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Control-systems engineering is a multidisciplinary subject that applies automatic-control
theory to design systems with desired behaviors in control environments. Automatic-control
theory has played a vital role in the advancement of engineering and science. It has become
an essential and integral part of modern industrial and manufacturing processes. Today,
control-precision requirements are higher, and real systems are more complex, including
higher-order, discrete, hybrid, time-delayed linear and nonlinear systems, and systems
without a mathematical model and uncertainties.

In control engineering, parallel to all other engineering disciplines, the impact of
advanced mathematical and computational methods is rapidly increasing. Advanced
mathematical methods are needed because real-world control systems need to comply
with several conditions related to product-quality and -safety constraints that have to be
considered in problem formulation. Conversely, the increment in mathematical complexity
impacts computational aspects related to numerical simulation and practical implementa-
tion of algorithms. A balance must also be maintained between implementation costs and
the performance of the control system.

This special issue aims to present recent advances in developing and applying ad-
vanced mathematics and computational applications in control-systems engineering. It
comprises nine high-quality papers, summarized below.

Alhato and Bouallègue [1] present an advanced metaheuristic optimization algorithm—
thermal-exchange optimization—in order to optimize the gains of proportional–integral
(PI) controllers applied to outer loops in the classical vector control scheme of doubly fed
induction-generator-based wind-turbine systems. The authors considered the PI controllers’
gain tuning as an optimization problem under nonlinear and nonsmooth operational
constraints to improve the precision of the proposed control technique in reference tracking.

Kas and Das [2] provide a new theoretical approach of controlling resistance spot
welding processes with the aim of avoiding inconsistent weld quality and inadequate
nugget size. The proposal is based on a dynamical analytical model and an adaptive
tracking controller that continuously adjusts welding voltage given the estimation of
unknown process parameters.

Lara-Ortiz et al. [3] developed a hybrid active disturbance rejection controller for the
regulation of the gait cycle of a mobile worm-bioinspired robot. The controller considers
the maximal and minimal angles of each of the six links that conform the worm structure.
An extended state observer estimates the unknown dynamics to actively compensate for it
in a closed loop. Both numerical and experimental results validated the strategy.

Rodríguez-Mata et al. [4] present an approach based on Streeter–Phelps contaminant-
distribution models and state-estimation techniques to monitor water-quality conditions.
They designed a novel fractional-order high-gain observer to estimate dissolved- and
biochemical-oxygen demand, which are variables that are difficult to measure with physical
sensors. Experimental results of its application in a river are presented.

Math. Comput. Appl. 2021, 26, 20. https://doi.org/10.3390/mca26010020 https://www.mdpi.com/journal/mca
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López-Estrada et al. [5] studied the case of a mechanical crane transporting a load
of which the control objective was to attenuate swing load while tracking a reference.
They propose a convex quasilinear parameter-varying approach with a H∞ criterion that
guarantees robustness against measurement noise and partial faults.

Pulido-Luna et al. [6] discuss a method to synchronize unidirectionally coupled
heterogeneous chaotic systems, and its implementation in reconfigurable hardware. The
controller uses Lyapunov theory with state feedback for this purpose. Lastly, it was
implemented in a field-programmable gate array (FPGA) to test its performance.

Heras-Cervantes et al. [7] dealt with a DC–DC buck–boost power converter to control
the heat of a resistance located in the boiler of a distillation column. Three different models
of the converter (switching, nonlinear, and fuzzy Takagi–Sugeno) and two different fuzzy
observers (with and without sliding modes) to estimate the inductor current and the
capacitor voltage were compared in order to determine the best performance option.

Santos-Ruiz et al. [8] propose a method to simultaneously estimate the head loss and
roughness of a serpentine pipe through the use of nonlinear optimization. The authors
optimized the error of the Colebrook–White equation for an operating interval using the
pressure and flow measurements at the pipeline ends.

Ramírez-Cárdenas and Trujillo-Romero [9] focus on sensorless speed tracking of a
brushless direct-current motor using a neural network. The neural network had two layers;
it was trained using the backpropagation method, and the velocity values and control
signal from a proportional–integral–derivative control. The neural network could hold
constant and variable load pairs, as is numerically demonstrated.

Lastly, we would like to acknowledge the enthusiastic authors, reviewers, and editorial
staff who made this Special Issue possible.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This study presents an intelligent metaheuristics-based design procedure for the
Proportional-Integral (PI) controllers tuning in the direct power control scheme for 1.5 MW Doubly
Fed Induction Generator (DFIG) based Wind Turbine (WT) systems. The PI controllers’ gains tuning
is formulated as a constrained optimization problem under nonlinear and non-smooth operational
constraints. Such a formulated tuning problem is efficiently solved by means of the proposed
Thermal Exchange Optimization (TEO) algorithm. To evaluate the effectiveness of the introduced
TEO metaheuristic, an empirical comparison study with the homologous particle swarm optimization,
genetic algorithm, harmony search algorithm, water cycle algorithm, and grasshopper optimization
algorithm is achieved. The proposed TEO algorithm is ensured to perform several desired operational
characteristics of DFIG for the active/reactive power and DC-link voltage simultaneously. This is
performed by solving a multi-objective function optimization problem through a weighted-sum
approach. The proposed control strategy is investigated in MATLAB/environment and the results
proved the capabilities of the proposed control system in tracking and control under different
scenarios. Moreover, a statistical analysis using non-parametric Friedman and Bonferroni–Dunn’s
tests demonstrates that the TEO algorithm gives very competitive results in solving global optimization
problems in comparison to the other reported metaheuristic algorithms.

Keywords: doubly fed induction generator; PI tuning; LCL-filter; passive damping; advanced
metaheuristics; Bonferroni–Dunn and Friedman’s tests

1. Introduction

Recently, the increasing consumption of electrical energy, depletion of fossil fuels and the
environmental problems related to using the non-renewable sources have promoted a growing interest
in renewable energies [1,2]. Wind power as a renewable source represents an important and a promising
solution for electrical demand and has recently gained more attention for its significant merits of
cleanness and resource abundances. Various wind energy configurations are produced from the
intensive studies and researches that are carried out in wind systems. One of the most common
configurations is the grid-connected Doubly Fed Induction Generators (DFIGs) equipped with variable
speed Wind Turbines (WTs). This configuration was widely installed in wind industry due to its
significant merits such as independent control of active and reactive powers, low converters’ costs and
mechanical stress reduction [2].

A DFIG is a wound rotor generator in which the stator windings are directly connected to the
grid. The rotor windings are connected to the grid through a back-to-back power converter that is
composed from the Rotor Side Converter (RSC) and Grid Side Converter (GSC) components. This
configuration allows the converter to handle the fraction of 20% to 30% of the total power. Therefore,

Math. Comput. Appl. 2019, 24, 77; doi:10.3390/mca24030077 www.mdpi.com/journal/mca3
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the losses in the converter are lower compared to a system where the converter has to handle the full
power leading to an improvement in the total efficiency [2,3].

However, the switching of Insulated-Gate Bipolar Transistors (IGBTs) at both the RSC and GSC
components is usually performed by Sinusoidal Pulse Width Modulation (SPWM) strategy, which
generates the high frequency content in the utility current. A simple L-filter or an LCL-filter is adopted
to reduce the Total Harmonic Distortion (THD) of the utility current [4]. To meet the grid code
requirements, the LCL-filter is predominant in reducing the utility current harmonics. Indeed, it can
lead to a better attenuation of harmonics using small values of inductances. However, the resonance
phenomena of the LCL-filter must be damped properly in order to prevent the possible instability of
these systems [4]. One way for solving this problem is employing a passive damping circuit. The
passive damping is built by inserting a resistor branch in series or in parallel with the inductors or
capacitors of the LCL-filter [4].

The conventional control scheme of the grid connected DFIG wind turbine system is built based
on a vector control method [5–8]. Here, the Stator Flux Orientation (SFO) scheme is selected for DFIG
power regulation at the RSC. The SFO-based vector control strategy enables a decoupled regulation of
the active and reactive powers that is flowing between the DFIG and the grid. The active and reactive
powers’ control strategy is performed by regulating the converter currents using Proportional-Integral
(PI) controllers [5–8]. On the other hand, the Voltage Oriented Control (VOC) is adopted at the GSC,
which the DC-link voltage is maintained to constant value [9].

Zhou and Blaabjerg [5] proposed a frequency-domain based approach to attain the PI controllers’
gains for the inner and outer loops at both RSC and GSC circuits. The gains of the PI controllers that
verify the design condition are selected for control loop. However, Hamane et al. [6] performed the
direct power control of the DFIG using both PI and sliding mode controllers. The synthesis of the PI
controller is based on an algebraic pole compensation method. Moreover, Hamane et al. [7] developed
a comparative study of PI, RST, sliding mode and fuzzy supervisory controllers, and the synthesis of
PI and polynomial RST controllers are tuned based on the pole compensation and pole assignment
methods, respectively. In addition, the indirect vector control strategy is adopted, in which the matrix
converter is used at the wound rotor of the DFIG instead of the conventional back-to-back converter
in [8]. The active/reactive powers and current components are regulated by using the PI controllers
that are designed using the pole placement technique. Although these methods have presented good
performances, the main drawback for this type of control is that the performance of the DFIG system
highly depends on a proper tuning of the PI controller gains. However, since the parameters of PI
controllers depend on the precise mathematical representation, the control schemes become prone
to error. In addition, the execution of tuning process can be time-consuming, and the optimal gains
may not be obtained. Hence, proposing a systematic approach to find the best parameters setting of
PI controllers is an interesting task and the metaheuristics-based hard optimization theory may be
considered a promising solution.

In recent years, an enormous variety of metaheuristics optimization algorithms has been applied
to solve complex and hard problems in science and engineering fields. Bekakra and Attous [10]
presented the Particle Swarm Optimization (PSO) algorithm to obtain the optimal gains of PI controllers
for the indirect control of the active and reactive powers’ loops of a DFIG. Integral Absolute Error
(IAE), Integral Time-weighted Absolute Error (ITAE) and Integral Square Error (ISE) performance
criteria were selected as objective functions. Vieira et al. [11] applied the Genetic Algorithm (GA) to
obtain the gains of the PI controllers at the RSC, where the active and reactive powers loops were
directly controlled. In addition, an indirect power control strategy was achieved using GA-tuned
integral sliding mode controllers, where the GA was used to tune the parameters of the direct and
quadrature rotor current controllers [12]. Moreover, Assareh et al. [13] proposed a hybrid GA along
with a gravitational search algorithm to attain the optimal gains of the PI controller for the torque
regulation of a DFIG-based WT system. In all of these studies, the optimization algorithms are applied
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to obtain only the PI controllers’ gains of the active and reactive powers at the RSC without discussion
about the DC-link voltage regulation loop at the GSC and their effect on the overall control system.

Therefore, this work tends to apply a unified Thermal Exchange Optimization (TEO) metaheuristic
algorithm to optimize the gains of PI controllers for the outer-loops in the classical vector control
scheme of a DFIG-based wind energy system. In particular, this paper deals with the PI controllers
tuning of the active and reactive power control loops in the RSC. It also treats the PI controller
optimization-based design for the DC-link voltage loop in the GSC component.While the inner current
loops at both RSC and GSC are tuned according to classical methods. The global TEO metaheuristic
that has been proposed by Kaveh and Dadras in 2017 [14] is mainly adopted to tune the controllers’
parameters of the modeled DFIG-based Wind Energy Converter System (WECS). Moreover, other
well-known methods such as PSO, GA, Harmony Search Algorithm (HSA), Water Cycle Algorithm
(WCA) and Grasshopper Optimization Algorithm (GOA) are used for an empirical comparison study.
Moreover, a statistical analysis is performed to check the significance of each algorithm by using
nonparametric tests such as Friedman’s rank and Bonferroni–Dunn’s test. The main contribution of
this work is to provide a systematic and less complex procedure based on an advanced TEO algorithm
in order to design and tune all outer-loops PI controllers for the well-known vector control scheme of a
DFIG-based wind energy system. The classical trials-errors based methods of PI controller tuning are
no longer used and the design time is further reduced. The drawbacks of the classical tuning methods
are significantly reduced.

The remainder of this paper is organized as follows. The mathematical model of DFIG based
WT is presented in Section 2. The description of the vector control scheme for the DFIG system at
both RSC and GSC is analyzed in Section 3. In addition, Section 4 is devoted to the formulation of the
outer-loops PI controllers’ tuning problem given as a constrained optimization problem to be solved
by the proposed TEO algorithm. In Section 5, such a TEO algorithm is described and its pseudo-code
for the software implementation is given. Section 6 presents the implementation and the validation of
the proposed TEO-tuned PI controller approach. Concluding remarks are given in Section 7.

2. Modelling of the DFIG Based Wind Energy Converter

The configuration of the DFIG-based WECS is depicted in Figure 1. A WT is joined to the DFIG by
means of a gearbox. The DFIG is an induction machine, which the stator windings are directly connected
to the grid, while the rotor windings are connected to the grid thanks to a back-to-back converter.

 

Figure 1. Configuration of the Doubly Fed Induction Generator (DFIG)-based Wind Energy Converter
System (WECS).
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2.1. Modelling of the Wind Turbine

The rotor blade of the WT is responsible for catching the wind power and converting it into kinetic
energy. The captured mechanical power Pm is given as follows [2]:

Pm =
1
2
ρCp(λ, β)πR2V3

w (1)

where ρ is the air density, Cp is the power coefficient and it depends on both the tip-speed ratio λ and
the blade pitch angle β, R is the turbine radius and Vw is the wind speed.

The tip speed ratio is defined as the ratio of the blade tip speed to the wind speed. It is given by:

λ =
ΩtR
Vw

(2)

where Ωt is the angular speed of the WT.

2.2. Modelling of the DFIG

The dynamical model of the studied DFIG can be expressed by the following electrical
equations [6–8]: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Vds = Rsids +
dϕds

dt −ωsϕqs

Vqs = Rsiqs +
dϕqs

dt +ωsϕds

Vdr = Rridr +
dϕdr

dt − (ωs −ωm)ϕqr

Vqr = Rriqr +
dϕqr

dt + (ωs −ωm)ϕdr

(3)

where Vs and is are the stator voltage and current, Vr and ir are the rotor voltage and current, ϕs and
ϕr are the stator and rotor flux linkages, Rs and Rr are the stator and rotor resistances, ωs and ωm are
the stator and rotor angular frequencies, respectively. The subscripts d and q denote the direct and
quadrature axis components, respectively. The stator and rotor flux linkages are defined as follows:{

ϕds = Lsids + Lmidr and ϕqs = Lsiqs + Lmiqr

ϕdr = Lridr + Lmids and ϕqr = Lriqr + Lmiqs
(4)

where Ls, Lr and Lm are the stator, rotor and magnetizing inductances, respectively.

2.3. Modelling of the GSC and the DC-Link

The GSC is connected to the grid through an LCL-filter. However, for better understanding the
control of GSC, it is necessary to describe the model of the grid side system and DC-link parts. The
mathematical formulation of the GSC in the dq synchronous frame is defined by Equation (5). In this
equation, LT represents the sum of the converter Li and grid side Lg inductances. In fact, the LCL-filter
can be approximated to an L-filter equal to the sum of the LCL-filter inductors [4]:⎧⎪⎪⎨⎪⎪⎩ LT

digd
dt = −RTigd +ωgLTigq + egd −Vd f

LT
digq
dt = −RTigq −ωgLTigd + egq −Vq f

(5)

where Vd f and Vq f are the components of the converter side voltage, igd and igq are the components of
the grid currents, egd and egq are the components of the grid voltage, and RT is the sum of the converter
and grid side resistors.

The grid active and reactive powers are expressed as [9]:⎧⎪⎪⎨⎪⎪⎩ Pg = 3
2

(
edgidg + eqgiqg

)
Qg = 3

2

(
eqgidg − edgiqg

) (6)
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3. Vector Control of the DFIG-Based Wind Energy Converter

The classical direct power control of the DFIG system is divided into the RSC and GSC control
loops, where the control structure for the RSC and GSC components consist of two cascaded control
layers. The inner PI layers are adopted to regulate the components of rotor and grid currents. On the
other hand, the outer PI ones in the RSC are implemented to control the active and reactive powers
while the outer PI loop in the GSC is adopted to maintain the DC-link voltage to its reference value.
However, in this work, the inner PI loops in the RSC and GSC circuits are designed based on a pole
assignment technique [8,15], while the outer PI ones are tuned based on the proposed metaheuristics
algorithms-based approach.

3.1. Control of the RSC

The RSC circuit is responsible to independently regulate the active and reactive powers in order
to extract the maximum available power. The vector control by the SFO scheme is employed for the
power regulation of the DFIG system.

Considering that the electrical network is stable, the stator flux ϕs is constant. In addition, for the
medium and high power DFIG, the value of the stator resistance is very small and therefore it can be
neglected [6,7]. Hence, based on these assumptions, the stator voltages and fluxes in Equation (3) and
Equation (4) can be rewritten respectively as follows:{

Vds = 0
Vqs = Vs = ωsϕds

(7)

{
ϕds = ϕds = Lsids + Lmidr
ϕqs = 0 = Lriqs + Lmiqr

(8)

The active and reactive stator powers and rotor voltages are given, respectively, by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ps =

3
2

(
Vdsids + Vqsiqs

)
= − 3

2
Lm
Ls

Vsiqr

Qs =
3
2

(
Vqsids + Vdsiqs

)
= 3

2

(
V2

s
ωsLs
− Lm

Ls
Vsidr

) (9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Vdr = Rridr + σLr

didr
dt −

Δdr︷���︸︸���︷
σωrLriqr

Vqr = Rriqr + σLr
diqr
dt +

Δqr︷��������������������︸︸��������������������︷
σωrLridr +

Lm

Ls
ωrϕds

(10)

where σ = Lr − L2
m/Ls is the machine leakage coefficient and ωr = ωs −ωm is the slip angular frequency.

As shown in Equation (9), the stator active and reactive powers are independent from each other.
In addition, the components of stator power are linearly varying with the direct and quadrature rotor
currents. This powers’ regulation is thus performed using PI controllers for the d and q axis components
of the rotor currents.

The outer control loops for the stator active and reactive powers are tuned based on the proposed
metaheuristics-based procedure. Hence, the design of PI controllers for the inner rotor current loops is
detailed according to Figure 2.

7
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Figure 2. Proportional-Integral (PI) control scheme for the inner current loop of the RSC.

Based on a pole placement method as follows:

RPI(s) = Kpir

(
1 +

1
Tiirs

)
(11)

where Kpir and Tiir are the proportional gain and time constant of the rotor PI controllers, respectively.
The transfer function that describes the relationship between the voltages and currents dynamics

is given as follows [8,15]:

Rplant(s) =
irdq

Vrdq
=

1
Rr + σLrs

(12)

Since the same transfer functions for the direct and quadrature rotor currents are considered, the
closed-loop transfer function Rcli(s) between the reference rotor current i∗rdq and the actual one irdq is
written as:

Rcli(s) =
irdq

i∗rdq
=

Kpir(Tiirs + 1)

TiirσLrs2 + Tiir
(
Rr + Kpir

)
s + Kpir

(13)

By equating the denominator of the closed-loop transfer function of Equation (13) under the
general form of a second order system, the parameters of PI rotor current controllers can be found as
follows [8,15]: ⎧⎪⎪⎨⎪⎪⎩ Kpir = 2ξωnσLr −Rr

Tiir =
2ξ
ωn
− Rr
σωn2Lr

(14)

where ξ and ωn are the damping coefficient and natural frequency of the desired closed-loop reference
model, respectively.

For the design purpose, the discussion is made with respect to the choice of the damping coefficient
ξ and natural frequency ωn. Since the inner current loop in the cascade control scheme will have a
much larger bandwidth than the one used in the outer-loop, a regulation at 1/20 of the switching
frequency fsw,RSC is retained. For the outer loop, a regulation between 1/20 and 1/10 of the inner
loop bandwidth is made [5]. Then, feed forward compensations Δdr and Δqr should be added back to
generate the desired rotor voltages V∗dr and V∗qr.

3.2. Control of the GSC

The VOC strategy is applied to control the GSC, which usually contains one outer PI control
loop that regulates the DC-link voltage regardless of the magnitude and the direction of the rotor
power. Two inner PI current loops that regulate the direct and quadrature gird currents are also
included [16,17]. In addition, the passive damping strategy is employed to mitigate the resonance
problem. The mathematical representation of GSC is built on the approximated model of the LCL-filter,
which is used to tune the PI grid current controllers. Whereas, the whole transfer function of the
LCL-filter with passive damping is taken into account for the stability analysis and investigation [4].
The block diagram of the grid current loops is shown in Figure 3.

8
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Figure 3. Design of the PI controller current loop of grid side converter.

To implement the VOC scheme, the d-axis is aligned with the grid vector voltage. Therefore, this
leads to a d-axis grid voltage equal to its magnitude, and the q-axis voltage which is then equal to zero.
Hence, the grid power expressions can be expressed as [16,17]:{

Pg = 3
2 edgidg

Qg = − 3
2 edgiqg

(15)

Equation (15) decides the active power and consequently the DC-link voltage is controlled via the
direct current whereas the quadrature current is used to regulate the reactive power that exchanges
with the grid [17]. With the VOC approach, the dynamic equations of the grid currents are rewritten as
follows:

edg = RTidg −
Δdg︷���︸︸���︷

ωgLTiqg + LT
didg
dt + Vd f

0 = RTiqg +

Δqg︷���︸︸���︷
ωgLTidg + LT

diqg
dt + Vq f

(16)

By applying the same methodology of PI rotor current controllers design in the RSC, the gains of
PI controllers for the grid currents dynamics are found as [15,18]:{

Kpig = 2ξωnLT −RT

Kiig = ω2
nLT

(17)

where ωn = 847.80 rad/ sec and ξ = 0.707.

4. PI Controllers Tuning Problem Formulation

In the PI control framework, appropriate values of Kp and Ki gains are generally obtained by
empirical methods and trials-errors based procedures [19]. These nonsystematic and challenging
tasks become more difficult and time-consuming, especially for the complex and large-scale systems
like the studied DFIG-based WECS. So, the idea of formulating the Kp and Ki gains’ selection as an
optimization problem is a promising solution. Such a control problem can be nonlinear, non-smooth
or even non-convex and can be effectively solved thanks to advanced metaheuristics [10,11]. In this
work, three PI controllers for the outer-loops at both RSC and GSC components are considered for
the optimization process. These PI controllers for the DC-link voltage, active and reactive powers’
dynamics are systematically tuned thanks to the proposed TEO metaheuristic which is described in
the following. Figure 4 gives the proposed optimization-based tuning scheme of the PI controllers for
the DFIG-based WECS.

9
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Figure 4. The proposed control algorithm applied to the DFIG system.

The decision variables of the formulated optimization problem are obviously the proportional
and integral gains of PI controllers for the active/reactive powers and DC-link loops. They are specified
for the optimization process as follows:

x =
[
KpPs , KiPs , KpQs , KiQs , Kpdc, Kidc

]T ∈ S ⊆ R
6
+ (18)

where S =
{
x ∈ R6

+,xlow ≤ x ≤ xup
}

denotes the bounded search space for all PI parameters.
However, the defined objective functions are minimized taking into account a scope of time-domain

restrictions. These are concerning to the maximum overshoot δmax, steady-state error Ess, rise time tr

and/or settling time ts of the closed-loop system step-response [20]. So, the tuning issue associating the
PI controllers of the DFGI-based WECS can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize fm(x), m ∈ {IAE, ISE, ITSE, ITAE}
x =
[
KpPs , KiPs , KpQs , KiQs , Kpdc, Kidc

]T ∈ S ⊆ R
6
+

subject to :
g1(x) = δPs − δmax

Ps
≤ 0

g2(x) = δQs − δmax
Qs
≤ 0

g3(x) = δdc − δmax
dc ≤ 0

Kpj,min ≤ Kp ≤ Kpj,max

Kij,min ≤ Ki ≤ Kij,max, j ∈ {Ps, Qs, dc}

(19)

where fm : R6
+ → R are the cost functions, gq : R6

+ → R are the problem’s inequality constraints, δdc,
δPs and δQs are the overshoots of the controlled DC-voltage, active and reactive powers dynamics,
respectively, δmax

dc , δmax
Ps

and δmax
Qs

denote their maximum given value.

10
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Since the optimization problem (19) is a multi-objective type, weighted sum-based aggregation
functions are used as follows to handle with the multiple costs [21]:

fIAE(x) = wPs

∫ T

0

∣∣∣ePs(x, t)
∣∣∣dt + wQs

∫ T

0

∣∣∣eQs(x, t)
∣∣∣dt + wdc

∫ T

0

∣∣∣edc(x, t)
∣∣∣dt (20)

fISE(x) = wPs

∫ T

0
e2

Ps
(x, t)dt + wQs

∫ T

0
e2

Qs
(x, t)dt + wdc

∫ T

0
e2

dc(x, t)dt (21)

fITSE(x) = wPs

∫ T

0
te2

Ps
(x, t)dt + wQs

∫ T

0
te2

Qs
(x, t)dt + wdc

∫ T

0
te2

dc(x, t)dt (22)

fITAE(x) = wPs

∫ T

0
t
∣∣∣ePs

(x, t)
∣∣∣dt + wQs

∫ T

0
t
∣∣∣eQs(x, t)

∣∣∣dt + wdc

∫ T

0
t
∣∣∣edc(x, t)

∣∣∣dt (23)

where T denotes the total simulation time, wPs > 0, wQs > 0 and wdc > 0 are the weighting coefficients
of the aggregation functions satisfying wPs + wQs + wdc = 1, and ej(.), j ∈ {Ps, Qs, dc} denote the
tracking errors between the plant output and the relative set-point values, i.e., ePs(x, t) = P∗s − Ps(x, t),
eQs(x, t) = Q∗s −Qs(x, t) and edc(x, t) = V∗dc −Vdc(x, t).

The judgment matrix method is used to determine the weighting coefficients of the objective
functions [22,23]. Such a method grades all objective functions based on the importance of each one.
After calculating the eigenvalues of such a matrix, the weighting coefficients of functions (20)–(23) can
be chosen as wPs = 0.6370, wQs = 0.2583 and wdc = 0.1047.

5. Thermal Exchange Optimization Algorithm

The Thermal Exchange Optimization (TEO) algorithm is a novel metaheuristic inspired by
Newton’s law of the cooling [3]. In this population-based metaheuristic, each agent is modeled as
a cooling object. By associating another agent as a surrounding fluid, a heat transfer and thermal
exchange occurs between them. The new temperature of each agent is considered as a new position of
the potential solution in the search space.

In a d-dimensional search space and at the kth iteration time, each object of the population is
described by its temperature Tk

i =
(
Tk

i,1, Tk
i,2, . . . , Tk

i,d

)
, (i, k) ∈

[
1, Npop

]
× [0, Niter]. In order to enhance

the optimization performances, the TEO algorithm uses a Thermal Memory (TM) to store a number of
historically best vectors as well as their related fitness. Therefore, these stored solution vectors are added
to the population and the same numbers of current worst objects are deleted. After that, a growing
order of solutions is retained according to their cost function values. The Npop sorted objects are equally
divided into two groups of environment and cooling objects as shown in Figure 5. The environment
objects are denoted as Tk

1
, Tk

2
, . . . , Tk

Npop/2 while the cooling ones are Tk
Npop/2+1

, Tk
Npop/2+2

, . . . , Tk
Npop

.

Figure 5. Pairs of environment and cooling objects.

Since the object has lower η can exchange the temperature slightly, the TEO metaheuristic proposed
a similar formula to evaluate the value of η for each object as described in Equation (24):

η =
Cost (object)

Cost(worst object)
(24)
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Over the course of iterations, the value t = k/Niter increases as follows leading to improving the
exploration mechanism [3]. In order to enhance the TEO exploration capacity, Equation (25) has been
proposed to avoid the trapping in local optima and update the environmental temperature as follows:

Tk+1
env,i = (1−U{0, 1}(c1 + c2(1− t)))Tk

env,i (25)

where c1 and c2 are the controlling variables chosen as 0 or 1,U{0, 1} is a uniformly random number,
Tk

env,i is the previous environmental temperature, (1− t) is proposed to reduce the randomness by
closing to the last iterations. When the decreasing of the randomness is not required, the value of c2 is
set to zero.

The new temperatures for each object, i.e., either cooling objects or environmental ones, are
updated as follows:

Tk+1
i = Tk

env,i +
(
Tk

i − Tk
env,i

)
e−ηt (26)

In the TEO formalism, another formulation is suggested to improve the exploration ability. A
control parameter 0 ≤ pro ≤ 1 is introduced and determines whether a component of each cooling object
must be changed or not. For each object, such a parameter is compared to Rand(i),

(
i = 1, 2, . . . , Npop

)
,

which is a random number uniformly distributed between 0 and 1. If Rand(i) < pro, one dimension of
the ith object is chosen randomly and its value is regenerated as follows [3,24]:

T(i, j) = Tj,min +U(0, 1) ×
(
Tj,max − Tj,min

)
(27)

where T(i, j) is the jth component of the ith object, Tj,max and Tj,min are the upper and lower bounds of
the jth component, respectively.

Finally, the steps of the proposed TEO algorithm are summarized as follows:

Step 1. Randomly initialize the temperature for all objects T0
i , i = 1, 2, . . . , Npop.

Step 2. Calculate the fitness of each search object.
Step 3. Save some T best vectors and their related cost values in the TM.
Step 4. Add the saved solutions and remove the same numbers of the worst objects.
Step 5. Arrange the objects according to their related fitness in an ascending order.
Step 6. Divide the objects into two equal groups: environment and cooling objects.
Step 7. Calculate the parameters η and t.
Step 8. Change the environment temperatures by Equation (25).
Step 9. Update the temperatures according to Equations (26) and (27).
Step 10. Check the termination criterion and repeat the iterations.

To describe the proposed metaheuristics-based tuning strategy of the PI controllers in the studied
DFIG-based energy conversion system, a detailed flowchart is shown in Figure 6.
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Figure 6. Flowchart of the proposed Thermal Exchange Optimization (TEO)-tuned PI controllers’ parameters.

6. Simulation Results and Discussions

6.1. Execution of the Metaheuristic Algorithms

The proposed metaheuristics-based direct power control of the studied DFIG-based WECS is built
using the MATLAB/Simulink environment. The respective nominal parameters of the DFIG, power
converters at both sides, L-filter and LCL-filter are presented in Table 1. Specifically, this work deals
with the PI controllers tuning for the active and reactive powers loops in the RSC circuit, as well as
it treats with the PI controller optimization-based selection of the DC-link voltage loop in the GSC
component. It is worth indicating that the inner current loops in the RSC and GSC are tuned according
to the pole assignment method. Since the grid current closed-loop of the LCL-filter is unstable, the
passive damping method is applied as a solution to ensure the stability of such current dynamics. To
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investigate the effectiveness and superiority of the proposed TEO method, the well-known global
algorithms GA, PSO, HSA, WCA and GOA are considered for comparison purposes.

Table 1. Parameters for a 1.5 MW DFIG systems.

Equipment Parameter Value Unit

DFIG

Rated power 1500 kW

RMS grid line voltage 575 V

Slip range 0.2 -

Rated electrical frequency 50 Hz

Stator resistance 0.023 pu

Stator leakage inductance 0.18 pu

Rotor resistance 0.016 pu

Rotor leakage inductance 0.16 pu

Magnetizing inductance 2.9 pu

Power converters

Rated power 300 kW

Switching frequency at fsw,RSC and fsw,GSC 2700 Hz

DC-link voltage 1050 V

DC-link capacitance 10000 μF

L-filter L-filter grid inductance 0.1 pu

LCL-filter

LCL-filter grid side inductance 0.018 pu

LCL-filter capacitance 0.104 pu

LCL-filter converter side inductance 0.077 pu

Passive damping resistor 0.124 pu

All reported algorithms are independently run 10 times. The termination criterion is set as a
maximum number of iteration reached Niter = 100 for a population size of the thermal agents equal to
Npop = 50. All the values of the used common parameters are kept equal. All algorithms have been
executed on a PC computer with Core TM i5-7200U CPU and 2.5 GHz/8.00 GB RAM. The specific
control parameters of the reported algorithms are listed in Table 2.

Table 2. Parameter setting of reported algorithms.

Algorithms Parameters Setting

PSO Cognitive and social coeffs. c1 = c2 = 2, weights wmax = 0.9, wmin = 0.2 [10].

GA Roulette wheel, crossover Pcross = 1, mutation Pmut = 0.01 [11].

HSA Harmony memory rate HMCR = 0.9, pitch adjusting rate PAR = 0.3 [25].

WCA Summation number of rivers Nsr = 8 and dmax = 1× 10−3 [18].

GOA cmax = 1, cmin = 0.00001 [26].

TEO Thermal memory TM = 10, pro = 0.50, c1 = 1, c2 = 1 [3].

The optimization problem (19) is minimized for various performance criteria, i.e., IAE, ISE, ITAE
and Integral Time-weighted Square Error (ITSE), and under time-domain operational constraints.
These performance indexes are calculated within two conditions, which are considered as follows:

- 14.3% step change in the reference of DC-link voltage at time t = 0.5 sec;
- step change in the reference stator reactive power at time t = 0.8 sec.
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To find the accurate values of the decision variables x =
[
KpPs , KiPs , KpQs , KiQs , Kpdc, Kidc

]
, the

bounded search domain is initially set to 0 ≤ x ∈ R
6
+ ≤ 105. Several runs of the algorithm are

performed within this initial limitation. The results indicated that the search space could be reduced to
0 ≤ x ∈ R6

+ ≤ 400. Therefore, the TEO algorithm explores within a smaller search domain for the next
runs and more precise solution output vector is achievable.

Table 3 gives the statistical results attained by the introduced algorithms under minimizing the
cost functions described in Equations (20)–(23). The worst, average, best values and the standard
deviation (STD) experimental results are summarized in the Table 3, where the optimal mean value of
each index is highlighted in bold and underlined. In addition, the Elapsed Time (ET) is also listed,
which is defined as the time that any algorithm requires finding the best solution. It can be clearly
observed that the proposed TEO produces very competitive solutions with the reported algorithms.
Appendix A summarizes the obtained gains of the PI controllers for each proposed optimization
method. Indeed, these tuned PI controllers’ gains lead to the best transient and steady state responses
of the entire reported algorithms.

Table 3. Statistical results of optimization problem (19) over 10 independent runs.

Indices PSO GA HSA WCA GOA TEO

IAE

Best 1.57 1.62 1.57 1.52 1.60 1.55

Mean 1.73 1.67 1.60 1.59 2.01 1.58

Worst 2.69 1.73 1.64 1.78 3.20 1.60

STD 3.4 × 10−1 3.2 × 10−2 2.3 × 10−2 7.6 × 10−2 6.3 × 10−1 1.9 × 10−2

ET (sec) 29022 28720 25480 32900 20400 24640

ISE

Best 33.17 34.86 32.64 32.66 34.06 31.45

Mean 41.42 37.25 35.51 45.88 45.06 33.46

Worst 61.80 40.53 38.78 61.24 64.50 36.79

STD 8.27 1.92 1.80 10.77 9.08 1.64

ET (sec) 28140 27420 19083 26900 19200 23420

ITSE

Best 17.47 17.49 18.45 17.14 17.86 17.79

Mean 18.46 17.96 23.18 18.32 19.83 18.24

Worst 20.45 18.21 26.77 19.75 28.11 19.20

STD 0.921 0.207 3.616 8.1E-1 2.96 4.1E-1

ET (sec) 21560 26280 18720 27540 19500 23380

ITAE

Best 0.650 0.632 0.646 0.640 0.644 0.642

Mean 0.683 0.650 0.683 0.659 0.688 0.658

Worst 0.707 0.62 0.718 0.736 0.742 0.675

STD 0.018 0.019 0.021 0.029 0.040 0.014

ET (sec) 20060 20480 16880 25880 20840 19680

In addition, Figure 7 shows the convergence histories of the mean objective function values of
IAE, ISE, ITAE and ITSE criteria, respectively. Indeed, it is shown that the proposed TEO metaheuristic
for both IAE and ISE indices outperforms the other reported methods in terms of the fastness and
non-premature convergence as well as the solutions’ quality. The TEO-based method for ITAE and ITSE
criteria gives the best solution as a second order after the GA one. From these results, the superiority
of the TEO metaheuristic is still shown in terms of exploitation and exploration capabilities for local
and global searches. This further justifies the use of such a global metaheuristic to systematic and easy
design of the direct power control of the DFIG-based WECS. The Box-and-Whisker plots of the mean
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objective function values are shown in Figure 8. From these results, one can observe that the boxplots
of the TEO algorithm for all given performance criteria are generally lower and narrower than other
algorithms. This confirms the high reproductivity of the TEO algorithm toward finding the optimal
values of the solution.

In the remainder of the results, the obtained gains of the optimized PI controllers are used to
assess the frequency-and time-domains performances of the outer-loops at the RSC and GSC power
components. Moreover, comparisons with the classical pole placement [8,15], frequency response [5]
symmetrical optimum [27], Ziegler–Nichols [28] and Tyreus–Luyben [29] tuning methods are made
for the DC-link voltage dynamics as shown in Table 4 and Figure 9. The closed-loop response of
the DC-link voltage dynamics is investigated under variable voltage profile. The DC-link voltage
reference is varied up and down at various step levels. Figure 9 describes such a response around
the final set-point value for different tuned PI controllers. Although, in real systems, the DC-link
voltage is required to be constant. This scenario is proposed to check the capability of the proposed
TEO algorithm under different circumstances. The aim is to show the difference between the classical
tuning methods and the proposed optimization-based one. Referring to this result, the ITAE-based
TEO algorithm can regulate the DC-link voltage dynamics with higher performance compared to the
other algorithms.

  

 

Figure 7. Convergence rates comparison: (a) IAE criterion; (b) ISE criterion; (c) ITAE criterion;
(d) ITSE criterion.
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Figure 8. Box-and-Whisker plot of optimization problem (19): (a) IAE criterion; (b) ISE criterion;
(c) ITAE criterion; (d) ITSE criterion.

Table 4. Time-domain performances for controlled DC-link voltage under step changes scenario.

PI Tuning Methods
Unit Step Change Response

tr (sec) ts (sec) tp (sec) δ (%) Ess

Frequency response 0.0441 4.3813 4.1382 1.168 0.3355

Pole placement 0.0163 4.1111 4.0441 2.006 0.2813

Symmetrical optimum 0.0185 4.1324 4.0459 2.768 0.3568

Ziegler–Nichols 0.0037 4.0252 4.0080 1.209 0.2843

Tyreus–Luyben 0.0060 4.0249 4.0182 0.299 0.2977

TEO 0.0029 4.0193 4.0076 2.537 0.2539
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Figure 9. DC-link voltage responses against step changes for different-tuned PI controllers.

