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Target Doppler Rate Estimation Based on the Complex Phase of STFT in Passive Forward
Scattering Radar
Reprinted from: Sensors 2019, 19, 3627, doi:10.3390/s19163627 . . . . . . . . . . . . . . . . . . . . 309

Marek Płotka, Karol Abratkiewicz, Mateusz Malanowski, Piotr Samczy ński, 
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Preface to ”Recent Advancements in Radar Imaging

and Sensing Technology”

During the last decades, radar imaging and sensing technology has made major scientific

and technical progress. The first applications of this technology were devoted mostly to military

uses. Nowadays, radar imaging and sensing techniques are widely used in many civilian

applications, ranging from medicine, though security, to safety assistance sensors widely used in

transportation, including cars, trains, and airplanes, among others. These technologies are starting

to be present everywhere around us. With the fast development of new hardware platforms with

advanced computational resources that are widely available on the market, novel signal processing

techniques—enabling enhanced functionalities of radar systems—have been implemented. This, in

turn, makes it possible to apply new technology in radar imaging, such as, for example, passive

radar sensing. Just a few years ago, this type of sensing was at a very low technical readiness level,

and today it has become a mature technology that will probably be offered on the market within the

next few years. Moreover, the ever-wider bandwidth of the currently available receivers allows the

creation of very high-resolution radar images utilizing both active and passive radar technology.

The aim of this Printed Edition of Special Issue was to gather the latest research results in the

area of modern radar technology using active and/or radar imaging sensing techniques in different

applications, including both military use and a broad spectrum of civilian applications. As a result,

the 19 papers that have been published highlighted a variety of topics related to modern radar

imaging and microwave sensing technology. The papers included in the Printed Edition of Special

Issue dealt with wide aspects of different applications of radar imaging and sensing technology. A

brief revision of the content of this book is presented below.

The first paper in this Special Issue entitled ”A Hybrid SAR/ISAR Approach for Refocusing

Maritime Moving Targets with the GF-3 SAR Satellite” proposed to combine Synthetic Aperture radar

(SAR) and Inverse SAR (ISAR) to refocus the maritime moving targets. In the paper, the authors

describe a novel hybrid SAR/ISAR approach. This approach is based on the improved rank-one

phase estimation method (IROPE). The authors proposed to use an iterative two-step convergence

approach in the IROPE. As a result, the proposed method achieves accurate phase error, maintains

robustness to noise, and performs well in estimating various phase errors. In the presented paper,

the proposed method’s performance has been compared with other focusing algorithms in terms of

processing simulated data and real complex image data acquired by Gaofen-3 (GF-3) in spotlight

mode. The results shown in this paper demonstrates the effectiveness of the proposed method and

high potentials also for high-resolution long-CPI spaceborne radar.

The authors of the paper “Azimuth Phase Center Adaptive Adjustment upon Reception for

High-Resolution Wide-Swath Imaging”, propose a method to set the proper PRF in a multichannel

SAR system composed of a number of receiving antennas to effectively implement high resolution

wide swath (HRWS) SAR imaging. In fact when using sub-apertures at the receiver the used PRF

may be not optimum decreasing the quality of the SAR image. Particularly a non uniform sampling

of the received along the along track dimension may cause gratings lobes, higher side lobes and even

ghost targets. The authors propose a way to automatically adapt the optimum value of the PRF within

a certain range by adjusting the phase center spacing of the sub-apertures.

The paper entitled ”Focusing Bistatic Forward-Looking Synthetic Aperture Radar Based on

an Improved Hyperbolic Range Model and a Modified Omega-K Algorithm” proposes to improve

ix



hyperbolic approximation range form with high-order terms to obtain a more accurate compensation

result in focusing bistatic forward-looking SAR. Additionally, the authors adopt a modified omega-K

algorithm based on the new slant range or parallel bistatic forward-looking SAR imaging. The

paper presents several simulation results, which validate the effectiveness of the proposed imaging

algorithm.

The paper “Microwave Staring Correlated Imaging Based on Unsteady Aerostat Platform”

propose an algorithm to form radar images of the observed area by using an unsteady aerostat

platform and the microwave staring correlated imaging algorithm. MSCI has been proven effective

when SAR cannot be used (forward looking or staring geometries). However the MSCI algorithm

relies on the hypothesis of stationary platform which is difficult to be realized in practice especially

when using a tethered aerostat. The authors then propose an algorithm to include the antenna

motion and the dynamic beam coverage cause by the instability of the platform in the imaging model.

Therefore the real-time position vectors of the antenna are used in the imaging model instead of static

position vector. A least square error curve fitting is used to estimate the accurate translational speed

and rotational velocity of the array at each pulse.

The paper ”Strip-Mode Microwave Staring Correlated Imaging with Self-Calibration of

Gain–Phase Errors” proposes to apply microwave staring correlated imaging (MSCI) with strip-mode

self-calibration of gain–phase errors. The method solves the problem of MSCI with gain–phase error,

which occurs in a large SAR scene. The problem exists in the multi-transmitter array, resulting in

an imaging model mismatch and considerably degrading the imaging performance. The authors

propose to divide the imaging SAR scene into multiple imaging strips. Then in the next step, the

strip target scattering coefficient and the gain–phase errors are combined into a multi-parameter

optimization problem that can be solved in the iteration procedure. The error estimation results in

each iteration are set as the initial value for the next iteration. As a result, the whole SAR imaging

in a large scene is achieved by multi-strip image splicing. The proposed method reduces the time

required by the SAR imaging process and improves the imaging quality.

The paper ”Geometrical Matching of SAR and Optical Images Utilizing ASIFT Features for

SAR-based Navigation Aided Systems” proposes a new approach for the estimation of shift and

rotation between optical and SAR images. The estimated shift and rotation can be used to calculate

the navigation correction when the drift of the calculated SAR platform trajectory is expected. The

method can be used in platforms where there is no satellite navigation signal present. In such

a case, the trajectory is calculated only on the basis of an inertial navigation system, which is

characterized by a significant error. The proposed method of estimating the navigation error utilizing

Affine Scale-Invariant Feature Transform (ASIFT) and Structure from Motion (SfM) is described

in this paper. The presented methodology was tested and verified using real-life SAR images.

Merged techniques such as ASIFT-based keypoint extraction and SfM-based keypoints matching

make this method robust and resistant to noise and interference. Thus, the presented methodology

can be successfully integrated with existing systems to enhance their precision and dependability.

Additionally, the authors provide a comparison of several filters, including their computational

complexity and performances. The detailed results of this analysis are shown in the article.

The paper ”Wavelength-Resolution SAR Ground Scene Prediction Based on Image Stack”

presents five different statistical methods for ground scene prediction (GSP) in wavelength-resolution

SAR images. The predictions are based on image stacks, which are composed of images from

the same scene acquired at different instants with the same flight geometry. In the paper, the

x



authors considered the following methods in their study: autoregressive models, trimmed mean,

median, intensity mean, and mean calculations. The authors indicate that the median method

provided the most accurate representation of the true ground. Additionally, in the paper, a change

detection algorithm was considered using the median ground scene as a reference image to show the

applicability of the GSP. The obtain results presenting competitive performance when compared with

recently published works.

The paper “A Multi-Scale U-Shaped Convolution Auto-Encoder Based on Pyramid Pooling

Module for Object Recognition in Synthetic Aperture Radar Images” proposes another way to

implement auto-encoder to simultaneously extract global and local target features. More specifically,

the proposed approach learns multi-scale features at two levels: the modality level features and the

branch level feature. Also a modified objective function is proposed to handle the degradation caused

by the speckle. Moreover, a new convolution layer and its counterpart are also developed to reduce

the number of trainable parameters in the model in order to alleviate overfitting caused by the limited

training samples.

The paper ”A MIMO-SAR Tomography Algorithm Based on Fully-Polarimetric Data” presents a

fully-polarimetric unitary multiple signal classification (UMUSIC) tomography algorithm to acquire

high-resolution 3D radar imagery for a multiple-input multiple-output (MIMO) SAR with a small

number of baselines. The authors employ fully-polarimetric data and their conjugation to obtain the

sample covariance matrix to mitigate the effect of multi-looking on the range-azimuth resolution. In

the presented paper, two algorithms, including the popular distributed compressed sensing (DCS)

and UMUSIC, are compared through numeric simulation of different point scatterers. All these

comparisons have been made by the authors using the fully-polarimetric data. The MIMO SAR

algorithm has been validated using measured data of an aircraft model with six different baselines.

The final obtain results show the usefulness of the algorithm for 3D imagery of complex radar targets.

The authors of “Target Localization Using Double-Sided Bistatic Range Measurements in

Distributed MIMO Radar Systems” propose a way to enhance the target localization performance

using a distributed MIMO radar system. The main novelty with respect to the literature consists in

the use of both the target-transmitter and target receiver distances as auxiliary information to enhance

the calculation of target time delays and therefore enhance the estimation of the target coordinates.

The authors of the paper “Research of a Radar Imaging Algorithm Based on High Pulse

Repetition Random Frequency Hopping Synthetic Wideband Waveform” propose a radar imaging

algorithm specifically designed for high PRF and random frequency hopping (RFH) waveforms. The

use of high PRF has obvious advantages especially when using very fast moving platforms (e.g.

supersonic or hypersonic aircrafts). Moreover the use of RFH make the radar system particularly

robust to jammer. On the other end, however the use of RFH makes impossible the use of

Fourier based approaches to form the radar image of the observed scene because the received

echoes are not uniformly spaced in the data domain. Algorithms have been proposed in the

literature but a branch of these algorithm requires many constraints on the structural characteristics

of the non-uniform sampling signal therefore making them poor versatile, the other branch of

algorithm that is based on the use of compressed sensing while showing good performance requires

however high computational burden. The authors therefore propose an algorithm based on Doppler

preprocessing and 2D generalized matched filter (GMF) to try overcoming the limitations of the

algorithms proposed in the literature. Moreover several RFH modes are designed along with the

corresponding imaging algorithm.
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“Compressed Sensing Radar Imaging: Fundamentals, Challenges, and Advances” is a review

of the modern concept of compressed sensing applied to radar imaging. The authors present the

main technical achievements and the technical background of the most used techniques, such as

the minimum variance unbiased estimation, least squares (LS) estimation, Bayesian maximum a

posteriori (MAP) estimation. Moreover the main challenges and still open problems are analyzed

in this paper These include the sampling scheme, the computational complexity, the sparse

representation, the influence of clutter and the model error compensation.

“Compressive Sensing-Based Bandwidth Stitching for Multichannel Microwave Radars”

address the topic of forming high range resolution range profiles (HRRP) using different frequency

bands and compressive sensing. Phase errors due to incorrect timing synchronization and antenna

phase’s center relative locations make it complicated to form HRRPs. In this paper this challenges

is addressed proposing two methods based on CS theory: the pruned orthogonal matching pursuit

(POMP) and using a l 1-norm regularization algorithm to jointly estimate the range profile and the

phase errors.

“Compressive Sensing for Tomographic Imaging of a Target with a Narrowband Bistatic Radar”

proposes a method to form high resolution 2D radar images using narrow band radar but large

synthetic aperture and compressive sensing (CS) based algorithm instead of standard tomographic

approach. Particularly the authors of this paper propose the use of the parameter refined orthogonal

matching pursuit (PROMP) algorithm. A key feature of this algorithm is that it can address the

dictionary mismatch problem that may arise because of the presence of off-grid scatterers. The

algorithm performance are the compared to that of standard tomographic approaches and of the

orthogonal matching pursuit (OMP) by using simulated and data acquired in an anechoic chamber

in a fully controlled experiment.

“Two-Dimensional Augmented State–Space Approach with Applications to Sparse

Representation of Radar Signatures” propose a sub-space based method to reconstruct a sparse

2D radar image of man-made targets. Among all the approaches that have been proposed in

literature a group of those are the subspace-based approaches, such as MUSIC, MEMP, etc. These

demonstrate to have good performance but still some challenges to address, such as the model

order that is a requirement for the MUSIC and that is difficult to be a priori known. The authors of

this paper propose a 2D augmented state-space approach (ASSA) to try answering these challenges

adequately.

The paper ”On the Slow-Time k-Space and its Augmentation in Doppler Radar Tomography”

presents enabling signal processing technique as a combination of Doppler Radar Tomography

(DRT) and a sparse reconstruction technique such as Orthogonal Matching Pursuit (OMP), with a

unifying mathematical framework based on the slow-time k-space. DRT relies on spatial diversity

from the rotational motion of a target rather than spectral diversity from wide bandwidth signals.

The slow-time k-space is a novel form of the spatial frequency space generated by the relative

rotational motion of a target at a single radar frequency, which can be exploited for high-resolution

target imaging by a narrowband radar with Doppler tomographic signal processing. In the paper,

the authors demonstrated the ability to improve image resolution using a rotating target with an

ultra-narrowband radar. The proposed technique has been validated using real measurements. As a

result, it has been shown that closely spaced scatterers can be resolved by illustrating the creeping

wave effect when the scatterer size is similar to the radar wavelength. The proposed method

offers a unique and interesting characteristic of the slow-time k-space, which can be augmented

xii



and significantly enhance imaging resolution by signal processing and provide more information

to identify unknown targets detected by the radar.

The paper ”Target Doppler Rate Estimation Based on the Complex Phase of STFT in Passive

Forward Scattering Radar” presents a novel approach to estimating target motion parameters in

passive forward scattering radars (FSR). In the proposed method, the modulation factor, also called

the Doppler rate, is estimated in the time-frequency (TF) domain. The approach proposed by the

authorsutilizes the idea of the complex phase of the short-time Fourier transform (STFT) and its

modification known from the literature. Additionally, in this paper, the accuracy of the considered

estimators were verified using the Cramer-Rao lower bound (CRLB). The authors validate the

proposed method using simulations and signals collected during real measurement from a radar

operated in passive FSR geometry. The accuracy of the considered tools has been verified by statistical

analysis and the comparison of results to the CRLB. The obtained results showed the differences

between the estimators as well as the expected accuracy.

The paper ”The Use of the Reassignment Technique in the Time-Frequency Analysis Applied in

VHF-Based Passive Forward Scattering Radar” presents the application of the time-frequency (TF)

reassignment technique in passive forward scattering radar (FSR) using Digital Video Broadcasting

– Terrestrial (DVB-T) transmitters of opportunity operating in the Very High Frequency (VHF) band.

The authors propose to use this method to enhance the readability of the energy distribution in

the TF domain, which improved the result of the Hough transform and finally the precision of the

Doppler rate estimation in the passive FSR system. The algorithm has been validated using real-life

signals collected by the passive radar demonstrator during a measurement campaign. Additionally,

in the described experiment, the authors tested the possibility of utilizing FSR geometry in foliage

penetration conditions taking advantage of the VHF band of a DVB-T illuminator of opportunity.

The final obtained results show that the concentrated (reassigned) energy distribution of the signal in

the TF domain allows a more precise target Doppler rate to be estimated using the Hough transform.

The paper ”Noise Suppression for GPR Data Based on SVD of Window-Length-Optimized

Hankel Matrix” presents a novel method based on singular value decomposition (SVD) of

a window-length-optimized Hankel matrix in application to improve the noise suppression

performance in ground-penetrating radar (GPR). The effectiveness of the proposed method has been

verified by authors using simulated and real measurement GPR data. The experimental results

show that the proposed method can effectively improve noise removal performance under different

detection scenarios in GPR applications.

The “New Concept of Combined Microwave Delay Lines for Noise Radar-Based Remote

Sensors” paper focuses on the implementation of an optimized analogue microwave tunable delay

line to be used in a noise radar to detect micro-movement with range determination. Despite the fact

that current development of noise radars mainly concerns the use of advanced techniques of digital

signal processing in order to obtain fully-digital correlation receivers, the use of analog correlation

based receiver and tunable reference delay line may still be an interesting solutions, especially when

dealing with detection of millimeters movement, like vital activity of the human body. To address

this issue the paper comprise the concept of a digital controlled delay line with a set of fine distance

gates. This concept assumes the use of a combined set of three lines, including a new version of a

tapped delay line.

In this section, the short introduction of the published articles in the Special Issue entitled

”Recent Advancements in Radar Imaging and Sensing Technology” has been presented. All

xiii



published papers show new directions of developing algorithms in the area of topics including

high-resolution radar imaging, novel Synthetic Apertura Radar (SAR) and Inverse SAR (ISAR)

imaging techniques, passive radar imaging technology, modern civilian applications of using radar

technology for sensing, multiply-input multiply-output (MIMO) SAR imaging, tomography imaging,

among others.

Piotr Samczynski, Elisa Giusti

Editors
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A Hybrid SAR/ISAR Approach for Refocusing
Maritime Moving Targets with the GF-3 SAR Satellite

Zhishuo Yan 1,2, Yi Zhang 1 and Heng Zhang 1,*
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Sciences, Beijing 100049, China

* Correspondence: zhangheng@aircas.ac.cn; Tel.: +86-1850-190-1425

Received: 18 February 2020; Accepted: 2 April 2020; Published: 4 April 2020

Abstract: Due to self-motion and sea waves, moving ships are typically defocused in synthetic
aperture radar (SAR) images. To focus non-cooperative targets, the inverse SAR (ISAR) technique is
commonly used with motion compensation. The hybrid SAR/ISAR approach allows a long coherent
processing interval (CPI), in which SAR targets are processed with ISAR processing, and exploits the
advantages of both SAR and ISAR to generate well-focused images of moving targets. In this paper,
based on hybrid SAR/ISAR processing, we propose an improved rank-one phase estimation method
(IROPE). By using an iterative two-step convergence approach in the IROPE, the proposed method
achieves accurate phase error, maintains robustness to noise and performs well in estimating various
phase errors. The performance of the proposed method is analyzed by comparing it with other
focusing algorithms in terms of processing simulated data and real complex image data acquired by
Gaofen-3 (GF-3) in spotlight mode. The results demonstrate the effectiveness of the proposed method.

Keywords: synthetic aperture radar (SAR); moving targets; inverse SAR (ISAR); motion
compensation; hybrid SAR/ISAR; improved rank-one phase estimation (IROPE); Gaofen-3 (GF-3)

1. Introduction

Synthetic aperture radar (SAR) provides all-weather, day–night, wide-range high-resolution
imaging capabilities for a wide range of applications in Earth science and climate change research,
marine detection and imaging, and disaster monitoring [1]. Nevertheless, SAR uses the motion of
the radar, ignoring target motion, to coherently synthesize a large aperture that provides a narrow
synthesized beam, and it thus has a high resolution across the range. Therefore, in the ship detection
and classification scenario, ships are always defocused with conventional SAR processing because
of individual motion and sea waves. Inverse SAR (ISAR) uses the rotational motion of the targets,
ignoring radar motion, to distinguish different relative velocities through coherent processing and
Doppler effects and to form the synthetic aperture. Thus, ISAR processing is more adaptable to
the moving scenario since it is superior in imaging moving targets undergoing complex unknown
motions [2]. However, due to the unpredictability of non-cooperative targets, motion compensation
in ISAR imaging is a challenging task and usually includes two steps: range tracking and Doppler
tracking, i.e., coarse phase compensation and fine phase compensation [3]. This paper focuses on the
study of fine phase compensation, which is more sensitive than range tracking. Moreover, during the
operation of SAR for a moving target, both the radar and target are in motion, which means that the
processing of the moving target must combine the processes of SAR (radar motion) and ISAR (target
motion) [4,5]. Hybrid SAR/ISAR [6,7] processing is such an approach to optimally process SAR data
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by treating target and radar platform motions on an equal footing, which takes advantage of ISAR
processing to generate the focused image of the moving target in SAR.

Ideally, the phase of the echo signal in the range and azimuth profiles varies linearly during
the processing time. However, due to various factors, there exist undesired phase changes in the
echo signal, which are collectively referred to as phase error [8]. Phase error, which is divided into
low-frequency, high-frequency, and random phase errors, causes geometric distortion, resolution
degradation, false targets, and reduced signal-to-noise ratio (SNR), thus resulting in poor image quality.
Low-frequency errors encompass linear phase errors, quadratic phase errors (QPEs), and so on. The
low-frequency phase errors primarily affect the main lobe of the system impulse response, while
high-frequency errors affect the sidelobe regions. Random phase errors cause multiple pairs of echoes
around the target, and the main lobe energy is reduced [9].

To estimate the phase error and refocus the images, many fine phase compensation algorithms
have been proposed, which are roughly divided into parametric and nonparametric algorithms.
The parametric algorithms include the Mapdrift (MD) method [10,11], the phase difference (PD)
method [12] and methods of parameter estimation [13]. MD and PD methods are easy to implement,
but they only compensate for QPEs, which limits their applications. Furthermore, Chen et al. [14]
proposed a parametric sparse representation method. The acceleration and third-order phase were
considered in [15,16]. Tang et al. [17] achieved 2D velocity estimation of moving targets and refocusing
based on back projection and velocity SAR (another multichannel SAR-GMTI technique). Nevertheless,
these methods introduce nonlinear operations, which degrade the performance in the case of low
SNR. [18–21] presented a method for imaging moving targets via the compressive sensing (CS) method,
which is capable of generating images with better target focusing, especially with low SNR and high
undersampling ratios.

The nonparametric algorithms mainly include the maximum contrast (MC) [22], minimum entropy
(ME) [23,24], weighted least-squares (WLS) [25], sharpness optimization [26,27], Doppler centroid tracking
(DCT) [28], phase gradient autofocus (PGA) [29] and rank-one phase estimation (ROPE) [30,31] methods.
Because the MC, ME, WLS and sharpness optimization methods do not make any assumptions about
the characteristics of the target itself, they are highly adaptable. However, since the synthetic aperture
process is non-stationary and random, such algorithms generally have local extremum problems.
The DCT, PGA, and ROPE methods align the range envelopes and successively adjust the phase to
compensate for the translational motion. The DCT and PGA [32] methods are not model-based and
exhibit robust performance. Nevertheless, their compensation accuracy is unsatisfactory if there are
high-frequency and random phase errors. Furthermore, the model-based ROPE method assumes
that each range bin contains no more than one scattering center. The main idea of the method is to
use the phase finite difference to estimate the phase error, to find the phase average by alternating
along the range direction and the azimuth direction, and to estimate both the phase error and Doppler
frequency. In addition, the high azimuth resolution in ISAR processing is generated using a Doppler
frequency gradient generated by the rotation of the target relative to the radar line of sight (RLOS) [33].
By averaging all range units of the estimated Doppler frequency, the phase error will be obtained
more accurately with influences of the rotational phase weakened, ultimately owning a more precise
compensation for the translational phase error. The most remarkable feature of the method is that
it estimates not only the phase error of arbitrary order but also the wideband phase error. However,
the ROPE method still includes some flaws: The model-based ROPE algorithm strictly requires that
there be at most one strong scattering point for each range bin, which limits its application to many
images that do not approximate the model; the performance of the method with respect to the phase
error estimation will be greatly reduced under low SNR; and the ROPE method uses zero as the initial
estimation for the Doppler frequency, which is blind and may lead to unsatisfactory estimates.

Motivated by these aforementioned observations, in this paper, a refocusing method named
IRPOE is proposed to solve the above problems existing in ROPE. Our contributions are summarized
as follows:
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• We use the DCT algorithm in the IROPE method to improve the SNR of the data and render the
subsequent estimation more accurate, which also makes the data more consistent with the model
of the ROPE method.

• We avoid the averaging of phase vectors with different linear components and maximize the
accuracy of the phase compensation by using the circular shift of the prominent point in each
range bin to zero frequency to rationalize the initialization of the Doppler center.

• Moreover, better estimates are obtained through iteration. Multiple iterative algorithms improve
the SNR, which further improves the accuracy of the Doppler circular shift and the estimation of
phase error.

• The proposed method focuses the blurred images well and exhibits the superiority of
robustness, reduced sidelobes, and suitability for various phase errors, which does not require
time-consuming parameter adjustment procedures to achieve improved performance and allows
a long coherent processing interval.

The Gaofen-3 (GF-3) satellite is the first Chinese C-band multi-polarization high-resolution SAR
imaging satellite [34]. As one of the most important satellites in China’s Earth observation systems,
GF-3’s features include high resolution, large imaging swath, multiple imaging modes, and long
operating life [35,36]. GF-3 plays an essential role in the fields of marine environment monitoring, land
resource investigation, and disaster prevention, providing high-quality data for scientific experiments.
This paper uses the ocean data of the GF-3 satellite to demonstrate the proposed method and the work
has the merit to show its potentialities against satellite data.

This paper is organized as follows. The moving signal model in SAR and ISAR systems is
presented in Section 2. Section 3 proposes a phase estimation algorithm named IROPE and elaborates
the performance. Extensive experimental results on both simulated and real data are presented in
Section 4 to demonstrate the effectiveness and robustness of the proposed method. Finally, Section 5
concludes the paper.

2. Moving Signal Model

In this section, the signal models of SAR and ISAR are presented. When introducing the SAR
signal model, the moving echo signal characteristics and the influence of motion parameters are
analyzed. Furthermore, the translation and rotation Doppler shifts involved in the ISAR signal model
are analyzed.

2.1. SAR Signal Model

2.1.1. Analysis of Moving Echo Characteristics

The geometry of SAR imaging of the moving target is shown in Figure 1. The target is described
in Cartesian coordinates with the initial position at P(x0, y0, 0). The SAR platform moves along the
predetermined track, where va and h represent the velocity and height, respectively. vx, ax, vy, ay,
vr, and ar are the observed target’s velocities and accelerations in azimuth, range and radar RLOS
directions. t is the slow time, and the distance from point P to the radar platform is Rc, R2

c = y2
0 + h2.

R0 is the distance between SAR and the target at the initial time, and R2
0 = x2

0 + R2
c . The target moves

to P(xt, yt, 0) at time t, and the distance between SAR and the target is R(t).
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Figure 1. Moving target SAR geometry.

Letting v̂ = va − vx, the square of the slant range R(t) is described as

R(t)2 = h2 + (vat − x0 − vxt − 1
2

axt2)2 + (y0 + vyt +
1
2

ayt2)2

= R2
0 + (v̂t − 1

2
axt2)2 − 2x0(v̂t − 1

2
axt2) + (vyt +

1
2

ayt2)2 + 2y0(vyt +
1
2

ayt2)

(1)

Equation (2) gives Taylor series expansions of R(t) and ignores high-order items (cubic or higher),
where vr

vy
= y0

R0
and ar

ay
= y0

R0
. Equation (1) is simplified as

R(t) = R0 +
1

2R0
((v̂2 + v2

y + arR0 + x0ax)t2 − 2x0v̂t) + vrt (2)

Accordingly, the Doppler phase φ(t) is

φ(t) =
4π

λ
R(t)

=
4π

λ
(R0 +

1
2R0

((v̂2 + v2
y + arR0 + x0ax)t2 − 2x0v̂t) + vrt)

(3)

where λ represents the wavelength of the transmitted signal.⎧⎪⎪⎪⎨⎪⎪⎪⎩
fc =

−1
2π

dφ

dt

∣∣∣∣
t=0

=
−2vr

λ
+

2x0v̂
λR0

fr =
d fc

dt

∣∣∣∣
t=0

=
−2
λR0

(v̂2 + v2
y + x0ax + arR0)

(4)

where fc represents the Doppler centroid frequency, and fr is the azimuth FM rate.
For stationary targets, vx = vy = vr = 0, ax = ay = ar = 0. Equation (4) is expressed as⎧⎪⎪⎨⎪⎪⎩

frc =
2x0va

λR0

frr =
−2v2

a
λR0

(5)

Then, the Doppler centroid frequency and the azimuth FM rate generated by the target’s motion are⎧⎪⎪⎨⎪⎪⎩
flc =

−2vrR0 − 2x0vx

λR0

flr =
−2
λR0

(v2
x − 2vavx + v2

y + arR0 + x0ax)

(6)
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2.1.2. Analysis of Moving Target Response

Equation (7) gives Taylor series expansions of the phase error:

Δφ(t) =
4π

λ
ΔR(t)

≈ 4π

λ
(R +

dΔR(t)
dt

∣∣∣∣
t=0

t +
d2ΔR(t)

dt2

∣∣∣∣
t=0

t2

2
+ ...)

(7)

As [37] mentioned, the first-order phase errors cause azimuth positional offset of the target
scattering point, i.e., position deviation. Quadratic phase errors cause target defocusing. Third-order
phase errors mainly cause the asymmetry of the sidelobe levels on both sides of the main lobe; in
the strong target condition, the image appears ghost-like. The fourth phase errors mainly cause the
sidelobe level to increase. The higher-order phase errors will increase the integrated sidelobe level and
have little effect on the main lobe width. Generally, due to the Doppler effect, the azimuthal motion of
the ship results in blurred defocusing, and the range motion results in an additional shift of the image.

2.2. ISAR Signal Model

Assuming that the number of scattering centers is K, the range-compressed data are represented
as [37]

s(τ, t) =
K

∑
k=1

Akρr(τ − 2r(t)/c)ωa(t − tc)e−j 4π f0r(t)
c (8)

Here, Ak represents the backscattered coefficients of the scatterer k. f0 is the carrier frequency of
the system, and τ, t and tc denote the fast time, slow time, and beam center offset time, respectively.
The distance of point P from the radar is r(t). ρr represents range envelope (a sinc function) and ωa

represents azimuth envelope (a sinc-squared function) [38].
The Doppler effect of the target’s motion is described in the geometry in Figure 2. From

Equation (8), motion compensation removes the phase term exp(−j4π f0r(t)/c). Assuming that
the middle of the target is the origin O, r(t) is expressed as

r(t) ≈ R(t) + xcosθ(t) + ysinθ(t) (9)

Figure 2. Geometry of the ISAR system.
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Here, R(t) is the target’s translational range distance from the radar and θ(t) represents the
rotational angle of the target with respect to the RLOS axis, u. Equation (10) gives the Taylor series
expansions of R(t) and θ(t) and ignores high-order items (cubic or higher):

R(t) ≈ R0 + vtt + 1/2att2 + · · ·
θ(t) ≈ θ0 + ωrt + 1/2αrt2 + · · ·

(10)

R0 is the initial range of the target, and vt and at are the target’s translational velocity and
acceleration, respectively. Similarly, θ0 is the initial angle of the target with respect to the RLOS axis.
ωr and αr are the angular velocity and acceleration of the target, respectively.

The echoes of the kth range bin are expressed as:

sk(τ, t) = Akρr(τ − 2r(t)/c)ωa(t − tc)φtφr (11)

where φt and φr are the phase terms caused by the translational and rotational movement of the target,
respectively. ⎧⎪⎨⎪⎩

φt = e
−j4π f0

c (R0+vtt+1/2att2+··· )

φr = e
−j4π f0

√
x2+y2

c sin(β+θ0+ωr t+1/2αrt2+··· )
(12)

Here, sinβ = x√
x2+y2

. The imaging process of the following section removes the influence of the

translational phase, including vt and at, which offers no contribution to ISAR imaging [39].

3. Improved Rank-One Phase Estimation Algorithm

3.1. Problems of the Rank-One Phase Estimation Algorithm

The ROPE method, first developed in [30], estimates and removes the phase error, which
guarantees that range-Doppler (RD) imaging can proceed in the usual manner. The algorithm has been
modified by [31] to extend its scope of application (including ISAR processing), but some limitations
remain. First, the model-based ROPE algorithm strictly requires that there be at most one strong
scattering point for each range bin, which limits its application to many images that do not fit the
model. Second, the performance of the algorithm decreases sharply under low SNR. Next, blind
initialization of the Doppler frequency to zero results in inaccurate estimation. These problems limit
the performance and application of the ROPE algorithm. To solve the above problems, the IROPE
algorithm is proposed and explained in detail as follows.

3.2. Principle of IROPE

Combine formulas to explain the improvements of IROPE and the reasons for the improvement
in detail.

I. Preliminary Phase CompensationI. Preliminary Phase CompensationI. Preliminary Phase Compensation
First, the range-aligned echo signal e(r) is subjected to preliminary phase estimation and

compensation using the DCT algorithm.
Multiply the conjugate of the ith echo with the next echo to find the average phase difference

between adjacent range units:

ejϕ =

∫
e∗i (r)ei+1(r)dr∫
|ei(r)ei+1(r)| dr

(13)

Use ejϕ to adjust the phase shift of ei+1(r) so that the average phase shift with respect to the
adjacent one-dimensional range direction is zero, which is equivalent to aligning the target to a phase
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center, and the average Doppler shift of the target rotating around the center is zero, thus eliminating
the effect of the remaining phase difference.

Through the preliminary phase correction, the SNR is improved, the subsequent estimation
becomes more accurate, and the processed image is more consistent with the signal model. After the
initial phase correction in this step, the peak value of the special point obtained by Fourier transform
will be sharper than the original, which improves the effect of the subsequent circular shifting step.

II. Two-step ConvergenceII. Two-step ConvergenceII. Two-step Convergence
Next, there are J range units and that each range cell contains no more than one scattering center.

The signal of the jth range cell is given by

sk,j = aj exp
[
i
(
ωjkΔT + εk + αj

)]
+ nk,j (14)

where aj is the amplitude of the signal, k is the azimuth pulse number, ΔT is the pulse period, εk is the
phase error, nk,j is the additional complex noise, and ωj/2π is the Doppler position after imaging.

The phase in each pixel of the range-time array is

ϕk,j = ωjkΔT + εk + αj (15)

The difference of Equation (15) is

ˆϕk,j = ϕk+1,j − ϕk,j = ωjΔT + εk+1 − εk (16)

Assume ω̂j = ωjΔT so that

ˆϕk,j = ϕk+1,j − ϕk,j = ω̂j + εk+1 − εk (17)

when the SNR is infinite, i.e., nk,j = 0.

Dk,j =
sk+1,js∗k,j∣∣∣sk+1,j

∣∣∣ ∣∣∣s∗k,j

∣∣∣ = exp
[
i
(
ω̂j + εk+1 − εk

)]
= exp ˆϕk,j = exp

[
iω̂j

]
exp [i (εk+1 − εk)] (18)

Dk,j is the product of a column vector and a row vector, and D =
[

Dk,j

]
is a rank-one matrix.

Let ε̂
(p)
k = εk+1 − εk. After initialization, the ROPE method consists of the following two operations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε̂
(p)
k = ∠

J

∑
j=1

Dk,j exp
(
−i2πω̂j

(p−1)
)

ω̂j
(p) = ∠

K

∑
k=1

Dk,j exp
(
−i2πε̂

(p)
k

) (19)

The superscript p represents the pth operation. When the maximum value of the two estimated
changes is less than the small threshold value T, the process leads to convergence. When the SNR is
high, although the influence of noise causes the rank of matrix D to not be equal to one but approaching
one, the two-dimensional alternative estimation is still reasonable and feasible. Nevertheless, when
the SNR is low, nk,j cannot be ignored, D is not a rank-one matrix, and the ROPE algorithm fails. The
final phase error estimate is

ε̂ =
K

∑
k=1

ε̂
(p)
k (20)

Equation (19) estimates the phase error and Doppler frequency simultaneously, which estimates
the phase error more accurately and avoids the influence of the phase rotation component.
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However, the initial phase error Ê1 in Equation (20) of the original ROPE algorithm is simply set
to zero, which is relatively blind and results in unsatisfactory estimation.

III. Circular ShiftingIII. Circular ShiftingIII. Circular Shifting
The maximum value of the range bin still represents the Doppler frequency corresponding to

the strong scattering point, but the energy of the scattering point diffuses in the azimuth direction.
Moving the strongest scattering point to zero Doppler frequency eliminates the deficiency of setting
the initial Doppler frequency to zero to some extent. The circular shift operation not only aligns the
strong scatterers but also improves the SNR of the phase compensation; subsequently, the processed
data are more consistent with the model.

IV. IterationIV. IterationIV. Iteration
Nevertheless, it is difficult to accurately align the Doppler circular shift when the SNR is low,

which affects the estimation accuracy. Therefore, multiple iterative algorithms are then used to improve
the SNR, thereby further improving the accuracy of the Doppler circular shift and the estimation of
phase error.

The algorithm is summarized in Algorithm 1.

Algorithm 1: The IROPE algorithm for phase compensation

Input: The range-aligned echo e(r), [Nr, Na] = size(e(r)), p = 0, number of iterations l, threshold value T
1: I. Preliminary Phase Compensation

2: for i = 1 : Na − 1
3: ei+1(r) = ei+1(r). ∗ ejϕ

4: end

5: IV. Iteration

6: for l = 1 : l (Image entropy is further applied to control the iteration process)

7: II. Two-step Convergence

8: III. Circular Shifting

9: while ε̂
(p)
k - ε̂

(p−1)
k > T

10: for k = 1 : Na − 1

11: Update ε̂
(p)
k calculated by Equation (19)

12: end

13: for j = 1 : Nr

14: Update ω
(p)
j calculated by Equation (19)

15: end

16: p = p + 1
17: end while

18: ε̂ = ∑K
k=1 ε̂

(p)
k

19: e(r) = e(r). ∗ exp(−1i ∗ ε̂)

20: end

Output: Compensated range-Doppler echo e(r), phase error ε̂

The flow chart of the IROPE procedure is indicated in Figure 3 and described in detail as follows.
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Figure 3. Block diagram of the IROPE procedure.

Step 1: Use the DCT method to perform initial phase correction on the echo data after range
tracking for preprocessing.

Step 2: Perform IFFT transform in the azimuth direction to generate an ISAR image.
Step 3: Find the maximum amplitude and set the initial zero Doppler to the circular shift of the

prominent point in each range bin.
Step 4: By performing azimuth FFT, the data are transformed to the range-Doppler domain.
Step 5: Use two-step convergence approach to obtain and compensate for the phase error.
Step6: If the effect of refocusing is not sufficient, repeat the process from Step2 to Step5.

3.3. Performance of IROPE

This subsection presents the experimental results based on range-aligned echo to illustrate the
performance of IROPE. The radar operates in the X band. The transmitted signal bandwidth and the
synthetic aperture time are 100 MHz and 3.32 s, respectively. The translational motion of the target
with range velocity of vy = 6 m/s, azimuth velocity of vx = 15 m/s, and azimuth acceleration of ax

= 2 m/s2 is determined. Assume that there is a sinusoidal error term caused by the target’s rotation,
which is chosen as 0.5π

180 sin(0.6t) rad. The rotational velocity is 0.6 rad/s and t represents the azimuth
observation time. The pulse repetition frequency (PRF) and the radar velocity are 600 Hz and 250 m/s,
respectively.

Example 1 Figure 4 shows the experimental results corresponding to a single moving point target.
It can be seen that the point is well focused by the ROPE and IROPE methods. Comparing the
interpolated contour and the value of PSLR, IROPE exhibits slight superiority over ROPE. (The
technical indicators shown in the figure are explained as follows: impulse response width (IRW),
namely the 3 dB main lobe width of impulse response; peak sidelobe ratio (PSLR), the height ratio of
the maximum sidelobe to the main lobe; and integrated sidelobe ratio (ISLR)).

Example 2 Figure 5 shows the experimental results for a simulated ship, i.e., multiple-point targets,
in which each range bin of the ship’s hull has three strong scattering points with the same strength.
It can be seen from Figure 5b that the ROPE algorithm fails because of not satisfying the model in
which each range cell contains no more than one scattering center. According to the above subsection
analysis, IROPE compensates for the deficiency of ROPE and obtains a good focusing effect.
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(a) (b) (c)

(d) (e) (f)

Figure 4. The interpolated contour and azimuth profile. (a,d) Conventional SAR processing; (b,e)
ROPE; (c,f) IROPE.

(a) (b) (c)

Figure 5. Refocused performance. (a) Conventional SAR processing; (b) ROPE; (c) IROPE.

Figure 6a shows that the image entropy (defined in Equation (21)) decreases with the increase of
IROPE’s iteration times, which proves that iteration improves the image focusing effect. Figure 6b
exhibits the image entropy processed by different algorithms, which changes with SNR. The results
prove the robust performance with respect to the noise of the IROPE algorithm.

The phase error estimation performance is provided in the next section.
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(a) (b)

Figure 6. Variation in image entropy in terms of iterations (a) and SNRs (b).

3.4. The Whole Process of the Refocusing Method

The whole imaging flow chart is shown in Figure 7.

Figure 7. Block scheme of the whole process of the refocusing method.

First, the separated echo signal is obtained. The echo data are obtained from the original raw echo
data or complex image data. The former approach implements range compression on the original raw
echo data, while the latter performs azimuth inverse compression on the selected complex image data
of the target of interest to acquire the required echo data for subsequent operations.

Second, range tracking is performed on echo data. Using the cross-correlation [40] of the average
range profile, a real-time and efficient method, the ship echo is correlated with the first echo in the
imaging time. In addition, through range alignment, the range units of the echoes are aligned, and the
amplitude and phase changes of the echo range sequence of each range unit are normal. Eventually,
the phase change process generated by the target translation is retained.

Furthermore, we apply IROPE to estimate phase error ε̂k and obtain the compensated
range-Doppler echo e(r).

Next, we combine the conventional RD algorithm and use the Hamming window to achieve
well-focused images and suppress sidelobes. The conventional RD algorithm is applied to obtain
focused ISAR images if the maritime target moves smoothly. However, if the target maneuvers or
undergoes significant angular motions (roll, pitch, and yaw), the RD technique does not function
properly, and the time-frequency analysis [41] method is a better choice.
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4. Experiments and Performance Comparisons

In this section, the robustness and effectiveness of the proposed method are verified by simulation
experiments. Then, the results based on the spaceborne SAR data acquired by the GF-3 SAR system
are demonstrated.

4.1. Results of Spotlight Simulation

The proposed method is applied to spotlight simulation data and analyzed for different motions of
the ship target by comparing it with other refocusing algorithms. The basic parameters of the spotlight
simulation are shown in Table 1.

Table 1. Parameters of spotlight simulation.

Parameter Value

Mode Spotlight
Radar Center Frequency (GHz) 5.4

Wavelength (m) 0.0555
Bandwidth (MHz) 50

Azimuth Resolution (m) 1.5
Range Resolution (m) 2.6562

PRF (Hz) 3125
Upsampled PRF (Hz) 9950.2398

Upsampled Doppler Bandwidth (Hz) 6188.7356
Slant-Range (m) 1,067,731.2395

Synthetic Aperture Time (s) 2.3342
SAR Velocity (m/s) 7500

squint angle (°) 0

4.1.1. Ship Target with Velocity and Acceleration

The target is moving away from the radar with range velocity of vy = 3 m/s, azimuth velocity
of vx = 15 m/s and azimuth acceleration of ax = 2 m/s2. As mentioned in Sections 1 and 2,
the quadratic phase errors caused by velocity lead to image defocusing; cubic phase error introduced
by acceleration mainly causes the asymmetry of the sidelobe levels on both sides of the main lobe [37].
The conventional SAR image and the recovered images of MD, ROPE and the proposed algorithm are
shown in Figure 8. It can be seen from Figure 8c,d that the MD algorithm only compensates for the
quadratic phase errors caused by velocity but cannot compensate for the cubic phase error caused by
acceleration. The image processed by the ROPE algorithm has a high energy of the sidelobes, as shown
in Figure 8e,f. Based on the above analysis, the image quality of the proposed method is superior to
the other methods.

A discussion of what amount of non-uniform motion can be effectively analyzed during the long
CPI, i.e., the limitation in azimuth linear acceleration, follows. Azimuth linear acceleration varies
from −2 to 6 m/s2 according to a step size of 2 m/s2 [42]. The variations in the magnitudes of PSLR
and ISLR are shown in Figure 9. It can be seen that the magnitudes of PSLR and ISLR fluctuate with
increasing acceleration, and the overall trend is upward. The maximum magnitude of PSLR is below
−14 dB, while the maximum magnitude of ISLR is below −9 dB, which means that the algorithm is
suitable for practical situations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Recovered images of defocused ship target with velocity and acceleration. (a,b) Conventional
SAR processing system; (c,d) MD method; (e,f) ROPE method; (g,h) The proposed method.

(a) (b)

Figure 9. Variations in the magnitudes of PSLR and ISLR in terms of the linear acceleration based on
the proposed method. (a) PSLR; (b) ISLR.

4.1.2. Ship target with Translation and Rotation

The target is moving away from the radar with range velocity of vy = 3 m/s and azimuth velocity
of vx = 15 m/s. We assume that there is a sinusoidal error term caused by the target’s rotation, which
is chosen as 0.5π

180 sin(0.6t) rad. High-frequency and wideband phase errors introduced by rotational
velocity mainly affect the sidelobe region and increase the sidelobe level [37]. The conventional SAR
image and the recovered images of MD, ROPE and the proposed algorithm are shown in Figure 10.
It can be seen from Figure 10c-d that the MD algorithm only compensates for the quadratic phase
errors caused by velocity and cannot compensate for the high-frequency and wideband phase errors
introduced by rotational velocity. From Figure10e-f, processed by the ROPE method, the main lobe is
almost submerged by the sidelobes. Comparing the values of PSLR and ISLR for different algorithms,
the image quality of the proposed algorithm is also superior to the other approaches.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Recovered images of defocused ship target with translation and rotation speed. (a,b)
Conventional SAR processing system; (c,d) MD method; (e,f) ROPE method; (g,h) The proposed
method.

Moreover, assume that ωr =
0.5π
180 sin(wt) rad. w varies according to a step size of 0.1 rad/s from 0

to 1 rad/s [43]. The experimental results are shown in Figure 11. It can be seen that the magnitudes of
PSLR and ISLR fluctuate with increasing rotational angular velocity, and the overall trend is upward.
It is observed that the magnitudes of PSLR and ISLR fluctuate with increasing acceleration, and the
overall trend is upward. The maximum magnitude of PSLR is below −14 dB, while the maximum
magnitude of ISLR is below −9.5 dB, which means that the algorithm is suitable for practical situations.

(a) (b)

Figure 11. Variation in the magnitudes of PSLR and ISLR in terms of the rotational angular velocity
based on the proposed method. (a) PSLR; (b) ISLR.

4.2. Spaceborne SAR Data Experiments

In this subsection, the results based on the spaceborne SAR data acquired by the GF-3 SAR
system are demonstrated. The parameters are shown in Table 2. The synthetic aperture time has a
relatively large value of 8.58 s. In addition to visual inspection, image quality is also evaluated by
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entropy, contrast and the peak value of the intensity image [44], which are referred to as image quality
evaluation metrics (IQEMs).

Table 2. Parameters of the GF-3 SAR System.

Parameter Value

Mode Spotlight
Radar Center Frequency (GHz) 5.400012

Bandwidth (MHz) 240.000000
Azimuth Resolution (m) 1

Range Resolution (m) 0.6
PRF (Hz) 3125.164062

Synthetic Aperture Time (s) 8.58
Satellite Velocity (m/s) 7570.962970

Let I(m, n) be the absolute value of a two-dimensional complex image, where m is the range
sample number and n is the azimuth number. The image entropy (IE) [23] is written as follows:

IE(I) = −
M

∑
m=1

N

∑
n=1

|I(m, n)|2
αI

ln
|I(m, n)|2

αI
(21)

where αI is the total energy of the image, explained as follows:

αI =
M

∑
m=1

N

∑
n=1

|I(m, n)|2 (22)

When the image is well focused, the entropy value is small because of the uniform distribution.
The image contrast (IC) is defined as follows [45]:

IC(I) =
√

E{[I(m, n)− E{I(m, n)}]2}
E{I(m, n)} (23)

when the image is focused correctly, it comprises several significant peaks, which enhances the contrast.
The peak value of the intensity image (IP) is an indicator of the image focusing of a local area of

the image, and the calculation expression is

IP(I) = 10 · log10(max(I(m, n))) (24)

The larger the IP is, the better the image focus is.
Hence, to present a more intuitive and quantitative comparison, Tables 3 and 4 provide the

difference of IQEMs between the processed and the original images—contrast increase, entropy
reduction, and IP increase. The higher the value is, the better the image quality is.

4.2.1. Real Data Corrupted by Phase Error

Figures 12 and 13 show the experimental image results for phase error and demonstrate the
capability to estimate the phase error of the proposed method. The phase errors of the quadratic,
third and fourth superpositions of the same weight are added to Figure 12a. Figure 12b shows the
corrupted image. There is no improvement in the image after the MD method refocusing, as can
be seen from Figure 12c. The ROPE method exhibits a better focusing effect than the MD method
does, but it is visually worse than the proposed method. A comparison of the image recovered using
the proposed method with the original image shows very good agreement, although there are some
slight differences. Figure 13 demonstrates that the phase error estimated by IROPE is closest to the
introduced phase error. MD only compensates for the quadratic phase errors, so the estimated and true
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phase errors display considerable deviation. The difference phase error also exhibits a large deviation
of ROPE because the actual image does not satisfy the model. The success of the IROPE algorithm is
obvious; a bias exists, but the bias does not affect the quality of the recovered image from Table 3.

(a) (b) (c) (d) (e)

Figure 12. Nominal, corrupted, and recovered images. (a) Nominal; (b) Corrupted by phase error;
(c) Image recovered with MD method; (d) Image recovered with ROPE method; (e) Image recovered
with the proposed method.

(a) (b)

Figure 13. Phase error curve. (a) Introduced and estimated phase error; (b) Phase error difference.

Table 3. IQEMs of the corrupted and recovered images.

IQEMs Corrupted image MD ROPE IROPE

Contrast increase −4.08 −3.86 −0.47 −0.09
Entropy reduction −1.69 −1.58 −0.21 0.08

IP increase −20.01 −16.82 −2.58 0.77

4.2.2. Intrinsically Corrupted Real Data

Figure 14 illustrates C-band, spotlight GF3 SAR images with azimuth resolution of 1 m.
The center latitude and longitude of the photographed area are (E104.0, N1.3) and (E104.1, N1.3),

respectively, located at the Port of Singapore near Changi Airport. This location is at the southern end
of the Malay Peninsula, the entrance to the Straits of Malacca.

Three representative defocused ships, marked as Ship1, Ship2 and Ship3, are selected from
Figure 14 for the experiment.

Figure 15 gives the original and refocused images, in which the first column shows the original
images and the second, third, and fourth columns present the images obtained by MD, ROPE, and
IROPE, respectively. From the defocused images of Ship1 and Ship2, the outlines of these large
petroleum tankers are vague, and the details are unrecognizable. The wake of Ship3 is obvious due
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to the smooth sea conditions and the rapid speed. It is determined that the visual quality of every
original image after refocusing is improved; the details and contours of the targets are apparent, which
is more conducive to subsequent use. Nevertheless, the images processed by the ROPE method are
not well focused and remain slightly blurry. A detailed look reveals that the edge of every ship is
processed worse by MD than by the proposed method. The values of the quality metrics in Table 4
indicate that the ship reconstructed by the proposed method, is better focused than that reconstructed
by the other methods. The entropy, contrast, and IP are superior in our case.

(a) (b)

Figure 14. GF-3 SAR image of the Port of Singapore. The yellow rectangles are the enlarged defocused
sub-images. (a) (E104.0, N1.3); (b) (E104.1, N1.3).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15. Original and refocused images. (a–d) Ship1; (e–h) Ship2; (i–l) Ship3.

The experimental results for real data demonstrate the effectiveness and superiority of the IROPE
algorithm. The three ships used in the experiment are characterized by various phase errors, with
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multiple strong scattering points in each range bin under low SNR condition. In these cases, the MD
and ROPE algorithms fail, and the proposed method exhibits a better refocusing effect.

Table 4. IQEMs of the GF-3 ship

Ship Ship1 Ship2 Ship3

IQEMs MD ROPE IROPE MD ROPE IROPE MD ROPE IROPE

Contrast increase 0.42 0.23 0.49 0.01 0.01 0.02 0.23 −0.12 0.93
Entropy reduction 0.40 0.25 0.47 0.16 0.15 0.24 0.20 −0.02 0.47

IP increase 6.08 5.21 6.78 3.05 2.60 4.82 4.18 1.53 4.69

5. Discussion

In this paper, we studied the topic of how to refocus and accurately image a moving ship which
cannot be focused by using conventional SAR. The proposed method is compared with the MD [10,11]
method and the ROPE [30,31] method and the comparison result is shown in Table 5: Experimental
results show that the performance of MD and ROPE in phase error estimation and accuracy are
unsatisfactory. The sub-aperture correlation operation of the MD method only compensates for
quadratic phase errors, and real SAR images do not fit well with the narrowly defined ROPE model,
which limit their applications.

In view of above-mentioned problems, we have made improvements in preprocessing, circular
shifting and iteration based on two-step convergence, which is embodied in the following aspects:
improving the SNR and the accuracy of estimation through the DCT method for preliminary phase
compensation; eliminating the shortcoming of setting the initial zero Doppler through the center shift
of the strongest scattering point of each range bin and enhancing the performance of the method
through several iterations. With these improvements, our proposed IROPE can achieve more complete
image recovery for SAR images. The application scope and further development of the ROPE method
are promoted through our improvement. Meanwhile, the experiment on adding phase error to the real
data shows that IROPE estimates the phase error and compensates for arbitrary phase errors more
accurately.

Moreover, many studies have been taken on this topic [15,16,19,22,24]. Nevertheless, these
methods are based on low-resolution, short-CPI simulation or airborne SAR data, and their application
to high-resolution, long-CPI spaceborne SAR images requires further verification. However, the
proposed method processes high-resolution spaceborne SAR images, which is verified with GF-3
satellite data. Next, our results suggest a possibility of applying to the spaceborne SAR system with
a long CPI (8.58 s). Furthermore, our work demonstrates great potency of the application of the
high-resolution (1 m) SAR images.

However, the proposed method also has shortcomings. On the one hand, the dimensional classes
of the ships in the experiments need further confirmation. On the other hand, although the proposed
method allows a long coherent processing interval and performs well for maritime targets in stable
sea conditions, it still needs further research and improvement for maneuvering targets that are
experiencing high sea conditions. Therefore, in the future, we will focus our efforts on solving these
problems like engaging the verification of the stated ship type in the AIS signals [27] and the optical
photographs [46], and exploring the algorithm of maneuvering targets.

Table 5. Comparison with other refocusing algorithms.

Works Schemes Application Phase Error Estimation Accuracy

MD Sub-aperture correlation Limited Unsatisfactory Unsatisfactory
ROPE Two-step convergence Limited Unsatisfactory Unsatisfactory

IROPE
Preprocessing+ Circular Shifting
+Two-step convergence+Iteration Wide Good Good
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6. Conclusions

During the detection of marine moving targets, both SAR and targets are in motion, and thus,
conventional SAR processing that only images stationary targets achieves unsatisfactory performance.
In this paper, we combined SAR and ISAR techniques and proposed a hybrid SAR/ISAR approach,
as the core of the IROPE, to refocus the maritime moving targets. The proposed IROPE method
overcomes the weakness of the original ROPE method. Experiments based on simulation and GF-3
measured data demonstrate the effectiveness of the proposed method. In summary, our work makes
contributions to the improvement of the unsatisfactory method and the proposed method is also
suitable for high-resolution long-CPI spaceborne radar.
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Abstract: A spaceborne azimuth multichannel synthetic aperture radar (SAR) system can effectively
realize high resolution wide swath (HRWS) imaging. However, the performance of this system
is restricted by its two inherent defects. Firstly, non-uniform sampling is generated if the pulse
repetition frequency (PRF) deviates from the optimum value. Secondly, multichannel systems are
very sensitive to channel errors, which are difficult to completely eliminate. In this paper, we propose
a novel receive antenna architecture with an azimuth phase center adaptive adjustment which adjusts
the phase center position of each sub-aperture to improve multichannel SAR system performance.
On one hand, the optimum value of the PRF can be adaptively adjusted within a certain range by
adjusting receiving phase centers to obtain uniform azimuth sampling. On the other hand, false
targets introduced by residual channel errors after azimuth multichannel error compensation can
be further suppressed. The effectiveness of the proposed method to compensate for non-uniform
sampling and suppress false targets is verified by simulation experiments.

Keywords: synthetic aperture radar (SAR); high resolution wide swath (HRWS); azimuth multichannel
reconstruction; phase center adaptation; false targets suppression

1. Introduction

Synthetic aperture radar (SAR) is an extremely important device for the application of earth
observation, especially where there is cloud or poor atmosphere conditions [1–3]. It is also widely
used in military surveillance and civilian remote sensing [4–7]. The azimuth multichannel spaceborne
SAR systems, usually working with a single transmit antenna and multiple received sub-apertures,
can effectively overcome the contradiction between azimuth resolution and range mapping swath
width [8–10]. However, in practical multichannel high resolution wide swath (HRWS) SAR systems,
there are two problems which affect SAR system performance. Firstly, azimuth non-uniform sampling is
generated if the pulse repetition frequency (PRF) is not selected as the optimum value [11–13]. Secondly,
the multichannel system is very sensitive to channel errors, which are difficult to completely eliminate.

Many researchers have done a lot of research on the two mentioned issues, but some problems
still exist. Firstly, azimuth non-uniform sampling in HRWS SAR can be overcome by the recent
proposed azimuth multichannel reconstruction algorithms, but these are only prepared for azimuth
band-limited signals [11,14–16]. However, the azimuth echo signal received by a practical SAR system
is non-band-limited, and false targets still exist after reconstruction. To solve this problem, a novel
transmit antenna architecture which allows for the adjustment of the transmit phase center position
through the activation of a specific number of elements on the corresponding location of the transmit
antenna was proposed in [17]. However, a decreased number of activated elements reduces the transmit
antenna gain and the transmit signal power. Secondly, azimuth channel errors can be compensated
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for by many recently proposed compensation methods [18–20]. However, since factors such as the
manufacturing process, temperature and radiation that affect the characteristics of antenna are not
fixed, these methods are unable to perfectly estimate or compensate for multichannel errors, especially
when the signal-to-noise ratio (SNR) of the obtained raw data is not high enough. The residual channel
errors still cause high false targets which cannot be ignored and need to be further suppressed.

In this paper, a novel receiving antenna architecture that allows for the adjustment of the receiving
phase center position of each sub-aperture through the closing of the corresponding elements on the
side of each sub-antenna is proposed. In this approach, the transmitted signal power is not reduced,
but the reduced receive antenna gain is compensated for by a narrow transmit antenna beam with a high
antenna gain. Compared with traditional multichannel SAR systems, the novel proposed approach
brings two benefits. Firstly, the optimum value of the PRF can be adaptively adjusted within a certain
range by adjusting the phase center spacing of the sub-apertures. Uniform samples can be obtained if
the PRF is taken in that range. Secondly, false targets caused by the residual channel errors could be
further suppressed by adaptively adjusting phase center upon reception. The novel antenna structure
is an improvement on the widely used conventionally phased array antenna. This improvement will
hardly increase costs.

Based on the ideas above, this paper is structured as follows. Section 2 analyzes the influence
of azimuthal non-uniform sampling and channel imbalance on azimuth multichannel SAR imaging.
In Section 3, the basic principle of the proposed azimuth phase center adaptive adjustment upon
reception is presented, and its effects on SAR system performance improvement and false targets
suppression are analyzed. Simulation experiments are carried out to validate the proposed method in
Section 4. Finally, this paper is concluded in Section 5.

2. Influence of Azimuthal Non-Uniform Sampling and Channel Imbalance

2.1. Influence of Azimuthal Non-Uniform Sampling

For simplicity, only the azimuth signal of multichannel SAR is analyzed in this paper. Assuming
that the number of azimuth receiving channels is an odd N and the slant range from the radar to the
target is R0 and the intermediate channel is used as the reference channel, the received azimuth echo
signal of receiving channel i can be written as

si(t) = exp
[
− j

2π
λ

(√
R2

0 + (vst)
2 +

√
R2

0 + (vst− Δxi)
2
)]

(1)

where Δxi is the phase center position of channel i, Δxi =
(
(N+1)

2 − i
)
· daz, i = 1, 2, · · · , N, daz is the

phase center spacing of receiving channel, λ is the wavelength of the carrier, vs is the velocity of SAR
platform, and t is the azimuth time.

Figure 1 illustrates the principle of multichannel system sampling. The equivalent sampling
position can be approximately regarded as the midpoint of the transmitting position and the receiving
position. In order to uniformly distribute the equivalent single-channel sampling centers, the PRF
must meet Equation (2).

PRFopt =
2 · vs

N · daz
(2)

If (2) is violated, azimuth non-uniform sampling will be induced, and false targets in azimuth will
be generated [21].

The multichannel reconstruction algorithm introduced in [12] can effectively compensate for
the non-uniform sampling in azimuth. However, for strong deviations from the optimum PRF in
Equation (2), the inverse character of such an algorithm might result in a degraded system performance.
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Figure 1. Reasons of uniform and non-uniform sampling.

The multichannel SAR system performance of such a system with azimuth non-uniform sampling
is based on multichannel reconstruction algorithms [22], and the ratio of the input to output SNR,
normalized to the ratio obtained for uniform sampling is expressed as Equation (3) [12]:

Φbf(PRF) =

( SNRin
SNRout

)
( SNRin

SNRout

)∣∣∣∣
PRFopt

= N ·
∑N

j=1
E
[∣∣∣Pj( f , PRF)

∣∣∣2], (3)

where E[·] represents the calculation of the mean value, and Pj( f , PRF) is the filter function of channel j.
Assume that the reconstruction filter matrix is P( f ), which is obtained by inverting matrix H( f )

according to [14]. The azimuth ambiguity-to-signal ratio (AASR) multi-channel system can be written
as Equation (4) [12]:

AASRm =

∫ Bd
2

− Bd
2

∣∣∣∣2 ·∑∞k=1
∑N

m=m0

∑N
j=1 Ujk( f ) · Pjm( f )

∣∣∣∣2d f

∫ Bd
2

− Bd
2

∣∣∣U( f )
∣∣∣2d f

(4)

with
Ujk( f ) = U( f ) ·Hjk( f ) (5)

m0 = max{N − k + 1, 1}, (6)

where Bd is the Doppler bandwidth, U( f ) is the spectrum of the equivalent monostatic SAR signal,
Pj( f ) is the reconstruction filter of channel j, Pjm( f ) is m-th filter of Pj( f ), Hj( f ) is the pre-filter of
channel j, and Hjk( f ) is the k-th filter in Hj( f ).

According to (3) and (4), both the SNR scaling factor and the AASR are related to the reconstruction
matrix P( f ). A PRF deviating strongly from the optimum value will lead to an irreversible H( f ) or
very different eigenvalues of H( f ). As a result, the multichannel SAR system performance would be
significantly declined.

Using the simulation parameters listed in Table 1, Figure 2 shows that the reconstruction filter
causes a degraded imaging performance. Figure 2a,b show the spectrum and pulse compression,
respectively, result of the equivalent single-channel signal when the PRF is the optimum value. Since
the azimuth SAR echo signal is non-band-limited, several false targets caused by azimuth ambiguity
appear in the compression result. When the actual PRF of the system takes a non-optimum value,
the reconstruction result of the non-band-limited signal is shown in Figure 2c,d. It can be seen that the
tiny false targets in Figure 2b are significantly enlarged in Figure 2d by the non-optimum PRF.
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Table 1. System simulation parameters.

Parameter (Azimuth) Symbol Value

Carrier frequency fc 9.6 GHz
Carrier wavelength λ 0.031

Orbit height R0 895 km
Sensor velocity vs 7560 m/s

Overall Rx antenna length La 12.25 m
Rx sub-aperture length la 1.75 m

Elements number on each sub-aperture K 60
Element size d 0.03 m

Channels number N 7
Desired PRF range PRF 1100 Hz–1500 Hz

 
(a) (b) 

 
(c) (d) 

Figure 2. Influence of the pulse repetition frequency (PRF) deviating from the optimum value on
imaging performance. (a) Reconstructed spectrum with the optimum PRF; (b) reconstructed pulse
compression result with the optimum PRF; (c) reconstructed spectrum with the non-optimum PRF; and
(d) reconstructed pulse compression result with the non-optimum PRF.

Assuming that the desired PRF range of the system is 1100–1500 Hz and the optimum PRF is
1234.3 Hz according to Table 1, the resulting azimuth ambiguity-to-signal ratio (AASRN) and SNR
scaling factor (Φbf) are shown in Figure 3. With the growth of the PRF, the AASR continues to decline
when the PRF is lower than the optimum value of 1234.3 Hz, but the AASR rises when the PRF exceeds
the ideal value, as is shown in Figure 3a. From Figure 3b, it can be seen that sufficiently low values of
Φbf are shown from 1100 up to 1370 Hz, but unacceptably high values are generated for the PRF range
above 1400 Hz. The phase center adjustment method proposed in this article can obviously decrease
the AASR and significantly suppress the unacceptably high values of Φbf.
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Figure 3. Simulated ambiguity-to-signal ratio (AASR) and signal-to-noise ratio (SNR) scaling factor of
conventional reconstruction approach. (a) Simulated AASR of conventional reconstruction approach
and (b) simulated SNR scaling factor Φbf of conventional reconstruction approach.

2.2. Influence of Channel Imbalance

In actual multi-channel SAR systems, there are always channel errors among channels. These
errors cause false targets that seriously reduce the quality of imaging. Assuming that the phase error
of the n-th channel is φn and the amplitude error is an, the echo signal model of channel n can be
expressed as follows:

sn(t) = anexp( jφn)exp
[
− j 2π
λ

(√
R2

0 + (vst)
2 +

√
R2

0 + (vst− Δxn)
2
)]

. (7)

In the process of multi-channel signal combination, N − 1 zeros need to be added between each
sampling point of each channel, and the equivalent single channel signal can be written as:

s(m) =
∑N−1

n=0 s0
n(m) , (8)

where m represents integers associated with sampling time and s0
n(m) represents signals after adding

zeros of channel n.
According to (8), the discrete time Fourier transform (DTFT) [23] of s0

n(m) is:

S0
n

(
ejω

)
= 1

N
∑N−1

k=0 e− j2π nk
N S

(
ej(ω− 2πk

N )
)
, (9)

where k represents integers associated with sampling frequency. Denote the digital frequency of (9)
using analog frequency, and the spectrum of signals after adding zeros of channel n can be derived as:

S0
n( f ) = anexp( jφn)rect

(
f

Bd

)
exp

(
− jπ f 2

Ka

)
+anexp( jφn)

∑1
l=0

∑N−1
k=1 W( f )exp

(− j2πnk
N

)
exp

(
− jπ (

f+l·PRF− k·PRF
N )

2

Ka

)
,

(10)

where Ka is the azimuth frequency modulation (FM) rate, and f is the frequency variable in Hz. W( f )
is given by:

W( f ) = rect

⎡⎢⎢⎢⎢⎢⎣ f− (
k·PRF

N −l·PRF)
2 −(−1)l (PRF−Bd)

4

(−1)l+1( k·PRF
N −l·PRF)+

(Bd+PRF)
2

⎤⎥⎥⎥⎥⎥⎦. (11)

Due to the spectrum components corresponding to other l values move to the right and fall out,
the value of l is only 0 and 1.

According to (8) and (10), the pulse compression result of the combined signal can be derived as:

sout(t) = Bdsin c(Bdt)
∑N−1

n=0 anexp( jφn) +
∑1

l=0
∑N−1

k=1 fl,k(t)·∑N−1
n=0 exp

(− j2πnk
N

)
anexp( jφn),

(12)
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where fl,k(t) is a function introduced to simplify the written, and it has nothing to do with amplitude
and phase errors. According to (12), there are 2(N − 1) false targets, and the position of each false
target is shown as follows:

POSl,k =

(
l·μ− k·μ

N

)
Ta

, (13)

where l = 0, 1, k = 1, 2, . . . , N − 1, μ is the oversampling rate, and Ta is the synthetic aperture interval.
Assuming that the channel characteristics are independent of frequency, the false target-to-peak ratio
of the false target at POSl,k is as follows:

PGRl,k = 20log10

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∑N−1

n=0 anexp( jφn)exp
(− j2πnk

N

)∣∣∣∣∣∣∣∣∑N−1
n=0 anexp( jφn)

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎠+ 20log10

( gl,k
Bd

)
, (14)

in which gl,k is given by gl,k = (−1)l+1
(

k·PRF
N − l · PRF

)
+

(Bd+PRF)
2 and is independent with amplitude

and phase errors.
With parameters listed in Table 2, a simulation experiment to reconstruct the echo signal with

channel errors is shown in Figure 4. A reconstructed spectrum and compression result of the system
with no channel errors is shown in Figure 4a,b. Figure 4c,d show the reconstruction results in the
presence of amplitude errors within 0.5 dB and phase errors of 1–5 degrees. It can be seen that these
tiny channel errors that may be residual after channel error compensation can cause false targets of
around −35 dB. False targets of such intensity still cause a reduction in image quality and should be
further suppressed.

 
(a) (b) 

 
(c) (d) 
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Figure 4. Influence of channel imbalance. (a) Reconstructed spectrum with no channel errors; (b) reconstructed
pulse compression result with no channel errors; (c) reconstructed spectrum with channel errors; and (d)
reconstructed pulse compression result with no channel errors.
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3. Phase Center Adjustment upon Reception

This section introduces an innovative receive antenna architecture in azimuth which allows for
the compensation of the non-optimum PRF values and the suppression of false targets by phase center
adjustment upon reception. The working process of the innovative system is shown in Figure 5.

PRF < PRFopt PRF > PRFopt

Increase receive phase 
center spacing 

Decrease receive phase 
center spacing 

Receive 
phase 
center 

adjustment

False targets 
compression 

(not 
necessary)

Signal 
processing

Disrupt  phase center position in tiny 
scale 

Minimize false targets

Imaging algorithm

SAR image with High quality

Actual PRF of the system

Figure 5. The working process of the innovative system.

3.1. System Architecture and Basic Principle

Compared with traditional multi-channel SAR systems, such as systems used by satellites
RADARSAT-2 (Canada, 2007), TerraSAR-X (Germany, 2007) and Sentinel-1A (launched by European
Space Agency, in 2014), each receiving sub-antenna of the innovative system consists of a large number
of individually controllable elements. Such an aperture permits the changing of the position and
the length of the effective receiving sub-apertures on the antenna by activating respective elements.
The phase center position of the receiving sub-apertures can be adaptively adjusted by turning off a
part of elements on the antenna. As an example, a system with three receive apertures is shown in
Figure 6.

 
(a) 

 
(b) 

 
  

  

  
  

  

 

Figure 6. System architecture and basic principle. (a) Adjustment to increase phase center spacing and
(b) adjustment to reduce phase center spacing.
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Closing a part of elements inside a sub-aperture can move its phase center outward and increase
the phase center spacing, as shown in Figure 6a, while the inward movement of the phase center can be
achieved by closing the elements on the outside of the sub-aperture, as shown in Figure 6b. To ensure
the effective length of each antenna is equal, the same number of elements on each aperture should be
turned off. The phase center position can be adjusted by controlling the amount of closed elements on
each side of the aperture. After adjustment, the phase center spacing can be uniform or non-uniform,
which should be decided according to practical needs.

3.2. Effect of Receiving Sub-Aperture Phase Center Adjustment on Azimuth Non-Uniform Sampling

Take the case where the phase center spacing is reduced as an example. If the length of the Δd
antenna on left side of channel 1 and the right side of channel N are invalid, the phase center of the
two sub-apertures moves inward by Δd

2 and the distance between the phase centers of channel 1 and
channel N is reduced by Δd. In the case where the phase center is evenly distributed, the new phase
center spacing is:

daz_new =
(N − 1) · daz − Δd

N − 1
= daz − Δd

N − 1
. (15)

To ensure that the phase centers are uniformly distributed, the phase center of channel n should
move inward by:

xn =

∣∣∣∣∣N + 1
2
− n

∣∣∣∣∣ · Δd
N − 1

, n = 1, 2, . . . , N. (16)

The length of the invalid antenna on the outer side of channel n should be 2xn longer than the invalid
antenna on the inner side:

Δdn,outer − Δdn,inner = 2xn =
2Δd

N − 1
·
∣∣∣∣∣N + 1

2
− n

∣∣∣∣∣. (17)

Since the number of closed elements in each channel must be equal (assumed to be Δd), the length
of the invalid part on both sides of channel n should satisfy:

Δdn,outer + Δdn,inner = Δd. (18)

Combine Formulas (17) and (18) together, and then Δdn,outer and Δdn,inner can be written as:

Δdn,outer =
Δd
2

+
Δd

N − 1
·
∣∣∣∣∣N + 1

2
− n

∣∣∣∣∣ (19)

Δdn,inner =
Δd
2
− Δd

N − 1
·
∣∣∣∣∣N + 1

2
− n

∣∣∣∣∣ . (20)

Because of the size of individually controllable antenna elements, the receive center of antenna in
practical system cannot be adjusted arbitrarily but can only be selected in a series of discrete positions.
Assuming that each receive antenna consists of a number of K elements, the number of closed elements
on each antenna can be written as:

p = round
{
Δd · K

la

}
, (21)

in which the operator round {·} indicates the calculation of rounding integers. The number of invalid
elements on the outer side and the inner side of the antenna can be written as:

pn,outter = round
{[

Δd
2

+
Δd

N − 1
·
∣∣∣∣∣N + 1

2
− n

∣∣∣∣∣] · K
la

}
. (22)

pn,inner = round
{[

Δd
2
− Δd

N − 1
·
∣∣∣∣∣N + 1

2
− n

∣∣∣∣∣] · K
la

}
(23)
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If the actual value of the PRF is PRFact, which is higher than the optimum value, the phase center
spacing should be reduced by Δdaz, which is given by:

Δdaz = daz − 2vs

N · PRFact
. (24)

According to (15), the length of closed elements on each receive antenna should be:

Δd =
(
daz − 2vs

N · PRFact

)
· (N − 1). (25)

The number of closed elements on each antenna can be derived as:

p = round
{K

la
· (N − 1) ·

(
daz − 2vs

N · PRFact

)}
. (26)

The respective number of closed elements on the outer side and inner side on channel n is given by:

pn,outter = round
{[(

daz − 2vs

N · PRFact

)
· (N − 1)

2
+
(
daz − 2vs

N · PRFact

)
·
∣∣∣∣∣N + 1

2
− n

∣∣∣∣∣] · K
la

}
(27)

pn,inner = round
{[(

daz − 2vs

N · PRFact

)
· (N − 1)

2
−
(
daz − 2vs

N · PRFact

)
·
∣∣∣∣∣N + 1

2
− n

∣∣∣∣∣] · K
la

}
. (28)

Using the method discussed above, if the number of closed elements on each channel is given
by p, the optimum PRF of the system can be written as:

PRFopt =
2vs

N ·
(
daz ± p·la

K·(N−1)

) . (29)

The “±” indicates the increase or decrease of the phase center spacing. In practice, in order to
ensure the receiving performance of the antenna, a limited number of elements can be turned off. If the
maximum ratio of the closed elements number to the total number on each antenna is η, the number of
closed elements can be written as:

pm = round
{
η ·K} (30)

The range of the adjusted optimum PRF is:

2vs

N ·
(
daz +

pm·la
K·(N−1)

) ≤ PRFopt ≤ 2vs

N ·
(
daz − pm·la

K·(N−1)

) . (31)

The minimum value of PRFopt is:

PRFopt_min =
2vs

N ·
(
daz +

pm·la
K·(N−1)

) ; (32)

and the maximum value is:
PRFopt_max =

2vs

N ·
(
daz − pm·la

K·(N−1)

) . (33)

This is to say, if the practical PRF of the system varies between PRFopt_min and PRFopt_max, a
uniformly (at least approximately uniformly) sampled signal can be obtained by adjusting the phase
center spacing. Consequently, the multichannel reconstruction algorithm can be omitted, and the
computational complexity can be reduced compared with conventional systems. If the PRF is outside
the optimum PRF range, the phase center spacing should be adjusted to the minimum or maximum
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value that makes the optimum PRF closest to the actual PRF of the system. In this case, although the
non-uniformity of the samples is reduced, the sampling is still non-uniform, and the reconstruction
algorithm is still needed. Therefore, the complexity of processing is approximately equal to that of
traditional systems.

The effect of the largest proportion of closed elements on the range of the optimum PRF is shown
in Figure 7, where Γ is as follows:

Γ =
PRFopt_max − PRFopt_min

PRFopt
. (34)
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Figure 7. Relationship between the optimum PRF and the invalid receiving antenna ratio η. (a) Maximum
(solid blue line) and minimum (red dotted line) value of the optimum PRF and (b) range expansion ratio
of the optimum PRF.

3.3. Suppression of False Target by Adjusting Receiving Sub-Aperture Phase Center

In Section 2.2, the expressions of the position and intensity of false targets caused by channel
imbalance are analyzed. For the convenience of analysis, the false target-to-peak ratio of the false
target at POSl,k given by (14) can be rewritten as:

PGRl,k = 20log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∑N−1

n=0 anexp( jφn)exp
(− j4πk|Xn |

L

)∣∣∣∣∣∣∣∣∑N−1
n=0 anexp( jφn)

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ 20log10

(
gl,k

Bd

)
, (35)

where L represents the length of the antenna and Xn represents the phase center position of channel n.
If the phase centers of sub-apertures are adjusted, the antenna length L can be written as:

L = La − la · q1,l

K
− la · qN,r

K
, (36)

where La is the length of receive antenna before adjusting, qn,l is the number of inactive elements on the
left side of the antenna n, and qn,r is the number of inactive elements on the right side of the antenna n.
The value of Xn can be written as:

Xn =
(N + 1

2
− n

)
· daz +

la ·
(
qn,r + q (N+1)

2 ,l
− q (N+1)

2 ,r
− qn,l

)
2K

. (37)

The value of Xn can be adaptively adjusted to generate an additional phase which can cancel a
part of the phase error. Based on this, the molecule of the first item in Formula (35) can be minimized by
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adjusting the phase center position of each channel, and the false-target-to-peak-ratio can be suppressed.
The false-target-to-peak ratio can be reduced to:

PGRl,k = 20log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
min

{∣∣∣∣∣∑N−1
n=0 anexp( jφn)exp

(− j4πk|Xn |
L

)∣∣∣∣∣}∣∣∣∑N−1
n=0 anexp( jφn)

∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+ 20log10

( gl,k

B

)
(38)

Though false targets can be suppressed by simply scrambling the uniformly distributed phase
center position on a tiny scale, it is often necessary to compare several different results for optimal
suppression. As a result, computational complexity and time-consumption is increased, and the
increased complexity and time-consumption are related to the number of comparisons. Assuming that
n different suppression results are compared, the computational complexity is n times higher than that
of a traditional multichannel system.

The reconstruction result of error-free signals after phase center adaptive adjustment is shown in
Figure 8. It can be seen that adjusting phase center non-uniformly does not affect the reconstruction
results for multichannel signals.
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Figure 8. Reconstruction of non-uniform phase center echo signal without channel error. (a) Reconstructed
pulse compression result with no channel errors and (b) magnified reconstructed pulse compression
result with no channel errors.

4. Simulation and Performance Analysis

To validate the proposed receiving phase center adaptive adjustment approach, simulations were
carried out. Simulation parameters are listed in Table 1.

4.1. Effect on Azimuth Non-Uniform Sampling

The seven-channel system was used in the simulation experiment. The optimum PRF of the
system without adjusting receiving phase centers was 1234.3 Hz. Assuming that up to 30% of elements
on each antenna was allowed to be turned off, the optimum value of the PRF could be adaptively
adjusted within 1175.5–1299.2 Hz by invalidating elements at both ends of the antenna. Figure 9
gives the reconstruction result of a non-band-limited signal with 1300 Hz of the PRF in the case of
conventional phase center spacing and adaptively adjusted phase center spacing. With respect to
Figure 9a, false targets in Figure 9b were significantly reduced by phase center adaptive adjustment
upon reception leaving only false targets caused by the non-band-limitation of the signal.

The corresponding AASR and SNR scaling factor Φbf are shown in Figure 10. When the PRF
value fell into the range 1175.5−1299.2 Hz, the AASR was consistent with the value of equivalent single
channel SAR. For PRF values below 1175.5 Hz or higher than 1299.2 Hz, because of the non-uniform
sampling, the AASR was higher than that of the equivalent monostatic signal but was obviously
decreased with respect to the conventional multichannel reconstruction approach.
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Figure 9. Reconstruction results of non-uniform sampling and adaptive phase center adjustment.
(a) Reconstructed spectrum in the non-optimum PRF; (b) reconstructed pulse compression result in
the non-optimum PRF; (c) reconstructed spectrum after adaptive phase center adjustment; and (d)
reconstructed pulse compression result after adaptive phase center adjustment.

Regarding the SNR, when the PRF fell into 1175.5–1299.2Hz, the value of Φbf remained constant
independently of the PRF since the uniform sampling was ensured. For other values of the PRF,
because of the non-uniform sampling, the AASR was higher than that in uniform sampling but was
obviously lower than the conventional reference, as is shown in Figure 10b.
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Figure 10. Simulated AASR and SNR scaling factor. (a) Simulated AASR and (b) simulated SNR scaling
factor Φbf.

4.2. Effect of False Target Suppression

An example of phase center adjusting to suppress false targets is given in this section. The phase
center positions before and after adjustment are listed in Table 2. Figure 11 verifies the suppression
effect of phase center adaptively adjusting on the false targets. Figure 11a shows the reconstructed pulse
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compression results with the presence of channel errors; Figure 11b is an enlargement of Figure 11a
at the top of a false target. It can be seen that false targets could be suppressed for about 2 dB after
adaptive phase center adjustment. Though the suppression effect was not significant, the proposed
method could further suppress the false targets after channel error compensation. This can also be
regarded as an advantage of presented receiving phase center adjustment.

Table 2. Phase center position before and after adjusting.

Channels 1 2 3 4 5 6 7

Xn before adjusting (m) 5.250 3.500 1.750 0 −1.750 −3.500 −5.250

Xn after adjusting (m) 5.565 3.752 1.813 0 −1.855 −3.710 −5.502

 
(a) (b) 

-15 -10 -5 0 5 10 15

-80

-60

-40

-20

0

Azimuth location (km)

Am
pl

itu
de

 (d
B)

 

 

Conventional
Adapted

-6.093 -6.092 -6.091 -6.09 -6.089 -6.088

-37.5

-37

-36.5

-36

-35.5

-35

Azimuth location (km)

Am
pl

itu
de

 (d
B)

 

 

Conventional
Adapted

Figure 11. The effect of phase center adjusting on the suppression of false targets. (a) Reconstructed
pulse compression results for uniform and non-uniform phase center and (b) the top of a fake target is
zoomed in.

5. Conclusions

An advanced azimuth antenna architecture which allows for the adjustment of the phase center
position of sub-apertures was proposed in this paper. Benefiting from receiving phase center adjustment,
the performance of the HRWS SAR system can be improved in following three aspects. Firstly, the PRF
of the system in a certain range can be regarded as the optimum value, so complex signal reconstruction
algorithms will be omitted in novel systems. Secondly, non-uniform sampling that results in the
severe degradation of imaging performance is avoided by adjusting the phase center if it falls into the
optimum-PRF-range. Thirdly, by adaptively adjusting the phase center position of each channel, false
targets caused by residual channel error after compensation can be further suppressed to some degree,
and the quality of the resulting SAR image can be further improved.

In conclusion, receiving phase center adjustment is an effective method for compensating for
non-uniform sampling and can suppress the false targets caused by channel error to a certain extent.
However, since the number of elements that can be turned off cannot exceed a certain ratio, the optimum
PRF can only be adjusted within a range, which restricts the usable PRF range of the system. In further
research, the joint adjustment of transmit and receive phase centers will be considered to compensate
for a wider range of the non-uniform PRF. Furthermore, the presented method can be extended to
multiple-input multiple-output (MIMO) SAR systems to further improve the performance.

Author Contributions: All the authors made contributions to this work. W.X. and J.H. proposed the idea and
wrote the paper; P.H. conceived and designed the experiments; W.T. performed the experiments; and Y.D. revised
the manuscript.

Funding: This research was funded by National Equipment Pre-Research Foundation of China, grant number
JZX7Y20190253041401 and JZX7Y20190253040501, Inner Mongolia Science and Technology Innovation Guidance
Project, grant number KCBJ2018014, and National Natural Science Foundation of China, grant number 61631011,
61701264 and 61661043.

35



Sensors 2019, 19, 4277

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ciuonzo, D. On Time-Reversal Imaging by Statistical Testing. IEEE Signal Process. Lett. 2017, 24, 1024–1028.
[CrossRef]

2. Newey, M.; Benitz, G.R.; Barrett, D.J.; Mishra, S. Detection and Imaging of Moving Targets With LiMIT SAR
Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3499–3510. [CrossRef]

3. Ciuonzo, D.; Carotenuto, V.; Maio, A.D. On Multiple Covariance Equality Testing with Application to SAR
Change Detection. IEEE Trans. Signal Process. 2017, 65, 5078–5091. [CrossRef]

4. Pei, J.; Huang, Y.; Huo, W.; Miao, Y.; Zhang, Y.; Yang, J.J.S. Synthetic Aperture Radar Processing Approach
for Simultaneous Target Detection and Image Formation. Sensors 2018, 18, 3377. [CrossRef] [PubMed]

5. Bi, H.; Zhang, B.; Zhu, X.X.; Hong, W.; Sun, J.; Wu, Y. L1-Regularization-Based SAR Imaging and CFAR
Detection via Complex Approximated Message Passing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3426–3440.
[CrossRef]

6. Wu, Q.; Zhang, Y.D.; Amin, M.G.; Himed, B. High-Resolution Passive SAR Imaging Exploiting Structured
Bayesian Compressive Sensing. IEEE J. Sel. Top. Signal Process. 2015, 9, 1484–1497. [CrossRef]

7. Zhang, Y.; Xiong, W.; Dong, X.; Hu, C.; Sun, Y. GRFT-Based Moving Ship Target Detection and Imaging in
Geosynchronous SAR. Remote Sens. 2018, 10, 2002. [CrossRef]

8. Currie, A.; Brown, M.A. Wide-swath SAR. IEE Proc. F Radar Signal Process. 1992, 139, 122–135. [CrossRef]
9. Currie, A. Wide-swath SAR imaging with multiple azimuth beams. In Proceedings of the IEEE Colloquium

on Synthetic Aperture Radar, London, UK, 29 November 1989.
10. Li, Z.; Wang, H.; Tao, S.; Zheng, B.J.I.G.; Letters, R.S. Generation of wide-swath and high-resolution SAR

images from multichannel small spaceborne SAR systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 82–86.
[CrossRef]

11. Gebert, N.; Krieger, G.; Moreira, A. Digital Beamforming for HRWS-SAR Imaging: System Design,
Performance and Optimization Strategies. In Proceedings of the IEEE International Conference on Geoscience
& Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006.

12. Gebert, N.; Krieger, G.; Moreira, A. Digital Beamforming on Receive: Techniques and Optimization Strategies
for High-Resolution Wide-Swath SAR Imaging. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 564–592.
[CrossRef]

13. Wu, X.; Xu, J.Z.; Zhang, C.; Yi, J. A novel spectrum reconstruction algorithm for high resolution and wide
swath space-borne SAR. In Proceedings of the Asian and Pacific Conference on Synthetic Aperture Radar,
Huangshan, China, 5–9 November 2007.

14. Krieger, G.; Gebert, N.; Moreira, A. SAR Signal Reconstruction from Non-Uniform Displaced Phase Centre
Sampling. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Anchorage,
AK, USA, 20–24 September 2004.

15. Tan, W.; Xu, W.; Huang, P.; Huang, Z.; Qi, Y.; Han, K.J.S. Investigation of Azimuth Multichannel Reconstruction
for Moving Targets in High Resolution Wide Swath SAR. Sensors 2017, 17, 1270. [CrossRef] [PubMed]

16. Zhou, R.; Sun, J.; Hu, Y.; Qi, Y. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air
Vehicle with Curved Trajectory. Sensors 2018, 18, 411. [CrossRef] [PubMed]

17. Gebert, N.; Krieger, G.J.I.G.; Letters, R.S. Azimuth Phase Center Adaptation on Transmit for High-Resolution
Wide-Swath SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2009, 6, 782–786. [CrossRef]

18. Sun, G.; Xiang, J.; Xing, M.; Yang, J.; Guo, L. A Channel Phase Error Correction Method Based on Joint
Quality Function of GF-3 SAR Dual-Channel Images. Sensors 2018, 18, 3131. [CrossRef] [PubMed]

19. Yang, T.; Li, Z.; Liu, Y.; Suo, Z.; Zheng, B. Channel error estimation methods for multi-channel HRWS SAR
systems. In Proceedings of the Geoscience & Remote Sensing Symposium, Melbourne, VIC, Australia,
21–26 July 2013.

20. Guo, X.; Gao, Y.; Wang, K.; Liu, X. Improved channel error calibration method for the azimuth multichannel
SAR. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1022–1026.

21. Berens, P. SAR with ultra-high range resolution using synthetic bandwidth. In Proceedings of the IEEE
International Geoscience & Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999.

36



Sensors 2019, 19, 4277

22. Ciuonzo, D.; Romano, G.; Solimene, R. Performance Analysis of Time-Reversal MUSIC. IEEE Trans. Signal
Process. 2015, 63, 2650–2662. [CrossRef]

23. Gangshu, H. Digital Signal Processing: Theoretical Algorithms and Implementation, 2nd ed.; Tsinghua University
Press: Beijing, China, 2003; pp. 410–412.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

37





sensors

Article

Focusing Bistatic Forward-Looking Synthetic
Aperture Radar Based on an Improved Hyperbolic
Range Model and a Modified Omega-K Algorithm

Chenchen Wang, Weimin Su *, Hong Gu and Jianchao Yang

School of Electronic and Optical Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China
* Correspondence: suweimin@njust.edu.cn

Received: 15 July 2019; Accepted: 30 August 2019; Published: 1 September 2019

Abstract: For parallel bistatic forward-looking synthetic aperture radar (SAR) imaging, the
instantaneous slant range is a double-square-root expression due to the separate transmitter-receiver
system form. The hyperbolic approximation provides a feasible solution to convert the dual
square-root expression into a single-square-root expression. However, some high-order terms of the
range Taylor expansion have not been considered during the slant range approximation procedure in
existing methods, and therefore, inaccurate phase compensation occurs. To obtain a more accurate
compensation result, an improved hyperbolic approximation range form with high-order terms is
proposed. Then, a modified omega-K algorithm based on the new slant range form is adopted for
parallel bistatic forward-looking SAR imaging. Several simulation results validate the effectiveness
of the proposed imaging algorithm.

Keywords: bistatic synthetic aperture radar (SAR); hyperbolic approximation; phase compensation;
modified omega-K

1. Introduction

Synthetic aperture radar (SAR) attracts massive research enthusiasm among researchers due
to its excellent ability to detect targets without the limitation of the external environment [1]. The
penetration ability of SAR makes it irreplaceable compared with optical imaging, while it is challenging
in traditional monostatic SAR to obtain excellent imaging performance in forward-looking imaging
mode, which limits the application of SAR technology. To solve the problem, bistatic SAR has been
widely used for forward-looking imaging due to its particular system configuration. The separate
transmitter and receiver configuration provides extra advantages like reliable hiding power and system
flexibility [2].

