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Blanca Dalila Pérez-Pérez, Juan Pablo Garcı́a Vázquez and Ricardo Salomón-Torres
Evaluation of Convolutional Neural Networks’ Hyperparameters with Transfer Learning to
Determine Sorting of Ripe Medjool Dates
Reprinted from: Agriculture 2021, 11, 115, doi:10.3390/agriculture11020115 . . . . . . . . . . . . . 81

Mo Wang, Jing Wang and Li Chen
Mapping Paddy Rice Using Weakly Supervised Long Short-Term Memory Network with Time
Series Sentinel Optical and SAR Images
Reprinted from: Agriculture 2020, 10, 483, doi:10.3390/agriculture10100483 . . . . . . . . . . . . . 93

Emerson Rodolfo Abraham, João Gilberto Mendes dos Reis, Oduvaldo Vendrametto, Pedro
Luiz de Oliveira Costa Neto, Rodrigo Carlo Toloi, Aguinaldo Eduardo de Souza and Marcos
de Oliveira Morais
Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean
Production
Reprinted from: Agriculture 2020, 10, 475, doi:10.3390/agriculture10100475 . . . . . . . . . . . . . 113

Mohsen Niazian and Gniewko Niedbała
Machine Learning for Plant Breeding and Biotechnology
Reprinted from: Agriculture 2020, 10, 436, doi:10.3390/agriculture10100436 . . . . . . . . . . . . . 131

Dhivya Elavarasan, Durai Raj Vincent P M, Kathiravan Srinivasan and Chuan-Yu Chang
A Hybrid CFS Filter and RF-RFE Wrapper-Based Feature Extraction for Enhanced Agricultural
Crop Yield Prediction Modeling
Reprinted from: Agriculture 2020, 10, 400, doi:10.3390/agriculture10100400 . . . . . . . . . . . . . 155

v



Mingbang Zhu, Shanshan Liu, Ziqing Xia, Guangxing Wang, Yueming Hu and Zhenhua Liu
Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality
Using GA-BPNN
Reprinted from: Agriculture 2020, 10, 318, doi:10.3390/agriculture10080318 . . . . . . . . . . . . . 183
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Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
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Abstract: Artificial neural networks are one of the most important elements of machine learning and
artificial intelligence. They are inspired by the human brain structure and function as if they are
based on interconnected nodes in which simple processing operations take place. The spectrum of
neural networks application is very wide, and it also includes agriculture. Artificial neural networks
are increasingly used by food producers at every stage of agricultural production and in efficient farm
management. Examples of their applications include: forecasting of production effects in agriculture
on the basis of a wide range of independent variables, verification of diseases and pests, intelligent
weed control, and classification of the quality of harvested crops. Artificial intelligence methods
support decision-making systems in agriculture, help optimize storage and transport processes, and
make it possible to predict the costs incurred depending on the chosen direction of management. The
inclusion of machine learning methods in the “life cycle of a farm” requires handling large amounts
of data collected during the entire growing season and having the appropriate software. Currently,
the visible development of precision farming and digital agriculture is causing more and more farms
to turn to tools based on artificial intelligence. The purpose of this Special Issue was to publish
high-quality research and review papers that cover the application of various types of artificial neural
networks in solving relevant tasks and problems of widely defined agriculture.

Keywords: yield prediction; crop models; soil and plant nutrition; automated harvesting; model
application for sustainable agriculture; precision agriculture; remote sensing for agriculture; decision
supporting systems; neural image analysis; convolutional neural networks

1. Introduction

Modern agriculture needs to have a high production efficiency combined with a high
quality of obtained products. This applies to both crop and livestock production. To meet
these requirements, advanced methods of data analysis are more and more frequently used,
including those derived from artificial intelligence methods. Artificial neural networks
(ANNs) are one of the most popular tools of this kind. They are widely used in solving
various classification and prediction tasks. For some time they have also been used in
the broadly defined field of agriculture. They can form part of the precision farming and
decision support systems. Artificial neural networks can replace the classical methods
of modeling, and are one of the main alternatives to classical mathematical models. The
spectrum of the applications of artificial neural networks is very wide. For a long time now,
researchers from all over the world have been using these tools to support agricultural
production, making it more efficient and providing the highest-quality products possible.
The purpose of this Special Issue was to publish high-quality research and review papers
that cover the application of various types of artificial neural networks in solving relevant
tasks and problems of what is widely defined as agriculture. The Special Issue covers
14 peer-reviewed research papers and 1 review paper.
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2. Papers in the Special Issue

In the studies described in the first article [1], the following four features were adopted
to develop artificial neural networks to identify grain weevil in wheat kernels: mass,
equivalent diameter, humidity, and hardness. The authors developed a total of 100 such
models. They concluded that the model based on radial basis function, and the structure of
4:10:1, was optimal in solving the problem of the weevil identification. This model was
characterized by the RMSE for the test set at a level of 0.25.

In the studies presented in the second article [2], artificial neural networks were
adopted to examine the impact of the variety and weather conditions on the concentration
of ferulic acid, deoxynivalenol, and nivalenol in winter wheat grain. As a result of the
studies, three independent neural models were developed, one for each of the parameters
considered. These models were based on the multilayer perceptron topology with two
hidden layers and 14 inputs. On the basis of sensitivity analyses conducted for the models,
the authors pointed out that the experiment variant and wheat variety were two of the
most important features determining the concentration of ferulic acid, deoxynivalenol, and
nivalenol in winter wheat grain.

The authors of the studies discussed in the third article [3] proposed an ANN-based
continual classification method that may be used in solving many potential classification
tasks in the field of agriculture. The method is based on memory storage and retrieval, and
it combines a convolutional neural network (CNN) and generative adversarial network
(GAN). The evaluation of this method was carried out for two classification problems:
identification of crop pests and plant leaves. The method was also compared with the
regular CNN approach. The results show that the regular CNNs classify the categories
clearly for single task problems, whereas in the continual tasks, they are prone to forgetting
problems and cannot balance new and old tasks. The method proposed by the authors
has the ability to accumulate knowledge and alleviate forgetting. Therefore it can better
distinguish all categories from both old and new tasks.

In the studies described in the fourth article [4], the authors made an attempt to apply
artificial neural networks to model the dynamic responses of plant growth as affected by a
change in root zone temperature in hydroponic chili pepper plants. They used a non-linear
autoregressive model with exogenous input (NARX) for this purpose. The performance
of the developed model was evaluated by comparing the estimated dynamic response of
plant growth values with the observed values. The RMSE and R2 calculated during the
evaluation were 0.49 g and 0.99, respectively. The authors assumed that the applied type of
neural network was useful in identifying the complex process analyzed.

The authors of the studies presented in the fifth article [5] designed neural network
models that were used to estimate the corn grain yield. The inputs of the models were:
six vegetation indices (NDVI, NDRE, WDRVI, EXG, TGI, VARI), canopy cover, and plant
density. The authors also analyzed the relative importance of the predictor variables. Crop
information was acquired using an unmanned aerial vehicle (UAV). It was assumed that the
spectral information acquired using remote sensors mounted on UAVs and its further pro-
cessing in vegetation indices, canopy cover, and plant density allows the characterization
and estimation of corn grain yield.

The studies discussed in the sixth article [6] were aimed to develop an accurate
spectral model to evaluate the cultivated land quality (CLQ) based on the gross primary
productivity (GPP) spectral indicator at different growth stages of late rice. The authors
compared three types of models that were used for this purpose-linear model based on
partial least squares regression (PLSR), and two non-linear models based on support vector
regression (SVR), and genetic algorithm-based backpropagation model neural network
(GA-BPNN). The CLQ measurements from 294 training samples and the corresponding
GPP values were also used to develop the models. The results presented in the paper show
that the GA-BPNN model was more accurate in evaluating CLQ than the other two models.

In the studies presented in the seventh article [7], a hybrid feature extraction procedure
to address the feature extraction problem in machine learning models was proposed.
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The procedure combines correlation-based feature selection (CFS) and random forest
recursive feature elimination (RF-RFE). The proposed method was tested by implementing
it in the development of paddy crop yield models that were based on the following
machine learning algorithms: random forests, decision trees, and gradient boosting. The
authors assumed that the validation of the described hybrid feature extraction method
was profoundly satisfying. They also pointed out that the method may also be used in
combination with artificial neural networks for agricultural applications.

In the eighth review article [8], all applications and potential applications of non-linear
machine learning (ML) algorithms in classical and in vitro-based plant breeding methods
have been discussed. Classification of genetic diversity, yield component analysis, yield
stability and genotype × environment interaction (G × E) analysis, biotic and abiotic stress
assessment, and predicting the outcome of mating designs and hybrid breeding programs
through machine learning algorithms has been presented in the first part of the review.
Applications of machine learning algorithms in in vitro regeneration studies, including
optimizing basal culture media, finding the best combination(s) and interaction of medium
additives and conditions, and predicting the outcome of in vitro-based plant biotechnology
techniques such as artificial polyploidy induction and Agrobacterium-mediated gene
transformation have been discussed in the second part of the review. In the third part of
the review, the authors presented the application of ML in high-throughput phenotyping
and precision agriculture.

The purpose of this study [9] was to develop a model using artificial neural networks
to predict soybean harvest area, yield, and production compared with classical methods of
time series analysis. The authors collected data from a time series (1961–2016) regarding
soybean production in Brazil to perform the model and the classic methods. The results
indicate that artificial neural networks are the best approach to predict soybean harvest
area and production, while the classical linear function remains more effective to predict
soybean yield. Furthermore, artificial neural networks present as a reliable model to predict
time series and can help the stakeholders to anticipate the world soybean offer. Finally, the
study shows that artificial neural networks can be effective in predicting a commodities
index, even using a short time series, which in this case was 50 years. Research results are
an important part of supporting grain and cereal production. Among them, soybean is
sixth by production volume and fourth by both production area and economic value. The
production is concentrated in Brazil and the USA, which are responsible for more than 70%
of world production.

Study [10] proposed a weakly supervised paddy rice mapping approach based on long
short-term memory (LSTM) network and dynamic time warping (DTW) distance. Standard
temporal synthetic aperture radar (SAR) backscatter profiles for each land cover type were
constructed. Weak samples were then labeled on the basis of their DTW distances to the
standard temporal profiles. A time-series feature set was then created that combined multi-
spectral Sentinel-2 bands and Sentinel-1 SAR vertical received (VV) band. Experiments
showed that weakly supervised learning outperformed supervised learning in paddy rice
identification when field samples were insufficient. With only 10% of field samples, weakly
supervised learning achieved better results in producer’s accuracy (0.981 to 0.904) and
user’s accuracy (0.961 to 0.917) for paddy rice. Training with 50% of field samples also
presented minor improvement. Finally, a paddy rice map was generated with the weakly
supervised approach trained on field samples and DTW-labeled samples. The proposed
approach based on DTW distance can reduce field sampling cost since it requires fewer
field samples. Validation results indicated that the proposed LSTM classifier is suitable for
paddy rice mapping.

In the eleventh article [11], the relationship between soil electrical parameters (ap-
parent soil electrical conductivity (ECa) and magnetic susceptibility (MS) measured at
two depths, 0.5 and 1 m) and soil compaction was investigated with the use of artificial
neural networks. A soil’s compaction influences the yield; therefore, the delimitation of
management zones connected with this parameter is very important in modern agriculture.
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As the geospatial measurement of soil electrical parameters is reliable and economic, it can
be a useful technique for the delimitation of management zones. The neural models of the
highest quality were developed with the use of RBF neural networks for the prediction
of soil compaction measured for soil layers at 0–0.5 and 0.4–0.5 m based on electrical
parameters of the soil. The authors highlighted that both electrical parameters, ECa and
MS, should be used in the process of the delimitation of management zones. This approach
can be employed in precision agriculture, e.g., for the reduction in fuel consumption by
variable-depth tillage technology based on soil compaction mapping.

Research article [12] describes the challenges date palm growers face in manual
processes such as picking, grading, and packing. The authors highlighted that the main
challenges are misclassification of dates, maturity level, size, and texture. This article
assesses the CNN architectures: VGG-16, VGG-19, ResNet-50, ResNet-101, ResNet-152,
AlexNet, Inception V3, and CNN from scratch, considering the learning transfer technique
for their training and five hyperparameters to reduce time and improve accuracy in the
selection process. The data set they used contains 1002 images corresponding to mature
and immature dates in trays. The main results showed that the model obtained from the
VGG-19 architecture with a batch of 128 and Adam optimizer with a learning rate of 0.01
presented the best performance with a precision of 99.32%. Therefore, the authors suggest
the possibility of using the VGG-19 model to build computer vision systems that help
producers improve their classification process.

The thirteenth paper [13] presented the results of a laboratory study about the average
degree of coverage and the coverage unevenness coefficient. The research was conducted
with a special spray track machine, which functioned as a self-propelled field sprayer. Three
artificial plants as three replicates were placed on the machine’s route. Water-sensitive
papers were attached to artificial plants to form specific surfaces. Four types of nozzles were
selected for testing: standard, air-induction single flat fan, anti-drift, and air-induction dual
flat fan. The following parameters of nozzles’ work were used for the research: pressure,
height of boom, spray angle, perpendicular to the ground, and driving speed. The research
was conducted with a constant dose of liquid. Based on the research results, it was found
that the highest average coverage was obtained for single standard flat fan nozzles and
dual anti-drift flat fan nozzles. At the same time, the highest values of unevenness were
observed for these nozzles. Inverse relationships were obtained for air-induction nozzles.

In study [14], an alternative method for oil palm tree management is proposed by
applying high-resolution imagery, combined with faster-RCNN, for the automatic detection
and health classification of oil palm trees. This study used a total of 4172 bounding boxes
of healthy and unhealthy palm trees, constructed from 2000 × 2000 pixel images. Of
the total dataset, 90% was used for training, and 10% was prepared for testing using
ResNet-50 and VGG-16. Three techniques were used to assess the models’ performance:
model training evaluation, evaluation using visual interpretation, and ground sampling
inspections. The study identified three characteristics needed for detection and health
classification: crown size, color, and density. The optimal altitude to capture images for
detection and classification was determined to be 100 m. For oil palm tree detection, healthy
tree identification, and unhealthy tree identification, ResNet-50 obtained F1 scores of
95.09%, 92.07%, and 86.96%, respectively, with respect to visual interpretation ground truth
and 97.67%, 95.30%, and 57.14%, respectively, with respect to ground sampling inspection
ground truth. ResNet-50 yielded better F1 scores than VGG-16 in both evaluations.

The research [15] presents an alternative to the use of pesticides in agriculture and
horticulture for weed control. Weeds are a major yield-limiting factor in food production,
and the use of pesticides levies heavy costs on human and environmental health. The
proposed autonomous weeding robot uses artificial neural networks to detect weeds and
plants, following it up with the desired action to restrict the growth of weeds. During
the training phase, three types of plants were used to assess the efficiency of the robot in
identification and detection tasks. The study reported the highest classification accuracy
of 95% for plant specimens and 99% for weed specimens. The mean average precision
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(mAP) in object detection was found to be 31%. An urgent need for such alternative
weed management solutions in view of the planned gradual phasing out of pesticides was
expressed by farmers in northern Germany in conversation with the authors. It is pertinent
to mention here the goal set by the EU’s planned Organic Action Plan, which envisages at
least 25% of the EU’s agricultural land under organic (pesticide-free) farming by 2030.

3. Conclusions

The papers presented in this Special Issue cover a wide range of applications of various
types of artificial neural networks in agriculture. We hope that these papers will stimulate
further research in this domain.
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Abstract: Farming systems form the backbone of the world food system. The food system, in turn, is
a critical component in sustainable development, with direct linkages to the social, economic, and
ecological systems. Weeds are one of the major factors responsible for the crop yield gap in the
different regions of the world. In this work, a plant and weed identifier tool was conceptualized,
developed, and trained based on artificial deep neural networks to be used for the purpose of weeding
the inter-row space in crop fields. A high-level design of the weeding robot is conceptualized and
proposed as a solution to the problem of weed infestation in farming systems. The implementation
process includes data collection, data pre-processing, training and optimizing a neural network
model. A selective pre-trained neural network model was considered for implementing the task
of plant and weed identification. The faster R-CNN (Region based Convolution Neural Network)
method achieved an overall mean Average Precision (mAP) of around 31% while considering the
learning rate hyperparameter of 0.0002. In the plant and weed prediction tests, prediction values in
the range of 88–98% were observed in comparison to the ground truth. While as on a completely
unknown dataset of plants and weeds, predictions were observed in the range of 67–95% for plants,
and 84% to 99% in the case of weeds. In addition to that, a simple yet unique stem estimation
technique for the identified weeds based on bounding box localization of the object inside the image
frame is proposed.

Keywords: deep learning; artificial neural networks; image identification; agroecology; weeds; yield
gap; environment; health

1. Introduction

Growing food through agriculture involves different labor-intensive practices. Most
of these practices have traditionally been performed manually. Weeding is one such
agricultural practice. However, generally, as farming has become more industrialized—or
that the industrialized agriculture has become the leitmotif for all to emulate—different
practices evolved over time with the aim of increasing the efficiency of labor and increasing
the productivity of the land. This involved efforts to increase the efficacy of the manual
practices by using mechanical and chemical aids or in some cases to present alternate
pathways for these practices without any direct manual intervention [1].

The growth of weeds is one of the largest biotic factors contributing to the yield gap
in food crops [2,3]. In South Asia, it is the single largest biotic yield gap factor in rice
production systems [4,5]. It has been reported that in sugarcane cultivation, weeds reduced
the crop growth at early stages and have resulted in a yield loss of 27–35% [6]. In traditional
farming systems, weeds have been manually removed from the crop field with a help of
hands or with a hoe. Growing intercrops in between the main crop rows is also a potential
strategy to control the growth of weeds. However, the rise in the use of agrochemicals
multiple times (up to 300 times) in the last 50 years, to control the growth of weeds among
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other things, has shown a lot of negative effects on human and planetary health [7]. The
incidence of herbicide resistance among certain weed populations is also a cause of concern
in this regard [8,9].

It is in this backdrop that a transition to agroecology-based farming systems is being
recommended internationally with an urgency never expressed before. Agroecology is
the study of the ecology of food systems and applying this knowledge for the design of
sustainable farming systems. Agroecology-based alternatives include organic farming
and sustainable intensification strategies like the System of Rice Intensification [10]. The
problem of weeds, however, persists in some of the proposed methodologies too. For
example, the proliferation of weeds is an oft-cited critique of an agroecological methodology
of growing rice, the System of Rice Intensification, which involves growing rice under
alternate wetting and drying conditions, with earlier transplantation and wider spacing
between the rice plants [11] (Figure 1). While as in the case of agrochemical-based farming,
the problem of weeds leads to environmental hazards due to the use of pesticides, in
the case of agroecological methodologies, the practices that are suggested to counter
weed proliferation are not harmful to the environment. Such practices are however often
labor intensive [10,12].
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The excessive use of agrochemicals like pesticides including herbicides has become
a burning topic of discussion in the past few years although the dangers associated with
it have been discussed in the literature for a long time [13–16]. The presence of fertilizer
residues in surface and groundwater and that of pesticide residues in food items has been
well documented [15–20]. Their effects on human and planetary health have been detailed
in different studies; with the use of fertilizers and pesticides has increased manifold over
the past four decades particularly in developing countries [9,21,22]. On the other hand, lack
of nutrients in the soil and pest proliferation continues to challenge farmers leading to a
decline in productivity [23,24]. For example, increased weed proliferation due to excessive
use of fertilizers has resulted in yield losses in farming systems in South Asia [2,9,18,25].

In agrarian societies, secondary practices in farming, associated with plant protection,
have traditionally been done with the help of manual labor, much like the primary practices,
those associated with sowing, planting and harvesting. In some parts of the world, farming
practices like weeding are still done or were done until recently, manually. These practices
have gradually phased out to a large extent and have been replaced by the use of chemical
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pesticides like herbicides and weedicides. As such, the use of agrochemical pesticides has
become the norm [26].

So, one of the options to reverse the ecological damage of the pesticides would be
to go back to manual weeding. However, agroecology does not simply advocate going
back to earlier practices; it involves going back to roots armed with new knowledge and
tools [27,28]. This is the motivation behind the AI-based weed identifier robot, the concept
and design of which is detailed in the following sections. An AI-trained weeding robot
could play a supporting role in agroecology in this regard, when designed keeping in view
the needs of smallholder farms, in particular. As for conventional farming, by which the
current dominant form of agriculture is referred to, such a robot could achieve the double
goals of reducing pesticide use and controlling weed proliferation [11,26].

Different non-conventional yet non-chemical methods for weed identification and
management have been proposed, thanks to the widening scope of technological ad-
vances [29]. In this regard, different technologies have been used for the task of precision
weed management in agriculture, which includes the follows:

Aerial and Satellite Remote Sensing: Aerial remote sensing technologies operate from a
certain height. Here the differential spectral reflectance of the plants and weeds and spectral
resolution of the instrument (vision device) are the driving factors of identification [30].
In the case of a developing plant canopy or taller plants, such methods are hindered by
their inability to differentiate through the lack of or improper visual access to the weeds
growing on the ground. In the initial stages of the cropping season as well, random
stubbles or crop residues might interfere with weed identification [31]. Inaccuracies due
to spectral signal mixing have also been reported in aerial weed identification and hence
hinders precision weed removal [32]. The major reported challenges in aircraft and satellite-
enabled remote sensing for weed management in addition to the acquisition of high spatial
and temporal imagery from higher altitudes is the acquisition of good imagery under
cloudy conditions [31,32].

Unmanned Aerial Vehicles (UAVs): UAVs provide an edge over remote sensing
methods as they operate from a height that is closer to the ground and provides high-
resolution imagery in real-time. Images can be retrieved more frequently and largely
independent of the weather conditions like clouds [29]. Although UAVs provide higher
resolution imagery, they are beset with limitations such as high battery use during flight
time and the high processing time of the imagery [33]. The operation of UAVs like drones is
also often regulated by the government and hence their use and usability might get affected
by local government regulations [34]. Huang et al. have proposed the serial application of
a UAV-based weed identification system and a Variable Rate Spray (VRS) system for weed
identification and management [33]. The integration of both the operative functions is
limited by the payload carrying capacity of the UAV. However, the two operative functions
could easily be integrated into the same machine, with a much higher carrying capacity,
for example, in an on-ground robotic precision weed identification and removal system.

Robotics: The increasing scope of robotic technologies has made possible the de-
ployment of robotics in weed identification and management [29]. With robotics, weed
identification goes a step closer to the ground as compared to the previously discussed
methods. Based on artificial intelligence, using artificial neural networks, weeds can
be not just identified in real-time with higher spatial resolution but can also be tackled,
physically, thermally, or biologically, in real-time with a robotic arm attached to the robot
on the ground. In this regard, the application of machine learning using convolutional
neural networks for the identification of plants/fruits at their different stages has also
been reported [35].

In this study, a plant and weed identifier robot (precision weeding robot) has been
conceptualized and its software designed, based on state-of-the-art deep learning tech-
niques using artificial neural networks (convolution neural networks). Experiments were
conducted on a dataset of over 200 images of three different plant species taken under
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different conditions and of different sizes at different growth stages. The neural network
was trained to identify the plants and classify them as either weed or plant.

The robot is conceptualized for use in both small and big farms. However, the
motivation behind rendering it low-cost and low-tech is to enable smallholders to be the
primary beneficiaries. The importance of this approach stems from the fact that smallholder
farmers are the primary producers of food for the majority of the world population [36].
A low-cost weeding robot that can identify and distinguish weeds from plants could be
an addition to the agroecological interventions [28,37]. The robot can, based on the need,
either remove the weeds or incorporate them into the soil. The option of fitting the robotic
arm with other heads is also there, which can be used to spray trace elements or plant
protection substances.

The construction of the autonomous farming robot mainly focussed on performing
weeding operations is broadly divided into six phases for prototyping and carry out the
initial tests:

Phase 1: Conceptualisation of the idea framework for the design of the robot.
Phase 2: Building and testing an artificially intelligent classifier that can distinguish a

plant from a weed in real-time.
Phase 3: Design the method for estimation and extraction of the position of the

identified weeds using computer vision techniques.
Phase 4: Building a mobile robotic platform prototype and install all necessary com-

ponents and the robotic manipulator for developing and testing.
Phase 5: Design and develop control algorithms for moving the robot platform and the

manipulator with the end effector towards the weed and perform different removal strategies.
Phase 6: Validation studies and iterative tests in the lab and in the field. Improving on

the flaws and developing additional features and testing.
The ideas and results from the first three phases are described in the following sections.

2. Literature Review
2.1. Studies on Weed Killing Herbicides and Its Effects

Application of weedicides is the commonly used method for post-emergent control
of weeds [38,39]. A study conducted in 2016 reported that, globally, the use of the single
most commonly used herbicide Glyphosat increased 15-fold in a span of 20 years [40]. An
increasing number of studies detail the concerns that arise with the usage of herbicides with
respect to adverse effects on human health, soil nutrition, crop health, groundwater, and
biodiversity [41]. Many governments are planning to ban the usage of such agrochemicals
and are hence looking for alternative solutions in this regard [40]. The World Health Organ-
isation (WHO) has reported sufficient evidence regarding the carcinogenicity of insecticides
and herbicides, while its potential effect on human beings at the DNA (Deoxyribonucleic
acid) and chromosome level has also been reported [42]. In a study, the US FDA (Food
and Drug Administration) reported the presence of glyphosate residues in 63.1% of corn
and 67% of soy samples, respectively [40]. A case study in 2017 reported that a detectable
amount of glyphosate was found in the urine specimens of pregnant women leading them
to have shorter pregnancy lengths [40]. Another study from Sri Lanka shows that drinking
glyphosate contaminated water causes chronic kidney diseases [43]. In addition to being
a health risk for humans, the use of pesticides has also been reported to cause a decrease
in monarch butteries population [44], slow larvae growth in honey bees, and lead to their
death when exposed to glyphosate [45]. The use of herbicides generally poses a slew of
adverse non-target risks on the different components of the agroecosystems [46]. Hence
exploring a non-chemical solution to the problem of weed proliferation is plausible.

2.2. Deep Machine Learning in Agriculture

Machine learning (ML) is a subset of the artificial intelligence domain that provides
computers the ability to learn, analyze, and make their own decisions/predictions with-
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out being explicitly programmed. It is mainly categorized into predictive or supervised
learning and unsupervised learning [47].

The goal of the supervised learning approach is to learn a mapping function from
inputs x to outputs y, given a labeled N set of input-output pairs

D = {(xi, yi)}N
i=1 (1)

Here, D is called the training set, and N is the number of training examples. In simple
terms, we have few sample inputs and outputs and we use a mathematical algorithm to
learn an underlying mapping function that maps input to the output. Hereby, the aim is to
estimate the mapping function and predict the output when an entirely new set of input
data is provided. Currently, supervised learning is widely used in many applications, such
as classification, pattern recognition, and regression problems [47].

On the other hand, in unsupervised learning, we are only given inputs, and the goal
is to find ‘interesting patterns’ in the data [11,47].

D = {xi}N
i=1

In simple terms, here, the algorithm is left to learn and analyze the underlying pattern
without providing any input labeled data. The algorithm learns through structuring data
patterns and predicts the output. Some of the examples of unsupervised learning are
clustering and association problems [47]. Figure 2 shows a general block diagram of the
machine learning approach.
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Deep Learning is a subset of the Machine Learning approach in artificial intelligence.
Artificial deep neural networks are one of the deep learning architectures, which provide a
compelling supervised learning framework [48,49]. Machine learning and deep learning
algorithms are applied in various agricultural operations, such as flower species recognition,
disease prediction and detection in plants, crop yield forecasting, weed classification
and detection, and plant species recognition and classification [50]. These are briefly
described below.

2.2.1. Disease Identification

Crop diseases are a significant threat to the crop yield and the quality of the food
produced, with adverse consequences on the livelihood of small-scale farmers and food
security [51]. Globally, 80% of the food is grown majorly by the small-scale farmers, and
among them, there is a reported yield loss of 50% due to crop diseases and pests [51]. Vari-
ous types of microbial plant pathogens are the typical causative agents of plant diseases [20].
Different bio-control agents have been assessed and used against those pathogens to curb
plant diseases [52]. However, a few decades back, research efforts were initiated for the
early identification of plant and crop diseases at different agricultural institutes to help
farmers in the prevention of crop diseases [51]. To carry out the prevention measures,
early detection of the pathogens, and the diagnosis of crop diseases is essential. With
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technological advancements, today, these disease detection steps are carried out much
more efficiently [53].

Artificial Intelligence technology, along with computer vision, image processing,
object detection, and machine learning algorithms are widely used and analyzed and have
proven to be effective in plant disease diagnosis and detection [53]. By utilizing popular
architectures like AlexNet [23] and GoogleNet [24], Mohanty et al. reported a disease
prediction accuracy of 99.35% upon the analysis of 26 diseases in 14 crop varieties [51].
In addition to that, a real-time disease detector proposed in the experimental study by
Alvaro et al. in tomato plants helped to diagnose diseases at an early stage in tomato
crops in comparison to various lab analyses [54]. Hence, deep machine learning-based
interventions are making significant contributions to agricultural research.

2.2.2. Crop Yield Forecasting

For the purpose of planning and designing food supply chains, it is helpful to have an
idea about the crop yield that can be expected for a particular cropping system. Accurate
yield estimation also helps farmers to choose better crop management methodologies
among the different available ones [55]. Conventionally, crop yield estimation is based
on previous experience and seasonal weather conditions [55,56]. Such yield estimation
approaches, however, are constrained by factors including climate variability and the
changing soil and water dynamics and are hence often not well adapted to changing condi-
tions [56]. In modern farming systems, the availability of time-series yield data, combined
with many other sources of spatial agricultural farm data, can be utilized in designing
machine learning algorithms that can contribute to better yield prediction models [56].
Support Vector Machines (SVM), Artificial Neural Networks (ANN’s), Bayesian Networks
(BN), Backpropagation Networks (BPN), Least Squared Support Vector Machines (LS-
SVM), Convolutional Neural Networks (CNN) are some of the models that are used for
yield prediction [50].

In a study, Support Vector Machine (SVM) algorithms used on coffee plantations
to determine whether the seeds are harvestable or not helped farmers to optimize their
economic plans and work schedules [50]. In another study, Unmanned Aircraft Systems
(UAS) were used to collect the spatial and temporal remote sensing data, using an artificial
neural network model to predict tomato crop yield which had a predictive accuracy of
(R2~0.78–0.89) [57]. R2 is the coefficient of determination which is an evaluation metric
that is commonly used in regression tasks. In another study, three factors, such as soil
conditions, weather conditions, and management practices data (sowing dates) from the
year 1980 to 2015, were collected and considered as inputs [58]. With that data, a CNN-
RNN (Convolutional Neural Network-Recurrent Neural Networks) model was used to
predict the yield in soybean and corn fields across 13 states in the United States. The
model showed that soil and weather conditions are vital components in yield forecasting
in addition to crop management practices [58]. In other recent research, it is reported
that a deep learning-based 3D CNN model applied for soybean crop yield prediction
outperformed the state-of-the-art machine learning techniques [59].

2.2.3. Plant Leaf Classification and Identification

Easy recognition of different plant species can be of great help to ecologists, biologists,
taxonomists, and researchers in plant-related studies and for medical purposes [60,61].
Machine learning and computer vision algorithms are making considerable contributions
in this field [50]. They help reduce the dependency on expert availability and save time
in classification tasks [50]. Deep learning models that specifically deal with images are
used in plant leaf identification and have outperformed conventional image processing
techniques and machine learning algorithms [62].

In one research study, a proposed deep learning model that uses ResNet26 architecture
could achieve recognition levels of 91.78% on the BJFU100 dataset that consists of 10,000
images of 100 classes [60,62]. In comparison to that, the same proposed model could achieve
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99.65% in classifying 32 kinds of leaf structures of plants utilizing the publicly available
Flavia leaf dataset [60,62,63]. Studies report that it is not just the colors and shape of the
leaves that are used to classify the plants, rather plant leaf veins can also be used as input
features in determining leaf identity and properties [62]. The increased usage of mobile
technology has brought the above techniques to the stage of practical implementation,
being integrated into the form of mobile applications. Few mobile applications like Flora-
incognita, Pla@ntNet are able to recognize plants, fruits, flowers, and barks of the trees by
just snapping a picture of it [64,65]. Currently, Pl@ntNet is able to recognize 27,909 varieties
of plants and maintains a database of 1,794,096 images of different plants [64].

2.2.4. Weed Classification and Detection

Weed management in crops is a challenging task for farmers and poses a significant
threat to crop yields if not done properly [50,66]. Weeds compete with crops for nutrients
and usually grow faster, hence early identification and classification are crucial for a better
crop yield [50,67,68]. Machine learning algorithms like SVM, ANN, have already been
used for classifying and achieved high accuracy levels in different crops [50].

Utilizing the openly available dataset of plant seedlings provided by the Aarhus
University of Denmark, Ashqar et al. developed a deep learning model that was able to
classify 12 species of weeds over 5000 images with a precision of 99.48% [69]. In another
study, Smith et al. used CNNs and transfer learning techniques to classify grass, dock,
and clover and achieved a 94.9% accuracy in classifying weeds [70]. The transfer learning
technique is a powerful tool that can be used over small datasets and can achieve a
reasonable level of accuracies [70]. In another study, a fuzzy real-time classifier was
developed for weed identification in sugarcane crops, with an accuracy level of 92.9% [6].
However, the latest deep learning architectures can improve the performance of the tools
and can leverage the possibilities in exploring new ideas in weed control and management
strategies [68]. Real-time identification of weeds can be a potent tool for robots in precise
weeding. It can be a valuable addition to sustainable weed management systems [50,68].
Consequently, this could contribute towards offsetting the heavy usage of pesticides [67].

