] [2.05,1.00] [2.39,1.00]
Table 4. The values of NARL when aye[0.95,1.05] and kye(8, 10].
kn [2.8071,2.8145] ‘ [2.9354,2.9399] ‘ [2.9998,3.0019]
s NARL

£.00 [1.18,1.07] [1.21,1.08] [1.22,1.08]
3.00 [1.551.27] [1.64,132] [1.68,1.34]
2.80 [1.72,1.38] [1.83,1.44] [1.90,1.47]
250 [2.13,1.64] [2.32,1.74] [2.42,1.80]
25 [2.76,2.05] [3.062.22] [3.24,2.32]
2.00 [3.97,2.87] [453,3.20] [4.86,3.39]
1.90 [4.78,3.43] [5.54,3.88] [5.98,4.14]
.80 [5.95,4.25] [7.00,4.89] [7.62,5.25]
1.70 [7.68,5.50] [9.20,6.43] [10.10,6.97]
160 [10.37,7.48] [12.67,8.94] [14.06,9.79]
150 [14.79,10.84] [18.49,13.27] [20.7714.71]
140 [225417] [28.94,214] [32.96,24.07]
130 [37.13,29.36] [49.22,38.19] [56.97,43.67]
1.20 [66.38,56.51] [91.46,76.54] [107.95,89.33]
.10 [123.82,117.26] [178.57,166.92] [215.76,199.71]
1.00 [200.02,204.72] [300.15,304.57] [370.2,372.66]
0.80 [133.37,103.02] [197.81,149.39] [242.69,180.6]
0.75 [100.03,71.35] [147.26,102.35] [180.06,123.11]
0.70 [73.11,48.45] [106.83,68.69] [130.19,82.17]
0.60 [36.85,21.38] [52.88,29.45] [63.9,34.75]
050 [17.23,9.02] [24.08,11.93] [28.73,13.8]
040 [7.48,3.76] [10.03,4.69] [11.73,5.28]
030 [B3.10,1.71] [3.89,1.96] [4402.11]
025 [2.02,1.28] [2.42,1.39] [2.67,1.46]
0.15 [1.09,1.00] [1.14,1.01] [1.18,1.01]
0.10 [1.00,1.00] [1.01,1.00] [1.01,1.00]
0.05 [1.00,1.00] [1.00,1.00] [1.00,1.00]
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From Tables 1-4, we note that the indeterminacy interval of NARL decreases when
knelkr, ky] decreases. We also note the increases trend in indeterminacy interval of NARL when
anelar, ay| decreases.

4. Advantages of the Proposed Chart

For the data having some ambiguous observations, Chen et al. [33] mentioned that the method
which provides the parameters in an indeterminacy interval is said to be more efficient and effective to
be applied than the method which provides the determined value of the parameters. Related to the
control chart theory, a control chart which provided the smaller values of NARL is called the efficient
control chart, see Aslam et al. [38]. Now we discuss the advantages of the proposed control chart over
the control chart proposed by Aslam et al. [63] under classical statistics.

4.1. By NARL

To compare both control chart in terms of NARL, the values of NARL are reported for the same
values of control chart parameters. Let NARL = ARL; 4+ IARLy, where ARL; denotes the values of
ARL of the chart under classical statistics and Ie[infl, infU] be the indeterminacy interval. Table 5 is
presented for both control chart when ane[0.95,0.95] and kye[8, 8]. From Table 5, it can be noted that
the proposed control provides the values of NARL in the indeterminacy interval while the existing
control chart proposed by Aslam et al. [63] provides the determined values of ARL. For example, when
s = 1.50, the indeterminacy interval from the proposed chart is NARL = 14.77 + [14.77; Ie[0,0.4122].
The value of ARL from [63] chart is 20.76. It means that when s = 1.50, the control chart will be
out-of-control between 14th and 20th sample. By comparing both the control chart, it is concluded that
the proposed control chart under uncertain situations is more effective than the control chart proposed
by Aslam et al. [63].

Table 5. Comparison of average run length values at different levels of shift when a = 0.95 and k = 8.

s Control Chart [63] The Proposed Chart
ARLs NARL

4.00 1.178764 1.206864 1.2224 [1.18,1.07] [1.21,1.08] [1.22,1.08]
3.00 1.550192 1.635354 1.68279 [1.55,1.27] [1.64,1.32] [1.68,1.34]
2.80 1.720708 1.833704 1.896919 [1.72,1.38] [1.83,1.44] [1.90,1.47]
2.50 2.133142 2.317927 2.422306 [2.13,1.64] [2.32,1.74] [2.42,1.80]
2.25 2.757243 3.061253 3.23504 [2.76,2.05] [3.06,2.22] [3.24,2.32]
2.00 3.967114 4530703 4.858373 [3.97,2.87] [4.53,3.20] [4.86,3.39]
1.90 4.783924 5.539304 5.982269 [4.78,3.43] [5.54,3.88] [5.98,4.14]
1.80 5.950011 6.99735 7.617622 [5.95,4.25] [7.00,4.89] [7.62,5.25]
1.70 7.680794 9.193211 10.09918 [7.68,5.50] [9.20,6.43] [10.10,6.97]
1.60 10.37155 12.66559 14.058 [10.37,7.48] [12.67,8.94] [14.06,9.79]
1.50 14.79182 18.4856 20.76225 [14.79,10.84] | [18.49,13.27] | [20.77,14.71]
1.40 22.53872 28.93451 32.94814 [22.54,17] [28.94,21.4] [32.96,24.07]
1.30 37.12749 49.20506 56.94885 [37.13,29.36] | [49.22,38.19] | [56.97,43.67]
1.20 66.37585 91.41983 107.9055 [66.38,56.51] | [91.46,76.54] | [107.95,89.33]
1.10 123.8084 178.4871 215.6592 [123.82,117.26]| [178.57,166.92]| [215.76,199.71]
1.00 200 300 370.0001 [200.02,204.72]| [300.15,304.57] [370.2,372.66]
0.80 133.3607 197.7073 242.5684 [133.37,103.02]| [197.81,149.39]] [242.69,180.6]
0.75 100.0185 147.1854 179.9717 [100.03,71.35] | [147.26,102.35]| [180.06,123.11]
0.70 73.10437 106.7805 130.1201 [73.11,48.45] | [106.83,68.69] | [130.19,82.17]
0.60 36.84876 52.85517 63.86527 [36.85,21.38] | [52.88,29.45] [63.9,34.75]
0.50 17.23191 24.06818 28.71763 [17.23,9.02] [24.08,11.93] [28.73,13.8]
0.40 7.479311 10.02559 11.72831 [7.48,3.76] [10.03,4.69] [11.73,5.28]
0.30 3.097514 3.884251 4.398122 [3.10,1.71] [3.89,1.96] [4.40,2.11]
0.25 2.023985 2417816 2.672091 [2.02,1.28] [2.42,1.39] [2.67,1.46]
0.15 1.090389 1.144401 1.180756 [1.09,1.00] [1.14,1.01] [1.18,1.01]
0.10 1.003689 1.008166 1.011881 [1.00,1.00] [1.01,1.00] [1.01,1.00]
0.05 1.000 1.000 1.000001 [1.00,1.00] [1.00,1.00] [1.00,1.00]
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4.2. By Simulation

Control charts are used for monitoring the process for unusual changes in the process. The proposed
scheme has been developed for the efficient monitoring of the mean time of the process under uncertainty
environment. The proposed control chart has been examined using the simulation data of the mean
time between two events. The first 20 neutrosophic observations are generated from the neutrosophic
gamma distribution with neutrosophic parameters Ky = [3,5], ay = [1.95,2.05] and by = [2,2.2]. The next
20 observations are generated from the same distribution with s = 1.50. The gamma distributed
data is transformed into a neutrosophic normal distribution using the transformation T}, = Tll\]/ 5,
At these parameters, the tabulated value of ARLN;€[24.76,13.98]. It is expected that the process will be
out-of-control between 14th sample and 24th sample. We plotted the values of statistic ln(ZkN) on the
control chart in Figure 1. From Figure 1, it is clear that the first shift is at the 38th sample. The values of
ln(ZkN) are also calculated for Aslam et al. [63] and plotted in Figure 2. From Figure 2, we note no shift
indication in the process. By comparing both control charts, it is concluded that the proposed control
chart provides the values of NARL in indeterminacy interval and gives the quick indication about the
shift in the process as compared to the existing sampling plan. A quick indication in the shift in the
process helps industrial engineers to identify the cause of variation which resulted in minimizing the
non-conforming items.
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Figure 1. The proposed chart for the simulated data.
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Figure 2. The existing chart for the simulated data.

5. Real Example

The application of the proposed control will be given in the healthcare department. Healthcare
practitioners are interested in applying the proposed control chart for the monitoring of urinary tract
infections (UTI) among male patients in a large hospital. A similar study was done by Santiago and
Smith [64] and Aslam et al. [63] using classical statistics. The UTIs data is measured with the help
of measurement devices. Therefore, there is a chance that observations are more fuzzy or imprecise.
Under this uncertainty situation, the application of the existing control chart under classical statistics
may mislead healthcare practitioners in monitoring the UTIs. Therefore, the proposed control chart
is quite reasonable to apply for the monitoring of the UTIs infection. The neutrosophic data, which
follows the gamma distribution with aye[1.95, 2.05] and bye(2, 2.2] is reported in Table 6.

The control limits are calculated as follows: UCLy = Ly Vky; UCLye[-5.19,-6.71] and
LCLy = —Ly Vkyn; LCLNe[5.19,6.71]. We set the initial value of Zg = 1 and B(Op) = 0.5. As,
Ty—bry,

or*

Ziy = ZkN_lexp( ) which yield Z;, €[0.985, 54.568]. The values of neutrosophic statistic In(Zj, )

are plotted in Figure 3. From Figure 3, we note although the process is an in-control state, the 16th
sample and 33rd sample are near the control limits which indicate some issue in the process. The values
of ln(ZkN) under classical statistics are also plotted in Figure 4. From Figure 4, it can be seen that
only one point is near to control limit. By comparing both charts, it is concluded that the proposed
control chart indicates that there is some issue in the process which should be identified. Therefore,
the proposed control is more beneficial to be applied for the monitoring of UTIs inspection among
male patients.
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Table 6. The data for a real example.

Sr. # B(k) z(k) In(zk)

1 [0.496,0.982] [0.985,54.568] [=0.015,3.999]
2 [0.968,0.261] [30.555,0.353] [3.42,-1.04]

3 [0.922,0.252] [11.788,0.338] [2.467,~1.086]
1 [0.403,0.290] [0.675,0.408] [~0.393,-0.897]
5 [0.432,0.654] [0.761,1.891] [=0.274,0.637]
6 [0.096,0.652] [0.106,1.872] [~2.247,0.627]
7 [0.490,0.988] [0.962,83.351] [-0.039,4.423]
3 [0.204,0.264] [0.256,0.358] [~1.363,—1.028]
9 [0.287,0.820] [0.403,4.546] [-0.908,1.514]
10 [0.325,0.519] [0.481,1.078] [=0.732,0.075]
1 [0.795,0.904] [3.885,9.443] [1.357,2.245]

i) [0.396,0.941] [0.656,15.825] [-0.421,2.762]
3 [0.740,0.049] [2.843,0.051] [1.045,—2.974]
14 [0.361,0.017] [0.564,0.017] [-0.572,—4.048]
15 [0.084,0.331] [0.091,0.496] [~2.393,—0.701]
16 [0.972,0.278] [34.857,0.385] [3.551,-0.956]
17 [0.849,0.109] [5.611,0.122] [1.725,~2.101]
18 [0.932,0.06] [13.683,0.064] [2.616,—2.75]

19 [0.752,0.086] [3.028,0.094] [1.108,-2.364]
20 [0.293,0.621] [0.414,1.64] [-0.883,0.495]
21 [0.924,0.304] [12.2,0.436] [2.501,-0.829]
22 [0.631,0.636] [1.709,1.748] [0.536,0.558]

23 [0.859,0.611] [6.108,1.572] [1.810,0.452]

24 [0.863,0.812] [6.296,4.306] [1.840,1.460]

25 [0.279,0.983] [0.388,59.465] [—0.947,4.085]
26 [0.208,0.191] [0.263,0.236] [-1.337,—1.445]
27 [0.691,0.232] [2.236,0.303] [0.805,—1.195]
28 [0.052,0.896] [0.055,8.661] [~2.908,2.159]
29 [0.659,0.608] [1.936,1.551] [0.660,0.439]

30 [0.252,0.981] [0.337,50.315] [-1.087,3.918]
31 [0.186,0.221] [0.229,0.283] [-1.475-1.262]
32 [0.968,0.286] [29.788,04] [3.394,—0.916]
33 [0.324,0.279] [0.479,0.387] [-0.736,-0.95]
34 [0.791,0.157] [3.78,0.186] [1.33,~1.684]

35 [0217,0.812] [0.277,4321] [—1.284,1.464]
36 [0.08,0.942] [0.086,16.316] [~2.449,2.792]
37 [0.246,0.273] [0.327,0.376] [-1.119,-0.979]
38 [0.398,0.914] [0.66,10.644] [~0.415,2.365]
39 [0.625,0.358] [1.665,0.557] [0.51,—0.586]

40 [0.720,0.286] [2.569,0.400] [0.944,-0.916]
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Figure 3. The proposed chart for the real data.
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6. Conclusions

In this article, a control chart for the belief statistic under the gamma distribution has been presented
when the interested quality characteristics of the process are imprecise, incomplete and vague. Although
there are numerous techniques available in the literature like the fuzzy logic the proposed scheme is
effective in dealing with vague information. The control limits have been determined for different
settings of the parameters and different levels of process shifts. In this paper, the average run lengths for
many settings of the proposed technique have been tabulated. The comparison of the proposed chart
with the existing chart for different process shifts have been tested and it has been observed that the
proposed chart is an effective addition in the toolkit of the quality control experts. We conclude that the
proposed control is more robustness in detecting cause of variation in the process than the chart under
classical statistics in uncertainty. The proposed chart can further be extended for other probability
distributions, see, for example, references [65] and [66], particularly for the multivariate case.
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Abstract: The main sensitivity parameters of the Holmquist-Johnson—Cook constitutive model for
coal were obtained from a variety of tests such as uniaxial compression, uniaxial cyclic loading,
splitting and triaxial compression tests, as well as the indirect derivation equation of a briquette. The
mechanical properties of briquettes under dynamic impact were investigated using a split Hopkinson
pressure bar experiment. Based on the experimental measurement of the Holmquist-Johnson-Cook
constitutive model, the numerical simulation of briquette was performed using ANSYS/LS-DYNA
software. A comparison between experimental and simulation results verified the correctness of
simulation parameters. This research concluded that the failure of briquette at different impact
velocities started from an axial crack in the middle of the coal body, and the sample was swollen
to some extent. By the increase of impact velocity, the severity of damage in the coal body was
increased, while the size of the coal block was decreased. Moreover, there was good compliance
between experimental and simulated stress wave curves in terms of coal sample failure and fracture
morphology at different speeds. Finally, the parameters of the validated Holmquist-Johnson-Cook
constitutive model were applied to the numerical simulation model of the impact damage of heading
face and the process of coal seam damage in the roadway was visually displayed. The obtained
results showed that the Holmquist-Johnson-Cook constitutive model parameters suitable for the
prominent coal body were of great significance for the improvement and exploration of the occurrence
mechanism of coal and rock dynamic disasters.

Keywords: Holmquist-Johnson-Cook constitutive model of briquette; parameter acquisition; split
Hopkinson pressure bar experiment; numerical simulation

1. Introduction

China is the largest energy consumer in the world and its main energy resource is coal. With the
increase in the depth and intensity of coal mining activities, a variety of coal-rock dynamic disasters
such as coal and gas outbursts, rock bursts, and large-scale pressure on stope, have become more
serious and safety production problems have also arisen [1,2]. Coal and gas outbursts and rock bursts
are common dynamic disasters in coal mine rocks. Due to their sudden and transient vibration and
great destructive characteristics, these phenomena often cause serious casualties and resource waste,
which seriously restrict the national economic development of China [3].

In order to understand the mechanism of coal rock dynamic disasters such as rock bursts,
researchers have recently carried out a large number of experimental studies on the dynamic and static
mechanical properties of coal. Xue [4] carried out orthogonal experiments of triaxial stress with CHy
seepage, and a complete stress—strain relationship and the corresponding evolution of volumetric strain
and permeability were obtained. Cai [5] carried out multistage uniaxial compression creep tests on
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lean and raw coal samples and found that in the multistage creep process, the coal samples were first
hardened, then weakened, and finally failed due to crack growth. Li’s [6] tests on gas seepage in raw
coal under three paths were carried out with a seepage tester under triaxial stress conditions. It was
found that the permeability was subjected to the dual influence of stress and damage accumulation.

Currently, split Hopkinson pressure bar (SHPB) technology is widely applied in the investigation
of the dynamic mechanical properties of materials [7-9]. Zhao [7] used an SHPB system to measure
the semi-circular bending of incision and investigated the crack propagation fractal characteristics of
coal seams under impact loads. His results showed that the existence of bedding had a significant
impact on crack propagation. Feng [8] used SHPB to carry out dynamic load tests on coal samples
and analyzed their dynamic and energy consumption characteristics. Li [9] used SHPB to study the
impact failure of coal at impact velocities of 4.174-17.652 m/s and investigated the variation of different
mechanical parameters such as stress, strain, incident energy, and dissipated energy.

Due to the limitations of experimental methods and equipment, the existing experimental findings
on coal impact damage are seriously insufficient, and it is impossible to accurately determine stress
and strain changes inside coal rock samples at the impact moment [4-10]. However, through numerical
simulations, the deformation and stress changes of coal during coal and gas outbursts could be
visualized [11-14], and dynamic load tests carried out under limited laboratory conditions were
supplemented and improved. The Holmquist-Johnson—Cook (HJC) constitutive model is a concrete
constitutive model based on large strain, a high strain rate, and high pressure that was proposed by
Holmquist [15]. This constitutive model has been successfully applied to the numerical simulation of
dynamic impact damage of concrete, rock, and other materials [16-19]. Due to the similarity of the
mechanical properties and dynamic failure processes of coal and rock, the HJC constitutive model
could be used to numerically simulate the impact damage of coal.

Considering the similar mechanical properties of coal rock, ordinary rock, and concrete materials,
Xie [20] used the HJC constitutive model to test coal samples. He also used finite element software
LS-DYNA (one of the most commonly used explicit simulation software for the numerical simulation
of explosion and shock) numerical simulation to demonstrate the SHPB process of coal impact failure
at different impact velocities and found that simulation results were consistent with experimental
measurements. Li and Wang [21,22] employed the HJC constitutive model to numerically simulate a
SHPB experiment and passive confining pressure test of coal using LS-DYNA. The stress waveform
of coal rock samples during the impact test, the oscillation of stress waves, and the damage of
the test specimen were reproduced, and it was found that simulation results complied well with
experimental findings.

Many researchers have provided HJC constitutive model parameters for various concretes, but
to the best of our knowledge, no parameter values have been proposed for coal. In the numerical
simulation of coal, basic parameters can be directly obtained, and the remaining parameters are
generally considered to be the same as concrete model parameters, which decreases the accuracy
of numerical simulation results. Therefore, it is essential to understand the mechanism of coal/rock
dynamic disasters by studying the dynamic mechanical parameters of coal to propose a systematic
method to determine HJC constitutive model parameters for coal outbursts.

In this paper, the parameters of the HJC constitutive model for briquette are studied using
experimental and numerical simulation methods. HJC constitutive model parameters for briquette
were obtained through a series of experiments. SHPB experiments were carried out and the impact
damage of coal was numerically simulated using ANSYS/LS-DYNA software. Numerical simulation
results and experimental findings were analyzed to verify the reliability of the HJC constitutive model
parameters for briquette. The validated HJC constitutive model parameters were applied to the
numerical simulation of the impact damage of tunnel face, and the failure process of coal seam in the
roadway was visually displayed. The research findings are of great significance for improving and
exploring the mechanism of coal-rock dynamic disasters.
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2. Parameters of the HJC Constitutive Model

The HJC constitutive model contains 19 parameters and two additional parameters exist in
LS-DYNA software, for a total of 21 parameters [15]. These parameters were divided into five
categories: basic parameters, strength parameters, pressure parameters, damage parameters, and
software parameters (Table 1).

Table 1. Holmquist-Johnson—-Cook (HJC) constitutive model material parameter classification.

Category Parameter Name Symbol
Density Po
Shear modulus G

Basic material parameters . . - .
Quasi-static uniaxial compressive strength fe
T

Maximum stretching hydrostatic pressure

Normalized cohesive strength A
Normalized pressure hardening coefficient B
Material strength parameters Pressure hardening index N
Strain rate coefficient C
Maximum normalized intensity Smax
Volume pressure at crushing point rc
Volumetric strain at crushing point e
Pressure at compaction point P
Material pressure parameters Volumetric strain at compaction point up
Pressure constant ky
Pressure constant ko
Pressure constant ks
Minimum plastic strain at material failure point €fmin
Material damage parameters Damage parameter Dy
Damage parameter D,
Software parameter Referer‘lce strain rate 5.0
Failure type fs

In order to obtain specific values for the 21 parameters of the coal HJC constitutive model shown
in Table 1, uniaxial compression, uniaxial cyclic loading, and splitting and triaxial compression tests
were carried out according to previously reported methods [23,24]. Some other parameters could not
be obtained because of the limitations of experimental conditions and lack of experimental data. Due
to the low sensitivity of some parameters, coal HJC constitutive model parameters could be used for
estimating the values [20].

3. Coal Sample Preparation

The coal samples used in this research were obtained from Yongcheng Cheji Coal Mine, Henan
Province, China, which is an outburst coal seam. The coal samples were high-quality anthracite with
ultra-low sulfur, ultra-low phosphorus, medium ash, and high calorific values. The coal moisture
M,gq was 0.81%, ash content Ay was 11.6%, and total volatile V4,f was 9.07%. A large-volume coal
mass was crushed using a heavy hammer, and the obtained pieces were placed in a ball mill to be
pulverized. The pulverized coal sample with particle diameter of 0.25 mm or below was screened
out [25]. To achieve the strength required for the experiment, 1000 g pulverized coal and 200 g coal tar
were uniformly mixed to prepare coal samples. Standard cylindrical coal samples with a diameter
of 50 mm and length of 100 mm as well as disc-shaped coal samples with a diameter of 50 mm and
thickness of 25 mm were obtained by pouring the prepared pulverized coal into separate molds and
pressing them under a pressure of 250 KN on a WAW-type electro-hydraulic servo press device (Jinan
Tianchen Testing Machine Manufacturing Co., Ltd., Licheng District, Jinan City, Shandong Province,
China). A total of 22 cylindrical and 4 disc-shaped coal samples were prepared (Figure 1), and the
basic parameters of the briquettes were assumed to be as summarized in Tables 2 and 3.
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(a) Preparation of briquette coal sample. (b) Preparation of disctype coal samples
Figure 1. Preparation of briquette coal sample.

Table 2. Parameters of cylindrical briquette coal samples.

Sample No Quality/g Length/mm Diameter/mm  Density/g.cm~1
XM-01 258.4 100.50 51.70 1.225
XM-02 256.7 100.46 51.60 1.222
XM-03 255.1 100.52 51.60 1.214
XM-04 257.3 100.20 51.70 1.223
XM-05 255.6 100.27 51.70 1.214
XM-06 250.4 95.40 51.70 1.250
XM-07 251.5 96.25 51.58 1.251
XM-08 255.0 99.40 51.62 1.226
XM-09 256.3 97.37 51.60 1.259
XM-10 254.5 96.60 51.60 1.260
XM-11 252.0 99.78 51.70 1.203
XM-12 251.9 100.25 51.65 1.199
XM-13 254.4 100.06 51.60 1.216
XM-14 254.0 99.60 51.57 1.221
XM-15 253.9 100.34 51.70 1.205
XM-16 252.7 95.70 51.67 1.259
XM-17 255.1 100.40 51.60 1.215
XM-18 252.6 98.15 51.57 1.232
XM-19 253.7 98.32 51.70 1.229
XM-20 253.9 98.28 51.60 1.236
XM-21 254.1 99.95 51.60 1.216
XM-22 250.8 96.07 51.70 1.244

Table 3. Parameters of disc-type briquette samples.

Sample No Quality/g Length/mm Diameter/mm
YP-01 68.3 25.40 52.30
YP-02 68.7 26.24 52.36
YP-03 68.2 25.18 52.00
YP-04 68.0 24.64 52.40

As shown in Figure 2, a compression-mirror analysis was conducted on press-formed briquette
samples using a KYKY-EM6200 tungsten filament scanning electron microscope.
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Tungsten filament scai
) Digital image
electron microscopeé
processing system

Figure 2. KYKY-EM6200 tungsten filament scanning electron microscope.

The strength of a briquette sample is closely related to its microstructure. If the gel content of
the briquette sample is high, crystal development is enhanced, crystal distribution is more uniform,
and briquette sample strength is higher [26]. The microstructure of the prepared briquette can be
visually evaluated using scanning electron microscopy, as shown in Figure 3. It can be seen that
the microstructure of coal samples had changed from granular to lamellar, and irregularly shaped
crystals and gels were evenly distributed throughout the layered structure, indicating that the prepared
briquette samples were well cemented, with high uniformity and strength. A large number of
on-site experiments have shown that most prominent dangerous coal seams contain soft delamination
with severe structural damage [27]. The structural strength of briquette samples conformed to soft
stratification properties with high uniformity.

SE KYKY-EMBP00

g "4 Ay lemm DE SR EWER -
(a) Scanning electron microscope images of coal (b) Scanning electron microscope images of coal
samples at 200 times magnification samples at 2000 times magnification

Figure 3. Scanning electron microscope images of the prepared coal samples.

4. Determination of Coal HJC Constitutive Model Parameters

The parameter values of the HJC constitutive model for coal were obtained from experimental tests,
equation derivations, and literature references. Uniaxial compression and cyclic loading experiments
as well as splitting and triaxial compression tests were performed using a multifunctional three-axis
testing machine in the State Key Laboratory of Geotechnical Mechanics and Underground Engineering
at the China University of Mining and Technology (Beijing) (Figure 4).
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Figure 4. Multifunctional triaxial testing machine.

4.1. Determination of the Value of Parameter fc

The value of the uniaxial compressive strength parameter f- was obtained through a uniaxial
compression test. Five uniaxial compression tests were carried out, and three sets of effective data were
obtained. Based on the obtained data, the stress—strain curves of briquette samples under uniaxial
compression were plotted. The curves are shown in Figure 5.

—Radial strain] 25¢ 30
n l—Radial strain|

30¢

Stress(MPa)

Stress(MPa)
Stress(MPa)

L L L L L L L s

-0 <05 00 05 10 15 20 25 3.0
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Strain(%) Strain(%) Strain(%)
(a) Uniaxial Compressive Stress-  (b) Uniaxial Compressive Stress-  (c) Uniaxial Compressive Stress-
Strain Curve of No.1 Briquette. Strain Curve of No.6 Briquette. Strain Curve of No.15 Briquette.

Figure 5. Uniaxial compression stress—strain curve.

As shown in Table 4, the value of the uniaxial compressive strength parameter fc of the sample
was obtained from the peak point of the stress—strain curve.

Table 4. Uniaxial compression test results.

Sample No Compressive Peak Axial Peak Radial Elastic Poisson’s Ratio
p : Strength/MPa Strain/10-2 Strain/10~2 Modulus/MPa
XM-01 2.54 2.51 -0.81 101.19 0.32
XM-06 2.05 1.95 -0.75 105.13 0.38
XM-15 2.39 2.43 -0.89 98.35 0.37

According to the experimental results presented in Table 4, the mean value of the three samples

was considered as the value of uniaxial compressive strength parameter f¢ for the briquette sample,
which was 2.33 MPa.
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4.2. Determination of the Value of Parameter T

A splitting test was required to obtain the value of the uniaxial tensile strength parameter T.
The test equipment used for the splitting of coal samples was the same as that used for the uniaxial
compression test. Samples were disc-shaped with a diameter of 50 mm and length of 25 mm. The
axial load was applied by displacement control at a rate of 0.05 mm/min. When a crack appeared on
the surface of the coal sample, the experiment was finished. Sample damage resulting from the four
splitting experiments is shown in Figure 6.

Figure 6. Splitting test specimen failure morphologies.

The load P at the failure point of the sample was obtained from the splitting test, and the tensile
strength T of the sample was calculated using the equation T = 2P/ ndh, where d and /1 are the diameter
and length of the sample, respectively. The values of load P and tensile strength T at the fracture points
of different samples are summarized in Table 5.

Table 5. Sample tensile strength values.

Failure . Tensile
Sample No Load/KN Length/mm Diameter/mm Strength/MPa
YP-01 1.133 25.40 52.30 0.54
YP-02 1.136 26.24 52.36 0.53
YP-03 1.243 25.18 52.00 0.60
YP-04 1.080 24.64 52.40 0.53

According to experimental results presented in Table 5, the mean value of the four samples was
considered as the tensile strength of briquette sample, which was 0.55 MPa.

4.3. Determination of the Values of Parameters € min, D1 and Dy

Damage constant ¢y is the plastic strain at the moment when the minimum strength fracture of
the material is achieved. The acquisition method is given in the literature [15] (Figure 7). Determination
of the value of parameter ¢y, required a uniaxial compression cycle loading experiment, and a
hypothetical failure interface was defined based on the curve drawn by the experimental results. The
failure interface revealed that when the axial strain reached the intersection of the interface and the
strain axis, the sample lost its strength completely, and the strain value was equal to the value of ¢ yn.
When the equivalent fracture strain was achieved, P* = 1/6 and T* could be calculated as T* = T/ fc.
If € fmin < D1(P" + T*)Dz, then Dy = efpin/(1/6 4+ T*). Due to the lack of real data, we assumed that
D, =1.0.
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Figure 7. The acquisition method for parameter ¢ ¢ .

In this test, cylindrical samples with a diameter of 50 mm and length of 100 mm were used. During
the loading process, the briquette samples were first loaded to 70% of their uniaxial compressive
strength and then unloaded to zero at the same rate. Then, loading was repeated and its intensity was
decreased by 10% at each cycle until the sample was destroyed. Uniaxial cyclic loading experiments
were repeated for 5 test specimens. Due to operational error, only two sets of effective data were
obtained. According to the experimental data, the stress—strain curve of the uniaxial compression cycle
loading experiment was plotted, as shown in Figure 8.
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(a) Experimental stress-strain curve of No.16 (b) Experimental stress-strain curve of No.19
briquette under uniaxial cyclic loading briquette under uniaxial cyclic loading

Figure 8. Experimental stress—strain curve of uniaxial cyclic loading.

A hypothetical failure interface was obtained on the stress—strain curve, and its intersection with
the strain axis was considered to be the value of ¢ ¢ i, The parameter values obtained by the above
method are summarized in Table 6.

Table 6. Value of Parameter & f pip.

Sample No Ehmin Average Value
XM-16 0.026
XM-19 0.024 0.025

According to the results presented in Table 6, the damage parameter ¢ ¢ i, takes the average of
the values obtained for the two sets of samples, which is 0.025. Dy = 0.0131 and D, = 1.0 were obtained
according to the method described above.
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4.4. Determination of the Values of Parameters B and N

Normalized pressure hardening coefficient B and pressure hardening index N were obtained by
triaxial compression experiments. In these experiments, the confining pressure was set at 6, = o03. First,
the three axes coordinately load to the values of the confining pressure, and then the confining pressure
was kept constant at 0, = 03. In the next stage, a load was applied along the axial direction until the
sample failed, and the peak value of axial stress 01 was recorded. The calculation of the normalized
pressure hardening coefficient B and pressure hardening index N required hydrostatic pressure P and
principal stress difference Ag, respectively. The hydrostatic pressure P and principal stress difference
Ao were calculated as P = (0 + 203) /3 and Ao = 01 — 03, respectively. A series of values (P*,0") were
obtained by normalizing the values of (P, Ag) according to the equations P* = P/ f; and ¢* = Ad/ fc.
The obtained values were fitted by equation ¢* = BP*N to obtain the values of B and N.

A triaxial compression test was performed using confining pressure at the rate of 0.02 MPa/s.
After a stabilization period, the axial load was applied at the rate of 0.1 mm/min until the sample
failed. Since the strength of the briquette sample was not high, excessively high confining pressures
could break the sample. Therefore, confining pressure gradients were set at 1, 2, 3, and 4 MPa. The
principal stress difference—axial strain curves of the samples using the experimental data obtained
under different confining pressures are shown in Figure 9.
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Figure 9. Curves of different principal stresses at different confining pressures.

The value of hydrostatic pressure P was calculated by equation P = (¢ 4 203)/3, and a series of
(P, Ag) values were obtained. The obtained main stress difference Ao and hydrostatic pressure P were
normalized to obtain a series of values (P*,¢*) (Table 7).

Table 7. Normalized principal stress difference 0* and hydrostatic pressure P*.

Principal Stress Difference/MPa Hydrostatic Pressure/MPa
1.979 1.090
2.876 1.815
3.830 2.570
4.382 3.176

Using the data presented in Table 7, fitting was performed by equation ¢* = BP*N, and the fitting
curve was drawn as shown in Figure 10. The values of B and N were 1.86 and 0.75, respectively.
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Figure 10. Curve of B and N fitting values.

4.5. Determination of the Values of the Remaining Parameters

The average density of the coal samples py, the elastic modulus E, Poisson’s ratio v, volume
pressure at crushing point P, and volumetric strain at crushing point i were mainly derived indirectly
using different equations. Based on the data shown in Table 2, the average density pg of the briquette
samples was 1.228 g/cm3. According to the data summarized in Table 4, the mean value of the three
samples was taken as the elastic modulus and Poisson’s ratio of the briquette samples, which were
101.56 MPa and 0.36, respectively. Shear modulus G was calculated using the equation G = E/2(1 +v)
to be 37.34 MPa. Based on previous literature, the value of P was calculated to be 0.78 MPa using
the equation Pc = fc/3 [14], where uniaxial compressive strength f; was considered to be 2.33 MPa.
Volumetric strain at crushing point jic was obtained to be 0.0064 using the equation pc = Pc/K, where
the bulk modulus K was calculated according to the equation K = E/3(1 — 2v), where the elastic
modulus E and Poisson’s ratio v were assumed to be 101.56 MPa and 0.36, respectively.