One-stationary bistatic SAR, as a special form of general bistatic SAR, was first studied for
forward-looking imaging. Several methods have been proposed, such as the squint minimization [3,4],
the keystone transform [5], and the ellipse model [2,4]. The Doppler frequency is decided by the
moving transmitter or the moving receiver, which is similar to monostatic SAR. Then, the bistatic
SAR was proposed where both the transmitter and the receiver are moving. The azimuth resolution is
determined by both platforms. For bistatic forward-looking SAR, the difficulty of imaging algorithms
lies in the solution of the two-dimensional spectrum because of its unique double-square-root form
of echo signal expression [6,7]. Some basic studies of bistatic SAR were proposed to illustrate the
advantages [6,8]. Compared with the monostatic situation, the principle of stationary phase (POSP)
cannot be applied to solve the derivative zero point when performing azimuth Fourier transform.
Several methods have been proposed to solve the problem. Loffeld’s bistatic formula (LBF) was
proposed to solve the double-square-root expression [6]. Respective stationary points of the transmitter
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and receiver are obtained first to transform the double-square-root expression into Taylor expansion
form. Then, the ultimate spectrum is solved based on the joint stationary point of the Taylor
expression. The contributions of the transmitter and receiver are assumed to be the same, which
leads to approximation errors. The extended Loffeld’s bistatic formula (ELBF) [9] and the modified
Loffeld’s bistatic formula (MLBF) [10] were proposed later to improve the solution process of stationary
points. These two methods assign different weights on the transmitter and receiver. However, all three
LBF methods need to solve the stationary points three times, which leads to deduction complexity. The
method of series reversion (MSR) [11] is a widely-used method for precisely solving those equations
with series terms. In SAR imaging algorithms, Taylor expansion is regarded as a common operation,
and MSR can be applied to solve the Fourier transform composed of Taylor expansion. However, it is
still challenging to conduct imaging algorithm deduction due to the series form.

To simplify the solution of the spectrum, the hyperbolic approximation was utilized to transform
the echo expression with the double-square-root form into the expression with the single-square-root
form. In the first version, a parameter named the equivalent speed was defined [12]. In the improved
version, two more parameters (the equivalent slant range and the equivalent squint angle) [13]
were added in the hyperbolic function to approximate the range more accurately. Moreover, an
improved hyperbolic approximation model with additional parameters was proposed for residual
compensation [14]. However, considering the solution process in the methods mentioned above, the
defined parameters are solved by setting the constant term, the linear term, and the quadratic term
of the Taylor expansion of echo equal, which means the influence of the cubic term, the quartic term,
and the remaining terms is ignored. In this article, we propose a new model to finish the hyperbolic
approximation.

As for imaging algorithms, range Doppler (RD) imaging algorithms, chirp scaling (CS) imaging
algorithms, back-projection (BP) imaging algorithms, and omega-K imaging algorithms based on the
LBF spectrum, the MSR spectrum, and the hyperbolic approximation spectrum have been proposed
in the past few years [9,14–16]. For RD imaging algorithms, it is too fundamental to handle the
complex situation of bistatic SAR system. The calculation time consumption is a severe problem for
real-time processing when applying BP imaging algorithms. For CS imaging algorithms, it is difficult
for researchers to conduct formula derivation. Thus, the omega-K imaging algorithm is selected in this
article to finish imaging.

To approximate the slant range more accurately, the cubic term and the quartic term are taken into
account in this article. An equivalent hyperbolic range model is introduced first to lay the foundation
of the imaging algorithm. The range error analysis is provided to demonstrate the approximation
ability of the proposed range model immediately. Then, the modified omega-K imaging algorithm
including the signal model and detailed processing steps are presented. Finally, some experimental
simulations are given to prove the efficiency of the proposed algorithm.

This article is organized as follows. Section 2 gives the geometry of the bistatic forward-looking
SAR and the equivalent hyperbolic range model corresponding to the bistatic system. Section 3 gives
the detailed modified omega-K imaging algorithm. Simulation results are given in Section 4 to validate
the proposed algorithm. Section 5 provides the conclusion.

2. Geometry and Equivalent Slant Range Model

The parallel bistatic forward-looking SAR system diagram in the Cartesian coordinate system
and the derived equivalent slant range model are established first. Then, the analysis of range error
based on the equivalent slant range model is provided.

2.1. Equivalent Slant Range Model

Figure 1 shows the geometry of parallel bistatic forward-looking SAR. The transmitter T and the
receiver Rmove along the parallel red lines parallel to the x-axis. ηpc is the synthetic aperture center
time of the imaging scene. (xc, yc, 0) is the location coordinate of the imaging center, and

(
xp, yp, 0

)
is
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the location of an arbitrary target P in the imaging scene. RTc is the slant range between the transmitter
and the target P at the phase center crossing time ηpc, and RRc is the range between the receiver and
the target P at ηpc. The approximate forward-looking angle of the receiver is θR, and the approximate
squint angle of the transmitter is θT . VT and VR represent the speed of the transmitter and the receiver,
respectively. It is assumed that both the transmitter and the receiver can cover the imaging scene
during the aperture synthesis.

Figure 1. Geometry of forward-looking bistatic SAR.

The instantaneous slant ranges from the transmitter and the receiver to the target P are:

RT (η) =
√

R2
Tc + V2

T
(
η − ηpc

)2 − 2RTcVT
(
η − ηpc

)
sin θT ,

RR (η) =
√

R2
Rc + V2

R
(
η − ηpc

)2 − 2RRcVR
(
η − ηpc

)
sin θR,

(1)

where η is the slow time.
Thus, the total range is:

R (η) = RT (η) + RR (η) . (2)

It is challenging to solve the two-dimensional spectrum due to the double-square-root expression
form of R (η). The hyperbolic approximation [12] can be used to convert the double-square-root
form to a single-square-root form by defining the equivalent speed and equivalent angle. Traditional
hyperbolic approximation [12–14] ignored the high-order terms of the Taylor expansion of R (η). To
realize a more accurate compensation, an improved equivalent slant range with high-order terms is
proposed. The range model is expressed as:

Re (η) =

√
R2

e + V2
e
(
η − ηpc

)2 − 2ReVe
(
η − ηpc

)
sin θe + E(η − ηpc)

3 + F(η − ηpc)
4, (3)

R (η) = 2Re (η) , (4)
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where Re, Ve, and θe are the new equivalent slant range at phase crossing time, the new equivalent speed,
and the new equivalent squint angle. Compared with existing hyperbolic approximation algorithms,
the proposed range model adds two additional high-order terms for range error compensation. To
solve the unknown variables, we first expand Equations (1) and (3) into a fourth-order Taylor series at
η = ηpc. Then, we get:

RT (η) =RTc − VT sin θT
(
η − ηpc

)
+

V2
T cos θ2

T
2RTc

(
η − ηpc

)2
+

V3
T sin θT cos2 θT

2R2
Tc

(
η − ηpc

)3
+

V4
T cos2 θT

(
5 sin2 θT − 1

)
8R3

Tc

(
η − ηpc

)4 ,
(5)

RR (η) =RRc − VR sin θR
(
η − ηpc

)
+

V2
R cos θ2

R
2RRc

(
η − ηpc

)2
+

V3
R sin θR cos2 θR

2R2
Rc

(
η − ηpc

)3
+

V4
R cos2 θR

(
5 sin2 θR − 1

)
8R3

Rc

(
η − ηpc

)4 ,
(6)

Re (η) =Re − Ve sin θe
(
η − ηpc

)
+

V2
e cos θ2

e
2Re

(
η − ηpc

)2
+

V3
e sin θe cos2 θe

2R2
e

(
η − ηpc

)3
+

V4
e cos2 θe

(
5 sin2 θe − 1

)
8R3

e

(
η − ηpc

)4
+

E(η − ηpc)
3 + F(η − ηpc)

4.

(7)

Substituting Equations (5)–(7) into Equations (2) and (4) and letting the first five terms of Taylor
expansion be equal, then we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RTc + RRc = 2Re

VT sin θT + VR sin θR = 2Ve sin θe
V2

T cos θ2
T

2RTc
+

V2
R cos θ2

R
2RRc

= 2 V2
e cos θ2

e
2Re

V3
T sin θT cos2 θT

2R2
Tc

+
V3

R sin θR cos2 θR
2R2

Rc
= 2

(
V3

e sin θe cos2 θe
2R2

e
+ E

)
V4

T cos2 θT(5 sin2 θT−1)
8R3

Tc
+

V4
R cos2 θR(5 sin2 θR−1)

8R3
Rc

= 2
[

V4
e cos2 θe(5 sin2 θe−1)

8R3
e

+ F
]

.

(8)

Solving the five equations in Equation (8), then we get:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Re =
1
2 (RTc + RRc)

Ve =
√

A2 + B
θe = arcsin (A/Ve)

E = C − V3
e sin θe cos2 θe

2R2
e

F = D − V4
e cos2 θe(5 sin2 θe−1)

8R3
e

,

(9)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A = (VT sin θT + VR sin θR) /2

B =

(
V2

T cos2 θT
RTc

+
V2

R cos2 θR
RRc

)
Re/2

C =
V3

T sin θT cos2 θT
4R2

Tc
+

V3
R sin θR cos2 θR

4R2
Rc

D =
V4

T cos2 θT(5 sin2 θT−1)
16R2

Tc
+

V4
R cos2 θR(5 sin2 θR−1)

16R2
Rc

.

(10)

At this point, all defined variables are solved. The range error analysis based on the new equivalent
range model is presented next.
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2.2. Range Error Analysis

To evaluate the proposed equivalent range model, an analysis of the range error based on an
X-band bistatic SAR system is given. The simulated parameters are listed in Table 1. The results of the
equivalent hyperbolic slant range error are shown in Figure 2.

Table 1. Simulation parameters.

Parameters Values Parameters Values

Carrier frequency 9 GHz Transmitter center slant range 4300 m
Pulse duration 2 μs Transmitter squint angle 7◦

Bandwidth 200 MHz Receiver center slant range 3600 m
Sampling frequency 300 MHz Receiver forward-looking angle 33◦

Pulse repetition frequency 1 kHz Sensor speed 200 m/s
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(a) Approximation error of the traditional range model.
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(b) Approximation error of the proposed range model.

Figure 2. Approximation error of the bistatic slant range. (a) Approximation error of the traditional
range model. (b) Approximation error of the proposed range model.

Figure 2a is the approximation error of the traditional hyperbolic approximation range model [13],
where the high-order terms are ignored. Figure 2b is the approximation error of the proposed
hyperbolic range model. The constant term, the linear term, and the quadratic term in Equations (5)–(7)
are used to solve the defined variables. Thus, the residual terms lead to the approximation slant range
error. To prove that the proposed model can reduce the range error compared with the traditional
model, we first give the expression of the traditional model and its corresponding Taylor expansion,
which are:

Rt (η) =

√
R2

t + V2
t
(
η − ηpc

)2 − 2RtVe
(
η − ηpc

)
sin θt, (11)

Rt (η) =Rt − Vt sin θt
(
η − ηpc

)
+

V2
t cos θ2

t
2Rt

(
η − ηpc

)2
+

V3
t sin θt cos2 θt

2R2
t

(
η − ηpc

)3
+

V4
t cos2 θt

(
5 sin2 θt − 1

)
8R3

t

(
η − ηpc

)4
(12)

where Rt (η), Rt, Vt, and θt are the variables in traditional range model. The error in Figure 2a is the
difference between the sum of the cubic terms, the quartic terms, and the residual terms in Equations (5)
and (6) and the sum of the cubic term, the quartic term, and the residual term in Equation (12), while
the error in Figure 2b is the difference between the sum of the residual terms in Equations (5) and (6)
and the residual term in Equation (7). The error caused by the cubic and quartic terms is eliminated.
From Figure 2, it can be found that the error in Figure 2a is up to 1.9 m, while the error in Figure 2b is
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less than 0.15 m. According to the parameters listed in Table 1, the approximation slant range error of
the proposed model is much less than a range solution cell. Therefore, the proposed equivalent slant
range model is more accurate than the traditional range model. The following imaging algorithm is
derived based on the proposed range model.

3. Imaging Algorithm

According to the previous analysis, the improved hyperbolic approximation model can equal the
true slant range better than traditional hyperbolic approximate models. In this section, a modified
omega-K algorithm based on the improved equivalent range model is proposed for the parallel bistatic
forward-looking SAR imaging.

3.1. Signal Model

Assume that a linear frequency-modulated signal is transmitted from the transmitter to the
receiver. Then, the base-band echo signal of an arbitrary target P is given as:

S1 (tr, η) = exp
{

jπγ

[
tr −

2Re (η)

c

]}
exp

[
−j

4πRe (η)

λ

]
(13)

where γ is the range chirp rate, c is the light speed, λ is the wavelength, tr is the fast time, and η is the
slow time. To simplify the expression and further derivation, the envelopes of the range and azimuth
are ignored.

Transforming Equation (13) into the range-frequency azimuth-time domain yields:

S2( fr, η) = exp
(
−j

π f 2
r

γ

)
exp

[
−j

4π ( fr + fc)

c
Re (η)

]
(14)

where fr is the frequency domain variable corresponding to tr and fc is the carrier frequency. From
Equation (14), it can be easily found that the first exponential term is the range frequency modulation
term. This term can be compensated by multiplying its complex conjugate in the range frequency
domain. Thus, the first frequency modulation compensation function is:

H1FM ( fr, η) = exp
(

j
π f 2

r
γ

)
. (15)

Multiplying Equation (14) by Equation (15) yields:

S3( fr, η) = exp
[
−j

4π ( fr + fc)

c
Re (η)

]
. (16)

The exponential term in Equation (16) indicates the severe coupling between range and azimuth.
To finish the phase focusing, a modified omega-K algorithm based on the signal model is presented.

3.2. Modified Omega-K Imaging Algorithm

To analyze the exponential term in Equation (16), Equation (3) is substituted into Equation (16)
firstly. Then, we get:

S4 ( fr, η) = exp
{
−j

4π ( fr + fc)

c
[√

R2
e + V2

e
(
η − ηpc

)2 − 2ReVe
(
η − ηpc

)
sin θe

+E
(
η − ηpc

)3
+ F

(
η − ηpc

)4 ]} .
(17)

Equation (17) shows that the signal consists of the traditional hyperbolic term and high-order
terms. The traditional omega-K can handle the hyperbolic term well, but cannot handle the high-order
terms. The first step of the omega-K algorithm is the compensation of the cubic term and the quartic
term. Variable substitution is performed on Equation (17), and then, we get:
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S5 (kr, X) = exp
{
−jkr

[√
R2

e +
(
X − Xpc

)2 − 2Re
(
X − Xpc

)
sin θe

+
E

V3
e

(
X − Xpc

)3
+

F
V4

e

(
X − Xpc

)4 ]} (18)

where kr =
4π( fr+ fc)

c is the wavenumber, X = Veη, and Xpc = Veηpc. Then, we get Re (η) = Re (X).
Transforming Equation (18) into two-dimensional wavenumber domain yields:

S6 (kr, kx) =
∫

S5 (kr, X) exp (−jkxX) dX

=
∫

exp {−jkrRe (X)} exp (−jkxX) dX

=
∫

exp {−jφ (kr, kx, X)} dX

(19)

where kx = 2π fa
Ve

, fa is the azimuth frequency, and:

φ (kr, kx, X) =kr

[√
R2

e +
(
X − Xpc

)2 − 2Re
(
X − Xpc

)
sin θe

+
E

V3
e

(
X − Xpc

)3
+

F
V4

e

(
X − Xpc

)4
]
+ kxX.

(20)

To solve Equation (19), the stationary phase point of φ (kr, kx, X) should be obtained firstly.
However, the existence of high-order terms complicates the solution process. For further analysis, the
phase is first rewritten as:

φ (kr, kx, X) = φt (kr, kx, X) + kr

[
E

V3
e

(
X − Xpc

)3
+

F
V4

e

(
X − Xpc

)4
]

(21)

where φt (kr, kx, X) is the traditional phase term. It is widely accepted that if the phase error is smaller
than π/4 [1], the imaging performance will not be affected much by the approximation. The phase
error simulation is given in Figure 3.

Figure 3. Phase error simulation.

From Figure 3, it can been seen that all absolute phase errors are less than π/4. Thus, the stationary
phase point of φt (kr, kx, X) is regarded as the approximate stationary phase point of φ (kr, kx, X). The
approximate stationary phase point of φ (kr, kx, X) is:

X∗ = − kxRe sin θe√
k2

r − k2
x
+ Re sin θe + Xpc, (22)
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where X∗ is only a designation of the solution and (∗) is not an operator.
Substituting Equation (22) in Equation (19) and applying POSP yield the two-dimensional

wavenumber domain signal as:

S7 (kr, kx) = exp
{
−j
√

k2
r − k2

xRe cos θe − jkx
(

Re sin θe + Xpc
)

−jkr

[
E

V3
e

(
X∗ − Xpc

)3
+

F
V4

e

(
X∗ − Xpc

)4
]}

.
(23)

The cubic term and quartic term in Equation (23) can be easily compensated by multiplying its
conjugate form. Therefore, the high-order filter is:

H2 (kr, kx) = exp
{

jkr

[
E

V3
e

(
X∗∗ − Xpc

)3
+

F
V4

e

(
X∗∗ − Xpc

)4
]}

(24)

where X∗∗ is the value of X∗ at the reference range and (∗∗) is not an operator.
Multiplying Equations (23) and (24), we get the compensated signal for the further omega-K

imaging algorithm. The signal is:

S8 (kr, kx) = exp
{
−j
√

k2
r − k2

xRe cos θe − jkx
(

Re sin θe + Xpc
)}

. (25)

A two-step omega-K is performed on Equation (25) to finish the imaging focusing.
The first step is the bulk focusing. A reference function is designed based on the reference range

to finish coarse focusing. This filter can compensate the phase of signals of those points at the reference
range. The reference function is:

Hr f (kr, kx) = exp
{

j
√

k2
r − k2

xRre f cos θe + jkx

(
Rre f sin θe + Xpc

)}
. (26)

Multiplying Equations (25) and (26) gets:

S9 (kr, kx) = exp
{
−j
√

k2
r − k2

x cos θe

(
Re − Rre f

)
− jkx sin θe

(
Re − Rre f

)}
. (27)

After bulk focusing, the residual phase at the reference range is removed. However, the residual
phase of points not at the reference range remains. Moreover, the phase contains coupling terms
between range and azimuth. For precise focusing of all points, the Stolt interpolation function is
given as:

ky =
√

k2
r − k2

x cos θe + kx sin θe. (28)

After Stolt interpolation, the resampled signal becomes:

S10 (kr, kx) = exp
[
−jky

(
Re − Rre f

)]
. (29)

From Equation (29), it is evident that the coupling between range and azimuth has been removed.
The phase is a linear function of ky. Then, the inverse fast Fourier transform is implemented on
Equation (29) to complete imaging.

According to the analysis mentioned above, the whole imaging process is shown in Figure 4.
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Figure 4. Flowchart of modified omega-K.

The specific steps are as follows:

(1) Performing range fast Fourier transform (FFT) on SAR data gets S2( fr, η).
(2) Multiplying Equation (15) and S2( fr, η) gets S3( fr, η).
(3) Performing azimuth fast Fourier transform (FFT) on S3( fr, η) gets S7(kr, kx).
(4) Multiplying Equation (24) and S7(kr, kx) gets S8(kr, kx).
(5) Multiplying Equation (26) and S8(kr, kx) gets S9(kr, kx).
(6) Performing Stolt interpolation on S9(kr, kx) gets S10(kr, kx).
(7) Performing 2D-IFFT on S10(kr, kx) gets output SAR focusing results.

4. Simulation Results

In this section, to demonstrate the effectiveness of the proposed imaging algorithm, experimental
simulations of parallel bistatic forward-looking SAR are carried out. The system parameters are
listed in Table 1. Four points at different locations were chosen to compare the imaging performance.
They were P0(0, 0), P1(0, 500), P2(200, 0), and P3(200, 500). The unit of the coordinates is meters. The
omega-K imaging algorithm based on the traditional three-parameters hyperbolic range model [13]
was selected as the reference.

Figure 5 is the comparison of the overall imaging performance before geometric correction.
Figure 5a is the result of the traditional imaging algorithm, and Figure 5b is the result of the proposed
imaging algorithm. In Figure 5a, although the four points can be successfully focused, the quality of
the right two points has distortion. In contrast, Figure 5b shows that the proposed algorithm achieves
a better focus quality on the right two points than the traditional algorithm.
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Figure 5. Imaging results. (a) Imaging results of the traditional hyperbolic omega-K algorithm. (b)
Imaging results of the proposed hyperbolic omega-K algorithm.

To observe the imaging performance more intuitively, the sub-images of the four points extracted
from Figure 5 are given by Figure 6. Figure 6a–c presents the imaging results of P0, P2, andP3 achieved
by the traditional hyperbolic range model given in [13], respectively. Figure 6e,f shows the imaging
quality of the three targets obtained by the proposed modified omega-K imaging algorithm. From
Figure 6a,d, both algorithms can obtain an excellent focusing quality of the scene center P0. For the
omega-K algorithm, the scene center is always chosen as the reference point to perform bulk focusing.
For the points away from the center (P2 and P3), it is evident that the proposed algorithm performs
much better than the traditional algorithm. For further analysis, the azimuth impulse response of
the farthest point P3 is given in Figure 7. Table 2 gives out the peak sidelobe ratio (PSLR) and the
integrated sidelobe ratio (ISLR) of targets P3.
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Figure 6. Imaging results. (a) Imaging result of P0 by the traditional algorithm. (b) Imaging result of P2

by the traditional algorithm. (c) Imaging result of P3 by the traditional algorithm. (d) Imaging result of
P0 by the proposed algorithm. (e) Imaging result of P2 by the proposed algorithm. (f) Imaging result of
P3 by the proposed algorithm.
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Figure 7. Azimuth impulse response of P3. (a) Traditional hyperbolic omega-K algorithm. (b) Proposed
hyperbolic omega-K algorithm.

Table 2. Image quality parameters of P3. PSLR, peak sidelobe ratio; ISLR, integrated sidelobe ratio.

Targets
PSLR (dB) ISLR (dB)

Azimuth Range Azimuth Range

Traditional omega-K algorithm −1.705 - - -
Proposed omega-K algorithm −12.87 −13.33 −8.86 −9.9558

Figure 7a is achieved by the traditional hyperbolic omega-K algorithm. Figure 7b is achieved by
the proposed hyperbolic omega-K algorithm. Compared with the traditional omega-K algorithm, the
proposed omega-K algorithm can improve the performance of the azimuth impulse response. The
objective image quality values demonstrated the effectiveness of the proposed omega-K algorithm.

5. Conclusions

In this article, an improved hyperbolic range model was proposed to deal with the particular
form of the echo of bistatic forward-looking SAR. The modified omega-K imaging algorithm based
on the hyperbolic range model was used to finish focusing. The high-order terms were taken into
account to reduce the range approximation error. Extra phase compensation benefited the focusing of
the omega-K algorithm. Compared with the range model without high-order compensation terms, the
proposed method showed the effectiveness of imaging quality by simulation results.
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Abstract: Microwave staring correlated imaging (MSCI), with the technical capability of high-
resolution imaging on relatively stationary targets, is a promising approach for remote sensing.
For the purpose of continuous observation of a fixed key area, a tethered floating aerostat is often
used as the carrying platform for MSCI radar system; however, its non-cooperative random motion of
the platform caused by winds and its unbalance will result in blurred imaging, and even in imaging
failure. This paper presents a method that takes into account the instabilities of the platform, combined
with an adaptive variable suspension (AVS) and a position and orientation system (POS), which can
automatically control the antenna beam orientation to the target area and measure dynamically the
position and attitude of the stochastic radiation radar array, respectively. By analyzing the motion
feature of aerostat platform, the motion model of the radar array is established, then its real-time
position vector and attitude angles of each antenna can be represented; meanwhile the selection
matrix of beam coverage is introduced to indicate the dynamic illumination of the radar antenna
beam in the overall imaging area. Due to the low-speed discrete POS data, a curve-fitting algorithm
can be used to estimate its accurate position vector and attitude of each antenna at each high-speed
sampling time during the imaging period. Finally, the MSCI model based on the unsteady aerostat
platform is set up. In the simulations, the proposed scheme is validated such that under the influence
of different unstable platform movements, a better imaging performance can be achieved compared
with the conventional MSCI method.

Keywords: microwave staring correlated imaging; unsteady aerostat platform; motion parameter
fitting; position error

1. Introduction

Microwave remote sensing has the ability to work in all day and all weather conditions [1],
thus it has been used in many civilian and military fields, such as disaster monitoring and military
reconnaissance [2]. The conventional high-resolution microwave remote sensing commonly applies
Synthetic Aperture Radar (SAR) which is based on Range-Doppler (RD) principle [3]. However relative
motion between radar and target is necessary for SAR and the revisit period is long. In forward-looking
or staring imaging geometry, SAR cannot work effectively and encounters great challenges to obtain
high-resolution imaging.

Microwave staring correlated imaging is a novel high-resolution staring imaging technique without
the relative motion limit of target [4–6]. The essence of MSCI is to construct temporal-spatial stochastic
radiation field (TSSRF) in the imaging region, which is typically realized by a multi-transmitters
configuration emitting independent stochastic waveforms [7,8]. By correlation process (CP) between
the target scattering echo and the TSSRF, targets within the antenna beam can be resolved. Due to its
superior imaging performance without target relative motion, MSCI has attracted increasing attention
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and made progress in many aspects such as random radiation source optimization [9–11], imaging
algorithm [12–14] and outfield imaging experiment [15].

At present, research on MSCI depends on the premise of an ideal stable imaging platform, i.e.,
the system platform of the MSCI radar is assumed to be stationary. However, it is not guaranteed in
practical applications. To observe a fixed area, the MSCI radar needs to be raised to a certain height.
A tethered aerostat is suitable to serve as the platform of MSCI radar with advantages of long-stay
time in the air, wide coverage area and low cost [16,17], but it cannot keep absolutely stationary in the
air because of the non-cooperative motion caused by wind and unbalance. The platform instability
will result in imaging system errors and the imaging performance will be seriously degraded when
the random motion of platform becomes intense.

The imaging system errors in MSCI have been investigated by many studies, since it generally
exists in practice. For example, to compensate the gain–phase error in MSCI, Zhou et al. propose a
sparse auto-calibration method, which is a cyclic iteration processing combined target reconstruction
with gain–phase error estimation [18]. In reference [19], the MSCI with phase error is formulated as a
Bayesian hierarchical prior modeling, and self-calibration variational message passing (SC-VMP)
algorithm is proposed, which estimates the scattering coefficient and phase error iteratively by
VMP and Newton’s method to improve the performance of MSCI with phase error. To estimate
the gain–phase error and the synchronization error under high SNR, Tian et al. add a reference receiver
to the MSCI system to receive the direct wave signal and the gain–phase error and the synchronization
error are estimated by the direct wave signals [20]. In reference [21], a method of strip-mode MSCI
with self-calibration of gain–phase errors is proposed to solve the problem of MSCI with gain–phase
errors in a large scene. Reference [22] considers the off-grid problem in MSCI and an algorithm based
on variational sparse Bayesian learning (VSBL) is developed to solve the MSCI with off-grid problem.
Reference [23] focuses on sparsity-driven MSCI with array position error (APE) and propose two
sparse auto-calibration imaging algorithms in sparse Bayesian learning framework to compensate the
APE. Li et al. analyzes the target-motion-induced error and provides an applicable approach for MSCI
in the presence of target-motion-induced error [24]. Hitherto, research on MSCI system error generally
concentrated on gain–phase error, off-grid error, APE, and target-motion-induced error. There is no
study on the imaging system error caused by instability of the platform which is an important issue in
practice applications.

Aiming at the above problems, this paper proposes a MSCI method based on unsteady aerostat
platform. In the proposed method, the antenna array with multiple transmitters and one receiver is
mounted on the aerostat platform combined with an adaptive variable suspension (AVS), and the
position and orientation system (POS) located at the center of the array, controlling its antenna beam
orientation to the target area and measuring dynamically its position and attitude during imaging
process. The effects of antenna motion and dynamic beam coverage caused by instability of the
platform are considered in imaging model to reduce the imaging model error. For antenna motion,
the real-time position vectors of antenna are used in imaging model in place of static position vector.
The calculation of real-time position vector of antenna depends on the translational speed and the
rotational angular velocity of the array in each signal pulse, then based on the low-speed discrete
POS data, a least square curve-fitting method is employed to estimate the accurate translational speed
and rotational angular velocity of the array at every sampling time. For dynamic beam coverage, the
selection matrix of beam coverage calculated by the position and the attitude of the array is introduced
to indicate the illuminated area at each pulse.

The rest of this paper is organized as follows. Section 2 presents the MSCI method based on
unsteady aerostat platform. In Section 3, estimation of translational speed and rotational angular
velocity of antenna array is given. In Section 4, serval simulations are demonstrated to show the
effectiveness of the proposed method. Section 5 concludes this paper.
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2. MSCI Method Based on Unsteady Aerostat Platform

2.1. Imaging Scene

MSCI can be realized by using a multi-transmitter configuration to transmit time-independent
and group-orthogonal waveforms. To realize observation of targets on ground, MSCI radar can be
raised to the air by a tethered aerostat. As shown in Figure 1, the antenna array with N transmitters and
one receiver at its array center is carried by AVS which is able to control the antenna beam orientation,
and POS is placed at the center of the array to dynamically measure its position and the attitude during
the imaging process.

Figure 1. Imaging geometry of MSCI based on unsteady aerostat platform.

To illustrate the geometry of the imaging scene, as the earth-surface inertial reference frame, the
coordinate system OtXtYtZt is established, with its origin Ot located in the projection point of the array
center on the ground on OtXtYt plane at the beginning imaging time, its Xt axis pointing to the east
along local latitude line, its Yt axis pointing to the north along local meridian and its Zt axis pointing
upward along the local geographic vertical line.

The independent signal of random frequency hopping transmitted synchronously by all
transmitters and the signal transmitted by the n-th transmitter is denoted as

sn(t) =
L

∑
l=1

rect[
t − (l − 1)Tp

T
] exp{j2π fnl [t − (l − 1)Tp]}, (1)

where fnl is the frequency of the l-th pulse emitted by the n-th transmitter and randomly selected
within the system bandwidth. rect(t) is rectangular function. L is the total number of pulses. TP
denotes pulse repetition interval and T is pulse width.
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During the imaging process, POS will dynamically record the position and the attitude of the
antenna array. The attitude of the array Euler angles includes yaw angle, pitch angle, and roll angle.
To give definition of these angles, the aerostat coordinate system ObXbYbZb is established on the array
with its origin Ob located at its array center, its Xb axis pointing to the right along the horizontal
axis of the array, its Yb axis pointing forward along the longitudinal axis of the array and its Zb axis
perpendicular to the radar array plane. The yaw angle θ is defined as the angle between the projection
of Yb on the OtXtYt plane and the Yt axis, with the Yb axis right side being positive. The pitch angle ϕ

is defined as the angle between the Yb axis and the OtXtYt plane, with Yb axis up side being positive.
The roll angle φ is defined as the angle between the Zb axis and the vertical plane containing the Yb
axis, with Zb axis right side being positive. The graphical diagram for the altitude angles is shown in
Figure 2. Y′

b is the projection of Yb on the OtXtYt plane and Z′
b is the projection of Zb on the OtZtYb

plane.

Figure 2. Graphical diagram for the altitude angles.

2.2. Real-Time Position Vector of Antenna

To eliminate the influence of antenna motion, the real-time position vector rn (tl) and rs (tl) are
introduced to the MSCI model based on unsteady aerostat platform, where rn (tl) and rs (tl) denote
the real-time position vector of the n-th transmitter and the receiver at tl in the l-th pulse in OtXtYtZt

respectively.
The complicated motion of the antenna array is decomposed into three-dimensional translations

and three rotational components. The three-dimensional translations are along Xt, Yt and Zt

respectively. The rotational components are rotation of yaw angle, pitch angle, and roll angle,
respectively. As the pulse repetition interval TP is short, the translational speed and the rotational
angular velocity will not change drastically during such a short period, so the assumption on the array
motion is made that the antenna array motion is uniform translation and uniform rotation during each
pulse repetition interval TP. Hence the translational speed of the antenna array during the l-th pulse is
denoted as vl =

[
vl,x, vl,y, vl,z

]
, where vl,x, vl,y, vl,z are the speeds of the three-dimensional translations

along Xt axis, Yt axis and Zt axis respectively. The rotational angular velocity of the antenna array
during the l-th pulse is denoted as ωl =

[
ωl,θ , ωl,ϕ, ωl,φ

]
, where ωl,θ , ωl,ϕ, ωl,φ are rotational angular

velocity of the yaw angle, the pitch angle, and the roll angle respectively.
If the motion of antenna array during each pulse is known, the real-time position vector of the

antenna can be determined. Tpos denotes the repetition period of POS recording data. As Figure 3
shows, the pulse repetition interval TP is far shorter than Tpos of POS, so there are many transmitting
pulses between adjacent POS data. Assuming that the recorded time ti,pos of the i-th POS data is in
the l′-th pulse and the recorded time ti+1,pos of the next POS data is in the l′′-th pulse, the real-time
position vector of n-th transmitter rn (tl) at tl in the l-th (l′ ≤ l ≤ l′′) pulse can be expressed as
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rn (tl) = rn (ti,pos
)
+ Δrv

(
tl − ti,pos

)
+ Δrn

ω

(
tl − ti,pos

)
, (2)

where Δrv
(
tl − ti,pos

)
and Δrn

ω

(
tl − ti,pos

)
are the displacement vectors of the n-th transmitter caused

by translation and rotation during tl − ti,pos, respectively. rn (ti,pos
)

is the position vector of the n-th
transmitter at ti,pos and can be calculated by the following formula

rn (ti,pos
)
= rs (ti,pos

)
+ C

(
θti,pos , ϕti,pos , φti,pos

)
rn

b , (3)

where rn
b is the position vector of the n-th transmitter in ObXbYbZb. rs (ti,pos

)
is the position vector of

the receiver measured by the POS at ti,pos in OtXtYtZt. C
(

θti,pos , ϕti,pos , φti,pos

)
is the Direction Cosine

Matrix (DCM) that transforms the coordinate from ObXbYbZb to OtXtYtZt. The DCM can be expressed
as

C
(

θti,pos , ϕti,pos , φti,pos

)
=

⎡⎢⎢⎣
cos

(
θti,pos

)
sin

(
θti,pos

)
0

− sin
(

θti,pos

)
cos

(
θti,pos

)
0

0 0 1

⎤⎥⎥⎦×

⎡⎢⎢⎣
1 0 0

0 cos
(

ϕti,pos

)
− sin

(
ϕti,pos

)
0 sin

(
ϕti,pos

)
cos

(
ϕti,pos

)
⎤⎥⎥⎦×

⎡⎢⎢⎣
cos

(
φti,pos

)
0 sin

(
φti,pos

)
0 1 0

− sin
(

φti,pos

)
0 cos

(
φti,pos

)
⎤⎥⎥⎦

. (4)

Figure 3. Pulse and POS data timing diagram.

As the receiver is at the center of the antenna array, its position vector at tl is only affected by the
translation of the antenna array during the period of tl − ti,pos and can expressed as

rs (tl) = rs (ti,pos
)
+ Δrv

(
tl − ti,pos

)
. (5)

Δrv
(
tl − ti,pos

)
and Δrn

ω

(
tl − ti,pos

)
can be calculated by the translational speed and the rotational

angular velocity of the antenna array:

Δrv
(
tl − ti,pos

)
=
[
min

{
tl , l′Tp

}
− ti,pos

]
vl′ +

l

∑
k=l′+1

[
min

{
tl , kTp

}
− (k − 1) TP

]
vk, (6)

Δrn
ω

(
tl − ti,pos

)
= C

(
Δθtl , Δϕtl , Δφtl

)
rn

b − rn
b . (7)

55



Sensors 2019, 19, 2825

The function min{x, y} returns the minimum of x and y. Δθtl , Δϕtl and Δφtl are the changes of
the altitude angles during tl − ti,pos and can be calculated by the following formula

αtl =
[
min

{
tl , l′Tp

}
− ti,pos

]
ωl′ ,α +

l

∑
k=l′+1

[
min

{
tl , kTp

}
− (k − 1) TP

]
ωk,α, (8)

where αtl ∈
(
Δθtl , Δϕtl , Δφtl

)
.

2.3. Influence of Platform Motion on Beam Coverage

The aerostat platform instability not only causes the antenna motion, but also changes the beam
coverage in the overall imaging region S. All echo data contains the information of all beam covered
areas, therefore as the union of all beam coverages, the overall imaging region S is considered in
imaging. The selection matrix of beam coverage is introduced to indicate the dynamically illuminated
area of each pulse within the overall imaging region.

The beam coverage of the l-th pulse is denoted as Sl , and the coordinate
(
xc

l , yc
l
)

is the beam
coverage center on the OtXtYt plane of the l-th pulse:

xc
l = xs

l − (tanφl cosϕl/cosθl − sinϕl tanθl)zs
l , (9)

yc
l = ys

l + (tanφl sinϕl/cosθl + cosϕl tanθl)zs
l , (10)

where
(

xs
l , ys

l , zs
l
)
, (θl , ϕl , φl) are its center position coordinate and its attitude angles of the antenna

array at the start time of the l-th pulse.
The overall imaging region S is the union of all beam covered areas during imaging, i.e.,

S = S1
⋃

S2
⋃

...
⋃

SL. The size of the beam covered area of a single pulse is denoted as wx × wy,
where wx, wy are the side length. The size of the overall imaging region is

Wx × Wy = (xc
max − xc

min + wx)×
(
yc

max − yc
min + wy

)
, (11)

where Wx,Wy are the side length of S. xc
max and xc

min are the maximum value and the minimum value of
xc

l , l = 1, 2, · · · , L. yc
max and yc

min are the maximum value and the minimum value of yc
l , l = 1, 2, · · · , L.

The overall imaging region will be discretized into M = P × Q discrete grids, where P is the row
number of azimuth resolution cells, and Q is the column number of range resolution cells. In OtXtYtZt,
the position vectors of the m-th grid is denoted as rm, m = 1, 2, · · · , M.

Selection matrix of beam coverage is as below

D =

⎡⎢⎢⎢⎢⎣
D1 (1) D1 (2) · · · D1 (M)

D2 (1) D2 (2) · · · D2 (M)
...

...
...

...
DL (1) DL (2) · · · DL (M)

⎤⎥⎥⎥⎥⎦ . (12)

The element Dl (m) indicates whether the m-th grid is illuminated by the l-th pulse beam:

Dl (m) =

{
1 i f (rm ∈ Sl)

0 i f (rm /∈ Sl)
(13)

2.4. Imaging Equation

Since the whole imaging region S has been divided into M = P × Q discrete grids. The scattering
coefficient of the m-th grid is σ(rm). At the beginning of the l-th pulse, each transmitter simultaneously
transmits independent and stochastic signal. All signals are superimposed in S to generate TSSRF.
The radiation field at rm can be expressed as
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Einc(tl , rm) =
N

∑
n=1

Dl (m)
Fn
(
R̂n
)

sn(tl −
∣∣rm − rn (tl,0)

∣∣/c )
4π

∣∣rm − rn (tl,0)
∣∣ , (14)

where R̂n = [rm − rn (tl,0)] /
∣∣rm − rn (tl,0)

∣∣ . Fn
(
R̂n
)

denotes the radiation pattern of the n-th transmitter
antenna. tl,0 = (l − 1)T denotes the initial time of the l-th pulse.

The radiation field interacts with the targets and the received echo can be expressed as

Esca(tl) =
M

∑
m=1

σ(rm)
Einc(tl − |rs(tl)−rm |

c , rm)

4π |rs (tl)− rm|
Fs
(
R̂s
)
+ n (tl) , (15)

where R̂s = [rm − rs (tl)]/|rm − rs (tl)| . Fs
(
R̂s
)

denotes the radiation pattern of the receiver antenna.
n (tl) denotes the additive noise.

Considering the round-trip propagation of the electromagnetic field in the free space, the modified
radiation field is defined as

Erad(tl , rm) =
N

∑
n=1

{
Fs
(
R̂s
)

Fn
(
R̂n
)

sn [tl − (|rm − rn (tl,0) |+ |rs (tl)− rm|)/c ]

(4π)2|rm − rn (tl,0) ||rs (tl)− rm|
Dl (m)

}
. (16)

Let tl,k, l = 1, 2, · · · , L be the sampling time in the l-th pulse, thus the imaging equation in the
matrix vector form can be written as

Esca = Erad · σ + n, (17)

where Esca = [Esca(t1,k), Esca(t2,k), · · · , Esca(tL,k)]
T is the echo vector, σ = [σ (r1) , σ (r2) , · · · , σ (rM)]T

is the scattering coefficient vector, n = [n (t1,k) , n (t2,k) , · · · n (tL,k)]
T is the noise vector, Erad is the

modified radiation field matrix with
[
Erad

]
lm

= Erad (tl,k, rm).
The scattering coefficient vector σ can be reconstructed by the correlated processing between Esca

and Erad, which can be described as
σ̂ = ζ

[
Erad, Esca

]
, (18)

where ζ denote the correlated operator.
Common correlated imaging algorithms include Pseudo-Inverse algorithm, Tikhonov regularization,

TV regularization, and sparse reconstruction algorithms, such as Orthogonal Matching Pursuit, sparse
Bayesian learning, etc. This paper adopts Tikhonov regularization algorithm because it is robust to noise
and does not require a priori of the target. Tikhonov regularization can be formulated as the following
optimization problem

σ̂ = arg min
σ

{∥∥∥Esca − Erad · σ
∥∥∥+ λ ‖σ‖2

2

}
, (19)

where λ is the regularization parameter.

3. Estimation of Translational Speed and Rotational Angular Velocity

POS system sets inertial navigation technology and satellite navigation technology in one body,
and adopts the real-time and post-process information fusion respectively to get high precision
positioning and orientation information. For MSCI, the imaging time is very short, so the error
accumulation of the INS is negligible, and the INS is more accurate in a short time. Hence the
measured position and angular data for estimation of translational speed and rotational angular
velocity are very accurate.

The calculation of the real-time position vector of each antenna at high-speed sampling time
requires the translational speed and the rotational angular velocity of the antenna array. The low-speed
discrete POS data will be used to estimate the translational speed and the rotational angular velocity.
Since the data rate of POS is usually less than the pulse repetition frequency as Figure 3 shows, there
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are many pulses between two adjacent POS data. To obtain the translational speed and the rotational
angular velocity of the antenna array during each pulse, third-order polynomial curve fitting to the
position and attitude is employed and the least squares method is used to obtain the coefficients of the
fitting polynomial. The fitting polynomial of the position or the attitude can be expressed as

μ (t) =
3

∑
k=0

aμ,ktk, (20)

where aμ,k is the coefficient of the polynomial, and μ (t) is the fitting curve.
The initial time of the l-th pulse is denoted as tl,0, and the end time of the l-th pulse is denoted

as tl+1,0 = tl,0 + Tp. By substituting tl,0 and tl+1,0 into the fitting curve μ (t), we can get the position
or the attitude parameters at the beginning and the end of each pulse. Based on the assumption that
the antenna array is uniformly translated and rotated during each pulse, the translational speed and
rotational angular velocity in each pulse can be solved by

ωl =

⎡⎢⎢⎢⎢⎢⎢⎣

θ (tl+1,0)− θ (tl,0)

T
ϕ (tl+1,0)− ϕ (tl,0)

T
φ (tl+1,0)− φ (tl,0)

T

⎤⎥⎥⎥⎥⎥⎥⎦ , (21)

vl =
rs (tl+1,0)− rs (tl,0)

T
. (22)

4. Simulation

In this section, simulations are demonstrated to verify the proposed method based on unsteady
aerostat platform. The scenario for the simulation is shown in Figure 1. An X-band MSCI radar
system with carrier frequency of 10 GHz is considered. The randomly radiating radar array with
25 transmitters and 1 receiver is raised to 350 m height by a tethered aerostat. The main system
simulation parameters are given in Table 1, and the target model is shown in Figure 4. In simulations,
the measurement errors of position and altitude angles are assumed to be independent and subject
to Gauss distribution with zero mean and 1 mm standard deviation for position and 0.05◦ standard
deviation for altitude angles.

Table 1. Simulation parameter.

Simulation parameter Value

Aperture of antenna array 1.5 m × 1.5 m
Number of transmitting antenna 25

Height of array center 350 m
Slanting angle θ0 = 45◦

The overall observation area 120 m × 120 m
Beam coverage area by single pulse 105 m × 105 m

Number of grid 40 × 40
Grid spacing 3 m
Signal form Random frequency hopping

Pulse repetition interval 5 μm
Pulse width 600 ns
Bandwidth 500 MHz

Carrier frequency 10 GHz
Total imaging time 10 ms
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Figure 4. Target image.

To illustrate the effectiveness of the proposed method, the trajectories in Figure 5 are used as the
three-dimensional translations and the rotational components of the antenna array caused by unsteady
platform.

(a) (b) (c)

(d) (e) (f)

Figure 5. The motion trajectory of each component. (a) the translational component along the Xt;
(b) the translational component along the Yt; (c) the translational component along the Zt; (d) the
rotation of yaw; (e) the rotation of pitch; (f) the rotation of roll.

4.1. Verification of the Proposed Model

In this subsection, simulations are taken to compare the imaging performance of different imaging
models. The proposed imaging model based on unsteady aerostat platform (UPIM) will be compared
with the imaging model for stationary platform (SPIM) and imaging model which only uses the
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discrete POS data (DPDIM). SPIM ignores the motion of antenna array and assumes that the position
vector of antenna and the beam coverage do not change during the imaging process. When calculating
the radiation field, SPIM uses the first recorded POS data as the position and the attitude angles of the
array, i.e., rn (tl)=rn (t1,pos

)
(l = 1, 2, · · · , L). DPDIM does not fit the discrete POS data and uses the

closest POS data for each pulse. The normalized mean square error (NMSE) is used to quantity the
reconstruction performance, with the definition as: NMSE = ‖x̂ − x‖2/‖x‖ 2, where x̂ and x denote
the reconstructed and true value of target.

The imaging results are depicted in Figure 6. As shown in Figure 6a, Comparably, the image
reconstructed by UPIM is focused with quite a few spurious scatters, whose better imaging performance
benefits from the fact that the UPIM has the minimal motion estimation error. In Figure 6b, apart
from strong scatters, the image reconstructed by DPDIM has many spurious scatters. In Figure 6c, the
reconstructed image by SPIM is defocused and blurry, and the target is hard to recognize.

(a) (b) (c)

Figure 6. The imaging results of UPIM, DPDIM, and SPIM. (a) the reconstructed image by UPIM, the
NMSE is 0.28; (b) the reconstructed image by DPDIM, the NMSE is 0.94; (c) the reconstructed image by
SPIM, the NMSE is 1.21.

The point spread functions (PSF) of UPIM, DPIM, and SPIM are illustrated in Figure 7 and the
X-axis and Y-axis profiles of the PSF are shown in Figure 8. It can be seen from Figure 7, the number
and the level of the side lobes is minimum for UPIM while the other two methods both have more side
lobes and higher level of side lobes. Figure 8 shows that these methods have almost the same width of
the main lobe in X-axis profile and the Y-axis profile. The above simulation results demonstrate that
UPIM indeed reduces the number and the level of side lobes caused by platform instability, but it does
not improve the imaging resolution of MSCI.

(a) (b) (c)

Figure 7. The point spread function of UPIM, DPIM, and SPIM. (a) UPIM; (b) DPIM; (c) SPIM.
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(a) (b)

Figure 8. The profile of the point spread function of UPIM, DPIM, and SPIM. (a) the X-axis profile of
the point spread function; (b) the Y-axis profile of the point spread function.

For the three imaging models mentioned above, Figure 9 shows the fitting effect on the
translational motion trajectory of the aerostat platform along the Xt. It can be seen that the proposed
UPIM model has the best fitting effect that the estimated translational trajectory is almost the same
with the real one with the most minimum motion estimation error, which obviously benefits a better
imaging performance in UPIM.

(a) (b) (c)

Figure 9. The estimated and the real trajectory of the translation along the Xt. (a) UPIM; (b) DPDIM;
(c) SPIM.

To verify the effectiveness of the proposed method with the translation amplitude increasing, the
relationship between the imaging quality and the translation amplitude for three imaging models is
presented in Figure 10. The amplitude of three-dimensional translations gradually increased by the
step of 0.5 times the original amplitude shown in Figure 5, while the rotation amplitudes keep constant.
The coordinate of the horizontal axis in Figure 10 represents the multiple of the original translation
amplitude. As seen from Figure 10, the imaging performance of UPIM is still better than the other
imaging models when the amplitude of translation increases.
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Figure 10. NMSE of the imaging results by UPIM, DPDIM, and SPIM at different amplitudes of
translation.

The imaging quality under different rotation amplitudes is depicted in Figure 11. The amplitude
of all rotational components is gradually increased by step of 0.5 times the original rotational amplitude,
while the translation amplitudes keep constant. Figure 11 shows that the proposed method has better
performance under all rotation amplitudes.

Figure 11. NMSE of the imaging results by UPIM, DPDIM, and SPIM at different amplitudes of
rotation.

4.2. Effect of Different Translational Components on Imaging Performance

This section is to study the effect of independent translational component on imaging performance.
In simulations, all independent translational components use the same motion trajectory as shown in
Figure 5a. Figure 12 shows the imaging results reconstructed by UPIM when only one translational
component exists.
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(a) (b) (c)

Figure 12. The imaging results of UPIM when only one translation component exists. (a) Only
translational component along the Xt exists, the NMSE is 0.21; (b) Only translational component along
the Yt exists, the NMSE is 0.58; (c) Only translational component along the Zt exists, the NMSE is 0.59.

The imaging quality for each translational component under different translation amplitudes is
presented in Figure 13. As shown in Figures 12 and 13, the translation along the Xt has the minimal
influence on imaging performance, while both translation along the Yt and Zt has almost the same
influence on imaging performance. Therefore, for improving the image performance, the position of
the antenna array along the Yt and the Zt should be estimated more accurate.

Figure 13. NMSE of the imaging results when only one translational component exists at
different amplitudes.

Next, we investigate the reason for the different imaging results in three-dimensional translations.
Although the proposed method compensates in part of the non-cooperative motion, due to the limited
number of POS data, the estimated translation errors cannot be totally eliminated. Figure 14 shows the
estimation error in three-dimensional translations. The accurate calculation of the radiation field is
directly related to the round-trip propagation delay of the electromagnetic wave between antenna and
target. The propagation time delay error caused by estimation error of array position will lead to the
calculated radiation field error. Because the translational estimation errors in three dimensions have
different effect on the propagation time delay, the influence of different translational components on
imaging is not the same.
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(a) (b) (c)

Figure 14. The estimation error of antenna position in three-dimensional translations. (a) Only along
the Xt; (b) Only along the Yt; (c) Only along the Zt.

Assuming at t time, the coordinate of the i-th antenna is (xa, ya, za) and the coordinate of
any point m in the imaging region is (x, y, z). After Δt, the coordinate of the antenna become
(xa + Δxa, ya + Δya, za + Δza).

The distance from the i-th antenna to the point m in imaging region is

Sim=
√
(x − xa)

2 + (y − ya)
2 + (z − za)

2. (23)

The partial differential of the propagation path along three coordinate dimensions is

∂Sim
∂xa

=
xa − x√

(x − xa)
2 + (y − ya)

2 + (z − za)
2

, (24)

∂Sim
∂ya

=
ya − y√

(x − xa)
2 + (y − ya)

2 + (z − za)
2

, (25)

∂Sim
∂za

=
za − z√

(x − xa)
2 + (y − ya)

2 + (z − za)
2

. (26)

In the simulation scenario, the height of the antenna array is 350 m and the antenna is squint
observation with the slanting angle 45◦. For any point in the imaging area, its coordinate satisfies
291.5 ≤ y ≤ 408.5, −58.5 ≤ x ≤ 58.5 and z = 0 . Because the size of antenna array is much smaller than
the size of imaging region, therefore for most points in the imaging region, it is satisfied that |x| 
 |xa|
and |y| 
 |ya|, and the value of partial differential function satisfy that |∂Sim/∂ya | > |∂Sim/∂xa |.
As za − z ≈ 350, the partial differential of Sim satisfies |∂Sim/∂za | > |∂Sim/∂xa |. Therefore the
same estimation error along the Xt axis will cause less propagation delay error than the other two
components, which explains the reason that under the same translational trajectory, the reconstructed
image with the translation only along the Xt has the best imaging result.

4.3. Effect of Different Rotation Components on Imaging Performance

This section is to study the effect of independent rotational component on imaging performance.
In the simulation, three rotational components have the same rotational trajectory as shown in Figure 5d.
Figure 15 shows the imaging results reconstructed by UPIM when only one rotational component exists.
As three rotational components gradually increased by the step of 0.5 times the original rotational
amplitude shown in Figure 5, the imaging quality for each rotational component under different
rotation amplitudes is presented in Figure 16.
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(a) (b) (c)

Figure 15. The imaging results of UPIM when only one rotation component exists. (a) Only yaw angle,
the NMSE is 0.27; (b) Only pitch angle, the NMSE is 0.28; (c) Only roll angle, the NMSE is 0.28.

Figure 16. NMSE of the imaging results when only one rotation component exists at
different amplitudes.

From Figures 15 and 16, it can be seen that three rotational components have almost the same
effect on imaging performance under different rotation amplitudes.

4.4. Effect of the Position and Angular-Measuring Accuracy on Imaging Performance

This section is to study the effect of the measuring accuracy of position and attitude parameters
on imaging. The imaging performance under different position accuracy and angular accuracy is
simulated. In simulations, the measurement error is assumed to be independent and subject to
Gauss distribution with zero mean and different variances. The smaller the variance, the higher the
measuring accuracy. Figure 17 shows the imaging quality under different position-measuring accuracy
and different angular-measuring accuracy, respectively. The results show that the imaging performance
is very sensitive to the measuring accuracy of position and attitude parameters which means that the
proposed method has a high demand of accurate measurement of position and attitude parameters.
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(a) (b)

Figure 17. The NMSE of imaging result under different measuring accuracy. (a) position-measuring
accuracy; (b) angular-measuring accuracy.

5. Conclusions

In this paper, a novel MSCI method based on unsteady aerostat platform is proposed, where
the MSCI radar array is carried by AVS to keep its antenna beam orientation to the target in the
non-cooperative motion of the platform caused by the wind etc., and the POS is used to dynamically
measure the position and the attitude of the antenna array. By decomposing of the platform motion to
its translation and rotation, the motion model of unsteady aerostat platform in air has been built, and for
each antenna, its real-time position vector can be calculated by its translational speed and its rotational
angular velocity in each pulse, replacing the static position vector in the traditional MSCI model.
For the dynamic beam coverage in the whole observation region, a selection matrix of beam coverage is
introduced to indicate the illuminated area at each pulse. By analyzing the modified stochastic radiation
field and its scattered echo, the MSCI model based on unsteady aerostat platform is established.
Furtherly, based on low-speed POS data, a polynomial curve-fitting algorithm is used to eliminate the
position error of the radar array. Simulation experiments demonstrate that under its different random
translations and rotations of unsteady aerostat platform, the position and attitude of the antenna
array at different time can be estimated well, and better imaging performance can be achieved by the
proposed scheme, which provides a feasible technical approach for the floating-observation-platform
to realize the microwave staring remote sensing observation in the near space.
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Abstract: Microwave staring correlated imaging (MSCI) can realize super resolution imaging without the
limit of relative motion with the target. However, gain–phase errors generally exist in the multi-transmitter
array, which results in imaging model mismatch and degrades the imaging performance considerably.
In order to solve the problem of MSCI with gain–phase error in a large scene, a method of MSCI with
strip-mode self-calibration of gain–phase errors is proposed. The method divides the whole imaging
scene into multiple imaging strips, then the strip target scattering coefficient and the gain–phase errors
are combined into a multi-parameter optimization problem that can be solved by alternate iteration,
and the error estimation results of the previous strip can be carried into the next strip as the initial value.
All strips are processed in multiple rounds, and the gain–phase error estimation results of the last strip
can be taken as the initial value and substituted into the first strip for the correlated processing of the
next round. Finally, the whole imaging in a large scene can be achieved by multi-strip image splicing.
Numerical simulations validate its potential advantages to shorten the imaging time dramatically and
improve the imaging and gain–phase error estimation performance.

Keywords: microwave staring correlated imaging (MSCI); gain–phase errors; strip; self-calibration

1. Introduction

Radar imaging technology [1,2] has enabled radars to have the ability to obtain a panoramic image
of an observation scene, which has been widely used in military warning, disaster detection and other
fields. In these application scenarios, long-term continuous monitoring of large areas is an important
application requirement.

Synthetic aperture radar (SAR) has high azimuth resolution imaging ability by forming large virtual
synthetic aperture through relative motion between the target and radar, but its long revisiting period
means that it cannot be applied to the staring imaging [3,4].

Traditional real aperture microwave staring imaging has the characteristics of high real-time,
but limited by the actual aperture of the antenna; its azimuth resolution is low, so it is difficult to
achieve high resolution imaging. As a new staring imaging method, microwave staring correlated
imaging (MSCI) [5–7] can realize super resolution imaging without the limit of the target relative
motion. The essence of MSCI is to construct a temporal–spatial stochastic radiation field in the imaging
region, which is typically realized by a multi-transmitter array transmitting independent stochastic
waveforms [5,6] such as the signals with random amplitude and frequency between different pulses.
The radiation field interacts with the target so that the target scattering points at different locations scatter
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the independent time-varying echoes. Finally, the target information can be obtained by the correlated
imaging process between the echoes and the preset radiation field. In [7], two point targets in a small
scene are imaged by outfield experiments based on MSCI. Accurate imaging is based on the premise of
accurate preset radiation field. However, gain–phase errors generally exist in the multi-transmitter array,
so there is a deviation between the actual radiation field and the preset radiation field that is calculated
based on transmitted waveform, which results in the imaging model mismatch and degrades the imaging
performance considerably. In [8,9], the methods are propose for model mismatch in radar coincidence
imaging (RCI), but the gain–phase error model was not analysed.

The studies on calibration of gain–phase error mainly focus on a radar system with multiple
transmissions or multiple receptions, including the field of angle estimation of array signals [10,11]
and radar imaging [12–17]. In [10], a method based on eigenstructure is proposed for simultaneously
estimating the direction of arrival(DOA) and the unknown (or imprecisely known) gain and phase
parameters, which applies to arrays with arbitrary sensor geometries. The method is based on the
eigendecomposition of the sample covariance matrix of the vector of received signals. In [11], an estimation
of signal parameters via a rotational invariance techniques (ESPRIT)-based method is proposed to estimate
the gain–phase errors of both transmission and reception arrays and signal angles in bistatic MIMO
radars, in which both transmitter and receiver are equipped with uniform linear array, and the first two
sensors of transmit array and receive array are well calibrated to obtain a reference channel. In the field
of angle estimation of array signal, the method of gain–phase error calibration is generally to ensure
the consistency of the gain–phase characteristics of each channel; in contrast, there is no requirement of
uniform gain–phase characteristics between the multi-transmitter array channels in an MSCI system.

In the SAR imaging field, a subspace algorithm of calibrating channel gain–phase errors for
high-resolution and wide-swath (HRWS) SAR imaging is presented [12]. The proposed method is based
on the fact that the signal subspace obtained from the eigendecomposition of covariance matrix equals
the space spanned by the practical steering vectors. Channel gain–phase errors can be obtained through
eigendecomposition of a special matrix which is the calculation result of the nominal steering vectors and
the signal eigenvectors of the covariance matrix.

All the above methods on gain–phase errors calibration make use of the characteristics of
eigen-subspace and estimate the gain and phase errors by matrix eigendecomposition. The basic feature
of these methods is that the signals of multiple transmitting–receiving channels are separated during
processing, but the received echoes are not separated by multiple channels in MSCI, so the channel
gain–phase error calibration method based on subspace decomposition cannot be directly adopted in MSCI.

Without subspace decomposition, a method is proposed for joint SAR imaging and phase error
correction in [13]. The problem is set up as an optimization problem in a non-quadratic regularization-based
framework, and phase error correction is performed during the image formation process. The method
involves an iterative algorithm, where each iteration includes consecutive steps of image formation
and model error correction. A method for RCI with phase errors is proposed in [14], which adopts the
sparse Bayes learning (SBL) framework and jointly estimates target scattering coefficients and phase error
during the iterative steps. Soon after, in [15], a method is proposed for sparse auto-calibration for RCI
with gain–phase errors(SACRCI), which transforms the imaging into the parameter estimation problem,
and then estimates target scattering coefficient and gain–phase errors jointly. In [16], an auto-calibration
expansion–compression variance-component (AC-ExCoV)-based auto-focusing method in a sparse
Bayesian learning framework is proposed. These methods all take the gain–phase errors as unknown
parameters and adopt an iterative procedure to jointly estimates target scattering coefficients and
gain–phase errors. The targets in [15,16] are all sparse in small scenes. In other respects, the calibration
of the gain–phase and synchronization errors is focused on for MSCI in [17], but a reference receiver is
required to receive the direct signals of the transmitters to estimate the errors.
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Considering large imaging scenes in MSCI, which means a large number of grid cells, results in very
large computational complexity, limit the application for the above methods in large scenes. In [18,19],
the problem of MSCI in a large scene is solved by dividing the large scene into strips. In [18], the echoes of
the discrete clustered targets are detected to locate the strips with targets and only the regions of interest
are discretized to a fine grid.

In order to solve the problem of MSCI with gain–phase error in a large scene, a method of MSCI
based on strip-mode self-calibration of gain–phase errors is proposed in this paper. By dividing the target
scene into strips, for each strip, the scattering coefficient and the gain–phase errors are combined into
a multi-parameter optimization problem, which can be estimated by alternate iteration. Simultaneously,
the gain–phase error estimation results of the previous strip can be carried into the next strip as the initial
value. All strip imaging results, which can be obtained by correlated processing in turn, are spliced to
obtain the image inversion results of the whole scene. To further improve gain–phase error estimation
and imaging performance, after all the strips are processed in one round, the gain–phase error estimation
results of the last strip can be taken as the initial value and substituted into the first strip for the correlated
processing of the next round. In this way, all strips are processed in multiple rounds to obtain the
final results.

The rest of the report is organized as follows. In Section 2, the strip-mode MSCI model with gain–phase
errors is presented. Section 3 presents strip-mode MSCI algorithm with self-calibration of gain–phase errors.
The analysis of the computation of the algorithm is discussed in Section 4. In Section 5, the performance of
the proposed method is verified by numerical examples. Finally, Section 6 concludes this paper.

2. Strip-Mode MSCI with Gain–Phase Errors

As shown in Figure 1, a rectangular coordinate system is established with the center of the transmitting
array as the origin; the MSCI system located in stationary platforms is composed of N transmitters and
one receiver, whose position vectors are denoted as�rn and�rs. The height of the transmitting array is H and
θ is the squint angle. The independent narrow-pulse signals of random frequency hopping (RHF) which
are transmitted synchronously by each antenna in multi-transmitter array can be expressed as:

fn(t) =
L

∑
l=1

rect
[

t − (l − 1) Tp

τ

]
anAnejϕn exp{j2π fnl

[
t − (l − 1) Tp

]
} (1)

where fnl is its frequency of the l-th, l = 1, 2, · · · , L pulse emitted by the n-th, n = 1, 2, · · · , N transmitter,
and randomly selected within the bandwidth B, and τ and Tp is its narrow pulse width and period.
anAn is the gain of the n-th transmitter, and an denotes the gain error coefficient of the n-th transmitter,
which equals 1 when there is no gain error, ϕn denotes the phase error of the n-th transmitter, which equals
0 when there is no phase error. For simplicity, in the case that the bandwidth is narrow compared with the
central frequency, we consider that the gain–phase errors are fixed in the imaging process.

According to the feature of radar range-gate, the random narrow pulse signals transmitted
simultaneously by the multi-transmitter array can divide two-dimensional imaging area S into multiple
different strips Sk, k = 1 · · · K in the range direction [19]. The imaging strip Sk has been divided into discrete
J = P × Q grids, where P is the row number of azimuth resolution cells, and Q is the column number of
range resolution cells, and position vectors of the center of j-th grid is denoted as�rk,j, whose scattering
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coefficient is σ
(
�rk,j

)
, j = 1, 2, · · · , J. According to electromagnetic field propagation in free space,

stochastic radiated fields at�rk,j in the k−th strip can be expressed as:

Ek
in(t,�rk,j) =

N

∑
n=1

fn

(
t −

(
|�rk,j −�rn|

)/
c
)

4π|�rk,j −�rn|
(2)

Figure 1. Geometry of MSCI.

The radiation field interacts with the k-th strip targets and the received signal of the k-th strip is:

Esca
k (t,�rk,j) =

J

∑
j=1

N

∑
n=1

fn

(
t −

(
|�rk,j −�rn|+ |�rs −�rn|

)/
c
)

(4π)2|�rk,j −�rn||�rs −�rn|
σ(�rk,j)

=
J

∑
j=1

Erad
k (t,�rk,j)σ(�rk,j)

(3)

Define the modified radiation filed of Sk by considering the round-trip time of transmission after
target reflection, which can be denoted as:

Erad
k

(
t,�rk,j

)
=

N

∑
i=1

fn

(
t −

(∣∣∣�rk,j −�rn

∣∣∣+ ∣∣∣�rs −�rk,j

∣∣∣) /c
)

(4π)2
∣∣∣�rk,j −�rn

∣∣∣ ∣∣∣�rs −�rk,j

∣∣∣ (4)

The scattered echoes in strip-mode can be written as matrix vector:

Esca
k = Erad

k · σk (5)
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Because of the unknown gain–phase errors, the equation can be rewritten as:

Esca
k = Erad

k (a,ϕ) · σk (6)

where a = [a1, a2, · · · , aN ]
T is the vector of the gain errors coefficient of the multi-transmitter array,

and ϕ = [ϕ1, ϕ2, · · · , ϕN ]
T is the vector of the phase errors.

Strip-mode MSCI can obtain the target information σ̂k in Sk by the correlated processing between Esca
k

and Erad
k , which can be described as:

σ̂k = ℘
[
Erad

k , Esca
k

]
(7)

where ℘ indicates the first-order correlated operator. Common correlated imaging algorithms include LS
algorithm, TSVD regularization, Tikhonov regularization, TV regularization, sparse Bayesian learning,
and etc.

Each strip is processed in turn to obtain all the MSCI results, and then all the strip images are
spliced to obtain the whole scene imaging results. Since the reconstruction result is a one-dimensional
vector deformed by the two-dimensional mesh of the strip, all the reconstruction results σ̂k need to be
converted into the corresponding two-dimensional form σ̂′

k. The imaging result of the whole scene can be
expressed as:

σ̂′ =
[
σ̂′

1, σ̂′
2, · · · , σ̂′

K
]

(8)

The whole imaging process mainly includes: transmitting signal, interaction between radiation field
and target to form scattering echo, receiving echo, dividing strip, MSCI with self-calibration of gain–phase
errors of each strip, and obtaining image results of whole scene by splicing all strips’ imaging results.
The flow chart of the whole imaging process is as Figure 2.

Figure 2. Imaging process flow chart.
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3. Strip-Mode MSCI Algorithm with Self-Calibration of Gain–Phase Errors

According to strip-mode MSCI method, the echo corresponding to each strip can be obtained from
the received echo according to the distance gate. Therefore, the correlated imaging with gain–phase errors
can be carried out separately for each strip. The modified radiation filed is unknown due to the gain–phase
errors. The gain–phase error estimation and target reconstruction can be combined as an optimization
problem, the cost function can be expressed as:

F(σk, a,ϕ) = ||Esca
k − Erad

k (a,ϕ)||22 + λ||σk||1 (9)

where λ is the regularization parameter.
Then the k − th strip gain–phase errors calibration and target reconstruction can be converted into the

following optimization problem:

[σk, a,ϕ] = arg min
σk ,a,ϕ

F (σk, a,ϕ) (10)

In order to solve the above problems, a strip-mode MSCI algorithm based on self-calibration of
gain–phase errors is proposed for the whole target scene. The algorithm is used to divide the whole scene
into strips, and then the joint iterative solution of target reconstruction and gain–phase error estimation is
carried out for each strip. In the process of one iteration, the target reconstruction results are obtained by
minimizing of cost function through the given gain–phase errors. Then the gain–phase errors are estimated
according to the target reconstruction results, and the modified radiation filed matrix is updated with the

gain–phase error estimation for the next iteration. We terminate the iteration if
∥∥∥σi+1

k − σi
k

∥∥∥2

2
/
∥∥σi

k

∥∥ < η

or the maximum number of iterations Imax is reached, where η is a predetermined threshold and the
superscript i refers to the iteration. Key steps of the algorithm include target reconstruction and gain–phase
error estimation.The concrete realization course of key steps is as follows.

3.1. Target Reconstruction

For a single strip, the target is reconstructed when the gain–phase errors is given. The initial
gain–phase errors of the first strip a = 1, ϕ = 0. Target reconstruction can be expressed as:

σi+1
k = arg min

σk

||Esac
k − Erad

k (ai,ϕi) · σk||22 + λ||σk||1 (11)

The above formula is a standard compressed sensing reconstruction model. There are many existing
methods for this problem, such as Basis pursuit (BP) algorithm [20], orthogonal matching pursuit (OMP)
algorithm [21], Sparse Bayesian Learning (SBL) [22,23] , etc. In this paper, OMP algorithm is adopted
because it is simple in structure and easy to implement and analyze.

3.2. Gain–Phase Error Estimation

The gain and phase errors are estimated in an alternate iteration manner. The gain error is estimated as:

ai+1 = arg min
a

||Esca
k − Erad

k (a,ϕi) · σi+1
k ||22 + λ||σi+1

k ||1 (12)

Since is
∥∥∥σi+1

k

∥∥∥
1

a constant in the iteration, Equation can be rewritten as:

ai+1 = arg min
a

||Esca
k − Erad

k (a,ϕi) · σi+1
k ||22 (13)
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The above formula is a nonlinear least-squares problem, thus we use Newton’s method [24] to solve
the problem.

Define gk(a,ϕ) =
∥∥∥Esca

k − Erad
k
(
a,ϕi) · σi+1

k

∥∥∥2

2
, the updated ai+1 estimation denoting by ai is

computed as:

ai+1 = ai −
[
∇2

agk

(
ai,ϕi

)]−1
/
[
∇agk

(
ai,ϕi

)]
(14)

where ∇agk
(
ai,ϕi) and ∇2

agk
(
ai,ϕi) represent the gradient and Hessian with respect to the gain error

respectively. After derivation and simplification, we have:

∇agk(ai,ϕi) = −2Re((Bk(ai,ϕi))H �w) (15)

∇2
agk(ai,ϕi) = 2Re((Bk(ai,ϕi))H Bk(ai,ϕi)) (16)

�w = Esca
k − Erad

k (ai,ϕi) · σi+1
k (17)

Bk(ai,ϕi) = [bk
1(ai,ϕi), · · · bk

N(ai,ϕi)] (18)

where Re() denotes the real part,

bk
n(ai,ϕi)=ejϕi

n

⎡⎢⎣ Sn(t1,�rk,1) · · · Sn(t1,�rk,J)
...

. . .
...

Sn(tL,�rk,1) · · · Sn(tL,�rk,J)

⎤⎥⎦ · σi+1
k (19)

Sn(t,�rk,j) =
f̂n

(
t −

(
|�rk,j −�rn|+ |�rs −�rk,j|

)/
c
)

(4π)2|�rk,j −�rn||�rs −�rk,j|
(20)

f̂n(t) =
L

∑
l=1

rect
[

t − (l − 1) Tp

τ

]
An exp{j2π fnl

[
t − (l − 1) Tp

]
} (21)

In the same way, the phase error is estimated as:

ϕi+1 = arg min
ϕ

||Esca
k − Erad

k (ai+1,ϕ) · σi+1
k ||22 + λ||σi+1

k ||1 (22)

The updated ϕi+1 estimation denoting by ϕi is computed as:

ϕi+1 = ϕi − [∇2
ϕgk(ai+1,ϕi)]−1/

[
∇ϕgk(ai+1,ϕi)

]
(23)

The gradient and Hessian with respect to the phase error can be computed as:

∇ϕgk(ai+1,ϕi) = −2Im((Dk(ai+1,ϕi))H �w) (24)

∇2
ϕgk(ai+1,ϕi) = 2diag(Re((Dk(ai+1,ϕi))H �w)) + 2Re((Dk(ai+1,ϕi))H Dk(ai+1,ϕi)) (25)

Dk(ai,ϕi) = [dk
1(ai,ϕi), · · · dk

N(ai,ϕi)] (26)
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where Im() denotes the imaginary part, diag()is the diagonalization operation.

dk
n(ai,ϕi)=ejϕi

n ai+1
n

⎡⎢⎣ Sn(t1,�rk,1) · · · Sn(t1,�rk,J)
...

. . .
...

Sn(tL,�rk,1) · · · Sn(tL,�rk,J)

⎤⎥⎦ · σi+1
k (27)

The above is about the single iteration process of gain–phase error estimation by Newton’s method.
In the i − th iteration,

(
ai,ϕi) will be updated to

(
ai+1,ϕi+1). The initial gain–phase errors of the first strip

a = 1,ϕ = 0. The gain–phase error estimation results of the former strip are taken as the initial value
and substituted into the latter strip, which makes the estimation results of the latter strip more accurate.
After the first round of correlated processing with calibration of gain–phase error of all strips is completed,
the gain–phase error estimation results of the last strip are brought into the first strip for the next round,
and the whole imaging area divided into strips is processed in multiple rounds to obtain the final results.

The whole process of the algorithm is as follows:

Algorithm 1: Strip-Mode MSCI Algorithm with Self-Calibration of Gain–phase Errors
Input: Esca, Imax, Umax, η

1 Initialization: k = 1, i = 0, u = 0, a = 1, ϕ = 0;
2 while u < Umax do

3 for k < K do

4 Get Esca
k from Esca;

5 if i < Imax and
∥∥∥σi+1

k − σi
k

∥∥∥2

2
/
∥∥σi

k

∥∥ > η then

6 The k − th target reconstruction : σi+1
k = arg min

σk
F
(
σk, ai,ϕi);

7 Gain error estimation: ai+1 = arg min
a

F
(

σi+1
k , a,ϕi

)
;

8 Phase error estimation: ϕi+1 = arg min
ϕ

F
(

σi+1
k , ai+1,ϕ

)
;

9 i = i + 1 ;
10 else

11 i = 0;
12 k = k + 1 and update a,ϕ;
13 end

14 end

15 k = 1;
16 u = u + 1 ;
17 end

Output: Multi-strip reconstructed scattering coefficient vectors.

4. Analysis

The proposed strip-mode MSCI method based on self-calibration of gain–phase errors can greatly
reduce the computational cost of the imaging process. The total grid number of the target scene is M,
divided into K strips, and the number of grid in each strip is J. The main operations of an iteration during
imaging process include updating the modified radiation filed matrix, target reconstruction, gain–phase
error estimation by Newton’s method. According to the characteristics of MSCI, generally the narrow
pulse number L should satisfy L > M. Compared to no strip division, after the target scene is divided
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into K strips, the number of grids with in each strip is decreased to M/K, the number of narrow pulse
is decreased to L/K, so the scale of the modified radiation filed matrix is reduced to ML/K2 . Therefore,
the computation required for updating the modified radiation filed matrix and Newton’s method is
reduced significantly. For the OMP algorithm in the target reconstruction process, in the case that the
sparsity is d, the computation is O(d · L · M) [21] when there are no strips, in contrast, when dividing
into K bands, the computation is K · O(d/K · L/K · M/K). The above discussion is about the change of
the computation in an iteration. In the actual process, due to the strip division, the target scene and the
operation process are simplified, the average number of iterations required in the imaging process is also
decreased, and the operation time is further reduced.

5. Simulations

The effectiveness of proposed method is verified by several simulations in this section. An X-band
MSCI radar system with center frequency 10 GHz is considered. The scenario for simulation is shown in
Figure 1. The height of the transmitter array is 300 m , which consists of 25 elements to form a uniform
array of 3 × 3 m in size. The distance of target scene is 450 m, and the size of target scene is discretized
into 40 × 40 grids with grid size of 2 × 2 m. We initialize a = 1,ϕ = 0, Imax = 100, η = 10−4. Some system
parameters are given in Table 1, and the parameters of gain–phase errors are given in Table 2.

Table 1. System parameters.

Parameter Value

Center Frequency 10 GHz
Bandwidth 500 MHz

Transmitting signal mode Frequency hopping
Number of transmitters 25

Aperture of transmitter array 3 × 3 m
Imaging grids 40 × 40

Size of imaging grids 2 × 2 m
Height of transmitter array 300 m

The squint angle 45◦

Table 2. Gain–phase error parameters.

Index 1 2 3 4 5 6 7 8 9 10 11 12

a 1 0.85 0.95 1.20 0.80 1.25 1.10 0.90 1.20 0.75 0.90 1.15
ϕ/◦ 0 −30 −25 10 −20 −10 20 30 15 20 −25 −10

13 14 15 16 17 18 19 20 21 22 23 24 25

0.80 1.20 1.10 0.80 1.05 0.85 1.05 1.25 0.80 1.20 1.15 0.95 0.80
−25 −10 20 40 15 −30 −45 10 −20 10 25 45 30

5.1. Performances Under Different Number of Strips

In this subsection, simulations are taken to compare the performances with different strips.
The normalized mean square error (NMSE) is used to quantify the reconstruction effect and gain–phase
error estimation, with the definition as: NMSEdB = 20 lg(‖x̂ − x‖2

/
‖x‖2) ,where x denotes the target

imaging or gain–phase errors, accordingly, x̂ denotes the target reconstruction or gain–phase error
estimation results.

It can be seen in Figure 3b that the image is defocused and many spurious scatterers exist with for the
OMP algorithm. In Figure 3c–f, it can be seen that the image become clearer and clearer with increase in

77



Sensors 2019, 19, 1079

the number of strips. The NMSEs of the reconstruction images under different strips are given in Figure 4,
and it shows that NMSEs are decreased as the number of strips increases, which means the quality of
imaging is getting better. Compared to no strip, proposed method with eight strips improves the imaging
performance by about 20 dB from the NMSE perspective.

(a) (b) (c)

(d) (e) (f)

Figure 3. Imaging results (a) objective model; (b) Imaging results of OMP ; (c–f) Imaging results under
different number of strips (c) no strip; (d) two strips; (e) four strips; (f) eight strips.

Figure 4. NMSE of target reconstructions under different number of strips.

In Figures 5 and 6, it can be seen that the estimates of gain and phase error are closer to the actual
value as the number of strips increases. As shown in Figure 7, the NMSEs of gain–phase error estimation
are getting lower as the number of strips increases, which means estimation errors are getting lower,
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and it is proved that the proposed method in this paper can improve the accuracy of gain–phase error
estimation effectively.

(a) (b)

(c) (d)

Figure 5. Gain error estimation under different number of strips (a) no strip; (b) two strips; (c) four strips;
(d) eight strips.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Phase error estimation under different number of strips (a) no strip; (b) two strips; (c) four strips;
(d) eight strips.

(a) (b)

Figure 7. Gain–phase error estimation performance under different strips (a) NMSE of gain error estimation;
(b) NMSE of phase error estimation.

In Figure 8, as the strip increases, the imaging time decreases significantly, which is consistent with
the analysis in this paper. It takes less than 1/15 of time by divided into eight strips compared with no strip.
It is proved that the strip division can greatly reduce the time required for the correlated imaging process.

Figure 8. Imaging time under different number of strips.
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5.2. Performance under Different SNRs

In this subsection, we compare the performance of algorithms under different SNRs, for the proposed
method and SACRCI [15]. As shown in Figure 9, the imaging quality is improved significantly as the SNR
increases, which means the two method are sensitive to noise. The proposed method improves the imaging
performance by more than 10 dB compared with SACRCI from the NMSE perspective. In Figure 10, it can
be seen that the gain–phase error estimation is also sensitive to noise.

Figure 9. NMSE of target reconstructions under different SNRs.

5.3. Performance under Different Transmitting Array Configurations

In MSCI, transmitting array configurations can influence imaging effect, and considering this,
we perform simulations in this subsection to compare the performance under different transmitting
array configurations. In Figure 11a, the transmitting array is a array with its aperture of 3 m. In Figure 11b,
the array elements are randomly distributed on the plane. In Figure 11c, the aperture of the uniform
planar array is reduced to 1.5 m. From the imaging results, it can be seen that the size of the array aperture
influences the target reconstruction significantly, which is consistent with the relationship between the
array aperture size and the imaging resolution.

(a) (b)

Figure 10. gain–phase error estimation performance under different SNRs (a) NMSE of gain error estimation;
(b) NMSE of phase error estimation.
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Array

(a) (b) (c)

Imaging results

(d) (e) (f)

Figure 11. Imaging results under different transmitting array configurations (a–c) Different transmitting
array configurations; (d–f) Imaging results.

5.4. Performance under Different Center Frequencies

In this subsection, performance under different center frequencies is compared by simulations. I can be
seen in Figure 12 that target reconstruction result is not clear when center frequency is 1 GHz, in contrast,
when center frequency is 40 GHz, the target reconstruction effect is much better. This is because the
resolution of MSCI is related to the center frequency, the higher the center frequency, the better the
resolution, and the better the imaging effect under the same grid division.

It can be seen in Figure 12 that the target reconstruction result is not clear when center frequency is
1 GHz; in contrast, when center frequency is 40 GHz, the target reconstruction effect is much better. This is
because the resolution of MSCI is related to the center frequency, the higher the center frequency, the better
the resolution, and the better the imaging effect under the same grid division.

(a) (b)

Figure 12. Imaging results under different center frequencies (a) 1 GHz; (b) 40 GHz.

5.5. Performance under Different Target Scenes

Since Target reconstruction results is obtained by OMP, the reconstruction performance may be
affected by the target, more precisely, the sparsity of target. In this subsection, we design simulations to
compare the performance under different target scenes.
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As shown in Figure 13a–c are three different target scenes. It can be seen that the images become
blurred as the complexity of targets increases, which means the less sparse target would make the target
reconstruction more difficult and the gain–phase error estimation performance is also affected. Comparing
with the results obtained by SACRCI, the spurious scatterers in the bottom three images which are
obtained by the proposed method, are much less, and the three targets are identified clearly. It proves that
the proposed method can improve the imaging performance by reducing the complexity of correlated
imaging processing.

Targets

(a) (b) (c)

SACRCI

(d) (e) (f)

The proposed

(g) (h) (i)

Figure 13. Imaging results for different target scenes (a–c) Three different target scenes; (d–f) Imaging
results of SACRCI; (g–i) Imaging results of the proposed method.

5.6. Discussion

Lots of numerical simulations validate potential advantages of the proposed method to shorten
the imaging time dramatically and improve the imaging and gain–phase error estimation performance,
and show the performance under different SNRs, different targets, different array configurations and
different center frequencies. In the actual system, since the proposed method uses the range-gate
characteristic of the narrow pulse to divide the imaging area into strips, the transmitting system must
have a high rectangular coefficient, and each transmitting element needs a high-precision time-frequency
reference. The system must have a high-precision time-frequency synchronization to ensure the accurate
separation of the corresponding parts of each strip from the echo. These are great challenges in actual
MSCI system.
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6. Conclusions

This paper proposes a method of MSCI based on strip-mode self-calibration of gain–phase errors.
By dividing the target scene into strips, the target reconstruction and the gain–phase error estimation are
solved simultaneously by alternate iteration. By simulations it can be seen that the gain–phase errors
calibration and imaging effect have been greatly improved and the time required for the entire imaging
process has been greatly shortened. Moreover, to improve imaging and gain–phase error estimation
performance furtherly, not only are the gain–phase error estimation results of the previous strip carried
into the next strip as the initial value, but also the gain–phase error estimation results of the last strip are
the initial value in next round. In conclusion, the proposed method can greatly reduce the time required
by the imaging process and improve the imaging quality, so it can rapidly achieve gain–phase errors
calibration and target imaging in a large scene.
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Abstract: This article presents a new approach to the estimation of shift and rotation between two
images from different kinds of imaging sensors. The first of the image is an orthophotomap that is
created using optical sensors with georeference information. The second one is created utilizing a
Synthetic Aperture Radar (SAR) sensor.The proposed solution can be mounted on a flying platform,
and, during the flight, the obtained SAR images are compared with the reference optical images,
and thus it is possible to calculate the shift and rotation between these two images and then the direct
georeferencing error. Since both images have georeference information, it is possible to calculate the
navigation correction in cases when the drift of the calculated trajectory is expected. The method can
be used in platforms where there is no satellite navigation signal and the trajectory is calculated on
the basis of an inertial navigation system, which is characterized by a significant error. The proposed
method of estimating the navigation error utilizing Affine Scale-Invariant Feature Transform (ASIFT)
and Structure from Motion (SfM) is described, and techniques for improving the quality of SAR
imaging using despeckling filters are presented. The methodology was tested and verified using
real-life SAR images. Differences between the results obtained for a few selected despeckling methods
were compared and commented on. Deep investigation of the nature of the SAR imaging technique
and noise creation character allows new algorithms to be developed, which can be implemented on
flying platforms to support existing navigation systems in which trajectory error occurs.

Keywords: SAR; Synthetic Aperture Radar; ASIFT; Despeckling Filter; Navigation; Structure from
Motion; Iterative Closest Point

1. Introduction

Over recent years, supporting navigation systems has become particularly important for several
reasons. Firstly, the aim is to increase the precision of ammunition and flying objects. Secondly, it is
necessary to create systems that can work without the support of GNSS (Global Navigation Satellite
System). The lack of a GNSS (GPS, GLONAS, Galileo, or others) signal is a significant limitation whose
probability of occurring increases due to potential international conflicts, as well as the possibility of
the GNSS signal being jammed or interrupted. For these reasons, it is necessary to create independent
systems that allow navigation in the absence of a satellite signal. One of the basic sensors that allows
the navigation of objects is the inertial navigation system (INS). However, due to the significant drift
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and error increasing with time, inertial navigation requires additional systems. Currently, drift is
reduced using GNSS systems; however, due to the limitations mentioned above, it is necessary to use
additional sensors to support inertial navigation.

In the literature, several solutions have been proposed that allow the navigation of objects in the
absence of a GNSS signal. The least effective solutions are purely vision methods, which are ineffective
in the case of night missions, cloud cover, fog, smog, or smoke. Other remote sensing methods that
do not use sensors working in the visible spectrum are used more often. Such solutions use sensors
such as light detection and ranging (LIDAR) and an altimeter, which allows a terrain contour (DEM)
to be obtained, and then compares the acquired contour with the data in the database. Such systems,
also known as Terrain Contour Matching (TERCOM), are utilized to navigate unmanned aerial vehicles
or cruise missiles in cases when a GNSS signal could be unavailable [1–3].

A recently developed technique is the use of Synthetic Aperture Radar (SAR) and Interferometric
SAR (InSAR) radar for navigation correction [4–7]. Radio waves used in this technique can be easily
used during cloud cover, night, and rain, which makes this method universal and independent of
the weather conditions. In this case, a radar sensor and a database with georeferenced images are on
board the flying platform. During the flight, the terrain is scanned by the radar and the obtained image
is compared to the corresponding one in the database. Thanks to this, the inertial navigation error
can be reduced.Such a concept of utilizing SAR and InSAR sensors to support on-board air platform
navigational devices was proposed in the SARINA (SAR-based Augmented Integrity Navigation
Architecture) project carried out during 2010–2012. The authors of this paper were also involved in
this work, and as a result have developed a concept of the system and proved that SAR/InSAR sensors
can be successfully used to support navigational devices. The results of this work were published
by the authors in [4–6]. Initially, the concept was proved only using simulations at the technical
readiness level (TRL) 3–4 in the nine-degree scale, where 9 denotes the system prototype after all the
required certifications. In the previous work within the SARINA project, the merging of SAR/InSAR
images with an optical image database was based on simple automatic shape recognition of the terrain
targets, using target contours extraction. Image processing was then applied using different techniques,
such as the Hough transform, to find specific targets and recognize their shape. These techniques were
used for SAR image matches. For InSAR, algorithms based on matching 3D SAR interferograms with
LIDAR elevation models were developed that were equipped with a simulated on-board database.
The very promising results of the previous SARINA project motivated the authors to continue work
on the topic, and to start developing a system on a higher TRL level. In the meantime, new algorithms
on SAR and optical images have been developed and are widely used for other applications, such as
in geodesy. The author intend to test efficiency of these techniques in cases so they could be used
in support of air platform navigational devices. One such approach is based on the SIFT technique,
and was presented by the authors in [7]. The novelty and usability of this approach is presented
in [8]. The SIFT algorithm was used to find and match corresponding keypoints appearing in the SAR
and optical images. This approach is extended and investigated in this paper by utilizing the more
robust ASIFT (Affine Scale Invariant Feature Transform) method and its limitations. The novelty of
the solution proposed and described in this paper is in the utilization of an innovative approach to
the shift and rotation estimation between SAR and optical images. By finding characteristic points in
both images and applying themodified version of the Structure from Motion (SfM) technique, an error
can be estimated, which in turn provides the navigation drift correction in the flying platform. In the
authors’ opinion, the concept of using the ASIFT technique is interest regarding the checking of the
efficiency and precision of mismatched SAR and optical image calculations, which might be further
used to correct platform navigation devices according to the algorithms developed by the authors in
their previous work [4–6]. To the authors’ knowledge, an innovative approach to the shift and rotation
estimation between SAR and optical images by also applying SfM techniques has not been used for
navigation drift correction on a flying platform, on which the authors of this paper are currently
working. In this paper, the authors present an overview of the SIFT and ASIFT techniques and their
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modifications, as well as the required pre-processing and its limits, which is taken into account when
developing systems based on SAR systems for navigation drift corrections. The paper structures is
as follows. In Section 2, there is a description of the proposed method presenting an overall problem
characterization and solution. In Section 3, the basics of the SfM approach are presented to depict
the main keys in this technique. Section 4 presents different types of SAR filters providing speckle
noise reduction in images created using SAR radars. The results are presented in Section 5, and the
conclusion closes the article. Additionally, the Appendix present the extensives results in a single part
of the article. In the corresponding parts of the paper, there are references to the Appendix and images
contained to ensure reader clarity.

2. Methodology

2.1. Overview of the Approach

The process of image registration refers to the alignment of two or more images of the same scene
which might be obtained with the same sensor, time, and imaging conditions, as well as by different
sensors and viewpoints. The process of orientating optical and SAR images is still an open issue,
which creates many challenges [9–19]. Many issues can be dealt with in the process of the synergy
of optical and SAR data, due to the great differences between passive and active remote sensing
techniques. One of the issues is the problem with the speckle noise that influences the detection of
robust corresponding/tie points [9,11–13,15,16,18,19]. Another issue is related to the differences in the
image geometry acquired from these two devices [9,11–13,15,16,18,19]. Thus, many co-registration
approaches have been proposed (e.g., [9–19]), but, in general, these approaches might be divided into
two main categories: area- and feature-based methods. Nowadays, the Structure from Motion (SfM)
methods, which are mostly based on the feature-based approach, are used for the co-registration of
spaceborne SAR and optical images [9,11–13,15,16,18,19]. An extended description of the incremental
SfM process is presented in Section 3. The classical SfM approach contains four main steps: (1) feature
detection; (2) feature description; (3) descriptor matching; and (4) bundle adjustment. Due to the
problems mentioned above, which influence the quality of detected and matched pairs of points,
the SfM/co-registration approach has been modified by many authors. The first improvement is in the
feature detection—downsampling SAR images or using the despeckling filters in the pre-processing
step. Based on this way of pre-processing images, different types of features are detected such as blob,
corners, or lines and segments. In the case of the feature description and matching, the modification is
in the descriptor, or this step is eliminated and based only on the geometrical relationship. It should be
stressed that these presented methods were validated in the spaceborne SAR and optical images.