2.3. Artificial Neural Networks

As the name suggests, an artificial neural network (ANN) is a system that is inspired
by the connections of neurons in human brains [71]. An artificial neuron is a single block
mathematical entity that processes information and is essential in the functioning of a
neural network [71]. Haykin stated that a typical neuron has three essential elements: a set
of connection links that have their weights, a summation point, and an activation function.
The neuron k can be mathematically described by the following equations [71].

uk =
m

∑
j=1

wkjxj

yk = Φ(uk + bk)

where uk is linear combiner output; wk1, wk2, wk3, . . . wkm are synaptic weights; x1, x2, x3,
. . . xm are inputs; bk is the bias that has the effect of lowering the input activation function;
Φ(.) is the activation function; yk is the output of the neuron. A typical mathematical
model of the neuron is shown in Figure 3 [71].
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An artificial neural network is simply a collection of artificial neurons. Typically they
are connected and organized in layers. A layer is made up of interconnected neurons that
contain an activation function. A neural network consists of an input layer, an output
layer, and one or more hidden layers. The input layer takes the inputs from the outside
world and passes those inputs with a weighted connection to the hidden layers. The
hidden layers then perform the computations and feature extractions and are activated
by standard nonlinear activation functions such as tanh, ReLU (Rectified Linear Unit),
sigmoid, softmax, and pass the values to the output layer. These types of networks are
typically called feed-forward neural networks or multilayer perceptrons. Figure 4 shows a
feed-forward neural network [72].

Agriculture 2021, 11, x FOR PEER REVIEW 8 of 34 
 

 

function; 𝛷(. ) is the activation function; 𝑦  is the output of the neuron. A typical math-
ematical model of the neuron is shown in Figure 3 [71]. 

 
Figure 3. A non-linear mathematical model of an artificial neuron [71]. 

An artificial neural network is simply a collection of artificial neurons. Typically they 
are connected and organized in layers. A layer is made up of interconnected neurons that 
contain an activation function. A neural network consists of an input layer, an output 
layer, and one or more hidden layers. The input layer takes the inputs from the outside 
world and passes those inputs with a weighted connection to the hidden layers. The hid-
den layers then perform the computations and feature extractions and are activated by 
standard nonlinear activation functions such as tanh, ReLU (Rectified Linear Unit), sig-
moid, softmax, and pass the values to the output layer. These types of networks are typi-
cally called feed-forward neural networks or multilayer perceptrons. Figure 4 shows a 
feed-forward neural network [72]. 

 
Figure 4. A feed-forward neural network [72]. 

Commented [M1]: The 3 coordinate axis on the 
right are not clear, please provide a clearer 
picture. 

Commented [TS2R1]: Done. 

Figure 4. A feed-forward neural network [72].

When it comes to training a neural network, the focus is mainly put on minimizing the
output prediction error by adjusting the weights on each connection in a backward manner.
This process is called back-propagation [73]. The back-propagation algorithm then searches
for the minimum value in the weight space using a stochastic gradient descent method.
The obtained weights, which can minimize the loss/cost function, are then considered as a
solution for the training problem and the training process culminates [73].

2.4. Convolution Neural Networks

The term convolutional neural network (CNN) denotes one of the deep neural network
algorithms that mainly deal with computer vision-related tasks [48]. They are often used in
applications like image classification, object detection, and instance segmentation problems.
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The special feature of CNNs is that they are able to learn and understand the spatial or
temporal correlation of the data. These are highly successful in practical applications
Convolutional neural networks use a special kind of mathematical operation in one of its
layers called convolution operation instead of a generic matrix multiplication [48].

A convolution neural network (ConvNet) typically consists of three layers, a convo-
lutional layer, a pooling layer, and a fully connected or dense layer. By aligning all those
layers in a sequence or stacking them up, CNN architectures can be built. Figure 5 illus-
trates a convolutional neural network. The convolution layer is the central building unit
of CNNs. It consists of kernels that convolve independently on the input image resulting
in a set of feature maps. Strides, depth, and zero paddings are the three parameters that
control the size or volume of the activation map [74]. Here, stride represents the number of
pixels it has to move over the input image at a time; depth represents the number of kernels
that are used for convolution over the input image [74]. Convolving kernel over the input
image results in a reduction of the size of the activation map and loss of information in the
corners. The zero-padding concept adds zero values at the corners and helps to control
the output volume of the activation map. Besides, to provide the network with the ability
to understand complex data, every neuron is linked with a nonlinear activation function.
ReLU is one of the frequently used activation functions because it provides the network
with the ability to make accurate predictions [74].
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The pooling layer mainly serves the purpose of reducing the spatial size representation
to reduce training parameters and computing costs in the network and retains essential
information when the images are larger. Pooling is also referred to as downsampling
or subsampling. Pooling is done independently on each depth dimension of the image.
However, the pooling layer also helps to reduce over-fitting during training. Among other
types of pooling, max pooling with a 2 × 2 filter, and stride = 2 is commonly used in
practice for better results [74].

2.5. State-of-the-Art Object Detection Methods

In case of image classification problems, the object recognition (detection, recognition
or identification) part is the challenging part. It involves the classification of various objects
in an image and localization of the detected objects by drawing some bounding boxes
and assigning class label names for every bounding box [75]. The instance or semantic
segmentation is another problem in computer vision, where instead of drawing a bounding
box around the objects, they are indicated with specific pixels or masks [75].

Compared to machine learning methods of detecting objects, deep learning methods
are highly successful and do not require manual feature extraction. Region-Based Convolu-
tional Neural Network (R-CNN), You Only Look Once (YOLO), Single shot Multi Detector
(SSD) are some of the techniques that are proposed for object identification and localization
tasks, that can perform end to end training and detection [76–81].

R-CNN was proposed in 2014, and comprises three steps. Initially, a selective search
algorithm is used to find the regions that may contain objects (approximately 2000 pro-
posals) in an image [76,77]. Later on, a CNN is used for feature extraction and finally,
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the features are classified. However, the constraint here is that the whole ROI (Region of
Interest) with objects is warped to a fixed size and provided as an input to the CNN [77].
This process is computationally heavy and has a slow object detection speed. To mitigate
some of the flaws and make it work fast, the Fast R-CNN method was introduced [77].
Here, in the first stage, it uses a CNN to extract all the features and then an ROI pooling
layer is used to extract features for a specific input region and feed the output to a fully
connected layer that divides and passes it to two classifiers which perform classification
and bounding box regression [77].

However, another method Faster R-CNN was proposed by Shaoqing Ren and col-
leagues and it outperformed both the previous models in terms of speed and detection [76].
They introduced the Regional Proposal Network (RPN) method and combined it as a
single-mode [76]. It uses RPN to propose the regions and Fast R-CNN detector that uses
proposed regions. Mask R-CNN is another method that is an extension to the Faster
R-CNN for pixel-level semantic segmentation [78]. It was introduced as a third branch,
based on the Faster R-CNN architecture, along with classification and localization. It is
a fully connected network that predicts a segmentation mask in a pixel-to-pixel manner.
Although it is fast, it is not optimized for speed and accuracy [78]. Figure 6 represents the
summary of the R-CNN family of methods [82].
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YOLO is another popular object detection method proposed by Redmon et al. that uses
a different approach compared to the above R-CNN family of approaches [80]. A single
neural network is used to predict class probabilities and bounding boxes from the images.
Their base model and Fast YOLO model can process images in real-time at 45 fps and
155 fps with double mAP (mean Average Precision) [80]. Although it was reported to be
fast and outperformed the state-of-the-art R-CNN’s family techniques in terms of speed, it
tends to make more localization errors [80].

SSD is another approach proposed by Wei Liu et al. to detect objects in images by
using a single neural network [79]. It performs the generation of region proposals and
also identifies the objects in the proposed region in a single shot. Whereas, RPN-based
approaches use two shots, and are hence slower than SSD, have achieved an mAP higher
than Faster R-CNN or YOLO [79].

2.6. Transfer Learning Technique

Transfer learning is a technique that is used in many machine learning and deep
learning tasks. It has been defined in different ways. Goodfellow et al. define it as an
approach of transferring the knowledge of a previously trained neural network model to
the new model [48]. It has also been defined as an optimization that allows rapid progress
when the model is learning for another task [83]. Mathematically, this can be defined
as follows.

Definition: For a learning task Ls in the source domain Ds and a learning task Lt in
the target domain Dt, transfer learning helps improving the performance of the predictive
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function ft(.) in target domain Dt by utilizing the knowledge acquired from Ds and Ts;
where Ds 6= Dt and Ls 6= Lt. Figure 7 represents transfer learning technique.
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For instance, a neural network model that is trained to learn and recognize the images
of animals or birds can be used to train and identify automotive cars or medical x-ray
diagnostic images or any other set of images. Usually, this process comes in handy when
there is less amount of data that is available to train for the second task. However, it also
helps in accelerating the training process on the second task, compared to training from
scratch, which may take weeks to achieve optimal performance. When the first task is
trained to recognize some images, the low-level layers of the neural network model try to
learn the basic features of the images. For example, contours, edges, circles are extracted
by the low-level layers, which are called feature extractors. These feature extractors are a
standard in the first stages of the neural network training and are the standard building
blocks for most image recognition-related tasks. We utilize these feature extractors for the
second task, and in the end, we use an image classifier to train and classify for our specific
job. In our scenario, since the task is to recognize two classes i.e., plants and weeds, the
transfer learning technique was utilized to perform experiments that are described in the
next section.

The transfer learning technique, as described above, is proposed as the method to be
utilized for the tasks of weed identification and classification as it has been reported to
be suitable for tasks of autonomous identification and classification tasks [84]. Despite its
widespread application in diverse fields like training self-driving cars to audio transcription,
the transfer learning technique faces two major limitations. The phenomena of negative
transfer and over-fitting are considered two major limitations of the transfer learning
technique [85]. Negative transfer occurs when the model source domain data is dissimilar
from target domain data. In other words, negative transfer can occur when the two
tasks are too dissimilar [86]. As a result, the model does not perform well, leading to
poor results. On the other hand, while doing transfer learning, the models are prone
to overfitting, in absence of careful evaluation and tuning. Overfitting is however a
general limitation for all prediction technologies [87]. These limitations can be overcome
by carefully tuning the hyperparameters and choosing the right size (number of layers) of
the neural network model.

3. Materials and Methods

This field of studies regarding the problem of weed infestation were carried out on
rice farming systems in the Kashmir region in India. The robot development research is
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being undertaken at the Hamburg University of Technology (TU Hamburg), Hamburg,
Germany under the research group Rural Revival and Restoration Engineering (RUVIVAL)
at the Institute of Wastewater Management and Water Protection with the support of the
Institute of Reliability Engineering.

3.1. Conceptualisation and High-Level Design of the Robot

The conceptualized mobile robot platform’s intuitive design is shown in Figure 8 as a
demonstration of how a robot platform might look once it is built in real-time. The design
is developed using Onshape design software [88]. The robot was conceptualized initially
to operate between rows of rice plants with a spacing of 25 cm, however, subsequently, it is
planned that the robot shall be a modular one, as such operation can be adjusted to the row
width and the height of the plants at different stages. The robot is intended to recognize
weeds at an early BBCH stage, ideally at the leaf development stage. In this regard, the
images of plants taken for training purposes also included plants at the sprouting stage.
The conceptualized robot, as shown in the figure, has an electronics storage box where it
has batteries, sensors, and a single-board computer. On top of the electronic box, there is
a solar panel mount to provide a renewable source of energy for the robot’s movement.
Once the robot has successfully identified the weeds, an algorithm provides the position of
the weeds in terms of real-world coordinates of the robotic platform relative to the image
frame. After the transformations have taken place, a robotic manipulator picks up the
real-world coordinates and performs inverse kinematics operations and drives the end
effector to the desired position and performs weed control mechanisms like mechanical or
thermal weed control, optionally mulching.
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The choice of robotic manipulators to perform mechanical weeding can vary depend-
ing on various factors such as kinematic structure, degrees of freedom, workspace, motion
control, accuracy, and repeatability [89,90]. There is a possibility to mount three types of
manipulators underneath the robotic platform.

1. Articulated arm
2. Cartesian robot
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3. Parallel manipulator

Parallel manipulators have high rigidity, high payload/weight ratio, high speed and
acceleration, high dynamic characteristics, and it is easier to solve inverse kinematics
problems with them compared to serial manipulators [89,90]. On the downside, they
have a limited and complex workspace. A parallel manipulator may still be one of the
better choices for performing weeding action. Serial manipulators or articulated arms
have a larger workspace, high inertia, low stiffness, low speeds, and accelerations and
experience more difficulty in solving the inverse kinematics problem compared to parallel
manipulators [89]. Cartesian robots are not considered an ideal choice because of their
lesser number of applications on mobile platforms. At this point, we propose a parallel
manipulator as the ideal choice based on its advantages and characteristics. However, it
can still be an open question to agree on the perfect manipulator that can be mounted
onto the robot to perform weeding acts. The following Figure 9 presents three degrees of
freedom parallel delta manipulator (excluding the fourth degree of the end actuator) [90].
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This robot is intended to be used as an agricultural tool together with other sustainable
agricultural practices, which decrease the dependence of farmers on external inputs like
mineral fertilizers and pesticides. Therefore, from a purely monetary perspective, the robot
can decrease the input costs by decreasing labor requirements and eliminating the cost
associated with pesticides, while increasing yield by bridging the yield gap resulting from
weed infestation. An important aspect of the use of an autonomous weeding robot, from an
agroecological perspective, is to reduce the ecological footprint of food production through
the phasing out of chemical pesticides. This will also lead to better quality food and less
contamination of soil and water due to agrochemical residues, as already discussed in
the introduction. The environmental and societal damages of pesticide use have been
estimated to be around $10 billion [91]. The costs and benefits of this intervention, hence,
go much beyond the cost of procurement of the equipment and the benefit of labor savings
due to robot deployment for weeding. The proposed weeding robot is conceptualized as a
low-cost robotic machine, as compared to the robots that are available in the market, which
are available in the range of $20,000 to $125,000 [92–94]. The prototype is being built with a
cost estimation of $15,000 and the final robot upon industrial production is expected to be
available to the farmers for a price under $10,000. In comparison, the monetary costs of
pesticides for a smallholder with 10 hectare land under cultivation, is around $1750 per
year at $70 per acre (2018, 2019) [95]. Pesticide costs are expected to further increase in the
coming years with increased incidence of pesticide resistance. This means, if the robot is
acquired by a farmer cooperative of five farmers who use it on sharing basis, the monetary
cost of procuring the robot will be the same as the cost they would otherwise incur by using
pesticides in one year, with environmental and human health benefits a strong motivation.

19



Agriculture 2021, 11, 222

3.2. Hardware Design Approach of the Weeding Robot

Designing robot hardware that is operating under dynamic surroundings is often a
challenging task. We can notice, a high-level, modular hardware design is presented and
introduced in Figure 10. The robot ideally consists of a single-board computer along with
all the required modules, peripherals, sensors, and actuators. Single boards computers
have everything built on a single circuit board like RAM, processor, and peripherals. It
has general-purpose input-output pins that are good at controlling sensors and actuators.
There are many open-source single-board computer varieties available today. Depending
on the choice of application, it is essential to choose one. Open source boards like Raspberry
Pi have processors and have to ability to run Linux and distributed systems like Robot
Operating System (ROS) [96,97].
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ROS is a lightweight middleware that is specifically designed for robotic applications.
Its publish-subscribe design pattern is one of the featured patterns that enables asyn-
chronous parallel processing from node to node communication. It has built-in packages
that can solve inverse kinematics, forward kinematics, path planning, navigation, PID
(proportional-integral-derivative) control, vision-related tasks. It also has graphical tools
like Gazebo, a Rviz that helps to visualize the robot model for simulations [96].

Boards like Jetson Nano, Jetson TX2-Serie, Jetson Xavier NX, Jetson AGX Xavier-
Series from NVIDIA [86], Coral dev board from Google has TPU(Tensor Processing Unit)
and NPU(Neural Processing Unit) [98], that enables and accelerates them to use in AI-
specific applications like object detection, image classification, instance segmentation for
training and inferencing purposes [99]. These boards are cheaper and costs in the range
of approximately 100$ to 800$. These boards will be analyzed and utilized for our robot
building purpose in future work by keeping a low-cost reliable design in scope.

3.3. Software Design Approach of the Weeding Robot

Software for the weeding robot can be entirely developed in the ROS framework using
high-level languages like C++ or python. A sensor interface provides all the inputs from
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the cameras and sensors on the robot. The perception interface deals with the identification
of weeds, stem positions, and position estimation of the detected weeds. OpenCV libraries
can be used in the perception interface for real-time weed identification. The navigation
interface has closed-loop feedback control algorithms that help with path-planning between
the crop rows. The robot interface takes the outputs from the feedback controllers and
drives the robot in the crop field autonomously and manages the weeds in real-time using
the delta manipulator. A high-level software block diagram for the weeding robot is
presented in Figure 11.
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Python is widely popular and is used for AI, Computer Vision, and Machine Learning
applications. It has gained popularity over the last few years because of its simple syntax
structure and versatile features. The open-source community developers are actively
contributing to many libraries, which makes it easy for application or product developers
to build a product without reinventing the wheel.

OpenCV is an open-source software library for computer vision applications. This
library can be modified and used for commercial purposes under BSD-license. It comes
with many built-in algorithms, for example, face recognition, object identification, tracking
humans, and objects. This library is used broadly in all domains, including medicine,
research labs, and defense.

3.4. Training and Implementation
3.4.1. Plant and Weed Identification Pipeline

The plant and weed identification pipeline process comprises three stages. Figure 12
represents the three stages. In the first stage, data was collected and preprocessed according
to the input requirements of the neural network model. In the second stage, two neural
network models were trained, evaluated, analyzed, and optimized. Finally, in the third
stage, the best performing optimized model was exported for real-time identification of
plants and weeds.
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3.4.2. Experimental Setup

Deep learning tasks are majorly dependent on data is essential for conducting experi-
ments. The input data was based on three plant species: red radish (Raphanus raphanistrum
subsp. sativus or Raphanus sativus), garden cress (Lepidium sativum), and common dandelion
(Taraxacum oficinale) were considered for our experiments. The abundant availability of the
common dandelion on lawns, and the fast growth of red radish and garden cress made
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us opt for them. The problem of plant and weed classification can be divided into two
categories: binary and multi-class classification. By grouping the species separately into
two categories, we considered this as a binary classification problem. Considering them
individually, it becomes a multi-class classification problem. The end goal was to precisely
locate any type of weeds in the soil. We treated the classification as a binary classification
task. We merged edible radish and garden cress into one category (plants) and common
dandelion (weed) into another category and carried out our classification tests.

It is a common phenomenon that weeds grow faster compared to edible plants and
compete for more soil nutrients. As a result, during this crucial time at the beginning
of the growth cycle, distinguishing between the plant and weed is essential. This can
then be followed by weed management techniques. Based on that fact, a dataset of
edible plant seedlings and weeds of different sizes under different surrounding conditions
and backgrounds were prepared. Python programming language, Google’s open-source
TensorFlow object detection API were utilized to build, train, and analyze neural network
models. The system overview used for training, testing, and inference is presented in the
table below (Table 1).

Table 1. System overview.

CPU AMD Ryzen 7 2700X 8x 3.70 GHz

Memory 16 GB DDR4 RAM 3000 MHz
GPU NVIDIA 8 GB RAM
OS Ubuntu 18.04 LTS 64-bit

3.4.3. Data Acquisition and Pre-Processing

Deep learning tasks require a considerable amount of input data as the main source
for training the neural network models. For our problem, we made our dataset based
on three plant species, for experimental purposes. A greenhouse was maintained in the
laboratory, and we planted red radish and garden cress in mini-plots. We took photographs
and compiled the dataset by taking RGB pictures of the growing plants using a mobile
camera. The raw pictures collected were of pixel dimensions 4032 × 3024. Since they
were high-resolution images, providing them directly as input to train the network would
have been computationally expensive and hence the learning process would have been
time-consuming. Therefore the raw images were converted to 800 × 600 dimensions and
then used for pre-processing.

A complete set of 200 images consisting of photos taken from different perspectives and
angles of plants and weeds was used for training and evaluation purposes. Figures 13 and 14
show some of the input image samples that were used for training the network.
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Figure 14. Test plants: A few photographs of Radish seedlings (Left) and Cress (Right) that were
used in the training.

In order to train the network, the whole dataset was split into two, one for training
and one for evaluation. The train/test split ratio was considered as 160/40 using the Pareto
rule. When using the TensorFlow object detection API, we maintained a structure such as
a workspace for all the configuration files and datasets. The whole process was divided
into five steps based on the TensorFlow custom object detection process. Those five steps
included preparing the workspace, annotating images, generate TFRecord file format input
files, configure/train/optimize the model, and export the inference graph for testing.

For annotating images, an open-source labeling tool LabelImg was used to draw the
bounding boxes. The annotations were saved in the PASCAL Visual Object Classes (VOC)
format as XML files. A representation of the bounding boxes that were drawn around the
edible plants and weeds is shown in Figure 15.
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3.4.4. Training and Analysis of the Neural Network Model

By utilizing the transfer learning technique, two pre-trained models Faster R-CNN
inceptionv2 and SSD inceptionv2 were chosen from the TensorFlow model zoo that were
trained for the Common Objects in Context (COCO) dataset. For the weeding robot, a
latency is preferred between the detection and interacting with the weed. Hence there
was no primary requirement for higher detection speeds in our scenario. A reasonable
detection speed with higher mean Average Precision (mAP) accuracies and higher confi-
dence scores were preferred. The reported mAP accuracies and speed of the above two
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mentioned models on the COCO dataset were reasonably well and suitable for our plant
and weed detection problem. Hence these models were adapted for training, optimization,
or better generalization.

Generally, to come up with a model architecture, neural networks are stacked up in
layers sequentially, which however can make the large network computationally expensive.
A large neural network also comes with the downside of not being able to provide remark-
able accuracies. Some of the available backbone architectures include AlexNet, VGG16/19,
GoogLeNet, MobileNet, Inceptionv2, Inceptionv3, Inceptionv4, NASNet, ResNet, Xcep-
tion, Inception-Resnet. The models that were trained in our experiments and analysis
use Inceptionv2 architecture as feature extractors. Christian Szegedy and his colleagues
had proposed GoogLeNet. It consists of a 22-layer deep convolutional neural network
architecture that was considerably computationally efficient. Instead of stacking up layers
sequentially and selecting filters, they proposed a block in between the layers named as
"Inception" module. The inception module performed different kinds of filter operations
in parallel. From these filter operations, we get different outputs that were concatenated
’depth’ wise all together. This makes the network go wider rather than deeper. The single
output obtained from the previous operation is then passed on to the next layer. The result
of doing this operation was observed to be computationally less expensive. The inception
block is represented in Figure 16.
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Figure 16. Inception module with dimension reduction.

Before the training process had started, the pre-trained Faster R-CNN inceptionv2
model configuration file that was trained on the COCO dataset was modified. In the custom
configuration (Configuration 2), we set the total number of classes to 2, as it indicates the
classification of plant and weed. The maximum detections per class and maximum total
detections variables were set to 10. The network was then allowed to start the training
process from the fine-tune checkpoint that comes with the unmodified model. The learning
rate is considered as one of the essential hyperparameters that help to optimize the model
to achieve better performance. Considering the unmodified learning rate and the number
of steps that come with the pre-trained model, the model was over-fitting with a large
deviation with increasing evaluation loss. By using the heuristics method and reducing
the step size and keeping the learning rate constant, the model performed with a better
generalization ability. For further evaluation and fine-tuning purposes, we also considered
another higher learning rate value for the same model using the heuristics method. This
configuration (Configuration 2) was tried to find if the model converges faster to 0 with
better generalization capability.

ł
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Intersection Over Union (IOU): It is an evaluation metric based on the overlap be-
tween two bounding boxes. It requires a ground truth bounding box BG and a predicted
bounding box BP. With this metric, we can determine if the detection is valid or invalid.
IOU ranges from 0 to 1. The higher the number, the closer the boxes together. IOU is
defined mathematically as the intersection of the overlapping bounding boxes area divided
by the union of the overlapping bounding boxes area Figure 17.
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Figure 17. Graphical representation of Intersection Over Union (IOU) (Source: Adrian Rose-
brock/Creative Commons).

When IOU scores were available, a threshold (example 0.5) was set for transforming
the score into classifications. The IOU values that were above the threshold were con-
sidered positive predictions, and if it was below the threshold, they were considered as
negative predictions.
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Average Precision (AP): Average precision is another way to evaluate object detectors.
It is a numerical metric that is the precision averaged across all the recall values between 0
and 1. It uses an 11 point interpolation technique to calculate the AP. It can be interpreted
as the area under the precision x recall curve.

Mean Average Precision (mAP): The mAP is another and widely accepted metric to
evaluate object detectors. It is merely the average of AP, i.e., it computes the AP for each
class and averages them. Tensorboard app is used to visualize the mAP and AP values at
different thresholds. The results are briefly discussed in the next sections.

3.4.5. Stem Position Extraction

Extracting the position of the stem is essential for the robotic manipulator for the
precise weed management process. It can be done using semantic segmentation techniques,
as described by Lottes et al. [100]. The approach reported though is computationally
expensive and at best a predictive approach. In this work, a simple stem position extraction
technique was formulated and proposed based on the bounding box localization, based on
the fact that plants usually exhibit radial or bilateral symmetry. However, plants that are
anchored to a single location exhibit an overall roughly radial symmetry. Based on that
fact, we say that the center point of the detected bounding box around the weed should
be the estimated stem position in the image frame. The accuracy of the stem position was
directly proportional to how well the bounding box regressor localizes the complete weed
or plant structure.

4. Results and Discussions
4.1. Training

Tensorboard is a powerful visualization tool for evaluating model performances. It was
utilized in this work for obtaining the graphs and analyzing purposes. We consider COCO
mAP at [0.5:0.95] IOU and mAP at a 0.5 IOU threshold to evaluate the model’s performance.

4.1.1. Case 1: Configuration 1

In this case, we considered learning rate configuration 1. With that configuration, the
Faster R-CNN inceptionv2 COCO model was trained and fine-tuned up to 200 k steps. The
model performed considerably well and reached a maximum overall mAP [0.5:0.95]IOU
of 30.94% at 149.6 k step (Figure 18). The maximum mAP at the 0.5 IOU threshold was
61.5% at 149.6 k (Figure 19). At the 200 k step, the maximum overall mAP[0.5:0.95]IOU
was reached, at 30.57%. The maximum mAP at the 0.5 IOU threshold was 61.29%. These
values were considered suitable given the comparatively less amount of data that the
model was trained with. The graphs corresponding to the model performance are shown
in the following figures. Graphs were generated at a smoothing value of 0.6 to show the
overall trend of the training and evaluation process.
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Figure 18. Overall mean Average Precision (mAP) at (0.5:0.95) IOU, X-axis: steps, Y-axis: mean
average precision.
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Figure 19. mAP at 0.5 IOU, X-axis: steps, Y-axis: mean average precision.

Steps on X-axis: One gradient update is considered as a training or evaluation step
(iteration). It represents the number of batch-size images that are processed during a single
iteration. For instance, we considered 200 images, and our batch size is set to 1 image
in training configuration. That means one image was processed during one step, and
gradients were updated once. Now the model takes 200 steps to complete the processing of
the entire dataset. As the model processed the entire dataset, we say the model completed
one epoch.

Y-axis: Y-axis in the following graphs corresponds to their respective losses and mAP
of the model.

By observing Figures 20 and 21 for training and evaluation loss, we say the model is
performing better as the two loss learning curves show a decreasing trend without huge
variations. The X-axis represents the number of training and evaluation steps the model
was trained with, while the Y-axis represents the training and evaluation loss recorded
at each step respectively. Approximately at 150 k step, the model’s total evaluation loss
had reached a minimum of 0.61, and from after that, we observe a very slight increase
in the loss values, this indicates the model was trying to overfit slowly and indicates it
may not be feasible to train further. The training was stopped at 200 k, and the nearest
checkpoint recorded at 200 k step was exported and inferencing was done. This perfor-
mance was cross-verified with the pre-trained configuration, as it stated at 200 k steps were
enough for the model to perform better. Although the model performed quite well on the
new unknown images, there was scope in the optimization of the model by tuning the
model’s hyperparameters.
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One of the observations from the analysis and experiments was: If the data consid-
ered was very low, data augmentation techniques such as flipping the images can help
increase the mAP. The transfer learning technique was evaluated and justified that it can
be quite helpful and quick when training on a new classification task instead of training
the network from scratch or initializing with random weights. Hyperparameters such as
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the learning rate can be tuned further to increase mAP. Having high graphical processing
units and performing a grid search or random search method can help us find optimal
hyperparameters, but the process may be computationally expensive and time-consuming.
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Figure 21. Total evaluation loss, X-axis: steps, Y-axis: evaluation loss.

In order to establish fully the notion that our model was finely well-tuned, the losses for the
RPN network and the final classifier were also considered. By observing Figures 22 and 23, the
decreasing trend of the box classifier classification and localization loss indicates that the
final classifier is good at classifying and localizing the detected plant and weed objects. In
Figures 22 and 23, X-axis represents the number of evaluation steps and Y-axis represents
the classification loss and localization loss recorded at each step respectively.
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Figure 23. BoxClassifier: localisation loss, X-axis: steps, Y-axis: localisation loss.

The final ground truths and detections of various sizes of weeds and plants at the 200 k
evaluation step are presented in Figures 24–26 corresponding to common dandelion (weed),
garden cress and radish respectively. It is worth noticing the model gave predictions with
good detection scores.
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4.1.2. Case 2: Configuration 2

In this case, we considered learning rate configuration 2. With this configuration, the
training process was faster and achieved higher mAP values. With a lesser amount of steps
in this configuration, the results obtained were not comparatively better than the results
of the learning rate configuration 1. However, the model was overfitting and trying to
memorize when trained for a longer time. It was one of the reasons the model achieved
a higher overall mAP of 34.82% at (0.5:0.95) IOU (Figure 27) and mAP of 63% at 0.5 IOU
threshold at 200 k step (Figure 28). The resultant graphs during the training and evaluation
process are shown below. The graphs were generated at a smoothing value of 0.6 for
showing the overall trend of the training and evaluation process.Agriculture 2021, 11, x FOR PEER REVIEW 26 of 34 
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Figure 27. Overall mAP at (0.5:0.95) IOU, X-axis: steps, Y-axis: mean average precision.
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Figure 28. mAP at 0.5 IOU, X-axis: steps, Y-axis: mean average precision.

By observing the loss curves in Figures 29 and 30, the localization loss is increasing
after the 60 k step. Ideally, all the loss curves should be in decreasing trend, and any large
deviations of any loss are considered not suitable for generalization. Considering that, in
this case, we should stop training at this point. Hence we can say the chosen learning rate
hyperparameter may not be ideal for inferencing purposes compared to case 1 results. With
that, case 1 results were considered for inferencing purposes, and the results are reported
discussed in the following section.
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4.2. Plant and Weed Identification

After the model was trained, it was used for inference on real-time data for plant
and weed identification. For inferencing a new set of images, the model was saved and
exported. For exporting the frozen graph, TensorFlow object detection API’s inbuilt “export
inference graph.py” script was used. The python script was modified accordingly to our
task. The same training hardware setup and a Logitech stereo camera were used for real-
time identification of plants and weeds. A completely new set of images was provided for
predictions. The predicted output images are shown in Figures 31–33.
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4.3. Extracted Stem Positions

With the previously described stem estimation technique, we tested our method in
real-time. We observed that the estimated stem positions were close enough (83–97%) to
the original stem positions of the weed. The result of the extracted stem position in the
image frame is presented in Figure 34.Agriculture 2021, 11, x FOR PEER REVIEW 29 of 34 
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Figure 34. Estimated stem position of the weeds and plants using the trained robot.

4.4. Discussion of Results

The use of convolutional neural network-based models has been reported in different
areas of agriculture, including disease identification, classification on the basis of ripeness
of fruits, plant recognition using leaf images, and identification of weeds [35,101–104]. The
application of convolutional neural networks (CNNs) using the transfer learning technique
has also been reported in recent literature in the case of crop/fruit (age) classification.
Perez-Perez et al. (2021) reported accuracy of 99.32% in the case of identification of different
ripening stages of Medjoul dates [35]. This specific work points to the possibility of tuning
the hyperparameters to achieve higher performance parameters with the proposed weeding
robot as has been mentioned regarding the results of the current study. In recent years other
studies have reported classification of plants through plant and leaf image recognition
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using convolution neural networks with accuracies up to 99% [103,104]. Sladojevic et al.
(2016) reported the use of CNNs for disease recognition by leaf image classification with
precision up to 98% [102].

With respect to the classification of different plant species, with the aim of site-specific
weed management, Dyrmann et al. (2016) trained a CNN on a set of 10,413 images
of 22 different plant species and were able to achieve a classification accuracy of up to
86% [101]. In the reported study, although the number of species classified was high,
the images that were considered in the dataset were of plants at the same growth stage
i.e., the seedling stage [101]. This makes the classification easier due to the same plant
and leaf structure and hence higher accuracies are expected. However, in the case of
weed removal applications, multiple weeding procedures might be needed at different
times during a crop season, hence training a neural network with images of plants and
weeds at different growth stages was done in the current study. The methodology is also
reported in a recent study reported in literature where a crop field at two different growth
stages was used to train the neural network, achieving an accuracy of 99.48% [105]. The
classification accuracies achieved in the current study hence fall in the range of accuracies
found in various studies reported in recent literature. The current study adds further value
to the research by reporting the mean Average Precision (mAP) of the object detection
tasks performed by the trained model. The mAP is an important metric to evaluate object
detection models including both classification and localization tasks. Table 2 gives an
overview of three other studies on CNNs for plant/weed/fruit classification that have
reported comparable results together with the current study.