The 11 parameters in the HJC constitutive model for coal were determined by experimental
measurements and different equations. Pressure at compaction point P1, volume strain at compaction
point py, pressure constants ky, ky, and k3, normalized cohesive strength A, strain rate coefficient C,
maximum normalized intensity Smax, and some other parameters were determined using a flying
impact test [28]. The remaining parameters were not accessible due to their low sensitivity and limited
experimental conditions. Therefore, their values were considered to be similar to those provided in [20].
Thus, the values of all parameters in the HJC constitutive model were determined, and the results are
shown in Table 8.

Table 8. Coal HJC constitutive model parameter values.

po/g.cm™ G/Pa fc/Pa A B c N Smax D, D, €f min
1.228 37.34x10°  2.33x10° 0.4 1.86 0.005 0.75 7.0 0.0131 1.0 0.025
T/Pa pc/Pa e pi/Pa i ki/Pa ko/Pa ks/Pa & fs

5.5x 10° 7.8 x 10° 0.0064 1x10° 012 8.5x 1010 1.7 x 101 2.08x 10" 60 0.04

5. SHPB Experiment and Numerical Simulation Analysis

5.1. SHPB Experimental Device

Dynamic impact tests on coal samples were carried out using an SHPB test device at China
University of Mining and Technology (Beijing). The SHPB device consisted of a striking rod (bullet), an
incident rod, and a projection rod. As shown in Figure 11, the bullet was a 540-mm long heavy double
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hammer-spun cone with a cone ratio of 310:100:130 [29]. As shown in Figure 12, the experimental
and projection rods had a diameter of 75 mm and length of 2000 mm, and the tested coal sample was
sandwiched between incident and projection rods. The SHPB experiment used coal briquettes with a
diameter of 50 mm and length of 25 mm.

Figure 11. Spinning cone bullet.
[ — e |

High speed camera | [ncident bar

Transmissi on bar

Figure 12. 50 mm split Hopkinson pressure bar (SHPB) experimental device.
5.2. Establishment of Finite Element Model

The finite element model in this work was built according to actual sizes and the components were
all three-dimensional solid elements (Solid164). The finite element model was meshed, and the bullet,
incident and transmission rods were divided into 15 parts along the radial direction. The bullet was
divided into 40 parts along the axial direction, and incident and transmission rods were divided into
200 parts along the axial direction. To more intuitively reflect the impact damage of the test piece, it
was finely meshed and was divided into 30 and 20 parts along radial and axial directions, respectively
(Figure 13).

Coal sample

Incident bar

Transmissi on bar

Figure 13. Establishment of the finite element model.
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The material models of the bullet and compression bars were selected from linear elastic material
models. The main parameters and their values were as follows: density 7800 kg/m?, elastic modulus
2.06 GPa, and Poisson’s ratio 0.36. The coal sample was input into the HJC constitutive model and
its parameter values were determined according to specific values listed in Table 8. The bullet was
attached to the incident rod through an automatic contact between the two faces and the pressure
bar was attached through an erosive contact with the test piece. During numerical simulation, the
friction between contact surfaces was ignored. The value of 2 was taken as the contact stiffness penalty
function factor f.

5.3. Waveform of the Stress Wave

In order to allow comparison with the experimental results, impact velocities in the numerical
simulation were set at 4.732 and 7.267 m/s. Here, taking the stress waveform diagram of the incident
rod and the middle of the projection rod at the impact velocity of 7.267 m/s as examples, experimental
data and numerical simulation results were compared. The obtained results are shown in Figures 14
and 15.
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Figure 14. Experimental results (v = 7.267 m/s).
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Figure 15. Simulation results (v = 7.267 m/s).
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It can be seen from Figures 14 and 15 that the experimentally measured stress wave curve complied
well with that drawn using simulation results, but there was a slight difference in curve volatilities.
This was because the stress wave decayed with time during the propagation of the rod, and the
components used in the experiment had inevitable little defects, which caused the stress wave to be
weakened during propagation. Numerical simulation was carried out under ideal conditions. The
end face of the rod was flat, and frictional force was neglected. Therefore, the stress wave obtained by
numerical simulation was not attenuated, and the obtained stress wave curve was smoother; however,
the peak value of the stress wave obtained by numerical simulation was slightly greater than that
measured in real time. Although there were some differences between the simulation and experimental
results obtained for the stress wave, they were generally consistent. Therefore, simulation results were
considered to be accurate and reasonable.

5.4. Analysis of Coal Rock Damage

The damage process of the coal-rock SHPB experiment was captured with high-speed photography
and compared to the simulated damage process, as shown in Figure 16.

Figure 16 shows that at the impact velocity of 4.732 m/s, the stress wave started to contact the coal
sample at t = 578.93 us. When t = 596.97 us, a part of the coal body failed and obvious axial cracks
appeared in the middle of the sample. When t = 623.97 s, the number of surface cracks in the coal
sample, and therefore the damage intensity, increased. When t = 725.93 s, the coal sample broke
into small pieces. When the impact velocity was 7.267 m/s, the stress wave started to contact the coal
sample at t = 572.99 ps, and the coal body partially failed due to the propagation of the compressive
stress wave. Radial cracks occurred at t = 584.96 s, and when t = 583.96 s, the internal stress of the
sample gradually changed from compressive to tensile stress. At t = 617.98 us, the coal sample was
severely damaged and fell into pieces. At different impact velocities, axial cracks began to appear in
the coal samples, which ultimately resulted in the failure of samples.

It can be seen from the high-speed images that when the impact velocity was 4.732 m/s, the
sample was compressed by pressure, the coal was laterally deformed, and many transverse cracks
were created parallel to the direction of stress wave propagation (indicated with a red circle in the
Figure 16). With the development of cracks, the whole sample appeared to expand, and eventually,
damage occurred under the joint action of upper crack expansion and the lower slip shear of the coal
body. When the impact velocity was 7.267 m/s, first a through crack was created in the sample (shown
by a red circle in Figure 16). Secondly, due to the large incident energy and high velocity of the bullet,
the deformation of the coal continued to increase, and the crack expanded rapidly. Finally, the sample
underwent compression expansion under impact loading, which caused tensile damage. As the speed
continued to increase, the coal sample underwent a “comminuted” rupture, producing a large amount
of fine granular coal dust. The severity of coal body damage positively correlated with the impact
velocity, while the size of the coal block was decreased.

Comparing the experimental and simulated failure processes at impact velocities of 4.732 and
7.267 m/s revealed their high consistency. In general, numerical simulation using measured briquette
HJC constitutive model parameters had a strong similarity to experimental findings, which verified
the applicability of the HJC constitutive model parameters of briquette samples to simulate the failure
process of coal samples under the impact of a dynamic load.
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(a)Numerical Simulation (b) Numerical Simulation (c) Numerical Simulation
Results when time is 578.93 us.  Results when time is 596.97us.  Results when time is 602.96 pis.

(d) Numerical Simulation (e) Numerical Simulation (f) Numerical Simulation
Results when time is 623.97 us.  Results when time is 653.94 us.  Results when time is 725.93 us.

(a) Numerical Simulation (b) Numerical Simulation (c) Numerical Simulation
Results when time is 572.99us.  Results when time is 581.99 us.  Results when time is 584.96 ps.

Figure 16. Cont.
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Numerical Simulation Results ~ Numerical Simulation Results ~ Numerical Simulation Results
when time is 587.94 us. when time is 593.96 us. when time is 617.98 us.

Failure Process of Coal Body with Bullet Impact Velocity of 7.267 m/s.

Figure 16. Dynamic change process of the impact failure of a coal body.

6. Numerical Simulation of Impact Damage on Heading Face

A coal-rock dynamic disaster refers to a strong dynamic phenomenon in which the surrounding
coal and rock masses in an underground mining space are rapidly destroyed and a large amount of
energy is suddenly released [30]. The HJC constitutive model parameters for briquette samples shown
in Table 8 were applied in the numerical simulation of coal-rock dynamic hazards caused by rock
bursts or blasting impact disturbances. Taking Yongcheng Cheji Coal Mine as an example, the impact
damage surface of the excavation face was established. A numerical simulation model was used to
verify the applicability of the HJC constitutive model parameters for briquette.

6.1. Model Establishment

The coal-rock layer was too thick or the size was too large, which increased the difficulty of
meshing and the solution time. Therefore, the model was simplified. In the impact damage model
developed for the tunnel face, the length and height of the roof and floor rock layers were considered
to be 20 and 4 m, respectively. The length and height of the coal seam were 20 and 3 m, respectively
(Figure 17), and the roadway size was 8 m. In order to simplify calculations, the rock layers of the
top and bottom plates adopt an elastoplastic model with a density of 2500 kg/m3, an elastic modulus
of 18 Gpa, and a Poisson’s ratio of 0.3 [31]. Coal seam was set based on the HJC constitutive model
parameters for briquette shown in Table 8.

Considering the influence of ground stress on underground roadways, the maximum vertical
ground stress of the roadway at 450 m depth for Yongcheng Cheji Coal Mine was measured to be
15.22 MPa. Therefore, during the simulation, a vertical static load was applied to the coal seam. The
stress wave disturbance generated by excavation blasting was simplified into a semi-sinusoidal pulse,
and based on the dynamic stress—strain curve obtained from the briquette SHPB experiment, 20 MPa
was taken as the peak value (pyqx) for a half-sinusoidal pulse.
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Figure 17. Establishment of a two-dimensional coal and rock mass model including a roadway.

6.2. Numerical Simulation of Impact Damage on Heading Face

In underground blasting operations, the shockwave generated by blasting releases huge amounts
of energy to the surrounding area, which may cause the deformation, cracking, and even destruction
of roadways and other structures. Explosion energy can loosen or destroy coal rock masses in the
process of shockwave release and propagation. The numerical simulation of the impact damage of the
tunneling face predicts the power of the disaster caused by the head. Numerical simulation results are
shown in Figure 18.

Figure 18 clearly shows the destruction process of the coal seam in the roadway. As can be seen,
at t = 158.61 s, the spreading stress wave contacted the coal seam and triggered its failure. When t =
227.31 ps, the coal seam was cracked by the action of the compressive stress wave, which continued to
propagate deep into the coal seam. At t =278.52 us, the crack gradually expanded and the coal seam
was notched. When t = 416.76 s, the size of the gap generated in the coal seam was increased with by
the propagation of stress wave. Finally, when t = 536.62 s, a large cavity was formed deep in the coal
seam as the gap was increased.

The stress time-history curve of the coal seam in a two-dimensional model is shown in Figure 19.
As can be seen, first the coal seam was cracked and destroyed by the propagation of the stress wave. The
curve first rose sharply to the yield point and then began to fall. Then, as the stress wave propagated
deep into the coal seam, the curve began to rise again and the coal seam was destroyed.
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Figure 18. Excavation surface impact damage process (pjuax = 20 MPa).
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Figure 19. Time-history curve of coal seam stress in a 2D model.

7. Conclusions

Through SHPB experiments of briquette combined with experimentally measured HJC constitutive

parameters and ANSYS/LS-DYNA software results, the following conclusions can be drawn:
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Through direct experimental measurements and indirect equation derivations, the main sensitivity
parameters of the coal HJC constitutive model were obtained, which were of great importance in
understanding the occurrence mechanism and predicting coal-rock dynamic disasters.

The failure of coal briquettes at different impact velocities started with the creation of axial cracks
in the middle of the coal body. The destructed coal body included slip failure, tensile failure
caused by compression expansion, and crack expansion and slip shear joint failure phenomena.
The fracture morphology of the briquette samples was different at different impact velocities. As
the impact velocity increased, the severity of coal body damage increased and the size of the coal
block decreased. At lower speeds, coal samples were intact and cracks appeared only on the
surface. At higher impact velocities, however, coal samples underwent “comminuted” rupture,
producing a large amount of fine granular coal dust.

The numerical simulation of the SHPB experiment was carried out using the experimentally
measured parameters of the HJC constitutive model for briquette. The simulated and
experimentally measured stress wave curves complied well. Comparing the experimental
and numerical simulation results obtained for coal sample failure and fracture morphology at
different impact velocities (4.732 and 7.267 m/s) revealed that all coal samples produced axial
cracks starting from the middle of the coal body and then failed. The experimental and numerical
simulation results for the coal sample crushing process and fracture results were similar.

The validated parameter values of the HJC constitutive model were applied to the numerical
model of tunneling impact damage, which visually showed the process of coal seam damage in a
roadway. It was observed that the simulation of the failure of coal samples under the impact of
dynamic loads was possible using HJC constitutive model parameter values.
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Abstract: It is well known that the change of the reagent dosage during the flotation process will
cause the froth image to change continuously with time. Therefore, an intelligent setting method
based on the time series froth image in the zinc flotation process is proposed. Firstly, the sigmoid
kernel function is used to estimate the cumulative distribution function of bubble size, and the
cumulative distribution function shape is characterized by sigmoid kernel function parameters.
Since the reagent will affect the froth image over a period of time, the time series of bubble size
cumulative distribution function is processed by the ELMo model and the dynamic feature vectors
are output. Finally, XGBoost is used to establish the nonlinear relationship modeling between reagent
dosage and dynamic feature vectors. Industrial experiments have proved the effectiveness of the
proposed method.

Keywords: flotation process; reagent dosage; time series froth image; cumulative distribution function

1. Introduction

Froth flotation is a physical and chemical process that occurs at the three-phase interface of
solids, liquids, and gases, and is used to separate valuable minerals from gangue. Froth flotation is an
industrial process of processing minerals. The flotation process is affected by a variety of operating
variables, such as slurry level, pH value, and reagent dosage [1]. Of all operating variables, the reagent
dosage is the most critical [2]. The zinc flotation process is a typical complex industrial system, and it is
difficult to recognize a clear mechanism to establish a first principle model [3]. At present, the method
of controlling the reagent dosage in the actual flotation process is mainly achieved by the operator
observing the surface characteristics of the froth image, such as bubble size, texture, and gray value [4].

With the development of advanced technologies such as industrial automation, cloud computing,
and artificial intelligence, the modeling, monitoring, and control of complex industrial systems have
new technical support [5]. In reference [6], deep reinforcement learning is applied to the boost control
of diesel engines. The results show that the performance is better than the traditional proportion
integral derivative (PID) controller. In the reference [7], the intelligent algorithm is applied to the
optimal sitting and sizing of a distributed generation system, which improves the economic benefits
and safety of the distributed generation system.
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In recent years, many scholars have studied the method of controlling the reagent dosage in the
flotation process [8-10]. In reference [11], a control strategy based on the sensitive features of froth
images is proposed. The strategy proposed to adjust the reagent dosage based on the feed grade,
and established a model of feed grade estimation based on the sensitive features of the froth image.
Then, based on the operation mode method, the reagent dosage is preset according to the feed grade.
However, it only analyzes the froth image of a single moment, and it is difficult to avoid the noise
effect of single frame image. In reference [12], the authors analyzed the effect of reagent dosage on
performance indicators, and then proposed a collaborative optimization method for reagent dosage
based on key feature changes and case-based reasoning. The proposed method achieved a certain
effect on the antimony flotation process, but it was difficult for the method to overcome the time lag
problem on the flotation process. In reference [13], the case-based reasoning method was used to
optimize the control of the reagent dosage in the magnetite flotation process, the results show that the
method reduces the fluctuation of tailings grade, but it was difficult to deal with the disturbance in the
flotation process.

In reference [14], it is pointed out that the visual features of the froth image play an important
role in the flotation process. In reference [15], the Wasserstein Distance-Based CycleGAN method was
used to measure the color features of the froth image, and the color features were applied to guide the
flotation process of bauxite. In reference [16], the author introduced the biologically inspired Gabor
wavelet transform to extract the texture features of froth images, and applied the texture features to the
online state recognition of the flotation process.

Among all visual features of the froth image, the bubble size is the most critical [17]. Inreference[18],
the authors modeled the relationship between flotation process performance and bubble size of froth
through neural networks. The results prove that the average bubble size of the froth image is very
important to guide the stability of the flotation process. In reference [19], a control strategy is proposed
to optimize the recovery of valuable minerals by tracking the expected bubble size distribution.
In reference [20], a control strategy based on bubble size distribution is proposed to control the reagent
dosage by minimizing the difference between the output bubble size distribution and the optimal
bubble size distribution. In reference [21], the feedback controller maintains the probability density
function of bubble size at the setpoint through the reagent dosage. In reference [22], the method used
the bubble size probability density function to characterize the froth state. The reagent dosage is
optimally controlled by minimizing the difference between the current bubble size probability density
function and the optimal bubble size probability density function.

The features of the froth image in the zinc flotation process can reflect the working conditions of
the flotation process, and the bubble size is the most obvious among all the features. In this paper,
the bubble size cumulative distribution function (CDF) is used as a new feature of the froth image,
and the estimation method of bubble size CDF is proposed. Because the change of reagent dosage will
cause the froth image features to change continuously with time, this paper analyzes the relationship
between the time series of bubble size CDF and the reagent dosage. Compared with the single-frame
bubble image feature at a single moment, the time series froth image feature can reduce the influence
of noise. The proposed method does not require manual participation, avoids the disadvantages
of unstable performance indicators, and large reagent consumption due to differences in manual
experience in the zinc flotation process, which is conducive to improving the economic benefits of the
flotation plant.

The rest of the paper is structured as follows. A description of the process is presented in Section 2.
The method for the estimation of bubble size CDF is shown in Section 3. The reagent dosage intelligent
setting based on time series of bubble size CDF is discussed in Section 4. The industrial experiment
and discussion are contained in Section 5. Section 6 draws the conclusions of this article.
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2. Process Description

In the actual production process, the zinc flotation process is often accompanied by lead flotation,
and this work focuses on the zinc flotation process. The simplified process of zinc flotation process is
shown in Figure 1.

Lead flotation
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Figure 1. Flow diagram of the zinc flotation process.

The purpose of the zinc flotation process is to extract zinc elements from sphalerite. The zinc
element in the slurry mainly exists in the form of zinc sulfide (ZnS). After the chemical reaction between
the slurry and the reagent, the froth layer and underflow are formed in the flotation bank. In the
zinc flotation process, the reagent is made up of foaming reagent (ROH), activating reagent (CuSOy),
capture reagent (C4H9OCSSNa) and PH adjustment reagent (H,SO4 and Ca(OH),), according to a
certain proportion.

The capacity of the flotation bank is about 2.8 m3, with a flow rate of 1.5 m3/min-3 m3/min.
The zinc flotation process includes the following stages: first zinc rougher, zinc rougher I, zinc rougher
II, zinc cleaner I and zinc cleaner II, zinc cleaner III, and zinc scavenger. The slurry and reagent react
chemically in the agitated tank, and a large amount of bubbles are generated under the action of the
foaming agent. The zinc minerals adhere to the bubble surface to form mineralized bubbles, overflow
from the first zinc rougher bank, and enter the zinc cleaner I. At the same time, the water-soluble
material forms an underflow in the first zinc rougher bank and flows into the zinc rougher I. The same
principle is followed in the subsequent flotation process. Finally, the zinc concentrate product is
obtained from the zinc cleaner III bank, and the underflow in the zinc scavenger bank forms tailings.

The reagent acting in the first zinc rougher bank has an important influence on the final performance
index (concentrate grade, tailing grade) in the zinc flotation process. The zinc flotation process has
a long flow, severe time lag, many operating variables, and strong coupling, resulting in a very
complicated zinc flotation process mechanism, making it difficult to establish an accurate dynamic
model. Currently, the flotation plant controls the dosage of reagent manually. The method for
controlling the reagent dosage in the zinc flotation process is as follows: the operator repeatedly
inspects the froth state in the flotation process, and judges the reagent dosage according to production
experience. In the process, the operator’s experience becomes extremely important. However, the
experience level of different operators is very different, and it is difficult to ensure that the operating
variables of the complex flotation process remain stable. A zinc flotation process monitoring system
was established by installing a camera at the first zinc rougher bank [23]. Collecting and analyzing froth
images through a monitoring system to reduce manual participation is a prerequisite for achieving
automatic reagent control.
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3. Estimation Method of Bubble Size CDF

In this paper, bubble size CDF is used to characterize the bubble size distribution.
When determining a series of random variables x, if there is an integrable probability density
function p(x) on the real axis, the CDF is expressed as:

c(x) = I;p(t)dt o

In the Equation (1), x represents the bubble size, and p(x) is the probability density function of
the bubble size. We use the flotation process monitoring system to obtain 2-D froth images under
different working conditions in the zinc flotation process, as shown in Figure 2. Class 1 appears in
the case of under-dosing, class 2 appears in the case of normal dosing, and class 3 appears in the case
of over-dosing.

win

(c) class 3

Figure 2. The typical froth images in zinc flotation process.

The resolution of the froth image captured by the camera in the flotation monitoring system is
692 x 518. With the original watershed algorithm it is difficult to accurately segment images such as the
froth image without background, and this paper uses an improved watershed algorithm to segment
the froth image to get the number of pixels contained in a single bubble [24]. The bubble size CDF of
the different classes of the froth image is shown in Figure 3.
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Figure 3. Bubble size cumulative distribution function (CDF) of different class froth image.

The standard sigmoid function expression:

1

TTrer @

s(x)

The shape of the sigmoid function in the first quadrant of the coordinate system is highly similar

to the shape of the bubble size CDEF, so it will be feasible to estimate the bubble size CDF with the
sigmoid kernel function. Here, we use a sigmoid kernel function to estimate the CDF of bubble size.

Expressed as:
a

= 1+ e—bx+tc -
The parameters a, b, ¢, d determine the shape of the CDF. The parameters a, b, ¢, d were obtained
using the least-squares algorithm [25].

©)

é(x) ~ c(x)

N
Iin 2 (elxi) - o)) )

where N is the estimated sample size, c(x ]-) is the CDF value when the bubble size is x i and é(-) is the
sigmoid kernel estimated value.

Figure 4 shows the experimental results of estimating the bubble size CDF using the sigmoid
kernel function.

101



Processes 2020, 8, 536

1 T T
(a) [CJCDF Histogram —1"|
—Sigmoid kernel estimation =TT
0.8+
N
>
2067
)
=}
=S
m
e
S04+ 4
9
[a]
o
0.2
0
0 0.5 1 LS 2 25 3 35
Bubble Size (number of pixels) x10%
b ] [JCDF Histogram
(b) —Sigmoid kernel estimation £~
A
0.8~ va 1
g 7
3
L0.6¢}
o
o
=
M
e
S04
-
a
&)
0.2
0
0 0.5 1 155 2 25
Bubble Size (number of pixels) x10*
: [CJCDF Hi
istogram —T T ]
(C) —Sigmoid kernel estimation| 747‘7’
A
.8 71
0.8 A
8 A
3 A
£0.6- 4
i}
°
=
m
S
©04- 1
L
[a)
&)
0.2
0
0 5000 10000 15000

Bubble Size (number of pixels)

Figure 4. The estimation of bubble size CDF for different froth images: (a) class 1, (b) class 2, (c) class 3.

4. Reagent Dosage Intelligent Setting Based on Time Series of Bubble Size CDF

During the zinc flotation process, the bubble size CDF has an important influence on the grade
of concentrate and tailing. The bubble size CDF under different working conditions shows different
shapes. In this paper, the structure diagram of the intelligent setting of the reagent dosage based on

time series froth image is shown in Figure 5.
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Figure 5. The structure diagram of the reagent dosage intelligent setting based on time series froth image.

Froth images of the first zinc rougher were captured by the camera. After the bubble image was
segmented, the sigmoid kernel function was used to estimate the bubble size CDF, and the sigmoid
kernel function parameters were used to characterize the CDF shape of bubble size. In the reagent
dosage setting method, ELMo was used to process the time series features to obtain dynamic feature
vectors, and XGBoost was used to establish the nonlinear relationship model between the dynamic
feature vectors and the reagent dosage. In this way, the intelligent setting of the reagent dosage
was realized.

4.1. Time Series Processing by Elmo

The ELMo model was proposed by Peter for natural language processing in 2018 [26]. Due to
its efficient performance, ELMo has always been regarded as one of the excellent word embedding
models. ELMo can recognize polysemy after training, that is, different word expresses a different
meaning in different sentences. In the zinc flotation process, the current froth image is affected by the
previous froth image, the time-series froth image after ELMo processing can express a deeper meaning.

ELMo model training is mainly divided into two steps. The first step is to build a bidirectional
language model (biLM) based on LSTM, and adjust the model parameters through large-scale corpus
training. The second step is to input the text into the ELMo model, and the weighted combination biLM
multilayer output state is output as a dynamic feature vector. Its model structure is shown in Figure 6.

G -G GG
O -@ ©@

Figure 6. The framework of ELMo.

It is assumed that a continuous sequence ty, f, ..., ty containing N tokens is given. The forward
expression and backward expression are used to represent the relationship between the current token
and the time series tokens before and after it.
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The forward expression is:

=

plty, o, tn) = | | Pty t, o tea) ®)
k=1
The backward expression is:
N
ptta o tn) = [ ] (it tesar o i) ©)

k

Il
kN

The forward expression means predicting the current token through the previous N —1 tokens,
and the backward expression means predicting the current token through the following N — 1 tokens.

The objective function combines forward expression and backward expression. The meaning
of the current token in the time series is determined by maximizing the likelihood probability of the
objective function. This expression is shown in Equation (7).

N N -
Z (logp(tlti, ta, .. o1, Ox, OLsTa, ©Os) + log p(tiltks1, tiia, - - -, tN, Ox, OLsTim, ©s)) )
=1

Among them, Oy represents the initial word embedding vector of the input biLM model,
O; represents the output of the LSTM layer input to softmax, @ps7as represent the forward LSTM layer,

OpsTMm represent the backward LSTM layer.
The dynamic feature vector is equal to the weighted combination of the output vectors of each
LSTM layer, as shown in Equation (8).

2
ELMo =y Z a]'.h,f/[}/l 8)
j=0

where «; is the weight of word embeddings in different layers, and it is a scalar parameter. hél)/l is the
vector output from the jth layer LSTM.

The dynamic feature vector of the froth image features obtained by ELMo can characterize the state
of the froth image over a period of time. In this paper, the time series bubble size CDF ¢(t1 ), c(t2), . .., ¢(t)
used to train ELMo. The output of the top LSTM in biLM is selected as the dynamic feature vector
of ELMo.

4.2. Nonlinear Relationship Modeling by Xgboost

Chen et al. proposed the XGBoost algorithm in 2016 [27]. XGBoost is an efficient integrated
learning method, and a few other integrated learning methods can be better than the configured
XGBoost. XGBoost algorithm performs a second-order Taylor expansion of the loss function, and uses
the complexity of the tree structure as a regular term, which can effectively avoid overfitting. In addition,
XGBoost supports multi-threaded and can make full use of the machine’s CPU core, thereby improving
the speed and performance of the algorithm.

When there are n samples in a given dataset D = {(X;, ;)}(ID| = n, X; € R™, y; € R), each sample
contains m-dimensional features. XGBoost is used as a regression model to determine the estimated
value §; through the input feature X;. XGBoost is trained through dataset D, and K trees are constructed.
The accumulated value of these K trees is the output value. Expressed as:

K

5i = 0(X;) = Y fu(X), fie F ©)

k=1
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where F = { flx) =awy (x)}(q R" ST, weRT) is the feature space of decision trees. T is the number of
leaves in a tree. XGBoost is trained by minimizing the objective function. The objective function is
shown in Equation (10).

L= 1dy)+ ), Qf) (10)
i k

where Q(f) = yT + %/\Ilwll2 represents the penalty term, which can reduce the risk of overfitting.
y represents the regularization parameter, A means L2 regularization. [ is a differentiable convex loss
function. The second-order Taylor expansion of the loss function in the objective function is shown in
Equation (11).

0 = Y [sifia) + ghif? )] + Q) an
i=1

where g; = 39([,1)1(9§t_1),yi) and h; = 8;071)1(910_1), i) are the first and the second order gradient
statistic on the loss function.

By training XGBoost, a nonlinear relationship model of bubble size CDF time series and reagent
dosage is established. The input is the dynamic feature vector generated by ELMo processing of the

bubble size CDF time series, and the output is the reagent dosage.

5. Experiment and Discussion

The purpose of this work is to make a reasonable set value of the reagent dosage by analyzing the
time series of the froth image of the first zinc rougher bank.

After the reagent works, the froth image of the first zinc rougher bank will respond first, and the
froth of the first zinc rougher bank will affect the concentrate grade and tailing grade. When the dosage
of the reagent is set low, the bubble size in the froth image is larger, indicating that there are fewer
minerals attached to the surface of the bubble, which ultimately leads to a lower concentrate grade and
a higher tailing grade. When the dosage of reagent is set higher, the result is the opposite. Figure 7
shows the different concentrate grades and tailing grades corresponding to different froth images.

( a) concentrate grade = 52% (b) concentrate grade = 54% ( C) concentrate grade = 56%
tailing grade = 0.4 tailing grade = 0.35 tailing grade = 0.3

Figure 7. Typical froth image corresponds to concentrate grade and tailing grade.

In order to verify the intelligent setting method of reagent dosage, we collected 7 consecutive
days of industrial data from a zinc flotation plant in China to train the relevant models in the proposed
method. During the zinc flotation process, the operator recorded operating variables, including
reagent dosage, concentrate grade, and tailing grade. The flotation monitoring system collects the
froth image of the first zinc rougher bank in real time. The froth images at the first zinc rougher bank
are captured at a rate of 1 frame/5 min; the concentrate grade and tailings grade are obtained using
X-ray analysis instruments.

The design of ELMo’s biLM consists of two bidirectional LSTMs. Each LSTM network layer consists
of 512 cells, followed by a softmax layer. The initialization XGBoost parameters are as follows: boost tree
depth max_depth = 5, learning rate learning_rate = 0.1, number of iterations n_estimators = 160.
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Figure 8 shows the reagent dosage obtained by simulation using the proposed method, and the real
reagent dosage.
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Figure 8. The proposed method is used to simulate the set value and real value of the reagent dosage.

To verify the feasibility of the proposed method, we applied it to a zinc flotation plant in China
and recorded data in real time. According to the duty arrangement of the flotation plant, it is divided
into three shifts of the morning shift, noon shift and night shift, each shift is 8 h. During each shift
we recorded the relevant data and statistics. Figure 9 shows the set value of the reagent dosage for
three shifts.
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Figure 9. Using the proposed method for the dosage of reagent during the experiment.

According to further statistics, the total consumption of reagents on that day was 5620.32 L.
Figures 10 and 11 show the test results of concentrate grade and tailing grade for three shifts.
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Figure 10. Using the proposed method for the concentrate grade during the experiment.
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Figure 11. Using the proposed method for the tailing grade during the experiment.

According to the requirements of China’s zinc flotation plant, it is necessary to stabilize the
concentrate grade at about 54% and the tailings grade at about 0.35%. The results show that the
proposed method can meet the production requirement.

The traditional dosage of reagents in the flotation process is determined by manual experience.
It is worth noting that manual experience is different due to individual differences. Because the
flotation plant is divided into three shifts in the morning, middle and evening, different people work.
Figures 12 and 13 show the changes of concentrate grade and tailings grade from 21 to 23 March 2020
using the proposed method and manual method.

Table 1 summarizes the performance index evaluation parameters of the proposed method and
manual method, where Mean represents the average and o2 represents the variance.

Table 1. Performance index evaluation parameters of the proposed method and manual method.

Proposed Method Manual Method
Mean (%) 02 (%) Mean (%) a2 (%)
Concentrate grade 54.37 1.14x 1072 54.39 1.14x 1072
Tailing grade 0.36 7.35x107° 0.37 1.98x 1075

The method proposed in this paper does not require manual participation, which reduces the
employment cost of the plant. In addition, the experimental results show that the proposed method
has a better control effect on the concentrate grade and tailings grade than the manual method.
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6. Conclusions

In this work, a method for intelligently setting the reagent dosage based on the time series froth
image in the zinc flotation process is proposed. In this paper, the bubble size CDF is used as a new
feature of the froth image, and the estimation method of bubble size CDF is proposed. Because
the change of reagent dosage will cause the froth image features to change continuously with time,
this paper uses the ELMo model to process the bubble size CDF time series, and generates dynamic
feature vectors based on the bubble size CDF time series. Compared with the single frame froth image
feature at a single moment, the dynamic feature vector can reduce the influence of noise in the flotation
process. Finally, the efficient XGBoost algorithm was used to establish the nonlinear relationship model
between the dynamic feature vectors and the dosage of reagent in the flotation process. The industrial
experiment results show that the proposed method can stabilize the concentrate grade and tailing
grade more than the traditional manual method in the zinc flotation process. In addition, the proposed
method does not require manual participation, avoids inconsistent product quality due to differences
in manual experience, and improves the economic benefits of the flotation plant.
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Abstract: To overcome the difficulty of accurately determining the load state of a wet ball mill
during the grinding process, a method of mill load identification based on improved empirical
wavelet transform (EWT), multiscale fuzzy entropy (MFE), and adaptive evolution particle swarm
optimization probabilistic neural network (AEPSO_PNN) classification is proposed. First, the concept
of a sliding frequency window is introduced based on EWT, and the adaptive frequency window
EWT algorithm, which is used to decompose the vibration signals recorded under different load states
to obtain the intrinsic mode components, is proposed. Second, a correlation coefficient threshold
is used to select the sensitive mode components that characterize the state of the original signal for
signal reconstruction. Finally, the MFE of the reconstructed signal is used as the characteristic vector
to characterize the load state of the mill, and the partial mean value of MFE is calculated. The results
show that the mean value of MFE under different load states varies. To further identify the load state,
a characteristic mill load vector is constructed from the MFE values of the reconstructed signal under
different load conditions and is used as the input of the AEPSO_PNN model, which then outputs the
predicted ball mill load state. Thus, a load state identification model is established. The feasibility of
the method is verified based on grinding experiments. The results show that the overall recognition
rate of the proposed method is as high as 97.3%. Compared with the back propagation (BP) neural
network, Bayes discriminant method, and PNN classification, AEPSO_PNN classification increases
the overall recognition rate by 8%, 5.3%, and 3.3%, respectively, which indicates that this method can
be used to accurately identify the different load states of a ball mill.