The proposed methodology of the automation of SAR data registration with orthophotomaps
as well as the SAR trajectory improvement, is a multi-stage process. This process is based on the
original software and it consists of: (1) SAR data conversion to the raster form with a georeference
file; (2) the aligning of orthophotomaps with a SAR raster based on the extended version of the ASIFT
algorithm; (3) the relative orientation based on the classical SfM and modifiedIterative Closest Point
(ICP) approach; (4) the analysis of the quality of the relative orientation of processed data; and (5) the
final bundle adjustment.

In this investigation, the process of optical and SAR images was tested and validated with a high
resolution SAR and orthophotomaps from altitude. It should be stressed that the entire investigation
was performed on the full resolution of the images, and additionally tested on other pyramid levels.
The authors decided to use a well-known SfM approach, but with the following modification: (1) the
pre-processing of SAR data with different speckle noise reduction filters in order to increase the
possibility of detecting and matching robustness corresponding points; (2) reducing the values of affine
angle in the ASIFT algorithm—the values being related to the angle of the antenna; and (3) using a
two-stage ICP procedure to eliminate the outliers and compute the correction parameters. Thanks to
the use of the ASIFT algorithm, it was possible to detect well-distributed keypoints in the whole area
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under investigation. The authors decided to eliminate the description and matching step and replace
it with the ICP alignment. This allowed keypoints to be treated as a point cloud, and minimize the
distance between these two point clouds in an iterative process with the simultaneous correction of
translation and rotation of SAR data.

In Figure 1, a diagram of the performed research work and experiments is shown. To perform a
complete analysis of the possibility of applying the modified version of the registration algorithms for
the detection and matching of correspondence points, a combination of these should be determined to
obtain the best results. Verification of the following parameters are required:

1. The keypoints distributions on SAR images and orthophotomaps.
2. The influence of the SAR image correction on the quality and number of the keypoints.
3. The number of detected keypoints used in the final cooregistration process.
4. The orientation accuracy of marked check-points.

Orthophotomap SAR image

Database SAR
sensor

Speckle
noise

reduction

Relative
points

matching

ICP

Bundle
adjustment

Correction
estimation

Giudance
correction

ASIFT ASIFT
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C++ MATLAB

Figure 1. Diagram of the performed research: Processing and orientation of SAR images and
orthophotomaps.

The idea of the automatic SAR data registration and trajectory improvement presented in this
paper (according to the diagram presented in Figure 1) consists of the following steps:

1. Generation of the SAR raster with georeferences based on the trajectory information.
This step is one of the most important parts in the whole automatic registration process.
It influences both the computation time and convergence of the ICP process.
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2. Pre-processing of SAR data to reduce the influence of the noise.

• RAW data
• Multilook-2D filter
• Averaging filter
• Minimum Mean Square Error filter
• Enhanced Lee filter
• Gamma MAP filter
• SAR Block Matching 3D filter

3. Selection of the part of the orthophotomap which approximately covers the SAR image, based on the SAR
footprint extended by 50 m in each direction.

4. Detection and matching of the keypoints using the modified ASIFT algorithms in the SAR images
and orthophotomaps:

4.1. Detection of keypoints in RAW SAR images on three pyramid levels (full resolutions,
as well as 1/2, 1/4, and 1/16 of the full resolution of the raster)—ASIFT algorithm.

4.2. Detection of keypoints in SAR images with the speckle noise reduction parameters: 1,
4, 8, and 16 levels (full resolution, and 1/2, 1/4, and 1/16 of the full resolution of the
raster)—ASIFT algorithm.

4.3. Detection of keypoints on orthophotomap levels (full resolution, as well as 1/2, 1/4, and
1/16 of the full resolution of the raster)—ASIFT algorithm.

4.4. Matching keypoints by the incremental ICP method:

• Approximate registration with 20 iterations and linear threshold deviation 20 m.
• Removal of orthophotomap keypoints that are outside the SAR area.
• Registration with 10 iterations and linear threshold deviation 5 m.
• Removal of the SAR point outliers based on the RMSExy.
• Final bundle adjustment.

5. Analysis of the quality of data registration on the marked check-points.

The presented SAR data registration processing is an original approach, and for this reason
original applications were applied (based on the OpenCV library and MATLAB software).

The presented technique was intensively tested, validated, and compared with the methods
existing in the literature. Especially two approaches were investigated [9,17]. However, the method
described in [17] is inefficient and fails due to the speckle noise on SAR images. The approach
presented in [9], in turn, is accurate only on urban areas, and such assumption cannot be applied in
the considered case. The authors main goal was to provide universal approach able to work in both,
urban and rural areas.

3. The Principles of the Structure from Motion

Modern software packages, application, and function libraries dedicated to raster data orientation,
and 3D shape reconstruction utilize algorithms based on a combination of methods commonly
applied in Computer Vision (CV) and conventional photogrammetric approaches. These types of
algorithms and methods allow the geometry and appearance of an object or an entire scene to be
captured, and have been used in video games assets [20], virtual tours [21], virtual and augmented
reality [22], and cultural heritage [23–27], among others. One of the most important approaches is the
Structure from Motion (SfM) method [20,27–29]. The SfM pipeline allows for the reconstruction of
three-dimensional structures based on a series of images (rasters) acquired from different positions
(observation points) [20].

Figure 2 shows the overview of the incremental SfM workflow, which contains the following
steps: (1) feature extraction; (2) feature matching; (3) geometric verification; (4) reconstruction
initialization; (5) image registration; (6) triangulation; and (7) bundle adjustment. To generalize,
the SfM approach might be divided into two main parts: the correspondence search phase (1–3) and
iterative reconstruction phase (4–6). Based on these two phases, the estimation of the camera position
for each image as well as a 3D reconstructed tie point, called a spare point cloud [20], can be done.
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In this article, only the correspondence search with the computation of registration parameters is
described.

Figure 2. Incremental SfM pipeline [20].

3.1. The Feature Extraction

The feature extraction process is the first step of the SfM pipeline, which is based on detectors.
For each image (raster data) given as an input, a group of characteristic points (called keypoints) are
detected (excreted) based on the local characteristic of the image intensity. For feature extraction,
different methods and algorithms can be used which affect the robustness of the detected features,
as well as the efficiency of the matching method. Nowadays, two types of commonly used algorithms
are corner (such as FAST, Harris, etc.) and blob detectors (i.e., SIFT and its modification) [30–38].
Brief summaries of studies into data fusion and finding correspondences between SAR and optical
images have been recently made by [39] and [14]. Due to the fact that many feature detectors exist,
in this section, only SIFT [40] and ASIFT (a modified version of the SIFT) [38] algorithms are focused
on, which were used in this investigation.

The SIFT (Scale Invariant Feature Transform) algorithm, which was originally proposed by
Lowe [40] for the registration of optical images, has already been adapted for the matching of SAR
images. In their studies, [41] focused on the denoising of SAR data with curvelet transformation
and the evaluation of SIFT performance on SAR images for various terrain types. The speckle noise,
which is characteristic for SAR images, has a vast influence on the SIFT algorithm’s performance,
and beside denoising (which is further described in Section 4) deeper modification into SIFT feature
extraction has also been proposed in the SAR-SIFT approach [19]. However, the noise is not the only
difference between SAR and optical images; geometrical differences also have an influence on image
registration [14]. In this research, the authors are searching for corresponding points between aerial
SAR images where image points are recorded according to the object-to-antenna distance and optical
orthophotomaps where bare ground is in ortho projection, but all other objects that are elevated from
the ground (e.g., buildings or vegetation) are distorted (shifted) by central projection from the optical
image. To overcome these geometric distortions, the authors propose to use the ASIFT (Affine Scale
Invariant Feature Transform) [38], which is a modification of the SIFT algorithm. The main idea of the
ASIFT algorithm is to simulate a set of sample views of the initial images, obtainable by varying the
two camera axis orientation parameters, namely the latitude and the longitude angles, which are not
detected by the classical SIFT method [38]. Then, the SIFT method is applied to all the virtual images
generated. Thus, ASIFT covers all six parameters of the affine transform and guarantees full affine
invariant independence. In the ASIFT algorithm, each image is transformed by simulating all possible
affine distortions caused by the change of the initial camera positions. To perform this, the camera
model as well as the affine model are utilized (Equations (2) and (3)):

u = S1G1 ATu0, (1)

where u is a digital image; u0 is an (ideal) infinite resolution frontal view of the flat object; T and A
are, respectively, a plane translation and a planar projective map due to the camera motion; G1 is a
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Gaussian convolution modeling the optical blur; and S1 is a standard sampling operator on a regular
grid with mesh 1.

u(x, y) → u(ax + by + e, cxdy + f ) (2)

A =

[
a b
c d

]
= HλR1(ψ)TtR2(φ) = λ

[
cos ψ − sin ψ

sin ψ cos ψ

] [
t 0
0 1

] [
cos φ − sin φ

sin φ cos φ

]
(3)

where λ > 0 is the determinant of A, Ri are rotations, φ ∈ [0, π), and Tt is a tilt, namely a diagonal
matrix with first eigenvalue t > 1 and the second one equal to 1.

It is possible to prepare the decomposition of the camera motion parameters into the viewing
point angels (longitude (φ) and latitude (θ = arccos 1

t )), spin of the camera (ψ) and zoom factor (λ).
In the ASIFT algorithm, images undergo rotation with the angle φ, which is represented by the tilt
parameter t = 1

cos θ . In the ASIFT algorithm, the influence of the tilt (latitude rotation) is performed
by the t-sampling and the Gaussian convolution with standard deviationsc

√
t2 − 1 (c = 0.8). It is

assumed that the latitudes θ are sampled as the geometric series 1, a, a2, . . . , an with a > 1 and choosing
a =

√
2 is a good compromise between the accuracy and the number of steps. The authors of the

ASIFT algorithm proposed the n value equals 5, which results in the tilt being simulated 32 times [38].
In the case of the longitudes φ, the arithmetic series 0, b

t , . . . , kb
t with the b ∼= 2π

5 and k b
t < π is used.

After the process of virtual image generation (which includes the skew, tilt, and rotation), any detector,
such as SIFT or SURF, might be used. In this study, the SIFT detector was used.

3.2. The Feature Description

After the process of detecting characteristic points, the next step is to describe this by analyzing
the nearest points. In the literature, several descriptors are presented such as SIFT, SURF, Daisy,
etc. [42], but the authors decided to describe only the SIFT detector, which was used in this study.
The main idea of the SIFT descriptor is to compute the local image gradients at the selected scale in
the region around the tested keypoint. The full description of the descriptor can be found in Lowe’s
publication [34], and a further SAR-specific modification of this descriptor can be found in [19]. In the
original ASIFT algorithm proposal, the SIFT detector is used. This mathematical computation allows
one to determine which detected key-point and its surrounding is highly distinctive yet as invariant
as possible to remaining variations, such as changes in illumination or 3D viewpoint. The descriptor
calculation is similar to determining the detector as the image gradient magnitude and orientations
are sampled around the keypoint localization for each octave and each Gaussian blur.

3.3. The Feature Matching and Images Registration

The detection and description of features for each characteristic point are important components in
the process of the detection of conjugate points in digital images. To determine if the keypoint (obtained
through the point detection and description process) might be threaded as a tie point, the feature
matching process is used. This allows one to take into consideration two points from different images,
but which are characterized by the same description as a homologous point. Different strategies
can be used for effectively computing matches between images, but two which are usually used are:
approximate nearest-neighbor-based point matching [43] and brute-force matching [43]. In the nearest
neighbor approach, the points are stored in the k-dimensional space (k-d tree structure). This allows
one to compute the nearest neighbors based approximately on the minimal distances between the
descriptor values [43]. The brute-force matcher is much simpler because it takes the descriptor of one
feature in the first set and matches it with all other features in the second set, using a set of distance
calculations. As a result, the closest feature is returned. The feature matching based only on the
descriptors is justified in the case of the sensors with a similar wavelength and images obtained from
the same optical system. In the case of matching heterogeneous images (e.g., optical and SAR), where a
large amount of outliers is expected during feature (descriptors) matching, also adding additional
geometrical constraints could be beneficial. [18] used spatial consistent matching, which assumes that

93



Sensors 2019, 19, 5500

the geometrical relationship between matching features should not change too much across images.
However, this solution is still largely based on SIFT-like descriptors which are constructed using
gradients of image values that can differ significantly between SAR and optical images because of
radiometric differences [39]. To overcome this problem, the authors of this paper proposed another
way of keypoint matching, where the feature matching is based solely on the geometrical relations
between keypoints and utilizes the Iterative Closest Point (ICP) algorithm [44]. The ICP algorithm
is a well-known algorithm, implemented in many commercial and open-source software, as well as
in programming libraries (such as VTK, open3D, and PCL) [45–47] and is used for oriented point
clouds—the minimal distance between two point clouds [44]. There are many variants of the ICP
algorithm [44,48–52]; however, in this section, only one of them (thebasic one), proposed by Besl and
McKey, is described in more detail.

When considering two datasets, it is possible to determine interrelations between them expressed
by the phenomenon:

yi = Rxi + y0 (4)

where R is a rotation matrix, xi are the point coordinates in the input point cloud reference
system, and y0 is the translation vector. In the proposed approach, only 2D coordinates are used
because orthophotos do not contain height information, and SAR images during pre-processing
are projected onto a plane (with mean height). Real-world coordinates can be easily obtained for
orthophotomaps because they are georeferenced, and, for SAR images, coordinates are estimated with
direct georeferencing using the plane trajectory from GNSS and/or an inertial navigation. The main
objective of the ICP method is to align two point clouds, based on shapes or models, by using the
Euclidean distance dependence between the nearest point from the initial set of points and the reference.
For this purpose, based on the least square method using the distance square minimization (Equation
(5)) function, transformation parameters are calculated for points on the areas for which common
coverage occurs.

e2 = ∑
i
‖Rxi + y0 − yi‖2 ⇒ min. (5)

In each of the iterations of the ICP algorithm, the transformation can be determined using the
four main methods: SVD decomposition [53], Hora quaternions [54], Horn’s orthogonal matrix [55],
and based on Walker’s double quater [56]. These algorithms are characterized by similar effectiveness
and stability of operation in the case of noisy point clouds [57]. Based on the calculated translation
and rotation parameters, the initial point cloud is transformed and the whole process repeats until
the minimal distance threshold is not reached. The presented ICP method is commonly used for a 3D
point cloud registration. However, in the case of the keypoint matching, only 2D space computation
is performed. When using the ICP method, it is important to have a good first approximation of the
relative orientation parameters, because without it the solution of the final registration might fail. In the
proposed method of the SAR images and orthophotomaps coregistration, this condition is met thanks to
the approximate georeference of both data sources. This way of keypoint matching allows one to reduce
the problem of the influence of the descriptor, because it is only based on the geometrical relationship
between the keypoints detected in SAR and optical images, and could be easily used as long as the
approximate georeference of both images are known. One of the most important parts of the image
orientation is the geometric verification of the matched keypoints. This correct keypoint matching
determines the final correctness of the alignment and quality of the data registration. Depending on
the methodology of keypoint matching—descriptor matching or keypoint ICP matching—different
methods are used, but overall it should be stressed that the feature matching phase only verifies pairs of
points on matched images. Considering the descriptor matching, it is not guaranteed that the matches
found actually correspond to 3D points in the scene, and outliers could be included. It is important
to find the correct geometric transformation that correctly maps the corresponding point. Using the
descriptor method, it is necessary to choose the correct mathematical model for transformation, i.e.,
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homography or similarity transformation. A list of commonly used methods are presented in [20].
To reduce the outliers from the data, it is necessary to implement robust estimation techniques such as
RANSAC (Random Sample Consensus [56]) or MLESAC (Maximum Likelihood Estimation SAmple
and Consensus), which is a generalization of the RANSAC algorithm [58,59]. In the case of the ICP
matching method, the transformation method is predefined. However, for eliminating the outliers,
a transformation method such as a similarity transformation can be applied. In this investigation,
the registration parameters from the keypoint ICP method are treated as final and applied to the
correction of the SAR georeference.

4. SAR Image Preprocessing

Because all kinds of algorithms which detect keypoints such as ASIFT/SIFT/SURF work on
intensity images, the presence of speckle noise in SAR images is an obstacle. Speckle noise affects
the behavior of keypoint detector algorithms, which is why it has to be reduced. Speckle noise is
a common phenomenon that accompanies all coherent imaging systems, such as SAR sensors [60]. The
source of this “noise” is attributed to random interference between the coherent returns issued from
the numerous scatterers present on the surface of a scene, in relation to the wavelength of incident
radar wave. The resulting speckle has a multiplicative nature, thus SAR imagery is characterized by
strong intrinsic noise (hereafter, referred to as speckle only). Typically, for a single-look SAR image,
ISNR (Intrinsic Signal to Noise Ratio) = 0 dB, and we have the same amount of signal and noise
power/level. It appears in the image as strong fluctuations in its brightness, hardening the image
interpretation.

As described in the literature, utilizing SAR radar images for different purposes often requires
additional operations, increasing SNR. If the operations are not performed, the results can be strongly
disturbed [7,61]. Some despeckling methods should be taken into account in a processing pipeline,
even though they might be computationally complex (for example as shown in Figure 3), because by
reducing the influence of noise, better quality results can be obtained, which might be critical in many
applications. In the presented approach, speckle noise plays an important or even key role in the
final outcome. Despite the resolution reduction caused by the filter usage, the local dynamic of the
image is significantly improved, which allows further processing to be carried out. Further processing
in this case means keypoint localization, which is the finding of characteristic points in the image.
If the speckle noise is present, disturbed pixels may be considered as keypoints even if they are
only distorted.

For a fully developed speckle (see Figure 4a), the brightness fluctuations in SAR images can be
modeled using a gamma distribution (Equation

(
6
)
). The gamma distribution is one of the basic types

of distributions used in SAR radar imaging (although not the only one [60]):

pz(z, n|σ, L) =
n

Γ(L)

(
L
σ

)L

znL−1 exp

(
− Lzn

σ

)
,

n = 1 for intensity data, I = A2

n = 2 for amplitude data, A,

(6)

with the following statistical moments:

E
[
zm] = Γ(L + m/n)

Γ(L)

(
σ

L

)m/n

, (7)

where z is the given pixel value; n is the amplitude (A) or intensity (A2) data format; σ is the expected
(true) pixel value; L is the number of (multi)looks/averages; and m is the statistical moment order
(m = 1 is the mean value; m = 2 is the mean square value; etc).
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From Equations (6) and (7), providing n = 1, the basic maximum likelihood estimators (MLE) can
be determined:

E[z] = 〈z〉, (8)

ENL
(
≡ L

)
=

E2[z]
E[z2]

=
〈z〉2

〈z − 〈z〉〉2 , (9)

where E[•] is the expected value (operator); 〈•〉 is the arithmetic averaging; and ENL or ENIL is the
equivalent number of (independent) looks.

One of the basic ways to deal with the problem of high speckle noise level is the pre-processing
of SAR imagery with despeckling filters. Commonly, a classical multilooking technique is applied.
Nevertheless, there are plenty of filtration/despeckling algorithms.The authors decided to describe
types of filters which were used in experimental processing since the results are different for each
filter type.

4.1. ML2D: Multilook–2D Filter

In contrast to the classical multilooking procedure [62], Multilook–2D (which might also be called
a non-coherent version of the multilook procedure) works in both image dimensions, i.e. range and
cross-range (X and Y) [61]. Thanks to this, a more effective speckle reduction can be made with less
degradation of the image spatial resolution at the same time.

The idea for the 2D multilooking procedure was taken from optical image processing.
The algorithm operates on the entire, already prefocused SAR image, based on Fourier domain
processing.

Z
{

ωx, ωy
}
= F2D

[
z(x, y)

]
,

Z
{

ωx, ωy
}
≈

L

∑
i=1

Zi
{

ω′
x, ω′

y
}

,

z̃(x, y) =
L

∑
i=1

∣∣ F−1
2D
[

Zi
{

ω′
x, ω′

y
}
· W

{
ω′

x, ω′
y
} ] ∣∣,

(10)

where z(x, y) is the original noisy SAR image; z̃(x, y) is the despeckled (reconstructed) SAR image;
Z
{

ωx, ωy
}

is the two-dimensional Fourier spatial frequency spectrum
{

ωx, ωy
}

; Zi
{

ω′
x, ω′

y
}

is the
partial two-dimensional Fourier spatial frequency spectrum

{
ω′

x, ω′
y
}

; W
{

ω′
x, ω′

y
}

is the window
(spectrum weighting) function; and L is the number of (multi)looks...

The algorithm transforms the entire radar image into a two-dimensional Fourier space. Then,
it divides the spectrum into L sub-bands (with the possibility of overlapping, typically ≤ 50%) and
filters each sub-band by appropriate weighting. Finally, it reconstructs the image throughout, returning
to the spatial domain for each sub-band, generating sub-pictures, and incoherently putting all of them
together. The resulting (reconstructed) SAR image is characterized by its reduced L-times speckle level.
Undesirable side effects are

√
L-times spatial resolution degradation and visible side lobes resulting

from spectrum windowing. The result of filtering a real-life SAR radar image is shown in Figure 4b.

4.2. MEAN: Averaging Filter

One of the simplest noise filtration techniques is averaging image samples over the area around
a pixel, combined with a sliding window technique (see Equation

(
11
)
). For a gamma distribution [60],

the averaging operation also corresponds to the maximum likelihood estimator (MLE) [63].

z̃(k) =
1
N

N

∑
i=1

z(k + i), (11)
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where z(k) is the original noisy SAR image; k is the linear image pel index (k = x + Width ∗ y) Width
is the image width in pixels/pels; Height is the image height in pixels/pels; and x, y is the image
pixel(s) indexes (horizontal and vertical); z̃(k) is the despeckled (reconstructed) SAR image; N is the
filter window size in pixels/pels, e.g. 3 × 3, 5 × 5, etc; and i is the filter window linear index ∈ 〈1, N〉.

As a result of the averaging filtration, the speckle standard deviation is reduced by a factor of√
N-times, where N is the number of pixels in the filter window. Note that in extreme cases, if the

window size is N = 1 (only the central pixel without its surroundings will be taken into account),
no filtration effect will be noticed. In turn, for a large window size N, the speckle will be reduced at
a cost of image detail degradation. An averaging filter that does not include local image statistics
results in severe degradation of details (such as: lines, edges and point target blurring). To overcome
this issue, only suitably sized windows should be chosen (small windows are usually used e.g. 3 × 3,
5 × 5 points in two dimensions). The result of filtering a real-life SAR radar image with an averaging
filter is shown in Figure 4c.

4.3. MMSE: Minimum Mean Square Error Filter

The above-mentioned despeckling filters fail when the assumption of constant pixel value within
the filter window breaks down. The filter should then adapt to take account of excess fluctuations
compared to speckle within the analysis window. One approach to such an adaptive filter is to
provide a model-free minimum mean-square error (MMSE) filter based on measured local statistics.
The solution of minimizing the mean square error for a pixel z̃(k) is to perform first-order expansion
about its local mean value z̄(k) (Equation

(
11
)
) so that:

z̃(k) = z̄(k) + α ·
(
z(k)− z̄(k)

)
,

α =
Vσ

Vz
=

Vz − 1/L
Vz (1 + 1/L)

,
(12)

where z(k) is the original noisy SAR image; k is the linear image pel index (k = x + Width ∗ y); z̄(k) is
the expected/mean pixel value (see Equation

(
11
)
); z̃(k) is the despeckled (reconstructed) SAR image;

α is the linear interpolation weight; and Vz is the normalized variance.
As can be seen, it is a weighted sum (or linear interpolation) between the mean and given/current

pixel value. In cases when there is no fluctuation coming from the image texture, the weighting factor
α → 0 and the pixel value is assigned the average value of its surroundings. On the other hand, when
the fluctuation of the image texture takes on a significance weighting factor α → L

L+1 , the value of the
pixel will be scaled by a factor of alpha—which can happen in places where there are lines, edges, or
any other texture/spatial features. The result of filtering a real-life SAR radar image with an MMSE
filter is shown in Figure 4d. A similar approach was presented by Lee [64,65].

4.4. ELEE: Enhanced Lee Filter

An approach presented by Lee [64] considers an optimal linear filter that is equivalent to
a first-order Taylor expansion of the multiplicative noise model z(k) = z̄(k) · η about expected
z̄(k) and speckle component η. Multiplicative noise can be rewritten as an additive one by z(k) =

z̄(k) + (η − 1) · z̄(k), thus resulting in a similar form to MMSE (Equation
(
12
)
), but the weighting

factor α is now given a bit differently:

z̃(k) = z̄(k) + α ·
(
z(k)− z̄(k)

)
,

α =
Vz − 1/L

Vz
,

(13)

where z(k) is the original noisy SAR image; k is the linear image pel index (k = x + Width ∗ y); z̄(k) is
the expected/mean pixel value (see Equation

(
11
)
); z̃(k) is the despeckled (reconstructed) SAR image; α

is the linear interpolation weight; and Vz is the normalized variance.
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When there is no image texture variation, it would be expected that the estimate Vz is close to pure
speckle, i.e. 1/L, so that α → 0 and z̃(k) = z̄(k) (same as for the MMSE algorithm). However, texture
variability causes Vz to be different from the speckle. If pixel value z(k) is sufficiently large compared
with its surroundings, it yields a large value of Vz, so that α → 1 and z̃(k) = z(k), and the pixel value
remains unchanged (no filtration effect). Thus, the response of Lee’s filter to strong targets differs from
MMSE in that it ignores the speckle contribution to the target when making the filtration, corresponding
to treating the bright pixel as a point target that would not give rise to speckle fluctuations. The result
of filtering a real-life SAR radar image with an enhanced Lee filter is shown in Figure 4e.

4.5. GMAP: Gamma MAP Filter

The Gamma filter is a Maximum A Posteriori (MAP) filter based on a Bayesian analysis of
the image statistics. It assumes that both the SAR image texture and the speckle follows a Gamma
distribution (Equation

(
6
)
). The imposition of these distributions yields a K-distribution [66], which is

recognized to match a large variety of different types of radar clutter, such as land and ocean type
cover. The formula of the GMAP filtration is given by:

z̃(k) =
z̄(k) · (ν − L − 1) +

√
z̄2(k) · (ν − L − 1)2 + 4 · ν · L · z(k) · z̄(k)

2 · ν
,

ν =
1

Vσ
=

1 + 1/L
Vz − 1/L

,
(14)

where z(k) is the original noisy SAR image; k is the linear image pel index (k = x + Width ∗ y); z̄(k) is
the expected/mean pixel value (see Equation

(
11
)
); z̃(k) is the despeckled (reconstructed) SAR image;

ν is the texture model order parameter; and Vz is the normalized variance.
In the case of pure speckle, it would be expected that Vz = 1/L so that ν → ∞ and z̃(k) = z̄(k) (as

with the MMSE and Lee filters). However, as mentioned above, texture variability causes the estimate
Vz to be different from the speckle. In this case, excess pixel value z(k) is understood as image texture
contribution, and the parameter takes small values, thus the Gamma MAP estimator weights the
current pixel value by the properly calculated weight z̃(k) = z(k)/(1 + 1/L). The result of filtering a
real-life SAR radar image with Gamma MAP filter is shown in Figure 4f.

4.6. SAR-BM3D: SAR Block Matching 3D Filter

Among different types of despeckling filters [64,67–69], one in particular demonstrates great
improvements in speckle filtration performance—SAR-BM3D [70]. The filter has a very complicated
structure; however, to outline the processing flow, it can be summarized as shown in Figure 3. The filter
is divided into two stages, the first of which makes a coarse estimate of the image content/texture by
Non-Local Meanings (NLMs), and the second stage makes a fine estimate of the image texture by
Wiener filtration. The algorithm operates in the wavelet transform domain, and the general formula of
SAR-BM3D filtration is given by:

Z̃(k) = Z̄(k) +
V2

Σ(k)
V2

Σ(k) + V2
U(k)

·
[
Z(k)− Z̄(k)

]
,

Z(k) = Σ(k) · H = Σ(k) +
(

H − 1
)
· Σ(k)

= Σ(k) + U(k),

Z(k) = WT3D
[
z(k)

]
, z̃(k) = WT

−1
3D
[
Z̃(k)

]
,

(15)

where Z(k) is the original noisy SAR image in wavelet transform domain, and capitalized letter means
a transformed value (e.g., X = WT[x] ); Z̄(k) is the expected (true/original) image texture in WT
transform domain; Z̃(k) is the despeckled (reconstructed) SAR image in WT transform domain; u(k) is
the zero mean, additive signal dependent speckle noise (u(k) = (η − 1) · z̄(k)); k is the linear image pel
index (k = x + Width ∗ y); and η is the fully developed speckle noise.
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Figure 3. SAR-BM3D despeckling filter block diagram.

The first stage comprises three steps:

• grouping—for each reference block, the most similar blocks are grouped together;
• collaborative filtering—each 3D group undergoes UWT(Undecimated Wavelet Transformation);

hard thresholding, and inverse UWT; and
• aggregation—all filtered blocks are suitably weighted, giving a coarse estimate of the image.

The second stage also comprises the same three stages, but with the following differences:

• grouping—blocks are located based on the coarse estimate provided by the first stage;
• collaborative filtering—each 3D group (of noisy blocks) undergoes WT((Decimated) Wavelet

Transformation); Wiener filtering, and inverse WT; and
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• aggregation—as in Stage 1, giving a final estimate of the image.

The presented filtration algorithm comprises several state-of-the-art techniques, thus giving
better performance in terms of signal-to-noise ratio and perceived image quality than any of the other
aforementioned filters. The result of filtering a real-life SAR radar image with the SAR-BM3D filter is
shown in Figure 4g.

4.7. Filtration Performance

In this subsection, SAR image despeckling filtration results are presented and compared.
The image used is shown in Figure 4a; the imaged area is located near Plock city/refinery, Poland.
The image was made by WUT’s (Warsaw University of Technology) proprietary radar imaging system.
The images shown in Figure 4 present results for different filters applied. In Table 1, a summary of the
despeckling filtration performance is presented.

It should be emphasized that the implementations of filters were made as so-called MATLAB ®
m-scripts, and the entire processing chain was made in this computing environment. Thus, the filtration
performance in terms of absolute processing time is not meaningful. However, it reflects the
computational complexity for each filter.

Table 1. SAR†‡ images filtration performance comparison.

Filter Type ENL\ENIL Processing Time

ML2D 23.9 12 s
MEAN 21.7 23 s
MMSE 17.9 43 s
ELEE 19.3 03 m:25 s

GMAP 24.1 03 m:28 s
SAR-BM3D 199.2 04 h:05 m:17 s

† Original SAR image size 2540 × 2250 [px]; ‡ Original SAR image ENL = 1.

From the results presented in Table 1 and Figure 4, it can be seen that SAR-BM3D is the most
effective filter. In this case, the equivalent number of looks (ENL) indicator is many times higher than
for the others; also the visual assessment is outstanding (see Figure 4g). However, at the same time,
it is the slowest one; its execution time is several times longer compared to the other filters, which is a
consequence of its sophisticated/complex signal processing pipeline. However, there is a potential to
significantly speed up its execution time (e.g., by using CUDA).

L = 1

(a) Original/noisy SAR image
Figure 4. Cont.
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L = 5 × 5

(b) ML2D despeckling filter

N = 5 × 5

(c) MEAN despeckling filter

N = 5×5

(d) MMSE despeckling filter

N = 5×5

(e) ELEE despeckling filter

N = 5×5

(f) GMAP despeckling filter

N = 8 × 8*

(g) SAR-BM3D despeckling filter
Figure 4. SAR imagery filtration results: L is the number of (multi)looks and N is the filter window
size (equiv. to L). * Even window size forced by UWT transform implementation.
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On the other hand, the ML2D despeckling filter provides good performance for both speckle
reduction and execution time (see Table 1 and Figure 4b). In comparison with the other filters,
it performs the fastest, giving very good image quality (ENL ≈ L is the desired number of multilooks).
Nevertheless, this statement does not disqualify the usability of the other filters.

The ENL indicator is not fully unambiguous in the context of radar to optical image comparison.
It is important to preserve details of the unique structural features of the image resulting from the
texture of the observed scene. Thus, an assessment based solely on ENL is not conclusive. Therefore,
in the following sections, further analysis is carried out for all the filters described above.

5. Results

According to the previously mentioned methods for SAR image despeckling, the ASIFT algorithm
was examined to verify its usability in the considered problem. The following scene presented in
Figure 5 is considered.The SAR image being considered was gathered during one of the measurement
campaigns in which the authors took part. During the raw data acquisition, the GPS data were stored
together with the IQ signal samples. The optical image is the reference orthophotomap obtained during
the geodetic measurements, and is defined by precise latitude and longitude information. As can be
seen, a significant shift is visible in the SAR image, which has to be eliminated using the proposed
approach. In theimage, corresponding regions were marked in colors, provingdirect georeference
errors between the images. Next, the six described filters were employed to obtain speckle noise
reduction, and the results were compared to the original SAR image.

Figure 5. Initially oriented images. The corresponding characteristic areas were marked in colors.

In the process providing point cloud matching, two images are considered. The first is the
orthophotomap, which is the same for all cases. The second image was changed to verify the proposed
filters. An optical reference image is presented in Figure 6. The total number of keypoints found on
the orthophotomap is 126, 164.
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Figure 6. Orthophotomap with marked keypoints processed using the ASIFT algorithm.

5.1. Original SAR Image

In the first step, the original SAR image was considered. As mentioned, speckle noise may
have significant influence when SAR data are processed in a typical way, ignoring this phenomenon.
However, the problem under consideration requires additional processing, because such noise provides
unwanted keypoints related to the nature of SAR image creation, not actual artifacts in the image.
Figure 7 presents the results of the ASIFT algorithm processing for the initial SAR image.

Figure 7. The results of the ASIFT algorithm processing for the initial SAR image.

As can be seen, speckle noise has a significant impact on the number of keypoints as well as
their quality. The ASIFT algorithm found 367, 584 keypoints, which is almost three times more in
comparison to the optical image. Since speckle noise is present in all of the dataset, the distinguishing
of the characteristic components or objects is impossible. However, the point clouds assigned to the
images were processed, and the results before and after the operation are presented in Figure 8.
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(a) (b)
Figure 8. Point clouds before and after correction for the orthophotomap and original SAR image.
(a) Point clouds of the SAR and optical images before orientatio, (b) Point clouds of the SAR and optical
images after orientation.

Because of the distorted data, it is impossible to find orientation correction. Because of the speckle
noise, keypoints were found in the entire image, whereas the optical image is covered by keypoints
only in the regions with the highest dynamic. As such, point clouds corresponding to keypoints in
both images are correlated incorrectly.

For the analyzed point clouds, estimated latitude and longitude correction were calculated as
a maximum value of histograms according to each coordinate. The histograms were performed by
analyzing the shift of each point from the SAR image to match the optical reference orthophotomap.
The results obtained are depicted in Figure 9. The estimated longitude correction is Δ⇔ = 6.625 · 10−4[◦]
and the latitude correction is Δ� = 6.45 · 10−4[◦]. The results are compared with those obtained for
despeckled images below.

(a) Longitudecorrection (b) Latitudecorrection
Figure 9. Longitude and latitude correction calculated based on the original SAR image.

5.2. SAR Image Filtered Using ML2D

The ML2D method is presented in Section 4.1. Here, the results of the modified ASIFT algorithm
are delivered. First, the keypoints were found in the filtered SAR image. The results obtained are
depicted in Figure 10.
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Figure 10. The results of the ASIFT algorithm processing for the SAR image filtered using
ML2D method.

As can be noticed, the number of keypoints is significantly reduced by using the despeckling
method. After this operation, keypoints were found in characteristic places such as trees, buildings,
or roads. The ASIFT algorithm found 49, 153 keypoints. The point clouds before and after orientation
are presented in Figure 11.

(a) (b)
Figure 11. Point clouds before and after correction for the orthophotomap and SAR image filtered
using ML2D method. (a) Point clouds of the SAR and optical images before orientation, (b) Point
clouds of the SAR and optical images after orientation

As expected, the filtered image allowed precise results to be obtained. Contours provided by the
keypoints in the SAR scene were matched to the same scene, but illustrated using an optical sensor.
Thanks to the ML2D method, the correction was estimated. Each coordinate is presented in Figure 12.
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(a) Longitudecorrection (b) Latitudecorrection
Figure 12. Longitude and latitude correction calculated based on the original SAR image filtered using
ML2D method.

The estimated longitude and latitudecorrections are, respectively: Δ⇔ = 9.775 · 10−4[◦], Δ� =

2.69 · 10−4[◦]. It is worth noting that the character of histograms is different in comparison to the
unfiltered data. In the initial case, the error had a Gaussian curve shape. After filtration, the latitude
error can be clearly indicated. In the longitude case, the error is ambiguous. This is caused by the
character of the SAR and optical image creation. Orthophotomaps are usually made perpendicular
(NADIR) to the Earth, whereas SAR radars working in the StripMap mode illuminate scenes from a
certain angle (off-NADIR). This dependency provides additional affine transformation, “stretching”
an image in the direction of the antenna main lobe. However, by approximating the histogram using a
Gaussian curve and interpolating data, the value corresponding to the correction can be estimated in a
more precise way than in the original SAR image. Additionally, the correction sets are significantly
narrower in comparison to the original data.

The results obtained for the other filters are similar and depicted in the same way. To make the
text perspicuous, graphical representations such as keypoint clouds, histograms, and SAR images with
marked points are attached in Appendix A.

5.3. SAR Image Filtered Using MEAN Filter

The next considered filter is presented in detail in Section 4.2. This approach is the simplest and
probably the most intuitive, and can be quickly implemented to obtain a SAR image with reduced
speckle noise. The filtered image with marked keypoints is depicted in Figure A1.

The number of detected keypoints significantly decreased. Despite the simple nature of the filter,
the navigation error was estimated. The ASIFT algorithm detected 65, 489 points whose distribution
focused on characteristic places such as trees, buildings, etc. It enabled keypoints clouds obtained for
both optical and SAR images to be comparable, as presented in Figure A2.

The MEAN filter allows improvement of the results to be obtained. According to the histograms
presented in Figure A3, the corrected latitude and longitude are, respectively, Δ⇔ = 9.465 · 10−4[◦]
and Δ� = 2.595 · 10−4[◦]. The presented histograms show the correction distribution, based on which
the navigation drift is obtainable.

Figures provided for this subsection are attached in Appendix A.1.

5.4. SAR Image Filtered Using MMSE Filter

The MMSE filter, described in Section 4.3, was examined as the next method for speckle noise
reduction. As in the previous methods, in the first step, keypoints were detected using the ASIFT
method, as presented in Figure A4.

As can be seen, a larger number of points was detected. The algorithm extracted 66, 917 keypoints,
which is clearly a higher value than in the previous results achieved for the algorithms of speckle noise
reduction. By analyzing the result, it can be seen that points were found in places where they were
not detected for other noise reduction methods. Keypoints are visible in fields and uniform areas,
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resulting in poorer point cloud quality. However, the overall point cloud structure has been preserved
and correctly covered, as illustrated in Figure A5.

Although the quality of the keypoints is worse, because more points were detected, it was possible
to correctly cover the characteristic areas distinguished from the images. A characteristic triangle
formed by tree lines and buildings located in the left part of the picture were covered, determining the
error being sought.

The calculated longitude and latitude corrections presented in Figure A6 are as follows: Δ⇔ =

9.355 · 10−4[◦] and Δ� = 2.57 · 10−4[◦]. This is a similar result to the previously used methods.
Accuracy is mainly limited by the histogram resolution, which can be improved by interpolation.
Despite the detection of a larger number of points, which resulted from a smaller reduction of the
speckle noise, it successfully allowed the detected keypoints clouds to be covered, and thus the
navigation correction to be recalculated. The results are consistent with the methods presented above.

Figures provided for this subsection are attached in Appendix A.2.

5.5. SAR Image Filtered Using ELEE Filter

The ELEE filter described in detail in Section 4.4 was employed as the next method for the
improvement of point clouds covering. As in the case of the MMSE filter, more points were found both
in places with increased dynamics and on uniform surfaces. This indicates less noise reduction;
however, the overall character of the keypoint cloud was set as in the case of the MMSE filter.
The results obtained are presented in Figure A7.

For the discussed method, 58, 165 characteristic points were detected, which is also a significant
number compared to the analyzed methods. The keypoint clouds before and after the correction are
shown in Figure A8.

Again, the correction was calculated correctly, as evidenced by the coverage of characteristic
areas in the images under investigation. It turns out that the method of point cloud shift correction
is resistant to such small discrepancies and additional detection of characteristic points resulting
from limited filtration of speckle noise. Histograms presenting navigation correction are presented in
Figure A9. The estimated longitude and latitude corrections are, respectively: Δ⇔ = 9.4175 · 10−4[◦]
and Δ� = 2.19 · 10−4[◦].

Figures provided for this subsection are attached in Appendix A.3.

5.6. SAR Image Filtered Using GMAP Filter

The next investigated filter is GMAP, whose extended characteristic is presented in Section 4.5.
The result showing the point cloud is illustrated in Figure A10.

The total number of points found in the image is 22, 200, which is the smallest value for all of the
considered cases. The algorithm detected characteristic points corresponding to different objects in the
scene, which indicates a significant reduction in noise in the image.

As shown in Figure A11, the last filter also provides correct results. The point clouds are similar
to those previously presented, making the GMAP filter an effective tool in the proposed method.
It is worth noting that, for the considered image, there are a few regions where the resolution is
low, such as in the lower part where trees are present, or in the upper part where buildings are
depicted. Histograms presenting navigation correction are shown in Figure A12. Comparing the
result in Figure A10 to the ones previously obtained, new details are available. In this case, the GMAP
method shows a distinguishing object initially “hidden” in noise, which can be used in the point cloud
analysis. The same effect is visible in Figure A13 for the SAR-BM3D filter. For the last considered case,
the estimated longitude correction is Δ⇔ = 9.635 · 10−4[◦], whereas the estimated latitude correction is
Δ� = 2.445 · 10−4[◦], which correspond to the previously obtained values.

Figures provided for this subsection are attached in Appendix A.4.
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5.7. SAR Image Filtered Using SAR-BM3D Filter

The last examined filter is BM3D, described in detail in Section 4.6. The same high resolution SAR
image was processed to obtain a keypoint cloud, allowing navigation the correction to be estimated.
The input image with marked keypoints is presented in Figure A13.

The utilized despeckling method significantly improved the image quality (by reducing the noise
level), which significantly affected the focusing of the detected keypoints in the most dynamic regions.
The keypoints distribution corresponds to the results obtained for the different despeckling methods
previously presented (including the number of detected keypoints). However, fewer keypoints were
found in comparison to the previously presented outcomes (apart from the GMAP filter). The algorithm
detected 24, 954 points. In Figure A14, the keypoint clouds before and after orientation are presented.

Thanks to the reduction of speckle noise, negligible improvement was obtained, which affects the
unequivocal shift estimation. The correction distribution, presented in Figure A15, is similar to the
previous methods. In addition, in this case, the considered set is narrower than it was presented for the
original SAR image without despeckling methods. The estimated longitude and latitudecorrections
are, respectively: Δ⇔ = 9.865 · 10−4[◦] Δ� = 2.475 · 10−4[◦]. This result proves the usability of such a
filter for both, despeckling purposes as well as for the proposed modified ASIFT algorithm.

Figures provided for this subsection are attached in Appendix A.5.

5.8. Discussion

Each of the applied filters allowed estimationcorrections to be calculated in accordance with the
assumptions. Due to the different nature of the creation of optical images and SAR, some imperfections
are visible, but they are negligible in the analyzed problem. The filters processing performance is
presented in Section 4.7. Table 2 shows the processing time using the ASIFT algorithm (does not
consider filtering time) and the point cloud correlation. Additionally, the results of the correction
estimation, as well as the number of points found in each of the images, are summarized.

Table 2. Estimated coordinates correction for different filters.

Filter Type
Longitude

Correction [◦]
Latitude

Correction [◦] Rotation [◦]
Processing

Time [s]
Amount

of Keypoints

No filter 6.6250 × 10−4 6.4500 × 10−4 4.0919 111.7241 367,584
ML2D 9.7750 × 10−4 2.6900 × 10−4 0.9416 79.9240 49,153
MEAN 9.4650 × 10−4 2.5950 × 10−4 0.5612 71.8246 65,489
MMSE 9.3550 × 10−4 2.5700 × 10−4 0.6804 77.3086 66,917
ELEE 9.4175 × 10−4 2.1900 × 10−4 1.2547 71.1760 58,165

GMAP 9.6350 × 10−4 2.4450 × 10−4 0.0051 66.2229 22,200
BM3D 9.8650 × 10−4 2.4750 × 10−4 0.3204 66.9932 24,954

As can be seen, similar results were obtained for all filters tested. The outcomes of the rotation
estimation are characterized by the following relationship: the greater is the number of points found,
the greater is the rotation correction determined. Interestingly, the calculation time is not strongly
dependent on the number of keypoints detected. However, storing points requires more memory, and,
even if the calculation time is similar, the memory required is larger for the method detecting a greater
number of points. It should be noted that all computation was performed on the CPU without any
parallelization. To decrease the computation time and boost the computation speed, a GPU should
be used.

The experiments proved that the proposed method for the geometrical matching of SAR and
optical images utilizing ASIFT features for SAR-based Navigation Aided Systems is suitable for
compute the corrections to the SAR images’ direct georeferencing. In the literature, there are many
methods and algorithms for this type of data co-registration [9,11–13,15,16,18,19]. All of these
algorithms were tested on SAR images and optical images acquired from space. The proposed
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methodology of data integration is based on high resolution (in full resolution) SAR images and
orthophotomaps obtained from altitude. Thus, it is hard to compare the presented method with the
method described in [9,11–13,15,16,18,19], because of the spatial resolution of satellite optical images
and the size of overlapping areas. For this reason, it required guaranteeing well-distributed (in the
whole investigation area), robust corresponding points. To achieve this, a modification of the SfM
approach based on the ASIFT detector and he elimination of the keypoints description, as well as
description matching step and using the two-step ICP method, was performed. To compute the
transformation parameters, methods based on finding the pairs of points are used. This way of
determining corresponding points is useful when the points are well distributed throughout the
overlapping areas. Unfortunately, when data from attitude are processed, this relationship may not
be met and the matching pairs of points will not be evenly distributed throughout the study area.
This might cause wrong or inaccurate determination of correction parameters. Therefore, the use of
the ASIFT algorithm allows the detection of more points evenly distributed throughout the entire area
of work. In connection with the ICP method, the keypoints will not be aligned in pairs, but will form a
rigid body that reduces the influence of the outliers on the final determining transformation elements.

In Figure 13, the oriented SAR and optical images before and after correction are presented. In this
case, correction calculated by the ELEE method was utilized, however the results are comparable for
all cases when despeckling filters are used. As can be seen, characteristic objects such as trees, roads,
and buildings are covered.

On the basis of the results obtained, the calculated correction value per kilometer can also be
estimated. Assuming that 1◦ ≈ 111.1 km, the longitude correction is about 105 m, while for latitude
the correction was about 25 [m]. This is a significant value, especially in the case of military systems
for which the required precision should be as high as possible. For the case where the despeckling
filter was not applied, the navigation correction is inappropriate and amounts to 73.6 m for longitude
and 71.6 m for latitude, which are the mean values of the differences between the original coordinates
of the SAR and optical images taken into consideration. This shows how important it is to combine the
presented methods and implement the processing pipeline. The juxtaposition also shows that, from the
point of view of the implementation of navigation correction on a flying platform, it is sufficient to use
simple despeckling filters, which can significantly reduce computational effort and thus accelerate
processing, which is particularly important for fast flying objects. It should be noted that the final
resolution of the correction is limited by the radar bandwidth, for which the range resolution is
expressed by the relationship δR = c

2B , where c is the speed of light and B is radar signal bandwidth.
For the proposed method to make sense, high resolution radars should be used, which, unfortunately,
are associated with a greater financial outlay and a requirement for high processing power of the
computing unit. In addition, it should be taken into account that the obtained high resolution radar
images must be filtered to reduce speckle noise, which limits the resolution of the entire imaging.
Moreover, phenomena such as heterogeneous movement of the radar carrier platform or changing its
speed during the flight in an unpredictable way also degrade the quality of the image. Nevertheless,
taking into account and minimizing such phenomena, it is possible to use the method proposed by the
authors, which was proved experimentally.
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(a) Initially oriented images

(b) Images oriented after correction
Figure 13. Oriented images before and after correction.

6. Conclusions

This paper presents a novel algorithm for navigation correction estimation dedicated to flying
platforms (e.g., drones, airplanes, cruise missiles, etc.) in cases when satellite navigation systems are
unavailable. This method utilizes various techniques to:

• filter SAR images;
• find keypoints on SAR and optical images;
• find shift and rotation correction between images; and
• calculate navigation correction between an acquired SAR image and a reference optical image.
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Combining such methods in a single solution is a novel approach proposed by the authors.
Taking advantage of several techniques, an innovative algorithm was proposed, tested and validated
to confirm its usability for SAR images obtained during a measurement campaign. This solution may
be useful in military and civilian applications, when the lack of a GNSS signal is a critical problem
which makes flying missions impossible. Merged techniques such as ASIFT-based keypoint extraction
and SfM-based keypoints matching make this method robust and resistant to noise and interference.
Thus, the presented methodology can be successfully integrated with existing systems to enhance
their precision and dependability. Additionally, the authors provide a comparison of several filters,
including their computational complexity and performances. This presents a wide variety of uses
for this technique depending on the solution. In the future, the authors intend to implement the
method on a real-time platform and test and verify the proposed methodology in real conditions,
which should confirm its usability. The target platform is the GPU (Graphics Processing Unit), allowing
fast computing to be obtained (both SAR processing and correction estimation). Another crucial issue
is the implementation of the functionality that would be able to cope with the situation where the
imaged scene has been significantly changed compared to the one that was saved in the database (as
an optical image). Such a situation may arise when, for example, the imaged area has been damaged as
a result of a disaster or war, and the database on board the flying object does not have current pictures.
The estimation may then be ineffective, which is undesirable. This is currently the main problem the
authors are working on.
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Appendix A

In this appendix, the results obtained in Section 5 are presented.

Appendix A.1. Figures for SAR Image Filtered Using MEAN filter

Figure A1. The results of the ASIFT algorithm processing for the SAR image filtered using
MEAN method.
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(a) (b)
Figure A2. Point clouds before and after correction for the orthophotomap and SAR image filtered
using MEAN filter (a) Point clouds of the SAR and optical images before orientation, (b) Point clouds
of the SAR and optical images after orientation.

(a) Longitude correction. (b) Latitude correction.
Figure A3. Longitude and latitude correction calculated based on the original SAR image filtered using
ML2D method.

Appendix A.2. Figures for SAR Image Filtered Using MMSE Filter

Figure A4. The results of the ASIFT algorithm processing for the SAR image filtered using MMSE filter.
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(a) (b)
Figure A5. Point clouds before and after correction for the orthophotomap and SAR image filtered
using MMSE filter. (a) Point clouds of the SAR and optical images before orientation, (b) Point clouds
of the SAR and optical images after orientation.

(a) Longitude correction. (b) Latitude correction.

Figure A6. Longitude and latitude correction calculated based on the original SAR image filtered using
MMSE filter.

Appendix A.3. Figures for SAR Image Filtered Using ELEE Filter

Figure A7. The results of the ASIFT algorithm processing for the SAR image filtered using ELEE filter.
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(a) (b)
Figure A8. Point clouds before and after correction for the orthophotomap and SAR image filtered
using ELEE filter. (a) Point clouds of the SAR and optical images before orientation, (b) Point clouds of
the SAR and optical images after orientation.

(a) Longitude correction. (b) Latitude correction.
Figure A9. Longitude and latitude error calculated based on the original SAR image filtered using
ELEE filter.

Appendix A.4. Figures for SAR Image Filtered Using GMAP Filter

Figure A10. The results of the ASIFT algorithm processing for the SAR image filtered using GMAP filter.

114



Sensors 2019, 19, 5500

(a) (b)
Figure A11. Point clouds before and after correction for the orthophotomap and SAR image filtered
using GMAP filter. (a) Point clouds of the SAR and optical images before orientation, (b) Point clouds
of the SAR and optical images after orientation.

(a) Longitude correction. (b) Latitude correction.
Figure A12. Longitude and latitude error calculated basing on the original SAR image filtered using
GMAP filter.

Appendix A.5. Figures for SAR Image Filtered Using SAR-BM3D Filter

Figure A13. The results of the ASIFT algorithm processing for the SAR image filtered using
SAR-BM3D filter.
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(a) (b)
Figure A14. Point clouds before and after correction for the orthophotomap and SAR image filtered
using SAR-BM3D filter. (a) Point clouds of the SAR and optical images before orientation, (b) Point
clouds of the SAR and optical images after orientation.

(a) Longitude correction. (b) Latitude correction.
Figure A15. Longitude and latitude correction calculated based on the original SAR image filtered
using SAR-BM3D filter.
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Abstract: This paper presents five different statistical methods for ground scene prediction (GSP)
in wavelength-resolution synthetic aperture radar (SAR) images. The GSP image can be used as a
reference image in a change detection algorithm yielding a high probability of detection and low
false alarm rate. The predictions are based on image stacks, which are composed of images from the
same scene acquired at different instants with the same flight geometry. The considered methods
for obtaining the ground scene prediction include (i) autoregressive models; (ii) trimmed mean;
(iii) median; (iv) intensity mean; and (v) mean. It is expected that the predicted image presents
the true ground scene without change and preserves the ground backscattering pattern. The study
indicates that the the median method provided the most accurate representation of the true ground.
To show the applicability of the GSP, a change detection algorithm was considered using the median
ground scene as a reference image. As a result, the median method displayed the probability of
detection of 97% and a false alarm rate of 0.11/km2, when considering military vehicles concealed in
a forest.

Keywords: CARABAS II; ground scene prediction; image stack; multi-pass; SAR images

1. Introduction

Common tasks in synthetic aperture radar (SAR) statistical image processing include the
identification and classification of distinct ground type [1–5], modeling [6–9], and change
detection [10–13]. In special, wavelength-resolution low-frequency SAR systems are useful for natural
disasters monitoring, foliage-penetrating applications, and detection of concealed targets [14].
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The wavelength-resolution SAR system is usually associated with ultrawideband (UWB) radar
signal and ultrawidebeam antenna [15]. With such, the maximum resolution is achieved and it is in
the order of radar signal wavelength. Additionally, available UWB SAR systems only operate at low
frequencies. One essential feature of wavelength-resolution SAR systems is that the speckle noise
does not influence the acquired images since it is likely that only a single scatter is present in the
resolution cell. Additionally, small scatterers present in the ground area of interest do not contribute to
the backscattering for low-frequency radar systems. Thus, small structures, such as tree branches and
leaves, are not shown in SAR images [16]. Because large scatterers are associated with low-frequency
components, they tend to be less influenced by environmental effects and are stable in time. Hence,
by using multi-passes with identical heading and incidence angle of the illuminating platform at a given
ground area, an image package with similar statistics can be obtained [17]. In [18], clutter statistical
models for stacks of very-high-frequency (VHF) wavelength-resolution SAR images are discussed.
The SAR image stacks are a frequent topic of study for SAR systems with high resolution [19–21].
However, the literature lacks the use of large image stacks for wavelength-resolution SAR for change
detection applications.

Change detection algorithms (CDA) have been widely considered over the years in the detection of
distinct targets in SAR images [22–24]. In particular, the wavelength-resolution SAR change detection is
an important topic of research and has been studied for more than a decade [17]. Wavelength-resolution
systems have also shown unique results with high detectability rate on a low false alarm rate per
square km, as presented, for example, in [17,24]. The nature of the wavelength-resolution SAR imagery
can be exploited to facilitate the design of CDAs, since (i) the contribution of small scatterers to radar
echoes is not significant for the wavelength of several meters; (ii) scatter from large objects are the main
contribution; (iii) large scatterers are usually stable in time and less sensitive to environmental effects;
and (iv) the wavelength-resolution almost totally cancel the speckle noise [16] in the SAR image given
a very stable backscattering between measurements.

A CDA is used to detect changes in a ground scene between distinct measurements in time,
such as natural disasters like floods and wildfires or human-made interferences [14]. Generally,
in wavelength-resolution systems, a CDA can be simply obtained by the subtraction of two single-look
images (reference and surveillance), followed by a thresholding operation. However, an image stack
can be considered instead of just two images in a CDA; such a collection of images leads to improved
detection performance, as discussed in [17]. This information is used to eliminate clutter and noise in
the surveillance image [17], and consequently, enhancing CDA results. Recently, a study using a small
stack of multi-pass wavelength-resolution SAR images for change detection was introduced in [17].

In [25], the autoregressive (AR) model was employed as a preliminary study considering a ground
scene prediction (GSP) based on a single wavelength-resolution SAR image stack. The resulting
predicted image was submitted as input data to a change detection algorithm, based only on
subtraction, thresholding, and morphological operations. The CDA in [25] corresponds to the detection
analysis step of the CDA used in [26]. Despite its simplicity, the change detection results in [25] were
competitive when compared with the ones recently presented in [17,27].

Multi-pass SAR images cannot be exactly equidistantly observed over time since the noise
across the image stack is not related to the time order. As a consequence, the use of a time series
model, commonly employed in statistical signal processing [28–31], may not be the most suitable
approach to obtain a GSP, and, consequently, resulting in lower performance in a CDA. Additionally,
the backscattering of the images in the stack is stable in time, i.e., a sequence of pixels for each position
follows a similar pattern, and changes in such behavior are understood as outliers. Thus, an image
filtering considering robust statistical methods, such as trimmed mean and median [32,33], might be
better candidates to obtain a ground scene prediction. These approaches can provide an accurate
prediction of the ground scene, avoid the time order problem, and exclude the pixels that do not
follow the sequence pattern. Indeed, the median and the trimmed mean filters are traditionally used
to remove impulse noise from an image [34–41].
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To the best of our knowledge, the study in [25] is the only work related to the ground scene
prediction for wavelength-resolution SAR image stacks. Our paper extends the results presented
in [25] with four other statistical methods to predict a ground scene for three SAR image stacks,
since statistical methods are commonly employed in SAR image processing [1,2,5–11,13]. The selected
statistical methods to obtain the prediction image are (i) autoregressive models; (ii) trimmed mean;
(iii) median; (iv) intensity mean; and (v) mean. The predicted ground scene methods are sought to
preserve the ground backscattering statistical characteristics of the images in the stack and presents
predicted pixel values closer to the original images. It is expected that the predicted images represent
the true ground scenes, allowing applications, such as monitoring of forested areas and natural
disasters. In this paper, our goal is twofold. First, we propose the use of statistical methods to
obtain a ground scene prediction image based on a wavelength-resolution SAR image stacks. Second,
we consider this new image as a reference image in a change detection algorithm. In particular,
we employed the median GSP image obtained based on stack statistics as a reference image in a CDA
based on the detection analysis step of the CDA presented in [26], which was evaluated in terms of
target detection probability and false alarm rate. The results reported in [12,17,24] were adopted as the
reference model for comparison.

The paper is organized as follows. In Section 2, we describe the considered change detection
method and a suite of selected statistical methods for ground scene prediction. Section 3 presents
experimental results, including a description of the considered data set, the ground scene prediction
results, and the change detection results. Then, a change detection method based on the discussed
GSP approaches is introduced. Finally, Section 4 concludes the paper.

2. Change Detection Method

The change detection method used in this paper applied the processing scheme given in Figure 1.
An image stack is processed by a desirable GSP method furnishing the GSP image. The changes
are simply obtained with the subtraction of the image of interest (surveillance image) from the GSP
image (reference image). For change detection, we applied thresholding to the difference image and
then used morphological operations for false alarm minimization. The methods employed to obtain
the GSP images are described in the next section.

Figure 1. Processing scheme for change detection. The ground scene prediction (GSP) image is the
reference image and the interest image is the surveillance image. The change detection algorithm (CDA)
is performed applying thresholding and morphological operations in the difference image. Note that
the difference image is based on the subtraction between single-look image pixels as a consequence of
the stability in backscattering using a wavelength-resolution synthetic aperture radar (SAR) system.

The employed CDA consists of two mathematical morphology steps. First, an opening
operation [42] aimed at removing small pixel values, which are regarded as noise. The second
step is a dilation that prevents the splitting of the interest targets in multiple substructures. The first
step uses a 3 × 3 pixel square structuring element, whose size is determined by the system resolution;
the second step considers a 7 × 7 pixel structuring element, which is linked to the approximate size of
the targets (about 10 × 10 pixels).

2.1. Ground Scene Prediction

As discussed in [18], an image stack is composed of images with similar heading and incidence
angle of the same illuminating platform. As a consequence of this similarity, the SAR images in the
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stack are very similar and stable in time. Thus, a sequence of each pixel position can be extracted from
the stack, as illustrated in Figure 2.

The data set considered in this paper is composed of wavelength-resolution SAR images, i.e.,
the resolution of the SAR image is in the order of the radar signal wavelength [16]. Therefore, there may
only be a single scatter in the resolution cell. As a consequence, the considered images are not affected
by speckle noise, which is typically a strong source of noise in SAR images in higher frequency bands.
Thus, the backscattering from the image stack is stable in time, allowing an accurate GSP.

Figure 2. Stack of images to be considered in GSP. The methods should be applied for each pixel
position, as evidenced by the vertical line.

We consider five statistical methods to obtain ground scene predictions. The techniques are
applied in a sequence of pixels, as described in the following.

2.2. AR Model

The AR model was adopted to compute the GSP, which can be defined as [43]

y[n] = −
p

∑
k=1

a[k]y[n − k] + u[n], n = 1, 2, . . . , N, (1)

where y[n] is the value of each pixel in one image, N is the number of images in the stack, a[k] are
the autoregressive terms, u[n] is white noise, and p is the order of the model [43]. The autoregressive
terms a[k] in Equation (1) can be estimated by the Yule–Walker method [43,44].

Hence, the estimated autoregressive terms â[k] are the solutions of the equation system,
given by [43] ⎡⎢⎢⎢⎢⎣

ryy[0] ryy[1] . . . ryy[p − 1]
ryy[1] ryy[0] . . . ryy[p − 2]

...
...

. . .
...

ryy[p − 1] ryy[p − 2] . . . ryy[0]

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

a[1]
a[2]

...
a[p]

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
ryy[1]
ryy[2]

...
ryy[p]

⎤⎥⎥⎥⎥⎦ , (2)

where ryy[·] is the sample autocorrelation function. Information about large sample distributions of
the Yule–Walker estimator, order selection, and confidence regions for the coefficients can be found
in [45]. Considering the estimated autoregressive terms â[k], it is possible to forecast h steps ahead
with the AR model as [44]

ŷ[N + h] = −
p

∑
k=1

â[k]y[N + h − k]. (3)
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The ground scene prediction image is obtained by forecasting the one-step ahead (h = 1) pixel
value for each pixel in the image.

2.3. Trimmed Mean, Median, and Mean

For SAR images whose backscattering is stable in time, robust methods can be applied to obtain
a GSP. We consider the trimmed mean to obtain a GSP, which is given by

ȳtm =
2

N − 2m

N−m

∑
n=m+1

y�[n], (4)

where y�[n] is the ordered sequence of y[n], m = (N − 1)α, and α ∈ [0, 1/2) [32,33]. If α = 0 or α → 0.5,
then the trimmed mean corresponds to the sample mean and median, respectively [32], which are
considered as methods for GSP derivation.

2.4. Intensity Mean

We also use the intensity mean for obtaining ground scene predictions, given by

ȳim =

√√√√ 1
N

N

∑
n=1

y[n]2. (5)

Compared to other statistical methods, the intensity mean has the advantage of providing physical
interpretation about the image reflection. However, the intensities’ values contribute evenly to the
prediction results, which can be strongly affected by the changes in the ground scene [32].

3. Experimental Results

In this section, we present the results obtained from the discussed ground scene prediction
methods and describe an approach for change detection based on such methods.

3.1. Data Description

In this study, we considered a data set obtained from CARABAS II, a Swedish UWB VHF SAR
system whose images are available in [46]. The system is a low-frequency wavelength-resolution
system which means that the images have almost no speckle noise. The data set was divided into three
stacks with eight images each, i.e., two out of six passes have identical flight headings. Two passes
have a flight heading of 255◦, two of 135◦, and two of 230◦, and the heading is defined as 0◦ pointing
towards the north with clockwise increasing heading. The images in the stacks have the same flight
geometry but are associated with four different targets’ deployments (missions 1 to 4) in the ground
scene. Hence, with four missions and six passes for each mission, there are 24 magnitude single-look
SAR images. The images cover a scene of size 2 km × 3 km and are georeferenced to the Swedish
reference system RR92, which can easily be transformed to WGS84 [12,26].

The first stack is composed of images corresponding to flight passes 1 and 3; the second stack,
with passes 2 and 4; and the last stack is composed of images associated with passes 5 and 6. In all
images, the backscattering was stable in time, and only target changes are expected within the
image stacks.

Each image is represented as a matrix of 3000 × 2000 pixels, corresponding to an area of 6 km2.
As reported in [12], the spatial resolution of CARABAS II is 2.5 m in azimuth and 2.5 m in range.
The ground scene is dominated by boreal forest with pine trees. Fences, power lines, and roads were
also present in the scene. Military vehicles were deployed in the SAR scene and placed uniformly,
in a manner to facilitate their identifications in the tests [26]. Each image has 25 targets with three
different sizes and the spacing between the vehicles was about 50 m. For illustration, one image of
Stack 1 is shown in Figure 3. In this image, the vehicles were (i) obscured by foliage; (ii) deployed in
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the top left of the scene; and (iii) oriented in a southwestern heading. This deployment corresponds to
mission 1. In missions 2, 3 and 4, these vehicles were deployed in other locations and were oriented in
a northwestern, southwestern, and western heading, respectively [12,26].

Figure 3. Sample image from CARABAS II data set—Stack 1: mission 1 and pass 1.

3.2. Ground Scene Prediction Evaluation

The AR model parameter estimation requires (i) fitting 6,000,000 models (one fit for each pixel)
in each stack and (ii) evaluating the best model for each pixel sequence. Such demands lead to a
significant computational burden. For simplicity, we considered p = 1 in the AR model. Within the
image stack, the two images related to the targets have the highest pixel values in the areas where
the targets were deployed. Thus, to compute the trimmed mean, we considered m = 2 (α ≈ 0.3),
expecting to remove the pixels related to the targets, since it is desired that the predicted image presents
the true ground scene without change.

Figures 4 and 5 show the ground scene prediction for Stack 1, considering the discussed methods
and a zoomed image in the region where the targets were deployed. In Figure 4, the deployed targets
are visually present. However, the targets are absent in the images predicted with the trimmed
mean and median, as shown in Figure 5. The areas highlighted by rectangles and circles in the
images in Figure 4 indicate the regions where the targets were deployed during the measurement
campaign. The circles show selected military vehicles that can be viewed. With such visual analysis,
the trimmed mean and median show better performance, i.e., better prediction of the ground scene.
For brevity, we limited our presentation to the GSP images from Stack 1, which is representative of all
considered stacks.

Table 1 displays descriptive statistics of the employed images, such as average, standard deviation,
skewness, and kurtosis. It is desirable that a GSP presents not only a good visual representation of
the true ground, but also preserves the statistical characteristics of the image of interest. In Table 1,
we highlighted the two best methods according to each considered measure. In the majority of the
scenarios, the AR model and median methods outperformed the remaining methods.

To evaluate the difference between the ground scene prediction methods, we computed some
standard quality adjustment measures. The criteria are the mean square error (MSE), mean absolute
percentage error (MAPE), and median absolute error (MdAE), which can be defined as follows [47].
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(a) AR model

(b) Mean

(c) Intensity mean

Figure 4. Ground scene prediction images for Stack 1 based on the autoregressive (AR) model, mean,
and intensity mean methods. The areas highlighted by rectangles in the images represent the regions
where the targets are deployed. The circles show selected military vehicles that can be viewed.
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(a) Trimmed mean
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(b) Median

Figure 5. Ground scene prediction images for Stack 1 based on trimmed mean and median methods.

MSE =
1
Q

Q

∑
q=1

(x[q]− x̂[q])2, (6)

MAPE =
1
Q

Q

∑
q=1

|x[q]− x̂[q]|
|x[q]| , (7)

MdAE = Median (|x[q]− x̂[q]|) , q = 1, 2, . . . , Q, (8)
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where x[q] and x̂[q] are the pixel values of the interest and predicted images, respectively, Q is
the number of pixels, and Median(·) is the median value of |x[q] − x̂[q]|, for q = 1, 2, . . . , Q.
These goodness-of-fit measures are usually considered to compare different methods applied to
the same data set [47]. They are expected to be as close to zero as possible.

Table 1. Average, standard deviation, skewness, and kurtosis of one interest image and the ground
scene prediction. The interest image in Stacks 1, 2 and 3, is the image of mission 1 and passes 1, 2 and 5,
respectively. The two values of each measure that yielded the closest values with the interest image
are highlighted.

Average Standard Skewness Kurtosis
Deviation

Stack 1

Interest image 0.1442 0.0894 1.8597 14.1740
AR model 0.1101 0.0725 2.1120 13.5190

Trimmed mean 0.1430 0.0680 2.9051 21.2919
Median 0.1424 0.0688 2.8231 20.4990
Mean 0.1467 0.0663 3.0516 22.8448

Intensity mean 0.1592 0.0667 3.0090 22.8725

Stack 2

Interest image 0.1373 0.0968 2.9345 30.5666
AR model 0.0997 0.0784 3.6398 40.9991

Trimmed mean 0.1344 0.0806 4.4488 55.4260
Median 0.1339 0.0812 4.3664 53.9367
Mean 0.1376 0.0792 4.6022 58.3558

Intensity mean 0.1485 0.0792 4.5487 57.8894

Stack 3

Interest image 0.1451 0.0905 1.8583 14.0932
AR model 0.0997 0.0683 2.2034 14.6539

Trimmed mean 0.1372 0.0665 2.8811 22.0954
Median 0.1366 0.0674 2.8090 21.3242
Mean 0.1410 0.0646 2.9582 22.9540

Intensity mean 0.1534 0.0655 2.9170 22.9794

For the quality adjustment measures, the target regions in the image were excluded since we
expect to obtain an accurate ground scene prediction, and no target deployment should influence
the measurements. Table 2 summarizes the results of the quality adjustment measures for the five
considered statistical methods, and the best measurements are highlighted. The mean method presents
the best performance according to MSE measurements, while the median method excels in terms of
MAPE and MdAE measures in all the stacks. However, the MSE values obtained with the mean and
median methods are similar. The results provided in Tables 1 and 2 consider the same reference image
of each stack. Regardless of the selected image, the median method presented good performance
according to MAPE, MdAE, and statistics measures.

Based on visual inspection, statistical characteristics, and quality adjustment measures, the median
method yields the most reliable prediction among the considered methods. Therefore, we separate
the predicted images from the median method as reference images in the change detection algorithm
detailed in the next section.
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Table 2. Measures of quality of the ground scene prediction image. The interest image in Stacks 1, 2
and 3 is the image of mission 1 and passes 1, 2 and 5, respectively. We highlighted the values of each
quality adjustment measure that yielded the smallest values.

MSE MAPE MdAE

Stack 1

AR model 0.0077 0.6756 0.0548
Trimmed mean 0.0036 0.6187 0.0364

Median 0.0037 0.6125 0.0351
Mean 0.0036 0.6489 0.0401

Intensity mean 0.0039 0.7505 0.0426

Stack 2

AR model 0.0068 0.6450 0.0502
Trimmed mean 0.0030 0.5971 0.0326

Median 0.0031 0.5912 0.0315
Mean 0.0030 0.6254 0.0359

Intensity mean 0.0032 0.7204 0.0378

Stack 3

AR model 0.0083 0.6337 0.0557
Trimmed mean 0.0037 0.5809 0.0357

Median 0.0038 0.5751 0.0346
Mean 0.0036 0.6104 0.0392

Intensity mean 0.0037 0.7011 0.0410

3.3. Change Detection Results

As indicated in Figure 1, we use the obtained GSP image and the interest image for change
detection based on image subtraction. Two examples of subtraction images are shown in Figure 6.
Figure 6a highlights the deployed targets, while Figure 6b focuses on the targets and the back-lobe
structures. A comparison between the difference image shown in Figure 6b to the related GSP
image suggests that the back-lobe structures are related to issues in the SAR system and the image
formation algorithm.

Figure 7 shows the pixels’ values of the image given in Figure 6a in a vectorized form. In general,
the subtracted image pixels values are randomly distributed in (−0.4, 0.4). As discussed in [16],
the distribution of the values of the CARABAS II subtracted image approximately follows the Gaussian
distribution and the regions where no change occurs are stable. Thus, the threshold (λ) can be simply
chosen as

C =
λ − μ̂

σ̂
, (9)

where C is a constant, μ̂ is the estimated mean, and σ̂ is the estimated standard deviation of the
considered amplitude pixels in the image. For evaluation, we set C ∈ {2, 3, 4, 5, 6}, resulting in
different false alarm rates (FAR), which range from full detection to almost null false alarm rate.

Table 3 summarizes the change detection results corresponding to a single constant C = 5. Among
600 deployed vehicles in the missions, 579 were correctly detected. There are 22 detected objects that
can not be related to any vehicle and are considered to be false alarms. Thus, the detection probability
is about 97%, while the false alarm rate is 0.15/km2 (total of 144/km2). Ten of the 22 false alarms are
related to the back-lobe structures, i.e., they are not actually false alarms and may stem from system
and image formation issues. Additionally, in general, the undetected targets are related to missions 2
and 4. These undetected military vehicles are more difficult to detect since they have the smaller sizes
and magnitude values, and, consequently, pixel values closer to the forest ones.

130



Sensors 2020, 20, 2008

(a) Pass one and mission one

(b) Pass one and mission two

Figure 6. Subtraction of an interest image from the median ground scene prediction image. The areas
highlighted by rectangles in the images represent the region with higher pixel values.
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Figure 7. Result of the subtraction of the ground scene prediction image from the image obtained from
mission 1 and pass 1.

Table 3. Change detection results obtained with C = 5.

Case of Interest Number of Detected Pd Number of
Mission Pass Known Targets Targets False Alarms

1 1 25 25 1.00 0
2 1 25 25 1.00 3
3 1 25 25 1.00 0
4 1 25 23 0.92 2
1 2 25 25 1.00 0
2 2 25 25 1.00 1
3 2 25 25 1.00 2
4 2 25 23 0.92 1
1 3 25 25 1.00 2
2 3 25 23 0.92 0
3 3 25 25 1.00 3
4 3 25 23 0.92 0
1 4 25 25 1.00 0
2 4 25 25 1.00 0
3 4 25 25 1.00 1
4 4 25 23 0.92 0
1 5 25 25 1.00 0
2 5 25 15 0.60 6
3 5 25 25 1.00 0
4 5 25 24 0.96 0
1 6 25 25 1.00 0
2 6 25 25 1.00 1
3 6 25 25 1.00 0
4 6 25 25 1.00 0

Total 600 579 0.97 22

3.4. Evaluation

The performance of change detection was evaluated by the probability of detection (Pd) and
FAR. The quantity Pd was obtained from the ratio between the number of detected targets and the
total numbers of known targets, while FAR is defined by the number of false alarms detected per
square kilometer [26]. Figure 8 presents the receiver operating characteristic (ROC) curves [48] of
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the change detection results, showing the probability of detection versus the false alarm rates for the
different evaluated values of C. We compared the change detection results obtained from the proposed
method with the results described in [12,17,24]. The proposed method excels in terms of probability of
detection and false alarm rate in comparison to [12,17,24].

For example, for a detection probability of 98%, our proposed change detection method
presents log10(FAR) about −0.5, while [12,17,24] have log10(FAR) about 1.4, −0.3 and 0.14, respectively.
For log10(FAR) = −0.9, i.e., a very low FAR, the probability detection given by [12] drops to 60%,
while our proposal still maintains the probability of detection more than 90%. The detection
probability of our proposed method and [17] reach 100% with log10(FAR) ≈ 1, while [12,24] have full
detection for log10(FAR) ≈ 1.5 and log10(FAR) ≈ 2, respectively. Additionally, detection probability
improvements of our method compared to [17] are found in the range of (0.93, 0.98). For example,
for a probability of detection of 0.97%, our proposed change detection method presents log10(FAR)
about −0.8, while [17] has log10(FAR) ≈ −0.2.
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Figure 8. The receiver operating characteristic (ROC) curves obtained with the CDA with the
background predicted scene as the reference image compared with the best ROC curves extracted
from [12,17,24].

4. Conclusions

In this paper, we presented five methods to obtain ground scene prediction of SAR images based
on image stack. The experimental results revealed that, among the considered techniques, the median
method yielded the most accurate ground prediction. The statistical characteristics of the obtained GSP
image were similar to the image of interest. Moreover, the median method excels in terms of quality
adjustment measures, and the changes in the image stack were not visually presented in the predicted
image. The GSP image based on the method was used as a reference image in a CDA, presenting
competitive performance when compared with recently published results.
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Abstract: Although unsupervised representation learning (RL) can tackle the performance
deterioration caused by limited labeled data in synthetic aperture radar (SAR) object classification,
the neglected discriminative detailed information and the ignored distinctive characteristics of SAR
images can lead to performance degradation. In this paper, an unsupervised multi-scale convolution
auto-encoder (MSCAE) was proposed which can simultaneously obtain the global features and
local characteristics of targets with its U-shaped architecture and pyramid pooling modules (PPMs).
The compact depth-wise separable convolution and the deconvolution counterpart were devised
to decrease the trainable parameters. The PPM and the multi-scale feature learning scheme were
designed to learn multi-scale features. Prior knowledge of SAR speckle was also embedded in the
model. The reconstruction loss of the MSCAE was measured by the structural similarity index
metric (SSIM) of the reconstructed data and the images filtered by the improved Lee sigma filter.
A speckle suppression restriction was also added in the objective function to guarantee that the
speckle suppression procedure would take place in the feature learning stage. Experimental results
with the MSTAR dataset under the standard operating condition and several extended operating
conditions demonstrated the effectiveness of the proposed model in SAR object classification tasks.

Keywords: multi-scale representation learning (MSRL); pyramid pooling module (PPM); compact
depth-wise separable convolution (CSeConv); convolution auto-encoder (CAE); object classification;
synthetic aperture radar (SAR)

1. Introduction

As the vital task of object classification with synthetic aperture radar (SAR) images, feature
engineering intends to obtain robust representations of intrinsic properties to distinguish various
targets in high-resolution radar images. Although numerous hand-designed features have been
proposed to represent both the spatial and electromagnetic characteristics of targets over the past
decades, feature learning is still a challenging task for SAR-based automatic target recognition (SAR
ATR) applications.

In general, the traditional hand-designed features include two categories: the generalized
features [1–3] and the SAR-specialized features [4–7]. The former ones involve features from other
domains considering little of the characteristics of SAR imagery, while the latter ones refer to those
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designed for specific SAR ATR tasks. Despite their high accuracy while dealing with the benchmark
or specific SAR dataset, all these handcrafted features have certain obstacles. A major drawback
is the requirement of detailed prior knowledge about the potential applications that are sometimes
unavailable. Another obstacle is that many features, especially those based on scattering models,
hold a series of assumptions for operation conditions (OCs), leading to performance degradation
when the assumptions are inconsistent with the OCs. Accordingly, it is necessary to devise new
feature learning algorithms which can adaptively learn representations from various data, considering
complicated situations.

With the theoretical progress of machine learning, the deep learning (DL) model, which has turned
out to be adept at automatically discovering intricate information in high-dimensional raw data [8], has
been employed to tackle SAR ATR tasks and achieved the superior performance than hand-designed
features. Although the supervised DL models have obtained state-of-the-art results, their requirement
of a great many labelled data is the major obstacle in SAR ATR. The labelled benchmarks are too small to
train a supervised deep network effectively, and overfitting caused by limited labelled samples is often
one of the main causes of performance degradation of the supervised model. To handle this problem,
various unsupervised DL models are employed and developed, including the autoencoder (AE) [9,10],
the generative adversarial network (GAN) [11,12], and the restricted Boltzmann machine (RBM) [13].
Due to the fact of its simple implementation and attractive computational cost, the AE has widely
been used in SAR ATR which minimizes the distortion between the inputs and the reconstructions to
guarantee that the mapping process preserves the information of the inputs.

In earlier works, the autoencoder was utilized to derive refined representations from the predefined
features or preprocessed images before feeding them into a traditional classifier such as the softmax or
the support vector machine (SVM) [14–20]. In Reference [14], Geng et al. presented a deep convolution
AE (CAE) for SAR image classification. Two kinds of handcrafted features, a gray-level co-occurrence
matrix (GLCM) and the Gabor filter banks, were jointly fed into the CAE. The learned representation was
subsequently fed to a softmax classifier for land-cover classification. In Reference [15], the geometric
parameters and the local texture features were combined to train a stacked AE (SAE) for vehicle
classification in SAR images. Gleich and Planinšic [16] estimated the log commulants of SAR
data patches via the dual-tree oriented wavelet transform and input them into an SAE to derive
representations for scene patch categorization. Zhang et al. [17] devised a framework to learn the
robust representation of polarimetric SAR (PolSAR) data based on the spatial information, which
was characterized by the spatial distance to the central pixel. Their framework was subsequently
improved in [18] with a multi-scale strategy in which the spatial information was obtained by taking
neighborhood windows of different scales before the stacked sparse AE (SSAE) was applied to extract
features at different scales for land cover classification in PolSAR images. Hou et al. [19] devised a
PolSAR image classification method based on both the multilayer AE (MLAE) and the superpixel
trick. The superpixels produced by the Pauli decomposition to integrate contextual information of the
neighborhood was refined by an MLAE to generate a robust representation. Chen and Jiao [20] fed
the discriminative feature extracted by the multilayer projective dictionary into an SAE to realize the
nonlinear relationship between the elements of feature vectors in an adaptive way.

To further promote the performance in representation learning, various models based on the AE
framework have also been utilized [21–24]. In Reference [21], the stacked contractive AE (SCAE) was
utilized to extract temporal characteristics from superpixels for change detection in SAR images which
was restricted by a contractive penalty with the Frobenius norm of the Jacobian. Xu et al. [22] developed
an improved variational AE (VAE) based on the residual network to draw latent representations
for vehicle classification in SAR images. Song et al. [23] devised an adversarial autoencoder neural
network (AAN) to learn intrinsic characteristics and generate new samples at different azimuth angles
by adversarial training. Kim and Hirose [24] proposed a quaternion autoencoder and a quaternion
self-organizing map (SOM) for PolSAR image classification. The quaternion AE was introduced to
extract representations based on the natural distribution of PolSAR features. The extracted features
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were classified by the quaternion SOM in an unsupervised manner, by which new and more detailed
land categories could be discovered. In Reference [25], a deep bimodal AE was proposed for land cover
classification by fusing the SAR and the multispectral images. The bimodal AE provided independent
encoding modalities in the front part to learn the features of SAR data and fused the feature of each
modality with shared representation layers to obtain the representations for classification.

Despite the explosive growth of unlabeled SAR images with the development of high-resolution
SAR systems, the training dataset (even the unlabeled benchmarks) available for specific tasks or
targets are limited and incomplete. To handle this problem, model transferring is recommended
as another solution to improve the representation learning capability with small sample size and
limited training resources. Huang et al. [26] devised an assembled CNN model that combines a CAE
with a CNN, sharing the encoder part of the CAE. The CAE was pre-trained with a large number of
unlabeled SAR images, and its encoder part that connected with a fully connected layer was fine-tuned
with the limited target patches. Mohammad et al. [27] proposed a domain adaptation algorithm
to transfer knowledge from the earth observation (EO) domain to the SAR domain. They trained
two deep encoders coupled through their last layer to map data points from the EO and the SAR
domains to the shared embedding space, such that the distance between the distributions of the two
domains was minimized in the latent embedding space. In Reference [28], a DL-based workflow was
proposed to map forest above-ground biomass by integrating Landsat 8 and Sentinel-1A images with
airborne light detection and ranging (LiDAR) data. They demonstrated the advantage of a stacked
sparse autoencoder network in comparison to other prediction techniques. De et al. [29] proposed an
AE-based technique for urban area classification in PolSAR images which leveraged a synthetic target
database for data augmentation (DA). The synthetic dataset obtained by rotation and collation was fed
to an SAE to generate a compact representation of the information in the augmented dataset. Although
these model transferring methods have alleviated overfitting of DL models caused by small datasets
and achieved the state-of-the-art performance, it is quite difficult to design the transferring schemes
for specific SAR ATR tasks in various extended operation conditions (EOCs). Besides, the selection
of the pre-trained model and the natural image dataset for information transferring will also greatly
affect the performance of these approaches. If there is a great difference between the natural images
and the objective SAR dataset, the representation learning capability of the transferred models will
suffer serious degradation.

Another way to promote the performance of the AE models with a limited training dataset is to
incorporate prior knowledge in the model with certain regularization terms and task-specific cost
functions. The training process of the AE refers to estimating the trainable parameters of the model
and can be achieved by optimizing the objective function consisting of a reconstruction loss and certain
regularization terms [9]. In References [30,31], the supervised information was embedded in the cost
function by designing label-related regularization terms. Deng et al. [30] devised a Euclidean distance
restriction in the cost function which encouraged the intra-class distance of features to be a small
value near zero and the inter-class distance to be close to a constant. A similar idea was applied in
Reference [31], where the objective function was tuned according to the SAR ATR task. The authors
devised a regularization term based on the modified triplet loss that combines the semi-hard triplet loss
with the intra-class distance penalty to learn discriminative features with a small intra-class divergence
and a large inter-class divergence. In References [32–34], the task-specialized prior knowledge was
embedded in the objective function of the AE-based model. Xie et al. [32] proposed a new type of AE
and CAE with a modified objective function according to the task of PolSAR image classification, where
the distortion of the reconstructed data to the inputs was measured by the Wishart distance instead of
the ordinary mean square error (MSE) or cross-entropy. Similarly, Wang et al. [33] devised a hybrid AE
for land cover classification, where the Wishart distance and Euclidean distance were jointly applied to
evaluate the reconstruction error between the input and the output according to the distribution of
PolSAR data matrix. In Reference [34], Li et al. proposed a stacked fisher AE for change detection,
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where the ratio difference image (RDI) of multi-temporal SAR images was used as the input and the
distribution of the RDI was introduced to construct the objective function with sparsity regularization.

Although these AE-based models have developed an effective way to learn the robust
representation via an unlabeled SAR dataset and achieved competitive results, the performance
of most of these models is still slightly inferior to their supervised counterparts [35–39] and some
handcrafted features [4,5,7] that are based on the electromagnetic scattering models. The major reasons
include the following:

(1) Most of these models learn representations at a large single scale with the hierarchical structure.
However, without using local and detailed discriminative information at multiple scales,
the classification performance of the features learned by these methods is limited;

(2) Most of the models are optimized according to the minimum reconstruction deviation criterion,
importing useless information of speckle in the learned feature and diluting the discriminative
features that could benefit classification and ATR tasks;

(3) Small incomplete training benchmarks in SAR ATR limit the application of complicated and deeper
DL model due to the large number of trainable parameters and overfitting arising therefrom.

In this paper, a novel unsupervised multi-scale CAE (MSCAE) is proposed which can extract
features at different scales and discard useless information of speckle and background clutter.
The proposed model provides a framework to learn multi-scale features at two levels: the modality
level feature learning achieved by the U-shaped structure and the branch level feature extracted by the
pyramid pooling module (PPM). A modified objective function was devised to tackle the performance
degradation caused by speckle. The reconstruction loss of the MSCAE was measured between the
output and the input filtered by the improved Lee sigma filter (ILSF) [40] to alleviate the influence of
serious speckle in SAR images. The structural similarity index metric (SSIM) was employed as the
measurement of the reconstruction deviation, taking full advantage of the targets’ characteristics such
as the structure and the variation of backscattering intensity. An additional filter regularization term
was also incorporated in the objective function that measures the dissimilarity of the encoded features of
the raw data and the ILSF filtered inputs, guaranteeing that the speckle suppression procedure occurred
during the encoding stage. Moreover, to handle the performance degradation caused by the limited
training dataset, a new convolution layer, named compact depth-wise separable convolution (CSeConv)
layer, and its deconvolution counterpart (CSeDeConv layer) were also developed to reduce the number
of the trainable parameters in the model, alleviating overfitting caused by limited training samples.

The rest of this paper is organized as follows: Section 2 illustrates the key technologies used
to build our MSCAE model, including the CSeConv and CSeDeConv, the PPM processing, and the
specially designed objective function. Furthermore, the technical details of network topology are also
given. Section 3 conducts a series of comparative experiments based on the moving and stationary
target acquisition and recognition (MSTAR) dataset [41,42]. The experimental results of the proposed
network with SOC and various EOCs are presented. Section 4 concludes our work.

2. The Multi-Scale Convolution Auto-Encoder

2.1. Overall Structure of the MSCAE

In this part, we discuss the characteristics and general layout of the proposed MSCAE. As shown
in Figure 1, the MSCAE consists of a series of uniform modalities to learn representations and generate
the reconstructed feature map at different modality levels. Each modality includes an encoder part
and the corresponding decoder part.

In the encoder part of a modality, the CSeConv and the PPM module are applied to learn
multi-scale features at branch level. The input feature map will be convolved with a 5× 5 CSeConv
layer with a stride 2 which means that both the width and the height of the output feature map will
be half the size of the input. Subsequently, the batch normalization (BN) and the rectified linear unit
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(ReLU) activation function will be applied to the convolved feature map. The output feature map will
be processed in two branches: one for multi-scale representation learning with the PPM module and
the other for the processes in next modality after downsampled by a 2× 2 max-pooling layer. It should
be noted that at the coarsest modality level, the PPM module is neglected, and the convolved feature
map is optional. If the input feature map is larger than 5× 5, the convolution layer will be applied.
Otherwise, it will also be neglected. The processed feature map will be directly vectorized to form the
feature vector of the coarsest level.