The voltage tracking is achieved with best performance in terms of response precision and fastness,
i.e., the steady-state error and rise/settling time metrics are minimal as depicted in Table 4. The
performance in terms of response damping is acceptable for the proposed TEO-tuned PI control as
shown in Figure 9. Referring to the numerical results in Table 4, one can clearly observe that the
proposed TEO algorithm showed the best rise/settling times and steady-state error except the overshoot
index, which the Tyreus–Luyben method gained the minimum overshoot. Since several runs were
executed to obtain the PI controllers’ gains with the classical Ziegler–Nichols and Tyreus–Luyben
methods, the tuning process becomes a tedious and time-consuming task. These minor degradations
of the overshoot performance do not influence the effectiveness of the proposed TEO-based tuning
method with respect to the systematization of the synthesis procedure, the simplicity of implementation
and the superiority in other performance indices. The proposed TEO algorithm found the optimal
gains of the PI controllers within a reduced computation time and under operational constraints
compared to the reported trials-errors based tuning procedures which generally give local solutions
for the formulated control problem.

Regarding to the grid current dynamics, the same tuning methods with adding the technical
optimum instead of the symmetrical ones are used to select and adjust the PI controllers’ gains. All
obtained results are reported in Table 5.

18



Math. Comput. Appl. 2019, 24, 77

Table 5. Time-domain performances for controlled quadrature grid current under a step change scenario.

PI Tuning Methods
Unit Step Change Response

tr (sec) tp (sec) δ (%) Ess

Frequency response 0.0171 2.0387 28.1802 0.0035

Pole placement 0.0027 2.0096 21.95 0.0045

Technical optimum 0.0146 2.0383 8.2931 0.0055

Ziegler–Nichols 3.582 × 10−4 2.0026 10.7400 0.0051

Tyreus–Luyben 0.0020 2.0155 7.1657 0.0061

The control performance of the introduced tuning methods is investigated by supposing that
there is a step change in the q-axis grid current reference at time t = 0.2 sec. The reference q-axis grid
current is changed from zero to −0.2 pu. However, the q-axis reference grid current is usually set at
zero to achieve a unity power factor. Figure 10 shows the quadrature grid current response under step
changes. It can be observed that the Tyreus–Luyben method gives superior performance in comparison
with the other reported methods. Here, it is important to mention that the gains of the PI controllers
for the inner current loops at both RSC and GSC are selected thanks to the classical methods and not
with the proposed optimization algorithms. Since the plant models of the inner loops are available, the
use of the pole-placement, Tyreus–Luyben and Ziegler–Nichols methods is well adapted instead of
metaheuristics-based methods which do not require models of systems to be controlled. The Bode plot
of the grid current loop is presented in Figure 11.

 
Figure 10. Quadrature grid current responses against a step change for different-tuned PI controllers.
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Figure 11. Bode plot of the open loop grid current loop: with and without passive damping based
technical optimum tuning.

The quality of the three phase grid currents is investigated through measuring the THD of the AC
grid currents. As depicted in Figure 12. It is obviously shown that the use of the LCL-filter achieves
a better attenuation with a THD value about 4.05% for which the IEEE519-1992 standard limits are
respected. Further analysis can be made to compare the THD of the AC grid currents in the case of
using an L-filter based structure. According to the results of Figure 12, it is clear that the THD for
adopting the LCL-filer is smaller than that using the L-filer type at the same value of inductance.

 

Figure 12. Harmonics spectrum of the AC grid currents.

Referring to the RSC control results, the stator active and reactive powers can be regulated by
controlling the q-axis rotor current. The reference value of stator active power is generated from a
Maximum Power Point Tracking (MPPT) strategy to extract the maximum power from the wind. In
addition, the value of reference reactive power is set at different step levels to check the performance of
the proposed PI controllers. As shown in Figure 13, both active and reactive powers track effectively
their reference values with good performance in terms of speed and damping dynamics. In addition,
the decoupling between the active and reactive powers is perfectly assured and the DFIG extracts the
maximum available power, which is approximately about 1.5 MW. Figure 14 demonstrates the control
performance of the PI controller for the reactive power loop around its final set-point value based on
different tuned PI methods. The aim is to show the difference between the optimization tuning-based
methods. On the other hand, both left and right sides of Figure 15 show the tracking performance of
the direct and quadrature rotor currents, respectively. Such tracking dynamics are perfectly performed
and improved thanks to the proposed TEO-based tuning and control method.
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Figure 13. Time-domain variations of the TEO-tuned PI controlled active and reactive powers.

 

Figure 14. Performance comparison of the controlled reactive power under different PI controllers’
tuning methods.
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Figure 15. Time-domain variations of the TEO-based control of the direct and quadrature rotor currents.

6.2. Statistical Analysis and Comparison

In this part, the mean execution values related to the different optimization criteria are sorted to
assess the best operating one according to its average objective function performance. Moreover, a
statistical comparison based on the nonparametric Friedman and Bonferroni–Dunn is carried out by
using these mean performances [30,31]. The average ranks for all the proposed methods based on the
four performances indices are provided in Table 6. One can note that the proposed TEO metaheuristic
has worthily attained the lowest average ranks compared to the remaining methods. A statistical
analysis has been performed to highlight the importance of the TEO-based tuning method over other
algorithms [32].

Table 6. Average Rank based statistical analysis of mean performances.

Algorithms

Indices

Average RankIAE ISE ITSE ITAE

Score Rank Score Rank Score Rank Score Rank

PSO 1.73 5 41.42 4 18.46 4 0.683 5 4.25

GA 1.67 4 37.25 3 17.96 1 0.650 1 2.25

HSA 1.60 3 35.51 2 23.18 6 0.683 4 3.75

WCA 1.59 2 45.88 6 18.32 3 0.659 3 3.75

GOA 2.01 6 44.06 5 19.83 5 0.688 6 5.5

TEO 1.58 1 33.46 1 18.24 2 0.658 2 1.5

The Friedman test for six competitor algorithms (m = 6) and four indices (l = 4) provides the
computed value χ2

F = 12.14 of the χ-distribution. The critical value of such a distribution with degrees
of freedom m − 1 = 5 and at confidence level α = 0.05 is equal to χ2

5,0.05 = 11.07. Since the above
computed score is greater than this statistical value, the null hypothesis is declined. Moreover, for
the Iman–Davenport test [30,31], the statistic is distributed with m− 1 = 5 and (m− 1) × (l− 1) = 15
degrees of freedom. For this test, the null hypothesis is also rejected as the calculated value FF = 4.64
is greater than the critical value F5,15,0.05 = 2.9 at the same significant level of confidence. All these
statistical results indicate that there are significant differences among the performances of the reported
algorithms for the optimization problem (19). Thus, the proposed TEO is found to be the most effective
one having the best average Friedman ranking as given in Table 6. However, a Bonferroni–Dunn
post-hoc test is called to investigate whether or not the proposed TEO algorithm is significantly better
than another algorithm at the above considered level of confidence [32]. The corresponding Critical
Differences (CD) of the reported algorithms at the confidence levels α = 0.05 (95% significance level)
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and α = 0.1 (90% significance level) are computed as CD0.05 = 3.17 and CD0.1 = 2.88, respectively.
Figure 16 illustrates the graphical representation of the Bonferroni–Dunn test considering the TEO as
the control algorithm [32,33].

 

Figure 16. Graphical representation of Bonferroni–Dunn’s test for problem (19).

The bar of the TEO algorithm is the lowest high among the reported algorithms and the heights
of the bars corresponding to the PSO algorithm. The GOA method violates the horizontal lines of
significant levels. This reveals that the TEO algorithm performs at least significantly better than these
two algorithms over the solutions equality.

6.3. Computational Time Efficiency

In this subsection, the average elapsed times of Table 3 are used to assess the computational
efficiency of the reported algorithms. Such an algorithmic property of resource usage is quantified by
the Computational Time Efficiency (CTE) metric defined as follows [34]:

CTE =
ETalgorithm

ETtotal
(%) (28)

where ETalgorithm and ETtotal denote the average and total elapsed times for the same index.
According to the ET measures of problem (19), the CTE for each algorithm over the reported

optimization criterion is summarized in Table 7.
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Table 7. The computational time efficiency (CTE) of each algorithm over the four indices.

Index
Algorithms

PSO GA HSA WCA GOA TEO

IAE 18.01% 17.82% 15.81% 20.41% 12.66% 15.29%

ISE 19.52% 19.02% 13.24% 18.66% 13.32% 16.25%

ITSE 15.74% 19.19% 13.67% 20.11% 14.24% 17.07%

ITAE 16.20% 16.54% 13.63% 20.90% 16.83% 15.89%

In terms of computational efficiency, it can be observed from these results that the proposed TEO
algorithm attained the second rank for IAE and ITAE criteria and the third and fourth ranks for ISE
and ITSE criteria, respectively. Roughly, the HSA algorithm presents the best computational efficiency
in terms of time resource usage. The GOA metaheuristic achieved the best average elapsed time as
shown in Figure 17.

 

Figure 17. Average elapsed time over all criteria for the introduced algorithms.

6.4. Sensitivity Analysis

In the TEO formalism, the parameters c1 and c2 are introduced to reduce the randomness of
the algorithm over the course of iterations and to improve the exploration capabilities. The size of
thermal memory TM is considered as a predefined parameter, which can enhance the performances
of the algorithm without increasing the computational cost [3,24]. However, pro is a user parameter
that improves the global search capacity. For illustration purposes, the resolution of problem (19) is
tested by changing these above main parameters. As shown in Table 8, the case with the parameters
set (c1 = 1, c2 = 1) shows the superiority of the optimization results compared to other scenarios. In
addition, it can be seen from Table 9 that the user parameter TM = 10 leads to obtain the best solutions.
Finally, Table 10 investigates the effect of the parameter pro on the algorithm performance. The
convergence of the TEO algorithm is always guaranteed under all these control parameters variations
which shows the insensitivity of the proposed physics-inspired metaheuristic.
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Table 8. Comparison under different values of c1 and c2: IAE criterion.

Optimization Scenario
TM=10, pro=0.5 and Niter=100

Worst Mean Best STD

c1 = 0, c2 = 0 1.669 1.652 1.638 1.9 × 10−2

c1 = 1, c2 = 0 1.664 1.640 1.622 1.4 × 10−2

c1 = 0, c2 = 1 1.654 1.640 1.631 7.5 × 10−3

c1 = 1, c2 = 1 1.608 1.582 1.553 1.9 × 10−2

Table 9. Comparison under different values of TM: IAE criterion.

Optimization Scenario
c1=1, c2=1, pro=0.5 and Niter=100

Worst Mean Best STD

TM = 4 1.699 1.694 1.689 3.5 × 10−3

TM = 8 1.654 1.640 1.631 8.4 × 10−2

TM = 10 1.608 1.582 1.553 1.9 × 10−2

Table 10. Comparison under different values of pro: IAE criterion.

Optimization Scenario
c1=1, c2=1, TM=10 and Niter=100

Worst Mean Best STD

pro = 0.20 1.693 1.654 1.633 1.7 × 10−2

pro = 0.35 1.678 1.617 1.575 5.2 × 10−2

pro = 0.50 1.608 1.582 1.553 1.9 × 10−2

7. Conclusions

This paper proposes an intelligent metaheuristics-based design procedure to tune the outer-loop PI
controllers for the direct power control scheme of DFIG-based energy conversion systems. In this study,
only outer PI loops in the RSC and GSC circuits are optimized for the active and reactive powers and
DC-link voltage dynamics. Since the reported classical techniques of PI controller tuning are tedious,
time-consuming and not systematic, a TEO-based approach has been proposed and successfully
implemented. The PI controllers tuning problem is firstly formulated as a constrained optimization
program under nonlinear and non-smooth operational constraints. The introduced TEO algorithm is
then employed separately to minimize several time-domain performance criteria such as IAE, ISE, ITAE
and ITSE indices as objective functions. The proposed TEO-tuned PI controllers methodology improves
the performance and robustness of the controlled DFIG-based energy converter in terms of rising time,
settling time, and steady state indices. The classical trials-errors based methods of PI controllers tuning
are no longer used and the design time is further reduced. To evaluate the performance superiority
of the proposed TEO-based approach in finding the global minimum value of the objective function
for various performance indices, a comparison study with the PSO, GA, HSA, GSO and WCA is
performed. The demonstrative results exhibit that the proposed TEO gives very complete results in
terms of global search capabilities, robustness and non-premature convergence. Finally, the statistical
analysis is achieved by using the Friedman’s rank and Bonferroni-Dunn’s test. The corresponding
results show that the proposed TEO-based method is a promising alternative approach for controlling
the DFIG system by systematically tuning the unknown PI controllers’ parameters efficiently.
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Abbreviations

The following abbreviations are used in this manuscript:

CD Critical Difference
CTE Computational Time Efficiency
ET Elapsed Time
DFIGs Doubly Fed Induction Generators
HSA Harmony Search Algorithm
IAE Integral Absolute Error
IGBTs Insulated-Gate Bipolar Transistors
ISE Integral Square Error
ITAE Integral Time-weighted Absolute Error
ITSE Integral Time-weighted Square Error
GA Genetic Algorithm
GOA Grasshopper Optimization Algorithm
GSC Grid Side Converter
MPPT Maximum Power Point Tracking
PI Proportional-Integral
PSO Particle Swarm Optimization
RSC Rotor Side Converter
SFO Stator Flux Orientation
SPWM Sinusoidal Pulse Width Modulation
STD Standard Deviation
TEO Thermal Exchange Optimization
THD Total Harmonic Distortion
TM Thermal Memory
VOC Voltage Oriented Control
WECS Wind Energy Converter System
WCA Water Cycle Algorithm
WT Wind Turbine
WTs Wind Turbines

Notations

Cdc DC-link capacitance
C f Filter capacitance
Cp Power conversion coefficient
eg(d,q) d-q axis grid voltages
ig(d,q) d-q axis grid currents
ir(d,q) d-q axis rotor currents
is(d,q) d-q axis stator currents
Lg Filter grid side inductance
Li Filter converter side inductance
Lm Magnetizing inductance
Lr, Ls Rotor and stator inductances
LT Filter total inductance
Pg, Ps Grid and stator active powers
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Pm Mechanical turbine power
Qg, Qs Grid and stator reactive powers
R Turbine radius
Rd Filter damping resistance
Rr, Rs Rotor and stator resistances
Vdc DC-link voltage
V f (d,q) d-q axis grid converter voltage sides
Vr (d,q) d-q axis rotor converter voltage sides
Vs (d,q) d-q axis stator voltages
Vw Wind speed
λ Tip speed ratio
ωr,ωs Rotor and stator angular frequencies
Ωt Mechanical rotational speed
ρ Air density
ϕdr,ϕqr d-q axis rotor fluxes
ϕds,ϕqs d-q axis stator fluxes

Appendix A. Decision Variables of Problem (19) Relative to the Optimization Mean Case

The following gains of the optimized PI controllers (Table A1), as decision variables of problem (19), are used
to perform all numerical simulations of the paper.

Table A1. Comparative results of the PI controllers’ coefficients tuning.

Indices Algorithms
PI Controllers’ Gains

KpPs KiPs KpQs
KiQs

Kpdc Kidc

IAE

PSO 14.16 139.37 376.43 381.82 9 31.32

GA 16.92 394.62 18.22 147.46 24.36 62.17

HSA 7.89 83.96 151.27 227.72 28.03 86.11

WCA 2.28 329.93 122.55 400 26.11 41.53

GOA 16.91 394.62 18.22 147.47 26.36 59.85

TEO 4.23 58.43 10.37 15.73 89.10 192.71

ISE

PSO 11.23 207.70 169.31 353 69.65 272.40

GA 2.25 313.46 187.62 398.82 79.95 345.49

HSA 1 × 10−5 1.87 118.84 360.16 33.29 39.65

WCA 12.88 143.34 360.15 400 191.11 293

GOA 12.42 388.97 1.93 371.52 148.46 220.78

TEO 35.94 165.25 15.44 71.59 1.48 3

ITSE

PSO 0.1 1 × 10−5 238.93 351.81 0.99 25.03

GA 1 × 10−5 1 × 10−5 7.27 214.42 24.34 62.20

HSA 303.71 320.52 1.03 6.25 27.66 45.22

WCA 4.13 248.98 10.79 24.45 27.89 79.04

GOA 9.82 108.24 333.25 27.36 131.74 205.91

TEO 8.56 5.04 67.72 69.44 10.71 31.96

ITAE

PSO 250.16 289.53 346.50 142.34 73.74 238.53

GA 1 × 10−5 1 × 10−5 45.02 85.22 130.57 26.43

HSA 8.16 4.83 323.56 384.19 33.33 47.41

WCA 9.54 63.73 329.42 395.36 143.52 400

GOA 13.71 399.92 302.9 265.4 97.91 196

TEO 4.8 × 10−6 11.28 1.6 × 10−6 8.3 × 10−6 10.24 68.66

27



Math. Comput. Appl. 2019, 24, 77

References

1. Sahu, K.B. Wind Energy Developments and Policies in China: A Short Review. Renew. Sustain. Energy Rev.
2018, 81, 1393–1405. [CrossRef]

2. Belmokhtar, K.; Doumbia, M.L.; Agbossou, K. Modelling and Fuzzy Logic Control of DFIG Based Wind
Energy Conversion Systems. In Proceedings of the IEEE International Symposium on Industrial Electronics
(ISIE), Hangzhou, China, 28–31 May 2012; pp. 1888–1893.

3. Hu, J.; Nian, H.; Xu, H.; He, Y. Dynamic Modeling and Improved Control of DFIG under Distorted Grid
Voltage Conditions. IEEE Trans. Energy Convers. 2011, 26, 163–175. [CrossRef]

4. Liserre, M.; Blaabjerg, F.; Hansen, S. Design and Control of an LCL-Filter-based Three-Phase Active Rectifier.
IEEE Trans. Ind. Appl. 2005, 50, 1281–1291. [CrossRef]

5. Zhou, D.; Blaabjerg, F. Bandwidth Oriented Proportional-Integral Controller Design for Back-To-Back Power
Converters in DFIG Wind Turbine System. IET Renew. Power Gen. 2017, 11, 941–951. [CrossRef]

6. Hamane, B.; Doumbia, M.L.; Bouhamida, M.; Benghanem, M. Direct Active and Reactive Power Control of
DFIG based WECS using PI and Sliding Mode Controllers. In Proceedings of the 40th Annual Conference of
the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 2050–2055.

7. Hamane, B.; Doumbia, M.L.; Bouhamida, M.; Draou, A.; Chaoui, H.; Benghanem, M. Comparative Study of
PI, RST, Sliding Mode and Fuzzy Supervisory Controllers for DFIG based Wind Energy Conversion System.
Int. J. Renew. Energy Res. 2015, 5, 1174–1185.

8. Hamane, B.; Doumbia, M.L.; Bouhamida, M.; Draou, A.; Chaoui, H.; Benghanem, M. Modeling and Control
of a Wind Energy Conversion System Based on DFIG Driven by a Matrix Converter. In Proceedings of the
Eleventh International Conference on Ecological Vehicles and Renewable Energies, Monte Carlo, Monaco,
6–8 April 2016; pp. 1–8.

9. Tanvir, A.A.; Merabet, A.; Beguenane, R. Real-Time Control of Active and Reactive Power for Doubly
Fed Induction Generator (DFIG)-Based Wind Energy Conversion System. Energies 2015, 8, 10389–10408.
[CrossRef]

10. Bekakra, Y.; Attous, D.B. Optimal Tuning of PI Controller Using PSO Optimization for Indirect Power Control
for DFIG Based Wind Turbine with MPPT. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 219–229. [CrossRef]

11. Vieira, J.P.A.; Nunes, M.N.A.; Bezerra, U.H. Design of Optimal PI Controllers for Doubly Fed Induction
Generators in Wind Turbines Using Genetic Algorithm. In Proceedings of the IEEE Power and Energy
Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA,
USA, 20–24 July 2008; pp. 1–7.

12. Asgharnia, A.; Shahnazi, R.; Jamali, A. Performance and Robustness of Optimal Fractional Fuzzy PID
Controllers for Pitch Control of a Wind Turbine Using Chaotic Optimization Algorithms. ISA Trans. 2018, 79,
27–44. [CrossRef]

13. Assareh, E.I.; Poultangari, I.; Tandis, E.; Nedaei, M. Optimizing the Wind Power Generation in Low Wind
Speed Areas Using an Advanced Hybrid RBF Neural Network Coupled with the HGA-GSA Optimization
Method. J. Mech. Sci. Technol. 2016, 30, 4735–4745. [CrossRef]

14. Kaveh, A.; Dadras, A. A Novel Meta-Heuristic Optimization Algorithm: Thermal Exchange Optimization.
Adv. Eng. Softw. 2017, 110, 69–84. [CrossRef]

15. Gagra, S.K.; Mishra, S.; Sing, M. Performance Analysis of Grid Integrated Doubly Fed Induction Generator
for a Small Hydropower Plant. Int. J. Renew. Energy Res. 2018, 8, 2310–2323.

16. Qiao, W. Dynamic Modeling and Control of Doubly Fed Induction Generators Driven by Wind Turbines. In
Proceedings of the IEEE/PES Power Systems Conference and Exposition, Seattle, DC, USA, 15–18 March
2009; pp. 1–8.

17. Xu, D.; Blaabjerg, F.; Chen, W.; Zhu, N. Advanced Control of Doubly Fed Induction Generator for Wind Power
Systems, 1st ed.; John Wiley & Sons: New York, NY, USA, 2018.

18. Hato, M.M.; Bouallègue, S.; Ayadi, M. Water cycle algorithm-tuned PI control of a doubly fed induction
generator for wind energy conversion. In Proceedings of the 9th International Renewable Energy Congress
(IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6.

19. Åström, A.K.; Hägglund, T. Advanced PID Control; ISA-Instrumentation, Systems and Automation Society:
Research Triangle Park, NC, USA, 2006.

28



Math. Comput. Appl. 2019, 24, 77

20. Bouallègue, S.; Haggège, J.; Ayadi, M.; Benrejeb, M. PID-Type Fuzzy Logic Controller Tuning based on
Particle Swarm Optimization. Eng. Appl. Artif. Intel. 2012, 25, 484–493. [CrossRef]

21. Qu, B.Y.; Zhu, Y.S.; Jiao, Y.S.; Wu, M.Y.; Suganthan, P.N.; Liang, J.J. A Survey on Multi-objective Evolutionary
Algorithms for the Solution of the Environmental/Economic Dispatch Problems. Swarm Evol. Comput. 2018,
8, 1–11. [CrossRef]

22. Gong, L.; Cao, W.; Liu, K.; Zhao, J.; Li, X. Spatial and Temporal Optimization Strategy for Plug-in Electric
Vehicle Charging to Mitigate Impacts on Distribution Network. Energies 2018, 11, 1373. [CrossRef]

23. Zhang, X.; Yang, J.; Wang, W.; Jing, T.; Zhang, M. Optimal Operation Analysis of The Distribution Network
Comprising a Micro Energy Grid based on an Improved Grey Wolf Optimization Algorithm. Appl. Sci. 2018,
8, 923. [CrossRef]

24. Kaveh, A.; Ghazaan, M.I. Enhanced Colliding Bodies Optimization for Design Problems with Continuous
and Discrete Variables. Adv. Eng. Softw. 2014, 77, 66–75. [CrossRef]

25. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Sage J.
2012, 76, 60–68.

26. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimization Algorithm: Theory and Application. Adv. Eng.
Softw. 2017, 105, 30–47. [CrossRef]

27. Blasko, V.; Kaura, V. A Novel Control to Actively Damp Resonance in Input LC Filter of a Three-Phase
Voltage Source Converter. IEEE Trans. Ind. Appl. 1997, 33, 542–550. [CrossRef]

28. Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Chung, T.D.; Hassan, S.M. Optimal PID control of pH neutralization
plant. In Proceedings of the 2nd IEEE International Symposium on Robotics and Manufacturing Automation,
Ipoh, Malaysia, 25–27 September 2016; pp. 1–6.

29. Mishra, K.P.; Kumar, V.; Rana, K.P.S. Stiction combating intelligent controller tuning a comparative study.
In Proceedings of the International Conference on Advances in Computer Engineering and Application,
Ghaziabad, India, 19–20 March 2015; pp. 534–541.

30. Raghuwanshi, B.S.; Shukla, S. Generalized Class-Specific Kernelized Extreme Learning Machine for Multiclass
Imbalanced Learning. Expert. Syst. 2019, 121, 244–255. [CrossRef]

31. Zeng, F.; Zhang, W.; Zhang, S.; Zheng, N. Re-Kissme: A Robust Resampling Scheme for Distance Metric
Learning in the Presence of Label Noise. Neurocomputing 2019, 330, 138–150. [CrossRef]

32. Sadhu, A.K.; Konar, A.; Bhattacharjee, A.T.; Das, S. Synergism of Firefly Algorithm and Q-Learning for Robot
Arm Path Planning. Swarm Evol. Comput. 2018, 43, 50–68. [CrossRef]

33. Liu, Y.; Chen, S.; Guan, B.; Xu, P. Layout Optimization of Large-Scale Oil–Gas Gathering System based on
Combined Optimization Strategy. Neurocomputing 2019, 332, 159–183. [CrossRef]

34. Sababha, M.; Zohdy, M.; Kafafy, M. The Enhanced Firefly Algorithm Based on Modified Exploitation and
Exploration Mechanism. Electronics 2018, 7, 132. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

29





Mathematical 

and Computational 

Applications

Article

Adaptive Control of Resistance Spot Welding Based
on a Dynamic Resistance Model

Ziyad Kas and Manohar Das *

Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA;
z_kas@hotmail.com
* Correspondence: das@oakland.edu

Received: 16 August 2019; Accepted: 27 September 2019; Published: 28 September 2019
��������	
�������

Abstract: Resistance spot welding is a process commonly used for joining a stack of two or three
metal sheets at desired spots. Such welds are accomplished by holding the metallic workpieces
together by applying pressure through the tips of a pair of electrodes and then passing a strong electric
current for a short duration. This kind of welding process often suffers from two common drawbacks,
namely, inconsistent weld quality and inadequate nugget size. In order to address these problems,
a new theoretical approach of controlling resistance spot welding processes is proposed in this paper.
The proposed controller is based on a simplified dynamical model of the resistance spot welding
process and employs the principle of adaptive one-step-ahead control. It is essentially an adaptive
tracking controller that estimates the unknown process parameters and adjusts the welding voltage
continuously to make sure that the nugget resistance tracks a desired reference resistance profile.
The modeling and controller design methodologies are discussed in detail. Also, the results of a
simulation study to evaluate the performance of the proposed controller are presented. The proposed
control scheme is expected to reduce energy consumption and produce consistent welds.

Keywords: resistance spot welding; dynamic resistance model; adaptive control; energy savings

1. Introduction

Resistance spot welding (RSW) is an electrothermal process in which contacting metal surfaces
are joined by heat. The metal surfaces are held together under pressure exerted by two electrodes.
The heat needed to create the weld is generated by applying a strong electric current through the
electrodes and the workpieces, as shown in Figure 1. The welding process is related to the metallurgy
of the materials involved in welding, including the base metal and the electrodes [1]. The flow of a
strong electric current through the metal sheets causes heating due to the resistance of the joining
surfaces and the sheets. Most of the heating is concentrated near the faying surface, since the contact
resistance is very high compared to the bulk resistance of the sheets, causing melting and formation of
a weld nugget. Depending on the thickness and type of material, welding current ranges from 1000 to
20,000 amperes, or even higher, while the voltage typically lies between 1 and 30 volts [2].

A resistance spot welding cycle consists of three main stages as follows:

Stage 1: Squeeze time, during which pressure is applied by the electrodes to squeeze the workpieces.
Stage 2: Welding time, during which a high current is applied, causing melting and formation of

a nugget.
Stage 3: Hold time, during which pressure is maintained after the welding current is ceased, to allow

cooling of the nugget and prevent cracks.

The resistance spot welding process is used in many different industries, including automotive,
aerospace, railway, military, and industrial manufacturing. It is the most popular welding technology
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used by the automotive industry to weld various sheet metals to form the chassis and body of a vehicle.
About 4000–6000 spot welds are used to manufacture a typical automotive vehicle today. Considering
a worldwide annual production volume of 80 million automotive vehicles, an energy efficient RSW
controller can result in significant energy savings and reduce carbon footprint accordingly.

 

Figure 1. Resistance spot welding system.

RSW welding often suffers from two common drawbacks, namely, inconsistent weld quality
and inadequate nugget size. In order to address these problems, a number of remedies have been
proposed. These include monitoring and control of welding parameters to improve weld quality.
Some of the conventional RSW control techniques proposed to date include proportional-integral
(PI) [3], proportional-derivative (PD) [4], proportional-integral-derivative (PID) [5], fuzzy [6–8], neural
networks [9,10], or a combination of fuzzy and neural networks [11]. One of the main drawbacks of
these techniques stems from the fact they do not take into consideration the thermal dynamics of an
RSW process. Also, most of these systems do not take into account any changes in process parameters.
Some of the recently proposed RSW control methods address the above drawbacks by proposing either
model-based or adaptive controllers. These include a power reference-based controller [12], intelligent
hysteresis and PI controllers [13], and an adaptive power and current controller to reduce shunting
effects [14].

As a remedy to some of the shortcomings of the existing methodologies, a new RSW control
design method based on using dynamic resistance as a feedback signal is proposed in this paper.
Although the idea of using dynamic resistance signature for monitoring quality of RSW welds has
been investigated by a number of researchers over past three decades [15–20], the idea of using it as a
feedback signal for controlling an RSW process is relatively new. Although this idea was introduced
by a number of researchers, such as [17,21], no methods of actually doing it were presented. However,
a method of doing it using model predictive control (MPC) was proposed in [22]. It introduces the idea
of a dynamic resistance tracking controller, which is conceptually similar to the controller proposed in
this paper. However, the RSW resistance model developed there is an empirical dynamical resistance
model consisting of three first order exponential curves to emulate the characteristics of the resistance
of the workpiece during the heating, melting, and cooling phases, respectively. It proposes a model
predictive controller (MPC) based on the above simplistic empirical model, but judging from the results
presented, it does not seem to perform well.

As mentioned earlier, an RSW controller design based on using dynamic resistance as a feedback
signal is proposed in this paper. It is based on a dynamic resistance model of the RSW process, which
is slightly different from the thermal RSW process models investigated in [23,24]. The main drawback
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of using a thermal model for RSW control has to do with the difficulty of directly monitoring the
nugget temperature, which is why an indirect monitoring scheme based on measurement of the
dynamic resistance was suggested in [23,24]. The above difficulty is avoided here by developing
and utilizing a dynamic resistance model of the RSW process. The development of such a model
starts from a simplified heat balance model of an RSW process proposed in [23–25], which is then
converted into a dynamical resistance model using a nonlinear relationship between temperature
and resistance. The resulting model governs the variation of workpiece resistance during welding
time. Next, an adaptive one-step-ahead (AOSA) controller is designed based on the above model. The
proposed adaptive controller estimates the model parameters and generates a control signal based
on the estimated parameters, which enable the workpiece resistance to follow a desired reference
resistance profile. Simulation results show that an AOSA controller is capable of tracking a reference
resistance profile when the welding parameters are unknown, as well as reducing the energy required
to make a weld.

The organization of this paper is as follows. Section 2 presents modeling of an RSW nugget
formation process. The development of a dynamical resistance model and its validation are discussed
in Section 3. The design of an adaptive controller is discussed in Section 4. Section 5 presents the
results of some simulation studies, and finally, some concluding remarks are provided in Section 6.

2. Modeling of an RSW Nugget Formation Process

This section presents a dynamical resistance model of the RSW process. First, a simplified heat
balance model of the process is described, and then it is converted to a dynamical resistance model.

Electro-Thermal Dynamical Model of an RSW Nugget Formation Process

Following the footsteps of [23–25], the development of an electro-thermal model is started from a
simplified RSW nugget model, shown in Figure 2 below. The heat balance equations for this model can
be developed as follows.

Figure 2. A simplified thermal model of nugget formation.

The total heat generation rate,
.

Qg(t), is given by:

.
Qg(t) =

V2(t)
R(t)

(1)
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where V(t) denotes the welding voltage and R(t) is the total workpiece resistance, which can be
described by:

R(t) = Rw(t) + Rc(t) + Re(t). (2)

Here, Rw(t) denotes the bulk resistance of the workpieces, Rc(t) represents the total contact resistance,
and Re(t) denotes the electrode resistance. Since Re is very small compared to the other two components,
it can be neglected in (2). It may be noted that for a two-stack workpiece, the total resistance can also
be rewritten as:

R(t) ≈ 2R(t)electrode−sheet + R(t)sheet−sheet + Rw(t) (3)

The heat of fusion required for nugget formation is given by:

H f = HVn, (4)

where H denotes the heat of fusion per unit volume and Vn denotes the nugget volume, which is
given by:

Vn = 2πa2p, (5)

where p and a are the penetration radius and nugget radius, respectively. Substitution of (5) into (4)
and normalization over the weld duration, Δt, yields:

c1 =
H f

Δt
= 2Hπa2p. (6)

Neglecting the heat loss to the surroundings and the electrodes, the heat required to raise the
temperature of the nugget by dθ(t) is given by:

dQT(t) = ρCpVndθ(t), (7)

= c2dθ(t), (8)

where
c2 = ρCp2πa2p, (9)

and ρ denotes the density, Cp is the specific heat, and dθ(t) denotes the temperature rise.
Next, the total heat loss rate is given by:

.
QL(t) =

.
Qa(t) +

.
Qr(t) (10)

where
.

Qa(t) and
.

Qr(t) denote the axial and radial heat loss rates, respectively. Inserting their
mathematical expressions, details of which can be found in [24–26], gives:

.
QL(t) = k1πa2

[
θ(t)−θI

l1
+

10θ(t)βL
b
√
α

]
=
[

k1πa2

l1
+

10k1πa2βL
b
√
α

]
θ(t) − k1πa2θI

l1
= c3θ(t) − c4

(11)

where

c3 =

[
k1πa2

l1
+

10k1πa2βL

b
√
α

]
, (12)

c4 =
k1πa2θI

l1
. (13)

In the above equations, k1 denotes the thermal conductivity, a is the nugget radius, and θ(t) and
θI represent the melting temperature and the interface temperature of the workpieces, respectively.
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Also, l1 is the distance from the melting interface to the electrodes contact area, β represents the final
penetration to workpiece thickness ratio, L is the sheet thickness, b represents the electrode radius,
and α denotes the thermal diffusivity of the workpiece. Also, to avoid complexity of the model,
the thermal conductivity and the thermal diffusivity are assumed to be constants.

The heat balance equation over the time interval, (t, t + dt), is given by:

.
Qg(t) =

H f

Δt
dt + dQT(t) +

.
QL(t)dt. (14)

Substituting (1), (6), (8), and (11) in (14) and rearranging it, gives:

c2
dθ(t)

dt
=

V2(t)
R(t)

− c3θ(t) + c4 − c1 (15)

or equivalently,
dθ(t)

dt
= c5

V2(t)
R(t)

− c6θ(t) + c7 (16)

where
c5 =

1
c2

, (17)

c6 =
c3

c2
, (18)

c7 = (c4 − c1)/c2 (19)

Equation (16) represents a simplified electro-thermal dynamical model of the RSW process. From this,
a dynamical resistance model is developed as follows.

3. Dynamical Resistance Model of an RSW Nugget Formation Process

The development of a dynamical resistance model exploits the functional relationship between
resistance and temperature. To start with, it is assumed that R(t) can be approximately represented by:

R(t) = R◦ [1 + α(θ)(θ(t) − θ◦)], (20)

where α(θ) denotes the temperature coefficient of resistance, and R◦ is the resistance at room
temperature, θ◦ .

Equivalently, one can write:

θ(t) = β(θ)(R(t) −R◦) + θ◦ (21)

where
β(θ) =

1
α(θ)R◦

(22)

Differentiation of (21) yields:

dθ(t)
dt

= β(θ)
dR(t)

dt
+ γ(θ)(R(t) −R◦) (23)

where

γ(θ) =
dβ(θ)

dt
. (24)

Substitution of (16) in (23) gives:

β(θ)
dR(t)

dt
+ γ(θ)(R(t) −R◦) = c5

V2(t)
R(t)

− c6[β(θ)(R(t) −R◦) + θ◦ ] + c7. (25)
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Also, re-arrangement of the above equation yields:

dR(t)
dt

= c8
V2(t)
R(t)

− c9R(t) + c10(t), (26)

where
c8(t) =

c5

β(θ)
, (27)

c9(t) =
γ(θ)

β(θ)
+ c6, (28)

c10(t) =
γ(θ)

β(θ)
R◦ +

c7

β(θ)
− c6θ◦

β(θ)
+ c6R◦ (29)

In Equations (27)–(29), the parameters c8, c9 and c10 are assumed to vary with time since β(θ) and γ(θ)
vary with time (as a result of variation of θwith time).

Finally, for the sake of notational convenience, let y(t) = R(t) and u(t) = V(t). Then (26) can be
rewritten as:

dy(t)
dt

= c8(t)
u2(t)
y(t)

− c9(t)y(t) + c10(t) (30)

Using a first order Euler approximation for dy
dt with a sampling period, Ts, Equation (30) yields the

following discrete time system:

y(k + 1) − y(k)
Ts

= c8(k)
u2(k)
y(k)

− c9(k)y(k) + c10(k) (31)

or equivalently,

y(k + 1) = A(k)y(k) + B(k)
u2(k)
y(k)

+ C(k) (32)

where
A(k) = 1− c9(k)Ts, (33)

B(k) = c8(k)Ts, (34)

C(k) = c10(k)Ts, (35)

and k is the discrete time index (k = 0, 1, 2, . . .), with kTs denoting the sampling instances.
Equation (32) represents a dynamical resistance model of the RSW process, which is characterized

by three unknown time-varying parameters, A(k), B(k), and C(k). The validation of this model is
discussed in the next subsection.

Validation of the Dynamic Resistance Model

The validation of the above dynamic resistance model requires voltage and current data from an
adaptive weld controller that uses feedback signals to adjust its welding voltage with time. A set of
voltage–current data collected from a constant heat controller (CHC) [26], manufactured by Welding
Technology Corporation, is used for this purpose.

Figure 3 shows the welding voltage samples, V(k), and welding current samples, I(k), collected
during a spot weld performed by a CHC machine. The dynamic resistance, R(k), is calculated from the
above data by simply dividing V(k) by I(k) at each sample time, k. Then, a recursive least squares
parameter estimation algorithm, described in Section 4.1 below, is used to estimate the parameters,
A(k), B(k), and C(k), of the above dynamic resistance model. These estimated model parameters are
shown in Figure 4.
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Figure 3. Voltage, V(t), and current, I(t), from a weld performed by a CHC controller.

Figure 4. Estimated model parameters from the voltage and current data shown in Figure 3.

Finally, in order to assess the goodness of fit of the proposed model, the estimated model
parameters, Â(k), B̂(k), and Ĉ(k), are next used to compute the predicted resistance values, Rp(k),
at each sample point, k. The goodness of fit between actual resistance, R(k), and the model-predicted
resistance, Rp(k), is shown in Figure 5, which demonstrates the validity of the above model. It may be
pointed out that similar results were also obtained from other CHC welding data.
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Figure 5. Goodness of fit between actual dynamical resistance (shown dotted), R(t), and its
model-predicted values, Rp(t).