Keywords: load identification; EWT; multiscale fuzzy entropy; PNN

1. Introduction

As the main type of mechanical equipment used for ore grinding, ball mills are widely used
in the beneficiation process in mining operations [1]. It is imperative but challenging to develop
effective modeling, monitoring, and control techniques for complex industrial systems [2—4]. Due
to their complexity, it is difficult to investigate the internal charge dynamics of ball mills. Energy
consumption is obviously related to rotational speed and mill load, and scholars have examined the
influence of rotational speed on the energy consumption of mills and achieved good results [5]. For the
mill load, it is important to be able to quickly and accurately identify the internal load of a ball mill to
ensure that the mill is operating under the best possible working conditions, not only to reduce energy
consumption during mineral processing, but also to ensure high grinding efficiency and output [6,7].
Therefore, a method of increasing the load recognition rate for ball mills would have great application
value for improving the stability and economic benefits of the grinding process, and efforts to develop
such methods have attracted the attention of many scholars at home and abroad [8,9]. To this end,
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studies have shown that the vibration signal generated by a ball mill during the grinding process is
correlated with the load [10].

The vibration signal of a ball mill is nonlinear and nonstationary. Currently, the most widely
used methods for processing such signals include the wavelet packet algorithm, empirical mode
decomposition (EMD), variable mode decomposition (VMD), local mean decomposition (LMD), and
the complete integrated empirical decomposition algorithm (CEEMDAN) [11-14]. Liu et al. [15]
combined the EMD algorithm with principal component analysis (PCA) to extract the vibration signal
from the cylinder of a wet ball mill. The results showed that this method can distinguish among
different load states, but that the recognition rate requires improvement. Tang et al. [16,17] reported a
method of extracting the vibration signal characteristics of a ball mill based on ensemble empirical
mode decomposition (EEMD) and interval partial least squares (iPLS) modeling and extended this
method to the study of ball mill sound signals. Although the signal features were successfully
extracted, there was residual noise in the intrinsic mode functions (IMFs) after decomposition, and
white noise with a different amplitude was added each time. Although the above methods can
be used to successfully extract signal features, they face problems related to noise residuals and
computational burden. Therefore, the key to mill load identification is to find an effective method of
extracting the characteristic information of the vibration signal of the ball mill cylinder. The proposed
empirical wavelet transform (EWT) algorithm effectively compensates for the above shortcomings.
This algorithm not only suppresses the modal aliasing problem and reduces residual noise, but also
improves the completeness of decomposition. In reference [18], the EMD, EEMD, and EWT algorithms
were compared and analyzed. The EWT algorithm was found to have the best processing effect.
Specifically, the EWT algorithm had a better processing speed and better ability to extract modal
component signals than the other algorithms. However, in practical engineering, especially under
the harsh working conditions of a ball mill, the Fourier spectrum of the EWT segmentation signal
easily encounters interference from background noise and must be further improved. In this paper,
the adaptive frequency window is used to improve EWT. Compared with traditional EWT and other
signal processing algorithms, the denoising effect is more significant.

In recent years, many nonlinear dynamic methods, such as multiscale entropy (MSE), singular
value entropy (SVE), permutation entropy (PE), and fuzzy entropy (FE), have been widely used for
fault diagnosis, classification, and recognition because of their good performance in terms of feature
extraction [19-21]. Miao Y et al. [22] applied SVE to the identification of the optimal frequency band.
Zhao L et al. [23] completed the fault diagnosis of a gearbox using PE optimization and modified the
modal decomposition algorithm. Chang J L et al. [24] applied MSE for load recognition in machine
tools. Liu H et al. [25] reported an example of MSE applied for the fault diagnosis of rolling bearings,
but the recognition accuracy required further improvement. To diagnose the problem of rolling bearing
faults, Zheng H D et al. [26] adopted the method of multiscale fuzzy entropy (MFE), which effectively
overcame the defect in the MSE mutation, and the diagnosis result was improved. Compared with the
above methods, MFE has some advantages for feature extraction because of its unique performance
and ability to accurately reflect the feature information of the original signal.

As a tool for recognition and classification, an artificial neural network is a model abstracted
based on neural network theory that originates from the field of physiology. Such models can be used
for arbitrary data clustering and pattern classification and are widely used for tasks such as pattern
recognition [27-29]. Specifically, a probabilistic neural network (PNN) is an artificial neural network
with the advantages of a fast training speed, simple parameter adjustment, and good classification
performance [30]. However, the classification effect of a probabilistic neural network is greatly
influenced by the smoothing parameter o, and if the selection of ¢ is not appropriate, then inaccurate
results may be obtained. To solve this problem, an adaptive evolutionary particle swarm optimization
(AEPSO) algorithm is proposed in this paper to optimize the smoothing parameters in a probabilistic
neural network (PNN) so that the optimized network can identify the load state of a ball mill. In
this paper, the AEPSO algorithm is used to improve the PNN clustering method; compared with the
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traditional PNN clustering method and other clustering methods, it has the advantages of high speed
and high accuracy.

Considering the nonstationary and nonlinear characteristics of the vibration signal from the
cylinder of a ball mill, a load identification method for ball mills is proposed in this study based on
improved EWT, MFE, and AEPSO_PNN classification. First, the vibration signals are decomposed
using improved EWT, and the mode components of the reconstructed signals are selected using a
correlation coefficient threshold. Then, the load state of the ball mill is determined based on the
magnitude of the calculated MFE. Finally, AEPSO_PNN is used for learning and classification to enable
the recognition of a different load state.

2. Principles of the Load State Identification Method
2.1. Principles of Improved EWT

2.1.1. Principles of EWT

EWT is a widely used method for the adaptive segmentation of signals [31]. The segmentation
principle involves adaptively segmenting the Fourier spectrum by marking maximum points in the
frequency domain, and a set of bandpass filters suitable for processing signals is constructed in the
frequency domain to extract amplitude modulation and frequency modulation (AM-FM) components
from the Fourier spectrum.

The Fourier axis [0, 71] is divided into n consecutive parts, thatis, A, = [wy-1, wu](wo = 0, w, = 1),
where w;, is the boundary point between two parts and the corresponding value is the minimum
between the two adjacent maximum values in the Fourier spectrum of the signal. Figure 1 [32] shows
the division diagram of the Fourier axis. In the figure, w, is defined as the center point of A;;. Then, a
transition region with a width of T,, = 27, is obtained.

Amplitude/ (mm/s*)

v

IN\NN\\\\

0 ] ®y ®n Opt
w/Hz

Figure 1. Region segmentation diagram of the Fourier axis.

Referring to the wavelet construction method of Littlewood-Paley and Meyer, the empirical
wavelet function is constructed. After A, is determined, the empirical wavelet is used as a bandpass

A A
filter. The formulas of the empirical wavelet function ¢, () and the empirical scale function ¢,,(w) are
as follows [33]:

L (lol < (1=y)wn)
Y, (w) = Cos{%B[zy%n(lwl -(1- )/)wn)“, (1-y)wn <w < (1+y)wn 1)
0, (others)

L (lol < (1=7)wn)
(@) =1 cos{ 35k (0] = (1= Y)wn)]}, (1=y)wn <@ < (1+))wn @)
0, (others)

where
B(x) = x*(35 — 84x + 70x% — 202°) ;
- K ©
Ty = YWn y < mmn(—wnﬂ +w”)
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After the EWT, the approximation coefficient Wy (0, ) and the detail coefficient W, (1, t) can be
expressed as follows.

Wfl(O,t) =<X, (Pl> fx ¢1 T—t)

*)
= F (@), ()
Wp(nt) =<x,1, >= fx Pu(T—t) dr )
= Flx(@), ()]
Then, the functional expression of the reconstructed original signal a is as follows:
N
x(t) = We(0,4) = @1 (t) + ;1 Wiy (1, 1) * P (t)
A N A A ©)
_ p—l[wf(n,m)(m (©)+ £ Winw)in()

Zm

A A
where “+” is a convolution operation and W1 (0, w) and Wy, (1, ) are the Fourier transforms of the
approximate coefficient Wy (0,t) and the detail coefficient Wy, (n, t), respectively. Finally, the signal f
is decomposed into the sum of several single component signals.

N-1
x(t) @)
k=0

2.1.2. Principle of the Adaptive Frequency Window EWT Algorithm

The division rules of the spectral boundaries of the traditional EWT algorithm are determined by
the frequency domain extreme points, but a ball mill is vulnerable to strong noise, resulting in the
disorderly arrangement of frequency domain extreme points. Considering these deficiencies, this paper
uses the adaptive frequency window EWT to divide the spectral boundaries, as shown in Figure 2.

A
E F;/_ _____ Y
g 21: :21 g
= | | 7
<t:o : '/ : 2 W >
L ™ .
o/Hz

Figure 2. Diagram of empirical wavelet transform (EWT) spectral boundary division with an adaptive

frequency window.

In Figure 2, the frequency window is represented as [w,, wp], where wg, wy is the central frequency
of the lower cutoff band of the window. The shaded area represents the transition region of the
segmented portion of the spectrum with width 2t. The range of the d support interval is [0, 7t]. The
frequency window can slide freely in the interval, and the width range is adaptively variable.

After the frequency window segmentation is improved, Equations (1) and (5) are modified
as follows.
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1, (w47 < |w| < wp—1)

sin{3p
0, (others)

W(t) =<x1>= [x(1)

A)cﬂﬂﬁm—

(ol ~

}, (wp—7 < Nwl < wp + 1)
}, (wa—7 < w| € wg + 1)

Y(r—t)dt

= Fl[x(w) ()]

Additionally, Equation (8) must be satisfied as follows.

{ B(x) = x*(35 — 84x + 70x% — 20x%)
T=ywa ¥ <(wp—wi)/(@p+wa)

Therefore, the modal component signal can be reconstructed as follows:

xmzwmwm:ﬁMwmﬂ

®

©)

(10)

1n

A
where () is a Fourier transform of i(w) and x*(t) is an AM—FM component signal for improving
EWT extraction.

2.1.3. Simulation and Comparative Analysis of Improved EWT

To verify the ability of the improved EWT method to extract the feature components of the signal,
a simulation with the improved EWT approach is performed, and the results are compared with those
of the traditional EWT. The simulation signal x (f) is constructed as follows in Equation (12):

x2(t) = 1.1sin(347t)

[ 0.7cos(56mt)
XS(t)i{ 0.8 cos(64t)

0<t<05
t>0.5

x(£) = x1(t) + xa(t) + x3(t)

12)

where x (f) is white noise, the signal-to-noise ratio (SNR) is set to 3, and ¢ € [0, 1]. Figure 3 shows the
improved EWT and traditional EWT decomposition results for the simulation signal x (f).
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Figure 3. The improved EWT and traditional EWT decomposition results (red dotted lines represent
the original signal; blue solid lines represent the decomposition results). (a) Improved EWT; (b) EWT.
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In Figure 3, the components f2-f5 correspond to the signals x3(t)~x1(t), respectively. Figure 3a
shows that the noise contained in the signal is well decomposed by the improved EWT and that the
degree of coincidence of each component is close to 90%. The two modes that originally belonged to the
same component are decomposed because the two modal components obviously have distinct energy
signals and can be regarded as two independent modes. Figure 3b shows that traditional EWT can
decompose noise, but the components x; (f), xp(t), and x3(f) are deformed because the traditional EWT
segmentation method is too simple. When analyzing local noise or nonstationary signals, some local
maxima generated by noise and nonstationary components may appear and erroneously remain in the
peak sequence, and some useful maxima may not be kept in the peak sequence, resulting in improper
segmentation. The improved EWT uses the adaptive frequency window for spectrum segmentation,
which can reduce the effects of noise and nonstationary components and greatly increase the reliability
of spectrum segmentation.

This comparative study of simulated signals indicates that the improved EWT method can
effectively detect the modal components in power spectra, extract components similar to the original
signal components, and suppress modal aliasing. Thus, the decomposition effect of the improved EWT
method is better than that of the traditional EWT method.

2.2. Principle of Multiscale Fuzzy Entropy

2.2.1. Principle of Fuzzy Entropy

FE is the probability of identifying a new pattern in a time series when the dimension changes,
which reflects the complexity and irregularity of the time series. The larger the probability of the time
series, the greater the FE value [34]. During the operation of a ball mill, the change in the load state
will cause the characteristics of the vibration signal of a cylinder to change in an obvious manner, and
FE can effectively characterize the state characteristics of the signal in each frequency band during the
sampling time. Therefore, it is feasible to introduce FE as the characteristic parameter of the vibration
signal of a ball mill cylinder. The algorithm steps are as follows.

1.  The m-dimensional vector is obtained by processing the time series:

X = {u(i),u(i+1),...,u(i+m+1)} - ug(i)

' -1
w(@) = 1'Y u(i+j)  i=12... i m+1 (13)

.
j=0

where X!" is the result of removing the mean 1¢(i) of the time series.

2. Calculate the maximum distance between sz and X}":

Aty = XY XP) = max (i) =0() = (u(j-+ K) = 0(])) (14)

wherei, j=1,2,-- N—-m, i # .
3. The similarity between X" and X;" is defined by a fuzzy function as follows:

("

D;.”]. = u(d;”j, nr)=e (15)

where u(d"., n, ) is an exponential fuzzy membership function and 1 and r are the boundary gradients
and widths of the fuzzy membership functions, respectively.

4. Define the functions as follows:

1 N-m 1 N-m
m — m
") = g e (Tt 2 DY) (16)
i=1 ]:1
jEL
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wherei,j=1,2,-- N—-—m, i #j.

5. The m+1 vector is constructed based on the above four steps.

& (1) = — Nf‘ﬂ( ! Nin Dt 17)
! N-m& "N-m-1 ij
= iz
j#i

6.  The calculation formula of the FE value can be summarized as follows:
FuzzyEn(m,n,r) = I\l]i_r}r;o[ln ¢"(n,r) —Ing" 1 (n,1)] (18)
wherei, j=1,2,-- N—-m, i #j.
7. When N is limited, Equation (18) is transformed into the following formula.
FuzzyEn(m,n,r,N) = In¢™ (1,7) — In " (n,r) (19)
2.2.2. Principle of Multiscale Fuzzy Entropy

The characteristic frequency band and complexity of the vibration signal of a cylinder under
different load conditions in a ball mill are different at different scales. Considering the FE of the
vibration signal at different scales can improve the recognition accuracy, therefore the concept of
multiple scales is introduced based on FE. The steps in the MFE algorithm are as follows.

1. Construct a new coarse granularity vector for the original time series X; = {x1,x,- -+, x,} as
follows:

(20)

i =

jT
1 .
vy =1 Z x o 1<js<
i=(j-1)t+1

where 7 = 1,2, - - -, n represents the scale factor. When 7 = 1, the coarse-grain vector is the original
sequence. For a given 7, the original sequence is divided into coarse granularity vectors of length N/,
and Figure 4 shows the coarse granularity process for t = 2 and 7 = 3.

X1 X X3 Xy X5 X6 Xl Xi Xit]
s © 00 © 0 O -
=2

yi(2) yi(2) »i(2) yin(2)

X1 XX Xy X5 X Xig Xi Xi+l
Saee O O O © O QO o
=3

yi(3) ya(3) Yit1)/3(3)

Figure 4. The coarse granularity process of multiscale fuzzy entropy (MFE).

2. The FuzzyEn of each coarse-grained sequence is determined by the standard deviation of the
original sequence. The FuzzyEn value can be expressed as a function of the scale factor in MFE analysis.

2.2.3. Parameter Selection for MFE

According to the definition of MFE, the calculation of MFE is related to the embedding dimension
m, similarity tolerance r, exponential function gradient 1, and data length N. The selection rules are
as follows.
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1. Alarge embedding dimension m produces more information when the time series is dynamically
reconstructed, and the data sequence N = 10" ~ 30™; thus, m is set to 2.

2. The similarity tolerance r represents the width of the boundary of the exponential function. If r is
too large, then a large amount of statistical information will be lost, and if  is too small, then the
sensitivity to noise will be high.  is usually set from 0.1 SD to 0.25 SD (SD denotes the standard
deviation of the original time series). Considering the working characteristics of the ball mill, r is
set to 0.15 SD.

3. nis a weighting factor in the calculation of FE vector similarity. A large n will result in a
large gradient, but an overly small 7 will lead to the loss of detail. To obtain as much detailed
information as possible, a small integer is usually used, and # is set to 2 in this case.

4. To obtain an accurate MFE calculation result, the data length N should be greater than 100Tmax.
In addition, the maximum scale factor 7max should also be considered when calculating the MFE,
and the value of Tmax is usually between 10 and 20; thus, a4 = 20 is used in this study.

2.3. Principle of the AEPSO_PNN

2.3.1. PNN Principle

A PNN is a type of radial basis network that was first proposed by Dr. D.E. Speeht in 1989.
The PNN is a supervised network classifier based on the Bayes minimum risk criterion [35]. As a
feed-forward network, a PNN has the advantages of a fast training speed and simple parameter
adjustment. Currently, PNNs are widely used in pattern classification [36]. Compared with other
network classifiers, a PNN can not only guarantee real-time performance, but also produce classification
and recognition results that are minimally influenced by complex parameter settings.

The signal sample vector can be represented as X = [x1,x2,...,%;,...,X,] with states Y =
y1,¥2,-., Vi, ..., yn]. Then, the prior probability, posterior probability, and class-specific probability
density functions for each state can be represented by P(y;), P(y;/X), and P(X/y;), respectively. For a
given identification target, P(y;) is a known parameter, and P(X/y;) can be estimated using the Parzen
function. The corresponding formula is as follows:

N; —xilP
;‘1 eXp(_”XZUZIH )
P(X/yi) = 1)
N;(2m) 204

where N; is the total number of samples of the ith class, d is the dimensionality of the feature vector,
xjj is the jth sample of the ith class, and ¢ is the width of the Parzen function window;, that is, the
smoothing parameter.

The following formula is obtained from probabilistic and statistical theory.

P(yi/X) = P(X/yi)P(yi)/ P(X) (22)
If the possibility of misjudgment is not considered, the Bayes rule can be expressed as follows.
Viji#i=12,3,--,mif P(yi/X) > P(y]-/X),X €yj (23)

However, because misjudgment can readily occur in real-world situations, it is necessary to
introduce the risk coefficient A, yielding the following risk function R for the decision conditions.

R(yi/X) = Y AyP(y;/X) (24)
j=1

In summary, the Bayes minimum risk criterion can be expressed as follows.
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if R(yi/X) > R(y;/X), X €y; (25)

In this paper, the minimum risk criterion is used as the basis of the feed-forward network that
serves as the mill load state recognition model. By setting reasonable smoothing parameters, the
network is trained on a set of sample feature vectors to estimate the probability densities of three
distinct load states and enable the recognition of the mill load state.

2.3.2. Principle of AEPSO

The optimization speed and position updating formulas of the traditional particle swarm
optimization algorithm [37] are as follows:

V) = wVE 4 ey (W, = XE) + cora (W — XE) (26)

k+1 _ vk k+1
X, = Xk + v 7)

where k is the number of iterations; w is the inertial weight of the particle; c;, ¢, are the learning factors
of the particle, of which the former is the individual factor and the latter is the global factor; and r1, r»
are random numbers in the interval [0, 1], which make the particles independent and diverse.

To address the nonlinear problem of ball mill load identification, the AEPSO algorithm introduces
a nonlinear adaptive time-varying inertial weight.

1
T
For the learning factors cy, c; of particles, the traditional particle colony algorithm usually sets
c1 = ¢ = 2, but this approach ignores the phase difference of the algorithm during training. The
AEPSO algorithm adopts the strategy of managing the learning factor in segment, and the formula is
as follows.

Wt = Wstart — (Wstart — Weng ) X exp( (28)

{ 1 = 25, C) = 1.5 t< tmax/2 (29)

1 =15,c0 =25 t>tna

To enhance the adaptability of particle swarm optimization after iteration, the AEPSO algorithm
introduces the local search operator § in Equation (13). The revised formula is as follows:

X = X5+ px vt (30)
where B = rand( )[rand( ) + 0.5] and rand( ) is a random number in [0, 1].

2.3.3. Optimization of the PNN by AEPSO

The smoothing parameter ¢ in the PNN has a considerable influence on the training effect. The
improper selection of the ¢ value makes it easy to misjudge the recognition of the mill load state.
Therefore, this paper uses an AEPSO algorithm to optimize the smoothing parameters of the PNN so
that the optimized network can effectively identify the state of the mill load. The specific steps in the
algorithm are as follows.

1. The parameters of the PSO algorithm are initialized, the smoothing parameters o of the PNN are
used as the population particles, the number of iterations is set to 500, and a set of data (o) is
randomly generated as an initial parameter vector.

2. The training set samples are input, and the fitness function is used to calculate the fitness value.
Then, the optimal individual fitness value and the global optimal fitness value of the group are
traversed by comparing each particle (o). Finally, the particles are adjusted.
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After calculating each particle in the population, the termination condition is determined to be
satisfied or not. If not, the state is updated according to the speed and position updating formula;
then, the algorithm returns to step 2. Otherwise, the algorithm iterates until termination and
outputs the search results.

The PNN model trained by the optimal parameter combination (o) is used to classify the test
sample set and output the target category.

The network structure of the AEPSO_PNN includes four parts: the input layer, the mode layer,

the summation layer, and the output layer, as shown in Figure 4.

As Figure 5 shows, the training step of the load state identification model of a ball mill based on

the AEPSO_PNN is as follows.

1.

The input layer multiplies the received feature vector of the training sample by the weighting
coefficient Wj and transmits the result to the mode layer for training. The number of neurons in
this layer is the dimension of the feature vector.

The mode layer first uses the exponential function gj as the activation function. Then, the
probability density of each neuron is determined, and finally, the result is transmitted to the
summation layer.

The probability density is the weighted average of the summation, and the resulting estimated
probability density is transmitted to the output layer.

Based on the Bayes minimum risk criterion, the output layer selects the category with the largest
posterior probability as the final classification result of the sample.

input

mode layer

AEPSO_PNN

summation

output

Figure 5. Adaptive evolution particle swarm optimization probabilistic neural network (AEPSO_PNN)
network structure diagram.

3. Design of the Load State Identification Method for a Ball Mill

Based on the research on the EWT algorithm, MFE theory, and the PNN clustering algorithm

combined with the characteristics of ball mill vibration signals, a feature extraction algorithm for
vibration signals is proposed based on modified EWT, MFE, and AEPSO_PNN classification. The
specific steps in the algorithm are as follows.

1.

Decompose the recorded vibration signal from the cylinder of the ball mill via the adaptive
frequency window EWT algorithm to obtain AM — FM;(i = 1,2, --- ,n).

Calculate the correlation coefficients for all AM — FM; components and the original signal in
accordance with Equation (31), and select the sensitive AM — FM components based on the
threshold given in Equation (32).
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pxy = (31)
N —2 [N 2
Y (xi—X) Y (yi-v)
i=1 i=1
The correlation coefficient threshold is calculated as
max(;)
i = (g (32)

10 x max(y;) -3

where py, is the threshold, y; is the correlation coefficient between the ith AM-FM component and the
original signal, and max is the maximum correlation coefficient value. Each AM-FM component for
which the value of the correlation coefficient with the original signal is greater than the threshold
Uy, is retained as a sensitive AM-FM component. Each AM-FM component for which the correlation
coefficient is smaller than the threshold p, is removed as a spurious component.

3. The sensitive AM-FM components are used to obtain the reconstructed vibration signals of
different loads in the ball mill.

4. The MFE of the reconstructed vibration signal is calculated, and the result is used as the
characteristic vector for the load classification of the ball mill.

5. The characteristic vector matrix is used as the input of AEPSO_PNN, and the load state is used as
the output. Then, the load state of the mill is identified.

Thus, the overall flow of the ball mill load identification model that is proposed in this paper
based on the modified EWT, MFE, and AEPSO_PNN classification methods can be summarized as
shown in Figure 6.

Correlation coefficient method for . AEPSO_PNN network
o . Multiscale Fuzzy Entropy Al
sensitive mode comp & . training and load
signals cature extraction identification

The modified EWT
decomposition

Figure 6. Algorithm flow based on the modified EWT, MFE, and AEPSO_PNN classification methods.

4. Experimental Analysis of Mill Load State Recognition

4.1. Data Collection

To verify the method proposed in this paper, a grinding experiment was performed using a
305 x 305 mm Bond index experimental ball mill. The experimental device is shown in Figure 7. The
material used in the experiment was tungsten ore from a mine in Jiangxi, China, with a Protodyakonov
scale of hardness of 14-18, a density of 1.8 t/m3, and five grades of particle sizes: 1-3 mm, 3-6 mm,
6-9 mm, 9-11 mm, and >11 mm. The experimental parameters considered were the fill rate,
powder-to-ball ratio, and grinding concentration. The vibration signal acquisition system of the mill
cylinder consisted of a DH5922N dynamic data acquisition instrument and a DH131 acceleration sensor,
which were used to collect the signals of various load parameters under three different load conditions.
According to the literature, the mill load was divided into the following states: the underloaded state,
corresponding to a fill rate of 10-20%; the normal load state, corresponding to a fill rate of 20-40%; and
the overloaded state, corresponding to a fill rate of 40-60% [38].
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Figure 7. Experimental device.
4.2. Decomposition of the Cylinder Vibration Signal

First, we present the typical working conditions corresponding to the three load conditions
considered in this analysis: working condition 1 (a fill rate of 10%, a powder-to-ball ratio of 0.4, and a
grinding concentration of 0.5), working condition 2 (a fill rate of 30%, a powder-to-ball ratio of 0.6, and
a grinding concentration of 0.5), and working condition 3 (a fill rate of 50%, a powder-to-ball ratio of
0.8, and a grinding concentration of 0.5). The waveforms of the cylinder vibration signals recorded
under these three working conditions are shown in Figure 8.
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Figure 8. Waveforms of the original cylinder vibration signals: (a) working condition 1; (b) working
condition 2; (¢) working condition 3.

As Figure 8 shows, there is a large amount of noise in the vibration signal from the mill cylinder
in all three load states, which makes it difficult to effectively extract feature information. To extract the
characteristics of the vibration signal of the cylinder, the original signal must be preprocessed. The
preprocessing steps are as follows.
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1.  Theimproved EWT algorithm was used to adaptively decompose the original signals under three
typical working conditions. Then, 10 AM-FM components were obtained.

2. The correlation coefficients between the AM-FM components and the original cylinder vibration
signal were calculated using Equation (29), and the threshold values were then calculated in
accordance with Equation (30), yielding the following results: 0.21437 for working condition 1,
0.23872 for working condition 2, and 0.19905 for working condition 3. The correlation coefficient
values and the threshold values of the vibration signals from the cylinder body under the three
working conditions are shown in Figure 9.

[l The under load
Il The normal load| -
Il The over load

IMF

Figure 9. Relationship between the correlation coefficient and the sequence number of the amplitude
modulation-frequency modulation (AM-FM) component.

As shown in Figure 9, the correlation coefficients between the AM-FM1, AM-FM2, and AM-FM5
components and the original signal for working condition 1 were greater than the threshold value of
0.21437. Thus, these components were identified as sensitive AM-FM components that characterize
the vibration signal of the cylinder. For working condition 2, the AM-FM2, AM-FM4, and AM-FM6
components, with correlation coefficients greater than the threshold value of 0.23872, were selected
as the sensitive mode components. For working condition 3, the AM-FM1, AM-FM3, and AM-FM4
components, with correlation coefficients greater than the threshold value of 0.23872, were selected as
the sensitive mode components. All AM-FM components with correlation coefficients smaller than the
corresponding threshold were removed.

3. The selected sensitive modal components are reconstructed, and the results are shown in Figure 10.
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Figure 10. Waveforms of the reconstructed cylinder vibration signals: (a) working condition 1; (b)
working condition 2; (c) working condition 3.

Based on a comparison of Figures 8 and 10, the trend of the reconstructed signal waveform
is basically the same as that of the original signal. Compared with the original signal, the impact
profile of the reconstructed signal curve is obviously distinct, but it preserves the characteristic
information of the original signal while effectively denoising the signal. To further quantitatively
highlight the preprocessing effect in this paper, the EMD algorithm, EWT algorithm, and improved
EWT algorithm are used to decompose the original signals of the three working conditions, and the
sensitive components are reconstructed by the correlation coefficient method. Additionally, the SNR
is introduced into the comparative analysis before and after processing to qualitatively analyze the
comparison results, and the results are shown in Table 1.

Table 1. Signal-to-noise ratio (SNR) before and after signal processing.

Working The Original Signal Reconstructed Signals of Three Algorithms

Conditions (SNR/db) (SNR/db)
EMD EWT Improved EWT
1 791 13.97 17.22 21.23
2 9.58 15.35 18.94 22.36
3 7.02 14.61 19.07 24.54

As Table 1 shows, compared with the original signal, the SNR of the reconstructed signal processed
by the improved EWT algorithm increases by 13.32 dB, 12.78 dB, and 17.52 dB under three typical
working conditions, which indicates that the noise is considerably reduced after applying the improved
EWT algorithm. Compared with those of the EMD algorithm and the EWT algorithm, the SNR of the
reconstructed signal processed by the improved EWT algorithm increases the most. Therefore, the
preprocessing effect of the improved EWT algorithm is best.
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4.3. Decomposition of the Cylinder Vibration Signal

The FE of the reconstructed signal is calculated, and five groups of samples are assessed for each
type of ball mill load state. The average value of the FE of the three-state data is calculated, as shown
in Table 2.

Table 2. Fuzzy entropy values of three types of load state vibration signals.

Sample Underloaded Normal Load Overloaded

1 1.19 1.01 0.45
2 1.31 0.88 0.59
3 1.03 0.92 0.45
4 1.42 0.73 0.38
5 1.30 111 0.57
Mean 1.25 0.93 0.48

Table 2 shows that the FE value of the vibration signal varies by load state and that the FE value
of the vibration signal under the same load state fluctuates back and forth near the average value. By
comparing the FE values of three different load vibration signals, the FE values of the underloaded
state are found to be relatively large, which is due to the relatively small amount of steel ball and
mineral material in the cylinder under this condition. Additionally, the collision frequency between
the mineral material and the steel ball in grinding production increases with the movement of the
cylinder body to a certain height under the action of friction, and the collision frequency with other
steel balls, minerals, and the cylinder walls is high in the process of falling. Energy is mainly consumed
in the collisions between the steel ball and the tube wall and between the steel ball and other steel
balls; thus, the vibration signal is complex, and the signal is highly random. However, the FE value
under overloaded conditions is relatively small because there are more steel balls and minerals in
the cylinder under these conditions, causing the steel ball and minerals to undergo peristalsis in the
grinding process. In this case, the randomness of the signal is small. Under a normal load, energy
is mainly used for grinding the quantity of minerals, and so the complexity of generating a signal is
relatively moderate. For underloaded conditions and a normal load state, the sample entropy values
are similar, and individual overlap occurs, which results in a discriminating effect. Therefore, MSE is
introduced into the analysis of the mill vibration signal. The MFE of the reconstructed signal that can
characterize the characteristic information of the vibration signal under three different load conditions
is calculated. To highlight the superiority of the feature extraction method used in this paper, four
combination methods (EWT-MSE, EWT-MFE, improved EWT-MSE, and improved EWT-MFE) are
used to analyze the vibration signals of the cylinder of the ball mill under three load conditions. The
mean value and standard deviation curve of the three states (20 samples per group) are shown in
Figure 11. The parameter selection process of the algorithm is as described above.
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Figure 11. Reconstructed signal waveform under three working conditions: (a) EWT-MSE, (b) improved
EWT-MSE, (c¢) EWT-MFE, and (d) improved EWT-MFE.

In Figure 11, it is evident that the order of the mean value of FE of the vibration signal of the ball
mill cylinder under three working conditions displays the following order: underloaded > normal
load > overloaded. Specifically, as the ball mill load increases, the amplitude of each component of the
vibration signal in the spectrum obviously increases, which leads to a decrease in entropy. Although
the variation trend of the FE of the cylinder vibration signal with the scale factor is the same in different
load states, the fluctuation range of the entropy value varies, which indicates that FE can be effectively
used to identify the load state. By comparing the four graphs, we see that there are obvious fluctuations
and interval intersections between the EWT-MSE method and the EWT-MFE method. Although the
entropy curve of the improved EWT-MSE method is smooth and the three states are distinguished to a
certain extent, there are still overlap and intersection issues at small scales, which may lead to judgment
errors. However, the MSE curves of the three load states obtained with the improved EWT-MFE
method are smooth, and the fluctuation intervals have obvious limits. This finding indicates that the
improved EWT-MFE method can effectively distinguish among the three load states of the ball mill.

4.4. Training and Testing

To verify the effectiveness of the proposed load identification model for a ball mill, 3 X 100 samples
were randomly selected from each of the three classes of vibration signals, including 150 as training
samples and 150 as test samples. The selected samples were first decomposed via the improved
EWT method. The sensitive mode component signal with load state information was screened by
the correlation coefficient method and reconstructed. Then, the MFE of the reconstructed signal was
normalized as the input of the load state identification model of the ball mill based on AEPSO_PNN,
and the load state of the ball mill was output. To highlight the superiority of AEPSO_PNN classification
and identification, three clustering methods, namely, PNN classification, back propagation (BP) neural
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network, and Bayes identification methods, were trained and tested with the abovementioned samples.
Then, the identification results were compared with the AEPSO_PNN identification results. For
simplicity of description, the underloaded, normal load, and overloaded conditions are indicated by
working condition numbers 1, 2 and 3, respectively. The identification effects of various classification
methods are shown in Figure 12 and Table 3.
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Figure 12. Recognition results of test samples for each classifier. (a) BP neural network; (b) Bayes
identification method; (c) PNN; (d) AEPSO_PNN.

Table 3. Singular value entropy results for the three working conditions. BP: back propagation.
probabilistic neural network (PNN): probabilistic neural network.

Classification Method Correct Identifications ~ Load Recognition Accuracy
BP neural network 134 89.3%
Bayes identification method 138 92.0%
P 141 94.0%

NN classification
AEPSO_PNN classification 146 97.3%

Figure 12 and Table 3 show that the predicted load state of the AEPSO_PNN model of ball mill
load state recognition is largely consistent with the real state. Only four samples are misdiagnosed,
and the overall recognition accuracy is 97.3%. Specifically, the recognition accuracy of AEPSO_PNN
classification for three different load states is 96%, 98%, and 98%, all of which are high recognition
levels. The BP neural network, Bayes discriminant method, and PNN classification can also achieve
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effective load identification. The highest accuracies of these methods are 89.3%, 92.0%, and 94.0%.
Compared with the back propagation (BP) neural network, Bayes discriminant method, and PNN
classification, AEPSO_PNN classification increases the overall recognition rate by 8%, 5.3%, and 3.3%.
The results show that the mill load identification method based on the improved EWT-MFE method
and AEPSO_PNN classification is effective, and the identification effect is excellent. Thus, this method
provides a new approach for ball mill load identification.