Table 2. Comparison of studies with reported training of CNNs for plant classification and identification tasks.

Reference Number of Species Growth Stages Number of Images
(Dataset)

Highest Classification
Accuracy

Object Detection:
Mean Average

Precision (mAP)

Perez-Perez et al. (2021) 1 Ripe and Unripe 1002 99.32% n.a.
Dyrmann et al. (2016) 22 Seedling 10,413 86.2% n.a.
Asad and Bais (2020) 2 Two 906 99.48% n.a.

Current study 3 Multiple 200 Plant: 95% Weed: 99% 31%

5. Conclusions

The weed identifier robot is proposed as a non-chemical solution to the rampant
problem of weed infestation in food crop farming systems. Research and implementation
of a plant and weed identification system using deep learning and state-of-the-art object
detection methods was done. Transfer learning technique was explored and the deep learn-
ing model was further analysed, evaluated and justified for better generalization. It was
seen that deep learning architectures are much better than conventional machine learning
architectures in terms of image identification and predictive performance. A simple unique
stem estimation technique was proposed which extracted their positions in the image
frame. Consequently, the paper also offers a high-level hardware and software design
architecture proposal of a cost-effective autonomous weeding robot.

The developed plant and weed identification system was presented and tested on
the real-world data and good confidence scores on classification and identification were
achieved. It can be concluded that higher values of mAP could be achieved with more
steps with the right hyperparameters. Real-time identification was done using a Logitech
web camera and it was observed that the model was good at identifying and distinguishing
between plants and weeds. The stem position estimation approach was tested and it
was found that accuracies were directly dependent on the bounding box localization
during identification. Based on our observation, we conclude that this technique also
reduces the amount of computation when compared with other methods. In addition to
building the prototype and validation studies, future work in this direction could include
investigations on choosing a method to find the right hyperparameters for optimization
of the identification function of the robot. Further studies could explore 3D position
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estimation methods to determine the position from the center of the identified weed in the
2D image frame to the real-world robot frame.
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Abstract: Combining modern technology and agriculture is an important consideration for the
effective management of oil palm trees. In this study, an alternative method for oil palm tree
management is proposed by applying high-resolution imagery, combined with Faster-RCNN, for
automatic detection and health classification of oil palm trees. This study used a total of 4172
bounding boxes of healthy and unhealthy palm trees, constructed from 2000 pixel × 2000 pixel
images. Of the total dataset, 90% was used for training and 10% was prepared for testing using
Resnet-50 and VGG-16. Three techniques were used to assess the models’ performance: model
training evaluation, evaluation using visual interpretation, and ground sampling inspections. The
study identified three characteristics needed for detection and health classification: crown size, color,
and density. The optimal altitude to capture images for detection and classification was determined
to be 100 m, although the model showed satisfactory performance up to 140 m. For oil palm tree
detection, healthy tree identification, and unhealthy tree identification, Resnet-50 obtained F1-scores
of 95.09%, 92.07%, and 86.96%, respectively, with respect to visual interpretation ground truth and
97.67%, 95.30%, and 57.14%, respectively, with respect to ground sampling inspection ground truth.
Resnet-50 yielded better F1-scores than VGG-16 in both evaluations. Therefore, the proposed method
is well suited for the effective management of crops.

Keywords: high-resolution imagery; deep learning; oil palm tree; CNN; Faster-RCNN

1. Introduction

Oil palm trees are one of Thailand’s most essential economic crops considering it has
the highest oil production when compared to other oil-producing plants such as soybean,
peanut, sunflower, and rapeseed. Palm oil can be processed into various products such as
cooking oil, soap, margarine, and sweetened condensed milk. In addition, it is also used as
a raw material in the manufacturing of biodiesel and pulp. Oil palm trees grow well in
tropical climates, which are often found in countries situated in equatorial regions. Thus,
the oil palm is a crop that is widely cultivated by farmers in Southern Thailand.

Precision agriculture requires reliable data on the current situation at the right time.
Therefore, the automated detection of oil palm trees and health disorder recognition is
an alternative method for farmers to manage their resources using technology instead of
a manual approach. The method also provides information on plant growth and health,
which is especially useful to track the age and survival rate of plants that will contribute to
the oil palm tree production in the future. Oil palm tree detection and enumeration are
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mostly performed using high-resolution imagery. For instance, many researchers have
used high-resolution satellite images [1] and unmanned aerial vehicle (UAV) images [2].
UAVs have played a vital role in remote sensing in recent years as they can provide
high-resolution images when there is no cloud cover. Users can set the altitude and
time to fly. Aliero et al. used UAVs for automated counting of oil palm trees based on
crown properties and the plants’ response to radiation. Moreover, spatial analysis and
morphological analysis were also used in their study [3]. Daliman et al. used Haar-based
rectangular windows and support vector machines (SVMs) to detect oil palm trees on the
WorldView-2 satellite imagery dataset [4]. Manandhar et al. presented a methodology for
object detection with aerial imagery by applying shape feature characteristics for oil palm
tree detection and counting. They used circular autocorrelation of the polar shape matrix to
represent images as the shape feature and used a linear SVM to standardize and reduce the
feature dimensions. Finally, they used local maximum detection on the spatial distribution
of standardized features for oil palm tree detection [5].

Deep learning is one of the various machine learning procedures with a mechanism
similar to that of the human brain. In addition, it is commonly applied to analyze visual
imagery. Recently, much attention has been paid to this method and it has been applied
in many fields, such as image recognition [6], handwriting recognition [7], medical, and
healthcare [8]. Moreover, deep learning has also been applied to agricultural management
to reduce production costs resulting in more effective agricultural production. For example,
our method was used to detect and enumerate agricultural populations, including the
classification of diseased plants. Cheang et al. proposed a system for the counting and
positioning oil palm trees using a convolutional neural network (CNN) to classify the oil
palm dataset on a high-resolution satellite image with a sliding window technique [9].
Li et al. proposed using deep learning to detect plants instead of manual detection meth-
ods. They used data from a manual count to train and improve the performance of the
CNN system. Then, all samples were predicted on images using the sliding window
technique [10]. Sladojevic et al. studied the development of plant disease patterns from
leaf images using deep convolutional networks. The results of their study demonstrated
the ability to distinguish diseased plants from healthy plants [11]. Mubin et al. used a
geographic information system (GIS) and CNN named LeNet on WorldView-3 images for
young and mature oil palm detection [12]. They used a training dataset with a mini-batch
of size 20 and used GIS software to display and create maps of oil palm tree prediction.

There are various popular deep learning algorithms, such as recurrent neural networks
(RNNs), long short-term memory networks (LSTMs), and CNNs. RNNs and LSTMs have
similar capabilities and are widely used in time series problems/forecasting, but LSTM
can be trained for tasks that require long-term memory. CNN is the deep neural network
most commonly used in computer vision and object detection [13]. Many CNN models
are available in the public repository. VGG-16 [14] and Resnet-50 [15] are examples of the
CNN models commonly used for image classification. In recent years, a selective search
based on regions was introduced to improve the speed and performance of a detector. The
most common models include R-CNN, Fast R-CNN [16], and Faster R-CNN [17]. Faster
R-CNN performed best among those three in terms of accuracy and detection speed.

The use of remote sensing in conjunction with these deep-learning techniques is
common in the agricultural industry in many countries. Most research on oil palm tree
detection uses satellite imagery and focuses solely on detection and counting. For example,
Zheng et al. used Faster-RCNN, one of the most popular networks for object detection,
to detect tree crowns from satellite images [18]. In contrast, in this study, high-resolution
images from UAVs are used instead. Due to this approach, data surveys can be performed
without time restrictions and under any cloud conditions. Our study focuses on oil
palm health classification (healthy or unhealthy) rather than just detection and automatic
counting as other research. Therefore, it is useful for modern precision agriculture, which
focuses on reducing farmer work processes and unnecessary production costs.
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This study proposes a technique to automatically detect and count oil palm trees and
recognize oil palm health from high-resolution images using CNN with Faster-RCNN
structure. The training data included over 4000 images of individual oil palm trees with
healthy and unhealthy classes. We evaluated the model by conducting model training
evaluation and comparing prediction results with visual and ground inspections. The
model was also tested with images taken at different altitudes.

2. Materials and Methods
2.1. Data Used

Detection and health classification of oil palm trees by using the deep learning need
to be performed using high-resolution images and require field survey data to study
important physical characteristics of oil palm trees and evaluate the reliability of the results.
Thailand is the 3rd largest producer of palm oil in the world [19]. Southern Thailand is
the region with the most oil palm plantations. The study areas included three oil palm
plantations, two of which were located in Surat Thani and the other one was located
in Krabi, shown in Figure 1, with approximately 40 Rai (64,000 square meters) in each
plantation area. Surat Thani and Krabi are the two provinces with the largest oil palm
production, ranked first and second, respectively. The recommended practice for oil palm
plantation is to allocate an area of 9 m × 9 m for each oil palm tree. This results in a regular
pattern of oil palm positions within an area.
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Figure 1. Location of study area.

The dataset used in this study consists of high-resolution RGB images taken from a
UAV by a DJI Phantom 4 Pro camera with a 20 megapixel resolution using a D-Log color
profile, as illustrated in Figure 2. All the images used were captured at an altitude of 100 m,
and the ground sampling distance (GSD) was approximately 2.8 cm.

Moreover, field survey data were obtained by performing a health assessment using a
paper survey and ground photography. Field observation data such as crown size, crown
density, crown color, and examples of problematic oil palm trees were used to study the
correlation between oil palm trees in plantations and UAV images.

2.2. Methodology

The methodology section of this paper presents the research process used during this
study. First, data collection is discussed, together with the data preparation process used to
prepare the high-resolution image dataset for use as training and testing data. Second, the
method used to develop training data and a model for counting and health classification is
addressed. Last, we covered model evaluation, which included three techniques: model
training inspection, visual inspection, and ground inspection.
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Figure 2. Unmanned aerial vehicle (UAV) image of the study area.

2.2.1. Data Collection and Data Preparation

The study area survey was critical given that the survey data would be used to check
and monitor physical characteristic changes and oil palm tree health. The data collection
process focused on three obvious external physical characteristics that could easily be
observed: color (the level of green in the canopy), crown density, and crown size. Moreover,
other general information such as age, height, diameter at breast height (DBH), nutritional
deficiency symptoms, diseases at various levels, and the approximate amount of production
were recorded for every sample tree. All the data above could be used as indicators of
oil palm health and abnormalities. A tree under stress was also classified as unhealthy.
Figure 3 showed the example of unhealthy trees. A laser range finder collected information
on height and crown size (measured along the x- and y-axes). The DBH was measured
using a tape measure or rope with scale. A sample of surveyed oil palm trees was chosen
using a systematic sampling method, sampling approximately 25% of the total area. The
sample trees were chosen by selecting every fourth tree in a row, starting with the first tree
of the row.
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Figure 3. Examples of unhealthy trees with nutrient deficiencies and Ganoderma.

The ground truth labels were acquired through sample observations using the follow-
ing criteria: crown size was determined by measuring the crown’s radius, and the crown
color was assessed by classifying the amount of green in the canopy at different heights
(lower fronds, middle fronds, and upper fronds) into three levels. We also separated crown
density into three levels: low, moderate, and high, as shown in Figure 4. The measurements
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and labeling were assessed in collaboration with agricultural officers specializing in oil
palms. To obtain additional information, a sample leaf from the 17th frond was collected
for nutrient inspection in the laboratory. However, the aim of this study is to emphasize
external indicators and focus on large-scale measurements before considering other meth-
ods such as the use of a multispectral camera or spectroradiometer for leaf inspection.
Thus, obscure health conditions in oil palms may be less well detected, and this one of the
limitations of this study.

Agriculture 2021, 11, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. Examples of unhealthy trees with nutrient deficiencies and Ganoderma. 

The ground truth labels were acquired through sample observations using the fol-
lowing criteria: crown size was determined by measuring the crown’s radius, and the 
crown color was assessed by classifying the amount of green in the canopy at different 
heights (lower fronds, middle fronds, and upper fronds) into three levels. We also sepa-
rated crown density into three levels: low, moderate, and high, as shown in Figure 4. The 
measurements and labeling were assessed in collaboration with agricultural officers 
specializing in oil palms. To obtain additional information, a sample leaf from the 17th 
frond was collected for nutrient inspection in the laboratory. However, the aim of this 
study is to emphasize external indicators and focus on large-scale measurements before 
considering other methods such as the use of a multispectral camera or spectroradiome-
ter for leaf inspection. Thus, obscure health conditions in oil palms may be less well de-
tected, and this one of the limitations of this study. 

 
Figure 4. Examples of ground truth observations. 

The preparation of the processed UAV images with red, green, and blue (RGB) 
bands began by converting the format of orthophotos from .TIF to .JPG. The image size 
used as data for training and testing had an extreme effect on memory and data pro-
cessing. Thus, each image was divided into smaller images of similar sizes. Therefore, 
each image was split into equal-sized 2000 pixel × 2000 pixel images without taking im-
age overlap into account, as shown in Figure 5. 

Figure 4. Examples of ground truth observations.

The preparation of the processed UAV images with red, green, and blue (RGB) bands
began by converting the format of orthophotos from .TIF to .JPG. The image size used as
data for training and testing had an extreme effect on memory and data processing. Thus,
each image was divided into smaller images of similar sizes. Therefore, each image was
split into equal-sized 2000 pixel × 2000 pixel images without taking image overlap into
account, as shown in Figure 5.
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2.2.2. Training Data Development and Oil Palm Tree Classification Model

In accordance with the development of training data, for automatic oil palm tree
detection and counting based on deep learning techniques, this method required data that
were already classified (labeled data). The data used for training were divided into two
classes, i.e., healthy oil palm trees and unhealthy oil palm trees, as illustrated in Figure 6.
In the train set, the class of healthy oil palm trees included healthy oil palm trees on images
in various conditions, such as blurred images of healthy oil palm trees and healthy oil palm
trees with incomplete canopies (however, more than 50% of the canopy is still present). It
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also included healthy oil palm trees that overlapped other objects, other plants, and other
backgrounds. For the unhealthy oil palm tree class, the dataset included unhealthy oil
palm trees on images in various conditions similar to that of the healthy dataset. To reduce
the problem of detecting the same tree in multiple images, the bounding boxes were drawn
around the regions that enclose more than 50% of the canopy.
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Figure 6. Examples from the (a) healthy and (b) unhealthy datasets.

During the preparation of a training set, including healthy and unhealthy oil palm
trees, the palm trees were separated from other objects that were not of interest by finding
the Xmin, Ymin, Xmax, and Ymax values for each canopy boundary. These values were
determined by using the program LabelImg and drawing a bounding box surrounding
each canopy along with providing the class definition. The program generated the training
dataset as the Pascal VOC dataset in .xml format. This format was then converted into a
text file (.txt), with each line containing “filepath, Xmin, Ymin, Xmax, Ymax, class_name”
before being used for processing. Additionally, the testing dataset was prepared the same
as the training dataset, with the testing dataset accounting for testing was 10% of the
total dataset.

According to Figure 7, the processing procedure for classifying and counting oil
palm trees began with data collection and training data development. Then it followed
with the selection of CNN architecture, including parameter optimization. The CNN
architecture was then trained and tested using the dataset with Python3. Another criterion
for architecture selection was the availability of the software, which enables people from
multiple disciplines to benefit from the findings of this study.

As a result, Faster-RCNN was chosen as the underlying network architecture, and
the two models selected for this research were VGG-16 and Resnet-50. These models are
common options for Faster-RCNN and were mostly used as baseline models for further
improvements. The models were implemented using the TensorFlow and Keras deep-
learning libraries for Python3. Model training was performed on a PC running Windows
10 and equipped with a GeForce RTX 2080 Ti. The parameters were optimized using
1000 iterations per epoch with a batch size of 1, as supported by Faster RCNN. The training
was halted at 39 epochs for the VGG-16 network and 40 epochs for the Resnet-50 network
when no further increase in accuracy was noted.
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2.2.3. Evaluating Model Performance

The evaluation of performance after processing was evaluated in three parts. A
preliminary assessment of the effectiveness of the model was done by observing the
accuracy and loss function values. After processing, classifier accuracy for bounding
boxes from the region proposal network (RPN), four loss values, and elapsed times were
compared for this research. Next, visual inspection, which evaluated the model’s accuracy
by comparing the number of oil palm trees predicted by the model to the number counted
on UAV imagery. The performance evaluation of an object detection model commonly uses
precision, recall, and F1-score without considering intersection over union (IoU), which
is more suitable for image segmentation evaluation. Moreover, it takes a long time and is
difficult to generate labeled training data for an IoU-based evaluation, especially for oil
palm trees, because of the overlapping boundaries of the oil palms. Therefore, a confusion
matrix was used to describe the achieved model classification showing true positive (TP),
false negative (FN), false positive (FP), and true negative (TN). Then, the values from the
confusion matrix were used to measure performance by calculating precision, recall, and
F1-score defined by the following equations.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score = 2 × Precision × Recall
recision + Recall

(3)

The ground inspection was performed by comparing the predicted results from the
CNN model with the physical characteristics of oil palm tree samples observed from
surveying and ground photography. This method showed the consistency between the
predicted results of the model and the oil palm trees in plantations. The result obtained
from this evaluation was the ratio of all predicted oil palms to the total number of oil
palms surveyed. Further, it compared the proportion of healthy and unhealthy oil palms
predicted by the model to healthy and unhealthy oil palms from the survey.

3. Results and Discussion
3.1. Physical Characteristics and Data Preparation

The physical characteristics of oil palm trees are essential, as they indicate good or
bad health. The health of oil palm trees on high-resolution imagery at vertical angles
can be observed using three crucial characteristics: crown size, crown color, and crown
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density. The crown size relates to the age of the oil palm tree. Young oil palms (less
than eight years) have a small crown size, becoming larger as they grow, and reaching
full size at about eight years. Aside from the oil palm’s age, the canopy’s size can also
be affected by exposure to Ganoderma disease. Concerning color, most healthy oil palm
trees have a green canopy. In contrast, unhealthy oil palms tend to have different colored
canopies ranging from yellowish green to brown, resulting from water or essential nutrient
deficiency. Additionally, crown density is another important physical feature as the number
of fronds can inform whether the oil palm tree is healthy or not. Specifically, healthy oil
palm trees have very dense fronds and when viewed from a vertical angle it is almost
impossible to see the ground below. However, problematic oil palm trees have fewer
fronds; therefore, it is possible to see the ground below. Figure 8 presents a few examples
of the important physical characteristics indicative of oil palm health.
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The general characteristics of healthy, mature oil palm trees are usually dark green
leaves, about 18–25 fronds, and a diameter of approximately 7.5 m [20]. Nutritional
deficiencies are most often the cause for the deterioration of oil palm health. Nutrients
that play an essential role in changing the physical characteristics of oil palms are nitrogen,
phosphorus, potassium, magnesium, and boron. The epidemic disease in the oil palms,
called Ganoderma, is also a significant problem that stunts growth and reduces production.

In this study, observing the physical characteristics on the UAV images and surveying
oil palms on plots suggested that most of the oil palm trees were healthy. The healthy palm
trees in the images appeared with large crown sizes, had a dark green color, and a higher
frond density than unhealthy oil palms. However, the classification of health according to
significant external features was determined by all the characteristics mentioned above.
For example, a young oil palm with a small crown size and low density could be a healthy
oil palm. On the contrary, oil palms with large crown sizes and low density were classified
as unhealthy.

Furthermore, the images oil palm trees that had differences in color, crown density, and
crown size when compared to healthy oil palm trees were investigated further. The survey
found that images showing a yellow canopy indicated an oil palm with nitrogen deficiency.
Similarly, canopies with a greenish orange color indicated a palm with potassium deficiency.
It was also found that most of the deficient palm trees were not only lacking in one nutrient
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but often lacked multiple nutrients. In the case of trees with severe nutritional deficiencies,
reductions in crown density and size were noted. Additionally, some oil palm trees
presented on the images with tiny crown sizes, low frond density, and colors of light green
and yellow. When surveying and investigating these oil palm trees in the field, it was
discovered that this resulted from the palm trees being affected by an advanced stage of
Ganoderma. This disease causes leaves to dry out and to eventually drop down against the
trunk, resulting in reduced crown size and density.

A dataset of high-resolution images from UAVs with visible bands (RGB) was used for
training and testing on a deep learning model. The images used were images taken in May
2019 at an altitude of 100 m with a spatial resolution of approximately 2.8 cm. The images
of each study area were converted into .JPG format before splitting them into equally sized
images of 2000 pixels × 2000 pixels each. This was determined to be the optimal size to
maximize memory usage and processing performance. The dataset comprised 133 images
total, 116 were assigned to the training set and 17 to the test set.

3.2. Training Data Development and Model for Oil Palm Tree Classification

The training dataset contained the position of each oil palm tree, known as bounding
boxes. From the 116 images in the training dataset, 3780 bounding boxes were created and
used for training. The dataset comprised 3035 healthy oil palms and 745 unhealthy oil
palms. The testing dataset contained 392 bounding boxes, with 325 healthy oil palms and
67 unhealthy oil palms sourced from 17 images. Table 1 shows a breakdown of the 4172
bounding boxes used in this study. Data augmentation was used to reduce the impact of
the imbalanced data.

Table 1. The total amount of bounding boxes for the training and testing datasets used in this study.

Dataset Healthy Unhealthy Total

Number of training bounding boxes 3035 745 3780
Number of testing bounding boxes 325 67 392

This study used the same dataset to train and test two different base models, namely
Resnet-50 and VGG-16, both of which were based on the Faster-RCNN structure. The
training and testing results were compared to assess the ability and efficiency of the model.
Additionally, we conducted experiments to test the ability of automatic oil palm tree
detection at different flying altitudes and settings. We flew the UAV at low altitudes
of 50 m, 80 m, and 90 m. Image mosaicking was an issue because palm trees have a
similar pattern, and lower attitude images mostly contained palm trees. This resulted in
unmosaicking in many areas. The overlap and sidelap parameters were adjusted, but this
did not solve the issue. In addition to the flights at these altitudes, we performed flights
using different color profiles and at different times to determine the best lighting. The
experimental results demonstrated that flying with a D-log color profile before 3:00 PM
was a suitable scenario.

The experiment was performed using UAV images taken at altitudes of 100, 120,
140, 160, 180, and 200 m. The results are shown in Figure 9, and Table 2 summarizes the
experimental results.

Table 2. Automatic detection of oil palm trees at various altitudes.

Altitude (m.) Actual Oil Palm Tree Detected Oil Palm Tree Accuracy (%)

100 856 852 99.53
120 856 836 97.66
140 856 769 89.84
160 856 422 49.30
180 856 75 8.76
200 856 3 0.35
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Figure 9. Oil palm tree detection at different flying altitudes.

Accuracy was evaluated by comparing the results with actual data derived from the
visual interpretation of high-resolution images. Thus, this assessment emphasizes counting
the number of oil palms. Table 2 indicates that oil palm trees are best detected on UAV
images taken at a 100 m altitude, with accuracy measuring at 99.53%. Therefore, images
taken at a height of 100 m were used in this study to detect and classify oil palm tree health.
After the training, the results were tested using the test dataset that were prepared to be
approximately 10% of the training set. The Resnet-50 network model predicted 331 healthy
palms, and only 51 oil palm trees were predicted as unhealthy. Therefore, this model
detected a total of 382 oil palm trees on 17 images. The VGG-16 network model predicted
268 healthy palms, and 103 oil palm trees were predicted as unhealthy. In summary, this
model detected a total of 371 oil palm trees on 17 images. The prediction results of each
image for the two models used are shown in Table 3. Example images of prediction results
from Resnet-50 and VGG-16 are shown in Figure 10.

Table 4 shows the comparison of the actual counts and each model’s predictions. The
results show that both models were useful in terms of oil palm tree detection (healthy and
unhealthy) as the number of predicted palm trees is very close to the actual count, with
the Resnet-50 model performing slightly better. When comparing health classification, the
number of healthy and unhealthy oil palms detected by the Resnet-50 model was more
accurate than those of the VGG-16 network. Further, the accuracy and precision ratios were
calculated and will be discussed in the section evaluating model performance.

The initial assessment results also indicated that errors occurred because the oil palm
trees were obstructed by other tree canopies. Coconut and other trees with similar physical
characteristics to those of oil palm trees were another cause of errors. The number of
detectable and undetectable oil palm trees was affected by palms located on the edges of
an image, where some parts of the crown area extended across two images. Moreover, the
crown size, especially in young oil palms with small crown sizes, was another cause of
detection error. This was due to the small number of young oil palm samples with small
crowns, as the study focused on large number of mature oil palms that appear in the study
area. However, the errors related to crown size could be addressed to improve performance
by increasing the number of young oil palms in the training data. Figure 11 illustrates
examples of misclassification cases.
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Table 3. The predictable number from Resnet-50 and VGG-16.

Image
Predictable Number from

Resnet-50 Network
Predictable Number from

VGG-16 Network

Oil Palm Healthy Unhealthy Oil Palm Healthy Unhealthy

1 42 42 0 40 40 0

2 41 41 0 41 41 0

3 39 39 0 36 36 0

4 13 13 0 9 7 2

5 5 5 0 4 3 1

6 19 19 0 22 17 5

7 11 11 0 18 12 6

8 9 8 1 9 7 2

9 45 21 24 41 8 33

10 27 17 10 26 14 12

11 1 1 0 8 3 5

12 40 27 13 33 12 21

13 23 20 3 21 13 8

14 3 3 0 3 3 0

15 12 12 0 11 3 8

16 12 12 0 12 12 0

17 40 40 0 37 37 0

Total 382 331 51 371 268 103Agriculture 2021, 11, x FOR PEER REVIEW 12 of 17 
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Table 4. The comparison of results to the actual count.

Dataset Oil Palm Healthy Oil Palm Unhealthy Oil Palm

Actual count 392 325 67
Resnet-50 382 331 51
VGG-16 371 268 103
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Figure 11. Examples of (a) young oil palm, (b) oil palm under other trees, (c) coconut tree, and (d)
other trees.

3.3. Oil Palm Tree Classification Model Performance Evaluation

The model’s performance was evaluated in three main sections that evaluated the
accuracy of data training, comparing the prediction results with visual interpretation and
field surveys by using precision, recall, and F1-score as measures.

3.3.1. Model Training Inspection

Figure 12 shows the evaluation of the model performance focusing on accuracy and
loss. The results indicate that the Resnet-50 network achieved higher performance than
the VGG-16 network in all aspects. However, both models’ values increase or decrease
similarly. Therefore, evaluating model performance with multiple indicators is advised to
assist in choosing an appropriate model.
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Figure 12. Comparison of model training performance.

Apart from accuracy and loss, the time used to train the model is another indicator
that can assess a model’s ability. Figure 13 illustrates the comparison of the time spent on
each epoch for the models used. From the graph, it can be observed that Resnet-50 used
approximately 10 min less time to process than VGG-16. Thus, the total processing time
between the two-model differed with about 5 h, with Resnet-50 using approximately 40 h,
while VGG-16 took approximately 45 h.

50



Agriculture 2021, 11, 183
Agriculture 2021, 11, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 13. Processing time. 

3.3.2. Visual Inspection 
In this section we discussed the model performance when evaluated by comparing 

the results of both models with actual data derived from visual interpretation of 
high-resolution images in another area. As mentioned before, the effectiveness was 
measured using precision, recall, and F1-scores, as shown in Figure 14 below. 

 
Figure 14. Comparative performance of oil palm tree classification between Resnet-50 and VGG-16 
after compared with visual interpretation. 

Each model’s performance was evaluated by dividing the prediction results into 
three classes: oil palm tree detection, healthy, and unhealthy. Overall, the Resnet-50 
network showed superior performance when comparing F1-scores. However, the Res-
net-50 model had lower precision than VGG-16, when identifying healthy oil palms. 
Resnet-50 achieved 91.24%, while VGG-16 had a high value of 98.13%. 

3.3.3. Ground Inspection 
This evaluation was performed by using the results of the model showing the per-

formance, i.e., Resnet-50. The results were compared with the field survey’s sampling 

Figure 13. Processing time.

3.3.2. Visual Inspection

In this section we discussed the model performance when evaluated by comparing
the results of both models with actual data derived from visual interpretation of high-
resolution images in another area. As mentioned before, the effectiveness was measured
using precision, recall, and F1-scores, as shown in Figure 14 below.
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Figure 14. Comparative performance of oil palm tree classification between Resnet-50 and VGG-16
after compared with visual interpretation.

Each model’s performance was evaluated by dividing the prediction results into three
classes: oil palm tree detection, healthy, and unhealthy. Overall, the Resnet-50 network
showed superior performance when comparing F1-scores. However, the Resnet-50 model
had lower precision than VGG-16, when identifying healthy oil palms. Resnet-50 achieved
91.24%, while VGG-16 had a high value of 98.13%.

3.3.3. Ground Inspection

This evaluation was performed by using the results of the model showing the perfor-
mance, i.e., Resnet-50. The results were compared with the field survey’s sampling data to
verify the predicted results from the model. In addition, this evaluation method determined
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the pattern of physical characteristics and their associated symptoms that the model can
detect and classify. A total of 251 samples of oil palm trees were obtained from field survey
sampling. Among these, 236 were healthy palm trees and 15 were unhealthy palm trees.
The prediction results obtained from the Resnet-50 model comprised 223 healthy palm trees
and 6 unhealthy palm trees. The performance evaluation was performed by calculating
precision, recall, and F1-score.

Figure 15 illustrates the performance of Resnet-50. The precision of the predicted
results was 100% for both the oil palm tree and unhealthy oil palm tree classes, while
precision for the healthy oil palm tree class was 96.54%. For recall, the model achieved
the highest percentage in the oil palm class, at 95.62%, with the healthy and unhealthy
palm tree classes achieving 94.09% and 40.00%, respectively. For the F1-score, the class
of oil palm tree had the highest performance, at 97.76%. Then followed the healthy and
unhealthy oil palm tree classes with percentages of 95.30 and 57.14, respectively.
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Evaluating the model’s predictive performance demonstrated that the model was
best used for oil palm tree detection. The model showed predictive errors for health
classification, especially in unhealthy oil palm. However, this model can be used for
preliminary detection of health issues, since it is effective in identifying significant physical
symptoms in palm trees.

According to the survey of 15 unhealthy oil palms on the plot, there were six oil palms
with nitrogen deficiency, 12 oil palms with potassium deficiency, and seven oil palms with
boron deficiency. Moreover, there were also two oil palms suffering from magnesium
deficiency and two oil palms with Ganoderma disease. Of the six palms that were predicted
to be unhealthy, two were lacking nitrogen, four were lacking potassium, two had boron
deficiency, one had boron deficiency, and the last had Ganoderma disease. From the results,
it can be concluded that the most common problem of unhealthy oil palm trees is a lack
of nitrogen. However, the abnormality of the oil palm is usually not caused by the lack
of one nutrient, but several. In addition, Ganoderma is another significant factor affecting
the health classification since it always shows apparent physical symptoms. Based on the
evaluation, the model can accurately predict up to 50% of all the oil palm trees that face
this problem.
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4. Conclusions

Since oil palms are one of the most important economic plants in Thailand, developing
technology that can help to manage and maintain them is important. It can be a tool for
farmers to become more efficient and increase their income. Currently, UAVs are widely
used in agriculture as it can take many images with high spatial resolution in a short
time, while traditional methods such as field surveying take longer. This research studied
the detection and health classification of oil palms by using high-resolution imagery in
conjunction with deep learning. Our study used Faster RCNN for object detection and
evaluated the Resnet-50 and VGG-16 models.

The research used three important physical characteristics for detection and health
classification: crown size, crown color, and crown density. These characteristics could
indicate the age of the oil palm, nutrient deficiencies, and the presence of an epidemic
disease, named Ganoderma.

In evaluating model performance, the accuracy from model training indicated that
the Resnet-50 model was more accurate than VGG-16, and had fewer errors. Moreover,
training on Resnet-50 was approximately 5 h faster than on VGG-16. The evaluation of the
test prediction results was done by comparing them with both visual interpretations and
field survey results. Next, precision, recall, and F1-score were calculated and evaluated.

Based on the study results and performance assessments, it can be concluded that the
Resnet-50 network performed better in detection and health classification than the VGG-16
network. Further, the analysis of results highlighted that primarily the unhealthy palm
trees faced potassium deficiencies and infection with Ganoderma. Additionally, the results
showed that the model was often unable to detect young palm trees due to their smaller
crown sizes.

In conclusion, our study showed that our proposed method could be used in the
effective management of oil palm trees in Thailand. By tracking the number and health of
oil palm trees this method can reduce fieldwork and the number of laborers. In addition, it
can help to reduce the cost of production as treatments and fertilizer can only be applied in
areas where it is needed. This will be beneficial to both farmers and organizations.