 

Figure 1. The overall architecture of the U-shaped multi-scale convolution auto-encoder. The feature
vector learnt at each modality level will be converted into vector and concatenated to form the feature
vector for SAR ATR. CSeConv stands for the compact depth-wise separable convolution layer; BN
stands for batch normalization; ReLU stands for the rectified linear unit activation function; CSeDeConv
denotes the compact separable deconvolution layer; PPM stands for the pyramid pooling modul; FAM
stands for the feature aggregation module; ILSF refers to the improved Lee sigma filter; SSIM refers to
the structural similarity index metric.

In the decoder part of each modality, the feature aggregation module (FAM) is adopted to combine
the feature vector learned by the PPM with the feature map reconstructed from the coarser modality
level. The combined feature map is convolved by a 5× 5 CSeDeConv layer with a stride 2 to upsample
the feature map as well as reduce the channel number. At the first modality level, the reconstructed
feature map is convolved with a 3× 3 CSeConv layer followed by a sigmoid activation function, and the
reconstructed image is generated.

The SSIM loss is measured between the reconstructed image and the image filtered by the 9× 9
ILSF to diminish the influence of the speckle. Besides, the speckle suppression restriction is also
computed to force the speckle suppression taking place at the feature learning procedure. Therefore,
an additional auxiliary data flow is fed to the encoder part of the proposed model, where the image
filtered by the 9 × 9 ILSF is encoded with similar modules and parameters at each modality level.
The similarity between the feature vectors learned from the unfiltered image and those learned from
the filtered one will be compared and summarized to construct the speckle suppression restriction.
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The weighted sum of the SSIM loss and the speckle suppression restriction forms the objective function
of the proposed model. Once the model is trained with the dataset, the encoder part will be utilized to
learn representations and the feature vector learned at each modality level will be concatenated to
generate the final feature vector for SAR ATR.

2.2. Compact Depth-Wise Separable Convolution and the Corresponding Deconvolution

The convolution layer, which is the basic structure in CNNs and CAEs, has the capability of
capturing local patterns of input data and generating new representations of jointly encoding space
and channel information. As presented in Figure 2, the standard convolution layer [43] creates Cout

trainable convolution kernels that are convolved with the Win ×Hin × Cin input Fin to produce a
Wout ×Hout × Cout feature map Fout. Here, Win ×Hin and Wout ×Hout are the spatial size of the input
and the output feature maps, respectively; Cin and Cout are the channels of Fin and Fout, respectively.
The size of each trainable convolution kernel is Nk ×Nk ×Cin with Nk being the size of the sliding filter.

Figure 2. The convolution procedure of a standard convolution layer. Given a Win ×Hin ×Cin feature
map Fin with Win ×Hin being the spatial size and Cin being the number of channels of the input feature
map, respectively, the standard convolution layer utilized Cout trainable convolution kernels whose size
is Nk ×Nk ×Cin to produce the Wout ×Hout ×Cout feature map Fout with Wout ×Hout being the spatial
size and Cout being the number of channels of Fout, respectively.

In comparison with the fully connected layer, the number of trainable parameters in a convolution
layer is much fewer due to the shared convolution kernels, substantially decreasing the computational
cost and improving the performance with a small dataset. However, in large-scale deep networks,
where the size of the convolution kernels is quite large and the channel number rises rapidly as the
depth of the network increases, the high computational cost and overfitting caused by massive trainable
parameters are still major causes of performance deterioration. To diminish these problems, various
factorized convolution operators are utilized.

The depth-wise (DW) separable convolution (SeConv) [44], presented in Figure 3, is a typical
factorized convolution operator in channel level which factorizes the standard convolution into two
steps via the DW convolution and the pointwise (PW) convolution. In the DW convolution step, Cin
filters with the size of Nk ×Nk × 1 are applied to every input channel of the Win ×Hin ×Cin feature map
Fin and produce the intermediate feature map that has the same number of channels as that of the
inputs. Subsequently, the PW convolution utilizes Cout filters with the size of 1× 1×Cin to combine the
output of the depth-wise layer and produce the final output feature map Fout.

Another factorized convolution layer is the kernel decomposition convolution (DeCConv) layer
proposed by Simonyan and Zisserman [45] which decomposes the large convolution kernel into a
series of 3× 3 small kernels as depicted in Figure 4. Specifically, a large convolution kernel with the
size Nk ×Nk is approximated by M cascaded 3 × 3 filters, where the number of the 3 × 3 filters is
determined by:

M = (Nk − 1)/2 (1)
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Figure 3. The convolution procedure of the depth-wise (DW) separable convolution (SeConv) layer
that decomposes the standard convolution into two steps: the DW convolution and the point-wise (PW)
convolution. During the DW convolution process, each channel of the Win ×Hin ×Cin feature map, Fin,
is convolved with a filter the size of Nk ×Nk × 1 to generate an intermediate feature map that has Cin

channels. Subsequently, Cout PW filters with the size 1× 1×Cin are adopted to combine the output of
the depth-wise layer and produce the final output feature map, Fout, with the size of Wout ×Hout ×Cout

 

Figure 4. The procedure of the kernel decomposition convolution layer that decomposes the large
convolution kernels into M stacked 3× 3 filters. Given the Win ×Hin ×Cin feature map, Fin, Cout small
convolution kernels with the size of 3× 3×Cin are applied to generate the first intermediate feature
map with the size of W1 ×H1 × Cout. Subsequently, the first intermediate feature map is convolved
successively with Cout small convolution kernels with the size of 3× 3×Cout for M− 1 times, and the
output feature map Fout with the size of Wout ×Hout ×Cout is produced.

During the convolution procedure with stacked 3× 3 filters, activation functions can be employed
after each convolution operator. Given the Win ×Hin × Cin feature map, Fin, Cout small convolution
kernels with the size of 3× 3×Cin are applied to generate the first intermediate feature map with the
size of W1 ×H1 × Cout. Subsequently, the first intermediate feature map is convolved successively
with Cout small convolution kernels with the size of 3× 3×Cout for M− 1 times and the output feature
map Fout with the size of Wout ×Hout × Cout is produced. It is reported that this scheme could not
only significantly decrease the trainable parameters and computational cost but also improve the
representation learning capability of the convolution layer due to the increasing nonlinearity induced
by the activation function of the cascaded 3× 3 convolution layers.

Although these schemes significantly decrease the trainable parameters and computational
cost, the small benchmark in SAR ATR still limit the application of deeper and complicated models.
In this paper, a more compact convolution layer and its deconvolution counterpart are proposed.
The proposed layers combine the kernel decomposition scheme and the DW SeConv scheme, thereby
requiring a smaller number of trainable parameters as well as introducing more nonlinearity for better
representation learning. The proposed compact DW separable convolution (CSeConv) process is
depicted in Figure 5a. Similar to the DW SeConv layer, the standard convolution is split into two steps:
the DW convolution for separable convolution at the channel level and the PW convolution to combine
the filtered features of all channels. Besides, the kernel decomposition scheme is also adopted in the
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DW convolution step, as each DW convolution can be considered as an input with single-channel
convolving with only one kernel. Each large DW kernel is decomposed into a bunch of 3× 3 filters,
each of which is followed by a nonlinear activation function to provide additional nonlinearity [45].
Accordingly, the trainable parameters can be further decreased by the combined scheme.

 

(a) 

 

(b) 

Figure 5. The proposed compact depth-wise separable convolution (CSeConv) and the corresponding
compact separable deconvolution (CSeDeConv)layer which combines the depth-wise (DW) separable
convolution/deconvolution scheme and the kernel decomposition scheme to reduce the trainable
parameters. (a) The procedure of the CSeConv layer; (b) the details of the CSeDeConv. The size of
the input feature map and output feature map in (a) and (b) are Win ×Hin × Cin and Wout ×Hout ×
Cout, respectively.

Its deconvolution counterpart, i.e., the compact separable deconvolution (CSeDeConv) layer
presented in Figure 5b, is devised in the same manner, composed of two steps: the DW separable
deconvolution and the channel-level combination DeConv. In the first step, the deconvolution operator
was applied to each channel of the Win ×Hin ×Cin input feature map, Fin. The kernel decomposition
scheme is also employed to split the Nk ×Nk deconvolution kernel into M− 1 concatenated 3× 3 filters
at the channel level, where M is determined according to (1). Subsequently, Cout deconvolution filters
with the size of 3× 3×Cin are utilized to combine the output of the DW separable deconvolution step
and generate the output feature map Fout with the size of Wout ×Hout ×Cout. It should be noted that if
the stride of either the CSeConv or the CSeDeConv is larger than 1, the convolution/deconvolution
operator with the given stride will be implemented in the last channel level combination step.

To demonstrate the validation of the CSeConv and the CSeDeConv, the mixed national Institute
of standards and technology database (MNIST) of handwritten digits was utilized for evaluation.
A three-layer CAE model with one standard convolution layer and one deconvolution layer was
employed as the baseline model for comparison. Both the convolution layer and the deconvolution
layer had four 5 × 5 filters, and the strides of both the convolution layer and the deconvolution
layer were 4. The trainable parameters were initialized with the He initialization [46], while the
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activation functions of both the convolution and deconvolution layer were ReLU. In the experiment, the
convolution and deconvolution layers were replaced by the proposed CSeConv and the CSeDeConv,
respectively. Accordingly, four CAEs could be generated for comparison: the baseline CAE, the CAE
with the CSeConv layer (CCAE), the CAE with the CSeDeConv layer (CDCAE), and the compact
CAE with the CSeConv layer and CSeDeConv layer (CompactCAE). The original images and the
reconstructed results of the four CAE models are shown in Figure 6a to illustrate the validation of the
proposed layer. Moreover, the training losses of the four models are compared in Figure 6b. As shown
in Figure 6, both the reconstruction results and the training losses of the four CAEs were approximately
the same which demonstrate the validation of the proposed CSeConv layer and CSeDeConv layer.

 

(a) (b) 

Figure 6. Validation Experiments with the mixed national Institute of standards and technology
database (MNIST) dataset. (a) The reconstruction results of the baseline convolution auto-encoder
(CAE), the CAE with the compact depth-wise separable convolution (CSeConv) layer (CCAE), the CAE
with the compact separable deconvolution (CSeDeConv) layer (CDCAE), and the compact CAE with
the CSeConv layer and CSeDeConv layer (CompactCAE) from the top row to the bottom row. (b) The
training losses of the four models.

A brief analysis of the trainable parameters and computational consumption of various convolution
layers are made and compared in Table 1. In our comparison, the size of the input feature map is
supposed to be Win ×Hin with Cin channels, and the size of the convolution kernel is Nk ×Nk × Cin.
In order to simplify the analysis, the stride of the convolution is assumed to be 1, and the padding mode
of the convolution is set to unify the input and output feature maps in size. Consequently, the size of
the output feature map is Win ×Hin with Cout channels. Besides, the addition of feature aggregation is
also ignored as in Reference [36] when the computational consumption with different convolution
layers is compared. The number of trainable parameters Kparam, the computation consumption Lcomp,
and the ratio of calculation consumption between the improved convolution layer and the standard
convolution Ropt = LOther

comp /LStandard
comp are all listed in Table 1. It can easily be found that the number of

trainable parameters and the calculation consumption have been effectively reduced compared with
the standard convolution and other mainstream convolution layers. Moreover, the reduction of the
trainable parameters and the ratio of calculation consumption is only related to the number and size of
the convolution kernel.
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Table 1. Analysis of the trainable parameters and computational consumption of the proposed
convolution layer and some mainstream convolution layers.

Layer Name In Out
Kernel Size Kparam Lcomp Ropt

Ordinary DW PW

Standard

Win ×
Hin ×
Cin

Win ×
Hin ×
Cout

Nk ×Nk ×
Cin

/ /
Cout ×Nk ×Nk ×
Cin

Win ×Hin ×Nk ×Nk ×Cin ×
Cout

1

DW SeConv /
Nk ×
Nk × 1

1× 1×
Cin

Nk ×Nk ×Cin +
Cin ×Cout

W_in×H_in×N_k×N_k×
C_in + W_in×H_in×
C_in×C_ou

1
Cout

+ 1
N2

k

DeCConv

1st:
3× 3×Cin;
Other:3×
3×Cout

/ /

3× 3×Cin ×
Cout + 3× 3×
Cout ×Cout ×
(Nk − 3)/2

W_in×H_in× 3× 3×
C_in×C_out + W_in×
H_in× 3× 3×C_out×
C_out× ((N_k− 3))/2

9
N2

k
+

9Cout(Nk−3)
2Cin×N2

k

CSeConv /
3× 3×
1

1× 1×
Cin

3× 3×Cin ×
(Nk − 1)/2 + 1×
1×Cin ×Cout

W_in×H_in× 3× 3×
C_in× ((N_k− 1))/2 +
W_in×H_in×C_in×C_out

9×(Nk−1)
2N2

k×Cout
+ 1

N2
k

CSeDeConv /
3× 3×
1

3× 3×
Cin

3× 3×Cin ×
(Nk − 3)/2 + 3×
3×Cin ×Cout

W_in×H_in× 3× 3×C_in×
((N_k− 3))/2 + W_in×
H_in× 3× 3×C_in×C_out

9×(Nk−3)
2N2

k×Cout
+ 9

N2
k

2.3. Multi-Scale Representation Learning with Pyramid Pooling Module and Feature Aggregation Module

2.3.1. Pyramid Pooling Module for Multi-Scale Feature Extraction

In most convolution-based deep networks, the spatial pooling operator is utilized as a crucial
element to fuse characteristics of nearby feature bins into a compact representation. The objective of
the spatial pooling process is to transform the joint feature representation into a new compressed, more
effective one that preserves discriminative information while discarding irrelevant detail, the crux of
which is to determine what can benefit the classification performance. Various pooling operators have
been devised based on the sum, the average, the maximum, or some other combination rules and
achieved significant success in computer vision and SAR ATR tasks [47]. However, most of the spatial
pooling operators usually obtain the compact representation at a fixed-size receptive field which is
possibly improper to the structure of the intrinsic characteristics and will lead to either information
loss with too large of a size or feature dilution with too small of a size. Besides, for targets with
a complicated characteristic structure, the fixed-size pooling operators that can only learn features
at a fixed scale is also the major cause for incomplete representation learning and the consequent
performance degradation.

To tackle the problem caused by the fixed-size pooling operators, the pyramid pooling module
(PPM) was devised which was first adopted to generate fixed-length representations from inputs with
varying sizes for deep visual recognition [48]. The PPM provides an effective way to obtain intrinsic
characteristics of complicated targets from the view of multiple scales. In this paper, a modified version
of PPM was devised and adopted in the proposed model to obtain a multi-scale representation at
each modality level. As depicted in Figure 7, a typical PPM in the proposed model consists of four
sub-branches with varying local reception field for pooling to capture the context information of
the input feature maps. The first and the last sub-branches are the global max-pooling layer in the
channel level and feature map level, respectively. For the two middle sub-branches, each of them
consists of an adaptive max-pooling layer and a 3× 3 CSeConv layer followed by a BN operator and
a ReLU activation function. To be more specific, let us suppose the size of the input feature map
is Win ×Hin × Cin. Accordingly, the size of the output feature maps of the first and the last global
max-pooling layers are 1× 1×Cin and Win ×Hin × 1, respectively. The size of the output feature maps of
the adaptive max-pooling layers in the two middle branches will be Win

2 × Hin
2 ×Cin and Win

4 × Hin
4 ×Cin.

The following CSeConv layers in each branch is employed to compress the pooled multi-channel
feature map into a single-channel feature map, i.e., the sizes of the output feature maps of the CSeConv
layers in the two middle sub-branches are Win

2 × Hin
2 × 1 and Win

4 × Hin
4 × 1. Finally, the output feature

maps of the four sub-branches are converted to a single column vector and concatenated to construct
the representation at the current modality level. It should be noted that if the size of the input feature
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map is too small to obtain the feature maps in the overall four sub-branches, part of the branches can
be removed from the typical PPM and the corresponding feature maps can be neglected according to
the image size.

Figure 7. The architecture of the proposed pyramid pooling module (PPM) for multi-scale representation
learning at each modality level. Given an input feature map with the size of Win ×Hin × Cin, the
output feature maps of the four sub-branches of the PPM are with the size of 1× 1×Cin, Win

4 × Hin
4 ×Cin,

Win
2 × Hin

2 ×Cin, and Win ×Hin × 1.

2.3.2. Feature Aggregation Module (FAM) for Feature Map Reconstruction

The utilization of our PPMs in the encoder stage allows the model to learn multi-scale
representations from the input SAR image at different modality levels. However, a new problem that
deserves to be solved is how to seamlessly merge the feature maps from PPMs at different modality
levels and obtain the reconstructed image that is the essential objective of an AE model. To this end,
a series of FAMs are developed each of which contains two parts as illustrated in Figure 8.

In the first part, the feature maps at different scales of the PPM are combined to produce a new
feature map at the current modality level. The multi-scale feature vector at one modality level obtained
by a PPM is first decomposed and reshaped into feature maps of different scales according to the
PPM at the same modality level. Subsequently, the feature maps of different scales are processed in
separate sub-branches. For two middle sub-branches, an upsampling operator and a smooth operator
consisting of a 3× 3 CSeDeConv layer, a BN operator and a ReLU activation function are executed.
For the first and the last sub-branches, only the upsampling operator and the smooth operator are
applied, respectively. Finally, the processed feature maps of different scales are weighted and summed
to generate the feature map of the current modality level. In the second part, the feature map from the
coarser level is merged with the combined multi-scale feature map at the current level. The upsampling
process followed by a 3× 3 CSeDeConv layer, a BN operator and a ReLU activation function is applied
to obtain the feature map of a coarser level that is the same size as the feature map at the current level.
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Subsequently, feature maps from different levels are concatenated together to generate the merged
feature map.

 

Figure 8. The architecture of the proposed feature aggregation module (FAM) for merging multi-scale
representation of different modality levels which consists of two parts. The first part of the proposed
module combines multi-scale feature maps and generates a new feature map at the current modality
level. The input feature vector with the size of 21

16 Wcur ×Hcur + Ccur is decomposed and reshaped
to produces the feature maps in the four sub-branches with the size of 1 × 1 × Ccur,

Wcur
2 × Hcur

2 × 1,
Wcur

4 × Hcur
4 × 1 and Wcur ×Hcur × 1 Subsequently, the upsampling operator and the following smoothing

operator are applied to each sub-branch. The output feature maps of the four sub-branches are weighted
and added to generate the feature map of the first part with the size of Wcur ×Hcur ×Ccur. The second
part of the FAM merges the feature map with the size of Wpre ×Hpre ×Cpre from the coarser modality
level with the combined feature map with the size Wcur ×Hcur ×Ccur at the current modality level. The
input feature map at the coarser level is upsampled and smoothed to generate the upsampled feature
map of the coarser level with the size of Wcur ×Hcur ×Cpre The upsampled feature map is concatenated
with the feature map at the current modality level, generating the new feature map with the size of
Wcur ×Hcur ×

(
Cpre + Ccur

)
.

To be more specific, in the first step, suppose the input feature vector at the current modality
level has the size of 21

16 Wcur ×Hcur + Ccur. The input multi-scale feature vector will be decomposed
and reshaped the feature maps with the size of 1 × 1 × Ccur,

Wcur
2 × Hcur

2 × 1, Wcur
4 × Hcur

4 × 1, and
Wcur ×Hcur × 1, respectively. Subsequently, the upsampling operator and the following smoothing
operator are applied. Accordingly, the output feature maps of the four sub-branches will have the
same size of Wcur ×Hcur ×Ccur. Finally, the four feature maps are weighted and added to generate the
feature map of the current modality level with the size of Wcur ×Hcur × Ccur. In the second step, let
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the input feature map at the coarser level have the size of Wpre ×Hpre × Cpre with Wpre ×Hpre being
the spatial size of the input feature map and Cpre being the number of channels at the coarser level.
The feature map from the coarser level is upsampled and smoothed by a 3× 3 CSeDeConv layer, a BN
operator, and a ReLU activation function. Finally, the upsampled feature map of the coarser level
with the size of Wcur ×Hcur ×Cpre is concatenated with the feature map at the current modality level,
generating the new feature map with the size of Wcur ×Hcur ×

(
Cpre + Ccur

)
.

2.4. Loss Function Based on the Modified Reconstruction Loss and Speckle Filtering Restriction

Typically, an AE-based model provides a symmetrical frame on learning latent representation of
candidate targets by mapping the inputs into a low dimensional feature space at the encoder stage and
approximately reconstruct the inputs from the learned features at the decoder stage. The objective
of the AE-based model is to minimize the loss function that measures the distortion between the
inputs and the outputs to guarantee that the mapping process preserves the information of the inputs.
The commonly used loss functions, such as the MSE, cross-entropy, and the Minkowski distance in the
field of deep learning, concern the total bias of pixel values or distributions and neglect the structural
information of the candidate targets, leading to performance degradation in SAR ATR. Therefore,
the SSIM loss function [49] is employed in the proposed model which simultaneously compares the
similarity of two images over the structure, the luminance, and the contrast, gaining significant success
in the computer vision domain. Suppose the input image of an AE-based model is x and the output of
the model is x̂, the SSIM loss function can be:

LSSIM(x, x̂) = E

⎛⎜⎜⎜⎜⎜⎜⎝ (2μxμx̂ + c1)(2σxx̂ + c2)(
μ2

x + μ
2
x̂ + c1

)(
σ2

x + σ
2
x̂ + c2

) ⎞⎟⎟⎟⎟⎟⎟⎠, (2)

where μx and μx̂ are the local average in a 11 × 11 sliding window of x and x̂, respectively; σ2
x and

σ2
x̂ are the local variance in a 11 × 11 sliding window of x and x̂, respectively; σxx̂ is the correlation

coefficient in a 11× 11 sliding window; c1 = (K1L)2 and c2 = (K2L)2 are two constants with K1 = 0.01
and K2 = 0.03; L is the dynamic range of the pixel values (1.0 for normalized SAR images); E(·) is
the expectation operator. While calculating the SSIM loss of two images, the sliding window will be
moved pixel by pixel over the entire image. At each step, the local statistics and the local SSIM loss are
computed in the window. Finally, the SSIM of the entire image is computed by averaging the local
SSIM of each step.

Another problem is that in most conditions there is serious speckle in the target patches which
not only have little information about the target but affect the ATR capability of the learned features.
To alleviate their influence, the reconstruction loss is modified by measuring the distortion between
the outputs and the speckle filtered images instead of the original input data. Consequently, the model
will be forced to learn the characteristics of the targets rather than the background clutter, and the
prior knowledge of speckle suppression can be embedded in the MSCAE during the model training
procedure. In the proposed model, the ILSF is employed to generate the speckle suppressed image due
to the fact of its excellent capability in maintaining detailed structures, strongly reflecting and scattering
targets, and smoothing undesired background clutter [50]. Moreover, an additional restriction is
devised to guarantee that the speckle suppression process is taken place in the encoder stage and little
information on the speckle will be learned. The restriction is implemented by comparing the difference
between the features learned from the original inputs and those learned from the speckle suppressed
images. Accordingly, the loss function of the proposed model is

LMSCAE =
1
N

N∑
i=1

LSSIM
(
x̂i, xILSF

i

)
+ α

C∑
j=1

||hij − hILSF
ij ||2 (3)

149



Sensors 2020, 20, 1533

where Dtrain = {xi}Ni=1 is the training dataset with xi being the ith target patch and N being the number
of samples; x̂i and xILSF

i are the output image of the proposed model and the speckle suppressed
version of xi, respectively; ||·||2 is the l − 2 norm; hij and hILSF

ij are the encoded feature vectors of xi

and xILSF
i at scale j, respectively; C is the number of modality levels; α is the coefficient of the speckle

suppression restriction, which can be 0.01/C in most SAR ATR tasks.

3. Experiments and Discussion

3.1. Experimental Data Sets

In this study, the representation learning capability of the proposed model was evaluated by the
MSTAR dataset [42] which is jointly sponsored by the US Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL). There were a total of ten distinctive types of
vehicles in the dataset as shown in Figure 9, including the armored personnel carrier BMP-2, BRDM-2,
BTR-60, and BTR-70; the tank T-62 and T-72; the rocket launcher 2S1; the air defense unit ZSU-234;
the truck ZIL-131; and the bulldozer D7. The images were collected by an X-band SAR in spotlight
mode with the resolution of 0.3 m× 0.3 m and split into tens of thousands of small patches centered on
the candidate targets and surrounded by varying background clutter. These small patches provide
full-aspect coverage from 0◦ to 360◦ and different views at various depression angles for each type of
the ten vehicles. Detailed information including the type, the serial number (Serial No.), the depression
angle, and the number of samples are all listed in Table 2.

 

Figure 9. Photographs (the first row) and SAR imagery examples (the second row) of the moving and
stationary target acquisition and recognition (MSTAR) dataset for model evaluation. From left to right,
the types of vehicles are 2S1, BMP-2, BRDM-2, BTR-60, BTR-70, D7, T-62, T-72, ZIL-131, and ZSU-234.

Table 2. Detailed information of the MSTAR dataset.

Type Serial Number
Number of Samples

17◦ Depression 15◦ Depression

2S1 b01 299 274

BMP-2
9563 233 195
9566 232 196
c21 233 196

BRDM-2 E-71 298 274
BTR-60 K10yt7532 256 195
BTR-70 c71 233 196

D7 92v13015 299 274
T-62 A51 299 273

T-72
132 232 196
812 231 195
s7 233 191

ZIL-131 E12 299 274
ZSU-234 d08 299 274

In order to ensure comprehensive access to the performance, the proposed MSCAE was tested
under standard operating condition (SOC) and various extended operating conditions (EOCs) including
substantial variations in the signal-to-noise ratio (SNR), resolution, and version. In our experiments,
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the proposed model was first validated on three similar targets, namely, BMP-2, BTR-70, and T-72,
to validate its performance under SOC and version variants. Subsequently, validation of the SSIM loss,
the PPM, the CseConv, and CSeDeConv and the speckle suppression scheme are all discussed based
on the three-target dataset. Experiments on 10 class MSTAR data were also conducted to evaluate the
performance under the extension of the target type. Finally, the robustness of the proposed model
under various conditions, including noise corruption and resolution variance, was also evaluated
with the ten-target dataset. For both the three-target dataset and the ten-target dataset, the patches
acquired at the 17◦ depression angle were utilized as training samples, while those obtained at the
15◦ depression angle constructed the test set. Similar to the experimental setting in References [30,31],
only the data from BMP2-9563 and T72-132 were used, as the samples of the BMP-2 and T-72 were
used to construct the training dataset. But in the test dataset, images of all serial numbers (i.e., version
variants) were used to test the performance of the proposed method.

3.2. Experiment Configuration

3.2.1. Data Preprocessing

In most deep networks, including the proposed model, the size of the input images is required
to be the same. Meanwhile, the size of target patches in the MSTAR dataset can vary from 128× 128
to 158 × 158. Consequently, the input target patches should be resized to the same shape, which is
128 × 128 in this study, before being used for model training and performance validation. In this
study, the image crop processing based on the centroid of the target region is adopted. The ILSF is
firstly applied to suppress the speckle and background clutter in the small patches. Subsequently,
a two-parameter constant false alarm rate (CFAR) detector is executed to obtain the target region of
each patch. The centroid is calculated by averaging the coordinates of the target pixels weighted by
their pixel values. Finally, only the 128× 128 region surrounding the centroid will remain, while other
regions will be removed.

Another preprocessing step is the normalization process. It can be found that in many target
patches, the intensity of targets seriously varies which possibly conceals the differences among targets
and, thus, affect the performance of the learned features. Accordingly, intensity normalization was
adopted to alleviate the amplitude variation in target patches, mapping the pixel intensities onto
the range [0, 1]. Except for image resizing and normalization, no other preprocessing, such as data
augmentation (DA) or target segmentation, were applied.

3.2.2. Model Configuration and Experiment Design

In our experiments, an MSCAE with four modality levels was utilized to obtain multi-scale
representations of the MSTAR data. The model parameters and the fan-ins and fan-outs of each level
are listed in Table 3. As depicted in the table, there were some changes in the third and fourth levels.
In the third level, the size of the feature map was downsampled from 16× 16× 16 to 4× 4× 32 after
the 2× 2 max-pooling and the 5× 5 CseConv with a stride of 2. While feeding the feature map to the
PPM block, the output feature maps of the four sub-branches of the typical PPM should have the
size of 4 × 4 × 1, 2 × 2 × 32, 1 × 1 × 32 and 1 × 1 × 32, respectively. The outputs of the third and the
fourth sub-branch were the same, bringing in redundant information and had little contribution to
the target discrimination. Accordingly, the fourth sub-branch, which provides a feature map with
global max-pooling in channel level, was removed, and the corresponding feature map was neglected.
The FAM in the same modality level was also changed by removing the corresponding sub-branches
while combining the feature maps obtained by the PPM. In the fourth modality level, since the size of
the input feature map was smaller than 5× 5, the optional CseConv layer was removed, and only the
2× 2 max-pooling layer was applied before drawing the feature vector of the coarsest level.
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Table 3. The main structure of the MSCAE with four modality levels utilized in the experiments.

Stage Level Input Size Processes Output Size Feature Size

Encoder

1 128× 128× 1
⎛⎜⎜⎜⎜⎜⎜⎝ CSeConv, 5× 5× 1, 8, stride 2

BN + ReLU
PPM Block

⎞⎟⎟⎟⎟⎟⎟⎠ 64× 64× 8
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64× 64× 1
32× 32× 8
16× 16× 8
1× 1× 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2 64× 64× 8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Max Pooling, 2× 2

CSeConv, 5× 5× 8, 16, stride 2
BN + ReLU
PPM Block

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
16× 16× 16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
16× 16× 1
8× 8× 16
4× 4× 16
1× 1× 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3 16× 16× 16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Max Pooling, 2× 2

CSeConv, 5× 5× 16, 32, stride 2
BN + ReLU
PPM Block

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4× 4× 32

⎛⎜⎜⎜⎜⎜⎜⎝ 4× 4× 1
2× 2× 32
1× 1× 32

⎞⎟⎟⎟⎟⎟⎟⎠
4 4× 4× 32

(
Max Pooling, 2× 2

Vectorization

)
2× 2× 32 128× 1× 1

Decoder

4 128× 1× 1 Reshape 2× 2× 32 -

3
(

2× 2× 32
176× 1× 1

) ⎛⎜⎜⎜⎜⎜⎜⎝ FAM Block
CSeDeConv, 5× 5× 64, 16, Stride 2

BN + ReLU

⎞⎟⎟⎟⎟⎟⎟⎠ 8× 8× 16 -

2
(

8× 8× 16
1152× 1× 1

) ⎛⎜⎜⎜⎜⎜⎜⎝ FAM Block
CSeDeConv, 5× 5× 32, 8, Stride 2

BN + ReLU

⎞⎟⎟⎟⎟⎟⎟⎠ 32× 32× 8 -

1
(

32× 32× 8
14344× 1× 1

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
FAM Block

CSeDeConv, 5× 5× 16, 4, Stride 2
CSeDeConv, 3× 3× 4, 1, Stride 1

Sigmoid

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
128× 128× 1 -

All the convolution kernels of the MSCAE were also initialized with the He initialization [46].
After initialization, the model was trained with the preprocessed training dataset, and the Adam
optimizer [51] was utilized to optimize the model with an initial learning rate of 0.001. The exponential
decay rates β1 and β2 for the moment estimates were 0.9 and 0.999, respectively. The batch of the
training samples was 32. The maximum number of iterations was 500, and the early-stopping scheme
was enabled to terminate the training if the improvement of the training loss was less than the threshold.
In our experiments, the nonlinear SVM (NSVM) was employed for classification after extracting
features from the target patches. Moreover, to avoid fluctuations in the results caused by random steps
in the model initialization and optimization, each experiment was repeated ten times, and the average
of the results were utilized for performance evaluation.

Experiments were carried out in a 64 bit Windows 10 system. The proposed model was mainly
built on the Google Tensorflow v1.5.0 deep learning library in the Python development environment
PyCharm. The hardware platform was a specially adapted DELL T5810 workstation with an Intel
Xeon E5-1607 v3 @ 3.10 GHz CPU, 32 GB DDR4 RAM and an NVIDIA K40c (12G memory) GPU with
CUDA8.0 accelerating calculation.

3.3. Evaluation on Three-target Classification

The average results of the ten experiments with the three-target dataset are depicted in Table 4.
The performance was measured by the probability of correct classification (Pcc) which is calculated
through the number of targets recognized correctly divided by the number of all the targets. The results
with and without version variants are listed in the sixth and fifth columns of the table, respectively.
A comparison experiment was also conducted to demonstrate the performance improvement induced
by the multi-scale feature learning architecture. Classification rates with various feature combinations
are evaluated and compared.

As shown in Table 4, for the experiment without version variants (i.e., under SOC), the proposed
model had the highest accuracy (i.e., 99.73%) when features from all modality levels were utilized.
Meanwhile, in the case with variants only, the accuracy of the proposed model with various feature
combinations suffered a slight degradation due to the differences in local structure and small equipment
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of varied serial numbers. However, the accuracy obtained by the model with features from all levels
was still higher than 98%, indicating a good generalization performance. The average accuracies
of these methods with all the test data are listed in the seventh column of Table 4. It can be found
that when features from multiple scales are combined, the average Pcc of 99.14% is competitive to
the state-of-the-art results provided by the supervised neural networks. The major reason is that the
proposed two-level multi-scale feature extraction structure guarantees that the MSCAE can learn the
high-level abstracted properties while preserving the detailed information that is neglected by most DL
networks. Besides, the specifically designed objective function with speckle suppression and SSIM can
diminish the influence of serious speckle in SAR images and take full advantage of the target structure
caused by the backscattering. In addition, the proposed compact convolution and deconvolution
processes greatly decrease the number of trainable parameters and introduce more nonlinearity that
slightly benefits the model capability.

Table 4. Classification results on the three-target dataset.

Scheme BMP-2 BTR-70 T-72 Without Variants Variants Only Average Pcc

L 1 89.05% 99.39% 99.79% 96.15% 94.34% 95.12%
L 2 87.01% 98.88% 96.02% 95.13% 92.28% 92.56%
L 3 82.35% 98.06% 96.01% 93.08% 90.37% 90.44%
L 4 77.92% 93.88% 96.80% 90.23% 86.78% 88.26%

L 1+2 95.33% 99.39% 99.14% 98.47% 97.35% 97.54%
L 1+3 94.52% 98.98% 99.38% 98.30% 96.95% 97.24%
L 1+4 93.94% 99.39% 99.62% 98.26% 96.92% 97.14%
L 2+3 96.13% 97.76% 96.70% 97.55% 96.27% 96.61%
L 2+4 93.52% 98.98% 99.48% 97.75% 96.74% 96.85%
L 3+4 92.22% 98.67% 99.48% 97.38% 96.05% 96.25%

L 1+2+3 96.70% 99.39% 99.90% 99.25% 98.15% 98.45%
L 1+2+4 95.57% 99.39% 99.79% 98.91% 97.62% 97.92%
L 1+3+4 95.30% 99.39% 99.90% 98.26% 97.53% 97.85%
L 2+3+4 95.06% 99.18% 99.90% 98.50% 97.54% 97.71%

All 99.05% 99.69% 99.04% 99.73% 98.69% 99.14%

Other features extraction methods were also compared with the proposed method for further
evaluation including the baseline handcrafted methods and the DL networks which were obtained
from the state-of-the-art results. The baseline handcrafted methods include the PCA-kernel SVM
(PCA-KSVM) [52], the joint sparse representation based method (JSRC) [53], the particle swarm
optimization with Hausdorff distance (PSO-HD) [54], the non-negative matrix factorization (NMF)
method [55], the attributed scattering center matching method (ASCM) [7], and the 3D scattering center
model reconstruction method (3D-SCM) [5]. Among these methods, the PCA-KSVM method employs
the nonlinear PCA to extract discriminative feature and, subsequently, feeds the features into the SVM
classifier. The JSRC method exploits the inter-correlations among the multiple views using joint sparse
representation over a training dictionary. The PSO-HD is a pattern matching method that minimizes the
Hausdorff distance over rigid transformations. The NMF method utilized the NMF with an L1/2 norm
constraint to extract features in SAR images. The ASCM and the 3D-SCM were devised based on the
backscattering model of the SAR image and achieved state-of-the-art results in SAR ATR. The ASCM
proposed a SAR ATR method, where the ASCs were utilized for target reconstruction and similarity
measurement. In the 3D-SCM method, the 3D scattering center model, established offline from the
CAD model of the target, was employed to predict the 2D scattering centers for template matching.
The DL networks for comparison were composed of the restricted RBM (RRBM) [56], the CNN with
DA (DA-CNN) [57] and additional data generated by image processing methods, the CNN with SVM
(CNN+SVM) [37], the A-Convnet [57] that replaced the fully connected layers with a convolution layer
in a CNN, the sparse AE pre-trained CNN (AE-CNN) [58] where the convolution kernel was trained
on randomly sampled image patches using unsupervised sparse auto-encoder, the ED-AE [30], and the
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Triplet-DAE [31]. Among these methods, the CNN with SVM and the A-Convnet were implemented
in our codes with Python. In our implementation, preprocessing included image cropping, speckle
filtering with ILSF, and normalization was applied to these methods. Besides, the additional DA
scheme was also executed to generate sufficient training samples for the CNN with SVM model and
the A-Convnet according to References [37,38]. The configurations of the CNN with SVM and the
A-Convnet were determined according to References [37,38]. The accuracies of all the methods are
shown in Figure 10. The features learned by the proposed method had a better classification capability
than most handcrafted methods, even comparing them with ASCM and 3D-SCM which achieved
state-of-the-art results for handcrafted features, because of the multi-scale feature learning scheme and
the specifically designed objective function. Comparison with deep networks, including the DA-CNN,
the RRBM, the AE-CNN, and the ED-AE, also indicates that the proposed model outperformed most of
the DL models which have specialized restrictions for finding discriminative features. Even compared
with the CNN+SVM and the A-Convnet that achieved state-of-the-art results, the proposed method
obtained a comparable result.

 

Figure 10. Performance comparison with baseline handcrafted feature extraction methods and deep
representation models via the three-target dataset.

3.4. Validation of the Model Component

In order to investigate the contribution of each proposed component in the MSCAE, including
the PPM, the CSeConv, the SSIM measurement, the ILSF, and the speckle suppression restriction,
validation experiments were conducted. Each component was removed from the MSCAE to reveal
the performance improvement induced by it. Accordingly, we obtained five models for performance
validation, marked as MSCAE no. 1 to no. 5 in Table 5. In model no. 1, the PPMs and the
corresponding FAMs at each modality were removed from the MSCAE, and the multi-scale features
were only generated by the U-shaped architecture. In model no. 2, the CSeConv and the corresponding
CSeDeConv layers were all replaced by the standard convolution layers. In model no. 3, the SSIM
measurement was replaced by the MSE loss. In model no. 4, all the data flows and restrictions that
related to the ILSF were removed from the MSCAE model, while in model no. 5 only the restriction
term in the objective function was removed. The three-target MSTAR dataset was utilized to evaluate
their performance and each experiment was conducted ten times. The average accuracy of the five
models and the proposed MSCAE models are listed in Table 5. As shown in the table, the PPM and the
SSIM measurement contributed the most to improving the accuracy, 2.85% and 1.83% respectively,
while CSeConv and the CSeDeConv only improved the accuracy approximately 0.41%. However,
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the proposed CSeConv and CSeDeConv can remarkably reduce the number of trainable parameters in
the proposed model that can greatly benefit its performance with a small training dataset. To further
illustrate their contribution, an experiment which evaluated the model performance with a limited
training sample was conducted by randomly removing a part of the sample in the training set. In this
experiment, only 1/n images were randomly selected from the dataset as training samples with n
varying from one to ten. The average accuracies and their standard deviations with the proposed
MSCAE and model no. 2 are presented in Figure 11. As shown in the figure, the proposed model
achieved an accuracy higher than 90% when only 20% of the sample was utilized to train the model,
while the Pcc of the MSCAE no. 2 that had much more trainable parameters than the proposed model
fell below 85%. Moreover, when the size of the training dataset was only 1/10 of the original one, the Pcc

of the MSCAE no. 2 fell below 60% and the proposed MSCAE still had an accuracy higher than 70%.

Table 5. Validation of the components in the proposed MSCAE model.

Model Description BMP-2 BTR-70 T-72 Pcc

No. 1 No PPM and FAM 93.41% 98.81% 99.66% 96.85%
No. 2 No CSeConv and CSeDeConv 97.33% 99.66% 99.83% 98.73%
No. 3 MSE Measurement 93.98% 99.83% 99.83% 97.31%
No. 4 No ILSF 95.17% 99.15% 99.71% 97.68%
No. 5 No Speckle Suppression Restriction 96.15% 99.49% 99.60% 98.10%

Baseline The proposed MSCAE 99.05% 99.69% 99.04% 99.14%

 

Figure 11. Validation of the proposed model with a small dataset when 1/n samples were randomly
selected to train the model.

3.5. Evaluation on Ten-Target Classification

The average results of the ten experiments with the ten-target MSTAR dataset are depicted in
Table 6. It can be found that by combining the features of all the four levels, the classification accuracy
obtained an improvement that increased from 98.5% to 98.9%, in comparison with the highest Pcc

achieved by the feature vector that combined the learned representations of the first three modality
levels. Many other feature extraction methods and representation learning models were also compared
with the MSCAE for further evaluation, including the baseline handcrafted features, the unsupervised
DL models, and the supervised models. The baseline handcrafted features for evaluation includes
the NMF method [55], the sparse representation of monogenic signal via Riemannian manifolds
(SRRMs) [59], the weighted multi-task kernel sparse representation (WMTKSR) [60], and the ASCM [7].
Among these methods, the SRRM utilizes the covariance descriptor of the monogenic signal as the
features, and classifies the targets with the Riemannian manifold embedded in an implicit reproduction
of the kernel Hilbert space (RKHS). The WMTKSR maps the multi-scale monogenic features into a

155



Sensors 2020, 20, 1533

high-dimensional kernel feature space using the nonlinear mapping associated with a kernel function,
and the classification process is formulated as a joint covariate selection problem across a group of
related tasks. The unsupervised DL models comprise the multi-discriminator generative adversarial
network (MGAN-CNN) that generates unlabeled images with GAN and sets them as the input of CNN
together with original labeled images [61], the feature fusion SAE (FFAE) [15] that extracts 23 baseline
features and three-patch local binary pattern (TPLBP) features and, subsequently, feeds them into an
SAE for feature fusion and the variational AE based on residual network (ResVAE) [22]. The supervised
models for performance evaluation are the ED-AE [30], the Triplet-DAE [31], the CNN with SVM [37],
the A-Convnet [38], the ESENet that based on a new enhanced squeeze and excitation (enhanced-SE)
module [35], and the hierarchical fusion of CNN and ASC (ASC-CNN) that provide a complicated
scheme to fuse the decision of the ASC model and the CNN [39]. Among these methods, the CNN
with SVM and the A-Convnet are implemented in our codes with Python. In our implementation,
preprocessing included image cropping, speckle filtering with ILSF, and normalization was applied
to the two methods. Besides, an additional DA scheme was also executed to generate sufficient
training samples for the CNN with an SVM model and the A-Convnet according to References [37,38].
Therefore, both the results of the two models with and without DA processes were compared in our
experiment to make a comprehensive and equal analysis. The configurations of the CNN with SVM
and the A-Convnet were determined according to References [37,38]. In the experiments, each of the
CNN with SVM and the A-Convnet was executed and tested ten times, and the average classification
accuracy was utilized for performance evaluation.

Table 6. Classification results of the ten-target MSTAR dataset.

Scheme 2S1 BMP-2 BRDM-2 BTR-60 BTR-70 D7 T-62 T-72 ZIL-131 ZSU-234 Pcc

L. 1 95.3% 89.8% 93.1% 96.9% 99.0% 98.2% 95.6% 99.8% 98.5% 99.3% 96.1%
L. 2 88.7% 86.2% 88.3% 93.3% 94.4% 93.8% 89.7% 97.8% 98.2% 98.9% 92.7%
L. 3 83.2% 91.8% 87.6% 88.2% 93.4% 94.2% 85.7% 95.4% 94.9% 96.7% 91.6%
L. 4 75.5% 85.2% 81.8% 81.5% 91.8% 94.5% 83.2% 92.8% 79.9% 97.8% 86.9%

L. 1+2 94.9% 95.7% 93.8% 97.9% 98.5% 99.3% 96.3% 99.8% 99.3% 100.0% 97.6%
L. 1+3 96.7% 95.9% 94.2% 99.5% 99.5% 99.6% 95.6% 99.8% 98.5% 99.6% 97.8%
L. 1+4 97.1% 93.9% 94.2% 97.9% 99.0% 100.0% 97.4% 99.8% 98.5% 99.6% 97.5%
L. 2+3 92.7% 91.8% 97.4% 97.4% 99.5% 98.2% 93.4% 98.8% 98.2% 99.3% 95.7%
L. 2+4 90.9% 92.3% 90.9% 95.9% 98.5% 97.8% 94.1% 97.8% 97.8% 98.9% 95.3%
L. 3+4 86.5% 93.9% 92.3% 92.3% 96.9% 97.8% 89.7% 96.9% 94.5% 97.1% 94.1%

L. 1+2+3 96.7% 97.6% 96.4% 99.0% 99.5% 99.6% 97.1% 99.8% 98.9% 100.0% 98.5%
L. 1+2+4 96.7% 97.4% 95.3% 97.9% 99.5% 99.6% 97.4% 99.7% 99.3% 100.0% 98.3%
L. 1+3+4 96.7% 98.0% 96.0% 98.5% 99.5% 99.6% 96.7% 99.8% 98.5% 99.6% 98.4%
L. 2+3+4 94.2% 93.4% 98.5% 99.5% 99.5% 98.5% 93.0% 98.3% 97.8% 99.3% 96.2%

ALL 99.3% 98.3% 98.5% 99.0% 99.5% 99.6% 98.5% 99.8% 99.3% 100.0% 98.9%

The classification results of all the methods are depicted in Figure 12. It can easily be found that
the classification accuracy of the proposed method was much higher than most of the traditional
handcrafted features. Although the accuracy of the proposed model was a bit lower than the ASCM
feature that achieved state-of-the-art results with the scattering center model, the result obtained
by the proposed model was still comparable and can adaptively extract features without manual
intervention. Compared with most of the deep representation learning methods (e.g., the ED-AE,
the Triple-DAE, the MGAN-CNN, and the ESENet), the proposed model also yielded much better
performance. In comparison with the CNN with SVM, the A-Convnet and the ASC-CNN that achieved
state-of-the-art results, the proposed MSCAE was also competitive. The results achieved by the CNN
with SVM and the A-Convnet without DA preprocess demonstrated that their high classification rates
mainly relied on the DA operations. Although their DA processes did improve the performance, they
induced certain problems including bringing in man-made uncertainty and unstable performance,
amplifying the sampling biases in the original dataset, and high computational complexity. The results
obtained by the ASC-CNN devised a complex decision fusion strategy to improve the accuracy obtained
by the ASC and the CNN separately. Although the performance of the proposed model was better
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than the proposed model, it requires a complicated process to extract the ASC features and higher
computational complexity.

 

Figure 12. Performance comparison on the ten-target dataset with different handcrafted feature
extraction methods and deep representation models.

3.6. Classification Experiment with Noise Corruption

An important characteristic of SAR data is that serious noise can often be observed in the images,
which is a major factor causing performance deterioration in SAR ATR. Accordingly, to demonstrate
the robustness of the proposed model, the SAR images corrupted by different levels of SNRs were
simulated to evaluate the model’s robustness to noise. The original MSTAR images that had an SNR
over 30 dB were considered as noise-free sources. To obtain the noise-contaminated images, the original
MSTAR patches were first transformed into the frequency-aspect domain with the 2D inverse discrete
Fourier transform (IDFT), and different levels of additive complex Gaussian noises were added to the
transformed images with the SNR defined in Equation (4) in accordance with Reference [5].

NR(dB) = 10log10

∑U−1
u=0

∑V−1
v=0

∣∣∣ f (u, v)
∣∣∣2

HWσ2 (4)

where f (h, w) denotes the complex RCS computed by the EM code; σ2 is the variance of the complex
noise. By transforming the noisy RCS into the image domain using the same imaging process,
the noise-contaminated images can be generated for experimental evaluation. Figure 13 presents some
contaminated images with different SNRs.

Some input images and the corresponding reconstruction results at 10 dB and −10 dB SNR
are presented in Figure 14 for comparison. Although many inputs at −10 dB SNR were seriously
contaminated such that the targets in the patches can merely be observed, the output images of the
trained model successfully reconstructed the major parts of the targets, demonstrating the excellent
noise suppression capability of the proposed model. The average classification results and the
corresponding standard deviations with noise-contaminated data under different SNRs are shown
in Figure 15. The average experimental results with other methods are also presented in the figure
including the Triplet-CAE, the CNN with SVM, and the A-Convnet. With the decreasing SNR of the
input images, the classification accuracy of all the models suffers different degrees of deterioration and
the highest was obtained by the proposed model at nearly every SNR level. When the SNR was higher
than 0 dB such that the geometric and scattering characteristics were not seriously interrupted by the
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noise, each model reported a classification rate higher than 85%, and the proposed model achieved the
highest accuracy. Even when the noise level was −10 dB such that most of the targets were concealed
in the noise, as presented in Figures 13 and 14, the classification rate of the MSCAE still yielded a
better performance than the other reference models in Figure 15, demonstrating the robustness of the
proposed model under serious noise interruption.

      

(a) (b) (c) (d) (e) (f) 

Figure 13. The noise interrupted images with different signal-to-noise ratios (SNRs). (a) The original
image, (b) the SNR at 10 dB, (c) the SNR at 5 dB, (d) the SNR at 0 dB, (e) the SNR at −5 dB, and (f) the
SNR at −10 dB.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. The input images and reconstruction results of the trained model at the noise levels of 10 dB
SNR and −10 dB SNR. (a) Input images at a noise level of 10 dB SNR, (b) the reconstructed results of
(a), (c) the input images at a noise level of -10dB SNR, (d) the reconstructed results of (c).
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Figure 15. Classification results at different SNR levels.

3.7. Classification Experiment with Resolution Variance

The proposed model was subsequently evaluated concerning resolution variance. Theoretically,
the range resolution and azimuth resolution of the SAR imagery was determined by the bandwidth of
the transmitted wave and the synthetic aperture angle. However, due to the instability of the radars,
the actual resolution of the measured SAR images would fluctuate around the theoretical values.
Meanwhile, it was infeasible to train and maintain models at every possible resolution. Consequently,
the robustness of resolution variation is also an important factor for model performance evaluation.
Because the resolution of all target patches in the MSTAR dataset was 0.3 m× 0.3 m, the target patches
with varied resolution should be simulated from the original images in the dataset. The spatial SAR
images were converted into the frequency-aspect domain by the 2D-IDFT, and the sub-band was
extracted. The sub-band data were subsequently resampled by zero-padding in the frequency domain
and turned back to the spatial domain.

In the evaluation experiment, the resolution of the simulated data varied from 0.3 m× 0.3 m to
0.7 m × 0.7 m, and some images at different resolutions are presented in Figure 16. Similar to the
configuration of the noise interruption experiment, the classification results of the proposed model
are compared with the three reference models including the Triplet-DAE, the CNN with SVM, and
the A-Convnet. At each resolution level, the experiment of each model was executed ten times to
alleviate the influence of randomness caused by the model initialization and optimization. The average
experimental results of each model are plotted in Figure 17. As shown in the figure, limited resolution
deterioration did not seriously affect the performance of all the models. Even when the resolution
was 0.6 m× 0.6 m, their average accuracy was still higher than 90%. However, the proposed model
still gained the highest classification rate in comparison with the reference models at almost all the
resolutions, illustrating its robustness under the extended operation condition of resolution variance.
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(a) (b) (c) 

  

 

(d) (e)  

Figure 16. MSTAR data at different resolution. (a) 0.3 m × 0.3 m, (b) 0.4 m × 0.4 m, (c) 0.5 m × 0.5 m,
(d) 0.6 m × 0.6 m, (e) 0.7 m × 0.7 m.

 

Figure 17. Classification results at different resolutions.

4. Conclusions and Future Work

In this paper, an unsupervised representation learning model was proposed, providing an effective
way to learn the multi-scale representation of targets in SAR images via its U-shaped architecture,
the CSeConv and the PPM blocks, and the modified loss function based on the SSIM and the restriction
of speckle suppression. The major contributions of our work include:

(1) A proposed unsupervised multi-scale representation learning framework for feature extraction
in SAR ATR. The utilization of the U-shaped multi-scale architecture and the PPM blocks
simultaneously obtained abstract features and local detailed characteristics of targets, boosting
the representational power of the proposed model;

(2) An objective function composed of a modified reconstruction loss and a speckle suppression
restriction. The reconstruction loss based on SSIM and ILSF forces the MSCAE to learn adaptive
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speckle suppression capability, while the restriction guarantees that the speckle filtering procedure
was implemented in the feature learning step;

(3) The CSeConv and the CSeDeConv decreased the trainable parameters and calculation
consumption, avoiding overfitting caused by insufficient samples. Moreover, they introduced
more nonlinearity and slightly improved the performance of the MSCAE.

The MSTAR dataset was utilized to evaluate the performance of the proposed model. The proposed
method was tested under both standard operating conditions and several extended operating conditions
with both the three-target dataset and the ten-target dataset including the version variants, the noise
corruption, and the resolution variance. Evaluation experiments demonstrated that the proposed
method outperformed most of the conventional and deep learning algorithms and achieved comparable
accuracy to the state-of-the-art results without any supervised information.
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Abstract: A fully-polarimetric unitary multiple signal classification (UMUSIC) tomography algorithm
is proposed, which can be used for acquiring high-resolution three-dimensional (3D) imagery,
in a polarimetric multiple-input multiple-output synthetic aperture radar (MIMO-SAR) with a small
number of baselines. In terms of the elevation resolution, UMUSIC provides an improvement
over standard MUSIC by utilizing the conjugate of the complex sample data and converting the
complex covariance matrix into a real matrix. The combination of UMUSIC and fully-polarimetric
data permits a further reduction of the noise of the sample covariance matrix, which is obtained
through pixel averaging of multiple two-dimensional (2D) images. Considering the consistency of
four polarizations, this algorithm not only makes scattering centers have the same estimated height
in four polarizations, but it also improves the estimation accuracy. Simulation results show that
this algorithm outperforms the popular distributed compressed sensing (DCS). Image processing of
measured data of an aircraft model using a multiple-input multiple-output synthetic aperture radar
(MIMO-SAR) with six baselines is presented to validate the proposed algorithm.

Keywords: polarimetric; SAR tomography; MIMO radar

1. Introduction

Multiple-input multiple-output synthetic aperture radar (MIMO-SAR) is an enabling technique
capable of imaging a target [1–7], which is different from a rail synthetic aperture radar (SAR) and
a turntable inverse synthetic aperture radar (ISAR). Two-dimensional (2D) virtual apertures can be
synthesized through different combinations of transceiver antenna elements. A large number of
virtual apertures in the cross-range and elevation directions are beneficial to obtain high-resolution
three-dimensional (3D) radar images [4–6], but they also result in a high cost and large size of radar
systems due to the increase of the number of antenna elements. When the measured target has several
scattering centers in an elevation direction, such as airplanes, an affordable array strategy can be
adopted: the priority is given to ensuring adequate cross-range virtual apertures for high-resolution
two-dimensional (2D) radar images [7], and then a small number of elevation virtual apertures ensure
high-resolution 3D radar images by SAR tomography [8–18].

The reconstruction quality of SAR tomography depends on the product of the number of baselines
and the signal-to-noise ratio (SNR) [8]. When the number of baselines is limited, the SNR of radar images
can be equivalently improved by filtering [8,9], auxiliary information [10–12], and polarization [13–17].
The SNR can be improved by integrating nonlocal filtering into the compressed sensing (CS) algorithm
and a reasonable reconstruction of buildings from only seven baselines is feasible [8]. In addition, [9]
investigates the possibility related to the use of a multi-looking approach for fine resolution analysis
of ground structures that combines SAR tomography. Filtering consisting of averaging pixels is
bound to reduce the range-azimuth resolution and therefore is not suitable for high-resolution radar
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images of artificial targets. The auxiliary information added to the standard Capon and multiple
signal classification (MUSIC) algorithms can be exploited to reduce the ambiguity and resolve the
superimposition of the scatterers in the case of a limited number of radar images [10]. Atmospheric
phases for SAR tomography in mountainous regions are regressed against the spatial coordinates
in map geometry at persistent scatterers locations [11]. The high-resolution 3D positions of a large
amount of natural scatterers are obtained by a geodetic SAR tomography framework that fuses SAR
tomography and SAR image geodesy compensating SAR measurement error [12]. The auxiliary
information can effectively improve the image quality, but it needs to be obtained by other technologies
which increases the complexity of the algorithm and the cost of the imaging. A distributed compressed
sensing (DCS) algorithm based on fully-polarimetric data is proposed in [13–16] to improve the
accuracy of the estimation. However, the CS algorithm suffers from a high computational expense and
is hard to extend to fast practice [18]. In [17], a comparison among tomograms obtained in different
polarizations is made to analyze how polarimetry can enhance target signatures.

To address these problems, the combination of spectral analysis and full polarization is an
attractive way to improve resolution and processing speed for a small number of baselines. This paper
explores a fully-polarimetric unitary multiple signal classification (UMUSIC) technique for polarimetric
MIMO-SAR tomography [7]. The remainder of the paper is organized as follows. Section 2 describes
a signal model based on fully-polarimetric data. A fast and high-resolution UMUSIC algorithm is
developed in Section 3. In Section 4, two algorithms are compared through simulation of different point
scatterers. Finally, Section 5 contains measured tomography results of an aircraft model to validate the
proposed algorithm.

2. Polarization Signal Model

SAR tomography allows us to obtain 3D imagery to describe the electromagnetic property of
illuminated objects. The geometry of MIMO-SAR tomography is shown in Figure 1, where x,y,z denote
coordinates originating from the center of the imagery scene, Rn represents the distance from the target
to the nth baseline, and R0 is the projection distance from the radar to the center of the imagery scene
on the y-axis. The orange triangles and blue circles denote receivers and transmitters, respectively.
Each baseline represents a linear array, where transmitters are at both ends of the array and receivers
are in the middle of the array. The 2D image for the nth baseline is represented by the following
form [19].

gn(x, y, zn) =

∫ h/2

−h/2

√


σ(x, y, z)e− j 4π

λ Rndz (1)

where
√


σ (x, y, z) denotes the target scattering function that needs to be solved, h is the height of

the imagery scene, λ represents the wavelength and zn refers to the z-coordinates of the nth baseline.
Under the Born weak-scattering approximation, Rn representing the distance from the point target at
(x, y, z) to the nth baseline, is approximated as:

Rn =

√
(y + R0)

2 + (z− zn)
2 ≈ y + R0 +

z2
n + z2 − 2znz

2R0
(2)

The first three terms in (2) are irrelevant to z, the fourth term is the residual phase term that can be

merged into
√


σ (x, y, z), and the fifth term is the phase term for imaging in the elevation direction.

We can choose one of N baselines as a reference baseline as:

gre f (x, y, zre f )= e− j 4π
λ (y+R0+

z2
n

2R0
) (3)

After phase compensation, the N 2D images g′n(x, y, zn) and


σ
′
(x, y, z) are in a Fourier transform

relation.
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g′n(x, y, zn) = gn(x, y, zn)g∗re f (x, y, zre f ) =

∫ h/2

−h/2



σ
′
(x, y, z)e− j2πwnzdz (4)

with
wn =

2zn

λR0
(5)



σ
′
(x, y, z) =

√


σ (x, y, z)e− j 2πz2

λR0 (6)

where


σ
′
(x, y, z) integrated with the residual phase term still has the same amplitude as

√


σ (x, y, z),

which has no effect on the 3D imagery. g′n(x, y, zn) can be discretized as the multiplication of
two matrices.

g′n(x, y, zn) =
∑L

l=1



σ
′
(x, y, zl)e

− j2πwnzl = ans (7)

with
an = [e− j2πwnz1 , e− j2πwnz2 , . . . , e− j2πwnzL ] (8)

s = [


σ
′
(x, y, z1),



σ
′
(x, y, z2), . . . ,



σ
′
(x, y, zL)]

T
(9)

where L represents the number of scattering centers in the elevation direction. Before imaging,
the imagery scene in the elevation direction needs to be divided into many discrete points to represent
the range of L. As a consequence, the matrix an is very large, which is the reason why the imaging
algorithm takes a long time to locate scattering centers and determine L in the simulation and
measurement. In combination with N 2D images, the polarimetric tomography model is given by:

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g′1(x, y, z1)

g′2(x, y, z2)
...

g′N(x, y, zN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e− j2πw1z1 e− j2πw1z2 · · · e− j2πw1zL

e− j2πw2z1 e− j2πw2z2 · · · e− j2πw2zL

...
...

. . .
...

e− j2πwNz1 e− j2πwNz2 · · · e− j2πwNzL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦s = As (10)

(10) can be further developed by merging with the fully-polarimetric data.

G = [ gHH gHV gVH gVV ] = [a1, a2, . . . , aN]
T[ sHH sHV sVH sVV ] = AS (11)

where G denotes the N×4 2D imagery matrix, S refers to the L×4 3D imagery matrix, and A is the
N × L transformation matrix.

 

Figure 1. Geometry of multiple-input multiple-output synthetic aperture radar (MIMO-SAR) tomography.

3. Tomography Algorithm

Multiple signal classification (MUSIC) is a spectral analysis algorithm based on the eigen
decomposition of the sample covariance matrix. It is necessary to reduce the matrix noise by some
techniques, including snapshot in direction-of-arrival and multi-looking in SAR tomography that
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also leads to a decrease in range-azimuth resolution [13]. In order to dispel the influence, we employ
fully-polarimetric data and their conjugation to obtain the matrix.

The polarization tomography model (11) including Gaussian white noise matrix W is rewritten as:

G = AS + W (12)

The covariance matrix R is given by:

R = E
{
GGH

}
= E

{
[AS+W]

[
SHAH+WH

]}
= AE

{
SSH

}
AH + E

{
WWH

}
= APAH + σ2I

(13)

where σ2I = diag
{
|σ1|2 · · · |σN |2

}
. The Hermite matrix APAH composed of the positive definite diagonal

matrix P and the column full rank matrix A can be eigen decomposed to obtain the noise subspace.
Multi-sample data is critical for the MUSIC algorithm to ensure a high-quality covariance

matrix. In SAR tomography, the average of pixels with the same scattering characteristics is called
multi-looking. However, the number of these pixels is limited, and the average processing also
reduces the range-azimuth resolution. The combination of observed data and their conjugation can be
equivalent to doubling the number of these pixels, which not only improves the estimation accuracy
but also solves the problem of coherent signal estimation. To force the Hermite property of APAH,
the average of the covariance matrices is computed from forward and backward data samples [20].

RM =
1
2
(R + JNR∗JN) = A

~
PAH + σ2I (14)

with
P̃ =

1
2
(P+DP*DH) (15)

D = diag
{
e j2π(wN+w1)z1 . . . e j2π(wN+w1)zL

}
(16)

where superscript * represents the conjugation, JN denotes the N×N exchange matrix with ones on
its antidiagonal and zeros elsewhere. In order to reduce the computational complexity, RM can be
transformed into a real covariance matrix by unitary transformation.

RU = QH
NRMQN = QH

NA
~
PAHQN + σ2I (17)

where QN is any N×N unitary matrix to satisfy column conjugate symmetry. A simple form can be
chosen as [21]

QN:even =
1√
2

[
IN/2 jIN/2
JN/2 −jJN/2

]
(18)

QN:odd =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I(N−1)/2 0 jI(N−1)/2

0
√

2 0
J(N−1)/2 0 −jJ(N−1)/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

As mentioned in (14) and (17), the real covariance matrix RU can be rewritten as:

RU = 1
2 (Q

H
NRQN + QH

NJNR∗JNQN)

= 1
2 (Q

H
NRQN + (QH

N)
∗R∗JNQ∗N) = Re

{
QH

NRQN

} (20)

The real matrix is eigen decomposed as:

Re{QH
NRQN} =

N∑
i=1

λiuiuH
i + σ2

N∑
i=1

uiuH
i =

L∑
i=1

λiuiuH
i + σ2

N∑
i=1

uiuH
i (21)
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where λ1, . . . ,λN are eigenvalues and u1, . . . ,uN represent corresponding orthogonal normalized
eigenvectors. Among N eigenvectors of the RU, L eigenvalues are related to the signal, and
N-L eigenvalues are related to the noise. By using the noise subspace EN = span{uN−L, . . . , uN},
the fully-polarimetric pseudo-spectrum is expressed as:

PFP
MUSIC(w) =

1

AH(w)ENEH
NA(w)

(22)

We can find out the peaks of the spectrums to locate different scattering centers in the elevation
dimension and estimate the scattering intensity by the least square method (LSM) in four polarizations.

S = (AHA)
−1

AHG (23)

where A is updated according to positions of the scattering centers.

4. Simulation

We adopt the fully-polarimetric DCS as the comparison item. Considering crosstalk, noise, and
dispersion, point scatterers with typical polarimetric scattering matrices (PSMs) are simulated to
generate return signals. The simulation scene is shown in Figure 2, where scatterers with different
heights are located in the coordinate origin. The working frequency is 8 GHz–12 GHz. The down-range,
cross-range and elevation Rayleigh limits of the MIMO radar are 0.037 m, 0.047 m, and 0.188 m,
respectively. As shown in Figure 3, we simulate three cases to compare the two algorithms.

 
Figure 2. Simulation scene of the MIMO-SAR tomography.

 

Figure 3. Positions of point scatterers in three cases.
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4.1. Case 1: Two Point Scatterers with a Spacing of 0.18 m

A cylinder and a 90◦ rotated dihedral reflector are located at −0.09 m and 0.09 m in the elevation
dimension, respectively. When the two scatterers spacing is 0.18 m (close to the Rayleigh limit),
the simulation results of the two algorithms are seen in Figure 4, where lines represent pseudo-spectrums
and points denote estimated results including height and scattering intensity of scatterers.

(a)                                                       (b) 

Figure 4. Estimated results of two point scatterers with a spacing of 0.18 m by (a) fully-polarimetric
distributed compressed sensing (DCS) and (b) fully-polarimetric unitary multiple signal classification
(UMUSIC).

Two fully-polarimetric algorithms make scatterers have the same estimated height in four
polarizations. The specific estimated results are listed in Table 1. The PSMs of the two scatterers are
estimated, where the scattering intensity of the cylinder return signal at −0.09 m is inconsistent with
the truth because of polarimetric distortion. In Figure 4a, it is noteworthy that the pseudo-spectrum
of CS is leaked to form false scattering points. There are two main reasons for signal leakage [13]:
on the one hand, if the regularization parameter is too small in the optimization model, it can lead
to over-fitting of data; on the other hand, the observed data does not satisfy the sparsity in the unit
orthogonal basis. Therefore, it is necessary to use a sliding window to suppress signal leakage.

Table 1. Estimated results of two point scatterers with a spacing of 0.18 m.

Cylinder (−0.09 m) 90◦ Rotated Dihedral Reflector (0.09 m)

Fully-polarimetric
DCS

Height −0.091 m 0.091 m

Scattering
intensity

HH −1.8 dB 0 dB
HV −18.5 dB −39.6 dB
VH −18.5 dB −36.5 dB
VV −1.8 dB 0 dB

Fully-polarimetric
UMUSIC

Height −0.090 m 0.090 m

Scattering
intensity

HH −1.8 dB 0 dB
HV −18.5 dB −39.1 dB
VH −18.5 dB −36.2 dB
VV −1.8 dB 0 dB

4.2. Case 2: Two Point Scatterers with a Spacing of 0.06 m

When the spacing is reduced to 0.06 m (one-third of elevation Rayleigh limit), the estimated
results of the two algorithms are displayed in Figure 5 and Table 2. Two fully-polarimetric algorithms
still have high-resolution. Furthermore, polarimetric distortion of the cylinder return signals becomes
more severe as the spacing decreases. Consequently, polarimetric calibration is necessary for a
fully-polarimetric radar system.
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(a)                                                      (b) 

Figure 5. Estimated results of two point scatterers with a spacing of 0.06 m by (a) fully-polarimetric
DCS and (b) fully-polarimetric UMUSIC.

Table 2. Estimated results of two point scatterers with a spacing of 0.06 m.

Cylinder (−0.06 m) 90◦ Rotated Dihedral Reflector (0 m)

Fully-polarimetric
DCS

Height −0.062 m 0.004 m

Scattering
intensity

HH −3.0 dB −1.6 dB
HV −17.6 dB −29.5 dB
VH −17.6 dB −37.5 dB
VV −3.2 dB 0 dB

Fully-polarimetric
UMUSIC

Height −0.060 m 0.004 m

Scattering
intensity

HH −2.9 dB −0.7 dB
HV −17.6 dB −28.7 dB
VH −17.6 dB −36.4 dB
VV −3.1 dB 0 dB

4.3. Case 3: Four Point Scatterers with a Spacing of 0.09 m

The four point scatterers are a cylinder, a 67.5◦ rotated dihedral reflector, a 90◦ rotated dihedral
reflector, and a plate and their PSMs are listed in Table 3. According to the MIMO configuration,
the bistatic angles of all transceiver channels are less than 10◦. To simplify the simulation, we assume
that the PSMs listed in Table 3 are applicable to all transceiver channels. It can be seen from Figure 6
that the pseudo-spectrums of two fully-polarimetric algorithms are not affected when the number of
scatterers increase. We summarize the estimation results in Table 4, which demonstrates the estimation
accuracy of fully-polarimetric UMUSIC is higher than that of the fully-polarimetric DCS. The CS,
which is essentially an optimization problem, needs to be solved iteratively, therefore, its processing
speed is bound to be limited by the number of iterations. The simulation results show that for a pixel,
the processing speed of the fully-polarimetric UMUSIC is more than five times faster than that of the
fully-polarimetric DCS in the same computing condition.

Table 3. Polarimetric scattering matrix (PSM) of four point scatterers

Parameters Cylinder
67.5◦ Rotated

Dihedral Reflector
90◦ Rotated

Dihedral Reflector
Plate

HH −1
√

2/2 1 −1
HV 0

√
2/2 0 0

VH 0
√

2/2 0 0
VV −1 −√2/2 −1 −1
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(a)                                                   (b) 

Figure 6. Estimated heights of four point scatterers with a spacing of 0.09 m by (a) fully-polarimetric
DCS and (b) fully-polarimetric UMUSIC.

Table 4. Estimated results of two point scatterers with a spacing of 0.09 m.

Cylinder
(−0.13 m)

67.5◦ Rotated
Dihedral
Reflector
(−0.04 m)

90◦ Rotated
Dihedral
Reflector
(0.05 m)

Plate
(0.14 m)

Fully-polarimetric
DCS

Height −0.141 m −0.030 m 0.041 m 0.141 m

Scattering
intensity

HH −2.4 dB −2.5 dB −2.4 dB −2.2 dB
HV −16.2 dB −1.6 dB −24.5 dB −15.1 dB
VH −16.2 dB −1.6 dB −24.1 dB −15.1 dB
VV −1.2 dB −2.4 dB −2.5 dB 0 dB

Fully-polarimetric
UMUSIC

Height −0.131 m −0.039 m 0.057 m 0.140 m

Scattering
intensity

HH −0.3 dB 0 dB −1.7 dB −0.5 dB
HV −14.6 dB −2.4 dB −36.8 dB −15.1 dB
VH −14.6 dB −2.4 dB −37.2 dB −15.1 dB
VV −0.3 dB −4.0 dB −3.0 dB 0 dB

5. Experiment

An experimental polarimetric MIMO array has been upgraded based on the radar system in [7],
and baselines with different heights are controlled by an elevator. It can be seen from Figure 7 that
the polarimetric MIMO array consists of 20 receive elements and 6 transmit elements, where the
combinations among them synthesize 80 transceiver channels. The measured target is an aircraft model
with an elevation angle of 16 degrees on a foam support, as shown in Figure 8. M1, M2, and M3 represent
three missile models mounted on the wing, respectively. To avoid complex scattering properties
of cavity structures, the inlet of the aircraft model is sealed with copper foils. The measurement
parameters are the same as the simulation parameters in Section 4.

 
Figure 7. An experimental polarimetric MIMO array.
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Figure 8. Aircraft model.

It can be seen from Figure 9 that the scattering mechanisms of the aircraft model are different
in four polarizations. In the HH image, there are three strong scattering centers including two parts
that are not distinguished (see Figure 9a). Compared with the HH image, more components can be
distinguished from the VV image. The scattering intensity of the two cross-polarization images is
low. Figures 10–13 illustrate the 3D point cloud maps obtained from 24 2D images. The top views are
similar to the 2D image, which proves that the 3D scattering intensity can be estimated by LSM. It can
be seen from the bottom and side views that scattering centers with different heights are basically
consistent with the aircraft model. In addition, the scattering intensity in front of the fuselage is higher
than that of the fuselage tail due to the shielding of the supporting foam. By comparing the 3D point
cloud maps in different polarizations, we can analyze its scattering mechanism.

 
(a) HH                   (b) HV                  (c) VH                  (d) VV 

Figure 9. Four 2D images obtained from a single baseline: (a) HH, (b) HV, (c) VH, and (d) VV.

(a)                                  (b)                                 (c) 
Figure 10. Tomography results in HH polarization. Three views of the airplane model are shown:
(a) top view; (b) bottom view; (c) side view.
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(a)                                (b)                                 (c) 

Figure 11. Tomography result in HV polarization. Three views of the airplane model are shown: (a) top
view; (b) bottom view; (c) side view.

(a)                                  (b)                                 (c) 
Figure 12. Tomography result in VH polarization. Three views of the airplane model are shown: (a) top
view; (b) bottom view; (c) side view.

(a)                                  (b)                                 (c) 
Figure 13. Tomography result in VV polarization. Three views of the airplane model are shown: (a) top
view; (b) bottom view; (c) side view.

Figure 14 illustrates tomographic image slices along the down range for HH (Figure 10), HV
(Figure 11), VH (Figure 12), and VV (Figure 13). It can be seen from the figures that scattering of the
model shows obvious variety with heights. We summarize components of the model in Table 5, where
M1 tail and M2 head cannot be distinguished because they have the same height, so do M2 tail and
rear wheel.
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 14. Tomographic image slices along the downrange: (a) HH, (b) HV, (c) VH, and (d) VV.

Table 5. Components of the aircraft in tomographic image slices.

Down Range −0.4 m −0.3 m −0.2 m −0.1 m 0 m 0.1 m 0.2 m

Components Aircraft
head

Front
wheel Inlet M1

head
M1 tail+
M2 head

M2 tail+
Rear wheel M3 tail

HH x x x x x x x
HV x x x
VH x x x x
VV x x x x x x x

6. Conclusions

This paper proposes a fully-polarimetric UMUSIC tomography algorithm to acquire high-
resolution 3D radar imagery for a MIMO-SAR with a small number of baselines. In order to mitigate
the effect of multi-looking on the range-azimuth resolution, we employ fully-polarimetric data and their
conjugation to obtain the sample covariance matrix. Two algorithms including the fully-polarimetric
DCS and the fully-polarimetric UMUSIC, are compared through numeric simulation of different
point scatterers. Simulation results demonstrate that the fully-polarimetric UMUSIC outperforms
the popular fully-polarimetric DCS in processing speed and estimation accuracy. Measurements for
an aircraft model are conducted using an X-band experimental polarimetric MIMO-SAR which was
upgraded from a previous system [7]. The resulting 3D images using six baselines demonstrate the
usefulness of the algorithm for 3D imagery of complex radar targets.
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Abstract: We develop a novel approach improving existing target localization algorithms for distributed
multiple-input multiple-output (MIMO) radars based on bistatic range measurements (BRMs). In the
proposed algorithms, we estimate the target position with auxiliary parameters consisting of both the
target–transmitter distances and the target–receiver distances (hence, “double-sided”) in contrast to the
existing BRM methods. Furthermore, we apply the double-sided approach to multistage BRM methods.
Performance improvements were demonstrated via simulations and a limited theoretical analysis was
attempted for the ideal two-dimensional case.

Keywords: distributed MIMO radar; target localization; double-sided bistatic range (BR)

1. Introduction

In distributed multiple-input multiple-output (MIMO) radar systems, target localization based on
the time delays between transmitters and receivers is an attractive research topic due to its high accuracy
and simplicity [1–3]. As target-mediated time delays are nonlinear, estimation of target location via
direct analysis of these delays is difficult. Hence, several approaches seeking to linearize the relationship
between the target and the time delays have been proposed [4–15]. Of these, algorithms based on bistatic
range measurements (BRMs), which are the sum of target–transmitter and target–receiver distances, are
introduced in [6–15].

A single stage algorithm based on BRM, introduced first in [6,7], estimates the target position with
the help of auxiliary parameters (distances between the target and transmitters or distances between the
target and receivers). Multistage algorithms, such as those in [8–15], further refine the target position by
re-using the estimates of the first-stage BRM method and exploiting their relationships, and asymptotically
attain the Cramer–Rao lower bound (CRLB) [12] assuming accurate estimates of the first stage. A recent
study [15] shows that the choice of auxiliary parameters (target–transmitter side or target–receiver side)
in BRM methods affects the target estimation accuracy. Therefore, a systematic approach that utilizes all
available auxiliary parameters optimally is desirable.

In this paper, we propose a novel approach that utilizes both target–transmitter distances and
target–receiver distances as the auxiliary parameters, to improve the mean square error (MSE) performance.
Furthermore, the proposed approach can be applied to the second-stage of the multistage BRM algorithms,
such as in those of [8–15]. The existing multistage algorithms can be divided into two types depending on
the way of linearizing the nonlinear relations between target position and auxiliary parameters estimated
in the first stage: the algorithms in [8–12] linearize nonlinear relationships by squaring them and the
algorithms in [13–15] use first-order Taylor expansion to this end. We present two types of double-sided
two-stage BRM algorithms by applying our approach to the most recent multistage BRM algorithms, i.e.,

Sensors 2019, 19, 2524; doi:10.3390/s19112524 www.mdpi.com/journal/sensors
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two-stage methods using squared Taylor approximated relationships. The improved MSE performances of
the proposed algorithms were demonstrated by simulations and limited theoretical analysis was attempted
for an ideal two-dimensional case.

The remainder of this paper is organized as follows. We briefly review the BRM method with a
distributed MIMO radar system model in Section 2. In Section 3, we develop double-sided, single- and
two-stage BRM algorithms. A theoretical analysis for ideal two-dimensional target/antenna positions
presented in Section 4 shows the improved MSE performance afforded by the double-sided BRM algorithm.
The simulations of practical three-dimensional target/antenna positions presented in Section 5 confirm
that our algorithms improve MSE performance. Our conclusions are presented in Section 6.

Table 1 lists the notations used in this paper.

Table 1. List of notations.

Notations Definition

0i×j i × j matrices, all elements of which are zero

1i×j i × j matrices, all elements of which are unity

Ii i × i identity matrix

diag(·) Diagonal matrix generated from an input vector

blkdiag(·) Block diagonal matrix generated from input vectors (or matrices)

⊗ Kronecker product

� Element-wise product

sgn(·) sign function
√· element-wise square root of the input vector

2. System Model for BRM Based Target Localization and Problem Formulation

We consider a three-dimensional, widely separated MIMO radar system consisting of a single target
located at an unknown position xo = [xo, yo, zo]T with M transmitting antennae (Tx) and N receiving
antennae (Rx) located at known positions xt(m) = [xt(m), yt(m), zt(m)]T ,m = 1, · · · , M and xr(n) =

[xr(n), yr(n), zr(n)]T , n = 1, · · · , N, respectively, and, we denote the positions of antennae as Xt =

[xt(1), · · · , xt(M)] and Xr = [xr(1), · · · , xr(N)], together.
The bistatic range (BR) between the mth Tx and the nth Rx, denoted by rmn, is defined as the sum of

the distance from the mth Tx to the target, denoted by dt(m) = ‖xo − xt(m)‖, and the distance from the
target to the nth Rx, denoted by dr(n) = ‖xo − xr(n)‖ ([16]):

rmn = dt(m) + dr(n). (1)

Each BR is measured by converting the estimated time delay between a Tx and an Rx to a distance.
Any BR measurement (BRM) between the mth Tx and the nth Rx, denoted by r̂mn, is often corrupted
by measurement error, denoted by ωmn and modeled as an i.i.d., zero-mean white Gaussian noise with
variance σ2

ω ([4]):

r̂mn = rmn + ωmn. (2)

The goal of BRM based target localization is to estimate the target location xo from the BRMs
{r̂mn}m=1,··· ,M, n=1,··· ,N .
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The BRM method in [6,7] jointly estimates the target location, xo, and the distances from Txs to the
target, denoted by dt = [dt(1), · · · , dt(M)]T , from the BRMs, using the following linear model in the
presence of noise:

bt = [1M×1 ⊗ XT
r − XT

t ⊗ 1N×1,−Rt][x
T
o , dT

t ]
T + εt, (3)

where

bt =
1
2

⎡⎢⎣ ‖xr(1)‖2 − r̂2
11 − ‖xt(1)‖2

...
‖xr(N)‖2 − r̂2

MN − ‖xt(M)‖2

⎤⎥⎦ (4)

Rt = blkdiag(r1, · · · , rM), (5)

where rm = [r̂m1, · · · , r̂mN ]
T and εt is a vector reflecting BR measurement error ([7]).

Alternatively, the BRM equation can be constructed using the distances from the target to the Rxs,
denoted by dr = [dr(1), · · · , dr(N)]T , instead of the dt values:

br = [XT
t ⊗ 1N×1 − 1M×1 ⊗ XT

r ,−Rr][x
T
o , dT

r ]
T + εr, (6)

where

br =
1
2

⎡⎢⎣ ‖xt(1)‖2 − r̂2
11 − ‖xr(1)‖2

...
‖xt(M)‖2 − r̂2

MN − ‖xr(N)‖2

⎤⎥⎦ (7)

Rr = [diag(r1), · · · , diag(rM)]T , (8)

where εr is a vector reflecting BR measurement error [7]. Note that the estimated auxiliary parameters d̂t or
d̂r contain the target information xo. Multistage algorithms further refine the target position by exploiting
this information.

The two-stage BRM method using the squared relationships ([12]) estimates the squared target
position, xo � xo, using x̂o and d̂t yielded by the first-stage BRM method based on the following linear
model (which reflects the relationship between [xT

o , dT
t ]

T and xo � xo):[
x̂o � x̂o

d̂t � d̂t + 2XT
t x̂o − (XT

t � XT
t )13×1

]
=

[
I3

1M×3

]
(xo � xo) + εS,t, (9)

where εS,t is the error vector due to the first-stage estimation error ([12]).
Alternatively, we obtain the following linear model reflecting the relationship between [xT

o , dT
r ]

T and
xo � xo: [

x̂o � x̂o

d̂r � d̂r + 2XT
r x̂o − (XT

r � XT
r )13×1

]
=

[
I3

1N×3

]
(xo � xo) + εS,r, (10)

where εS,r is the error vector due to the first-stage estimation error [12].
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Let ̂xo � xo denote the xo � xo estimated by the linear model of (9) (or (10)); then, the refined target
location, denoted by x̂o,S, is:

x̂o,S = sgn(x̂o)�
√ ̂xo � xo. (11)

The two-stage BRM method using Taylor approximated relationships [15] considers the first-order
Taylor expansion of dt(m) at x̂o to be

dt(m) = d̂t(m)−�dt(m) = ‖x̂o −�xo − xt(m)‖

� ‖x̂o − xt(m)‖ − x̂T
o − xT

t (m)

‖x̂o − xt(m)‖�xo
for m = 1, · · · , M, (12)

where �xo,�dt(1), · · · ,�dt(M) are the estimation errors at the x̂o. The linear model reflecting the
relationships of (12) is⎡⎢⎢⎢⎢⎣

03×1

d̂t(1)− ‖x̂o − xt(1)‖
...

d̂t(M)− ‖x̂o − xt(M)‖

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−I3

(x̂T
o − xT

t (1))/‖x̂o − xt(1)‖
...

(x̂T
o − xT

t (M))/‖x̂o − xt(M)‖

⎤⎥⎥⎥⎥⎦�xo +

⎡⎢⎢⎢⎢⎣
�xo

�dt(1)
...

�dt(M)

⎤⎥⎥⎥⎥⎦ . (13)

Alternatively, we obtain the following linear model using dr instead of dt:⎡⎢⎢⎢⎢⎣
03×1

d̂r(1)− ‖x̂o − xr(1)‖
...

d̂r(N)− ‖x̂o − xr(N)‖

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−I3

(x̂T
o − xT

r (1))/‖x̂o − xr(1)‖
...

(x̂T
o − xT

r (N))/‖x̂o − xr(N)‖

⎤⎥⎥⎥⎥⎦�xo +

⎡⎢⎢⎢⎢⎣
�xo

�dr(1)
...

�dr(N)

⎤⎥⎥⎥⎥⎦ . (14)

We make an intermediate estimation of the error �xo of the first stage to refine the target position.
Let �̂xo denote the �xo estimated by the linear model of (13) (or (14)); then, the refined target position,
denoted by x̂o,A, is:

x̂o,A = x̂o − �̂xo. (15)

In the existing single-sided BRM methods, xo and dt, or xo and dr, are used exclusively. As the
BRMs are the sum of the dt and dr values, target estimation accuracy can be improved by simultaneously
estimating xo, dt and dr in the first stage, and by fully utilizing these values in the second stage. Thus,
the goal of our paper is to develop target estimation schemes that use both the Tx- and Rx-sided linear
models simultaneously.

3. The Double-Sided BRM Approach

3.1. The Double-Sided Single-Stage BRM Algorithm

The target estimation performance of the BRM algorithm depends on the choice of auxiliary
parameters (the transmitter-side parameters dt or the receiver-side parameters dr), as shown in [15].
Such dependency implies that the linear models in (3) and (6) cannot fully exploit the target information
in BRM observations. Thus, by merging the two linear models in (3) and (6) into a single linear model and,
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consequently, simultaneously estimating the target, dt and dr values, we fully utilize all BR information
for the target estimation.

To simultaneously estimate xo, dt and dr, we rewrite the two linear models of (3) and (6) as equivalent
linear models with respect to [xT

o , dT
t , dT

r ]
T , by inserting 0MN×Ndr and 0MN×Mdt:

bt = [1M×1 ⊗ XT
r − XT

t ⊗ 1N×1,−Rt, 0MN×N ][x
T
o , dT

t , dT
r ]

T + εt, (16)

br = [XT
t ⊗ 1N×1 − 1M×1 ⊗ XT

r , 0MN×M,−Rr][x
T
o , dT

t , dT
r ]

T + εr. (17)

Using the above linear equations, we construct a single linear model with respect to [xT
o , dT

t , dT
r ]

T

as follows:

b = H[xT
o , dT

t , dT
r ]

T + ε, (18)

where b = [bT
t , bT

r ]
T , ε = [εT

t , εT
r ]

T , and

H =

[
1M×1 ⊗ XT

r − XT
t ⊗ 1N×1 −Rt 0MN×N

XT
t ⊗ 1N×1 − 1M×1 ⊗ XT

r 0MN×M −Rr

]
. (19)

The weighted least squares (WLS) solution of (18), denoted by [x̂T
o , d̂T

t , d̂T
r ]

T , is:

[x̂T
o , d̂T

t , d̂T
r ]

T = (HTWH)−1HTWb, (20)

where the diagonal weighting matrix W is:

W = diag

(
σ2

ω

[
(dr � dr)⊗ 1M×1

1N×1 ⊗ (dt � dt)

])−1

. (21)

In practice, we apply the approximated W using estimated dt and dr via a least square (LS) approach
(substituting an identity matrix for W in (20)) as in previous methods [6–15]. Note that, instead of error
covariance matrix, Cov[ε], we use the diagonal terms of Cov[ε] for W, since Cov[ε] is not invertible here.

The analysis of Section 4 shows that our double-sided BRM method enhances the MSE of target
location estimated by the existing BRM method by a factor of two, given ideal two-dimensional
target/antenna positions. The numerical simulations presented in Section 5 show that our method
affords a better MSE performance than the existing BRM method when dealing with practical
target/antenna positions.

3.2. The Double-Sided Two-Stage BRM Algorithms

In this subsection, we develop two double-sided two-stage BRM algorithms by modifying the
above single-sided two-stage BRM algorithms using the squared relationships [12] and the Taylor
approximation [15] to fully utilize the parameters (x̂o, d̂t, and d̂r) estimated by the first stage double-sided
BRM algorithm.
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3.2.1. Proposed Double-Sided Two-Stage BRM Algorithm Using the Squared Relationships

As for the single-stage algorithm, we construct an extended linear model reflecting the relationships
between dt, dr and xo � xo by merging the two single-sided linear models of (9) and (10) as the following:⎡⎢⎣ x̂o � x̂o

d̂t � d̂t + 2XT
t x̂o − (XT

t � XT
t )13×1

d̂r � d̂r + 2XT
r x̂o − (XT

r � XT
r )13×1

⎤⎥⎦ =

⎡⎢⎣ I3

1M×3

1N×3

⎤⎥⎦ (xo � xo) + εp, (22)

where εp is error vector due to the estimation error. The method of (22) provides an estimate of the
squared target location, xo � xo, using all [x̂T

o , d̂T
t , d̂T

r ]
T given by the first-stage double-sided BRM algorithm.

Denote [I3, 1T
M×3, 1T

N×3]
T as Hp; then, the WLS solution of (22), denoted by ̂xo � xo, is:

̂xo � xo = (HT
p WpHp)

−1HT
p Wp

⎡⎢⎣ x̂o � x̂o

d̂t � d̂t + 2XT
t x̂o − (XT

t � XT
t )13×1

d̂r � d̂r + 2XT
r x̂o − (XT

r � XT
r )13×1

⎤⎥⎦ . (23)

The weighting matrix Wp is:

Wp = (T(HTWH)−1TT)−1, (24)

where

T = 2

[
diag(xo) 03×(M+N)

AT diag([dT
r , dT

r ]
T)

]
(25)

A = [Xt, Xr]. (26)

The final target position estimate, denoted by x̂o,DS, is:

x̂o,DS = sgn(x̂o)�
√ ̂xo � xo. (27)

3.2.2. Proposed Double-Sided Two-Stage BRM Algorithm Using the Taylor Approximated Relationships

To utilize all [x̂T
o , d̂T

t , d̂T
r ]

T values given by the first-stage double-sided BRM algorithm, we construct
the following extended linear model which reflects the Taylor approximated relationships between d̂t, d̂r

and x̂o by merging the linear models in (13) and (14):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1

d̂t(1)− ‖x̂o − xt(1)‖
...

d̂t(M)− ‖x̂o − xt(M)‖
d̂r(1)− ‖x̂o − xr(1)‖

...
d̂r(N)− ‖x̂o − xr(N)‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I3

(x̂T
o − xT

t (1))/‖x̂o − xt(1)‖
...

(x̂T
o − xT

t (M))/‖x̂o − xt(M)‖
(x̂T

o − xT
r (1))/‖x̂o − xr(1)‖

...
(x̂T

o − xT
r (N))/‖x̂o − xr(N)‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�xo +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�xo

�dt(1)
...