5. Conclusions

By combining the improved EWT algorithm, MFE feature extraction, and AEPSO_PNN clustering,
a load identification model of a ball mill is constructed. The main contributions to this work are
as follows:

(1)  The strong background noise, nonlinearity, and nonstationarity of the vibration signal of a ball
mill cylinder hinder the recognition accuracy. The improved EWT algorithm proposed in this
paper can effectively denoise the original signal and retain the feature information.

(2) The MEFE algorithm has obvious advantages in terms of feature extraction. Notably, the MFE
difference between underloaded, normal load, and overloaded conditions is large, and the
proposed method can distinguish among the load states of the mill.

(3) The AEPSO_PNN classifier is introduced into the load recognition model of the ball mill to
improve the recognition effect. Compared with the BP neural network, the Bayes discriminant
method, and PNN classification, AEPSO_PNN classification provides a better recognition effect
and the highest load recognition accuracy.

(4) The effectiveness of the method is verified based on a grinding experiment performed with a
Bond work index ball mill in the laboratory.

In future research, the algorithm, structure, and parameter setting process of the proposed model
will be optimized and improved to enhance the ability of the model to identify the ball mill load state.
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Abstract: In order to explore the distribution law of stress field under the mining mode of gob-side
entry retaining by roof cutting without pillar (GERRCP) under goaf, based on the engineering
background of 8102 and 9101 working faces in Xiashanmao coal mine, the stress field distribution of
GERRCP and traditional remaining pillar was studied by means of theoretical analysis and numerical
simulation. The simulation results showed that: (1) in the front of the working face, the vertical
peak stress of non-pillar mining was smaller than that of the remaining pillar mining, and it could
effectively control stress concentration in surrounding rock of the mining roadway; the trend of
horizontal stress distribution of the two was the same, and the area, span and peak stress of stress the
rise zone were the largest in large pillar mining and the minimum in non-pillar mining. (2) On the
left side of the working face, the vertical stress presented increasing-decreasing characteristics under
non-pillar mining mode and saddle-shaped distribution characteristics under the remaining pillar
mining mode respectively. Among them, the peak stress was the smallest under non-pillar mining,
and compared with the mining of the large pillar and small pillar, non-pillar mining decreased by
12-21% and 3-10% respectively. The position of peak stress of the former was closer to the mining
roadway, indicating that the width of the plastic zone of the surrounding rock of the non-pillar
mining was smaller and bearing capacity was higher. In the mining of the large and small pillar, the
horizontal stress formed a high stress concentration in the pillar and 9102 working face respectively.
In non-pillar mining, the horizontal stress concentration appeared in solid coal, but the concentration
area was small.

Keywords: non-pillar; gob-side entry retaining by roof cutting; close distance coal seams; goaf;
stress distribution

1. Introduction

In the 1960s and 1970s, longwall mining technology developed rapidly, and the “masonry beam
theory” was put forward, forming the “121” construction method of longwall mining [1]. This
technology requires two roadways to be tunneled for each working face, and a large pillar is set up to
balance underground pressure. The “transfer rock beam theory” was put forward by analyzing the
existence of the internal and external stress field in a high-stress area, forming the “121” small pillar
construction method of longwall mining [2,3]. However, the traditional mining method of “121” will
form a hanging roof with insufficient collapse at the side of the goaf, and the roof subsidence and
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rotary deformation are large, which greatly affects the stability of the pillar and support system on
roadway side. In order to reduce the development ratio, increase the coal mining rate and improve
the periodic pressure of roof, the “cutting cantilever beam theory” was born [4], and based on this
theory, the mining technology of gob-side entry retaining by roof cutting without pillar (GERRCP)
was proposed. In the new mining technology of GERRCP, only one roadway needs to be tunneled
for each working face, and the other roadway is formed automatically by roof cutting and pressure
relief. Moreover, there is no need to leave pillars, which reduces the waste of coal resources and avoids
roof accidents, rock burst, gas outburst and other safety hazards caused by remaining pillars [5]. The
phenomenon of stress concentration caused by a pillar is eliminated, and the pressure distribution of a
stope is optimized, which makes coal mining more safe and efficient. Many scholars have carried out a
lot of related research work on GERRCP using theoretical analysis, numerical simulation, laboratory
experiments and field experiments. As one of the powerful methods, the numerical simulation has the
advantage of low cost, high efficiency and good repeatability. It has been widely used in the related
research of this technology and achieved good application results. With the introduction of GERRCP, its
design principle and key technologies have been extensively investigated [6-8]. Guo et al. [9] studied
the relationship between roof fracturing angle and stability of gob-side entry subjected to dynamic
loading through establishing a numerical calculation model. Zhen et al. [10] investigated the influence
of two methods of non-pillar-mining techniques by roof cutting and by filling artificial materials on
the results of the entry retained via industrial case and numerical simulation. Guo et al. [11] studied
the roof pre-fracturing and energy-absorbing support systems to evaluate the stress distribution and
deformation control of gob-side entry by numerical simulation. Hu et al. [12] investigated the key
parameters affecting GERRCP by theoretical analysis and numerical simulation. Combined with
the above research, it can be found that the above researches on GERRCP were carried out under
the condition of single coal-seam mining, and few researches on this technology when mining close
distance coal seam. Therefore, it is of great significance to carry out relevant researches on GERRCP
under the condition of near-group coal-seam mining.

The near-group coal-seam mining is very characteristic. When mining close distance coal-seam,
the roof caving of the upper coal seam will cause various degrees of damage to the roof of the lower coal
seam. As a result, the upper overburden structure and temporal and spatial distribution characteristics
of the stress field during the mining of the lower coal seam are significantly different from those of a
single coal seam. In particular, the mining direction of the lower coal seam is perpendicular to that of
the upper coal seam, forming the vertical cross mining. Therefore, in order to ensure the safety of coal
mining, it is of significance to analyze the distribution law of the stress field in lower coal seam when
mining close distance coal seam. At present, domestic and foreign experts and scholars have conducted
a lot of studies on the distribution law of a stress field in lower coal seam when mining close distance
coal seam, and achieved fruitful results. Singh [13] established a numerical model and combined
it with a double-yield model to assess its effectiveness in simulating the recovery of stress in goaf.
Through theoretical analyses and physical modelling studies, the interaction between vertical stress
distribution within goaf and surrounding rock mass in these systems was studied [14]. Zhang et al. [15]
investigated the stress distribution, fracture development, and strata movement above a protective coal
seam in longwall mining through numerical calculation. Liu et al. [16] analysed the stress distribution
and roadway position of lower seams in the close distance coal seams by using numerical simulation.
Zhang et al. [17] studied the floor failure depth of upper coal seam during close coal seams mining by
building the mechanical model of floor failure of upper coal seam. Xu et al. [18] studied the stress
propagation and distribution of a roadway by Kirsch equations and analyzed the changes of stress,
displacement, and plastic zones around roadways during the mining of the upper coal seams by means
of numerical simulation. Wang et al. [19] analyzed some key issues about abutment pressure and stress
concentration shell by numerical simulations to study the distribution and evolution characteristics of
the macroscopic stress field of surrounding rocks. Ma et al. [20] studied the stress distribution and
deformation law of surrounding rocks for the water-dripping roadway below a contiguous seam goaf.
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In-depth studies on the movement and instability characteristics and mining stress evolution law of
the secondary mining structure of roof under goaf, were carried out by means of theoretical analysis,
similarity simulation experiment, numerical simulation and field measurement [21-24].

The above experts and scholars have achieved fruitful results in research on the distribution
law of a stress field when mining near-group coal seam. However, most previous studies have
focused on conventional mining methods; few scholars have carried out relevant research on the stress
distribution of the stope in GERRCP in the near-group coal-seam mining. In order to explore the
distribution law of three-dimensional stress field of GERRCP in the near-group coal seam mining, this
paper takes Xiashanmao coal mine as an engineering background, establishes the mechanical model
of the roof structure of GERRCP through theoretical analysis, and establishes a three-dimensional
numerical calculation model based on the finite difference program FLAC-3D (ITASCA, US) to study
the distribution law of stress in the stope. Finally, the numerical simulation results are validated by
field experiments.

2. Gob-Side Entry Retaining by Roof Cutting without Pillar (GERRCP)

2.1. Principle of GERRCP

As shown in Figure 1, the GERRCP adopts energy-gathered blasting technology to carry out
advanced pre-splitting on the roof. The roof is cut off along the pre-splitting damaged structural
surface through periodic weighting of the stope, and the fractured roof collapses naturally with
the help of underground pressure. The side of the roadway is formed by the broken expanded
characteristic of the collapsed gangue, and the flexible support body in a roadway is formed by the
sliding and yielding gangue support structure and constant pressure retractable support equipment,
which separates the goaf. At the same time, the high strength support of a roadway roof is formed
by the constant-resistance large-deformation anchor cable (CRLDAC) with structural characteristics
of negative Poisson’s ratio, thus realizing the non-pillar mining of a single working face and single
roadway [25,26]. This technology realizes the transformation of a roadway roof structure from a
long-wall beam to short-wall beam by roof cutting, which ensures the stability of the roadway, can
weaken the concentrated stress on the upper part of the coal body adjacent to working face, and can
also avoid the roof collapse, rock burst and gas outburst caused by remaining pillars.

cturing line
g

—

New retained roadway's sides

Automatically formed roadway

Figure 1. Section diagram of roof structure of gob-side entry retaining by roof cutting without pillar
(GERRCP).

The mechanical model of the roof structure of GERRCP is introduced below (as shown in Figure 2).
Under the action of periodic pressure, the immediate roof and main roof fracture and rotate. The main
roof is fractured to form rock blocks A, B and C, and the interaction between the rock blocks forms
a hinge structure. Rock block A is still supported by the immediate roof, which is relatively stable.
Rock block C is supported by the gangue on the side of the goaf, and its stability is poor. Both ends
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of rock block B are supported by the immediate roof and gangue in the goaf, respectively, and rotate
towards the goaf around the elastic-plastic boundary of solid coal. The following assumptions are
made for the mechanical model of surrounding rock: (1) there is no interaction between rock block B
and C and the gangue at the side of the goaf; (2) the shear force between rock strata such as immediate
roof and main roof is ignored; (3) the supporting capacity of coal body in the lateral plastic zone of the
retaining roadway is not considered; (4) the supporting force at the side of the roadway is neglected.
The structural mechanical model established according to the assumed conditions is shown in Figure 2.

HHHHHHH

Rock block A + M q Rock block B

h Z/'—— Rock block C | j=—
et 44} ) lfﬂv,, S

(4
/ \\
h'} | Immediate roof — Roof fractunng line

t t,, T-—CRLDAC
q

Xo I LR ‘

—_

Coal seam Roadway — |

Figure 2. Mechanical model of roof structure of GERRCP.

The above picture is explained as follows. The key parameters of the system are as follows. After
the rock strata fracture, the fracture length of key block B formed is [27]:

_ 2 3 L
L—Ls[ L_?+§_G] 1)

where, L: length of rock block; Ls: weighting interval of the immediate roof; Lg working face length.
The horizontal force on rock block B is

gL

H = ———
"7 2(h-5y)

@
where, Hy: horizontal force on rock block B; g: uniform load acting on the main roof; h: the thickness of
basic roof; and Sy: the subsidence of rock block B.

The research on the mechanism of arch effect and its boundary conditions was studied, and the
calculation of the plastic zone was referenced, and the width of the stress limit equilibrium zone in coal
body was obtained [27,28].

©)

Xp = A I (kyH.g- f“mﬂo

2tangq " 4B

tangq
where, xg: width of stress limit equilibrium zone in coal body; /;: roadway height; A: lateral pressure
coefficient; C: cohesion of the interface between coal and rock; @g: internal friction angle; K: stress
concentration factor; y: average bulk density of overburden; H: roadway burial depth; P,: support
resistance of coal sides.

After mining, the main roof structure breaks under periodic pressure, forming a hinge structure,
and the structure is in equilibrium. Through static analysis of hinge structure under this equilibrium
condition, the static equilibrium equations of rock block C and B are established, such as Formulas 4
and 5. Among them, the support force provided by the support body in the roadway is simplified
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as the load collection degree of support, and the support load in the roadway is solved based on the
above analysis.
(1) Rock block C:
£X =0,Hy—H, =0 4)

XY = 0,gL + Vi — Ve = 0SMp = 0,—My + Ho(h/2 = S¢) + VL = Hy(h/2 = S¢) = qL2 /2 = 0

where, H,: horizontal force on rock block C; V,: the vertical force on rock block C; V: the vertical force
on rock block B; M,: moment of rock block C at section B; and S.: the subsidence of rock block C.
(2) Rock block B:

IMy = 0,-Myj — M3z 4 q"Lr(xo + Lr /2) + Hy(h/2 = Sp) — qL? /24+Mp + VL + ¢’ (xo + Lr + I’ tan )

5
[(LR + xo)z + (x0+Lg +H tan a)z + (Lr +x0)(xo + Lg + 1 tana)]/3(2xo +2Lg + W tana) =0 ®)

where, M;: moment of rock block B at section A; M3: moment of immediate roof to basic roof; q”: load
collection degree of support in the roadway; Lg: roadway width; 4’: the uniform load acting on the
immediate roof; h’: the thickness of immediate roof; and a: pre-cracking roof cutting angle.

(3) The load collection degree of support in the roadway can be obtained simultaneously.

= { My + Mj —2M; + gL2 — qL(h = 25;) /4(h = Sp) — ¢’ (xg + Lg + I’ tan )

L Lr/2) (6
[(ng +2Lg +h’tana)2—(x0+LR)(xo+LR +h’tana)]/3(2xg+2LR + 1 tana) }/ R(x0+Lx/2) (6)

Based on the new technology of GERRCP, the mechanical model of the roof structure is established.
Through the mechanical analysis of the model, the key parameters such as fracture length of key blocks
in upper strata and horizontal force acting on it are introduced, and the extension depth of the plastic
zone in the solid coal side of the roadway under this technical condition is obtained, which provides
certain theoretical support for the support design of the solid coal side of the mining roadway. In
addition, through the static analysis of the balanced hinge structure under the condition of GERRCP,
the corresponding static equilibrium equation is established, and the support load in roadway under
this condition is obtained, which provides corresponding theoretical support for the support problem
of mining roadway.

2.2. Technical Process of GERRCP

The mining mode layout of the traditional “121” construction method is shown in Figure 3a.
When the mining system is used for coal mining, pillars are left, which belongs to the mining method
of “one working face and two roadways”. Different from the traditional mining method, the GERRCP
is shown in Figure 3b, which is a typical single working face and single roadway without a pillar
mining method. That is to say, the up and down drifts on the first face should be excavated firstly,
and then at the same time in the working face of the mining, the retaining roadway, as the transport
roadway on the next working face, is formed through the reinforcement of the advance anchor cable,
pre-cracking roof cutting and gangue support at the side of the goaf. Therefore, the mining ratio is
reduced and non-pillar mining is realized.

The technological process of GERRCP is shown in Figure 4. Its core can be summarized as
four steps: strengthening, cutting, protecting and closing, that is: (1) adopt the CRLDAC to actively
strengthen the supporting roadway roof according to the designed supporting parameters (Figure 4a);
(2) the energy-gathered pre-cracking blasting hole shall be constructed at a certain distance in advance
of the working face, and the bidirectional energy-gathered pre-cracking blasting shall be carried out
according to the parameters determined by the blasting test to form a slit on the roof at the side of
the goaf (Figure 4b); (3) after mining at the working face, the sliding and yielding gangue support
structure and the constant pressure retractable support equipment are adopted behind the working
face to strengthen the support in time. Under the action of the underground pressure, the roof at the
side of the goaf collapses along the structural surface of the roof cutting slit to form the side of a new
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roadway (Figure 4c); (4) the caving roof is gradually compacted as the working face advances, and the
side of the roadway formed by caving is shotcreted to close the goaf. After the roadway is stabilized,
the temporary support equipment is removed to realize the retaining new roadway (Figure 4d).

(@) (b)

Figure 3. Layout of mining mode. (a) Layout of traditional mining mode; (b) Layout of non-pillar
mining mode.
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Figure 4. Technological process of GERRCP. (a) Strengthening roadway roof by constant-resistance
large-deformation anchor cable (CRLDAC); (b) Pre-cracking roof cutting by energy-gathered blasting;
(c) Gangue support; (d) Closing the goaf by shotcreting.

3. Engineering Background

The coal seam in the 9101 working face of Xiashanmao coal mine is located in the lower part of
Taiyuan Formation. The thickness of the coal seam is 1.55-3.5 m, and the designed mining height
is 3 m, which belongs to the medium-thick coal seam mining face. The dip angle of coal seam is
2-8° and the buried depth is 180-260 m. The distance between 8 # coal seam and 9 # coal seam is
11.20-19.60 m, with an average of 15.24 m. The immediate roof is mudstone, with an average thickness
of 4.1 m; the basic roof is mainly sandy mudstone with an average thickness of 8.0 m, according to the
drilling measurement on the roof and floor of the working face. The immediate and basic bottoms are
mudstone and fine sandstone, respectively, as shown in Table 1.

Table 1. Lithological characteristics of roof and floor of coal seam.

Name of Roof and Floor Lithology Thickness/m Feature Description
Main roof Sandy mudstone 4.6-9.1 Grey, block structure

Immediate roof Mudstone 3.6-4.2 Black, block structure

9 # coal seam Coal seam 2.8-3.1 Black, vitreous ll}sﬁer,
occurrence stability

Immediate bottom Mudstone 4.8-8.5 Grey, block structure

Basic bottom Fine sandstone 13.2-26.6 Grey, I?IOCk StT“.C ture,

horizontal joint

The test face is the first working face of the first mining area of 9 # coal seams, with a strike length
of 480 m and an inclination of 150 m (as showed in Figure 5). The roof is managed by all caving method,
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which adopts full-seam, comprehensive mechanized, and retreating mining methods. The average
12 m above the 9101 working face is the 8102 working face, which serves as the mining protective layer
of 9101 working face. Among them, the 8102 working face adopts the “121” construction method of
longwall mining, and the 9101 working face adopts the self-formed roadway without a pillar-mining
system, and the mining direction is vertical intersection. The adjacent face is the 9102 working face,
which is located at the south of the 9101 working face. The test roadway is the ventilation roadway of
the 9101 working face. The roadway section is rectangular, with a width of 4000 mm and a height of
3200 mm.

o x| & i
I Legacy pillar - y
ol 2|l g in 8102 face - .
8 <l & ) Goaf in 9101 face
g &
<
457m
— .
New retained roadway
Goafin 8102 face 9101 tail entry
E% 9102 head entry
|l_|

Figure 5. Layout of test working face of GERRCP in Xiashanmao coal mine.

4. Numerical Calculation and Analysis

4.1. Construction of Numerical Model

According to the specific engineering geological conditions of the 8102 and 9101 working faces
of Xiashanmao coal mine, and combined with the existing underground pressure monitoring results,
the finite difference software FLAC3D was used to establish a three-dimensional solid model. The
distribution characteristics of mining stress in the mining process of the 9101 working face were studied.
The numerical calculation model is shown in Figure 6. The calculation range was 330 m x 230 m X
100 m (length x width X height). The model simulated 12 layers of strata, including 8 # coal seam, 9 #
coal seam and roof and floor strata, and truly reflected their occurrence conditions. Because the coal
seam under actual working conditions could be regarded as a near-horizontal coal seam, the coal seam
in the model was designed as a horizontal coal seam.

8 # coal seam
9 # coal seam
Fine sandstone
Limestone
Medium sandstone
Mudstone

__ Overlying strata

Roadway
Sandy mudstone

Figure 6. Three-dimensional numerical calculation model.
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4.2. Determining Model Parameters

For rock mass materials, the elastic modulus of rock mass greatly influences the accuracy of
simulation results. Therefore, in the process of numerical simulation, the rock elastic modulus should
be corrected and verified repeatedly to reduce the error with the actual value to ensure the reliability of
simulation results. The physical and mechanical parameters of strata were obtained according to the
test of rock core samples from geological drilling in the testing field, and the elastic modulus of rock
was taken to be 1/10 of the elastic modulus of rock block by comparing with the physical parameters of
rock strata in the adjacent working face. In this study, the mole-coulomb model was selected as the
constitutive model, and the effective physical and mechanical parameters of rock mass were finally
determined based on the physical and mechanical parameters of the rock mass involved, as shown in
Table 2.

Table 2. The physical and mechanical parameters of rock.

Density Bulk Shear Cohesion Internal Tensile
Lithology (kgm-3) Modulus Modulus (MPa) Friction Strength
(GPa) (GPa) Angle (°) (MPa)

Upper strata 2620 6.47 4.09 1.61 35 0.82
Sandy mudstone 2512 12.36 7.21 2.04 33 0.74
Medium Sandstone 2670 23.46 15.20 445 40 5.14
Fine sandstone 2870 21.04 13.52 3.20 42 1.29
Sandy mudstone 2503 10.63 5.59 2.04 33 0.74
Limestone 2910 29.26 18.27 5.14 42 7.31
8 # coal seam 1380 491 2.01 1.25 32 0.15
Sandy mudstone 2531 14.13 9.18 4.35 33 0.81
Mudstone 2488 9.97 7.35 1.20 32 0.58
9 # coal seam 1450 491 2.01 1.25 32 0.15
Mudstone 2460 5.12 4.73 1.20 32 0.58
Fine sandstone 2870 21.04 13.52 3.75 38 1.84

4.3. Simulation Scheme

According to the actual working conditions, the corresponding simulation scheme was formulated.
The geometry and boundary conditions of the model are shown in Figures 7 and 8 respectively. The
model was fixed around to limit the horizontal movement, and fixed at the bottom to limit the vertical
movement, and 5 MPa uniform load was applied at the top to simulate the self-weight boundary of
the overlying strata. The mining scheme of coal seam was as follows. For the large pillar mining, (a)
the 8102 working face was firstly mined step by step, the excavation footage of each step was set as
10 m. After each step was balanced, the next step of excavation was calculated to balance, and the
calculation was carried out step by step. (b) Three mining roadways of 9101 and 9102 working faces
were excavated at one time, and a pillar with a width of 15 m was set, and the calculation was made to
the model balance. (c) The 9101 working face was excavated step by step, and the excavation footage
was set as 10 m. The mining direction was perpendicular to that of the 8102 working face. For the small
pillar mining, (a) ditto; (b) three mining roadways of the 9101 and 9102 working faces were excavated
at one time, a pillar with a width of 5 m was set, and the calculation was made to the model balance; (c)
ditto. For the non-pillar mining, (a) ditto; (b) two mining roadways of the 9101 working face were
excavated at one time, and the calculation was made to the model balance; (c) pre-cracking roof cutting
was conducted firstly. Then the 9101 working face was excavated step by step, and the excavation
footage was set to 10 m. The mining direction was perpendicular to that of the 8102 working face.
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Figure 7. Geometry of the model. (a) Geometry of model of large pillar mining; (b) geometry of model

of small pillar mining; (c) geometry of model of non-pillar mining.
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5. Distribution Law of Three-Dimensional Stress Field

5.1. Distribution Law of Vertical Stress

In order to analyze the evolution law of stress distribution in the surrounding rock of stope, when
the working face advances to 120 m, monitoring lines are arranged at different positions of the model,
and vertical stress is monitored by monitoring lines. The location of monitoring lines is shown in
Figure 9. Among them, one, two and three monitoring lines are located in the inner 10 m of the 9101
ventilation roadway, the middle of the 9101 working face, and the inner 10 m of the 9101 haulage
roadway; four, five and six monitoring lines are located 5 m, 10 m and 20 m in front of the working face,
respectively; seven, eight and nine monitoring lines are located on the left side of the working face, 5 m,
10 m and 15 m in front of the working face respectively; 10, 11, 12 and 13 monitoring lines are located
on the left side of working the face, 5 m, 10 m, 30 m, and 80 m behind the working face, respectively.
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Figure 9. Location of monitoring lines. (a) Location of monitoring lines of large pillar mining; (b)
Location of monitoring lines of small pillar mining; (c) Location of monitoring lines of non-pillar mining.

5.1.1. Stress Distribution in Front of Working Face

(1) Stress distribution along working face strike

The vertical stress distribution nephograms and stress distribution curves at monitoring line 1
are shown in Figure 10. Figure 10 shows that the vertical stress distribution along the working face
strike was similar under the three mining methods, and the advanced mining stress concentration
area of the remaining pillars mining was larger than that of non-pillar mining, and the stress value
was slightly higher. The peak of advanced mining stress was located 10 m in front of the working
face, which was about 3.3 times that of the mining height of the working face. Among them, the peak
stress of non-pillar mining was 14% lower than that of large pillar mining and 10% lower than that
of small pillar mining. Within 3 m from the face, was the pressure-released zone of the stope; the
vertical stress value was lower than the original rock stress, and the coal body mainly underwent
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plastic deformation. Under the coupling effect of the overlying goaf and mining abutment pressure of
this coal seam, a pressure boost belt was formed within the range of 3-33 m from the working face. The
elastic deformation of coal body in this area caused the accumulation of elastic deformation energy,
and the bearing capacity was higher. Within the range of 33-90 m from the working face, under the
influence of pressure relief in the goaf of 8 # coal seam, the stress value was low. From 90-110 m away
from working face, the residual pillar of 8 # coal seam formed a stress concentration zone here, and the
stress value rose again. The stress distribution law at monitoring lines 2 and 3 was similar to that at
monitoring line 1. The peak of advance mining stress was 10 m ahead of the working face. The peak
stress of non-pillar mining was 23.88 MPa and 19.92 MPa respectively, which were 8%, 7% and —1%,
1% lower than that of traditional mining respectively (as shown in Table 3).
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Figure 10. Vertical stress nephogram and stress distribution curve at the monitoring line 1 along the
working face strike. (a) Vertical stress nephogram; (b) Stress distribution curve.
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Table 3. Key parameters of the stress distribution characteristics along the working face strike.

Moni.toring Mining Mode Stress Peak Position Peak Size Peak Reduction of
Line Trend (m) (MPa) (%)
Large 10 20.80 14
1 Small Similar 10 19.81 10
GERRCP 10 17.86 Reference quantity
Large 10 26.05 8
2 Small Similar 10 25.63 7
GERRCP 10 23.88 Reference quantity
Large 10 19.64 -1
3 Small Similar 10 20.05 1
GERRCP 10 19.92 Reference quantity

Based on the above analysis, the key parameters of the stress distribution characteristics along the
working face strike in the simulation results were summarized, and a matrix-type chart with resulting
values and illustrations was made, so they can be visualized and compared in a single view (as shown
in Table 3).

(2) Stress distribution along the inclination of working face

The vertical stress distribution nephograms and stress distribution curves at monitoring line
4 are shown in Figure 11. Figure 11 showed that, the distribution law of vertical stress along the
inclination of the working face was similar under the three mining modes, that was, the stress data
showed that the vertical stress increased first and then decreased. The stress curves of large and small
pillars basically coincided, and the stress value was slightly higher than that of the non-pillar mining
method. At the edge of the ventilation roadway, the three stresses were 10.8 MPa, 10.2 MPa and 7.6
MPa, respectively. The stress of non-pillar mining at the edge of the ventilation roadway was 30%
and 25% lower than that of the large pillar and small pillar, respectively. At the distance of 10 m
from the ventilation roadway, the three stresses reached 12.8 MPa, 12.3 MPa and 11.1 MPa. The stress
of the non-coal pillar mining was 13% and 10% lower than that of the large pillar and small pillar
mining, respectively. It could be seen that within the distance of 10 m from the ventilation roadway,
the vertical stress increased greatly, while the non-coal pillar mining showed the characteristics of low
stress compared with the traditional mining method. The main reason was that the roof rock beam
was cut off by pre-cracking the roof cutting, which transformed it from a long-wall beam to short-wall
beam and cut off the stress transfer between roofs, which improved the stress condition of surrounding
rock obviously. The stress distribution law at monitoring lines 5 and 6 was similar to that at monitoring
line 4. The stress increased rapidly within 10 m from the ventilation roadway and then slowed down.
The stress distribution of traditional mining was axisymmetrical about the middle of the working face,
while the stress of the side of the roof cutting of non-pillar mining was significantly lower than that of
the non-roof cutting. Among them, the peak stress of non-pillar mining was 23.98 MPa and 19.41 MPa
respectively, which were 7%, 7% and 10%, 8% lower than that of traditional mining respectively (as
shown in Table 4).
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Figure 11. Vertical stress nephogram and stress distribution curve at the monitoring line 4 along the
inclination of the working face. (a) Vertical stress nephogram; (b) Vertical stress distribution curve.
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Table 4. Key parameters of the stress distribution characteristics along the inclination of the working face.

Stress Stress
Monitoring Mining Concentration Peak Concentration Peak
Line Mode around Roadway = Reduction (%) of Working Reduction (%)
(MPa) Face (MPa)
Large 17.70 17 15.73 7
4 Small 15.55 5 15.73 7
GERRCP 14.77 Reference 14.59 Reference
quantity quantity
Large 15.34 12 25.87 7
5 Small 14.60 8 25.79 7
GERRCP 13.50 Reference 23.98 Reference
quantity quantity
Large 14.45 13 21.60 10
6 Small 13.40 7 21.18 8
GERRCP 12.50 Reference 19.41 Reference
quantity quantity

Through the above analysis, the key parameters of the stress distribution characteristics along the
inclination of the working face were summarized, and a matrix-type chart with resulting values and
illustrations was made (as shown in Table 4).

5.1.2. Stress Distribution in Lateral Direction of Working Face

(1) Stress distribution in left front of working face

The vertical stress distribution curves at monitoring line 7 are shown in Figure 12. Figure 12
showed that there were two peaks along the working face inclination under the condition of large and
small pillars mining. The locations of peak stress were 6 m, 23 m and 2 m, 15 m away from the edge
of ventilation roadway respectively, with sizes of 17.7 MPa, 12.3 MPa and 10.8 MPa, 15.6 MPa. The
stress concentration factors were 2.6, 1.8 and 1.6, 2.3. There was a wave peak along the inclination
of the working face under non-pillar mining, which was located 5 m outside ventilation roadway,
with a size of 14.8 MPa, and the stress concentration factor was 2.2. Compared with the peak stress, it
could be seen that the non-pillar mining decreased by 16% and 5% for large and small pillar mining
respectively, indicating that the non-pillar mining had less influence on the advanced mining stress of
the roadway surrounding rock, that was, the technology of roof cutting and pressure relief cut off the
stress transfer between the working face and roadway roof, and the stress control effect was better.
By analyzing the location of peak stress, it could be seen that the peak stress of the retaining pillar
mining mode was 6 m outside the roadway, while that of the non-pillar mining mode was 5 m outside
the roadway, which indicated that the plastic zone of surrounding rock in the advanced position of
a roadway under non-pillar mining mode was smaller. In addition, the advantages of this mining
method on the stress control of surrounding rock were further reflected. The stress distribution law
at monitoring lines 8 and 9 was similar to that at monitoring line 7. The advance abutment pressure
in lateral direction of the working face was lower than that of monitoring line 7. The peak stress of
traditional mining was 6 m outside the ventilation roadway, while the peak stress of non-pillar mining
was 5 m from the ventilation roadway. The peak stresses of non-pillar mining were 13.5 MPa and 12.5
MPa respectively, which were 12%, 8% and 13%, 7% lower than that of traditional mining respectively
(as shown in Table 5).
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Figure 12. Vertical stress distribution curve at monitoring line 7 in lateral direction of the working face.

Table 5. Key parameters of the stress distribution characteristics in the left front of the working face.

Monitoring Mining Number of Peak Position Peak Size Peak
Line Mode Peaks (m) (MPa) Reduction (%)

Large 2 6 17.7 16

7 Small 2 6 15.6 5
GERRCP 1 5 14.8 Referepce
quantity

Large 2 6 153 12

8 Small 2 6 14.6 3
GERRCP 1 5 135 Referetjlce
quantity

Large 2 6 14.4 13

9 Small 2 6 134 7
GERRCP 1 5 125 Referepce
quantity

Combined with the analysis results, the key parameters of the stress distribution characteristics in
the left front of the working face in the simulation results were summarized, and a matrix-type chart

with resulting values and illustrations was made (as shown in Table 5).

(2) Stress distribution in left rear of working face

The vertical stress distribution curves at monitoring line 10 are shown in Figure 13. Figure 13
showed that, there were obvious differences in the stress distribution characteristics along the
inclination of the working face under the three mining methods, which were mainly reflected in
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the stress concentration area and the degree of stress concentration. Figure 13b intuitively showed
that, in the lateral direction of the working face, the stress of the large pillar mining method was
the largest, followed by the small pillar mining and the minimum of the non-pillar mining method.
Under the traditional mining method, the vertical stress showed that the distribution characteristics
were saddle-shaped, in which the large pillar mining first formed the stress concentration in the large
pillar, that was, the first wave peak appeared. Then a small degree of concentration appeared at
the roadway edge of the 9102 working face, forming a second wave peak, indicating that the stope
underground pressure was mainly borne by the large pillar behind the working face. The small pillar
mining was obviously different from large pillar mining. The larger stress concentration was located at
the 9102 working face, and a smaller concentration occurred in the small pillar, indicating that the
small pillar had a low bearing capacity behind the working face due to the limitation of coal pillar
width, and the stress bearing area transferred to the deep part of the working face. Because of the
elimination of pillars for the non-pillar mining method, the weight of overlying strata was borne by
the solid coal on the working face, and a stress bearing area was formed in the 9102 working face.
Therefore, the stress concentration position was transferred from the traditional pillar area to the deep
part of the working face, and the peak of non-pillar mining was the smallest, which was 21% and 10%
lower than the traditional mining method of large pillar and small pillar respectively. It could be seen
that the technique of gob-side roof cutting effectively reduced the stress concentration in stope and
optimized the stress distribution in the lateral direction of the working face. The stress distribution
law at monitoring lines 11, 12, and 13 was similar to that at monitoring line 10. Traditional mining
methods still showed the characteristics of double-stress wave peak distribution, in which the high
stress concentration in large pillar, small pillar and no pillar mining methods occurred in the pillar,
9102 working face and deep part of the solid coal, respectively. The peak stresses were the smallest of
non-pillar mining, which were 18%, 10%; 16%, 6% and 13%, 7% lower than that of traditional mining
respectively (as shown in Table 6).

Table 6. Key parameters of the stress distribution characteristics in the left rear of the working face.