4. Design of an Adaptive RSW Controller

Since the system represented by Equation (32) is characterized by time-varying parameters,
an adaptive controller would be an appropriate tool for controlling such a system. However, the
nonlinear nature of the above system precludes usage of a conventional linear adaptive controller.
In view of above, an adaptive one-step-ahead controller is proposed to be used here. The three key
steps required to implement such a controller involve measurement of the input (welding voltage)
and output (dynamic resistance) at uniform sampling intervals, estimation of the dynamic resistance
model parameters, Â(k), B̂(k), and Ĉ(k), using a recursive parameter estimation algorithm, such as
recursive least squares (RLS), and computation of a control signal based on the estimated parameter
values. The estimation of model parameters and computation of a control signal are discussed in the
following subsections.

4.1. Parameter Estimation

First, the model Equation (32) is rewritten in the following predictive form:

y(k + 1) = ϕ(k)TX∗ (36)

where

ϕ(k) =
[

y(k) u2(k)
y(k) 1

]T
, (37)

X∗ =
[

A B C
]T

. (38)

Here, X denotes the vector of unknown system parameters that are estimated recursively using the
following RLS algorithm:

X̂(k) = X̂(k− 1) +
P(k− 2)ϕ(k− 1)

λ+ ϕ(k− 1)TP(k− 2)ϕ(k− 1)

[
y(k) −ϕ(k− 1)TX̂(k− 1)

]
; k ≥ 1, (39)

P(k− 1) =
( 1
λ

)
[P(k− 2) − P(k− 2)ϕ(k− 1)ϕ(k− 1)TP(k− 2)

1 + ϕ(k− 1)TP(k− 2)ϕ(k− 1)
], (40)

X̂(0) =
[

0 ε 0
]T

, (41)
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P(−1) = σI, (42)

where λ, 0 < λ < 1, denotes a forgetting factor, ε > 0 is a small number, and B̂(k) is always constrained
to be non-negative, i.e.,

B̂(k) ≥ ε > 0 for all k. (43)

Furthermore, since X̂(k) denotes an estimate of X∗, the predicted output at time k + 1 is defined as:

ŷ(k + 1) = ϕ(k)TX̂(k). (44)

4.2. Adaptive One-Step-Ahead Tracking Controller

A one-step-ahead (OSA) RSW control scheme based on a thermal model of the RSW process was
investigated in [23,24], and a similar methodology is followed here. An OSA controller attempts to
bring the predicted output, y(k + 1) at time k + 1, to the desired value, y∗(k + 1), in one step. Thus,
it minimizes the following cost function [27]:

J1(k + 1) =
1
2
[y(k + 1) − y∗(k + 1)]2 (45)

The corresponding OSA control law is given by:

u2(k) =
y∗(k + 1)y(k) −A(k)y2(k) −C(k)y(k)

B(k)
(46)

or equivalently,

u(k) =

√
y∗(k + 1)y(k) −A(k)y2(k) −C(k)y(k)

B(k)
. (47)

The above control signal needs to be constrained by the maximum voltage delivery capacity of the
weld controller, umax, as follows:

u(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(k), i f 0 < u(k) < umax

0, i f u(k) ≤ 0

umax, i f u(k) ≥ umax

(48)

The adaptive OSA controller uses the estimate, X̂(k), in Equation (39) to compute the control signal,
u(k), from the following adaptive version of Equation (47):

u(k) =

√
y∗(k + 1)y(k) − Â(k)y2(k) − Ĉ(k)y(k)

B̂(k)
(49)

where Â(k), B̂(k), and Ĉ(k) denote the estimated values of A(k), B(k), and C(k), respectively, at time k.

Remark

Since welding times are usually very short (less than 0.5 sec), establishing proof of asymptotic
tracking would be meaningless here. However, since the input voltage and output resistance are
bounded in this case, the regression vector, ϕ(k), in Equation (36) is bounded for all k. This ensures that
the RLS parameter estimation algorithm, described by Equations (39)–(42), possesses nice convergence
properties [27] that help the output resistance track the reference resistance profile. Furthermore,
since most RSW applications require successive welds under very similar conditions, tracking can be
significantly improved by initializing the RLS parameter estimator to the nominal values of the process
parameters, which essentially remain constant or change very slowly from one weld to the next.
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5. Simulation Results and Discussion

The results of a simulation study to evaluate the performance of the proposed controller and
compare it to that of a PID controller are presented in this section. Both controllers are designed for
tracking a desired reference resistance profile.

As mentioned earlier, a reference resistance profile serves as a good indicator of the weld quality.
Therefore, it is desirable to maintain the dynamic resistance of a (forming) weld nugget reasonably
close to a reference resistance profile. For these simulations, two sheets of 1.2-mm-thick mild steel were
used as the materials to be welded. The properties of this material and the RSW model parameters are
listed in Table 1 below.

Table 1. Material properties and RSW model parameters.

Symbol Description Value Units

ρ Density 7800 Kg.m−3

Cp Specific Heat 480 J.Kg−1.C−1

a Nominal Nugget Radius 2.50 × 10−3 m

p Nominal Nugget Penetration per Sheet 1.08 × 10−3 m

k Thermal Conductivity 15.1 W.m−1.C−1

l1 Nominal Indentation per Sheet 1.20 × 10−4 m

β Penetration to Workpiece Thickness Ratio 0.8 no units

L Sheet Thickness 1.20 × 10−3 m

b Electrode Radius 3.00 × 10−3 m

L f Latent Heat of Fusion 2.73 × 105 J.Kg−1

H Heat of Fusion 2.13 × 109 J.m−3

α Thermal Diffusivity 4.03 × 10−6 m2.s−1

θI Interface Temperature 500 ◦C
θ◦ Initial Temperature 20 ◦C
αr Temperature Coefficient 0.0066 ◦C−1

ρ◦ Resistivity @ 20 ◦C 0.15 μΩ.m

A typical reference resistance profile for a good weld made on such a workpiece is shown in
Figure 6, and it is used as a reference in this study. Depending on the error signal, the welding voltage
is adjusted so as to reduce the resistance tracking error. Also, the controller is assumed to be capable of
delivering a maximum voltage, Vmax = 1600 mV.

Figure 6. Desired reference resistance profile.
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Although RSW welds are usually performed under constant force, some variations of the applied
pressure always occur during welding. Also, electrode tips exhibit wear and tear due to repeated
hammering and deposition of metals on the tip surfaces. In view of above, force variation and electrode
wear are considered to be unknown process (noise) variables that impact the nugget size (diameter
and penetration). Since an RSW weld controller must be evaluated in the presence of such ubiquitous
process (noise) variables, the performance of an AOSA controller and a PID controller are tested in
case of a 20% increase in nugget diameter and a 50% increase in indentation from their nominal values.

Figure 7 shows the performance of the AOSA controller. It can be seen that the AOSA controller
adapts to the parameter changes and enables the output resistance profile to follow the desired
resistance profile reasonably well. In fact, tracking can be further improved by initializing the RLS
parameter estimator to the nominal values of the process parameters. Also, the energy required to
perform the weld is found to be 1180 J.

Figure 7. Tracking performance of the AOSA controller. The reference resistance profile is shown as a
continuous (green) curve and the actual (output) resistance is shown in (orange) circles. The control
(welding) voltage, V(t), is shown as a dashed (blue) curve (Vmax = 1600 mV). Energy consumed to
perform the weld = 1180 J.

Figure 8 shows the performance of a PID controller. After a number of trials to tune the performance
of the PID controller, the optimal gains of the controller were chosen to be as follows: Proportional (P)
= 0.023, Integral (I) = 3.14, Derivative (D) = −6.99. At its best performance, it can be seen that the PID
controller initially loses track of the reference resistance profile due to variation of welding parameters,
which can be detrimental to nugget formation. Also, it can be seen that the PID controller requires
more energy (1217 J) to perform the weld, as compared to AOSA.

Comparing the simulation results for the above controllers, the AOSA controller is seen to exhibit
satisfactory performance and, in this case, the output resistance profile tracks the desired reference
resistance profile quite well. Also, it may be noted that the total energy required to perform a weld
using an AOSA controller is less compared to that used by a PID controller. In the long run, this can
yield significant energy savings for applications requiring a high volume of spot welds, such as
manufacturing of automotive vehicles.
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Figure 8. Tracking performance of the (tuned) PID controller. The reference resistance profile is shown
as a continuous (green) curve and the actual (output) resistance is shown in (red) circles. The control
(welding) voltage, V(t), is shown as a dashed (blue) curve (Vmax = 1600 mV). Energy consumed to
perform the weld = 1217 J.

6. Conclusions

This paper proposes a new theoretical approach of designing an AOSA controller for resistance spot
welding that utilizes a simplified dynamic resistance model of an RSW process. The development of this
model and its validation are discussed in detail. It also presents the results of a simulation study that
compares the performance of the proposed AOSA controller with that of a PID controller. The simulation
results indicate that an AOSA controller is capable of compensating for some process parameter
variations, and also enables tracking of a desired reference resistance profile. Also, these results indicate
that an AOSA controller is capable of reducing the energy consumed per weld, which may yield
significant energy and cost savings for applications requiring a high volume of spot welds. It should be
mentioned, however, that this paper only lays the foundation of a viable adaptive RSW control scheme
based on a dynamic resistance model. Actual hardware implementation and testing of the proposed
scheme is currently under investigation and results of these studies are expected to be presented in a
follow-up paper.
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Abstract: This study presents the design of a hybrid active disturbance rejection controller (H-ADRC)
which regulates the gait cycle of a worm bio-inspired robotic device (WBRD). The WBRD is designed
as a full actuated six rigid link robotic manipulator. The controller considers the state restrictions
in the device articulations; this means the maximum and minimum angular ranges, to avoid any
possible damage to the structure. The controller uses an active compensation method to estimate
the unknown dynamics of the WBRD by means of an extended state observer. The sequence of
movements for the gait cycle of a WBRD is represented as a class of hybrid system by alternative
reference frameworks placed at the first and the last link. The stability analysis employs a class
of Hybrid Barrier Lyapunov Function to ensure the fulfillment of the angular restrictions in the
robotic device. The proposed controller is evaluated using a numerical simulation system based on
the virtual version of the WBRD. Moreover, experimental results confirmed that the H-ADRC may
endorse the realization of the proposed gait cycle despite the presence of perturbations and modeling
uncertainties. The H-ADRC is compared against a proportional derivative (PD) controller and a
proportional-integral-derivative (PID) controller. The H-ADRC shows a superior performance as a
consequence of the estimation provided by the homogeneous extended state observer.

Keywords: adaptive disturbance rejection controller; hybrid systems; state constraint; worm robot;
bio-inspired robots

1. Introduction

The main objective of bio-mimetics is to find a practical solution of human needs imitating
models or movements of animals or even plants. One of its main applications can be found in
the field of robotics [1]. The development of bio-inspired robotic systems involves the adaptation
of different modes of locomotion like the running inspired in leopards [2], swimming inspired in
fishes [3], climbing like gecko robots [4], or crawling by worms [5,6], among others. In the case of worm
bio-inspired robots, the movement of the so-called inchworm has interesting applications exploring
narrow places in contrast to mobile robots [7]. The inchworm moves with a looping movement in which
the anterior and posterior legs are alternately made fast and released. The alternation of fastening
enables a propelling motion [8]. These bio-inspired robots can be applied in medical applications like
colonoscopies [9], in the inspection of narrow pipes [7] and robotic manipulators [10]. There exist
diverse configurations of inchworm robots from two DOF (Degrees of freedom) to five. Two DOF
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in-pipe robots such as [7] reproduces contraction and expansion of inchworm’s gait cycle using two
sets of magnetic clamps switching an electro-valve: rear clamp grasps the pipe firmly while the front
clamp slides forward gaining traction in the process. Similarly, in [11], a system of two mass with
a spring that contracts/expands by its anisotropic skin is described. The inching mechanism was
proposed also in [12] for planetary surface exploration vehicles (rovers) to overcome the limitations
of traditional rolling mobility. The vehicle wheel bases were expanded and contracted to achieve an
increase of net traction potential. In addition, in [13], a three-module bore robot was constructed to
carry out investigations on planetary subsurfaces such as geothermal gradient, chemical composition
and analysis of regolith. Climbot is a tele-operated five DOF (Degrees) robot able to climb a variety of
media and grasp objects [14].

One interesting problem to solve is the tracking trajectory problem in these kinds of robots [15].
The complex structures that emulate the displacement of an inchworm bio-inspired robot require robust
techniques to cope with parametric uncertainties, no modeled dynamics, and noisy measurements.
Classical PID controllers, sliding modes, and fuzzy logic controllers have been applied without
considering the hybrid behavior of the gait cycle of an inchworm represented by a multi-link robot
manipulator [16]. Modeling an inchworm robot that alternates the grasping between its anterior and
posterior legs implies a switching structure that should be studied under the concept of hybrid systems.

The hybrid framework allows for studying more complex dynamics and allows more flexibility in
modeling dynamic phenomena [17]. A hybrid system is composed of two or more sets of differential
equations describing a particular stage of behavior in dynamic systems. In the case of the WBRD, two
robot manipulators with five DOF represent its gait cycle. In order to deal with non-modeled dynamics
and parameter uncertainties, an active disturbance rejection (H-ADRC) approach can be considered.
ADRC is a technique centered on providing an effective estimation of unknown nonlinearities by means
of algebraic techniques [18]. The main concepts considered in this control designs are: (1) simplify
the plant description so as to group all disturbances and uncertainties, as well as all unknown or
ignored quantities and expressions into a single disturbance term, (2) proceed to estimate the effects
of this disturbance, in some accurate manner, and (3) devise the means to cancel its effects, using
a feasible gathered estimate as part of the feedback control action. One way to fulfill this task is to
perform a polynomial expansion and translate it into the state space as the output of an extended state
observer [19].

The control algorithm has to be able not only to force the WBRD to reach a desired trajectory; it
needs to take into account the problem of finite-time convergence and states constraints to avoid any
damage of the mechanical structure. A classical tool to deal with state constraints is the concept of
Barrier Lyapunov functions (BLF) that is a function that tends to infinite as the argument approach to a
boundary. BLF has been applied to control nonlinear systems and linear perturbed systems [20].

This manuscript proposes a novel adaptive algorithm to deal with the trajectory tracking problem
of nonlinear hybrid systems with state constraints. The proposed algorithm is applied in the WBRD
with five DOF represented by a hybrid structure. The main contributions of this study are:

• The mechanical design of a bio-inspired inchworm robot with a hybrid structure.
• A hybrid ADRC controller capable of estimating the non-modeled dynamics and providing the

fundamentals to prove the origin of the tracking error space is a practical stable equilibrium point
considering the effect of the presence of non-modeled dynamics and state constraints.

• The complete stability analysis with a BLF providing ultimate boundedness for the tracking error.
• An additional complementary adaptive algorithm to reduce the energy consumed by the

controller.
• The experimental confirmation of the controller application on an instrumented WBRD that may

emulate a gait cycle of a particular inchworm.

This manuscript is organized in the following manner. Section 2 provides a general overview of
the WBRD design as well as the links–joints configuration. Section 3 introduces the control design
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problem statement considering the hybrid nature of the gait cycle realization by the WBRD. Section 4
provides the formulation of the WBRD realization in terms of the hybrid systems framework. The next
Section 5 details all the elements of the output feedback controller to solve the gait cycle of the WBRD.
Section 6 describes some aspects regarding the implementation (numerical and experimental) of the
output feedback controller. Section 7 provides the evidence of the controller numerical implementation
over a virtualized representation of the WBRD. Section 8 demonstrates the application of the suggested
controller on a developed WBRD using the tri-dimensional (3D) printing technique. Finally, Section 9
closes the paper with some final remarks.

2. Worm Bio-inspired Robotic Device

The proposed WBRD structure satisfies a class of multi-articulated manipulator with 5 DOF.
The WBRD displacement is realized by the switched fixation of the non-inertial frames (1st and 5th) to
the supporting surface (Figure 1). Considering that WBRD moves following a path tracking based on
sequenced steps, the odd steps occur with the 1st frame as the reference and the even steps happened
considering the 5th frame as reference. The sequence formed by odd-even steps defines a gait cycle of
the WBRD. As one may notice, the change of the reference frame justifies the use of switched systems
theory to develop the output feedback controller to regulate the WBRD mobilization. This can be
noticed with the alternated reference frame marked with black squares at the bottom of Figure 1.

Figure 1. Distribution of the WBRD’s degrees of freedom dependent on the activated vacuum pump.

The multi-articulated manipulator is formed by five solid links ls,i connected with rotational joints
characterized with angular displacement defined by θs(t),i. The variable s can be 1 if the step is odd
and 2 if the step is even. This variable is playing the role of the switching sequence usually considered
in switching systems analysis. The switching action is performed by a set of vacuum pumps that
emulates the front and rear legs subjection to the floor (see Figure 2). Each link is conformed by a
direct current (DC) motor for actuation, and a set of mechanical elements to transmit the movements.
To obtain a feedback of the actual position of each link, a set of five markers were placed in the robot.
A vision analysis system obtained the corresponding absolute angles of each link. These measurements
were the data input into the control algorithm.
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Figure 2. Elements of each link in the WBRD.

Table 1 describes the dimensions of the angles.

Table 1. Angular range of the WBRD.

Element Min Max Range

θ1,1 θ2,5 −80 80 160
θ1,2 θ2,4 −95 95 190
θ1,3 θ2,3 −95 95 190
θ1,4 θ2,2 −95 95 190
θ1,5 θ2,1 −80 80 160

Each link was designed with a scale of 50 : 1 yielding a total length of 71.6 cm in the zero position
and a total height of 7.2 cm including the pumps (Figure 3).

Figure 3. Dimensions of the WBRD.

3. Problem Definition

The WBRD displacement is represented as an alternated extension–contraction sequences
(Figure 4). This simplified representation of the WBRD displacement can be described as a hybrid
device alternating the movement of two multi-articulated (5 DOF) manipulators.
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a)

b)

c)

d)

Figure 4. Alternative representation of a gait cycle for the WBRD; (a) The rear pump is on and a first
robot manipulator structure is adopted; (b) The reference trajectories force the robot to expand almost to
reach a 0 degrees configuration; (c) The pumps switch and the second robot manipulator configuration
is adopted, the reference trajectories for the movement of the robot until a desired position; (d) A second
switching in the gait cycle is performed to complete the walking path emulating the real inchworm.

The fixation of the reference frame in the suggested alternate way modifies the description of
the WBRD. Indeed, this variation of the reference frame forces two distinct dynamic representations
for the WBRD. Such condition provides a challenging scenario for developing automatic controllers
which can ensure the tracking of reference trajectories that correspond to a bio-inspired gait cycle. This
section aims to formulate the controller design problem within the hybrid systems’ framework.

Let us consider the vector of angular displacements within a fixed part (s(t) equal either a or
b of the gait cycle θs(t) = |θs(t),i|i=1,...,5. Now, assume that, during the given part of the gait cycle,
the angular displacements must track the corresponding reference angles θ∗s(t) = |θ∗s(t),i|i=1,...,5. Then,
enforcing the gait cycle for the WBRD can be represented as an stabilization problem for the tracking
error Δ ∈ R

5, defined as Δs(t) = θs(t) − θ∗s(t) within each continuous domain of s(t).
This problem statement obligates to consider the WBRD dynamics changes only if the vector of

tracking errors for all the articulations has attained a sufficiently small value (defined by the user),
namely SW∗ > 0. Therefore, the triggering signal which enforces the dynamics changing can be
obtained by measuring the norm of the tracking error within each domain of s(t). Once ‖Δs(t)‖ ≤ SW∗,
then s(t) changes from a to b or vice versa.

The problem statement concept given above enforces the fact that the vector of the angular
displacements θs,i at the WBRD must track the desired reference angles θ∗s,i ensuring the tracking errors
of all articulations enter the region characterized by ‖Δs(t)‖ ≤ SW∗ at some given finite moment Tc
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which must be bounded (Ts > 0). Such tracking problem can be described as designing the hybrid
controller us(t) such that

‖Δs(t)(t)‖ ≤ SW∗ ∀t ∈ [Tc, Ts] (1)

The maximum allowed switching time is introduced here in order to have a tracking trajectory
independent safety condition that can turn off the WBRD if the switching condition is not attained in a
reasonable period. Notice that the switching condition introduces a class of a non-constant sampling
discrete state which depends on the accomplishment of the condition provided in (1).

This study assumes that only θs(t) is continuously locally measurable all the time. However, θ̇s(t)
is not available. Therefore, the control design considers an output feedback realization.

4. Hybrid Formulation of the Worm Walking Cycle

The changing dynamics of WBRD can be characterized using a combination of continuous
and discrete states. Such representation agrees with the fundamentals of hybrid systems [21]. This
formulation to describe the gait evolution of the proposed WBRD is enforced because there is not
a strict periodicity which may define the transition between the gait domains (a or b) that is from
continuous to continuous (a to b or vice versa) dynamics passing through the discrete state domain.

If the WBRD exerts a regular mono-directional walking gait, the transitions between the
continuous stages follows an ordered sequence (a -> b -> a ->...). This sequenced dynamical behavior
justifies the application of a class of multi-domain hybrid systems framework considering a predefined
order of phases (or domains). Such representation leads to defining a so-called coherent cycle.

Formally, a multi-domain hybrid control system can be described considering a tuple [22,23]
HD = (Γ, D, U, S, Δ, FG), where Γ = (V; E) describes the sequenced cycle of transitions. Consequently,
v ∈ V defines a transition vertex connection the continuous domains, v+ represents the subsequent
vertex of v during the gait cycle, while e = {v → v+} corresponds to the transition from the analyzed
vertex v to v+.

Continuous Dynamical Representations. Considering the links masses, their inertia as well as
their lengths properties of the WBRD, the equation of motion (EOM) that can be used within a given
continuous domain Dv can be determined by the Euler–Lagrange equations (considering that, within a
given domain, the WBRD obeys a manipulator representation) [24]. Therefore, assuming that xa = θs(t)
in each fixed domain, the dynamics of the WBRD corresponds to:

ẋa(t) = xb(t)

ẋb(t) = f (xa(t), xb(t)) + g (xa(t)) u(t) + D−1 (xa(t)) J�v (xa(t))Fv (xa(t), xb(t)) +

ξ (xa(t), xb(t), t)

(2)

Here, xa ∈ Xa ⊂ R
5, xb ∈ Xb ⊂ R

5 and u ∈ R
n are the vectors of angular displacements, angular

velocities, and the applied torques (operating as the control actuators) respectively for the WBRD.
The drift vector field f : Xa × Xb → R

5 corresponds to f (xa, xb) =

−D−1 (xa) [C (xa, xb) xb + G(xa)], the state dependent matrix D : Xa → R
5×5 defines the inertia of the

WBRD, the matrix C : R5 ×R
5 → R

5×5 defines the Coriolis effects while G : R5 → R
5 defines the

effect of gravitational force over the WBRD dynamics. The vector function g : R5 → R
5×5 characterizes

the control action effect over the WBRD dynamics with g = D−1.
The uncertain section of the model is gathered in ξ : Xa ×R

nv ×R → R
5 which characterizes the

presence of external perturbations and internal modeling uncertainties in the WBRD. Usually, this
term aggregates nonlinear behavior such as joint frictions, backslash, and some other elements that are
usually complex for modeling.

The function Fv : TQ × Uv → R
nv (nv is the number of total holonomic restrictions) represents

the contact wrenches containing the constraint forces and/or moments. Here, TQ represents the
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characteristic states occurring during the contact wrenches, and Uv is the corresponding set of control
actions which leads to the contact wrenches uv, which are relevant during the WBRD transition from
continuous to continuous domains (floor contact). To enforce the velocity independent (holonomic)
constraints, the second order differentiation of the constraints should be set to zero; that is,

Jv(xa)ẋb + J̇v (xa, xb) xb = 0 (3)

The constrained dynamics of the system must be determined using the trajectories of (2) together
with (3).

Holonomic Constraints. Given that the WBRD model with coordinates xa ∈ Q, Q ∈ R
5 is

the configuration space, the complete dynamics within a domain depends simultaneously on the
Lagrangian as well as the contact constraints. All potential contacts of the WBRD with the floor (if not
physical obstacles are considered) forces a holonomic constraint, ηc(xa). Considering that Cv is an
indexing set of the possible holonomic constraints defined on Dv, then the holonomic constraints of the
domain corresponds to ηc(xa) = {ηc(xa)}c∈Cv

constant while the corresponding kinematic constraints

corresponds to Jv(xa)q̇ = 0, Jv(q) is the Jacobian of ηc(xa), i.e., Jv(xa) =
∂ηc(xa)

∂xa
.

The nature of the WBRD justifies that all the states (angular displacements and velocities) are
uniformly bounded in time. Therefore, the state x� =

[
x�a , x�b

]
is included in the set X+ = X+

a ∪ X+
b

defined as:
X+

a =
{

xa | −∞ < x−a,i ≤ xa,i ≤ x+a,i < +∞,
}

X+
b =

{
xb | −∞ < x−b,i ≤ xb,i ≤ x+b,i < +∞,

} (4)

with xi the i-th component of x, and the corresponding limits sup
t≥0

(xi) + ε = x+i and in f
t≥0

(xi)− ε = x−i

with ε a small constant real scalar and xi is either xi,a or xi,b. Indeed, the set X+ defines the holonomic
restrictions for the WDRD structure.

Domains and Guards. A limited number of forces/moments appears if the holonomic constraints
are active. These conditions can be represented in the form of component-wise inequalities
νvFv(xa, xb, uv) ≥ 0, νv is the function containing the parameters of the WBRD. The unilateral
constraints in the set Uv complete the admissible configurations for the WBRD via the domain of
admissibility Dv:

Dv = {(xa, xb, uv) ∈ TQ × Uv | Av(xa, xb, uv) ≥ 0} (5)

for v ∈ V. The boundary of each sub-domain are characterized with

Av(xa, xb, uv) =

⎡⎢⎣νvFv(xa, xb, uv)

hv(xa)

⎤⎥⎦ ≥ 0 (6)

A state guard Se corresponds to a proper subset of the domain Dv boundary, which is determined
by an edge condition connected to the transition from Dv to the subsequent domain, D+

v . Let us define
He(xa; xb; uv) as an appropriate set of elements taken from (6) which characterize the edge condition.
Using such elements, the guard can be characterized as

Se = {(xa, xb, uv) ∈ TQ × Uv | He(xa; xb; uv) = 0; Ḣe(xa; xb; uv) < 0
}

(7)

Discrete Dynamics. Consider the guard Se as a reset map Re that connects the system states over
the guard to the subsequent domain. Considering the pre-impact states (x−a ; x−b ) on Se, the post-impact
states (x+a ; x+b ) of D+

v are computed using a reset map Re by assuming the contact characterized by a
perfectly plastic impact (if an impact occurs) [25]. Following the ideas in [26], the states configurations
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of the WBRD remain invariant during the impact, i.e., (x−a ; x+a ); however, post-impact velocities must
satisfy the plastic impact equation:[

D(x−a ) −J�v+(x−a )
J�v+(x−a ) 0

]
·
[

x+b
δFv

]
=

[
D(x−a )x−b

0

]
(8)

where δ defines the impulse function for the forces in the WBRD during the contact with the floor.
Virtual Constraints. Analogously to the described holonomic constraints, virtual constraints

(recognized as the tracking errors in the control literature) correspond to the functions that modulates
the dynamics the WBRD to track certain reference trajectories. The term virtual arises from the fact that
such operative constraints must be enforced via a set of feedback (state or output) control instead of
using forced physical restrictions. In equivalence to tracking errors, virtual constraints correspond
to Δs(t). In here, the desired trajectories are proposed accordingly to the technique proposed in [24],
where a novel technique to design monotonic and differentiable trajectories over a gait cycle is precisely
detailed [27].

Here, one may notice that the goal of the proposed controller is steering Δs(t) to the origin
if possible or at least to the zone (indeed, an invariant set) defined in (1) within each continuous
domain. In this study, we avoid driving Δs(t) to the invariant set tracking through discrete dynamics.
Considering that WBRD must realize movements with the aim of attaining the next switching
configurations, the sequence of desired movements x∗a ∈ R

5 and x∗b ∈ R
5 should be calculated

considering the distance between objects, the stable configurations for the WBRD, and so on. Notice
that the position of the j-th articulation x∗a,j is known in advance assuming that the desired velocity
x∗b,j can be estimated by direct differentiation (notice that the design of reference trajectories provides
differentiable with continuous derivative flows).

Once the conditions to describe the WBRD have been detailed, it is feasible to propose the
controller that can steer the virtual constraints to the origin or at least to the invariant set in (1).

5. Controller Design

5.1. Abstracted Representation of the WBRD

The aim of this research work is developing an output feedback loop controller for a WBRD, which
should take into account the hybrid nature of the gait cycle and the state restrictions which define the
angular restrictions at each joint. The proposed controller considers then the joints restrictions formed
during the standing stage of the WBRD. The dynamics of the WBRD (considering the hybrid nature) is
described as follows:

d
dt

xa(t) = xb,s(t)(t)
d
dt

xb(t) = fs(t) (x(t)) + gs(t) (xa(t)) u(t) + ξs(t) (x(t), t)
(9)

Here, xa ∈ R
5 is the vector of angular displacements of the joints considered in the WBRD. The vector

xb ∈ R
5 is the vector of the angular velocities of all joints. The nature of WBRD structure enforces the

existence of restrictions for all components in the state vector that is (4).
The function fs(t) : R10 ×R

+ → R
5 in (9) represents the drift term that corresponds to internal

dynamics of the BIMR:
‖ fs(t)

(
x1)− fs(t)

(
x2) ‖ ≤ L f ‖x1 − x2‖,

x1 ∈ R
10, x2 ∈ R

10, L f ∈ R
+ (10)
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The function gs(t) : R
5 → R

5 characterizes how the input function affects the robot dynamics.
This function is invertible by the nature of the biped robot (formed as class of alternated robotic
muti-articulated arm) and satisfies

0 < g− ≤ |gs(t) (xa) | ≤ g+ < +∞ g− ∈ R
+, g+ ∈ R

+ (11)

The bounded function u ∈ R
5 is referred to as the control function, which must take into account

the hybrid nature of the WBRD dynamics. By assumption, all the admissible controls belong to the
following so-called admissible set:

Uadm=
{

u : ‖u‖2 ≤ u0 + u1‖x‖2, u0 ∈ R
+, u1 ∈ R

+
}

(12)

The term ξs(t) : R10 ×R
+ → R

5 corresponds to admissible class of uncertainties and perturbations
affecting the dynamics of WBRD. By assumption, the term ξs(t) satisfies the following restriction:

‖ξs(t) (x, t) ‖2 ≤ ξ0 + ξ1‖x‖2, ξ0 ∈ R
+, ξ1 ∈ R

+ (13)

5.2. H-ADRC Design

Considering the hybrid nature of the WBRD and the state restrictions, there are a few possible
controllers that can be used. This study considers the application of a class of output feedback hybrid
ADRC which can take into account the state constraints.

The design of the proposed H-ADRC considers the design of an approximation for the uncertain
section of the WBRD which is valid within each continuous domain. In this study, let assume that the
control free right-hand section of the WBRD dynamics (Fs(t) = fs(t) + ξs(t)) can be represented as the
composition of a nominal model f0,s(t)(x) added with a modeling function f̃s(t)(x, t), which represents
those dynamical behaviors that are not modeled, which is Fs(t)(x, t) = f0,s(t)(x) + f̃s(t)(x, t).

In this case, this uncertain section added to the external disturbances element can be represented
as f̃s(t)(x, t) + ξs(t)(x(t), t), where f̃s(t)(x, t) represents the modeling error f̃s(t)(x, t) = fs(t)(x, t) −
f0,s(t)(x) with f0,s(t) : R10 → R

5 describing the nominal model of the WBRD that could be estimated by
diverse methods in such a way that the Euler–Lagrange modeling technique is still applicable. In this
study, the first option is considered. Consequently, consider the following necessary assumption which
must be used in the design of the H-ADRC.

Assumption 1: There exists a matrix of constants for each continuous subsystem as(t) ∈ R
(p+1)×5

such that the function Fs(t) evaluated over the trajectories x = x(t) could be represented as Fs(t)(x, t) =
a�s(t)κ(x) + f̄s(t)(x, t).

In this study, the time-dependent vector κ ∈ R
p+1 (see [28,29] for further details) is

κ = [1, t, · · · , tp] (14)

The term f̄s(t)(x, t) is called the modeling error produced by the approximation of Fs(t)(x, t) by a
finite number p of elements in the basis and admits the following bounds by assumption

‖ f̄s(t)(x, t)‖ ≤ f+0 , ∀t ≥ 0 (15)

The so-called nominal model for each continuous domain a�s(t)κ(t) can be expressed as a�s(t)κ(t) =
a0,s(t) + a1,s(t)t + a2,s(t)t2 + · · ·+ ap,s(t)tp [30]. In this study, the function a�s(t)κ(x(t)) can be represented
as a chain of integrators of some predefined constant matrices. Thus, the approximation presented
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above states that Fs(t)(x, t) must be the solution of an integration operation of an uncertain function
plus the approximation error: that is,

a�s(t)κ(t)=a0,s(t)+
t∫

τ1=0

a1,s(t)dτ1+
t∫

τ1=0

τ1∫
τ2=0

2a2,s(t)dτ2dτ1

+ · · ·+
t∫

τ1=0

· · ·
τp−1∫

τp=0

p!ap,s(t)dτp · · · dτ1

(16)

Equation (16) can be reorganized in an equivalent differential form:

a�s(t)κ(t) = ρ0,s(t)(t) ρ0,s(t) = D�ρs(t), D =
[

I5, 0, · · · , 0
]�

, D ∈ R
5∗(p+1)

dρs(t)(t)
dt

= Φρs(t)(t), Φ =

{
1 i f i = j − 1
0 i f otherwise

(17)

The vector of initial conditions for ρs(t) is ρs(t)(0) = [a0,s(t), a1,s(t), a2,s(t), ..., ap,s(t)]. Now,
the problem formulation given can be rephrased as follows: Given an output reference trajectory
x∗ for the system (9), let us design an output feedback controller that, regardless of the unknown
non-modeled dynamics or external disturbances that forces the states x to track asymptotically the
desired reference trajectories, with the tracking error restricted to a small neighborhood near the origin
and proportional to a power of the uncertainties and perturbations. The first stage in solving this
problem is designing an extended state observer to reconstruct the non-measurable part of the state.

5.3. Closed-Loop Dynamics Based on the H-ADRC Structure and Extended State Observer

Let us consider the reference trajectories x∗a and x∗b that are governed by

d
dt

x∗a (t) = x∗b,s(t)(t)
d
dt

x∗b (t) = h∗s(t)(t)
(18)

where h∗s(t) : R+ → R
5 is a continuous function with respect to time which can vary according to the

active semi-cycle of the WBRD. The proposed reference trajectories satisfy the following bound for
x∗ = [(x∗a )�, (x∗b )

�]�, ‖x∗‖2 ≤ x∗,+, x∗,+ > 0.
Based on the approximation proposed for Fs(t)(x, t) and the reference trajectories given in (18),

the dynamics of the tracking error Δ are given by

d
dt

Δa(t) = Δb,s(t)(t)
d
dt

Δb(t) = D�ρs(t)(t) + f̃s(t)(x(t), t) + ξs(t) (x(t), t) + gs(t) (xa(t)) u(t)− h∗s(t)(t)

d
dt

ρs(t)(t) = Φρs(t)(t)

(19)
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Notice that the bounds for the state x presented as holonomic constraints and the bounds for the
reference trajectories provide the following estimation for the bounds of the tracking error Δ in each
continuous domain:

‖Δ(t)‖2
Hs(t)

< V+, V+ = 2λmax

{
Hs(t)

}
(x+ + x∗,+) + ε

x+ =
5

∑
i=1

(
max

{
x−a,i, x+a,i

})2
+
(

max
{

x−b,i, x+b,i

})2
ε > 0

(20)

The design of the output feedback controller needs to provide an extended state robust state
estimator of (9) which in this case satisfies the following hybrid dynamics:

d
dt

x̂a(t) = x̂b,s(t)(t) + La,s(t)ea,s(t)(t)

d
dt

x̂b(t) = D�ρ̂s(t)(t) + gs(t)

(
xa,s(t)(t)

)
u(t) + Lb,s(t)ea,s(t)(t)

d
dt

ρ̂s(t)(t) = Φρ̂s(t)(t) + Lc,s(t)ea,s(t)(t)

ea,s(t)(t) = x̂a,s(t)(t)− xa,s(t)(t)

(21)

Notice here that ea,s(t)(t) = C�(x̂s(t)(t) − xs(t)(t)), x̂s(t) = [x̂�a,s(t), x̂�b,s(t)]
� and C = [I5, 05]

�.

The observer gains are defined by La,s(t) ∈ R
5×5 and La,s(t) ∈ R

5×5. These gains must be calculated
depending on what the active WBRD semi-cycle is.

The dynamics of ea,s(t) are associated with an extended state observer connected to:

d
dt

ea(t) = eb,s(t)(t) + La,s(t)ea,s(t)(t)

d
dt

eb(t) = D�ρ̃s(t)(t) + Lb,s(t)ea,s(t)(t)

d
dt

ρ̃s(t)(t) = Φρ̃s(t)(t) + Lc,s(t)ea,s(t)(t)

(22)

where ρ̃s(t) = ρ̂s(t) − ρs(t).
Let us consider the proposed output-based controller satisfying:

u(t) = g−1
s(t)

(
xa,s(t)(t)

) [
−K�

a,s(t)Δa,s(t) − K�
b,s(t)(x̂b,s(t)(t)− x∗b,s(t)(t)) + h∗s(t)(t)− D�ρ̂s(t)(t)

]
(23)

where K�
a,s(t) ∈ R

5×5 and K�
b,s(t) ∈ R

5×5 are the piece-wise constant gains of the controller which are
adjusted in each continuous dynamics.

Let us introduce the extended state vector z ∈ R
10+10+5(p+1) defined as z = [Δ�, e�, ρ̃�]� with

e = [e�a , e�b ]
�. The dynamics of z are described by

d
dt

z(t) = Π(Ks(t), Les,s(t), Lc,s(t))z(t) + Ξs(t)(x(t), t) (24)
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with

Π(Ks(t), Les,s(t), Lc,s(t)) =

⎡⎢⎣ AK,s(t) −BKb,s(t)E −BD�

05 AL,s(t) BD
05 Lc,s(t)C� Φ

⎤⎥⎦

Ξs(t)(x, t) =

⎡⎢⎣ B f̃s(t)(x, t) + Bξs(t) (x(t), t)
B f̃s(t)(x, t) + Bξs(t) (x(t), t)

05(p+1)

⎤⎥⎦
(25)

where AK,s(t) = A− BKs(t), AL,s(t) = A+ Les,s(t)C�, Λ = Λ� ∈ R
Np×Np , B� = [05, I5]; and E = [05, I5].

The stability analysis considers the study over the dynamics of z. This analysis provides the result
of the tracking controller, the state estimator, and the reconstruction of the uncertain section in the
WBRD dynamics. This methodology yields the satisfaction of the close-loop analysis of the output
feedback controller which offers a class of separation-principle for the proposed design. This is an
additional theoretical contribution of this study. The following theorem details the main result of
this study.