�dt(M)

�dr(1)
...

�dr(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (28)
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where �xo,�dt(1), · · · ,�dt(M),�dr(1), · · · ,�dr(N) are the estimation errors at x̂o. The method of (28)
provides an estimate of �xo. Let us denote

Hp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I3

(x̂T
o − xT

t (1))/‖x̂o − xt(1)‖
...

(x̂T
o − xT

t (M))/‖x̂o − xt(M)‖
(x̂T

o − xT
r (1))/‖x̂o − xr(1)‖

...
(x̂T

o − xT
r (N))/‖x̂o − xr(N)‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (29)

then, the WLS solution of (28), denoted by �̂xo, is:

�̂Xo = (HT
p WpHp)

−1HT
p Wp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1

d̂t(1)− ‖x̂o − xt(1)‖
...

d̂t(M)− ‖x̂o − xt(M)‖
d̂r(1)− ‖x̂o − xr(1)‖

...
d̂r(N)− ‖x̂o − xr(N)‖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

where the weighting matrix Wp is

Wp = (HTWH)−1. (31)

The final target position estimate, denoted by x̂o,DA, is:

x̂o,DA = x̂o − �̂xo. (32)

Unfortunately, theoretical performance analysis of (27) and (32) are virtually impossible given their
complexity. However, the simulation results presented in Section 5 support the suggestion that our
double-sided BRM method improves existing algorithms.

Table 2 compares the overall complexity of the double-sided algorithms to that of single-sided
algorithms in terms of the number of multiplications.

Table 2. Complexity table of the target localization algorithms.

Methods Number of Multiplications

Single-sided BRM algorithm [7] (M + 3)3 + (2MN + 2M + 7)MN(M + 3)

Single-sided two-stage BRM algorithms ([12,15])
(M + 3)3 + (2MN + 2M + 7)MN(M + 3)

+33 + 3(M + 3)(2M + 13)

Double-sided BRM algorithm (M + N + 3)3 + 2(4MN + 2M + 2N + 7)MN(M + N + 3)

Double-sided two-stage BRM algorithms
(M + N + 3)3 + 2(4MN + 2M + 2N + 7)MN(M + N + 3)

+33 + 3(M + N + 3)(2M + 2N + 13)
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The extra complexity of the double-sided algorithms is attributable principally to the larger matrix
used for WLS computation. The increased computation cost scales polynomially, but is acceptable given
the performance gain demonstrated by the simulations presented in Section 5.

4. Performance Analysis of Double-Sided BRM Method for Ideal Target/Antennae Positions

Here, we derive target estimation MSEs of our double-sided BRM method and the BRM method
of Noroozi [7] when the two-dimensional target/antenna positions are ideal. Derivation of general,
theoretical MSEs of target estimations is extremely complicated; the existing study in [7] assumes that the
target/antenna distributions in the x-y plane are ideal. Accepting this, let the target be at (without loss of
generality) xo = [0, 0]T , and let the antennae be located uniformly around the target:

xt(m) = d
[

cos
(

θ0 +
2πm

M

)
, sin

(
θ0 +

2πm
M

)]T
,

xr(n) = d
[

cos
(

φ0 +
2πn

N

)
, sin

(
φ0 +

2πn
N

)]T
,

(33)

where d is the common distance between the target and the various antennae, and θ0 and φ0 are
distinct angles.

Assuming small BR errors, the error covariance matrix of the WLS estimator can be derived
from [17,18]:

Cov[[x̂T
o , d̂T

t , d̂T
r ]

T − [xT
o , dT

t , dT
r ]

T ] = (HT
o WHo)

−1HT
o WCov[ε]WHo(H

T
o WHo)

−1, (34)

where Ho is the noise-free version of H (derived by substituting rmn for r̂mn in (19)). Accepting the above
assumption, dt and dr simplify to d1M×1 d1N×1, respectively, hence, the weighting matrix W of (21) and
the covariance matrix of ε = [εT

t , εT
r ]

T , Cov[ε], simplify to:

W = 1/(d2σ2
ω)I2MN (35)

Cov[ε] = d2σ2
ω

[
IMN IMN
IMN IMN

]
. (36)

As the antennas are uniformly located on a circle of radius d, the assumption further yields the
following properties (the results for Rxs are the same):

∑M
m=1 xt(m) = ∑M

m=1 yt(m) = 0 (37)

∑M
m=1 x2

t (m) = ∑M
m=1 y2

t (m) = Md2/2. (38)

Using (37) and (38), each term of (34), (HT
o WHo)−1 and HT

o WCov[ε]WHo, can be simplified
as follows:

(HT
o WHo)

−1 =
σ2

ω

MN

[
I2

1
2d A

1
2d AT B

]
(39)

HT
o WCov[ε]WHo =

1
σ2

ω

[
02×2 02×(M+N)

0(M+N)×2 D

]
(40)
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where A is that of (26), and

D =

[
4NIM 41M×N

41N×M 4MIN

]
, (41)

hence,

Cov[[x̂T
o , d̂T

t , d̂T
r ]

T − [xT
o , dT

t , dT
r ]

T ]

= σ2
ω

[
1

4d2 ADAT 1
2d ADB

1
2d BDA BDB

]
.

(42)

As the MSEs of the x and y components are the (1, 1) and (2, 2) elements of Cov[[x̂T
o , d̂T

t , d̂T
r ]

T −
[xT

o , dT
t , dT

r ]
T ], we are interested only in (1/4d2)ADAT . Using (38) once more, (1/4d2)ADAT is:

1
4d2 ADAT =

1
MN

I2. (43)

Thus, we finally obtain

E
{
(x̂o − xo)

2
}
= E

{
(ŷo − yo)

2
}
=

σ2
ω

MN
. (44)

Meanwhile, under the same assumption, the MSEs of the existing BRM method in [7] are:

E
{
(x̂BRM − xo)

2
}
= E

{
(ŷBRM − yo)

2
}
=

2σ2
ω

MN
. (45)

A comparison of (44) and (45) shows that our method improves the MSE performance of the BRM
method by a factor of two, given the assumed two-dimensional target/antenna positioning. As presented
in the following section, simulations highlighted the improvements afforded by our algorithms when
practical target/antenna settings were evaluated.

5. Numerical Simulation for Practical Target/Antennae Positions

Figure 1 presents the MSE performances of the proposed algorithms for the antenna positions
specified in Table 3 and a target located at xo = [0m, 0m, 0m]T . The results in Figure 1a show that our
double-sided BRM method consistently affords better MSE performance than the single-sided BRM method
of Noroozi [7], and the results in Figure 1b,c show that the double-sided two-stage BRM algorithms afford
better MSE performance than the single-sided two-stage BRM methods of Amiri [12] and Wang [15].

Figure 2 presents the MSEs of target estimations when the target moves along the x-axis with the y
and z target positions fixed at yo = 400 m and zo = 100 m, and antennas positioned as specified in Table 4.
Here, the noise variance, σω, was considered to be 5 m2. The simulations shown in Figure 2 revealed that
our algorithms afforded better MSE performance than existing algorithms for all target positions tested.
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Table 3. Transmitters and receiver Positions (m).

k xt(k) yt(k) zt(k) xr(k) yr(k) zr(k)

1 250 300 180 −250 −300 −180
2 300 350 120 −300 −350 −120
3 300 250 160 −300 −250 −160
4 200 320 150 −200 −320 −150
5 250 200 150 −250 −200 −150
6 200 200 200 - - -
7 300 300 300 - - -

(a) (b)

(c)
Figure 1. Target estimation MSE of the double-sided and single-sided algorithms with respect to noise variance:
(a) single-stage; (b) two-stage using squared relations; and (c) two-stage using approximated relations.
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Table 4. Transmitters and Receiver Positions (m).

k xt(k) yt(k) zt(k) xr(k) yr(k) zr(k)

1 0 0 15 −450 −450 20
2 −300 −200 15 −450 450 30
3 −300 200 10 450 −450 40
4 −200 −300 20 450 450 10
5 −200 300 10 0 600 20
6 200 −300 10 600 0 10
7 200 300 8 −600 0 15
8 300 −200 12 0 −600 10
9 300 200 16 - - -

(a) (b)

(c)
Figure 2. Target estimation MSE of the double-sided and single-sided algorithms with respect to the target
position: (a) single-stage; (b) two-stage using squared relations; and (c) two-stage using approximated relations.

6. Conclusions

Here, we develop a novel target localization approach improving the target estimation accuracy
of existing BRM based algorithms for distributed MIMO radars. The proposed double-sided BRM
method estimates target, target–transmitter, and target–receiver distances simultaneously. We also took
a double-sided approach to two-stage BRM methods. The improvements afforded by the proposed
algorithms were confirmed theoretically for an ideal scenario, and via numerical simulations for
practical scenarios.
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Abstract: Aiming at the imaging algorithm of high-pulse-repetition random-frequency-hopping
synthetic wideband radar on a supersonic/hypersonic aircraft platform, this study established
an echo simulation model of target and clutter, analyzed the special range-Doppler coupling
effect and its influence on imaging, and proposes a method of imaging with pipeline-parallel
processing based on generalized 2D matched-filtering and Doppler pre-processing. In the method,
Doppler-beam-sharpening was advanced to be performed with the pulse compression process in each
frame, and the special range-Doppler coupling effect caused by high dynamic motion of platform
and random frequency hopping in bandwidth synthesis was well suppressed; several modes of
random frequency hopping were designed and the pipeline-parallel image processing algorithm was
optimized for each mode. Theoretical analysis and simulation results show that the proposed imaging
method can effectively avoid the divergence of 2D range-Doppler images in the range direction, and
can meet the requirements of real-time imaging.

Keywords: high pulse repetition frequency (HPRF); random frequency hopping (RFH); radar imaging;
hypersonic aircraft

1. Introduction

In order to improve the performances of target-detection, low-probability-of-intercept, and
anti-jamming, the high pulse repetition frequency (HPRF) synthetic wideband waveform has been
used for radar imaging in supersonic/hypersonic aircraft guidance [1–5]. HPRF can decrease the
velocity ambiguity, reduce the folding effect of clutter in Doppler direction, and then improve the
signal-to-clutter ratio (SCR) and target detection ability. In addition, combined with random frequency
hopping (RFH), HPRF can increase the number of accumulated pulses per unit time and improve the
signal accumulation gain ratio of detector (coherent detection) to interceptor (non-coherent detection),
which can decrease the peak power of the transmitting signal and improve the low-interception
ability of radar. Furthermore, wideband HPRF RFH can improve the anti-jamming ability of guidance
radar. RFH makes the reconnaissance jammer unable to predict the frequency-hopping pattern
adopted in each frame; and makes it difficult to implement the answering-deception-jamming and the
narrowband-blocking-jamming at each frequency point. HPRF and RFH enable the radar receiver to
select echoes of a target from a relatively narrow range region according to the number of periods of
return delay, and can suppress the deceptive-repeater-jamming, which is not in the same range region
as the target, especially from the side-lobe direction.

In the case of RFH, the frequency domain sampling of radar signal in each frame is random
and non-uniform. Because the basic frequency changes randomly between frames, the equivalent
time-domain sampling of the inter-frame Doppler processing is also non-uniform and random. It is
difficult to adopt the fast imaging algorithm based on Inverse Discrete Fourier Transform (IDFT) whether
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in pulse-compression processing at range direction or beam-sharpening processing in the Doppler
direction. In addition, in the case of supersonic/hypersonic application, due to the large broadening in
clutter Doppler spectrum, the special range-Doppler coupling effect and the large motion-compensation
residue in the echoes, it is difficult to use the conventional method of fractal-dimension processing
in the two directions of range and Doppler. Therefore, it is important to develop new imaging
methods and fast algorithms for RFH radar. The existing non-uniform DFT (NU-DFT) fast algorithms,
such as Vandermonde determinant method [6,7], regular Fourier matrix method [8,9], and min-max
interpolation method [10,11], have specific constraints on the structural characteristics of non-uniform
sampling signals, and their versatility is relatively poor. Compressed sensing technology [12] has also
been widely used in the field of RFH synthetic wideband imaging [13–19]. According the theory of
compressed sensing, it requires that the target and clutter background meet the basic conditions of
sparsity. In the cases of wideband high-range-resolution (HRR) and high signal-to-noise ratio (SNR) or
high SCR, compared with the number of range resolution units, the number of the observed targets or
the number of scattering centers of the targets is limited. Therefore, it can provide a good guarantee for
the sparsity in the high-resolution range profiles. The advantage of the compressed sensing method
is that it can reconstruct the range profile through a small number of observations, which means in
RFH radar, that it can effectively reduce the number of transmitting pulses without decreasing the
resolution of the range profile. However, the compressed sensing algorithm needs a large number
of matrix inversion operations, which makes it difficult to meet the real-time requirement, especially
in hypersonic-platform-borne (HPB) radar imaging application of limited computing resources and
extremely short platform-target intersection time. In addition, in the case of strong clutter and low
SCR, the sparsity required by compressed sensing is also difficult to meet.

In view of the above problems, we established the scattering echo model of target and clutter for
an HPRF RFH radar system and supersonic/hypersonic aircraft platform, and analyzed the special
range-Doppler coupling effect and its influence on imaging. We also proposed the 2D range-Doppler
imaging method and the 1D HRR imaging method based on Doppler pre-processing and 2D generalized
matched-filtering (GMF) processing. Additionally, we designed several RFH modes, and proposed the
corresponding pipeline-parallel processing, fast, real-time imaging algorithm for a different RFH mode.
Theoretical analysis and simulation experiments showed that the proposed imaging method could
effectively suppress the special range Doppler-coupling effect, achieve good imaging performances, and
easily meet the real-time imaging requirements of supersonic/hypersonic aircraft-borne application.

2. Echo Modeling of RFH Synthetic Wideband Radar

Set the imaging processing time period of RFH radar as M*N*T. M is the number of sub-frames,
which is the number of accumulated frames required for Doppler processing, the size of which defines
the speed resolution; N is the number of frequency hopping points per frame, the synthetic bandwidth
of which defines the range resolution; T is the pulse repetition period. In the case of HPRF, the echo
delay τH of targets and sea/land clutters from the main-lobe direction is much greater than T, nsT < τH
< (ns + 1)T, where ns is integer. Here we assume that each receiving complex frame lags behind the
transmitting complex frame for ns periods and the period in the receiving complex frame is numbered
(n|m), where m is the number of the frame (m = 0, 1, . . . , M − 1) and n is the number of pulse period
in each frame (n = 0, 1, . . . , N − 1). In each pulse period, the receiving signal is sampled and the
sampling interval is equal to the pulse-width τ; then, the total number of sampling points in each
period is K = INT[T/τ] (INT[.] represents rounding down). Taking the starting time of each period
as the reference, the corresponding sampling time is τ, 2τ, . . . , Kτ, which is numbered k = 0, 1, . . . ,
K − 1 respectively, and k is the number of sampling unit. By using the ns-period-delayed frequency
hopping pattern to construct the local reference signal, the echo signal is coherently received, and the
echo signal with a range of cnsT-c(ns + 1)T (c is the speed of light) is selected by the IF filter of receiver.
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For any scattering point in the selected range, according to the radar principle, the received/sampled
signal can be expressed as follows:

x(n|m, k) = Aexp
{
j2π[(2R/c)Δ fdimn − (2 fmVNT/c)m− (2 fmVT/c)n−

(2Δ fdVT/c)nimn − (2Δ fdVNT/c)mimn − (2Δ fdVτ/c)kimn − (2Δ fdV/c)τimn−
(2 fmVτ/c)k + 2 fm(R−Vτ)/c]

}
.

(1)

Here, the pure RFH mode (fast hopping intra frame/wide hopping inter frame; other modes are
special cases of this mode) is investigated, where fm is the basic frequency of the transmitting signal at
the m-th frame; Δfd is the minimum frequency jump interval determined by the minimum quantization
level of direct digital synthesizer (DDS); imn is an integer which is randomly selected according to
a certain frequency hopping pattern in the range of integer set [0, 1, 2, . . . , I − 1], where I = ΔF/Δfd
(the same value cannot be repeated in the same frame); ΔF is the synthetic bandwidth; fm + Δfdimn is
the carrier frequency of the transmitting signal in the n-th period of the m-th frame; R′, R, and V are,
respectively, the actual range, ambiguous range, and radial velocity of the point target at the starting
time of the first pulse period of each receiving complex frame, R′ = R + cnsT/2 and 0 ≤ R < cT/2.
The velocity is defined as positive for movement facing the radar and is assumed to remain unchanged
within MNT (the time of a complex frame, usually several milliseconds). Here we ignore the influence
of the slight change of V within a short time of milliseconds.

As shown in Figure 1, in the n-th pulse period of the m-th frame in each complex frame, the time
delay of the receiving echo is 2(R−VmNT −VnT −VnsT)/c relative to the starting time mNT + nT
of this period. Because the k-th sampling unit in each period can only acquire data of echo which
has delay in the range of kτ − (k + 1)τ, kτ < 2(R−VmNT −VnT −VnsT)/c < (k + 1)τ, and the echo is
sampled by the k-th sampling unit.

0 1 − 1
The m-th frame of a transmitting complex frame 

T
0 1 2 − 12( − − − )/
The m-th frame of a receiving complex frame

The receiving echoes +
Figure 1. Sequence chart of each frame.

It is apparent that if the scatter has a facing range-walk of δR in a complex frame and 0 < R− ckτ <
δR, then the echo is sampled first by the k-th unit in some frames, and then by the (k − 1)-th unit in
the remaining frames, which is called cross-sampling-unit movement. For supersonic/hypersonic
applications, considering the large-scale range-walk of cross-sampling unit in a complex frame, the
following requirement must be met for each scattering point:

kcτ/2 < R−VmNT −VnT −VnsT < (k + 1)cτ/2.

For (n|m, k) combinations that do not satisfy the above equation, x(n|m, k) = 0.
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The advantage of the simulation model shown in Equation (1) is that it can fully describe the
actual cross-sampling-unit movement in supersonic/hypersonic applications. In addition, it is suitable
for panoramic simulation of echoes from the area that is illuminated by the main-lobe of radar beam.
The panoramic clutter area can be divided into many grids, and echo from each grid can be simulated
as point scattering by using Equation (1). The target can be simulated as multiple scattering centers,
and echo from each scattering center can be simulated by using Equation (1). The target may be close
to the junction of two sampling unit, and echoes from the target may appear successively at two
adjacent sampling units (which is the so-called cross-sampling-unit range-walk). The clutter echoes
appear at most sampling units (in the case of HPRF, cT/2 is larger than but very close to the radial
length of the illuminated area of main-lobe). According to Equation (1), the return data containing
both clutter-background and target can be simulated as follows:

xS(n|m, k) = xT(n|m, k) + xC(n|m, k),

where xT(n|m, k) is the target echo, which can be expressed as the sum of the point scattering echoes of
multiple scattering centers; xC(n|m, k) is the clutter echo, which can be expressed as the sum of the
point scattering echoes of each clutter grid in the main-lobe illuminated area. The amplitude of each
clutter scattering point is randomly selected according to the Rayleigh distribution, and the parameter
σ2 of the Rayleigh distribution is controlled according to the required SCR.

According to the moving speed of the platform, angle between the moving direction of the
platform, and the illumination direction of the beam, the estimated value VC of the radial speed of the
center of the main-lobe clutter can be obtained. Clutter-center velocity compensation is applied to data
acquired in each complex frame as follows:

yS(n|m, k) = xS(n|m, k) × exp
{
j2π[(2 fmVCNT/c)m + (2 fmVCT/c)n+

(2Δ fdVCT/c)nimn + (2Δ fdVCNT/c)mimn + (2Δ fdVCτ/c)kimn + (2Δ fdVC/c)τimn+

(2 fmVCτ/c)k + 2 fmVCτ/c]
}
.

(2)

Considering the Doppler broadening effect and the velocity estimation error of the moving
platform, let v = V − VC be the velocity surplus of the scattered relative to the clutter center. After
clutter-center velocity compensation, the sampled signal of each scatter can be expressed as follows:

y(n|m, k) = Aexp
{
j2π[(2R/c)Δ fdimn − (2 fmvNT/c)m− (2 fmvT/c)n−

(2Δ fdvT/c)nimn − (2Δ fdvNT/c)mimn + 2 fmR/c]
}
exp

{
jϕ( f0, R, v)

}
,

(3)

where ϕ( f0, R, v) is a constant term independent of (n|m, k).
Because the velocity surplus of clutter or target is far less than the platform velocity, some

phase terms in the compensated signal can be ignored, which can simplify the subsequent imaging
process. The ignored phase terms are j2π[−(2Δ fdvτ/c)kimn], j2π[−(2Δ fdv/c)τimn], j2π(−2 fmvτ/c),
and j2π(−2 fmvτ/c)k, the variation range of which is not more than π/4 in a complex frame.

3. High Quality Real-Time Imaging of HPB HPRF RFH Radar

3.1. Special Range-Doppler Coupling Effect and Its Suppression

In the case of conventional stepped-frequency (SF) synthetic wideband radar system, imnΔ fd = nΔ f
and fm = f0; in Equation (3), Δ f is the frequency interval between adjacent pulses and NΔ f is the
synthetic bandwidth. Each frame has the same basic frequency f0 and the same stepped-frequency
hopping. According to Equation (3), in any frame-m, the change of signal phase between pulses
mainly depends on the phase term 2π(2R/c)Δ f n, which is only related to range-R. Therefore, FFT
processing or pulse compression processing in each frame can be used to obtain the distribution of
scatters in the range direction; i.e., target range profile [20]. The range resolution determined by DFT is
c/(2NΔ f ). The second-order phase term 2π(2Δ f vT/c)n2 in Equation (3) may cause energy diffusion of
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the scattering center in range profile, but the diffusion can be ignored because the synthetic bandwidth
NΔ f is far smaller than the carrier frequency f 0 and the phase variation of the second-order phase
term is very small. The other velocity-related phase terms 2π(2 f0vT/c)n and 2π(2Δ f vNT/c)mn are
linear with n, and their influence on pulse compression is that the position of the scatter on the FFT
spectrum is shifted by an offset of f0v(1 + mN)T/Δ f , which is called range-Doppler coupling effect.
The range-Doppler coupling effect in an SF radar system can cause error in range measurement, but
cannot cause significant diffusion of energy or degradation of imaging quality. After pulse compression
and envelope alignment of a range profile in each frame, the inter-frame phase change of each range unit
mainly depends on the phase term 2π(2 f0vNT/c)m. Therefore, FFT processing or Doppler processing
in each range unit can be used to obtain the distribution of scatters in velocity or Doppler direction.
The distribution of the scatters on the 2D range-Doppler plane can be obtained by synthesizing the
distributions of all the range units. As described above, in the conventional SF system, the imaging
processing method of pulse compression in each frame at first, and then Doppler processing in each
range resolution unit, are generally adopted.

It can be seen from Equation (3) that the phase of the signal is complexly related to the range
and speed of the scatter due to HPRF and RFH. In each frame-m, the range-related phase term
2π(2R/c)Δ fdimn, changes randomly and nonlinearly between pulses because imn changes randomly.
In order to use traditional FFT for pulse compression in each frame, it is necessary to rearrange the data
in order of frequency from small to large, and then interpolate the non-uniform frequency-sampled
data into uniform frequency-sampled data. The randomly-changed phase term 2π(2R/c)Δ fdimn is
transformed to linearly-changed phase term 2π(2R/c)Δ f n after rearrangement and interpolation.
However, data rearrangement randomizes the original linear range-Doppler coupling phase term
2π(2 fmvT/c)n. For supersonic/hypersonic applications, even if the clutter-center velocity compensation
is made by using Equation (2), the phase change of the coupling phase term caused by the velocity
residual v is still large for the scatters that are not at the direction of beam-center, and it can be close to
or even more than 2π in one frame. The random change of phase is equivalent to adding multiplicative
noise to the signal, and it seriously reduces the coherence of the rearranged data, which leads to serious
energy-divergence of scatters and degradation of imaging quality. For inter-frame Doppler processing,
because imn changes randomly, the velocity-related phase term (2 fmvNT/c)m changes randomly and
nonlinearly between frames, which makes the Doppler processing complicated. The random and
nonlinear range-Doppler coupling effect not only exists within the frame but occurs between frames,
so it is difficult to carry out fractal-dimension processing in range and Doppler directions respectively.

In this paper, the above phenomenon is called the special range-Doppler coupling effect of RFH
synthetic wideband radar in a highly dynamic application. Because of the above special effect, the
conventional imaging processing method of pulse compression in each frame at first and then Doppler
processing in each range resolution unit cannot be adopted in HPRF RFH radar. In order to suppress
the special range-Doppler coupling effect, Doppler processing must be advanced to each frame and
be synchronous with the pulse compression processing, which is called Doppler pre-processing in
this paper.

The imaging algorithm of Doppler pre-processing is based on the 2D GMF algorithm, which can
be executed by means of pipeline-parallel processing, and the computation can be dispersed to each
frame in combination with the data acquisition process. The algorithm can be optimized in real-time
ability according to different RFH modes.

As an example, the basic principle of suppressing the above special coupling effect through Doppler
pre-processing is illustrated by the following intra-frame pseudo RFH mode where imnΔ fd = inΔ f and
fm = f0 (the basic frequency of pulse signal remains unchanged between frames; for different n, in
randomly takes different values in [0, 1, 2, . . . , N − 1] without repetition); then,

y(n|m, k) = Aexp
{
j2π[(2R/c)Δ f in − (2 f0vNT/c)m− (2 f0vT/c)n−

(2Δ f vT/c)nin − (2Δ f vNT/c)min + 2 f0R/c]
}
exp

{
jϕ( f0, R, v)

}
.
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Obviously, for any fixed period number n, the phase terms 2π(2 f0vNT/c)m and (2Δ f vNT/c)min
vary non-randomly and linearly with the frame number m. Therefore, the M sampled data{
yS(n|m, k)

∣∣∣m = 0, 1, . . . , M− 1
}

of the same period number n and the same sampling unit number k
can be processed first by using FFT (Doppler pre-processing). The velocity resolution converted
from the DFT spectral resolution is Δv = c/(2 f0NMT), and the distribution of the scatters in the
velocity direction or the Doppler direction can be obtained. In the Doppler pre-processed data{
YS(n|lv, k)

∣∣∣lv = 0, 1, . . . , M− 1
}
, the phase terms of the signal on the lv-th speed channel changes with

n are mainly 2π(2R/c)Δ f in and 2π(2 f0vT/c)n. Due to the accumulation or filtering effect of DFT,
the change range of v in this channel is [lvΔv− Δv/2, lvΔv + Δv/2]. If the signal on the lv-th speed
channel is phase-compensated by the phase factor exp

{
j2π(2 f0lvΔvT/c)n

}
during or after Doppler

processing, the phase term 2π(2 f0vT/c)n becomes 2π(2 f0v′T/c)n, where −Δv/2 < v′ < Δv/2. As long
as the accumulation time MNT is long enough or the resolution of velocity is high enough, Δv is small
enough, and the change range of the term 2π(2 f0v′T/c)n can be far less than π/4. Rearrange the data{
YS(n|lv, k)

∣∣∣n = 0, 1, . . . , N − 1
}

on each speed channel lv in the order of in from small to large; then, the
phase term 2π(2R/c)Δ f in becomes 2π(2R/c)Δ f n, while 2π(2 f0v′T/c)n becomes a random phase term
of small value, which can be ignored.

By FFT processing of the rearranged data on each speed channel, the distribution of the scatters
along range direction of each speed channel can be obtained. By synthesizing all the speed channels,
the distribution of the scatters on the 2D range-Doppler plane can be obtained. It has almost the same
imaging effect as the conventional imaging algorithm used in SF Radar.

For other RFH modes, Doppler pre-processing can also suppress the above special range-Doppler
coupling effect, and different fast 2D range-Doppler imaging algorithms can be obtained.

3.2. Image Processing Based on 2D GMF

According to the theory of matched filtering, for any transmitting signal waveform, as long as it
has a certain bandwidth and a certain time width, the 2D range-Doppler image of the detected area
can be obtained from the return signal through 2D matched filtering processing at the receiving end.
The range resolution of the image depends on the effective bandwidth of the transmitting signal, and
the speed resolution depends on the effective time-width of the signal. If the random frequencies are
uniformly-distributed, the effective bandwidth is proportional to the synthetic bandwidth ΔF.

Supposing the required non-ambiguous range depth of imaging at each sampling unit is Rp, the
parameters ΔF and N are designed to satisfy Rp = cN/(2ΔF). If range depth of Rp is divided into
N range cells, the corresponding range width of each cell is c/(2ΔF), which is exactly the nominal
range resolution corresponding to the synthetic bandwidth ΔF of RFH signal. The non-ambiguous
velocity measurement range [0, c/(2 f0MT)] is divided into M velocity cells, and the velocity width
corresponding to each cell is c/(2 f0MNT), which is exactly the velocity resolution corresponding to
the accumulation time MNT of a complex frame. According to Equation (3) and the principle of 2D
GMF, the processing of 2D range-Doppler segment imaging at each sampling unit k can be described
as follows

P(lu, lv, k) =
∑M−1

m=0
∑N−1

n=0 WΩ(m, n)yS(n|m, k)exp
{− j2π[( fm + Δ fdimn)kτ]

}×
exp

{
− j2π

[
fm+Δ fdimn

ΔF lu
]}
× exp

{
j2π

[
fm+Δ fdimn

f0

(
lv − M

2

)
m
M

]}
× exp

{
j2π

[
fm+Δ fdimn

f0

(
lv − M

2

)
n

MN

]}
,

(4)

where
{
P(lu, lv, k)

∣∣∣lu = 0, 1, . . . , N − 1; lv = 0, 1, . . . , M− 1
}

is called the 2D segment image of the target
area obtained by the sampling point k. P(lu, lv, k) is the value (complex number) at the pixel point
(lu, lv), where lu is the number of pixel points in the range direction; lv is the number of pixel points in
the speed direction. The total number of pixels in the segment image is MN.

The function of phase term exp
{− j2π[( fm + Δ fdimn)kτ]

}
is to calibrate the segment image, so that

the starting position lu = 0 and the ending position lu = N − 1 of the segment image in the range
direction correspond to the starting position ckτ/2 and the ending position ckτ/2 + (N − 1)Rp/N.
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The purpose of calibration is to ensure that the segment image acquired at different sampling units is not
ambiguous. exp

{− j2π[( fm + Δ fdimn)lu/ΔF]
}

is the frequency-domain, non-uniform-sampling Fourier
transform factor in the direction of range. The range-domain sampling after transformation is uniform,
and the sampling interval is c/(2Δ f ), but the frequency-domain sampling interval defined by imnΔ fd
before transformation is non-uniform and random. exp

{
j2π( fm + Δ fdimn)(lv −M/2)m/(M f0)

}
is the

time-domain, non-uniform sampling Fourier transform factor in the velocity direction. The equivalent
time-domain sampling before transformation is non-uniform because of variation of between frame,
and the Doppler- frequency-domain sampling or velocity sampling after the transformation is uniform,
with an interval of c/(2 f0MNT). exp

{
j2π[( fm + Δ fdimn)(lv −M/2)n/MN f0]

}
is the range-Doppler

coupling compensation factor, which can realize the phase compensation of the range movement
within the sampling unit and across the sampling unit. Obviously, the motion compensation and 2D
Fourier transform are carried out synchronously, and different phase compensation is used in different
velocity channels to improve the compensation accuracy.

Obviously, when imnΔ fd = nΔ f , fm = f0, the RFH synthesis wideband system degenerates to
the conventional SF synthesis wideband system, and the 2D GMF of Equation (4) degenerates to the
conventional 2D windowed DFT operation, which can be implemented by 2D fast Fourier transform.

However, the computation complexity of 2D GMF is much higher than that of 2D FFT, so it is
necessary to combine different RFH modes and use fast algorithms to realize 2D GMF to meet the
real-time needs of high-speed platform-borne application.

Since the range width of echoes in each sampling unit is cτ/2, if the non-ambiguous range depth
of the segment image is Rp, it is required that Rp ≥ cτ/2 + RI, so that the echoes of scatters which move
across sampling unit can be accumulated in-phase at the same point of panoramic image, and this is of
importance in supersonic/hypersonic applications. RI is the maximum moving range of the scatters
in an imaging period of MNT. The overlapping width of the segment image of adjacent sampling
units in the range direction is Rp − cτ/2, and the number of non-overlapping range resolution cells is
Kd = Ncτ/

(
2Rp

)
. Then, the panoramic image in the beam irradiation area can be obtained from the

segment image of all the sampling units as follows:

Z(i, j) =
K−1∑
k=0

P(i− kKd, j, k)U(i− kKd)i = 0, 1, . . . , Kd + (K − 1)(N −Kd) − 1; j = 0, 1, . . . , M− 1,

where U(i) is a rectangular function with length N, defined as:

U(i) =
{

1, 0 ≤ i ≤ N − 1
0, otherwise

In summary, the procedure of imaging process is shown in Figure 2.

HPRF RFH Radar 

Receiver/Sampling 

Clutter-Center 

Velocity Compensation 

HPRF RFH 

Radar Transmitter 

Panoramic 

Image ( , ) Segment Imaging in 

Each Sampling Unit 

RFH Pattern 

Receiving 

Echoes 

Transmitting

Signal

( | , ) ( | , )

( , , )
Figure 2. The procedure of imaging processing.
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3.3. The Tradeoff between Randomness and Real-Time Performance

For the conventional SF radar, there is fast imaging algorithm of 2D FFT because of uniform
sampling in both frequency-domain and slow-time-domain. Theoretically speaking, for the RFH
radar system, the fast imaging algorithm depends on the structural characteristics of the RFH pattern.
Because there are too many RFH patterns, it is impossible to design optimal imaging algorithm
that has the least amount of computation for every RFH pattern. However, it is possible to design
pipeline-parallel processing real-time imaging for different RFH modes combined with the data
acquisition process.

In this paper, several RFH modes are defined as follows.

3.3.1. Intra-Complex-Frame Pure-RFH

In the m-th frame and the n-th pulse period of a complex frame, the frequency fmn of the transmitting
signal is randomly selected according to certain algorithm in the frequency band ( fm, fm + ΔF). The basic
frequency fm can hop randomly in a wide frequency range between frames. In this mode of RFH,
fmn = fm + Δ fdimn, where imn is the sequence number corresponding to the carrier frequency of the
m-th frame and the n-th period. imn is randomly and un-repeatedly selected according to a certain
probability density distribution in the integer set [0, 1, 2, . . . , I − 1], where I = ΔF/Δfd. Different frame-m
adopts different baseband frequency point set { Δ fdimn

∣∣∣n = 0, 1, . . . , N − 1
}
. This mode has the best

performance of randomness, low-interception, and anti-interference.

3.3.2. INTRA-Frame Pure-RFH

In each frame of a complex frame, the same frequency point set and the same hopping-order
are adopted. For any frame m1 and m2, fm1n = fm2n = f ′n, where f ′n is randomly selected according
to certain algorithm in the frequency band ( f0, f0 + ΔF). Because the frequency is the same between
frames, the initial phase ϕmn of the transmitting signal must be randomly selected according to certain
algorithm between 0 and π, so as to reduce the cyclic autocorrelation of the transmitting signal and
maintain the low interception performance. For different complex frames, the basic frequency f0
randomly changes in a large range as much as possible. The same frequency between frames can
simplify the Doppler processing and improve the real-time performance. However, compared with the
intra-complex-frame pure-RFH mode, this mode loses performance of randomness, low-interception,
and anti-interference because the same frequency point set and the same hopping-order are adopted in
each frame.

In this mode of RFH, fm = f0, imn = in and fmn = f0 + Δ fdin, where in is randomly and
un-repeatedly selected according to a certain probability density distribution in the range of integer set
[0, 1, 2, . . . , I − 1], where I = ΔF/Δfd.

3.3.3. Intra-Complex-Frames Pseudo-RFH

The baseband frequency points are obtained by uniform sampling in (0, ΔF), fmn = fm + i′mnΔF/N,
where n = 0, 1, 2, . . . , N − 1. The basic frequency fm can hop randomly in a wide frequency range
between frames, and i′mn can be randomly selected according to certain algorithm in the range of
{0, 1, 2, . . . , N − 1}. In this mode, different frames can adopt different basic frequencies and different
hopping-orders but the same uniformly sampled baseband frequency point set, and the pulse
compression processing in the range direction can be done by fast Fourier transform after higher
order motion compensation and data rearrangement, which improves the real-time performance.
Compared with the above two modes, the shortcoming of this mode is that the non-ambiguous range
depth of segment image at each sampling unit decreases because of the frequency-domain uniform
sampling. It is necessary to increase N and reduce the frequency hopping interval Δ f = ΔF/N to
meet the design requirements of non-ambiguous range depth. In addition, this mode loses more
performance of randomness, low-interception, and anti-interference.
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In this mode, Δ fdimn = (ΔF/N)i′mn and fmn = fm + (ΔF/N)i′mn, where i′mn is randomly and
un-repeatedly selected according to a certain probability density distribution in the range of integer set
[0, 1, 2, . . . , N − 1].

3.3.4. Intra-Frame Pseudo-RFH

The baseband frequency points are obtained by uniform sampling in (0, ΔF), fmn = f0 + i′nΔF/N,
where n = 0, 1, 2, . . . , N − 1. The basic frequency does not hop between frames. i′n is randomly and
un-repeatedly selected according to certain algorithm in the range of {0, 1, 2, . . . , N − 1}. The initial phase
ϕmn is randomly selected according to certain algorithm between 0 and π. For different complex frames,
the basic frequency f0 randomly changes in a large range as much as possible. In this mode, both the
pulse compression processing in the range direction and the Doppler processing in the speed direction
can be done by fast Fourier transform, which further improves the real-time performance. Decreasing in
non-ambiguous range depth, and more loss in performance of randomness, low-interception, and
anti-interference, are also the shortcomings of this mode.

See Appendix A for the specific generation of 2D RFH patterns for those four RFH modes

3.4. Online, Fast 2D Imaging Algorithms for Different RFH Modes

As mentioned before, in order to avoid image defocusing caused by the special range-Doppler
coupling in the case of RFH, Doppler pre-processing must be carried out synchronized with the pulse
compression process. However, Doppler processing is a kind of inter-frame processing. It will cause a
serious delay in signal processing if Doppler processing is not done until the data of the last frame is
collected. Considering that the data of the RFH synthetic wideband radar is obtained in the order of
frames and periods, pipeline-parallel processing can be used to divide the Doppler pre-processing and
pulse compression into each frame and each period, which can reduce the delay in signal processing.

3.4.1. Intra-Complex-Frame Pseudo-RFH Mode

In the 2D matched filtering (range-Doppler imaging) equation of Equation (4), in each frame
of each sampling unit, the data are rearranged in the way of frequency point from small to large.
Set n′ as the frequency point number after rearrangement and the corresponding number before
rearrangement is nm. Set the rearranged data as y′S(n

′|m, k). According to the definition of this RFH
mode Δ fdimn′ = n′ΔF/N, so the 2D matched filtering of Equation (4) can be re-written as follows:

P(lu, lv, k) =
M−1∑
m=0

N−1∑
n=0

WΩ(m, nm)y′S(n
′|m, k) × exp

{− j2π[( fm + n′ΔF/N)kτ]
}

×exp
{− j2πn′lu/N

}× exp
{

j2π
[

fm+n′ΔF/N
f0

(
lv − M

2

)
m
M

]}
×exp

{
− j2π fm

ΔF lu
}
× exp

{
j2π

[
fm+n′ΔF/N

f0

(
lv − M

2

)
nm

MN

]} (5)

Imaging Algorithm 1: FFT-based pulse-compression on multiple velocity channels

• Step 1. Initializing, set
{
P(−1)(lu, lv, k) = 0

∣∣∣lu = 0, 1, . . . , N − 1; lv = 0, 1, . . . , M− 1
}

• Step 2. For m = 0, 1, . . . , M− 1, perform the following iteration:

(A) Obtain the data of the k-th sampling unit of the m-th frame:
{
yS(n|m, k)

∣∣∣n = 0, 1, . . . , N − 1
}
.

(B) Data rearrangement:
{
yS(n|m, k)

∣∣∣n = 0, 1, . . . , N − 1
}→ {

y′S(n
′|m, k)

∣∣∣n′ = 0, 1, . . . , N − 1
}
.

(C) Windowing, range calibration, multi-velocity-channel motion compensation, and Doppler
pre-processing:

y′′S (n
′∣∣∣m, k, lv) = WΩ(m, nm)y′S(n

′∣∣∣m, k)ψ(m, n′, k, lv), (6)

197



Sensors 2019, 19, 5424

where

ψ(m, n′, k, lv) = exp
{
− j2π[( fm + n′ΔF/N)kτ] + j2π( fm + n′ΔF/N)

(
lv − M

2

)
m/( f0M)+

j2π( fm + n′ΔF/N)
(
lv − M

2

)
nm/( f0MN)

}
.

(7)
(D) Multi-velocity-channel fast pulse-compression processing.

It can be obtained according to Equations (5) and (6) that

P(lu, lv, k) =
M−1∑
m=0

exp
{
− j2π

fm
ΔF

lu

} N−1∑
n′=0

y′′S (n
′∣∣∣m, k, lv) × exp

{− j2πn′lu/N
}
.

The operation
∑N−1

n′=0 y′′S (n
′|m, k, lv) × exp

{− j2πn′lu/N
}

is a uniform sampling DFT, which
can be realized by FFT:{

Y′′S (lu, lv|m, k) : lu = 0, 1, . . . , N − 1
}
= FFT

{
y′′S (n

′∣∣∣m, k, lv) : n′ = 0, 1, . . . , N − 1
}
. (8)

(E) Current-frame Doppler-accumulation processing:

P(m)(lu, lv, k) = P(m−1)(lu, lv, k) + exp
{
− j2π fm

ΔF lu
}
×Y′′S (lu, lv|m, k)

(lu = 0, 1, . . . , N − 1; lv = 0, 1, . . . , M− 1).
(9)

Obviously, P(M−1)(lu, lv, k) = P(lu, lv, k).
In this algorithm, gradually, a clear image is obtained through iteration. Every additional frame

of data increases the sharpness of the image. Because the rearranged frequency points are uniformly
sampled, the pulse compression processing on each velocity-channel can be realized by FFT, which
improves the real-time performance of the imaging algorithm.

3.4.2. Intra-Frame Pseudo-RFH Mode

This RFH mode is equivalent to making all fm = f0 in the intra-complex-frame pseudo-RFH
mode. After data rearrangement, the nm corresponding to n′ is the same, which is labeled as n and
independent of m. In this mode, there is neither coupling phase term of lu and m, nor coupling phase
term lv and n. Compared to imaging algorithm 1, the computational complexity can be further reduced
by using fractal-dimension processing.

Imaging Algorithm 2. Fractal-dimension processing with Doppler pre-processing

• Step 1. Data rearrangement. Rearrange the data yS(n|m, k) of each frame in the order of frequency
points from small to large. The rearranged data are y′S(n

′|m, k), in which the number before
rearrangement corresponding to n′ is n.

• Step 2. Windowing and velocity calibration (lv = M/2 corresponds to zero-velocity
after compensation)

y′′S (n
′∣∣∣m, k) = WΩ(m, nm)y′S(n

′∣∣∣m, k) × exp
{
− j2π

[
f0 + n′ΔF/N

f0
m
2

]}
(m = 0, 1, . . . , M− 1). (10)
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• Step 3. For the data with the same sampling unit number k, pulse period number n′, and different
frame number m, carry out the non-integer sampling (lv is an integer, but ( f0 + n′ΔF/N)lv/ f0 is
not an integer) IDFT processing:

Y′′S (lv
∣∣∣n′, k) =

M−1∑
m=0

y′′S (n
′∣∣∣m, k) × exp

{
j2π

[
f0 + n′ΔF/N

f0
lv

m
M

]}
(lv = 0, 1, . . . , M− 1). (11)

• Step 4. Range calibration and multi-velocity-channel motion compensation.

Y′S(lv|n′, k) = Y′′S (lv|n′, k)

×exp
{
− j2π[( f0 + n′ΔF/N)kτ] + j2π

[
f0+n′ΔF/N

f0

(
lv − M

2

)
n

MN

]}
.

(12)

• Step 5. Range-dimension pulse-compression processing on each velocity channel:

P(lu, lv, k) =
N−1∑
n′=0

Y′S(lv
∣∣∣n′, k) × exp

{− j2πn′lu/N
}
(lu = 0, 1, . . . , N − 1). (13)

Obviously, the DFT processing of Equation (13) can be realized by FFT.

3.4.3. Intra-Frame Pure-RFH Mode

In this mode, fm = f0, imn = in, and the common phase factor exp
{− j2π fmlu/ΔF

}
can be ignored,

so Equation (4) can be written as follows:

P(lu, lv, k) =
∑M−1

m=0
∑N−1

n=0 WΩ(m, n)yS(n|m, k) × exp
{− j2π[( f0 + Δ fdin)kτ]

}×
exp

{
− j2πΔ fdin

ΔF lu
}
× exp

{
j2π

[
f0+Δ fdin

f0

(
lv − M

2

)
m
M

]}
× exp

{
j2π

[
f0+Δ fdin

f0

(
lv − M

2

)
n

MN

]}
.

(14)

Imaging Algorithm 3. Pipeline-parallel processing 2D matching filtering algorithm

• Step 1. Initialize, set
{
P(−1)(lu, lv, k) = 0

∣∣∣lu = 0, 1, . . . , N − 1; lv = 0, 1, . . . , M− 1
}
.

• Step 2. For m = 0, 1, . . . , M− 1, perform the following iteration:

(A) Obtain the data of the k-th sampling unit of the m-th frame:
{
yS(n|m, k)

∣∣∣n = 0, 1, . . . , N − 1
}
;

(B) Windowing, range calibration, multi-velocity-channel motion compensation, and Doppler
pre-processing:

y′′S (n|m, k, lv) = WΩ(m, n)yS(n|m, k)ψ(m, n, k, lv), (15)

where

ψ(m, n, k, lv) = exp
{
− j2π[( f0 + Δ fdin)kτ] + j2π( f0 + Δ fdin)

(
lv − M

2

)
m/( f0M)+

j2π( f0 + Δ fdin)
(
lv − M

2

)
n/( f0MN)

}
.

(16)

(C) Multi-velocity-channel pulse-compression processing

It can be obtained according to Equations (14) and (15) that

P(lu, lv, k) =
M−1∑
m=0

N−1∑
n=0

y′′S (n|m, k, lv) × exp
{
− j2π

Δ fdin
ΔF

lu

}
.

The operation Y′′S (lu, lv|m, k) =
∑N−1

n=0 y′′S (n|m, k, lv) × exp
{− j2πΔ fdinlu/ΔF

}
is non-uniform

sampling DFT. Even if the data are rearranged in the order of frequency points from small
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to large, the rearranged data are still non-uniform samples, which are difficult to be realized
by FFT before inserting into uniform samples.{

Y′′S (lu, lv|m, k) : lu = 0, 1, . . . , N − 1
}
= NUDFT

{
y′′S (n|m, k, lv) : n = 0, 1, . . . , N − 1

}
. (17)

(D) Current-frame Doppler accumulation processing

P(m)(lu, lv, k) = P(m−1)(lu, lv, k) + Y′′S (lu, lv|m, k)
(lu = 0, 1, . . . , N − 1; lv = 0, 1, . . . , M− 1).

(18)

Imaging Algorithm 4. Multi-velocity-channel pulse-compression based on data
rearrangement/interpolation/range dimension FFT

In order to ensure the accuracy of interpolation, the interpolation processing must be done in
each velocity channel. Due to the strong randomness of phase (2 f0vT/c)n after data rearrangement,
the rearranged data needs to be processed by Doppler pre-processing, so that the change range of
signal phase (2 f0ΔvT/c)n on each speed channel is far less than one, where Δv is the width of velocity
resolution unit. On each velocity channel, the effect of rearranged random phase term (2 f0ΔvT/c)n is
negligible. The data accumulated by Doppler pre-processing are rearranged and interpolated on each
velocity channel, which makes it is easy to ensure the interpolation accuracy.

• Step 1. Windowing and velocity calibration.

y′′S (n|m, k) = WΩ(m, nm)yS(n|m, k) × exp
{
− j2π

[
f0+Δ fdin

f0
m
2

]}
m = 0, 1, . . . , M− 1.

(19)

• Step 2. For the data with the same sampling unit number k, pulse period number n, and different
frame number m, carry out the non-integer sampling (lv is an integer, but ( f0 + Δ fdin)lv/ f0 is not
an integer) IDFT processing:

Y′′S (lv|n, k) =
M−1∑
m=0

y′′S (n|m, k) × exp
{

j2π
[

f0+Δ fdin
f0

lv m
M

]}
(lv = 0, 1, . . . , M− 1).

(20)

• Step 3. Range calibration, multi-velocity-channel motion compensation:

Y′S(lv|n, k) = Y′′S (lv|n, k) × exp
{
− j2π[( f0 + Δ fdin)kτ] + j2π

[
f0 + Δ fdin

f0

(
lv − M

2

) n
MN

]}
. (21)

• Step 4. Data rearrangement and spline interpolation. In each sampling unit and each velocity
channel, the data Y′S(lv|n, k) is rearranged in the order of n corresponding frequency points from
small to large to get the non-uniformly stepped-frequency sampled data. Then, the pre trained
spline interpolation model is used to interpolate the non-uniformly sampled data to uniformly
sampled data YS(lv|n′, k), and the corresponding frequency points are unified as f0, f0 + ΔF/N,
f0 + 2ΔF/N, . . . , f0 + (N − 1)ΔF/N.

• Step 5. Perform range-dimension pulse-compression processing on each velocity channel

P(lu, lv, k) =
N−1∑
n′=0

YS(lv|n′, k) × exp
{− j2πn′lu/N

}
(lu = 0, 1, . . . , N − 1).

(22)

Obviously, the DFT processing of Equation (22) can be realized by FFT.
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3.4.4. Intra-Complex Frame Pure-RFH Mode

Imaging Algorithm 5. Pipeline-parallel processing 2D matched filtering algorithm

• Step 1. Initialize, set
{
P(−1)(lu, lv, k) = 0

∣∣∣lu = 0, 1, . . . , N − 1; lv = 0, 1, . . . , M− 1
}
.

• Step 2. For m = 0, 1, . . . , M− 1, perform the following iteration:

(A) Obtain the data of the k-th sampling unit of the m-th frame:
{
yS(n|m, k)

∣∣∣n = 0, 1, . . . , N − 1
}
;

(B) Windowing, range calibration, multi-speed channel motion compensation, and
pre-processing of Doppler:

y′′S (n|m, k, lv) = WΩ(m, n)yS(n|m, k)ψ(m, n, k, lv), (23)

where

ψ(m, n, k, lv) = exp
{
− j2π[( f0 + Δ fdimn)kτ] + j2π( f0 + Δ fdimn)

(
lv − M

2

)
m/( f0M)+

j2π( f0 + Δ fdimn)
(
lv − M

2

)
n/( f0MN)

}
.

(24)

(C) Multi-velocity-channel pulse-compression processing.

It can be obtained according to Equations (4) and (23) that

P(lu, lv, k) =
M−1∑
m=0

exp
{
− j2π

fm
ΔF

lu

}N−1∑
n=0

y′′S (n|m, k, lv) × exp
{
− j2π

Δ fdimn

ΔF
lu

}
.

The operation
∑N−1

n=0 y′′S (n|m, k, lv) × exp
{− j2πΔ fdimnlu/ΔF

}
is non-uniform sampling DFT:{

Y′′S (lu, lv|m, k) : lu = 0, 1, . . . , N − 1
}
= NUDFT

{
y′′S (n|m, k, lv) : n = 0, 1, . . . , N − 1

}
. (25)

(D) Current-frame Doppler accumulation processing

P(m)(lu, lv, k) = P(m−1)(lu, lv, k) + exp
{
− j2π fm

ΔF lu
}
×Y′′S (lu, lv|m, k)

(lu = 0, 1, . . . , N − 1; lv = 0, 1, . . . , M− 1).
(26)

Obviously, P(M−1)(lu, lv, k) = P(lu, lv, k).

3.5. Real-Time 1D Hig-Range-Resolution (HRR) Imaging Algorithm of HPRF RFH Radar

The 1D HRR imaging algorithm is mainly used in the stage of target-tracking. As mentioned
before, due to the special range-Doppler coupling effect of RFH synthetic wideband imaging radar in
supersonic/hypersonic applications, the HRR imaging processing algorithm is essentially different
from that of conventional stepped frequency synthetic wideband imaging radar, which can obtain
HRR range profile by using the data of one frame. In RFH radar, if we want to obtain the range profile
of the current frame, Doppler pre-processing should be executed before the current frame in order to
suppress the special-range Doppler coupling effect.

The 1D HRR imaging algorithm is the same as the above online, fast, 2D imaging algorithms.
The difference is that, in the target tracking stage, the target has been detected by the range-Doppler 2D
image acquired in the searching stage, and the sampling unit and velocity channel where the target is
located have been measured; then, the range-Doppler imaging processing algorithm only needs to be
carried out on the velocity channel of the target and its adjacent channel. The multi-velocity-channel
range-Doppler 2D imaging and splicing processing only need to be carried out in the corresponding
sampling unit and the adjacent sampling units. That can significantly reduce the complexity of
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computation. In order to meet the requirements of high data rate in the tracking phase, the
multi-velocity-channel range profile must be updated by frame, not by complex-frame as in 2D
imaging. It is easy to design the iterative algorithm that can obtain the range profile of the next frame
from that of the current frame by adding a few computations.

4. Experimental Results and Evaluation of Fast Imaging Algorithm

The diving angle of the aircraft was θM = −30◦ (the angle between the moving direction of the
radar platform and the horizontal plane), the flight speed was VM = 1750 m/s, and the height was
H = 30 km. The pulse repetition period was T = 14 us, the carrier basic frequency was f 0 = 35 GHz, the
frequency hopping interval was Δf = 6.25 MHz, and the pulse width was τ = 0.08 us. The number of
periods in one frame was N = 16, the corresponding synthetic wideband was NΔf = 100 MHz, the
range resolution was ΔR = c/(2NΔf ) = 1.5 m, the number of frames in one complex-frame was M = 32,
the corresponding period of complex-frame was MNT = 7.168 ms, and the velocity resolution was
Δv = c/(2f 0MNT) = 0.6 m/s.

We assumed that the target was a stationary ship on the sea, and was equivalent to seven strong
scattering centers. The parameters of each scattering center are shown in Table 1.

Table 1. Parameters of scattering centers of target.

Scattering Center Number Initial Distance/m Pitch Angle/(◦) Azimuth /(◦) Normalized Scattering Intensity

1 33,822 −59.883 10 1
2 33,828 −59.866 10 1
3 33,834 −59.848 10 1
4 33,840 −59.831 10 1
5 33,846 −59.814 10 1
6 33,852 −59.774 10 1
7 33,858 −59.747 10 1

According to the definition of resolution-cell in the above 2D GMF method, the theoretical
coordinates of those seven scattering centers in spliced 2D range image are shown in Table 2.

Table 2. Theoretical positions of each scattering center of the target in image.

Scattering Center Number Range Cell Velocity Cell

1 148 20
2 153 20
3 157 21
4 161 21
5 165 22
6 169 23
7 173 23

Sea clutters were simulated according to average SCR of 8 dB. The intra-complex-frame
pseudo-RFH mode of imnΔ fd = i′mn(ΔF/N) and fm = f0 was investigated first, and the 2D
range-Doppler normalized image obtained by 2D GMF is shown as Figure 3.
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Figure 3. Image obtained by 2D GMF.

The other RFH modes were also used in the simulation experiments, and the imaging results were
almost the same except the side-lobe level. The side-lobe level of pure-RFH mode was higher than that
of pseudo-RFH mode. The simulation results show that the 2D GMF method can obtain high quality
images in all modes of RFH. However, the computation-complexity of this method is much higher
than that of 2D FFT. The 2D GMF was implemented by different pipeline-parallel algorithm according
to different RFH mode in order to improve the real-time performance.

For Imaging Algorithm 1, because the rearranged data are uniformly sampled in frequency
domain, the pulse-compression processing on each velocity channel can be realized by FFT, which
improves the real-time performance of the imaging algorithm. The 2D GMF needs 2× (MN)2 complex
multiplication operations, but the algorithm of FFT-based pulse-compression on multiple velocity
channels needs only M2[3N + N log(N)] complex multiplication operations. The total operation is
reduced to [log(N) + 3]/N times of the original.

Imaging Algorithm 2 needs MN[M + log(N) + 3] complex multiplication operations.
Compared with Algorithm 1, the computation is much less, but it is not convenient for pipeline
processing, and the delay time of signal processing is not necessarily short.

Imaging Algorithm 3 needs M2N2 + 2M2N complex multiplication operations, which is more
than for Imaging Algorithm 1 and Imaging Algorithm 2. However, the operations can be decomposed
to each frame for execution, and the delay time of signal processing is short. It can meet the
requirements of real-time imaging by multiprocessor parallel processing, and each processor is
responsible for windowing, motion compensation, pulse compression, and Doppler accumulation of
several velocity channels.

Regardless of the operations of low-order spline interpolation, Imaging Algorithm 4 needs
MN[M + log(N) + 3] complex multiplication operations, which is equivalent to that of Algorithm 2.
It is also inconvenient for pipeline processing, and the delay time of signal processing is not necessarily
shorter than that of Algorithm 3.
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Imaging Algorithm 5 needs M2N2 + 3M2N complex multiplication operations. Similar to Imaging
Algorithm 3, the operations can be decomposed to each frame for execution, and the delay time of
signal processing is short. It can meet the requirements of real-time imaging processing through
multiprocessor parallel processing.

The imaging results of the five imaging algorithms are almost the same as that of the 2D GMF.
Figure 4 shows the 2D normalized image obtained by Imaging Algorithm 1.
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Figure 4. Image obtained by Imaging Algorithm 1.

For the intra-frame pseudo-RFH mode, as a contrast, Figure 5 shows the imaging results obtained
by the traditional fractal-dimension imaging algorithm without Doppler pre-processing. In this
method, the data yS(n|m, k) are re-arranged in the order of frequency points from small to large in
each frame, and a new data sequence y′S(n|m, k) is obtained. Then, the range calibration is performed
by multiplying the phase factor exp

{− j2π[( f0 + nΔF/N)kτ]
}
, and the range profile y′S(lu|m, k) of each

frame is obtained by processing the calibrated data with N-point DFT (pulse compression). Finally,
DFT (Doppler beam sharpening) processing of M-point is carried out for data of M frames in each
range resolution cell lu, and the 2D normalized image P(lu, lv, k) is obtained.
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Figure 5. Image obtained by traditional algorithm without Doppler pre-processing.

Obviously, due to the special range-Doppler coupling effect caused by RFH and the lack of
Doppler pre-processing in the pulse-compression process, the image is seriously divergent.

For the conventional SF mode, as a contrast, Figure 6 shows the normalized imaging results
obtained by using the traditional fractal-dimension imaging algorithm.
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Figure 6. Image obtained by conventional stepped frequency (SF) mode.

Compared with Figures 3 and 4, it is shown that the RFH synthesis wideband system can achieve
almost the same imaging effect as that of the conventional SF system, but the side-lobe level is higher
in image of RFH system.
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5. Discussion

In the case of RFH mode and a supersonic/hypersonic application, the conventional
fractal-dimension 2D range-Doppler imaging algorithm makes it difficult to obtain high quality
images because of the special range-Doppler coupling. Theoretical analysis and simulation results
show that the proposed pipeline-parallel processing fast imaging algorithms based on Doppler
pre-processing and 2D GMF can well suppress the above special range-Doppler coupling effect, avoid
the divergence of the image in the range direction, and meet the requirements of real-time imaging.
However, the side-lobe level of pure-RFH mode is higher than that of pseudo-RFH mode. Further, it is
necessary to suppress the side-lobe level by optimizing the RFH pattern and the 2D window function
WΩ(m, n).
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Appendix A

• Generation of 2D RFH patterns for different RFH modes
A chaos sequence is used to control the generation of the RFH pattern, which has the advantage

of infinite periodicity, so it is difficult for the interceptor to decipher.

1. Intra-frame pseudo-RFH

Suppose we need to generate N stepped frequency points at [0, ΔF], where N = ΔF/Δ f and
ΔI = Δ f /Δ fd. Then we can use the following Bernoulli chaotic sequence to generate the RFH pattern.

xn = 2.01xn−1 mod 1
i′n = INT[N × xn]

Ω =
{
imn = i′n × ΔI

∣∣∣n = 0, 1, . . . , N − 1; m = 0, 1, . . . , M− 1
}
.

(A1)

In the equation, the initial value x−1 can be randomly selected in the range of (0, 1).
For different complex frames, a new RFH pattern can be adopted through changing the initial

value x−1.
The Bernoulli chaotic pattern can also be used for the hopping of basic frequency f0 between

complex frames. If the bandwidth of the antenna is ΔFt, and IMAX = ΔFt/Δ fd, the basic frequency fi
of the i-th complex frames can be obtained as follows

zi = 2.01zi−1 mod 1
j′i = INT[IMAX × zi]

fi = j′i Δ fd(i = 0, 1, . . .).
(A2)

The initial value z−1 can be randomly selected in the range of (0,1).
Of course, constraints can be inserted in Equations (A1) and (A2). If

∣∣∣i′n − i′n−1

∣∣∣ or
∣∣∣ j′i − j′i−1

∣∣∣ is less
than a certain value, the iteration value will be discarded and the next iteration value will be selected.

2. Intra-complex-frame pseudo-RFH

In each complex frame, the frequency of the n-th pulse repetition period of the m-th frame
is fm + imnΔ fd and the basic frequency fm of each frame randomly changes within the allowable
bandwidth of the radar antenna, and the N frequency points of each frame are randomly selected from
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the N uniformly stepped frequency points in [0, ΔF]. Different frames use different frequency point
orders. fm and imn are generated as follows.

zm = 2.01zm−1 mod 1
j′m = INT[IMAX × zm]

fm = j′mΔ fd(i = 0, 1, . . . , M− 1)
(A3)

xm,n = 2.01xm,n−1 mod 1
i′mn = INT[N × xm,n]

Ω =
{
fm, imnΔ fd = i′mn × ΔIΔ fd

∣∣∣n = 0, 1, . . . , N − 1; m = 0, 1, . . . , M− 1
}
,

(A4)

where xm,−1 = xm−1,M−1; the initial values z−1 and x0,−1 can be randomly selected in the range of (0, 1).
By changing the initial value, multiple groups of RFH patterns can be generated.

3. Intra-frame pure-RFH

In each complex frame, the frequency of the n-th pulse repetition period of the m-th frame is
f0 + inΔ fd. The basic frequency f0 of each frame is constant, but f0 can randomly jump within the
allowable bandwidth of the radar antenna according to Equation (A2) between complex frames.
Although the N frequency points of each frame are randomly selected in [0, ΔF], different frames adopt
the same frequency points and order. If I′MAX = ΔF/Δ fd, the RFH pattern is generated as follows.

xn = 2.01xn−1 mod 1
i′n = INT

[
I′MAX × xn

]
Ω =

{
imnΔ fd = i′nΔ fd

∣∣∣n = 0, 1, . . . , N − 1; m = 0, 1, . . . , M− 1
}
.

(A5)

By changing the initial value of x−1, multiple groups of RFH patterns can be generated.

4. Intra–complex-frames pure-RFH

The basic frequency fm of each frame jumps within the frequency band allowed by the radar
antenna. The N frequency points of each frame are randomly selected in the bandwidth of [0, ΔF], and
different frames use different frequency points.

Algorithm: Generating two independent Bernoulli chaotic sequences
{
fm
}

and {imn}

zm = 2.01zm−1 mod 1
j′m = INT[IMAX × zm]

fm = j′mΔ fd(i = 0, 1, . . . , M− 1)
(A6)

xm,n = 2.01xm,n−1 mod 1
i′mn = INT[IMAX × xm,n]

Ω =
{
fm, imnΔ fd = i′mnΔ fd

∣∣∣n = 0, 1, . . . , N − 1; m = 0, 1, . . . , M− 1
}
,

(A7)

where, the initial value z0, x0,−1 can be randomly selected in the range of (0, 1) and xm,−1 = xm−1,M−1.
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Abstract: In recent years, sparsity-driven regularization and compressed sensing (CS)-based radar
imaging methods have attracted significant attention. This paper provides an introduction to the
fundamental concepts of this area. In addition, we will describe both sparsity-driven regularization
and CS-based radar imaging methods, along with other approaches in a unified mathematical
framework. This will provide readers with a systematic overview of radar imaging theories and
methods from a clear mathematical viewpoint. The methods presented in this paper include the
minimum variance unbiased estimation, least squares (LS) estimation, Bayesian maximum a posteriori
(MAP) estimation, matched filtering, regularization, and CS reconstruction. The characteristics of
these methods and their connections are also analyzed. Sparsity-driven regularization and CS based
radar imaging methods represent an active research area; there are still many unsolved or open
problems, such as the sampling scheme, computational complexity, sparse representation, influence of
clutter, and model error compensation. We will summarize the challenges as well as recent advances
related to these issues.

Keywords: radar imaging; synthetic aperture radar; compressed sensing; sparse reconstruction;
regularization

1. Introduction

Radar imaging technique goes back to at least the 1950s. In the past 60 years, it has been stimulated
by hardware performance, imaging theories, and signal processing technologies. Figure 1 shows the
developmental history of radar imaging methods.

 

Figure 1. Developmental history of radar imaging methods.

Since the development of radar imaging techniques, the main theory that has been used has
always been matched filtering [1–3]. Matched filtering is a linear process; it has the advantages of
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simplicity and stability. However, the drawbacks of the matched filtering method are also obvious.
Since it does not exploit any prior information concerning the expected targets, its performance is
limited by the signal bandwidth. It also requires a dense sampling to record the signals, according
to the Shannon–Nyquist sampling theorem. Thus, the matched filtering method places significant
requirements on the measured data, but only produces results with limited performance. As higher
and higher imaging performance is demanded, the matched filtering method will struggle to meet
the requirements.

Apart from the matched filtering framework, from a more generic mathematical viewpoint, radar
imaging can be viewed as an inverse problem [4–7], whereby a spatial map of the scene is recovered
using the measurements of the scattered electric field. The radar observation process is a Fredholm
integral (F-I) equation of the first kind [8]. Due to observation limitations, such as limited bandwidth
and limited observation angles, this inverse problem is usually ill-posed [9,10]. The classic least squares
(LS) estimation method cannot solve such ill-posed inverse problems efficiently. The matched filtering
method can be viewed as using an approximation to eliminate the irreversible or unstable term in the
LS solution. This approximation leads to limited resolution and side-lobes in the results. Thus, matched
filtering methods typically provide an image that blurs the details of the scene. Using proper models
for the targets, super-resolution methods can improve the resolution of the imaging result [11,12].

Besides using approximation, the ill-posed inverse problem can be solved by another approach,
i.e., adding an extra constraint to the LS formula and yielding a stable solution. This approach is
called regularization [8]. In order to make the solution after regularization closer to the true value,
the additional constraint should represent appropriately some prior knowledge. The regularization
approach can also be explained by the Bayesian maximum a posteriori (MAP) estimation theory [6,13,14],
which uses prior knowledge in a probabilistic way.

In the radar imaging scenario, imposing sparsity is one possible form of prior knowledge [15].
The advantages of the sparsity-driven regularization methods include increased image quality and
robustness to limitations in data quantity. Compressed sensing (CS) refers to the use of under-sampled
measurements to obtain the coefficients of a sparse expansion [16–20].

This paper summarizes the fundamentals, challenges and recent advances of sparse regularization
and CS-based radar imaging methods. Using a unified mathematical model, we derive the best
estimator (i.e., the minimum variance unbiased estimator), the LS estimator, the Bayesian MAP
estimator, matched filtering, regularization, and CS reconstructions of the scene. The characteristics of
these methods and their connections are also analyzed. Finally, we present some key challenges and
recent advances in this area. These include the sampling scheme, the computational complexity, the
sparse representation, the influence of clutter, and the model error compensation.

2. Mathematical Fundamentals of Radar Imaging

2.1. Radar Observation Model

In the continuous signal domain, under the Born approximation, the radar observation process
can be denoted as [4]

s(r) =
∫

A(r, r
′
)g(r

′
)dr

′
+ n (1)

where s(r) denotes the observed data at the observation position of r, g(r
′
) denotes the reflectivity

coefficient at r
′

in the scene, A(r, r
′
) denotes the system response from r

′
to r, and n denotes noise.

Assuming the system is shift invariant, Equation (1) can be rewritten as

s(r) =
∫

A(r− r
′
)g(r

′
)dr

′
+ n (2)

It can be seen that the radar observation model is a convolution process. Equation (1) is a Fredholm
integral (F-I) equation of the first kind [8]. From a mathematical viewpoint, radar imaging can be
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viewed as the solution of the F-I equation—i.e., we want to recover g(r) from the observed data s(r)
using the observation equation. Unfortunately, according to the theory of integral equations, solving
the F-I equation is usually an ill-posed problem [8].

In practice, since digitization is commonly used, the observed data are discrete. Based on
Equation (1), the discrete observation model can be written as

s = Ag + n (3)

where s is stacked from the samples of s(r), g is stacked from the samples of g(r
′
), A is formed from

samples of A(r, r
′
), and n is the observation noise vector.

2.2. Best Linear Unbiased Estimate and Least Squares Estimate of the Scene

From the observation model shown in (3), radar imaging can be viewed as an estimation problem,
in which the scene g is estimated based on the observed data s in a noisy environment. According
to estimation theories, the minimum variance unbiased estimate is the “best” estimate in terms of
estimation square error. From Equation (3), it can be seen that when the radar observation model
is linear, the minimum variance unbiased estimate is the best linear unbiased estimate [13]—i.e.,
the expression of the best estimate of the scene is

^
g = (AHC−1A)

−1
AHC−1s (4)

where C is the covariance matrix of the noise term (C = E
[
nnH

]
).

In practice, a more tractable approach is LS estimation, which can be denoted as

^
g = argmin

g
‖s-Ag‖22 (5)

Therefore, the LS estimate of the scene is

^
g = (AHA)

−1
AHs (6)

If n is white Gaussian noise, we have C = σ2I, where I is the identity matrix. Under such condition,
Equations (4) and (6) are the same. Therefore, the LS estimate will equal to the best estimate in white
Gaussian noise [13].

If we want to use Equation (6) to calculate the best estimate of the scene, a prerequisite is that
(AHA) is invertible. However, in practice, this prerequisite is usually not satisfied, as discussed below.
We assume that the size of A is M×N, where M denotes the number of measurements and N denotes
the number of unknown grid points. Then, the size of (AHA) is N ×N.

One case is that M < N, i.e., the number of measurements is less than the unknown variables.
CS is a typical example of this case. In such a case, rank(AHA) = rank(A) ≤ M < N, i.e., (AHA)

is irreversible.
In the above case, it can be seen that due to limited number of measurements, (AHA) is irreversible.

Is it possible to make (AHA) invertible by increasing the number of measurements (i.e., make M > N.
As mentioned previously, due to physical limitations, such as limited bandwidth and limited observation
angles, if we take more measurements, the interval between the adjacent measurements will be smaller.

Thus, the coherence between the adjacent columns in A will increase. Consequently, (AHA)
−1

will
probably be ill-conditioned.

In summary, the LS solution usually contains irreversible or ill-posed terms. This problem is
inherent, and is derived from the property of the F-I equation of the first kind [8].
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2.3. Matched Filtering Method

Examining Equation (6), it can be seen that the irreversible or ill-posed term is (AHA)
−1

. We can

multiply (AHA) in the left side of Equation (6) to eliminate (AHA)
−1

. In this way, we can avoid

explicitly calculating the nonexistent or unstable term (AHA)
−1

. This leads to the matched filtering
method, which can be denoted as

^
gMF = (AHA)

^
g = AHs (7)

Equation (7) can be viewed as multiplying the best estimate of the scene with (AHA). The matrix
(AHA) is the autocorrelation of the system response, which usually has a sinc pulse shape [1,21].
The matched filtering result can be viewed as the convolution of the best estimate of the scene and the
sinc function. A point target will be spread, and side-lobes will also appear in the matched filtering
result [21]. This implies that the matched filtering method can only provide an image that blurs the
details of the scene. The matched filtering method has a limited resolution, which depends on the
autocorrelation of the system response [1].

Figure 2 shows an example of the matched filtering method. Six point targets are set in the scene.
It can be seen that the matched filtering result is the convolution of the targets and the autocorrelation
of the system response. As a result, an idea point target is spread into a sinc waveform. Consequently,
targets will interfere with each other, and two closely spaced targets may not be resolved in the matched
filtering result.

Equation (7) is the original form of the matched filtering equation. In practice, in order to reduce
the computational cost and make it more convenient for implementation, some transformations and
approximations are usually adopted for Equation (7). Equation (7) can represent many widely used
imaging algorithms, such as backprojection algorithms, range Doppler algorithms, chirp scaling
algorithms, and ωK algorithms [1].

 

Figure 2. Matched filtering example. Two closely spaced targets cannot be resolved.

2.4. Regularization Method

Examining the LS formula (Equation (5)), it can be seen that it only relies on the observed data.
In order to make the ill-posed inverse problem become well-posed, we can add an extra constraint to
the LS formula [8–10]. This leads to the regularization method, which can be denoted as

^
g = argmin

g
{‖s-Ag‖22 + λL(g)} (8)

where λ is the regularization parameter and L(g) is the added penalty function. In order to make the
solution of Equation (8) closer to the true value, L(g) should represent appropriate prior knowledge
for the problem.
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A typical choice of L(g) is
L(g) = ‖g‖pp (9)

where ‖ · ‖p denotes the �p-norm, i.e.,

‖g‖p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(

N∑
i=1

∣∣∣gi
∣∣∣p)1/p

p> 0

Number of nonzero elements in g p= 0
(10)

Then, Equation (8) can be rewritten as

^
g = argmin

g

{
‖s-Ag‖22 + λ‖g‖pp

}
(11)

The choice of p can control the result of the regularization method. If we want to enforce sparsity
in the result, we should choose p in the range 0 ≤ p ≤ 1 [16,17]. For p = 1, Equation (11) can be
compared to the Lasso solution of the CS type methods [16]. Equation (11) can be solved by gradient
search algorithms, such as the Newton iteration [22].

2.5. Bayesian Maximum a Posteriori Estimation

It should be noted that in Equation (11), the added constraint term λ‖g‖pp represents prior
knowledge [17,23]. Another prior knowledge-based estimation method is Bayes theory. The main
idea behind the Bayesian estimation framework is to account explicitly for the errors, and also for
incomplete prior knowledge. Assuming that the noise n in Equation (3) is white and Gaussian, we have

p(n) ∝ exp
{
− 1

2σ2 ‖n‖22
}

(12)

where σ2 is the noise variance. Then we obtain the expression of likelihood

p(s
∣∣∣∣∣g) ∝ exp

{
− 1

2σ2 ‖s− g‖22
}

(13)

We assume that the scene has a prior probability density function, as

p(g) ∝ exp
{
−α‖g‖pp

}
(14)

If 0 ≤ p ≤ 1, the magnitude of the scene is more likely to concentrate around zero, which implies
that the scene is sparse. For a review on sparsity enforcing priors for the Bayesian estimation approach,
the reader can refer to [6].

Using the prior probability density of g shown in (14), and according to the Bayes rule, we obtain

p(g|s) = p(s
∣∣∣g)p(g)
p(s)

∝ 1
p(s)

exp
{
− 1

2σ2 ‖s− g‖22 − α‖g‖pp
}

(15)

Then the MAP estimate can be obtained easily as

^
g = argmax

g
p(g

∣∣∣∣∣s) = argmin
g
‖s− g‖22 + 2σ2α‖g‖pp (16)

Comparing Equations (11) and (16), it can be seen that when λ = 2σ2α, these two equations are
equivalent, i.e., the regularization method is equivalent to Bayesian MAP estimation.
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2.6. Compressed Sensing Method

For the observation model shown in Equation (3), if the scene (i.e., g) is sparse, according to CS
theory, it can be stably reconstructed using reduced data samples. The reconstruction method can be
written as [16,17]

^
g = argmin

g
‖g‖0 s.t. ‖s-Ag‖22 < ε (17)

where s.t. means subject to and ε denotes the allowed data error in the reconstruction process.
Equation (17) is NP-hard and computationally difficult to solve [17]. Matching pursuit is an

approximate method for obtaining an �0 sparse solution. In CS theory, a more tractable approach is
taking the �1-norm instead of the �0-norm, which is called the �1 relaxation:

^
g = argmin

g
‖g‖1 s.t. ‖s-Ag‖22 < ε (18)

If g is sparse and A satisfies some specific conditions, Equations (18) and (17) will have the same
solution, and this solution is the exact or approximate recovery of g [16,17]. Equation (18) can be solved
using convex programming, which is more tractable than the original �0-norm minimum problem.
Unlike the matched filtering method, CS method does not have an exact or pre-defined resolution,
since it is a non-linear method. Generally, the resolution capability of the CS method is much better
than the matched filtering method if the targets are sparse.

Figure 3 shows an example of compressed sensing. The simulated scene is the same as the matched
filtering example shown in Figure 2. Only 1/20 signal samples are used for the CS reconstruction.
It can be seen that the two closely spaced targets are well resolved. This implies that the CS method
can obtain better results using less data than the matched filtering method. The reason is that prior
information concerning signal sparsity is utilized in the CS model.

Equation (18) is a constrained optimization problem. According to the Lagrange theory, it can be
transformed into an unconstrained optimization problem, which will have the same form as Equation
(11). For appropriate choices of λ and p = 1, Equations (11) and (18) will be equivalent [16,17]. This
implies that CS is a special case of the regularization method.

 

Figure 3. Compressed sensing example; closely spaced targets are well resolved.

2.7. Summary of Radar Imaging Methods

The above subsections introduced the LS estimator, matched filtering, regularization methods,
Bayesian MAP estimation, and the CS method. In this subsection, we will summarize these methods
and analyze their connections.

Table 1 lists the main characteristics and describes some connections between these imaging
methods. The LS estimation only relies on the observed data, and cannot solve the ill-posed radar
imaging problem efficiently. The matched filtering method can be viewed as using an approximation
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to avoid the ill-posed term in the LS solution. The regularization method, Bayesian MAP estimation,
and the CS method exploit prior knowledge concerning the targets in addition to the observed data,
and they are equivalent in some cases.

Table 1 also shows the equivalent geometric illustration for each method in R2. The observation
equation can only confine the solution to a hyperplane (which becomes a line in R2), but cannot reliably
produce a certain solution [17,23]. The other methods aim at obtaining a stable solution close to the
true value, using some modifications that represent prior knowledge concerning the targets.

Figure 4 shows the block diagram and the relationship of the radar imaging methods. All of the
radar imaging methods can be divided into two branches. The first branch does not use the prior
information of the targets or scene, and it leads to the linear imaging methods; the most typical and
widely used one in this branch is matched filtering. Another branch uses the prior information of
the targets or scene. This leads to the non-linear methods. The most recently developed methods,
including regularization methods, Bayesian methods, and CS methods belong to this branch.

Table 1. Characteristics and connections of radar imaging methods.

Radar Observation Model: s=Ag+n
s: Observed Data, A: Measurement Matrix, g: Scene, n

Imaging Methods Mathematical Model Characteristics Equivalent Geometric
Illustration

Least Squares (LS)
Estimation

^
g = argmin

g
‖s-Ag‖22

^
g = (AHA)

−1
AHs, (AHA)

−1
is usually

ill-posed or nonexistent, cannot obtain a
stable solution [9,13].

 

Matched Filtering ^
g = AHs

Avoids the ill-posed term in the LS
solution, but the resolution is limited by
the system bandwidth, and side-lobes
will appear in the final image [4,21].  

Range Doppler, Chirp
Scaling, ωK, etc.

Approximations and
transformations of AHs

Approximations and transformations of
the original matched filtering, in order
to reduce the computational cost and
make it more convenient to implement
in practice [1].  

Regularization Method ^
g = argmin

g
‖s-Ag‖22 + λL(g)

Add an extra constraint to the LS
formula, so that the ill-posed inverse
problem becomes well-posed. If the
added constraint is chosen
appropriately, the result will be better
than that for matched filtering [8,9].

Depends on the expression
of L(g).

Sparsity-Driven
Regularization

^
g = argmin

g
‖s-Ag‖22 + λ‖g‖pp

0 ≤ p ≤ 1

Choose L(g) as the �p-norm (0 ≤ p ≤ 1),
in order to obtain sparse reconstruction
result [6,23].

 

Bayesian MAP
Estimation

p(g) ∝ exp
{
−α‖g‖pp

}
^
g = argmin

g
‖s-Ag‖22 + 2σ2α‖g‖pp

For 2σ2α = λ, the MAP estimation will
be equivalent to the sparsity-driven
regularization method [6,14].

 

Compressed Sensing
(CS) Method

^
g = argmin

g
‖g‖0 s.t. ‖s-Ag‖22 < ε

or
^
g = argmin

g
‖g‖1 s.t. ‖s-Ag‖22 < ε

For an appropriate choice of λ, the CS
method will be equivalent to the
sparsity-driven regularization method
[17,23].
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Figure 4. Block diagram and relationship of the radar imaging methods.

3. Challenges and Advances in Compressed Sensing-Based Radar Imaging

The use of regularization methods in radar imaging goes back at least to the year 2000 [21,24].
Since the CS theory was proposed in 2006, it has been explored for a wide range of radar [25–33] and
radar imaging applications [4,34–38], including synthetic aperture radar (SAR) [39–42], inverse SAR
(ISAR) [43–45], tomographic SAR [46–51], three-dimensional (3D) SAR [52–54], SAR ground moving
target indication (SAR/GMTI) [55–61], ground penetrating radar (GPR) [62–64], and through-the-wall
radar (TWR) [65–67]. In this paper, we will focus on two-dimensional (2D) imaging radar systems, i.e.,
SAR, GPR, and TWR.

After several years of development, although many interesting ideas have been presented in this
area, there still exist a number of challenges, both in theory and practice [68]. The state of the art in this
area has not yet reached the stage of practical application. We will present some challenges as well as
recent advances in this part of the paper.

3.1. Sampling Scheme

CS usually involves random under-sampling [16,17]. A widely used waveform in traditional
radar imaging is the linear frequency modulated (LFM) waveform. If we adopt the LFM waveform in
CS-based radar imaging, a random sampling analog to digital (A/D) converter is needed, which is
not easily realized in practice. This will require extra hardware components, which means that LFM
waveforms are not ideally suited for CS.

Recently, many researchers have found that the stepped frequency waveform is much more
suitable for CS than the LFM waveform [35,62,63,66,69]. Sparse and discrete frequencies are more
convenient for hardware implementation. For a CS-based radar imaging system, a stepped frequency
waveform may be the preferred choice. In practical application, a set of adjustable pseudorandom
numbers can be generated to select the frequency points in the stepped frequencies. In this way,
randomly generated frequencies, i.e., random and sparse measurement, can be realized, and the
CS-based imaging model can be implemented.

Figures 5 and 6 show an example for CS-based stepped frequency radar imaging. The main
equipment in the experimental system is a vector network analyzer (VNA). The experiment is carried
out in a non-reflective microwave chamber. Five targets in the scene are shown in Figure 5. Figure 6a
shows the backprojection result, using the fully sampled data (81 azimuth measurements × 2001
frequencies). Figure 6b shows the CS reconstruction result using under-sampled data (27 azimuth
measurements × 128 frequencies). Considering the aspects of resolution and sidelobe levels, the CS
reconstruction result is even better than the backprojection result, although it uses less sampled data.
The reason is that prior information concerning signal sparsity is used in the CS model, while the
backprojection method uses no prior information.
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(a) (b) 

Figure 5. Experimental scene for CS-based stepped frequency radar imaging. (a) Five reflectors in the
microwave chamber. (b) Transmitter and receiver antennas.

 

Figure 6. (a) Backprojection result of full data (81 azimuth measurements × 2001 frequencies). (b) CS
result of under-sampled data (27 azimuth measurements × 128 frequencies).

3.2. Computational Complexity

In the regularization or CS model for a 2D radar imaging system, the 2D observed data and the
2D scene grid are both stacked into column vectors. This will lead to a huge size measurement matrix.
For example, the original fully sampled data are 2048 × 2540 points (azimuth × range); if a 512 × 512
pixel image is reconstructed from a reduced sampling data consist of 256 × 256 points. Then the size
of the matrix A is 65,536 × 262,144. Since regularization or CS reconstruction is a non-linear process,
such a large measurement matrix will result in a huge computational burden for image reconstruction.
In addition, the total memory to access the measurement matrix is 128 gigabytes (assuming float point
and complex numbers are used). This is a too much memory space for normal desktop computers.
Considering that data size is usually larger than the above example in practice, it is difficult for
conventional methods to reconstruct a moderate-size scene by using normal computers.

A common idea for reducing computational complexity and memory occupancy is to split big
data into sets of small data [70]. Based on this thought, a segmented reconstruction method for CS
based SAR imaging has been proposed [71]. In this method, the whole scene is split into a set of
small subscenes. Since the computational complexity is non-linear to the data size, the reconstruction
time can be reduced significantly. The sensing matrices for the method proposed in [71] are much
smaller than those for the conventional method. Therefore, the method also needs much less memory.
Due to the short reconstruction time and lower memory requirement of the method proposed in [71],
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reconstructing a moderate-size scene in a short time is no longer a difficult task. The processing steps
of the segmented reconstruction method are shown in Figure 7.

 

Figure 7. Processing steps of the segmented reconstruction method for CS-based synthetic aperture
radar (SAR) imaging (taken from [71]).

Figures 8 and 9 show an example of the segmented reconstruction method [71]. Figure 8 shows the
experimental scene of an airborne SAR system, which contains six trihedral reflectors. Figure 9a shows
the conventional CS reconstruction result, where the reconstruction time is 44,032 s (12 h 14 min). The
whole scene is split into five segments, and Figure 9b shows the segmented reconstruction result, where
the reconstruction time is now reduced to 1498 s (25 min). It can be seen that, using the segmented
reconstruction method, the reconstruction time is significantly reduced, while the reconstruction
precision is nearly the same.

  
(a) Sight A of the scene. (b) Sight B of the scene. 

Figure 8. Trihedral reflectors in the scene. Trihedral reflectors 1–4 are large, and trihedral reflectors 5
and 6 are small (taken from [71]).
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Figure 9. (a) Conventional CS reconstruction result (reconstruction time = 44,032 s). (b) Segmented
reconstruction result (reconstruction time = 1498 s) (taken from [71]).

3.3. Sparsity and Sparse Representation

Sparsity of the scene is an essential requirement for sparse regularization or CS methods. For an
SAR scene, an extended scene is usually not sparse in itself (not sparse in the canonical basis), except
for the case of a few dominant scatterers in a low reflective background [35]. Therefore, a sparse
representation is needed to use a sparsity-driven method.

CS-based optical imaging has successfully used sparse representations [72]. However, radar
imaging involves complex-valued quantities; the raw data and the imaging result are both
complex-valued. Since the phase of the scene are potentially random, it is very difficult to find
a transform basis to sparsify a complex-valued and extended scene [73,74].

Structured dictionaries and dictionary learning ideas are proposed in [75] and [76], respectively.
An alternative approach is to handle the magnitude and phase separately [41]. Although the phase of
the scene is potentially random, the magnitude of the scene usually has better sparse characteristics.
However, this approach has a much higher computational complexity than standard CS reconstruction.
Another method investigates physical scattering behavior [4,77]. For example, a car can be represented
as the superposition of responses from plate and dihedral shapes.

Figure 10 shows a simulation example for an extended and complex-valued scene. There are two
extended objects in the scene, one of which has a round shape while the other has a rectangular shape.
Both the two objects have random phases associated with them. It can be seen that the DCT (Discrete
Cosine Transform) results of the magnitude are sparse.

Figure 11a shows the result of matched filtering. Since the random phase leads to speckle, it
can be seen that although the scene has a smooth shape, the matched filtering result has obvious
fluctuation. Figure 11b shows the result of conventional CS reconstruction without sparse representation.
The reconstruction algorithm is SPGL1 [78]. Since the scene is not sparse in the canonical basis, the
reconstruction is not accurate. Figure 11c shows the result of the method using a magnitude sparse
representation [41]; it can be seen that the reconstruction result is much better than Figure 11a,b.
Figure 11d shows the result of the method using the improved magnitude sparse representation
method proposed in [79]. In the proposed method, besides the sparsity, the real-valued information of
the magnitude and the coefficient distribution of the sparse representation are also utilized. It can be
seen that both the shape and speckle are further improved.
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Figure 10. (a) Magnitude of the scene, (b) phase of the scene, (c) DCT result of the magnitude (taken
from [79]).

 

Figure 11. Simulation results: (a) matched filtering result, (b) conventional CS reconstruction result
without sparse representation, (c) result of the method with magnitude sparse representation, and (d)
result of the method with improved magnitude sparse representation (taken from [79]).

Figure 12 shows the real data results. The raw data is acquired by an airborne SAR system.
Figure 12 contains a scene of farmland with trellises. The reflectivity from the trellises is very strong.
From the real data result, it can be seen that CS with the improved magnitude sparse representation
method can produce an image with less speckle and clearer edges of different regions than the
previous methods.
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Figure 12. Real data reconstruction results (scene of farmland with trellises): (a) matched filtering
result (full data), (b) conventional CS reconstruction result without sparse representation, (c) result
of CS with magnitude sparse representation, and (d) result of CS with improved magnitude sparse
representation (taken from [79]).

3.4. Influence of Clutter

Another practical case is when the targets of interest are sparse, but there also exists clutter in
the scene. Clutter arises from reflections within the scene, so the image may no longer be sparse if
significant clutter returns are present. Typical examples include GPR and TWR imaging. The interesting
targets, such as landmines and humans, are usually sparse, but they are often buried in the ground
surface clutter and wall clutter.

Some methods have been proposed to remove the ground surface clutter and wall clutter for
downward-looking GPR and TWR [64,65]. These methods are effective in cases when the clutter is
concentrated in a fixed range cell or limited to several range cells.

Another scenario is TWR/SAR imaging of moving targets. A sparsity-driven change detection
method is proposed in [67]. The stationary targets and clutter are removed via change detection, and
then CS reconstruction is applied to the resulting sparse scene. In [55], a SAR/GMTI method using
distributed CS is proposed, which can cope with the non-sparse stationary clutter.

A more difficult case is when both the targets and clutter are stationary, and the clutter is distributed
over the whole scene. Forward-looking GPR may fall into this category. Figure 13 shows a real data
example for this case. In such a scenario, shrubs and rocks above the ground surface may cause strong
azimuth clutter. Short range clutter is usually also strong, due to the large grazing angle and short
range. Besides the strong clutter far away from the target (landmine), there is also ground surface
clutter around the target. In [68], an idea is proposed to build a model in which the clutter is also taken
into account as a norm in the objective function. In [80], the forward-looking clutter is suppressed in
two steps. In the first step, the strong clutter outside of the reconstruction region is suppressed first.
In the second step, the clutter in the reconstruction region is suppressed by selecting a proper β, which
represents the ratio of the non-zeros area in the reconstructed scene. The reconstruction results are
shown in Figure 14.
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Figure 13. Real data example for the clutter problem in forward-looking GPR (backprojection result
using full-sampled data). Taken from [80].