For the recommendation, the short processing time is an advantage of the Faster-
RCNN structure, but it requires a large amount of varied training datasets. Therefore, we
recommend that future studies increase the amount and variety of datasets, including
varied image sizes, as this will improve model performance. Our study found errors in oil
palm tree detection often occurred at the edge of the image. Consequently, increasing the
overlap between images will result in a reduction of prediction errors. Our study focused
on only three significant physical characteristics for oil palm tree health classification, all of
which can be detected in RGB images. Thus, only preliminary classification of the health
of oil palm trees can be done. For future studies, a multispectral camera could be used to
enhance health classification.
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Abstract: The purpose of the research was to determine the influence of selected factors on the
average degree of coverage and uniformity of liquid spray coverage using selected single and dual
flat fan nozzles. The impact of nozzle type, spray pressure, driving speed, and spray angle on the
average degree of coverage and coverage unevenness coefficient were studied. The research was
conducted with special spray track machinery designed and constructed to control and change the
boom height, spray angle, driving speed, and spray pressure. Based on the research results, it was
found that the highest average coverage was obtained for single standard flat fan nozzles and dual
anti-drift flat fan nozzles. At the same time, the highest values of unevenness were observed for these
nozzles. Inverse relationships were obtained for air-induction nozzles. Maximization of coverage
with simultaneous minimization of unevenness can be achieved by using a medium droplet size for
single flat fan nozzles (volume median diameter (VMD) = 300 µm) and coarse droplet size for dual
flat fan nozzles (VMD = 352 µm), with low driving speed (respectively 1.1 m·s−1 and 1.6 m·s−1) and
angling of the nozzle by 20◦ in the opposite direction to the direction of travel.

Keywords: average degree of coverage; coverage unevenness coefficient; optimization; neural network

1. Introduction

The use of a chemical method of plant protection results in high yields with significant
qualitative values. However, adverse effects may occur during the application of plant
protection products. The use of chemicals may cause natural environment pollution, as
well as operators of sprayers, are exposed to contact with spray liquid. Also, agricultural
products can be contaminated by chemicals what is dangerous for consumers [1–5]. How-
ever, the spraying process is still one of the most difficult agrotechnical processes. Efforts
have therefore been made to reduce the negative effects for human health and the environ-
ment. These activities include the use of air-induction nozzles, the use of decision support
tools [1,6–8], and injection into trunk trees of plant protection products [9]. In addition,
the use of the latest advanced sprayers equipped with various sensors reduces the risk of
hazards [10,11]. Scientists have also presented results of research on the exposure of by-
standers to the drift liquid. Based on the conducted research, it was shown that adjustment
parameters of a sprayer to meteorological conditions result in a reduction of exposure of
bystanders. The experiments were carried out in vineyards located in mountainous areas
during windless weather [12]. Similar studies were conducted by Butler-Ellis et al. and
Kennedy et al. in field and orchard conditions. Scientists developed models that describe
pesticide exposure in the short and long terms [13–15]. Moreover, the necessity to conduct
experiments in regard to epidemiological research was emphasized [16]. The nature of
problems in the field of plant protection and the need to take action to reduce them was
emphasized by the Food and Agriculture Organization FAO, which established the year
2020 as the International Year of Plant Health.

Research into the modeling of spray drift and the optimization of the spraying process
has progressed considerably in recent years. On the basis of the conducted research, sci-
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entists have emphasized the importance of knowledge about spray drift. The researchers
pointed out, above all, the need for further work on drift curves under field conditions.
Emphasis was also placed on the establishment of a system for EU Member States to
prevent diffuse contamination.

Baldoin, Friso, and Pezzi, in their studies, used two adjuvants and performed the
experiments at wind speed 1, 3, 5 m/s−1, relative humidity 30%, 50%, and 70% at a
temperature of 27 ◦C. On the basis of the conducted experiments, it was found that by
the use of adjuvants, the droplet spectrum was modified by eliminating fine and very fine
droplets. Thus, the predictions of mathematical modeling were confirmed [17–19], while
Griesang et al. conducted a study to assess the spray drift potential [20]. Three types of
nozzles were selected for testing: air-induction single flat fan, standard dual flat fan, and
hollow cone at a pressure of 300 kPa. The application liquid consisted of glyphosate and
a combination of glyphosate and adjuvant. Based on the conducted experiments, it was
found that after adding the adjuvant to the liquid, the drift of the liquid was reduced by
about 40% when using standard dual nozzles. On the other hand, in the case of using an
air induction single nozzle, the addition of the adjuvant did not affect the drift, despite the
increase in volume median diameter (VMD) value and improvement of droplet uniformity.

Many researchers have developed model-based computational fluid dynamics (CFD).
Research has been conducted mainly in orchard crops as well as in greenhouses. CFD
modeling has been the dominant technique in the design of air-assisted sprayers in recent
years. Duga et al. and Salcedo et al. presented the results of research carried out in orchard
crops. The authors presented a 2D and 3D computational model of fluid dynamics (CFD).
The model took into account the tree habit and wind flow in the tree crown as well as
the speed of the sprayer. On the basis of the model, the amount of liquid carried into the
atmosphere (air drift) and into the soil (sedimentation drift) was calculated [21,22].

The aim of the research conducted by Gregorio et al. was to evaluate the drift reduction
potential for hollow cone nozzles using light detection and ranging (LiDAR) technology.
Based on the analysis of the results of this work, it was concluded that the LiDAR technique
is an advantageous alternative in the evaluation of spray drift potential reduction [23,24].

Methods and algorithms of artificial intelligence are increasingly popular and very
useful for solving various problems in agriculture. Some of these techniques have been
employed for mathematical modeling of complex and nonlinear relationships, prediction,
classification, and optimization. Thanks to artificial intelligence algorithms, complex agri-
cultural ecosystems can be better described and understood. Wen et al. developed an
unmanned aerial vehicles variable spray system based on an error back propagation artifi-
cial neural network (ANN) [25]. The ANN was trained to predict droplet deposition based
on environment temperature, humidity, flight speed and altitude, wind speed, prescription
value, nozzle pitch, and propeller pitch. The system, which is a combination of ANN
(stable and reliable model with a prediction error of less than 20%) and multi-sensor for col-
lecting real-time information about the spraying process, was successfully used for variable
spray operation under different conditions. The ANN predictor model useful for spraying
process optimization in precision agriculture was presented by Azizpanah et al. [26]. They
developed accurate models for predicting the volumetric median diameter and drift phe-
nomenon. The accuracy of the models described by the coefficient of determination (R2)
was higher than 90%. Yang et al. presented an approximate mathematical model of droplet
drift for multirotor plant protection unmanned aerial vehicles [27]. In this model, a radial
basis neural network was combined with computational fluid dynamics to better under-
stand the influence of droplet size and windward airflow on the movement of droplets.
In the work of Zhai et al. a precision farming system based on a combination of genetic
algorithm and particle swarm optimization algorithm was proposed [28]. This system
was validated through simulations of precise pesticide spraying. In these simulations,
unmanned aerial vehicles were used as agents and were expected to complete the mission
of precise pesticide spraying cooperatively. The aim of the mission was to optimize benefits
and costs.
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Many researchers have emphasized that the quality and effectiveness of the spraying
procedure depends on the uniformity of the spray liquid fall, the coverage of the sprayed
objects [29,30], and the application of the spray liquid [31]. Both the degree of coverage and
the application of utility liquid can be used to assess changes in spraying technique, verify
selected parameters of the sprayer, and assess the work of nozzles, depending on technical
and technological factors [32,33]. Analysis of existing research results indicates that there
is a relationship between the degree of coverage and biological effectiveness. According to
some scientists, 30% covering of plants with liquid provides satisfactory efficacy (for most
plant protection products). The assessment of the quality of sprayers and nozzles based on
the coverage of sprayed objects is the fastest and simplest method [34]. The values of the
degree of coverage are obtained after computer image analysis of the probes, which are
most often water-sensitive papers [6,35,36].

However, the research does not show clearly whether this value applies to the average
degree of coverage, calculated taking into account all components of the sprayed plants
and in relation to systemic or contact pesticides.

According to the authors, the indicators presented above can serve as basic param-
eters for comparing the spraying equipment with various types of nozzles. Additional
information useful in the assessment of the spraying procedure can be provided to the
sprayer user by indicators proposed by the authors—average coverage of sprayed objects
and coverage unevenness coefficient.

Therefore, the purpose of this research was to determine the impact of the type and
size of the nozzles, liquid pressure, spray angle, and driving speed on the average degree
of coverage and coverage unevenness coefficient, using various single and dual nozzles.

2. Materials and Methods
2.1. Experimental Set-Up

The following parameters of nozzles’ work were used for the research:

• Pressure: 200, 300, and 400 kPa,
• Height of boom: 0.5 m,
• Spray angle, perpendicular to the ground: angled forward +20◦, +10◦, and 0◦ and

backward −10◦, and −20◦

• Driving speed: 1.1, 2.2, and 3.3 m·s−1,
• Dose of liquid: 200 L·ha−1 (200 kPa), 240 L·ha−1 (300 kPa), 275 L·ha−1 (400 kPa))

Four types of nozzles were selected for testing: standard and air-induction single flat
fan and anti-drift and air-induction dual flat fan. Standard nozzles are used in favorable
weather conditions. A pre-orifice was applied to the anti-drift nozzle; thus, droplets would
be larger and less prone to drift when compared with the standard nozzles. The largest,
air-filled droplets were produced by the air-induction nozzles through the use of a Venturi
air aspirator while reducing drift.

For each combination, the type of nozzle, and the pressure of the spray liquid, the
droplet size was measured by laser diffraction method (Table 1). The Malvern Spraytech
spray particle size analyzer was used for determining the droplet size distribution.

The tests were carried out under laboratory conditions. The test stand consisted of a
device functioning as a self-propelled field sprayer and of artificial plants positioned along
the machine’s route (Figure 1).

Three artificial plants as three replicates were placed under a spray boom. Water
sensitive papers were attached to artificial plants to form specific surfaces: the upper
horizontal level surface, the bottom horizontal level surface, the vertical transverse leaving
surface, and the vertical transverse approach surface. The scheme of the test stand was
presented in our previous publication [37].
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Table 1. The droplet size for each combination of the type of nozzle and the pressure.

Type of Nozzle Nozzle
Manufacturer

Pressure
(kPa)

Flow Rate
(l·min−1)

Droplet Size—VMD
(µm)

single standard flat-fan—AXI 11002 Albuz 200 0.65 212
single standard flat-fan—AXI 11002 Albuz 300 0.79 193
single standard flat-fan—AXI 11002 Albuz 400 0.91 182

single air-induction flat-fan—AVI 11002 Albuz 200 0.65 554
single air-induction flat-fan—AVI 11002 Albuz 300 0.79 440
single air-induction flat-fan—AVI 11002 Albuz 400 0.91 382
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 200 0.65 299
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 300 0.79 264
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 400 0.91 249

dual air-induction flat-fan—AVI TWIN 11002 Albuz 200 0.65 543
dual air-induction flat-fan—AVI TWIN 11002 Albuz 300 0.79 436
dual air-induction flat-fan—AVI TWIN 11002 Albuz 400 0.91 384

VMD: volume median diameter.
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Figure 1. Experimental set-up: 1—artificial plant, 2—spray boom, 3—metal track guide.

The degree of coverage was obtained based on a computer image analysis in Pho-
toshop CC 2019 software. Water-sensitive papers change color from yellow to dark blue
after contact with water, making it possible to analyze them. The dimensions of the water-
sensitive papers are 26 mm × 76 mm, and three fragments with an area of 100 mm2 were
randomly selected for analysis. The degree of coverage was determined as the ratio of the
surface covered with the liquid to the surface of the sampler.

Psp =
Apc

Ap
·100 [%], (1)

where: Psp—degree of coverage (%), Apc—surface covered with liquid (pixels), Ap—sampler
surface (pixels)
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The average degree of coverage was calculated as follows

χPsp =
Pspg + Pspn + Pspo

n
[%], (2)

where χPsp—average degree of coverage; Pspg—average degree of coverage of the upper
horizontal level surface (%); Pspn—average degree of coverage of the vertical transverse
approach surface (%); Pspo—average degree of coverage of the vertical transverse leaving
surface (%); n—number of tests.

During the experiments, the bottom horizontal surface was not covered by liquid in
any of the tests. Therefore, this surface was not taken into account in further analysis.

The coverage unevenness coefficient was calculated based on Equation (3) according
to the formula [38]

η =

√
1

n−1 ∗ ∑n
i=1

(
Pspi

− χPsp

)2

χPsp
[−] (3)

where η—coverage unevenness coefficient (−); Psp—degree of coverage of particular
objects; χPsp—average degree of coverage of all objects; n—number of tests.

2.2. Neural Network Models

Artificial neural networks are a very popular tool from artificial intelligence methods
used for mathematical modeling, classification, clustering, and other tasks. ANNs are
particularly useful when multidimensional, nonlinear relationships must be analyzed.
ANNs are composed of very simple units called artificial neurons. Each neuron produces
its output signal based on a vector of input signals, a vector of synaptic weights, and its
activation function. The most popular are nonlinear activation functions such as sigmoid
and hyperbolic tangent functions. In this research, a multilayer perceptron (MLP) as a
neural network was used. MLP is a feedforward artificial neural network and consists of
at least three layers: an input layer, one or more hidden layers, and an output layer. MLP
networks are usually trained by an error backpropagation algorithm, which uses small
incremental changes in connection weights in each iteration. After the training process
(usually several thousand training cycles), the vector of connections weights changes from
initial, random values to minimize the error between actually calculated and target output
vector. The MLP with one hidden layer was used for this neural model’s development.
Four separate neural models were built, and for each model, the input signals were as
follows: droplet size, driving speed, and spray angle. Two models were developed for
single nozzles (with an average degree of coverage and coverage unevenness coefficient
as an output signal). Analogous models were developed for the dual nozzles. To find the
best MLP configuration for each model, 2000 ANNs were trained. The number of neurons
in the hidden layer was changed from 10 to 40, different activation functions were used,
and the matrix of initial synaptic weights was randomly generated. The experimental data
were first normalized, and then the 270 data set was divided randomly into training, test,
and validation sets at a 70:15:15 ratio. The accuracy of neural models was evaluated based
on the coefficient of correlation (R), and the root mean squared error (RMSE), which are
given by the following Equations (4) and (5)

R =
∑(Ymeas − Ymeas)

(
Ypred − Ypred

)

√
∑ (Ymeas − Ymeas)

2
∑
(

Ypred − Ypred

)2
, (4)

RMSE =

√
1
n

n

∑
i=1

(
Ypred − Ymeas

)2
, (5)
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where: Ypred—the absolute predicted value; Ypred—the average predicted value; Ymeas—the
absolute measured (experimental) value; Ymeas—the average measured value.

The accuracy of models is particularly important in the case of validation data set.
One of the phenomena that can occur during the training process is overfitting. It occurs
when the model is of great accuracy for the training data set (very best fit to the training
data), but the accuracy for the validation data set is low. As a result, a neural network
would not be able to generalize well to new data and is unsuitable for real-life applications.

Based on the best neural models, a sensitivity analysis was performed to indicate the
contribution of the independent input variables in the models. For the simulations, the
software Statistica v. 10 was used.

2.3. Optimization

The aim of the optimization process was to maximize the average degree of coverage
and minimize the coverage unevenness coefficient at the same time. As an optimization
method, a genetic algorithm (GA) implemented in the Excel 2013 Solver tool was cho-
sen. The Excel Solver has been successfully applied for optimization procedures in prior
literature. It was used by Barati in the estimation of nonlinear Muskingum routing parame-
ters [39] and by Bhattacharjya for solving a groundwater flow inverse problem (estimation
the unknown pumping rates of an aquifer, and estimation the aquifer transmissivity) [40].
The genetic algorithm is a search heuristic strongly inspired by nature, namely Charles
Darwin’s theory of natural evolution. GA works based on a population of individuals—
potential problem solutions. Every individual is a vector of parameters known as genes.
A set of genes is called a chromosome, which is an encoded form of a solution. Genes
can be coded in various forms: as binary numbers, as real numbers, or as text. In each
algorithm iteration, the tree operations: selection, crossover, and mutation are performed
on individuals. The general rule of the algorithm is to assess each individual based on an
objective function that represents the solution quality and to find the individual having the
best objective function. This individual is considered as an optimal and, after decoding, is
interpreted as a solution. In this work, the objective function was constructed as follows:

y = χPsp + (2 − η), (6)

The objective function is the sum of two terms, the degree of coverage, which must
be maximized, and the expression (2 − η), which is related to the coverage unevenness
coefficient, and maximization of this expression means coverage unevenness coefficient
minimization. The values of χPsp and η were calculated based on neural models of the best
accuracy. The aim of the optimization process was to find values of droplet size, driving
speed, and spray angle, which maximizes the objective function. The optimization was
performed separately for single and dual nozzles. Parameters of the algorithm were set
as follows: population size—100; mutation rate—0.075; convergence—0.0001; random
seed—0; and maximum time without improvement—30.

3. Results and Discussion

The test results are shown in Figures 2–7. Average coverage for various nozzles and
spraying parameters is presented in Figures 2–4. An extremely important value of the
presented results of the experiments is to emphasize the differences in both the values of
the degree of coverage and the unevenness index.

Taking into account the average coverage values, it should be stated that the liquid
pressure influences this parameter. Moreover, higher values of the average coverage were
recorded for single standard and dual anti-drift nozzles.

60



Agriculture 2021, 11, 151

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

Taking into account the average coverage values, it should be stated that the liquid 
pressure influences this parameter. Moreover, higher values of the average coverage 
were recorded for single standard and dual anti-drift nozzles. 

 
Figure 2. Average degree of coverage for selected nozzles at 1.1 m∙s−1 driving speed. 

 
Figure 3. Average degree of coverage for selected nozzles at 2.2 m∙s−1 driving speed. 

 
Figure 4. Average degree of coverage for selected nozzles at 3.3 m∙s−1 driving speed. 

0

5

10

15

20

25

30

35

40

–20 –10 0 10 20 –20 –10 0 10 20 –20 –10 0 10 20

0.2 MPa 0.3 MPa 0.4 MPa

χPsp (%)

γ (º)

p (MPa)

single standard nozzle single air-induction nozzle
dual anti-drift nozzle dual air-induction nozzle

0

5

10

15

20

25

30

35

40

–20 –10 0 10 20 –20 –10 0 10 20 –20 –10 0 10 20

0.2 MPa 0.3 MPa 0.4 MPa

χPsp (%)

γ (º)

p (MPa)

single standard nozzle single air-induction nozzle
dual anti-drift nozzle dual air-induction nozzle

0

5

10

15

20

25

30

35

40

–20 –10 0 10 20 –20 –10 0 10 20 –20 –10 0 10 20

0.2 MPa 0.3 MPa 0.4 MPa

χPsp (%)

γ (º)

p (MPa)

single standard nozzle single air-induction nozzle
dual anti-drift nozzle dual air-induction nozzle

Figure 2. Average degree of coverage for selected nozzles at 1.1 m·s−1 driving speed.
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Figure 3. Average degree of coverage for selected nozzles at 2.2 m·s−1 driving speed.
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Figure 6. Coverage unevenness coefficient for selected nozzles at 2.2 m·s−1 driving speed.
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Only a few studies have presented the on average degree of coverage results in
the aspect of field crops. Average coverage studies were conducted by Qin et al. in the
cultivation of cotton [41]. The authors of this study concluded that three factors, horizontal
boom height, hang boom sprayer, and nozzles angle, were influenced by the average degree
of coverage. Dereń et al. presented research results of the average total degree of coverage.
This was based on experiments that found that higher values were obtained for dual flat
fan nozzles [42]. In another study, the type of nozzles as well as the speed of sprayer and
pressure of liquid influenced on the degree of coverage [43,44].

The results of the coverage unevenness coefficients are shown in Figures 5–7. The
lowest values of this parameter, and thus the highest uniformity, are characteristic for dual
air induction nozzles, regardless of the spraying conditions.

Analysis of the average coverage and uniformity of coverage were carried out, among
others by Cai et al. in horticulture with the use of a fan sprayer equipped with a laser
scanning system [45].

Based on the analysis of the experiments carried out by Musiu et al., it was found that
reducing the liquid dose deteriorated the liquid coverage of plants but at the same time
improved the homogeneity of distribution [33].

The four neural models were developed and then used for sensitivity analysis and
the optimization process. The MLP structure and accuracy parameters for the best models
obtained are presented in Table 2. The low values of residual mean square error (RMSE)
error and high values of coefficient of correlation (R > 0.9) for the train, test, and validation
data sets prove the high accuracy of all neural models.

Table 2. Error metrics of best model performances.

MLP Structure
Train Test Validation

R RMSE R RMSE R RMSE

Single nozzles, average degree of coverage as an output parameter

3-15-1 0.961 0.0020 0.968 0.0022 0.968 0.0019

Single nozzles, coverage uniformity coefficient as an output parameter

3-36-1 0.968 0.0015 0.967 0.0019 0.933 0.0041

Dual nozzles, average degree of coverage as an output parameter

3-17-1 0.959 0.0024 0.970 0.0021 0.976 0.0022

Dual nozzles, coverage uniformity coefficient as an output parameter

3-11-1 0.979 0.0016 0.968 0.0027 0.992 0.0007
MLP: multilayer perceptron; RMSE: Residual mean square error.

Additionally, high values of R for the validation data set suggest that no over-
fitting effect occurred during the training process, and that models could be used in
real-life applications.

Some mathematical models of the spraying process have been proposed in the litera-
ture. Baetens and coauthors proposed a 3D computational fluid dynamics model and a 2D
diffusion-advection model for drift prediction [46,47]. The RTDrift model of spray drift
was developed by Lebeau et al. [48]. These models included more input parameters than
our model and took into account environmental parameters; however, their accuracy was
lower. Li and coauthors proposed a prediction model of droplet coverage depending on
droplet size, application distance, air delivery speed, and target leaf surface. The predic-
tion accuracies of the model were 87.5%, 80%, and 100% for the three states of uniform,
accumulation, and loss [31]. Slightly lower accuracies of neural models were obtained in
our previous work, where the coverage of the three leaf surfaces was predicted based on
droplet size, spray angle, and driving speed [49].

Based on the models presented in Table 2, a sensitivity analysis was performed to
determine the parameters influencing the most and average degree of coverage and a

63



Agriculture 2021, 11, 151

coverage unevenness coefficient for single and dual nozzles. The results are presented in
Figures 8 and 9. In the case of both parameters, the average degree of coverage and the
coverage unevenness coefficient, the most influencing parameter is droplet size, which
depends on nozzle type and pressure. The influence of driving speed and nozzle angular
position is significantly lower. These results are in agreement with those presented for the
coverage of the sprayed surfaces where the vertical transverse approach surface, the vertical
transverse leaving surface, and the upper level surface were analyzed separately [49].
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Figure 8. The relative importance of the input variables of the MLP model on the average degree
of coverage.
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Figure 9. The relative importance of the input variables of the MLP model on the coverage
unevenness coefficient.

The analysis of experimental data shows that in the case of single nozzles, the highest
value of an average degree of coverage was observed for small droplet size (182.4 µm—
produced by a single standard flat-fan nozzle with a pressure of 400 kPa), low driving speed
(1.1 m·s−1), and nozzle angular position of −20◦. On the other hand, the lowest value of the
coverage unevenness coefficient was produced by medium droplet size (400 µm—obtained
from a single air-induction flat-fan nozzle with a pressure of 300 kPa), high driving speed
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(3.3 m/s−1), and nozzle angular position of 20◦. Taking into account the average degree
of coverage, a well known fact that the application of higher pressure results in a higher
degree of coverage could be confirmed. At the same time, it can be concluded that standard
nozzles have greater coverage unevenness compared to air induction nozzles. This is
related to the range of coverage of individual horizontal and vertical surfaces. During the
spraying process, there was significantly lower coverage on vertical surfaces and much
higher coverage on horizontal surfaces obtained with single standard flat fan nozzles
in comparison to single air induction flat fan nozzles. Therefore, greater uniformity of
coverage was obtained when using single air induction flat fan nozzles.

The configuration of optimum parameters described above makes simultaneous
optimization of the two indicators of spray process quality fairly difficult. As a result of the
optimization carried out with the use of a genetic algorithm combined with neural models,
the following optimum parameters of the spraying process were calculated: droplet size
of 300 µm, driving speed of 1.1 m·s−1, and nozzle angular position of −20◦. For these
parameters, the average degree of coverage equaled 35.54% (the range of experimental
data was from 11.66% to 37.08%), and the coverage unevenness coefficient equaled 0.85
(the range of experimental data was from 0.80% to 1.25%). It can be stated that the spraying
process parameters calculated in the optimization process give an average degree of
coverage close to the maximum value and the coverage unevenness coefficient close to the
minimum value.

In the case of dual nozzles, based on experimental data, it can be stated that the highest
value of an average degree of coverage was observed for small droplet size (248.9 µm—
produced by the dual anti-drift flat-fan nozzle with a pressure of 400 kPa), medium driving
speed (2.2 m/s−1), and nozzle angular position of −20◦. The lowest value for the coverage
unevenness coefficient was produced by a large droplet size (542.8 µm—obtained from
the dual air-induction flat fan nozzle with a pressure of 200 kPa), low driving speed
(1.1 m/s−1), and nozzle angular position of −20◦. When using dual flat fan nozzles, similar
relationships were observed as in the case of using single flat fan nozzles. Based on the
optimization process, the following optimum parameters of the spraying process could be
proposed: droplet size of 352 µm, driving speed of 1.6 m/s−1, and nozzle angular position
of −20◦. For these parameters, the average degree of coverage equaled 28.32% (the range
of experimental data was from 13.81% to 35.31%), and the coverage unevenness coefficient
equals 0.71 (the range of experimental data is from 0.63 to 1.06). It can be stated that for
single nozzles, the spraying process parameters produced by optimization gave an average
degree of coverage and coverage unevenness coefficient closer to optimum values than in
the case of dual nozzles. The optimum spraying parameters obtained in this work generally
correspond to these proposed in our previous work, where the coverage of three sprayed
surfaces (the vertical transverse approach surface, the vertical transverse leaving surface,
and the upper level surface) was optimized [49].

4. Conclusions

The findings provide a practical basis for the selection of appropriate nozzle param-
eters to ensure the highest uniformity with the best average liquid coverage. The main
results of this study are as follows:

The highest value for an average degree of coverage was observed when applied with
a single standard flat fan nozzle with a pressure of 400 kPa and a dual anti-drift flat fan
nozzle with a pressure of 400 kPa.

The air induction flat fan nozzles were characterized by greater uniformity of coverage.
Based on the optimization results (maximization of coverage and minimization of

unevenness), the two combinations of spraying conditions can be proposed. The first is
single air induction nozzles using a pressure above 400 kPa, driving speed of 1.1 m/s−1 and
spray angle, perpendicular to the ground of −20◦. The second is dual air induction nozzles
at pressure above 400 kPa, driving speed of 1.6 m·s−1 and spray angle, perpendicular to
the ground of −20◦.
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Abstract: Soil spatial variability mapping allows the delimitation of the number of soil samples
investigated to describe agricultural areas; it is crucial in precision agriculture. Electrical soil param-
eters are promising factors for the delimitation of management zones. One of the soil parameters
that affects yield is soil compaction. The objective of this work was to indicate electrical parameters
useful for the delimitation of management zones connected with soil compaction. For this purpose,
the measurement of apparent soil electrical conductivity and magnetic susceptibility was conducted
at two depths: 0.5 and 1 m. Soil compaction was measured for a soil layer at 0–0.5 m. Relationships
between electrical soil parameters and soil compaction were modelled with the use of two types of
neural networks—multilayer perceptron (MLP) and radial basis function (RBF). Better prediction
quality was observed for RBF models. It can be stated that in the mathematical model, the apparent
soil electrical conductivity affects soil compaction significantly more than magnetic susceptibility.
However, magnetic susceptibility gives additional information about soil properties, and therefore,
both electrical parameters should be used simultaneously for the delimitation of management zones.

Keywords: apparent soil electrical conductivity (ECa); magnetic susceptibility (MS); EM38; neu-
ral networks

1. Introduction

One of the objectives of precision agriculture is optimizing production by increasing
yield or by cost reduction due to optimizing the use of natural resources, and improving soil
quality [1]. Another important aspect is also environmental impact reduction, e.g., by the
variable-rate application of fertilizers or reduction of the application of plant protection
products. For this purpose, many new technologies have been developed and used in
practice. One available technique popular in precision agriculture is the delimitation of
management zones. Management zones are areas of the field with similar characteristics,
such as soil texture and chemical composition [2]. The optimization of crop production
requires knowledge of many soil properties. These properties are very often determined
by expensive and time-consuming methods. Delimitation of management zones allows for
a reduction in sample numbers involved in defining soil properties. However, this process
is difficult due to the high soil spatial variability and complex combination of factors that
may influence soil properties [3].

Soil spatial variations may be analyzed based on many techniques such as apparent
soil electrical conductivity (ECa) maps, crop yield maps and soil organic matter maps [4–6].
The electrical soil parameters are influenced by many physical-chemical features of soil.
The apparent soil electrical conductivity is defined as the soil capacity for conducting
electric current. ECa reflects some soil properties such as water content, bulk density, salin-
ity, clay content, texture, organic matter content, size and distribution of pores, depth to
contrasting soil layers, and organic carbon content [7–9]. Magnetic susceptibility (MS)
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expresses the level of magnetization of a soil in reaction to an applied magnetic field. Mag-
netite and maghemite as ferromagnetic minerals are the main determinants of soil magnetic
susceptibility [10]. MS is strongly affected by soil drainage class, texture, clay content,
organic matter, and organic carbon [11–14].

Geospatial measurements of apparent soil electrical conductivity and magnetic sus-
ceptibility are reliable, quick, easy, nondestructive, and economic; therefore, they are
recognized as a valuable mapping tool indicating soil productivity [15,16]. Furthermore,
the important feature of ECa is its temporal stability, which has been demonstrated in prior
literature [17,18]. Many studies have investigated the potential of soil electrical parameters
in the delimitation of management zones. Serrano et al. (2014) reported the potential
usability of ECa measurement using the Veris 2000 XA sensor for monitoring soil texture,
moisture content, organic matter, pH, and phosphorus soil content [19]. Pedrera-Parrilla
et al. (2016) delimited three management zones with similar soil conditions based on ECa
measurement [1]. They found an exponential relationship between spatially averaged soil
water content and ECa for water contents lower than 0.11 kg·kg−1. Peralta et al. (2013)
reported that ECa variability can be explained by some soil properties, namely clay content,
soil organic matter, cation exchange capacity, and soil water content [15]. de Souza Bahia
et al. (2017) reported a high correlation between MS and clay, iron oxides, carbon, and ni-
trogen, and revealed that MS is a good predictor of key properties of soils under study [20].
Magnetic susceptibility was used by some researchers for soil mapping according to the
degree of contamination with heavy metals or organic compounds [21,22]. Ayoubi et al.
(2019) reported a strong relationship between magnetic susceptibility and concentrations of
chromium, iron, nickel, zinc, cobalt, and manganese [10]. It can be stated that the apparent
electrical conductivity of soil has become one of the most popular tools for characterizing
the spatial variability of soil parameters. Magnetic susceptibility is most often used for soil
mapping in the context of environmental pollution.

Soil compaction may result from natural causes such as soil parameters, freezing,
and drying or from mechanical operations with the use of heavy wheeled machines.
As a soil compaction influences the yield, the delimitation of management zones connected
with this parameter is of great importance. Soil compaction affects the water infiltration
rate, soil air permeability, nitrogen availability, root length, root penetration, and rooting
depth [23,24]. Soil compaction mapping is necessary, e.g., for a variable-depth tillage
technology that plays an important role in applications of precision agriculture.

Artificial neural networks (ANNs) are very useful tools for solving prediction prob-
lems in agriculture, and there are many applications of neural network modelling in
state-of-the-art literature. The advantage of ANNs is the ability to produce high-quality
prediction models of complex and nonlinear relationships [25–27].

Generally, for the delimitation of management zones, a single electrical parameter
(ECa or MS) is used. ECa is more popular and is connected with many physical-chemical
properties of soil. However, there is still a lack of investigations regarding relationships
between ECa and MS with soil compaction. Thus, the objectives of this study are: (1) To
assess whether field-scale ECa and MS geospatial measurements are potential estimators
of soil compaction and (2) to indicate the optimum set of electrical soil parameters for the
delimitation of management zones connected with soil compaction.

2. Materials and Methods
2.1. Experimental Data Acquisition

The 12.86 ha (1.286 × 105 m2) large experimental area is located in Poland, Lower Sile-
sia province, Olesnica district (51◦10′13.5” N and 17◦27′6.6” E). Soil sampling was carried
out during the summer period of 2019. In the 2018 growing season, the area was grown
with winter oilseed rape, and after combine harvesting, the field was cultivated with the
universal cultivator Horsch Terrano with a depth of 0.01 m. Thereafter, until the mea-
surement procedure, no cultivation was carried out. Soil was classified as a sandy clay
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loam, according to the Polish Soil Classification System and USDA Soil Taxonomy [28].
The physical characterization of soil is shown in Table 1.

Table 1. Soil texture parameters.

Texture Diameter [mm] Percentage

skeletans >2 1.2
sand 2–0.05 57.3
silt 0.05–0.002 18.4
clay <0.002 24.3

soil texture Sandy clay loam (SCL)

The apparent soil electrical conductivity and magnetic susceptibility were measured
by electromagnetic induction with the a Geonics EM38-MK2 Ground Conductivity Meter
at two depths: 0.5 and 1 m. For the vertical dipole orientation used during measurements,
the effective depth is 1.5 m for a coil distance of 1.0 m and 0.75 m for a coil distance of 0.5 m.
The position of EM38 was registered by GPS. The technical parameters of the EM38-MK2
meter are detailed in Table 2.

Table 2. Technical parameters of the EM38-MK2 meter.