Theorem 1. Consider the state observer given in (21) and the output feedback controller proposed in (23) with
gains adjusted such that all matrices A − BKs(t) and A + Les,s(t)C� are Hurwitz for the WBRD dynamics with
incomplete information approximated with (17).

If there is a sequence of positive definite matrices QR,s(t),Tκ
and QL,s(t),Tκ

such that positive definite and
symmetric solutions Hs(t),Tκ

> 0 and Ms(t),Tκ
exist for the following matrix inequalities Rics(t)(Hs(t),Tκ

) ≤ 0,
Lyaps(t)(Ms(t),Tκ

) ≤ 0 and LyapD
s(t)Ns(t),Tκ

) ≤ 0 with

Rics(t)(Hs(t),Tκ
) = Hs(t),Tκ

AK,s(t) + A�
K,s(t)Hs(t),Tκ

+ Hs(t),Tκ
(Λ1 + Λ2)Hs(t),Tκ

+ QR,s(t),Tκ
(26)

Lyaps(t)(Ms(t),Tκ
) = Ms(t),Tκ

Π2,s(t) + Π�
2,s(t)Ms(t),Tκ

+ Π�
2,s(t)Λ3Π2,s(t) + ε−1Π�

1,s(t)Λ
−1
1 Π1,s(t) + QL,s(t),Tκ

(27)

LyapD
s(t)Ns(t),Tκ

) =

[
Π�(Tκ)Ns(t),Tκ+1

Π(Tκ)− Ns(t),Tκ
Π�(Tκ)Ξs(t)(x(Tκ), Tκ)

Ξ�
s(t)(x(Tκ), Tκ)Π(Tκ) Nk,Tκ+1

]

Π(Tκ) = Π(Ks(Tκ), Les,s(Tκ), Lc,s(Tκ))

(28)

then the extended state z converges exponentially to the invariant set ID,Tκ × IZ,Tκ defined by

ID,Tκ × IZ,Tκ =
{
(Δ, z0) | ‖Δ‖2

Qk,Tκ−Qk,Tκ ,0
≥ β2, ‖z0‖2

QL,k,Tκ−QL,k,Tκ ,0
≥ β2

}
with β j = 2λmax

(
B�Λ−1

j B
) (

ξ0 + ξ1(x+)2 + f+0
)

, j = 2, 3, Λ2 ∈ R
5×5, Λ3 ∈ R

5×5 are positive and

symmetric definite matrices and Qk,Tκ ,0 ∈ R
5×5, QL,k,Tκ ,0 ∈ R

(5+5(p+1))×(5+5(p+1)) are positive definite
matrices fulfilling Qk,Tκ

> QL,k,Tκ ,0, Qk,Tκ
> QL,k,Tκ ,0.

The rate of exponential convergence is given by:

αk = min
{

λmin

{
H−1/2

k Qk,0H−1/2
k

}
, λmin

{
M−1/2

k QL,k,0M−1/2
k

}}
Proof. The estimation of the adjustment laws for the controller gains uses the concept of Lyapunov
stability based on BLF. Formally, the proposed BLF which is used to prove the stability of the origin
considers as a class of practical equilibrium point for the movement of the WBRD. In this study,
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the logarithmic function is used, one of the most common BLFs [31,32]. The suggested BLF function to
get the stability analysis in this study is given by

V(z) :=
2

∑
k=1

Vk,Tκ
(Δ, z0)

Vk(Δ, z0) =

[
ln

(
V+

V+ − ‖Δ‖2
Hk,Tκ

)
+ z�0 Mk,Tκ

z0

]
, z0 = [e�, ρ̃�]�

(29)

where k = 1, 2. Notice then that s(t) = 1 represents the case a and s(t) = 2 represents the case b.
The full-time derivative of V(z) is

d
dt

Vk,Tκ
(Δ(t), z0(t)) =

[
2Δ�(t)Hk,Tκ

V+ − ‖Δ(t)‖2
Hk,Tκ

d
dt

Δ(t) + 2z�0 (t)Mk,Tκ

d
dt

z0(t)

]
(30)

Reorganizing the differential equation (30) yields

d
dt

Vk(Δ(t), z0(t)) = 2

[
Δ�(t)Hk,Tκ

V+ − ‖Δ(t)‖2
Hk,Tκ

, z�0 (t)Mk,Tκ

]
d
dt

z(t) (31)

The substitution of
d
dt

z(t) on the full-time derivative of V(z(t)) leads to the following form:

d
dt

Vk(Δ(t), z0(t)) = 2

[
Δ�(t)Hk,Tκ

V+ − ‖Δ(t)‖2
Hk,Tκ

, z�0 (t)Mk,Tκ

]
[Π(Kk, Les,k, Lc,k)z(t) + Ξk(x(t), t)] (32)

Notice that the term Δ�(t)Hk,Tκ
Π(Kk, Les,k, Lc,k)z(t) can be handled as follows:

Δ�(t)Hk,Tκ
Π(Kk, Les,k, Lc,k)z(t) = Δ�(t)Hk,Tκ

(A − BKk)Δ(t) + Δ�(t)Hk,Tκ
Π1,kz0(t) (33)

where Π1,k =
[
−BKb,kE −BD�

]
.

Let us consider the application of the Young inequality, which satisfies:

X�Y + Y�X ≤ X�NX + Y�N−1Y

valid for any X, Y ∈ R
r×s and any 0 < N = N� ∈ R

s×s [33]. Therefore, the following upper bound for
Δ�(t)HkΠ1,kz0(t) is valid:

2Δ�(t)Hk,Tκ
Π1,kz0(t) ≤ ‖Hk,Tκ

Δ(t)‖2
Λ1

+ ‖Π1,kz0(t)‖2
Λ−1

1
(34)

In equivalent form, Δ�(t)Hk,Tκ
Ξk(x(t), t) accepts the following upper bound:

Δ�(t)Hk,Tκ
B f̃k(x, t) ≤ ‖Hk,Tκ

Δ(t)‖2
Λ2

+ ‖B f̃k(x, t) + Bξk (x(t), t) ‖2
Λ−1

2
, (35)

Introducing the following matrix Π2

Π2 =

[
05 I5 05(p+1)
05 05 I5(p+1)

]
×

⎡⎢⎣ AK,k −BKb,kE −BD�

05 AL,k B D
05 Lc,kC� Φ

⎤⎥⎦ =

[
AL,k B D

Lc,kC� Φ

]
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The terms including z�0 (t)Mk,Tκ
in the time derivative of V(z(t)) can be presented as

2z�0 (t)Mk,Tκ
Π2,kz0(t) + 2z�0 (t)Mk,Tκ

Π2,kΞs(t)(x(t), t) ≤

z�0 (t)
(

Mk,Tκ
Π2,k + Π�

2,k Mk,Tκ

)
z0(t) + ‖Π2,kz0(t)‖2

Λ3
+ ‖B f̃k(x, t) + Bξk (x(t), t) ‖2

Λ−1
3

(36)

Taking together the results in (33) to (36) yields

d
dt

Vk(Δ(t), z0(t)) ≤
⎡⎣ 2Δ�(t)Hk,Tκ

AK,kΔ(t) + ‖Hk,Tκ
Δ(t)‖2

Λ1+Λ2
+ ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
2

+ ‖Π1z0(t)‖2
Λ−1

1

V+ − ‖Δ(t)‖2
Hk,Tκ

⎤⎦+
z�0 (t)

(
Mk,Tκ

Π2,k + Π�
2,k Mk,Tκ

)
z0(t) + ‖Π2,kz0(t)‖2

Λ3
+ ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
3

(37)

Noticing that minΔ

{
V+ − ‖Δ(t)‖2

Hk,Tκ

}
= ε, then

d
dt

Vk(Δ(t), z0(t)) ≤

⎡⎢⎣Δ�(t)
(

Hk,Tκ
AK,k + A�

K,k Hk,Tκ
+ Hk,Tκ

(Λ1 + Λ2)Hk,Tκ

)
Δ(t) + ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
2

V+ − ‖Δ(t)‖2
Hk,Tκ

⎤⎥⎦+
z�0 (t)

(
Mk,Tκ

Π2,k + Π�
2,k Mk,Tκ

+ Π�
2,kΛ3Π2,k + ε−1Π�

1,kΛ−1
1 Π1,k

)
z0(t) + ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
3

(38)

Based on the upper bounds of (13) and the bounds for the modeling error yields to estimating upper
norms of ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
2

and ‖B( f̃k(x, t) + ξk (x(t), t))‖2
Λ−1

3
as:

‖B( f̃k(x, t) + ξk (x(t), t))‖2
Λ−1

j
≤ β j, (39)

Similarly, the time derivative of (38) can be bounded as

d
dt

Vk(Δ(t), z0(t)) ≤
⎡⎣Δ�(t)

(
Hk,Tκ

AK,k + A�
K,k Hk,Tκ

+ Hk(Λ1 + Λ2)Hk

)
Δ(t) + β2

V+ − ‖Δ(t)‖2
Hk,Tκ

⎤⎦+
z�0 (t)

(
Mk,Tκ

Π2,k + Π�
2,k Mk,Tκ

+ Π�
2,kΛ3Π2,k + ε−1Π�

1,kΛ−1
1 Π1,k

)
z0(t) + β3

(40)

Notice that (40) can be represented as follows:

d
dt

Vk(Δ(t), z0(t)) ≤
[

Δ�(t)Rick(Hk,Tκ
)Δ(t)− Δ�(t)Qk,Tκ

Δ(t) + β2

V+ − ‖Δ(t)‖2
Hk,Tκ

]
+[

z�0 (t)Lyapk(Mk,Tκ
)z0(t)− z�0 (t)QL,k,Tκ

z0(t) + β3
] (41)

Taking into account the assumptions that Rick(Hk,Tκ
) < 0 and Lyapk(Mk,Tκ

) < 0 yielding

d
dt

Vk(Δ(t), z0(t)) ≤ −
[

Δ�(t)Qk,Tκ
Δ(t)− β2

V+ − ‖Δ(t)‖2
Hk,Tκ

+ z�0 (t)QL,k,Tκ
z0(t)− β3

]
(42)

If we consider that Δ ∈ ID,Tκ and z0 ∈ IZ,Tκ , then

d
dt

Vk(Δ(t), z0(t)) ≤ −
[

Δ�(t)Qk,Tκ ,0Δ(t)
V+ − ‖Δ(t)‖2

Hk,Tκ

+ z�0 (t)QL,k,Tκ ,0z0(t)

]
(43)

Following the ideas given in [20], it is possible to prove that

d
dt

Vk(Δ(t), z0(t)) ≤ −αkVk(Δ(t), z0(t)) ∀(Δ, z0) /∈ ID,Tκ × IZ,Tκ
(44)
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Consequently, Vk(Δ(t), z0(t)) converges asymptotically to the invariant set ID,Tκ × IZ,Tκ within a
given continuous sub-domain. This is enough to prove the stability within each continuous sub-domain.
Now, to prove the stability of the hybrid form, let us consider that the tracking error is already bounded;
then, let us propose the discrete analysis for the dynamics of z evaluated on the specific times where
the sequential transition from a -> b or vice versa. With the aim of evaluating this stability analysis,
one may propose the discrete Lyapunov-like function such as

Vd
Tκ
(z(Tκ)) :=

2

∑
k=1

Vd
k,Tκ

(z(Tκ)) Vd
k,Tκ

(z(Tκ)) = z�(Tκ)Nk,Tκ
z(Tκ)

Nk,Tκ
=

[
Hk,Tκ

05

05+5(p+1) Mk,Tκ

] (45)

The discrete analysis of the discrete Lyapunov like function yields

ΔVd
k,Tκ

(z(Tκ)) = z�(Tκ)Nk,Tκ+1 z(Tκ)− z�(Tκ)Nk,Tκ
z(Tκ) (46)

Notice that

ΔVd
k,Tκ

(z(Tκ)) = z�(Tκ+1)Nk,Tκ+1
z(Tκ+1)− z�(Tκ)Nk,Tκ

z(Tκ)

=
[
z�(Tκ) Ξ�

k (x(Tκ), Tκ)
] [Π�(Tκ)Nk,Tκ+1

Π(Tκ)− Nk,Tκ
Π�(Tκ)Ξk(x(Tκ), Tκ)

Ξ�
k (x(Tκ), Tκ)Π(Tκ) Nk,Tκ+1

] [
z(Tκ)

Ξk(x(Tκ), Tκ)

]
(47)

With the assumption that the matrix inequality (28) is negative definite, then, ΔVd
k,Tκ

(z(Tκ)) is negative
and, therefore, the discrete jumps remain negative confirming the local asymptotically stability of the
origin for the extended system based on the state z.

Remark 1. Notice that the H-ADRC controller can be useful if the proposed control gains can be sufficiently
adequate such that SW∗ ≤ β2. This fact can be guaranteed a priori if a formal optimization of the size for the
invariant set proposed in the statement of Theorem 1. The solution of this aspect is outside the scope of this study.
However, we assume that the condition described in this remark is fulfilled.

Remark 2. Notice that adjusting the gains in adaptive form could reduce the large amplitude oscillations along
the transient period of the tracking trajectory process. The adaptive adjustment of the gains satisfies:

d
dt

K̂s(t) = −
(

V+ − ‖Δ‖2
Hk,Tκ

)−1
Ω−1

k HK,kΔs(t) (48)

with Ω ∈ R
5×5. This result can be obtained directly with a similar stability analysis to the one introduced in

Theorem 1. The main change is introducing a modified Lyapunov like function satisfying

Vad(z) :=
2

∑
k=1

Vad
k,Tκ

(Δ, z0)

Vad
k (Δ, z0) = ln

(
V+

V+ − ‖Δ‖2
Hk,Tκ

)
+ z�0 Mk,Tκ

z0 + trace
{

K̃�
s(t)ΩkK̃s(t)

} (49)

where K̃s(t) = K̂s(t) − Ks(t) and trace refers to the trace operator. A similar study analysis yields the design of
the adaptive gains which can presumably reduce the oscillating transitions.

Remark 3. The result attained above requires the design of the extended state observer (21), which must
provide efficient approximation of the angular velocities of all the articulations. Such condition implies complex
instrument requirements for the BIMR. Such condition enforces that the estimation error must converge faster
to the corresponding invariant set than the tracking controller does. A possible alternative is using some variant
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of robust time differentiator which can produce the estimation of the required angular velocities. The so-called
super-twisting algorithm can provide such solution, but the close loop stability analysis requires some further
work. The reader is referred to the studies given in [34] for more details.

Remark 4. The application presented in this manuscript needs to solve six different matrix inequalities offline.
All of them are Riccati equations and their solutions are quite regular in control theory. Indeed, there exist
numerical solvers that can help to find the solution of these inequalities. The requirements to find the solution of
a Riccati equation (in general form) given by

A�P + PA + PRP + Q = 0, P = P� > 0 (50)

are

• The matrix A is Hurwitz, as a consequence:
• The pair (A, R1/2) is controllable.
• The pair (A, Q1/2) is observable.

Notice that the stability of matrix A in our case is related with the gain matrices Ks(t) and Les,s(t) that can
be selected in such a way A − BKs(t) and A − Les,s(t)C� are Hurwitz.

6. Implementation Issues

The proposed H-ADRC controller requires several technical aspects that must be considered
before it can be implemented. This section details the arrangement of all the aspects needed to realize
both the numerical and the experimental evaluations.

6.1. Numerical Evaluation

In the simulation system, it is necessary to introduce a force sensing element. The information of
the force sensor is used to detect the moment when the corresponding ending section of the WBRD
has touched the surface. Notice that such contact must be part of the condition to switch between the
subsystems that define the gait scenarios a and b. Including this additional sensor in the condition
ensures that the WBRD is completing the semi-cycle in the adequate configuration.

In this study, the numerical simulations used a virtualized representation of the WBRD based
on the SimMechanics Toolbox® of Matlab®. The virtual model includes all the articulations and the
mechanical representation of vacuum pumps that are going to be used as the electro-mechanical
elements to change the reference frame in the hybrid representation of the gait cycle of the WBRD and
allowing for evaluating the suggested controller. The mechanical representation of the WBRD was
prepared in the Solid-Works® software including all the mobile actions that must be exerted by the
WBRD (Figure 5).

Figure 5. WBRD exported to simMechanics for simulation.
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6.2. Experimental Evaluation

The experimental evaluation of the proposed controller was implemented in a polymer-based
WBRD. The design of the robot followed the structure proposed in the numerical evaluation.
The experimental prototype was constructed using the 3D printing technique using poly-lactic acid
(PLA) as building material.

The constructed WBRD used DC motors to realize the mobilization of all joints. A set of gears
transmits perpendicular movement to the mechanical structure to reach the desired angular trajectories.
Each of the DC actuators was regulated with a DC source to alternate power converter using a pulse
width modulation (PWM) methodology.

The numerical realization of the controller used a distributed strategy considering the combination
of a processing board (TIVA1294 from Texas Instruments) and a personal computer (Alienware 17S
from Dell Computers). The processing board realizes the PWM formulation based on the calculated
control action in the personal computer (PC).

The PC realizes an image-based-processing algorithm which calculates the articulation angles
using physical markers placed over the WBRD structure (Figure 6). The algorithm is described in
Algorithm 1 which is based on the application of simplified morphological image processing methods.
The first algorithm is complemented with the calculus of the state estimator (21) and then the output
feedback controller proposed in (23) is evaluated according to Algorithm 2. The estimated control
action is sent to the processing board via a serial protocol (RS-232).

The H-ADRC requires including vacuum pumps at the first and the last links of the bio-inspired
robot. Each of the pumps is activated once all the angles have attained their reference values. The pump
is activated to define the change of the reference framework. The activation action is also evaluated in
the algorithm and then sent to the processing board.

Figure 6. Implementation control in the WBRD.
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Algorithm 1 Position image recovery

1: Start

2: P ← a frame form the camera � The threshold is selected to find the marker place on the robot
joints

3: if Pi,j,3 < 10 and Pi,j,1 > 180 then � Detect orange markers
4: Ai,j = 1
5: else

6: Ai,j = 0
7: end if

8: if Pi,j,3 < 60 and Pi,j,1 < 128 then � Detect green markers
9: Bi,j = 1

10: else

11: Bi,j = 0
12: end if

13: A =imclose(A) � Morphological closing of the image
14: B =imopen(B) � Morphological opening of the image
15: G = A + B � Create logical image
16: C =DetectCentroids(G) � Function to detect centroids
17: for i = 1, 2, ..., 6 do � Calculating the absolute angle with the slope of neighbor centroids

18: Ti = arctan(Ci+1
2 −Ci

2
Ci+1

1 −Ci
1
)

19: end for

20: θ1 = T1
21: S = 0
22: for i = 1, 2, ..., 5 do � Calculating the relative angle, with respect with the first one
23: S = S + θi
24: θi+1 = Ti − S
25: end for

26: Return θ

27: Start control calculation � Go to Algorithm 2

Algorithm 2 Control implementation

1: Start

2: Obtain the corresponding angles θj,i � From Algorithm 1
3: Check the switching condition � To see what pump is active and the corresponding system j = 1, 2

4: Implement the extended observer to recover θ̇j,i from Equation (17) � To recover ˙̂θj,i and ρ̂j,i
5: Implement the control law in (23) for the corresponding system
6: Evaluate the obtained decoupled controllers to convert into a pulse modulation signal (PWM)
7: if |uj,i| > 255 then � These values correspond to the high time in the PWM signal
8: uj,i = 255
9: else

10: uj,i = uj,i
11: end if

12: Evaluete the control to determine the movement direction of the actuators
13: if sign(uj,i) > 1 then

14: dj,i = 1
15: else

16: dj,i = 0
17: end if

18: Send the values through serial comunication (RS-232 protocol) to the TIVA1294
19: Activate a PWM with the values of uj,i and dj,1 to be sent to the H bidges
20: Return to Algorithm 1 to calculate again the current position
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7. Simulation Results

The proposed output feedback controller was evaluated using a set of numerical evaluations
considering the exerting of three completes gait cycles . The corresponding sequences of reference
angular movements were calculated using a biomechanical study of a Leptidoptera gonodonta or
measuring worm. Once the angles were calculated, the method to produce the reference trajectories
was implemented. These reference trajectories were injected into the SimMechanics software.

The numerically simulated model in SimMechanics-Matlab was evaluated considering the real
masses (assuming the construction based on PLA material) and dimensions of each mechanical section
of the WBRD. This strategy allowed for evaluating the controller as well as tuning the gains of both
the estimators and controllers. These gains were used as the initial values in the experimental device.

The angular trajectories measured from the simulated WBRD were compared with the reference
trajectories (Figure 7). The shown trajectories correspond to the reference signals, the measured
position with the proposed H-ADRC (using the estimated velocities from the state estimator), and the
state feedback form. The comparison of all trajectories confirms that the H-ADRC controller provides
an equally faster convergence than other controllers, but it has less oscillations during the transient
period. Such characteristic is a consequence of the additional compensation provided by the extended
state observer that can actively compensate the effect of external perturbations and internal modeling
imprecision. The comparison with a classical PID controller confirms such additional benefit of
introducing the augmented compensation aggregated in the H-ADRC form. In addition, the proposed
controller tracks the reference with smaller deviations than all other controllers considered for
comparison. Notice also that these trajectories confirm the presence of high-frequency oscillations at
the beginning of the tracking period (first three seconds). Although these oscillations may be undesired
for the WBRD movements, the tracking exerted after the oscillations period justifies the introduction
of H-ADRC based compensation due to its robustness against matched perturbations.

Figure 8 shows (in logarithmic scale) the control associated energy enforced by the state feedback
(marked with PD) and the H-ADRC controllers. This comparison considers that both controllers solve
the tracking with the same convergence quality. The application of the compensated control form
consumes smaller amounts of energy and augments the working life of the DC motors’ actuators.
These controllers were chosen for this comparison because they provided the best trajectory tracking
among the evaluated controllers.
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Figure 7. Comparison of reference trajectories with controlled states implementing either the PD and
the proposed H-ADRC controllers.
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Figure 9 details the comparison of the Euclidean norms of the tracking errors obtained with the
application of the same evaluated controllers that were presented in Figure 8. This figure highlights
the rate of convergence and the ultimately bounded zone for the tracking errors. This figure is also
presented in logarithm scale for the purpose of better detecting the differences among the proposed
controllers. In both cases, the H-ADRC forces a faster convergence and smaller oscillations amplitude
in steady-state for the controlled trajectories.
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Figure 9. Euclidean norm of the tracking error for each control technique used in simulation.

Figure 10 demonstrates a sequence of image captures obtained from the simulated evaluation
of the H-ADRC application over the WBRD. This sequence highlights the sequence of movements
exerted by the entire simulated WBRD associated with the sequence of articular movements enforced
by the distributed form of the proposed controllers. The sequence also demonstrates the benefits
of introducing the simulated SimMechanics model because it allows for getting an efficient gains
adjustment which yields to satisfying the complete gait sequence. Moreover, the hybrid analysis of the
controller is confirmed with the efficient tracking of the reference angular positions in both scenarios a
and b.
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Figure 10. Sequence of movements of the gait cycle of the WBRD in simulation.

8. Experimental Results

Once the simulated evaluation showed acceptable results measured in terms of the tracking errors
and the consumed energy, the control was implemented according to Algorithms 1 and 2. Different
controllers were implemented with the aim of evaluating the advantages of the proposed methodology.
The H-ADRC controller was compared with the classical state feedback controller using the derivative
obtained by means of the extended state observer and an experimental PID form.

Figure 11 shows the comparison of the angular displacements obtained in the experimental results
with three different controllers. For the PD controller supplied with the estimated derivative, the vector
of the five different proportional gains were selected as kP = [23, 45, 50, 45, 23] and the derivative gains
were kD = [2.41, 3.51, 4, 3.51, 2.41]. The case of the integral part included the same proportional and
derivative gains while the integral gains were: kI = [0.5, 0.9, 1.2, 0.75, 0.3]. The hardware configuration
used to evaluate the proposed controller provided an updating time of the control action of 0.05 s,
which was enough to successfully realize the gait cycle by the experimental WBRD.

The comparison of the proposed controllers confirmed that the observed additional compensation
of the H-ADRC improves the tracking efficiency for all the articulations. Moreover, the oscillations of
the measured angular are reduced during the transient period. In addition, one may notice that state
feedback provides the worst tracking performance among the evaluated controllers. This result was
also true for all the trajectories in the constructed WBRD.

The comparison of the controllers’ performances was realized through the calculus of the norm
of the tracking errors (Figure 12a). This comparison proves that the tracking error is smaller if the
evaluated controller was the H-ADRC in comparison with the other two controllers (state feedback
and PID). Notice that the PID form provides a comparable tracking quality to the H-ADRC. Notice
that a fair comparison between the evaluated controllers cannot include the norm of the tracking error
only, but it must include the energy associated with the controller. Here, one may notice that H-ADRC
uses larger energy (measured in terms of the norm of the control action) than the other two controllers
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(Figure 12b). This increment is actually not significant (12%), and it occurs only during the 20% of the
evaluated period corresponding to the gait cycle.
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Figure 11. Comparison of the trajectory tracking task in the WBRD by means of different control
techniques.
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Figure 12. Performance index for each control technique: (a) comparison of the Euclidean norm of the
tracking error; (b) energy used by each controller represented by the evolution of the integral of the
square control action u.

Figure 13 provides a sequence of photographs corresponding to the experimental evaluation of
the H-ADRC controller over the constructed WBRD. These photos reveal a sequence of the BIMR
positions if the controller BIMR regulates the DC motor actuators yielding a coordinated articular
movements. The sequence confirms the effects of the additional compensation integrated in the
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H-ADRC. Additionally, the sequence confirms the performance of the alternated activation of the
vacuum pumps according to the realization of the gait semi-cycle in either scenario a or b.

Experimentally, the hybrid controller provides the efficient tracking of the reference angular
positions in both scenarios a and b, despite the model of the WBRD not having been used at all in the
experimental sequences.

Figure 14 is intended to highlight the sequence realized by pumps that remain attached to the
floor after the proposed controller drives the trajectories toward the references (red arrows for the
attached and blue arrows for the released pumps). This strategy succeeded in keeping the angular
velocities bounded at each joint in the bioinspired robot. In addition, the reference trajectories for
the controller were proposed to keep the distal section of the WBRD closer to the floor. In addition,
the absolute values of their time derivatives are small enough to limit the possibility of having fast
variations of the controlled angular position at each join, which also contributes to reducing high
frequency oscillation of the tracking error. All of these strategies together restricted the possibility of
the discontinuous movements’ effect on the proposed WBRD.

Figure 13. Experimental gait sequence.
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Figure 14. Reference framework switching: (a) second vacuum pump activated (red arrow) in zero
position; (b) second vacuum pump activated during gait cycle; (c) first vacuum pump activated in zero
position; (d) first vacuum pump activated during gait cycle.

Remark 5. The magnitude of the control signal depends on the initial conditions of the position and velocities
of the suggested mobile robot links. Moreover, the magnitude of the control is a trade-off between the convergence
time, as well as the accuracy on the tracking error. This problem can be solved by an adaptive version of the
controller in order to reduce the control magnitude as the tracking error approaches the origin. In addition,
the energy is necessary to fulfill the restrictions imposed by the Barrier function. In the case of the experimental
results, the control signal is restricted according to the signal that is sent to the robotic device, which means
that a pulse Width modulated (PWM) signal is implemented in the device. The maximum value for the control
output is 2N with N the number of bits used for implementing PWM signal. Under this condition, the CD
motor is moving as its maximum speed, which is always bounded.

9. Conclusions

The proposed controller exhibited an acceptable performance even in the presence of parametric
uncertainties and noisy measurements. The hybrid structure allows for dealing with the WRBD
represented by two link robot manipulators alternating between their first and last links as a reference
for its working space. This result constitutes one of the first ADRC approaches dealing at the same
time with hybrid systems with restricted variables. A barrier technique imposed angular restrictions
in the robotic device avoiding any damage to its physical structure. Moreover, the H-ADRC controller
reduces the steady state error compared with classical output feedback structures like state-feedback
(PD form) and extended state state feedback (PID structure).
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Abstract: The deterioration of current environmental water sources has led to the need to find ways
to monitor water quality conditions. In this paper, we propose the use of Streeter–Phelps contaminant
distribution models and state estimation techniques (observer) to be able to estimate variables that are
very difficult to measure in rivers with online sensors, such as Biochemical Oxygen Demand (BOD).
We propose the design of a novel Fractional Order High Gain Observer (FOHO) and consider the use
of Lyapunov convergence functions to demonstrate stability, as it is compared to classical extended
Luenberger Observer published in the literature, to study the convergence in BOD estimation in rivers.
The proposed methodology was used to estimated Dissolved oxygen (DO) and BOD monitoring of
River Culiacan, Sinaloa, Mexico. The use of fractional order in high-gain observers has a very effective
effect on BOD estimation performance, as shown by our numerical studies. The theoretical results
have shown that robust observer design can help solve problems in estimating complex variables.

Keywords: Streeter–Phelps model; fractional-order control; high observers; river monitoring

1. Introduction

Among the main problems of humanity are those related to water availability and pollution.
Unfortunately, industrial development and population growth lead to an increase in pollutant
discharges which have a negative impact mostly on aquatic ecosystems [1]. With the accelerated
urbanization in the world, and especially in Mexico, environmental water problems have become even
more considerable. Long-term ineffective governance has driven to aggravate water pollution in some
areas more than ever before [2]. In recent years, with importance on environmental water quality,
water pollution has been gradually brought under control. In addition, research has been centred on
the field of water quality exploration and pollutant diffusion simulation in rivers and watersheds via
mathematical modeling and novel tech [3].

Related to aquatic environments researches, the water quality model is a fundamental strategy
for the water study and its forecasts. Streeter–Phelps model is distinguished as the first dynamic and
spatial water quality model. Therefore, almost all modern timeline researchers have done an enormous
amount of research in improving and developing water quality models [4]. Due to their relevance,
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experts in environmental river control are still employing it to obtain mathematical models of water
quality from rivers and lakes [5–9].

The Streeter–Phelps model relates the two main mechanisms that define dissolved oxygen in a
lotic water Biochemical Oxygen Demand (BOD) receiving wastewater tributary. These mechanisms
are a decomposition of organic matter and oxygen aeration [5]. It is also used to estimate BOD and
Dissolved oxygen (DO) transport, which is achieved by feeding data on hydromorphological and
water quality parameters [10].

Usually, automated water quality control in rivers and lakes is still done traditionally,
i.e., employing complicated laboratory techniques, which implies time, consumable resources,
and delays in decision-making [11]. Some robotic prototypes have been proposed to obtain a better
environmental control [12–14]; these are an excellent tool for active monitoring of water quality since
this type of robotic device has embedded sensors of physicochemical parameters of remote-controlled
GPS position [15–17]. Currently, existing commercial sensors can measure variables, such as turbidity,
pH, temperature, and DO, which help measure water quality in water bodies [14]. Currently, there are
remarkable scientific advances in relation to mobile and fixed stations for environmental monitoring
of rivers [18–20]. Still, there are water quality variables that are not commonly measured by
commercial sensors, such as chemical oxygen demand and BOD [11]. Using the information about
the Streeter-Phelps model and algorithms called Observers, it is possible to estimate BOD via the
information of other sensors, such as the available DO and longitude (GPS signal). Observers have
received several versions and improvements in their performance, over time, in the difficult task
of state estimation and parameters in complex systems, but these are still being improved in all
their different applications. For example, some outstanding works of each technique, from the first
generations linear [21], non-linear [22], adaptive [23], sliding mode [24], non-uniformly observable [25],
and discreet observers who can provide good results [26], based on the frequency [27] and high-gain
systems [28], have been proposed. There are also applications of its functions and fuzzy techniques for
diagnosing sensor faults and multiple applications [29,30]. Currently, the use of fractional techniques
and their implementation in state estimation via observers is being arduously studied, since the use of
fractional techniques allows to add degrees of freedom in the tuning of the observers [31].

From the knowledge of the authors, there are few published works about the use of observers
for Streeter-Phelps states estimation; there is a very outstanding work where it was used as a linear
technique and a Luenberger observer for the BOD estimation [32]. This remarkable work was possible
due to change in the basis to obtain an observable model. However, given the time in which it was
published, obsolete techniques are used that are not robust to parametric changes and in the presence
of disturbances.

In this paper, we present a robust Fractional High-Gain Nonlinear Observer design for state
estimation in the Streeter–Phelps model published in Reference [32]. Besides, we analyze parametric
sensibility via the use of Lyapunov convergence functions. The proposed novel fractional observer
design is based on a Lyapunov analysis. The proposal is directed to future work where this kind of
algorithms can be embedded and programmed in robotic watercraft to estimate environmental rivers
quality water variables. MATLAB Simulink simulations are made to show the advantages of our
algorithm over those proposed for similar models. Finally, in conclusion, there are some perspectives
and thoughts open to investigation for possible tasks in real time.

2. Mathematical Model and Problem Statement

The most common nutrient and oxygen distribution pollutant mathematical model is the
Streeter-Phelps system. Since 1925, it has described the oxygen balance in rivers, lakes, and water
sources. Although the appearance of more complex models, the Streeter-Phelps model (and its
extensions) continues to be one of the most widely used, since it is a relatively simple mathematical
model. However, it injects much essential information; despite almost a century since its presentation,
it continues to be used [4–10]: Under some assumptions, Streeter-Phelps model helps to estimate and
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measure the main variables for environmental studies, such as BOD and DO, via aquatic robots and
algorithms observers programmed, thus improving the environmental monitoring of rivers. Together,
BOD and DO are the parameters that represent the largest number of pollutants in water bodies.
Indeed, the higher the BOD, the lower the amount of OD, which in turn poses a greater risk to aquatic
life. Furthermore, the study of these parameters allows us to know the resilience of a river and/or the
degree of pollution received by polluting discharges [33]. We propose to use the model in this work
under the following assumptions.

Condition 1.

1. The river maintains a constant volumetric flow rate and possible bounded changes to nominal flow rate
(U volume/time).

2. It is assumed that a one-dimensional longitudinal displacement in the same natural direction as the river
direction of the river (L longitude). From L0 = 0 to L → ∞.

3. It senses dissolved oxygen (x1(L) = x1) mgO2/volume) in real-time in an embedded manner.
4. BOD (x2(L) = x2) mgO2/volume) can be estimated via state or observer estimation techniques, as the

y = x1 output is available.
5. Based on the literature [34], we will assume that the mathematical models parameters are invariant to time

but sensitive to changes in position L > 0 or other factor as: temperature, flow velocity, etc., i.e., in this
paper, we propose L as the independent variable.

Therefore, given the nature of phenomenology, the independent variable throughout this work
will be the position L. We have the following Streeter–Phelps mathematical model respect position [35]:

dx1

dL
= − k1(L)

U
x2 +

k2(L)
U

(Ds − x1))

dx2

dL
= − k1(L)

U
x2, (1)

where the parameters k1(L) > 0 are the BOD removal rate coefficient, k2(L) > 0 is the reaeration
coefficient, and Ds is the oxygen saturation level. This type of system tends to be extremely sensitive
to parameter changes, in this case, parameters, such as linear velocity U and the variation of constants
k1,2 [33]. Therefore, it is necessary to perform a parametric sensitivity analysis, which will be substantial
to design a state observer. In this paper, we propose such analysis by using stability concepts in the
sense of Lyapunov. For the above, it is necessary to make some conceptual assumptions to study
stability analysis.

Condition 2. It is proposed that the model parameters (1) fulfilled following condition:

k1(L) = k1 + β1(L) (2)

k2(L) = k2 + β2(L),

where k1,2 are nominal known parameters; β1(L) and β2(L) are continuously bounded functions |β1(L)| < α1l
and |β2(L)| < α2L; and the α1,2 > 0 are Lipschitz constants respect to longitude L. In this paper, we propose
that β1(L), β2(L) functions are unknown, unexpected but bounded, which cause unwanted parametric
distortion δ(L).
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Substituting (2) on the mathematical model (1) and reducing:

dx1

dL
= − k1

U
x2 − k2

U
x1 + δ1 +

k2

U
Ds

dx2

dL
= − k1

U
x2 + δ2 (3)

δ1 = − 1
U
(−β1(L)x1 − β2(l)(Ds − x2))

δ2 = − 1
U

β1(L)x1.

The previous system (3) can be represented in its state form as a autonomous linear system in
bounded disturbance presence:

dx
dL

= Ax + δ(L) (4)

for xT = [x1, x2]
T , δT(L) = 1

U [δ1 + k2Ds, δ2]
T , and A =

[
−k2

1
U −k1

1
U

0 −k2
1
U

]
. Hence, a general condition

to the global disturbance δ(L) is proposed.

Condition 3. Let δ(L) be a bounded unknown nonlinear function such that the following is fulfilled:

‖δ(L)‖ ≤ Dmax > 0. (5)

Note 1. In this paper, we will assume that the linear velocity remains constant, as we focus on the possible
change in kinetic, chemical parameters (k1,2). The parametric distortions due to linear velocity (Uriver) changes
will not be treated in this work due to an extension of it. But, it is easy to see that this kind of distortions
(linear velocity changes) would cause limited delta distortions; therefore, for Uriver = Unom + δ(U)U :

dx
dL

= AUnom x + δ(U)X (6)

‖δ(U)‖ ≤ ‖AUnom‖ .

Therefore, the following theoretical result is proposed, where parametric sensitivity is analyzed
via a stability analysis using Lyapunov’s convergence functions.

Theorem 1. Let x = 0 be the spatial equilibrium point of (4) and δ(L) fulfilled above Condition 3. The origin
x = 0 will maintain a bonded dynamic in a ball of convergence in parametric chances presence for non-negative
matrix Q and P such that: λmin{Q} >> 2Dmaxλmax{P}.

Proof. The following Lyapunov function is proposed: V = 1
u xT Px with independent variable L, if it

replaces the derivatives under trajectories systems:

dV
dL

=
1
U

ẋT Px +
1
U

xT Pẋ (7)

dV
dL

= xT(PA + AT P)x + 2xT Pδ(t).

Since A of (4) is Hurwitz matrix for U, k1, k2 > 0, then it is Re λi > 0 (due to the nature
non-negative parametric system). Hence, Lyapunov algebraic equation calculation PA + AT P = −Q
is fulfilled.

Therefore, (7) is reduced, with c = 2Dmaxλmax{P}, λmin{Q} = a and bounded:
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dV
dL

= −xTQx + 2xT Pδ(t)

dV
dL

≤ −a ‖x‖2 + c ‖x‖ (8)

dV
dL

≤ −a ‖x‖
(
‖x‖ − c

a

)
.

The higher the value of the system, the faster it will converge in the neighborhood to a ball of
convergence such that

Bx = {‖x‖ ∈ R
2 : ‖x‖ <

c
a
} (9)

Bx = {‖x‖ ∈ R
2 : ‖x‖ <

2Dmaxλmax{P}
λmin{Q} }.

In the disturbances system presence, (4) in spatial equilibrium point will remain Ultimated
Bounded [36].