Monitoring Mining Number of Peak Position Peak Size Peak
Line Mode Peaks (m) (MPa) Reduction (%)
Large 2 6 21.52 21
Small 2 6 18.80 10
10
GERRCP 1 5 16.99 Referepce
quantity
Large 2 6 21.68 18
1 Small 2 6 19.84 10
GERRCP 1 5 17.83 Referepce
quantity
Large 2 6 23.70 16
Small 2 6 21.17 6
12
GERRCP 1 5 20.00 Referepce
quantity
Large 2 6 27.17 21
Small 2 6 2216 3
13
GERRCP 1 5 21.58 Referel.we
quantity
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Figure 13. Vertical stress nephogram and stress distribution curve at monitoring line 10 in lateral
direction of working face. (a) Vertical stress nephogram; (b) Vertical stress distribution curve.

With the help of the above analysis, the key parameters of the stress distribution characteristics in
the left rear of the working face were summarized, and a matrix-type chart with resulting values and
illustrations was made (as shown in Table 6).
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5.2. Distribution Law of Horizontal Stress

In order to analyze the distribution of horizontal stress, the model was sliced horizontally. As this
study focused on the analysis of the distribution characteristics of the mining stress field in 9 # coal
seam, therefore, in the middle of the height range of the face, horizontal slices were made to analyze
the evolution law of horizontal stress in the front and side of the working face.

5.2.1. Stress Distribution in Front of Working Face

When the working face advanced to 120 m, the horizontal stress distribution in the front and side
of the working face under the three mining modes is shown in Figure 14. In front of the working face,
the horizontal stress increased first and then decreased. Under the large pillar mining mode, the stress
rising area was large with a span of about 31 m, and the peak stress was 20.5 MPa. The peak stress was
located 10 m in front of the working face. Under the small pillar mining mode, the stress rising area
was slightly smaller, the span was about 23 m, the peak stress was 16.8 MPa, and the stress wave peak
was located 10 m ahead of the working face. The area of stress rise was the smallest under non-pillar
mining, with a span of about 9 m, a peak stress of 15.2 MPa and the stress wave peak was located 10 m
ahead of the working face.
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Figure 14. Horizontal stress distribution in front and side of the working face under the three mining

modes. (a) Large pillar mining; (b) Small pillar mining; (¢) Non-pillar mining.

The stress data showed that the non-pillar mining had the characteristics of a small stress rising
area and small stress value. Therefore, it could be concluded that non-pillar mining technology could
indeed improve the distribution of the surrounding rock stress field in front of the working face, which
was of great significance to reduce the surrounding rock stress in the stope.

5.2.2. Stress Distribution in Lateral Direction of Working Face

Figure 14 showed that, in the lateral direction of the working face, high stress concentration was
formed in the pillar under large pillar mining, and the stress concentration zone was also formed in
the coal body of the 9102 working face; the stress concentration in the pillar under the small pillar
mining was not obvious, but the phenomenon of a large stress concentration zone was formed in the
9102 working face; the phenomenon of stress rise occurred in the 9102 working face under non-pillar
mining, but the area of the concentrated area was lower than that of the remaining pillars mining mode.
This was because the retaining roadway by roof-cutting cut off the stress transfer between the working
face and its lateral direction, so the value of the stress in the lateral direction of the working face was
reduced and had the characteristics of optimizing the stress distribution in the lateral direction of the
working face.

6. Mine Pressure Monitoring

6.1. Stress Monitoring

In former sections, the distributions of advance stress and lateral abutment pressure in 9101
working face were studied by numerical simulation. On-site measurements of the strike and lateral
abutment pressure of 9101 working face were carried out in this section. With the help of monitoring
data, the distribution law of mine pressure was analyzed to verify the numerical simulation results.

6.1.1. Monitoring System

At present, the KJ550 on-line stress monitoring system was used in Xiashanmao coal mine.
The system consists of three main components (as shown in Figure 15): (1) The monitoring host
and data processing and analysis system on the ground, adopting a high-performance integrated
server workstation and high-performance computer, which can realize the functions of data storage
and analysis. (2) The underground monitoring substation (including a power supply), whose main
components are industrial high-performance electronic accessories. (3) The pressure sensing system
arranged along the entry on both sides of the working face is composed of the borehole stress meter
with hydraulic oil as the pressure-sensing medium and high-precision pressure sensors.
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Figure 15. Schematic diagram of remote monitoring system.

The structure and working principle of the system are shown in Figure 15. Under the influence of
mining, the pressure of coal and rock mass around the pressure sensor installed in the survey area
changes. The sensor receives the pressure fluctuation signal and transmits it to the terminal box,
which is transmitted through the pressure signal line to the monitoring main station and switch. The
monitoring main station and switch convert the electrical signal into an optical signal, then transmit
the optical signal to the ground-monitoring main station through the optical cable switch, and then
transmit it to the data-processing computer for stress data processing, so as to realize remote control.

Real-time monitoring technology aims to detect and identify various potential abnormalities and
faults, realizing real-time monitoring and early warning of dangerous situations, so as to take necessary
measures for minimizing performance degradation and economic costs and avoid catastrophic
situations [29-31]. Similarly, the KJ550 monitoring system can monitor the stress of coal body and
rock mass in front of the working face and around the roadway in real time, and monitor and display
the dynamic stress nephogram in front of the working face in real time, so as to realize the real-time
monitoring and early warning of the hazardous area of rock burst. At the same time, it has the functions
of remote control, data analysis and remote maintenance. Through the remote data processing and
early warning center, the monitoring data can be analyzed and processed in real time.

6.1.2. Monitoring Programme

Figure 16 shows the layout of the 9101 working face and real-time monitoring system in Xiashanmao
coal mine. It can be seen from the figure that two stations are arranged in the 9101 tail entry, and the
measuring points of stations 1 and 2 are arranged in the solid coal side of the roadway to monitor the
change of lateral abutment pressure of the coal side. There are four measuring points in stations 1 and
2, with buried depth of 3, 6, 9 and 12 m respectively; the distance between measuring points is 0.5-1 m,
and the distance between measuring station 2 and station 1 is 100 m; Stations 3-22 are arranged in the
9101 working face to monitor the change of strike abutment pressure in working face, and each station
is equipped with two measuring points with buried depths of 5 and 10 m. The distance between
stations is 2 m and distance between measuring points is 0.5 m.
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Figure 16. Layout of the 9101 working face and real-time monitoring system.

6.2. Analysis of Main Monitoring Results

6.2.1. Distribution Characteristics of Strike Abutment Pressure of Working Face

f

Cable

There are many stations for coal body layout in the inner side of drift in the 9101 working face.
The monitoring results of two stations are selected for analysis below. Figure 17 is the relative vertical
stress variation curve of each measuring point at station 3 of the lower drift and station 20 of the upper

drift of the 9101 working face respectively.
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Figure 17. Relative vertical stress variation curve. (a) Relative vertical stress variation curve of station
3; (b) Relative vertical stress variation curve of station 20.

Figure 17a showed that, the vertical stress of the measuring point of the station increased
significantly on 4/13, indicating that the measuring point began to enter the influence range of strike
abutment pressure on the working face. At this time, the measuring point was 42.6 m away from the
working face, that is, the influence range of strike abutment pressure on working face was 42.6 m. The
vertical stress of the measuring point began to decrease on 4/17, indicating that the measuring point
began to enter the plastic zone, which was 9 m away from the working face. It could be seen that the
peak position of strike abutment pressure in the working face was 9 m away from the coal wall, and
the continuous influence distance of abutment pressure was 33.6 m.

Figure 17b showed that the vertical stress of the 20-1 measuring point began to reach the peak
abutment pressure on 4/20, when the measuring point was 54.2 m away from the working face, that is,
the influence range of advance abutment pressure of the working face was 54.2 m. The vertical stress
of the measuring point began to decrease significantly on 4/24, indicating that the measuring point
has entered the plastic zone, which was 12 m away from working face, i.e., the peak position of the
strike abutment pressure of the working face was 12 m away from the coal wall, and the continuous
influence distance of the abutment pressure was 42.2 m.

6.2.2. Distribution Characteristics of Lateral Abutment Pressure of Working Face

Station 1 and Station 2 were continuously monitored for 45 days (Signal cable interruption in goaf
at later stage). During this period, the 9101 working face pushed forward from 18 m in front of station
1 to 35 m after station 2, with a total of 153 m, and the distance of the signal cable entering the goaf was
60 m. Figure 18 showed the relative vertical stress variation curves of stations 1 and 2 respectively.
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Figure 18. Relative vertical stress variation curve. (a) Relative vertical stress variation curve of station
1; (b) Relative vertical stress variation curve of station 2.
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Figure 18a showed that, the vertical stress of the 1-2 measuring point reached its peak on 3/23,
when the working face was 20 m ahead of the measuring point. The vertical stress of 1-3 measuring
point reached the first peak on 3/26, when the working face position was 3.7 m behind the measuring
point, and began to decrease slightly on 4/2, when the working face position was 40 m behind the
measuring point. With the advancement of the working face, the vertical stress of each measuring
point increased periodically. On 4/27, the vertical stresses of measuring points 1-1, 1-2 and 1-3 tended
to be stable, and the vertical stress of measuring point 1-4 dropped sharply. At this time, the working
face was located 60 m behind station 1.

Figure 18b showed that, the vertical stress of the measuring points 2-1, 2-2 and 2-3 began to rise
on 3/26, when the working face was 96.3 m in front of station 2, and the vertical stress of the measuring
point 2-1 reached its peak on 4/19, when the working face was 19 m in front of the measuring point.
The vertical stress of the measuring point 2-2 reached its peak on 4/22, when the working face was
3 m behind the measuring point. The vertical stress of measuring point 2-3 increased slightly from
4/17 to 4/23 and decreased considerably on 4/24, when the working face advanced to 15 m behind the
measuring point. From 4/18 to 4/25, the vertical stress of the 2-4 measuring point increased slightly,
then decreased slightly. At this time, the working face was located 18 m behind the measuring point.

6.2.3. Comparative Analysis of Abutment Pressure

In order to verify the numerical simulation results, the field monitoring data were compared with
simulation results. When the working face advanced to station 3, the abutment pressure in front of the
working face was shown in Figure 19. The field monitoring results showed that the abutment pressure
in front of the working face increased first and then decreased, reaching a peak at 9 m ahead of the
working face, and the stress distribution tends to be stable as it was farther away from the working
face. The numerical simulation results also showed the distribution law of first increasing and then
decreasing, reaching the stress peak at 10 m ahead of the working face, and the distribution law of
abutment pressure was consistent with the monitoring results.
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Figure 19. Distribution law of abutment pressure in front of the working face.
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When the working face advanced to 146 m, station 2 lagged behind the working face by 28 m.
The stress data extracted from the four measuring points could reflect the distribution characteristics
of lateral abutment pressure, as shown in Figure 20. Field monitoring results showed that the lateral
abutment pressure of the working face continued to increase within a range of 0-6 m from the roadway
edge, reaching a peak value of 13.7 MPa at 6 m, and then gradually decreased. The numerical simulation
results also showed a trend of first increasing and then decreasing, and reached the peak at 5 m away
from the roadway edge. The stress distribution law was consistent with the monitoring results.

25
—®— Simulation
20l —®— Monitoring
\l\.\
E 51 \l\I
?m, / | .'l
E /’ —8-mn
A 10} ’ /—————” ——————————— s S S
| Initial stress
i | ~_ =10 MPa
s | »
: i : Stress dropping zone
. ' -
Stress rising zorie !
/ S E—— :
/ Initial stress zone; | |
0 I 1 ! : 1 ! 1 1
0 5 10 15 20

Distance from roadway edge (m)
Figure 20. Distribution law of lateral abutment pressure in working face.
7. Conclusions

Taking Xiashanmao coal mine in Shanxi Province as the engineering background, the stress
distribution in the process of coal seam mining was analyzed by establishing a numerical model, and
the following conclusions were drawn:

(1) Based on the new technology of gob-side entry retaining by roof cutting without pillar, the
mechanical model of the roof structure was established. Through the mechanical analysis of the model,
the extension depth of the plastic zone on the solid coal side and the supporting load in the mining
roadway were obtained under the condition of this technology, which provided certain theoretical
support for the design of roadway support in the field.

(2) Through numerical simulation, the distributions of strike and lateral abutment pressure of
the 9101 working face were obtained. Among them, the vertical stress distribution was as follows.
In front of the working face: along the working face strike, the stress increased first, then decreased
and then increased. The peak value of advance stress was formed at 10 m in front of the working face,
and the peak value of non-pillar mining was reduced by 8-10% and 8-14% respectively compared
with traditional mining. Along the inclination of the working face, the stress distribution of non-pillar
mining and traditional mining was asymmetrical and symmetrical respectively, and the stress increased
first and then decreased, while the stress at the side of roof cutting was significantly lower than that of
the non-cutting. In the left side of the working face: along the inclination of the working face, the stress
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of the non-pillar mining increased at first and then decreased, while the traditional mining showed the
saddle-shaped distribution characteristics, and there were one and two peak stresses respectively. The
peak stress of non-pillar mining was the smallest, which was 12-21% and 3-10% lower than that in the
mining with large pillar and small pillar, respectively. The peak stress position in the former was closer
to the mining roadway.

The horizontal stress distribution was as follows. In front of the working face: The stresses of the
three increased first and then decreased. The peak position was 10 m ahead of the working face, in
which the area, span and peak value of the stress rising area under large pillar mining were the largest,
while those of non-pillar mining were the smallest. In the left side of the working face: high stress
concentration was formed in the large pillar, not obvious in the small pillar, but a large area of stress
concentration was formed in the 9102 working face. Because of the technology of roof cutting and
retaining roadway, the phenomenon of stress increase appeared in the 9102 working face for non-pillar
mining, but the area of the concentrated area was lower than that of traditional mining.

The results show that, in front of the working face: The stress increase area and peak stress of
non-pillar mining were smaller than that of traditional mining. Around the retaining roadway, the
stress transfer between roof rock beams was cut off by the roof cutting and pressure relief, which
effectively weakens the stress concentration in deep surrounding rock. In the left side of the working
face: The number of stress peaks was small and the peak stress was small for non-pillar mining. The
stress-bearing areas of three mining methods were different, which were big coal pillar of large pillar
mining, 9102 working face of small pillar mining and 9102 working face of non-pillar mining. The
width of the plastic zone of surrounding rock of non-pillar mining was smaller and the bearing capacity
was higher.

(3) The mine pressure monitoring data showed that the influence range of strike abutment pressure
of the working face was 42.6-54.2 m. The distance between the peak position of abutment pressure and
coal wall was 9-12 m. The sustained influence distance of abutment pressure was 33.6-42.2 m. The peak
value of vertical stress at the deep-buried measuring point lagged behind that at the shallow-buried
one. In the lateral side of the working face, the influence distance of mining in front of the 9101 working
face was 48 m. With the advancement of the working face, the influence on it became more and more
serious. The breaking and rotation of the hard strata overlying the working face caused the vertical
stress of the shallow buried measuring point to rise. When 86 m ahead of the station, the stress at the
measuring point was basically not affected by mining and reached a stable state. By comparing the
field mine pressure monitoring results with the numerical simulation results, it could be found that the
simulation results were consistent with the monitoring results.
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Abstract: The propagation of cascading failures of modern power systems is mainly constrained by
the network topology and system parameter. In order to alleviate the cascading failure impacts, it is
necessary to adjust the original network topology considering the geographical factors, construction
costs and requirements of engineering practice. Based on the complex network theory, the power
system is modeled as a directed graph. The graph is divided into communities based on the
Fast-Newman algorithm, where each community contains atleast one generator node. Combined with
the islanding characteristics and the node vulnerability, three low-degree-node-based link-addition
strategies are proposed to optimize the original topology. A new evaluation index combining with
the attack difficulty and the island ratio is proposed to measure the impacts on the network under
sequential attacks. From the analysis of the experimental results of three attack scenarios, this study
adopts the proposed strategies to enhance the network connectivity and improve the robustness to
some extent. It is therefore helpful to guide the power system cascading failure mitigation strategies
and network optimization planning.

Keywords: power systems; complex network theory; Fast-Newman algorithm; link-addition strategy;
cascading failures

1. Introduction

For smart grids, the advanced communication and information technology are employed to
enhance the intelligence and automation of the power systems. Meanwhile, cyber threats are introduced
to the physical systems triggering the self-organized criticality of the power system, leading to cascading
failure propagation between networks even blackouts occurred [1-3]. As the scale of the smart grid
expands, how to optimize the power system structure and effectively alleviate cascading failures has
aroused public concern.

Modern power systems are dynamical systems featured by complexity and nonlinearity. For
simplifying the model complexity, the complex network theory and the graph theory are introduced to
demonstrate the network dynamics [4]. Besides, the characteristics of complex networks can be used to
analyze the impacts on cascading propagation [5]. The larger the cluster coefficient (CC) of the network
is, the wider the cascading failure propagation is. Moreover, the smaller the average path length
(APL) of the network is, the deeper the cascading failure propagation is [6]. Statistics indicate that the
power system is a typical sparse network owing to geographical location constraints and inadequate
investment budgets [7]. As the power system expands, regional and long-distance power transmission
lines are constructed to balance the regional generation capacity. With the increase in transmission
lines, the APL increases slowly, while the regional CC is relatively large. Therefore, cascading failures
can be easily propagated in large regions of the power system.
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Previous studies have put forward the load-capacity model to analyze the cascading failure
propagation. Cascading failure model of the power system based on the complex network theory
combines with the characteristics of power flows [8]. System capacity and network connectivity
affect the propagation of cascading failures [9]. An electrical path efficiency matrix is assisted with
the assessment of power system influences and losses [10]. Based on the percolation theory [11],
the remaining giant component indicates the robustness of the network. However, evaluation indexes
of the existing studies are used to assess the connected component performance, which cannot be
implemented for isolated islands. The power system can maintain islanding operations after attacks.
Thus, the robustness index of the power system should contain all survival islands.

Additionally, relevant research focused on the mechanism of cascading failures. In the power
system, cascading failure can be triggered by means of physical equipment malfunction or misoperation
owing to weather or man-made, and intentional cyber-attacks. Power node or link failure caused by
system hidden failures as well as large area blackouts caused by natural disasters exhibit random
attacks (RA) to the power system. Adversaries can also attack specific targets. For example, high degree
node attacks (HDNA) disconnect the highly connected substation to destroy the network connectivity.
Moreover, cyber-attacks compromise communication data to control the power system operations,
which can construct not only simultaneous attacks but also sequential attacks [12]. For example,
a large area of new energy resources simultaneously disconnects from the backbone network, or some
special targets are sequentially compromised by coordinated strategies. The current research indicates
that vulnerability sequence attack (VSA) damages the network more seriously than simultaneous
attacks [13], because VSA can collapse the whole network by attacking fewer nodes. The evolution of
both logical and real values of system parameters can be analyzed by a hybrid attack graph under
attack and recovery actions scenarios [14]. As simultaneous attacks and sequential attacks have diverse
impacts on power systems, it is necessary to investigate the cascading failure propagation of multiple
attack scenarios by using proper evaluation indexes.

However, vulnerability of topology is affected by the transmission efficiency, connectivity,
and connected components [15], particularly the power flow distribution of power systems [16].
The topology of the power system is relatively inflexible and vulnerable to intentional attacks [17].
Diverse fault diagnosis technologies have applied to monitor, locate, and identify the faults, which need
to handle a large amount of data and operate system resources [2,3]. The effective control chart technique
could substantially decrease the loss caused by the diagnosis and correction [18]. Optimal nonlinear
adaptive control reduced uncertainties and improved the robustness under different operation
scenarios [19]. In order to decrease the network vulnerability, the network structure can be optimized
by link-addition strategies to mitigate cascading failures [20]. Existing research proposes interlink
addition strategy to increase connectivity density, in order to reduce cascade-safe region and improve
the network connectivity [21]. For improving the network robustness, connectivity links and interlinks
could be added simultaneously [22], while the construction costs are too high to realize [23]. Ji et al. [24]
compared with various connectivity link addition strategies, for the purpose of verifying the feasibility
of low-degree node link-addition strategy and improving the power network robustness. However,
these link-addition strategies have focused on the pure topology evolution evaluating by using degree
or betweenness indexes, without considering special characteristics of power systems.

Since the power system is managed in regions, isolated islands can maintain in operation.
The Fast-Newman algorithm is introduced to divide the network topology into communities,
thereby ensuring that the network can be effectively partitioned [25]. In power systems, the location of
generators is the key factor for a valid community [8]. Besides, the load distribution has influences on the
power generation dispatch and control strategy [26]. For providing sufficient power supply, the power
system can be partitioned into communities following the power flow directions. Moreover, critical
regions greatly affect the topology evolution, and the community partition of these regions seriously
influences on the network vulnerability [27]. To achieve the reliability and preventive maintenance is
another optimization goal [28]. Therefore, the community-based link-addition strategy is proposed to
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optimize the existing power network topology, in order to reduce investment budgets and alleviate the
burden of load centers.

In summary, present researches have confirmed that the power system is affected by the community
structure, but less attention is paid to the optimal community structure on mitigating cascading failure
propagation. In order to address this issue, we propose an improved load-capacity model based
on the islanding power flow distribution, in terms of the complex system and percolation theory.
The island ratio is a measure of the robustness of power networks. For further demonstrating the
difficulty of attacks, an evaluation indicator is introduced to assess the influence of the sequential
attack. In order to optimize the original power system, three community-based link-addition strategies
between low-degree nodes are therefore proposed to meet the requirements of engineering practice.
This paper is of practical significance in how to optimize network topology and improve the network
robustness of the power system.

The reminder of the paper is organized as follows. Section 2 presents the fundamental theoretical
background on constructing a load-capacity model. Section 3 discusses the evaluation index. Section 4
describes the process of constructing link-addition strategy. Section 5 provides the simulation results
and the corresponding analysis. Section 6 summarizes several concluding remarks and discusses the
challenging issue. Lack of the period.

2. System Model

Based on the complex network theory, the power system is modeled as a directed graph
Gp = (Vp,Ep), with N nodes and without multiple edges or loops, where Vp and Ep are power
nodes and lines, respectively. The power nodes are categorized as three types: generator nodes that
generate electricity, load nodes that consume electricity, and substation nodes that transfer electricity.
Particularly, one generator node carrying loads can be classified into the load node. The power lines are
directed by the power flow changes over time. In order to decrease calculation complexity, this study
ignores the differences in transmission lines, the transient voltage instability and phase angle mismatch.
In this graph, the nodes and lines can be removed as a result of failures or attacks. It is assumed that
the adversaries can manipulate the systematic information to construct malicious attacks of any target
of the system.

In the power system, the real and reactive power injections are balanced at every node, as indicated
in Equations (1) and (2). Moreover, the real and reactive power flows in transmission lines by following
Kirchhoff’s law, as expressed in Equations (3) and (4) [29].

Real and reactive power injection at node i:
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Vj(Gz] sin@,-]-—Bi]- Ccos 91']‘), (2)
]

Real and reactive power flows from node 7 to node j are:
P,']‘ = V,‘ZG,']‘ — V,'V]‘(G,']‘ Ccos 9,']‘ + B,']' sin 91‘]‘), 3)
Qij = —V,‘zB,‘j - V,V](G,j sin 9,‘]' - Bij cos 9,']‘), (4)

where P; is the real power injection at the power node 7, Q; the reactive injection at the power nod i, Pij
the real power flow from node 7 to node j, Q;; the reactive power flow from node 7 to node j, V the
voltage magnitude, 0;; the difference in the phase angle between power nodes i and node j, B;; the
admittance, Gij the susceptance, and N the initial number of nodes, i, j € N.
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According to the power flow distribution, the power system capacity is assumed to be proportional
to its initial states [30]. It is assumed that the power system is provided with moderately reactive power
to compensate losses and avoid out-of-limit at the same voltage grade. The initial power flow capacity
is the maximum power flow in transmission lines of Equation (5). The initial generation capacity is the
maximum output of generators of Equation (6). The initial node capacity is the maximum sum of out
flows Pyt fiow,ij (i) and local loads Ly (i) of node i of Equation (7).

Cpr = max(P;j), (5)

(Cg(’n,i = maX(Pgen (1))/ (6)

CNode,i = max( Z Paufflow/ij(i) + Lioaa (i), @)
ijeN

So, the system capacity Cp is a times the initial states.

Cp = a(Crr, Coon, Chode ), ®)

where « is the tolerance parameter, o > 1. In the model, the tolerance parameter « is a consistent one.
It is assumed that the power system adopts the overcurrent protection mechanism. For simplicity,
if the power flow exceeds the system capacity, the transmission lines trip off instantly without further
automatic reclose.

3. Evaluation Index

(1) Cluster coefficient

CC indicates the network connectivity level between nodes and their neighboring nodes [31].
Assume that node i has a number of E; links and k; neighbors, while the maximum number links of
these neighboring nodes is 1;(1; — 1). The CC of node i is shown as follows.

2E;
Cli) = ———, ©)
% ni(n;—1)
Then, global CC of the network equals to the mean value of the local CC of all nodes
C= Z C(i)/N, (10)

ieN

(2) Average path length
APL is a measure of network efficiency. Dijkstra algorithm [32] is used to find the shortest path
from the source node i to the destination node j, then the average distance between two nodes is shown

as follows. .
L= ——-— dij, (11)
N(N-1), ;N /

In this study, d;; is assumed to be the distance cost of one new connectivity link, which indicates
the difficulty of adding one new link from one source node to the other destination node.

(3) Node vulnerability

Based on the percolation theory, nodes are functional only in a giant component, which is a
maximal connected component of the graph. The number of nodes that belong to giant components
owing to one node removal indicates the node vulnerability. In one network, although a number
of nodes have the same vulnerability, node removal contributes various influences on the remained
components. In literature [4], the node types and their locations are combined to further distinguish
the most vulnerable node. If the nodes are in separate single loops, the node in the bigger single loop
is more important than that of the smaller one. Since a line-shaped branch is generated after unlocking

164



Processes 2020, 8, 126

the single loop, the longer the branch, the more the loss of nodes. If the nodes are in the same single
loop or in different single loops of the same size, further investigation is required until the most critical
node is located.

Ly = %, Vlength(r(i)) > length(r(¢)), (12)

where N7 is the node number of the remaining giant component, ¢ the set of nodes with the same
vulnerability, r(i) the single loop where node i locates, and length stands for the length of the single
loop,i€ ¢ €N.

After part of nodes are removed from the network in a random or targeted manner, the remaining
giant component ratio is used to estimate the network robustness [33]. However, the power system
can maintain in islanding operations. Thus, the island ratio is the proportion of all survival isolated
components of the power system.

P N:TC)
N
where © is the node number of one survival island, and x is the number of islands.
For assessing the influence of the network under sequential attacks, an evaluation indicator S is

introduced to combine with the difficulty of attacks and the survivability of the network.

(13)

S=1xlI, (14)
where 7 is the number of sequential attacks, and S is a scalar without units.
4. Link-Addition Strategy

4.1. Fast-Newman Algorithm for Community Partition

According to the power system management, each community has at least one generator node to
supply sufficient electricity, or it will fail to partition. The directed power system graph detects the
valid community modularity by using the Fast-Newman algorithm [25].

kik:

Q= ﬁ; [Ajj - ﬁ]é(vi, v;), (15)
where m is the link number, 2m the sum of degrees of the network, A the adjacent matrix, k the degree
of anode, and 6(v;, v;) the function for judging the community of two nodes. If they are in the same
community, it is 1, otherwise 0. The modularity Q ranges from [-0.5,1), the greater the modularity,
the better the effect of community partition. Statistics show that when Q is between 0.3 and 0.7,
communities will cluster effectively [34].

4.2. Low-Degree-Node-Based Link-Addition Strategy

One-degree node (leaf node) of the power system is easily removed, owing to its overloaded
transmission line or neighboring node removal that suffers from disturbances or attacks. Through the
addition of new links to the leaf nodes, the connectivity level of the network can be increased. This is
because the removal of tree-shaped root nodes can cause a large area to be disconnected from the core
component, and the leaf nodes of the most vulnerable nodes are critical for optimizing the power
system topology. However, some leaf nodes are generator nodes, so it is unreasonable to connect two
generators except one generator node carrying a heavy load. The newly added links cannot overlap
the original links. Moreover, the new network has to ensure that each community has at least one
generator node. In conclusion, three link-addition strategies are proposed to enhance the original
network connectivity and decrease the vulnerability.
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(1) Low-degree-node link-addition strategy (LDNLAS)

The strategy aims to optimize long-distance transmission line construction for solving the
long-distance electricity transmission of the large scale power systems. Based on the community
partition and node vulnerability of the original power system, the new links from one community
to other communities satisfy the average shortest path. If the most vulnerable node has leaf nodes,
new links are first added from them.

. 1
ErpNnLAS = DZ Egs.t. 5(’05,Ut) =0,s€Dq,teN,Dy € N,s # tmin Loy = m; dst, (16)
1 s

where Eg; is an additional link, s the low-degree nodes, t the leaf nodes, and D; the set of low-degree
nodes that satisfy the average shortest path L.

(2) Nearest-neighboring-node link-addition strategy (NNNLAS)

The strategy aims to connect the nearest nodes to enhance the local network connectivity and
density. Based on breadth-first search algorithm, the new links find the shortest distance between
neighboring nodes. If new links have the same shortest distance, those who have the average shortest
path will satisfy the requirement.

ENNNLAS = Z Egt, s.t. neighbor(vs, v¢),s € Dy, t € N,Dy € N, s # t,min dg, 17)
Dy

where Eg; is an additional link, f the leaf nodes, s the neighbor of leaf nodes that satisfy the shortest
path dgt, and D, the set of neighboring nodes.

(8) Max-load-node link-addition strategy (MLNLAS)

The strategy aims to alleviate the heavy burden of load centers and balance electricity supply
capacity. Combined with the community partition, the load centers get new electricity supply with
other generator by new links. Moreover, the new links satisfy the average shortest path. If the leaf
nodes are not generators, the new links will follow the LDNLAS.

. 1
EminLas = ; Ests.t.s € D3, t € N,s # t,min Lyey = m; dst, (18)
3 s

where Eg; is an additional link, f the leaf nodes, s the heavy load node, and Dj3 the set of heavy load
nodes in order.

5. Simulation Results and Data Analysis

In this section, the present study experiments with the data of IEEE 39-bus power system and
establishes the simulation results in detail. The power flow calculation and the isolated island problems
are solved using the MATPOWER 6.0 toolkit in MATLAB R2016a [35]. Based on the graph theory,
the directed graph gets the average degree D = 2.359, cluster coefficient C = 0.0385, and average
path length L = 4.749, while the random network with the same D, Crand = D/N = 0.0605 and
Lyand = In(N)/ In(D) = 4.2687. The graph includes generator nodes ranging from 30 to 39, and it
is partitioned into 5 communities according to the Fast-Newman algorithm. The modularity is
Q = 0.6125, which indicates good community partition of this graph. Each community contains at
least one generator node, which is shown as follows.

In Figure 1, communities are labelled by numbers and surrounded by an ellipse. Community 1 is
the area of blue solid circles, community 2 the area of red squares, community 3 the area of magenta
snowflakes, community 4 the area of green rhombuses, and community 5 the area of black stars.
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Figure 1. Communities of IEEE 39-bus system.

5.1. Generating Network

According to the principle of link-addition strategies, IEEE 39-bus system has 9 one-degree nodes
ranging from node 30 to node 38. These leaf nodes without heavy loads are unnecessary to connect to
each other, because they are all generator nodes. Therefore, the network has to add 9 additional links
to get Dpery = 2.8205.

(1) LDNLAS Network

From Figure 1, the node importance of the original network is obtained to find the most vulnerable
node 16 and 2 leaf nodes based on the Equation (9) in the same community. The low-degree nodes are
randomly chosen to connect with these leaf nodes to find the average shortest path length. Following
the rule, 9 links are added to the original network. In each step, the network can be partitioned into
valid communities. The total cost of additional links is 53. See Table 1 for details.

Table 1. Connectivity link addition of LDNLAS.

New Link Q Community c L d
35-7 0.6098 6 0.0385 4.5128 9
34-28 0.5920 5 0.0214 4.4143 7
32-9 0.5537 4 0.0214 4.3374 6
36-1 0.5176 4 0.0214 4.1916 8
38-15 0.4998 3 0.0214 4.0229 6
31-12 0.5229 4 0.0214 4.004 3
30-20 0.4664 3 0.0214 3.9096 7
33-21 0.4911 4 0.0214 3.8866 3
37-18 0.5127 4 0.0214 3.8475 4

The LDNLAS network detects 4 communities in Figure 2. Community 1 with 9 nodes is the area
of blue solid circles, community 2 with 4 nodes is the area of red squares, community 3 with 15 nodes
is the area of magenta snowflakes, and community 4 with 11 nodes is the area of green rhombuses.

The modularity of the LDNLAS network is Q = 0.5127 € [0.3,0.7], which indicates the community
partition is effective. C = 0.0214 is less than that of the original network, and L = 3.8475 is reduced to
about 19%. Although the LDNLAS network reduces the aggregation degree than that of the original
network, it improves the connectivity obviously.
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Figure 2. Communities of LDNLAS network.

(2) NNNLAS Network

Firstly, the neighbors of the leaf nodes are found. Owing to the symmetrical structure, several
leaf nodes have the same shortest distance to their neighbors. The total cost of additional links is 22.
See Table 2 for details.

Table 2. Connectivity link addition of NNNLAS.

New Link Q Community C L d
35-21/36-24 0.6137 6 0.1239 4.6572 4
34-15 0.6122 5 0.1239 4.5466 4
30-1/31-7
33-20/38-28 0.6216 5 0.2692 4.529 8
32-12/37-27 0.6393 5 0.2692 4.4872 6

In Figure 3, the NNNLAS network detects 5 communities. Community 1 with 7 nodes is the
area of blue solid circles, community 2 with 4 nodes is the area of red squares, community 3 with 12
nodes is the area of magenta snowflakes, community 4 with 7 nodes is the area of green thombuses,
and community 5 with 9 nodes is the area of black stars.
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Figure 3. Communities of NNNLAS network.

The modularity of the NNNLAS network is Q = 0.6393 € [0.3,0.7], which indicates the community
partition is highly effective. C = 0.2692 is 7 times the original network, and L = 4.4872 is reduced to
about 5%. Although the NNNLAS network enhances the aggregation degree enormously than that of
the original network, it increases the connectivity level slightly.
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(3) MLNLAS Network

First, the loads of the original network are ordered to select the first 9 load nodes. Then, new links
are randomly added to the leaf nodes to satisfy the community partition principle and the average
shortest path length. The total cost of additional links is 58. See Table 3 for details.

Table 3. Connectivity link addition of MLNLAS.