 

Figure 14. Reconstruction results in clutter environment with different parameters (taken from [80]).

3.5. Model Error Compensation

In the regularization or CS methods, we usually assume that the model is exact. However, in
practice, the model may also contain errors. For example, imperfect knowledge of the observation
position will lead to errors in the measurement matrix. This effect resembles motion errors that arise in
traditional airborne SAR imaging. Figure 15 shows the geometry of the observation position errors or
motion errors in SAR.

Several methods have been proposed to deal with model errors in CS-based or sparsity-driven
radar imaging. A phase error correction method for sparsity-driven SAR imaging is proposed in [81].
An autofocus method for compressively sampled SAR is proposed in [82]. This method can correct
phase errors in the reconstruction process. Both the methods proposed in [81,82] deal with phase errors
in the observed data, or approximately treat the observation position-induced model errors as phase
errors in the observed data. In [83], the platform position errors are investigated and compensated.
That method considers the azimuth offset errors and also uses some approximations.
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Figure 15. Geometry of the observation position errors in SAR. (Taken from [84]).

In [84], a model error compensation method is proposed. An iterative algorithm cycles through
steps of target reconstruction, and observation position error estimation and compensation are used.
This method can estimate the observation position error exactly, while only relying on the observed data.

Figure 16 shows a real data result using the method proposed in [84]. The data set used in this
figure is the same as that used for Figure 9. In the data acquisition process, the airplane is expected to
fly along a straight line. However, due to the air current’s influence, the trajectory of the airplane may
slightly deviate from the expected one. As a result, the observation position data inevitably contain
some errors.

 

Figure 16. Observation position error compensation for airborne SAR data. (a) Result without
observation position error compensation. (b) Result with observation position error compensation
(taken from [84]).

Figure 16a shows the original CS reconstruction result. Since the observation position errors
are not compensated, it can be seen that the targets are somewhat defocused. Figure 16b shows the
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corresponding CS reconstruction result with compensation for observation position error. It can be
seen that the focusing quality is improved using the method proposed in [84]. The peak of the targets
has an increase of about 20%, and the sidelobes are also significantly reduced.

4. Conclusions

In radar imaging area, there are many relevant techniques and methods, such as matched filtering,
the range Doppler algorithm, the chirp scaling algorithm, the ωK algorithm, regularized methods,
and CS methods. These techniques and methods are quite different in their forms. This paper tries to
understand these techniques and methods in a unified mathematical framework.

Based on theoretical analysis, it can be seen that sparsity-driven regularization or CS-based
radar imaging methods have potentially significant advantages. However, although many interesting
ideas have been presented, very few of them have been verified with real data. There are still many
unsolved or open problems in this area. In the issues discussed in this paper, the sampling scheme, fast
reconstruction strategy, and model error problems are basically solved. However, issues concerning
the sparsity or sparse representation of a complex and extended scene are still not completely solved.
Strong clutter may break the sparsity of a scene, while sparse representation methods for an extended
scene are currently not perfect. The state of the art in these areas has not yet reached the stage of
practical application, and further investigations are needed in the future.
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Abstract: The problem of obtaining high range resolution (HRR) profiles for non-cooperative target
recognition by coherently combining data from narrowband radars was investigated using sparse
reconstruction techniques. If the radars concerned operate within different frequency bands, then this
process increases the overall effective bandwidth and consequently enhances resolution. The case of
unknown range offsets occurring between the radars’ range profiles due to incorrect temporal and
spatial synchronisation between the radars was considered, and the use of both pruned orthogonal
matching pursuit and refined l1-norm regularisation solvers was explored to estimate the offsets
between the radars’ channels so as to attain the necessary coherence for combining their data.
The proposed techniques were demonstrated and compared using simulated radar data.

Keywords: radar signal processing techniques; radar imaging; multiband processing; compressive
sensing; sparse reconstruction; bandwidth stitching

1. Introduction

The construction of high range resolution profiles (HRRP) of targets is a precursor to feature
extraction for automatic target recognition (ATR), and normally requires the employment of a
high-bandwidth waveform following detection by a lower resolution radar mode. Examples of recent
papers in the non-cooperative target recognition (NCTR) literature focusing on feature extraction for
ATR following HRRP construction are [1–3]. This paper considers the problem of HRRP construction,
but using low resolution radars operating in different frequency bands for the purpose of combining
their signals to achieve a higher resolution, and examines the problem of their data not being
mutually coherent.

The ability to acquire high resolution range profiles of targets has improved over time as hardware
capability has developed, with higher resolution being achieved by increasing the time-bandwidth
product. In the early approaches, for narrowband radars with very limited instantaneous bandwidth,
stepped-frequency waveforms were used with a single I,Q (that is, baseband quadrature) signal sample
received after each frequency step. The set of samples is effectively used for the Fourier transform of
the slant range profile, enabling the range response to be obtained simply by implementing an inverse
Fourier transform (see, e.g., [4]). The greater the frequency range, the higher the range resolution,
but the downside is that the burst of pulses can be so long that a scatterer may migrate between range
cells, causing smearing of the range profile, and therefore requiring range compensation. An example
of a recent paper involving the use of stepped-frequency waveforms is [5], and recent papers which
have investigated the effects of target motion and aspect sensitivity are [6,7].

An advance on the stepped-frequency approach is to increase the time-bandwidth product using
stretch processing, whereby a wideband LFM waveform is transmitted, and pulse-compression is
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achieved in hardware by mixing the received signal with an extended replica of the transmitted
waveform. A point target at a particular range will manifest itself as a single frequency which
is proportional to its range. The result, which is digitally sampled in time in order to facilitate
the identification of the frequency components, is therefore a superposition of discrete frequencies,
each corresponding to a point target at a different range. An application of the inverse Fourier
transform again recovers the range profile (see, e.g., [4,8,9]).

A spectral analysis technique to improve range resolution was proposed in [10,11] based on
autoregressive linear prediction. The main idea is to combine the mutually coherent signals received
from multiple waveforms transmitted sequentially or concurrently, which have widely separate carrier
frequencies or may even occupy entirely different frequency bands. Viewed in the spectral domain,
the received signals from individual waveforms may be seen to occupy discrete wavebands which are
separate or contiguous. If contiguous, then they can potentially be coherently combined to synthesise
the signals that would have been received from a single wider bandwidth waveform in the manner
presented in [12]. If separate, then presumably this coherent combination of signals would still be
feasible, as would be the interpolation of the frequency response in the gaps between the bands
under the a priori assumption that the signals are returned from discrete scatterers using spectral
estimation techniques (see, e.g., [13]). Alternatively, the signals from different frequency bands can
be jointly processed without explicitly filling the gaps between the bands. Since no new synthetic
frequency band is actually constructed, this approach can be referred to as bandwidth stitching to
distinguish it from bandwidth interpolation and extrapolation. The main challenge of this approach
lies in the presence of phase errors in different frequency bands resulting from post-processed motion
compensation which is often carried out separately for each frequency band. In this paper, we focus
on the problem of bandwidth stitching for radar high-resolution range profiling and explore the use of
sparse reconstruction to deal with the phase error problem.

It is convenient to formulate these ideas in the spectral domain, within which point scatterers
appear as discrete sinusoids and which are amenable to analysis by spectral estimation techniques
such as autoregression, as presented in [10,11]. Compressive sensing and sparse reconstruction,
however, provide for the possibility of alternative signal representations, potentially allowing for
greater flexibility and discriminating between signals of physical origin and receiver noise [13–20].
Instances of non-sinusoidal signals are waveforms in fast-time and signals returned from rotating
objects when the angle of rotation is large. Compressive sensing and sparse reconstruction can also
handle the situation corresponding to data being non-uniformly sampled in time or space, such as
non-uniform PRF (pulse repetition frequency) waveforms and random sparse arrays.

Compressive sensing and sparse reconstruction were exploited in [17,19,21,22] to address the
problem of gaps in the data both in slow-time and in frequency for inverse synthetic aperture radar
(ISAR) imaging. However, these works assumed that the data were coherent across different sub-bands
and that there were no model uncertainties. The work [23] took account of the possible lack of mutual
coherence between the radars operating on the different sub-bands arising from incorrect timing
synchronisation, or, equivalently, errors in antenna phase’s centre-relative locations. This is achieved
by fitting an ultra-wideband all-pole signal model to the mutually-coherent sub-bands, which is then
used for bandwidth interpolation and extrapolation prior to recovering the range profile by means
of an inverse Fourier transform. This paper, however, proposes the use of compressive sensing and
sparse reconstruction to deal with the non-coherence problem between different sub-bands.

To address the sub-band non-coherence problem, two different approaches were explored:
(i) greedy pursuit and (ii) l1-norm regularisation. In the first approach, pruned orthogonal matching
pursuit (POMP) [24], which was originally developed for micro-Doppler parameter estimation,
is adopted to deal with the dictionary mismatch which is due to the phase errors in each sub-band
resulting from the motion-compensation post processing. The main idea is to parameterise the
dictionary as a function of the phase errors and to construct multiple realisations of the dictionary.
A selective learning process is then used to discard the dictionaries which correspond to incorrect
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values of phase errors. Since a straight application of the POMP algorithm to the problem under
consideration would have been computationally expensive, we first applied the POMP algorithm
pairwise to sub-bands in order to estimate the phase errors, and then utilised the conventional
OMP algorithm to determine the range profile based on the estimated phase error values. In the
second approach, an l1-norm regularisation problem can be solved jointly both for the range profile
vector and the phase errors [25]. The work [25] offers two solutions for joint synthetic aperture
radar (SAR) imaging and phase error correction. The first solution is not applicable to the problem
under consideration because a constant phase error in each sub-band is assumed. On the other hand,
the second solution considers general arbitrary phase errors, and thus can be applied to our problem.
Since the phase errors within each sub-band are a linear function of the range error coming from
post-processing motion compensation, we also present refined variants of the second solution of [25]
to take into account this underlying structure of the phase error.

The paper is organised as follows. Section 2 formulates the problem of bandwidth stitching for
HRRP in the presence of phase errors. The POMP algorithm is applied in Section 3 to the bandwidth
stitching problem under consideration. Section 4 presents l1-norm regularisation solvers. Numerical
performance comparisons are provided in Section 5 and conclusions are drawn in Section 6.

2. Problem Formulation

Consider a multistatic radar system consisting of M radar channels on different and distinct
frequency sub-bands, approximately co-located, and illuminating a common target, such that their
radar lines of sight (LoS) coincide but their range profiles are out of alignment. Each channel can
individually produce a one dimensional range profile of the target, but with relatively coarse resolution.
The bandwidth stitching problem can be briefly stated as follows: for the M generally non-coherent
channels, the aim is to coherently combine, or “stitch,“ the channels together so that they can effectively
produce a single range profile with resolution corresponding to the combined overall signal bandwidth.

Let fm,n (n = 1, . . . , Nm) denote the nth frequency bin of the mth channel (m = 1, . . . , M).
Here, Nm is the number of frequency bins in the mth channel. We base the formulation on the
point-scatterer model and assume that the target can be defined as consisting of K scattering
centres at local line-of-sight coordinates xk (or local “down ranges”) and having complex-valued
reflectivity coefficients αk, which are also assumed frequency-independent. The down-converted,
pulse-compressed, motion-compensated signals received in each channel, in the frequency domain,
can be written as

Sm = [. . . , Sm,n, . . . ]Tn=1,...,Nm
, (1)

where superscript T denotes the transpose operation, and

Sm,n = |A( fm,n)|2 exp
{
−4π j fm,n

c
ΔRm

} K

∑
k=1

αk exp
{
−4π j fm,n

c
xk

}
. (2)

Here, A( fn,m) represents the transmit radar waveform, the squared amplitude resulting from pulse
compression processing; constant c denotes the speed of light; and ΔRm accounts for the range errors
in the motion-compensation processing. Bandwidth stitching in this context amounts to estimating
these phase errors as accurately as possible.

The signals Sm in (1) can be rewritten in a more compact form as

Sm = ΛmF†
mα†, (3)

where
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Λm = diag
{

. . . , exp
{
−4π j fm,n

c
ΔRm

}
, . . .

}
n=1,...,Nm

(4)

F†
m = [. . . , Fm,k, . . . ]k=1,...,K (5)

F†
m,k =

[
. . . , exp

{
−4π j fm,n

c
xk

}
, . . .

]T

n=1,...,Nm

(6)

α† = [. . . , αk, . . . ]Tk=1,...,K (7)

Here, “diag” denotes a diagonal matrix; Λm is referred to as the phase error matrix, of dimension
Nm × Nm; F†

m and α† are respectively, dimensions Nm ×K and K× 1; Sm is a column vector of dimension
Nm × 1; and the dagger symbol † refers to the K actual scatterers on the target.

To apply the sparse representation techniques of compressive sensing, we discretise the target’s
local range coordinate x using a regularly-spaced range grid {xl} for l = 1, . . . , Lx, with Lx 
 K,
and construct the Nm × Lx dictionary matrices

Fm = [. . . , Fm,l , . . . ]l=1,...,Lx , (8)

where

Fm,l =

[
. . . , exp

{
−4π j fm,n

c
xl

}
, . . .

]T

n=1,...,Nm

(9)

Are the “atoms” of dictionary Fm in the frequency domain. The corresponding range profile vector

α = [. . . , αl , . . . ]Tl=1,...,Lx
(10)

Spans over the range grid {xl}. The received signal Sm can also be written as

Sm = ΛmFmα. (11)

Since the target usually contains only a small number of dominant scattering centres relative to
the total number of range resolution cells, the range profile α can be considered sparse (i.e., containing
a small number of non-zero elements).

In the presence of unknown noise, (11) becomes

S̃m = ΛmFmα + nm. (12)

where nm is the additive noise for channel m. Stacking up the individual channel signals S̃m, m =

1, . . . , M, gives
S̃ = ΛFα + n, (13)

where

S̃ = [. . . , S̃T
m, . . . ]Tm=1,...,M (14)

Λ = diag{. . . , Λm, . . . }m=1,...,M (15)

F = [. . . , FT
m , . . . ]Tm=1,...,M (16)

n = [. . . , nT
m, . . . ]Tm=1,...,M. (17)

Note that S̃ and n are column vectors of size (∑m Nm)× 1; diagonal phase error matrix Λ is of size
(∑m Nm)× (∑m Nm); dictionary matrix F is (∑m Nm)× Lx; and the range profile α is again a column
vector of size Lx × 1. Stacking the received signals amounts to a vertical stacking of the dictionary
matrices from all channels and a diagonal concatenation of the corresponding phase error matrices.
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The stacking of multiple channels in this manner can improve the estimation accuracy for α, as will be
demonstrated later in the paper.

A problem statement can thus be expressed as follows: given S̃ as the measured signal,

find α and Λ, subject to

{
S̃ ≈ ΛFα,
α is sparse

. (18)

The estimation of α over {xl} is the process of range profiling, giving the main desired output,
whereas the estimation of the phase error matrix Λ is really only a necessary intermediate result; it is a
function of ΔR1, ΔR2, . . . , and ΔRM (recall that ΔRm is the range estimation error resulting from the
motion-compensation process for channel m). Furthermore, since these errors arise from a lack of
precise knowledge of the relative locations of the radar channels’ phase centres and are small relative
to a range resolution cell, we may assume, without loss of generality, that ΔR1 = 0.

3. Greedy Pursuit Solutions

In this section, we adopt the pruned OMP (POMP) technique, which was originally proposed for
micro-Doppler parameter estimation, [24], for the problem of bandwidth stitching for range profiling.
We start with the simplest case of two channels and then generalise it to the multiple channel case.

3.1. The Two-Channel Case

For this case, the signal model in (13) can be expressed as

S̃ = Λ(ΔR2)Fα + n, (19)

where Λ(ΔR2) is a function of the single unknown relative range error ΔR2,

Λ(ΔR2) = diag{IN1 , Λ2(ΔR2)}, (20)

with

Λ2(ΔR2) = diag
{

. . . , exp
{
−4π j f2,n

c
ΔR2

}
, . . .

}
n=1,...,N2

. (21)

In addition to the sparse range profile vector α, ΔR2 is the only additional unknown parameter to
be estimated. Let us rewrite (19) as

S̃ = Φ(ΔR2) α + n (22)

where
Φ(ΔR2) = Λ(ΔR2) F.

In this form, the problem can be viewed as a joint sparse reconstruction and parameter estimation
problem with the parametric dictionary Φ(ΔR2) itself a function of the parameter ΔR2. This can be
considered as a special dictionary learning problem where the objective is to solve simultaneously for
both the sparse solution of α and the range error ΔR2.

To solve this problem, we adopt the POMP technique [24], which embeds a pruning operation
into the iterative process of OMP. The main idea of POMP is to construct multiple realisations of the
dictionary Φ based on a number LΔ of candidate values of ΔR2; the OMP algorithm is applied to each
dictionary realisation to find the atom which correlates most strongly with the current residual for
that dictionary, and to recompute the residual with that atom’s contribution to the residual removed.
To overcome possible excessive computations arising from outlier candidate values of ΔR2, a pruning
operation is performed to exclude the half of the dictionaries which yield the largest residual errors,
until a single dictionary realisation remains. The OMP iterations for the remaining dictionary are
continued until a termination criterion is satisfied. The candidate value of ΔR2 corresponding to this
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dictionary gives the final estimate of ΔR2. The basic POMP algorithm is summarised in Table 1 and its
computational cost is shown in Appendix C to be of the order of LΔNmLx.

Table 1. The pruned orthogonal matching pursuit (POMP) algorithm (M = 2).

INPUT:
• Noisy signal data vector S̃
• Candidate dictionaries Φ1, Φ2, . . . , ΦLΔ , corresponding to LΔ candidate values of ΔR2

PROCEDURE:
• Initialization:

- set the initial indexes of active dictionaries to Θ1 = {1, . . . , LΔ};
- set the corresponding residual vectors to r1 = · · · = rLΔ = S̃;
- set the initial support Λ to ∅, the null set;

• for i = 1; i := i + 1 until |Θi| == 1 (the cardinality of Θi) and |rl | < ε for l ∈ Θi,
for every l ∈ Θi, perform OMP as follows

- Identify:
cl = ΦH

l rl
jl = arg maxj

∣∣cj
∣∣

- Merge supports:
Λl = Λl ∪ jl

- Update∗:
α̂l,Λl

=
(

ΦH
l,Λl

Φl,Λl

)−1
ΦH

l,Λl
S̃

rl = S̃ − Φl,Λl
α̂l,Λl

end for

if |Θi| > 1

Remove indices of �|Θi|/2� candidate dictionaries that correspond to �|Θi|/2� largest
residual errors from |Θi|

end if

end for

OUTPUT:
• The range profile estimate α̂l� ,Λl�

where l� is the last remaining element of Θi
• The estimate of ΔR2 is the value of ΔR2 corresponding to Φl�

∗ Φl,Λl
consists of the columns of Φl with indices belonging to Λl and α̂Λl consists of the elements of

α̂l with indices belonging to Λl .

3.2. The Multi-Channel Case

For this case, the noisy signal model (19) becomes

S̃ = Φ(ΔR2, . . . , ΔRM)α + n (23)

where
Φ(ΔR2, . . . , ΔRM) = diag{IN1 , Λ2(ΔR2), . . . , ΛM(ΔRM)} F. (24)

Here, the dictionary matrix is a function of the (M − 1) unknowns ΔR2, ΔR3, . . . and ΔRM.
The POMP algorithm could be extended to multiple channels by computing candidate dictionaries

based on a multi-dimensional grid of candidate values for ΔR2, ΔR3, . . . , and ΔRM. The grid would
consist of a total of (M − 1) dimensions, where the mth dimension corresponds to the unknown range
error ΔRm+1 of the (m + 1) channel. Note that only a one-dimensional grid for ΔR2 is required for the
case of two channels. However, the cardinality of the dictionary set is exponentially dependent on
the number of available channels; i.e., V(M−1), where V denotes the number of grid points in each
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parameter dimension. As a result, although this extension would be simple and straightforward, it is
computationally expensive.

To alleviate this computational burden, we instead apply the POMP algorithm pairwise to
channels in order to estimate the range errors ΔR2, . . . , ΔRM relative to the first channel, and then
utilise the conventional OMP algorithm to determine the range profile vector α based on these estimated
values of ΔR2, . . . , ΔRM. The procedure is summarised as below:

STEP 1: Estimation of range errors.
• For each pair between the 1st and mth channel, m ∈ {2, . . . , M}:

- Calculate input signal:

S̃1m = [S̃T
1 , S̃T

m]
T (25a)

F1m = [FT
1 , FT

m ]T . (25b)

- Construct candidate dictionaries based on a grid of L candidate values of ΔR(l)
m (l = 1, . . . , L):

Φ1m,l = diag{IN1 , Λm(ΔR(l)
m )}F1m. (25c)

- Perform POMP given S̃1m and Φ1m,1, . . . , Φ1m,L to obtain an estimate of ΔRm (denoted as
Δ̂Rm).

End for.

STEP 2: Estimation of range profile vector.
• Compute signal and dictionary.

S̃ = [. . . , S̃T
m, . . . ]Tm=1,...,M (26)

F = [. . . , FT
m , . . . ]Tm=1,...,M (27)

Λ = diag{. . . , Λm(Δ̂Rm), . . . }m=1,...,M (28)

Φ = ΛF. (29)

• Estimate α using OMP given S̃ and Φ.

The computational cost of the general POMP algorithm is shown in Appendix C to be of the order
of (M − 1)LΔNmLx.

4. L1-Norm Regularisation Approach

The sparse reconstruction problem (18) can be solved via the following l1 regularised optimisation:

min
α,Λ

{
‖S − ΛFα‖2

2 + μ‖α‖1

}
, (30)

where μ is a regularisation parameter. It should be emphasized that this is not a conventional l1
regularisation formulation because of the unknown phase error matrix Λ resulting from the estimation
error of the motion-compensation phase. Therefore, Λ must be jointly estimated with α:

{α̂, Λ̂} = arg min
α,Λ

{
‖S − ΛFα‖2

2 + μ‖α‖1

}
. (31)

Two solutions for this joint estimation problem were presented in [25]. The first solution assumes
that the phase error matrix for the mth sub-band is modelled as

Λm = exp{jφm} INm×Nm . (32)
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In other words, the phase errors for different frequency bins of a particular sub-band are identical.
However, this assumption is invalid in the problem under consideration because the phase error is
a function of frequency and thus has different values for different frequency bins. Therefore, that
solution is not applicable in this case. The second solution considers a general phase error matrix

Λm = diag{. . . , exp{jφm,n}, . . . }n=1,...,Nm (33)

where the phase errors φm,n can be arbitrary. Although this solution can be used, it does not exploit the
underlying structure of the phase errors; i.e., φm,n = − 4π fm,n

c ΔRm. In what follows, we will also present
other refined versions, building on the second solution of [25], while exploiting prior knowledge of the
structure of the phase error.

The l1 norm can be approximated as [26–29]:

‖α‖1 ≈
L

∑
l=1

(
|αl |2 + δ

)1/2
(34)

In order to overcome the nondifferentiably of the l1 norm at the origin. Here, δ is a small
non-negative parameter. Using this approximation, the minimisation problem in (31) becomes

{α̂, Λ̂} = arg min
α,Λ

{
‖S − ΛFα‖2

2 + λ
L

∑
l=1

(
|αl |2 + δ

)1/2
}

. (35)

The solution of (35) tends to the solution of (31) as δ approaches zero. Therefore, a small value
of δ should be used to ensure the validity of this approximation. The quasi-Newton approach can be
adopted to solve the modified l1 regularised optimisation (35), as below.

The gradient of the objective function of (35) is given by

∇(α) = H(α)α − 2 FHΛHS, (36)

where the superscript H denotes the Hermitian transpose operation. Here, H is the Hessian matrix
given by

H(α) = 2 FHΛHΛF + λW(α) = 2FH F + λW(α), (37)

where

W(α) = diag
{

. . . ,
(
|αl |2 + δ

)−1/2
, . . .

}
. (38)

Since the Hessian matrix is a function of the unknown α, the minimisation (35) is solved iteratively.
Given the estimates α̂(i) and Λ̂(i) from a previous iteration i, the new solutions at iteration i + 1 are
obtained in the following two steps.

1. Calculate α̂(i + 1) by setting ∇(α) = 0 given H(α̂(i)) and Λ̂(i):

α̂(i + 1) = 2 (H(α̂(i)))−1FH(Λ̂(i))HS

=

(
FH F +

1
2

λW(α̂(i))
)−1

FH(Λ̂(i))HS.
(39)

2. Calculate Λ̂(i + 1) given α̂(i + 1). The phase error matrix Λ̂(i + 1) is obtained by solving:

Λ̂(i + 1) = arg min
Λ

‖S − ΛFα̂(i + 1)‖2
2 (40)

or equivalently
Λ̂m(i + 1) = arg min

Λm

‖Sm − ΛmFmα̂(i + 1)‖2
2 (41)
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for m = 2, . . . , M. Note that Λ1 = IN1 (since ΔR1 = 0); thus, no estimation is required for Λ1.

The algorithm may be halted when the objective function falls below a threshold, or when a
maximum number of iterations is reached, or when the relative change in the objective function falls
below a threshold.

Various methods for calculating the phase error matrix Λ̂(i + 1) in Step 2 are given in the
following sections.

4.1. Unstructured Approach

Ignoring the underlying structure of the phase errors, i.e., φm,n = − 4π fm,n
c ΔRm, Λ̂m can be

considered as a diagonal matrix with arbitrary elements φm,n:

Λm = diag{. . . , exp{jφm,n}, . . . }n=1,...,Nm . (42)

Therefore, φm,n can be estimated as [25]

φ̂m,n(i + 1) = tan−1 �{Sm,nŶ∗
m,n(i + 1)}

�{Sm,nŶ∗
m,n(i + 1)}

(43)

where �{·} and �{·} denote operations to extract the imaginary and real parts of a complex number,
and tan−1 stands for a four-quadrant arctangent operation. Here, Ŷm,n(i + 1) is the nth element of
Ŷm(i + 1) which is defined as Ŷm(i + 1) = Fmα̂(i + 1). As a result, we obtain:

Λ̂m(i + 1) = diag{. . . , exp{jφ̂m,n(i + 1)}, . . . }n=1,...,Nm . (44)

4.2. Gauss–Newton Approach

Taking into account the underlying structure of the phase errors, Λm(ΔRm) is a function of ΔRm,
and the minimisation (41) can be re-expressed as

Δ̂Rm(i + 1) = arg min
ΔRm

‖Sm − Λm(ΔRm)Fmα̂(i + 1)‖2
2. (45)

By letting em = Sm − Λm(ΔRm)Fmα̂(i + 1), we have

em = [. . . , em,n, . . . ]Tn=1,...,Nm
(46)

where

em,n = Sm,n − Um,n exp
{
−4π j fm,n

c
ΔRm

} L

∑
l=1

α̂l(i + 1) exp
{
−4π j fm,n

c
xl

}
(47)

and
Um,n = exp{jφm,n}. (48)

Here α̂l(i + 1) is the lth element of α̂(i + 1). As we are estimating real quantities, it is more
convenient to reformulate the problem as the minimisation of a real function in order to apply the
Gauss–Newton. The details of the Gauss–Newton algorithm for updating Δ̂Rm(i + 1) are given in
Appendix A.

Using Δ̂Rm(i + 1), we obtain the phase error matrix as

Λ̂m(i + 1) = diag

{
. . . , exp

{
−4π jΔ̂Rm(i + 1)

c
fm,n

}
, . . .

}
n=1,...,Nm

. (49)
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4.3. Linear Regression-Based Approach

By noting that φm,n = − 4πΔRm
c fm,n, the gradient − 4πΔRm

c can be calculated via a linear least
squares estimator using φ̂m,n obtained from (43) [30]. Specifically, we have[

−4πΔ̂Rm(i + 1)
c

, φ̂†
m(i + 1)

]T

= (AT
m Am)

−1 AT
mbm(i + 1) (50)

where

Am = [. . . , Am,n, . . . ]Tn=1,...,Nm
, with Am,n = [ fm,n, 1] (51a)

bm(i + 1) = [. . . , φ̂
unwrapped
m,n (i + 1), . . . ]Tn=1,...,Nm

. (51b)

Note that φ̂
unwrapped
m,n (i + 1) is the unwrapped version of φ̂m,n(i + 1) and φ̂†

m(i + 1) is an estimate
for the initial phase φ†

m(i + 1) which results from the unwrapping process. From (50), Δ̂Rm(i + 1) is
obtained and can then be used for computing Λ̂m(i + 1) as in (49).

4.4. Differenced-Phase-Based Approach

Subtracting the estimated phase errors of two successive frequency bins, we obtain:

− 4π( fm,n+1 − fm,n)

c
ΔRm = φm,n+1 − φm,n. (52)

Therefore, ΔRm can be estimated as [30]

Δ̂Rm(i + 1) = − c
4Δ fm(Nm − 1)

Nm−1

∑
n=1

Δφm,n(i + 1) (53)

where

Δφm,n(i + 1) = tan−1 sin(φ̂m,n+1(i + 1)− φ̂m,n(i + 1))
cos(φ̂m,n+1(i + 1)− φ̂m,n(i + 1))

. (54)

Note that the four-quadrant arctangent has been used here to handle the phase wrapping.
An estimate of the phase error matrix Λ̂m(i + 1) is now obtained as in (49) using Δ̂Rm(i + 1) in (53).

5. Simulation and Discussion

Numerical simulations are presented in this section to evaluate the performance of the methods
described in previous sections.

5.1. Scenario 1: Two Sub-Bands

We consider a synthetic scenario with two sub-bands at carrier frequencies of f1 = 6 GHz and
f2 = 8 GHz, each having a bandwidth of B = 300 MHz and 64 frequency steps (i.e., N = N1 = N2 =

64). The range profile is discretised over a grid with a length of (N − 1)c/(2B) = 31.5 m and a grid
step of ΔGrid = c/(10B) = 0.1 m. We consider a far-field target consisting of six point scatterers which
are aligned with the grid. Figure 1 plots the true range profile of the target. We set ΔR2 = 2.78ΔGrid for
the case of existing phase errors. The signal-to-noise ratio is set to 10 dB.

Figure 2 compares the reconstructed range profiles obtained by the conventional OMP algorithm
without and with the presence of phase errors. The OMP is terminated when the signal residual
reaches the noise level or after 15 iterations have been carried out. We observe that OMP successfully
reconstructs the range profile of the target by correctly identifying the scatterers of the target with
accurate range and coefficient estimates when no phase errors exist. However, OMP provides
unsatisfactory results in the presence of phase errors, where the reconstructed image is observed
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as exhibiting many spurious scatterers. Similar observations are obtained for the results obtained by
the conventional l1-norm regularised optimisation solver (without phase error correction), as shown
in Figure 3. Here, we set δ = 10−5 and λ = 0.001 max |cl | where cl is the lth element of c = FH S̃.
The l1-norm regularised optimisation solver is stopped if the relative change in the l2-norm of the range
profile vector α falls below 10−5 or after it reaches 500 iterations. The performance degradation of
these conventional sparse reconstruction techniques is not unexpected, since they were not originally
developed to cope with dictionary mismatch arising from the presence of the phase errors.

Figure 1. True range profile of synthetic target under consideration.

(a) Without the presence of phase errors.

(b) With the presence of phase errors.

Figure 2. Performance of conventional OMP.
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(a) Without the presence of phase errors.

(b) With the presence of phase errors.

Figure 3. Performance of conventional l1-norm regularised optimisation solver.

Figure 4 shows the reconstructed range profile obtained by the POMP. POMP constructs candidate
dictionaries based on a grid of ΔR2 with a grid step size of ΔGrid/100. The same stopping criteria of
OMP is used for POMP. We observe that POMP produces a range profile which is almost identical to
the ground truth, thereby demonstrating the effectiveness of POMP in terms of dealing with the phase
errors between different sub-bands.

Figure 4. Performance of POMP in the presence of phase errors.

Figure 5 shows the results obtained by different l1-norm regularised optimisation solvers with
phase error correction, as presented in Section 4. The same parameters and stopping criteria of the
conventional l1-norm regularised optimisation solver as described above are used in the simulations.
Although these algorithms exhibit some improvements over the conventional l1-norm regularisation
(i.e., without phase error correction), they provide poorer results compared to that of POMP. Specifically,
the peaks of the reconstructed range profiles obtained by these algorithms only appear close to but not
exactly at the true scatterer positions. In addition, the magnitudes of the peaks are much smaller than
the ground truth values.
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(a) With unstructured error correction

(b) With structured GN-based error correction

(c) With structured LR-based error correction

(d) With structured DP-based error correction

Figure 5. Performance of l1-norm regularised optimisation solver with phase error correction.

The inferior performances of these algorithms can be explained by noting that the l1-norm
regularised optimisation in (31) is a nonconvex problem due to the phase error matrix Λ. Figure 6 plots
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the objective function of (31) as a function of ΔR2 assuming that α is perfectly known. We observe
that this objective function has many local maxima and minima, confirming the non-convexity of the
l1-norm regularised optimisation in (31). The reason for this non-convexity is explained in Appendix B.
Due to this nonconvexity, the iterative solvers presented in Section 4 are prone to converge to local
minima; thus, limiting the effectiveness of this approach.

Figure 6. Illustration of the nonconvexity of the l1-norm regularised optimisation problem (31).
The objective function of (31) is plotted against ΔR2 assuming that α is perfectly known.

The performance of the OMP, POMP, and l1-norm regularised optimisation methods are now
compared using the earth mover’s distance (EMD) between the true and reconstructed range profiles.
EMD [31] is a metric estimating the distance between two distributions or equivalently the minimal
amount of work required to transform one distribution to the other. Figures 7 and 8 show the
EMD performance of the OMP, POMP, and l1-norm regularised optimisation methods, averaged
over 100 Monte Carlo runs, versus different levels of SNR (signal-to-noise ratio) and phase error,
respectively. It is observed that the POMP method yields the smallest EMD values amongst all
algorithms considered. Since a smaller value of EMD corresponds to a higher level of similarity
between the true and reconstructed range profiles, this observation indicates that the reconstructed
range profile obtained by POMP is closer to the ground-truth range profiles than those obtained from
the OMP and l1-norm regularised optimisation methods. This verifies the performance advantage of
the POMP method from a statistical point of view.

Figure 7. Earth mover’s distance (EMD) performance of the OMP, POMP, and l1-norm regularised
optimisation methods versus various of SNRs (ΔR2 = 2.78ΔGrid).
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Figure 8. EMD performance of the OMP, POMP, and l1-norm regularised optimisation methods versus
various levels of phase error (SNR = 10 dB).

5.2. Scenario 2: Four Sub-Bands

We now consider another scenario with four sub-bands at carrier frequencies of f1 = 6 GHz,
f2 = 8 GHz, f3 = 10 GHz, and f4 = 12 GHz, each having a bandwidth of B = 300 MHz and
64 frequency steps (i.e., N = N1 = N2 = N3 = N4 = 64). The range errors are set to ΔR2 = 2.78ΔGrid,
ΔR3 = 1.33ΔGrid, and ΔR4 = 3.69ΔGrid. Other simulation parameters and the true range profile of the
target remain unchanged as in the previous simulation example.

Figure 9 compares the reconstructed range profiles obtained by the conventional OMP algorithm
and the POMP algorithm presented in Section 3.2. OMP results in an unsatisfactorily reconstructed
range profile with many spurious peaks, as expected, because it ignores the phase errors between
different sub-bands. In contrast, the POMP is capable of reconstructing the true range profile with a high
accuracy thanks to the use of dictionary learning with a pruning process. Note that, given the inferior
performance of the l1-norm regularised optimisation approach compared to POMP, as demonstrated in
the previous simulation scenario, this approach is excluded from the comparison here.

(a) Range profile reconstructed by OMP

(b) Range profile reconstructed by POMP

Figure 9. Performance comparison between OMP and POMP for Simulation Scenario 2 (with four
sub-bands).
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6. Conclusions

This paper explores the use of the POMP algorithm and l1-norm regularisation solvers for the
problem of sparsity-driven HRRP with bandwidth stitching in the presence of phase errors. We observe
that the l1-norm regularisation solvers do not provide significant performance improvement over
the conventional sparse reconstruction algorithms due to the nonconvexity of l1-norm regularised
optimisation when phase errors exists. In contrast, POMP is observed to be capable of effectively
dealing with the phase errors and thus be able to reconstruct the range profile of the target with high
accuracy. Simulation results show a significant performance improvement by POMP over OMP and
the conventional and refined l1-norm regularisation. In future work, we propose using experimental
data for a more general scenario where the true scatterers constituting the target are located in off-grid
positions with respect to the dictionary grid, and the true range errors have off-grid values. We shall
also consider the more general case of frequency-dependence of scatterer RCS (radar cross-section).
A potential approach for this is to exploit the framework of spectral compressive sensing [32,33].
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Appendix A. Derivation of Gauss–Newton Algorithm for Estimation of Δ̂ Rm(i + 1)

We rewrite em,n as

em,n = Sm,n − exp
{
−4π j fm,n

c
ΔRm

}
Zm,n (A1)

with

Zm,n = Um,n

L

∑
l=1

α̂l(i + 1) exp
{
−4π j fm,n

c
xl

}
. (A2)

By noting that

exp
{
−4π j fm,n

c
ΔRm

}
Zm,n

= ZR
m,n cos

{
4π fm,n

c
ΔRm

}
+ ZI

m,n sin
{

4π fm,n

c
ΔRm

}
+ j

(
ZI

m,n cos
{

4π fm,n

c
ΔRm

}
− ZR

m,n sin
{

4π fm,n

c
ΔRm

}) (A3)

where ZR
m,n and ZI

m,n are the real and imaginary components of Zm,n, we can decouple and stack the
real and imaginary components of em to form a real-valued vector as

εm =

[(
eR

m

)T
,
(

eI
m

)T
]T

(A4)

where

eR
m =

[
. . . , eR

m,n, . . .
]T

n=1,...,Nm
(A5)

eI
m =

[
. . . , eI

m,n, . . .
]T

n=1,...,Nm
(A6)

and
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eR
m,n = ZR

m,n cos
{

4π fm,n

c
ΔRm

}
+ ZI

m,n sin
{

4π fm,n

c
ΔRm

}
(A7)

eI
m,n = ZI

m,n cos
{

4π fm,n

c
ΔRm

}
− ZR

m,n sin
{

4π fm,n

c
ΔRm

}
. (A8)

Using (46)–(A8), the minimization (45) becomes

Δ̂Rm(i + 1) = arg min
ΔRm

‖ε(ΔRm)‖2
2. (A9)

By adopting the Gauss–Newton algorithm, Δ̂Rm(i + 1) can be computed from Δ̂Rm(i) as

Δ̂Rm(i + 1) = Δ̂Rm(i)−
(

JT
m(i)Jm(i)

)−1
JT

m(i)ε(Δ̂Rm(i)) (A10)

where ε(Δ̂Rm(i)) is an estimated version of ε computed from Δ̂Rm(i) and Jm(i) is the Jacobian of
ε(ΔRm) with respect to ΔRm evaluated at ΔRm = Δ̂Rm(i).

The expression for the Jacobian Jm of ε(ΔRm) with respect to ΔRm is given by

Jm =

[(
JR

m

)T
,
(

J I
m

)T
]T

(A11)

where

JR
m =

[
. . . , JR

m,n, . . .
]T

n=1,...,Nm
(A12)

J I
m =

[
. . . , J I

m,n, . . .
]T

n=1,...,Nm
(A13)

and

JR
m,n =

4π fm,n

c

(
−ZR

m,n sin
{

4π fm,n

c
ΔRm

}
+ ZI

m,n cos
{

4π fm,n

c
ΔRm

})
(A14)

J I
m,n = −4π fm,n

c

(
ZI

m,n sin
{

4π fm,n

c
ΔRm

}
+ ZR

m,n cos
{

4π fm,n

c
ΔRm

})
. (A15)

Appendix B. Analysis of the Nonconvexity of the l1-Norm Regularised Optimisation Problem (31)

From Equation (31)
{α̂, Λ̂} = arg min

α,Λ

{
‖S − ΛFα‖2

2 + μ‖α‖1

}
, (A16)

or
{α̂, Λ̂} = arg min

α
arg min

Λ

{
‖S − ΛFα‖2

2 + μ‖α‖1

}
. (A17)

‖S − ΛFα‖2
2 = {S − ΛFα}H {S − ΛFα} (A18)

‖S − ΛFα‖2
2 = SHS − 2�e[(FHΛHS)Hα] + αH FH Fα. (A19)

Only the term (FHΛHS)Hα is dependant on ΔR2, so the objective function is minimised with
respect to ΔR2 when the correlation between FHΛHS and α is maximised. Now

FHΛHS = FH
1 S1 + FH

2 ΛH
2 S2 (A20)

And the terms FH
1 S1 and FH

2 ΛH
2 S2 represent the conventional pulse compression (i.e.,

transformation from frequency domain to range domain) for each of the radars with a range offset
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ΔR2. These are non-sparse and low resolution due to the oversampling in range. So FHΛH(ΔR2)S
represents the linear superposition of the two conventional range profiles. When these range profiles
from the two radars are correctly aligned in range, they will better correlate with the true range profile
α. Also if the range offset ΔR2 is such that a scatterer for one radar is superimposed upon a different
scatterer for the other radar, a local minimum will occur. That explains Figure 6 and the reason for
its non-convexity.

Appendix C. Analysis of Operation Count for POMP

Consider first the case of M = 2. Let the size of the grid for the parameter ΔR2 be LΔ = 2NΔ ,
so that a dictionary is constructed for each of these 2NΔ values of ΔR2. OMP is implemented with
the number of dictionaries halved at each stage; hence, the name “pruned” OMP. At stage k of OMP,
the number of complex multiplications and divisions for a single dictionary is denoted Comp(k).
Here k = 1, . . . , NΔ + 1 with 2NΔ−k+1 dictionaries considered at stage k. The purpose of this section is
to estimate the dependence of the computational cost of POMP on the size of the dictionary Lx and the
grid size LΔ for the parameter ΔR2.

With reference to Table 1, the significant costs for POMP are associated with the Identify and
Update steps. At each stage of OMP for a given dictionary, the Identify step performs atom/residual
correlations which require ∼ O(NmLx) complex multiplications. The Update step performs a linear
least squares estimation requiring Gaussian elimination which, at stage k of OMP, has an operation
count ∼ O(k3).

Due to the halving of the number of dictionaries at each stage, the total operational count required
until only one dictionary is left (although more OMP steps may be required for that dictionary until
the residual is sufficiently small) is therefore of order

NΔ+1

∑
k=1

(NmLx + k3)2NΔ−k+1 (A21)

or

(2NΔ+1 − 1)NmLx + (NΔ + 1)3 + 2NΔ+1
NΔ

∑
k=1

k3zk (A22)

with z = 1
2 .

The finite sum ∑n
k=1 k3zk is referred to as a low-order polylogarithm, for which a formula may be

derived [34]. This formula can be shown to have a leading term of order n3zn+3 so that the overall
operation count for POMP is ∼ O((2NΔ+1 − 1)NmLx + N3

Δ). As the size of the grid for ΔR2 is LΔ = 2NΔ ,

NΔ =
log LΔ
log 2 , and the operation count in terms of LΔ is ∼ O

(
LΔNmLx +

(
log LΔ
log 2

)3
)

. We see that to

leading order the computational cost is proportional to the size of the grid for ΔR2.
For the case of general M this cost is multiplied by (M − 1).
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Abstract: This paper introduces a new approach to bistatic radar tomographic imaging based on
the concept of compressive sensing and sparse reconstruction. The field of compressive sensing has
established a mathematical framework which guarantees sparse solutions for under-determined linear
inverse problems. In this paper, we present a new formulation for the bistatic radar tomography
problem based on sparse inversion, moving away from the conventional k-space tomography approach.
The proposed sparse inversion approach allows high-quality images of the target to be obtained from
limited narrowband radar data. In particular, we exploit the use of the parameter-refined orthogonal
matching pursuit (PROMP) algorithm to obtain a sparse solution for the sparse-based tomography
formulation. A key important feature of the PROMP algorithm is that it is capable of tackling the
dictionary mismatch problem arising from off-grid scatterers by perturbing the dictionary atoms
and allowing them to go off the grid. Performance evaluation studies involving both simulated and
real data are presented to demonstrate the performance advantage of the proposed sparsity-based
tomography method over the conventional k-space tomography method.

Keywords: radar tomography; compressive sensing; sparse reconstruction; bistatic radar; radar
imaging; parameter-refined orthogonal matching pursuit (PROMP); orthogonal matching pursuit
(OMP); k-space tomography; narrowband radar; off-grid compressive sensing

1. Introduction

Radar imaging has received much attention for several decades, having a wide range of applications
in both civilian and military domains [1–3]. In principle, to obtain high-resolution radar images, a wide
bandwidth of radar waveform is required for a fine resolution in the range direction, while a large
antenna aperture is required for a fine resolution in the cross-range direction. To overcome the physical
constraints of the radar aperture size, a synthesized aperture with a much larger size can be formed
by exploiting the relative motion between the radar and target. This is, in fact, the main idea behind
the synthetic aperture radar (SAR) and inverse SAR (ISAR) [1]. In recent years, there has been an
increasing demand on the radio-frequency (RF) electromagnetic spectrum due to rapid advances in
radar and communications, and the radar has to compete for spectrums with many different services,
including radio and television broadcasting, communications, and radio-navigation [4]. As a result,
the constraints on spectrum availability may present severe limits on signal bandwidth, prompting the
need for high-resolution imaging techniques using narrowband radars.
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As a consequence, Doppler tomography has been considered for narrowband radar imaging [5–12],
which is also called “Doppler radar tomography” (DRT). The main idea of DRT is to utilize the information
given by the Doppler frequencies induced from the relative radar-target rotational motion to construct
an image of the target, which can be conveniently formulated in the slow-time k-space [8]. Imaging
can also be formulated in the more traditional fast-time k-space, the support for which is created by
sweeping out the complex samples of the received signal in the angular direction. For a particular
transmit frequency, the complex samples for all available aspect angles form a circular arc in the spatial
frequency space. The traditional range-Doppler ISAR imaging can be considered as a special case
of this fast-time k-space technique when a wideband signal is available and the total rotation angle
is small enough that the support region can be approximated as being rectangular. The inversion
process for image formation has evolved from traditional tools, such as filtered back projection, to the
more modern non-uniform fast Fourier transform (NUFFT). The k-space radar tomography was also
considered in bistatic settings [13,14]. The bistatic radar offers several advantages over a monostatic
radar, including higher performance against stealth targets, less vulnerability to jamming, and its
covertness.

The main objective of this paper is to present a new tomographic imaging technique for a
narrowband bistatic radar based on the framework of compressive sensing and sparse reconstruction.
The field of compressive sensing has established a mathematical framework which guarantees sparse
solutions for underdetermined linear inverse problems that occur across numerous engineering
and mathematical science fields. In particular, this framework has found applications in various
radar imaging problems, ranging from moving target indication, ISAR imaging, coherence imaging,
multichannel imaging, micro-Doppler imaging, to through-the-wall radar imaging (see, e.g., [15–26]).
The key contributions of this paper are summarized as follows.

• A new formulation for radar tomography based on sparse inversion is introduced. The main idea
is to construct a dictionary of signal prototypes by discretizing the illuminated scene of interest
into a grid of discrete points. In this formulation, the received radar signal vector becomes linear
to the unknown reflection vector to be estimated. This effectively casts the radar tomography
problem under consideration to a sparse linear inverse problem, given that the illuminated scene
of interest only contains a small number of dominant scatterers, as is often the case in practice.
Such a formulation allows a high-quality image of the target to be obtained under the compressive
sensing framework.

• A technical challenge for the tomography formulation based on sparse inversion is the dictionary
mismatch problem, resulting from the fact that the true scatterers almost always do not coincide
exactly with the dictionary grid. This dictionary mismatch problem has been known in
the literature to significantly degrade the performance of conventional sparse reconstruction
techniques [27,28]. To overcome this problem, we tried exploiting the use of the parameter-refined
orthogonal matching pursuit (PROMP) algorithm [29] to solve the sparsity-based tomographic
formulation. Compared to other conventional sparse reconstruction techniques, like the orthogonal
matching pursuit (OMP) and convex optimization (see e.g., [30,31], and the references therein),
PROMP has the advantage of being capable of dealing with the dictionary mismatch arising
from off-grid scatterers by perturbing the dictionary atoms and allowing them to go off the grid.
PROMP belongs to the greedy pursuit family which identifies the support of the solution in an
iterative manner based on the level of correlation between the input data and the dictionary atoms.
As a result, PROMP is computationally efficient and thus suitable for real-time operation.

• Performance evaluation studies involving both simulated and real data are presented to
demonstrate the superior performance of the proposed sparsity-based tomography method
over the conventional k-space tomography technique.
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The remainder of this paper is organized as follows. Section 2 describes the signal model for
bistatic radar tomography. Section 3 formulates bistatic radar tomographic imaging as a sparse
inversion problem. Section 4 derives the sparse solution based on the PROMP algorithm. Performance
studies with simulated and real data are presented in Section 5. The paper ends in Section 6 with some
concluding remarks.

2. Signal Model

Figure 1 shows the geometry for the problem of bistatic radar tomographic imaging under
consideration. The transmitter Tx and receiver Rx are located in the far field of the target of interest.
The bistatic angle between the transmitter and receiver with respect to the target is denoted as β.
The transmitter is narrowband, transmitting a continuous waveform at a single frequency f (i.e.,
the wavelength is λ = c/ f , where c is the speed of signal propagation). A local target coordinate
frame T (x1, x2, x3), which is fixed and rotated with the target, is chosen as the reference frame. Here,
both the transmitter and receiver lie on the image plane X (x1, x2) of the target, and the origin of the
frame T is placed at the target rotation centre. It is also assumed that the target rotational speed Ω is
constant over the coherent processing interval (CPI) and is accurately estimated a priori.

 
x1 (cross range)

 m

 

xm

Tx

 
x3

a scatterer

monostatic LOS

Rx

x2 (down range)

Figure 1. The radar-target geometry of the considered bistatic radar tomographic imaging problem.

The receiver takes one complex-valued scattered signal sample for each rotation angle θn = Ωtn

of the target (with respect to the axis x2 of the frame T ) at time tn. The expression of the scattered
signal sample collected at time tn is given by [13,14]

s(tn) =
∫

x1

∫
x2

σ(x) exp
{
− j

2π

c
f
[

R(tn) + 2 cos
(

1
2
|β|
)

x · u(tn)

]}
dx1dx2, (1)

where x = [x1, x2]
T , R is the total bistatic range between the target centre (or focus point) and the

transmitter and receiver, and σ(x) is the scatterer reflectivity distribution projected onto the image
plane. Note that the total bistatic range R is, in general, a function of time tn because of the target
translational motion. In (1), u = [u1, u2]

T denotes the unit vector along the bisector of the bistatic
angle β. It is also noted that the radar tomographic imaging problem under interest is considered
in the rotating local frame T , and the signal model (1) has already taken into account the rotational
motion of the target by the rotation of the unit vector u(tn) relative to T .
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Since x1 and x2 in the image domain are discrete variables in practical radar imaging applications,
the reflectivity function σ(x) is commonly discretized over the image plane X (x1, x2) onto a grid of
points xm for m ∈ {1, . . . , M}, as

σ(x) =
M

∑
m=1

σmδ(x − xm). (2)

Substituting (2) into (1) and assuming that translational motion compensation is accurately
accomplished by additional pre-processing, we obtain

s(tn) =
M

∑
m=1

σm exp
{
− j

4π

c
f cos

(
1
2
|β|
)

xm · u(tn)

}
. (3)

A compact vector form of (3) is given by

s = Φσ, (4)

where

s = [s(t1), . . . , s(tN)]
T (5)

σ = [σ1, . . . , σM]T (6)

and

Φ = [φ(x1), . . . , φ(xM)] (7a)

φ(xm) = [φ(xm, t1), . . . , φ(xm, tN)]
T (7b)

φ(xm, tn) = exp
{
− j

4π

c
f cos

(
1
2
|β|
)

xm · u(tn)

}
. (7c)

In practice, where noise is presented, the radar received signal becomes

s̃ = s + n = Φσ + n, (8)

where n = [n(t1), . . . , n(tN)]
T , with n(tn) denoting the complex-valued noise term at time tn.

3. Sparse Inversion Formulation of Bistatic Radar Tomography

The objective of any target imaging problem is to construct a spatial reflectivity map of the target
from the backscattered radar signal. Specifically, the ultimate objective is to estimate the unknown
reflection vector σ from the noisy received signal vector s̃ by solving (8). Since the number of signal
samples received, as often is the case in practice, is much smaller than the number of grid points in the
reflectivity map (i.e., N � M), solving (8) is essentially an underdetermined linear inverse problem
which requires additional regularization constraints to obtain meaningful solutions.

Typical target images captured by microwave radar signals has been known in the literature to
contain a few dominant scattering centers (see, e.g., [15–17,19–23]). As a result, the reflection vector σ

only has a small number of non-zero elements, thus enjoying a sparse characteristic. Such a sparse
characteristic of σ can be utilized as a regularizing constraint to solve the underdetermined inverse
problem (8), that is,

find sparse σ such that s̃ ≈ Φσ. (9)

This sparse inversion problem can be effectively solved under the compressive sensing framework
using sparse reconstruction algorithms. Note that in the compressive sensing context, the matrix Φ is
commonly referred to as the dictionary, and the columns of Φ are called the atoms, each representing
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the theoretical scattered signal component of a hypothetical scatterer residing on a grid point of the
reflectivity map.

Compressive sensing and sparse reconstruction have been extensively studied in the last two
decades, with various techniques proposed. Comprehensive surveys of the state-of-the-art on this
topic can be found in [22,23,30,31]. The objective of this paper is to apply the sparse reconstruction
approach to the bistatic radar tomographic imaging problem.

The main challenge for this work is that the true scatterers constituting the target do not
coincide exactly with the grid which is used to construct the dictionary, leading to dictionary
mismatch problems which in turn significantly degrade the performance of conventional sparse
reconstruction techniques [27,28]. Several methods have been presented in the literature to address
the off-grid dictionary mismatch problems based on the ideas of joint-sparse recovery [32], dictionary
perturbation [33,34], sparse Bayesian learning [35,36], and parameter perturbation [29,37]. In this
paper, we will exploit the use of the PROMP method [29,37], that is, a parameter perturbation method,
to solve the sparse inversion problem (9). The main motivations of using PROMP are twofold. Firstly,
PROMP is capable of tackling the dictionary mismatch problem by perturbing the dictionary atoms
and allowing them to go off the grid. Secondly, PROMP is computationally efficient and thus suitable
for real-time operation because it belongs to the greedy pursuit family which identifies the support of
the solution in an iterative manner based on the level of correlation between the input data and the
dictionary atoms.

4. Parameter-Refined Orthogonal Matching Pursuit

Table 1 summarizes the overall structure of the PROMP algorithm. As a variant of the greedy
pursuit technique, PROMP solves the sparse inversion problem (9) by identifying the support of σ in
an iterative greedy manner. In particular, it starts with an empty support set Λ[0] = ∅ and sets the
signal s̃ as the initial signal residual r[0]. Like other greedy techniques, one column of Φ (corresponding
to one atom of the dictionary) that produces the largest correlation with the current signal residual r[i] is
chosen and added to the support set Λ[i] in each iteration. However, a unique feature of PROMP is that
it allows the dictionary atoms to go off the grid by perturbing their parameters, thus it can overcome
the off-grid dictionary mismatch problem. Specifically, the updated step of PROMP, as different to
that of other greedy pursuit techniques, not only estimates the coefficients σ

[i]
k but also determines the

positions x[i]k =
[

x[i]1,k, x[i]2,k

]T
, k = 1, . . . , i, of the scatterers associated with the current support set Λ[i]

via the least-square sense as

{
σ̂
[i]
k , x̂[i]k

}
k=1,...,i

= arg min

∥∥∥∥∥s̃ −
i

∑
k=1

σ
[i]
k φ

(
x[i]k
)∥∥∥∥∥

2

subject to∥∥∥x̂[i]1,k − x̄[i]1,k

∥∥∥ ≤ ζ and
∥∥∥x̂[i]2,k − x̄[i]2,k

∥∥∥ ≤ ζ,

(10)

which is in fact a nonlinear least-square (NLS) estimation problem. Here, x̄[i]k =
[

x̄[i]1,k, x̄[i]2,k

]T
, k = 1, . . . , i

are the positions of the dictionary atoms in the current support set Λ[i]. Note that the constraint in (10)
ensures the position estimate for each scatterer staying within the vicinity of the corresponding
dictionary atom. A nominal resolution of λ/2 can be used to set the value of ζ.
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Table 1. Summary of PROMP.

INPUT: s̃, Φ.

• Initialization: r[0] = s̃, Λ[0] = ∅
• for iteration i = 1; i := i + 1 until stopping criterion is met do

- Identify:

c[i] = ΦHr[i−1]

j[i] = arg maxj
∣∣c[i]j

∣∣
quit the iteration if j[i] ∈ Λ[i−1]

- Record selected supports:

Λ[i] = Λ[i−1] ∪ j[i]

- Nonlinear least-squares estimation:

{
σ̂
[i]
k , x̂[i]k

}
k=1,...,i

= arg min

∥∥∥∥∥s̃ −
i

∑
k=1

σ
[i]
k φ

(
x[i]k
)∥∥∥∥∥

2

subject to∥∥∥x̂[i]1,k − x̄[i]1,k

∥∥∥ ≤ ζ and
∥∥∥x̂[i]2,k − x̄[i]2,k

∥∥∥ ≤ ζ

- Update residual:

r[i] = s̃ − ∑i
k=1 σ̂

[i]
k φ

(
x̂[i]k
)

end for.

OUTPUT:
{

σ̂
[i]
k , x̂[i]k

}
k=1,...,i

The superscript H stands for the Hermitian transpose.

Since the NLS problem in (10) does not admit a closed-form solution, in what follows we will
derive an iterative solution based on the Gauss–Newton (GN) approach [38]. Note that the scatterer
reflection coefficient is a complex-valued variable, while the scatterer position is a real-valued variable.
For the sake of convenience, we transform (10) into a NLS problem purely in the real-valued domain.
In particular, we re-express the cost function in (10) as∥∥∥∥∥s̃ −

i

∑
k=1

σ
[i]
k φ

(
x[i]k
)∥∥∥∥∥

2

=

∥∥∥∥∥
[

Real{s̃}
Imag{s̃}

]
−

i

∑
k=1

[
Real

{
σ
[i]
k φ

(
x[i]k
)}

Imag
{

σ
[i]
k φ

(
x[i]k
)}

,

]∥∥∥∥∥
2

(11)

where explicit expressions of Real
{

σ
[i]
k φ

(
x[i]k
)}

and Imag
{

σ
[i]
k φ

(
x[i]k
)}

are given by

Real
{

σ
[i]
k φ

(
x[i]k
)}

=
[

. . . ,
(

Real{σ
[i]
k } cos θ

[i]
k (tn)− Imag{σ

[i]
k } sin θ

[i]
k (tn)

)
, . . .

]T
n=1,...,N , (12a)

Imag
{

σ
[i]
k φ

(
x[i]k
)}

=
[

. . . ,
(

Real{σ
[i]
k } sin θ

[i]
k (tn) + Imag{σ

[i]
k } cos θ

[i]
k (tn)

)
, . . .

]T

n=1,...,N
, (12b)

and

θ
[i]
k (tn) = −4π f

c
cos

( |β|
2

)(
x[i]1,ku1(tn) + x[i]2,ku2(tn)

)
. (13)

Now we define

z̃ =

[
Real{s̃}
Imag{s̃}

]
, z =

i

∑
k=1

[
Real

{
σ
[i]
k φ

(
x[i]k
)}

Imag
{

σ
[i]
k φ

(
x[i]k
)}] (14)
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and

ξ[i] =
[
ξ
[i]T
1 , . . . , ξ

[i]T
i
]Twith ξ

[i]
k =

[
σ
[i]
R,k, σ

[i]
I,k, x[i]1,k, x[i]2,k

]T . (15)

Here, σ
[i]
R,k = Real{σ

[i]
k }, σ

[i]
I,k = Imag{σ

[i]
k }. Noting that z is a function of ξ[i], (10) is equivalent to

ξ̂[i] = arg min
ξ[i]

∥∥∥z̃ − z
(
ξ[i]
)∥∥∥

2
. (16)

This is a NLS problem solely in the real-valued domain, and its solution can be obtained via the
following GN iteration [38]

ξ̂[i](h + 1) = ξ̂[i](h) +
(
ΓT(h)Γ(h)

)−1
ΓT(h)

(
z̃ − z

(
ξ̂[i](h)

))
(17)

for h = 0, 1, . . . , where Γ(h) = Γ
(
ξ̂[i](h)

)
is the Jacobian matrix of z with respect to ξ[i] evaluated at

ξ[i] = ξ̂[i](h) and z
(
ξ̂
)

is an estimate of z calculated at ξ[i] = ξ̂[i](h).
The expression of the Jacobian matrix Γ(ξ[i]) is given by

Γ =
[

. . . , Γk, . . .
]

k=1,...,i (18a)

Γk =

[
Γ
(1)
k Γ

(2)
k Γ

(3)
k Γ

(4)
k

Γ
(5)
k Γ

(6)
k Γ

(7)
k Γ

(8)
k

]
(18b)

Γ
(1)
k =

[
. . . , cos θ

[i]
k (tn), . . .

]T
n=1,...,N (18c)

Γ
(5)
k =

[
. . . , sin θ

[i]
k (tn), . . .

]T
n=1,...,N (18d)

Γ
(2)
k =

[
. . . ,− sin θ

[i]
k (tn), . . .

]T
n=1,...,N (18e)

Γ
(6)
k =

[
. . . , cos θ

[i]
k (tn), . . .

]T
n=1,...,N (18f)

Γ
(3)
k =

[
. . . ,

4π f
c

cos
( |β|

2

)
u1(tn)

(
σ
[i]
R,k sin θ

[i]
k (tn) + σ

[i]
I,k cos θ

[i]
k (tn)

)
, . . .

]T

n=1,...,N
(18g)

Γ
(7)
k =

[
. . . ,

4π f
c

cos
( |β|

2

)
u1(tn)

(
−σ

[i]
R,k cos θ

[i]
k (tn) + σ

[i]
I,k sin θ

[i]
k (tn)

)
, . . .

]T

n=1,...,N
(18h)

Γ
(4)
k =

[
. . . ,

4π f
c

cos
( |β|

2

)
u2(tn)

(
σ
[i]
R,k sin θ

[i]
k (tn) + σ

[i]
I,k cos θ

[i]
k (tn)

)
, . . .

]T

n=1,...,N
(18i)

Γ
(8)
k =

[
. . . ,

4π f
c

cos
( |β|

2

)
u2(tn)

(
−σ

[i]
R,k cos θ

[i]
k (tn) + σ

[i]
I,k sin θ

[i]
k (tn)

)
, . . .

]T

n=1,...,N
. (18j)

The following decision logic is then applied at the end of each GN iteration to ensure the constraint
in (10) is met:

if
(

x̂[i]1,k(h + 1)− x̄[i]1,k

)
≷ ±ζ set x̂[i]1,k(h + 1) = x̄[i]1,k ± ζ,

if
(

x̂[i]2,k(h + 1)− x̄[i]2,k

)
≷ ±ζ set x̂[i]2,k(h + 1) = x̄[i]2,k ± ζ.

(19)

When the constraint is in effect, a re-estimation of the reflection coefficients is performed as[
σ̂
[i]
1 (h + 1), . . . , σ̂

[i]
i (h + 1)

]T
=
(
ΥHΥ

)−1
ΥH s̃ (20)

with Υ =
[
φ(x̂[i]1 (h + 1)), . . . , φ(x̂[i]i (h + 1))

]
. The GN iteration can be halted after a fixed number of

iterations or if the l2 norm of the updating term falls below a given threshold.
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The GN iteration is initialized to the solution ξ̂[i−1] obtained from the previous PROMP
iteration i − 1 and the newly selected atom:

ξ̂[i](0) = [ξ̂[i−1]T , Real{σ̄j[i]}, Imag{σ̄j[i]}, x̄T
j[i] ]

T (21)

where x̄j[i] is the position of the newly selected atom at index j[i] within the dictionary and

σ̄j[i] =
(

φH(x̄j[i] )φ(x̄j[i] )
)−1

φH(x̄j[i] )r
[i−1] is the corresponding initial coefficient estimate for this atom.

5. Results

In this section, we demonstrate the performance superiority of the proposed sparsity-based
tomography method based on the PROMP algorithm over the conventional k-space tomography
method via results using both simulated and real data. The result comparison also includes the
performance of the OMP algorithm to illustrate the off-grid dictionary mismatch problem of the
sparsity-based tomography formulation and to verify the effectiveness of PROMP in dealing with
this issue.

5.1. Results with Simulated Data

We consider two synthetic targets with two and eight scatterers, respectively, as depicted in
Figure 2. In this simulation, the target rotational speed is set to Ω = 37.70 rad/s and the signal
frequency is set to f = 9.96 GHz. The constraint value ζ is set to ζ = λ/2 for PROMP. The dictionary
matrix is constructed using a regularly spaced grid in Cartesian coordinates with the grid step size
of Δ = λ/5 on each x- and y-axis. The sampling frequency at the receiver is set to 2.16 kHz. PROMP
and OMP iterations are halted if the signal residual reaches the noise level.

(a) Synthetic target 1 (b) Synthetic target 2

Figure 2. Ground truth images of two synthetic targets under consideration.

Figure 3 compares the reconstructed images for synthetic target 1 obtained by the k-space, OMP
and PROMP algorithms for various noise levels. Here, the number of data samples is N = 360 (i.e.,
the CPI approximately being one full rotation cycle of the target). Note that the SNR is defined by
SNR = 20 log10(‖s‖/‖n‖). We observe that the k-space technique produces images with two main
peaks corresponding to the true target scatterers. However, along with these two main peaks, the
images obtained by the k-space technique also contain other sidelobes with many spurious peaks.
Specifically, the higher the noise is, the poorer the performance of the k-space technique (i.e., yielding
a larger numbers of spurious peaks). In contrast, such a problem associated with spurious peaks
does not appear in the OMP and PROMP images, thus demonstrating the performance advantage
of the sparsity-based tomography approach over the conventional k-space approach. It is observed
that one of the scatterers is split into multiple peaks in the OMP images. This observation can be
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explained by the fact the OMP solution relies on the fixed dictionary which is built based on a grid
of atoms while the true scatterers of the target do not coincide with this dictionary grid, thereby
demonstrating the dictionary mismatch problem. On the other hand, by perturbing the dictionary
atoms and allowing them to go off the grid, the PROMP algorithm can effectively overcome the
dictionary mismatch problem by exhibiting a clean image with only two peaks corresponding to the
true scatterers. More importantly, the locations of the peaks in the PROMP images almost exactly
match the locations of the true scatterers.

(a) SNR = 50 dB

(b) SNR = 10 dB

(c) SNR = 2 dB

Figure 3. Reconstructed images obtained by the k-space, OMP and PROMP algorithms for synthetic
target 1.

Figure 4 shows the results for synthetic target 2. This is a more challenging scenario because
target 2 contains much more scatterers than target 1. We observer that the conventional k-space method
is struggling to produce reliable image results because of the interaction between the sidelobes of
different main peaks, especially in large noise scenarios. Such an interaction leads to some strong
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spurious peaks which have similar magnitudes to the correct peaks that correspond to the true
scatterers, thus making the resulting images severely distorted. On the other hand, compared to the
k-space method, OMP results in much more satisfactory images. However, the OMP performance is
significantly affected by the dictionary mismatch problem arising from off-grid scatterers. As a result,
the true scatterers are split into multiple peaks in the OMP images, and some spurious peaks also
appear. In contrast, PROMP produces clean and clear images which are almost identical to the ground
truth target image, even at large noise levels.

(a) SNR = 50 dB

(b) SNR = 10 dB

(c) SNR = 2 dB

Figure 4. Reconstructed images obtained by the k-space, OMP and PROMP algorithms for synthetic
target 2.

To further demonstrate the superior performance of PROMP, the reconstructed images obtained
from less data samples (i.e., with CPI = 2/3 and 1/3 target rotation cycle) are shown in Figure 5.
With a limited number of data samples, the k-space method results in unsatisfactory images with
incorrect peaks, while OMP and PROMP are observed to retain their good performance. In addition,
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similar to the observations in Figure 4, PROMP outperforms OMP and provides a better image of the
target thanks to its ability to deal with off-grid scatterers.

(a) CPI = 2/3 target rotation cycle

(b) CPI = 1/3 target rotation cycle

Figure 5. Reconstructed images obtained by the k-space, OMP and PROMP algorithms for synthetic
target 2, given less data samples.

Note that, to satisfy the sparsity condition, the number of dominant scatterers constituting
the target must be sufficiently small compared to the number of grid points on the reflectivity map.
The required sparsity level in general depends on several factors, including the number of data samples,
the noise level, as well as the level of coherence between the atoms of the dictionary. In compressive
sensing, the restricted isometry property and the mutual incoherence property establish theoretical
connections between those factors required for the effectiveness of sparse reconstruction [23]. However,
these analytical metrics are overly-conservative and do not reflect the average performance which is
often of interest from the practical point of view [39].

We now compare the performance of the k-space, OMP, and PROMP methods using the earth
mover’s distance (EMD) between the true and reconstructed images. EMD [40] is a widely-used
metric to compare the similarity between different images. In principle, EMD is an estimate of the
distance between two distributions which is equivalent to the minimal amount of work required for
one distribution to be transformed to the other [40]. Figure 6 shows the EMD performance of the
k-space, OMP, and PROMP methods, averaged from 1000 Monte Carlo runs, against various levels of
SNR for the synthetic target 2 and CPI = 1 target rotation cycle. We observe that the PROMP method
exhibits an EMD much smaller than those of the k-space and OMP methods. This indicates that, from
a statistical point of view, the image obtained by PROMP is much closer to the ground-truth image
than those obtained by the k-space and OMP methods, thus verifying the performance superiority of
the PROMP method.
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Figure 6. EMD performance of the k-space, OMP and PROMP algorithms versus SNR for synthetic
target 2 and CPI = 1 target rotation cycle.

Table 2 compares the runtimes of the k-space, OMP, and PROMP algorithm for the image results
shown in Figure 4b. For a fair comparison, all methods were implemented in MATLAB on the same
Intel Core i7 3.40 GHz CPU with 16 GHz RAM. We observe that the k-space method is much slower
than the OMP and PROMP methods. The reason for this is that the k-space method requires the
non-uniform fast Fourier transform to be performed, thus being computationally more demanding
compared to OMP and PROMP. On the other hand, the OMP and PROMP methods are computationally
fast, thanks to the fact that they belong to the greedy pursuit family. In addition, each iteration of
PROMP is about 7.3 times slower than each iteration of OMP because PROMP incorporates a NLS
solver, rather than a linear least-squares solver as in OMP. However, the overall timerun of PROMP is
only 2.4 times slower than that of OMP because PROMP requires many fewer iterations than OMP to
make the signal residual reach the noise level.

Table 2. Complexity comparison �.

Algorithm k-Space OMP PROMP

Averaged runtime (second) 0.1561 0.0331 0.0799
Averaged number of iterations − 27.65 8.96
Averaged per-iteration runtime (second) − 0.0012 0.0088

� All methods are implemented in MATLAB on an Intel Core i7 3.40 GHz CPU with 16 GHz RAM, for the image
results shown in Figure 4b.

5.2. Results with Real Data

The experimental data used in this paper was collected in the Mumma Radar Laboratory at
the University of Dayton, Ohio, USA. Although this paper focuses on narrowband tomographic
imaging, a wideband waveform at X-band with stepped frequency pulses over 101 regular frequency
steps from 8 GHz to 12 GHz was used in the experiment. The aim of using wideband data was
only for the removal of extraneous clutter components existing in the lab environment, as described
in [13]. After that, only the measured data from one discrete frequency is actually used for algorithm
performance evaluation for the problem of narrowband tomographic imaging under consideration.

Figure 7 shows photos of the experimental system configuration. The experimental setup involves
transmitting and receiving horn antennas mounted on separate robotic arms in a controlled laboratory
environment with radar-absorbing material to reduce the radar reflections from the floor and walls.
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These robotic arms could be oriented and positioned with high precision. During the experiment,
the antennas were kept stationary while the target was rotated over 1◦ steps through 360◦, where
the stepped-frequency waveform was transmitted and sampled (one sample for each frequency).
Recall from above that only one frequency sample set was used for tomographic imaging purposes.
The experimental target was comprised of two vertical metallic rods with a 19 cm separation to emulate
two point scatterers which rotate around a vertical pedestal. Figure 8 shows the wideband k-space
tomographic image obtained from monostatic data with all 101 frequency steps. This will be used as
a reference benchmark for the performance evaluation of narrowband bistatic imaging presented in
this section.

(a) (b)

Figure 7. Photos of experimental system configuration: (a) an antenna mounted on a robotic arm,
and (b) two vertical metallic rods secured to a rotating pedestal.

Figure 8. A benchmark experimental target image using wideband signals received by the monostatic
receiver for all 101 frequency steps between 8 GHz and 12 GHz.

Figure 9 shows the experimental narrowband images obtained by the k-space, OMP, and PROMP
algorithms using a narrowband signal received by the bistatic receiver with β = 86◦ at a single
frequency of 8.8 GHz for various values of CPI. Since the SNR is unknown, the OMP and PROMP
iterations are halted when the change in the signal residual norm falls below 1% of the input signal
norm. Compared to the benchmark image in Figure 8, the k-space method produces images with a
much lower quality when only a narrowband signal from a single frequency is available. We observe
that the images obtained by the k-space method are distorted with numerous spurious sibelode
peaks. In particular, the number of spurious sibelode peaks increases significantly for shorter CPI.
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Moreover, the main lodes corresponding to the true scatterers are also spread when the CPI is reduced.
In contrast, the PROMP images contain two clear peaks at the locations very close to the peaks of
the reference image in Figure 8, even when the CPI is reduced to one third of the target rotation
cycle. This observation demonstrates the performance superiority of the sparsity-based tomography
approach over the conventional k-space tomography approach. Figure 9 also shows the images
obtained by OMP to illustrate the dictionary mismatch problem associated with off-grid scatterers,
where each true scatterer is split into multiple peaks; thus, verifying the effectiveness of PROMP in
terms of tackling the dictionary mismatch problem.

(a) CPI = 1 target rotation cycle

(b) CPI = 2/3 target rotation cycle

(c) CPI = 1/3 target rotation cycle

Figure 9. Experimental narrowband images obtained by the k-space, OMP, and PROMP algorithms
using a narrowband signal received by the bistatic receiver with β = 86◦ at a single frequency of
8.8 GHz, for various values of CPI.
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Figure 10 shows the experimental results where the data is downsampled. Here, we observe a similar
relative performance comparison to Figures 3–5 and 9, once again confirming the performance advantages
of the proposed sparsity-based tomographic imaging method based on the PROMP algorithm.

(a) Data is downsampled by a factor of 2.

(b) Data is downsampled by a factor of 4.

(c) Data is downsampled by a factor of 6.

Figure 10. Experimental narrowband images obtained by the k-space, OMP, and PROMP algorithms
for downsampled data (CPI = 1 target rotation cycle).

6. Conclusions

In this paper, we have proposed a new sparsity-based bistatic radar tomographic imaging method
exploiting the use of the PROMP algorithm. A new formulation for radar tomography building on
the framework of compressive sensing and sparse reconstruction was presented, moving away from
conventional k-space tomography which is prone to sidelobe responses and their interference. The PROMP
algorithm was adopted to obtain a sparse solution for the resulting sparsity-based tomography formulation.
By perturbing the dictionary atoms and allowing the estimated scatterers to go off the grid, PROMP is
capable of tackling the dictionary mismatch problem arising from off-grid scatterers. The performance
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advantages of the proposed sparsity-based tomography method over the conventional k-space tomography
method were demonstrated via numerical studies involving both simulated and real data.
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Abstract: In this work, we focus on sparse representation of two-dimensional (2-D) radar
signatures for man-made targets. Based on the damped exponential (DE) model, a 2-D augmented
state–space approach (ASSA) is proposed to estimate the parameters of scattering centers on complex
man-made targets, i.e., the complex amplitudes and the poles in down-range and aspect dimensions.
An augmented state–space approach is developed for pole estimation of down-range dimension.
Multiple-range search strategy, which applies one-dimensional (1-D) state–space approach (SSA)
to the 1-D data for each down-range cell, is used to alleviate the pole-pairing problem occurring
in previous algorithms. Effectiveness of the proposed approach is verified by the numerical and
measured inverse synthetic aperture radar (ISAR) data.

Keywords: damped exponential (DE) model; inverse synthetic aperture radar (ISAR); radar signatures;
state–space approach (SSA); sparse representation

1. Introduction

Sparse representation of two-dimensional (2-D) radar signatures has been widely used in many
applications, such as super-resolution radar imaging, data compression, and target identification [1–4].
2-D radar signatures can be reconstructed with fewer data, where a set of parameters including the
locations, amplitudes, and damping factors are used to represent the returned signals from spatial
distributed scattering centers. Moreover, 2-D ultra-wideband images of radar targets can be obtained
through parameter interpolation or extrapolation [5].

Over the years, several model-based spectral estimation approaches have been developed for
sparse representation of 2-D radar signatures, in which the common idea of these approaches is
the development of a parametric model based on electromagnetic scattering mechanisms. In this
way, a set of parameters may be found to represent the original signatures. Please note that most
sparse representation approaches are considered to have super-resolution capabilities because they are
supposed to estimate the parameters of scattering centers that cannot be distinguished by standard
processing [6–21]. Typically, these approaches include the amplitude and phase estimation of a sinusoid
(APES) algorithm [6], fast Fourier transform (FFT)-based technique (CLEAN) [7,8], the compressed
sensing (CS)-based procedure [9–11] and the subspace-based approach [12–21]. The APES algorithm
could provide accurate estimation of the complex amplitudes whereas it does not estimate the locations
of scattering centers. The 2-D CLEAN technique is a computationally efficient procedure which uses
the undamped exponential model and deconvolution algorithm for optimization [7,22]. The main
process of the CS-based procedure is to represent the signatures using an over-complete dictionary
and the corresponding coefficients [9,10]. The performance of this approach depends on the initial
coefficients and the threshold used in terminating iterations.
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Another important group of 2-D sparse representation technique is the subspace-based approaches.
The representative algorithms of this kind include the 2-D multiple signal classification (MUSIC) [12],
matrix enhancement and matrix pencil (MEMP) [13,14], 2-D total least squares (TLS) Prony [15],
algebraically coupled matrix pencils (ACMP) [16], 2-D estimation of signal parameters via rotational
invariance techniques (2-D ESPRIT) [17] and 2-D system realization technique [18,19]. The rationale
and pole-pairing scheme of these algorithms are listed in Table 1.

Table 1. Synopsis of the 2-D subspace-based algorithms.

Technique Rationale Pole (1) Pairing Scheme

2-D MUSIC Signal-noise subspace
decomposition No need for pole-pairing

MEMP Enhanced matrix decomposition Maximizing a certain criterion

2-D TLS Prony TLS-based Prony model Minimizing a certain distance

ACMP Signal subspace decomposition Rank-restoration scheme

2-D ESPRIT Shift-invariance structure of the
signal subspace Joint diagonalization scheme

2-D system realization State–space model Algebraic method
(1). Pole denotes a transfer function of the scattering center collected on target. Usually, the scattering centers are
characterized via pairing the complex amplitudes and the poles in down-range and aspect dimensions.

While these subspace-based algorithms are demonstrated to be useful for the signatures of
targets or simulated scattering centers, there are still some technique challenges, especially for sparse
representation of the wideband radar signatures collected on complex man-made targets. First,
the pairing schemes used by many existing algorithms cannot provide correct pole pairs in certain
circumstances. i.e., MEMP, ACMP and 2-D system realization meet with the pole-pairing problem
when there are numerous repeated poles in either the down-range or aspect dimension [17,20,23].
Second, the model order, which directly affects the result of parameter estimation such as 2-D MUSIC,
MEMP, and 2-D ESPRIT et al., is difficult to be determined in the measurement environment [8].
Third, the compromises between the computational complexity and accuracy should be considered in
the application of these algorithms [12]; for instance, the 2-D TLS Prony has smaller computational
complexity than MEMP but with loss in accuracy [15].

In this paper, we focus on developing an approach for sparse representation of 2-D radar
signatures collected on man-made targets. An augmented state–space approach is proposed for
pole estimation of the down-range dimension. Multiple-range search strategy is then applied to
estimate the pairing poles and corresponding amplitudes along the aspect dimension. Compared to
the existing methods [14,17,18], the advantages of the 2-D augmented state–space approach (ASSA) are:
(1) Computational complexity of the algorithm is much reduced since the newly defined Hankel matrix
and several time-saving operations are adopted, whereas the pole-estimation accuracy is still at the
same level; (2) The pole-pairing problem can be alleviated because all the poles are adaptively paired
by using the multiple-range search strategy; And (3) an eigenvalue sequences transform algorithm is
proposed, which could provide fast model order selection.

The remainder of the paper is organized as follows. Section 2 briefly presents the damped
exponential models for 1-D and 2-D signals. In Section 3, a two-step procedure for 2-D ASSA
is developed. Results for numerical and measured inverse synthetic aperture radar (ISAR) data
representation are demonstrated to validate the effectiveness of the proposed procedure in Section 4.
We conclude the paper in Section 5. Appendices are given to show more mathematical details of the
proposed approach.
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2. Data Model

2.1. 1-D Damped Exponential Model

As described in DE model [22,24], the 1-D radar signatures y( fn) can be expressed as a summation
of K scattering centers corrupted with noise w(n).

y( fn) =
K∑

k=1
Ak exp

[(
βk + j2π rk

c

)
fn
]
+ w(n)

=
K∑

k=1
akpn

k + w(n)
(1)

where n = 1,2, . . . ,N and N denotes the number of pulses, Ak is the complex amplitude of the k-th
scattering center; βk is the damping factor with respect to frequency; rk denotes the relative range;
The parameter fn denotes the radar frequency fn = fc + (n− 1−N2)Δ f where fc is the center frequency
and N2 = ceil(N/2) denotes the smallest integer less than or equal to N/2; ak represents the amplitude
of the k-th scattering center in pole form, the pole pk = exp[(βk + j2πrk/c)Δ f ] represents the transfer
function of the k-th scattering center; c = 3 × 108 m/s is the propagation velocity. It worth noting that
the data models used in this paper are all considered in a stepped frequency radar [25,26].

According to the discrete-time control theory and auto-regressive moving average (ARMA) model,
Piou and Naishadham proposed a one-dimensional state–space approach (1-D SSA) which use a
state–space description to the 1-D radar signatures in (1) [22].

x(n + 1) = Ax(n) + Bu(n) (2)

y(n) = Cx(n) + u(n) (3)

where x(n) ∈ CK×1 is the state vector, y(n) denotes the signal sequence y( fn), u(n) is the input vector,
A ∈ CK×K represents the open-loop matrix, B ∈ CK×1 and C ∈ C1×K are the constant matrices. Thus,
the 1-D noiseless radar signatures same as (1) can be expressed as[

ỹ(1) ỹ(2) . . . ỹ(N)
]
=
[

CB CAB . . . CAN−1B
]

(4)

As described in [22], 1-D SSA could precisely estimate the state matrices A, B, and C. Once
these three state matrices are computed, the model parameters in (1) can be estimated by using the
eigen-decomposition technique.

2.2. 2-D Damped Exponential Model

As a 2-D extension of 1-D DE model, the radar signatures obtained from different aspect angles are
considered to be the summation of a finite number of dispersive scattering centers [13–18]. Typically, it
is applicable to modeling the 2-D radar signatures with small aspect ranges [27].

y(θm, fn) =
K∑

k=1
Ak exp

[( j2πr1k
c + β1k

)
fcθm

]
exp

[( j2πr2k
c + β2k

)
fn
]
+ w(m, n)

=
K∑

k=1
aksm

k pn
k + w(m, n)

(5)

in matrix notation, the 2-D radar signatures in (5) can be expressed as:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y(1, 1) y(1, 2) . . . y(1, N)

y(2, 1) y(2, 2) . . . y(2, N)
...

... . . .
...

y(M, 1) y(M, 2) . . . y(M, N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)
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where m = 1, . . . , M and n = 1, . . . , N; {r1k,r2k} give the relative locations of the k-th scattering center;
{β1k, β2k} characterize the frequency and aspect dependence of scattering; θm = θ0 + (m− 1)Δθ denotes
the m-th aspect angle where θ0 is the starting angle and Δθ represents the angle interval; w(m, n) is the
Gaussian noise with zero-mean; y(m, n) denotes the signal sequences y(θm, fn); {sk, pk} refer to poles of
the down-range and aspect dimension.

sk = exp
[(

j2πr1k

c
+ β1k

)
fcΔθ

]
(7)

pk = exp
[(

j2πr2k

c
+ β2k

)
Δ f

]
(8)

3. Two-Dimensional Augmented State–Space Approach

From the 2-D DE model in (5), the vector Ỹ(n), which represents the n-th column of the noiseless
signature matrix Ỹ = Y−W (where W is the noise matrix), can be decomposed as.

Ỹ(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1s1
1p1 a2s1

2p2
... aKs1

KpK

a1s2
1p1 a2s2

2p2
... aKs2

KpK
...

...
...

...

a1sM
1 p1 a2sM

2 p2
... aKsM

K pK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 0
... 0

0 p2
... 0

...
...

...
...

0 0
... pK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n−1

lK (9)

where K denotes the number of scattering centers, lK indicates the column vector of ones with length K.
Actually, we often meet the one-to-multiple matching situation, i.e., one pole pk is corresponding

to more than one poles sk1, sk2, . . .. These repeated poles can be merged and (9) could be rewritten as.

Ỹ(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1∑
t=1

a1ts1tp1

l2∑
t=1

a2ts2tp2 . . .
lK1∑
t=1

aK1tsK1tpK1

l1∑
t=1

a1ts2
1tp1

l2∑
t=1

a2ts2
2tp2 . . .

lK1∑
t=1

aK1ts2
K1tpK1

...
...

...
...

l1∑
t=1

a1tsM
1t p1

l2∑
t=1

a2tsM
2t p2

...
lK1∑
t=1

aK1tsM
K1tpK1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 0
... 0

0 p2
... 0

...
...

...
...

0 0
... pK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n−1

lK1 (10)

where K1 represents the number of non-repeated poles in the down-range dimension. l1, l2, . . . lK1

denote the number of repeated poles, respectively, for the corresponding poles p1, p2, . . . pK1 .
We define the matrix P as.

P = Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 0
... 0

0 p2
... 0

...
...

...
...

0 0
... pK1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Q∗ (11)

where * denotes the Hermitian operator; Q is a unitary matrix which satisfies Q∗Q = QQ∗ = E, E is
the identity matrix.
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Two constant matrices, i.e., S and D, are defined to simplify the expression in (10).

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1∑
t=1

a1ts1tp1

l2∑
t=1

a2ts2tp2 . . .
lK1∑
t=1

aK1tsK1tpK1

l1∑
t=1

a1ts2
1tp1

l2∑
t=1

a2ts2
2tp2 . . .

lK1∑
t=1

aK1ts2
K1tpK1

...
...

...
...

l1∑
t=1

a1tsM
1t p1

l2∑
t=1

a2tsM
2t p2

...
lK1∑
t=1

aK1tsM
K1tpK1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Q∗ (12)

D = QlK1 (13)

Using (11)–(13), expression in (10) is simplified as.

Ỹ(n) = SPn−1D (14)

Thus, the noiseless signatures Ỹ can be written as.

Ỹ =
[

SD SPD . . . SPN−1D
]

(15)

Comparing (15) with (4), it can be found that these two equations have extremely similar structures.
Thus, the parameters ak, sk and pk can be estimated by 2-D augmentation of 1-D SSA, which is called
2-D augmentation state–space approach (2-D ASSA).

Here, the 2-D ASSA consists of two steps. An augmented state–space approach is applied to
estimating the pole pk in down-range dimension. Then multiple-range search strategy is used for
estimating the matching pole sk as well as the corresponding amplitude ak. Details are as follows.

3.1. Pole Estimation of the Down-Range Dimension

First, we introduce a single augmented Hankel matrix H of size M(N − L + 1) × L by analogy of
the enhanced Hankel matrix in 1-D SSA:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Y(1) Y(2) . . . Y(L)
Y(2) Y(3) . . . Y(L + 1)

...
... . . .

...
Y(N − L + 1) Y(N − L + 2) . . . Y(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

where each element Y(n), first mentioned in (9), represents the n-th column of the matrix Y; L is the
step size of the correlation window, which is heuristically set to be L=N2 [22].

Next, do the singular value decomposition (SVD) of the Hankel matrix.

H = [ Usn Un ]

[ �sn

�n

][
V∗sn
V∗n

]
(17)

where Usn,Un,V∗sn and V∗n are unitary matrices;�sn and�n are diagonal matrices; The matrices with
subscript ‘sn’ refer to the components of signal space and those matrices with subscript ‘n’ denote the
components of noise space; The rank of the noiseless matrix Usn�snV∗sn is known as the model order
which has been widely used in [14,22,27].
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As proved in [14,17], the model order in the down-range dimension is equal to K1 and should be
less than the number of columns or rows of H at least. Thus, the number of non-repeated poles K1

should satisfy the following condition.{
MN −ML + M ≥ K1

L ≥ K1
(18)

Model order selection is an inevitable problem in modeling the 2-D signatures [14,22,27]. A series
of eigenvalue-based criteria, such as Akaike information criterion (AIC), minimum description length
(MDL) criterion and the minimum eigenvalue (MEV) criterion, have been proposed for solving this
problem [28,29]. Those criteria are useful in model order selection but with time consuming process [30].
Here an eigenvalue sequences transform algorithm is proposed for estimating the model order due
to its low computational complexity. This algorithm can provide fast estimation but with loss in
robustness to noise. More details of this algorithm are presented in Appendix A.

Based on the linear systems theory [31] and the matrix expression in (14) and (16), the noiseless
matrix H̃ can be further factorized as:

H̃ = Usn�snV∗sn = ΩΓ (19)

where Ω is the (N − L + 1)M×K1 observability matrix which can be further expressed by the matrices
S and P.

Ω = Usn�1/2
sn =

[
S SP . . . SPN−L

]T
(20)

and Γ is the K1 × L controllability matrix which can be expressed by the matrices P and D.

Γ = �1/2
sn V∗sn =

[
D PD . . . PL−1D

]
(21)

Considering that computational complexity of (19)–(21) is enlarged observably for large data
sets, operations (22)–(24) are used for alternative steps which have lower computational load but with
minimal calculation error.