In order to exemplify the previous theorem use, as well as P, Q matrix calculation, we will use
real data obtained from literature and be able to make a parametric stability analysis and sensitivity in
the theorem above sense. U = 1 is proposed, and it is assumed that the parameters of k1, k2 have a 5%
maximum change from the nominal value.

First, via Condition 2, the maximum bounded is obtained |β1(l)| = 0.05k1,nom and
|β2(l)| = 0.05k2,nom. Thus, by replacing this in (4) with nominal parameters, k1 = 0.3 day−1 and
k2 = 0.06 day−1 of literature [34]. Disturbance vector δ(L) will be calculated:

δ(L) =

(
β1(l)x1

β1(l)x1 − β2(t)x2

)

δ(L) =

(
−0.03x1

0.03x1 − 0.006x2

)
. (10)

If parameters are substituted, in matrix A (4), it is obtained:

A =

[
−0.3 0
−0.3 −0.06

]
.

Therefore, there is a Λ = 0.05A matrix, such that δ(L) = Λx, such that:

δ(L) =

[
−0.015 0
0.015 −0.003

]
︸ ︷︷ ︸ x

Λ.

If the matrix Q = −I is chosen, Lyapunov P matrix calculation is obtained by matrix system
solution PA + AT P = −I, such that:

P =

[
1.6667 −1.3889
−1.3889 15.2778

]
, (11)

where the eigenvalues of P are Re λi = [1.667 90.2778], to obtain the convergence ball of (9),
in the presence of a constant perturbation of 5%, such that λmax{P} = 15.2778, λmax{Q} = 1 and
λmax{Λ} = 0.03. In addition:
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‖δ(L)‖ = ‖Λx‖
‖δ(L)‖ ≤ 0.05 ‖A‖ ‖x‖ ≤ 0.05λmax{Λ} ‖x‖ 0.015 ‖x‖ (12)

Dmax ≤ 0.015 ‖x‖ .

Substituting (12) on the inequality calculation (8):

dV
dL

≤ −a ‖x‖2 + c ‖x‖ ≤ −λmin{Q} ‖x‖2 + 2Dmaxλmax{P} ‖x‖
dV
dL

≤ −‖x‖2 + 0.4581 ‖x‖2 ≤ −0.5419 ‖x‖2 .

Since Lyapunov’s function V = 1
u xT Ax and Raleigh’s inequality U

λmax{A}V ≤ ‖x‖2, it is had:

dV
dL

≤ −1.80V.

Therefore, finally:
V = V(0)e−1.80l .

For a constant perturbation, the system reaches asymptotic stability, which is a sub-case of practical
stability. When perturbation varies from the position, the system will converge to a ball of convergence
in the sense of Reference [36].

Problem Statement

The system represented in the linear system (4) has analytical properties that do not allow state
estimators to be used, since the y output is a signal that does not permit all states reconstruction,
due to general observability matrix, has not been full range, and this has already been studied in the
literature. Through certain analytical assumptions about the system (4), a non-linear observable system
is obtained, with which it is possible to estimate variables via the use of an observer [32]. By assuming
a linear relationship between the BOD removal rate and DO, with zero DO giving no decrease in BOD,
a new removal rate coefficient is defined by k3 = k1

x1
. These modifications, performed in (1), show:

U
dx1

dL
= −k1x2 + k2(Ds − x1) + ID − c1x1

U
dx2

dL
= −k3x1x2 + IB − c1x2, (13)

where ID is the inflow of DO, IB the BOD inflow, c1 the oxygen turnover rate due to flow through, and,
on the average, ID = c1x1 and IB = c1x2. Thus, the previous system can be rewritten as follows:

dX
dL

= A0X + f (X)

y = x1, (14)

where A0 =

(
0 1
0 0

)
, and f (X) =

(
−x2 +

1
U (−k1x2 + k2(Ds − x1) + ID − c1x1)

1
U (−k3x1x2 + IB − c1x2)

)
.

For robust BOD estimation via the above model, we propose a novel fractional observer, and its
analytical design is proposed in the following section.

3. Design of a Novel Fractional Observer (FOHO)

Firstly, fractional calculus is the expansion of traditional analysis to derivation and integration
operations employing non-integer orders. In this paper, a fractional-order high gain observer (FOHO)
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is proposed in order to estimate non-measurable variables (BOD) of a river basin environmental
monitoring problem. The Caputo fractional derivative of order β of a function φ(L) on the positive
real half axis is determined. It is important to notice that the notation D−βφ(L) is used, as well as to
denote the fractional integral of order β of function φ(L), more precisely D−βφ(L) ≡ Iβφ(L) [37].
The definitions of fractional derivative and fractional integral, as stated above, cannot be used
in practice; thus, numeric methods, such as the one based on the Grünwald–Letnikov approach,
are commonly used. Here, we deal with the same note in terms of the definition of the fragmentary
calculation tool as in Reference [38]. Therefore:

Iβφ(L) =
1

Γ(β)

∫ L

0

φ(τ)

(L − τ)1−β
dτ, (15)

where 0 < τ < L and β. Thus, the following fractional observer (FOHO) is proposed for system (14):

dz
dL = Aoz + f (z) + bu + Λ(θ)CTCe + δ̂

δ̂ (L) = −SΔ−1
θ Iβsign(e)

. (16)

For e = Z − X, it is as follows:

Ao ∈ R
n×n is the state matrix in canonical form,

z(t) ∈ R
n×1 is the estimate state vector,

δ̂(L) ∈ R
n×1 is the estimate state disturbance,

Λ(θ) ∈ R
n×n is the high gain Hurwitz matrix,

β∈ R is the fractional order integer,
Δθ∈ R

n×n is the symetric matrix such that Δθ = diag(1, θ, θ2 . . . θn−1), and
S∈ R is a Lyapunov symmetric matrix,

where h1, ..., hn > 0 are gains. hi is an observer gain, θ is a positive high gain, and Λ(θ) matrix is
as follows:

Λ(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θh1 1 0 · · · 0

θ2h2 0 1
. . . · · ·

...
...

. . . . . .
...

θn−1hn−1 0 · · · 0 1
θnhn 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, there is a matrix Ah such that it is fulfilled:

Δ−1
θ Λ(θ)Δθ = θAh. (17)

There is a symmetric Δθ such that Δθ = diag(1, θ, θ2 . . . θn−1). Thus, Ah is a Hurwitz matrix by
construction, such that:

Ah =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

h1 1 0 · · · 0

h2 0 1
. . .

...
...

...
. . . . . . 0

hn−1 0 0 0 1
hn 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

Condition 4. Let e = Z − X be estimated error such that the following is fulfilled:
1. Ah will be a Hurwitz matrix always exists a matrix S = ST such that [39]:

SAh + AT
h S = −I. (19)
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Therefore, for any θ > 1, introduce the next symmetric matrix:

Sθ = Δ−1
θ SΔ−1

θ .

2. Consider the error function e = z − x of (16) and (14). Existing λmin{S} = c > 0 such that [40]:

c
∣∣∣Iβsign(e)

∣∣∣ > δmax. (20)

Therefore, the main general theoretical result of this work is presented by means of the
following theorem.

Theorem 2. Convergence of FOHO estimator. Let an observer (16) and (14) be, it is said, that general error of
state estimation e(t) = z(L)− x(L) converge asymptomatically, with high gain function θ > 1 in unknown
nonlinear perturbation presence |δ(t)| < Dmax if Ah is a Hurwitz matrix with Dmax known, and matrix
C = [1 0 0 . . . 0] if it is fulfilled Condition 4.

Proof. The estimate error de
dL = dz

dL − dx
dL has been substituted in the dynamics Equations (16) and

(14) corresponding:

de
dL

= A0z + bu + δ̂ + Λ(θ)CTCe − A0x − bu − δ + k(·)
de
dL

= (A0 + Λ(θ)CTC)e + δ̃ + k(·)
de
dL

= (A0 + Λ(θ)CTC)e + δ̃ + k(·), (21)

where k(·) = f (Z)− f (X) via Lipschitz relationship, and the following condition can be obtained [39],
such that: ‖k(·)‖ ≤ γ(z − x) ≤ γe. In addition, it has the following remarkable matrix properties:

Λ(θ)CTC =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θh1 1 0 · · · 0

θ2h2 0 1
. . . · · ·

...
...

. . . . . .
...

θn−1hn−1 0 · · · 0 1
θnhn 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 0 0
. . . · · ·

...
...

. . . . . .
...

0 0 · · · 0 0
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θh1 0 0 · · · 0

θ2h2 0 0
. . . · · ·

...
...

. . . . . .
...

θn−1hn−1 0 · · · 0 0
θnhn 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, A0 + Λ(θ)CTC =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θh1 1 0 · · · 0

θ2h2 0 1
. . . · · ·

...
...

. . . . . .
...

θn−1hn−1 0 · · · 0 1
θnhn 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Λ(θ).

Hence, (21) is modified:
de
dL

= Λ(θ)e + δ̃ + k(·). (22)

It is proposed a Lyapunov function Vθ(e) = Vθ with its derivates along trajectories of (22):

V = eTSθe
dV
dL

= eT(SθΛ(θ) + ΛT(θ)Sθ)e + 2eTSθ δ̃ + 2eTSθk(·). (23)

Recalling Condition 4 Sθ = Δ−1
θ SΔ−1

θ , eθ = Δ−1
θ e, and eT

θ = (Δ−1
θ e)T and reshuffling terms:
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dV
dL

= eT
θ [SΔ−1

θ Λ(θ)Δθ + (Δ−1
θ Λ(θ)Δθ)

TS]eθ + 2eT
θ Sk(·) + 2eT

θ SΔ−1
θ δ̃. (24)

Replacing (17) on (24):

dV
dL

= θeT
θ [SAh + AT

h S]eθ + 2eT
θ Sk(·)− 2eT

θ SΔ−1
θ δ̃. (25)

Giving δ̃ = δ̂ − δ, if we substitute the δ̂ of observer (16):

dV
dL

= θeT
θ [SAh + AT

h S]eθ + 2eT
θ Sk(·)− 2eT

θ SΔ−1
θ (2SΔ−1

θ Iβsign(e)− δ). (26)

Given that Ah is a Hurwitz matrix and ‖δ‖ ≤ Dmax and fulfilling Condition 4, it has, as follows:

dV
dL

= −θeT
θ eθ + 2eT

θ Sk(·)− 2eT
θ SΔ−1

θ (2SΔ−1
θ Iβsign(e)− δ)

dV
dL

= −θeT
θ eθ + 2eT

θ Sk(·)− eT
θ SΔ−1

θ (SΔ−1
θ Iβsign(e)− δ) (27)

dV
dL

≤ −(θ − b) ‖e‖2
θ + c ‖e‖θ (c

∥∥∥Iβsign(e)
∥∥∥− Dmax).

Since λmax{Δ−1
θ } = 1 for one high gain θ � b, where b = 2λmin{S}λmin, c =

λmax{S}λmax{Δ−1
θ } = λmin{S}, the observer will converge asymptomatically to zero when the

longitude tends to infinity, in same sense as Reference [37,40].

4. Materials and Methods

In order to carry out the numerical simulation study, it is necessary to mention the conditions and
system parameters to be studied, in this case, an urban river in Mexico. All these data were obtained
from the literature; thus, it is possible to carry out a theoretical numerical simulation to be able to
appreciate the β parameter observer effect on the BOD estimate in the river simulation. The Culiacán
river, located in the State of Sinaloa, is of great regional importance since this country region is known
as the granary of Mexico, and this river feeds the agricultural industry. Its course is 87.5 km long,
and its basin covers 17,200 km2, with an annual flow of 3280 million hm3. It has an average depth of
1335 m, with an average width of 50 m and a flow of 0.5 m3/s [41,42].

The river is formed at the confluence Tamazula and Humaya rivers. It runs along the Pacific
coastal plain, initially flowing through a large part of the urban area, which is why it has been indicated
that the Culiacán River has a certain level of pollution resulting from the discharge of contaminated
water from industrial processes [43]. Therefore, it is necessary to be able to monitor water quality and
its DO and BOD levels. In this section, we suggest a numerical simulation study where we suggested
estimation BOD and monitoring of DO in presence to Streeter-Phelps model parameters changes.
The modelling parameters are taken from those published in Reference [32], and we will have 100% k1

and k2 nominal parameters along the river position L, simulating the course of an aquatic boat robot at
constant velocity in the environmental monitoring task by measuring DO (x1) and estimating BOD
(x2) using the fractional observer shown (16).

In this paper, we performed a simulation study on the use of the Streeter–Phelps model for
DO measurement and BOD estimation of the Culiacán river. The simulation was carried out in
MATLAB-Simulink language, via a numerical method ODE45 with variable step. Based on the
physical data model river parameters (14), the study was carried out using the simulation parameters
summarised in the following Table 1.
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Table 1. Model (14) and observer (16) simulation parameters.

Parameter Value

Nominal k1 9.6 L/mo
Nominal k2 6 L/mo

U 7 km/mo
ID 347 mg/L*mo
IB 197.8 mg/L*mo
Ds 15.76 mg/L

x1(0) 10 mg/L
x2(0) 3.83 mg/L
z1(0) 10 mg/L
z2(0) 4.2 mg/L

h1 −1.5
h2 −5
θ 2
β [0, 0.3, 0.6, 0.9, 1]
Ł 0 → 2 km

To test FOHO robustness (16) and Luenberger classical [32] observer algorithms, we noted a
parameter change throughout the simulation, recreating changes along river length (see to Figure 1).
We suggest changes on the Culiacán nominal Streeter–Phelps parameters from the position or length of
the river. It is proposed that the DO signal (x1) recreates more realistic conditions; therefore, we add a
white Gaussian noise signal. Since a theoretical numerical study is presented in this work, the L = 0 is
arbitrary, and the initial conditions of BOD and DO are based on the state-of-the-art. Similarly,
it is assumed that there are no additional pollution sources within the 2 km proposed in this
numerical simulation.
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Figure 1. Proposed changes in parameters.

5. Results

In this brief chapter, we show the numerical simulation results carried out. We study the
effect of the fractional observer order in presence of parameters changed. Simulating the spatial
change dynamics in DO and BOD concentrations (see Figures 2 and 3), through that of the FOHO
and the classical Luenberger observer [32], we can appreciate β parameter change of FOHO; this is
unperceivable at a glance. Still, we can significantly understand the FOHO obtains better performance
over its classical counterpart. The FOHO (16) rejects Streeter–Phelps parameter changes with
significant performance.
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Figure 2. Comparison of Dissolved oxygen (DO) monitoring estimate: the fractional observer (16) and
the extended Luenberger classical observer.
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Figure 3. Biochemical Oxygen Demand (BOD) monitoring using observer (16) and its changes
depending on β fractional-order value and classic observer.

To quantify the performance and accuracy of the state observers, criteria, such as the Integral
Distance Absolute error (IDAE), can be used to evaluate the estimation of states in processes of chemical
or biochemical character usually used in the evaluation of observers [44–46]. To evaluate the effect of
the β performance and accuracy of the state observers, we use two different types of error criteria, in
same sense as Reference [44].

1. Steady-state performance factor (SSPF) ranges from 0 to 1, where zero indicates perfect process
state reconstruction. Perfect reconstruction in this context means that the process variables in
the estimated state vector coincide with the true process. The steady-state performance factor is
defined as:

SSPF =
|x(t)− x̂(t)|

x(t)
, (28)

where x and x̂ are evaluated at the steady-state point. Therefore, the SSPF determines the
accuracy of a state observer at the steady state [44].

2. Integral Distance Absolute error (IDAE), which is inspired by the criteria shown in Reference [44].
It measures the observer dynamic performance and penalises the errors that persist for long
position. In this work, the independent variable is not the time, but it is the length; therefore,
the definition is the following:
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IDAE =
∫ L

0
L |x(L)− x̂(L)| dL. (29)

To evaluate the effect of the β of (16) parameter on state estimation (see to Figure 4), we propose
using IDAE and SSPF (see to Figure 5). We can appreciate that, in the presence of noise, a minor
fractional-order redeems the value of the IDAE. In the case of classic mode absence, the IDAE is
duplicated, proving the superiority of the observer proposed in this work over the classic one.
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Figure 4. Observers Integral time absolute error (IDAE).
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Figure 5. Observers Steady-state performance factor.

In the case of the SSPF, it appreciated a slight effect that has the fractional-order value (β), and the
value of 0.1 is the one that maintains the best performance, while the classic Luenberger extended
has the lowest performance. IDAE criterion importance using specific case is that the independent
variable is the L length, and this criterion reflects the net yield from the river length to measure.
Before reaching the steady-state, even the extended Luenberger observer [32] maintains a better
performance. After L > 1, when the steady-state is reached, it loses effectiveness due to the parameter
changes k1 and k2 affecting the final value of the steady-state SSPF results, as in Figure 5.

The latest generation of fractional gain observers are superior to the Luenberger Extended versions,
in the presence of perturbations at the kinetic constants k1 and k2. However, high-gain observers
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depend mainly on the structure of the mathematical model. If there is a change in structure, it will
result in a type of undefined perturbation, which could not be compensated by the estimator proposed
in this paper. Thus, if maximum distortion is greater than the state’s maximum, our algorithm would
have problems because it is not a fulfilled primary theorem condition, which would be a problem or
weakness of our algorithm. Therefore, it could be said that any disturbance that makes the system
not comply with Conditions 2 and 3 will make the Fractional observer provided in this paper not
perform correctly. When perturbations in parameters, such as U (volumetric flow rate), occur, as long
as the condition shown is met, the fractional observer will maintain an excellent performance, since the
condition of asymptotic stability of the main theorem is already fulfilled. Fortunately, the parametric
and model distortions in most of the real practical cases meet this primary condition.

6. Conclusions

In this work, a stability study for Streeter–Phelps model water quality parameters was proposed,
where it could be obtained by using Lyapunov functions. The main proposal of this work was to
design a new fractional observer to estimate BOD and compare it with the classic form of an extended
Luenberger observer. It has been shown that the use of FOHO improves state estimation performance
and that the fractional-order plays a critical role in evaluation by analysing the error by the IDAE
criteria. This type of algorithm can be used and programmed in waterborne autonomous vehicles
to estimate real-time BOD and monitor DO in case of distortions along the water source position.
Our laboratory is currently working on this task.

Future Work Perspectives

The main contribution presented in this work is to provide an algorithm that estimates variables,
such as BOD, since there are no on-line sensors for this type of variable [26,47]. This estimating
algorithm (dynamic observers) in a robotic water vehicle could be programmed, and, then, the boat
robot must include a position sensing unit; some works have shown the ability to have autonomy in
the position control via GPS signal [26,48]

The vehicle maintains an automatic GPS position control (L longitude) that allows it to keep a
constant speed (U volume/time), similar to those of the river (Uriver volume/time), as well as an
intelligent system of obstacle avoidance that allows the vehicle to stay in the average radius of the
river width; hence, U = Uriver, see Figure 6. In addition, we propose that these results be presented in
a comparative study with renowned modern, robust techniques [29,30] where the performance at
parametric and river spatial velocity presence is studied.

Figure 6. Outline of the application of environmental monitoring.
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Abstract: The main aim of this paper is to propose a robust fault-tolerant control for a three degree of
freedom (DOF) mechanical crane by using a convex quasi-Linear Parameter Varying (qLPV) approach
for modeling the crane and a passive fault-tolerant scheme. The control objective is to minimize
the load oscillations while the desired path is tracked. The convex qLPV model is obtained by
considering the nonlinear sector approach, which can represent exactly the nonlinear system under
the bounded nonlinear terms. To improve the system safety, tolerance to partial actuator faults is
considered. Performance requirements of the tracking control system are specified in an H∞ criteria
that guarantees robustness against measurement noise, and partial faults. As a result, a set of Linear
Matrix Inequalities is derived to compute the controller gains. Numerical experiments on a realistic
3 DOF crane model confirm the applicability of the control scheme.

Keywords: 3 DOF crane; convex systems; fault-tolerant control; robust control; qLPV systems;
Takagi–Sugeno systems

1. Introduction

In recent years, fault-tolerant control (FTC) has become a relevant research field and has attracted
significant attention because of its applicability to industrial systems, which increases their security
and reliability. A fault can be defined as abnormal behavior of at least one characteristic property
or parameter that changes the system performance [1,2]. It is important to note that a fault denotes
a breakdown rather than a catastrophe [3,4]. In other words, a fault not necessarily ends in a system
stop. However, if no action is taken on time, the system performance begins to degrade that could end
in a catastrophe [5]. Therefore, in order to guarantee a minimum level of performance, it is necessary
to develop methods to improve system safety and reliability.

Model-based safety schemes require differential equations representing the complex dynamics
presented in physical systems, which are often nonlinear [6,7]. Recently, multimodel techniques such
as Linear Parameter Varying (LPV), quasi-LPV (qLPV), and Takagi–Sugeno (TS) systems have emerged
as an attractive alternative to deal with the analysis of complex nonlinear systems due to the fact that it
is possible to extend techniques developed for linear systems but applied to nonlinear systems [8–11].
In this paper, it is considered that qLPV and TS systems are the same because the convex model is
obtained through the so-called nonlinear sector approach [12]. This paradigm has been extensively
studied in the works of [13,14]. In the literature, FTC systems have been classified into two approaches:
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passive and active [15]. Passive FTC is an extension of robust control [16] and requires some knowledge
of possible failures that may affect the system. In this scheme, the controller is designed a priori to be
robust to faults, and non-online adaptation is made. This type of control is interesting because it does
not need any fault diagnosis module [17]. In contrast, active FTC systems offer flexibility in the design
task. They are assimilated as a variable structure technique because the controller is reconfigured when
a fault occurs [18]. However, it is necessary to include a Fault Diagnosis and Isolation (FDI) module,
which provides information about the faults [19,20]. The inclusion of the FDI module gives some
conservatism into the controller solution. This work is dedicated to the study of passive fault-tolerant
with application to a mechanical crane.

A mechanical crane can load hundreds of tons and are widely used in oil platforms, ships,
factories, railway depots, piers, among others [21]. By design, the crane is a sub-actuated system,
which means that it has more degrees of freedom (DOF) than control inputs. In the particular case of
the crane shown in Figure 1, it is assumed that the load is attached to a plane. The degrees of freedom
of the crane are three: the first one refers to movement on the x-axis (forward/backward movement
of the carriage); the second on the z-axis (up/down movement of the load); and finally the angular
displacement of the load on the x-axis. However, the system has only two actuators, which are
the trolley motor and the hoist motor. The control objective is to locate the crane at the desired position,
whereby the trolley motor moves the load as fast as possible. At the same time, the oscillations that
could destabilize the system must be minimized [22]. Due to this, it is essential to design control
schemes that consider the under-actuation, a large number of linearities, possible faults, and robustness
to the payload oscillations.

x

Fx

m

l
θ

Fl

Figure 1. Three degrees of freedom mechanical crane.

In the literature, this problem has been approached by considering different methods,
e.g., sliding modes [23], LQ controllers [24], particle swarm optimization [25], adaptive control [26,27],
among others. Regarding safety systems, sliding mode differentiators can be consulted in [28]
and fault-tolerant control in [29,30]. Some authors have explored the design of robust controllers
based on multimodel techniques. For example, in [31], a robust stabilization method based on TS
models was proposed. The authors in [32] presented a hybrid controller that includes position
regulation and oscillation control designed using TS techniques. Similarly, in [33], a reduced-order
H2/H∞ LPV controller was proposed. In [34] a distributed parallel compensation control is explored
through TS techniques. In [35], a fault-tolerant LPV control was proposed. Authors in [36] proposed
a reconfiguration scheme for active fault tolerance by considering predictive control. However, none
of the reported works were subjected to performance tests in the presence of disturbances by unknown
additive signals.

This paper is devoted to developing a robust quasi-Linear Parameter Varying (qLPV) fault
tolerant-control system with H∞ criteria applied to a 3 DOF crane. The main idea is to propose
a control law that minimize oscillations in the load while the desired path is tracked. The proposed
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method is robust to disturbances, sensor noise, and partial faults. The method performance and
applicability are tested through numerical simulations on a 3 DOF mechanical crane by compensating
partial faults on the trolley and load motors.

2. Mathematical Modeling

The free-body diagram of three degrees of freedom traveling crane is shown in Figure 1. The cart
slides along a horizontal rail and at the same time that it is supported by two metal legs. A mass
is suspended from a cable attached to the cart. Force Fx is applied to the cart, which provokes
a displacement in the x-axis. This movement causes an angular displacement θ formed in the pendulum
by the load mass m and the cable of length l whose value can be changed by Fl , i.e., Fl activates
the elevation system by means of a motor and gears. The nonlinear model is given by the following
ordinary differential equations [23]:

M(q)q̈ + Dq̇ + C(q, q̇)q̇ + G(q) = F; (1)

with:

q =

⎡⎢⎣xc(t)
l(t)
θ(t)

⎤⎥⎦ ; F =

⎡⎢⎣Fx(t)
Fl(t)

0

⎤⎥⎦ ; M(q) =

⎡⎢⎣ (Mx + m) m sin θ(t) ml(t) cos θ(t)
m sin θ(t) (Ml + m) 0

ml(t) cos θ(t) 0 ml(t)2

⎤⎥⎦ ;

C(q, q̇) =

⎡⎢⎣0 2m cos θ(t)θ̇(t) −ml sin θ(t)θ̇(t)
0 0 −ml(t)θ̇(t)
0 2mθ̇(t)l(t) 0

⎤⎥⎦ ; D =

⎡⎢⎣Dx 0 0
0 Dl 0
0 0 0

⎤⎥⎦ ; G(q) =

⎡⎢⎣ 0
mg − mg cos θ(t)

mgl(t) sin θ(t)

⎤⎥⎦ ;

where m is the load mass and g is the gravitational acceleration; Dx and Dy are the viscous damping
coefficients associated with the x- and z-axis respectively; finally, Mx and Ml are the traveling and
hoisting components of the crane mass, respectively, i.e., Mx = m + mc and Ml = m, where mc is
the cart mass. The parameter values considered in this paper are close to a real laboratory crane
system, e.g., [37].

The state-space derivation is obtained solving (1) for q̈, such as:

q̈ = −M(q)−1Dq̇ − M(q)−1C(q, q̇)q̇ − M(q)−1G(q) + M(q)−1F. (2)

By using sin θ(t) = Sθ , and cos θ(t) = Cθ ; Equation (2) in long hand becomes,

q̈ =−

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 −mMlSθ l(t)θ̇(t)

μ(t)

0 0 −mMxl(t)θ̇(t)
μ(t)

0
2θ̇(t)
l(t)

MlmCθSθ θ̇(t)
μ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
q̇ −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(Ml + m)Dx

μ(t)
−mSθ Dl

μ(t)
0

−mSθ Dx

μ(t)
(Mx + m − mC2

θ )Dl

μ(t)
0

−Cθ(Ml + m)Dx

l(t)μ(t)
mCθSθ Dl

l(t)μ(t)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
q̇

−

⎡⎢⎢⎢⎢⎢⎣
− mgSθ(t)(MlCθ + m)

μ(t)
0

0
(Mx + m + mC2

θ )(mg − mgCθ) + gm2CθS2
θ

μ(t)
0 0

0
0

mCθSθ(mg − mgCθ) + (Mx Ml + Mlm + Mxm + m2 − m2S2
θ)gSθ

l(t)μ(t)

⎤⎥⎥⎥⎦
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+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ml + m
μ(t)

−mSθ

μ(t)
− (Ml + m)Cθ

l(t)μ(t)

−mSθ

μ(t)
Mx + m − mC2

θ

μ(t)
mSθCθ
l(t)μ(t)

− (Ml + m)Cθ

l(t)μ(t)
mSθCθ

l(t)μ(t)
Ml Mx + Mlm + Mxm + m2 − m2S2

θ

m(l(t))2μ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣Fx(t)

Fl(t)
0

⎤⎥⎦ ;

with μ(t) = Ml Mx + Mlm + Mxm + m2 − MlmC2
θ − m2C2

θ − m2S2
θ = Ml Mx + Mlm + Mxm − MlmC2

θ .
Recalling that q = [xc(t), l(t), θ(t)]T ; then, by considering small values of θ, i.e., Sθ ≈ θ, Cθ ≈ 1, θ2 ≈ 0,
and θ̇2 ≈ 0, the following equations can be obtained,

ẍc(t) =− (Ml + m)Dxẋc(t)
Ml Mx + Mxm

+
mθ(t)Dl l̇(t)

Ml Mx + Mxm
+

(Ml + m)mgθ(t)
Ml Mx + Mxm

+
(Ml + m)Fx(t)
Ml Mx + Mxm

− mθ(t)Fl(t)
Ml Mx + Mxm

;

l̈(t) =
mDxθ(t)ẋc(t)
Ml Mx + Mxm

− MxDl l̇(t)
Ml Mx + Mxm

− mθ(t)Fx(t)
Ml Mx + Mxm

+
MxFl(t)

Ml Mx + Mxm
;

θ̈(t) =
(Ml + m)Dxẋc(t)

l(t)(Ml Mx + Mxm)
− mDlθ(t)l̇(t)

l(t)(Ml Mx + Mxm)
− 2θ̇(t)l̇(t)

l(t)
− (Mx Ml + Mlm + Mxm + m2)gθ(t)

l(t)(Ml Mx + Mxm)

− (Ml + m)Fx(t)
l(t)(Ml Mx + Mxm)

+
mθFl(t)

l(t)(Ml Mx + Mxm)
.

(3)

Remark 1. If θ(t) is not assumed to be small, the nonlinear terms would increase, increasing the complexity
of the convex system representation resulting in a more involved procedure for the controller design. However,
the consideration that the designed controller will keep load oscillations small makes it possible to assume θ ≈ 0.

Finally, by setting x(t) = [x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)]T =

[xc(t), ẋc(t), l(t), l̇(t), θ(t), θ̇(t)]T and u(t) = [Fx(t), Fl(t)]T, the state space representation is obtained:

ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 −m2Dx 0 m1Dl x5 m4g 0
0 0 0 1 0 0
0 m1Dxx5 0 −m3Dl 0 0
0 0 0 0 0 1
0 m2Dx

x3
0 −(m1Dl x5

x3
+ 2x6

x3
) −m5g

x3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(t) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
m2 −m1x5

0 0
−m1x5 m3

0 0
−m2

x3

m1x5
x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u(t); (4)

with m1 = m/(Ml Mx + Mxm); m2 = (Ml + m)/(Ml Mx + Mxm); m3 = Mx/(Ml Mx + Mxm);
m4 = m(Ml + m)/(Ml Mx + Mxm); m5 = (Mx Ml + Mlm + Mxm + m2)/(Ml Mx + Mxm). Note that
the nonlinear terms in (4) are given by:

z =
[

x5
1
x3

x5
x3

x6
x3

]
.

In order to obtain a TS model through the nonlinear sector approach, each nonlinear term is
bounded as x3 ∈ [0.1, 0.72] [m], x5 ∈ [−0.35, 0.35] [rad], and x6 ∈ [−3.467, 3.467] [rad/s], such as
the weighting functions are described as:

1. For z1 = x5 the limits are z1,min = −0.35 and z1,max = 0.35. The weigthing functions are
w11 =

z1,max−z1
z1,max−z1,min

and w12 = 1− w11. Therefore, z1 can be rewritten as z1 = z1,minw11 + z1,maxw12.

2. For z2 = 1
x3

the limits are z2,min = 1 and z2,max = 10. The weighting functions are

w21 =
z2,max−z2

z2,max−z1,min
and w22 = 1 − w21. Therefore, z2(t) can be rewritten as z2 = z2,minw21 +

z2,maxw22.
3. z3 = x5

x3
is bounded as z3,min = −3.5 and z3,max = 3.5. The weigthing functions are

w31 =
z3,max−z3

z3,max−z3,min
and w32 = 1 − w31, with z3 = z3,minw31 + z3,maxw32.
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4. Finally, z4 = x6
x3

is bounded as z4,min = −34.67 and z4,max = 34.67. The weighting functions are

w41 =
z4,max−z4

z4,max−z4,min
and w42 = 1 − w41, with z4 = z4,minw41 + z4,maxw42.

Then, the nonlinear model can be represented by:

ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 −m2Dx 0 m1Dlz1 m4g 0
0 0 0 1 0 0
0 m1Dxz1 0 −m3Dl 0 0
0 0 0 0 0 1
0 m2Dxz2 0 −(m1Dlz3 + 2z4) −m5gz2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x(t) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
m2 −m1z1

0 0
−m1z1 m3

0 0
−m2z2 m1z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u(t) (5)

The number of local sub-models is 24 = 16, then, the membership functions are computed as
the product of the weighting functions that correspond to each local model,

hi(z(t)) =
p

∏
j=1

wj
ij(zj), i = 1, 2, . . . , 2p. (6)

Note that the membership functions are convex which means that hi(z(t)) ≥ 0, ∑16
i=1 hi(z(t)) = 1.

The number of combinations are defined as given in Table 1.

Table 1. Weighing functions.

hi Combination hi Combination

h1 w1
0w2

0w3
0w4

0 h9 w1
1w2

0w3
0w4

0

h2 w1
0w2

0w3
0w4

1 h10 w1
1w2

0w3
0w4

1

h3 w1
0w2

0w3
1w4

0 h11 w1
1w2

0w3
1w4

0

h4 w1
0w2

0w3
1w4

1 h12 w1
1w2

0w3
1w4

1

h5 w1
0w2

1w3
0w4

0 h13 w1
1w2

1w3
0w4

0

h6 w1
0w2

1w3
0w4

1 h14 w1
1w2

1w3
0w4

1

h6 w1
0w2

1w3
1w4

0 h14 w1
1w2

1w3
1w4

0

h7 w1
0w2

1w3
1w4

0 h15 w1
1w2

1w3
1w4

0

h8 w1
0w2

1w3
1w4

1 h16 w1
1w2

1w3
1w4

1

Then, the convex qLPV model is derived as:

ẋ(t) =
16

∑
i=1

hi(z) [Aix(t) + Biu(t)] ;

y(t) = Cx(t); (7)

The matrix C is constant as y(t) represents the measured output which according to the nature of
the system is linear.

3. Convex H∞ Fault-Tolerant Controller

Under the presence of additive actuator faults, system (7) can be rewritten as

ẋ(t) = Ahx(t) + Bhu(t) + Gh f (t),

y(t) = Cx(t),
(8)
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where:

Ah =
16

∑
i=1

hi(z(x(t)))Ai, Bh =
16

∑
i=1

hi(z(x(t)))Bi, (9)

f ∈ R
s represents the additive fault vector and Gh ∈ R

n×s represents the fault matrix. Typically in
order to simulate actuator degradation, it is considered that Gh = Bh.

Then, a convex qLPV controller for the nonlinear 3 DOF crane, as the one shown in Figure 2,
is proposed with:

ε̇(t) = ω(t)− y(t) = ω(t)− Cx(t), (10)

where ω(t) is the reference and the control law is defined by:

u(t) =
16

∑
i=1

hi(z) [F1ix(t) + F2iε(t)] =
16

∑
i=1

hi(z)Fi

[
x(t)
ε(t)

]
= Fh

[
x(t)
ε(t)

]
, (11)

where F1i and F2i are the gain matrices to be computed. Then, the main problem is to determine
the optimal values for these control gains, such that the system be robust to disturbances and
sensor noise. Then, by considering the tracking comparator in the control scheme (10), the following
augmented system is obtained:

˙̄x(t) = Āhx̄(t) + B̄hu(t) + Ḡh f (t) + B̄ωω(t) (12)

with:

Āh =

[
Ah 0
−C 0

]
, B̄h =

[
Bh
0

]
, B̄ω =

[
0
I

]
, Ḡh =

[
Gh
0

]
, x̄ =

[
x(t)
ε(t)

]
.

+
++

-

Comparator

x yu∫
F1i

Crane Cw ε̇ ε F2i

Figure 2. Convex tracking control diagram.

Assuming that the pair [Āi, B̄i] is controllable and the control law (11), the following closed-loop
system is obtained:

˙̄x = (Āh+B̄hFh) x̄ + Ḡh f (t) + B̄ωω(t). (13)

System (13) can be rewritten equivalently as:

˙̄x = (Āh+B̄hFh) x̄ + Ḡωh f̄ω(t), (14)

with:

Ḡωh =
[

Ḡh B̄ω

]
, f̄ω =

[
f (t)
ω(t)

]
(15)

Then, by considering an H∞ performance criteria is considered to design a robust controller
Fh, which minimizes the energy L2-gain of the closed-loop system, such as norm upper bound is
simultaneously guaranteed:
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‖x̄(t)‖2∥∥ f̄ (t)ω

∥∥
2
≤ γ, γ > 0,

as a result, the following Theorem is derived:

Theorem 1. Given the qLPV system (7), the robust control (11) has a quadratic γ-performance level if there
exist matrices X, Mj, with γ > 0, such that the following optimization problem is solved ∀i, j ∈ [1, 2, . . . , 16]:

min γ̄, s.t.⎡⎢⎣ĀiX+B̄i Mj+MT
j B̄T

i + XĀT
i Ḡωi XT

ḠT
ωi −γ̄I 0

X 0 −I

⎤⎥⎦ ≤ 0. (16)

Then, the controller matrices and the performance are computed by Fi = MjX−1 and γ =
√

γ̄.

Proof. Let us consider the following H∞ performance criteria:

V̇(x̄(t)) + x̄(t)T x̄(t) ≤ γ2 f̄ω(t)T f̄ω(t), (17)

where V̇(x̄(t)) is the derivative of the quadratic Lyapunov function x̄(t)T Px̄(t) > 0, with P = PT > 0,
over the trajectory of the augmented states, such as the performance criteria can be rewritten as:

˙̄x(t)T Px̄(t) + x̄(t)T P ˙̄x(t) + x̄(t)T x̄(t)− γ2 f̄ω(t)T f̄ω(t) ≤ 0. (18)

Then, by considering the augmented matrices given in (14), the following is obtained:

x̄T P((Āh+B̄hFh)x̄ + Ḡωh f̄ω) + ((Āh+B̄hFh)x̄ + Ḡωh f̄ω)
T Px̄ + x̄T x̄ − γ2 f̄ T

ω f̄ω≤ 0, (19)

which can be equivalently rewritten as:

x̄T(PĀh+PB̄hFh+FT
h B̄T

h P + ĀT
h P + I)x̄ + x̄T(PḠωh) f̄ω + f̄ T

ω(Ḡ
T
ωhP)x̄ − f̄ T

ω(γ
2 I) f̄ω ≤ 0. (20)

Then, the performance criteria can be factorized as:

[
x̄T f̄ T

ω

] [PĀh+PB̄hFh+FT
h B̄T

h P + ĀT
h P + I PḠωh

ḠT
ωhP −γ2 I

] [
x̄
f̄ω

]
≤ 0. (21)

In order to put together the unknown matrices P and Fh, the inequality is pre and post-multiplyied

by

[
X 0
0 I

]
and its transpose, with X = P−1, such as the following is obtained:

[
ĀhX+B̄hFhX+XFT

h B̄T
h + XĀT

h + XTX Ḡωh
ḠT

ωh −γ2 I

]
≤ 0 (22)

With this transformation, the quadratic term can be eliminated by considering Mh = FhX and
γ̄ = γ2, such as the following Linear Matrix Inequality (LMI) is derived:[

ĀhX+B̄h Mh+MT
h B̄T

h + XĀT
h + XTX Ḡωh

ḠT
ωh −γ̄I

]
≤ 0, (23)
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which can be rewritten as:[
ĀhX+B̄h Mh+MT

h B̄T
h + XĀT

h Ḡωh
ḠT

ωh −γ̄I

]
+

[
XT

0

]
I
[

X 0
]
≤ 0. (24)

Then, by considering the Schur complement, the following LMI is obtained:⎡⎢⎣ĀhX+B̄h Mh+MT
h B̄T

h + XĀT
h Ḡωh XT

ḠT
ωh −γ̄I 0
X 0 −I

⎤⎥⎦ ≤ 0. (25)

Note that (24) and (25) are equivalent, and both can be used to find the gains. However, (25) is
written in a relaxed form to reduce the LMI conservatism. Finally, by considering the equivalent
matrices in (9), the LMI, as given in Theorem 1, is obtained. This completes the proof.