New Link Q Community C L d
36-39 0.5776 4 0.0385 4.5304 9
34-8 0.5816 5 0.0385 4.363 9
38-20 0.5352 4 0.0385 4.1997 7
354 0.5272 4 0.0385 4.0513 6
32-16 0.5121 4 0.0385 3.8785 5
31-3 0.5274 4 0.0385 3.7787 4
37-15 0.4532 4 0.0385 3.6775 6
3024 0.4458 3 0.0385 3.6086 6
33-29 0.4483 3 0.0342 3.5735 6

The MLNLAS network detects 3 communities in Figure 4. Community 1 with 13 nodes is the area
of blue solid circles, community 2 with 12 nodes is the area of red squares, and community 3 with 14
nodes is the area of magenta snowflakes.
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Figure 4. Communities of MLNLAS network.

The modularity of the MLNLAS network is Q = 0.4483 € [0.3,0.7], which indicates the community
partition is reasonable. C = 0.0342 is close to that of the original network, and L = 3.5735 is reduced to
about 25%. Although the MLNLAS network decreases the aggregation degree than that of the original
network, it increases effectively the connectivity level.

Three networks of the same additional links decrease the APL and increase the connectivity
than that of the original network. NNNLAS network significantly improves the aggregation degree
at the lowest cost; LDNLAS network effectively increases the connectivity with a higher cost than
that of NNNLAS network; MLNLAS network dramatically improves the connectivity and alleviates
the burdens of load centers, while the cost is the highest one of three strategies, and the community
partition and aggregation degree are relatively weak.

5.2. Network Robustness Analysis

The robustness of networks is analyzed under three attack scenarios. Random node attacks
and high-degree-node-based attacks are regarded as simultaneous attacks, while vulnerability-based
attacks are sequential attacks. For reducing the influence of network capacity, this study assumes the
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universal system tolerance parameter a = 2. Under the simultaneous attack scenarios, the component
ratios are graphed with the distribution interval, median, 5%-95% position and mean at various attack
ranges. Under the sequential attack scenarios, the component ratio curves are plotted by the number
of attacks, and all remaining survival islands are demonstrated as directed graphs.

(1) RA Scenario

4 8 (12 16 (20 24 28 (32
Random attack groups are C5,, C5, C55, C3g, C59, C5q, C50, G55,

respectively. In one attack range, 1000 groups of data are selected to attack 4 networks, which is

ng, according to the attack ranges

executed for 50 times to obtain the corresponding results.

From the distribution intervals of Figure 5, the maximum component ratios of the original network
are all less than or equal to three new networks of any attack range. The less the range of distribution
intervals, the more stable the cascading propagation; the greater the mean value, the better the network
robustness. For further comparison, the mean and median values are shown in Figure 6.
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Figure 6. Mean and median values under RAs.
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Observing the mean histogram and the median curve of Figure 6, the original network lefts
fewer nodes when the attack range is up to 60%. The LDNLAS and NNNLAS networks survive up
to 70% attack range, while the MLNLAS network can preserve in 80% attack range. Combined with
the distribution intervals of Figure 5, the robustness of 4 networks orders is as follows: MLNLAS >
LDNLAS > NNNLAS > original.

(2) HDNA

The nodes of networks are ordered in degrees. The attack range selects the nodes from the high
degrees to the low ones. As the nodes with the same degree have a number of attack groups, the results
can be obtained by traversing all attack groups of each attack range.

In Figure 7, when the attack range is up to 50%, the original network totally collapses, and the
MLNLAS network lefts a few nodes. In contrast, the LDNLAS and NNNLAS networks remain a large
number of nodes. Owing to the impacts of the highest degree nodes on the connectivity, the NNNLAS
network losses the maximum nodes at 10% attack range of 4 networks. For further analysis, the mean
and median values are shown in Figure 8.
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Figure 8. Mean and median values under HDNAs.
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Combined with Figures 7 and 8, when the attack range reaches 20%, although the mean value
of the LDNLAS network is smaller than that of the NNNLAS network, both the maximum value
and the median value of the former are larger than the latter, which indicates that the mean value
is smaller due to the influence of extreme value. Thus, the overall data should be larger than the
latter. Attacking more than 20%, the robustness of the LDNLAS network is obviously superior to other
3 networks. Influenced by the community partition, when the attack range is more than 10%, the
robustness of 4 networks orders as follows: LDNLAS > NNNLAS>MLNLAS > original.

(3) VSA

Based on the node vulnerability, one node is attacked each time. For comparing with the original,
the attack originates from the most vulnerable node 16. The attack sequence of the original network
is: 16-26-3-8-6; the attack sequence of the LDNLAS network is: 16-23-7-20-2-9-5-14; the attack
sequence of the NNNLAS network is: 16-14-6-26; and the attack sequence of the MLNLAS network
is: 16-13-6-8-26-3-22-2.

In Figure 9, the original network sequentially attacks 5 nodes (about 10%) splitting into 4 islands,
and Syiging = 2.564. The LDNLAS network sequentially attacks 8 nodes (about 20%) splitting into
3 islands, and Sypnias = 3.0768. The NNNLAS network sequentially attacks 4 nodes (about 10%)
splitting into 3 islands, and Synnzas = 1.9488. The MLNLAS network sequentially attacks 8 nodes
(about 20%) splitting into 4 islands, and Sy nras = 4.9232.
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Figure 9. Component ratio under VSAs.

The remaining islands of sequential attacks are shown as follows.

From Figures 9 and 10, it is observed that the MLNLAS network is the most robust one of 4
networks. The LDNLAS network exhibits the difficulty of sequential attacks, while it is weak in
islanding operations. The NNNLAS has the worst survivability under sequential attacks. In the
sequential attack process, the more the attacks, the more difficult the implementation, and the more
robust the network. Moreover, the network with few communities, a small CC and a short APL can
resist the sequential attack more efficiently. Therefore, the robustness of 4 networks orders as follows:
MLNLAS > LDNLAS > original > NNNLAS.
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Figure 10. Remaining islands under VSAs (a) IEEE 39 system, (b) LDNLAS network, (c) NNNLAS
network, and (d) MLNLAS network.

From the above analysis, LDNLAS gets the second largest link-addition cost of the three proposed
strategies. The LDNLAS network obtains a shorter APL and smaller CC than the original network,
which alleviates the depth of the cascading failure propagation. In fact, this network exhibits the best
robustness against HDNAs, and the second best robustness against RAs and VSAs. Although this
strategy requires slightly larger investments, it can resist both simultaneous attacks and sequential
attacks, and enhance the connectivity of the long-distance transmission structure power system.

MLNLAS obtains the largest link-addition cost of the three proposed strategies. The MLNLAS
network with the shortest APL enormously enhances the connectivity than that of the original network.
Moreover, this network presents the best performance against RAs and VSAs. Although this strategy
requires more investments, it optimizes the electricity supply to greatly alleviate the burdens of load
centers. As Ref [36] says, it is difficult to gain the high robustness with the minimal cost simultaneously.

NNNLAS has the smallest link-addition cost of the three proposed strategies. The NNNLAS
network with the largest CC improves the centralization of local area management and is robust to the
simultaneous attacks. However, it cannot effectively decrease the network vulnerability against VSAs.
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6. Conclusions

Cascading failure propagation can be alleviated by optimizing the network topology. Based on
the community partition of the original network, three link-addition strategies are proposed to meet
the requirements of engineering practices. It is thus useful to guide the power system planning to
improve the network robustness.

From the analysis of simulation results, the three proposed strategies can improve the network
connectivity by adding the same number of links. The MLNLAS network exhibits good robustness
under RAs; the LDNLAS shows better performances than other networks under HDNAs; the MLNLAS
network reveals highly survivability under sequential attacks.

In this study, the proposed strategies are beneficial for improving the robustness of the original
network. The focus is on the influence on the power system. In the future work, the authors will
continue to study optimal strategies to mitigate cascading failures and improve the robustness of
smart grids.
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Nomenclature

Indices

ij,s,t Index for node numbering.

x Number of islands.

T Number of sequential attacks.

m Number of links.

Constants

N Numbers of system nodes.

a System tolerance parameter.

Variables

P; Real power injection at the power node i.

Qi Reactive injection at the power node i.

Pjj Real power flow from node 7 to node j.

Qij Reactive power flow from node i to node j.

\4 Voltage magnitude.

6ij Difference in the phase angle between power nodes i and node j.
Bjj Admittance matrix.

Gij Susceptance matrix.

Pout flow,ij (i) Out flows of node i.

Liaa(i) Local loads of node i.

E; Links of node i.

;i Neighbors of node i.

C(i) Cluster coefficient of node i.

d;j Shortest path from the source node i to the destination node ;.
N7 Numbers of nodes of the remaining components.
r(7) Single loop location of node i.

Ly Node importance of node i.

ki Degrees of node i.

A Adjacent matrix.

v; Vertex i.

Est Additional link from the node s to the destination node ¢.
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Sets and Functions

Gp Directed graph of power system.

Vp Power node set.

Ep Power line set.

Cpr Power flow capacity function.

Cyen,i Generation capacity function.

Chode,i Node capacity function.

Cp System capacity function.

C Cluster coefficient function.

L Average path length function.

length Length function of a single loop.

@ Nodes with the same vulnerability set.

I Island ratio function.

(€] Survival islands set.

S Evaluation indicator.

Q Community modularity function.

0 Judging community function for two nodes.

EIDNLAS Low-degree-node link-addition strategy function.

D4 Set of low-degree nodes that satisfy the average shortest path Lyeq-

ENNNLAS Nearest-neighboring-node link-addition strategy function.

D, Set of neighboring nodes

EMLDLAS Max-load-node link-addition strategy function.

D3 Set of heavy load nodes in order.
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Abstract: Complex Engineering Systems are subject to cyber-attacks due to inherited vulnerabilities
in the underlying entities constituting them. System Resiliency is determined by its ability to return to
a normal state under attacks. In order to analyze the resiliency under various attacks compromising
the system, a new concept of Hybrid Attack Graph (HAG) is introduced. A HAG is a graph that
captures the evolution of both logical and real values of system parameters under attack and recovery
actions. The HAG is generated automatically and visualized using Java based tools. The results are
illustrated through a communication network example.

Keywords: Hybrid Attack Graph; Level-of-Resilience; stability; topology

1. Introduction

As a result of the rapid advancement of complex engineering systems such as infrastructure,
communications, energy systems, industrial automation, artificial intelligence, and cyber-physical
systems, new research directions in modeling, monitoring, diagnosis, optimization, and control have
emerged in recent years [1]. For instance, a control chart scheme for production processes was
developed by [2] for monitoring the mean time between two events under the neutrosophic statistics
using the belief estimator for the neutrosophic gamma distribution. The diagnosis and correction of
many production problems which often cause huge loss to the production unit can substantially be
improved with the utilization of the effective control chart technique.

In [3], the advantages of using Proportional-Integral (PI') controller for pH control in the raceway
reactor during the whole day against traditional On/Off control were demonstrated. The paper also
presented an event-based control architecture for Proportional-Integral-Derivative (PID) controllers.
The objective is to tune a classical time-driven PI for pH control in the raceway reactor, and then to add
event-based capabilities, but keeping the initial PI control design. The event-based systems allow a
trade-off between control performance and control effort, which is perfect for the microalgae process in
raceway reactors. The performed tests were oriented to establish a trade-off between control effort and
control performance and present an alternative to traditional control.

The applicability of the Distributed Model Predictive Control (DiMPC) was investigated in [4]
to deal with the constraints in the steam/water loop of a steam power plant. A comparison was
conducted between the Decentralized Model Predictive Control (DeMPC), the Centralized Model
Predictive Control (CMPC), and the DiMPC. The results showed the effectiveness of the DiMPC [5]
designed an Optimal Nonlinear Adaptive Control (ONAC) strategy to achieve optimal parameter
tuning of Nonlinear Adaptive Control (NAC) for Voltage Source Converter (VSC) operating in both
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rectifier mode and inverter mode where an optimal and robust control can be achieved under different
operation scenarios.

A novel pole-zero cancelation method was proposed by [6] for Multi-Input Multi-Output (MIMO)
temperature control in heating process systems. In the proposed method, the temperature differences
and the transient response of each point can be controlled by considering the dead time and the
coupling effect of the MIMO system. In [7], the Slow-Mode-Based Control (SMBC) method combined
with decoupling and dead-time compensation was applied to the MIMO temperature control system.
The temperature differences and the transient response of all points can be controlled and improved by
making the output of the fast modes follow that of the slow mode. The results were then compared to
the conventional PI control and gradient temperature control methods.

The Deep Deterministic Policy Gradient (DDPG) technique for the optimum boost control on a
Variable Geometry Turbocharger (VGT)-equipped engine is implemented by [8]. The proposed DDPG
algorithm is compared with a fine-tuned PID controller to validate its optimality. The results showed
that the control performance based on the proposed DDPG algorithm can achieve a good transient
control performance from scratch by autonomously learning the interaction with the environment,
without relying on model supervision or complete environment models.

A framework was proposed by [9] to use the structural information in each Possible Conflict (PC)
for fault diagnosis of complex industrial system to design a different kind of executable model. They
proposed to build grey-box models based on a state space neural network architecture derived from
that structural information in the PC, which links measurements with equations, and consequently
with parameters related to faulty behavior. The state space Neural Networks (ssNN) were used to
track the system behavior, but once a fault detection was confirmed, the structural information in the
models and the consistency-based diagnosis paradigm were used to perform fault isolation.

Total decomposition of nonstationary variables for distributed monitoring of nonstationary
industrial processes was handled by [10], in which different variable blocks were separated with
both overlapping and nonoverlapping relationships considered, capturing different nonstationary
characteristics. A two-level monitoring strategy was designed that can supervise both the local
cointegration relationships and the interrelationship among different nonstationary blocks with
enhanced interpretation of the nonstationary process.

A novel diagnosis framework was proposed by [11] for considering the deep feature learning and
cross-domain feature distribution alignment simultaneously for industrial applications. Extending
the Marginal Distribution Adaptation (MDA) to Joint Distribution Adaptation (JDA), the proposed
framework can exploit the discrimination structures associated with the labeled data in source domain
to adapt the conditional distribution of unlabeled target data, and thus, guarantee a more accurate
distribution matching [12]. They reviewed over 220 technical research programs in total, with more
attention on the recent developments of the fault diagnosis approaches and their applications during
the last decade. Knowledge-based fault diagnosis, hybrid fault diagnosis, and active fault diagnosis
were reviewed comprehensively. The distinctive advantages and various constrains of these diagnosis
methods were commented on. A recent survey by [1] also summarized papers on monitoring and
diagnosis for complex engineering systems.

The implementation of diagnostic and prognostic architectures can aid the implementation of
advanced control algorithms in a resilient control system to recognize sensor degradation, as well as
failures with industrial process equipment associated with the control algorithms [13]. A resilient
control system is one that maintains state awareness and an accepted level of operational normalcy in
response to disturbances, including threats of an unexpected and malicious nature [14]. As a result,
it is hard to obtain true expectations about the consequences when a fault/attack occurs effecting or
compromising the system. Hence, evaluating systems resilience in terms of stability, performance,
and recovery time is crucial and valuable for cost management and design tradeoff. The traditional
Attack graphs can generate various attack scenarios compromising the system in terms of violations
of a security property. However, they are only concerned with tracking the logical changes in the
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system parameters under attacks, as captured by the pre and post-conditions. Therefore, the novelty
of this work lies in introducing and generating automatically a Hybrid Attack Graph (HAG) using
our new Automatic Hybrid Attack Graph (AHAG) Java based tool that combines logical and real
values of system parameters. In fact, HAG can be used to provide additional information about
the expected changes that could affect the system state by different attack scenarios constituting the
graph. In such cases, attack scenarios could be compared for the worst attack scenario that would
compromise a system. This can be done by determining the associated real values (i.e., the resilience
levels as determined in [15]). The results are illustrated through two-communication networks
example. The networks models and security properties (written using Architecture Analysis & Design
Language (AADL) [16] and AADL Annex Assume Guarantee REasoning Environment (AGREE)
plug-in [17] that relies on JKind model-checker tool [18]) are fed to the AHAG tool, which generates
all possible attack scenarios of the systems model and visualizes the graphs using Unity software [19].

This paper extends the conference version [20] significantly by introducing the concept of the
Hybrid Attack Graph (HAG), and a new developed tool for its automatic generation (AHAG).
The tool is implemented on communication networks example. The remainder of this paper is
organized as follows: Section 1.1 reviews the related work. Section 2 describes the model based attack
graph implementation through illustrative communication networks example. Section 3 explains the
Level-of-resilience assessment. Section 4 presents the Hybrid Attack Graph. Section 5 introduces our
AHAG tool to automatically generate the Hybrid attack graph and shows the experimental results.
Section 6 summarizes and presents certain future directions.

1.1. Related Work

Existing Attack graph generation tools can be summarized as follows [21]. One research
implemented a tool that consisted of three main pieces: a model builder (it takes as input information
about network topology, configuration, and a library of attack rules), an attack graph generator (SPIN),
and a Graphical User Interface (GUI) for graphical presentation. Topological Vulnerability Analysis
(TVA), Network Security Planning Architecture (NETSPA), and Multi-host Multi-stage Vulnerability
Analysis (MULVAL) tools [22]. These tools can explore all potential methods an attacker can use to
corrupt an enterprise network by determining the configuration information of the hosts and the
network. The Cauldron tool implemented by [23] automatically mapped all paths of vulnerability
by correlating, aggregating, normalizing, and fusing data from various assets. The Network Attack
Graph GENeration (Naggen) tool is developed by [24] to generate attack graph. Other research [5]
has illustrated how logical attack graph complexity can be simply elevated when a network becomes
denser and larger [25]. They utilized the MULVAL tool, but they changed its engine so that the trace of
evaluation was recorded and sent to a graph builder.

In [26], the New Symbolic Model Checker (NuSMV) model checker was implemented to develop
Attack graph counterexamples. The value iteration method was also implemented to determine
the reliability of Attack graph, which allowed designers to identify which nominal set of security
defenses would assure systems safety. A model-checking-based Automated Attack Graph Generator
and Visualizer (A2G2V) was proposed by [27]. The proposed A2G2V algorithm used existing
model-checking tools, an architecture description tool, and C code to generate an attack graph that
enumerates the set of all possible sequences in which atomic-level vulnerabilities can be exploited to
compromise system security. The A2G2V tool required building three main functions: a counterexample
parsing function, a cyclic testing function, and a Luster model editing function.
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In [28], a heuristic algorithm was used to automatically determine the optimal security hardening
through cost-benefit analysis [29]. They used multiple algorithms, such as Vulnerability Node
Matching, Attack Graph Optimization, Maximum Loss Flow, Path Seeking, and Multi-Objective
Augmented Road Sorting, to investigate the vulnerability, estimate the global path, and determine
the optimal attack path. The surveys conducted by [30,31] illustrated the state-of-the-art technologies
in Attack graph construction in computer networks, and their potential development challenges.
Alerts were also analyzed from intrusion detection system, and how well the approaches scaled to
larger networks.

A Hybrid Attack Graph (HAG) was modeled by [32], using linguistics and type extensions of
traditional attack graph given the necessary inputs of asset, topology, and fact declarations in the typed
grammar. The HAG was illustrated through an example of an attacker who is trying to compromise an
automotive car by forcing it to drivetoward a wall. The tool automates the task of creating HAGs by
compiling the inputs specified and making the appropriate connections. A Hybrid Attack Dependency
Graph (HADG) was presented by [33], which allowed discretization into intervals of the reachable and
related ranges of the system’s state variables and their evolution over the execution of attacks with
duration. The HAG generation software of [33] was used by [34] to model a Cyber physical System’s
attack for a smart grid in which an attacker has to obtain access to a Supervisory Control and Data
Acquisition (SCADA) system to cause the transformer to overheat. Thus, transformer temperature was
the continuous value in question and was discretized into intervals. The HAG was built by matching
exploit patterns to a particular system state.

The concept of adding priorities to HAGs was introduced by [35]; if multiple exploit preconditions
were met in a given state, only those with the highest priority value would be expanded into new states
of the attack graph. Lower priority exploits would then only be considered if all exploits with higher
priorities failed to meet their preconditions. By applying exploit priorities as a heuristic measure,
attack graph states can be explored in a more strategic manner.

A novel Hybrid Attack Model (HAM) was introduced by [36] that combines Probabilistic Learning
Attacker, Dynamic Defender (PLADD) game model and a Markov Chain model to simulate the
planning and execution stages of a bad data injection attack in power grid. The hybrid model is
shown to be capable of modeling long time-to-completion actions in the preparation stage and short
time-to-completion actions in the execution stage. Table 1 summarizes the main characteristics and
limitations of the existed studies in HAG generation as compared to our Automatic Hybrid Attack
Graph (AHAG,) tool.

Table 1. Main characteristics and limitations of the existed studies in Hybrid Attack Graph
(HAG) generation.

Main Characteristics Limitations

e  Stateful graph.
e  Captures blended attack vectors

(comprising discrete and continuous e  Generation of attack graphs from
exploit events). nontrivial scenarios (with tens of

HAG [32] e  Time is implemented using a single hybrid assets) in acceptable time
group of global exploits, each of which is daunting.

increments a class of assets’ position in
time depending upon its particular state.
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Table 1. Cont.

Main Characteristics

Limitations

Hybrid Attack
Dependency Graph
(HADG) [33]

Replaces the state transition graph with
a dependency graph.

A hybrid attack takes a range of real
values as preconditions and output a
range of values as postconditions.
Provides the capability of modeling
continuous state variables and their
evolution over the execution of attacks
with duration.

e The process for generating HADGs
must be articulated and formalized
and its performance characterized to
better handle continuous variables.

e  Expansion of the exploit list and the
asset parameters in the network file
is required to fully explore the
attack space.

Hybrid Attack Model (HAM) consists of
both Probabilistic Learning Attacker,
Dynamic Defender (PLADD) nodes and
Markov state nodes.

The attacker must have control over all
PLADD nodes, which represent the

e The number of time steps in the
Markov Chain model per unit time
in the PLADD model must be
specified by a domain expert.

e The PLADD and the Markov Chain
models do not have the means to run

reparation for an attack, to be able to . .

HAG Rl 1e:z)erSute an attack by traversing through a simulation wh.ere the .

the Markov states. time-to-completion of an action for

Considers the time difference between :itticilf(iigigd giefff:}::tri;aglze

the attacker’s action to prepare for an prgeparatior?s tage and the

attack in comparison to the attacker’s execution stage

action to execute for an attack. 8¢

Stateful graph.

Specifies attack patterns as sets of e Requires comprehensive overview of
Automatic Hybrid preconditions and postcondition. the system model and
Attack Graph The integration of level of resilience security/resiliency property.
(AHAG) values captures the system response e Levels-of-Resilience values need to

under sequential attack and
recovery actions.

be determined under attacks.

2. Model-Based Attack Graph Implementation

2.1. Networked Systems Examples

The two images of Figure 1a,b show two communication networks with identical clients and
services (Email, File Transfer Protocol (FTP), and Video), but with different topologies [15]. In both
networks, the routers R;, Ry, and Rj are built with Routing Protocol (RIP) [37], where the traffic is

rerouted under faults as a recovery action through a redundant path (if it exists) based on hop count [37].

In addition to that, Ry is linked to three Local Area Networks (LANs); LAN1, LAN,, and LAN3, where
every LAN has 10 clients. R; is linked to LANy4, which has 10 clients as well. Router Rj3 has three more
links, which connect it, respectively, to an Email server through the Internet, an FIP server, and a

Video workstation. The second communication network, CN», has similar clients and services as CN1,

but has a different topology.
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Figure 1. (a) Network CN; and (b) Network CN5.

2.2. Formal System Description for Networked Examples

The generation of Attack Graph requires an overall formal description of the system model and

security property being investigated, encoded in Architecture Analysis and Design Language (AADL)
and checked using JKind. Here, the formal descriptions of CNj and CNj, respectively, are given as
follows [20].

Ll S

10.

11.

Set of Routers R =1, 2, 3, IP Cloud; Variable I € {1, 2, 3, 4} (static parameters).

Set of LANs N =1, 2, 3, 4; Variable k € {1, 2, 3, 4} (static parameters).

Set of Service Providers S; Variable s € {Ftp, Email, Video} (static parameters).

Set of Connection Links LC R X R, R X N, R x S; Labeled li]- = Link is placed between component
iand component j (static parameters).

System Connectivity C = L; Boolean c;; = 1 if there is a connection between component i and
component j (dynamic variables).

System Stability T; Boolean t = 1 if system is stable (dynamic variable).

System Performance P C S; Boolean fy = 1 if ftp service is provided to LAN k, Boolean ey = 1 if
Email service is provided on LAN k and Boolean vy = 1 if Video service is provided on LAN k
(dynamic variables).

System recovery Action R; Variable r € {p, a, d}, in case of normal operation r = p, in case of
recovery action r = a, and in case of no action can be done, = d (dynamic variables).

Number of faulted Links that occur sequentially N; Variable n € {0, 1, 2}, in case of no fault n =0,
in case of first fault n = 1, and in case of second fault n = 2 (dynamic variables).

Attack Instance AIC A XRX R, AXR XN, AXR XS, Labeled ai]-m = Attack a on the Link
between component i and component j, where m C L is a sequence of the previous faulted link(s)
if exists. (static parameters)

Pre-Attack conditions for CNj:
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12.

13.

14.

15.

16.

Pre(ajz) = (c3=1)A({t=1)A(x=p)A(n=0)
Pre(ajp) =(cp=1D)A({t=1)A(x=p)A(n=0)
Pre(ag) = (3 =) A(t=1)A(r=p)A(n=0)
Pre(ags’®) = (cp3 =1) A (r=a) A (n=1)
Pre(ag'?) = (c3 =1) A (r=p) A (n=1)
Pre(ai;3®) = (i3 =1) A (r=a) A (n=1)
Pre(aj3'?) = (c;3 =1) A (r=p) A (n=1)
Pre(a;y®) = (cz =) A(r=a)A(n=1)
Pre(a;p®) = (cp=1)A(r=a)A (n=1).

Post-Attack conditions for CNj:

Post(a;z) = (c13=0)A(r=a)A(n=1)

Post(ajp) =(c2=0)A(x=p)A(n=1)

Post(apz) = (3 =0)A(r=a)A(n=1)
POSt(a2313)E(t=O)/\(C23:0)/\(f1=f2:f3:f4=el263284:V2=V3=0)/\(1':d)/\
(n=2)

Post(axs?) = (t=0) A (c3=0)A(fa=es=0)A(r=d) A (n=2)
Post(a1323)z(t:O)/\(c13:0)/\(f1:f2:f3:f4:e1:e3:e4:V2:V3:O)/\(r:d)/\
n=2)

Post(a;z2) = (t=0)A(ci3=0)A(fi=fh=fz3=e;=ez3=vr =v3 =0) A(r=d) A (n=2)
Post@app®) = (t=0)A(cn=0A(fi=fh=f3=e;=e3=vp=v3=0A(r=d) A(n=2)
Post(a;p2) = (t=0) A (cp=0) A (fy=e4=0) A(r=d) A (n=2)

Pre-Attack conditions for CN,:

Pre(ajz) = (c3=1)A(t=1)A(x=p)A(n=0)
Pre(app) = (cp=1)A{t=1)A@=p)A(n=0)
Pre(agz) = (cos =1 A(t=1)A(x=p)A(n=0)
Pre(ags’®) = ()3 =1) A (r=a) A (n=1)
Pre(ay'?) = (c3 =) A (r=p) A (n =1)
Pre(ai3®) = (c;3 =1) A (r=a) A (n=1)
Pre(a;3'?) = (ci3 =) A(r=p) A (n=1)
Pre(a;n’®) = (cp =) Ar=a)A(n=1)
Pre(a;p®) = (cp =) A(r=a)A (n=1).

Post-Attack conditions for CNp:

Post(a;z) = (c13=0)A(r=a)A(n=1)

Post(ajp) = (c2=0) A (r=p) A (n=1)

Post(ags) = (c;3=0)A(r=a)A(n=1)

Post(an®) = (t=0)A(c3=0)A(=fz3=f4=e3=e,=v,=v3=0)A(r=d) A (n=2)
Post(ags2) = (t=0) A (ci3 =0 A(fy=es=0)A(r=d) A (n=2)
Post(a;z®)=(t=0)A(ci3=0)A(h=fz3=f4=e3=e,=v, =v3=0) A(r=d) A(n=2)
Post(a;z?)=(t=0)A(ci3=0)A(fa=fz3=e3=v,=v3=0)A(r=d) A(n=2)
Post(a;p) = (t=0) A (cp=0)A(fa=fz3=e3=v,=v3=0) A(r=d) A (n=2)
Post@pn®) = (t=0)A (cn=0A(fa=es=0A(r=d) A (n=2)

Initial state: (t=1) A(cz3=cp=ciz=1)A(fi=fh=f3=f4=e1=e3=es=vy=vz=1)A(r=p) A
(n = 0). (Initially, the system is stable, normally operated, and no service outages).

The security/resiliency property ¢ is that both CN; and CN; are always stable under the given
attacks/faults. This can then be written by a CTL formula: ¢ = AG(t = 1) = AG(— (t = 0)).
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2.3. Attack Scenarios Implementation

In this section, we present the Attack Graphs resulted by running the JKind model checker for the
encoded AADL CN; and CN; descriptions, respectively, against the security property ¢ [20]. JKind
is an infinite state model checker for checking safety properties of synchronous systems [38], which
are expressed in Lustre, a formally defined, declarative, and synchronous dataflow programming
language for programming reactive systems [39]. The Verification is based on k-induction and property
directed reachability using a back-end Satisfiability Modulo Theories (SMT) solver. A verified property
is determined to be true for all runs of the system. A property violation is reported with an explicit
Counter-Example (CE), which is given here as an attack scenario (a sequence of attack and recovery
actions resulting in system disruption).

In our work, the CN; and CN, descriptive models included entities and their interfaces and
connections, which were encoded using Architecture Analysis and Design Language (AADL), within
the open-source integrated development environment (Osate2). The AADL models were embedded
with the AGREE Annex plug-in [17] that is used to specify the component models and system-level
security properties. AGREE also translates the AADL+Annex models and properties to Lustre
language, which JKind can verify against a security property of concern and delivers the result as a CE,
if it exists [40].

Figures 2 and 3 show the Attack graphs for CN; and CNj, respectively [20], capturing the state
evolution of the two networks dynamical variables given in the earlier formal description under attack
instances. These graphs are visualized using Unity tool that supports two-dimensional (2D) and
three-dimensional (3D) graphics, drag-and-drop functionality, and scripting using C# [41].
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Figure 2. Network CN; Attack Graph.

From the obtained graphs it can be seen that both networks have six attack scenarios, resulting in
networks loss of stability as determined by the unbounded traffic loss over time [42]. Each attack is a
sequence of faults and recovery actions occurring sequentially as follow:

51: ajz — 32313

Szi aiz — a1213

S3: ajp — 32312

S4Z azz — a1323

85: azz — a1223

Se: ajp — ar3'?
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Figure 3. Network CN, Attack Graph.

3. Level-of-Resilience Assessment

Each path in the graph is a single attack scenario and has an associated Level-of-Resilience
(LoR) [20]. The following definition can be utilized to identify the worst case Level-of-Resilience of a
system with its Attack graph given. A system is the worst resilient to an attack scenario in the graph if
it acquires the highest loss of stability, the highest loss of performance, or the highest recovery-time.

Definition 1 ([20]). Given a system M and an attack graph Ag comprising a set of attack scenarios S = U S;,
i€f{l,...,z}, where z is the number of attack scenarios, we say that LoR(M, S;) is the worst if:

[LoSgr(M, S;) > LoSgr(M, S - S;)]
\Y% [[LOSR(M, S,‘) = LOSR(M, S - Sz')
A [LoPr(M, S;) >LoPgr(M, S — S]]
\% [[LOSR(M, Sz') = LOSR(M, S - S,)]
A [LoPR(M, S;) = LoPR(M, S — S;)]

A [RT(M, S;) > RT(M, S — S]]

The next definition compares the LoR of many systems against an Attack scenario. A system is
the most resilient to an attack scenario if this attack acquires a smallest loss of stability, a smallest loss
of performance, or smallest recovery-time.

Definition 2 ([20]). Given a set of systems M = UM;, j € {1, ..., yl, wherey is the number of systems, and an
attack scenario S; € S, we say that LoR(M;, S;) > LoR(M-M;, S;) if:

[LoSr(M;, S;) < LoSg(M — M;, S;)]
\ [[LOSR(Mi, S,‘) = LOSR(M - M,‘, S,)]
A [LoPr(M;, S;) < LoPr(M — M;, S;)]]
\ [[LOSR(Mi, S,’) = LOSR(M - M,‘, S,)]
A [LoPgr(M;, S;) = LoPr(M — M;, S;)]

A [RT(MI', Si) < RT(M — Ml', S,)”
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4. Hybrid Attack Graph (HAG)

The states of Attack graph reflect the logical evolution of system parameters (e.g., system stability
and services are either true or false) during attacks until reaching the final states where the security
property ¢ is violated and hence are the worst states. As multiple attacks can reach the same final
state, it is essential to identify the worst attack scenario. A Hybrid Attack Graph (HAG) associates
real values to all attack scenarios terminating in these final states. These real values correspond to
the Level-of-Resilience parameters determined from the system dynamical response. The detailed
computations of LoSg, eventual LoPg and RT of networks CN; and CN; under A¢ scenarios are given
in [43], and [15]. We formally define HAG as follows.

Definition 3. A Hybrid Attack Graph (HAG) of a system model M is a data structure representing a union of
all attack paths comprising A annotated with the associated Levels-of-Resilience.

HAG = Ag U LoR(M, Ag).

Algorithm 1 compares the Levels-of-Resilience, associated with the attacks comprising an Attack
graph, and alerts the worst-case scenario.

Algorithm 1 Alerting Worst-Case Attack Scenario

INPUT: Attack graph (Ag) Comprising Attack Scenarios (S = US;,i€ {1,..., z}) and associated LoR values
OUTPUT: Alert Worst Case Sy;)
Procedure:
for Case [LoSg, LoPg, RT]
if Spjj{LoSr} > S—Sy;) {LoSgr}:
Alert Worst Case Sjj
else if S[i] {LoPy, Ftp} > S—Sp;) {LoPg, Ftp}
Alert Worst Case Sy
else if Sjj{LoPR, Video} > S=Sj;; {LoPg, Video}
Alert Worst Case Sjj
else if Sj{LoPRr, Email} > S=5j;;{LoPg, Email}
Alert Worst Case SJi]
else if S[i]{RT} > S_S[i] {RT}:
Alert Worst Case Sjj
else
no Alert

5. Automatic Hybrid Attack Graph (AHAG) Tool

In Section 2, the attack scenarios were generated by repeatedly running AGREE, and updating
the security property in every run to exclude the previously generated attack scenarios. Here, the
automatic generation of attack scenarios is presented.