Measured quantities

1: Apparent conductivity in millisiemens per meter
(mS·m−1)

2: In-phase ratio of the secondary to primary magnetic field
in parts per thousand (ppt)

Intercoil spacing 1 and 0.5 m

Operating frequency 14.5 kHz

Measuring range
Conductivity: 1000 mS·m−1

In-phase: ± 28 ppt for 1 m separation
In-phase: ± 7 ppt for 0.5 m separation

Measurement resolution ±0.1% of full scale

Measurement accuracy ±5% at 30 mS·m−1

Noise levels Conductivity: 0.5 mS·m−1; in-phase: 0.02 ppt

The soil compaction was measured for a soil layer 0–0.5 m with a Eijkelkamp Pen-
etrologger with GPS. In measurements, a cone with an angle of 60◦ and a base of 0.0001 m2

was used. Penetration speed was equal to 0.03 m·s−1. Soil moisture was measured within
a short time period after the EM38 survey and was equal to 30%.

After the measurement of electrical parameters and analysis of results, the five manage-
ment zones were delimited (depicted in different colors in Figure 1). Then, the measurement
of soil compaction was conducted every 30 m (measurement points are depicted in Figure 1).
Based on GPS information of the penetrologger, coordinates were assigned to each measure-
ment point. Thereafter, with the use of the least squares method, the nearest point of ECa and
MS measurement was connected to each point of the soil compaction measurement.

2.2. Artificial Neural Networks

An artificial neural network is a computational tool modelled on the biological func-
tioning of the human nervous system. An ANN is made up of fundamental information-
processing units called artificial neurons. Artificial neurons are arranged in layers. At least
two layers are obligatory in the ANN structure—input and output layer. In this work,
the two types of ANNs are used for modelling relationships under study—multilayer per-
ceptron (MLP) and radial basis function (RBF) neural network. The MLP is a feedforward
neural network with one or two hidden layers of neurons placed between the input and
output layer. The MLP is trained with the use of a backpropagation algorithm. An RBF
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network is a feedforward neural network with one hidden layer. Neurons in a hidden
layer are RBF nonlinear activation units, usually with Gaussian functions [29]. The output
signal of the RBF network is calculated by a linear neuron. RBF neural networks are
considered a tool with better approximation abilities and faster learning speed than other
types of ANNs [30].
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As a result of measurements, a set of 154 data was obtained. Outliers were removed
from the data set. For neural modelling, this data set was randomly divided into training
and validation sets in the proportion of 80:20. Prior to the neural models training process,
data were normalized into a range <0;1>. In this research, both MLP and RBF neural
models were developed in the Statistica v. 13 software. The input vector was composed of
a certain combination of apparent soil electrical conductivity and magnetic susceptibility
measured at the depth of 0.5 and 1 m. The form of input vectors determined the number of
nodes in the input layer (2 or 4). For each model, the group of 2000 neural structures was
trained. Each structure was characterized by an ANN type (MLP or RBF), the number of
neurons in the hidden layer (from 10 to 40), the initial connection weight matrix, and in
the case of the MLP network—transfer functions of neurons in hidden and output layers
(hyperbolic tangent, sigmoidal, and exponential). After the training and testing process,
the neural model of the best accuracy was indicated based on the coefficient of correlation
(R) between experimental data and data calculated by the neural model for the validation
data set. As an output model parameter, a compaction of a certain soil layer was used.

For the indication of the optimal vector of input parameters, the determination of the
contribution of independent input variables in an ANN model was necessary. For this
purpose, the sensitivity analysis implemented in the Statistica v. 13 environment was
employed. This method can be used for the MLP neural network to provide information
about the relative importance of the input model parameters. The sensitivity analysis is
based on replacing the values of each input variable by its mean values. The mean values
are calculated using the training data set. Afterward, an error ratio is calculated as follows:

Re =
Ech

Eoryg
(1)
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where Re is an error ratio, Ech is a network error with a certain input changed by its mean
value, and Eoryg is a network error with the input with its original value. Based on the
error ratio Re, the percentages of influence of the input parameters of an ANN model on its
output is calculated. This method of sensitivity analysis was used, e.g., in the modelling
and analysis of the structural damage after an earthquake [31].

3. Results and Discussion

The statistics of the experimental data (electrical and physical soil properties) are
presented in Table 3.

Table 3. Statistics of experimental data.

The Parameter Minimum Maximum Mean Standard Deviation

apparent soil electrical conductivity 0.5
m [mS·m−1] 0.39 15.23 5.10 3.05

magnetic susceptibility 0.5 m [-] −0.11 −0.01 −0.09 0.02
apparent soil electrical conductivity 1 m

[mS·m−1] 0.00 36.95 8.18 6.77

magnetic susceptibility 1 m [-] −4.18 0.16 −2.09 0.70
soil compaction (depth 0–0.1 m) [MPa] 0.17 1.03 0.40 0.17
soil compaction (depth 0–0.2 m) [MPa] 0.36 1.60 0.86 0.24
soil compaction (depth 0–0.3 m) [MPa] 0.42 2.04 1.15 0.28
soil compaction (depth 0–0.4 m) [MPa] 0.57 2.20 1.39 0.28
soil compaction (depth 0–0.5 m) [MPa] 0.65 2.20 1.41 0.28
soil compaction (depth 0.1–0.2 m) [MPa] 0.48 2.20 1.28 0.37
soil compaction (depth 0.2–0.3 m) [MPa] 0.42 3.41 1.71 0.51
soil compaction (depth 0.3–0.4 m) [MPa] 0.89 3.28 2.04 0.51
soil compaction (depth 0.4–0.5 m) [MPa] 0.17 3.39 1.14 0.58

As shown in Table 3, the apparent soil electrical conductivity is higher for the measure-
ment depth of 1 m than for 0.5 m. The magnetic susceptibility is negative when measured
at a depth of 0.5 m and changes its values from negative to positive, when measured at
a depth of 1 m. Soil compaction values increase with the measurement depth when the
soil layer being measured is between 0 and a certain depth. When the measurement is
carried out for a soil layer of 0.1 m, the soil compaction increases with the increase in soil
layer depth up to 0.4 m. The mean soil compaction of the soil layer between 0.4 and 0.5 m
is similar to 0.1–0.2 m soil layer compaction. Maps of spatial variability for selected soil
parameters presented in Table 3 are depicted in Figure 2.

Maps presented in Figure 2 confirm the similarity in the spatial distribution pattern
for ECa and MS, as well as for soil compaction measured at depths of 0–0.5 and 0.4–0.5 m.

An EM38-MK2 meter provides the measurement of two electrical soil parameters—
apparent soil electrical conductivity and magnetic susceptibility. Generally, the apparent
soil electrical conductivity is the parameter used for the delimitation of management zones.
In order to establish the optimum set of parameters for the delimitation of management
zones connected with soil compaction, the group of neural models was developed. As input
model parameters, the following vectors were used: [ECa 0.5 m; ECa 1 m], [ECa 0.5 m;
MS 0.5 m], [ECa 0.5 m; MS 0.5 m; ECa 1 m; MS 1 m], and [MS 0.5 m; MS 1 m]. As an output
parameter, the soil compaction of various soil layer depths was used. The type, structure,
and quality of the best neural models are summarized in Table 4.

In the process of the development of neural models, the two neural network types
were used, namely the multilayer perceptron and radial basis function neural network.
The data presented in Table 4 suggest that the better neural network type for modelling the
relationships between soil electrical parameters and soil compaction was the RBF neural
network. The number of neurons in the hidden layer varies significantly, for MLP models
from 11 to 39 and for RBF models from 10 to 36.
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Table 4. Neural models characteristics.

Input Parameters Output Parameter ANN Type ANN Structure R

ECa 0.5; MS 0.5; ECa 1; MS 1 soil compaction (0–0.5 m) MLP 4-17-1 0.769
ECa 0.5; MS 0.5; ECa 1; MS 1 soil compaction (0.4–0.5 m) RBF 4-14-1 0.826

ECa 0.5; MS 0.5 soil compaction (0–0.5 m) MLP 2-20-1 0.877
ECa 0.5; MS 0.5 soil compaction (0.4–0.5 m) MLP 2-19-1 0.846
ECa 0.5; MS 0.5 soil compaction (0–0.4 m) RBF 2-17-1 0.700
ECa 0.5; MS 0.5 soil compaction (0–0.3 m) RBF 2-24-1 0.446
ECa 0.5; MS 0.5 soil compaction (0–0.2 m) RBF 2-10-1 0.521
ECa 0.5; MS 0.5 soil compaction (0–0.1 m) RBF 2-20-1 0.615
ECa 0.5; MS 0.5 soil compaction (0.3–0.4 m) RBF 2-33-1 0.662
ECa 0.5; MS 0.5 soil compaction (0.2–0.3 m) MLP 2-12-1 0.594
ECa 0.5; MS 0.5 soil compaction (0.1–0.2 m) RBF 2-36-1 0.476
ECa 0.5; EC 1 soil compaction (0–0.5 m) RBF 2-27-1 0.759
ECa 0.5; EC 1 soil compaction (0.4–0.5 m) RBF 2-11-1 0.732
ECa 0.5; EC 1 soil compaction (0–0.4 m) RBF 2-28-1 0.656
ECa 0.5; EC 1 soil compaction (0–0.3 m) RBF 2-21-1 0.517
ECa 0.5; EC 1 soil compaction (0–0.2 m) RBF 2-15-1 0.433
ECa 0.5; EC 1 soil compaction (0–0.1 m) MLP 2-16-1 0.501
ECa 0.5; EC 1 soil compaction (0.3–0.4 m) RBF 2-21-1 0.648
ECa 0.5; EC 1 soil compaction (0.2–0.3 m) RBF 2-27-1 0.470
ECa 0.5; EC 1 soil compaction (0.1–0.2 m) RBF 2-12-1 0.471
MS 0.5; MS 1 soil compaction (0–0.5 m) RBF 2-10-1 0.725
MS 0.5; MS 1 soil compaction (0.4–0.5 m) MLP 2-39-1 0.790

The input parameters: Apparent soil electrical conductivity, 0.5 m; magnetic susceptibility, 0.5 m; apparent soil electrical conductivity, 1 m;
and magnetic susceptibility, 1 m are marked in the table as ECa 0.5, MS 0.5, ECa 1, and MS 1, respectively.74
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Taking into account the fact that electrical parameters were measured at depths of 0.5
and 1 m, it can be expected that a better quality of models is obtained when the output
model parameter is the soil compaction measured at a depths of 0–0.5 and 0.4–0.5 m.
It was confirmed by the results summarized in Table 4. For an apparent soil electrical
conductivity of 0.5 m and magnetic susceptibility of 0.5 m, as well as for apparent soil
electrical conductivities of 0.5 and 1 m as input model parameters, the nine neural models
were developed with soil compaction measured for each soil layer described in the section
‘Materials and Methods’. The model quality increases when soil compaction is measured at
greater depths. Only when the output model parameter is the soil compaction measured for
a soil layer of 0–0.5 and 0.4–0.5 m is the correlation coefficient R for the validation data set
greater than 0.7. The high R value calculated for the validation data set proves the model
usefulness for real-life applications and means that no overfitting effect occurred during the
training process. Based on the results described above, for magnetic susceptibility, 0.5 and
1 m, as well as for a combination of all electrical parameters as input vector components,
only soil compaction measured for soil layers of 0–0.5 and 0.4–0.5 m was taken into account
as an output parameter of neural models. In the case of magnetic susceptibility, 0.5 and 1 m
as input model parameters, the values of correlation between predicted and experimental
soil compaction equal 0.725 for the soil layer at 0–0.5 m and 0.790 for the soil layer at
0.4–0.5 m. When all electrical parameters were input vector components, the R values were
0.769 for the soil layer at 0–0.5 m and 0.826 for the soil layer at 0.4–0.5 m. The highest
quality of models was obtained for an apparent soil electrical conductivity at 0.5 m and
magnetic susceptibility at 0.5 m as input model parameters. This means that both electrical
parameters play important roles in the delimitation of management zones. A slightly lower
quality of models was calculated in the case of these two electrical parameters measured at
depths of 0.5 and 1 m. It can be assumed that the quality of these models could increase
for soil compaction measured at a depth between 0.5 and 1 m. However, soil compaction
measured in deeper soil layers is of no practical relevance, because of limitations in rooting
depth, as well as characteristics of the working resistance of soil-working machines.

Based on the model of the relationship between apparent soil electrical conductivity
and magnetic susceptibility measured at depths of 0.5 and 1 m, and soil compaction 0–0.5 m,
the sensitivity analysis was performed in order to determine the average variable relative
importance. The results are depicted in Figure 3.
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As illustrated in Figure 3, apparent soil electrical conductivity affects soil compaction
about twice as much as magnetic susceptibility. Electrical parameters measured at a depth
of 0.5 m influence the compaction of the soil layer at 0–0.5 m slightly more than electrical
parameters measured at a depth of 1 m. Soil compaction is affected by many physical,
chemical and biological properties of soils, namely water content, organic matter content,
mineralogy, soil structure and texture, and particle-size distribution [32]. These parameters
also influence soil electrical parameters. Therefore, a close relation between soil compaction
and both soil apparent electrical conductivity and magnetic susceptibility can be expected.
The correlation between the compaction and electrical resistivity of noncohesive soils was
investigated by Kowalczyk et al. (2014) [33]. Al-Gaadi et al. (2012) proved the possibility
of assessing soil compaction by ECa measured by a EM38-MK2 device [34]. The level
of correlation between ECa and soil compaction depends on the EM38-MK2 orientation
(vertical or horizontal), moisture content, and the height of the device above the ground.
Keskin et al. (2011) found a negative correlation between tillage depth, which depends
on soil compaction and soil electrical conductivity [35]. The correlation coefficient ranged
from R = −0.56 to R = −0.84 depending, inter alia, on the depth of electrical conductivity
measurement. The authors stated that the electrical conductivity measurement system can
be used for tillage depth determination.

Electrical soil parameters are increasingly popular for the delimitation of management
zones in precision agriculture. Some measuring instruments were developed for this
purpose. Some of them measure only one parameter (apparent soil electrical conductivity
or magnetic susceptibility). Some instruments allow the measurement of both those
parameters (e.g., Geonics EM38). Therefore, various surveys have been presented in
the literature for the delimitation of management zones. Guo et al. (2019) presented a
geostatistical method combined with a fuzzy clustering algorithm for determination of the
spatiotemporal variation of soil salinity based on ECa measurement conducted with the
EM38 tool [36]. Machado et al. (2015) reported a relatively high linear correlation (R = 0.778)
between ECa measured by the EMP-400 profiler sensor at 15 kHz and cation exchange
capacity. They found a lower correlation between ECa and other soil parameters, namely
organic matter, potassium, and base saturation [37]. Valente et al. (2014) indicated ECa as
an important tool for defining management zones due to its significant correlation with
the micronutrients manganese, zinc and copper, as well as with macronutrients potassium
and phosphorus [6]. They also found a strong correlation of ECa with the remaining
phosphorus. It proves the usability of ECa measurement in precision fertilizer application.
Grimley et al. (2004) used only magnetic susceptibility for the delineation of hydric soils
in the midwestern USA. They found the critical MS values for differentiation of silty and
sandy surface soil textures [11]. Soderstrom et al. (2013) used ECa, MS, and gamma ray
data for mapping soil properties. They reported that ECa and MS were better indicators of
soil properties under study than gamma ray measurements [38]. Jordanova et al. (2013)
suggested that the combination of ECa and magnetic soil parameters can improve the
process of soil classification by decreasing the nonunique interpretation of the relationship
between apparent conductivity and certain soil physical properties [39].

Artificial neural networks have been employed by many researchers for prediction of
soil properties and, based on results, ANNs have been introduced as an efficient model of
relationships under study. In our research, the correlation coefficient R does not exceed
0.877, which is not a very high correlation when compared with other neural prediction
models evaluated by authors [40,41]. It can be assumed that in addition to the soil parame-
ters reflected by ECa and MS, other soil features influence the soil compaction. Similar or
lower neural models’ quality was reported in a prior literature for ANNs as a tool for
the prediction of soil properties. Khanbabakhani et al. (2020) indicated ANNs as an ef-
ficient model of the relationship between soil texture and longitude, altitude, elevation,
and slope percentage. They compared an ANN model with three other interpolation
methods including inverse distance weighting, kriging, and co-kriging used for soil texture
mapping. Based on statistical indices, the efficiency of the ANN model was better than
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other methods. However, the correlation of the model was less than 0.5 [42]. A feed-
forward back-propagation network with one hidden layer was used by Aitkenhead et al.
(2015) as a predictive model of soil organic matter [43]. They calculated different qualities
of models depending on values of organic matter in the training data set. For a full-organic-
matter-content-range model, they reported R = 0.93, and for a small-organic-matter-content
model (less than 20%), R = 0.82. Tasan et al. (2020) used a MLP neural network for the pre-
diction of soil moisture described by two parameters, namely field capacity and permanent
wilting point [44]. Among the ANN models developed in this research, a model with four
input parameters (sand, clay, percent calcium carbonate, and cation exchange capacity)
yielded the greatest quality (R = 0.88 for field capacity and R = 0.81 for permanent wilting
point as output parameter of model).

4. Conclusions

In recent literature, there is a lack of scientific papers regarding relationships between
electrical parameters and soil compaction. Therefore, in this research, two parameters:
ECa and MS, as potential estimators of soil compaction were investigated. The spatial
variability maps present similar patterns for apparent soil electrical conductivity and
magnetic susceptibility, both measured at a depth of 0.5 m. A similar pattern was also
found for soil compaction measured at a depth of 0–0.5 m, and soil compaction measured
at a depth of 0.4–0.5 m. The neural models of high quality were developed for prediction
of soil compaction measured for soil layers at 0–0.5 and 0.4–0.5 m based on electrical
parameters of the soil. The RFB neural network turned out to be a better prediction tool
for this purpose. In the mathematical model, the apparent soil electrical conductivity
affects soil compaction significantly more than magnetic susceptibility. In spite of this fact,
MS provides additional information about soil properties. Therefore, MS should be used as
a complementary parameter to ECa in the process of the delimitation of management zones.
It can be concluded that the measurement of ECa and MS can be considered a relatively
inexpensive, easy, and fast technique with the potential to make significant contributions
to the identification and prediction of soil compaction. This technique is promising for
real-life applications, e.g., for variable-depth tillage technology based on soil compaction
mapping that can reduce fuel consumption.
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Abstract: Convolutional neural networks (CNNs) have proven their efficiency in various applications
in agriculture. In crops such as date, they have been mainly used in the identification and sorting of
ripe fruits. The aim of this study was the performance evaluation of eight different CNNs, considering
transfer learning for their training, as well as five hyperparameters. The CNN architectures evaluated
were VGG-16, VGG-19, ResNet-50, ResNet-101, ResNet-152, AlexNet, Inception V3, and CNN from
scratch. Likewise, the hyperparameters analyzed were the number of layers, the number of epochs,
the batch size, optimizer, and learning rate. The accuracy and processing time were considered
to determine the performance of CNN architectures, in the classification of mature dates’ cultivar
Medjool. The model obtained from VGG-19 architecture with a batch of 128 and Adam optimizer
with a learning rate of 0.01 presented the best performance with an accuracy of 99.32%. We concluded
that the VGG-19 model can be used to build computer vision systems that help producers improve
their sorting process to detect the Tamar stage of a Medjool date.

Keywords: Phoenix dactylifera L.; Medjool dates; image classification; convolutional neural networks;
deep learning; transfer learning

1. Introduction

The date palm fruit (Phoenix dactylifera L.) is a berry composed of a fleshy mesocarp,
covered by a thin epicarp and an endocarp covering all of its seed [1]. The name of this fruit
is “date,” which comes from the Greek word “Daktylos,” which means “finger” [2]. This
fruit has been the primary source of food in several countries in the Middle East, playing
an essential role in the economy, society, and environment [3].

This fruit’s growth presents a progressive maturity level in four stages known by their
Arabic names: Kimri, Khalal, Rutab, and Tamar. At its first stage of growth (Kimri), the
fruit is small, green, and with a hard texture. In its second stage (Khalal), the fruit reaches
its maximum size and changes it is green color to yellow or red. In the third stage (Rutab),
the fruit is losing weight and moisture, turning the fruit into a brown color. In the last stage
(Tamar), the fruit is ripe and ready to be harvested [4].

According to Food and Agriculture Organization of the United Nations data, the
world’s largest date producers are Egypt, Saudi Arabia, Iran, Algeria, and Iraq, producing
66% of the world production in 2018 [5]. However, despite not being a native crop of the
American continent, the date has also become a priority fruit for cultivation in southern
California and Arizona in the United States and northwestern Mexico, where high-quality
dates, such as Medjool cultivar, are grown [6].

The date palm producers face several challenges concerning harvesting, sorting, and
packaging because they are mainly performed manually [7]. Therefore, many employers
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are hiring for these activities that involve long working hours. People perform repetitive
tasks, causing mistakes in the correct inspection of the fruit’s quality attributes, such as
color (maturity level), size, and texture.

Particularly in the Medjool date harvesting process, fruit pickers shake the palm bunch
so that the ripe dates fall into containers. This can cause the ripe fruit to suffer damage to
its texture or that fruits in other ripening stages are also harvested. The dates are placed in
trays, where the immature ones will be extracted and grouped in other trays to dry them in
the sun until they reach their full maturity. In contrast, the minute or damaged ones are
commonly separated to develop date by-products or for animal consumption. Finally, the
Medjool date sorting (which has the required degree of maturity) is packed.

To automate the processes related to harvesting, sorting, and packaging of dates,
recently, there has been interest in exploring convolutional neural networks (CNNs) [8,9].
CNN has shown exceptional accuracy for classifying fruits and vegetables, considering
several quality parameters, such as color (maturity level), shape, texture, and size [10–14].

Regarding dates, we identified that some studies use machine learning algorithms
and image processing techniques to sort among date palm fruit or to detect among their
different maturity stages [15–17]. Further, there are research works that propose using
CNNs [8,9,18]. However, these studies do not present models to detect the maturity stage
of the Medjool date.

The main contribution of this article was the identification of the hyperparameters
that best influenced the training of a CNN architecture that transfers learning to Medjool’s
mature date sorting. To achieve it, we performed a comparison of the performance of eight
CNN architectures. Two versions of the CNN architecture are called the Visual Geometric
Group (VGG) from Oxford University, VGG-16 and VGG-19. Three versions of the CNN
architecture are called Residual Network from Microsoft research, ResNet-50, ResNet-101,
and ResNet-152. WE also looked at AlexNet, Inception Version 3, and a CNN from scratch.
The hyperparameters analyzed were the number of layers, the number of epochs, the batch
size, optimizer, and learning rate.

2. Materials and Methods
2.1. Image Acquisition

The images corresponding to ripe and unripe dates in trays were taken in Septem-
ber 2020, during the first round of harvest of Medjool dates in the plantation located in
Colonia La Herradura (32◦36′56′′ N, 115◦15′36′′ W) in the Mexicali Valley, Mexico. The
acquisition of images was made with three different cameras, using natural light between
8:00 a.m. and 2:00 p.m. We used a Canon EOS Rebel T6 of 18 megapixels and the cameras
of the smartphones Samsung, SM-N950F and SM-N960F, which have a dual camera of
12 megapixels.

2.2. Image Data Set

The image data set contained 1002 images in JPG format, which are of different sizes
(5184× 3456, 4449× 3071, and 4376× 3375 pixels). The network architectures were trained
with JPG images because they are fed with low-quality images in real scenarios. We refer
to low-quality as images with blur, noise, contrast, or compression. We considered that if
you are trained in architecture with this type of image, the system will be able to classify
the Medjool date in images with these features. Further, a study shows that convolutional
neural networks are minimally affected in their performance by using JPG format [19].

The image data set was distributed as follows: 501 images of ripe dates and 501 images
of unripe dates on trays (Figure 1). The dates in trays were previously classified as ripe or
unripe by expert people.
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Figure 1. Example of dataset images. (A–C) Trays with ripe dates. (D–F) Trays with unripe dates.

2.3. Convolutional Neural Networks

The convolutional neural network (CNN) is a type of artificial neural network, where
neurons correspond to receptive fields similar to the neurons in the primary visual cortex
of a biological brain [20]. Also, CNN is identical to ordinary neural networks such as
multilayer perceptron. They are composed of neurons that have weights and biases that
can learn. Each neuron receives some input, performs a scalar product, and then applies an
activation function [21]. The CNN as a multilayer perceptron has a loss or cost function on
the last layer, which will be fully connected.

Figure 2 presents a CNN structure, which consists of three blocks. The first is the input,
an image. Next, we can see the block of feature extraction, which consists of convolutional
and pooling layers. Finally, the third block is of classification, which consists of fully
connected layers and softmax. The structure of the convolutional network changes as the
number of convolution and pooling layers increases.

Figure 2. Representation of a basic convolutional neural network (CNN).

The main difference between convolutional neural networks from ordinary neural
networks is that they explicitly assume that the inputs are images [21], allowing specific
encoding properties in the architecture, gaining efficiency and reducing the number of
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parameters in the network. In this way, CNNs can model complex variations and behaviors,
giving quite accurate predictions. This study considered eight CNNs’ architectures: VGG-
16, VGG-19, Inception V3, ResNet-50, ResNet-101, ResNet-152, AlexNet, and one CNN
from scratch.

2.3.1. VGG-16 and VGG-19 Architectures

VGG is the abbreviation for the Visual Geometric Group [22]. The VGG model was
developed by Simonay and Zimmerman [23]. VGG uses 3 × 3 convolutional layers stacked
on top of each other in increasing depth. The reduction of volume size is handled by max
pooling. Two fully connected layers, each with 4096 nodes, are then followed by a softmax
classifier [23]. The number 16 or 19 is the layer of networks considered deep.

2.3.2. Inception V3 Architecture (GoogLeNet V3)

This architecture was born with the name of GoogLeNet, but subsequent updates have
been called Inception vN, where N refers to the version number put out by Google [22].
The basic module of Inception [24] consists of four branches concatenated in parallel: a
1× 1 kernel convolution, followed by two 3× 3 convolutions; a 1× 1 convolution, followed
by a 3 × 3 convolution; a pooling, followed by a 1 × 1 convolution; and finally a 1 × 1
convolution. Inception consists of 10 modules, although these modules are going slightly
as the net gets deeper. Five of the modules are changed with the purpose of reducing the
computational cost by replacing the n × n convolutions with two convolutions, a 1 × 7
followed by a 7 × 1. Two last modules replace the last two convolutions: 3 × 3 of the first
branch with two convolutions each and one 1 × 3 followed by another 3 × 1, this time in
parallel. In total, Inception V3 has 42 layers with parameters.

2.3.3. ResNet-50, ResNet-101, and ResNet-152 Architectures (Residual Neural Network)

ResNet [25] does not have a fixed depth and depends on the number of consecutive
modules used. However, increasing the network’s depth to obtain a greater precision
makes the network more difficult to optimize. ResNet addresses this problem by adjusting
a residual application in place of the original and adding several connections between
layers. These new connections skip several layers and perform an identity or a 1 × 1
convolution. The base block of this network is called the residual block. When the network
has 50 or more layers, it is composed of three sequential convolutions, a 1 × 1, a 3 × 3,
and a 1 × 1, and a connection that links the input of the first convolution to the output
of the third convolution. This study used three models with this architecture, ResNet-50,
ResNet-101, and ResNet-152, which are composed of 50, 101, and 152 layers, respectively.

2.3.4. AlexNet

This architecture consists of five convolutional layers and three fully connected layers.
Some convolution layers are followed by max-pooling layers (1, 2, and 5 layers). The
Rectified Linear Unit (ReLU) nonlinearity is applied to the output of every convolutional
and fully connected layer. The fully connected layers have 4096 neurons each [26]. To
avoid data over-adjustment, a regularization method is used, known as a dropout, which
consists of “turning off” neurons with a predetermined probability during training.

2.3.5. CNN from Scratch

The CNN that we built from scratch was composed of four alternate convolutional
and max-pooling layers, followed by a dropout after every other convolutional and pooling
pair. After the last grouping layer, we attached a fully connected layer with 256 neurons,
another dropout layer, and, finally, a softmax classification layer for our classes. The loss
function was the cross entropy since it is useful with convolutional neural networks, most
significantly for purposes of image classification [27]. In order to compare the performance
of a network that learns from scratch against other architectures that start from transfer
learning, a convolutional network was trained from scratch.
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2.3.6. CNNs’ Optimization Techniques and Hyperparameters
Techniques

All the above networks were too deep to train them from scratch with our data set.
Therefore, we used transfer learning, which consists of taking the features learned in other
contexts and using them in a new and similar problem [28]. Transfer learning is usually
done for tasks where the data set has too little data to train a full-scale model from scratch.
This was our case since we only had 1002 Medjool date images.

Transfer learning is commonly used in two ways: (1) pretraining model, which consists
of using a pretrained model that replace its last layers with others, so that the characteristics
are of the new data set and (2) convolutional network tuning, which is a strategy to tune
the weights of the layers using backward propagation.

For this study, the application of transfer learning was the pretraining model. We used
the pre-trained networks with ImageNet, which is a large visual database designed for
use in visual object recognition [26]. We removed the final classification layer, the neuron
softmax layer at the end, which corresponds to ImageNet, and instead replaced it with a
new softmax layer for our image data set. A summary of the utilized CNN architectures is
shown in Table 1.

Table 1. Characteristics of the CNNs’ architectures used in this study.

Network Depth
(Hidden Layers) Image Size Parameters

CNN from scratch 24 224 × 224 1,209,058
VGG-16 16 224 × 224 134,268,738
VGG-19 19 224 × 224 143,667,240

ResNet-50 50 224 × 224 23,591,810
ResNet-101 101 224 × 224 42,662,274
ResNet-152 152 224 × 224 58,375,042
Inception v3 48 299 × 299 21,806,882

AlexNet 8 227 × 227 56,328,962

Hyperparameters

Hyperparameters are variables that define the structure of a convolutional network
as well as allow it to be trained [29]. These hyperparameters are learning rate, epochs,
optimizer, batch size, number of layers, and activation functions, among others, which
can be adjusted to make CNN more efficient. In this study, we changed the values of the
hyperparameters optimizer, learning rate, batch, and epochs. Our CNN used an optimizer
Adaptive Moment Estimation (Adam) and Stochastic Gradient Descent (SGD) since those
are well-known optimizers, which have good performance to classify images in CNN [30].
The learning rates for the optimizers were 0.01 and 0.001. The batch size value was 64
and 128, the epochs were 25 and 400, and the number of layers depended on the CNN
architecture used (Table 1).

2.4. Experimental Framework

To implement and evaluate the CNN architectures presented in Section 2.3, we used
the Google Colab cloud service based on Jupyter’s Notebooks, which allows the free use of
Google’s GPUs or TPUs, with the libraries Scikit-learn, PyTorch, TensorFlow, Keras, and
OpenCV [31]. The hardware specifications used in this experiment were GPU: Nvidia-
Tesla-T4; CPU: Intel(R) Xeon(R) CPU @ 2.20 GHz; RAM: ~12.78 GB available; Hard Disk:
~32.20 GB available; and the software specifications were and Operating System: 18.04.5
LTS (Bionic Beaver) with the libraries Keras 1.0.8 and Tensorflow 1.15 as a back-end.
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2.5. Performance Evaluation

The accuracy is the metric used to evaluate the classification performance of the
architectures proposed in this paper. This metric calculates the percentage of samples that
are correctly classified, and it is represented in the next equation:

Accuracy =
tp + tn

tp + tn + fp + fn
(1)

where tp represents true positives, those that belonged to the class and were correctly
classified in that class; tn represents true negatives, those that did not belong to the class
and were correctly classified in another class; fp represents false positives, those that did not
belong to the class and were wrongly assigned to the class; and finally, fn represents false
negatives, those that belonged to the class and were mistakenly classified in another class.

3. Results

Using the Adam parameter as an optimizer, it can be observed in Table 2 that for the
evaluation with 25 epochs, the highest performance percentage was for VGG-16 (96.63%
and 95.27%), with a learning rate (0.001), and for VGG-19 (93.92% and 97.30%), with
a learning rate (0.01). The lowest performance was for AlexNet (64.19%) and ResNet-
152 (64.17%), for a learning rate (0.001), and CNN from scratch (46.62% and 53.38%),
with a learning rate (0.01). On the other hand, for 400 epochs, the highest percentage
was Inception V3 (98.65%) and VGG-19 (98.75%), both for a learning rate (0.001) and for
Inception V3 (98.65%) and VGG-19 (99.32%), with a learning rate (0.01). Likewise, the
lowest performance was for ResNet-101 and ResNet-152 (both with 80.41%) and ResNet-101
(79.05%), for a learning rate (0.001) and, finally, AlexNet (67.57%) and CNN from scratch
(43.24%), both with a learning rate (0.01). It can also be observed that the two best results
were for VGG-19 (99.32% and 98.65%) for a batch (128), followed by Inception V3 (98.65%)
for both batches (64); all these for 400 epochs.

Table 2. Accuracy evaluation of eight CNN architectures, changing the values of the hyperparameters of a batch, learning
rate, and epochs, using the Adaptive Moment Estimation (Adam) parameter as an optimizer.