Remark 2. In this paper, the method considers a constant Lyapunov matrix P, which means it is necessary
to find a Matrix P such for all 16 LMIs. This problem can be relaxed by considering a parameter-varying Ph,
which is also called the non-quadratic Lyapunov functions [38]. This problem can reduce the conservatism
of the LMI and open new research areas for future work. However, it is essential to understand that powerful
semidefinite programming solvers as SEDUMI o Mosek can deal with quadratic functions, as presented in this
paper, and it is not necessary to address the non-quadratic problem.

4. Numerical Results

To validate the convex nonlinear model (7) of the 3 DOF crane with respect to the nonlinear
model given in [27], the parameters given in Table 2 are considered with initial conditions x(0) = 0,
l(0) = 0.22 [m], θ(0) = 0. A unit-input pulse it is considered for both actuators from 1 [s] ≤ u(t) ≤ 2 [s],
such as the responses shown in Figure 3 are obtained.

Table 2. Parameters of the 3 degrees of freedom (DOF) crane.

Parameter Value Units

g 9.81 m/s2

m 0.50 kg
Mx 1.655 kg
Ml 0.50 kg
Dx 100 Ns/m
Dl 82 Ns/m

For the sake of simplicity and page limitation, only the comparison of the displacements are
showed here. As can be observer from Figure 3, the responses of both systems, the nonlinear and
the qLPV, are practically the same due to the fact that the convex model represents exactly the nonlinear
system on the sectors limited by the weighting functions. Then, this convex model can be used to
design the convex controller.

For the controller design, Theorem 1 is solved by minimizing γ such as the LMI (16) is feasible.
For such purpose, the YALMIP [39] toolbox and the SEDUMI [40] solver have been used. The computed
attenuation level is γ = 0.0314. Note that an attenuation level γ < 1 guarantees a good robust
performance against noise and disturbances. The resulting P matrix is:
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

29.2989 33.8755 35.2641 −25.3974 −112.0708 −1.1582
33.8755 41.7475 46.7113 −29.3192 −139.3964 −1.8173
35.2641 46.7113 165.1513 2.0182 −168.5182 −5.5944
−25.3974 −29.3192 2.0182 87.9937 86.5479 −4.0631
−112.0708 −139.3964 −168.5182 86.5479 478.4657 8.7512
−1.1582 −1.8173 −5.5944 −4.0631 8.7512 1.4297

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 3. Comparison between the nonlinear and the quasi-Linear Parameter Varying (qLPV) models.

The numerical simulations of the controller were carried-out by considering the initial conditions
given earlier and Gaussian random noise with zero mean and variance 0.2 in the measurements.
The control objective is to displace the cart to track a reference consisting of a pulse oscillation of
1 [m] from the origin, for 20 [secs] in each position, and maintain the load in 0.4 [m] for t ≥ 5 [s].
In addition, in order to evaluate the fault tolerance of the closed-loop system, an additive fault is
applied to the input u1, the fault is defined as follows:

Fault u1 =

⎧⎪⎪⎨⎪⎪⎩
0 t < 35

15% of u1 35 ≤ t ≤ 45

35% of u1 t > 45

.

The fault corresponds to a degradation of the force Fx given by the motor of the cart (25% and
35% of its nominal value). To include these faults, the matrix Gh = Bh, which represents the additive
fault. The numerical simulations results are displayed in Figure 4.

As it can be observed, the controller tracks the demanded changes in the cart position and also
maintains the load position. As a result that the proposed approach considers a passive fault-tolerant
approach, the controller is robust to the actuator’s fault. As it can be analyzed, the fault is compensated
as soon as it appears, which means that its effect is practically eliminated from the system response.
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Different fault scenarios were carried-out to test the controller performance and have been found that
for actuator faults involving a degradation higher than 50%, the controller cannot reach the desired
tracking position anymore. The effect of the noisy measured signals is reflected in the payload
oscillation as this signal looks trembling. In addition, despite the continuous displacement, the load
oscillation is attenuated maintaining a maximum of ±2 degree with respect to the vertical. Nevertheless,
this does not represent a limitation because the main objective was to maintain the desired position
under partial faults. For more significant faults in magnitude, it would be necessary to replace
the motor in order to guarantee the system’s safety.
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Figure 4. Control performance under an actuator fault.

5. Conclusions

This paper has presented a passive fault-tolerant controller for a 3 degree of freedom mechanical
crane. First, a convex model of the 3 DOF crane has been proposed, representing the nonlinear
dynamic by a set of linear models interpolated by nonlinear weighting functions. Then, a tracking
fault-tolerant controller with H∞ performance criteria has been developed over the nonlinear states’
trajectories. The H∞ performance guarantees robustness against measurement noise and partial faults.
The numerical simulations results show the effectivity of the proposed method by tracking a predefined
position of the cart and the load while the oscillations are attenuated despite the actuator faults.
Future work will investigate the inclusion of measurement noise and will compare the development
with a full nonlinear controller such as a nonlinear or sliding model controller.
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Abstract: In this work, a generalization of a synchronization methodology applied to a pair of chaotic
systems with heterogeneous dynamics is given. The proposed control law is designed using the error
state feedback and Lyapunov theory to guarantee asymptotic stability. The control law is used to
synchronize two systems with different number of scrolls in their dynamics and defined in a different
number of pieces. The proposed control law is implemented in an FPGA in order to test performance
of the synchronization schemes.

Keywords: chaos; synchronization; FPGA; UDS

1. Introduction

Dynamical systems that exhibit chaotic behavior have proven to be very useful in science and
engineering, for this same reason it is important to look for implementation alternatives that are fast
and reliable. FPGAs are a very useful technology for these types of needs, due to their flexibility and
the user friendly programming approach.

Since the discovery of systems with chaotic behavior, multiple analysis have been carried out [1–4],
and the topic of synchronization of this class of systems has been a highly studied topic during the last
30 years [5]. This is due to the mistaken perception that this class of systems cannot be synchronized
due to the complexity of their dynamics. This myth vanished in 1983 thanks to Yamada and Fujisaka [6]
where a methodology for the synchronization of two chaotic systems using bidirectional coupling is
presented, meanwhile in 1990 Pecora and Carroll [7] proposed the synchronization of the drive
and response systems with different initial conditions. Since then, a wide series of alternative
methodologies for the synchronization of chaotic systems have been developed [8–16] and thanks to
this methodologies, a vast quantity of possible applications have been found in science and engineering,
from physics [17,18], optics [19,20], biology [21–23], chemistry [24,25] and specially in the branch of
secure communications [26–28].

A wide variety of chaotic systems have been implemented in circuits [29–33], this class of circuit
implementations have certain disadvantages, such as the fact that they need very large changes in
case the system wants to be modified. FPGAs have shown great flexibility in this regard [34–36] and
although the original system changes, the only significant change is the reprogramming of the FPGA,
which represents a great advantage when working on prototyping of new applications, a situation that
represents cost savings and implementation times.

Math. Comput. Appl. 2020, 25, 51; doi:10.3390/mca25030051 www.mdpi.com/journal/mca99
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The aim of this work is to generalize a master–slave synchronization methodology in order to
synchronize two chaotic systems with heterogeneous dynamics, which means that the master system
and the slave system do not need to present the same behavior through time and it is not necessary that
they are defined in the same number of parts, for example, the master system can be a system defined
as a piecewise system, with n parts, while the slave system can be defined in a single part, with a single
domain. In addition to this, the implementation of the most representative synchronization scheme is
carried out in an FPGA, which allows these schemes to be used in multiple different applications.

The rest of this work is divided in the following way: in Section 2 the systems with which
we will work are presented and a brief description of them is given; in Section 3, four different
synchronization schemes are presented, including the methodology; in Section 4 the implementation
of one of the schemes in an FPGA is presented and the results obtained are shown; finally, in Section 5
the conclusions are presented.

2. Preliminaries

This section presents in a non exhaustive way the dynamical systems that will be used in the rest
of the paper.

2.1. The Generalized Lorenz System

Consider the generalized Lorenz system (GLS) defined in [37] as

ẋ =

⎛⎜⎝a11 a12 0
a21 a22 0
0 0 a33

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x, (1)

where x = (x1, x2, x3)
T . Four typical chaotic systems can be specified from (1): (i) Classical Lorenz

system with a12 = −a11 = a, a21 = c, a22 = −1 and a33 = −b; (ii) Chen system with a12 = −a11 = a,
a21 = c − a, a22 = c and a33 = −b; (iii) Lü system using a12 = −a11 = a, a21 = 0, a22 = c and a33 = −b;
(iv) Unified chaotic system with a12 = −a11 = 25 + η, a21 = 28 − 35η, a22 = 29η − 1 and a33 = − 8+η

3 ,
where a, b, c ∈ R

+ and η ∈ [0, 1].

2.2. Unstable Dissipative Systems

Now consider a unstable dissipative system (UDS) defined in [38] as

χ̇ = Aχ + B, (2)

where χ = (χ1, χ2, χ3)
T , A = (αij)

3
j=1 and B contains the switching law of the form

B =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B1 i f χ ∈ D1,
B2 i f χ ∈ D2,
...

...
...

Bk i f χ ∈ Dk,

(3)

with Bk = (bk1, bk2, bk3)
T . It is possible to define two types of UDS, and two types of correspond

equilibria.

Definition 1 (Campos-Cantón et al. [39]). A system given by (2) with eigenvalues λi, i = 1, 2, 3,
satisfying ∑3

i=1 λi < 0. Then, the system is said to be:

(i) An UDS Type I, if one eigenvalue is negative real and the other two are complex conjugate with a positive
real part.

(ii) An UDS Type II, if one eigenvalue is positive real and the other two are complex conjugate with a negative
real part.
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For the equilibria, their two types are defined accordingly. In Definition 1, item (i) implies that the
UDS Type I is dissipative in one of its components but oscillatory unstable in the other two, while item
(ii) implies that an UDS Type II is dissipative and oscillatory in two of their components but unstable
in the other one. Some chaotic dynamical systems may relate to these two types of UDS around
equlibria, systems as the ones in [29,40–42] can be characterized through a combination of UDS Type I
and Type II.

3. Synchronization Scheme

The synchronization scheme diagram is depicted the Figure 1. The output X of the master FPGA
is the input of the slave FPGA, the controller takes this input X and the output Y of the slave system
inside of the slave FPGA and compensates the slave system output, which means that lim

t→∞
|Y − X| = 0.

Figure 1. Synchronization scheme diagram.

The rest of this Section presents four master–slave synchronization schemes.

3.1. Master UDS–Slave GLS

Consider the master system as

χ̇ =

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ +

⎛⎜⎝bk1

bk2
bk3

⎞⎟⎠ , (4)

while the slave system is defined as

ẋ =

⎛⎜⎝a11 a12 0
a21 a22 0
0 0 a33

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x + u, (5)

where u = (u1, u2, u3)
T . The error vector is defined as e = x − χ, and is possible to obtain

ė =

⎛⎜⎝a11 a12 0
a21 a22 0
0 0 a33

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x −

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ −

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠+ u. (6)

In order to stabilize the error system, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (7)

whose derivative is
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V̇ = e1 (a11x1 + a12x2 − α11χ1 − α12χ2 − α13χ3 − bk1 + u1) + e2 (a21x1 + a22x2 − x1x3

−α21χ1 − α22χ2 − α23χ3 − bk2 + u2) + e3 (a33x3 + x1x2 − α31χ1 − α32χ2 − α33χ3

−bk3 + u3) ,
(8)

which allows to design the control law u as

u = −Pe −

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ −

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠+

⎛⎜⎝a11 a12 0
a21 a22 0
0 0 a33

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x, (9)

where e = (e1, e2, e3)
T is the error vector, and P = PT = diag{p2

1, p2
2, p2

3} is a diagonal matrix of
parameters selected to ensure negativeness of (8).

3.2. Master GLS–Slave UDS

For this scheme the master system is considered as

ẋ =

⎛⎜⎝a11 a12 0
a12 a22 0
0 0 a33

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x, (10)

while the slave system is

χ̇ =

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ +

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠+ u. (11)

The error vector is defined as e = χ − x, consequently the error dynamics are represented by

ė =

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ +

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠−

⎛⎜⎝a11 a12 0
a12 a22 0
0 0 a33

⎞⎟⎠ x − x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x + u. (12)

Similarly to the previous scheme, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (13)

while in this scheme the derivative results in

V̇ = e1 (α11χ1 + α12χ2 + α13χ3 + bk1 − a11x1 − a12x2 + u1) + e2 (α21χ1 + α22χ2 + α23χ3

−a21x1 − a22x2 + x1x3 + bk2 + u2) + e3 (α31χ1 + α32χ2 + α33χ3 − a33x3 − x1x2 + bk3
+u3 ) .

(14)

Under the before considerations, the proposed control law is

u = −Pe −

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ −

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠+

⎛⎜⎝a11 a12 0
a12 a22 0
0 0 a33

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x, (15)
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where, in the same form as before P = PT = diag{p2
1, p2

2, p2
3} is a matrix of parameters selected to

ensure the negativeness of (14).

3.3. Master GLS–Slave GLS

The master system for this synchronization scheme is

ẋ =

⎛⎜⎝a11 a12 0
a21 a22 0
0 0 a33

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x, (16)

However, in this scheme the slave system is defined as

ẏ =

⎛⎜⎝b11 b12 0
b21 b22 0
0 0 b33

⎞⎟⎠ y + y1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ y + u, (17)

Once again, u = (u1, u2, u3)
T is the controller. The error is defined as e = y − x, and its dynamics

is given by

ė =

⎛⎜⎝b11 b12 0
b21 b22 0
0 0 b33

⎞⎟⎠ y −

⎛⎜⎝a11 a12 0
a21 a22 0
0 0 a33

⎞⎟⎠ x +

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ (y1y − x1x) + u. (18)

In order to stabilize the error dynamics, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (19)

where the derivative is

V̇ = e1 (b11y1 + b12y2 − a11x1 − a12x2 + u1) + e2 (b21y1 + b22y2 − a21x1 − a22x2 − y1y3

+x1x3 + u2) + e3 (b33y3 − a33x3 + y1y2 − x1x2 + u3) ,
(20)

which allows to design the controll law u as

u = −Pe −

⎛⎜⎝b11 b12 0
b21 b22 0
0 0 b33

⎞⎟⎠ y +

⎛⎜⎝a11 a12 0
a21 a22 0
0 0 a33

⎞⎟⎠ x −

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ (y1y − x1x) . (21)

3.4. Master UDS–Slave UDS

Finally, the master system for this scheme is

χ̇ =

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ +

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠ , (22)

and the slave system is of the form

ϕ̇ =

⎛⎜⎝β11 β12 β13

β21 β22 β23

β31 β32 β33

⎞⎟⎠ ϕ +

⎛⎜⎝ck1
ck2
ck3

⎞⎟⎠+ u. (23)

The dynamics of the error ϕ − χ is given by
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ė =

⎛⎜⎝β11 β12 β13

β21 β22 β23

β31 β32 β33

⎞⎟⎠ ϕ −

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ +

⎛⎜⎝ck1
ck2
ck3

⎞⎟⎠−

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠+ u, (24)

and once again, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (25)

with derivative

V̇ = e1 (β11 ϕ1 + β12 ϕ2 + β13 ϕ3 − α11χ1 − α12χ2 − α13χ3 + ck1 − bk1 + u1) + e2 (β21 ϕ1

+ β22 ϕ2 + β23 ϕ3 − α21χ1 − α22χ2 − α23χ3 + ck2 − bk2 + u2) + e3 (β31 ϕ1 + β32 ϕ2

+β33 ϕ3 − α31χ1 − α32χ2 − α33χ3 + ck3 − bk3 + u3) .
(26)

Consequently, the proposed control law is

u = −Pe −

⎛⎜⎝β11 β12 β13

β21 β22 β23

β31 β32 β33

⎞⎟⎠ ϕ +

⎛⎜⎝α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎟⎠ χ −

⎛⎜⎝ck1
ck2
ck3

⎞⎟⎠+

⎛⎜⎝bk1
bk2
bk3

⎞⎟⎠ . (27)

4. Results

For the implementation of the synchronization scheme, the selected piecewise UDS given in [43]
presents a four scrolls attractor and it is defined as

χ̇ =

⎛⎜⎝ 0 1 0
0 0 1

−35.139 −8.23 −3.7

⎞⎟⎠ χ +

⎛⎜⎝ 0
0
Bk

⎞⎟⎠ , (28)

where Bk is given by

Bk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
21.0834 if χ1 > 0.5,
14.055 if 0.3 < χ1 ≤ 0.5,
7.0278 if 0.1 < χ1 ≤ 0.3,
0 if χ1 ≤ 0.1,

(29)

and the slave system is

ẋ =

⎛⎜⎝−16 16 0
45.6 −1 0

0 0 −4

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x + u. (30)

Using the synchronization scheme described in the Section 3.1, the control law is defined as

u = −Pe −

⎛⎜⎝ 0 1 0
0 0 1

−35.139 −8.23 −3.7

⎞⎟⎠ χ −

⎛⎜⎝ 0
0
Bk

⎞⎟⎠+

⎛⎜⎝−16 16 0
45.6 −1 0

0 0 −4

⎞⎟⎠ x + x1

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ x, (31)

which will be implemented in a SPARTAN–3AN FPGA Starter Kit board from Xilinx, the general
scheme can be appreciated in the Figure 2. It can be seen that in (a) the SPARTAN–3AN starter kit
board in which the master system is implemented; in (b) the slave system is implemented with the
control law (31); in (c) the Digital to Analog Converter (DAC) can be observed and in (d) the output
data is acquired.
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Figure 2. Synchronization scheme using two SPARTAN–3AN starter kit boards: (a) Master system.
(b) Slave system. (c) DAC. (d) Data acquisition.

In order to implement the synchronization scheme in the SPARTAN–3AN starter kit, the Simulink®

toolbox: Xilinx System Generator was used. In the Figure 3 can be observed the classical Lorenz
system without any kind of control, implemented in Simulink® using this toolbox as example.

Figure 3. Classical Lorenz system implemented in Simulink® using the Xilinx System
Generator toolbox.

When implementing the master system in the FPGA, it is possible to acquire the output signal
using the DAC from the National Instruments module NI–6211. With this is possible to obtain the
plane projections (χ1, χ2) and χ1,2 vs t, this can be appreciated in the Figure 4. This is also applicable
to the projection on the plane (χ1, χ3), as can be seen in the Figure 5. The projections (χ2, χ3) are shown
in the Figure 6, and the FPGA resources utilized by the master system is presented in Table 1.
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(a) (b)

Figure 4. Acquired data from the master system: (a) Projection on the plane (χ1, χ2). (b) χ1,2 vs t.

(a) (b)

Figure 5. Acquired data from the master system: (a) Projection on the plane (χ1, χ3). (b) χ1,3 vs t.

(a) (b)

Figure 6. Acquired data from the master system: (a) Projection on the plane (χ2, χ3). (b) χ3,3 vs t.

106



Math. Comput. Appl. 2020, 25, 51

Table 1. FPGA utilization summary for the master 4–scrolls UDS.

Resources Used Available Utilization

Number of Slice Flip Flops 159 11,776 1%
Number of 4 input LUTs 4177 11,776 35%
Number of occupied Slices 2473 5888 42%
Total Number of 4 input LUTs 4467 11,776 37%
Number of bounded IOBs 145 372 38%
Number of BUFGMUXs 1 24 4%

For the uncontrolled slave system, both of the projections on the planes (x1, x2) and (x1, x3) were
obtained and they can be seen in Figure 7. The projections on the plane (x2, x3) are depicted in Figure 8.
It is important to highlight that the slave system arises a two-scroll attractor while the master system
presents four scrolls. Consequently, once implemented the control law, the slave system will change its
dynamics undergoing a four-scroll attractor behavior with the shape of the master systems’s phase
portrait. The FPGA utilization summary for the slave system is presented in Table 2.

(a) (b)

Figure 7. Acquired data from the uncontrolled slave system: (a) Projection on the plane (x1, x2).
(b) Projection on the plane (x1, x3).

Figure 8. Projection on the plane (x1, x2) for the uncontrolled slave system.
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Table 2. FPGA utilization summary for the uncontrolled Lorenz slave system.

Resources Used Available Utilization

Number of Slice Flip Flops 170 11,776 1%
Number of 4 input LUTs 2373 11,776 20%
Number of occupied Slices 1491 5888 25%
Total Number of 4 input LUTs 2677 11,776 22%
Number of bounded IOBs 53 372 14%
Number of BUFGMUXs 1 24 4%
Number of MULT18X18SIOs 18 20 90%

For the synchronized slave system, both of the projections on the planes (x1, x2) and (x1, x3)

were obtained and they can be observed in the Figure 9. The projections on the plane (x2, x3) are
depicted in the Figure 10. It is easy to see that the two-scroll slave system in fact adopted the master
system behavior presenting four scrolls. The resource utilization of the FPGA is shown in the Table 3,
the utilization increases compared with the master and the uncontrolled slave, this is due to the
integration of the controller u. This proves that in a low cost, entry-level FPGA like the SPARTAN–3AN
the system are possible to implement by taking in consideration that the utilization of the FPGA
exceeds the 60% of the resources. For the MULTI18X18IOs of the system the utilization is 100%, this
problem can be avoided by implementing the synchronization scheme in a more powerful FPGA.

(a) (b)

Figure 9. Acquired data from the slave system: (a) Projection on the plane (x1, x2). (b) Projection on
the plane (x1, x3).

Figure 10. Projection on the plane (x1, x2) for the slave system.
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Table 3. FPGA utilization summary for the controlled Lorenz slave system.

Resources Used Available Utilization

Number of Slice Flip Flops 332 11,776 3%
Number of 4 input LUTs 5550 11,776 56%
Number of occupied Slices 2964 5888 67%
Total Number of 4 input LUTs 7244 11, 776 62%
Number of bounded IOBs 194 372 52%
Number of BUFGMUXs 2 24 8%
Number of MULT18X18SIOs 20 20 100%

5. Conclusions

A synchronization scheme for systems with heterogeneous chaotic behavior was implemented
in an FPGA, this synchronization scheme can synchronize a pair of chaotic systems defined by
a different number of pieces, is possible to apply the scheme to UDSs which is a kind of generalization
for synchronization of piecewise systems with different quantities of pieces on the master and
slave systems, which allows the use in a wide variety of applications in science and engineering.
The synchronization scheme gives to the slave system a the dynamics of the master system.
The synchronization scheme is designed taking into account the error system between the master
and the slave, adding a parameter matrix P that controls the synchronization speed, whenever the
parameter is adequate. The controller guarantees a fast synchronization with a minimum error.
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Abstract: In this paper, as an introduction, the nonlinear model of a distillation column is presented
in order to understand the fundamental paper that the column heating actuator has in the distillation
process dynamics as well as in the quality and safety of the process. In order to facilitate the
implementation control strategies to maintain the heating power regulated in the distillation process,
it is necessary to represent adequately the heating power actuator behavior; therefore, three different
models (switching, nonlinear and fuzzy Takagi–Sugeno) of a DC-DC Buck-Boost power converter,
selected to regulate the electric power regarding the heating power, are presented and compared.
Considering that the online measurements of the two main variables of the converter, the inductor
current and the capacitor voltage, are not always available, two different fuzzy observers (with and
without sliding modes) are developed to allow monitoring the physical variables in the converter.
The observers response is compared to determine which has a better performance. The role of
the observer in estimating the state variables with the purpose of using them in the sensors fault
diagnosis, using the analytical redundancy concept, likewise, from the estimation of these variables
other non-measurable can be determined; for example, the caloric power. The stability analysis
and observers gains are obtained by linear matrix inequalities (LMIs). The observers are validated
by MATLAB simulations to verify the observers convergence and analyze their response under
system disturbances.

Keywords: distillation column heating actuator; Buck-Boost converter; Takagi–Sugeno model; fuzzy
observer with sliding modes

1. Introduction

Nowadays, industrial processes have become increasingly complex to meet the quality and
speed requirements that society demands. These requirements are reflected in a greater number of
components and tasks that must have greater reliability, so they must comply with characteristics such
as greater tolerance to failures and wear derived from their continuous operation, which implies the
need to have control techniques that allow verifying and monitoring the even under fault conditions.

However, in the control of industrial processes, the online estimation of the variables that are not
directly measurable is a fundamental problem, requiring measuring secondary variables that provide
information to continuously monitor the status of the process.

One of the control elements used to carry out continuous monitoring of a system, which does
not require investing in additional sensors, is the state observer. The observer operation is based on
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a mathematical model of the system and the information is obtained to reconstruct the variables that
cannot be directly or easily measured. State observers can be used in several industrial applications.

One of the most widely used industrial processes today is distillation. Distillation is the process
used to separate the components that form miscible liquid mixtures since 800 BC. Distillation is highly
used in the chemical, petrochemical, food, pharmaceutical, and perfume industries. Currently, the need
to produce chemical substances, such as ethanol, with an increasing demand to satisfy the need for
disinfecting products, as well as the generation of biofuels that minimize damage to the environment,
has incremented the need for optimal performance of the distillation process.

The distillation column is the most widely used equipment to carry out the distillation process.
The operation of a distillation column involves working not only with chemicals but also under
pressure and temperature conditions that may result in a risk for the user and the system if there is
inadequate monitoring of the process. Figure 1 shows a simplified diagram of the distillation column.

Figure 1. Distillation column simplified diagram.

Simulation is a key technology in the design, analysis, and operation of distillation columns.
The reliability of simulations to represent the real process strongly depends on model quality,
which needs to be reliable and predictive [1].

In the literature, modeling and control techniques, such as observers and control systems,
have been applied to distillation columns to obtain a better analysis and understanding of the dynamics
of the process, improving the quality of the distilled product and enhancing the user safety.

For instance, in [2], the authors model the phase equilibrium in biodiesel production by reactive
distillation, The model is validated against experimental results for biodiesel production by reactive
distillation. In [3], a surrogate-based optimization of distillation columns is investigated, the authors
propose an implicit surrogate to cope with output multiplicities of the model.

In [4], the authors cope with modeling distillation columns with unknown parameters
by proposing an intelligent, auto-regressive, exogenous Laguerre (AI-ARX-Laguerre) technique,
which achieves average estimation accuracy improvements of 16% and 9% compared with the ARX
and ARXLaguerre techniques, respectively.

In [5], a geometric observer (GO) based on the data from the Automatic Continuous Online
Monitoring of Polymerization reactions (ACOMP) system for a semi-batch free radical polymerization
reactor is presented.
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In [6], a distributed high-gain observer design for a binary distillation process and another
chemical process is presented and validated.

However, although there exist different works regarding the design and validation of distillation
column models and observers, the importance of the related actuators is not always considered.

Actuators in a distillation column are fundamental in the process dynamics since they can modify
physical process variables, such as temperature and pressure [7], modifying the purity of the product
from reflux [8] or the speed of distillation.

The boiler actuator provides the amount of heat that is necessary to heat and evaporate the
mixture to be distilled. This actuator generally controls the heat output by controlling electrical power.
The amount of caloric power generated allows for controlling the speed for distillation in the process.

There are different ways to generate heat in a distillation column boiler, some of them use
combustion appliances, such as natural gas, propane, and oil furnaces, which are cheap but difficult to
control. An alternative is using heating resistors (Figure 2), which generated heat can be controlled by
using an electronic power converter that can regulate the electric power that feeds the resistor.

Figure 2. Distillation column heating actuator.

As in the distillation columns, adequate modelling can facilitate the development of a control
task, allowing to monitor the process dynamics by using state observers.

Different power converters models have been reported in the literature. Authors in [9] present
a small-signal model for a single-stage PV fed Buck converter that acts as a battery charge-controller
in order to improve its MPPT performance. In [10], a multi-physics model of Building-integrated
photovoltaics (BIPV) integrated DC/DC converter is developed to quantify the potential of BIPV.

Other authors have reported models of different power converters such as a bidirectional
DC/DC Buck [11], switching converters with power semiconductor filters [12] and a three-level
T-type grid-connected converter system [13].

Additionally, different observers related to power converters have been reported. In [14],
the authors estimate the power electronics modules by using a reduced-order state-space observer.
A disturbance estimator to minimize the estimation error is coupled to the observer.

The developed observers can be used combined with other control structures, such as the observer
developed in [15], where the authors estimate capacitor voltages from a modular multilevel converter
and correct the estimation error by using a sliding mode control.

In [16], a Luenberger observer used as a residual generator is presented. The residuals help
to detect open circuit faults in the power transistors of a DC-DC converter applied to a fuel cell.
The inductor current is selected as a diagnostic variable to avoid the use of additional sensors to
the system.

In [17], the design and simulation of a fault detection system based on a Luenberger observer
are presented. This observer is used as a residual generator applied in DC-DC converter with
Boost topology. The system detects faults in the voltage and current sensors used in the converter.
The proposed system can reconfigure the converter output through the residual analysis.
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In this paper, a Takagi–Sugeno fuzzy model that represents a Buck-Boost converter, used to
regulate the heating power in a distillation column boiler is presented. The heating power is selected
due to its impact in the thermal performance of the distillation process; when the thermal behavior
of the columns is unstable can derive in several problems, for instance, a thermal shock to the boiler
mixture can cause a violent siphon effect, affecting the measurements, the rate of the distilled product,
and even the security of the process.

The developed Takagi–Sugeno fuzzy model is based on four fuzzy rules corresponding to
two maximum and minimum operating points selected from the simulation of the case study.
The Takagi–Sugeno model is simulated in Matlab and compared to the corresponding reduced
nonlinear model of the converter in order to verify its performance.

Additionally, two different fuzzy observers based on the Takagi–Sugeno fuzzy model are
presented and compared. The Takagi–Sugeno fuzzy observers difference is the inclusion or absence of
a sliding mode term. The observer gains are obtained by linear matrix inequalities (LMIs), which are
solved using mathematical software according to the methodology presented by [18].

2. Case Study: Distillation Column Heating Actuator

A distillation column is made up of three main parts: a condenser, a boiler, and the column body
consisting of n − 2 perforated plates. The vapor flow ascends through the plates of the column body
enriching the light element (the element with the lowest boiling point of the mixture).

The vapor that reaches the condenser is condensed and, according to the state of the reflux valve,
extracted as a distilled product or returned to the column. The returned liquid descends by gravity
in the body of the column, enriching the heavy element (the element with the highest boiling point).
Each plate in the distillation column corresponds to a degree of purity of the light element, known as
the mole fraction.

Fractional distillation is used to separate homogeneous liquid mixtures in which the difference
between the boiling points of the components is less than 25 ◦C. Each of the separated components is
called a fraction.

In a distillation column, it is essential to continuously monitor all of the process variables to
guarantee the quality and quantity of the distilled product, as well as the safety of the process and
operators. To achieve this objective, it is necessary to have adequate control techniques.

2.1. Distillation Column Nonlinear Model

The mathematical model of a distillation column consists of a set of differential equations that
represent the dynamics of each plate in the column in a stable state, i.e., when the first drop is distilled.
Generally, the model of a distillation column is based on the balance of the light component in all of
the plates, as shown in (1).

dxi
dt

=
V(yi+1 − yi) + L(xi−1 − xi)

Mi
(1)

where V is the molar vapor flow, L the molar liquid flow, Mi the retained mass in plate i, xi the liquid
composition in plate i, yi the vapor composition in plate i, xi+1 the liquid composition in plate i − 1,
yi+1 the vapor composition in plate i − 1, xi−1 the liquid composition in plate i − 1, and yi+1 the vapor
composition in plate i + 1, with x, y ∈ IR : 0 < x ≤ 1, 0 < y ≤ 1.

The diagram of the condenser is shown in Figure 3, its dynamics are expressed by the Equation (2),
and the condenser is denominated as plate 1.

dx1

dt
=

Vy2 − Lx1 − Dx1

M1
(2)
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where M1 is the retained mass in the condenser, x1 the liquid composition in the condenser, y1 the
vapor composition in the condenser, x2 the liquid composition in plate 2, y2 the vapor composition in
plate 2, and D the distilled product.

Figure 3. Distillation column condenser.

Figure 4 shows the scheme of a plate in the body column as well as the variables that are involved
in the plate dynamics, expressed in Equation (3).

dxi
dt

=
Vyi+1 − Vyi + Lxi−1 − Lxi

Mi
(3)

with i = 2, 3, . . . n − 1.

Figure 4. Plates in the column body.

Figure 5 shows a scheme of the boiler in a distillation column, denominated plate n, its dynamics
is presented in (4).

dxn

dt
=

Vxn − Vyn + Lxn−1 − Lxn

Mn
(4)

where Mn is the retained mass in the boiler, xn the liquid composition in the boiler, yn the vapor
composition in the boiler, xn−1 the liquid composition in plate n − 1, and n the total number of plates.

117



Math. Comput. Appl. 2020, 25, 55

Figure 5. Distillation column boiler.

Besides, the molar flows are considered in the model, in a batch distillation column these flows
are [19]: vapor molar flow (5), liquid molar flow (6), and distilled product (7).

V =
Qb

Hvap
i xn + Hvap

j (1 − xn)
(5)

L = (1 − R f )V (6)

D = V − L (7)

where Qb is the heating power, R f the reflux, Hvap
i the vapor enthalpy of the light component in the

mixture, and Hvap
j the vapor enthalpy of the heavy component in the mixture.

As can be seen, the heating power determines the distillation column dynamics, thus it is essential
to have an adequate representation of its behavior.

2.2. Heating Actuator (Boiler) Model

The heating power is determined by the Joule law of heating [20] expressed as:

The power of heating generated by an electrical conductor is proportional to the product of its resistance
and the square of the electric current passing through the conductor and the time the current flows
through the wire.

The Joule law is defined by (8)
J = i2Rt (8)

where J is the generated heat in joules, i the electrical current in amperes, R the resistance in ohms and
t the time in seconds.

The law of conservation of energy affirms that energy cannot be created or destroyed, it can only
be changed from one form to another. Joule’s Law expressed in Electric Power (P) is expressed in (9):

w = Pt = Qb (9)

The heating resistance converts electrical energy into heat by circulating current in the conductor;
therefore, the thermal power of a boiler can be manipulated and modeled on the electrical power
dissipated by the resistance.

Figure 6 shows the actuator scheme, which adjusts the power in the boiler heating resistor
by regulating the voltage with a DC-DC converter. This is a simplified model of the buck-boost
converter [21], widely used for the analysis of its operation and control [22–26]. DC-DC converters
can regulate the output voltage to the desired value from the switching of electronic devices, usually
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diodes and transistors. Differences with the actual behavior of the converter are compensated by the
further inclusion of a state observer.

These power electronics converters have applications in renewable energy systems, smart grids,
and home and laboratory equipment power systems [27,28]. The basic topologies of DC-DC converters
are Buck, Boost, and Buck-Boost [21]. The Buck converter is characterized by the output voltage being
lower than the input voltage, the Boost converter is characterized by the output voltage being greater
than the input voltage and the Buck-Boost converter is a step-down converter, depending on the
cycle (d). For d less than 0.5, the converter reduces the voltage and for d more than 0.5 the voltage
is increased.

Figure 6. Scheme of the heating power actuator.

The operating principle of DC-DC converters is the switching of topological states.

3. Buck-Boost Converter Models

3.1. State-Space Model of the Buck-Boost Converter

The model of the Buck-Boost converter is obtained from commuting the Q switch on and off,
which is, from the set of expressions obtained by each topological state. The system is represented
as the states matrix form (10) taking as state variables the inductor current (iL) and the capacitor
voltage (vC).

ẋ(t) = Ax(t) + Bu(t) (10)

During the on time (t = ON), the converter is described by (11):

ẋ(t) =

(
0 0
0 − 1

RC

)(
iL
vC

)
+

(
1
L
0

)
Vcc (11)

During the off time (t = OFF), the converter is described by (12):

ẋ(t) =

(
0 1

L
− 1

C − 1
RC

)(
iL
vC

)
+

(
0
0

)
Vcc (12)

The resulting model of the Buck-Boost converter is a commuting model between two linear
subsystems, represented in (11) and (12), which commutation depends on the switch state Q.
The general representation of the system in matrix form (10) is expressed in (13).

ẋ(t) = Akx(t) + Bku(t) (13)

where k is the subsystem for each switch state: k = 1, 2

A1 =

(
0 0
0 − 1

RC

)

A2 =

(
0 1

L
− 1

C − 1
RC

)
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B1 =

(
1
L
0

)

B2 =

(
0
0

)

x =

(
iL
vC

)

Switching Model Simulation

The parameters of the electrical variables of converter operation, considered as a specific case
study, are presented in Table 1.

Table 1. Buck-Boost converter operation parameters.

Parameter Magnitude

Input voltage Vin 180 V
Output voltage vC −229 V
Inductor current iL 7.3 A

Switching frequency f 20 kHz
Load R 70.3 Ω

Inductor L 5 mH
Capacitor C 78 μF
Duty cycle d 0.56

Figures 7 and 8 show the simulation of the Buck-Boost converter dynamics, as well as the output
ripple, when considering initial conditions in the state variables equal to zero (ẋ(0) = 0).

Figure 7. Capacitor voltage in the Buck-Boost switching model.
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Figure 8. Inductor current in the Buck-Boost switching model.

3.2. Nonlinear Model

The nonlinear model of the converter involves unifying the linear subsystems, including the
control variable u, which is determined by the duty cycle and takes values between 0 and 1, as shown
in (14):

ẋ(t) = (A1x + b1)d + (A2x + b2)(1 − d) (14)

or equivalently in (15):

ẋ(t) = A2x + b2 + (A1 − A2)xd + (b1 − b2)d (15)

The model response is an average of both linear submodels (11) and (12).

ẋ(t) =

(
0 1

L
− 1

C − 1
RC

)(
x1

x2

)
+

(
Vcc−x2

L
x1
C

)
d (16)

3.3. Takagi–Sugeno Fuzzy Model

The Takagi–Sugeno Fuzzy Model has an important advantage, because it analyzes the operation
range of nonlinear systems, using the local sector concept; this means that it takes advantage of the
characteristic of the physical systems which are bounded, which allows for modeling the nonlinear
systems through a linear subsystems set.