H̃
∗
H̃ = Vsn�2

snV∗sn = VsnZV∗sn (22)

Ω ≈ HVsnZ−1/4 (23)

Γ = Z−1/4V∗sn (24)

where Z = �2
sn.

As an analogy of the open-loop matrix in 1-D SSA, the augmented open-loop matrix P can be
derived from the observability matrix by using least square.

P =
(
Ω∗r f Ωr f

)−1
Ω∗r f Ωrl (25)

Or it can be computed by the controllability matrix Γ.

P = ΓclΓ
∗
c f

(
Γc f Γ∗c f

)−1
(26)

where Ωr f is the first (N − L)M rows of Ω and Ωrl denotes the last (N − L)M rows of Ω; Γc f represents
the first (L − 1) columns of Γ and Γcl is the last (L − 1) columns of Γ. From (20) and (21), these matrices
can be rewritten as [

S SP . . . SPN−L−1
]T

= Ωr f (27)[
SP SP2 . . . SPN−L

]T
= Ωrl (28)
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[
D PD . . . PL−2D

]
= Γc f (29)[

PD P2D . . . PL−1D
]
= Γcl (30)

More details of the derivation of the matrices S, P, and D are listed in Appendix B.
According to (11), the vector [ p1 p2 . . . pK1 ] is obtained by performing the SVD.

Λ = Q∗PQ (31)

diag(Λ) =
[

p1 p2 . . . pK1

]
(32)

where diag(Λ) denotes the diagonal element of matrix Λ.

3.2. Pole Estimation of the Aspect Dimension

In this step, multiple-range search, which applies one-dimensional (1-D) state–space approach
(SSA) to the 1-D data for each down-range cell, is used for pole estimation of the aspect dimension and
pole adaptive pairing. Details are as follows.

We introduce the Vandermonde sub-matrix O.

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
1 p2

1

... pN
1

p1
2 p2

2

... pN
2

...
...

...
...

p1
K1

p2
K1

... pN
K1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(33)

From (5), the noiseless signatures Ỹ can be factorized as a product of the pairing matrix G and O,
where each column of G is associated with each row of O.

Ỹ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1∑
t=1

a1ts1t
l2∑

t=1
a2ts2t . . .

lK1∑
t=1

aK1tsK1t

l1∑
t=1

a1ts2
1t

l2∑
t=1

a2ts2
2t . . .

lK1∑
t=1

aK1ts2
K1t

...
...

...
...

l1∑
t=1

a1tsM
1t

l2∑
t=1

a2tsM
2t

...
lK1∑
t=1

aK1tsM
K1t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
O = GO (34)

Thus, the pairing matrix G in (34) can be calculated by using least square, i.e.

G = ỸO∗(OO∗)−1 (35)

The k-th column of the pairing matrix G is presented as

G(k) =
[

lk∑
t=1

akts1
kt

lk∑
t=1

akts2
kt . . .

lk∑
t=1

aktsM
kt

]T
(36)

where k = 1, 2, . . . , K1.
Using (36), each column of the pairing matrix is constructed in a same structure to 1-D DE model

defined in (1). This indicates that the pole skt and akt, which correspond to the k-th pole pk in (32), can
be solved by using 1-D SSA [22] to each column of the pairing matrix G. For example, for the first
column of the pairing matrix G corresponds to p1, the parameter matrices (C, A, B) can be obtained by
using 1-D SSA in (4).

G(1) =
[

CB CAB . . . CAM−1B
]T

(37)
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The eigenvalue decomposition of the open-loop matrix A leads to.[
ỹ(1) ỹ(2) . . . ỹ(N)

]
=
[

CB CAB . . . CAN−1B
]

(38)

The matching pole s1t and the corresponding amplitude a1t are computed as.[
s11, s12, . . . , s1l1

]
=
[

Λ1(1, 1) Λ1(2, 2) . . . Λ1(l1, l1)
]

(39)[
a11, a12, . . . , a1l1

]
= (CM1)

∗·
(
M−1

1 B
)

(40)

Thus, the pairing matrix G can be searched column by column until all poles skt and the
corresponding amplitudes akt are estimated. No extra pairing scheme is required because the poles
[sk1, sk2, . . . , sklk ] and the amplitudes [ak1, ak2, . . . , aklk ] have already been adaptively paired to the poles
pk in (34). In addition, considering that the model order may be overestimated sometime, the searched
pole pairs are usually checked again according to their amplitudes. Finally, locations and damping
factors of all the scattering points can be obtained from (41) and (42).

(r1k, r2k) = (
Arg{sk

}
4π fcΔθ/c

,
Arg{pk

}
4πΔ f /c

) (41)

(β1k, β2k) = (
ln(|sk|)

fcΔθ
,

ln(
∣∣∣pk
∣∣∣)

Δ f
) (42)

4. Results and Discussion

In this Section, three examples are presented to demonstrate the usefulness of the proposed
procedure, i.e., the numerical signatures with 14 point scattering centers, the numerical signatures of
a sphere tipped cone-cylinder-frustum combination model, the measured ISAR data for an aircraft
model. The results obtained by 2-D ESPRIT are used for comparison since it is one of the very few
techniques which have been used in real radar applications [17,32].

4.1. Numerical Signatures with Point Scattering Centers

In this example, the noisy signatures composed of 14-point scattering centers are considered to be
as follows:

y(m, n) =
14∑

k=1

ak exp[( j2πr1k/c + β1k) fcθn] exp[( j2πr2k/c + β2k) fm] + w(m, n) (43)

where (M, N) = (41, 41); ak is set to be 1; fc = 12GHz and Δ f = 150MHz; θ0 = 0 rad and Δθ = 0.0125
rad; The setting of coupled ranges are shown in Figure 1; All the damping factors including β1k and
β2k are set as −0.05/( fcΔθ) and −0.05/Δ f except the far left scattering points (β11, β21) = (−0.02/( fcΔθ),
−0.02/Δ f ); w(m, n) denotes the additive white Gaussian noise.
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Figure 1. Spatial distribution of the simulated poles.

As shown in Figure 1, these scattering points form a missile-like shape in Cartesian coordinates.
It contains 13 pole pairs which have repeated poles in either the down-range or aspect dimensions.
The noisy signatures in space domain by Fourier transform-based imaging algorithm (add Taylor
window) are displayed in Figure 2a,b. As can be seen, the positions and decay rates of these scattering
points are consistent with the corresponding ranges and damping factors. To sparse representation
of these noisy signatures, the parameter for 2-D ASSA is chosen to be L = 20; the parameters for 2-D
ESPRIT are set as: (P, Q) = (20, 20), β= 0.8, which are suggested in [17]. For each signal to noise ratio
(SNR), the number of Monte Carlo simulation is 200. A series of range estimation results in different
SNRs are presented in Figure 3. Please note that the model order in 2-D ESPRIT is pre-specified because
the singular values-based criterion [28,29] cannot be used when there are repeated poles in either the
down-range or aspect dimensions. Because of different pairing strategies, K1 and K in 2-D ASSA could
be estimated by the eigenvalue sequences transform algorithm (Appendix A) when SNR > 10 dB.
However, the numbers K1 and K in 2-D ASSA should be pre-specified or use the other criterion [30]
when the noise level is higher (SNR ≤ 10 dB).

As can be seen in Figure 3a,b, the positions of scattering points estimated by 2-D ESPRIT are
generally according to the preset poles in Figure 1, except for some missing or incorrect points (shown
by the black rectangular). The possible reason of this problem is that the pairing procedure in 2-D
ESPRIT may provide incorrect pole pairs when there are repeated poles in either the down-range or
aspect dimension, i.e., six pole pairs (s1, p1), (s1, p2), (s1, p3), (s2, p1), (s2, p2), (s2, p3). In contrast, the
results estimated by 2-D ASSA showed higher accuracy than 2-D ESPRIT for different pairing strategies.

The estimation accuracy of cross/down ranges and damping factors are displayed in Figure 4.
Root mean square error (RMSE) is used as the evaluating indicator which is defined in (44). As we can
see, estimation accuracy of these two algorithms are basically at the same level although the size of
Hankel matrix used by 2-D ASSA is smaller than the block-Hankel matrix defined by 2-D ESPRIT.

Figure 2. Simulated radar image with different SNR by Fourier transform. (a) Simulated radar image
with SNR = 5 dB; (b) Simulated radar image with SNR = 0 dB.
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Figure 3. Estimation of the coupled ranges by 2-D ASSA and 2-D ESPRIT with different SNR.
(a) Estimation by 2-D ESPRIT with SNR = 5 dB; (b) Estimation by 2-D ESPRIT with SNR = 0 dB;
(c) Estimation by 2-D ASSA with SNR = 5 dB; (d) Estimation by 2-D ASSA with SNR = 0 dB.

Figure 4. Estimation accuracy of r11, r21, β11 and β21 with different SNR. (a) Estimation of r11 with
different SNR; (b) Estimation of r21 with different SNR; (c) Estimation of β11 with different SNR;
(d) Estimation of β21 with different SNR.
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Figure 5. Estimation of the coupled ranges by 2-D ASSA with 2000 Monte Carlo runs (SNR = 0 dB).

δRMSE = 10 log10

√√√
1

Mc

Mc∑
t=1

[Xest −Xreal]
2 (44)

where Mc = 2000 denotes the number of Monte Carlo runs, Xest and Xreal are the esimated and real
parameters.

Figure 5 also presents the statistic result with 2000 Monte Carlo runs (SNR = 0 dB). The result
demonstrates that the multiple-range search strategy used by 2-D ASSA is robust in pole-pairing for
low SNR.

4.2. Numerical Signatures of Computer-Aided Design (CAD) Model

The numerical signatures are obtained using method of moment (MOM), where the target is
from a computer-aided design (CAD) model of a sphere tipped cone-cylinder-frustum combination,
(shown in Figure 6). The data was calculated from 8–12 GHz in 10 MHz frequency step size, view angle
ranging from −5 to 5 deg with an increment of 0.25 deg. Figure 7a presents 2-D radar image processed
using 2-D FFT. As it can be seen, strong scattering points can be observed at differential discontinuities,
such as the base-edge, the body groove, and nosetip. To sparsely represent the numerical data, the
parameters of this example are set as follows. For 2-D ASSA, L is set as N2. For 2-D ESPRIT, (P,
Q) = (M2, N2), where M2 = ceil(M/2) denotes the smallest integer less than or equal to M/2, and β = 0.8.

Location estimation of key scattering points for these two algorithms are shown in Figure 7b–e.
As can be seen, when the number of scattering centers is set to be 14, all key scattering points are
accurately estimated by these two algorithms except for some minor differences. However, when K
is set to be 18, 2-D ESPRIT encountered the pole-pairing problem and could not provide the right
estimation. Relative reconstruction error (RRE) δRRE (defined in (45)) of these two algorithms are
shown in Figure 8. We can see that the RRE of 2-D ASSA has been falling when K increased from 10 to
30, whereas the RRE of 2-D ESPEIT stopped falling after K = 14. The result shows that 2-D ASSA tends
to be more robust in pole-pairing for different numbers of scattering centers.

δRRE =
1

MN

M∑
m=1

N∑
n=1

∣∣∣20 log10[Yrecon(m, n)/Yreal(m, n)]
∣∣∣ (45)

where Yrecon denotes the signatures reconstructed by the estimated parameters. Yreal is the original
signatures.
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Figure 6. CAD model of the sphere tipped cone-cylinder-frustum combination.

Figure 7. 2-D radar image of the CAD model and location estimation of main scattering points result
by 2-D ESPRIT and 2-D ASSA. (a) 2-D radar image in aspect angle from −5 to 5 deg; (b) Pole estimation
by 2-D ESPRIT(K = 14); (c) Pole Estimation by 2-D ASSA(K = 14); (d) Pole estimation by 2-D ESPRIT(K
= 18); (e) Pole Estimation by 2-D ASSA(K = 18).

Figure 8. Relative reconstruction error of the numerical signatures of CAD model with different
numbers of scattering centers.

Figure 9a displays the sub-band data image (8–10 GHz, from −5 to 5 deg) which was extracted
from the full-band data. Compared to the full-band data image in Figure 7a, scattering centers of the
base-edge and the body groove cannot be distinguished when the signal bandwidth is only 2 GHz.
Figure 9b presents the scattering points estimated by 2-D ASSA and Figure 9c shows the full-band data
image extrapolated by these extracted pole pairs. As can be seen, scattering centers of the base-edge
and the body groove are distinguished from the extracted scattering points. The full-band data image
extrapolated by 2-D ASSA is in keeping with the main scattering centers distributed in the original
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full-band data image (Figure 7a). It is clear from these figures that 2-D ASSA results in higher-resolution
images than traditional 2-D FFT imagery.

Figure 9. Sub-band data image and extrapolated data image by 2-D ASSA. (a) Sub-band data image by
2-D FFT (8–10 GHz); (b) Scattering points estimated by 2-D ASSA; (c) Full-band data image extrapolated
by 2-D ASSA (8–12 GHz).

4.3. Measured ISAR Signatures

In the third example, the measured ISAR signatures are acquired in an indoor test range where
a mocked aircraft model is used. The data was collected using S-band radar with center frequency
3 GHz and 1.5 GHz bandwidth. The range of aspect angle is from −4◦ to 4◦ with an interval of 0.1◦.
Figure 10a shows the ISAR image of the aircraft model generated by 2-D FFT. As it can be seen, the
scattering distribution of this model is more complex than the previous model, i.e., many scattering
points are densely distributed in the fuselage. The estimation parameter for 2-D ASSA is set to be
L = N2; For 2-D ESPRIT, (P, Q) = (M2, N2) and β = 0.8.

Figure 10. Pole-estimation result of the measured data with different K. (a) Measured ISAR image of the
aircraft model by using 2-D FFT (b) Pole estimation by 2-D ESPRIT (K = 57); (c) Pole estimation by 2-D
ASSA (K = 57); (d) Pole estimation by 2-D ESPRIT(K = 115); (e) Pole estimation by 2-D ASSA (K = 115).

279



Sensors 2019, 19, 4631

Figure 11. Reconstruction result of the measured data with different K. (a) Reconstruction result by
2-D ESPRIT(K = 57); (b) Reconstruction result by 2-D ESPRIT (K = 115); (c) Reconstruction result by
2-D ESPRIT (K = 304); (d) Reconstruction result by 2-D ASSA(K = 57);(e) Reconstruction result by
2-D ASSA(K = 115); (f) Reconstruction result by 2-D ASSA(K = 304); (g) Reconstruction result by 2-D
ASSA(K = 507); (h) Reconstruction result by 2-D ASSA(K = 607).

Location estimation of main scattering centers for measured data are shown in Figure 10b–e.
As we can see, both 2-D ESPRIT and 2-D ASSA could estimate the right positions of strong scattering
centers. The scattering points estimated by 2-D ASSA are more densely distributed around the strong
scattering centers than 2-D ESPRIT’s for different pole-pairing strategies. A few relatively weak
scattering points, i.e., the red point in rectangle box, are wrongly estimated by 2-D ESPRIT when the
number of scattering points is set to be 115, and more wrongly estimated pole pairs can be seen in
K > 115 which are not displayed in Figure 10.

Figure 11a–h display a set of reconstructed 2-D images by the estimated pole pairs. Please note
that the number of scattering points K in 2-D ESPRIT should be equal to the model order whereas
K in 2-D ASSA could be larger than the model order K1 (the number of non-repeated poles in the
down-range dimension) when there are one-to-multiple pairing poles. That is the reason K could be set
to 607 which is already exceed the limitation of model order in [17]. As we can see from the figures, all
those two algorithms can reconstruct those strong scattering centers of target which are in consistent
with the estimated poles in Figure 10a–d. As displayed in Figure 11f–h, more and more relatively
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weak scattering centers have been reconstructed by 2-D ASSA with the increasing number of K and
the reconstruction result with compression ratio of 91.04% is extremely similar to the original data in
Figure 10a.

Evaluation of the reconstructed results by 2-D ASSA are listed in Table 2. Compression ratio (CR)
εCR and image similarity degree (ISD) are defined in (46) and (47). The RRE δRRE is used for evaluating
the reconstructed result in frequency-domain, whereas the ISD γISD is for the result in image-domain.
From the table, we can see that the numbers of scattering points in 2-D ASSA are negatively correlated
with RRE (or ISD). In contrast, 2-D ESPRIT performs higher RRE than 2-D ASSA when the number
of scattering centers remains the same. Please note that part of evaluation results by 2-D ESPRIT are
abnormal because 2-D ESPRIT cannot do the right reconstruction when K > 307. The possible reason is
that for 2-D ESPRIT, all amplitudes factors

[
a1 a2 . . . aK

]
(defined in (3)) are estimated together

by using least square technique after all the pole pairs are confirmed. Thus, numerous incorrect pairing
poles estimated by 2-D ESPRIT will lead to entirely wrong reconstruction. In comparison, 2-D ASSA
performs better robustness for the measurement data.

εCR =
M×N − nP ×K

M×N
× 100% (46)

γISD =

∑
IreconIreal√∑
I2

recon
∑

I2
real

(47)

where nP = 3 represents parameter number of each paired pole (ak, sk, pk), K is the number of scattering
points, M ×N denotes size of the original signatures. Irecon, Ireal represent the reconstructed and original
2-D images-domain data.

Table 2. Evaluation of the reconstruction result of the measured data by 2-D ESPRIT and 2-D ASSA.

2-D ASSA 2-D ESPRIT

Number of Scattering δRRE(dB) γISD δRRE(dB) γISD

K = 57 (εCR = 99.16%) 3.26 0.90 3.93 0.88

K = 115 (εCR = 98.30%) 2.60 0.92 3.20 0.90

K = 156 (εCR = 97.70%) 2.53 0.92 3.11 0.90

K = 207 (εCR = 96.95%) 2.47 0.93 2.96 0.91

K = 256 (εCR = 96.22%) 2.27 0.94 2.94 0.91

K = 304 (εCR = 95.51%) 2.07 0.94 2.90 0.91

K = 407 (εCR = 93.99%) 1.76 0.95 41.28 0.26

K = 507 (εCR = 92.52%) 1.60 0.96 68.69 0.12

K = 607 (εCR = 91.04%) 1.51 0.96 43.57 0.24

Running time of the processed examples are listed in Table 3. All the results are carried out by
Matlab (R2016b) with same hardware platform: Intel Core i7-6900k 3.2 GHz and 128 G memory. Please
note that the running time of 2-D ESPRIT does not contain the estimation of model order. According to
the table, 2-D ASSA performs higher efficiency than 2-D ESPRIT in processing the same data with the
following differences.

(1) The size of the augmented Hankel matrix used by 2-D ASSA is approximate 1/(M/4) of the
block-Hankel matrix used by 2-D ESPRIT when L = Q = N2 and P =M2. Moreover, the data size of the
Hankel matrix could be further reduced by using the operation (22)–(24);

(2) No extra pairing scheme is required by using multiple-range search strategy which can finish
the pairing process once the pole estimation of the aspect dimension is confirmed. Moreover, calculation
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of the block-Hankel matrix for the aspect dimension in 2-D ESPRIT is simplified as calculating multiple
small Hankel matrices with size M2 × (M −M2 + 1).

Table 3. Running time of the numerical radar signatures and the measured ISAR data by 2-D ESPRIT
and 2-D ASSA.

Method K Hankel Matrix (pk) Hankel Matrix (sk) Running Time

Numerical data
(41 × 401)

2-D ESPRIT 14 4000 × 4444 4000 × 4444 34.81 s

2-D ASSA 14 8282 × 200 K1 × 20 × 22 0.94 s

Measured ISAR
data (81 × 251)

2-D ESPRIT
57 5000 × 5334 5000 × 5334 53.27 s

115 5000 × 5334 5000 × 5334 94.18 s

2-D ASSA
57 10287 × 125 K1 × 40 × 42 1.04 s

115 10287 × 125 K1 × 40 × 42 1.19 s

5. Conclusions

In this paper, we have presented a two-dimensional augmented state–space approach for sparse
representation of 2-D wideband radar signatures collected on man-made targets. To do this, a two-step
procedure, i.e., an augmented state–space approach followed by multiple-range search strategy, is
proposed to estimate the complex amplitudes and poles in down-range and aspect dimensions. In
general, there are mainly two contributions provided in this paper. First, we develop a computationally
efficient approach by adopting several time-saving operations, whereas the pole-estimation accuracy
is still at the same level; second, the proposed approach can apparently alleviate the pole-pairing
problem by using the multiple-range search strategy.

Numerical as well as measured ISAR data are processed to validate the proposed approach.
Experimental results demonstrate that 2-D ASSA is robust and accurate in pole-paring for different
SNRs, and is applicable for sparse representation of 2-D wideband radar signatures collected on
man-made targets with low computational cost.

Future works are considered to be as follows. On the one hand, physical meanings of the extracted
parameters of scattering centers by 2-D ASSA might be further studied to the possible applications
in automatic target recognition (ATR). On the other hand, the extension of the proposed approach
to 3-D radar signatures obtained from different azimuth and elevation angles would also be an
interesting study.
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writing—review and editing, K.W. and X.X.
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Appendix A

In the appendix, we provide an eigenvalue sequences transform algorithm to estimate the model
order K1. Details are as follows.

Suppose that the size of the input matrix H is m× n(m ≥ n), do the SVD of the matrix H∗H.

H∗H = V�2V∗ (A1)

where V is unitary matrix;�2 is the diagonal matrix.
Λ = [λ1,λ2, , . . . λn] is the diagonal vector of�. It can be normalized as:

wi =
λi −min(Λ)

max(Λ) −min(Λ)
(A2)
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where i = 1, 2, . . . , n; max(Λ) and min(Λ) denote the maximum and minimum elements of Λ.
The coordinate form of the normalized eigenvalue vector is:

[Q1, Q2, . . . , Qn] = [(1, w1), (2, w2), . . . , (n, wn)] (A3)

where Qn denotes the n-th points.
Based on information theory and principal factor analysis [28], the separable signals and noises in

H often have the following hypothesis.

w1 > . . . > wK1 > wK1+1 . . . > wn

signal space
∣∣∣noisespace

(A4)

wK1 −wK1+1 > wK1+1 −wK1+2 ≈ . . . ≈ wn−1 −wn (A5)

where K1 is the number of separable signals which also denotes the model order.
From (A5), it can be deduced that the point QK1 belonging to [Q1, Q2, . . . , Qn] has the longest

distance to line Q1D which has the following condition.

k
( →
QiQK1+1

)
> k

( →
Q1D

)
> k

( →
QK1+1Qn

)
(A6)

where i = 1, 2, . . . , K1, k
( →
QiQK1+1

)
denotes the slope of line

→
QiQK1+1, D is a point which satisfies the

slope condition (A6).

Here, an approximate calculation is used to estimate the slop of
→

Q1D.

k
( →
Q1D

)
≈ k

( →
Qp−1Qn

)
(A7)

g(p) = max[g(1), g(2), . . . , .g(n)] (A8)

g(i) =

∣∣∣∣∣k( →
Q1Qn

)
(i− 1) − (wi −w1)

∣∣∣∣∣√
k
( →
Q1Qn

)2
+ 1

(A9)

where Qp represents the point in [Q1, Q2, . . . , Qn] which has the longest distance to line Q1Qn; g(i)

denotes the distance from point Qi to
→

Q1Qn; i = 1, 2, . . . , n.

Thus, QK1 can be confirmed by searching the longest distance from point Qi to line
→

Q1D.

g′(i) =

∣∣∣∣∣k( →Q1D
)
(i− 1) − (wi −w1)

∣∣∣∣∣√
k
( →
Q1D

)2
+ 1

(A10)

g′(K1 + 1) = max[g′(1), g′(2), . . . , .g′(n)] (A11)

where i = 1, 2, . . . , n; g′(i) denotes the distance from point Qi to
→

Q1D.

Appendix B

From the observability matrix Ω given by (20), controllability matrix Γ given by (21) and the
matrices Ωr f , Ωrl, Γc f ,Γcl in (27),(28),(29) and (30), it is not difficult to deduce that the augmented
open-loop matrix P satisfies the following matrix equations.

Ωr f P = Ωrl (A12)
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PΓc f = Γcl (A13)

Then the augmented open-loop matrix P can be obtained by least squares.

P =
(
Ω∗r f Ωr f

)−1
Ω∗r f Ωrl (A14)

or

P = ΓclΓ
∗
c f

(
Γc f Γ∗c f

)−1
(A15)

Moreover, here are two ways to compute the corresponding constant matrices S and P. The first
way is for matrix P computed by (A14), the corresponding matrix S is defined as the first M rows of
the observability matrix Ω.

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ω(1, 1) · · · Ω(1, K1)

...
...

...
Ω(M, 1) · · · Ω(M, K1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A16)

Using (A14) and (A16), we calculate the matrix Ω̃

Ω̃ =
[

S SP . . . SPN−1
]

(A17)

From (15) and (A17), the original 2-D signatures Y can be written as

Y = Ω̃D (A18)

By using least square again, the matrix D is

D =
(
Ω̃
∗
Ω̃
)−1

Ω̃
∗
Y (A19)

The second way is for matrix P computed by (A15), the corresponding matrix D is defined as

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Γ(1, 1)

...
Γ(K1, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A20)

Using (A15) and (A20), we calculate the matrix Γ̃

Γ̃ =
[

D PD . . . PN−1D
]

(A21)

Similar to (A18), the original 2-D signatures Y can also be rewritten as

Y = SΓ̃ (A22)

By using least square, the matrix S is

S = YΓ̃
∗(̃

ΓΓ̃
∗)−1

(A23)

In this appendix, we provide two ways to estimate the parameter matrices (S, P, D).
For consideration of the robustness to noise, (A23), (A14) (or (A15)) and (A19) are preferred. It
is also worth mentioning that 2-D ASSA has two ways, which include the matrix form (S, P, D) and
the pole form (ak, sk, pk), to reconstruct the original signatures Y. The matrix form could provide more
accurate reconstruction result than the pole form but with much more parameters.
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Abstract: Doppler Radar Tomography (DRT) relies on spatial diversity from rotational motion of a
target rather than spectral diversity from wide bandwidth signals. The slow-time k-space is a novel
form of the spatial frequency space generated by the relative rotational motion of a target at a single
radar frequency, which can be exploited for high-resolution target imaging by a narrowband radar
with Doppler tomographic signal processing. This paper builds on a previously published work and
demonstrates, with real experimental data, a unique and interesting characteristic of the slow-time
k-space: it can be augmented and significantly enhance imaging resolution by signal processing. High
resolution can reveal finer details in the image, providing more information to identify unknown
targets detected by the radar.

Keywords: slow-time k-space; spatial frequency; Doppler radar tomography; radar imaging; k-space
augmentation; high-resolution narrowband radar

1. Introduction

Tomography is a general imaging technique that is based on lower-dimensional projections of an
object from different spatial aspects, which are then processed using the projection-slice theorem [1]
to reconstruct an image of the object. Radar tomography uses reflective scattering phenomenology
and radar waveforms for the measurements, which may be wideband or narrowband. Wideband
waveforms exploit spectral diversity as system resources to facilitate radar imaging and have probably
been the most exploited resources in practical applications in the last few decades. The well-known
synthetic aperture radar (SAR) and inverse SAR (ISAR) imaging techniques may be described as
two special forms of wideband tomography, in which another system resource—spatial diversity—is
exploited only minimally [2]. Range-Doppler ISAR imaging, and stripmap SAR in particular, typically
involve aspect angle changes of a few degrees [3–5]. This constraint of small rotation angles in the
linear phase regimes allows the image inversion processing to take advantage of the computationally
efficient fast Fourier transform (FFT) without needing signal interpolation onto rectangular grids.

Spotlight SAR makes use of wider angles [6], while circular SAR [7] may coherently process up to
a complete cycle of target aspect rotation, with sophisticated and precise motion compensation in range.
More notably, in the associated spatial frequency spaces, also known as k-spaces [2], traditionally
intensive interpolation processing prior to image inversion processing may be necessary. Nevertheless,
these forms of SAR and ISAR rely on the bandwidth resource to achieve high down-range resolution,
and so can be considered as belonging to the category of ‘wideband radar tomography’.

Radar tomographic imaging with ultra-narrowband or single-frequency waveforms relies on
spatial diversity as the only system resource for image formation [8–11]. Spatial diversity may be
realized by: (i) having a radar with multiple receivers looking at the target from diverse angular
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locations, the received signals from which are processed coherently, or (ii) using a single receiver
looking at a target undergoing relative rotational motion, i.e., changing target aspect. Both cases widen
the angular extents of the measurement support of the received signal in the k-spaces.

Previous work [2] showed that narrowband radar tomography can be most effectively formulated
in the slow-time k-space in conjunction with the classical Doppler processing and Doppler radar
tomography (DRT) [12,13]. The DRT algorithm applies the projection-slice theorem in which the inputs
of the target’s cross-range projections are formed from Doppler profiles. The slow-time k-space is not
only convenient for describing the DRT algorithm, it is also a natural tool to formulate high-resolution
DRT imaging with an augmentation of its measurement support. Augmentation is the process of
significantly enlarging the support of the slow-time k-space by using longer coherent processing
intervals (CPI) in the DRT algorithm and correcting for nonlinear phase effects due to strong rotational
motion. This ‘augmentability’ is a unique characteristic of the slow-time k-space.

The introduction of nonlinear phase terms in the k-space augmentation causes a blurring effect in
the resulting image. Spectral compression techniques for chirped signals can be used to address this
problem using bilinear transforms such as the Wigner-Ville Distribution (WVD), the Cohen’s class and
the time-frequency distribution series (TFDS) as discussed in [14]. The problem with these techniques
is the presence of undesirable cross terms when instantaneous component frequencies may overlap,
which is the case for DRT imaging [13]. The combination of the fractional Fourier transform and
S-method was used to overcome the problem of cross terms in [13], which demonstrated the slow-time
k-space augmentation with DRT. The current work is extended to a more novel technique based on the
orthogonal matching pursuit (OMP) technique, inspired by related work in compressive sensing.

Radar imaging naturally is suited to compressive sensing techniques, given that real targets often
resemble a sparse collection of discrete point scatterers [5,15]. OMP is fundamentally a technique
for parameter estimation by matching a given signal to a dictionary of possible elemental functions
spanning a finite parameter space. The dictionary is designed for the particular application and has
been applied to the area of DRT imaging in varying contexts [16–18]. The particular application in
this work is to estimate the non-linear phase term in the radar signal to reduce the image blurring for
improved resolution. The main contribution of the paper is two-fold: to highlight the augmentability
of the slow-time k-space as a fundamentally useful characteristic for narrowband radar imaging, and to
present a novel application of the OMP technique to such augmentation processing.

The slow-time k-space processing technique as presented in this paper provides a complimentary
approach to traditional high-resolution ISAR imaging. The dependence of wide bandwidth signals
for high resolution in ISAR imaging is not always readily achievable within the confines of the
available spectrum and limitations at lower frequency bands [9,19]. The proposed high-resolution
imaging scheme can lead to improved target recognition despite an absence of wide bandwidth signals,
provided sufficient spatial diversity is available. This is an important capability of great interest to the
radar research community [20].

The rest of the paper is organized as follows. The next Section summarizes the fundamental
theory: system geometry and signal model, cross-range bandwidth and resolution, and DRT. Section 3
describes the slow-time k-space and its augmentation with OMP processing. Section 4 describes the
experimental setup using simple point scatterers on a rotating turntable with imaging results for both
standard and augmented DRT processing. The final Section presents some relevant discussion points
and concluding remarks.

2. Background

This Section defines the signal model, the fundamental concept of cross-range bandwidth
and resolution, and summarizes the known theory of Doppler radar tomography (DRT) in its
standard version.

288



Sensors 2020, 20, 513

2.1. Signal Model

Consider a monostatic radar system geometry as illustrated in Figure 1. Without loss of generality,
an inertial local target reference frame, denoted as Tx with origin O at the target’s nominal centre of
rotation, is chosen to have the the x2 (‘down-range’) axis aligned with the radar line of sight (LOS),
with x1 axis denoting cross-range. The plane (x1, x2) is often known as the image projection plane (IPP,
or just ‘image plane’). The axis orthogonal to the IPP is denoted as the x3-axis (sometimes referred
to as ‘height’). The target’s effective rotation vector Ωe is defined as the projection of the target’s total
rotational velocity vector Ω along the x3-axis.

Figure 1. Imaging system geometry: The (x1, x2, x3) coordinates are defined in the local target frame,
Tx. For clarity, a single point scatterer is shown at xm, which rotates around origin O with velocity Ω.
Targets are modeled as a discrete, distributed collection of similar point scatterers.

Using the definition above, the total rotational velocity vector can be written in Tx as

Ω = (0, Ω2, Ωe). (1)

Physically, Ωe introduces cross-range dependent Doppler shifts in the radar backscatter and is
the principal reason that motion-based target imaging is possible. In comparison, Ω2 has minimal
(sometimes deleterious) impact on radar imaging. For non-cooperative targets, neither Ωe nor Ω2, or
the orientation of the IPP itself, are known a priori. In this paper, we further assume that Ω2 = 0, and
Ωe is approximately constant during a coherent processing interval (CPI).

For this paper, we use an idealized point-scatterer model for the target: it is adequately modeled
as an ensemble of M point scatterers with reflectivity coefficients σm, located in the far field of the
radar. The approximate range to the mth point-scatterer on the target with position vector xm, defined
relative to O, can be defined as

R(xm) ≈ R(xm) · iLOS = R0 + rm, (2)

in which R(xm) is the range vector to the mth scatterer, R0 is the radar range to O, the scatterer’s local
down range is

rm = xm · iLOS, (3)

and iLOS = (0, 1, 0) is the unit vector along the radar LOS in the Tx frame.
Formulation in the Tx frame is appropriate in traditional ISAR imaging where the change of

aspect is small (a few degrees), or for signal analysis within a relatively short CPI. In contrast, radar
tomography exploits spatial diversity through wide changes of target aspect. For this formulation,
a second, dynamic local target frame denoted as Ty, is needed. This frame rotates with the target
and coincides with Tx at a reference time, usually assumed to be tk = 0. By the Ω2 = 0 assumption,

289



Sensors 2020, 20, 513

it follows also that Tx and Ty share the same x3-axis. The reason for choosing Ty frame is that its axes
are aligned with those of the underlying k-spaces and thus preserves angles across the Ty frame and
the k-spaces.

Let
sT(tk; f ) ∝ exp{j2π f tk}

denote the simple transmit continuous waveform at a single frequency f , where only the slow time
tk is involved; there are no pulses and hence no ‘fast time’ spanning a pulse. The slow-time index is
k = 0, 1, 2, . . . , K − 1, and we assume a total of K time samples in a CPI. The received signal sR(tk; f ) is
a delayed version of sT(tk; f ), summed over all scatterers,

sR(tk; f ) ∝ exp
{
−j4π f

R0(tk)

c

} M

∑
m=1

σm exp
{
−j

4π f
c

rm(tk)

}
. (4)

Here, we have also assumed that radar hardware perfectly removes the carrier frequency term
exp{j2π f tk}. The first factor in (4) describes translational motion of the target as a whole; the second
factor captures the target geometry and scattering reflectivities to be processed for imaging.

Furthermore, we shall assume a linear translational motion model for the target,

R0(tk) = R0(0) + ν tk, (5)

where ν is the velocity, assumed known prior to DRT processing, and R0(0) is target range at a reference
time tk = 0.

2.2. Cross-Range Bandwidth and Resolution

The position of each scatterer executing rotational motion with rotation vector Ω is described to a
second order approximation by

x(tk) = x0 + (Ω × x0)tk −
1
2
[Ω2x0 − (Ω · x0)Ω]t2,

where x0 ≡ x(0) for convenience. Relative to Tx, the local down range rm in (4) can be expressed as

rm(tk) = xm2 + xm1 Ωe tk −
1
2

xm2 Ω2
e t2

k + · · · , (6)

where xm1 , xm2 are the initial (tk = 0) cross range and range, respectively, of the m-th scatterer in Tx.
The CPI duration is denoted by TCPI . As has been thoroughly discussed in [2], although x2 (dropping
the subscript m for brevity) cannot be directly estimated with a zero-bandwith signal, the first-order
term of (6) suggests that a so-called cross-range bandwidth,

B⊥ = f ΩeTCPI = f Δθ, (7)

can be used to estimate cross range x1. In other words, the target’s rotation generates an effective
bandwidth which allows for the resolving cross-range measurements, as long as the rotation angle
through TCPI ,

Δθ = Ω TCPI ,

is sufficiently small such that higher-order terms (quadratic and above) in (6) can be ignored. In practice,
the Δθ is limited to a few degrees, which is consistent with wideband ISAR imaging. Note that the
presence of the (unknown) zeroth-order term xm2 means x1 cannot be directly estimated from the
time-domain signal. Doppler tomography, as formulated below, overcomes such constraints to achieve
target imaging.
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Consider a segmented CPI of the received signal sR(tk, l) as illustrated in Figure 2. Taking
a Fourier transform over tk produces a Doppler profile SR( fd) = F{sR(tk, l)}, with zero Doppler
( fd = 0) corresponding to the centre of rotation at O (ignoring any residual translational motion after
preprocessing). For a segment of duration TCPI , the achievable Doppler resolution is

Δ fd =
1

TCPI
=

f Ωe

B⊥
. (8)

Figure 2. Illustration of the DRT narrowband imaging algorithm. ks2- and ks1 are the components of
the slow-time k-vector ks aligned with the target’s initial range and cross-range directions, respectively.
Each radial line represents the slow-time k-space samples obtained from one segmented CPI.

Each Doppler profile contains contributions from all scatterers, with the down ranges coordinates
xm2 encoded as constant phase terms. Since the cross-range of a scatterer is directly proportional to its
Doppler frequency fd, namely

x1 =
λ

2 Ωe
fd, (9)

it follows that the magnitude of the Doppler profile,

pθ(x) = |SR( fd)|,

represents a cross-range projection of the target’s reflectivity function at angle θ, the average aspect
angle over the CPI. The achievable cross-range resolution is

Δx1 =
λ

2Ωe
Δ fd =

c
2B⊥

. (10)

This expression is exactly analogous to the down-range resolution Δx2 = c/2B for wideband
imaging with spectral bandwidth B.

2.3. Doppler Radar Tomography (DRT)

The Projection-Slice Theorem (PST) states that the Fourier transform Pθ( fs⊥) of projection pθ(x) is
a slice of the 2D FT of the target’s reflectivity function at aspect angle θ. This theorem can be used
to invert the cross-range profiles accumulated from a range of aspect angles θl to recover the target
reflectivity function, i.e., estimate the scatterer coordinates xm1 and xm2 in Ty frame. For this to be
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effective, the target’s rotation must subtend a significant change in aspect angles; the 1D cross-range
projections are computed in the frequency domain as discussed above, after which the target reflectivity
function (image) can be reconstructed by a 2D inverse FT.

2.3.1. The Monostatic DRT Algorithm

To perform radar imaging using the DRT method, it is necessary to populate the slow-time k-space
from the radar backscatter. The algorithm to generate the slow-time k-space samples consists of the
following steps:

a. Data segmentation: Partition the N samples of the received signal sR(tn) into L overlapping CPIs
of K samples, sR(tk, l), k = 0, 1, . . . , K − 1; l = 1, 2, . . . , L. These are referred to as ‘segmented CPIs’
below. Denote the overlap factor η with 0 ≤ η < 1. At the midpoint of each segment, the target
aspect angle (relative to Tx) is denoted as θl ;

b. Translational motion compensation (TMC): this step shifts the Doppler component induced by
translational motion to zero Doppler frequency by modulating the segmented CPI by exp(j2πνtk),
where ν is the target’s translational velocity as noted in (5). This quantity is assumed to be known
or estimated by other methods. A discrete Fourier transform is then applied to the modulated
segments to obtain the Doppler spectrum. The magnitude of the output,

pθl (x) = |F{sR(tk, l) exp(j2πνtk)}| , (11)

is the cross-range (which is proportional to Doppler) profile for the target at an angle θl from its
original orientation. Accumulate all such cross-range profiles for all the corresponding aspect
angles θl , i.e., for all L segmented CPIs.

c. Populating the k-space: The spatial Fourier transform of pθl (x)

Pθl ( fs⊥) = F{pθl (x)} (12)

at target aspect angle θl are then used as the ‘measurement samples’ in the slow-time k-space.
As the target rotates, the measurements sweep out a region of support in slow-time k-space as
indicated in Figure 2. Due to our choice of reference frames, the measurement population always
starts close to the ks1-axis because pθ1(x) is the initial cross-range profile.

d. Image inversion: An inverse Fourier transform is applied to the populated support of the k-space to
yield the target image. Other works have either used filtered back projection, or interpolated the
samples onto a rectangular grid to utilise a standard 2D inverse Fourier transform, for this task
applied [12,13]. In this paper, we use the non-uniform Fast Fourier transform (NUFFT) [21–24].

It is worth noting that the image resolution is inversely proportional to the diameter of the span
of the k-space samples which is dependent on the cross range bandwidth B⊥ as defined in (10). The
resulting supportable size of the image is then determined from the image resolution cell multiplied
by a factor of K being the number of samples spanning the diameter of the k-space. Although limited
amounts of target rotation can reduce image resolution in the sparsely populated direction, here we
focus on the case where a half cycle of the target scatterers is visible to the radar to completely populate
the k-space. Under this assumption, the angular sampling density of the k-space samples drives the
image contrast and is a trade off with computational cost [25].

2.3.2. Standard DRT

By standard DRT, we refer to the case where the input cross-range profiles, as defined by (11), are
Doppler migration free (DMF), and the rotation angle corresponding to each profile formed under
this condition is said to be within the linear limit (of phase variation). The DMF condition can be
satisfied when the segmented CPI lengths are sufficiently short such that the nonlinear phase terms
in (6) are negligible and hence compensation is not necessary, or when |xm| is small. The former case is
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particularly sensitive for scatterers at larger radial distances from the centre of rotation, while the latter
case applies more to scatterers sufficiently close to the centre of rotation whose Doppler frequencies
are small and Doppler migration effects (if any) are also small.

As derived in the Appendix A, the standard DRT constraint on CPI rotation angle is

Δθ ≤ min {ΔθDM, ΔθLM} , (rad) (13)

where ΔθDM = (λ/2 rmax)1/2 is an effective rotation angle required to induce a Doppler migration
(DM) of one bin, ΔθLM is the ‘linear limit’, while DRT image resolution, in both range and cross
range, is

Δx1 = Δx2 ≥
(

λ rmax

2

)1/2
. (m) (14)

Here, rmax is the maximum radial dimension of the target. Note that Δθ and Δx are independent
of rotation rate and signal sampling rate, but only on radar wavelength and the dimension of the
target (through maximum radial dimension rmax to any scatterer). ΔθLM is roughly 10 degrees;
Equations (13) and (14) can be used as a guide to predict the expected imaging performance or
applicability of standard DRT for a specific radar wavelength and target size.

The limitations imposed by these nonlinear effects at wider rotation angles can be compensated
by a processing technique described in the next Section. For differentiation from standard DRT, such
cases are referred to as ‘Augmented DRT’.

3. The Slow-Time k-Space and Its Augmentation

While it is possible to formulate the problem and solution entirely in terms of the spatial frequency
space of fs⊥, we shall keep up with tradition and formulate it in terms of a ‘k-space’, with

ks = 2π fs⊥.

3.1. The Slow-Time k-Space

In basic Fourier analysis, for signal with a pulse repetition interval PRI, the Doppler frequency
extent of the signal is PRF = 1/PRI, which spans the interval (−PRF/2, PRF/2). Analogously,
from the spatial (cross-range) resolution Δx1 as given in (10), the values of spatial frequency fs⊥ spans
the interval (−B⊥/c, B⊥/c). It follows from (7) that the interval for ks is

ks ∈
(
−2π f

c
Δθ,

2π f
c

Δθ

)
.

These limits are illustrated by extents of the radial dashed lines in Figure 2. Since the cross-range
profiles are computed from FFT, both the discretized time and frequency domain vectors have K
samples. That is, the slow-time k-vectors ks corresponding to each cross-range projection contains
samples given by

ks = k′
2π f

c
(Ωe TPRI) i⊥, (15)

where k′ = −K,−K + 2, . . . ,−2, 0, 2, . . . , K − 2; TPRI = TCPI/K, and i⊥ is the cross-range unit vector
(perpendicular to LOS) along the x1-axis of the Ty frame.

The slow-time k-space arises naturally out of DRT: its radial support determined by the cross-range
bandwidth B⊥ and its populating samples are Pθl (ks) given by (12); as the target rotates, the slow-time
k-space support is swept out in fan-like shapes around the k-space origin. Also, for a given B⊥,
the number of ks points is a processing design parameter not necessarily fixed to K; its chosen value
however would affect only the sidelobes of the impulse response, and hence image contrast, not
image resolution.
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An important and useful characteristic of the slow-time k-space is it can be augmented. As implied
by (7), B⊥ can be increased by using a wider rotation angle Δθ, providing processing can effectlively
correct for the nonlinear terms in the phase function of (6). In Section 3.2 below, we discuss one
typical technique to correct for the second-order term, i.e., linear chirp components. In other words,
augmentation of the k-space enhances resolution by permitting the CPI to be lengthened to the limit
where rotational motion of all point scatterers can be modelled as linear chirps.

By comparing a standard CPI T(s)
CPI and corresponding rotation angle Δθ(s) in the conventional

linear limit of narrowband imaging to a longer CPI we define an ‘augmentation factor’

κ =
Δθ

Δθ(s)
=

TCPI

T(s)
CPI

, (16)

where TCPI is the lengthened CPI and corresponding larger rotation angle Δθ. The augmentation factor
of κ describes the expansion of the cross range bandwidth B⊥ or equivalently the radial span of the
slow-time k-space described in (7) and (15). The DRT image resolution is inversely proportional to
B⊥ defined in (9), hence, an improvement in resolution can be achieved with adequate compensation
of the linear chirps which is described further in Section 3.2. The concept of the slow-time k-space is
illustrated in Figure 3. The DRT algorithm based on an augmented k-space is called augmented DRT.

Figure 3. An illustration of the augmentation of the slow-time k-space to generate longer segmented
CPIs for cross-range profile formation, which compensates for nonlinear effects of rotation arising from
wider angles. The circle indicates the boundary of support in standard DRT imaging.

3.2. Augmented DRT with Orthogonal Matching Pursuit (OMP)

This technique shares the same objective as the FrFTS-based technique [13] but instead makes use
of a popular tool in the more modern approach of sparse signal approximation, OMP. Again, TMC is
assumed to have been perfectly processed prior to this processing.

3.2.1. Sparse Representation

With reference to (4) and (6), the segmented CPI signal received is represented in vector form as

sR = Ψσ + ε, (17)
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where Ψ is the dictionary matrix of size K × Nσ; σ is a length-Nσ column vector of (complex-valued)
atom coefficients; and ε is a length-K column vector of noise and/or clutter components. The columns
of Ψ are the chirp atoms, of the form

g(k) = exp
{
−j2π

(
fgtk +

1
2

cgt2
k

)}
, (18)

where k = 0, 1, . . . , K − 1, and the parameters

fg =
2 x1 Ωe

λ
, and cg = −2 x2 Ω2

e
λ

(19)

respectively represent the Doppler frequency and chirp rate of a scatterer due to rotation, at reference
time tk = 0 of the current segmented CPI, which define the atom g(tk). Furthermore, let fg and cg,
or equivalently x1 and x2, be discretized as vectors of expected or possible values, of lengths Nf and
Nc respectively, then Nσ = Nf Nc.

Different options for discretizing ( fg, cg) lead to different definitions of the dictionary Ψ.
The above option in terms of (x1, x2) uses rectangular scatterer coordinates. Another option is by polar
coordinates (d, α) with

x1 = d cos(α), x2 = d sin(α), (20)

which may be useful when prior knowledge about the expected scatterer locations is available.
It is desirable to use a coordinate grid for ( fg, cg) in such a way that the grid points efficiently
spans the target while keeping the total number of grid points (the dictionary size) to a minimum.
A demonstration of these options is shown in Section 4.2.4.

The OMP algorithm itself is well-known, hence will not be described here (see [26] for
example). In fact, OMP is only one of several sparse approximation techniques that could be used in
this algorithm.

3.2.2. The OMP-Based Augmented DRT Algorithm

The augmented DRT algorithm is modified from standard DRT by simply lengthening the
segmented (and overlapping) CPIs with an augmentation factor κ, as defined by (16); the target signal
in each CPI can then be represented as a sum of linear chirp components. The aim is then to estimate
such a representation and to correct for the chirps, i.e., focusing the range profile, before applying
them to remaining steps of the DRT algorithm.

For each augmented CPI, suppose the output of the OMP processing is a (sparse) representation
{ f (m)

g , c(m)
g } of size M with corresponding atoms {gm(tk)} and coefficients {σm}, then a dechirped

version for the segmented receive signal is

s̃R(tk) =
M

∑
m=1

σm gm(tk) →
M

∑
m=1

σm g̃m(tk). (21)

The right arrow → above denotes a replacement of the gm(tk) atom with a corresponding
monotone signal

g̃m(tk) = exp
{
−j2π f (mid)

g tk

}
, (22)

with Doppler frequency

f (mid)
g = f (m)

g +
1
2

c(m)
g tmid, (23)

so defined as the instantaneous frequency at tmid–the middle time of the segmented CPI. The operation

pθl (x) = |F{s̃R(tk)}| (24)
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then would give a focused cross-range projection for tomographic processing.
The augmentation algorithm, applied to each CPI of the augmented DRT algorithm, can thus be

summarized as follows.

0. Initialize:

– define or select expected intervals of Doppler frequency fg and chirp rate cg;
– define the corresponding chirp atoms and set up the dictionary Ψ;
– input segmented CPI data sR(tk);

1. Compute the OMP-based sparse solution;
2. Replace all chirp atoms in the sparse solution with single-tone sinusoid functions with Doppler

frequency at the mid-point of the segmented CPI;
3. Compute the focused cross-range profile pθl as given by (24).
4. Compute NUFFT on the populated slow-time k space to produce the output image.

4. Experimental Results

We present two different datasets using simple point-like scatterers on a rotating turntable to
represent a target. This scenario is analagous to rotating components on a target such as a helicopter
rotor blade tips [20,25,27]. The first dataset is a target with a small dimension and small scatterers
to showcase improvements in resolution. The second dataset is representative of a much larger
target which highlights the effect of blurring in the image that we aim to remove for improved
image resolution.

4.1. Small Target

4.1.1. Experimental Setup

The data was collected in the Mumma Radar Laboratory at the University of Dayton, Ohio, USA.
Although the aim of the study is narrowband imaging, a wideband waveform at X-band was used
with stepped-frequency pulses between 8 GHz and 12 GHz, over 101 regular frequency steps. Only
the measured data from one of the available discrete frequencies fk was used to study narrowband
tomographic radar imaging.

The transmit and receive horn antennas were mounted on separate robotic arms which could
be oriented and positioned with high precision. The measurements were conducted in a controlled
laboratory environment with some Radar Absorbing Material (RAM) reducing the radar reflections
from the floor and walls. The experimental target consisted of two vertical metallic rods, separated
by 19 cm (approximately), emulating two point scatterers which rotated around a vertical pedestal,
as illustrated in Figure 4. The maximum radial distance is 11 cm. The antennas were kept stationary
whilst the target was rotated through 360◦, at 0.1◦ steps. At each step, the stepped-frequency waveform
was transmitted and sampled, one sample for each frequency.

Figure 4. An example of an antenna mounted on a robotic arm at the Mumma Radar Laboratory with
the two vertical metallic rods secured to the rotating pedestal.
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4.1.2. System Requirements

Successful imaging is not dependent on shifts in relative velocity of the target from pulse to pulse,
in fact the target could completely stop at each sampled rotation angle [28]. This is the case when a
target rotates on a turntable with a very slow rotation rate during which the Doppler frequency is
derived from the change in phase in time from the different target perspectives. Therefore we describe
the system parameters such as target rotational speed and radar sampling rate based on the angular
sampling rate.

While the full theoretical details are included in the Appendix A, the key requirements are
summarized as follows.

• fk: we choose the lowest and highest frequencies available in this experiment, 8 and 12 GHz,
corresponding to λ = 3.75 or 2.5 cm. With rmax ≈ 0.11 m, ΔθDM ≈ 23.7◦ or 19.3◦, respectively. We
also choose ΔθLM = 10◦; the system is thus ΔθLM-limited and poor imaging performance can be
expected from standard DRT;

• Inequality (A1) is the Doppler ambiguity free condition; PRF should be designed such that the
angular sampling rate PRFa = PRF/ω (in samp/rad) is greater than (4 rmax/λ) (11.7 or 17.6 for
this setup), but with as small a margin as possible, to ease hardware requirement.

• The angular sampling interval of 0.1◦ per sample in the experiment translates to a PRFa =

573 samp/rad. Over the chosen ΔθLM value, 100 samples are available. To reduce computational
cost while retaining a reasonable FFT length and satisfying the Doppler ambiguity free condition,
we use a down sampling ratio of 3:1, leading to K = 33 samples per CPI, and PRFa ≈ 191
(samp/rad). This choice also automatically satisfies the constraint in (A8).

Realistic values for PRF and ω can also be chosen such that PRF/ω = 191, however, this is not
necessary for DRT processing.

For each of the selected frequencies, an elliptic filter with a very narrow stop band is also applied
to the signal as a pre-processing for clutter removal. Results are shown in Sections 4.2.3 and 4.2.4.

4.1.3. Standard DRT Imaging

To demonstrate k-space augmentation and the usefulness of sparse signal approximation, some
typical results of standard DRT imaging is now shown. Figure 5 shows a spectrogram of the signal at
8 GHz and Figure 6 shows the corresponding slow-time k-space support and standard DRT image. We
have used an overlapping factor η of 0.99 in the segmentation step to provide a very smooth angular
coverage of the k-space. However, standard DRT imaging performance is poor; the k-space support is
small; the two scatterers (metallic rods) are not distinguishable in the image.

If longer CPIs are used with the standard DRT algorithms, image blurring occurs. Suppose κ as
defined by (16) is set to 6, the Doppler resolution in the spectrogram of the signal becomes higher,
as shown in Figure 7. When the corresponding cross-range profiles (with Doppler bin migration effects
present) are applied to standard DRT, the resulting image is in Figure 8.

Figure 5. Spectrogram using standard DRT processing for f = 8 GHz.
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Figure 6. The slow-time k-space support (left) and corresponding standard DRT image (right), at f = 8 GHz.

Figure 7. Signal spectrogram with augmented CPIs, κ = 6, at f = 8 GHz.

Figure 8. The slow-time k-space support (left) and image (right) for standard DRT with κ = 6,
at f = 8 GHz.

For a better insight into the electromagnetic scattering effects in this experiment, similar results
using the highest frequency (12 GHz) available are shown in Figures 9 and 10. From Figures 7 and 9
it is clear that in addition to direct (specular) scattering off the inner side of a metallic rod, creeping
waves around the rods are the most likely cause of the twin sinusoidal traces for each of the rods [29].
The effects are more pronounced with the shorter wavelength of 2.5 cm, which is more comparable to
the rod diameter of approximately 2 cm. The double scattering effects are highlighted in the DRT image.

Note that image blurring in standard DRT imaging is only in the azimuthal direction; image
focusing is still generally achieved in the radial direction.
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Figure 9. Signal spectrogram with augmented CPIs, κ = 6, at f = 12 GHz.

Figure 10. The slow-time k-space support (left) and image (right) for standard DRT with κ = 6,
at f = 12 GHz.

4.1.4. Augmented DRT Imaging with OMP

To apply OMP for image focusing, the dictionary Ψ is set up with chirp atoms as defined in (18)
and (19). As mentioned in Section 3.2.1, two coordinate options for spatial scatterer grids are possible:
rectangular in (x1, x2) or polar in (d, α). In either case, prior knowledge can be used from the standard
DRT processing to constrain the parameter span for the dictionary.

A rectangular scatterer grid was chosen spanning ±0.4 m with a nominal spacing proportional to
λ/2. As for the standard DRT demonstration, the two frequencies of 8 GHz (λ = 3.75 cm) and 12 GHz
(λ = 2.5 cm) are used. Over the selected discretization interval, the number Nσ of atoms was 1849 (for
8 GHz) or 4096 (for 12 GHz).

The coefficient magnitudes of the first 20 atoms extracted from the 8 GHz signal show a clear
convergence, as shown in Figure 11.

Figure 11. Magnitude of atom coefficients at f = 8 GHz for first 20 atoms, shown for a subset of the
total number of CPIs.
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To reduce signal processing noise effects in the resulting image, a simple thresholding method can
be used to control the number of atoms to keep in the sparse representation: in each CPI, stop the OMP
iteration when atom coefficient magnitude falls below 20% of the maximum magnitude, as an example.
This criterion can also save on computational cost, as less atoms need to be extracted in the processing.

The spectrogram of the reconstructed and ‘OMP-focused’ signal is shown in Figure 12 which
clearly shows more resolvable sinusoidal traces compared to Figure 7.

An example is shown in Figure 13 for the 8 GHz signal. Compared to Figure 8, this is a clearly
significantly more focused image where the scatterers are more easily resolvable.

For completeness, we also show results in Figure 14 for the 12 GHz signal, which also resolve the
scatterers significantly better using the OMP processing as compared to Figure 10 for standard DRT.
The double scattering effects resulting in ‘double rods’ are also enhanced.

Figure 12. Spectrogram reconstructed, OMP-focused signal with first 20 atoms, at f = 8 GHz (compared
to Figure 7).

Figure 13. The slow time k-space support (left) and image (right) after OMP processing using a 20%
coefficient magnitude threshold at f = 8 GHz (compared to Figure 8).
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Figure 14. The slow time k-space support (left) and image (right) after OMP processing using a 20%
coefficient magnitude threshold at f = 12 GHz (compared to Figure 10).

4.2. Large Target

4.2.1. Experimental Setup for Large Target

The experiment was carried out on the turntable at the RAAF Edinburgh airbase, which has a
diameter of 17 m. The test target consists of three metallic cylinders as shown in Figure 15 with physical
specification listed in Table 1. The experimental X-band radar employed a vertically polarised pulsed
stepped frequency waveform starting at 9 GHz with 4 MHz steps, spanning a total of 256 frequencies.
The turntable was rotated at approximately one revolution per 15 minutes with a receiver sampling
rate of PRF = 20 Hz at each frequency, which translates to an angular sampling interval of 0.02◦.

Figure 15. The turntable at the RAAF Edinburgh airbase with three metallic cylinders as a test target.

Table 1. Metallic cylinder configuration.

Cylinder rm (m) Diameter (m) Height (m)

1 2.5 0.15 0.30

2 5 0.38 0.18

3 8 0.21 0.46

4.2.2. System Requirements

As previously described in Section 4.1.2 we designed the system requirements such that the
backscattered radar signal is dependent on the angular sampling rate as follows.

• We choose fk = 9 GHz, corresponding to λ = 3.0 cm. With rmax ≈ 8.0 m, ΔθDM ≈ 2.48◦; this is
well below the typical linear limit of several degrees. The system is thus ΔθDM-limited;

• PRFa = 1067 for this experiment which satisfies inequality (A1) for ambiguity free Doppler
frequency.

301



Sensors 2020, 20, 513

The angular sampling interval of 0.02◦ per sample in the experiment translates to a PRFa =

2864 samp/rad, which satisfies (A1).
Similar to the previous data set, an elliptic filter with a very narrow stop band is applied to the

signal for clutter removal. Results are shown in Sections 4.2.3 and 4.2.4.

4.2.3. Standard DRT Imaging

Figure 16 shows a spectrogram of the signal at 9 GHz, featuring three distinct sinusoidal traces
corresponding to the three cylinders. Figure 17 shows the corresponding slow-time k-space support
and standard DRT image. The standard DRT imaging performance is poor due to the small diameter
of the k-space support, with the cylinder locations represented by coarsely granulated pixels.

Figure 16. Spectrogram using standard DRT processing for f = 9 GHz. (The small gap near 600 sec is
due to an antenna pointing error during the measurements.)

Figure 17. Slow-time k-space support (left) and image (right) for standard DRT processing; f = 9 GHz.

When longer CPIs are used with the standard DRT algorithms; for example, when κ in (16) is set
to 6, the Doppler resolution in the spectrogram of the signal becomes higher, as evident in Figure 18;
the corresponding cross-range profiles (with Doppler bin migration effects present) applied to standard
DRT result in Figure 19.

Again it is shown that image blurring in standard DRT imaging is only in the azimuthal direction;
image focusing is still generally achieved in the radial direction. The blurring effect in the image is
more severe for scatterers at larger radial distances which travel along greater arc lengths within a
given angular rotation angle (i.e., larger Doppler effects) and hence more severe Doppler bin migration.

4.2.4. Augmented DRT Imaging with OMP

We choose the polar grids representation for this dataset as defined in Section 3.2.1. This approach
is useful when some prior knowledge about the radial coordinate of the major scatterers is available
from the standard DRT processing.
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Figure 18. Signal spectrogram with augmented CPIs, κ = 6 at f = 9 GHz.

Figure 19. The slow time k-space support (left) and image (right) for standard DRT with κ = 6,
at f = 9 GHz.

A relatively narrow window is used for discretization of the d-dimension derived from the
Doppler information of the scatterers in Figure 16 with a λ/2 spacing. The full 360◦ with 1◦ spacing is
used for α. Twenty atoms were extracted in each CPI from the OMP process giving a reconstructed
spectrogram that is virtually identical to that in Figure 18, affirming the sufficient accuracy of the
sparse representation. After the de-chirping operation, the scatterer locations are much more focussed
as shown in Figure 20 compared to the same scatterers in Figure 19 with the same augmentation
factor. The technique shows some degradation with the furthermost cylinder which exhibited the
most blurring.

Figure 20. The slow time k-space support (left) and image (right) after OMP processing using a 20%
coefficient magnitude threshold at 9 GHz (compared to Figure 19).

Our current study is focused more on imaging performance rather than computational cost;
nevertheless, to give some idea on computational cost, we ran the algorithm on the high performance
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computer called ‘Phoenix’ at the University of Adelaide which took approximately 1 hour to run on 16
CPUs using 64 GB RAM.

5. Further Discussion

This paper is an expansion to the work reported earlier in [2], demonstrating high-resolution
DRT imaging with real experimental data. As this is not a real moving and rotating target in a typical
operational scenario, a number of issues could be noted.

Firstly, the target’s translational velocity is exactly zero for the entire data collection. Nevertheless,
this is not expected to be a sensitive factor. For most real moving targets, translational velocity can
be readily compensated by shifting the ‘body Doppler’ line to zero Doppler. Sensitive propagation
phases, as in the case of fast-time k-spaces, do not enter the slow-time k-spaces.

Secondly, the measured data were collected at precise angular sampling rates PRFa, which can
only be estimated in typical operational scenarios. Errors in PRFa or Ωe would translate into errors of
the locations of populated samples as well as image scaling factor. Hence both image focusing and
image scaling could be affected. We have not fully addressed these issues in this work.

The experimental data does reveal interesting electromagnetic phenomenology, highlighting the
limiting simplicity of the ideal point-scatterer assumption; creeping waves and nonlinear scattering
effects do exist, which are not taken into account in the current DRT theory.

On application of the OMP algorithm, what this work has demonstrated its feasibility: techniques
such as OMP can be used for slow-time k-space augmentation. Other alternative sparse approximation
techniques can possibly be used to yield higher performance. Numerous other aspects can also be
considered, such as dictionary ‘learning’: how to select an optimum spatial scatterer grid for the best
focusing performance while keeping computational cost at manageable levels? Or how to deal with
the off-grid/mismatched scatterer problem [30]. Many open questions remain, some of which will be
addressed in future publications.

6. Concluding Remarks

We have demonstrated, with two datasets, the ability to improve image resolution using a rotating
target with an ultra-narrowband radar. The enabling signal processing technique presented was a
combination of Doppler radar tomography and a sparse reconstruction technique such as OMP, with a
unifying mathematical framework based on the slow-time k-space. We have shown that closely spaced
scatterers can be resolved by illustrating the creeping wave effect when the scatterer size is similar to
the radar wavelength. The technique also performed well addressing the adverse effect of blurring in
the image with scatterers at larger radial distances to the centre of rotation. By compensating for the
blurred scatterer locations in the image, the ability to resolve closely spaced scatterers is improved
providing finer details for target recognition.

Although the demonstration of this technique is effective, the application to a real complex target
with many non-ideal scatterers may present additional challenges including discontinuous scattering
effects, larger dictionaries affecting computational cost and inaccuracies due to signal mismatch with
finite dictionary elements. In future work, we aim at investigating the use of multiple widely separated
radar receivers to reduce the requirement on large target rotation angles for DRT imaging, where the
direct application of OMP may not scale efficiently for large amounts of data. The increase in data may
require a modified approach such as dictionary learning to help reduce the computational cost.
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Appendix A. Standard DRT: System Parameters and Image Resolution

Figure A1 illustrates the spectral composition of a segmented CPI in the DRT algorithm.
The sinusoidal traces depicts the instantaneous Doppler frequencies of scattererers as the target
rotates, which are generally chirp signals. The chirps are approximately linear for short CPIs.

Figure A1. Instantaneous Doppler traces of point scatterers on a rotating target.

There are three main constraints on system parameters for standard DRT to be applicable. The first
one is Doppler ambiguity free condition: the sampling rate PRF must be at least two times the largest
Doppler components in the received signal–the well-known Nyquist criterion. With rmax denoting a
largest radial distance of scatterers on the target, this constraint can be written as

PRF ≥ 4 ω rmax

λ
, or PRFa ≥

4 rmax

λ
, (A1)

where PRFa = PRF/ω is the angular sampling rate (in units of samples/rad).
The second constraint is: Doppler migration-free (DMF), i.e., variation of the instantaneous

Doppler frequency of any scatterer is less than a Doppler bin size. This constraint may be derived as
follows: a scatterer’s cross range is given by x1 = r cos θ, hence the differential change in x1 is

dx1 = −rω sin θ dt.

Maximum cross range migration occurs near θ = nπ/2 for odd integral values of n. If dt
represents a CPI time, here denoted as TCPI , then the DMF requirement translates to having

|dx1| ≡ rωTCPI (A2)

to be not larger than a cross range bin size, at all range bins.
A cross range bin size Δx1 is related to Doppler filter size Δ f through the well-known relationship

Δ f = (2 ω/λ)Δx1 for monostatic radars, hence

Δx1 =
λ

2ω
Δ f =

λ

2ω

PRF
K

. (A3)

Here, K denotes both the number of samples spanning the CPI and the FFT length; and therefore

TCPI =
K

PRF
. (A4)
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Using (A2), (A3) and (A4) in the DMF requirement |dx1| ≤ Δx1 then leads to the condition

Δθ =
ω K
PRF

≤
(

λ

2 rmax

)1/2
≡ ΔθDM, (A5)

where Δθ is the (segmented) CPI rotation angle (or angular extent), and ΔθDM is an effective angle
the target would need to rotate to induce a Doppler migration (DM) through one frequency bin. Note
that ΔθDM depends only on radar wavelength λ and maximum radial extent rmax, not rotation speed.
Another useful related expression is

TCPI =
K

PRF
≤ ΔθDM

ω
, (A6)

for the corresponding CPI time.
The third constraint is the so-called ‘linear limit’: the maximum rotation angle at which the Taylor

expansion in (6) up to the first order in time remains valid. In other words,

Δθ < ΔθLM, (A7)

where ΔθLM ≈ 10◦.
Combining the three constraints above, the system constraints on PRF and K are (A1) and

K ≤ PRFa min {ΔθDM, ΔθLM} . (A8)

As an example, suppose ΔθLM = 8◦ is used; and λ = 5 cm, rmax = 1 m and ω = 300 RPM,
then (A5) gives ΔθDM ≈ 9.1◦ > ΔθLM, and the choice of PRF = 15 kHz and K = 64 would satisfy
all constraints.

The result in (A8) also highlights a useful comparison between the DMF condition and the linear
limit ΔθLM: the CPI length K may be limited by either of the two factors; it is however more desirable
to be DMF-limited, i.e, without strong dependence on wide rotation angles. Indeed, shorter radar
wavelengths and larger target dimensions would induce more pronounced Doppler effects which are
required for the applicability of the DRT imaging algorithm itself.

Image resolution for standard DRT can be derived as follows. The minimum PRF for
unambiguous Doppler effects, given by (A1), means a cross-range profile given by (11) exactly spans
the cross-range extent of the target. Larger values would lead to outer range bins of the profile
containing noise only, while those range bins spanning the target remain the same, in both bin size and
number. For the case of minimum unambiguous PRF, the maximum selectable value of K, given by
(A6), is

KSTD =

(
8 rmax

λ

)1/2
, (A9)

or smaller if K is limited by ΔθLM in (A8). The resolution of a cross-range profile is therefore

ΔxRB =
2 rmax

KSTD
=

(
λ rmax

2

)1/2
. (A10)

The same result can be obtained from (10) and (7) by using the equality in (A5) for Δθ. The result
in (A10) is also the expected image resolution in standard DRT imaging.

306



Sensors 2020, 20, 513

References

1. Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; Society of Industrial and Applied
Mathematics: Philadelphia, PA, USA, 2001.

2. Tran, H.; Melino, R. The Slow-Time k-Space of Radar Tomography and Applications to High-Resolution
Target Imaging. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 3047–3059. [CrossRef]

3. Walker, J.L. Range-Doppler Imaging of Rotating Objects. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16,
23–52. [CrossRef]

4. Ausherman, D.A.; Kozma, A.; Walker, J.L.; Jones, H.M.; Poggio, E.C. Developments in Radar Imaging.
IEEE Trans. Aerosp. Electron. Syst. 1984, AES-20, 363–400. [CrossRef]

5. Chen, V.C.; Martorella, M. Inverse Synthetic Aperture Radar; Scitech Publishing: Edison, NJ, USA, 2014.
6. Jakowatz, C.V.; Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Thompson, P. Spotlight-Mode Synthetic Aperture Radar:

A Signal Processing Approach; Springer: Berlin/Heidelberg, Germany, 1996.
7. Soumekh, M. Reconnaissance with slant plane circular SAR imaging. IEEE Trans. Image Process. 1996,

5, 1252–1265. [CrossRef] [PubMed]
8. Wang, L.; Yazici, B. Bistatic Synthetic Aperture Radar Imaging Using UltraNarrowband Continuous

Waveforms. IEEE Trans. Image Process. 2012, 21, 3673–3686. [CrossRef] [PubMed]
9. Coetzee, S.L.; Baker, C.J.; Griffiths, H.D. Narrow band high resolution radar imaging. In Proceedings of the

2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006.
10. Sun, H.; Feng, H.; Lu, Y. High resolution radar tomographic imaging using single-tone CW signals.

In Proceedings of the 2010 IEEE Radar Conference, Washington, DC, USA, 10–14 May 2010; pp. 975–980.
11. Sego, D.J.; Griffiths, H.; Wicks, M.C. Radar tomography using Doppler-based projections. In Proceedings of

the 2011 IEEE RadarCon (RADAR), Kansas City, MO, USA, 23–27 May 2011; pp. 403–408.
12. Mensa, D.L.; Halevy, S.; Wade, G. Coherent Doppler tomography for microwave imaging. Proc. IEEE 1983,

71, 254–261. [CrossRef]
13. Tran, H.T.; Melino, R. Application of the Fractional Fourier Transform and S-Method in Doppler Radar

Tomography; Technical Report DSTO-RR-0357; The Defence Science and Technology Organisation: Edinburgh,
Australia, 2010.

14. Chen, V.; Ling, H. Time-Frequency Transforms for Radar Imaging and Signal Analysis; Artech House:
Norwood, MA, USA, 2003.

15. Potter, L.C.; Ertin, E.; Parker, J.T.; Cetin, M. Sparsity and Compressed Sensing in Radar Imaging. Proc. IEEE
2010, 98, 1006–1020. [CrossRef]

16. Kodituwakku, S.; Melino, R.; Berry, P.; Tran, H. Tilted-wire scatterer model for narrowband radar imaging of
rotating blades. IET Radar Sonar Navig. 2017, 11, 640–645. [CrossRef]

17. Melino, R.; Kodituwakku, S.; Tran, H. Orthogonal matching pursuit and matched filter techniques for the
imaging of rotating blades. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa,
27–30 October 2015; pp. 1–6.

18. Tran, H.; Heading, E.; Melino, R. OMP-based translational motion estimation for a rotating target by
narrowband radar. IET Radar Sonar Navig. 2017, 11, 854–860. [CrossRef]

19. Baker, C.J.; Griffiths, H.D. Bistatic and Multistatic Radar Sensors for Homeland Security. In Advances in
Sensing with Security Applications; Springer: Dordrecht, The Netherlands, 2006; pp. 1–22.

20. Cilliers, A.; Nel, W.A.J. Helicopter parameter extraction using joint time-frequency and tomographic
techniques. In Proceedings of the 2008 International Conference on Radar, Adelaide, SA, Australia,
2–5 September 2008; pp. 598–603.

21. Dutt, A.; Rokhlin, V. Fast Fourier Transforms for Nonequispaced Data, II. Appl. Comput. Harmon. Anal. 1995,
2, 85–100. [CrossRef]

22. Nguyen, N.; Liu, Q.H. The Regular Fourier Matrices and Nonuniform Fast Fourier Transform. SIAM J. Sci.
Comput. 1999, 21, 283–293. [CrossRef]

23. Greengard, L.; Lee, J. Accelerating the Nonuniform Fast Fourier Transform. SIAM Rev. 2004, 46, 443–454.
[CrossRef]

24. Ferrara, M. AFOSR Lab Task ‘Moving-Target Radar Feature Extraction’. 2009. Available online:
https://au.mathworks.com/matlabcentral/fileexchange/25135-nufft--nfft--usfft/all_files (accessed on
7 November 2010).

307



Sensors 2020, 20, 513

25. Tran, H.; Heading, E.; Ng, B. Multi-Bistatic Doppler Radar Tomography for Non-Cooperative Target
Imaging. In Proceedings of the 2018 International Conference on Radar (RADAR), Brisbane, Australia,
27–30 August 2018; pp. 1–6.

26. Elad, M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing;
Springer: Berlin/Heidelberg, Germany, 2010.

27. Fliss, F. Tomographic Radar Imaging of Rotating Structures. In Synthetic Aperture Radar; International Society
for Optics and Photonics: Los Angeles, CA, USA, 1992; Volume 1630.

28. Munson, D.C.; O’Brien, J.D.; Jenkins, W.K. A tomographic formulation of spotlight-mode synthetic aperture
radar. Proc. IEEE 1983, 71, 917–925. [CrossRef]

29. Knott, E.F.; Shaeffer, J.F.; Tuley, M.T. Radar Cross Section, 2nd ed.; SciTech Publishing Inc: Rayleigh, NC,
USA, 2004.

30. Nguyen, N.H.; Dogancay, K.; Tran, H.; Berry, P.E. Parameter-Refined OMP for Compressive Radar Imaging
of Rotating Targets. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3561–3577. [CrossRef]

© 2020 Commonwealth of Australia. Licensee MDPI, Basel, Switzerland. This article is an
open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

308



sensors

Article

Target Doppler Rate Estimation Based on the Complex
Phase of STFT in Passive Forward Scattering Radar

Karol Abratkiewicz *, Piotr Krysik, Zbigniew Gajo and Piotr Samczyński

Institute of Electronic Systems, Faculty of Electronics and Information Technology,
Warsaw University of Technology, 00-665 Warsaw, Poland
* Correspondence: k.abratkiewicz@elka.pw.edu.pl

Received: 19 July 2019; Accepted: 17 August 2019; Published: 20 August 2019

Abstract: This article presents a novel approach to the estimation of motion parameters of objects
in passive forward scattering radars (PFSR). In such systems, most frequency modulated signals
which are used have parameters that depend on the geometry of a radar scene and an object’s motion.
Worth noting is that in bistatic (or multistatic) radars forward scattering geometry is present thus in
this case only Doppler measurements are available while the range measurement is unambiguous.
In this article the modulation factor, also called the Doppler rate, was determined based on the chirp
rate (equivalent Doppler rate) estimation concept in the time-frequency (TF) domain. This approach
utilizes the idea of the complex phase of the short-time Fourier transform (STFT) and its modification
known from the literature. Mathematical dependencies were implemented and verified and the
simulation results were described. The accuracy of the considered estimators were also verified
using the Cramer-Rao lower bound (CRLB) to which simulated data for the considered estimators
was compared. The proposed method was validated using a real-life signal collected from a radar
operating in PFSR geometry. The Doppler rate provided by a car crossing the baseline between
the receiver and the GSM transmitter was estimated. Finally, the concept of using CR estimation,
which in the case of PFSR can be understood as Doppler rate, was confirmed on the basis of both
simulated and real-life data.

Keywords: passive forward scattering radar; chirp rate estimation; passive radar; forward scattering
radar; radar measurements; time-frequency analysis

1. Introduction

Passive forward scattering radars are a special class of passive bistatic radars (PBR), in which the
bistatic angle β between the non-cooperating transmitter, the target and the receiver is β ≈ 180◦ [1–3].
In such kinds of passive radars, the illuminating signal can be a wave from a commercial transmitter
of popular systems such as FM, DAB, DVB-T, GSM, and so forth [4–7]. The simplified passive forward
scattering radar (PFSR) geometry is presented in Figure 1.

Unlike typical PBRs, the PFSR is characterized by the fact that objects cross the baseline, which has
certain consequences. In such a case the PBR radar using classical PCL (Passive Coherent Location)
processing is blind, as a target is crossing the line of sight between a receiver and a transmitter, and for
PBR in this geometry there is no existing range resolution. Additionally, the target disturbs the
reference signal, thus based on PCL principles it is difficult to detect the target at the line of sight to
the transmitter as only the reference antenna is pointed in this direction, and surveillance beams are
pointed in other directions. In bistatic radars a target moving at a velocity V provides the Doppler
shift expressed as follows: [8]:

fd =
2V
λ

cos(α) cos(β/2). (1)
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Figure 1. Simplified passive forward scattering radar (PFSR) geometry. β—bistatic angle,
Tx—non-cooperative transmitter, Rx—radar receiver, TGT—target, L—baseline, R1—distance from the
transmitter to the target, R2—distance from the target to the receiver, D—distance from the receiver to
the crossing point.

As previously mentioned, in PFSR β ≈ 180◦, which makes fd ≈ 0 (Hz). However, observing
the object in a slightly wider range, that is β ∈ (180◦ − Δ, 180◦ + Δ), where Δ is a certain angle, it is
possible to measure the Doppler rate (or equivalently the chirp rate (CR)). This parameter describes
the kinematic properties of the measured object.

The literature describes some methods of Doppler rate estimation in PFSR. Ustalli et al. proposed
in Reference [9] a four-step processing technique for the extraction of kinematic motion parameters
of targets in forward scattering radar (FSR). The method is based on multiple matched filtration
of the signal with simultaneous time-frequency analysis, resulting in the precise estimation of the
motion parameters of a single object near the intersection of the baseline. However, a problem
may be the analysis of several objects that intersect the baseline at the same time. In addition, due to
multiple matched filtration and other processing operations, the complexity of the method is significant.
The same authors developed this approach and described it in Reference [10]. Another solution is to
use the Radon transformation to calculate the phase acceleration [11]. After transforming the signal
into a two-dimensional distribution in the TF domain, the components responsible for the Doppler
rate of objects are found. Analyzing the aforementioned papers, it can be noticed that the analysis in
the TF domain is the proper approach to the PFSR signal’s considerations. A waveform received by
the radar can be treated as a non-stationary frequency modulated signal. In the vicinity of fd ≈ 0 (Hz)
the signal can be approximated as a linear frequency modulated waveform. This methodology was
also presented in References [12–14]. This is due to the fact that the phase of the received signal can be
described by the dependency:

φ(t) = −2π

λ
[R1(t) + R2(t)− L] , (2)

which can be approximated using Taylor expansion into the following formula [15]:

φ(t) ≈ π

λ
vp

(
1

L − D
+

1
D

)
(t − t0)

2, (3)

where vp is the velocity component perpendicular to the baseline L, t0 is the moment when the
target crosses the baseline and D is the range from the receiver to the crossing point (see Figure 1).
As can be noted, Equation (3) describes the second order polynomial characteristic for the frequency
modulated signals.

The above considerations prompted the authors to use the CR estimation in the TF domain to
analyze signals from PFSR. This approach is based on short–time Fourier transform (STFT) modification
and allows the CR at each point in the TF plane to be determined. This is consistent with the assumption
that when the baseline and the trajectory of the object are crossed, the signal appearing in the
receiver can be approximated with the linear frequency modulated waveform, and this technique is
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dedicated for such a problem. In addition, the method is computationally efficient, which reduces the
calculation time.

This paper is organized as follows: Section 2 presents the CR estimation theory background,
including Cramer–Rao lower bound (CRLB) analysis. Section 3 depicts simulation results, and Section 4
covers real-life signal analysis provided by the GSM PFSR. Discussion and comments close the article.

2. Chirp Rate Estimation

2.1. Theory Background

The pioneer of CR estimation in the TF domain using the complex phase of STFT was Czarnecki,
who proposed a method for determining the instantaneous frequency rate a two-dimensional signal
distribution [16,17]. In general, the signal described by the following model will be considered:

x(t) = Axexp(jΦx(t)), (4)

for the amplitude Ax, j =
√
−1 and phase described as:

Φx(t) = φx + ωxt + 2π · αt2/2 = φx + 2πt ( f0 + αt/2) , (5)

where ωx = 2π f0 is the angular frequency with the carrier frequency f0, and α is the CR. x(t) can be
transformed into a two-dimensional distribution using STFT, which is given by the formula:

Fh
x (t, ω) =

∫
R

x(τ)∗h(t − τ)e−jωτdτ, (6)

where (·)∗ is the complex conjugate, and the upper index in the Fh
x expression denotes the

analysis window h(t) whereas the lower index expressed the signal under consideration x(t).
Energy distribution in the TF domain can be calculated as a squared absolute value of the STFT
and is called a spectrogram:

Sh
x(t, ω) =

∣∣∣Fh
x (t, ω)

∣∣∣2 , (7)

where | · | denotes the absolute value operator. STFT can be presented using the concept of a complex
phase in the thought of dependency [16]:

Fh
x (t, ω) =

∫
R

x(τ)∗h(t − τ)e−jωτdτ = Ah
x(t, ω)ejφh

x(t,ω) = eΛh
x(t,ω)+jφh

x(t,ω), (8)

where STFT phase is described as φh
x(t, ω), whereas Ah

x(t, ω) denotes STFT absolute value
(Ah

x(t, ω) > 0). By using the property described in Reference [18], the STFT phase in Equation (8) was
transformed into a complex form in which Λh

x(t, ω) = ln(Ah
x(t, ω)) then the complex phase of the

STFT is defined as:
Ψh

x(t, ω) = ln
(

Fh
x (t, ω)

)
= Λh

x(t, ω) + jφh
x(t, ω). (9)

such a transformation allows many useful signal parameters in the TF domain to be determined.
By calculating the partial derivatives of the real part of the complex phase with respect to time and
frequency, the instantaneous bandwidth and the local group delay are obtained respectively. The ratio
of these values gives the CR estimator in the manner described as follows:

K(t, ω) = −
(

∂Λh
x(t, ω)

∂t

/∂Λh
x(t, ω)

∂ω

)
. (10)

The graphic interpretation of the estimator is presented in Figure 2.

311



Sensors 2019, 19, 3627

In Reference [19] it was proposed that the K estimator can be calculated more efficiently utilizing
the modified analysis window. Additionally, two new estimators were revealed. The uncertainty
effect occurring in the K estimator has been reduced by the differentiation of the numerator and the
denominator with respect to time (giving the D estimator) and frequency (giving the F estimator)
giving the following relationships:

D(t, ω) = −
(

∂2Λh
x(t, ω)

∂t2

/∂2Λh
x(t, ω)

∂ω∂t

)
, (11)

F(t, ω) = −
(

∂2Λh
x(t, ω)

∂ω∂t

/∂2Λh
x(t, ω)

∂ω2

)
. (12)

This method was tested using different types of signals and is described in the literature.
Acoustic signals were processed using this method, which can be found in References [17,20].
Radar applications utilizing this approach are presented in References [21–23]. In this paper, the PFSR
application is proposed in order to verify the possibility af assessing the motion parameters of a target.
Because the estimators given by Equations (10)–(12) are actually equivalent, further considerations
are made using one of them to present the correctness of the concept. This is an example of using the
idea in PFSR applications, and each of the estimators should give similar results. The comparison
of estimators as well as their limitations and computational complexity have been made in the
literature [19,21]. Due to the smaller variance in comparison to the estimator K (see Section 2.2) and
the lower sensitivity to noise (see Reference [21]), the authors decided to perform the tests using the
estimator F; however, the estimators K and D can be used in the same way.

Figure 2. CR estimation in the TF domain—an interpretation.

2.2. Analysis of the Estimation Accuracy

The accuracy of the estimators has been compared in this section to the CRLB for the considered
signal model. The analyzed complex chirp signal is given by:

x[n] = Ax exp
(

jα
n2

2

)
, (13)

where Ax = 1, n ∈ [0, N − 1]. This signal is merged in a white Gaussian noise w[n] with a variance σ2
w.

Thus, the observation vector x = [x[0], x[1], ..., x[N − 2], x[N − 1]]T is normally distributed:

x ∼ N (μ(α), C(α)), (14)
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where

μ(α) = x =

[
Ax, Ax exp

(
jα

12

2

)
, Ax exp

(
jα

22

2

)
, ..., Ax exp

(
jα
(N − 1)2

2

)]T

, (15)

and C(α) is a covariance matrix of observation vector whereas (·)T is the matrix transpose. For such
a Gaussian observation model depending on the scalar parameter, α the Fisher information matrix
(FIM) is a 1 by 1 matrix (scalar) given by [24]:

I(α) = 2�
([

∂μ(α)

∂α

]H
C−1(α)

[
∂μ(α)

∂α

])
+

1
2
T

[(
C−1(α)

∂C(α)

∂α

)2
]

, (16)

where (·)H is the Hermitian transpose and T denotes the matrix trace and � expresses a real part.
Since, the additive noise w[n] is white, the covariance matrix C(α) equals σ2

w I and does not depend on
the parameter α. Thus ∂C(α)

∂α = 0 and the second term in Equation (15) vanishes. Moreover, C−1 (α) =
1

σ2
w

I. The FIM now takes the following form:

I (α) = 2�
(

1
σ2

w

[
∂μ (α)

∂α

]H [∂μ (α)

∂α

])
. (17)

According to Equation (15) it can be written as:

I (α) = 2�

⎛⎝ 1
σ2

w

N−1

∑
n=0

⎛⎝ ∂

∂α
Axe

(
−jαn2

2

)⎞⎠⎛⎝ ∂

∂α
Axe

(
jαn2

2

)⎞⎠⎞⎠ =

= 2� A2
x

σ2
w

⎛⎝N−1

∑
n=0

e

(
−jαn2

2

) (
−j

n2

2

)
e

(
jαn2

2

) (
j
n2

2

)⎞⎠ =
A2

x

2σ2
w

N−1

∑
n=0

n4.

(18)

Finally, the CRLB for the estimator variance is given by:

σ2 (α̂) ≥ [I (α)]−1 =
2σ2

w

A2
x ∑N−1

n=0 n4
. (19)

In reference to the article describing the estimators used [19], the accuracy of the estimate was
investigated and compared to the presented CRLB given by Equation (19). The linear complex chirp
was considered. The signal model given by Equation (13) has the following parameters: N = 250,
α = 2π 0.36

N . In 1000 realizations of noise in the range from −20 to 30 dB, the CR value was estimated
and verified at point n0 on the reference frequency fref =

αref
2π n0, where αref = 0.009. Results for the

estimators K, D and F are presented in Figure 3.

Figure 3. Comparison of the accuracy of the utilized estimators.
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As can be seen, for signals with signal–noise ratio (SNR) ≥ 0 dB the D and F estimator give very
similar results. The signals from this range will be considered later in the paper, so choosing one of the
two more accurate tools was right. Additionally, according to the authors’ experience, this estimator
is less sensitive to the changes of the analysis window width. Because of the uncertainty problem
in the K estimator, the CR was verified in the vicinity of the fref. For this reason, the variance of this
tool is clearly greater than in the case of the other two estimators. Although all of the tools used are
characterized by an error in relation to the CRLB, it should be kept in mind that for SNR ≥ 0 dB the
variance of the D and F estimators is satisfactorily low, and in many practical cases is sufficient to
estimate CR.

3. Results of the Simulation

In order to verify the proposed method simulations were carried out. Two radar scenes were
considered in which one or two targets crossed the baseline. The first of the analyzed cases covers the
situation presented in Figure 4.

Figure 4. Radar scene for the 1st simulation case.

The continuous wave (CW) transmitter working with the harmonic signal using the carrier
frequency fc = 900 MHz is 1500 m away from the target trajectory (at the closest point) which, in turn,
is 500 m from the receiver. The point target (dimension is neglected) moves with the velocity v = 10 m

s
perpendicularly to the baseline. The TF distribution of the signal energy in the form of a spectrogram
is presented in Figure 5. The signal was merged with the white Gaussian noise, for which SNR = 30 dB.
This was due to the fact that in the further part of the article covering the real-life signal analysis,
waveforms characterized by SNR > 0 dB are considered, and on such conditions the simulations were
focused. STFT parameters during the simulations are as follows:

• N = 1024—amount of points in FFT analysis,
• W = 350—Blackman-Harris window length (in samples),
• H = 1—hop-size (in samples),
• fs = 1 kHz—sampling rate.

Figure 5. Spectrogram of the 1st simulation case.
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The spectrogram shows a characteristic curve, typical for a bistatic geometry utilizing the forward
scattering phenomenon. The received signal is defined only by the Doppler frequency (due to the
fact that the transmitter works with the CW) expressed by Equation (1), the consequence of which is
the frequency modulation of the wave. The Doppler rate, in this case, can be considered as the CR
described in the previous section and the physical interpretation of both is the same. Thus, the proposed
CR estimation methods were employed to verify their usability in such a context. A calculated
accelerogram presenting instantaneous CR for each point in the TF plane is depicted in Figure 6.

Figure 6. Accelerogram of the 1st simulation case.

By analyzing this distribution, it can be noted that during the crossing of the baseline the target
provided a Doppler rate of ∼−1.5 m

s . Additionally, the Doppler rate can be determined for each point
for the observation time. This is an advantage of the proposed approach due to the fact that the
estimation process automatically provides a set of information about the movement parameters of
the target, allowing an unknown trajectory or velocity to be assessed. In comparison to the methods
presented in the literature, unique movement signatures are provided by this approach, which allows
additional information about the object to be distinguished.

For the purpose of validation, the theoretical Doppler rate, as the first order derivative of the fd
given by Equation (1), was compared with the estimated value. This value was read in the maximum
point of the spectrogram in each time frame. Because of the amplitude modulation, the estimated value
in the minimum of the envelope is distorted, thus additionally results for the constant signal amplitude
were plotted. A comparison of the true value and estimated CR for both cases (amplitude modulation
and no amplitude modulation) is presented in Figure 7.