Parameters CNN from Scratch VGG-16 VGG-19 ResNet-50 ResNet-101 ResNet-152 AlexNet Inception V3

Epochs 25 25 25 25 25 25 25 25
400 400 400 400 400 400 400 400

Batch = 64, Optimizer = Adam, Learning Rate = 0.001

Accuracy 93.24 96.63 90.54 68.92 71.62 74.32 64.19 96.62
(%) 94.59 96.62 95.95 81.08 80.41 80.41 88.51 98.65

Time 9 24 14 11 14 25 11 12
(min) 16 40 43 33 41 61 19 131

Batch = 128, Optimizer = Adam, Learning Rate = 0.001

Accuracy 85.13 95.27 87.84 70.95 70.27 64.17 75.00 93.24
(%) 93.92 97.29 98.65 83.11 75.67 81.08 85.81 95.27

Time 11 12 5 13 7 9 11 13
(min) 12 34 46 45 16 54 19 48

Batch = 64, Optimizer = Adam, Learning Rate = 0.01

Accuracy 46.62 85.81 93.92 83.78 65.54 75.68 85.81 95.95
(%) 95.27 95.95 96.62 86.49 79.05 84.46 67.57 98.65

Time 10 12 12 10 11 16 16 11
(min) 14 43 45 34 45 65 18 47

Batch = 128, Optimizer = Adam, Learning Rate = 0.01

Accuracy 53.38 97.29 97.30 84.46 76.35 66.89 89.19 93.92
(%) 43.24 96.62 99.32 84.46 79.73 81.76 87.16 95.95

Time 11 12 13 12 11 15 11 13
(min) 16 38 43 33 46 60 18 44
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Regarding the time parameter in Table 2, CNN from scratch had the lowest values
for processing time. However, some values were higher than those reported by ResNet-50,
ResNet-101, ResNet-152, and AlexNet architectures. Likewise, the highest processing times
in 25 epochs were for ResNet-152 (25 min) and Inception V3 (13 min), with a learning rate
(0.001), and for ResNet-152 and AlexNet (16 min) and ResNet-152 (15 min), for a learning
rate (0.01). For 400 epochs, the highest process time was for Inception V3 (131 min) and
ResNet-152 (54 min), both for a learning rate (0.001) and ResNet-152 (65 and 60 min), with
a learning rate (0.01). The ResNet-152 architecture was the CNN that required the most
processing time on its network for most hyperparameters. The highest processing times
were not associated with high or low accuracy.

Table 3 reveals that using the Stochastic Gradient Descent (SGD) parameter as an
optimizer, for an evaluation with 25 epochs, the highest performance percentage was for
VGG-19 (87.16%) and VGG-16 (87.16%), with a learning rate (0.001), and for Inception
V3 (92.56% and 91.89%), with a learning rate (0.01). While the lowest performance was
for AlexNet (52.70%) and CNN from scratch (51.35%), for a learning rate (0.001), and for
ResNet-50 and ResNet-152 (both with 45.94%) and ResNet-50 (45.94%), with a learning
rate (0.01). On the other hand, for 400 epochs, the highest percentage was obtained by
Inception V3 (95.94%) and CNN from scratch (94.59%), both for a learning rate (0.001),
and VGG-19 (94.59%) and Inception V3 (95.27%), with a learning rate (0.01). Likewise,
the lowest performance was obtained by AlexNet (56.08% and 60.81%), for a learning rate
(0.001), and, finally, ResNet-50 (50% and 52.03%) with a learning rate (0.01). It can also be
observed that the two best CNN architectures turned out to be CNN from scratch (94.59%)
and Inception V3 (95.27%) for a batch (128), followed by Inception V3 (95.94%) and VGG-19
(94.59%) for a batch (64).

Table 3. Accuracy evaluation of eight CNNs’ architectures, changing the batch’s hyperparameters values, learning rate, and
epochs, using the Stochastic Gradient Descent (SGD) parameter as an optimizer.

Parameters CNN from Scratch VGG-16 VGG-19 ResNet-50 ResNet-101 ResNet-152 AlexNet Inception V3

Epochs 25 25 25 25 25 25 25 25
400 400 400 400 400 400 400 400

Batch = 64, Optimizer = SGD, Learning Rate = 0.001

Accuracy 54.05 86.49 87.16 66.89 53.38 54.05 52.70 86.50
(%) 93.24 93.24 91.21 75.68 75.00 64.19 56.08 95.94

Time 12 14 13 11 12 13 11 13
(min) 16 41 46 36 47 58 19 42

Batch = 128, Optimizer = SGD, Learning Rate = 0.001

Accuracy 51.35 87.16 85.81 68.92 53.37 53.37 53.38 79.05
(%) 94.59 90.54 92.57 71.62 74.32 64.87 60.81 93.24

Time 10 23 13 12 12 13 11 14
(min) 28 50 48 32 44 115 18 43

Batch = 64, Optimizer = SGD, Learning Rate = 0.01

Accuracy 83.11 88.51 77.10 45.94 46.62 45.94 53.38 92.56
(%) 89.86 92.57 94.59 50.00 66.89 65.54 83.78 93.92

Time 10 12 12 11 8 14 11 12
(min) 15 45 45 32 44 58 31 44

Batch = 128, Optimizer = SGD, Learning Rate = 0.01

Accuracy 79.72 78.37 79.73 45.94 46.62 53.37 54.05 91.89
(%) 91.26 90.54 88.51 52.03 56.08 64.19 80.41 95.27

Time 11 11 12 11 69 13 34 12
(min) 16 41 44 53 44 54 21 42

Table 3 shows that, for the time parameter, there was no defined pattern to identify
the architecture that presented the lowest processing time in all its hyperparameters. Low
values mostly appeared for CNN from scratch. However, the lowest value was for the
ResNet-101 model with 8 min, in epochs (25), batch (64), and learning rate (0.01). Likewise,
the accuracy of CNN from scratch was better than that reported by ResNet-50, ResNet-101,
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ResNet-152, and AlexNet architectures. The highest processing times in 25 epochs was
for VGG-16 (14 and 23 min), with a learning rate (0.001), and for ResNet-152 (14 min) and
ResNet-101 (69 min), for a learning rate (0.01). For 400 epochs, the highest process time
was for ResNet-152 (58 and 115 min) for a learning rate (0.001) and (58 and 54 min), with
a learning rate (0.01). Finally, ResNet-52 architecture required the most processing time
for most hyperparameters. The highest processing times were not associated with high or
low accuracy.

4. Discussion

Convolutional Neural Networks (CNNs) are used in several agriculture areas such as
leaf and plant disease detection, land cover classification, crop type classification, plant
recognition, segmentation of root and soil, crop yield estimation, fruit counting, obstacle
detection in row crops and grass mowing, and identification of weeds, to mention a
few [32,33]. For example, in Mohanty et al. [34], they presented the training of CNN
architectures AlexNet and Google Net with a PlanVillage image data set to detect 26 types
of diseases in 14 kinds of crops. Their results showed an accuracy of 99.35% to identify
healthy and diseased plants. Meanwhile, Rahnemonfar and Sheppard [35] proposed using
the CNN architectures’ inception and Residual Networks (ResNet) architectures to estimate
the yield of a tomato plant using synthetic images. Their results indicated that, with 91%
accuracy, they can evaluate the yield.

Another example was presented in [36], where authors proposed training several
convolutional networks to identify four fruits (mango, orange, apple, and banana). They
were classified into two categories: fresh and rotten. The best performing models were
Inception version 3 and the Visual Geometric Group of 16-layer (VGG-16) architectures,
which received the learning transfer. Their results showed identification and classification
percentages of 90% accuracy. A similar study was presented in [13], where the use of a
VGG-16 network to classify vegetables and fruits was proposed. A total of 26 categories
were classified: pumpkin, celery, cauliflower, pineapple, pomegranate, grapefruit, banana,
cucumber, broccoli, onion, carrot, etc. The authors claimed to have 95.6% accuracy in
classifying these fruits and vegetables. Regarding dates, we identified research works that
proposed using CNNs to sort among dates or to detect among their different maturity
stages [8,9,16].

Currently, determining the stage of maturity in the Medjool date using traditional
image processing and machine learning methods is complicated. This is because these
methods are trained to extract features in various cultivars such as their appearance, color
(associated with the maturity stages), shape, and texture [7,16]. However, there are no
studies where a feature extraction or predictive model for sorting Medjool dates that we
are aware of. Furthermore, recent models cannot determine sorting Medjool because this
cultivar is harvested, sorted, packaged, and consumed in its Tamar stage.

To contribute with a model that may be useful in sorting the Medjool date through im-
ages, we compared the performance of eight CNN architectures in this study. Additionally,
some hyperparameters’ values were modified, and transfer learning was used to identify
and propose the use of CNN with the best precision.

As shown in Table 2, our findings indicated that when we use an Adam optimizer,
the VGG architectures show the best accuracy, with the VGG-19 model that reached the
highest percentage of accuracy with 99.32%. Likewise, the ResNet and CNN from scratch
architectures showed the lowest performance percentages; the CNN from a scratch model
achieved the most insufficient precision, with 43.24%. The highest average percentage
generated among the eight architectures was 89.53%, using the combination of batch (64),
learning rate (0.01), and epochs (400), with an average time of 48.71 min, while the lowest
was 75%, combining a batch (64), learning rate (0.001), and epochs (25), with an average
time of 12.25 min.

Likewise, Table 3 indicates that no architecture showed the best accuracy when we
used an SGD parameter as an optimizer. However, the ResNet-50 architecture showed
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the lowest performance percentages, with batch (64 and 128) and learning rate (0.001).
The highest percentage generated among the eight architectures was 80.57%, using the
combination of batch (64), learning rate (0.001), and epochs (400), with an average time of
38.13 min, while the lowest was 66.21%, combining a batch (128), learning rate (0.01), and
epochs (25), with an average time of 21.63 min.

It was noticeable that, if the number of epochs for all models was increased, the
percentage of accuracy and required processing time also increased. Likewise, we observed
that the highest processing times corresponded to the ResNet-152 architecture, which could
be associated with the fact that this architecture had the highest number of layers. However,
none of its precision was higher than 85% performance.

The optimizer can help us minimize the error function that allows us to conform to
the training set examples. In this study, the accuracy was higher for Adam than for SGD.

Several studies have focused on identifying the CNN that offers the best precision for
selecting dates from cultivars in their various stages of maturity [8,9,18]. However, there
are currently no reported studies that use any CNN to classify the date cultivar Medjool.

Table 4 compares similar studies to ours, where CNNs’ architectures with the best
performance have been reported. Nasiri et al., 2019 [9], only worked on VGG-16 with
two hyperparameters, obtaining the highest accuracy of 96.98%. Likewise, Altaheri et al.,
2019 [8], worked on two CNN with transfer learning and fine-tuning, modifying three
hyperparameters twice, obtaining the highest percentage for VGG-16 with an accuracy
of 97.25%. Faisal et al., 2020 [16], compared four CNNs’ performances, evaluating four
hyperparameters, resulting in ResNet as the best model, with an accuracy of 99.01%. Finally,
our study evaluated eight CNNs’ performances, using transfer learning and modifying
four hyperparameters twice, resulting in the VGG-19 model with the highest performance,
with 99.32% accuracy.

Table 4. Comparison of studies that report CNN architectures in the detection of various stages of maturity in the date palm fruit.

Reference Date Palm Cultivar Maturity Stages Number of Images
(Dataset)

CNN
Architectures Hyperparameters Best Accuracy

Nasiri et al.,
2019 [9] Shahani Khalal, Rutab, Tamar,

and defective date +1300 images VGG-16 Epochs = 15
Batch = 32

VGG-16
96.98%

Altaheri et al.,
2019 [8]

Barhi, Khalas,
Meneifi, Naboot
Saif and Sullaj

Immature-1,
Immature-2,

pre-Khalal, Khalal,
Khalal-with-Rutab,

pre-Tamar, and Tamar.

8072 images
AlexNet, VGG-16,

Transfer learning and
Fine-Tuning

Epochs = 50 and 200
Batch = 32 and 128

Learning rate =
0.0001, 0.0002

VGG-16 97.25%

Faisal et al.,
2020 [18]

Barhi, Khalas,
Meneifi, Naboot
Saif, and Sullaj

Immature, Khalal,
Khalal with Rutab,

Pre-Tamar, and Tamar
8079 images

ResNet, VGG-19,
Inception V3, NASNet

and support vector
machine (SVM)

(regression and linear)

Epochs = 50
Batch = 16

Optimizer = Adam
Learning rate =

0.0001

ResNet
99.01%

This Study Medjool Ripe and unripe 1002 images

VGG-16, VGG-19,
Inception V3,

ResNet-50,
ResNet-101,

ResNet-152, AlexNet,
CNN from scratch

Epochs = 25 and 400
Batch = 64 and 128

Optimizers = Adam,
Stochastic Gradient

Descent
Learning rate =

0.001, 0.01

VGG-19
99.32%

One aspect to consider in this comparison is that the Medjool date is only consumed
in its Tamar stage. Therefore, this study only used two stages for its sorting. The number of
images was lower compared to the rest of the studies. However, in our work, the percentage
of accuracy was higher due to the application of transfer learning and modification in
various hyperparameters, which influence architectures’ performance [37,38].

In our study, resulting from choosing the hyperparameters epochs (400), batch (128),
optimizer (Adam), and a learning rate (0.01), we identified that VGG-19 architecture had
the best performance. Likewise, this architecture could be included as part of the software
that controlled a robotic mechanism to support the date palm farmer in an automated
system of sorting ripe fruits.
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5. Conclusions

This study evaluated the precision and processing time of eight CNN architectures.
Seven of them were pretrained by an extensive image database designed for object recogni-
tion (ImageNet). These models were named VGG-16, VGG-19, Inception V3, ResNet-50,
ResNet-101, ResNet-152, and AlexNet, which received transfer learning when their last
classification layer was replaced. Additionally, a model that learns from scratch was used,
that is, without obtaining learning.

All CNN architectures were evaluated by modifying the epochs, batch, optimizer,
and learning rate hyperparameters since these parameters have been reported to have
positive effects on the performance of convolutional networks. The results indicated that
the CNN with the best performance for the sorting Medjool date was the architecture of the
VGG group, which used the Adam optimizer. From these architectures, the VGG-19 model
was the one that reported the best accuracy, with 99.32%. Likewise, the ResNet group
architectures were the ones that reported the lowest performance using the same optimizer,
the ResNet-152 model, which reported the most insufficient accuracy, with 64.17%. The use
of the SGD optimizer did not have a significant effect on obtaining high accuracies.

Finally, it will be necessary to continue working on the best accuracy and the shortest
processing time, with the modification of other hyperparameters. The inclusion in the
evaluation of different fruit attributes, such as its size, gives it a high commercial value. It
is essential in the packing process of this fruit.
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Abstract: Rice is one of the most important staple food sources worldwide. Effective and cheap
monitoring of rice planting areas is demanded by many developing countries. This study proposed
a weakly supervised paddy rice mapping approach based on long short-term memory (LSTM)
network and dynamic time warping (DTW) distance. First, standard temporal synthetic aperture
radar (SAR) backscatter profiles for each land cover type were constructed on the basis of a small
number of field samples. Weak samples were then labeled on the basis of their DTW distances to the
standard temporal profiles. A time series feature set was then created that combined multi-spectral
Sentinel-2 bands and Sentinel-1 SAR vertical received (VV) band. With different combinations of
training and testing datasets, we trained a specifically designed LSTM classifier and validated the
performance of weakly supervised learning. Experiments showed that weakly supervised learning
outperformed supervised learning in paddy rice identification when field samples were insufficient.
With only 10% of field samples, weakly supervised learning achieved better results in producer’s
accuracy (0.981 to 0.904) and user’s accuracy (0.961 to 0.917) for paddy rice. Training with 50% of field
samples also presented improvement with weakly supervised learning, although not as prominent.
Finally, a paddy rice map was generated with the weakly supervised approach trained on field
samples and DTW-labeled samples. The proposed data labeling approach based on DTW distance
can reduce field sampling cost since it requires fewer field samples. Meanwhile, validation results
indicated that the proposed LSTM classifier is suitable for paddy rice mapping where variance exists
in planting and harvesting schedules.

Keywords: paddy rice mapping; dynamic time warping; LSTM; weakly supervised learning;
cropland mapping

1. Introduction

Rice is an important staple food source for more than half of the global population [1]. In Asia in
particular, the rice planting area was 146 million ha in 2018, accounting for 88% of the world’s total
(FAOSTAT, 2020). The demand for rice over the next 30 years is anticipated to increase by 90% in Asia [2].
Monitoring rice planting is of great importance to global food security and informed policymaking.

Remote sensing has been providing timely and efficient means for agricultural monitoring for
decades. Paddy rice is the only crop that grows under wetland conditions [3]. Its growing cycle
comprises three phases: vegetative phase, reproductive phase, and ripening phase, which are detailly
divided into 10 growth stages. The growing cycle of paddy rice features unique optical reflectance and
radar scattering characteristics compared to other crops due to the abundant water conditions in the
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early stages. Many study cases have employed optical (e.g., Landsat, Moderate Resolution Imaging
Spectroradiometer (MODIS), SPOT, and Sentinel-2), microwave (e.g., RADARSAT, Phased Array Type
L-band Synthetic Aperture Radar (PALSAR), and Sentinel-1), or a combination of the two remote
sensing data sources to map rice-growing area at regional or continental scales. Dong and Xiao [4] sorted
out rice mapping approaches into four categories, i.e., (1) reflectance data and image statistic-based
approaches, (2) vegetation index (VI) data and enhanced image statistic-based approaches, (3) VI or
radar backscatter-based temporal analysis approaches, and (4) phenology-based approaches through
remote sensing recognition of key growth phases. The essence of rice mapping approaches is
classification models using a single (category 1 and 2) or multiple temporal (category 3 and 4) remote
sensing images. A single temporal image has its limitations in discriminating paddy rice from other
land cover types due to similar remote sensing signals at certain growing stage and mixed pixels [5].
Approaches based on multi-temporal and phenology-based classifiers are drawing more research
interests for paddy rice mapping and other cropland mappings [5–9].

Flooding and transplanting signals are unique features for paddy rice. They are often used as key
signatures to identify the rice field. Xiao et al. [7,10] generated rice maps for China and Southeast Asia
with time-series MODIS data by identifying flooding and transplanting phases using the relationship
between normalized difference vegetation index (NDVI) (enhanced vegetation index (EVI)) and land
surface water index (LSWI). Yin et al. [11] applied a time series vegetation index to detect flooding
and transplanting phases using fusion data from MODIS and Landsat images. Besides vegetation
index and water index, synthetic aperture radar (SAR) datasets were also used to detect flooding and
transplanting signals. Torbick et al. [12] and Zhang et al. [13] used PALSAR data to identify rice growing
stages. Other phenology-based approaches with SAR data sources include European Remote Sensing
Satellite-1 (ERS-1) [14] and RADARSAT-2 [15]. More recently, the novel European Space Agency (ESA)
Sentinel-1 has been frequently used as a SAR data source for paddy rice mapping [8,9,16,17], as it
provides higher spatial resolution (10 m) and more frequent revisit (6 days). It should be noted that
optical remote sensing data is often limited to construct an ideal time series dataset due to cloud cover
in rice-growing regions. Therefore, radar remote sensing (e.g., SAR) is more suited for time series
analysis since it is independent of weather conditions.

Many multi-temporal or phenology-based paddy rice mapping studies treated all rice fields as
synchronized in phenology and input multi-temporal data into classifiers simultaneously. Such a
manner ignores the planting schedule difference of farmers and variation in rice-growing periods of
different rice cultivars. For example, Le Toan et al. [18] observed a shift of up to 6–8 weeks between
fields within a region in Indonesia. This could lead to classification error for regional rice mapping
with medium and high spatial resolution images. Some studies [19–21] attempted to address this
problem with dynamic programming algorithms, such as dynamic time warping (DTW). The authors
classified cropland on the basis of the DTW distance of NDVI from each pixel to samples using a
threshold or a simple classifier. To obtain a complete NDVI time series dataset, they either had to
reconstruct the data from cloud cover or use existing data products, which often are not available.
The reconstruction of data for cloudy days could introduce uncertainties to the final time series dataset.
Radar remote sensing data, on the other hand, has greater potential in finding phenological alignment
using dynamic programming algorithms. Yet, few cropland mapping studies exist that have used such
a strategy, except for Li and Bijker [22] who focused on vegetable classification.

Being consistent with general land cover classification development, various supervised and
unsupervised classification algorithms have been applied for paddy rice mapping, such as maximum
likelihood [23,24], support vector machines (SVM) [25–27], random forest (RF) [27,28], and decision
trees (DT) [29]. In recent years, deep learning methods have shown great capability in fields such as
computer vision and remote sensing image classification [30,31]. Convolutional neural network (CNN)
and recurrent neural network (RNN) are the most adopted algorithms for remote sensing classification
tasks, including rice mapping. Compared to shallow learning methods (such as SVM, RF, and DT),
deep learning models rely more on abundant training samples to make reliable predictions and to avoid
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over-fitting. Kussul et al. [31] presented one of the early attempts of using deep learning models for
cropland classification. The authors proposed a 1-D CNN model from multiple Sentinel-1 and Landsat
images sensed in the growing season. A total of 547 polygons of training samples were selected by
extensive field surveys. Zhang et al. [32] devised a CNN-based approach that classifies small patches
for each pixel with fused multi-temporal Landsat and MODIS NDVI data, along with a synthetic
phenological variable. They acquired training samples on the basis of existing land use/land cover
(LULC) maps and Google Earth. Sun et al. [33] proposed a long short-term memory (LSTM) recurrent
neural network (RNN) model for yearly cropland classification of North Dakota, USA, using Landsat
imagery. More than 10 million samples were selected to train the LSTM model on the basis of the
Cropland Data Layer (CDL). All these deep learning-based cropland classification approaches rely
on either a trustworthy labeled training data source or a laborious field survey, which might not be
available or may be too expensive for some projects.

With concerns of variance in rice cultivation schedule and abundant training samples needed for
deep learning models, we propose a paddy rice mapping approach that labels weak samples using DTW
distance with time series SAR data and then feeds them into an LSTM network classifier. First, standard
SAR backscatter profiles for each land cover type were constructed on the basis of a relatively small
number of paddy rice pixel samples. The polarization of SAR data was carefully selected for that
which best reflected flooding and transplanting signals of rice growing stages. DTW distances from
each pixel of the study area to standard profiles were then computed. The k-nearest pixels were
selected as weak samples. Using field samples and weak samples as a training set, we trained an LSTM
model using time series multispectral and SAR bands as input. This weakly supervised deep learning
approach could benefit from the strong learning ability of RNN models on time series data with less
field sampling cost.

2. Materials and Methods

2.1. Study Area and Materials

2.1.1. Study Area

The study area is Tongxiang County of China’s Zhejiang Province. It was chosen because it is one of
China’s major rice-growing regions. The county is located in the Hangjiahu Plain of East China, with an
area of 727 km2 (Figure 1). The annual number of days≥10 ◦C is 217–222. The accumulated temperature
in degree-days is 4772–4960 ◦C, featured with a subtropical monsoon climate. Rainfall and river
network of the region provide adequate irrigation for single/double-cropping systems. Motivated by
the agricultural economy, only single-cropping of rice is practiced in Tongxiang. Rice growing season
of the study area is from May to November. However, rice harvest could happen as early as in October
and as late as in December.

The study area meets the requirements to test our method for several reasons. First, it represents
the typical geography of rice cultivation regions in East China with small to medium field size.
Second, the weather of the region is an example of a scenario wherein optical remote sensing data
are often not applicable due to cloud cover during the rice-growing season. Third, the size of the
region is fit for rice mapping with high to medium resolution images that are to be trained with deep
learning models.
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Figure 1. Location of the study area.

2.1.2. Datasets and Preprocessing

Time Series SAR Data

Time series SAR data were used to compute similarities between pixels to land cover samples
on the basis of sequence alignment. Time coverage of the SAR data was from April to December,
which was extended by a month for the beginning and the end of the period compared with the normal
cultivation period (May to November). This was because abnormal cultivation schedules exist for
some farmers, for example, early rice planting (e.g., before May) and late harvest (e.g., after November).
A total of 23 images of Sentinel-1A Level-1 Ground Range Detected (GRD) product with an interval
of 12 days from April to December 2018 were accessed from ESA Copernicus Open Access Hub
(https://scihub.copernicus.eu/). Sentinel-1B data product was omitted since it was not provided by ESA
for the study area. The images were sensed with C-band in interferometric wide (IW) mode, and in
dual of vertical transmitted; vertical received (VV); and vertical transmitted, horizontally received (VH)
channels. Attributes of SAR images are listed in Table 1. The radar backscatter data were used to detect
key phenology stages of paddy rice, especially flooding signals of early growing stages. According to
Clement et al. [34], VV polarization slightly outperforms VH polarization while delineating flooding.
Hence, VV bands were chosen to construct the SAR time series.

Several preprocessing steps were carried out using Sentinel Toolboxes software SNAP.
First, subsets of original images were generated by cropping extend to the study area. The images
were then calibrated to sigma naught (σ0) backscatter coefficients in a linear unit. Terrain correction
was applied subsequently using Range Doppler Terrain Correction with Shuttle Radar Topography
Mission (STRM) 3 sec grid. We generated 10 × 10 m pixel spacing images, which were reprojected to
the Universal Transverse Mercator (UTM) zone 51 N. Then, a multi-temporal speckle filtering was
applied on the terrain-corrected images using a 7 × 7 gamma map filter with 3 looks to reduce the
noise in the images. Finally, the linear intensity values of the VV bands were converted to the dB unit.

Sentinel-2 Time Series Images

Sentinel-2 multispectral images covering rice growing season were obtained from ESA Copernicus
Open Access Hub. Screened by cloud cover, only 11 cloud-free dates were usable. Top-of-atmosphere
level 1C data products of those dates were downloaded. Some preprocessing steps were also required
for the level 1C product. First, atmospheric, terrain, and cirrus correction were performed using the
Sen2Cor v2.8 tool provided by ESA to achieve bottom-of-atmosphere level 2A product. Among the
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13 spectral bands of Sentinel-2 images, we selected 10 bands (B2-B8, B8a, B11, and B12) as input
features, including visible, near-infrared (NIR), and short-wave infrared (SWIR) bands. The reason to
include SWIR bands is that they are sensible to leaf water content [35], which could help differentiate
rice fields from other crops. B2-B4 and B8 were in a resolution of 10 m. The remaining 6 bands (20 m
resolution) were resampled to 10 m by nearest neighbor interpolation using the processing module in
SNAP. Table 2 lists the attributes of used Sentinel-2 images.

Table 1. Attributes of synthetic aperture radar (SAR) images.

SAR Images

Sensor Sentinel-1A

Data level Level-1 ground range detected

Spatial resolution 10 m

Wavelength C band

Polarization VV

Pass Ascending

Acquisition mode IW

Acquisition date (23 successive images with 12-day interval)

4 April 2018
16 April 2018
28 April 2018
24 December 2018

Table 2. Attributes of optical images.

Multispectral Optical Images

Sensor Sentinel-2A, Sentinel-2B

Data level Level-1C

Spatial resolution 10 m, 20 m

Band B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12

Acquisition date (11 images)

9 April 2018
19 April 2018
4 May 2018
9 May 2018
18 June 2018
18 July 2018
23 July 2018
28 July 2018
7 August 2018
1 October 2018
10 November 2018

Field Sampling Data

Field sampling was conducted to collect samples belonging to broad land cover categories,
i.e., paddy rice fields, water bodies (rivers, lakes, and reservoirs), construction (buildings, roads,
bare surfaces, and paved surfaces), vegetation (forest, shrubs, orchards, and other planted area),
and other croplands. A total of 506 sample sites (points of interest, POIs) were selected through
scattering the study area for the five land cover types. The sample sites were selected in a homogeneous
spatial distribution principle to cover cultivation variation between sub-regions. A geo-referenced field
photo was taken for each POI in November 2018. Locations of geo-referenced photos were converted
into kmz format and imported to Google Earth. Polygons of sample sites (areas of interest, AOIs) were

97



Agriculture 2020, 10, 483

then delineated with the assistance of Google Earth and reference photos. Boundaries of polygons
can be distinguished with high-resolution satellite images of 2018 from Google Earth. The land cover
type of an AOI was assigned with the land cover type of the field photo where it was taken (as shown
in Figure 2).
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Figure 2. Illustration of the field sampling process. Image (a) (paddy rice field) and (b) (other croplands)
are example photos of points of interest (POIs). Their locations are shown in the Google Earth image
on the left. Boundaries of fields (a,b) were delineated with the Google Earth image. Likewise, areas of
interest (AOIs) for the other three land cover types were also created. Note that the dates of the Google
Earth image and the field photos are not the same but were taken in the same year.

A total number of 506 AOIs (one for each sample site) were created and then rasterized into
a GeoTIFF image with 10 m resolution. Final AOIs include rice field (4569 pixels), water body
(4805 pixels), vegetation (4372 pixels), construction (6094 pixels), and other croplands (4592 pixels).

2.2. Methodology

We integrated time series optical and radar remote sensing data to best capture phenological
characteristics of paddy rice. The time series data were to be fed into a RNN to cope with non-linear
relationship and temporal correlation. The framework of this study is shown in Figure 3. First, a labeling
strategy was developed. Following the preprocessing steps, standard SAR backscatter profiles for
each land cover type were created with a relatively small number of field samples. Pairwise DTW
distances to the standard SAR backscatter profile for each land cover type were computed for the
whole study area. Top-k nearest pixels were then screened out as weakly labeled samples with the
highest confidence. A specifically designed LSTM network was trained with integrated input features
of optical and SAR data, using field samples (supervised) or optionally combined with DTW-labeled
samples (weakly supervised). Finally, a supervised or weakly supervised approach was to be adopted
on the basis of experiment results to generate a paddy rice map.
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Figure 3. The framework of mapping paddy rice with dynamic time warping (DTW)-labeling strategy
and weakly supervised classification with long short-term memory (LSTM) deep learning classifier.

2.2.1. Standard Time Series SAR Backscatter Profiles

To simulate the scenario wherein only a small number of field samples are available, we took 10%
of field sample pixels of each land cover type as a base to compute standard SAR backscatter profiles.
SAR backscatter values of each date were extracted from the time series of the 23 Sentinel-1 SAR
backscatter coefficient images from April to December. For each date and land cover type, the standard
SAR backscatter value was computed by averaging on the selected base samples (Figure 4). The five
land cover types had different levels of SAR backscatter in dB. Waterbody had a distinctly low radar
backscatter profile with litter temporal variance. In contrast, construction had the highest radar
backscatter value. Vegetation and cropland were similar in the radar backscatter level. Compared to
other cropland, rice fields showed a greater variance due to temporal change in the structure of the
canopy and that of the underlying soil surface.
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2.2.2. DTW Distance-Based Sampling

The dynamic time warping (DTW) algorithm uses dynamic programming techniques to find
the optimal alignment and the minimal distance of two temporal sequences. The algorithm was
originally developed for speech recognition to cope with different speaking speeds [36], and was
introduced in time series remote sensing image analysis in recent years [19,20,37,38]. The alignment of
two sequences is through being warped non-linearly by stretching or shrinking the time dimension.
In our case, DTW can deal with temporal distortion in rice-growing phases of different rice fields or
rice varieties. Mathematical principle and a detailed procedure to implement DTW was elaborated
by Berndt and Clifford [39]. The basic idea is illustrated in Figure 5, where A and B are two SAR
backscatter time series of rice field samples. The DTW algorithm finds the best alignment that allows
minimum accumulated distance for each time step. In this example, the planting date of B was later
than that of A. DTW algorithm aligns the phases between these two SAR time series by shifting with
the corresponded time gap. As a result, the similarity measure in the SAR time series curve is justified,
regardless of planting date difference and rice varieties.
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Figure 5. Illustration of DTW alignment between two time series SAR backscatter curves.

For each land cover type, pairwise DTW distances to its standard SAR time series were computed.
The shorter the distance, the more likely a pixel belongs to the corresponding land cover type.
Top-k nearest strategy was applied to select weak samples, which means they had the highest
confidence belonging to a certain land cover type. The decision on the number of screened samples
was made on the basis of the rough size of the rice planting area in the study area. A larger number
of samples may enhance the training of the deep learning model. However, it could bring more
uncertainty in the sample label, i.e., lower sample quality. The number of labeled samples should be a
small portion of the total rice planting area. In practice, a DTW Python module by Pierre Rouanet
(https://github.com/pierre-rouanet/dtw) was adopted.

2.2.3. LSTM Deep Learning Classifier

LSTM [40] is an RNN architecture designed to avoid the long-term dependency problem.
Compared to feed-forward neural networks, RNN has a feedback connection that deals with temporal
dynamic behavior. RNNs use an internal state (memory) from the previous time step as one of the
inputs for the current time step. Traditional RNN often encounters vanishing gradient problem while
processing long-sequence data. LSTM, on the other hand, can avoid this problem by adding gates
to control the cell state. A common LSTM unit has an input gate, an output gate, and a forget gate.
A standard RNN unit and LSTM unit are illustrated in Figure 6.
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Gates in LSTM cells use a sigmoid activation function to decide whether to keep a feature.
“0” means the gates are blocking inputs. “1” means gates are allowing inputs to pass through it.
Equations of the three gates are

it = σ(wi[ht−1, xt] + bi) (1)

ft = σ
(
w f [ht−1, xt] + b f

)
(2)

ot = σ(wo[ht−1, xt] + bo) (3)

where it, ft, and ot denote input gate, forget gate, and output gate, respectively; σ denotes sigmoid
function; and wx, ht−1, xt, and bx denote the weight for respective gate neurons, the output of the
previous LSTM block, input at the current timestamp, and biases for the respective gates, respectively.

The cell state and final output are defined by equations

c̃t = tanh(wc[ht−1, xt] + bi) (4)

ct = ft × ct−1 + it × c̃t (5)

ht = ot × tanh(ct) (6)

where ct and c̃t denote cell state and candidate for cell state at time t, and ht denotes the final output
(hidden state) of the LSTM cell.