The Automatic Hybrid Attack Graph (AHAG) tool was developed through NetBeans, an Integrated
Development Environment (IDE) for Java [44]. NetBeans allows applications to be developed from a
set of modular software components called modules. In addition to Java development, NetBeans has
extensions for other languages like Personal Home Page (PHP), C, C++, and fifth version of Hyper
Text Markup Language (HTML5). Maven, a build automation tool used primarily for Java projects,
was selected as the main project for the AHAG tool in NetBeans [45].

When running an AGREE based JKind model-checker for Lustre models within Osate2, it can only
produce one counterexample at a time. However, if executed more than once, it may repeat the same
counterexample. The AHAG tool shown in Figure 4 confirms that a different new counterexample is
produced (if exists) each time the JKind is called, and automatically, all possible attack scenarios are
visualized using Unity software.
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AHAG tool takes only the first Lustre model (a translation of the system model and the security
property from AGREE). Then, it generates all possible combinations of potential attack scenarios
(i.e., CEs) as (lus) format files. Next, AHAG communicates with the model checker JKind through
the Command Prompt Commands (CMD) to iteratively check the system model and the potential CE
against the security property within the Lustre files. Doing so, AHAG generates all corresponding
results as separate Excel files, illustrating if the potential CE is truly an attack scenario or not. Once all
Excel files are generated, AHAG converts them to (.csv) files to be used later along with LoR values in
Unity Visualizer.

AADL
Model Script
nnex Agree

Tug-in

Security Property ¢

Generate

Lustre

== \
!l =] Java Script!
{ ’ J :V’erifv o,

how CEX >
1030 I) )

Model Lustre filef

3. Filtration and
Converting to
CSV Files

Figure 4. AHAG Workflow. AADL: Architecture Analysis & Design Language.

The AHAG Algorithm 2 is as follows. The user inserts the first Lustre Model as input and defines
the attack instances/actions constituting the attack paths in a single-dimensional array. In addition to
that, the user has to choose the maximum expected length 7 of an attack scenario. AHAG in turns,
generates all potential combinations of attack scenarios A", where A is number of attack instances/actions.
Each new potential attack scenario is stored as a variable CE_1 within (.lus) generated files. Next, JKind
is called iteratively to check these files against the security property ¢. If CE_1 violates the security
property, then it is a true attack scenario, which belongs to the Attack graph, and the result is given as
an Excel sheet (.xlsx). Otherwise, AHAG will reject the CE_1. Afterward, since it is easier for Unity
visualizer to read (.csv) files, AHAG converts xlsx to csv files and feed them to Unity.
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Algorithm 2 AHAG

INPUT: System Model (Luster 0.lus), Attack instances A[ ], maximum length (n)
OUTPUT: All attack scenario in (.csv)
Procedure:
insert attack instances in the Single-Dimensional Array (A)
set maximum length (n)
loop 1:
CE_1 = possible combination from A[ ] of length n
New Lustre = do new (.lus) copy (Lustre 0.lus)
New Lustre = New Lustre + CE_1
goto loop 1
loop 2:
call JKIND through cmd
New Lustre.xlsx= do result in (.xIsx) format
loop 3:
New Lustre.csv = replace (New Lustre.xlsx) format to (.csv) format
goto loop 3
goto loop 2
loop 4:
if New Lustre.csv contains CE_1 = False
delete (New Lustre.csv)
goto loop 4
generate violating attack scenarios

The generated attack scenarios were visualized using Unity visualizer tool and the Levels-
of-Resilience values, including Level-of-Stability-Reduction (LoSg), Level-of-Performance-Reduction
(LoPR) in the networks applications (given by FTPg, Emailg, and Videog), and the Recovery-Time (RT)
are annotated to the attack scenarios terminating at the final states using Algorithm 1. This generates
the HAG for CN; and CN,, as shown in Figures 5 and 6, respectively. It can be seen that Attack
scenario S4 was chosen as the worst attack scenario (highlighted in red). The detailed computations
of Levels-of-Resilience values for networks CN; and CN are given in [43], and [15]. By comparing
the generated HAGs to the traditional Attack graphs of Figures 2 and 3, respectively, it is clear how
HAG can aid in differentiating attack scenarios terminating in the same state, yet with distinguishable
resilience levels. Thus, network designers can have a better overview on the attack scenario that the
network is most vulnerable to.
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Figure 5. Network CN; Hybrid Attack Graph.
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Figure 6. Network CN;, Hybrid Attack Graph.
6. Conclusions

In this paper, we presented a new concept of Hybrid Attack Graph (HAG), which captures both the
logical changes in the system parameters under attacks (as determined by the pre and post-conditions),
and the real values of the levels of resilience parameters associated with the attacks constituting
the graph. The nearest C-language based tool, Automated Attack Graph Generator and Visualizer
(A2G2V), proposed by [27], interacts with the model-checker JKind for the generation of the attack
paths one at a time, and with another tool Graph visualization (Graphviz) for visual display of the
attack graph. Similar to our Automatic Hybrid Attack Graph (AHAG) tool, A2G2V tool requires
one-time modeling effort to obtain the system description for components, connectivity, services,
and their vulnerabilities. However, AHAG integrates the Levels-of-Resilience values obtained from
system’s dynamical response with the Attack graph. This automatically generates a HAG, which can
aid system designers to investigate and select the worst LoR system design and its corresponding
attack scenario from the graph. This ensures an appropriate defense and countermeasures placement
in the system. The results were illustrated through a communication networks example.
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Abstract: Thin coal seam mining is a development direction to solve the problem of energy supply at
this stage, which cannot be realized by small working space, low automation, and drilling deviation.
In this paper, a nonlinear adaptive backstepping controller based on a disturbance observer is
proposed and used on a coal auger for position tracking control to achieve directional drilling. Firstly,
a nonlinear dynamic model for the deflection control mechanism is built with the consideration of
parameter uncertainties and external disturbances. Then, the parameter uncertainty and external
disturbance are regarded as a system compound disturbance. Furthermore, a disturbance observer
is designed to estimate the system compound disturbance and a nonlinear adaptive backstepping
controller was proposed to compensate the system compound disturbance. The upper bound of the
compound disturbance, which can effectively reduce the chattering in the directional control process,
cannot be obtained easily. A stability analysis of the DCM (deviation control mechanism) with the
proposed controller is proved based on the Lyapunov theory. Finally, an electro-hydraulic servo
displacement control experimental system with matlab xPC target rapid prototyping technology
and a prototype experiment system is established to verify the effectiveness of the proposed control
strategy. The experimental results indicate that the proposed controller can yield more satisfactory
position tracking performance, such as parameter uncertainties and external disturbances, than the
conventional proportion integral derivative (PID) controller and an adaptive backstepping controller.
Using the control strategy, technical breakthrough on horizontal directional drilling can be realized
for thin coal seam mining.

Keywords: deviation control; drilling machine; nonlinear adaptive backstepping controller distur-
bance observer; parameter uncertainties

1. Introduction

Thin coal seams, which are indispensable coal resources, are widely distributed
around the world. The question of how to exploit these coal seams with high efficiency and
mechanization has become the main development direction of coal excavation. The coal
auger is a new type of thin seam mining equipment that has extensive prospects thanks
to its characteristics of unmanned and non-supported coal face mining. Recently, a new
type of coal auger working mechanism with five bits was used for further improving coal
mining efficiency [1,2]. The drilling technology is shown in Figure 1. However, owing
to the constraint reaction force of the coal wall, gravity, cutting resistance, and friction,
the vibration of the working mechanism is relatively excessive, which may cause serious
drilling deflection [3]. As a result, the efficiency of drilling and excavating is unbalanced.
However, the excavation process has realized intelligent and rapid driving, based on
supporting design optimization [4,5] and intelligent control [6].
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Figure 1. Mining technology of coal auger.

The dynamic characteristics and stability of the drilling mechanism are the main
factors leading to deviation. There are many kinds of vibration forms—including vertical
vibration [7], lateral vibration [8], torsional vibration [9], and coupling vibration [10]—
in the actual drilling process that lead to deviation. For different structures of drilling
mechanism, scholars have carried out extensive research on vibration characteristics to
obtain the deviation behavior due to vibration [11-14]. However, the deflection in long-
distance drilling cannot be solved by restraining the vibration behavior. Therefore, direct
deflection detection and control methods have been extensively studied. Lueke et al. [15]
analyzed the influence of borehole diameter, drill pipe pressure, bit structure, drilling depth,
and geological conditions on deviation fluctuation in the process of directional drilling. It
was pointed out that a deviation prevention device with a reasonable arrangement could
realize deviation control in drilling. Manacorda G. [16] designed and put forward a kind
of ground-penetrating radar equipment for a horizontal directional drilling (HDD) bit by
using an angular displacement sensor and communication module. The equipment can
provide the real-time position and pose information of the bit and provide a reference
for controlling the drilling direction. Inyang L]. [17] proposed a bilinear model attitude
control method for directional drilling tools that describes the non-linear characteristics of
directional drilling tools more accurately than the existing linear models are able to. Thus,
by expanding the performance range, the attitude control of directional drilling tools was
more effective, robust, and stable, which significantly reduced the effect of measurement
delay and interference on the stability and performance. Kim J. [18] proposed a new hybrid
rotary steering system aimed at the problem of uncontrollable borehole curvature in long-
distance directional drilling. This system combines a traditional drill bit with a push bit
and adopts a hybrid structure involving a hydraulic cylinder and spherical joint to achieve
better maneuverability. Comprehensive analysis shows that deviation control in directional
drilling was achieved by designing a special bit. Therefore, in view of the unique structure
of the coal auger, a new hydraulic deviation correction mechanism was designed to achieve
directional drilling. A structure diagram of the deviation control mechanism is shown in
Figure 2.

L) Deviation control
2) mechanism

Left drill-pipe Left cylinder Middle drill-pipe Right cylinder Right drill-pipe

Figure 2. Structure diagram of the deviation control mechanism (DCM).
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The DCM (deviation control mechanism) can be regarded as an electro-hydraulic servo
control system. The position control of the DCM can be partially realized using a conven-
tional proportional-integral (PI) controller [19] and backstepping controller [20]. However,
the DCM is a complex nonlinear system with parameter uncertainties, such as servo-valve
and hydraulic actuator dynamics [21], stiffness and damping differences [22], and external
disturbances such as friction between the rod and bore of hydraulic cylinders [23]. All
these factors make it difficult to obtain satisfactory position coordination performance with
the conventional PI controller and backstepping controller, because these two controllers
cannot adjust their control parameters in consideration of the parameter uncertainties and
external disturbances of the DCM. In order to reduce the effects of the above-mentioned
parameter uncertainties and external disturbances of the DCM, many control approaches,
including adaptive sliding mode control [24], adaptive backstepping control [25], and
a nonlinear disturbance observer (NDO) [26], were introduced. A nonlinear adaptive
backstepping controller was employed to improve the position tracking performance, esti-
mating uncertain parameters through adaptive laws derived by guaranteeing the stability
of the DCM [27,27]. Choux M. et al. [28] developed an adaptive backstepping controller
for a nonlinear hydraulic-mechanical system that handled uncertain parameters related
to the internal leakage, friction, orifice equation, and oil characteristics. A new smooth
and continuous sliding mode control law was proposed to solve the design conflicts be-
tween sliding mode control technology and backstepping adaptive control technology for
position control by Ji X.H. [29]. An improved noise-alleviation method was proposed by
Yang G.C. [30,31] to achieve the high-accuracy calculation of the standard sign function
in direct adaptive control for high-precision position control. Zheng J.Z. [32] concerned a
high-accuracy tracking control for hydraulic actuators with unmodeled flexible dynamics
considering the structural flexibility of the mechanical components. However, external
disturbances that usually exist in nonlinear systems are not taken into account during the
controllers” design process. Guo K. [33,34] presented a nonlinear cascade controller based
on an extended disturbance observer to track the desired position trajectory for electro-
hydraulic single-rod actuators in the presence of both external disturbances and parameter
uncertainties. Kasac J. [35] proposed a robust output tracking controller using external
disturbances observer for reducing the measurement parameters of the control system.
Hu X. [36] designed a dynamically positioned vessel exposed to unknown time-varying
external disturbances, incorporating fuzzy logic systems (FLSs), projection operators, and
the “robustifying” term into the vectorial backstepping technique. Teoh J.N. [37] took into
consideration the rejection of narrow-band disturbances at two frequencies higher than the
servo bandwidth in order to obtain a good positioning accuracy for a micro-actuator. A
phase-stabilized feedback controller combined with a disturbance observer structure was
applied to achieve the rejection of the two disturbances.

However, most of the research focuses on control accuracy using high-precision control
elements. Our study tries to combine and improve these proposed controllers and use
a control element with a slightly lower accuracy by achieving the required positioning
control for easier industrial application. The main contribution of this work is to design a
combined controller that consists of a nonlinear adaptive backstepping controller (NABC)
and a disturbance observer (DO) for DCM and its implementation in a double-rope winding
hoisting experimental system. The basic concept of ABSMC-DO is to regard the parameter
uncertainty and external disturbance as a system compound disturbance. A disturbance
observer was designed to estimate the system compound disturbance. A nonlinear adaptive
backstepping controller was proposed to compensate for the system compound disturbance.
The proposed control system does not need to accurately obtain the external disturbance,
and has a good control effect for parameter uncertainty and uncertain nonlinearity. A
stability analysis of the DCM with the proposed controller is performed based on the
Lyapunov function. A series of experimental tests are carried out on the electro-hydraulic
position control system with the characteristics of large load inertia and large external
interference and a prototype to verify the availability of the proposed controller. Using the
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novel control method, the upper bound of the compound disturbance, which can effectively
reduce the chattering in the directional control process, cannot be obtained easily.

2. Dynamic Model of the DCM

The structure of a servo valve-controlled hydraulic cylinder was adopted as the
deviation control mechanism (DCM). The dynamic model of the DCM is shown in Figure 3.
It is comprised of a double-rod cylinder, a 3-4-way servo valve, and a load force. The goal
is to position track any specified motion trajectory as closely as possible. The nonlinear
dynamical model of the DCM is given as follows [38].

X
Deflection control G, (V2 P:) -

hydraulic cylinder il A
P
C,p o) ,
x, 7 b P | P> wls '
e

— - W — )\
: ! | sTJ
O [ O, | Proportional

P, | Pr servo valve

Figure 3. Dynamic model of the deviation control mechanism.

We defined the right shift of servo valve spool as positive. In this direction, the load
flow Qp of the servo-vale is defined as follows:

Qu = 3Cawor| PSP )

where C,; is the flow coefficient of the servo valve, w is the area gradient of the servo valve,
Xy is the spool displacement of the servo valve, p;. is the differential pressure between the
two chambers of the electro-hydraulic cylinder, p; = p1 — p2, ps is the supplied system
oil pressure, p is the hydraulic oil density, and sgn is a symbolic function that is defined
as follows:

1 if->0
sgn(-) = 0 if-=0. )
-1 if- <0

As the dynamic response frequency of the servo valve is far higher than that of the
correcting cylinder, without considering the dynamic model of the servo valve, the control
accuracy of the system is less affected. The displacement of the servo valve spool and
the control voltage can be regarded as a linear proportional relationship. Therefore, the
approximation can be expressed as follows:

Xy = kyoll, 3)

where ky; is a positive constant and u is the control voltage.

Considering the equivalent load elastic deformation during drilling, applying New-
ton’s kinematics law, the force balance equation of the deflection control cylinder can
be obtained:

mpXp = prAp — Bpxp — ksxp — Fr, 4)

where 1, is the total mass, By, is the viscous damping coefficient, x, is the spool displace-
ment of the deflection control cylinder, ks is the equivalent elastic stiffness coefficient of the
drilling load, and Fy, is the external load force acting on the control cylinder.
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Considering the internal and external leakage of the deflection control cylinder, the
load flow in two chambers of the deflection control cylinder is established as follows by
applying the flow continuity equation:

. Vio+ Apxy .
Q1= Apxp + T””pl + Cippr + Cepp1, ®)
e
. Vzo — A,x .
Q2 = Apxp — Tpppz + CippL = Cepp1, 6)
e

where Qj is the flow rate (m3/s) in intake chamber 1; Q5 is the flow rate in the return
chamber 2; Cip is the internal leakage coefficient of the deflection control cylinder; C,
is the external leakage coefficient of the deflection control cylinder; B, is the effective
bulk modulus; Vjp and Vpg are the initial volume of the oil-in cavity and oil-out cavity,
respectively; and p; and p; are the oil pressures of the oil-in cavity and oil-out cavity,
respectively.

Assuming that the cylinder initially stays in the middle position, Vig = Vo9 = V;/2.
V is the total volume of the oil-in cavity and oil-out cavity. Because |A,x,| < V;/2, it can
be neglected. The load flow is defined as the average flow of the oil-in cavity and oil-out
cavity as follows:

Vi
4B,
where Cy, is the total leakage coefficient and can be written as Cy, = Cip + Cep/2.

The displacement signal of the servo valve spool is used as the control input. Based on
the derivation and discussion of the equations, the displacement, velocity, and acceleration
of the deflection control hydraulic cylinder can be obtained. As the leakage coefficient and
bulk modulus change with varying time and the external load of the drilling mechanism
cannot be accurately obtained, the directional control system can be regarded as a strong
nonlinear system with parameter uncertainty and disturbance uncertainty.

A state space equation was used for improving the control accuracy of the DCM based on

QL= Apxp + PL + CtpPLr (7)

T
the proposed dynamic model. State variables can be defined by x = [x1, x5, x3) = [xp, Xp, 5&,,] .
The directional control system can be presented in a state space form as follows:

5(1 = X2
xZ = X3 ’ (8)
x3 = f(x)+g(x)u+d

where f(x) = 01x1 + 02 + 63x3, 0y = —4BCipks/mpVi, 02 = ks/mp + 4Be(CipBy +
B, | 4B.CipA 4B,C
A3)/mpVi, 03 = Bp/my + 4BcCip/ Vi, g(x) = /ps — sgn(u)pL<m—Z + ﬁmp"”,t ”),d = ,fpV;f
F
-

The control system includes not only the nonlinearity of the hydraulic system, but
also uncertain external disturbances, such as the friction force in the drilling process, the
friction between the control cylinder and the piston rod, and the cutting load. The model
uncertainty and external disturbances are regarded as a compound disturbance term, so
the new system state space equation can be expressed as follows:

X1 =X
Xy =X3 , ©)
x3 = fo(x) + go(x)u+D

where D = Af(x) + Ag(x)u + d is the compound disturbance term of the deflection
control system.

197



Processes 2021, 9, 237

3. Controller Design

Position control systems based on the adaptive control method have been widely
studied. However, it is difficult to obtain the optimal value of the compensation parameters
when the external parameters change too much. A novel control method combining
adaptive backstepping sliding mode control and an extended state observer was proposed
to solve the above problems. The framework of the nonlinear adaptive backstepping
control based on the disturbance observer (ABSMC-DO) for the DCM is shown in Figure 4.
The basic concept of ABSMC-DO is to regard the parameter uncertainty and external
disturbance as a system compound disturbance. A disturbance observer was designed to
estimate the system compound disturbance. A nonlinear adaptive backstepping controller
was proposed to compensate for the system compound disturbance. The stability of the
overall system with the proposed control algorithm can be proved using Lyapunov analysis.
The upper bound of directional vibration can be obtained without any disturbance. Using
ABSMC-DO, the upper bound of the compound disturbance, which can effectively reduce
the chattering in the directional control process, cannot be obtained easily.

Backslepping
controller

Reference
displacemen

Feedback signal (x.x2.x3) Disturbance observer
L

Figure 4. Control diagram of the adaptive backstepping control based on the disturbance observer
(ABSMC-DO).

3.1. Adaptive Backstepping Slide Mode Controller

The target of this part is to obtain the value of control input Qy, to track the reference
displacement with an adaptive backstepping controller. The controller design process can
be divided into the following four steps.

Step 1: Define the displacement tracking error e¢; and the intermediate dummy vari-
ables of the system intermediate dummy variables as follows:

e1=Y—Ya=X1—VYa
€y = Xo — a1 ’ (10)
€3 = X3 —az

where y, is the displacement reference value of the deviation control cylinder and 2; and
ay are intermediate dummy variables.
Step 2: Design the virtual control variable a; as follows:

a= —kiey + v, (11)
where k; > 0.

To ensure the displacement tracking error e; tends to zero, a semi-definite Lyapunov
function can be defined as follows:

e1. (12)

The time derivative of Vy can be given as follows considering Equation (11):

V1 =e16] = 61(3'61 — yd) =e1 (62 +ay — yd) = —kle% +e1en. (13)
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Step 3: To ensure the system is stable and convergent, Vl < 0. Therefore, a new
Lyapunov function for e; is defined as follows:

Vo =V + %eg, (14)

By deriving Equation (14), we can obtained the following:
Vy =V + ey = —kle% +ejep +ea(es +ay —a). (15)
Then, the virtual control variable a; can be designed as follows:
ay= —kyer —e1 + a1, (16)

where k, > 0.
V5, is calculated as follows:

Vz = *kle% — sz,’% + epe3. (17)

Step 4: To ensure the Lyapunov function defined above has positive semi-definite
properties, the synovial switching function is designed to make the system error converge
to the synovial surface gradually as follows:

s = cie; + e + €3, (18)

where ¢1 > 0, ¢ > 0, and satisfied Hurwitz polynomials p(&) = 4ol +oa.
The exponential reaching rate is employed in this work to make the control system
approach a sliding surface:
s = —esgn(s) — kss, (19)

where s = —ks is an exponential reaching term and parameters € and k3 are both positive.
The larger the parameters ¢ and k3, the faster the convergence. However, too large
parameters will cause system chattering and even lead to system instability.
Further, by deriving Equation (18), the following can be deduced:

S = c1e1 + ey + X3 — ap = 161 + Cre +f0(x) +g0(x)u + D —ap. (20)

The compound disturbance term in Equation (20) includes both parameter uncertainty
and external disturbance. Therefore, the system controller is designed as follows:

u= L(fﬁs — kasgn(s) — c1e1 — c2ep — fo(x) + a2 — D). (21)
8o(x)

As go(x) is a variable related to the parameters of the deflection-control hydraulic
cylinder, the denominator of the designed controller (21) is not zero, which ensures its
non-singularity. However, the unknown disturbance D in the controller directly affects
the output performance and shaking characteristic. A disturbance observer was built
to estimate and compensate the unknown disturbance D to avoid the control error and
shaking.

3.2. Disturbance Observer

The compound disturbance is expanded based on the control principle of the extended
state observer, so that the sliding surface in Equation (20) can be re-expressed as follows:

(22)

{ $=c161 + 22 + fo(x) — az + go(x)u + 51
s1=D ’
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An extended state observer is designed for Equation (20) with a second-order form:

€1 =21 —S
?1 =2y +c1e1 + 22 + fo(x) —ax + go(x)u — Brey (23)
zp = —pan(e,a,0)

where z; and z; are the observer outputs, e; is the estimate error for the observer, and
parameters 3, and f are greater than zero.
Function 7 is defined as follows:

_ [ lerl"sgn(er), e >0
7’](8,[1,5) - { 51373”, ‘el‘ SJ 7 (24)

where 0 <a<1andd > 0.

Remark 1. For the second-order extended state observer of Equation (23), there are appropriate
design parameters By, B2, a, and 6 that make the observer steady.

Furthermore, the observer estimation error equation is established as follows:

a=e-fa 25)
ey = —D — ﬁzﬂ
The estimation error of the observer in steady state can be expressed as folows:
e1=ey— P11 =0
1= fre . (26)
ey = —D — ﬁz?j =0

According to Equations (24) and (26), the estimated error of the observer can be
processed as follows:

{ a=—y'(D/p) @)
e = Brer = —P1y 1 (D/B2)

Considering Equation (24), the observational errors can be divided into two cases:

R 1/a
le1] = |Dpa| jea] > 0
bpa|" 5
lea| = /5}‘ /52‘ leif > 6 28)
lea] = [D8| /B2 Jer| <6
‘€2| = ﬁl‘D(517u /,32 ‘€1| <0

Combined with Equations (27) and (28), it can be seen that reasonable values for
parameters 81, B2, 4, and § determine the observer estimation error. Therefore, as long as
the appropriate parameter values are selected, the state estimation error can be sufficiently
small, so the observer output can converge to a certain critical region of s and D, which
guarantees the observation accuracy of the compound disturbance.

3.3. Stability Analysis

The compound disturbance D can be replaced by the proposed extended state observer.
Thus, the control law from Equation (21) can be rebuilt as follows:

(—es — kasgn(s) — c1e1 + 262 + fo(x) — a2 + go(x)u — z2). (29)
g0(x)
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Remark 2. For the directional control system of Equation (8) with parameter uncertainties and
external disturbances, the extended state observer of Equation (23) is used to estimate the compound
disturbance D. If there are suitable parameters, B1, B2, a, and 5, the control system output will
gradually tend to the sliding surface and keep a relative slip on the sliding surface, so that the
position output of the system can accurately track the desired trajectory. The parameters must meet
the following conditions:

ki +ec?
4

kikoe + kyecp — > 0. (30)

Proof . Define the Lyapunov function:
1o
V=W+ 55" (31)

Combining Equations (13), (18) and (29), Equation (31) can be derived as follows:

V = V2 =+ sS
= —k1€2 — koe3 + ezez +s(c1e1 + 262 + fo(x) — a2 + go(x)u + D)
= —kye§ — koe3 + epe3 + s(—kzs — esgn(s) — z,) (32)

= —kle% — kze% +epe3 — k3s? —els| +5(D — zp)
= —e'Qe —¢|s| +s(D — z3)

where e= [61,62,63]T and

k1 + kscq c1coks c1ks
Q= | ccks kotoks coks—3 |. (33)
ciks coks — 3 k3

The designed parameters kq, ky, k3, c1, and ¢, are all greater than 0 and constants,
which can ensure that the first- and second-order principal minor determinants of matrix
Q are positive. The fact that the third-order principal minor determinant of matrix Q is
positive can be guaranteed by Equation (30). Therefore, matrix Q satisfies the positive
definite.

From Equation (33), the following can be concluded:

14 min(Q)"e”i*kﬂs‘+S(D722)
min(Q) el = (ks — lez])s
where Apin(Q) is the minimum eigenvalue of matrix Q.

The tracking errors converge to a neighborhood of zero by assigning reasonable values
for parameters By, B2, 4, and 6. Therefore, design parameter k3 satisfies k3 > |ez|. Based on

<-A
- 4
<A (34)

Equation (29), when V < 0, the system will embody asymptotic stability.

Define N = eTQe. When k3 > |ez|, V < —N. The integral result is expressed as
follows:

/Ot Ndt < V(0) - V(b (35)

According to the boundedness of V and V< 0, it can be deduced that }im jot Ndt < co.
—»00

Therefore, ¢; — 0, i =1,2,3 when t — 00 and N — 0. Then, the sliding function s would
be closer to zero, s — 0.

Based on the Lyapunov stability criterion, the system will gradually approach the
sliding surface and eventually converge to the sliding surface. Therefore, the output of the
directional control system can effectively track the desired trajectory.
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4. Experimental Research
4.1. Experimental Introduction

Figure 5 depicts an electro-hydraulic servo displacement control experimental system
that is utilized to implement the proposed nonlinear adaptive backstepping control based
on the disturbance observer (ABSMC-DO) designed in this paper and experiment on the
deflection control testing system. The testing system is composed of a loading system and
an actuating system. The loading hydraulic cylinder and actuating hydraulic cylinder are
the actuators and are driven by the proportional servo valve (MA-DLHZO-TES-PS-040)
manufactured by the YWL VTOZ company. The MTS magnetostrictive displacement sensor
(RPS0500MD601V810050) with an accuracy of 0.1 mm is used to measure the hydraulic
cylinder position. For measuring the pressure changes in real time, two pressure sensors
(Mik-p300 and 0-20 Mpa, resolution +0.5%) are installed on the oil inlet and outlet of
the loading cylinder and actuating cylinder. All the executive elements and acquisition
elements have relative control precision to realize industrial application. Different external
loading signals, such as waves and sinusoidal steps, are imposed to the actuating cylinder.
A tension pressure sensor is employed to measure the external loading with a repetitive
accuracy of 0.05% FS (Full Scales).

Simulink model including :
the PID controller, adaptive |
backstepping controller and |
the proposed controller :

| Simulink
| control
| system
I

xPC targetreal-time control :
system withAD PCI-1723,)
DA PCI-6126. Digital PCI-|
1487 !

| Real-time
| control
| system

Sinnal
processing
system

1
Converting :

4-20mA to 2-10V,
—10V-10V to —40mA—40mA | Control
signals

Sensor system = Experimental system
(@Displacement sensol @ Loading cylinder @ Spring block

i-,\rc:;lue‘?gz‘tsegr @ Mass block @ Actua

Figure 5. Electro-hydraulic servo displacement control experimental system. PID, proportion
integral derivative.

The signals of each sensor are collected in the industrial computer through an analog
to digital (A /D) board, PCI-1723. The 16-bit A/D board transforms the feedback analog
signals measured by the sensors to digital signals and then sends the acquired digital
signals to the controller after converting in signal modular. Using the RTX module of the
industrial computer, the proposed control algorithm is programmed in Matlab /Simulink
and then compiled and downloaded to the matlab xPC target real-time controller. The
real-time analog control output signals that are produced by the 12-bit D/ A board PCI-6126
and processed by the signal modular are sent to the two servo-valves to control the two
electro-hydraulic cylinders.

To verify the effectiveness of the proposed control strategy for the DCM, experiments
were carried out on the electro-hydraulic servo displacement control experimental sys-
tem using the conventional proportion integral derivative (PID) controller, the adaptive
backstepping controller (ABC), and the proposed ABSMC-DO for comparison. The main
parameters of the electro-hydraulic servo displacement control experimental system are
shown in Table 1.
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Table 1. Main parameters of the electro-hydraulic servo displacement control experimental system.

Parameters Symbol Values Units
Supply pressure P 15 x 10° Pa
Effective bulk modulus Be 7.0 x 108 Pa
Volume of hydraulic cylinder v 0.62 x 107* m3
Effective area of hydraulic cylinder Ap 3.6 x 1073 m?
Total mass ny 100 kg

Viscous damping coefficient By 5652 N-m-s/rad

Flow coefficient of servo valve Cy 0.602 —_—

Gain of servo valve K, 2.6 x 1074 m/A

Natural frequency of servo valve Wsp 150 rad/s
Area gradient of servo valve core w 1.63 x 1073 m

The control parameters of different control algorithms were obtained by many tests.
The parameter tuning of the PID controller included the hash method, the attenuation
curve method, the expanded critical proportional band method, and the response curve
method. In the tests, PID parameter tuning was performed based on an attenuation curve
to achieve the best control state. Meanwhile, the ideal parameters of ABC and the proposed
ABSMC-DO could be obtained by the controlling variable referring to articles [21] and [23]
as follows:

PID controller: k, = 0.0005, k; = 0.04, k; = 1.5.

Adaptive backstepping controller: feedback gain k1 = 100, ko = 30, k3 = 50.

Nonlinear adaptive backstepping control based on disturbance observer: k; = 200,
ko =320, k3 =40,e = 0.5,¢c1 =1, ¢y =2, B1 = 4000, Bo= 8000, a = 0.05, 6 = 0.1.

4.2. Experimental Results

Deviation in the drilling process is caused by the fluctuation of the cutting load. The
displacement of DCM should be adjusted in real time to ensure directional drilling at
any time. Therefore, a random sinusoidal trajectory with an amplitude of 0.1 m and a
frequency of 1.0 Hz was applied to simulate the tracking characteristics of the DCM in the
drilling process. The experiments were carried out under the conditions of no disturbance,
parameter uncertainty, external loading disturbance, and random signal, respectively.

4.2.1. Tracking Performance with No Disturbance

The tracking errors of different controllers with no disturbance are presented in
Figure 6. The parameter estimation of the adaptive backstepping controller is shown in
Figure 7.

It can be seen from Figure 6 that the displacement tracking error with the conventional
PID is much bigger than that with the adaptive backstepping controller and the proposed
ABSMC-DO. Owing to the adaptive law (Figure 7), the adaptive parameters of the ABC
converge to a stable region in a short time. The tracking performances of the ABC and the
proposed ABSMC-DO are both excellent with no disturbance.

4.2.2. Tracking Performance with Uncertain Parameters

The performance robustness with uncertain parameters was further measured by
loading mass blocks of 20 kg on the hydraulic cylinder slider; the control parameters of
the different controllers remained unchanged. The tracking performance was obtained as
shown in Figure 8.

The tracking error of the PID controller increased significantly compared with the
no disturbance conditions, resulting in a poor control effect. However, both the ABC
and the proposed ABSMC-DO could achieve stability in a relatively short time because
of their ability to self-adjust their parameters online. Even if the gain of the controller
remained unchanged, a tracking response with a high accuracy could be achieved. The
two controllers both had a high control accuracy and excellent tracking performance.

203



Processes 2021, 9, 237

4.2.3. Tracking Performance with External Disturbance

It is a challenge to improve control accuracy owing to the real-time change in the
external load in the cutting process. A random external force of 1000 N amplitude was
applied at t = 1.5 s and removed at t = 4.5 s to imitate external disturbance. The tracking
errors of different controllers are shown in Figure 9.
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Figure 6. Tracking errors of different controllers with no disturbance. ABC, adaptive backstep-
ping controller.
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Figure 7. Parameter estimation of the adaptive backstepping controller.
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Figure 9. Tracking errors of different controllers with external disturbance.

The conventional PID controller was no longer stable and achieved a large error
under external disturbance. The tracking error of ABC increased obviously when external
disturbance existed. With the disappearance of the external disturbance, the error was
controlled in a small range. However, the proposed ABSMC-DO controller was found to
have a better tracking performance, except for the moment of imposing and removing
external disturbance.
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A quantitative evaluation of the control effect was carried out using the peak tracking
errors and root mean square errors (RMSEs), as shown in Table 2.

Table 2. Position tracking performance index under different controllers. RMSE, root mean square
error; PID, proportion integral derivative; ABC, adaptive backstepping controller; ABSMC-DO,
adaptive backstepping control based on the disturbance observer.