Based on the nonlinear model of the Buck-Boost converter presented in (16) and considering as
fuzzy variables the states (z1 = vC, z2 = iL) that operate between maximum and minimum nominal
values (vCmax , vCmin , iLmax , iLmin ), a Takagi–Sugeno (T-S) fuzzy model that interpolates between four
linear submodels based on the following rules is proposed:

Rule 1:
If z1 is z1min and if z2 is z2min

Then:
ẋ(t) = A1x(t) + B1d

Rule 2:
If z1 is z1min and if z2 is z2max

Then:
ẋ(t) = A2x(t) + B2d
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Rule 3:
If z1 is z1max and if z2 is z2min

Then:
ẋ(t) = A3x(t) + B3d

Rule 4:
If z1 is z1max and if z2 is z2max

Then:
ẋ(t) = A4x(t) + B4d

According to the converter characteristics, the linear submodels are obtained while using the
nonlinear sector (z = [max, min]). Where:

A1 =

(
0 1

L
− 1

C − 1
RC

)
= A2 = A3 = A4 = A

B1 =

( Vin+z1min
Lz2min
C

)
, B2 =

(
Vin+z1min

Lz2max
C

)
, B3 =

(
Vin+z1max

Lz2min
C

)
, B4 =

(
Vin+z1max

Lz2max
C

)

C1 =

(
1 0
0 1

)
= C2 = C3 = C4 = C

The membership functions (μ(z)) for the fuzzy sets are determined by Equation (17) for the
capacitor voltage vC = z1:

μ(z1) =

{
μz1min

=
z1max−z1

z1max−z1min

μ1max = 1 − μz1min

(17)

and Equation (18) for the inductor current iL = z2:

μ(z2) =

{
μz2min

=
z2max−z2

z2max−z2min

μz2max
= 1 − μz2mins

(18)

The normalized weights are given by (19):

h1(z1, z2) = μz1min μz2min

h2(z1, z2) = μz1min μz2max

h3(z1, z2) = μz1max μz2min

h4(z1, z2) = μz1max μz2max

(19)

The T-S fuzzy model for the DC-DC converter is given in (20) when considering r = 4.

ẋ(t) = Ax(t) + (∑r
i=1 hi(z1, z2)Bi)d

y(t) = ∑r
i=1 hi(z1, z2)Cix(t)

(20)

3.4. Models Comparison

In this section, the converter nonlinear and the Takagi–Sugeni models are compared to the
response of the switching model in simulation.

In the models simulation in 0.1 s, the load is decreased to 78.94.88% (R = 55.5 Ω) of its nominal
value, in 0.2 s it is increased to 113.79% (R = 80 Ω). In 0.3 s, two simultaneous disturbances are
simulated, the load increases to 113.79% (R = 80 Ω) of its nominal value, and the input voltage is
increased to 116.66 % (VCC = 210 V) of its nominal value.
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Figure 9 shows the behavior of the capacitor voltage (vC) as compared to the nonlinear and the
Takagi–Sugeno models response.

Figure 9. Comparison of the models capacitor voltage dynamics.

Figure 10 shows the behavior of the inductor current (iL) as compared to the nonlinear and the
Takagi–Sugeno models response.

Figure 10. Comparison of the models inductor current dynamics.

The Takagi–Sugeno model has an adequate response as long as the system dynamics are
constrained into the operating points used for its design.

4. Observers

A state observer is a dynamic system that estimates state variables or parameters from available
measurements. Observers, also called virtual sensors, are widely used because they allow estimating
difficult-to-measure variables of a system from available mathematical algorithms and measurements,
and they are also suitable for detecting and locating faults in actuators and sensors.
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Observers have a systematic and simple design procedure, facilitating their implementation and
execution in real time. The mathematical model is a fundamental part of an observer since it allows
describing the dynamics of a real system.

Given a system expressed in the form (10), the observer general equation for reconstructing or
estimating states of a system is described in (21):

˙̂x(t) = Ax̂ + Bu(t)︸ ︷︷ ︸
Predictor

+ L(y(t)− ŷ(t))︸ ︷︷ ︸
Corrector

(21)

where x̂ ∈ � represents the estimated state during time τ > t0 and the estimated output is defined
in (22):

ŷ(t) = Cx̂(t) (22)

The system that is presented in (21) and (22) is also denoted as observer Luenberger identity and it
is coupled to the original process through the inputs and outputs, as shown in Figure 11. The observer
consists of two parts: a predictive stage, based on the model of the observed system, and a corrective
stage, formed by the estimation error defined by the difference between the real output y(t) and the
estimated output ŷ, expressed in (23):

e(t) = y(t)− ŷ(t) (23)

Figure 11. State observer general scheme.

4.1. Fuzzy Observer

Combining the Takagi–Sugeno fuzzy model of a nonlinear system expressed in (24) with the
Luenberger observer (21), the general structure of a fuzzy observer is obtained [29].

˙̂x(t) = ∑r
i=1 hi(z(t))[Aix̂(t) + Biu(t) + Kiẽ]

ŷ(t) = ∑r
i=1 hi(z(t))Cix̂(t)

(24)

Tanaka, in [18], demonstrates the stability of the fuzzy observer as long as there is a P matrix that
satisfies the LMI’s expressed in (25):

P > 0
Ni > 0

AT
i P − CT

i NT
i + PAi − NiCi < 0

AT
i P − CT

j NT
i + PAi − NiCj + PAT

j − CT
i NT

j + PAj − NjCi < 0
i < j

(25)
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4.2. Robust Observer under Parameter Variation

The general structure of the observer with sliding modes proposed in [30], is expressed in (26)

˙̂x(t) = Ax̂(t) + Bu(t) + K(y(t)− ŷ(t)) + ϕ(t) (26)

ŷ(t) = Cx̂(t)

where, ϕ(t) is the sliding-mode discontinuous vector.
For the convergence analysis, the estimation error e(t) is defined in (27).

e(t) = x(t)− x̂(t) (27)

The error dynamics ė(t) is defined in (28)

ė(t) = ẋ(t)− ˙̂x(t)

= Ax(t) + Bu(t) + Ed(t)− Ax̂(t)− Bu(t)− K(y(t)− ŷ(t))− ϕ(t)

= A(x(t)− x̂(t)) + Ed(t)− KC(x(t)− x̂(t))− ϕ(t)

ė(t) = Ae(t) + Ed(t)− ϕ(t)

(28)

where A is defined in (29).

A = (A − KC) (29)

where the Lyapunov function v(t) expressed in (30)

v(t) = eT(t)Psme(t) (30)

is derived (30) omitting the time dependence.

v̇ = eT Psmė + ėT Psme

v̇ = eT Psm[Ae + Ed − ϕ] + [Ae + Ed − ϕ]T Psme

v̇ = eT Psm Ae + eT PsmEd − eT Psm ϕ + eT APsmeT + dTET Psme − ϕT Psme

v̇ = eT [Psm A + AT Psm]e + 2eT PsmEd − 2eT Psm ϕ

(31)

and γ is defined as (32).

γ = Psm A + AT Psm (32)

Rewriting (31)

v̇ = γ||e||2 + 2||eT Psm||||Ed|| − 2eT Psm ϕ (33)

Because γ corresponds to a Lyapunov inequality, it is defined negative, so the γ||e||2 is negative.
To achieve the condition of v̇ < 0, it is proposed that ϕ has the following form.

ϕT = M
eT Psm

||eT Psm|| = Msign(eT Psm) (34)

where M is a constant positive gain. Psm is a defined positive matrix, which must fulfill the
Lyapunov equation.

Psm A + AT Psm < 0 (35)
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Omitting γ||e||2 in Equation (33), since it always has a negative value.

2||eT Psm||||Ed|| − 2eT Psm[M
eT Psm

||eT Psm|| ] < 0

2||eT Psm||[||Ed|| − M] < 0

||Ed|| < M

(36)

M value is selected large enough to satisfy the condition (36).

4.3. Fuzzy Observer with Sliding Modes

The fuzzy observer with sliding modes [31] is based on the Luenberger observer [32] for linear
systems and the Tanaka fuzzy observer [29].

Using the fuzzy observer (24), it is possible to build local observers with sliding modes for each
linear subsystem [30]. Each observer is associated with a fuzzy rule i, given as:

If:
z1(t) is M1 and, ·, and zp(t) is Mp ,

Then :

{
˙̂x(t) = Aix̂(t) + Biu(t) + Ki(y(t)− ŷ(t)) + ϕi(t)

ŷ(t) = Cix̂(t)

The complete observer is given by the weighted sum of each subsystem.

˙̂x(t) =
N

∑
i=1

hi(z(t))[Aix̂(t) + Biu(t) + KiCi(x(t)− x̂(t)) + ϕi(t)] (37)

ŷ(t) =
N

∑
i=1

hi(z(t))Cix̂(t) (38)

ϕi(t) is the discontinuous vector of sliding modes for the subsystem i, which has the following form:

ϕ(t)i = Misign(Pie(t)) (39)

where Mi > 0 is a positive constant, Pi > 0 so the Lyapunov equation is fulfilled, and e(t) is defined as
the estimated state error.

e(t) = (x(t)− x̂(t)) (40)

The stability of the complete observer is demonstrated if each pair Ai, Ci is observable and Pi
fulfills the Lyapunov equation.

Pi Ai + Ai
T Pi < 0 (41)

where,
Ai = Ai − KiCi (42)

The structure of the fuzzy observer with sliding modes for Takagi–Sugeno systems defined
in [31,33] is expressed in (43).

˙̂x(t) = ∑r
i=1 hi(z(t))[Aix̂(t) + Biu(t) + Kiẽ + ϕi(t)]

ŷ(t) = ∑r
i=1 hi(z(t))Cix̂(t)

(43)

The fuzzy observer estimation error with sliding modes is determined by
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ẽ(t) = y(t)− ŷ(t) (44)

and ϕi(t) is the discontinuous vector of sliding modes for the subsystem i, when considering the
estimation error as the sliding surface expressed in (45):

ϕ(t)i = sign(ẽ′P) (45)

The stability of the fuzzy system expressed in (43) is obtained using quadratic Lyapunov functions
of the form (46);

V(x(t)) = xT Px(t) (46)

Asymptotic stability is guaranteed if there is a defined positive P matrix (P > 0) such that fulfills
the Lyapunov equation expressed in (47).

AT
i P + PAi < 0 (47)

for each subsystem with i = 1, 2, · · · , r.
The resulting linear matrix inequalities (LMI) that guarantee the stability of the fuzzy observer in

all subsystems and their combinations are expressed in (48):

P > 0
Ni > 0

AT
i P − CT

i NT
i + PAi − NiCi < 0

AT
i P − CT

j NT
i + PAi − NiCj + PAT

j − CT
i NT

j + PAj − NjCi < 0
i < j

(48)

Observer gains are defined by the LMI’s system solution defined in (49)

Ki = P−1
i Ni (49)

5. Fuzzy Observer for the Heating Resistor Actuator

According to the fuzzy Takagi–Sugeno model for the boiler Buck-Boost converter defined in (20),
the expression of the fuzzy observer with sliding modes for Buck-Boost converter is defined in (50).

˙̂x = Ax̂(t) + (∑4
i=1 hi(z1, z2)Bi)d

ŷ(t) = ∑4
i=1 hi(z1, z2)Cix̂(t)

(50)

The output matrix C is defined in (51), where the system outputs are vC and iL.

C=

(
1 0
0 1

)
(51)

The observer estimation error is defined by the difference of the nonlinear model states of the
converter (ẋ) and the estimated states of the fuzzy observer ( ˙̂x) expressed in (52).

ẽφa = ẋ − ˙̂x (52)

The block diagram of the observer applied to the Buck-Boost converter is shown in Figure 12,
where the fuzzy variables (z1, z2) are the states of the system (x1, x2), the gains of the fuzzy observer
are defined as K f and Kφ.
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Figure 12. DC-DC converter fuzzy observer.

According to the characteristics of the converter fuzzy model of the converter (20), where the
state matrices A1, A2, A3, A4 = A are identical, the LMI’s system to guarantee the stability of the fuzzy
observer for the Buck-Boost converter is defined in (53).

Pφa φ > 0
A′Pφa − C′N′

φa
+ Pφa A − Nφa C < 0

(53)

Given the solution for Pφa , the gain Kφ for the observer is determined by (54)

Kφ = P−1
φa

Nφa (54)

6. Discussion, Analysis and Results

The observer simulation is performed for a Buck-Boost converter that regulates the voltage to
a 350 W heating resistor for a distillation column boiler.

The observer design parameters are determined for the case study presented in Table 2;
and, the behavior of observer is validated by simulation in MATLAB when considering the following
disturbances: variation in input voltage to the converter caused mainly by the supply voltage
(line voltage) and variations in load are usually due to degradation or manufacturing of the
heating resistance.

According to the characteristics of the fuzzy system, where A1, A2, A3, A4 = A, the LMI’s system
used to determine the stability of the fuzzy system with eight closed-loop rules with observer is
expressed in (55).

P1 > 0
P2 > 0

AT P2 − CT
1 NT

1 + P2 A − N1C1 < 0
P1 AT − MT

1 BT
1 + AP1 − B1M1 < 0

P1 AT − MT
2 BT

2 + AP1 − B2M2 < 0
P1 AT − MT

3 BT
3 + AP1 − B3M3 < 0

P1 AT − MT
4 BT

4 + AP1 − B4M4 < 0

(55)

The LMI’s that represent the overlaps of the membership functions are expressed in (56)

P1 AT − MT
2 BT

1 + AP1 − B1M2 − MT
1 BT

2 − B2M1 < 0
P1 AT − MT

3 BT
1 + AP1 − B1M3 − MT

1 BT
3 − B3M1 < 0

P1 AT − MT
4 BT

1 + AP1 − B1M4 − MT
1 BT

4 − B4M1 < 0
P1 AT − MT

3 BT
2 + AP1 − B2M3 − MT

2 BT
3 − B3M2 < 0

P1 AT − MT
4 BT

2 + AP1 − B2M4 − MT
2 BT

4 − B4M2 < 0
P1 AT − MT

4 BT
3 + AP1 − B3M4 − MT

3 BT
4 − B4M3 < 0

(56)
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Given the solution for P2, the gain K for the observer is determined by (57)

K = P−1
2 N1 (57)

6.1. Simulation and Comparison of the Heating Actuator Observers

The observer simulation is performed for a Buck-Boost converter with the characteristics presented
in Table 2.

Table 2. Parameters of the Buck-Boost converter.

Parameter Magnitude

Supply voltage (Vcc) 180 V
Output voltage (Vout) −229 V

Inductor (L) 5 μH
Capacitor (C) 78 μF

Load (R) 70.3 Ω
Switching frequency ( f ) 20 kHz

Duty cycle (u) 0.56

Figure 13 shows the simulation in the voltage transient in the capacitor (vC) with different initial
conditions of the observer and the nonlinear model (vC(0) = 0 V, v̂C(0) = −250 V), where the
convergence of the fuzzy observer ( ˙̂x2) is shown at 400 μs, and the convergence of the fuzzy observer
with sliding modes is shown at 9 ms.

Figure 13. Voltage transient in vC with different conditions, vC(0) = 0 V and ˙̂vC(0) = −250 V.

Figure 14 shows the transient in the inductor current (iL) with different initial conditions between
the observer and the nonlinear model (iL(0) = 0 A and ˙̂iL(0) = 20 A), where the convergence of the
fuzzy observer is shown at 100 μs and the convergence of the fuzzy observer with sliding modes is
shown at 14 ms.
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Figure 14. Current transient in vC with different conditions, (îL(0) = 0 A, v̂C(0) = 20 A).

Figure 15 shows the convergence of the observer in the capacitor voltage vC with disturbances
in the nominal input voltage (Vin = 180 V). In the observer simulation in 0.1 s, the voltage Vin is
decreased to 88.88% (Vin = 160 V) of its nominal value, in 0.2 s it is increased to 111.11% (Vin = 200 V),
in both cases, the observer ( ˙̂vC) converges to the capacitor voltage (vC) of the nonlinear model under
these disturbances. The observer has a maximum estimation error of 1.3 V and a minimum error of
100 μV due to the chattering effect of the sliding surface.

Figure 15. Observer response for the vC voltage with disturbances in the supply voltage Vin.

Figure 16 shows the convergence of the observer in the inductor current iL before disturbances in
the nominal input voltage (Vin = 180 V). In 0.1 s the voltage Vin is decreased to 88.88% (Vin = 160 V)
and, in 0.2 s, it is increased to 111.11% Vin = 200 V, in both cases the observer ( ˙̂iL) converges to the
current in the inductor (iL) of the nonlinear model before these disturbances. The observer presents
a maximum estimation error of 394 mA and a minimum error of 80 μA.
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Figure 16. Observer response for the inductor current iL with disturbances in supply voltage Vin.

Figure 17 shows the observer convergence in the capacitor voltage under variations in the nominal
load (R = 70.3 Ω). In 0.1 s the load is decreased to 78.23% (R = 55 Ω) and in 0.2 s it is increased
to 113.79% (R = 8 Ω), in both cases, the observer ( ˙̂iL) converges to the capacitor voltage (vC) of the
nonlinear model. The observer has a maximum error of 1 V and a minimum of 75 μV.

Figure 17. Observer response for the voltage of vC with variations in load R.

Figure 18 shows the observer convergence in the inductor current iL under variations in the
nominal magnitude of the load (R = 70.3 Ω). In 0.1 s, the load is decreased to 78.23% (R = 55 Ω) and,
in 0.2 s, it is increased to 113.79% (R = 80 Ω), in both cases the observer converges on the inductor
current. The observer has a maximum error of 13 mA and a minimum error of 100 μA.
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Figure 18. Observer response on inductor current iL with variations in load R.

According to the simulation results of the fuzzy observer with sliding modes for the actuator and
the experimental validation for the distillation column, it is verified that the fuzzy observer with sliding
modes complies with the necessary characteristics of convergence and robustness under disturbances
in order to design and implement fault detection and diagnosis systems with analytical redundancy.

6.2. Heating Behavior in the Distillation Column

Regulating the inductor current iL and the capacitor voltage vC in the converter implies to regulate
the output electrical power, Equation (9), that energies the electrical resistor in the heating actuator
of the distillation, hence regulating the heating power, as presented in Equation (5), defines the
distillation dynamics.

A distillation process is performed considering an Ethanol–Water mixture in order to validate
the power regulation effect in a distillation column. The parameters of the mixture components are
specified in Table 3.

Table 3. Parameters of the Ethanol–Water mixture.

Parameter Ethanol Water

Density (ρc) 0.789 g/cm3 1 g/cm3

Molecular weight (MWC) 46.069 g 18.01528 g
Boiling temperature (R) 78.04 ◦C 78.04 ◦C
Vapor entalphy (ΔHvap) 38.56 kJ/mol·◦C 40.65 kJ/mol·◦C

Table 4 presents the initial parameters of the process.

Table 4. Initial parameters of the distillation process.

Parameter Magnitude

Ethanol volume in the boiler 1000 mL
Water volume in the boiler 1000 mL

Process total pressure 636 mmHg
Sampling time 3 s
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The minimum electrical power required to boil the selected mixture is experimentally determined
in 180 watts for the used distillation pilot plant.

This distillation pilot plant is formed by the boiler (plate 1), nine plates, and the condenser
(plate 11). Seven RTD Pt-100 sensors are located in plates 1, 2, 4, 6, 8, 10, and 11, allowing to monitor
the plates temperatures required to estimate the mixture compositions in the column.

In the state-space model of a distillation column described in Equation (58), the inputs to the
system are the heating power (Qb), and the reflux valve (R f ), where the heating power is defined by
the electrical power used in the boiler heating actuator defined by the output voltage and the heating
resistance, determined by Equation (59). The heating power influence in the thermal behavior of the
column is denoted in Equation (5).

ẋ = Ax + B
(

R f
Qb

)
(58)

Qb = Pt =
vC

2

R
t (59)

Two different tests are performed to validate the regulation effect of the heating power in the
distillation process. In both processes, the distillation column is heated and maintained in the
steady-state, when considering that the reflux valve is always off, i.e., the not distilled product
is retired from the column.

Figure 19 shows the temperatures measured in the distillation plates when a non-regulated power
supply is used.

Figure 19. Thermal behavior of the distillation column using a non-regulated power supply.

Figure 20 shows the temperatures measured in the distillation plates when the presented
Buck-Boost converter is used.

As can be seen in Figure 19, when the electrical power supplied to the heating actuator of the
distillation column is not regulated, the thermal performance of the distillation process is unstable,
which can derive in several problems, due to a thermal shock to the boiler mixture being able to
cause a violent siphon effect, affecting the measurements and the rate of the distillation process.
These problems are avoided when using a controlled power, as shown in Figure 20.
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Figure 20. Thermal behavior of the distillation column using the regulated power supply.

7. Conclusions

The heating behavior of the distillation column depends mostly on the boiler and its heating
actuator, which must be monitored to guarantee its adequate operation.

In this work, a fuzzy model and two fuzzy observer to estimate the inductor current and capacitor
voltage in a DC-DC Buck-Boosy power converter, used to regulate the heating power in a distillation
column boiler, are presented.

The observer is based on the Takagi–Sugeno fuzzy model of four rules. The gains are calculated
by means of LMIs in order to guarantee the stability for each of the closed loop linear subsystems.

The fuzzy model and fuzzy observers are validated in simulation. Different tests were carried
out with ideal and different initial conditions between the nonlinear system and the fuzzy observer,
as well as disturbances in the nonlinear system, in order to validate the fuzzy observer convergence.

The Takagi–Sugeno fuzzy observer has an adequate response as long as the disturbances occur
in the operating points selected in its designing stage. By adding the sliding-mode term, the fuzzy
observer increases its robustness under load and input voltage perturbations, making it suitable to be
applied in different control strategies, such as Fault Detection and Isolation (FDI) and Fault Tolerant
Control (FTC) systems.
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Abstract: This paper presents a proposal to estimate simultaneously, through nonlinear optimization,
the roughness and head loss coefficients in a non-straight pipeline. With the proposed technique,
the calculation of friction is optimized by minimizing the fitting error in the Colebrook–White equation
for an operating interval of the pipeline from the flow and pressure measurements at the pipe ends.
The proposed method has been implemented in MATLAB and validated in a serpentine-shaped
experimental pipeline by contrasting the theoretical friction for the estimated coefficients obtained
from the Darcy–Weisbach equation for a set of steady-state measurements.

Keywords: nonlinear optimization; turbulent flow; friction factor; pipe roughness; minor losses

1. Introduction

Pipelines are one of the most economical means of transporting liquids. They are widely used
to carry water, fuels, and other substances in the process industries. Pipeline monitoring generally
consists of measuring pressures and flow rates at some strategic points in the pipeline, frequently
including the ends of the line. The changes in the hydraulic variables, mainly the pressures, make it
possible to identify disturbances and faults in the system, e.g., blockages and leaks, as well as the
implementation of control loops that allow regulating or changing the operating point [1]. Since many
of the diagnosis/control algorithms are based on a mathematical model of the hydraulic system,
fine-tuning such algorithms requires precise knowledge of their parameters [2,3]. For example,
to diagnose leaks through pressure variations, it is essential to know how much pressure variation
is caused by a reasonable pressure drop due to friction in the pipeline, which is only possible if the
roughness and head loss coefficients of the pipe are known [4,5].

The Colebrook–White equation is the primary reference for calculating the friction factor in
pressurized pipes. Since there are no known explicit solutions to this nonlinear equation in terms
of elementary functions, many works have focused on studying its numerical solution [6,7] or by
proposing different explicit approaches with varying degrees of accuracy [8–12].

Since many pipelines operate with turbulent flow, most publications focus on the study of friction
for this regime. However, there are some works in which explicit formulas have been proposed to
calculate the friction factor for the three regimes: laminar, transitional, and turbulent, considering both
smooth and rough pipes [13]. There are also works where only friction in smooth pipes is studied,
neglecting the roughness [14], and others where pipes with ribs are considered [15].
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Then, by considering the importance of friction in head losses, it could be said that the reports on
the investigation of physical measurements and mathematical modeling of pipe roughness are scarce
in the technical literature [16]. Direct measurement of roughness is not a simple process. However,
current developments in profilometry and surface engineering have achieved accurate measures of
a pipe’s internal roughness, but only in a laboratory setting, usually with new pipes. In this way,
Farshad and Pesecreta evaluated the roughness of different pipes’ rough surfaces using linear surface
profilometers [17]. However, Kang and Lansey point out that, in practice, the roughness of the pipe
cannot be measured in the field, so it must be estimated indirectly [18]. In this context, the research
in [19] addresses the estimation of roughness in a straight water supply pipe from flow measurements
and head losses measured by piezometric pipes. Since the experimental pipe they used in this work is
approximately straight, the minor head losses due to the fittings were not considered.

The works above focus on calculating the friction factor, which is the critical element in
determining head losses in long-distance pipelines. Fittings and valves contribute very little to
the total pressure drop in the pipeline. Therefore, in such cases, pressure losses through fittings, valves,
and other restrictions are generally classified as “minor losses” and are neglected. However, in shorter
pipelines, the pressure loss in valves, fittings, etc., can be a substantial part of the total pressure loss,
so these must be included for correct engineering calculations [16]. Therefore, it is necessary to know
the head loss coefficients (for local losses, accessories, and valves), and the roughness coefficients
related to friction (for distributed losses, in the entire pipeline).

During the design of the piping system, it may be sufficient to know the nominal value of the
roughness and head loss coefficients provided by the manufacturer. The calculations consider a safety
factor that guarantees the operation of the system with an oversized pumping power [17]. However,
during system operation, the implementation of model-based monitoring and diagnosis algorithms
require an accurate estimate of both roughness and head loss coefficients. It should be considered that,
even under the same pumping pressure, the head losses change over time because, with continuous
use, the pipelines show natural wear and aging. Particles can also accumulate on the pipe walls,
changing the roughness and effective diameter of the pipes [18,19]. Therefore, a periodic recalibration
is necessary to update the parameter values.

Recently, in [20], both major losses (due to roughness) and minor losses (due to fittings) are
independently studied. However, as will be explained in Section 3, when these are calculated separately,
a small overestimate in one of them leads to an overestimate in the other one, and vice versa. This article
proposes a procedure to simultaneously estimate the roughness and minor loss coefficients in a pipeline
based on these considerations. The proposed calculation requires some measurements of flow and
pressure at the pipeline ends.

This work’s main contribution is the simultaneous computation of the coefficients of both
components of the pressure loss: the major losses associated with roughness and the minor losses
related to the fittings in the pipeline. In this proposal, it is possible to jointly estimate both coefficients
assuming the minor losses as equivalent pipe lengths and looking for the coefficients that minimize
the fitting error in the Colebrook–White equation. In order to demonstrate the applicability of the
proposed technique, a series of tests on a prototype pipeline is described.

2. Background on Turbulent Flow in Pipelines

There is a general assumption that the head loss (h f ) due to friction depends on the inner diameter
(D) of the pipe, the length (L) in which the head loss is measured, the average flow velocity (V),
the absolute roughness of the pipe wall (ks), the gravity acceleration (g), and the density and the
viscosity of the fluid. Through force balance and dimensional analysis, it is possible to determine the
head losses due to friction as [21,22]:

h f =
L
D

V2

2g
f (ε, Re), (1)
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where Re is the Reynolds number, which measures flow turbulence as a function of viscosity and
velocity, and ε = ks/D is the so-called relative roughness coefficient. The expression f (ε, Re) in (1)
is the “friction factor”, and is abbreviated hereinafter with the shortcut f := f (ε, Re). In this way,
Equation (1) is represented in the following simplified form called the Darcy–Weisbach equation [21,23]:

h f = f
L
D

V2

2g
= f

8L
gπ2D5 Q2, (2)

where Q is the volumetric flow rate in the pipeline. Compared to other formulas for calculating friction
losses, Equation (2) has the advantage of being a dimensionally homogeneous equation, so that the
friction factor f is a dimensionless number consistent with any system of units [21]. There are works
where some variants of the Darcy–Weisbach equation are considered. For example, [24] suggests an
improvement in the calculation of the friction factor by assuming a periodicity of the roughness in the
longitudinal direction of the pipe. However, in this work only the classical form (2) is considered.

In general, the friction factor depends on the flow turbulence (measured with Re) and also on the
physical characteristics of the pipe (diameter and roughness of the interior walls). However, when
the flow is laminar, at low velocity, the friction factor depends only on the Reynolds number, and is
given by f = 64/Re for Re ≤ 2000. Instead, at high speeds where the flow is turbulent (Re ≥ 4000),
the friction factor also depends on the roughness of the pipe walls. In the interval, 2000 < Re < 4000,
after the laminar regime and before the turbulent regime, the values of the friction factor are not very
predictable. Therefore this transitional regime will not be considered in this work.

One of the most widely accepted models for expressing the relationship between friction,
turbulence, and roughness in pressurized flows is the Colebrook–White equation:

1√
f
+ 2 log10

(
ε

3.7
+

2.51
Re
√

f

)
= 0, (3)

where the Reynolds number given by

Re =
DQ
Aν

(4)

measures flow turbulence in terms of kinematic viscosity ν and flow rate Q, while the friction factor

f =
gπ2D5h f

8LQ2 (5)

is expressed in terms of the head loss h f (= Hin − Hout) along the pipe.
Explicit solutions for f of the DW equation using elementary functions are not known, because

due to their nonlinearity, it is impossible to isolate f in terms of ε and Re. However, it is possible to find
approximate solutions using iterative numerical methods. For this, the DW equation is rewritten as:

φ( f ) :=
1√

f
+ 2 log10

(
ε

3.7
+

2.51
Re
√

f

)
= 0. (6)

The problem is then reduced to iteratively find the zero of φ( f ) or, equivalently, the minimum of
φ2( f ). Figure 1 shows the numerical solution of (6) obtained using the COLEBROOK MATLAB-routine,
which can be consulted in [20]. It is also possible to estimate the solution of the CW equation,
with different percentages of error, using explicit non-iterative approximations, such as those proposed
by [25–27], among others. The surface plot in Figure 1 shows the general behavior that friction factor
increases with roughness and decreases with the Reynolds number. However, for high turbulence
(very large Re) the friction factor depends only on the roughness.
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Figure 1. Variation of friction factor with roughness and Reynolds number in turbulent regime.

On the other hand, in addition to the pressure losses due to friction, which are distributed
throughout the pipeline, the pressure losses due to flow disturbance caused by elbows, valves,
and other fittings must be quantified. These are not distributed losses, but rather local losses that
can be located in a well-defined position. Head losses due to singularities or fittings are commonly
called “minor losses” because, for very long pipes, their value can be neglected compared to that due
to friction. However, their effect can be significant for short pipes [28].

Equation (2) only predicts major losses due to fluid friction on the pipe wall and due to the effects
of fluid viscosity and does not include minor losses on inputs, elbows, and other fittings. Minor losses
in accessories are defined in terms of a loss coefficient K, by

hm = K
V2

2g
, (7)

which has some similarity with Equation (2) used for friction losses. There are some empirical formulas
to estimate the minor loss coefficient (K) for valves, elbows, and other fittings [16]. In practice, the
values obtained in this way can differ considerably from the true values, so it is convenient to determine
them experimentally. For example, for 90◦ elbows, the minor loss coefficient is typically in the interval
0.9 ≤ K ≤ 1.5, according to [29]; on the other hand, in [16] it is suggested to use the empirical formula
K = 30 fT , where fT is the turbulent friction factor. In general, the minor loss coefficient is a function
of both the fitting geometry and the Reynolds number. However, when Re is large enough, K can be
assumed as a function of the fitting geometry only.

Given the similarity between Equations (2) and (7), in some applications it has been proposed
to combine distributed losses with local losses, expressing the latter as if they were friction losses in
an additional length of pipe. The “equivalent length” of pipe associated with a local head loss is the
length of pipe that would produce a friction head loss equal to the corresponding local head loss.
By matching Equations (2) and (7), the equivalent length Leq can be obtained as

K
V2

2g
= f

Leq

D
V2

2g
⇒ Leq =

KD
f

, (8)

so, if the additional length of pipe that would equal the local losses is known, the minor loss coefficient
is given by

K = f
Leq

D
. (9)
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The above equations are the basis for addressing the problem under study. Formally, the problem
whose solution is proposed in the next section can be expressed as follows: “Given a list of flow-rate
and pressure measurements at pipeline ends, find simultaneously the roughness coefficient ε and
the minor loss coefficient K—as equivalent length—so that for the friction factor values obtained
experimentally, via the Darcy–Weisbach equation, the fitting error in the Colebrook–White equation
is minimized”.

3. Proposed Methodology

Consider the simultaneous estimation of the roughness coefficient and the minor loss coefficient.
The strategy used to integrate the minor losses together with the friction (major losses) is to assume
them as an additional length of pipe, so that the total length used in the calculations is a “computational
length” that integrates both the physical length of the pipeline as the equivalent length of the fittings.

If the pipe length L is assumed to be known, the friction factor f can be determined by measuring
the flow rate Q and the head loss h f between the pipeline ends and substituting these values (5).
Then, the roughness can be obtained by substituting f in the nonlinear Equation (3) and solving for ε.
However, when starting from an underestimated length, if the roughness is overestimated, then the
pipeline appears to be rougher when its length is shortened for a given friction factor.

Additionally, in practice, the roughness ε obtained by the numerical solution of (3) is sensitive
to variations in the computed value of f due to measurement noise on Q and h f . Therefore, a single
value of ε does not completely satisfy (3) for different measurements, even if they correspond to the
same operating point. Consequently, for each measurement, the right side of (3) is not exactly zero,
but there is a residual or fitting error δ. However, if we consider a length-dependent friction factor,
f (L), it is possible to minimize the error δ by adjusting the parameters ε and L in (3). In this way,
the Colebrook–White equation expresses the friction factor in terms of flow rate and head loss but is
parameterized by the roughness coefficient and the total length of the pipeline.

Thus, for each value of flow rate and head loss (for each operating point), there is a fitting error

δk(ε, L) :=
1√

fk(L)
+ 2 log10

(
ε

3.7
+

2.51
Rek
√

fk(L)

)
, (10)

where Rek and fk are calculated as specified in (4) and (5), using the flow rate and head loss
measurements in the k-th operating point.

Considering a nonlinear least squares optimization problem, with N measurements (N ≥ 2), the
optimal roughness and total length estimates have been defined as follows:

ε̂, L̂ := arg min
ε, L

N

∑
k=1

δk(ε, L)2 = arg min
ε, L

δ�δ, (11)

where δ = [δ1(ε, L), δ2(ε, L), . . . , δN(ε, L)]� is the vector of fitting errors in the Colebrook–White
equation. One way to solve the optimization problem (11), the one proposed in this work, is through
the Levenberg–Marquardt (LM) method [30,31].

In the context of curve fitting, the LM method, also known as the damped least squares (DLS)
method, is formulated as follows: Given a set of N pairs of empirical data (xk, yk) of independent and
dependent variables, find the parameters β of the model φ(x, β) so that the sum of the squares of the
deviations is minimized:

β̂ = arg min
β

N

∑
k=1

[yk − φ(xk, β)]2 . (12)
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There is a correspondence between the optimization form (12) and the problem of calculating the
roughness and length in (11), assuming the following equivalence:

β ≡ [ε, L]�, yk ≡ 0, φ(xk, β) ≡ δk(ε, L). (13)

In order to find the optimal value of β, the LM algorithm iterates from an initial approximation
β0. In each iteration, the parameter vector, β, is replaced by a new estimate, β + Δ. The increment Δ is
calculated, according to [32], by solving(

J�J + λ diag
(

J�J
))

Δ = J� (y − φ(β)) , (14)

where J = [∂φ(xk, β)/∂β] is the Jacobian matrix, φ(β) = [φ(xk, β)], y = [yk], and λ is a damping
factor updated at each iteration. The iterations start with an empirical value λ = 0.01. Then if the sum
in (12) decreases fast, a smaller value λ ← λ/10 is used in the subsequent iteration. When the step size,
Δ, or the decrease in the sum of squares for the last parameter vector, β + Δ, falls below predefined
limits, the iteration stops, and the last parameter vector β is considered the solution. The box in
Figure 2 summarizes the complete calculation procedure.

Input. Column-shaped arrays of the same length: Hin, Hout, Q, and ν.

1. Compute Re and f using Equations (4) and (5).

2. Define the cost function C(β) := φ(β)�φ(β), taking β = [ε, L]� and φ(β) = [δk(ε, L)]
according to Equation (10).

3. Define an initial approximation β0, a damping factor λ (suggested, 0.01), and tolerances
TOLΔ (suggested, 1 × 10−8) and TOLβ (suggested, 1 × 10−8).

4. β ← β0

5. repeat

(a) Compute the Jacobian matrix J.

(b) Solve Equation (14) for Δ.
(c) βold ← β

(d) β ← β + Δ

(e) if C(β) < C(βold) then

λ ← λ/10
else

λ ← 10λ

endif

until ‖Δ‖ ≤ TOLΔ or ‖β − βold‖ ≤ TOLβ

Output. Optimal estimates: ε̂ = β[1], L̂ = β[2].

Figure 2. Algorithm to compute the optimal estimates of the roughness and minor loss coefficients.

The solution to the problem (11), using the LM method as described in Figure 2, was coded
into a MATLAB subroutine. This subroutine, named Pipeline Parameter Calibration (PPC), receives
inlet and outlet pressures, flow rate, and viscosity measurements at each operating point of the
pipeline, and returns the estimated optimal values for ε and L. The head loss coefficient K can be
obtained from the excess length of L̂ over the straight length using (9). In slightly turbulent flows,
measurements should be taken over a small operating interval, because the minor loss coefficient could
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vary significantly between widely separated operating points. However, for completely turbulent flows
the minor loss coefficient remains approximately constant. The range of Re in the test measurements
described in the next section corresponds to a sufficiently high turbulence.

4. Experimental Setup

The procedure described in the preceding section has been tested on a prototype
serpentine-shaped pipeline [33] (see Figure 3). This experimental pipeline is part of the
Hydroinformatics Laboratory of the National Institute of Technology of Mexico, located in Tuxtla
Gutiérrez. This pipeline has a straight length of 84.58 m and uses 90◦ elbows to give it a serpentine
shape, as shown in Figure 4. The flow is driven from a 2500 l tank using a 5 hp centrifugal pump whose
power is controlled by a frequency inverter. Pressure and flow sensors/transmitters are available at the
pipeline ends. Although the prototype pipeline has two flow sensors, only one of them is used to obtain
the flow-rate measurements required by the algorithm, because the measurements are made in a steady
state with no leaks. There are no pressure sensors before and after each change in flow direction, so it
is not possible to calculate the head loss on each direction change individually. In order to change the
operating point of the pipeline, the frequency inverter was driven at the following working frequencies:
30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz and 55 Hz. Other parameters of the experimental pipeline used in
calculations are D = 0.0486 m, and g = 9.79 m/s2.

Figure 3. Prototype pipeline in the National Institute of Technology of Mexico, at Tuxtla Gutiérrez.
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Figure 4. Top view of the prototype pipeline.