Considering the large span of the time series data, we developed an LSTM network to identify
paddy rice from other land cover types. The core of the model is a stack of two LSTM layers,
one fully connected layer, and two dropout layers, as shown in Figure 7. Output layers used the
softmax activation function to predict the likelihood that a pixel belongs to one land cover type.
Categorical cross-entropy was chosen as the loss function. The choice was made on the basis of
several concerns. First, it has been proven that the use of cross-entropy losses made great performance
improvements in models with softmax outputs [42]. Second, the training samples for each class were
fairly balanced, which makes the network unbiased towards each class. Therefore, other loss functions
were neglected, for instance, focal loss, which is suitable to deal with the imbalance problem in datasets.
Parameters used to train the network are shown in Table 3. The model was implemented with Python
3.7 language and TensorFlow library.
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Figure 7. LSTM network structure. The inputs of the classifier are pixel values of 11 bands
(10 multispectral bands and 1 SAR band). At time t, the classifier is fed with the band values
of image t, and the LSTM layers receive cell state and hidden state from the previous timestamp t − 1.
The final prediction is made by the output layer of the last timestamp.

Table 3. Parameters of proposed LSTM classifier.

Learning Rate Dropout Rate Batch Size Loss Function Optimizer

0.001 0.5 64 Categorical cross-entropy Adam algorithm

The input multispectral features (10 bands) of the classification model were carefully selected
from optical imagery, as described within Section 2.2.2. Meanwhile, SAR backscatter signals provided
valuable information to discriminate paddy rice fields. The SAR backscatter coefficient was therefore
added as an input feature. It should be noted that the dates of Sentinel-1 SAR images did not coincide
with that of Sentinel-2 optical images. The SAR images with the closest sensing date to corresponding
optical images were selected. This strategy should be feasible since the time difference between the
two data sources was minor (less than 5 days). The SAR data were normalized to the same range (0, 1)
as optical bands. The final input features comprised 10 optical bands and 1 SAR band.

2.2.4. Experiment Design

We designed 3 experiment schemes on the basis of the number of field samples. In each scheme,
supervised and weakly supervised learning were both to be tested. Scheme 1 and 2 are two comparative
experiments that were to be validated by a fixed test set with a sufficient sample number. First, the test
set was randomly selected from the rest of the field samples, apart from those for computing standard
SAR backscatter profiles. The sample number of the test set accounted for 50% of all field samples.
In scheme 1, 10% of field samples and 5000 DTW-labeled samples each type were used for training.
The 10% was the same set of samples for computation of the standard SAR backscatter profiles in
Section 3.1. Scheme 1 is designed to test for the case that only a small number of field samples
were available. In scheme 2, training samples were the rest of the half field samples, apart from the
test set plus 2000 DTW-labeled samples of each type. Scheme 3 utilized 80% of field samples and
2000 DTW-labeled samples of each type for training. It was designed to compare weakly supervised
with supervised learning in a condition of relatively adequate field samples. The details of experiment
schemes are listed:
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• Scheme 1: Supervised learning training on 10% of field samples compares with weakly supervised
learning training on (10% of field samples + 5000 DTW-labeled samples for each land cover type).

• Scheme 2: Supervised learning training on 50% of field samples compares with weakly supervised
learning training on (50% of field samples + 2000 DTW-labeled samples for each land cover type).

• Scheme 3: Supervised learning training on 80% of field samples compares with weakly supervised
learning training on (80% of field samples + 2000 DTW-labeled samples for each land cover type).

3. Results

3.1. DTW Distance-Based Sampling Results

Using the SAR time series of each pixel in the study area and the five standard SAR profiles,
we generated five pairwise DTW distance maps (Figure 8). Each map depicted the likelihood that
image pixels belong to the corresponding land cover type. The lower the value, the more likely the
pixel belonged to the corresponding land cover type. For water body and construction ((b) and (d),
respectively, in Figure 8), their DTW distance maps show visibly different patterns than the other three.
This can be explained by the SAR backscatter differences between vegetation and non-vegetation.
In some parts of the map, DTW distances for paddy rice ((a) in Figure 8) and other crops ((e) in Figure 8)
show a similar pattern of low value. Those pixels are likely to be agricultural land whose SAR profile
lies between the standard paddy rice profile and other-crop profile. This ambiguity was avoided by
the top-k nearest strategy to pick out the weak samples with the highest confidence.

For each land cover type, the top-k (5000 or 2000 for experiments) pixels with the lowest DTW
distance were selected as weak samples. No conflict of labels was found in the selected weak samples
since a relatively small amount (to the pixel number of the whole study area) of weak samples
were picked.

3.2. LSTM Classification Results

We evaluated the experiments with four metrics, namely, overall accuracy (OA),
producer’s accuracy (PA) for paddy rice, user’s accuracy (UA) for paddy rice, and Kappa coefficient.
UA evaluates how often the class in the classification map will be present on the ground, and PA
evaluates how often real land cover types in the study area are correctly shown on the classification
map. They can be derived from the confusion matrix. PA and UA for paddy rice were of most concern
since our goal was solely focusing on paddy rice mapping. The evaluation of three experimental
schemes is shown in Table 4 (PA and UA for paddy rice are emphasized in bold and in tables thereafter).

Paddy rice PA and UA for supervised learning in scheme 1 were 0.904 and 0.917, respectively,
whereas for weakly supervised learning were 0.981 (improved by 0.77) and 0.961 (improved by 0.44),
respectively. However, supervised learning surpassed weakly supervised in OA (0.937 to 0.854)
and Kappa (0.921 to 0.817), which indicated that weak samples introduced errors in land cover
types other than paddy rice. Further analysis of classification results for scheme 1 was listed in
Tables 5 and 6. Compared with supervised learning, PA and OA for paddy rice were notably improved.
Meanwhile, PA and OA for vegetation and other crops were depressed. The expanded weak samples
might introduce errors in labels for vegetation and other crops since they could have similar time
series SAR profiles (Figure 4). Scheme 1 proves that with a small number of field samples for training,
the proposed weakly supervised approach had evident improvement in paddy rice identification,
regardless of possibly worse identification of other land cover types.
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Table 4. Evaluation of three experiment schemes.

Experiment OA Paddy Rice PA Paddy Rice UA Paddy Rice
Support Kappa

Scheme 1
Supervised 0.937 0.904 0.917 2281 0.921

Weakly supervised 0.854 0.981 0.961 2281 0.817

Scheme 2
Supervised 0.973 0.968 0.972 2281 0.966

Weakly supervised 0.986 0.985 0.993 2281 0.982

Scheme 3
Supervised 0.982 0.988 0.987 913 0.978

Weakly supervised 0.989 0.996 0.984 913 0.986

Table 5. Confusion matrix for supervised learning in scheme 1.

Paddy Rice Vegetation Water Construction Other Crops

Paddy rice 2092 54 0 23 112
Vegetation 42 2276 3 4 66

Water 5 0 2118 24 0
Construction 3 0 21 3015 2
Other crops 173 158 7 72 1885

PA 0.904 0.915 0.986 0.961 0.913
UA 0.917 0.948 0.986 0.99 0.821
OA 0.937

Kappa 0.921

Table 6. Confusion matrix for weakly supervised learning in scheme 1.

Paddy Rice Vegetation Water Construction Other Crops

Paddy rice 2193 12 0 6 70
Vegetation 6 2066 0 58 261

Water 6 0 2091 16 34
Construction 0 50 2 2742 247
Other crops 30 775 39 163 1288

PA 0.981 0.712 0.981 0.919 0.678
UA 0.961 0.864 0.974 0.902 0.561
OA 0.854

Kappa 0.817

Scheme 2 used more field samples for training than scheme 1. The experiment results also showed
improvement with weakly supervised learning in paddy rice PA and UA, although not as much as
scheme 1. PA was improved by 0.017 from 0.968 to 0.985, and UA improved by 0.021 from 0.972 to 0.993.
This can be explained by the classification model. The proposed classification model was fairly fitted by
training with 50% of field samples. No evident improvement was observed in scheme 3, while 80% of
field samples were used for training. Paddy rice PA was slightly improved. Considering the relatively
small sample number of the test set, this improvement was neglectable.

3.3. Paddy Rice Map

On the basis of the model evaluation, we implemented the weakly supervised approach in scheme
3 to generate a paddy rice map (Figure 9). The resulting map shows that the majority of paddy rice
cultivation was in the north and west of the county. The total area of mapped paddy rice fields was
13,998.8 ha, slightly less than the government-published figure of 14,666 ha. With closer examination
of four selected areas (Figure 10), we found that the resulting map depicts paddy rice fields with fair
accuracy. Meanwhile, the precise boundaries of contiguous rice fields failed to be delineated due to the
resolution of the data source. Boundaries between rice fields are generally 1–3 m in width, and hence
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are unfeasible to be mapped with 10-m resolution images. The narrow boundaries were also counted
as paddy rice fields in the produced map.

As we were focusing on paddy rice mapping, the classification accuracy of other land cover
types was less regarded. With visual interpretation, water and construction type were well identified,
while vegetation and other crops were mixed up in some areas. In some cases, these two broad
categories could have a similar time series pattern in terms of spectral and radar signals.
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Figure 10. Classification result inspection on selected areas with high-resolution satellite images. A1 is
the high-resolution remote sensing image and A2 is its classification result, vice versa for B–D. Images
(A1,B1) were sensed in May 2018, (C1) was sensed in July 2018, and (D1) was sensed in December
2018. By visual interpretation, paddy rice fields in (A1,B1,C1) are displayed in green, while in (D1),
paddy rice fields are displayed in yellow since the crop was harvested.

4. Discussion

This study mapped paddy rice fields using a weakly supervised LSTM deep learning network
with time series optical and SAR remote sensing data. The motivation of this study was to show that
deep learning classifiers have a strong capability in crop mapping, but often require a larger number of
training samples. To solve this problem, a DTW distance-based sampling method was developed to
deal with the time alignment in rice cultivation and label weak samples. Experiments on different
numbers of training samples showed that the DTW distance-based sampling improved classification
results for paddy rice, whereas the field samples were insufficient.

Previous studies, e.g., Zhong et al. [43] and Sun et al. [33], have applied RNNs in crop mapping,
although not specifically for rice mapping. The effectiveness of using RNNs to classify croplands
has been proven. However, the experiment results of those studies are not comparable to our study
since different datasets and experiment schemes were used. Those studies relied on high-quality field
survey data to provide a large number of training samples. Our experiments showed that with weakly
supervised learning, only 10% of field samples as training data achieved comparable results (PA 0.981,
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UA 0.961) to supervised learning on 50% of field samples (PA 0.968, UA 0.972), and weakly supervised
learning on 50% field samples (PA 0.985, UA 0.993) had similar performance to supervised learning on
80% field samples (PA 0.988, UA 0.987). Although in scheme 1, weakly supervised learning with weak
samples impaired the differentiation of vegetation and other crops, the goal of paddy rice mapping
was promoted. The results imply that DTW-labeled paddy rice, water, and construction samples had
high confidence and contributed significantly to the training of the RNN classifier.

Many factors could have an impact on the identification and mapping of paddy rice with
multi-temporal remote sensing data. First, the resolution of satellite images creates the bottleneck of
the precision of paddy rice mapping. The average size of paddy rice fields determines the appropriate
image resolution to be used. The typical length of crop field sides is tens of meters in the study area.
The boundaries between crop fields are narrow. Among the 11 input feature bands, 5 of them were in
10-m resolution and 6 of them were resampled to 10 m from 20 m. A mixed pixel problem still exists
for small land parcels such as boundaries between croplands. Image segmentation on high-resolution
images as supplementary data is a possible solution to alleviate this problem. The second factor is
the continuity of time series data. Optical remote sensing data were critically confined by weather
conditions in the study area. Sentinel-2 images of only 11 dates (less than a quarter of sensed images)
from April to November were qualified for generating cloud-free data. With more complete time
series images, the RNN classifier would yield more reliable results. This is a common problem for
many studies using optical remote sensing data. The third factor is feature selection. Multi-temporal
profile analysis of paddy rice widely utilizes temporal analysis of vegetation indexes (VIs) and water
indexes (WIs) [19,44,45]. Some evident characteristics can be observed with VIs or WIs at a certain
phase of paddy rice growth. For instance, in the heading phase, normalized difference vegetation index
(NDVI) and enhanced vegetation index (EVI) show an increase and decrease variation, respectively,
with a peak; land surface water index (LSWI) shows a jump in the transplanting phase due to water
inundation [46]. As for the deep learning classifier in this study, we avoided VIs or WIs as input
features due to the following concern. The range of VIs or WIs is different from that of spectral bands.
If the VIs or WIs are rescaled to the range of spectral reflectance, the principle of the indexes is no
longer valid. On the other hand, the neural networks would learn an implicit representation of raw
input data, which is analogous to manually created features such as VIs and WIs.

Flooding signals are key features at early growing phases of paddy rice to differentiate from other
crop types. Before transplanting, radar backscatter is low due to flooded fields. Radar backscatter
increases during the vegetative phase, reaching a maximum at the heading stage [47]. We utilized the
SAR backscatter coefficient as an input to the LSTM classifier. However, the power of SAR data as an
input feature to identify the rice field was restrained by the number of valid optical images. Only a
small portion of SAR images was used.

Most studies on rice mapping using multi-temporal data ignored planting schedule differences.
Inputting all multi-temporal features as a whole into shallow machine learning classifiers, such as
SVM and random forest, could impair the classifier’s predictive ability. RNNs have strong adaptability
to avoid this problem through learned memory control. Accordingly, many land cover classification
studies using deep learning classifiers achieved better results compared to shallow classifiers. In the
meantime, a larger number of training samples were required for the training of deep learning models.
The proposed labeling method was especially designed for paddy rice, whose radar signal pattern
through the growing season is unique. The experiment was conducted for a single-cropping regime
in East China. However, the DTW-labeling strategy is valid for the multiple-cropping regime and
other regions of the world, since it only relies on all-weather SAR remote sensing data. If applied
to a multiple-cropping regime, each cropping regime should be categorized as an independent land
cover type. For instance, single/double/triple-cropping rice fields should be separate land cover types.
With enough labeled samples, state-of-the-art deep learning classifiers (non-sequential or sequential as
in this study) could be chosen to adapt to a specific rice-growing region in the world.
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5. Conclusions

This study proposed a paddy rice mapping approach based on a weakly supervised LSTM
network with DTW distance-based sampling strategy. The purpose of this study was to enable a good
fit for deep learning classifiers in the circumstance that field samples were not sufficient or to reduce
the cost of field sampling. Apart from field samples, a larger number of weak samples were labeled on
the basis of DTW distance to the standard SAR profiles of each land cover type. A specifically designed
LSTM classifier was trained on combined optical spectral bands and SAR backscatter data as input
features. A paddy rice map was finally generated with the best training scheme.

A few conclusions can be made on the basis of experiment results. First, the weakly supervised
approach has a positive impact on paddy rice mapping when limited field samples are available.
The DTW distance-based sampling strategy effectively reduced field sampling costs since fewer field
samples were required. Second, the LSTM network classifier achieved high precision on paddy rice
mapping. The mechanism of LSTM networks is feasible for paddy rice mapping where variance exists
in terms of planting and harvesting schedules.
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Abstract: Food production to meet human demand has been a challenge to society. Nowadays,
one of the main sources of feeding is soybean. Considering agriculture food crops, soybean is sixth
by production volume and the fourth by both production area and economic value. The grain can
be used directly to human consumption, but it is highly used as a source of protein for animal
production that corresponds 75% of the total, or as oil and derived food products. Brazil and the
US are the most important players responsible for more than 70% of world production. Therefore,
a reliable forecasting is essential for decision-makers to plan adequate policies to this important
commodity and to establish the necessary logistical resources. In this sense, this study aims to predict
soybean harvest area, yield, and production using Artificial Neural Networks (ANN) and compare
with classical methods of Time Series Analysis. To this end, we collected data from a time series
(1961–2016) regarding soybean production in Brazil. The results reveal that ANN is the best approach
to predict soybean harvest area and production while classical linear function remains more effective
to predict soybean yield. Moreover, ANN presents as a reliable model to predict time series and can
help the stakeholders to anticipate the world soybean offer.

Keywords: artificial neural networks; time series forecasting; soybean; food production

1. Introduction

World’s population is projected to reach 9.8 billion in 2050 [1] and food production needs to
increase by 60% to meet the demand [2,3]. One reason for that is the developing countries—that
have been growing much more rapidly than the industrial countries—are creating implications for
world food demand mainly in products such as animal-based, fruits, and vegetables [4]. However,
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declining rates of growth in crop yields, slowing investment in agricultural research, and rising
commodity prices have raised concerns of a general slowdown in global agricultural harvest area,
yield, and production [5].

The rapid per capita income growth in countries like China and India (40% world population)
pressure food supply chains shifting towards animal-based products that require disproportionately
more agricultural resources in production [4,6] such as land, water, and vegetable protein [7]. Moreover,
there is a concern revolving around big agriculture growers such as Brazil and the US using their
agriculture areas to produce biofuels [6].

It is not only in the economy that this relationship between food demand and income are
finding shelter. It is possible to verify in the literature a connection about technology and
agricultural production. Crop yield and production, for instance, have been studied in the light
of artificial intelligence. Khan et al. [8] predicted fruit production using deep neural networks.
García-Martiínez et al. [9] estimated corn grain yield with a neural network using multispectral and
RGB images acquired with unmanned aerial vehicles. Maimaitijiang et al. [10] predicted soybean yield
using multimodal data fusion and deep learning. These applications are a clear attempt to improve
knowledge about food production and provide decision-makers with valuable information to face the
challenges of food demand.

Another possible solution discussed is the use of areas in Latin America and the Caribbean to
expand agriculture production [11]. Brazil, for instance, has more than 8 million km2 of area and uses
only 15% of its arable land—approximately 60 of 400 million hectares [12]. The country is an important
global food supplier, and it is estimated that one out of four agribusiness products in circulation
around the world came from Brazil [13]. Despite the concern of biofuel production, sugarcane occupies
only 8.9 million hectares of arable land [14], and the majority is used for sugar production rather
than ethanol.

Brazil has more than 300 different crops and exports 350 types of products to 180 countries.
The main export products are sugar, coffee, maize, orange juice, cotton, and soybean. Among these
products, soybean is the main global source of protein, and the country is the major exporter that
corresponded for approximately 29.9% of agribusiness external sales in 2016—USD 25.4 billion [13].
According to the Department of Agriculture of United States—USDA [15], Brazilian exports of the
soybean complex are 81% grains, 15.7% meal, and 3.3% refined oil.

Soybean production has overspread inside the country from south, through the center-western to
the northeast area. These movements are motivated by low land cost, and investments in agriculture
inputs, mechanization, and infrastructure [16–18]. Other factors contributing to soybean growth
in Brazil include the genetic improvement of seeds, increasingly productive planting systems [19],
favourable climatic conditions, predictable precipitation patterns, and public financing policies for
soybean plantations [20].

The soybean production is evaluated considering three categories: harvest area, yield,
and production. The two main players are Brazil and the US, the former planted a harvest area
of 36.9 million of hectares that produced 120.9 million of tones with a yield of 3.3 tones per hectare [21]
and the latter planted a harvest area around 30.8 million of hectares with a production of 96.8 million
tons and a yield of 3.1 tones per hectare [22]. These values are constantly predicted using classical
methods and presented to stakeholders by government agencies. However, the respective literature
is sparse and relates to agronomy aspects of soybean yield [10,23,24]. In this paper, we focus on the
prediction of these soybean indicators based on the previous crop data.

Therefore, our study aims to estimate Brazilian soybean harvest area, yield, and production
adopting Artificial Neural Networks (ANN) and comparing with classical methods of Time Series
Analysis. To this end, we collected the values of harvest area, production, and yield over a period of
56 years (1961–2016). We established the trend lines for five functions: Linear, Exponential, Logarithmic,
Polynomial, and Power, and compared these results with an ANN model with 10 neurons and
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six delays computed using a Nonlinear Autoregressive Network with External Input-NARX with
Levenberg—Marquardt backpropagation for training the network.

The results show that the ANN model is the most efficient method to predict soybean harvest
area and production. The novelty of this paper is to obtain a reliable prediction for soybean production
measures using an ANN model and dealing with a short data period time series (50 years) [25].
The period of 1961–1966 was used only for ANN model delay.

This paper is divided into sections: Section 1 presents this introduction and literature review,
Section 2 shows the methodological procedures, Section 3 deal with results and discussion,
and Section 4 presents the conclusions of the study.

1.1. Artificial Neural Networks

Artificial Neural Networks, as the name proposed, use artificial neurons connected in layers to
simulate human synapse (Figure 1). A mathematical model mimics the neural structure to learn and
to acquire knowledge via experiences (Equations (1) and (2)). This technology is effective to solve
problems—dynamic and nonlinear—such as pattern recognition and prediction [25–30].

ne =
n

∑
i=1

xiwi + bi (1)

u = f (ne) (2)

where x1. . . xn are the input values (data set), w1. . . wn are the weights, and b is the activation threshold
(bias) in the neuron potential ne [25,26,31].

Figure 1. Artificial neuron (left) and ANN multilayer (right).

Among several types of neuron activation functions, the most common are: hyperbolic tangent
(Equation (3)), hidden layer, and linear. The last one always assumes values identical to the activation
potential n [25,26,31]:

f (ne) =
1− e−βu

1 + e−βu (3)

where β is the constant associated with the slope of the hyperbolic tangent function and the output
values assume numbers between −1 and 1.

ANN uses previous data for training the network and minimizes errors between the insertion
and the estimation. This process adjusts the weights and possible bias for each neuron interaction.
The training usually stops when finding out the optimal learning rate [25–30].
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There are various ANN techniques such as General Regression Neural Network (GRNN),
Backpropagation Neural Network (BNN), Radial Base Function Neural Network (RBFNN),
and Adaptive Neuro-Fuzzy Inference System (ANFIS) [32]. Backpropagation (BP) is a learning
algorithm widely used in forecasting problems with ANN, and the networks [30]. The weights
between the different layers may be updated using the BP algorithm, with momentum and learning
rate. Moreover, the weights between the different layers may be updated where the error is then
propagated backward from the output to the input layer [33].

Some studies have been using ANN to study the agricultural environment. Garg et al. [30]
compare the performance between different training methods using an ANN model to forecast wheat
production in India. The data contain 95 years of wheat production (1919–2013), and the results
revealed that the algorithms most effective in training methods are Bayesian regularization and
Levenberg–Marquardt.

Almomani [34] adopted artificial neural networks to predict the biofuel production from
agricultural wastes and cow manure at high accuracy. The training and testing of the ANN used
to predict the cumulative methane production was assessed by using the root mean square method.
The study confirms the capacity of the ANN model to predict the behavior of biofuel production and
to identify the optimum conditions in a short time.

Sankhadeep et al. [35] use an ANN model for soil moisture quantity prediction for sustainable
agricultural applications. They study soil moisture prediction in terms of soil temperature,
air temperature, and relative humidity. The nonlinear relation between soil moisture and the features
is realized using a hybrid modified flower pollination algorithm supported by the ANN model.
They conclude that for sustainable agricultural application the model is highly suitable.

Khan et al. [8] use deep neural networks to fruit production prediction. They considered different
types of fruit production such as apples, bananas, citrus, pears, and grapes with data from the National
Bureau of Statistics of Pakistan. They adopted Levenberg–Marquardt optimization, backpropagation,
and Bayesian regularization backpropagation. The results reveal that the government of Pakistan needs
to further increase fruit production and create better policies for farmers to improve their production.

Wang and Xiao [36] studied recycle agriculture in West China to make a prediction on the
comprehensive development status applying a neural network model with the application of
backpropagation through the MATLAB program. They conclude that China needs to take measures
to promote resources’ decrement input and resource reuse efficiency, protect the forest resources,
and reinforce harnessing of water loss and soil erosion.

Liu et al. [37] create an artificial neural network model for crop yield responding to soil parameters.
The model was established by training a backpropagation neural network with 58 samples and tested
with other 14 samples. They conclude that the model can precisely describe crop yield responding to
soil parameters.

Fegade and Pawar [38] describe that, in India, farmers have difficulties to select proper crop for
farming due to factors such as rainfall, temperature humidity, soil, and so on. Therefore, they used
support vector machine and artificial neural networks to predict crop with 86.80% of accuracy.

Regarding grains, Maimaitijiang et al. [10] evaluate the power of an unmanned aerial vehicle
(UAV) to estimate soybean grain yield within the framework of deep neural networks (DNN). Thermal
images were collected using a low-cost multi-sensory UAV. The results propose that multimodal data
fusion improves the yield prediction accuracy and is more adaptable to spatial variations; DNN-based
models improve yield prediction model accuracy and were less prone to saturation effects.

Zhang et al. [39] establish a model for forecasting soybean price in China using quantile regression
models to describe the distribution of the soybean price range, and using regression-radial basis
function neural networks to approximate the nonlinear component of the soybean price. They collected
the monthly domestic soybean price in China, and the results of the model indicate that the proposed
model is effective.
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García-Martínez et al. [9] analyze different multispectral and red-green-blue vegetation indices,
canopy cover, and plant density in order to estimate corn grain yield using a neural network model.
The neural network model provided a high correlation coefficient between the estimated and the
observed corn grain yield with acceptable errors in the yield estimation.

Abraham et al. [40] propose to design, train, and simulate an ANN on to forecast the demand of
soybean production in Mato Grosso state, Brazil that is exported by the port of Santos. A nonlinear
autoregressive solution was adopted considering 80% of data for training, 5% to validation, and 15%
for testing the network—a value of 9.0 million tons for 2017 as an increase of about 26.5% compared
with the 2016.

Eventually, Abraham et al. [41] also analyze the relationship between soybean supply (production)
and soybean demand (export) using artificial intelligence in a hybrid model neuro-fuzzy. Data from
20 years of soybean production and exportation were used, and the results indicate that the supply
tends to be low when the demands of the ports are overloaded.

Specifically, in the present article, we raised two questions regarding ANN in soybean production:

• Can soybean harvest area, yield, and production be predicted efficiently using Artificial Neural
Networks?

• If so, are Artificial Neural Networks more effective than classical methods of Time Series Analysis
to predict soybean production measures?

To answer these two questions, we develop an ANN model using NARX with the Levenberg–
Marquardt algorithm for backpropagation and data of Brazilian soybean production.

1.2. Time Series and Classical Methods

Time series analysis studies the past behavior of historical series using different methods (Table 1).
It verifies trends, seasonality, and randomness in a dataset in two ways: stationary, when observations
oscillate around a central horizontal axis; and non-stationary when oscillates around changing
values [42,43]. The most appropriate model for a specific dataset is the coefficient of determination
(R), the mean absolute error (MAE), and the mean squared error (MSE) [42,43].

Table 1. Classical methods, equations, and characteristics.

Method Formulas Features

Linear function y = ax± b

Linear is defined as a curve of the first degree or a simple straight
line—where y is the trend, x represents the period of time, a is a
slope, and b is the intercept. The intercept will determine how
far from the x-axis the trend begins. The slope will determine the
direction and the steepness.

Exponential function y = aebx

Exponential is defined as a transcendental curve, where e
represents the basis for natural logarithms, and its constant
value is 2.7813. It grows exponentially, but they never reach the
attracting value.

Logarithmic function y = aln(x)± b The inverse of the exponential function is a logarithmic function.

Polynomial function y = ax2 ± bx± c

The second-degree polynomial curve is a parabola. The
polynomial model can go up to the sixth degree. A larger
magnitude corresponds to a greater adjustment than that in the
original data; however, this does not mean that it is best for
forecasting. The best method is the one that can perform well
with minimum parameters.

Power function y = axb The graph of a power curve is a hyperbola.

Source: adapted from [42,43].
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The coefficient of determination (Equation (4)) measures the linear regression adjustment, which
aims to explain the relationship of the variables. The closer this number is to one, the more fitted is the
model. However, a measure higher than 0.7 is satisfactory [25,42,43]:

R =
∑ (ŷ− y )2

∑ (y− y )2 . (4)

The coefficient of determination is calculated based on the ratio between the explained and the
total variance where y represents the real value of the series, ŷ is the expected value (value of the
regression line approaching the actual value), and ȳ is the average value of the series.

Note that the variance is the difference between the expected value and the mean, and the total
variance is the difference between the original and mean value [25,42,43]. The MAE and MSE are
calculated according to Equations (2) and (3), where n is the number of elements in the series.

MAE =
∑ |y− ŷ|

n
, (5)

MSE =
∑ (y− ŷ)2

n
. (6)

Finally, functions with error values close to 0 are the most effective in predicting future values.
These time series applications are described in the Results and Discussion section.

2. Materials and Methods

2.1. Dataset

To perform this study, we collected data from the Food and Agriculture Organization of the United
Nations (FAO) [44] regarding harvest area (million hectares), yield (tons per hectare), and production
(million tons) between 1961–2016. The dataset was imported from MS© Excel 2016 spreadsheet to
Matlab© R2017b arrays. However, the period from 1961–1966 was used only for delay configuration,
and it was not plotted on the time series [29,45].

Firstly, we conducted Time Series Analysis. The historical series was extracted and processed
in MS© Excel 2016 spreadsheet format generating graphs with trend lines. Tables 2–4 present
the formulas.

Table 2. Harvest area.

Model Trend Formulas

Linear function y = 0.5523x− 1.1485
Exponential function y = 2.1503e0.0582x

Logarithmic function y = 7.8508ln(x)− 10.379
Polynomial function y = 0.009x2 + 0.0937x + 2.8259
Power function y = 0.4302x1.0419

x = timestep(year). y = million hectares.

Table 3. Yield.

Model Trend Formulas

Linear function y = 0.0388x + 1.0523
Exponential function y = 1.1748e0.0199x

Logarithmic function y = 0.5735ln(x) + 0.3397
Polynomial function y = 0.0001x2 + 0.0321x + 1.111
Power function y = 0.7747x0.3113

x = timestep(year). y = tons per hectare.
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Table 4. Production.

Model Trend Formulas

Linear function y = 1.6935x− 12.323
Exponential function y = 2.5259e0.0782x

Logarithmic function y = 22.599ln(x)− 36.247
Polynomial function y = 0.045x2 − 0.6007x + 7.5607
Power function y = 0.3332x1.3534

x = timestep(year). y = million tons.

Secondly, we used neural networks toolbox of the Matlab©R2017b software to create, train,
and validate the ANN model—we tested with 10 neurons and six delays (Figure 2).

Figure 2. Neural network created in Matlab 2017b.

We adopted the Nonlinear Autoregressive Network with External Input-NARX type because
it has proven to be the most effective and accurate solution for multivariable data series [27,46–48].
The NARX network applies historical input data with time delay operators [9]. We used 70% of data for
training, 15% for validation, and 15% for testing. We defined the percentage based on k-cross validation
that utilizes efficiently the learning abilities of the ANN model [49], and data are distributed randomly
by NARX [46]. Moreover, we adopted the Levenberg–Marquardt algorithm for backpropagation due
to being the fastest supervised algorithm for training and widely used for time series prediction in the
ANN model [25,30,46].

For harvested area (target), we used yield and production as input variables; for yield (target),
we used harvested area and production as input variables; for production (target), harvested area and
yield were used as input variables.

After that, Matlab© R2017b provided algorithms for closed-loop form simulation
(named multistep prediction). This type of simulation is important to verify the ability of the networks
to make predictions (calculation of errors) [25]. Figure 3 shows the overall flowchart of the ANN model.

2.2. Model Classification

The differences between the original and predicted values were computed using MAE and MSE,
even for ANN. We compared classical models and neural networks where the errors of each model
were sorted from lowest to highest. However, regression measures were sorted from highest to lowest.
Depending on the use of two measures of error the weighted average was used (Equation (7)):

Rank =
(MAE × 0.5) + (MSE × 0.5) + (R × 1)

2
(7)

where MAE is mean absolute error, MSE is mean squared error, and R is the coefficient of determination.
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Figure 3. Flowchart of the ANN model.

3. Results and Discussion

3.1. Time Series Analysis Using Classical Predictive Methods (Functions)

3.1.1. Harvested Area

The first application of classical methods for prediction uses the time series for harvest area
(target). Figure 4 illustrates the 1967–2016 timespan in million hectares.

The harvested area raised continuously, mainly after the harvest of 1997 (Timestep 31), and reached
around 33 million hectares in 2016 (Timestep 50). Looking back over 1967 year (Timestep 1), the planted
soybean area was 2% (around 0.6 million hectares) of the area planted in 2016. There has been a more
than a 50-fold increase while the US, the main Brazilian competitor, had in 1967 54% of the current
planted area [22].

Regarding the fit of functions, polynomial and power were more effective in predicting harvest
area considering R, MAE, and MSE (Table 5).

Table 5. Effective functions for forecasting harvested area.

Rank Model R MAE MSE

1◦ Polynomial function 0.944 1.813 3.915
2◦ Power function 0.949 1.927 6.901
3◦ Linear function 0.904 1.996 6.716
4◦ Exponential function 0.797 2.481 8.859
5◦ Logarithmic function 0.680 3.825 22.482

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in millions
of hectares), and MSE is the mean squared error (value in millions of hectares).

120



Agriculture 2020, 10, 475

Figure 4. Original time series for harvested area.

3.1.2. Yield

The second application of classical methods of predication verifies soybean yield (target). Figure 5
depicts the time series analysis results considering data from 1967–2016 in hectares.

Figure 5. Original time series for yield.