No Disturbance Uncertain Parameters External Disturbance
Controller
Peak RMSE Peak RMSE Peak RMSE
Error/mm Error/mm Error/mm
PID 3.2 1.16 7.1 3.32 28.2 10.34
ABC 3.6 1.02 3.7 1.33 9.1 4.26
ABSMC-DO 2.3 0.84 2.9 1.14 47 1.62

It can be concluded that the peak errors and RMSEs of the PID controller are both the
greatest under different external conditions. The ABC can reach a better control accuracy
with no disturbance and uncertain parameters. The controller errors of the proposed
ABSMC-DO controller still maintain the smallest under each experimental context, which
proves that the designed controller has strong robustness.

4.2.4. Tracking Performance with Prototype Experiment

To realize the deviation control of the drill auger during the cutting process, a proto-
type experiment was carried out, as shown in Figure 10.

' Tlydraulic system |

SHA 2 S k -

i
v,
DS

Drilling platform

Figure 10. Experiment prototype for position deviation control.

In the actual drilling process, the control system cannot be added to the experimental
prototype owing to the small space. Thus, the external disturbances and deviation position
data cannot be collected in real time. To solve this problem, we carried out some related
experiments [2] on the ground in the early stage and obtained relevant experimental data
that can be applied to the experimental prototype to replace the downhole operation
environment. This can ensure the reliability of the data. A low-pass filter was used to
reduce the influence of noise. The position deviation control results are shown in Figure 11.

As we can see, the signal output waveform showed obvious distortion and phase lag
with the conventional PID controller, whose amplitude deviation was the largest. Using the
ABC and the proposed ABSMC-DO controller, the tracking effect improved significantly,
which indicates that the nonlinear control effect was better in terms of its high response
speed and high tracking accuracy.
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Figure 11. Position deviation control results of the prototype test.

Further, a normalization analysis was conducted to evaluate the deviation control
effect quantitatively. The calculation formula of the normalized root mean square error is
as follows:

L
NRMSE = | 13" [ra(K) ~ ya(K)]2/max{ra(b)], (36)
i=1

where 7, is the value of the output signal, y, is the value of the reference signal, and L is
the length of the reference and output signals. Table 3 lists the RMSE (root mean squared
error) of the position tracking with the different controllers. As can be seen, the NRMSE
(normalized root mean squared error) based on the PID controller is the largest. However,
the ABC and ABSMC-DO controller can achieve a better performance. The ABSMC-DO
controller can realize position deviation control under different external conditions.

Table 3. Normalized performance index of position control under different controllers. NRMSE,
normalized RMSE.

Controller Max Signal RMSE NRMSE
PID —0.0295 11.1009 x 103 37.63%
ABC —0.0295 5.7584 x 103 19.52%

ABSMC-DO —0.0295 42097 14.27%

5. Discussion

In this study, a combined controller consisting of a nonlinear adaptive backstep-
ping controller and a disturbance observer for deviation control was established and
verified. Some studies have focused on controller design using the backstepping control
method [22,26] and the disturbance observer method [23,31,32], which indicates that these
methods are significant. However, most of the available research focuses on control ac-
curacy using high-precision control elements. Our studies tried to combine and improve
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these two controllers and use a control element with a slightly lower accuracy to achieve
the required positioning control for easier industrial application. The results confirm that
long-distance directional drilling can be realized under bad downhole working conditions,
a finding that can be used in in oil drilling, deep sea exploitation, gas drainage, directional
tunneling, and other fields. Besides this, our study shows that both the adaptive back-
stepping controller and disturbance observer controller cannot reach an excellent tracking
performance individually in external disturbance, which is an important and assignable fac-
tor. The related research [28,30] has obtained consistent conclusions. Therefore, improving
the control accuracy of a single controller is also one of the directions for further research.
However, prototype experiments in this paper were carried out using a ground test
and the geological factors were neglected in this paper. Meanwhile, long-distance drilling
over 100 m should be considered by fusing sins positioning technology for real-time control.
Therefore, further investigation is necessary and will be discussed in future research.

6. Conclusions

In this work, a deflection control mechanism was designed to realize directional
drilling. A nonlinear adaptive backstepping controller based on a disturbance observer
consisting of an adaptive backstepping controller and a disturbance observer controller
was firstly proposed for position tracking control, taking into account the parameter uncer-
tainties and external disturbances. The stability of the overall system with the proposed
controller was proven with the help of the Lyapunov theory. To verify the effectiveness
of the proposed ABSMC-DO controller, an electro-hydraulic servo displacement control
experimental system with matlab xPC target rapid prototyping technology was established.
Then, a prototype experiment was conducted to prove the direction drilling performance.
The experimental results indicate the following: (a) The displacement tracking error with
no disturbance of the conventional PID was much larger than that with the adaptive back-
stepping controller and the proposed ABSMC-DO. The tracking performances of the ABC
and the proposed ABSMC-DO were both excellent with no disturbance. (b) Besides this,
the tracking error of the PID controller increased significantly with uncertain parameters,
resulting in a poor control effect. However, both the ABC and the proposed ABSMC-DO
could achieve stability in a relatively short time thanks to their ability to self-adjust their
parameters online. (c) The conventional PID controller was no longer stable and achieved
a large error under the conditions of external disturbance. The tracking error of the ABC
increased obviously when there was external disturbance. With the disappearance of the
external disturbance, the error was controlled in a small range. However, the proposed
ABSMC-DO controller achieved a better tracking performance, except for the moment of
imposing and removing external disturbance. (d) The NRMSE based on the PID controller
was the largest with the prototype experiment. However, the ABC and ABSMC-DO con-
troller could reach a better performance. The ABSMC-DO controller could realize position
deviation control under different external conditions. All of the experimental results indi-
cate that the proposed ABSMC-DO controller can yield a more satisfactory position tracking
performance than the conventional PID controller and an adaptive backstepping controller.
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Abstract: Deep reinforcement learning (DRL) is an area of machine learning that combines a deep
learning approach and reinforcement learning (RL). However, there seem to be few studies that
analyze the latest DRL algorithms on real-world powertrain control problems. Meanwhile, the boost
control of a variable geometry turbocharger (VGT)-equipped diesel engine is difficult mainly due
to its strong coupling with an exhaust gas recirculation (EGR) system and large lag, resulting from
time delay and hysteresis between the input and output dynamics of the engine’s gas exchange
system. In this context, one of the latest model-free DRL algorithms, the deep deterministic policy
gradient (DDPG) algorithm, was built in this paper to develop and finally form a strategy to track
the target boost pressure under transient driving cycles. Using a fine-tuned proportion integration
differentiation (PID) controller as a benchmark, the results show that the control performance based
on the proposed DDPG algorithm can achieve a good transient control performance from scratch by
autonomously learning the interaction with the environment, without relying on model supervision
or complete environment models. In addition, the proposed strategy is able to adapt to the changing
environment and hardware aging over time by adaptively tuning the algorithm in a self-learning
manner on-line, making it attractive to real plant control problems whose system consistency may
not be strictly guaranteed and whose environment may change over time.

Keywords: self-learning; transient response; variable geometry turbocharger; deep reinforcement
learning; deep deterministic policy gradient

1. Introduction

The concept of engine downsizing and down-speeding enables reductions in fuel consumption
and CO, emissions from passenger cars in order to satisfy the greenhouse gas emission reduction targets
set by the 2015 Paris Climate Change Conference [1,2]. These reductions are achieved by reducing
pumping and friction losses at part-load operation. Conventionally, rated torque and power for
downsized units are recovered by means of fixed-geometry turbocharging [3]. The transient response
of such engines is, however, affected by the static and dynamic characteristics of the fixed-geometry
turbo-machinery (especially when it is optimized for high-end torque) [4,5]. One feasible solution
to this is the use of variable geometry turbocharger (VGT) technology, which is designed to enable
the effective aspect ratio of the turbocharger to vary with different engine operating conditions (see
Figure 1). This is because the best aspect ratio at high engine speeds is very different from the best
aspect ratio at low engine speeds [6]. In engines equipped with VGT, and because part of the exhaust
energy is used to accelerate the turbine shaft for boosting, engine transient response and fuel economy
can be improved significantly [7].
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Figure 1. Variable geometry turbocharger (VGT) operating principle.

For diesel engines, VGT often interacts with an exhaust gas recirculation (EGR) system (which is
for the engine’s NOx emission reduction). This interaction increases the complexity of the VGT control
problem. Furthermore, the time delay and hysteresis between the input and output dynamics of the
diesel engine’s gas exchange system make it difficult to accurately control the VGT [8]. Traditionally,
the fixed-parameter structure proportion integration differentiation (PID) control is used in industry
for VGT boost control, but the parameter setting processing is complicated and it is difficult to obtain
satisfactory results, especially when the state of the control loop is altered [9-13]. There are other PID
variants that include expert PID control [14], fuzzy PID control [15], and neural network-based PID
control [16], etc. Although the variants are said to perform better if tuned well, those algorithms,
respectively, need to acquire expert knowledge, construct fuzzy control decision tables, and tune
complicated neural network parameters, and thus their widespread use for VGT boost control may be
prohibited. Meanwhile, for complex industrial systems with high-order, large lag, strong coupling,
nonlinear, and time-varying parameters (such as for VGT control systems [17-19]), the traditional
control theory which relies on mathematical models is still immature, and some methods are too
complicated and cannot be directly applied for industrial applications [20-22]. On the other hand, it
may not be possible or feasible to develop a first-principle model for complex industrial processes.
Furthermore, complex engineering systems are rather expensive, with a high requirement for system
reliability and control performance. In this context, “model-free” intelligent algorithms (in the absence
of a model with high fidelity) to achieve end-to-end learning and intelligent control while taking the
industrial need of simplicity and robustness into consideration may provide an attractive alternative.

Reinforcement learning (RL), which is considered as one of three machine learning paradigms,
focuses on how agents should act in the environment to maximize cumulative rewards (see Figure 2) [20].
Temporal-difference (TD) learning, which is a combination of dynamic programming (DP) ideas and
the Monte Carlo idea, is considered to be the core and novelty of reinforcement learning [23]. In RL,
there are two classes of the TD method—on-policy and off-policy. The most important on-policy
algorithm includes Sarsa and Sarsa (A), and one of the breakthroughs in off-policy reinforcement
learning is known as Q-learning [24,25]. Deep reinforcement learning (DRL) is an area of machine
learning that combines a deep learning approach and reinforcement learning (RL). This field of study
was used to master a wide range of Atari 2600 games and its great success on AlphaGo, which was the
first computer program to beat a human professional Go player, is a historic milestone in machine
learning research [26]. Deep Q-network (DQN) based on value function and deep deterministic policy
gradient (DDPG) based on policy gradient are the two latest DRL techniques. The DQN used on
AlphaGo and AlphaGo Zero [27,28] uses only the original image of the game as input, and does
not rely on the manual extraction of features. It innovatively combines deep convolutional neural
networks with Q-learning to achieve human player control (it also achieved great success in Atari
video games [29]). Although this algorithm achieves the generalization of continuous state space,
it is theoretically only suitable for tasks in discrete action space. The DDPG strategy proposed by
Lillicrap et al. [30] uses deep neural networks as approximators to effectively combine deep learning
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and deterministic strategy gradient algorithms [31]. It can cope with high-dimensional inputs, achieve
end-to-end control, output continuous actions, and thus can be applied to more complex situations with
large state spaces and continuous action spaces. To the authors’ best knowledge, there is no literature
that has applied DRL techniques to boost control problems for VGT-equipped engines. Furthermore,
there seem to be few studies that analyze the DDPG algorithm on sequential decision control problems

for industrial applications.

state reward action
S, R, A,

R
5., | Environment

Figure 2. Basic idea and elements involved in a reinforcement learning formalization.

Based on the above discussion, it is appropriate to apply the DDPG techniques for the boost
control on a VGT-equipped engine. In this paper, in order to achieve the optimum boost control
performance, first the simulation model of a VGT-equipped diesel engine is introduced. Subsequently,
a model-free DDPG algorithm is built to develop and finally form a strategy to track the target engine
boost pressure under transient driving cycles by regulating the turbine vanes. Finally, the proposed
DDPG algorithm is compared with a fine-tuned PID controller to validate its optimality. The rest of
this article is structured as follows: Section 2 describes the mean value engine model (MVEM) of the
VGT-equipped diesel engine. In Section 3, the DDPG-based framework is proposed to achieve the
optimal boost control of the engine. In Section 4, the corresponding simulations are conducted to
compare the proposed algorithm and a fine-tuned PID controller. Section 5 concludes the article.

2. Mean Value Engine Model Analysis

Mean value engine models (MVEMs) are useful for certain types of modeling where simulation
speed is of primary importance, the details of wave dynamics are not critical, and bulk fluid flow is still
important (for modeling turbocharger lag, etc.) [32]. A mean value engine model essentially contains
a map-based cylinder model, which is computationally faster than a detailed cylinder. The simulation
speed can be increased further by combining multiple detailed cylinders into a single mean value
cylinder. In addition, many of the other flow components from the detailed model can be combined to
create a simplified flow network of larger volumes.

The layout of the VGT-equipped diesel engine is illustrated in Figure 3. The detailed engine
model was converted to a mean value model. As it is not the focus of this article, only a brief process
summary is presented here. The mean value cylinder is defined by imposed values for indicated mean
effective pressure (IMEP), volumetric efficiency, and exhaust gas temperature. These three quantities
are predicted by neural networks (see Figure 4) that depend on seven input variables (intake manifold
pressure and temperature, exhaust manifold pressure, EGR fraction, injection timing, fuel rate, and
engine speed). Note here that each neural network (four in total) is trained using the data generated in
the detailed simulation. The output of this training is an external file which contains the necessary
neural network settings. Once the training has been completed, the neural network file can be called
into the mean value model, which dramatically increases the computational efficiency. In addition,
the friction mean effective pressure (FMEP) of the cranktrain is also calculated by a neural network
dependent on the same seven variables.
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Figure 3. VGT-equipped diesel engine with an exhaust gas recirculation (EGR) system.

¥ FromPart_cyl
_MJ-01
&1
3
n 3 Hlizg
IMEP-01 filter{IMEP FromPart_Cyl
V-02
s
I i &0
ExRT-01 filterExhT FromPart_Cyl
_MJ/-03
L g
I i Fueg,
FMEP-01 filter-FMEP FromPart_
engine

Figure 4. The proposed neural network that maps the mean value cylinder performance as a function
of seven input variables in GT-SUITE.

The intake and exhaust systems are simplified into large “lumped” volumes so that system volume
is conserved (with a loss of detailed wave dynamics). The large volumes allow large time steps to
be taken by the solver. Pressure drops in the flow network are calibrated using restrictive orifice
connections between the lumped volumes. Additionally, heat transfer rates are calibrated using the
heat transfer multiplier in parts where heat transfer is significant (exhaust manifold). The intercooler
and EGR cooler outlet temperatures are imposed, which allows the gas temperature to be imposed as it
passes through the connection. This reduces the amount of volumes required and allows a reduction in
potential for any instability in the solver caused by the high heat transfer rates in the heat exchangers
at large time steps that are typical of mean value models. The mean value model results match the
detailed results well (see Figure 5), and should provide sufficient accuracy for control system and
vehicle transient studies. The mean value model runs approximately 150 times faster than the detailed
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model and runs faster than “real time”, enabling it to be used for real-time hardware-in-the-loop

(HIL) simulation.
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Figure 5. The first 300 s engine speed and boost pressure comparison for the US EPA FTP-72 (Federal

Test Procedure) drive cycle.

The research engine was a 6 cylinder 3 L turbocharged direct injection (DI) diesel, with its
GT-SUITE model seen in Figure 6. Advanced controllers should be used to dynamically control the
position of the VGT rack in order to achieve the target boost pressure. It should be noted that the
model was initially controlled by a fine-tuned PID controller, and the target boost pressure and the
P and I gains were both mapped as a function of speed and requested load (implied by accelerator

pedal position).
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Figure 6. The GT-SUITE model layout of the 6 cylinder 3 L VGT-equipped diesel.

To analyze the transient behavior, the engine speed was imposed to match the prescribed vehicle
speed profile from the FTP-72 driving cycle (see Figure 7). This transient engine speed profile was
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calculated using a simple kinematic mode simulation which can be seen in Figure 8. The same
simulation provided the required brake mean effective pressure (BMEP) from the engine. Then,
a separate detailed simulation was run with an injection controller to determine and store the transient
pedal position required to achieve the requested BMEP.
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Figure 7. FTP-72 driving cycle.
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Figure 8. FTP-72 transient engine speed profile.
3. Deep Reinforcement Learning Algorithm

Model-free reinforcement learning is a technique for understanding and automating goal-directed
learning and decision-making [33]. It differs from most other control algorithms in that it emphasizes on
agents learning through direct interaction with the environment, without relying on model supervision
or a complete environmental model [34]. As an interactive learning method, the main features of
reinforcement learning are trial-and-error search and delayed return [35]. Figure 1 shows the interaction
process between the agent and the environment. At any time step, the agent observes the environment
in order to get the state S; and then performs the action A;. Afterward, the environment generates the
next time S; 11 and R; according to A;. The probability that the process moves into its new state Sy
is influenced by the chosen action and is given by the state transition function. Such a process can
be described by Markov decision processes (MDPs) [36,37]. The goal of reinforcement learning is to
formulate the problem as an MDP and find the optimal strategy [38]. The so-called strategy refers to
the state-to-action mapping, which commonly uses the symbol policy 7t. It refers to a mapping on
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the action set for a given state s, that is, 7t(als) = p[A; = 11|St = s]. Reinforcement learning introduces
a reward function to represent the return value at a certain time ¢, as follows:

0
Gt =rep1+ 72+ 7 s+ = Zk:o Vriske, )

where 7 represents an immediate reward and y represents a discount factor which shows how important

future returns are relative to current returns. The action—value function used in reinforcement learning

algorithms describes the expected return after taking an action in state S; and thereafter following
policy 7

" (st,at) = Z Rilst, a 2

Q" (st 1) "zzt,5i>t~E,ﬂi>t~Tl[ st ] @

Reinforcement learning makes use of the recursive relationship known as the Bellman equation:

Q(ra) =), Il +yY, Qs an)] ®)

The expectation depends only on the environment, which means that it is possible to learn Q"
off-policy using transitions that are generated from a different stochastic behavior policy . Q-learning,
a commonly used off-policy algorithm, uses the greedy policy u(s) = argmax, Q(s,a). We consider
function approximators parameterized by 69, which we optimize by minimizing the loss, as follows:

L(QQ) = ZS,‘Npﬂ,ﬂ[Nﬁ,I’[NE [(Q(St/ﬂt|9Q) - yt)z] 4

where
ye = r(st,a) + yQ(ser1, 1(s141)|09)

Recently, deep Q-network (DQN) adapted the Q-learning algorithm in order to make effective
use of large neural networks as function approximators. Before DQN, it was generally deemed that it
was difficult and unstable to use large nonlinear function approximators for learning value functions.
Thanks to two innovations, DQN can use a function approximator to learn the value function in a stable
and robust manner: (a) the network is trained off-policy with samples from a replay buffer to minimize
correlations between samples and (b) the target Q-network is used to train the network to provide
consistent goals during time difference (TD) backups.

The deterministic policy gradient (DPG) algorithm maintains a parameterized actor function,
1(s|6#), which specifies the current policy by deterministically mapping states to a specific action. The
critic Q(s,a) is learned using the Bellman equation as in Q-learning. The actor is updated by applying
the chain rule to the expected return from the start distribution ] with respect to the actor parameters,
as follows:

Vou] = stp/f [VG“Q(SIulQQ)ls:sf,a:y(sflﬂ!’)]
= Zsf~p/‘; [VaQ(S, ”lGQ)ls:s,,a:y(s,‘)VHH [.I(S|9'“)|5:5,}

Deep deterministic policy gradient (DDPG) combines the actor—critic (AC) approach based on
deterministic policy gradient (DPG) [31] with insights from the recent success of deep Q-network
(DQN). Although DON has achieved great success in high-dimensional issues, like the Atari game,
the action space for which the algorithm is implemented is still discrete. However, for many tasks of
interest, especially physical industrial control tasks, the action space must be continuous. Note that
if the action space is discretized too finely, the control problem eventually leads to excessive motion
space, which is extremely difficult for the algorithm to learn. The DDPG strategy uses deep neural
networks as approximators to effectively combine deep learning and deterministic strategy gradient
algorithms. It can cope with high-dimensional inputs, achieve end-to-end control, output continuous
actions, and thus can be applied to more complex situations with large state spaces and continuous
action spaces. In detail, DDPG uses an actor network to tune the parameter 6 for the policy function,
that is, decide the optimal action for a given state. A critic is used for evaluating the policy function

®)
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estimated by the actor according to the temporal TD error (see Figure 9). One issue for DDPG is that
it rarely explores actions. A solution is to add noise to the parameter space or the action space. It is
claimed that adding to parameter space is better than to action space [39]. One commonly used noise
is the Ornstein-Uhlenbeck random process. Algorithm 1 shows the pseudo-code of the proposed
DDPG algorithm.

Moo

olicy

state —=| Value

Function
/

action

reward

—' Environment F

Figure 9. Actor—critic architecture.

Algorithm 1: Pseudo-code of the Deep deterministic policy gradient (DDPG) algorithm.

Randomly initialize critic network Q(s,a|02) and actor y(s|6“) with weights 02 and 0.
Initialize target network Q' and p’ with weights 09 0%, O 0#

Initialize replay buffer R
for episode =1, M do
Initialize a random process N for action exploration
Receive initial observation state s1
fort=1,Tdo
Select action a; = p(s¢|0%) + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;;1
Store transition (s¢, a¢, 7t,5¢41) in R
Sample a random minibatch of N transitions (s¢, a, rt,54+1) from R
Set y; = ri +yQ' (si41, W (si41104)10)
Update critic by minimizing the loss: L = % Yilyi— Q(si,aileQ)) 2
Update the actor policy using the sampled gradient:

1
Vo~ 5 Z VaQ(s, a0 D)1, au(s) Vorr(sl0 )]s

Update the target networks:
09 w69 + (1-17)6<

O — ot + (1-1)6"

end for
end for

TensorFlow is one of the widely used end-to-end open-source platforms for machine learning.
In order to draw on the research findings of DRL in other research fields, especially to re-use the
existing program code frameworks in machine learning, we used Python compatible with TensorFlow
as the algorithm design language in this study. Meanwhile, in order to apply the DRL algorithm built
in Python to the diesel engine environment, we proposed to use MATLAB/Simulink as the program
interface, so that the two-way transmission among Python, MATLAB/Simulink, and GT-SUITE could be
reached. The specific DDPG algorithm implementation and the corresponding co-simulation platform
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are shown in Figure 10. Key concepts of the DDPG-based boost control algorithm are formulated

as follows.
Tensor
Behaviour policy: Actor Critic
D
. A i . i
o Ao Tl fuersec S
radient w.r.t a
MATLAB (7)) GG Online retwork
SIMULINK Parameter: 9“ Parameter: 0 Q
a = u(s,)
Soft i T Soft
update update
(S['rr'snl) . (s ) .
Target newwork S Target rework
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r,s,)
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-Calculate the gradient of the Q-network
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Figure 10. Deep deterministic policy gradient (DDPG) algorithm implementation and the corresponding
co-simulation platform.

The engine speed, the actual boost pressure, the target boost pressure, and the current vane
position were chosen to group a four-dimensional state space. It should be noted here that only a small
number of states were chosen in this study in order to (a) facilitate the training process and (b) showcase
the generalization ability of the DRL techniques. The vane position controlled by a membrane vacuum
actuator was selected as the control action. Immediate reward is important in the RL algorithm because
it directly affects the convergence curves and, in some cases, a fine adjustment of the immediate reward
parameter can bring the final policy to the opposite poles. The agents always try to maximize the
reward they can get by taking the optimal action at each time step because more cumulative rewards
represent better overall control behavior. Therefore, the immediate reward should be defined based on
optimization goals. The control objective of this work was to track the target boost pressure under
transient driving cycles by regulating the vanes in a quick and stable manner. Keeping this objective
in mind, the function of the error between the target and the current boost pressure and the rate of
action change were defined as the immediate reward. The equation for the immediate reward is given

as follows:
 [0:954e(t)|+0.0541;])2
rr=e 2 -1,

(6)

where ¢ is the immediate reward generated when the state changes by taking an action at time .
e(t) and I represent the error between the target and the current boost pressure and the rate of action
change, respectively.

The corresponding DDPG parameters and the illustration of the actor—critic network are shown
in Table 1 and Figure 11. In this study, the input layer of the actor network has four neurons, namely,

219



Processes 2019, 7, 601

the engine speed, the actual boost pressure, the target boost pressure, and the current vane position.
There are three hidden layers each having 120 neurons. The output layer has one neuron representing
the control action (i.e., the vane position). All these layers are fully connected. For the critic network,
the input layer has an additional neuron, which is the control action implemented by the actor network,
compared to that of the critic network. There is one hidden layer having 120 neurons. The output
layer of the critic network has one neuron representing the value function of the selected action for the
specific state. The network is trained for 50 episodes and each episode represents the first 80% time of
the FTP-72 trips (1098s).

Table 1. DDPG parameters.

Parameters Value
Learning rate for actor 0.0001
Learning rate for critic 0.0002
Reward discount factor y 0.9
Soft replacement factor 7 0.01
Replay memory size 100,000
Mini-batch size 256
Action randomness decay 0.999995
Initial exploration 10
Input Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer
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Figure 11. Illustration of the (a) actor network and (b) critic network.
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4. Results and Discussion

In this article, the simulations were conducted based on an advanced co-simulation platform
(see Figure 10). In order to validate its performance, the proposed DDPG algorithm was compared to
a fine-tuned gain scheduled PID controller with both its P and I gains mapped as a function of speed and
requested load. Without derivative action, a PI-controlled system may be less responsive, but it makes
the system steadier at steady-state conditions (thus often adopted for industrial practice). It should be
noted here that this PID controller adopted classic Ziegler-Nichols methods [40] to manually tune
the control parameters, which took much effort and thus should be interpreted to represent a good
control behavior benchmark. The US FTP-72 (Federal Test Procedure) driving cycle shown in Figure 7
was employed to verify the proposed strategy. The cycle simulated an urban route of 12.07 km with
frequent stops and rapid accelerations. The maximum speed was 91.25 km/h and the average speed was
31.5 km/h. This transient driving cycle was selected because it mimics the real-world VGT environment
system with large lag, strong coupling (especially with EGR) and nonlinear characteristics and thus,
if a well-behaved control strategy in this environment is established, it should perform well in other
driving cycles with more steady-state regions (such as the New European Driving Cycle (NEDC)).
In this study, the first 80% time driving cycle was used to train the DDPG algorithm and the remaining
data were destined for testing analysis. There are many different measures that can be used to compare
the quality of controlled response. Integral absolute error (IAE), which integrates the absolute error
over time, was used in this study to measure the control performance between the PID controller and
the proposed DDPG algorithm.

Figure 12 shows the control performance using the fine-tuned PID controller. It can be seen that
the actual boost pressure tracks the target boost pressure well at first glance. However, after zooming
in on some operating conditions, a relatively large error can still be seen. This may be due to the
turbo-lag, which cannot be improved from the control point of view (such as the time period from
10 s to 40 s, where although the VGT is already controlled to its minimum flow area for the fastest
transient performance, it still exhibits lack of boost). Nevertheless, for most situations, taking the time
period of 920 s to 945 s for example, there is still some room for the PID control strategy to improve.
We note here that the results in Figure 12 are only a balance between control performance and tuning
efforts, that is, a better control behavior can be achieved if the tuning process is made in a more finely
manner, but more efforts and resources are required. In this research, the emphasis was not put on the
final control performance comparison between PID and DRL theory, due to the fact that the structure
behind each method is different and the control behavior, to a large extent, depends on how the control
parameters are tuned. More focus was put on trying to solve the control problem in a self-learning
manner and showcase good control adaptivity for the DRL approach.

The learning process of the DDPG algorithm can be seen in Figure 13. At the beginning of the
learning, the cumulative rewards for the DDPG agent per episode were extremely low because (1) the
agent (corresponding to the vane position actuator in the VGT boosting controller) only randomly
selects actions in order to complete an extensive search process so as not to fall into local optimum and (2)
the agent has no prior experience of what it should do for a specific state (thus the agent can only select
the actions based on the initial DDPG parameters). After approximately 40 episodes, the algorithm has
already been converged with the cumulative rewards, reaching a high value. This indicates that the
agent has learned the experience to control the boost pressure. It should be noted that the learning
process takes place only by direct interaction with the environment (in this case, the simulation software
serves as the environment), without relying on model supervision or complete environment models,
and a well-behaved control strategy is developed and finally formed autonomously from scratch.
To answer the question of whether the learned controller was good enough, the control performance of
the first 80% FTP-72 driving cycle using the final DDPG controller was compared with the performance
based on the aforementioned fine-tuned PID controller. In Figures 12 and 14, it can be seen that both
the PID and the proposed DDPG algorithm perform well at first glance, but after zooming in on some
operating conditions, a large tracking disparity can still be seen. Although the PID controller seems to
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track the boost pressure with relatively small errors, the control performance based on the proposed
DDPG algorithm outperforms that of the PID controller with almost excellent tracking behavior. The
IAE value of the PID control performance is 41.72, whereas the value based on the proposed DDPG

algorithm can be as low as 37.43.
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This difference is shown better in Figure 15, where the control performance comparison between
the fine-tuned PID and the proposed DDPG from the time period of 920 s to 945 s is made. This time
period was selected because it corresponds to the frequently used engine operating regions.
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Figure 15. Control performance comparison between the fine-tuned PID and the proposed DDPG from
the time period of 920 s to 945 s.

In order to showcase the generalization ability of the proposed DRL techniques, the control
performance for the end 20% FTP-72 driving cycle based on the trained DDPG parameters was
simulated. It can be seen in Figure 16 that although the control parameters were not trained based on
this part of the driving cycle (i.e., some of the states may not have been visited in the previous training
process), the performance still exhibits good control behavior. Compared to the same time period
using the fine-tuned PID controller (already optimized for this time period), the control performance
based on the proposed DDPG clearly performs better and the IAE of the PID and the proposed DDPG
are 10.17 and 8.35, respectively.
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Figure 16. Control performance for the end 20% FTP-72 driving cycle based on the trained
DDPG algorithm.

As the control strategy based on the proposed DDPG algorithm is able to achieve (or improve,
depending on the tuning efforts of each algorithm) the control performance compared to a fine-tuned
PID benchmark controller, it could replace the traditional PID controller for boosting control in the
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near future. Compared to the benchmark PID controller whose parameters traditionally require
manual adjustment (thus the tuning efficiency is low), the control strategy based on DDPG is able
to adaptively adjust the algorithm strategy in the learning process, which not only can save a lot of
manpower resources, but also adapt more to the changing environment and hardware aging over time
(thus being unbiased by modelling errors). To prove this, another simulation model with a different
combustion and turbocharger model was used. This was a simplified replication of a real engine
plant whose transient performance could be diverged from the simulation prediction mainly due
to combustion and turbocharger modelling inaccuracy. Figure 17 shows the control performance
using both the pre-trained algorithm (which indicates the off-line behavior) and the strategy after
continuing on-line learning in the “real engine” simulation model. It can be seen that the off-line policy
is able to achieve a relatively good control behavior and can be improved further by continuing its
learning from the interaction with the new environment on-line. Thus, different from other studies
whose control parameters optimized in the simulation platform, for most cases, are no longer valid
in the experimental test, the control strategy based on the proposed DRL techniques can combine
the simulation training and the experimental continuing training together in order to fully utilize the
computational resources off-line and refine the algorithm in the experimental environment on-line.
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Figure 17. Control performance using the pre-trained off-line algorithm and the strategy after continuing
on-line learning in the “real engine” simulation model.

Furthermore, because the learning process of the proposed DDPG algorithm distinguishes itself
from other approaches by putting its emphasis on interacting with the transient environment, the final
control performance is able to outperform that of the other approaches whose techniques are only
based on the steady-state simulation or experimental control behavior. The most obvious example
would be its capability to exceed the classic feedforward control which only responds to its control
signal in a pre-defined way without responding to how the load reacts. It is known that most of the
pre-defined map in a controller with feedforward function is calibrated in a steady-state environment
in industry and is fixed for the entire product lifecycle. The proposed DDPG algorithm, however,
because the control action adapts to the environment, is equivalent to the concept of the so-called
automatic transient calibration.

5. Conclusions and Future Work

In this paper, a model-free self-learning DDPG algorithm was employed for the boost control
of a VGT-equipped engine with the aim to compare the DDPG techniques with traditional control
methods and to provide references for the further development of DDPG algorithms on sequential
decision-control problems with other industrial applications. Using a fine-tuned PID controller as
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a benchmark, the results show that the control performance based on the proposed DDPG algorithm can
achieve a good transient control performance from scratch by autonomously learning the interaction
with the environment, without relying on model supervision or complete environment models.
In addition, the proposed strategy is able to adapt to the changing environment and hardware aging
over time by adaptively tuning the algorithm in a self-learning manner on-line, making it attractive
to real plant control problems whose system consistency may not be strictly guaranteed and whose
environment may change over time. This indicates that the control strategy based on the proposed DRL
techniques can combine the simulation training and the experimental continuing training together in
order to fully utilize the computational resources off-line and refine the algorithm in the experimental
environment on-line. Future work may include applying DRL-based parallel computer architecture to
boost the computational efficiency for the control problem with high-order, large lag, strong coupling,
and nonlinear characteristics. Another interesting direction could be combining some look-ahead
strategies with the proposed DRL techniques to accelerate the training process and improve the final
control performance. The stability control between multiple reinforcement learning-based controllers
will also be studied, which includes distributed RL and hierarchical RL.
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Nomenclature

AC Actor critic

BMEP Brake mean effective pressure
DON Deep Q-network

DDPG Deep deterministic policy gradient
DI Direct injection

Dpr Dynamic programming

DRL Deep reinforcement learning
DPF Diesel particulate filter

DOC Diesel oxidation catalyst

EGR Exhaust gas recirculation

FMEP Friction mean effective pressure
FTP Federal Test Procedure

FTP-72 Federal Test Procedure-72

HIL Hardware-in-the-loop

IAE Integral absolute error

FMEP Friction mean effective pressure
IMEP Indicated mean effective pressure
MDP Markov decision process

MVEM Mean value engine model

NEDC New European Driving Cycle
PID Proportion integration differentiation
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