Table 1 shows the first dataset containing the pressure and flow measurements used to estimate
the roughness and equivalent length of the prototype pipe. The kinematic viscosity in the fourth
column was calculated from the measured water temperature by spline interpolation using the NIST
Standard Reference Data, according to [34]. Pressure and flow measurements at each operating point
were obtained by averaging the sensor signals over a time interval (1000 samples, corresponding to
10 s) to minimize the effect of measurement noise. In order to test the Algorithm of Figure 2, five
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datasets with the same structure as Table 1 were built, named pipeline_data_1 : pipeline_data_5.
Each dataset contains measurements at six operating points within the typical working range in
the prototype pipeline, limited by the available pumping power. In practice, in other pipelines, the
measurements used should consider their specific operating region, provided that it corresponds to
the turbulent regime because the Colebrook–White equation does not correctly represent the laminar
and transitional regimes.

Table 1. Dataset with measurements at six operating points.

Hin [m] Hout [m] Q [m3/s] ν [m2/s]

3.7528 1.6063 0.0016903 8.4116 × 10−7

4.7461 1.7960 0.0020166 8.3951 × 10−7

5.8550 2.0033 0.0023346 8.3713 × 10−7

7.0908 2.2399 0.0026452 8.3513 × 10−7

8.4442 2.4941 0.0029531 8.3296 × 10−7

9.8962 2.7663 0.0032562 8.3061 × 10−7

5. Results and Discussion

The box in Figure 5 shows the result of running the PPC subroutine with the measurements
reported in Table 1. The best fit of the measurements to the Colebrook–White equation was obtained
for a roughness coefficient ε̂ = 3.4652 × 10−4 and a total length L̂ = 112.2238 m. This result
corresponds to an excess length of 27.6438 m, compared to the physical length, due to minor losses.
Figure 6 graphically shows the existence of the minimum, evidencing the behavior of the cost function
in the neighborhood of the optimal estimate β̂ = (ε̂, L̂). Starting from the initial approximation
β0 = (1 × 10−4, 100), the LM procedure converges to the optimal value in eight iterations, when the
norm of the increment, ‖Δ‖, reaches the value of 5.1559 × 10−9.

>> load pipeline_data_1
>> ppc(Hin, Hout, Q, nu)

Dataset...
Hin Hout Q nu Re f

______ ______ _________ __________ ______ ________

3.7528 1.6063 0.0016903 8.4116e-07 52644 0.021924
4.7461 1.7960 0.0020166 8.3951e-07 62932 0.021168
5.8550 2.0033 0.0023346 8.3713e-07 73063 0.020620
7.0908 2.2399 0.0026452 8.3513e-07 82980 0.020231
8.4442 2.4941 0.0029531 8.3296e-07 92881 0.019909
9.8962 2.7663 0.0032562 8.3061e-07 102704 0.019622

Calibration results...
epsilon~=~0.00034652
L~=~112.2238

Figure 5. MATLAB output of the Pipeline Parameter Calibration (PPC) subroutine for the
measurements in Table 1.
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Figure 6. Behavior of the cost function in the neighborhood of the optimal estimate.

The PPC subroutine was run in each of the five available datasets; the results are summarized
in Table 2. It can be seen that the roughness estimate was more sensitive than the length estimate
concerning the change in pressure and flow-rate measurements. This is evidenced by the fact that
the roughness varies from the third significant digit between different datasets, while the length only
varies from the fourth significant digit. More precisely, the root-mean-square deviation (RMSD) was
1.929 × 10−6 (0.56%) for roughness, and 0.0456 m (0.04%) for length.

Table 2. Roughness and length estimates from different datasets.

Dataset ε̂ L̂ [m]

pipeline_data_1 0.00034652 112.2238
pipeline_data_2 0.00034982 112.1517
pipeline_data_3 0.00034473 112.2626
pipeline_data_4 0.00034662 112.2395
pipeline_data_5 0.00034946 112.1530

The variation in the results obtained with different datasets could be attributed, at least partially,
to the measurement error of the sensors, which is between 0.01% and 0.04% (maximum) according to
the manufacturer’s datasheets. This has the consequence that the computation of the friction factor,
based on an inaccurate estimate of the roughness coefficient, is also inaccurate. Sensitivity analysis in
the working region of the prototype pipeline showed that

(Δ f )/ f = 0.092 (Δε)/ε, (Δ f )/ f = − 0.156 (ΔRe)/Re, (15)

where (ΔRe)/Re can be taken approximately equal to the flow-rate measurement error, (ΔQ)/Q,
considering the relationship (4). These results show that the friction factor calculation is considerably
sensitive to flow measurement errors.

The final estimates of ε and L were obtained by averaging the estimates from the five experiments
on the prototype pipeline, resulting in ε̂ = 3.4743 × 10−4 and L̂ = 112.21 m. On the Moody chart
in Figure 7, the interval of the friction factor in the prototype pipeline has been represented in red,
according to the calculated roughness coefficient. This can be considered as the “working region”
of the pipeline. The solid orange line in Figure 7 is the theoretical curve according to the estimated
roughness ε̂, while the discrete red points represent the specific values of Re and f obtained from the
measurements (via Equations (4) and (5), respectively), confirming a good parameterization of the
Colebrook–White equation to fit the data.
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Figure 7. Moody chart with the parameters computed in the prototype pipeline.

In the prototype pipeline, minor losses are primarily due to the elbows used to give it the
serpentine shape, so that the equivalent length of each elbow is determined by

Lelbow = (Ltotal − Lphysical)/n = (112.21 m − 84.58 m) /18 = 1.535 m, (16)

where n is the number of elbows, and Lphysical is the true length, also termed “straight length” of
the pipeline.

Finally, the minor loss coefficient for each elbow can be obtained from (9). As noted in Section 2,
the K values change slightly with the operating point. For example, for the fifth operating point in
Table 1 (corresponding to Re = 92881) it was obtained:

Kelbow = f
Lelbow

D
= 0.629. (17)

These K values obtained for the elbows of the prototype pipeline are close to those obtained with
the empirical formula in [16] and fall outside the interval suggested by [29]. Due to the proximity
between each elbows pair, it might be desirable to assign combined loss coefficients in pairs, since
possibly the energy loss at the inlet elbow is different from the energy loss at the outlet elbow. In
this case, the combined loss coefficient for each flow return, Kreturn, is twice that calculated by (17),
since the number of elbows doubles the number of return bends.

6. Conclusions

A technique for simultaneously estimating the roughness and minor loss coefficients in
non-straight pipelines has been presented and tested. The results show that, within the accuracy
conditioned by the sensors’ measurement uncertainty, the proposed methodology produces a
reasonable estimate of both coefficients. In this regard, the roughness coefficient estimate is
more sensitive to measurement noise than the minor loss coefficient estimate by almost one order
of magnitude.

In support of this calculation proposal, it should be mentioned that the described technique to
compute the roughness and the equivalent length has been used in multiple tests to locate leaks using
extended Kalman filters, reaching a location accuracy of close to 2% of the pipeline length. The leak
location procedure is not described here but can be found published in [5].

146



Math. Comput. Appl. 2020, 25, 56

The main limitation of the proposed technique is that it only allows the estimation of minor loss
coefficients for a single type of fitting. When the pipeline presents considerable head losses in more
than one type of fitting, it does not determine what fraction of the minor loss is attributed to each one.
As future work, it is intended to modify or extend the proposed technique to allow the calculation of
roughness and minor loss coefficients in branched pipelines, also considering valves and other fittings
such as tees and wyes.
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Abstract: In this work, the sensorless speed control of a brushless direct current motor utilizing
a neural network is presented. This control is done using a two-layer neural network that uses
the backpropagation algorithm for training. The values provided by a Proportional, Integral,
and Derivative (PID) control to this type of motor are used to train the network. From this PID
control, the velocity values and their corresponding signal control (u) are recovered for different
values of load pairs. Five different values of load pairs were used to consider the entire working
range of the motor to be controlled. After carrying out the training, it was observed that the proposed
network could hold constant load pairs, as well as variables. Several tests were carried out at the
simulation level, which showed that control based on neural networks is robust. Finally, it is worth
mentioning that this control strategy can be realized without the need for a speed sensor.

Keywords: PID control and variants; Intelligent control techniques; neural control; brushless DC
electric motors; sensors and virtual instruments; analysis and treatment of signals

1. Introduction

Nowadays, Brushless direct current (BLDC) Motors are extensively used because of their
characteristics. Such characteristics are high dynamic response and high-power density. Usually,
these kinds of motors are controlled employing an electronic inverter of commutation composed of
three-phases. Typically for controlling these types of motors, a six-step commutation and a three-phase
voltage source inverter are used, where the commutation of the inverter components is determined by
the state of the Hall effect sensors. In recent years, works have been reported for speed control in this
type of engine based on this scheme; such is the case of the work presented by Zhao et al. [1].

There have been considerable efforts in solving the soft computing approach to control brushless
motors. The work developed by Shanmugasundram et al. [2] presents a comparison of control for a
brushless motor using PID, fuzzy logic, and a hybrid of neural networks which show the effectiveness
of these controllers such as speed response, steady-state error, among others. Arulmozhiyal and
Kandiban [3] made a fuzzy PID controller in which they present the facility to tune the PID constants
using the implemented fuzzy system. For their part, Premkumar and Manikandan developed a diffuse
neuro controller, which had a higher performance than the other implementations tested [4]. In [5],
Al-Maliki and Iqbal have also used a fuzzy Logic Control, but this time for tuning a PID controller.
In addition, Mamadapur and Mahadev [6] implemented a PID for speed control of a BLDC motor but
using Neural networks.

For their part, Liu et al. [7] developed a control strategy for these types of motors that consisted
of the implementation of control through an adaptive neural network for current monitoring in this
system. Ibrahim et al. [8] made a comparison between the Particle Swarm Optimization techniques
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and the bacterial food search technique to determine the optimal parameters of a PID speed controller
for a BLDC motor. In [9], an adaptive fuzzy logic for speed control of a BLDC motor was developed
using ANN and PSO techniques. Potnuru et al. [10] used a pollination algorithm for speed control
of a BLDC motor. Another work that implements a speed control for a BLDC motor can be found
in [11], where an adaptive neural network with a fuzzy inference core was used. Templos-Santos et al.
have used bio-inspired algorithms in order for parameter tuning of a PI controller in a Permanent
magnet synchronous motor (PMSM) [12]. Merugumalla and Kumar [13] used the firefly algorithm
to create a motor drive of speed control for a BLDC. One last work is that developed by ELkholy
and El-Hay [14], and they have evaluated the efficient dynamic performance of BLDC motor using
different soft computing approaches. It is worth mentioning that the works mentioned above use a
sensing mechanism to give feedback to the control system, making this more elaborate and, in some
cases, more costly to implement these methods.

More focused works concerning the control of direct current motors, beginning with the work
of Yu et al. [15], who used a neural network to carry out adaptive control in a PMSM. For their part,
Cheng et al. [16] made use of a radial neural network for the control of a brushless DC motor with
excellent results. The fusion of neural networks with a diffuse system was presented by Abed et al. [17]
to diagnose failures in the bearings of a BLDC engine. In [18], Luo et al. performed the control of a
brushless motor using the adaptive dynamic surface control technique modeled by a neural network.
Saleh et al. [19] used wavelet neural networks to implement a speed controller for a BLDC motor.
Naung et al. [20] adjusted the parameters of a controller PI to control the speed of a BLDC motor
through a neural network. In [21], Dynamic Neural Networks were used to develop an intelligent
control for a BLDC Motor. Finally, let us mention the work of Ho et al., who implemented a driver for
a DC motor through the use of neural networks [22].

In this paper, the main motivation to study the sensorless control of a BLDC motor is the use
of neural networks.The above is due to the neural networks are a better way to recognize patterns
from the sample of the system which going to be controlled. Therefore, when the control of a BLDC
motor wants to be made, usually, the use of observators is necessary in order to estimate, mainly,
the position of the motor. These observators replace the use of sensors but are very complicated
to implement. For this reason, the use of any sensorless techniques for control or estimation of the
parameters of the motor. For example, in [23], the five-phase induction of the motor was modeled by
means of the short-circuit fault between turns and sensorless control strategy. In [24], König, Nienhaus,
and Grassohave analyzed and modeled the current ripples generated by electromagnetic actuators
to estimate the inductance and carry out sensorless monitoring of the device. On the other hand,
Che et al. [25] implemented a sensorless speed control for an induction motor using the sliding modes
method and genetic algorithms. Another kind of motor where the sensorless technique was used is the
Permanent magnet synchronous motor. In the work of Wu and Zhang [26], sensorless speed control
was developed for a PMSM using terminal sliding mode and backstepping. In [27], Aguilar et al.
implemented a sensorless speed tracking controller for a PMSM based on a second-order sliding mode
observer and tested with load variations. Meanwhile, Kivanc and Ozturk have developed a position
sensorless speed control for PMSM by means of a space vector based on four switches and three phases
inverter [28]. In [29,30], interesting studies about sensorless control of PMSM are presented using
estimation methods and sliding mode observer.

Next, a couple of works where the sensorless and neural networks are combined will be mentioned.
One of them is [31], where a sensorless speed system was implemented based on the reactive
power-based model reference adaptive system speed estimator and adaptive neural network for
a PMSM. In [32], a neural network was used for a sensorless control for a PMSM oriented tor wind
energy conversion.

On the side of the BLDC motor, Sreeram [33] implemented a speed regulation control of a
sensorless BLDC utilizing fuzzy logic and four-switch three-phase inverter. The development presented
in [34], where the radial displacement of the stator is proposed as a mechanism to improve speed
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control for a BLDC drive in a sensorless way. In [35], Vanchinathan and Valluvan used the Bat
algorithm to control in a sensorless way the rotor speed of the BLDC motor. A study comparative of
different controller techniques is presented in [36], where a controller PI, an anti-windup PI, a fuzzy
logic-based, and a fuzzy controller PI are compared to validate the performance of sensorless BLDC
motor at different loads and speeds. Rif’an, Yusivar, and Kusumoputrohave proposed the use of the
ensemble Kalman filter (EnKF) and neural networks to predict load changes and estimates of the
disturbance by simulation of a sensorless BLDC [37].

Finally, other works that made use of non-invasive methods for sensing some physical variable or
detect failures in motors will be next mentioned. In [38], the technique of Signal Analysis based on
Chaos using Density of Maxima(SAC-DM) technique was applied in the diagnosis of failures of BLDC
motors from sound signals. In addition, Medeiros et al. [39] used the SAC-DM to detect failures in
BLDC motors. Meanwhile, other works are focused on detecting faults in induction motors based on
the analysis of acoustic sound and vibration signals [40–42].

For this reason, in this work, the controlling brushless DC motor through neural networks and
without the need for sensing is proposed. Solving this kind of problem is essential since it is not
always easy to have a sensor for the different internal parameters of a motor in order to control
such parameters, especially for a BLDC driver. In addition, the neural network utilized to solve the
controller of this motor is implemented only with two-layer; then, the neural network is simple and
easy to port into embedded hardware to generate a non-dependent computer system.

In order to show a generalized idea of the advantages of our implementation, the highlights of
our work will be listed below:

(i) A sensorless velocity control was developed through a neural network of the type multi-layer
perceptron architecture.

(ii) The neural network implemented has only two layers. This means that the network is the smallest
of such used in the majority of the papers.

(iii) The training set used is formed of just 22 values being that there are 5000 example data extracted
from the curves used for training.

(iv) The use of a neural network applied to the control of a motor avoids the use of a sensor.

The main novelty of our approach is found in the third item of the advantages previously
presented, due to the vast majority of works about this topic and that use a neural network utilizing a
big number of examples to train the neural network.

The implementation and the results obtained in various tests carried out are presented in the
following sections—starting with Section 2, where the typical structure for brushless motor control is
shown as well as its simulation in the PSIM software [43]. In addition, in Section 2, a brief review of
the neural network and its architecture used is presented. The implementation of motor control and
the training of the neural network are described in Section 3. Section 4 shows the tests and results of
the motor control implementation through the neural network. Additionally, a comparison against the
PID control is made in Section 4, too. In order to clarify some points about the results obtained in this
work a discussion was added in Section 5. Finally, the conclusions of this work, as well as perspectives
for its continuation, are presented in Section 6.

2. Materials and Methods

This section presents and explains the different methods and materials used to achieve the results
in this paper. First, it is necessary to present a brief description of the brushless direct current just to
contextualize the functioning of the motor. In the second part of this section, a general revision about
the concepts of neural networks will be presented.
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2.1. Motor Brushless

A brushless motor is an electric motor controlled by an electrical signal. This type of motor lacks
any form of collector or sliding ring. The motor requires some form of alternating current to rotate,
either from an alternating current (AC) power supply or an electronic circuit. These motors have
certain advantages over brushed motors, which are ideal for robotics projects. Some advantages and
disadvantages of this type of motors are presented below:
Advantages:

(a) Higher efficiency (less heat loss)
(b) Higher performance (longer battery life for the same power)
(c) Less weight for the same power
(d) They require less maintenance since they do not have brushes
(e) Speed/torque ratio is almost a constant
(f) Higher power for the same size
(g) Better heat dissipation
(h) High speed range without mechanical limitation.
(i) Less electronic noise

Disadvantages:

(a) Higher construction cost
(b) Control is through an expensive and sophisticated circuit
(c) It always takes an electronic control to work (ESC’s), which sometimes doubles the cost.

The BLDC motor uses a DC power supply applied by power devices, and the position of the rotor
determines its switching sequence. The BLDC motor phase current, which has a rectangular waveform,
must be synchronized with the rear counter electromotive force (EMF) to produce a constant torque
at a constant speed. Electronic power switches replace the conventional mechanical switch, and the
current of the motor windings is supplied depending on the position of the rotor. This type of AC
motor is called a brushless DC motor, and its operation is similar to that of conventional DC motors
with a switch.

BLDC motors are generally controlled employing three-phase inverters, so it requires a rotor
position sensor to control the inverter in order to determine the switching instants and provide an
appropriate sequence for switching. The position of the motor in these engines is generally determined
by position sensors such as Hall effect sensors, resolvers, and absolute position sensors; otherwise,
it must be prepared by estimating the parameters that specify the rotor position using sensorless
techniques [44,45].

The driving range for each phase is usually 120 electrical degrees, which is divided into two
60-degree steps. For example, S5-S6, S1-S6, S1-S2, S3-S2, S3-S4, and S5-S4 are six steps of a 360-degree
electric cycle. Therefore, only two phases are carried out at a time. The above can be seen graphically
in Figure 1.

From the operation of the engine and their elements, the BLDC engine is modeled to simulate
its behavior. The brushless motor model implemented in the PSIM simulation environment is shown
in Figure 2. This figure shows the three-phase inverter, which has a sensor to monitor the current
supplied to the BLDC. It is also possible to see that the BLDC motor is coupled with a sensor for speed
reading. This sensor generates the control signal that determines the pulse width of the PWM (Pulse
Width Modulation) that activates each of the inverter’s drivers, in addition to the necessary switching
stage that depends on the state of the Hall effect sensors. This switching allows the three-phase inverter
to function normally in addition to preventing a short circuit in any of the three branches.
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Figure 1. Waveforms of the counter-electric force in 120 electrical degrees.

Figure 2. Inverter-BLDC system implemented in PSIM.

2.2. Neuronal Networks

For artificial intelligence, neural networks are a significant field of application. These are inspired
by the interconnections of the cells of the human brain. In addition, they try to simulate the behavior
of a biological neural network. Thus, neural networks are usually used to model systems that solve
difficult problems through other techniques.

Some examples where artificial neural networks have been used to solve various tasks such as
pattern recognition [46], parameter estimation [47], prediction of values [48] and of course in the
control of different types of systems [49–51].

In general, a neural network is formed by the next elements:
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1. Neurons
2. Layer
3. Transfer functions
4. Weights

Usually, the neural networks have several layers composed of a different number of neurons each
of them. In general, neural networks are composed of three different layers: input, hidden, and output.
The information goes from one layer to another through the transfer functions. The transfer function
determines how the information is transmitted between layers. Weights are directly associated with
the connection between layers. That is, if a connection has weight with a high value, then it will make
more contributions to the network output.

One of the most used neural networks is called multi-layer perceptron, and the best-known
training method for this type of network is backpropagation. This algorithm is used more for learning
this kind of multi-layer perceptron network. The backpropagation algorithm trains the neural network
from sample vectors of the system that are of interest for their modeling, such as the texture of an
object or, in our case, the speed of a motor.

Summarizing, the backpropagation training system consists of the following steps:

1. Initialize the weights of the network randomly.
2. Enter input data from among those to be used for training.
3. Let the network generate an output data vector (forward propagation).
4. Compare the network output with the desired output.
5. The difference between the generated and the desired output (called error) is used to adjust the

weights in the output layer.
6. The error spreads backwards (hence the name of backpropagation), towards the previous neuron

layer, and is used to adjust the weights of that layer.
7. Continue propagating the error backwards and adjusting the weights until the input layer

is reached.

One of the advantages that backpropagation presents is a speed of convergence and robustness
compared to other types of training. For this reason, in this work, a multi-layer perceptron neuronal
network has been implemented using backpropagation as a training algorithm. This network was
used for speed control of a brushless motor. The architecture of the neural network used for the
development of this work has a topology 2:8:1 and uses only two layers. The relation 2:8:1 means
that the neural network has an input vector of a size of two elements. This means that every example
presented to the neural network only has two elements. The second number 8 belongs to the number
of neurons that have the first hidden layer. Finally, number 1 tells us that there is only one neuron in
the output layer.

As it is possible to see, the neural network needs only two layers of neurons in order to obtain
an excellent performance of the control system proposed. However, just with this configuration,
the neural network is capable of learning the vectors related to brushless motor control.

Part of the neural network training will be addressed in the next section.

3. Neural Network Training

As previously noted, it is necessary to have example vectors related to the problem to be solved by
the neural network. These sample vectors must come from real examples of the objects or the system
to be modeled. In this case, examples of the motor’s response to different applied torques are required.

For this reason, a classical Proportional, Integral, and Derivative (PID) controller has been
implemented in order to obtain previous test values to train the proposed network. Figure 3 shows the
block diagram of the PID controller used. This figure consists of a DC/AC converter, usually called a
voltage inverter. This inverter supplies the three-phase voltages for the BLDC motor. The applied load
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torque, the sensing of the rotor speed, a reference speed block that will serve for the training of the
network, the PID control, and the inverter switching stage determined by the states of the Hall effect
sensors are detailed in Figure 2.

From the PID control shown in the diagram in Figure 3, the different values for the input vectors
of our neural network are obtained.

Figure 3. Block diagram of the PID control used.

Figure 4 shows the training signal made to the BLDC motor with the PID control. This signal
must follow the desired reference that starts from scratch and increases its speed smoothly to 750 rpm
(revolutions per minute). It is worth mentioning that the value of 750 rpm is the maximum speed
that the motor can reach. In the same figure (Figure 4), it is possible to observe the signal resultant,
which was obtained with no external load pair applied to the system. For this reason, it will be
mentioned as a zero pair in future mentions of it. In order to have greater control over the gains of the
PID controller, they were chosen heuristically. Hence, the chosen earnings were 5, 0.001, and 0.0001
for Kp, Ki, and Kd, respectively. From this test, pairs of velocity values (ω) and the control signal (u)
necessary to reach the velocity values for each pair (ω, u) are taken. These values are sampled every
40 rpm; therefore, 600 input vectors will be used as examples for the neural network. These values will
serve to train our neural network so that it is capable of controlling the motor with zero torque.

Figure 5 graphically shows the 22 values obtained from the zero torque PID control tests that
will be used to train the neural network. It is worth mentioning that, within the sample pairs used,
the minimum and maximum values are included, which are 0 and 800 rpm, respectively.

Obtaining the previous values, as can be seen in the previous paragraphs, is only to train the
neural network when the motor does not have an applied load, that is, when the torque is zero.
Therefore, to determine the behavior of the network when a non-zero torque is applied, it is necessary
to train the network with different load values.

As it was required to have the performance of the neural network in a range of 0 to 1 Nm, it was
considered to train the network with load pairs applied in the said range in increments of 0.25 Nm.

To obtain the input vectors for each of the different load pairs to be learned by the network,
the same procedure is performed as for obtaining the vectors with zero torque. Obviously, this time
the network is trained with the desired speed values, control signal, and applied torque (ω, u, τ) for
each applied torque from 0 to 1 Nm in increments of 0.25 Nm.
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Some values obtained for each of the different applied load pairs (τ) are observed in Figure 6.
These values are used to train the network that can control the BLDC system when any load pair
is applied.

This will allow the neural network to have a dynamic performance when applying a load in the
range of 0 to 1 Nm. Although the network will train only with well-defined load values every 0.25 Nm,
it will be able to infer the performance that it should have in the desired speed values that were never
presented to the system.

Figure 4. Training signal without torque load applied.

Figure 5. Values obtained from the PID controller (τ = 0).
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Figure 6. Training values obtained from PID control with different loads applied.

Like any control system, it is necessary to determine the parameters with which the controller
will work. Unlike a PID controller, a neural network does not require that these values be modified
every time any element of the system changes. This is another advantage of using a neural network
compared to classical control methods. This is because the network adapts to resolve cases that were
not presented during training. It should be mentioned that this only happens within the logical ranges
of the expected behavior of the system.

In this case, the parameters of the neural network and its training are presented in Table 1.
Some observations regarding the values shown in Table 1. First, it will be mentioned that,

although the neural network training indeed used the backpropagation algorithm, this algorithm has
four variants. These variants are listed below:

1. Momentum,
2. Variable learning ratio,
3. Conjugate gradient, and
4. Levenberg–Marquardt.

Table 1. Neural network parameters.

Parameter Value

Number of layers 2
Input layer neurons 8
Activation function Sigmoidal
Output layer neurons 1
Activation function Lineal
ANN architecture Multi-layer perceptron
Training algorithm Backpropgation
Variant Levenberg–Marquardt
Performance Mean Squared Error
Epoch 5000

Being the Levenberg–Marquardt algorithm, the backpropagation variant with which, generally,
better performance is obtained in the tasks assigned to the neural network. For this reason, in this
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implementation, it was decided to use this variant. Although this variant indeed has the highest
computational cost, it is compensated by the excellent performance it offers.

Another observation regards the number of epochs that were specified as the maximum value
in this implementation. In general, for a neural network to converge towards the optimal values of
the weights, 1000 to 10,000 epochs are required. For this reason, this parameter began to carry out
tests from 5000 epochs. However, in the different experiments made, it was observed that the neural
network had a convergence in a range of 18 to 50 epochs. The last-mentioned means that training does
not take a long time of 50 epoch to obtain a result. Then, this parameter was established in 50 as a
maximum value that training needed to reach the optimal values of the weights.

The above is due in part to three main things. One of them is the use of the Levenberg–Marquardt
algorithm for training, which has a faster convergence towards the optimal values of the network
weights even if it requires more processing to get convergence of the network. The other is the number
of network layers, which, in our case, only have the input and output layers.

Finally, the number of neurons is mentioned; in our implementation, only nine neurons are
necessary. Eight of these neurons are in the input layer, while the output layer only has one neuron.

It is important to emphasize that our implementation occupies few neurons, as previously
mentioned. This is a feature that will allow us to implement this controller quickly and efficiently
in an embedded system, such as an FPGA [52]. It would even be possible to implement it on a
lower-performance device such as an Arduino. The above would give portability to this controller,
thus obtaining a lower-cost hardware implementation.

Once the implementation of the brushless motor controller through neural networks is presented,
the results obtained are shown. Therefore, in the following section, both the tests performed and the
results obtained from this implementation will be presented.

4. Results

This section presents the different tests carried out on the implementation of the control performed
with the neural network as well as the comparison against the control carried out by the PID. It will
begin with the performance of the control performed by the neural network when there is no load
applied to the plant.

The different tests and results were developed using the Matlab/Simulink-PSIM package. For this,
the BLDC model SG/F14 Gearless motor parameters were used. Parameters mentioned were obtained
by characterizing it and used in the PSIM simulation environment. These values are shown in Table 2.

Table 2. Motor parameters.

Parameter Value

Stator resistance (Rs) 0.15 Ω
Stator self-inductance (Ls) 918 × 10−6 H
Stator mutual induction (M) −367.2 × 10−6 H
Vpk/krpm 78.9 V
Vrms/krpm 55.86 V
Number of poles (P) 30
Moment of inertia (J) 1.5855 × 10−3 kgm2

Mechanical time constant (τmech) 0.2369

Figure 7 shows the block diagram of the plant which is made up of the following elements:

1. A three-phase BLDC motor
2. A mechanical load
3. A Voltage Source Inverter (VSI)
4. A current sensor (to measure the direct current (idc) consumed by the inverter)
5. A PWM device (with a frequency of 10 kHz)
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6. The path speed reference
7. The neural network implemented in Matlab/Simulink.

Figure 7. Configuration diagram for the BLDC system.

On the other hand, Figure 8 shows the diagram of the implementation of the neural network
made in Matlab/Simulink. In this diagram, the stage that defines the desired path, the applied load
torque, as well as the implemented neural network and the BLDC motor system can be seen, shown
above in Figure 2.

It will start with the performance of the control performed by the neural network when there is no
load applied to the plant. The behavior of the trained network can be seen in Figure 9. In this
test, the neural network is subjected to following a desired speed reference path from zero to
650 rpm. It should be mentioned that this was not a network training value. However, the fact of
training without a load applied to the plant was to have a reference value for later comparison with
variable load.

Figure 8. Implementation of the Matlab/Simulink-PSIM simulation system.

159



Math. Comput. Appl. 2020, 25, 57

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [s]

0

100

200

300

400

500

600

700
Sp

ee
d 

[r
pm

]

Reference
Speed ANN
Speed PID

3.3 3.4 3.5 3.6 3.7
640

650

660

Figure 9. Speed response of the neural network and the PID with no load applied to the plant.

Furthermore, in this same figure, it can be observed the comparison of the control signals of both
the network and the PID control. This comparison shows that both velocity signals are very similar,
but the neural network remains around the desired reference. With this, it is shown that the scheme of
the proposed network is functional.

The behavior of the implemented neural network control signals compared to that of the PID is
shown in Figure 10. In this figure, it can be seen that the two responses to the desired velocity values
are very similar.
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Figure 10. Control signals, speed, and current error on the controller CD bus with the neural network
and with the PID.

In the same Figure 10, a satisfactory behavior of the neural network is observed both in the speed
error obtained and the current required by the inverter. Analyzing the system error and leaving aside
the part of the transient. In this case, it can be seen that the neural network has a much smaller error
than that obtained by the controller through the PID; furthermore, the neural network is maintained
around the desired reference.

On the side of the current required by the inverse, it can be seen that the one required with the
control of the neural network is more stable and constant, unlike the requirement of the PID.

With the finality of extending these results, a test was also performed with a constant load torque
applied to the BLDC motor and variable load torques.

Having seen the performance of the systems under conditions known, as are the values close to
those of neural network training, it was proceeded to evaluate the system control with values different
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from these. In this test, the system was subjected to a load torque. The applied load was 0.3 Nm at
t = 2.5 s.

Under these characteristics, Figure 11 shows the speed monitoring from a speed of 0 rpm to
650 rpm. In this figure, it is possible to emphasize that the neural network is capable of compensating
the speed response to this applied load torque. It should be noted that this applied torque was not
used for network training.
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Figure 11. Speed response of the neural network and the PID to two applied load changes.

Although the neural network indeed maintains an error with respect to the reference value,
especially after the application of the load, it can be seen that the response of the network is smoother
and without transients that could affect the performance of the plant as with the PID response.

Continuing with the analysis of this test, Figure 12 shows the control output of the neural network,
which minimizes the speed error. Here, we also observe the comparison of the current consumed by
the inverter for both the grid and the PID.
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Figure 12. Control signals, speed, and current error on the CD bus for the neural network and the PID.

An important point that should be mentioned is that, in this implementation of the control by the
neural network, the output speed of the system is not given as feedback. Therefore, this neural network
control can be considered as a sensorless type system. The latter is due to it not being necessary to
measure the speed for the system to work acceptably, with the inclusion of a system that does not
require excessive computational load, and that does not use a sensor to measure speed. This allows us
to make the implementation less expensive, mainly in computational terms. Therefore, the use of a
neural network for the control of this type of motors is a highly recommended element to carry out
the control.
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Finally, a test was performed where the system was subjected to the same desired speed path as
the previous tests. However, to carry out this test, the system was subjected to a variable load torque.
This torque load varied from 0 to 0.7 Nm in an irregular way and can be seen in the lower part of
Figure 13.
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Figure 13. Speed response of the neural network and the PID by applying a variable load over time.

This experiment gave us an interesting result and is the one presented in Figure 13. In this figure,
it is observed that, despite the variable load torque, the system implemented with the neural network
is capable of responding to this load variation. However, the PID controller fails to respond to these
load variations adequately.

The reason the PID is unable to respond to changes in applied load variation is that the PID
control signal becomes saturated and prevents it from reacting adequately to variable torque changes.

Another important point to highlight in this test is that the error generated by the neural network
is less and closer to the value of zero than that obtained by the PID. This can be seen in Figure 14.
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Figure 14. Speed response of the neural network and the PID by applying a variable load over time.

Controller Performance

Sometimes, it could be challenging to follow the graphics where the results are shown. The graphics
are indeed a better way to present information but tiny, and essential details, are possibly not highlighted.
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For this reason, in this section, some specific parameters like the controller performance, the power
consumption, and the mean square error will be presented to give another point of view of the
advantages in the approach presented in this work.

Some notes about the tables are next. The test marked as “No-load applied” belongs to the
experiment shown in Figures 9 and 10, while the legend “Constant load applied” is for the results in
Figures 11 and 12. The results presented in Figures 13 and 14 are labeled as “Variable load applied.”

Beginning with our explanation, Table 3 shows the performance developed by each controller.
Here, it is possible to see the different tests done and the performance obtained in every case. In this
Table 3, it is easy to observe that the performance carried out by the two controllers is so close. However,
the controller implemented through neural networks is robust since its performance, in the three cases,
is around 99%. Meanwhile that made by the PID begins to show a dispersion when the load is applied
to the motor varies.

Table 3. Controller performance.

LOAD PID ANN

No-load applied 0.1186% 0.0332 %
Constant load applied 0.1351 % 0.0930 %
Variable load applied 2.9911 % 0.3147 %

Concerning the mean square error, similar behavior is observed. In this case, Table 4 shows
the way that the error grows for the two controllers as the load applied to the BLDC motor varies.
From the results presented in Table 4, it is evident that the values shown are high. This is due to the
oscillations generated by the controllers when trying to follow the desired speed. Even so, the fact that
the controller made by the neural network has a tendency to be more close to the desired value must
be highlighted since the mean square error values in all three cases are lower than in the PID controller.

Table 4. Mean square error for the controller implemented.

LOAD PID ANN

No-load applied 952.18 425.4980
Constant load applied 1132.7 514.3944
Variable load applied 2794.2 946.8229

Finally, Table 5 exhibits the values corresponding to the average power consumption for each
controller in the different tests carried out. As a reference value, the BDLC motor used for the
experiments in this work can deliver a maximal power of 50 Watts. Thus, the values that are shown in
Table 5 tell us that the PID controller wears more power than the one made using the neural network.
In the test with a no-load applied, the power consumption in both controllers has almost the same
value for both PID and Neural network controllers with just a minimal variation of 0.0529 Watts.
In the other two tests, the power that is expended by the PID controller begins to grow; meanwhile,
the power expended by the neural network maintains stable growth without significant variations.
Here, again, the neural network controller is better than the PID controller.

Table 5. Average power consumption

LOAD PID ANN

No-load applied 14.4753 W 14.4224 W
Constant load applied 27.127 W 21.72 W
Variable load applied 32.2768 W 25.8408 W
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5. Discussion

In order to clarify some points about the results obtained, a discussion will be presented in
this section.

One of the considerations that it is necessary to comment on is the fact that, when a BLCD motor
does not have Hall sensor, the counter electromotive force detection methods are commonly used to
know the position of the motor at all times.

However, when the BLCD is fixed, no counter electromotive force is generated; therefore, there is
no information on the position of the stator and rotor. The above mentioned is why motor starting
methods are used, such as starting the motor in an open-loop configuration by activating the coils in a
predetermined sequence. Now, when using Hall sensors, the use of digital tachometers based on the
time of the rising edge of one of the Hall sensors or use of external sensors dedicated to speed reading,
such as encoders or resolvers, solves the problem of starting and running the engine at low speeds.

Therefore, this work addresses the use of Hall sensors to control switching by varying the PWM
output signals that go to the driver (see Figures 3 and 7).

Another consideration is that the term sensorless refers to the fact that, in this approach,
no external sensor or digital tachometers are used; that is, the proposed system only makes use
of the desired speed and applied torque.

The next point to take into account is the expected performance of the control implemented using
neural networks. It is evident that there will almost always be differences between real models and
those used experimentally on simulations.

Independently of the method used to simulate a system like that shown in this work, it is almost
certainly necessary to make adjustments in the real implementation. For this reason, the logical step
to develop is to retrain the neural network. However, some points must be taken into account. First,
the fact of the vectors for training the neural network to develop the proposed control were obtained
from the real parameters of the BLDC motor target in this work. The above gives us an idea of the
behavior of the real from the simulation tests. The physical parameters and variation due to wear
are indeed an essential variable in the real motor. This is going to have a direct impact on the BLDC
motor performance. However, the behavior of the real is expected to be closely similar to simulation.
From the experience of when other control approaches have been applied, similar results have been
obtained both in simulation and in the real system, especially in terms of the speed and current values
obtained.

However, the behavior of the real and simulation tests is expected to be very similar since different
control approaches have been applied, obtaining similar simulation and real results in terms of speed
and current.

Finally, one last question arises: what if the BLDC motor changes? Here, the expected response of
the neural network will be close to the training done. This means that the neural network will be able
to always control the motor, and the parameters of the BLDC motor are near the value used to train in
our work. The above mentioned is due to the ability of the neural networks to generalize information
from data learning. It is an advantage of the neural networks facing other methods like PID, since the
neural network will only need to be trained if the parameters of the motor to be controlled are very
different. While a PID is just one variable changes slightly, the system needs to be tuned again.

6. Conclusions

In this work, an implementation of the speed control of a BLDC motor using a multi-layer
perceptron type neural network was presented. From the tests carried out in this article, it was observed
that the control implemented from the proposed neural network scheme is efficient, and satisfactory
results similar to those presented by a PID in the presence of constant load pairs are obtained.

According to the results obtained in the different tests and experiments carried out in our
implementation, it was evident that the neural network is superior to a PID control. This is because,
in most real applications, it is difficult to find a constant load torque; therefore, the use of a PID control
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may not be appropriate for a system. This is highlighted by the fact that the PID control is not capable
of supporting variable load changes. At this point, the neural network was superior since it is capable
of supporting torque changes without the need for a speed sensor.

Finally, it is noted that the implementation of the neural network is computationally less expensive
since it only needs nine neurons distributed in two layers. This will allow the future implementation
of this control in embedded hardware.

Among the perspectives considered for the continuation of this work, just two of them will be
mentioned—first, to implement this controller in an embedded system to validate its performance in a
real system. Secondly, the improvement-oriented towards obtaining a system that does not depend on
any sensor in which the neural network functions as the observers required for motor control.

For the above, the problem of starting the BLCD motor must be considered because, as it does
not have any sensor, the observers will not give results at speeds close to zero, therefore it implies a
greater challenge.
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