Figure 7. Comparison of the true Doppler rate and estimated CR for two amplitude cases.

As can be noticed, the estimated Doppler rate (CR) for the constant amplitude signal is similar
to the theoretical value. In Figure 7 the blue line overlapped completely with the yellow line,
which confirms the convergence of the results of the estimation with the theory. However, because of
the fact that the signal has an amplitude locally near or equal to zero, the estimation process returns
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distorted results (see the red line in Figure 7). This is caused by the character of the signal, not by the
error of the estimation, which can be seen in the case where the amplitude is constant. In the simulation,
the maximum value of the spectrogram in each time portion was extracted, so moments in which
signal amplitude is near to zero, the maximum energy value was found in the noise, which caused
significant errors.

In order to present the advantages of the proposed method, an extended scenario of the simulation
was carried out. In this situation two objects are considered, however, one of them approaches the
baseline from a different angle in comparison to the first one, and with slightly higher velocity.
The simulation parameters are presented in Figure 8.

Figure 8. Radar scene for the 2nd simulation case.

A spectrogram presenting the energy distribution of the reflected signal from the two targets is
depicted in Figure 9. The additional target introduces a second curve with a different Doppler rate
depending on the velocity and trajectory. Thus, based on the previous results it should be possible
to differentiate considered targets on the accelerogram because of the individual Doppler rate seen
during the time of analysis.

In the simulated case, it was assumed that both targets cross the baseline approximately the same
time in order to verify the possibility of extracting particular targets in PFSR geometry. An accelerogram
of the simulated data is presented in Figures 9 and 10.

Figure 9. Spectrogram of the 2nd simulation case.

Figure 10. Accelerogram of the 2nd simulation case.
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Based on the simulation carried out it was proved that CR estimation may be an effective technique,
allowing additional information in PFSR to be extracted. Even if the Doppler rate in the vicinity of
t = 0 (s) is similar for both targets, the Doppler rate history from the entire observation time provides
additional information about the trajectory of the objects. Such data can be used as an extension for
PFSR systems. In the next section, the method is tested using real-life data to verify the adaptability
and usability of the proposed approach.

4. Real-Life Signal Analysis

4.1. Measurement Campaign

The experimental data were gathered during a measurement campaign using a GSM-based
passive radar for monitoring ground moving objects. The source of the illuminating signal was a GSM
base transceiver station with an antenna mounted at the height of approximately 50 m. During the
trials, a cooperating vehicle was used as an observed target moving with the velocity v ≈ 10 m

s [25].
Measurements were carried out a few times under similar conditions. This was done to confirm
the repeatability of results in comparable scenarios, and to verify the possibility of distinguishing
characteristic features in the movement.

The location of the radar’s surveillance antenna and trajectory of the target were selected in
order to ensure that the forward scattering effect of the vehicle occurred at the observation spot.
The surveillance antenna was mounted 1.5 m above the ground and was located approximately 1.5 km
from the transmitter. The cooperating car crossed the baseline between the transmitter and the receiver
within approximately 1 km of the transmitter.

The reference signal was acquired at the same location as where the measurement was performed.
In order to reduce the influence of the target echo in the reference channel, an antenna with vertical
beamwidth of approximately 25 degrees was mounted on a 12 m mast and tilted upwards.

The measurement equipment consisted of commercial-off-the shelf components, with a two
channel receiver based on the National Instruments PXIe-5667 vector signal analyzer, low noise
amplifiers and band-pass filters for the GSM900 band (925–960 MHz) connected after the antennas
of both the surveillance and reference channels. The measurement scene utilized during the trials
is presented in Figure 11, and the general measurement geometry diagram is depicted in Figure 12.
More details about the measurement campaign and the signal processing chain are available in
Reference [25].

Tx

Rx
1500 m 430 m

Figure 11. Measurement scene. In white—Range from the GSM transmitter to the receiver,
in red—range from the receiver to the intersection point, in blue—the target trajectory.
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Tx

Rxr

Rxs main
shadow lobe

Figure 12. Measurement geometry diagram. Tx—GSM transmitter of opportunity, Rxr—the reference
antenna, Rxs—the surveillance antenna.

4.2. Target Doppler Rate Estimation

The obtained data were examined with one of the analyzed estimators in order to verify whether
the proposed tool is effective in analyzing real-life signals from PFSR. The recorded waveform was
processed using the cross-correlation of the reference and reflected from the target signal. As with
the simulation, the object’s dimensions can be neglected. This is due to the fact that the available
GSM signal bandwidth is ∼200 kHz, giving a bistatic range resolution of ∼1500 m. Four cases were
considered during which the object examined crossed the baseline between the transmitter and the
receiver. During the real-life signal analysis, the following parameters were employed:

• N = 4096—amount of points in FFT analysis,
• W = 1300—Blackman-Harris window length (in samples),
• H = 1—hop-size (in samples),
• fs = 1 kHz—sampling rate (after decimation).

The spectrograms of the analyzed cases are presented in Figure 13.

(a) Spectrogram of the 1st case. (b) Spectrogram of the 2nd case.

(c) Spectrogram of the 3rd case. (d) Spectrogram of the 4th case.
Figure 13. Spectrograms of all considered cases.

Apart from the signal that is caused by the analyzed phenomenon, that is the signal with frequency
modulation, additional components are visible on the spectrograms. They arise for several reasons.
The first of these is the presence of a significant number of stationary objects in the radar beam.
A strong echo from the surface of the earth, trees or buildings creates a strong permanent component
at f ≈ 0 (Hz), the impact of which can be reduced, as described in Reference [25], for example.
The second effect is visible as numerous components with a much higher modulation coefficient.
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However, these are only visible for a short time. This phenomenon, in turn, arises as a result of the
presence of side lobes, which cause the receiving of a signal reflected from a moving object as well
as from other objects in space. In addition, there was a highway near the measuring scene, and the
cars moving on it are visible in the spectrograms. However, it is possible to distinguish a significant
component, which is the echo coming from the analyzed object.

For such obtained data, accelerograms, that is a local (instantaneous) CR distribution on the TF
plane, were determined. The results for the analyzed cases are shown in Figure 14.

(a) Accelerogram of the 1st case. (b) Accelerogram of the 2nd case.

(c) Accelerogram of the 3rd case. (d) Accelerogram of the 4th case.
Figure 14. Accelerograms of all considered cases.

As can be noticed, similar results were obtained for four measurements which confirmed the
repeatability of the results. Although the most significant portion of the signal energy is at the moment
of changing the frequency sign (around 0 Hz), it is possible, as in the case of the simulation, to determine
the CR for the entire recorded segment. Such information can be extremely useful when determining
the trajectory or kinematic parameters of the target. In the case of the previously mentioned
solutions [9–15], only the Doppler rate was determined at the moment when the baseline is crossed.
The proposed method therefore extends the spectrum of possibilities, allowing more information
to be extracted. For all cases the estimated CR value at the time of t0 is CR∈ [−0.3,−0.5] (Hz/s),
which agrees with the actual value. For example in the first case shown in Figures 13a and 14a,
it can be observed that the frequency is reduced by less than 30 Hz within 60 s, which gives an
estimated value. In fact, it is difficult to reproduce the vehicle’s motion perfectly a few times,
which resulted in temporary changes in the signal. It can be observed by comparing the 1st and
2nd cases (corresponding spectrograms Figure 13a,b and accelerograms Figure 14a,b) with 3rd and 4th
(corresponding spectrograms Figure 13c,d and accelerograms Figure 14c,d). For the first two cases
the car maintains a constant velocity, while for the other two cases the velocity is not retained in the
second phase of the move. For the third case it is noticeable that the car moves slowly, which results in
a decrease in the chirp rate (absolute) value. In the fourth case, the acceleration of the car is noticeable,
which was also observed. In this situation, the accelerogram presents more rapid changes in the range
of −0.5∼−0.8 Hz

s in the final part of the observed movement. The presented results confirmed the
correctness of the proposed method in the estimation of the object motion parameters observed by the
PFSR radar, as well as extraction characteristic features of the object movement. The tested algorithms
can help and/or speed up the estimation of the object’s parameters, which is especially important due
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to the fact that information about the distance of the object is lost in the PFSR radar. In this situation,
any additional information about the object may be useful.

5. Conclusions

The article has presented a novel approach to the analysis of signals occurring in radars using
the forward scattering phenomenon. Based on the concept of the complex STFT phase and the CR
estimators known from the literature, the signals from the PFSR radar have been analyzed. In the first
part, using a mathematical model, the possibility of applying the proposed method has been tested
using simulated signals. A situation has been considered in which one object and two objects with
different kinematic parameters intersect the baseline. Simulations have confirmed the applicability of
the method, after which the method was verified using real-life data. The role of the illuminator of
opportunity has been fulfilled by the GSM transmitter and the transmitter-receiver line was crossed
by the car. The analysis allowed the Doppler rate to be determined in the real scenario. In addition,
the method gives the Doppler rate estimation, which had not yet been available, not only at the time of
the baseline intersection, but also for the entire observed trajectory. A valuable property is the ability
to extract temporary changes in velocity, which increases the amount of information describing the
observed object.

The accuracy of the considered tools has been verified by statistical analysis and the comparison
of results to the CRLB, which mainly showed the differences between the estimators as well as the
expected accuracy. In the future, the authors want to verify the accuracy of the estimators for a different
analysis window length. This is an important parameter due to the fact that in the classical STFT the
length of the analysis window affects the estimation variance and bias, and because the tools used are
based on STFT, the bias and the variance are also related to the analysis window’s length.

A promising point of further work is the extension of the method with the possibility of classifying
objects and estimating the targets tracks. Based on the Doppler rate, not only at the intersection of
the baseline but also in the wider observation period, it is possible to classify objects. This can be
particularly important in security systems, where the detection of fast and maneuvering missiles is
difficult for both active and passive radars. The use of the proposed approach for a transmitter located
on the ground and a receiver on the ground or in orbit would allow for detection and classification of
dangerous rockets and flying objects.
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Abstract: This paper presents the application of the time-frequency (TF) reassignment technique
in passive forward scattering radar (FSR) using Digital Video Broadcasting – Terrestrial (DVB-T)
transmitters of opportunity operating in the Very High Frequency (VHF) band. The validation of
the proposed technique was done using real-life signals collected by the passive radar demonstrator
during a measurement campaign. The scenario was chosen to test detection ranges and the capability
of estimating the kinematic parameters of a cooperative airborne target in passive FSR geometry.
Additionally, in the experiment the possibility of utilizing FSR geometry in foliage penetration
conditions taking advantage of the VHF band of a DVB-T illuminator of opportunity was tested.
The results presented in this paper show that the concentrated (reassigned) energy distribution of the
signal in the TF domain allows a more precise target Doppler rate to be estimated using the Hough
transform.

Keywords: passive forward scattering radar; forward scattering radar; passive radar; radar
measurements; time-frequency analysis; time-frequency reassignment

1. Introduction

Over the past decades, passive radars have evolved significantly [1–3], which can be seen in
numerous demonstrations and works devoted to this topic [4–8]. This has resulted from the advantages
of passive radars and the possibility to detect targets which do not have their own emission. In fact,
issues related to passive radars are generally widely described in the literature, however, there are still
problems that require a specific approach.

The main problem in Passive Coherent Location (PCL) radar technology is that using classical
passive radar processing for air target detection [9] does not allow one to detect and localize the target
in the direction of the illuminator of opportunity, therefore the radar is “blind” at this particular
angle and additionally the target is in the first range cell, which provides unclear detection results.
This direction is reserved for the collection of the reference signal, which is used for cross-correlation
with signals collected from other receiver channels whose measurement antennas are pointed in other
surveillance directions where a target echo is suspected to be received. However, this paper deals with
the methodology which allows kinematic parameters of the object to be distinguished even if the range
information is lost. Various answers to the problem of passive radar direct path “blindness” can be
found in numerous literature positions [10–15].

A possible solution to this issue may be the employment of reference signal
reconstruction [10]. However, this technique only works for digital signals and with sufficient signal-
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to-noise ratio (SNR) values. Using a beamforming technique to reduce direct signal leakage to
surveillance channels [11,12] can also be employed. Aubry et al. [13], used a Constrained Least Squares
two-dimensional localization algorithm. Its performance, expressed in terms of Root Mean Square
Error (RMSE), is even comparable to square root of the Cramer Rao Lower Bound (CRLB) for some
of the simulation scenarios presented. A significant disadvantage of this algorithm is a necessity of
employment multiple transmitters of opportunity. A different solution to the localization issue can be
found in Aubry et al. [14]. Joint target location is based on a PCL and Time Difference of Arrival
(TDOA) measurement techniques. However, the TDOA method requires multiple dislocated radar
receivers. Another study on the target location accuracy in multistatic scenario is presented by
Anastasio et al. [15].

The other solution for this problem, utilizing a single receiver and single transmitter of opportunity
only, might be to additionally use FSR methods in the PCL processing chain. The use of FSR geometry
allows passive radar to detect and estimate main movement parameters such as target velocity
for the targets crossing the Tx–Rx baseline [16,17]. In such a case, data from the FSR module applied
in PCL radars might be used as additional information for the radar tracker, and consequently
the detection and velocity estimation from the FSR module to the tracker working in the bistatic
range-Doppler plane. Such a method will significantly improve the detection and tracking performance
in PCL processing. This fact led the authors to study in more detail the possibility of applying FSR
geometry in passive radar, and test novel methods for target Doppler frequency rate estimation which
might be applied in PCL processing. An additional motivation was using low-frequency DVB-T sources
of illumination in passive radars and their ability to perform foliage penetration. The VHF DVB-T
operates in the band of 174–230 MHz [18]. As these are relatively low frequencies, they penetrate the
foliage well. The authors did one experiment where a VHF DVB-T based passive radar was deployed
in a forest on a low mast around 3 m in height, which was much lower than the surrounding trees,
and successfully detected the air targets. The results have been described by Plotka et al. [19]. These
valuable results also motivated the authors to check how efficiently the VHF DVB-T illuminator of
opportunity would be used in FSR geometry, where the reference signal is also received through
the transmitter.

This paper has the following structure: Section 2 presents the passive FSR geometry principle
that is considered in this work. Section 3 covers the description of the proposed method for the target
Doppler rate estimation. In Section 4, the measurement campaign and the numerical results using the
real-life signals are depicted. The paper is closed by comments and conclusions.

2. Passive FSR Geometry

The forward scattering phenomenon [16,17] is schematically depicted in Figure 1.

Figure 1. A typical passive forward scattering radar (FSR) geometry. Tx—transmitter, Rx—receiver,
TGT—target, L—baseline, R1—range from the transmitter to the target, R2—range from the receiver to
the target, D—range from the receiver to the crossing point, β—bistatic angle, α—angle between the
bistatic bisector and the velocity vector.
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In bistatic radars using an electromagnetic wave of a length λ, the Doppler shift fd produced by
the target moving at the velocity V can be expressed as

fd =
2V
λ

cos (α) cos (β/2) , (1)

where β is the bistatic angle and α is the angle between the bistatic bisector and the movement vector
(see Figure 1). For such a spatial configuration where the target crosses the baseline (when the range
information is lost and the Doppler frequency tends to 0 Hz) β ≈ 180◦, thus fd ≈ 0 Hz, however,
the target can be observed in a range β ∈ (180◦ − Δ, 180◦ + Δ), where Δ is a small angle, which delivers
more information about the target trajectory. In the vicinity of fd ≈ 0 Hz the signal impinging the
receiving antenna can be defined as [20]

φ(t) =
2π

λ
[R1(t) + R2(t)− L] . (2)

Assuming that the target moves along a linear trajectory at a constant velocity v and the velocity
vector (composed of vx and vy components corresponding respectively to the x- and y-axis) creates

an angle with respect to the x-axis that is normal to the baseline α = tan−1
(

vy
vx

)
. If the target crosses

the baseline at the point D from the receiver (see Figure 1) then x(t) = vxt and y(t) = D + vyt which
leads to

R1(t) =
√

x(t)2 + (L − y(t))2 (3)

and
R2(t) =

√
x(t)2 + y(t)2. (4)

Apart from the Doppler history, the target forward radar cross section (FRCS) has a contribution to
the signal reaching the receiver in the passive FSR system. Namely, a rectangular target of horizontal
lh and vertical lv dimension such that lh >> λ and lv >> λ, is given by [21]

σ(t) =
L2

R1(t)R2(t)
cos (θT(t)− α) + cos (θR(t) + α)

2
Π
(

lh
λ
(sin (θT(t)− α) + sin (θR(t) + α))

)
(5)

where the target aspect angle with respect to transmitter is θT = tan−1
(

x(t)
L−y(t)

)
and with respect to

receiver is θR = tan−1
(

x(t)
y(t)

)
and Π is the function such that Π(x) = sin(x)

x . Then, the signal impinging
the FSR receiving antenna can be written as

s(t) = −σ(t) sin (φ(t)) . (6)

Approximating Equation (6) by the third order Taylor polynomial around the crossing point t = t0,
Equation (2) becomes

φ(t) ≈ πε(t − t0)
2 + πζ(t − t0)

3, (7)

where

ε =
v2

x
λ

[
1

L − D
+

1
D

]
, (8)

and

ζ =
v2

xvy

λ

[
1

(L − D)2 +
1

D2

]
, (9)

and the latter equation goes to 0 for vy = 0 or D = L/2. Finally, the signal phase can be approximated
as follows

φ(t) ≈ π

λ
vx

(
1

L − D
+

1
D

)
(t − t0)

2, (10)
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where vx denotes the velocity component which is perpendicular to the baseline L, D expresses
the range from the receiver to the crossing point, and t0 is the particular moment the target crosses
the baseline. In fact, Equation (10) can be considered as a quadratic phase function resulting in the
linear frequency-modulated signal. The modulation factor (also known as a chirp rate, frequency rate,
frequency slope, etc.) is valuable information describing the target in the situation when the range
measurement is ambiguous, which is the case in passive FSR. Thus, any additional characterization
of the target movement is significant in this case. In the literature, different approaches are proposed
in order to estimate motion parameters, such as spectrogram analysis [22], chirp rate estimation in
the time-frequency (TF) domain [23], or the Radon transform [20]. This paper refers to the latter
example, and the authors of this work proposed the method known from the literature to improve
the resolution of the TF distribution using the TF reassignment technique in order to distinguish
the kinematic parameter of the cooperative target using the Hough transform, which can be interpreted
as a discrete realization of the Radon transform [24,25]. The obtained outcomes are compared to
existing methodology [20,26–29], and the improvement in the estimation precision is shown.

3. Target Doppler Rate Estimation

Typically, the signal received by the passive FSR antenna after initial processing is presented in
the TF domain as a quasi-linear frequency-modulated waveform in accordance to Equation (10). Next,
by using the Radon transform the Doppler rate is estimated at the crossing point which determines the
kinematic parameters of the target [20,26,28,29]. As shown by Toft et al. [24,25], the Hough transform
can be used equivalently as a discrete realization of the Radon method, which may be used for the
estimation of the frequency slope of the signal in the TF domain. This approach is very fast and can
be implemented in real-life systems, however, some details have to be taken into account. Namely,
classical TF representations suffer from the limited resolution resulting from the Heisenberg–Gabor
uncertainty principle [30], which spoils the estimation accuracy in this case. Especially when the
SNR is low or when several objects cross the baseline at the same time, the method proposed by
Ustalli et al. may require additional processing steps. Widely speaking, in many practical applications
the short-time Fourier transform (STFT) based approach may be insufficient due to the finite resolution
of the TF plane. Additionally, the resolution is strongly dependent on the processing parameters,
such as window type, window width, overlap, etc. Even a high-SNR signal can be distributed
incorrectly over the TF plane if the processing parameters are badly conditioned. One of the popular
and widely applied methods for TF resolution enhancement is TF reassignment [30–33]. This method
can be implemented through the classical STFT-based method, as well as using a recursive version
presented by Fourer et al. [34]. The latter is particularly interesting due to the possibility of its efficient
implementation and the fast operation of the energy relocation (t, ω)  → (t̂, ω̂). As both the recursive
and fast Fourier transform (FFT)-based implementations are equivalent, the FFT-based method is used
in this paper as an example of the technique.

In general, the STFT of the signal x(t) can be computed as follows:

Fh
x (t, ω) =

∫
R

x(τ)h∗(t − τ)e−jωτdτ = Mh
x(t, ω)ejφh

x(t,ω), (11)

where j =
√
−1, (·)∗ is the complex conjugate, R denotes the set of real numbers, Mh

x(t, ω) is the
amplitude, and φh

x(t, ω) is the phase of the transform. The energy distribution, commonly called a
spectrogram, is defined as a squared absolute value of the STFT and is given by

Eh
x(t, ω) = |Fh

x (t, ω)|2, (12)

where | · | denotes the absolute value operator.
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Using the relationship defined by Hahn [35], Equation (11) can be transformed into a complex
phase as follows:

Φh
x(t, ω) = ln

(
Fh

x (t, ω)
)
= Λh

x(t, ω) + jφh
x(t, ω), (13)

where Λh
x(t, ω) = ln

(
Mh

x(t, ω)
)

. The concept of complex phase is widely used in the literature as
an effective tool for the estimation of signal parameters in the TF domain, which is also applied in
the considered approach. For TF reassignment, the relocation operators have to be estimated, which
correspond to vectors for both the time and frequency axes along which the energy has to be moved.
In the investigated approach, the reassignment operators may be estimated respectively [31]:

t̂(t, ω) = −�
(

∂Φh
x(t, ω)

∂ω

)
= t −�

(
∂Φh

x(t, ω)

∂ω

)
= t −�

(
FT h

x (t, ω)

Fh
x (t, ω)

)
, (14)

ω̂(t, ω) = ω +�
(

∂Φh
x(t, ω)

∂t

)
= ω +�

(
FDh

x (t, ω)

Fh
x (t, ω)

)
, (15)

where � is the real and � is the imaginary part. t̂(t, ω) denotes the relocation along the t-axis and
ω̂(t, ω) expresses the reassignment vector along the frequency axis. In contrast to another energy
concentration technique known from the literature, for example TF synchrosqueezing transform [32],
the reassignment method allows strong concentration to be obtained, however, this technique is
irreversible. In Equation (14), the expression T h = th(t) is a window multiplied by the linear time
ramp with a root in 0, and Dh in Equation (15) denotes the first order derivative of the analyzing
window Dh = dh(t)

dt . In fact, these operations can be interpreted as follows:

∂Fh
x (t, ω)

/
∂t =

∫
x(τ)

∂h∗(t − τ)e−jω(t−τ)

∂t
dτ = FDh

x (t, ω), (16)

as well as:

∂Fh
x (t, ω)

/
∂ω =

∫
x(t − τ)h∗(τ)

∂e−jωτ

∂ω
dτ = −

∫
x(t − τ)h∗(τ)jτe−jωτdτ = −jFT h

x (t, ω), (17)

which leads to:
∂ ln(Fh

x (t, ω))

∂t
=

∂Fh
x (t, ω)

∂t
1

Fh
x (t, ω)

=
FDh

x (t, ω)

Fh
x (t, ω)

(18)

and
∂ ln(Fh

x (t, ω))

∂ω
=

∂Fh
x (t, ω)

∂ω

1
Fh

x (t, ω)
= −j

FT h
x (t, ω)

Fh
x (t, ω)

(19)

which can be directly applied in Equations (14) and (15). This means that the reassignment operators
can be easily computed through the STFT method using the modified analyzing window, which
increases the utility of the method and reduces the computational effort. Equivalently, the method
may be implemented using a recursive filter bank, as described in [34].

Finally, the energy relocation using the reassignment method can be expressed as [31]

Rh
x(t, ω) =

∫∫
R2

|Fh
x (t, ω)|2δ(t − t̂(t, ω))δ(ω − ω̂(t, ω))dtdω, (20)

where δ(·) denotes the Dirac distribution. The distribution given by Equation (20) results in strongly
concentrated energy on the TF plane, with an enhanced readability and separated components. In fact,
the reassignment method usually does not relocate the maximum of the energy but only attracts the
surrounding distribution, hence the signal localization remains stable whilst the readability of the
transform is improved.
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The TF reassignment is a widely used technique in many applications, e.g., ultrasound signal
processing [36], audio signal analysis [37,38], or sonar applications [39]. However, despite the
high potential of this method, it is still not very popular in the radar community. Namely, in the
literature one can find results for the energy concentration in micro-Doppler signature analysis [40–42],
characterization of frequency shift keying (FSK) signals [43], improving the quality of inverse synthetic
aperture radar (ISAR) imaging [44] as well as in direction of arrival estimation [45] and Doppler
radar tomography imaging [46]. The novelty presented in this paper is to apply the TF reassignment
method and combine it with the Hough transform that aims to extract the Doppler rate of the target
with the improved accuracy comparing the classical method existing in the literature.

The valuable properties of the TF reassignment method prompted the authors to apply this
technique to analyze radar signals in a passive FSR application. The “energy gathering” properties
applied in such an application may improve the accuracy of the Doppler rate estimation in passive FSR
systems. This, in fact is the novelty proposed in this paper, since to the authors knowledge there is no
similar application that uses the TF reassignment method to improve the accuracy of the Doppler rate
estimate in passive FSR system. Additionally, the outcomes are compared to the classical approach
existing in the literature with particular emphasis on the usability in real-life data processing which
is investigated in the next section.

4. Numerical Experiments

4.1. Measurement Campaign

The measurements took place during the APART GAS 2019 (Active PAssive Radar Trials Ground
based, Airborne, Sea-borne) trials. The trials were described by Plotka et al. [19], nevertheless some details
of the measurement FSR scenario geometry will be examined here. The positions of the receiving station,
transmitter of opportunity, aircraft trajectory, and transmitter–receiver baselines are depicted in Figure 2.

(a) General case geometry

(b) Zoom on the baseline cross point

Figure 2. Scenario geometry: transmitter–receiver baseline (white line) cross point marked by a green
circle, aircraft trajectory in red.
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During the passive FSR measurements, the radar receiving station was placed in an open space,
on an airfield (see Figure 3). The location was chosen to also test FSR geometry in foliage penetration
conditions. The receiver was placed close to the forest line, where the trees were in the direction of the
transmitter of opportunity—see Figure 2b. The radar demonstrator was equipped with 6 antennas,
but only two of them were used in the presented FSR experiment. During the trials the signal from
both V- and H-polarized receiving antennas was gathered, however, due to the lack of significant
differences between the results only the selected pair of the receiving channels was analyzed. Hence,
in the further part of this paper the signal from V-polarized antennas mounted on a tripod mast at the
height of ca. 3 m above the ground is presented. The parameters of the employed transmitter of
opportunity are listed in Table 1.

Figure 3. Radar demonstrator during measurements.

Table 1. Main parameters of the transmitter of opportunity.

Name “Lębork Skórowo Nowe”

Distance to receiver 27.8 km

Location height 96 m a.m.s.l

Mast height 93 m

EIRP 10.4 kW

Frequency 184.5 MHz

Signal bandwidth 7 MHz

Polarization Vertical

During the measurements a cooperative target was used—a light Cessna aircraft (see Figure 4).
At the moment of crossing the transmitter–receiver baseline, the aircraft flight parameters
were as follows: the target altitude was 196 m above terrain level and velocity was 44 m/s. The distance
between receiver and target was 280 m, the distance between transmitter and target was 27.5 km,
and the distance between receiver and transmitter was 27.706 km.
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Figure 4. The cooperative aerial target.

The composition of the receiving station was as follows. Antennas: commercial-off-the-shelf
(COTS) 4-element Uda-Yagi, with directivity from 6 dBi to 8 dBi, operating in an upper VHF frequency
band (170 MHz up to 230 MHz). Analog front-end: COTS channel amplifier, operating in 87–230 MHz
frequency band, with 25 dB gain. Digital signal recorder (see Figure 5): Vector Signal Analyzer (VSA)
based on National Instruments PXIe components, with six independent input channels synchronized
coherently with GPS signal, operating in the frequency range 10 MHz–6.6 GHz with the maximum
bandwidth of 50 MHz. More detailed description, of the radar demonstrator hardware, has been
presented by Plotka et al. [19].

Figure 5. Digital multichannel signal recorder.

4.2. Results

Signals recorded by the passive radar demonstrator were processed with the passive FSR signal
processing chain as presented in Figure 6.
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Figure 6. Passive FSR signal processing scheme.

At first, signals from two channels (reference and surveillance) were selected for further
calculations. All further computations were performed on the signals’ blocks with a 200 ms integration
period (which resulted in a velocity resolution equal to 8.13 m/s). Next, a clutter filter was used for
removing the reference signal from the surveillance signal [9]. This operation normally significantly
reduces target echo power when reaching zero Doppler velocity. In order to limit the scale of this
phenomenon, clutter removal filter coefficients were fixed for the time when the target was crossing
the baseline [47]. An additional step of signal processing was the removal of direct current (DC) offset,
which was achieved by subtracting the mean value from the signal after clutter filtering. The last
step of the processing was a multi-stage decimation. According to the simulations carried out, the
expected Doppler frequency was not greater than 100 Hz. The input sampling rate of the recorded
signals was equal to 8 MHz, so the filtered signal might have been down-sampled a few thousand
times without losing valuable information. This step considerably reduced the number of unnecessary
subsequent calculations. It should be mentioned that the bistatic range resolution for the processed
signal is equal to 37.5 m (this is the size of the first range cell).

Next, the signal was transformed into the TF domain using Equation (11) giving the classical
signal distributions on the 2D TF plane, as shown in Figure 7. The Doppler history is clearly visible
for the entire trajectory, however, some interference related to multipath propagation and clutter
removal algorithm are apparent, especially at the point when the waveform changes the frequency
sign. Additionally, the clutter cannot be suppressed at this point due to the presence of the useful
signal that should not be filtered out.

(a) Signal distribution using the STFT (b) Zoom on the crossing point

Figure 7. The energy distributions of the measured signal obtained using the classical short-time
Fourier transform (STFT).
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The same signal was processed using the concept of energy concentration. The outcomes for this
approach are depicted in Figure 8, where the significant concentration was obtained. In such a case,
the component extraction and separation are obtainable even in the case of low SNR.

(a) Signal distribution using the reassigned STFT (b) Zoom on the crossing point

Figure 8. The energy distributions of the measured signal obtained using the concentrated STFT.

Both classical and reassigned distributions were obtained using an 8192-point FFT and
the Gaussian window of a standard deviation σ = 0.2. The shift of the window in consecutive
steps the processing was equal to 1 sample in order to provide precise signal representation. Then,
in accordance to the approach proposed by Ustalli et al. [20,26,28,29], the Hough transform was applied
to estimate the signal Doppler rate as a straight line on the TF plane composed by the Doppler history
of the signal near the zero-intersection point. The results are depicted in Figure 9.

(a) Signal distribution with the trajectory and estimated
Doppler rates

(b) Zoom on the crossing point

Figure 9. Results of the Hough transform obtained for the two methods investigated—the classical
and the reassigned STFT.

As can be observed, both the classical and the concentrated distributions allowed the Doppler
rate to be estimated. The selected sections of both distributions f ∈ (−20, 20) Hz, t ∈ (40, 60) s
containing the most important parts of the signal were processed using the Hough transform, which
gave results corresponding to the frequency slope at the interesting point. These values were estimated
as follows: fS = −3.6392 Hz

s for the classical STFT distribution and fR = −3.9873 Hz
s for the reassigned

spectrogram.
Both estimated lines coincide with the Doppler history, and the visual analysis of them does

not give an answer as to which of them is more precise. Thus, in order to verify the correctness
of the estimate, an additional line was created. The Hough transform was applied on the curve
fragment derived from GPS data (see the green line in Figure 9), allowing the precise Doppler
rate to be assessed. Next, the error between the reference (GPS data) and two estimated lines was
computed. However, due to the limited precision of the DVB-T transmitter localization, as well as
the smoothing of the GPS-based trajectory, the actual crossing point is mismatched. The additional
sources of mismatch error may be connected with the GPS logger. This device’s coordinates estimation
accuracy is limited, and as well as its own location inside the aircraft also mattered. An another point
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which had an impact on the accuracy is the information about the transmitter (Tx) position. For the
analysis, the authors took the Tx position from an open database and validated the Tx coordinates using
Google Maps. However, the accuracy of the Tx position is also often given with a precision of several
meters, which might have had an impact on the presented results. Therefore, an additional simulation
was performed in which the geometry was appropriately modified by changing the transmitter position
that aims to reduce this fault. After these modifications the error was eliminated, and the results
for both the initial and modified trajectories are depicted in Figure 10. The plots show the absolute
value of the estimation error δ.

(a) Error of the Doppler rate estimation
(b) Error of the Doppler rate estimation after geometry
correction

Figure 10. Absolute value of estimated errors of the Doppler rate estimation—initial error and
after correction.

The proposed method allowing signal concentration in the TF to be obtained improved
the precision of the Doppler rate estimation. As can be observed, the error was reduced for both
parameters: the Doppler rate, and for the time when the target crossed the baseline. This result
indicates the effectiveness of the proposed approach.

For the Hough transform, the computational complexity increases at a rate of O
(

Am−2) where
A denotes the size of the image space and m corresponds to the number of parameters applied in
the processing pipeline. In the proposed method, the Hough transform is the same as in the classical
approach with STFT. Therefore, the only difference results from the signal processing associated with
the reassignment operation. For this reason, only the STFT and the reassigned STFT computational
complexity are compared in Table 2 [40].

Table 2. Computational complexity for the STFT and the reassigned STFT in the O notation.
N—amount of points in the FFT analysis, K = �M/H�—amount of time instants for which the FFT
has to be applied for M—signal length in samples, and H—window shift in samples.

STFT Reassigned STFT

Computational complexity O (KN log2(N)) 3 · O (KN log2(N))

The increase in computational complexity in the concentrated spectrogram technique results from
the fact that 3 distributions are necessary to be implemented in accordance to Equation (20). Namely, the
first distribution is the classical STFT with the original window according to Equation (11). The second
one corresponds to Equation (16), and the last one to Equation (17). Hence, the precision of the Doppler
rate can be improved at the expense of computational complexity. In fact, the processing time may
be reduced through the manipulation of the processing parameters. For the purpose of this paper,
the number of frequency bins and the window shift were assumed with some redundancy for high
resolution of distributions. In practice, these parameters can be reduced to ensure fast processing.
For the parameters defined above, the computation time for the spectrogram (tS) and the reassigned
spectrogram (tR) was respectively tS = 0.42 s and tR = 1641.09 s, but for 1024 points of the FFT this
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time was reduced to tS = 0.17 s and tR = 90.73 s. For the purposes of calculations, a computer with
an Intel i7-7700HQ 2.8 GHz processor, 16 GB DDR4 RAM, an SSD hard drive, and a 64-bit Windows
10 system was used. The calculations were performed in the Matlab environment. Consequently, by
reducing the distribution quality and for the window shift H = 2, the processing time was additionally
decreased to tS = 0.06 s and tR = 29.62 s with nearly the same readability of the distribution. This
analysis shows how the processing time may be easily manipulated and reduced with almost conserved
resolution, allowing enhanced estimation of the motion parameters to be performed.

5. Discussion and Conclusions

In this paper, the concept of applying the reassignment technique in passive FSR applications
has been proposed. The main purpose of using this method was to enhance the readability of the
energy distribution in the TF domain, which improved the result of the Hough transform and finally
the precision of the Doppler rate estimation in the passive FSR system. In the considered case, the
passive FSR system used a DVB-T VHF signal as a source of illumination, and the cooperating target
(Cessna aircraft) crossed the baseline between the signal transmitter and the passive radar demonstrator.
The investigation showed that the low-frequency illuminating signal allows detection in the specific
geometry to be carried out and, additionally, by using the concept of energy concentration the signal
processing pipeline may be improved. Such an improved energy representation can be utilized in
further processing for different purposes, such as the estimation of the maneuvering target trajectory for
the passive FSR configuration where the range information is ambiguous and the only data describing
the target is its Doppler rate related to the velocity and the trajectory. The concept of using passive
FSR systems may be implemented in various real-life systems known from the literature as well as in
completely new applications. The authors consider realization of the technique in such applications:

• Border surveillance—the system may prevent to illegal transport and emigration outside the
border crossing. In such a case, the illuminator of opportunity can be located both, in the same
region as the receiver and in a foreign terrain which expands the possibility of the systems.
In addition, passive FSR with other radars with rotating antenna as a source of illumination can
be used in such scenario to detect and localize slow moving targets, which can be an extension of
work described by Raja Abdullah et al. [48], where a cooperative transmitter was employed as an
illuminator of opportunity.

• Debris detection—a passive FSR system can detect and estimate movement parameters of debris
which may be of particular importance for space applications. In that case, the baseline can be
established between a stationary receiver and the transmitter in the orbit working with one of the
popular radiocommunication systems (Starlink, GPS, etc.). Such configuration may allow fast
and precise debris detection in order to prevent other satellites destruction [49,50].

• Airport runway—the problem of airport runway security arises simultaneously with technology
related to drones production and development. The passive FSR system may be deployed at the
airport and detect non-cooperating objects appearing in the flight path of the aircraft. The system
can be particularly useful for facilities not equipped with a transponder. In order not to employ
another signal transmitter, an Airport Surveillance Radar with a rotating antenna may be used,
which is routinely available at most airports [48].

• Ground aerial monitoring—where traffic is prohibited or where the velocity is strictly limited
the passive FSR system and especially the algorithm proposed in this paper may be useful. The
Doppler rate estimate may be an efficient solution for regions in which the velocity of cars has to
be restricted and precisely monitored.

• Intruder detection—another application of the system in question is its usage in security systems
for restricted areas, e.g., military or governmental areas. Implementation of the passive radar
receiver in such a terrain when surrounding commercial transmitters (e.g., DVB-T) may improve
detection capabilities and increase security.
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In the future, the authors intend to work on the above applications and their implementation in
passive FSR systems. An additional perspective is to investigate the possibility of applying real-time
processing for the methods presented in this paper.
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Abstract: Ground-penetrating radar (GPR) is an effective tool for subsurface detection. Due to
the influence of the environment and equipment, the echoes of GPR contain significant noise.
In order to suppress noise for GPR data, a method based on singular value decomposition (SVD)
of a window-length-optimized Hankel matrix is proposed in this paper. First, SVD is applied to
decompose the Hankel matrix of the original data, and the fourth root of the fourth central moment
of singular values is used to optimize the window length of the Hankel matrix. Then, the difference
spectrum of singular values is used to construct a threshold, which is used to distinguish between
components of effective signals and components of noise. Finally, the Hankel matrix is reconstructed
with singular values corresponding to effective signals to suppress noise, and the denoised data are
recovered from the reconstructed Hankel matrix. The effectiveness of the proposed method is verified
with both synthetic and field measurements. The experimental results show that the proposed method
can effectively improve noise removal performance under different detection scenarios.

Keywords: ground-penetrating radar; noise suppression; singular value decomposition; Hankel matrix;
window length optimization

1. Introduction

Ground-penetrating radar (GPR) is a geophysical detecting instrument that transmits
high-frequency electromagnetic wave and receives the reflections [1]. GPR has been widely used in
several fields such as civil engineering, archaeology, geology, and military exploration [2–6] for its
nondestructive, continuous, rapid, and efficient properties. Due to the effect of complex underground
environment [7] and ultra-wide bandwidth receiver [8], the echoes of GPR contain significant noise.
The noise collected by the system can easily mask the effective signals. Therefore, noise suppression is
very important for improving the signal quality and interpretation accuracy.

Different approaches for GPR noise suppression have been reported to the literature [9–21].
The wavelet transform is a popular method for GPR data denoising [9,10], and it is simple and effective.
However, the selection of the mother wavelet function, the decomposition level, and the threshold
function still rely on subjective experiences. Frequency-wavenumber (F-K) filtering originating from
seismic data denoising has also been applied to remove noise in GPR data [11,12] and can remove cross
rebar reflections and ringing noise effectively. However, the filter design in the F-K domain is relatively
complex and the method is only suitable for point targets. The ensemble empirical mode decomposition
(EEMD) method is an improved empirical mode decomposition (EMD) method carrying out the EMD
over an ensemble of the signal plus Gaussian white noise. The EEMD method can extract the effective
signals components from noisy GPR data [13,14]. However, the EEMD method is time-consuming
and incapable of processing the raw data with a low signal-to-noise ratio (SNR). The robust principle
component analysis (RPCA) method can recover a low-rank matrix from noisy measurements and it

Sensors 2019, 19, 3807; doi:10.3390/s19173807 www.mdpi.com/journal/sensors339



Sensors 2019, 19, 3807

has been employed to suppress the clutter and noise of GPR data [15–17]. However, the RPCA method
is sensitive to the choice of thresholds. Singular value decomposition (SVD) is a convenient method
to decompose a matrix, which can decompose GPR data into different subspaces that correspond
to different components [18–21]. The noise can be suppressed by selecting components that contain
effective signals to reconstruct GPR signals. Since each component corresponds to one singular value,
the key problem of denoising is the selection of appropriate singular values corresponding to effective
signals. A criterion based on the SNR of recovered data has been applied for GPR signal denoising [22],
which shows better performance than the wavelet threshold denoising method. The local energy ratio
rule has been used to remove background noise of GPR signals [23], which exhibits good robustness
under different detection conditions. The fuzzy c-means (FCM) clustering rule has been used to extract
multiple targets in heavily cluttered GPR images [24], which can accurately separate the overlapping
boundaries of clutter, noise, and target signals and improve the performance of conventional SVD.

Although the denoising methods based on SVD are effective and easy to implement, they are
designed to decompose a matrix (two-dimensional data) and cannot fully separate effective signals
from the noise in one-dimensional data. To resolve this problem, the one-dimensional data can be
transformed into many kinds of matrices, such as the Toeplitz matrix, cycle matrix, and Hankel matrix.
The difference lies in the method of creating the matrix, which will affect signal processing of SVD.
Among the matrices, SVD of the Hankel matrix can achieve a similar signal processing effect to the
wavelet transform [25]. Therefore, SVD of the Hankel matrix is more suitable for noise suppression.
A scheme based on SVD of the Hankel matrix has been used to reduce noise for radar cross-section
(RCS) data [26], which can improve the accuracy of target recognition greatly. The Hankel matrix-based
SVD can eliminate the false peak in processing an impulse signal with strong trend and enhance the
SNR in the reconstructed signal [27], which helps to improve the fault diagnosis performance for
rolling bearings. The SVD and Hankel matrix-based denoising process has also been applied to the ball
bearing vibration signals in both time and frequency domain for the elimination of the background
noise [28]. It was found that denoising in the frequency domain yields better fault identification results
than the denoising in the time domain. The SVD method based on the Hankel matrix in the local
frequency domain has been applied to eliminate random noise in GPR data [29], which can improve
suppression of random noise around non-horizontal phase reflection events.

Although the aforementioned papers have proven the effectiveness of SVD of the Hankel matrix
in noise suppression, little research has been conducted with respect to the influence of the Hankel
matrix size on denoising performance. The size of the Hankel matrix depends on the length of the
sliding window which affects the information quantity that can be extracted from this matrix [30].
Based on this previous research, this paper proposes SVD of a window-length-optimized Hankel
matrix to suppress noise for GPR data. First, the Hankel matrix formed by one-dimensional GPR data
is decomposed with SVD, and the fourth root of the fourth central moment (FRFCM) of singular values
is used to select the optimal window length of the Hankel matrix. Then, one threshold is generated by
the difference spectrum of singular values, which is used to select effective signal components. Finally,
the Hankel matrix is reconstructed with singular values corresponding to effective signals to suppress
noise, and the denoised data are recovered from the reconstructed Hankel matrix. The performance of
the proposed method is verified with series of synthetic and field measurements. The experimental
results of the proposed method are also compared with those of the conventional SVD method based
on the local energy ratio rule and wavelet transform method. The results show that the proposed
method can effectively improve the denoising performance for GPR data.

2. Methodology

2.1. Denoising Method Based on SVD of the Hankel Matrix

The two-dimensional GPR data can be denoted by B ∈ RN×L, where L is the number of traces and
N is the number of sampling points in each trace. For the data of one trace (one-dimensional data)
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X=[x(1),x(2), . . . ,x(N)], a Hankel matrix can be formed by sliding a window over the corresponding
vector [25], which can be written as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

...
...

x(m) x(m + 1) · · · x(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where m = N − n + 1, 1 < n ≤ m < N, A ∈ Rm×n, and n is the window length.
The SVD of Hankel matrix A can be expressed as

A = USVT (2)

where U ∈ Rm×m and V ∈ Rn×n are the left singular and right singular orthogonal matrices,
respectively. S = diag(σ1, σ2, . . . , σr) is a singular value matrix with σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0,
and r = min(m, n). According to the definition of Equation (1), the number of singular values
r is equal to the window length n.

Then, Equation (1) can be written as

A =
r∑

i=1

σiuivT
i =

n∑
i=1

σiuivT
i (3)

where ui ∈ Rm×1 and vi ∈ Rn×1. uivT
i ∈ Rm×n is the single rank matrix, which is the ith eigen image of A.

It is obvious that σi is actually the projection of matrix A on the basis uivT
i .

As singular values are arranged in descending order, the first few larger singular values generally
correspond to effective signals with strong correlations, while the smaller singular values correspond
to the noise with weak correlation. Therefore, matrix A can be written as

A =
k∑

i=1

σiuivT
i +

n∑
i=k+1

σiuivT
i (4)

where k is the demarcation point of singular values, and the first k singular values correspond to
effective signals? Then the Hankel matrix with noise suppression can be reconstructed as

As =
k∑

i=1

σiuivT
i (5)

According to the construction rule of the Hankel matrix, the denoised one-dimensional data can
be given by

Xs = [AS(1, :), AS(2 : m, n)] (6)

where AS(1, :) is the first row of matrix AS and AS(2 : m, n) is the last column without the first element.
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2.2. Optimization Method of Window Length

The window length n is the only parameter of the Hankel matrix which not only affects the
information quantity extracted from the matrix but also the performance of SVD. As an example,
synthetic one-dimensional GPR data are used to analyze the effect of the window length n on the
performance of SVD. The synthetic data are generated by the “gprMax” simulator [31].

Figure 1 shows the geometry of the simulation model for the scenario. The background medium is
concrete. The relative permittivity and conductivity are 6 and 0.01, respectively. The target is a perfect
metal cylinder, with 0.4-m diameter, which is buried at a depth of 0.6 m. The Ricker wavelet with
a center frequency of 900 MHz is adopted. There are 80 traces in total and the trace interval is 0.035 m.
The time window for each trace is 12 ns and each trace contains 2036 sampling points.

Figure 1. Geometry of the simulation model for point target detection.

The Gaussian white noise is added to the original GPR image and the SNR is −5.00 dB. Figure 2
shows the original GPR image and the noisy GPR image. Figure 3 shows the original data and noisy
data of trace 38. The direct wave and target echoes are near the 250th and the 1300th sampling points,
respectively. The noisy data are used to form the Hankel matrices with different window lengths,
and SVD is applied to the Hankel matrices.

 
(a) (b) 

Figure 2. Synthetic ground-penetrating radar (GPR) image: (a) original image; (b) noisy image.
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(a) (b) 

Figure 3. Data of trace 38: (a) original data; (b) noisy data.

Figure 4 shows the probability distribution of singular values for Hankel matrices with different
window lengths. The few larger singular values corresponding to effective signals are distributed
in a relatively wide range, and the distribution is sparse. However, the smaller singular values
corresponding to the noise are distributed in a narrow range, and the distribution is approximately
normal. Moreover, the window length has an obvious effect on the probability distribution of
singular values.

Figure 4. Probability distribution of singular values for Hankel matrices with different window lengths.

For noise suppression, when the distance between the distribution of singular values corresponding
to effective signals and the distribution of singular values corresponding to the noise increases, it is easier
to distinguish between effective signal components and noise components, which helps to improve
noise removal performance. Based on the analysis of distribution characteristics of singular values
in Figure 4, the fourth root of the fourth central moment (FRFCM) of singular values is proposed to
measure the distance between the two distributions, which is defined by

P(n) =

⎛⎜⎜⎜⎜⎜⎝1
n

n∑
i=1

(σi − σ)4

⎞⎟⎟⎟⎟⎟⎠
1
4

(7)

where n is the number of singular values, σi is the ith singular value, and σ is the mean of singular values.
In order to obtain optimal noise suppression performance, P(n) should be maximized. Therefore,

the optimal window length can be given by

nopt = argmax
n

[P(n)] (8)
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2.3. Selection Method of Singular Values

The number of singular values selected results in a trade-off between noise suppression and
recovery of the signal of interest. The selection methods based on SNR of recovered data [22] and local
energy ratio [23] merely consider the energy of singular values, and their performance degrades when
the SNR is relatively low. The selection method based on FCM clustering [24] uses a membership
function to find suitable singular values corresponding to effective signals, which is relatively complex.

In order to obtain an efficient and accurate selection of singular values, the synthetic data in
Section 2.2 are used to analyze the variation of singular values. Figure 3 shows the variation of singular
values for Hankel matrices (the window length is 300) under different SNRs. For simplicity, only the
first 80 singular values are shown in Figure 5.

 
(a) (b) 

 
(c) (d) 

Figure 5. Variation of singular values for Hankel matrices under different signal-to-noise ratios (SNRs):
(a) SNR = −5 dB; (b) SNR = 0 dB; (c) SNR = 5 dB; (d) SNR = 10 dB.

As shown in Figure 5, the first few singular values correspond to effective signals, and they are
larger and decrease quickly with the increase of order; the remaining singular values correspond to the
noise, and they are smaller and decrease slowly with the increase of order. For noise, when the SNR
increases, the amplitude of singular values decreases obviously and the number of singular values
also decreases slightly. For effective signals, when the SNR increases, the amplitude of singular values
changes little and the number of singular values increases slightly.

Based on the analysis of variation characteristics of singular values, the difference spectrum
of singular values is used to find the demarcation point between singular values corresponding to
effective signals and singular values corresponding to the noise. The difference spectrum of singular
values [32] can be defined as

bi = σi − σi+1 i = 1, 2, · · · r− 1 (9)
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where σi is the ith singular value and r is the number of singular values.
The mean of the difference spectrum of singular values is calculated, and a threshold is given by

T =
ρ

r− 1

r−1∑
i=1

bi (10)

where ρ is a weight coefficient that adjusts the threshold.
Then, the threshold T is used to select singular values corresponding to effective signals. To improve

the accuracy of the selection, three adjacent difference spectra are compared with the threshold T to
obtain the demarcation point

k1 = i
∣∣∣ bi < T and bi+1 < T and bi+2 < T i = 1, 2, · · · , r− 3 (11)

where the first k1 singular values correspond to effective signals.
For two-dimensional GPR data B ∈ RN×L, the noise suppression method based on SVD of

a window-length-optimized Hankel matrix can be summarized by the following steps:
1. Select the data of one trace (one-dimensional data) from two-dimensional GPR data and use

the one-dimensional data to form a Hankel matrix with a certain window length by Equation (1).
2. Decompose the Hankel matrix by Equation (3) and compute the FRFCM of singular values

by Equation (7).
3. Repeat steps 1 and 2 for different window lengths and obtain the optimal window length

by Equation (8).
4. For the Hankel matrix with optimal window length, calculate the difference spectrum of singular

values and obtain a threshold by Equations (9) and (10).
5. Select the demarcation point between singular values corresponding to effective signals and

singular values corresponding to the noise by Equation (11).
6. Reconstruct the denoised Hankel matrix with singular values corresponding to effective signals

by Equation (5) and obtain the denoised one-dimensional data by Equation (6).
7. Repeat steps 1–6 for all the traces and implement noise removal for two-dimensional GPR data.

3. Results and Discussion

A series of synthetic and real data is used to evaluate the proposed method. In addition, the
performance of the proposed method is also compared with those of the conventional SVD method
based on the local energy ratio rule and the wavelet transform method. The synthetic data are
also generated by the “gprMax” simulator [31] based on the finite difference time domain (FDTD)
method [33]. All the programs are executed on a 3.60 _GHz CPU and 32_GB memory computer.

3.1. Synthetic Example 1

The example shows the scenario of point target detection. Figure 6 shows the geometry of the
simulation model. The targets are three perfect conductor metal cylinders with 0.4 m diameter and
they are buried at the same depth of 0.6 m. The interval of the three targets is 0.6 m. The transmitting
antenna is placed in the air layer and excited by a Ricker wavelet with a center frequency of 900 MHz.
There are 80 traces in total and the trace interval is 0.035 m. The time window for each trace is 12 ns
and each trace contains 2036 sampling points. Figure 7 shows the original GPR image and the noisy
GPR image (SNR= −5.00 dB).
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Figure 6. Geometry of the simulation model for point target detection.

 
(a) (b) 

Figure 7. Synthetic GPR image: (a) original image; (b) noisy image.

First, the performance of the proposed method is analyzed using one-dimensional data.
Figure 8 shows the data of trace 30.

 
(a) (b) 

Figure 8. Data of trace 30: (a) original data; (b) noisy data (SNR = −4.62 dB).

Figure 9 shows the FRFCM of singular values for Hankel matrices with different window lengths.
It can be seen that when the window length increases, the FRFCM of singular values first increases
and then decreases and reaches the maximum when the window length is 250. Therefore, the optimal
window length for the Hankel matrix is 250.

According to the selection method of singular values, the demarcation point k1 is 6. Then the
Hankel matrix is reconstructed with the first 6 singular values, and the denoised data are recovered
from the reconstructed Hankel matrix.
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Figure 9. The fourth root of the fourth central moment (FRFCM) of singular values for Hankel matrices
with different window lengths.

In order to verify the performance of the window length optimization method, the denoised
results with several different window lengths are shown in Figure 10. When the window length is 100,
the denoised data contain many burrs; when the window length is 250, the denoised data are relatively
smooth; when the window length is 400 and 700, the denoised data also contain some noise. The results
preliminarily verify the effectiveness of the window length optimization method.

 
(a) (b) 

 
(c) (d) 

Figure 10. Denoised results with different window lengths for the data of trace 30: (a) n = 100
(SNR = 5.43 dB); (b) n = 250 (SNR = 7.45 dB); (c) n = 400 (SNR = 6.66 dB); (d) n = 700 (SNR = 5.19 dB).

In order to quantitatively analyze the performance of the window length optimization method,
the SNR of denoised data with different window lengths is shown in Figure 11. The SNR exhibits

347



Sensors 2019, 19, 3807

a fluctuation similar to the FRFCM of singular values, and reaches the maximum 7.45 dB at the optimal
window length (n=250), which shows that the window length optimization method can obtain the best
noise removal performance for SVD of the Hankel matrix.

Figure 11. SNR of denoised data with different window lengths.

Then, the performance of the proposed method is verified using two-dimensional data. In addition,
the experimental results of the proposed method are compared with those of the conventional SVD
method based on the local energy ratio rule and the wavelet transform method. Figure 12 shows the
denoised results of the three methods. As shown in Figure 12a the conventional SVD method can
remove noise, but it also removes some of the target signals. As shown in Figure 12b, the wavelet
transform method retains complete target signals, but it also retains a small amount of noise. As shown
in Figure 12c the proposed method can retain complete target signals while removing more noise.

 
(a) (b) 

 
(c) 

Figure 12. Denoised results of the three methods for a GPR image: (a) singular value decomposition
(SVD) method based on the local energy ratio rule; (b) wavelet transform method; (c) proposed method.
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Table 1 lists the SNR, processing time, and the amount of RAM memory required for the
three methods. As shown in Table 1, the proposed method yields a higher SNR than the other
two methods, and it also needs more processing time and larger RAM memory than the other
two methods due to the calculation of SVD of the Hankel matrix for each one-dimensional data.

Table 1. Results of the three methods.

Method SNR (dB) Processing Time (s)
Amount of RAM

Memory (MB)

SVD method based on local energy ratio rule 4.23 1.9 71
Wavelet transform method 7.08 2.31 39

Proposed method 7.55 4.17 99

3.2. Synthetic Example 2

The example shows the scenario of layer detection. Figure 13 shows the geometry of the simulation
model. The model contains two layers: clay and sand. The transmitting antenna is placed in the air
layer and excited by a Ricker wavelet with a center frequency of 900 MHz. There are 41 traces in total
and the trace interval is 0.02 m. The time window for each trace is 10 ns and each trace contains 1696
sampling points. Figure 14 shows the original GPR image and the noisy GPR image (SNR= −5.00 dB).

Figure 13. Geometry of the simulation model for layer detection.

 
(a) (b) 

Figure 14. Synthetic GPR image: (a) original image; (b) noisy image.

First, the one-dimensional data are used to verify the performance of the proposed method.
Figure 15 shows the data of trace 20. Figure 16 shows the FRFCM of singular values for Hankel matrices
with different window lengths. Evidently, FRFCM reaches the maximum when the window length
is 300. Therefore, the optimal window length for the Hankel matrix is 300. The demarcation point k1 is
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set to 6 by the selection method of singular values. Then the Hankel matrix is reconstructed with the
first 6 singular values, and the denoised data are recovered from the reconstructed Hankel matrix.

 
(a) (b) 

Figure 15. Data of trace 20: (a) original data; (b) noisy data (SNR = −5.12 dB).

Figure 16. FRFCM of singular values for Hankel matrices with different window lengths.

The denoised results with several different window lengths are shown in Figure 17. As the figure
shows, the optimal window length can obtain the best compromise between noise suppression and
retaining effective signals.

In order to quantitatively analyze the performance of the window length optimization method,
the SNR of denoised data with different window lengths is shown in Figure 18. The results further
show the window length optimization method can achieve the best noise removal performance for
SVD of the Hankel matrix.

Then, the two-dimensional data are used to verify the performance of the proposed method.
The experimental results of the proposed method are also compared with those of the conventional
SVD method based on the local energy ratio rule and wavelet transform method. Figure 19 shows the
denoised results of the three methods. As shown in Figure 19a, the layer signals are relatively weak,
and some horizontal noise is also introduced. Figure 19b shows that the layer signals are obvious,
but a small amount of noise is also retained; and Figure 19c shows that the layer signals are relatively
strong, and the noise is also removed more thoroughly.
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(a) (b) 

 
(c) (d) 

Figure 17. Denoised results with different window lengths for the data of trace 20: (a) n = 150
(SNR = 5.91 dB); (b) n = 300 (SNR = 7.86 dB); (c) n = 450 (SNR = 5.82 dB); (d) n = 600 (SNR = 5.40 dB).

Figure 18. SNR of denoised data with different window lengths.
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(a) (b) 

 
(c) 

Figure 19. Denoised results of the three methods for a GPR image: (a) SVD method based on the local
energy ratio rule; (b) wavelet transform method; (c) proposed method.

Table 2 lists the SNR, processing time, and the amount of RAM memory required for the
three methods. Table 2 also shows that the proposed method yields a higher SNR and consumes more
memory space compared with the other two methods.

Table 2. Results of the three methods.

Method
SNR
(dB)

Processing Time
(s)

Amount of RAM Memory
(MB)

SVD method based on local energy ratio rule 5.6 0.78 48
Wavelet transform method 7.03 0.92 17

Proposed method 7.42 1.43 53

3.3. Synthetic Example 3

In this section, the performance of the proposed method is investigated in the presence of correlated
noise. This example uses the same original GPR image as synthetic example 1. The autocorrelation
function of the noise is an exponential function and the correlation length of the noise is 10. Figure 20
shows the original GPR image and the noisy GPR image (SNR = −5.00 dB).
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(a) (b) 

Figure 20. Synthetic GPR image: (a) original image; (b) noisy image.

First, the performance of the proposed method is analyzed using one-dimensional data. Figure 21
shows the data of trace 30. Figure 22 shows the FRFCM of singular values for Hankel matrices with
different window lengths. In this case, it is evident that the value of FRFCM is greater than that in the
case of white noise and the optimal window length for the Hankel matrix is 300. The Hankel matrix
is reconstructed with the first eight singular values, and the denoised data are recovered from the
reconstructed Hankel matrix.

 
(a) (b) 

Figure 21. Data of trace 30: (a) original data; (b) noisy data (SNR = −4.55 dB).

Figure 22. FRFCM of singular values for Hankel matrices with different window lengths.

Figure 23 shows the denoised results with several different window lengths. When the window
length is 100, the denoised data contain some oscillating components; when the window length is
500 and 650, the denoised data also contain a lot of interference with large amplitude; when the window
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length is 300, the denoised data contain the least noise. The results confirm that the window length
optimization method is also effective in the case of correlated noise.

 
(a) (b) 

 
(c) (d) 

Figure 23. Denoised results with different window lengths for the data of trace 30: (a) n = 100
(SNR = 1.72 dB); (b) n = 300 (SNR = 4.31 dB); (c) n = 500 (SNR = 2.96 dB); (d) n = 650 (SNR = 2.39 dB).

Figure 24 shows the SNR of denoised data with different window lengths. The results show that
SVD of the Hankel matrix obtains the best noise removal performance at the optimal window length
(n = 300).

Figure 24. SNR of denoised data with different window lengths.

Then, the performance of the proposed method is verified using two-dimensional data. Moreover,
the experimental results of the proposed method are compared with those of the conventional SVD
method based on local energy ratio rule and the wavelet transform method. Figure 25 shows the
denoised results of the three methods. As shown in Figure 25a the conventional SVD method removes
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some target signals while denoising. Figure 25b shows that the wavelet transform method also retains
some noise while retaining target signals; and Figure 25c shows that the proposed method retains more
target signals while removing more noise.

 
(a) (b) 

 
(c) 

Figure 25. Denoised results of the three methods for a GPR image: (a) SVD method based on the local
energy ratio rule; (b) wavelet transform method; (c) proposed method.

Table 3 lists the SNR, processing time, and the amount of RAM memory required for the three
methods. Compared with the results of synthetic example 1, the SNR of the three methods all
decreases due to the correlation of the noise. The proposed method yields an obviously higher SNR
with an appropriate increase in processing time compared with the other two methods. In addition,
the wavelet transform method requires larger RAM memory due to the correlation of the noise.

Table 3. Results of the three methods.

Method
SNR
(dB)

Processing Time
(s)

Amount of RAM Memory
(MB)

SVD method based on local energy ratio rule 0.94 2.16 75
Wavelet transform method 2.1 2.41 51

Proposed method 4.21 4.19 101

3.4. Synthetic Example 4

In this section, the performance of the proposed method is also investigated in the presence
of correlated noise. This example also uses the same original GPR image as synthetic example 1.
The autocorrelation function of the noise is an exponential function and the correlation length of the
noise is 20. Figure 26 shows the original GPR image and the noisy GPR image (SNR = −5.00 dB).
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(a) (b) 

Figure 26. Synthetic GPR image: (a) original image; (b) noisy image.

First, the performance of the proposed method is analyzed using one-dimensional data. Figure 27
shows the data of trace 30. Figure 28 shows the FRFCM of singular values for Hankel matrices with
different window lengths. Evidently, the correlation length of the noise increases, the value of FRFCM
also increases, and the optimal window length for the Hankel matrix is 300. The Hankel matrix
is reconstructed with the first nine singular values and the denoised data are recovered from the
reconstructed Hankel matrix.

 
(a) (b) 

Figure 27. Data of trace 30: (a) original data; (b) noisy data (SNR = −4.49 dB).

Figure 28. FRFCM of singular values for Hankel matrices with different window lengths.

Figure 29 shows the denoised results with several different window lengths. As the figure shows,
denoised data of the optimal window length contain less noise than those of other window lengths.
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(a) (b) 

 
(c) (d) 

Figure 29. Denoised results with different window lengths for the data of trace 30: (a) n = 100
(SNR = 1.61 dB); (b) n = 300 (SNR = 3.02 dB); (c) n = 500 (SNR = 2.16 dB); (d) n = 650 (SNR = 1.66 dB).

Figure 30 shows the SNR of denoised data with different window lengths. The SNR exhibits more
fluctuation, and it reaches maximum at the optimal window length (n = 300).

Figure 30. SNR of denoised data with different window lengths.

Then, the performance of the proposed method is verified using two-dimensional data.
The experimental results of the proposed method are also compared with those of the conventional
SVD method based on the local energy ratio rule and the wavelet transform method. Figure 31 shows
the denoised results of the three methods. As shown in Figure 31, the conventional SVD method
loses a lot of target signals; the wavelet transform method also retains a lot of noise while retaining
target signals; the proposed method achieves a good compromise between retaining target signals and
removing the noise.
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(a) (b) 

 
(c) 

Figure 31. Denoised results of the three methods for a GPR image: (a) SVD method based on the local
energy ratio rule; (b) wavelet transform method; (c) proposed method.

Table 4 lists the SNR, processing time, and the amount of RAM memory required for the
three methods. Compared with the results of synthetic example 3, the increase of the correlation length
of the noise obviously degrades the SNR of the three methods. The proposed method also achieves
a higher SNR at the cost of the increasing processing time and more memory space compared with the
other two methods.

Table 4. Results of the three methods.

Method
SNR
(dB)

Processing Time
(s)

Amount of RAM Memory
(MB)

SVD method based on local energy ratio rule 0.02 1.94 74
Wavelet transform method 0.59 2.64 53

Proposed method 2.05 4.15 102

3.5. Field Measurements 1

The example shows the scenario of pipeline detection. The antenna center frequency is 400 MHz.
There are 251 traces in total and each trace contains 301 sampling points. Figure 32 shows the original
noisy GPR image. As the figure shows, there is a lot of noise around the target hyperbolic signals,
which affects the target detection.
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Figure 32. Real GPR image of pipeline detection.

The optimal window length for the Hankel matrix is 90. The denoised results of the three methods
are shown in Figure 33. As shown in Figure 33a the conventional SVD method removes some of the
noise, but it generates some false target hyperbolic signals. Figure 33b shows that the wavelet transform
method removes most of the noise and retains complete target signals, but it introduces a small amount
of vertical noise; Figure 33c shows that the proposed method removes most of the noise and preserves
complete target signals without introducing any other signals. The results show that the proposed
method achieves better noise removal performance than the other two methods and helps to detect the
pipeline accurately.

 
(a) (b) 

 
(c) 

Figure 33. Denoised results of the three methods for a real GPR image: (a) SVD method based on the
local energy ratio rule; (b) wavelet transform method; (c) proposed method.
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The processing time of the conventional SVD method, the wavelet transform method, and the
proposed method is 0.45 s, 1.32 s, and 1.77 s, respectively.

3.6. Field Measurements 2

The example shows the scenario of road layer detection. The antenna center frequency is 400 MHz.
There are 46 traces in total and each trace contains 450 sampling points. Figure 34 shows the original
noisy GPR image. As the figure shows, there is some horizontal noise around the layer signals,
which interferences with the layer recognition.

Figure 34. Real GPR image of road layer detection.

The optimal window length for the Hankel matrix is 110. The denoised results of the three methods
are shown in Figure 35. As shown in Figure 35a, the conventional SVD method removes some of the
noise, but it still retains some noise between the 80th and the 150th sampling points. Figure 35b shows
that the wavelet transform method retains a small amount of noise between the 80th and the 150th
sampling points, but it removes part of the layer signals near the 240th sampling point; Figure 35c
shows that the proposed method removes most of the noise, and it retains the layer signals completely.
The results show that the proposed method obtains the best noise removal performance and provides
the best profile for layer detection.

The processing time of the conventional SVD method, the wavelet transform method, and the
proposed method is 0.14 s, 0.47 s, and 0.67 s, respectively.

 
(a) (b) 

Figure 35. Cont.
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(c) 

Figure 35. Denoised results of the three methods for a real GPR image: (a) SVD method based on the
local energy ratio rule; (b) wavelet transform method; (c) proposed method.

4. Conclusions

In this paper, a method based on SVD of a window-length-optimized Hankel matrix is proposed to
improve the noise suppression performance for GPR data. The fourth root of the fourth central moment
of singular values is used to determine the window length of the Hankel matrix, which provides
a solution to optimize the size of the Hankel matrix. Then, the difference spectrum of singular values is
used to construct a threshold, which provides a solution to select singular values corresponding to
effective signals.

The proposed method is verified by series of synthetic and practical data. The results show the
proposed method can obtain the best noise removal performance for both white noise and correlated
noise. The proposed method also achieves better denoising performance than the conventional SVD
method based on the local energy ratio rule and wavelet transform method at the cost of the appropriate
increases in processing time and memory space. Future work will investigate more efficient solutions
to optimize SVD of the Hankel matrix to further improve noise removal performance.
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Abstract: Delay lines with a tunable length are used in a number of applications in the field of
microwave techniques. The digitally-controlled analogue wideband delay line is particularly useful
in noise radar applications as a precise detector of movement. In order to perform coherent reception
in the noise radar, a delay line with a variable delay value is required. To address this issue, this
paper comprises a new concept of a digitally-controlled delay line with a set of fine distance gates.
In the paper, a solution for micro-movement detection is proposed, which is based on direct signal
processing in the time domain with the use of a microwave analogue correlator. This concept assumes
the use of a microwave analogue tapped delay line structure. It was found that the optimal solution
for a noise radar with an analogue signal correlator is a combined delay line consisting of switched
reference sections, a tapped delay line, and a precision phase shifter. The combined delay line
presented in this paper is dedicated to serving as the adjustable reference delay for a noise radar
intended for the detection of micro-movement. The paper contains the calculation results and delay
line implementation for a given example. The new structure of the analogue tapped delay line with
the calculation of optimal parameters is also presented. The precise detector of movement can be
successfully used for the remote sensing of human vital signs (especially through-the-wall), e.g.,
breathing and heart beating, with the simultaneous determination of position.

Keywords: noise radar; radar signal processing techniques; analogue correlation; modern radar
applications; delay line

1. Introduction

Delay lines with a tunable length are used in a number of applications in the field of microwave
techniques [1–4]. The possible applications depend on the length of the line and generally they may be
divided as follows: phase shifters, phase correctors, impedance tuning stubs, or time delay references.

The simplest form of a fixed microwave delay line is a section of a transmission line with a
specified length, preferably without the effect of group velocity dispersion. In this case, the group
delay Tg may be expressed by

Tg =
L
vg

, (1)

where L is the length of the transmission line and vg is the group velocity, defined as

vg =
∂ω
∂β

. (2)
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In Equation (2), variable β is the propagation constant and ω is the angular frequency. For the
frequency range, where the group velocity dispersion may be neglected, the group velocity may be
approximated by the expression for phase velocity of vϕ = ω/β that gives

Tg =
Lβ
ω

. (3)

The time delay of a section of a transmission line is proportional to its physical length. In order to
achieve large time delays, adequately long sections of the transmission line have to be used. Because
the Relationship (3) also contains a phase constant and further electrical length βL, the time delay is
a function of the parameters (especially permittivity) of the material filling of the transmission line.
Therefore, there is a possibility of obtaining bigger time delays per unit length of the transmission line
when it is filled with material with a high permittivity εr. Therefore, for a TEM line, one may write

Tg =

√
εrL
c

. (4)

An example of this relationship is as follows: one meter of free space propagation or a perfect
TEM line with air filling corresponds to 3.33 ns of time delay. In order to have a properly working delay
line set, the propagation of the delayed wave should not be affected by the group velocity dispersion.
This requirement is fulfilled when TEM lines are used, for example, coaxial lines or a planar line
microstrip or coplanar. The bandwidth of the transmitted signal should be limited in order to not
excite an unwanted waveguide (not TEM) mode of propagation.

The digitally-tunable delay line allows a number of pre-defined values of the time delay or length
corresponding to the smallest assumed delay step to be set [5]. In the case of analogue tuning of a line’s
electrical length, theoretically, it is possible to obtain any value of delay from a predefined delay range.

An electronically-controlled microwave delay line is part of an analogue correlation detector used
in a noise radar. The most basic design of a noise radar consists of an analogue receiver and analogue
delay line with the ability to adjust the time delay. The current development of noise radars mainly
concerns the use of advanced techniques of digital signal processing in order to obtain fully-digital
correlation receivers [6–8]. However, a noise radar with an analogue correlation receiver with a tunable
reference delay line may still be a useful enough solution, especially for micro-movement detection
with range determination. In comparison, a typical CW (Continuous Wave) Doppler radar only detects
the micro-movement speed, e.g., breathing or heartbeat, without information about the distance to the
measured object [9]. Ultra WideBand (UWB) radars including noise or pseudorandom noise-based
radars are used in various applications, including remote vital sign detection for rescue, security, and
medical care or diagnostics [10,11].

To perform coherent reception in noise radar, a delay line with a constant or variable delay value
is required. By analyzing the possibility of micro-movement detection, which is also described in the
literature by the term micro-Doppler detection [12], one may notice that current investigations concern
the development of algorithms to perform digital signal processing in the baseband in the frequency
domain (spectrum analysis). The main issue is finding the spectrum shift of the received signal with
respect to the transmitted signal. This shift may be equal to an order of MHz for a spectrum width
equal to dozens of MHz. It is very difficult to detect such a small shift and new specialized methods
should be developed.

The research question is to find the optimized analogue microwave tunable delay line in order to
adjust the operating point of the correlation detector. In this paper, a solution for micro-movement
detection is proposed, which is based on direct signal processing in the time domain with the use of a
microwave analogue correlator. Therefore, to address this issue, further sections of the paper comprise
a new concept of a digitally-controlled delay line with a set of fine distance gates. This concept assumes
the use of a combined set of three lines, including a new version of a tapped delay line. In order
to verify the concept, the example of micro-movement detection is presented, with the following
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assumptions: target distance 12 m, micro-movement amplitude 1 mm, noise radar with bandwidth 1
GHz, and center frequency 6.5 GHz.

The combined delay line presented in this paper is dedicated to serving as the adjustable reference
delay for a noise radar intended for the detection of micro-movement. This approach allows the
measurement setup to be simplified and increases the possibility of micro-movement detection.
The delay line’s physical structure depends on the dedicated application of a given radar system. The
source of micro-movement may be different, for example, it may be a vital activity of the human body
or its organs, such as chest movement due to heartbeat and breathing.

2. Principle of Noise Radar Technology

Noise radars belong to radars which use random or pseudorandom signals for probing purposes
and coherent detection techniques for receiving signals. Their fundamental parameters are the following:
wide bandwidth, low power density, and high accuracy for distance and velocity measurements, which
results from the properties of the ambiguity function of the wideband noise signal. A correlation
receiver is a typical element of a noise radar. Coherent reception needs delay lines of constant or
variable parameters to be applied in the receiving systems. The delay line allows one to memorize a
sample of the transmitted noise signal for an amount of time delay resulting from the round-trip of the
transmitted signal, from the radar transmitter to the target and back to the radar receiver. In general,
the principle of the operation of a noise radar and its various structures has been widely described in
the scientific literature, including the basic use of the radar, which is target range and radial velocity
estimation [13–20].

The radar transmitter allows the noise signal from the frequency range, which is said to be from 1
to 18 GHz, and bandwidth of about 2 GHz, to be generated. The primary noise source in the transmitter
may be realized by means of a semiconductor avalanche diode or a Zener’s diode. The signal from
the transmitter is fed to a transmitting antenna with the use of a directional coupler to the delay line.
The signal collected by a receiving antenna is amplified and filtered in the front-end receiver and
further correlated with a copy of the transmitted signal delayed by a delay line. When the time delay
value TDL is equal to the time T corresponding to the round-trip of the transmitted signal (from the
radar to the target and back to the radar), a so-called “correlation peak” will appear at the output of
the correlation detector. The existence of a distinguishable value of the signal SOUT(t) occurring for a
given value of time delay TDL provided by a delay line allows target detection and distance estimation
according to the formula R = cTDL/2.

For the following consideration, it is assumed that the transmitter generates a signal in the form
of noise with a limited bandwidth and normal distribution, with an average value equal to zero and a
variance equal to σ2. The signal generated in the transmitter can be described by the Expression (5),
whereas signals in the individual points of the system (Figure 1) are described by Relations (6) and (7):

ST(t) = x(t) cos(ω0t) − y(t) sin(ω0t) (5)

SDL(t) = k1ST(t− TDL) (6)

SR(t) = k2ST

(
t− T − 2D(t)

c

)
, (7)

where T is the signal delay time on the radar-object-radar path, TDL is the delay time of the delay
line, D(t) is the micro-movement of certain object parts, ω0 is the median frequency of the band
occupied by the noise signal, x(t) and y(t) are independent realizations of the stationary random
process with a Gaussian distribution having an average value equal to zero, and k1 and k2 are the
propagation coefficients.

367



Sensors 2019, 19, 4842

 

Figure 1. Outline of a noise radar.

As a result of the multiplication of signals described by (6) and (7), and afterwards, integration of
the obtained products, the output signal SOUT(t) can be expressed in the following Form (8):

SOUT(t) = A(ΔT) cos
[
ω0

(
ΔT +

2D(t)
c

)]
, (8)

where ΔT = T − TDL and

A(ΔT) =
k1k2

Tp

Tp∫
0

(x(t− T)x(t− TDL) + y(t− T)y(t− TDL))dt. (9)

The result of Integration (9) is a value independent of time t. However, this value (i.e., integration
result) depends on the time difference T − TDL. When the value of TDL is set by the delay line and the
value of time T is constant (constant position of the target), the output signal from correlator SOUT is
also constant, and it reaches its maximum for T = TDL. Another situation takes place when a target is
making micro-movement, for example, that described by the harmonic expression D(t) = D × cos(ω0

× t), where D is the amplitude of this movement. Then, the round-trip time T is also harmonically
dependent on t. In effect, the output signal from the integrating circuit also depends on t. This means
that the integrator output signal SOUT varies in time according to the varying distance from the radar
to target and its frequency corresponds to the frequency of the target micro-movement.

There is the requirement that the micro-movement should be a slow-varying function of
time compared to the integration time Tp of the integrating circuit. The value of micro-Doppler
frequency must be lower than the cut-off frequency of the lowpass filter at the output of the correlator
multiplying circuit.

Equation (8) describes the value of the correlation function for the noise signal transmitted and
received by the noise radar [21–24].

3. New Concept of a Combined Microwave Delay Line with a Set of Fine Distance Gates

3.1. Combined Structure

In order to control the position of the detector operating point, an adjustable analogue delay
system for micro-movement in a noise radar has to be used and it may be realized with the use of a
combined delay line structure.

The two structures of microwave delay lines are as follows: the digitally-controlled cascaded line
with switched delay sections and the analogue tapped delay line, which may be combined with one
other. The resulting structure, formed by cascading, gains additional interesting features. The line with
switched delay sections sets one time delay value from a predefined finite set, which may be called the
coarse one. Furthermore, the delayed input signal enters the second line, which is the tapped delay line.
The tapped line introduces several values of a smaller time delay for each tap output simultaneously.
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These delays may be called the fine ones and they are added to the coarse time delay set by the first
line. As a result, there is a comb of time delays corresponding to radar range gates (spread by unit
time delay of the tapped line), which is switched up and down by the value of unit time delay of the
digitally-controlled first line (coarse step). The fine time delays offset should be sorted to evenly cover
the unit time delay of the coarse line.

The combined line mentioned above does not ensure that the optimal operating point on the
detector characteristic (with the meaning of point P1 on the autocorrelation function) corresponds to
one of the fine gate delays. In order to find the optimal operating point for detection, the third delay
line has to be cascaded. This additional delay line is the adjustable one, preferably in the form of an
analogue precision phase shifter.

The innovative concept of such a combined line is shown in Figure 2, with an example of specified
time delay implementation.

Figure 2. Example of a digitally-controlled delay line with a set of fine distance gates and an adjustable
phase shifter for finding the optimal operating point of a correlation detector.

3.2. Analogue Tapped Cascaded Delay Line

Digitally-controlled microwave delay lines are considered here to realize a reference delay for a
noise radar with analogue correlation. This type of radar performs analogue correlation of the received
signal with a delayed version of the transmitted signal. However, compared to a radar with digital
signal processing including signal cross-correlation, the analogue correlator only performs convolution
for one selected value of time delay called the time gate.

In order to bring the functionality of a radar with an analogue correlator closer to the digital one,
a special kind of delay line may be used, known as the analogue tapped delay line.

In general, the analogue tapped delay line, known from the literature, consists of a number of
unit delay sections and microwave couplers, having the same coupling factor, cascaded as shown in
Figure 3 [25]. One unit delay line with one coupler forms one delay line stage. Every tap, which is a
coupler’s coupled signal port, is the output of the delayed input signal, with a time delay equal to the
unit time delay τ1 multiplied by the stage number.

Figure 3. General scheme of an analogue tapped cascaded delay line.

According to this idea, every signal tap corresponds to one time gate and one signal correlator.
The general scheme of an analogue tapped delay line is shown in Figure 3.
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The application of this circuit causes a need to use several analogue correlator units equal to N,
consisting of a signal mixer and a lowpass filter.

It is important to note that the analogue tapped delay line allows all signals corresponding to
all time gates to be obtained quasi-simultaneously. Here, the term “quasi” means that the time gate
output signals appear after subsequent unit time delay, but there is no need to use a signal switch
(SPDT or SPST) to set the one desired value of time delay per one specified state of line. The analogue
tapped cascaded delay line can be characterized by a number of features.

Advantages:

• Ability to obtain multiple values of the time delay quasi-simultaneously;
• Lack of unstable or transient states;
• Lack of microwave switches and their driving and biasing;
• Lower signal losses due to the absence of insertion losses of microwave switches.

Disadvantages:

• Need for high signal isolation between taps in order to minimize signal crosstalk;
• Maximal number of taps and therefore delay gates is a function of the signal coupling factor at

each tap. In order to have a high number of taps, the coupling factor should be small, which
results in the need for additional signal amplifying;

• Presence of insertion losses of microwave couplers;
• Different levels of output signal power at each tap appearing in descending order.

The design of a new concept of the analogue tapped delay line, which is proposed below, requires
the design and optimization of dedicated microwave couplers with precisely chosen values of the
coupling factor in order to obtain the same signal power level at each tap.

4. Numerical Validation

4.1. Optimization of the Correlation Detector Operating Point

A normalized Function (8) for T = 80 ns, 6–7 GHz band, and D(t) = 0 is shown in Figure 4.

Figure 4. Plot of a normalized Function (8) for T = 80 ns, 6–7 GHz band, and D(t) = 0.

As can be seen in Figure 4, the noise radar may be applied for micro-movement detection.
The operating points P1 and P2 of the correlation detector can be selected from the operational range
shown in Figure 4. An example of the output signal of the correlation detector SOUT(t) for P1 and P2 is
shown in Figure 5. The assumptions for this calculation are as follows: distance to object R = 12 m,
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harmonic micro-movement D(t) with amplitude 1 mm and frequency equal to 1 Hz, radar transmits
noise signal with bandwidth B = 1 GHz, and center frequency f 0 = 6.5 GHz. In this case, the point
P1 corresponds to delay TDL1 and P2 corresponds to delay TDL2, which equal TDL1 = 80.0385 ns and
TDL2 = 80.0770 ns. The use of a tunable microwave delay line is crucial in this case. The best operating
point P1 for proper micro-movement detection is not placed for T = 80 ns, resulting from the distance
between the radar and a target. Therefore, there is a need to correct the position of the operating
point by introducing an additional value of time delay. It is possible to shift the operating point of
the micro-movement detector due to the precise adjustment of time delay provided by the tunable
delay line.

Figure 5. Illustration for the conversion of harmonic movement of an object to the output signal of the
microwave correlation detector.

The operating point P1 is placed on the linear part of the detector characteristic and the detector
output signal (black line in Figure 5) at this point properly corresponds to the shape and frequency of
the micro-movement.

In contrast, the operating point P2 is placed on the nonlinear part of the detector characteristic
and the detector output signal at this point (red line in Figure 5) incorrectly replicates the shape and
frequency of the micro-movement. In particular, the micro-movement frequency is incorrect and equal
to the doubled value of the proper frequency due to the even shape of the characteristic in the vicinity
of the operating point.

4.2. Implementation of Time Delay Values

The example of the implementation of specified time delay values in a combined delay line
structure, according to the proposed concept (Figure 2), assumes the case of micro-movement detection
introduced above in Section 4.1.

The first line is the fixed delay line, which sets the time delay τfix corresponding to the distance 12
m lowered by the value of 1 ns, i.e., half of the autocorrelation function width (as shown in Figure 4).
The digitally-controlled line with switched sections consists of three sections with the following time
delay values: 0.25, 0.5, and 1 ns. It corresponds to a 3-bit control with unit time delay equal to 0.25 ns,
and a maximal value of coarse time delay equal to 1.75 ns. Next, there is the tapped delay line with
three taps and fine unit time delay equal to 166.7 ps. In effect, for every state of the digitally-controlled
line, there are three values of fine gates shifted by 166.7 ps, which cover the range of 0.5 ns evenly.

The combined line presented in Figure 2 comprises one analogue phase shifter preceded by an
SP3T switch. In this application, only one micro-Doppler detector is needed, and it is placed at the
output of the phase shifter. This structure allows the optimal operating point for a correlation detector
to be found in the case of a change of target position.
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There is another variant of this solution that is possible when there are three correlation detectors
connected to the subsequent output taps of the tapped line, and the phase shifter is placed between
switched and tapped delay lines. In this case, there is no need for an SP3T switch (or in general,
an N-way SPNT switch).

4.3. Calculations of Optimal Parameters of an Analogue Tapped Delay Line

According to the new concept, the main assumption for optimization of the tapped line design is
that the same level of signal power is obtained at each tap, i.e., the coupled signal port.

Denoted in terms of power,

• Input power as x;
• Coupled signal power values as y1 to yN;
• Coupler’s direct output power values as x1 to xN;
• Power coupling factors C1 to CN;

where N is the maximal number of taps, for lossless couplers, one may notice

x1 = (1−C1)x (10)

and
y1 = C1x. (11)

Substituting further for y2 and x2 results in

y2 = C2x1 = C2(1−C1)x (12)

and
x1 = (1−C2)x1 = (1−C1)(1−C2)x. (13)

The considered situation is shown in Figure 6.

 

τ τ τ τ

Figure 6. General scheme of a cascaded tapped delay line used in considerations, with variables denoted.

The condition for equal coupled signal powers is

y1 = y2 = . . . yN, (14)

which gives the result

C2 =
C1

1−C1
(15)

and
CN =

CN−1

1−CN−1
. (16)

Finally, by substituting coupling factors for subsequent taps, one may obtain

CN =
C1

1− (n− 1)C1
. (17)
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Because the last tap does need not a coupler, the value of CN equals 1 and using Equation (17),
one may find

CN =
1

N + 1− n
. (18)

The equation above (18) expresses the value of the power coupling factor as a function of the tap
number n for the assumed overall number N of taps. With the use of this equation, the example values
of coupling factors were calculated and are presented in Table 1. The calculations were done for three
values of the overall tap number, i.e., N = 4, 8, and 16.

Table 1. Calculated values of power coupling factors for values of the overall tap number: N = 4, 8,
and 16.

N = 4 N = 8 N = 16 Cn Cn (dB)

- - C1 1/16 −12.04
- - C2 1/15 −11.76
- - C3 1/14 −11.46
- - C4 1/13 −11.14
- - C5 1/12 −10.79
- - C6 1/11 −10.41
- - C7 1/10 −10
- - C8 1/9 −9.54
- C1 C9 1/8 −9.03
- C2 C10 1/7 −8.45
- C3 C11 1/6 −7.78
- C4 C12 1/5 −6.99

C1 C5 C13 1/4 −6.02
C2 C6 C14 1/3 −4.77
C3 C7 C15 1/2 −3
C4 C8 C16 1 0

When the design guidelines above are implemented, the power transmission factor for every tap
output with respect to the main input of the whole delay line is the same and equals 1/N. This is true
for lossless unit delay lines and couplers; when these devices are lossy, the insertion losses accumulate
and increase with the tap number.

Assuming that the constant tapped power rule is taken into account, the design methodology of
the microwave tapped analogue delay line should follow

• Choice of unit time delay value;
• Choice of maximum number of taps (and unit delays) for the whole delay structure;
• Calculation of power coupling factors for subsequent taps C1 to CN;
• Choice of technology for physical realization of the unit delay line and couplers;
• Dedicated design or purchase of the unit delay line and set of couplers with specified, previously

calculated, coupling factors.

Further optimization of the whole delay line structure, e.g., possible integration of coupling
structures with circuits of unit delay lines, can be pursued in the case of one’s own design (especially
possible when planar technology is chosen).

5. Discussion

For very high frequencies in the microwave range, the simple analogue systems of the correlative
detector with a controlled microwave delay line can be used, because digital realization of the
micro-movement detector for microwave frequencies is very difficult and demands very high-speed
analogue-to-digital conversion. As far as existing delay line technologies are concerned, the conclusion
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is that, in spite of constant development, there is no ideal solution, which would join the features like
low losses, a high delay, a low cost, and small dimensions.

The choice of delay line solution depends on the expected application. One may use commercially
available components or design one’s own dedicated solutions. When the type and technology of unit
delay lines is chosen, the whole structure of the delay line set should be considered in order to fulfill
the requirements of the given project.

For the radar (especially noise one) with an analogue correlator, the optimal solution seems to
be a combined delay line consisting of switched and tapped parts. The parameters like the number
of control bits, number of delay states, and unit delay value are matched in order to optimize signal
losses, bandwidth, structure complexity, maximal detection range, and range gate grid.

There are various possible applications of combined delay lines when noise radar is used:

1. Surveillance of an area defined by a set of subsequent range gates in order to detect the
entrance of an object in the monitored area. Then, the combined delay line, which consists of
a digitally-switched delay line and a cascaded tapped delay line without an SPNT switch and
phase shifter(s), is a sufficient solution;

2. Solution as above assuming that the surveillance range is fixed. Then, there is no need for
switching, the set of delay lines mentioned above can be simplified to one fixed delay line
cascaded by a tapped delay line with the number of taps equal to the number of desired additional
monitoring range gates. This solution may be especially suitable for systems designed to
protect an object (vehicle, building) against an attack, for example, protection of a tank against
Rocket-Propelled Grenades;

3. Monitoring the vital signs of a stationary person, for example, a patient in bed or a worker at
the desk. In these cases, when the distance to the person in known, the fixed delay line may be
used, followed by a tapped delay line with several delay stages. The tapped line delays cover the
predicted delay value corresponding to the width of the autocorrelation function. The outputs
of the tapped line may be connected to the SPNT switch and adjustable phase shifter or to a
corresponding number of phase shifters directly.

The natural competition for analogue signal processing methods in a noise radar are digital
techniques, which rely on calculation of the correlation function in the digital domain. This solution
requires direct analog-to-digital (AD) conversion of the microwave signal in a given bandwidth.
However, for very high frequencies in the microwave range, simple analogue systems of the correlative
detector can still be used, because direct sampling of the microwave signal and digital realization
of the autocorrelation function for these frequencies are very difficult and require extremely fast
AD conversion.

The methods presented in this paper use an analogue correlation detection in the microwave band,
in contrast to processing of the received signal in the primary band. This allows a movement using an
internal structure of the correlation function of a noise signal to be precisely detected. The solution
that uses the digitally-controlled switched delay line cascaded with the tapped delay line allows the
features of synthesizing the big delay values (switched line) to be combined with simultaneously
obtaining several values of the time delay (tapped line). An additional precision analogue phase shifter
allows the optimal operating point of a micro-Doppler detector to be found.
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