The average yield over the 50-year period was approximately two tons per hectare. The lowest
value was 0.9 hectares in 1968 (Timestep 2), and the highest value 3.1 tons per hectare in 2011 (Timestep
45). During the 1967 (Timestep 1) crop season, the national yield was approximately 1.2 ton per hectare,
which corresponds to less than half of the yield in 2016 (Timestep 50). In addition, compared with the
US in the same period, the lowest value was 1.6 ton per hectare in 1974 and the highest value 3.5 in
2016 [22]. This means that the Brazilian soybean yield varies 158% against 119% of the US.

The yield increase in soybean production was affected by changes in production processes and
the use of new technologies. Moreover, genetic improvements of soybean created a variety of grain
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with better adaptation to the climate that affected productivity [12]. According to Pereira [50], the last
30 years have demonstrated innovative solutions in food production, such as new crop varieties
and new irrigation techniques. However, Dani [12] argue that the evolution has generally been
technological without improving governance processes causing logistics issues throughout the supply
chain. Logistics has a huge impact on soybean production and directly affect the trade [51].

Related to the fit of the functions, linear and polynomial predict more precisely soybean yield
given that R, MAE, and MSE (Table 6).

Table 6. Effective functions for forecasting yield.

Rank Model R MAE MSE

1◦ Linear function 0.898 0.148 0.036
2◦ Polynomial function 0.899 0.158 0.037
3◦ Exponential function 0.874 0.170 0.038
4◦ Power function 0.794 0.202 0.068
5◦ Logarithmic function 0.728 0.239 0.095

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in tons
per hectare), and MSE is the mean squared error (value in tons per hectare).

3.1.3. Production

Finally, we use classic methods to predict production. Figure 6 shows the time series analysis for
soybean production from 1967–2016 in millions of tons.

Figure 6. Original time series for production.

Brazilian soybean production raised 130-fold, moving from 700 thousand tons in 1967 (Timestep 1)
to 96.3 million tons in 2016 (Timestep 50). In the same period, the US soybean production moves
from 26.5 million tons to 116.9 million tons [22]. In 2019, the Brazilian soybean production was 25%
higher [21] than 2016.

Furthermore, we identify that in 1970 (Timestep 4) the production was 1.5 million tons, but, in 1977
(Timestep 11), it reached 12.5 million tons. This great expansion of soybean cultivation occurs due to
the expansion of international demand and the national soybean oil industry [52].

Regarding soybean production, polynomial and power were more effective considering R, MAE,
and MSE (Table 7).
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Table 7. Effective functions for forecasting production.

Rank Model R MAE MSE

1◦ Polynomial function 0.968 3.990 21.755
2◦ Power function 0.952 6.058 88.784
3◦ Exponential function 0.853 5.847 77.116
4◦ Linear function 0.867 7.658 91.879
5◦ Logarithmic function 0.574 13.843 293.441

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in millions
of tons), and MSE is the mean squared error (value in millions of tons).

3.2. ANN Model

3.2.1. Training, Validation, and Testing of Neural Network

Harvested area training reached an optimal value for the regression and correlation among
variables after nine interactions (Figure 7). The training procedure stops when the performance on
the test data does not improve following a fixed number of training iterations [39]. The main purpose
of the training phase is to find the optimal set of weights for the ANN model where the error is
minimized [35].

Figure 7. Regression and correlation of the harvested area using Matlab R2017b.

The training, validation, and testing indicate that the network learned from the data (R > 0.99).
Moreover, the fit was well-aligned, which means the model has a good capacity for generalization
and prediction.

Yield training reached an optimal value for the regression and correlation among variables after
12 iterations and pose an R higher than 0.9 (Figure 8).
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Figure 8. Regression and correlation for yield using Matlab R2017b

Yield presents correlation and regression results similar to the other two networks. However,
fit shows a reasonable alignment representing a capacity of the network generalize and predict.

Finally, the production network was trained and after nine interactions reached an optimal value
for the regression and correlation among variables (Figure 9).

Figure 9. Regression and correlation for production using Matlab R2017b.

The network shows an excellent rate of learning, with reasonable values of alignment. However,
the validation and test pose deviations on fit. The overall results present proper alignment confirming
its ability to generalize and make predictions.

Given that there are three networks, the harvested area indicated the best results, followed by
production and yield.
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3.2.2. Time Series Results with an Artificial Neural Network

Figures 10–12 depict the results of the time series generated by the neural networks in closed-loop
form (multistep prediction). The blue line (target) represents the original data, and the red line
(prediction) represents the obtained values for each period.

Neural network prediction shows better adjustment to the original data than time series analysis.
In other words, these predictions show a smoother follow-up. The trend lines of the classical models
follow the randomness of the series increasing the error between the original and predicted values.
The base graphic Figure 10 presents the error of the prediction in millions of hectares, in Figure 11 in
tons per hectare and Figure 12 in millions of tons.

The classical models are based on elements dependent on the analysis of their predecessors.
On the flipside, ANN is a generalization of the classical models, where an element to be predicted also
depends on the previous elements of other related time series [27].

Figure 10. Multistep prediction of harvested area using Matlab R2017b.

Figure 11. Multistep prediction of yield using Matlab R2017b.
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Figure 12. Multistep prediction of production using Matlab R2017b.

3.2.3. Comparison between Artificial Neural Networks and Time Series Classical Models

Considering R, MAE, and MSE, Tables 8–10 present the ranking of ANN model versus classical
functions for forecast harvested area, yield, and production, respectively.

Considering the results, Artificial Neural Networks ranked first for predicting harvested area and
production and third place to yield. The polynomial model ranked second in all three series showing
the reliability of the model to estimate future values. The logarithmic model is the least fitted and
should be discarded for these series.

Table 8. Effective functions versus ANN for forecasting harvested area.

Rank Model R MAE MSE

1◦ ANN 0.995 1.309 2.763
2◦ Polynomial function 0.944 1.813 3.915
3◦ Power function 0.949 1.927 6.901
4◦ Linear function 0.904 1.996 6.716
5◦ Exponential function 0.797 2.481 8.859
6◦ Logarithmic function 0.680 3.825 22.482

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in millions
of hectares), and MSE is the mean squared error (value in millions of hectares).

Table 9. Effective functions versus ANN for forecasting yield.

Rank Model R MAE MSE

1◦ Linear function 0.898 0.148 0.036
2◦ Polynomial function 0.899 0.158 0.037
3◦ ANN 0.954 0.220 0.084
4◦ Exponential function 0.874 0.170 0.038
5◦ Power function 0.794 0.202 0.068
6◦ Logarithmic function 0.728 0.239 0.095

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (value in tons
per hectare), and MSE is the mean squared error (value in tons per hectare).
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Table 10. Effective functions versus ANN for forecasting production.

Rank Model R MAE MSE

1◦ ANN 0.992 3.362 19.713
2◦ Polynomial function 0.968 3.990 21.755
3◦ Power function 0.952 6.058 88.784
4◦ Exponential function 0.853 5.847 77.116
5◦ Linear function 0.867 7.658 91.879
6◦ Logarithmic function 0.574 13.843 293.441

R is the coefficient of determination (value between 0 and 1), MAE is the mean absolute error (values in
millions of tons), and MSE is the mean squared error (values in millions of tons).

Based on these results, it is possible to infer that predictive capabilities of the developed
ANN model are efficient to soybean prediction with short data time series. This fact confirms the
superior performance of the ANN model against classical methods. Similar results are obtained
for Nedic et al. [53] when compared to an ANN model with classical statistical models to predict
traffic noise.

ANN has been recognized as a valuable predictive tool due to its ability to learn, adapt,
and generalize the results of a sample of noise data and are more effective and flexible than conventional
statistics for dealing with nonlinearity [54]. Moreover, there is a tendency towards the adopting of
artificial intelligence in decision models.

4. Conclusions

This study compares classical methods of time series prediction with Artificial Neural Networks
using Brazilian soybean harvest area, yield and production from 1961–2016. The results indicate
that ANN is the best approach to predict soybean harvest area and production while classical linear
function remains more effective to predict soybean yield. However, ANN is a reliable model to predict
using time series and can help farmers, government, and trading companies anticipate the soybean
world offer to organize efficiently logistics resources and public policies.

Our results confirm the important role of neural networks in dealing with agriculture issues as
showed in previous studies in the literature [8,10,35,39]. The R value above 0.9 confirms the high
performance of the model. Nevertheless, regarding the agriculture concerns about low availability
for planting areas, yield, and production [4–6], your results demonstrated that, at least in case of the
soybean, this is not a concern.

Furthermore, we can conclude that the ANN model can be effective even using a short time
series—that, in our case, was 50 years. This fact reveals a robustness of the model. However, despite the
advantages of the ANN model, classical methods also can produce very good models. A comparison
in other agriculture commodities can be made to confirm or refuse the behavior presented in a soybean
case.

Finally, we also suggest for further studies to combine neural networks in hybrid systems using,
for example, ANN and Fuzzy Logic, similar to that proposed by [41]. Literature has shown that hybrid
systems are more efficient. The goal is to achieve a synergy between hybrid systems to compensate for
the disadvantage of one by the advantage of another [55–57].
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Abstract: Classical univariate and multivariate statistics are the most common methods used for data
analysis in plant breeding and biotechnology studies. Evaluation of genetic diversity, classification
of plant genotypes, analysis of yield components, yield stability analysis, assessment of biotic and
abiotic stresses, prediction of parental combinations in hybrid breeding programs, and analysis of
in vitro-based biotechnological experiments are mainly performed by classical statistical methods.
Despite successful applications, these classical statistical methods have low efficiency in analyzing
data obtained from plant studies, as the genotype, environment, and their interaction (G × E) result
in nondeterministic and nonlinear nature of plant characteristics. Large-scale data flow, including
phenomics, metabolomics, genomics, and big data, must be analyzed for efficient interpretation of
results affected by G×E. Nonlinear nonparametric machine learning techniques are more efficient than
classical statistical models in handling large amounts of complex and nondeterministic information
with “multiple-independent variables versus multiple-dependent variables” nature. Neural networks,
partial least square regression, random forest, and support vector machines are some of the most
fascinating machine learning models that have been widely applied to analyze nonlinear and complex
data in both classical plant breeding and in vitro-based biotechnological studies. High interpretive
power of machine learning algorithms has made them popular in the analysis of plant complex
multifactorial characteristics. The classification of different plant genotypes with morphological
and molecular markers, modeling and predicting important quantitative characteristics of plants,
the interpretation of complex and nonlinear relationships of plant characteristics, and predicting
and optimizing of in vitro breeding methods are the examples of applications of machine learning
in conventional plant breeding and in vitro-based biotechnological studies. Precision agriculture is
possible through accurate measurement of plant characteristics using imaging techniques and then
efficient analysis of reliable extracted data using machine learning algorithms. Perfect interpretation of
high-throughput phenotyping data is applicable through coupled machine learning-image processing.
Some applied and potentially applicable capabilities of machine learning techniques in conventional
and in vitro-based plant breeding studies have been discussed in this overview. Discussions are of
great value for future studies and could inspire researchers to apply machine learning in new layers
of plant breeding.

Keywords: artificial neural networks; big data; classification; high-throughput phenotyping;
modeling; predicting
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1. Introduction

Due to climate change (global warming), increasing food requirements and depletion of resources
in consequence of increasing global population, it is necessary to use modern technologies in agriculture
and food sciences [1]. Plant breeding is a dynamic branch of agricultural science. It started with simple
selection of impressive plants with superior characteristics. Later, genetics and statistics were involved
in classical plant breeding, mainly after the discoveries of Gregor Mendel and Sir Ronald Aylmer
Fisher. Next, modern plant breeding emerged with the advancements in genetic and biotechnology
approaches. Classical plant breeding methods mainly included assessment and classification of
genetic diversity, yield components analysis (indirect selection of superior genotypes with impressive
economic characteristics), yield stability analysis (genotype × environment interaction), enhanced
tolerance to biotic and abiotic stresses, and hybrid breeding programs. In vitro-based biotechnological
breeding methods mainly included in vitro micropropagation, doubled haploid production, artificial
polyploidy induction, and Agrobacterium-mediated gene transformation. In in vitro micropropagation
studies, researchers want to investigate the effects of influential factors (inputs), such as combination
of culture medium components, combination and concentrations of plant growth regulators (PGRs),
and interactions of plant genotype × culture medium × PGRs × explant type × explant age × elicitor
additives × type and concentration of carbohydrate source × etc., on regeneration efficiency (outputs)
of their desired plants. Classical statistical techniques have been employed to analyze and interpret
the results of both classical and in vitro-based plant breeding studies. These analytical techniques
are mainly based on variance and linear regression models to assess the relationship of variables and
predict the effect of independent variables on dependent variables. One regression model is required to
assess the effect of a group of independent variables (X1, X2, X3, . . . , Xn) on one dependent variable (Y),
according to the multiple linear relationships [2]. However, nonlinear and nondeterministic properties
are inextricably linked with plant biological systems [3]. Therefore, despite of successful applications,
the classical linear regression-based models are unable to interpret highly nonlinear and complex
relationships between dependent and independent variables. Most of these plant breeding approaches
are “multiple-independent variables versus multiple-dependent variables.” Under these conditions,
one regression model is required for each output [4]. Powerful data mining tools are employed in plant
breeding studies to predict and explain complex data.

Machine learning—the science of programming computers so they can learn from data—has
been widely applied in both classical and in vitro-based plant breeding studies to interpret the flow
of information about plants from the DNA sequence to the observed phenotypes. There are three
ways to classify machine learning methods, including supervised and supervised models, linear and
nonlinear algorithms, and shallow and deep learning models (Figure 1). Artificial neural networks
(ANNs), deep neural networks (DNNs), convolutional neural networks (CNNs), random forest (RF),
and support vector machines (SVMs) are examples of nonlinear nonparametric machine learning
algorithms, applied for processing nonlinear data in plant studies [5]. These data-driven models
are able to parse and interpret non-normal, nonlinear, and nondeterministic unpredictable data sets,
through the full use of all spectral data and avoid irrelevant spectral bands and multicollinearity [6,7].
Among different learning algorithms, including supervised, unsupervised, reinforcement, sparse
dictionary, and rule-based, supervised learning is more suitable and efficient for life science problems [8].
Supervised learning can be used for classification (predicting non-numeric answers) and regression
(predicting numeric answers) [9]. Formless datasets such as data obtained by photo imaging or
sequencing can be interpreted through machine learning algorithms [10]. Genome sequencing data
can be used in machine learning models for the identification and classification of transposable
elements [11]. By using machine learning algorithms, breeders are able to predict multiple outputs
(multiple-dependent variables) through different combinations of multiple inputs in one model and
reduce required analyses.
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Artificial neural networks, consist of an input, an output, and several hidden layers, are nonlinear
nonparametric models which do not require a prior structure for data and detailed information
about the physical processes to be modeled and to tolerate data loss [12,13]. Because of their more
hidden layers, DNNs have greater predictive power than ANNs. Convolutional neural networks,
as state-of-the-art deep learning architecture, are inspired by the natural visual perception mechanism
of the living creatures and consist of convolutional, pooling, fully-connected layers, and an output
layer [14]. CNNs are suitable for classification studies because of automatic feature extraction [9].
Image classification, object detection, object tracking, pose estimation, text detection and recognition,
visual saliency detection, action recognition, scene labeling, speech, and natural language processing
are some of the typical applications of CNNs [14]. Neural networks have low interpretability of the
features (lack the interpretation capability), especially CNN in which the features extracted are hidden.
More advanced machine learning technique of SVMs, which uses a supervised learning algorithm
to find both linear and nonlinear relationships in data, can be used for clustering, classification,
and regression analysis of data sets. In comparison with multilayer perceptron (MLP) of ANN, SVM
uses a large number of hidden units and has better performance in the formulation of the learning
problem, subsequently quadratic optimization task [15]. Random forest regression is a regression
tree-based machine learning that uses multiple decision trees to classify data and needs setting the
number of trees, the number of random features, and the stop criteria for training. RF is more
suitable for spectral data analysis and overfitting can be controlled through combining different
independent predictors [16,17]. In semantic segmentation methods, such as automated phenotyping
and plant disease detection, deep learning CNN can be more effective than shallow learning models
of SVMs and RF and problem of required large manually crafted features can be solved by using
image augmentation and small manually annotated empirical dataset for fine-tuning a synthetically
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bootstrapped CNN [18]. Through the integrating image feature extraction with classification in a single
pipeline, deep convolutional neural networks have been considered as mainstream in biotic and abiotic
stress diagnosis and classification [19]. A nine-layer deep CNN model was trained for identification
of plant leaf diseases using data set with 39 different classes of plant leaves and background images
and 96.46% classification accuracy was reported, which is greater than traditional machine learning
approaches of SVM, decision tree, logistic regression, and K-NN [20]. CNNs are also applicable in
remote sensing for object detection and pattern recognition. High accuracy (84%) for fine-grained
mapping of vegetation species and communities using deep CNN-based segmentation, trained by data
directly derived from visual interpretation of unmanned aerial vehicles (UAV)-based high-resolution
Red-Green-Blue (RGB) imagery, has been reported [21].

A lot of training data is required in ANN for the optimization of sigmoid functions belonging to the
hidden layer’s neurons, as overfitting and local minima may happen by small number of training data.
Therefore, the optimization process cannot be properly carried using back-propagation algorithms,
when the number of training samples is small [8]. Through the short review on studies that used SVM
and ANN techniques for identifying disease in plants, it was concluded that the ANN-based methods
are better than SVM-based methods, as few samples and features are used in SVM-based methods to
identify the disease-affected plants [22]. Conversely, in modeling in vitro culture of Chrysanthemum
(Dendranthema × grandiflorum), better performance accuracy of SVR (R2 > 0.92) than MLP (R2 > 0.82) has
been reported [15]. Applying different algorithm and comparing their performance is an appropriate
solution to find the best algorithm in a particular data set. In tea plant (Camellia sinensis L.), partial
least squares discriminative analysis (PLS-DA) and least squares-support vector machines (LS-SVM)
were used for the classification of different nitrogen nutrition status under field condition and better
performance with correct classification of LS-SVM than PLS-DA was reported [23]. The pros and cons
of different nonlinear machine learning methods under similar scenarios are presented in Table 1.

Table 1. Pros and cons of nonlinear machine learning algorithms applied in classical and in vitro-based
plant breeding studies.

Leaning Algorithm Advantages Disadvantages

ANNs • Good learning capabilities

• Lack the interpretation capability
• Overfitting and local minima in small

number of training data
• Implementing very small number of

hidden neurons

CNNs
• Ability of automatic

feature extraction

• Lack the interpretation capability
• Require large amounts of data for training
• Require considerable skill and experience

to select suitable hyperparameters

SVMs

• Uses a large number of
hidden units

• Quadratic optimization task
in the formulation of the
learning problem

• Shallow architecture

RF

• Ability to handle noise
• Prevent overfitting
• Ability to manage a large

number of features

• Shallow architecture

ANNs—artificial neural networks; CNN—convolutional neural networks; RF—random forest; SVMs—support
vector machines.
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Different application areas for nonlinear machine learning technologies in classical and
in vitro-based plant breeding studies are shown in Figure 2. The following sections of the article
provide a comprehensive review of the applications of these nonlinear machine learning techniques in
classical and in vitro-based plant breeding studies.Agriculture 2020, 10, x FOR PEER REVIEW 5 of 24 
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Some recently applied nonlinear machine learning models in both classical and in vitro-based
plant breeding studies are listed in Table 2.
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2. Traditional Plant Breeding

2.1. Assessment and Classification of Genetic Diversity

One of the most important prerequisites of plant breeding programs is genetic diversity,
which enables selection of important accessions and their use in future breeding programs [61].
Morphological, biochemical, and physiological markers have been analyzed to investigate the genetic
diversity of different plants. Morphological features are the simplest to measure and do not require
special tools or techniques. The statistical analysis of these markers can prove the existence of genetic
diversity among studied genotypes. Niazian et al. [62] used analysis of variance (ANOVA) and
estimated the coefficient of variation (CV) of different agro-morphological traits (plant height, number
of branches, number of umbels, number of umbellets in an inflorescence, biological yield, and single
plant yield) of eight ecotypes of ajowan medicinal plant (Carum copticum L.) and observed significant
genetic diversity.

Molecular/genetic markers are another group of markers which enable assessment of genetic
diversity and discrimination of the genotype. Amplified fragment-length polymorphism (AFLP),
restriction-fragment length (RFLP), randomly amplified polymorphic DNA (RAPD), simple sequence
repeat (SSR), intersimple sequence repeats (ISSR), and single nucleotide polymorphism (SNP) are
the most commonly used molecular markers to study genetic diversity and species identification in
different target plants [63]. These genetic markers estimate phylogenetic relationships and identify
varieties more reliably and effectively than morphological markers [64]. Although molecular markers
are more effective than morphological markers in the assessment of genetic diversity and discrimination
and identification of various plant genotypes, there are some technical and/or economic limitations [65].

Classical multivariate analyses such as cluster analysis, discriminant function analysis,
and principal component analysis (PCA) have been used for the classification and grouping of
different genotypes in various plant species by means of morphological, biochemical, physiological,
and molecular markers [61,64,66–68]. Object detection through deep learning algorithms could be
used for efficient genetic diversity assessment and classification of plant genotypes. The use of
CNN to classify morphological parameters is an appropriate alternative to conventional classification
methods, such as k-nearest neighbor, probabilistic neural network, support vector machine, genetic
algorithm, and PCA, all of which are time consuming and require feature extraction [65,69]. In soybeans
(Glycine max (L.) Merr.), the genetic diversity of 90 accessions was detected through high-throughput
evaluation of stomatal density [49]. In Cinnamomum osmophloeum Kanehira (Lauraceae), deep CNN was
applied for differentiating between morphologically similar species, and accuracy of CNN classifiers
was better than SVMs classifiers (96.7% vs. 74.6%) [70]. Sant’Anna et al. [71] compared the performance
of ANN with Fisher’s classical multivariate statistical technique and Anderson’s discriminant functions
to assess the genetic diversity and classify 10 plant populations. They observed that ANN-classified
populations with high and low differentiation were better than classical methods, as there were
fewer wrongly classified individuals. Linear discriminant analysis and nonlinear artificial neural
network methods were applied to identify and discriminate 10 potato varieties with morphological
data obtained through image processing. The correctness of classification of the ANN method was
100% [38].

As was mentioned above, machine learning can also be used for classification through molecular
markers data. DNA/RNA sequences can be used for training CNNs and applications in plant
molecular biology and classification of genotypes through molecular markers [9]. Different machine
learning models were used to identify true single nucleotide polymorphisms (SNPs) in allopolyploid
peanuts (Arachis hypogaea L.). The selection of true SNPs by means of real peanut RNA sequencing
(RNA-seq) and whole-genome shotgun (WGS) resequencing data resulted in above 80% accuracy [72].
Costa et al. [32] applied a neural network algorithm to infer the genetic diversity and group allelic
frequencies obtained by RAPD and SSR molecular markers in grapevine rootstock varieties and
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found three genetically diversified clusters among 64 grapevine rootstocks analyzed. Deep learning
techniques enable prediction of plant phenotypes from their genome data [9].

Artificial neural networks have also been applied for genomic prediction and genomic selection in
different plant species [73–75]. The phenotypes of 2000 Iranian bread wheat landrace accessions were
predicted from genomic dataset collected from 33,709 DArT markers using a deep convolutional neural
network. Authors reported that the Pearson’s correlation coefficients between observed and predicted
phenotypic values (grain length, grain width grain hardness, thousand-kernel weight, test weight,
sodium dodecyl sulfate sedimentation, grain protein, and plant height) in deep CNN were more than
other genomic selection methods [57].

2.2. Yield Component Analysis and Indirect Selection (Prediction)

An increase in the economic yield (seed yield, oil yield, sugar yield, essential oil yield, biomass
yield, straw yield, lint percentage, etc.) is always the target of most breeding programs. However, yield
is a highly complex quantitative trait, which is usually controlled by several genes, and it is strongly
influenced by the environment. Therefore, yield traits have low heritability and direct selection does
not improve such complex traits. Instead, plant breeders usually prefer to use simpler highly correlated
traits to have greater influence on yield. Selected yield component(s) will be used as “selection criteria”
in future studies, i.e., indirect selection [2,76]. Classical single variable and multivariate linear methods,
such as correlation coefficient analysis, PCA, path analysis, and multiple regression analyses (stepwise,
forward, and reverse), have been used in classical plant breeding to interpret relationships between
plant traits and improve important quantitative properties like yield and tolerance to biotic and abiotic
stresses. The correlation coefficient analysis and path analysis have been used to evaluate a simple
relationship between two traits and identify cause/effect relationships between correlated variables,
respectively [24]. Regression-based methods are the most effective multivariate statistical methods for
indirect selection purposes. They are based on a linear relationship of a dependent variable (Y) as a
function of multiple independent variables. These multiple variables create a complicated condition
for interpretation. However, some reduction techniques, such as PCA and factor analysis, are able to
concentrate the original multiple variables in a few complex variables [77].

Stepwise, forward, and reverse regression analyses have been used to determine the effects of yield
components on different economic quantitative characteristics in various crops. Backward stepwise
regression was used to find the relationship between changes in grain yield and yield components of
rice (Oryza sativa L.) in terms of the relative response ratio to elevated CO2 [78]. Stepwise regression
was used to determine the components of sugar beet (Beta vulgaris L.) yield affecting the yield of sugar
under water deficit regimes and foliar application of jasmonic acid [76]. Zou et al. [77] applied stepwise
regression analysis to identify the yield components involved in drought resistance of cotton seedlings
(Gossypium hirsutum L.). Despite all the advantages, there is one major drawback to regression-based
models in classical plant breeding studies—it is impossible to analyze nonlinear relationships of
dependent and independent variables [2,79]. The application of nonlinear machine learning algorithms
in yield component analysis and indirect selection studies enables the interpretation of nonlinear
relationships between dependent and independent variables, the contribution of yield components to
yield and prediction of economic quantitative characteristics. ANN was more efficient than multiple
linear regressions (MLR) in the prediction of seed yield [2] and essential oil content [24] of ajowan
(Trachyspermum ammi L.). Emamgholizadeh et al. [79] found that ANN predicted the yield of sesame
seeds (Sesamum indicum L.) better than MLR. The ANN model was characterized by lower root mean
square error (RMSE) and higher determination coefficient (R2). The analysis of the sensitivity of the
ANN model showed that the number of capsules per plant and the flowering time were, respectively,
the most and the least significant variables to the yield of sesame seeds. Artificial neural networks have
successfully predicted the yield of apples, pears, chives, and onions, allowing for data on crop diseases,
time until harvest (based on the date), current temperature, humidity and precipitation (amount of
snowfall) in the area, amount of sunshine, ground temperature, atmospheric pressure, and moisture
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evaporation in the ground [80]. ANNs have also been used to predict the yield of winter rapeseed and
winter wheat on the basis of meteorological data (air temperature and precipitation) and information
on the use of mineral fertilizer [41,42,53,54]. The superiority of DNN (Long Short-Term Memory) over
the auto regressive integrated moving average (ARIMA) model in predicting wheat production has
been reported [56]. Deep CNN classification has been applied for image-based ear counting of wheat
with high level of robustness, without considering of variables, such as growth stage and weather
conditions [55].

Neural networks have also been used to estimate and predict the qualitative characteristics of
different plants. The ANN model predicted the oil content in sesame more accurately and efficiently
than the MLR model [46]. Parsaeian et al. [47] applied a multilayer perceptron (MLP)-ANN to estimate
the oil and protein content in sesame on the basis of 138 morphological features measured in 125 sesame
seed genotypes. The morphological characteristics of seeds were measured through image processing.
The qualitative parameters of oil and the protein content in sesame seeds estimated by means of R2

and RMSE statistics revealed the superiority of MLP over the radial basis function (RBF), extended
RBF (ERBF), GRNN, M5-Rule, M5-Tree, support vector machine regression, and linear regression
models [47]. Niedbała et al. [59] developed a multilayer perceptron ANN to assess the influence
of the cultivar and weather conditions on the concentration of ferulic acid and correlate its content
with the concentration of deoxynivalenol and nivalenol in 23 winter wheat genotypes with different
Fusarium resistance. Independent variables consisted of 14 features, including 12 quantitative data
and 2 qualitative data. The sensitivity analysis of neural networks showed that the experiment variant
and winter wheat cultivar were the most important determinants of the concentration of ferulic acid,
deoxynivalenol, and nivalenol in winter wheat seeds [59]. Ray et al. [60] applied an MLP-ANN model
to assess the effects of topographic, soil, and environmental factors (18 input parameters, including
soil nutrients and climate factors) on the content of active constituent of coronarin D in white ginger
lily (Hedychium coronarium). The sensitivity analysis of the ANN showed that altitude, manganese,
and zinc were the most important variables predicting the coronarin D content.

2.3. Yield Stability and Genotype × Environment Interaction

The environment (climate and soil), agricultural operations (sowing-cultivation-harvesting),
and plant genotype are the factors that affect the yield and productivity of crops. The relationships
(direct and/or indirect) and interactions between these factors create a complex situation determining
the potential yield of plants [39]. Environmental variations and the genotype × environment interaction
(GEI) are the factors that cause year to year variations in the yield and phenotypic trait of a specific
genotype. The choice of a genotype for a target trait is a complex and difficult task because of the
GEI, as different genotypes respond differently to varied environmental conditions. The estimation
of relative performance of genotypes over the environments, through stability analysis is a perfect
solution to these yearly variations [81]. Finlay and Wilkenson’s regression analysis and coefficient [82];
Eberhart and Russel’s coefficient of regression (S2

di) [83]; Wricke’s ecovalence (Wi) [84], Shukla’s
procedure of stability variance [85], coefficient of variance (CV) [86], and Lin and Binns cultivar
performance measure [87] are classical univariate approaches used for the assessment of the GEI. Linear
regression analysis and variance components are the main aspects of these methods [88]. Apart from
the aforementioned statistic methods, the sustainable yield index (SYI) [89] is used to evaluate the
effects of agricultural practices on crop yield sustainability [90]. All these methods are parametric,
and therefore, the assumptions of the distribution of data and the homogeneity of variance should
be considered before they are applied [91]. There are nonparametric univariate methods to evaluate
the GEI, including Si

1, Si
2, Si

3, and Si
6 stability parameters [92,93], Kang parameter [94], Ketrank and

Ketyield plots [95], Fox-rank [96], and Star [91]. These nonparametric stability statistics are analytical
clustering procedures that determine the stability of genotypes on the basis of ranks rather than data
and free from modeling assumptions. A genotype is considered stable if its ranking is relatively
constant across environments [91].
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Principal component analysis, cluster analysis, additive main effects and multiplicative interactions
(AMMI), and genotype plus genotype × environment interaction biplot (GGE) are multivariate
procedures enabling examination of multidirectional aspects of the GEI by imaging the response of
a genotype in an E-dimensional space [91]. Multivariate stability analyses are more powerful and
precise than univariate approaches. However, these are complex methods that do not provide a simple
measure of yield stability for a reliable ranking of genotypes. Limited access to software is another
bottleneck of these methods [91]. In a recent study, both linear and nonlinear regression models were
applied to estimate the influence of climate variables (precipitation, sunshine duration, average relative
humidity, maximum temperature, minimum temperature, and average temperature) on the growth
and yield-related characteristics of cotton (the cotton height at the flowering stage, stalk weight, yield
of cotton seeds, and lint percentage). The authors found that the interpretation of linear regression
equations was generally lower than the interpretation of nonlinear equations [97]. There was a linear
relationship or a relatively complex nonlinear relationship between the cotton growth indicators and
climate variables in one site of their study, but they did not find the best equations for the cotton growth
indices and the influence of climate variables on the cotton growth indices at several sites. In addition,
the authors developed one regression model for each condition [97]. When several independent
variables and several dependent variables are of interest, i.e., multiple-independent variables versus
multiple-dependent variables, ANN can reduce the required analyses and result in higher accuracy [25].
It is clear that an ANN model can find the best equations in all studied environments in a faster and
more precise manner by considering other factors such as soil and cotton properties. Plant growth
indices and climate variables could be entered into an ANN model as dependent and independent
variables, respectively. Then, linear and nonlinear relationships between the variables can be considered
through powerful ANN models. There are well-recognized statistical and biological limitations to
regression approaches. ANN modeling would enable breeders to evaluate the GEI and genetic stability
of a large number of genotypes faster and more precisely. Coupled artificial intelligence (ANN) with
deep phenotyping is a valuable tool for understanding plant–environment interactions [98].

2.4. Biotic and Abiotic Stress Assessment

Plants are exposed to various biotic and abiotic stresses. Different approaches have been
applied to assess the tolerance and resistance of plant genotypes to these stresses and to identify
superior genotypes.

There have been numerous breeding attempts to combat drought stress. Plants’ tolerance to
drought has been studied through some statistical indices, such as tolerance (TOL), mean productivity
(MP), stress susceptibility index (SSI), geometric mean productivity (GMP), harmonic mean (HARM),
relative drought index (RDI), stress tolerance index (STI), yield index (YI), yield stability index (YSI),
and modified stress tolerance index (K1STI and K2STI) [99–106]. These classical approaches are
based on morphological data, mainly yield generated under nonstress (Yp) and stress (Ys) conditions.
However, apart from morphological attributes, there are many physiological and biochemical pathways
involved in plants’ response to environmental stresses. Secondary metabolites, cellular antioxidants,
plant growth regulators, compatible solutes, and polyamines are all involved in plants’ response
to biotic and abiotic stresses [107,108]. Combining phenomic data with metabolomic and genomic
data is an efficient strategy to assess plants’ responses to biotic and abiotic stresses [109]. Classical
multivariate statistical methods are not efficient enough to manage such a large volume of data
(multiple independent variables versus multiple dependent variables). Linear regression is the most
common technique used for the detection of nutrition deficiencies through the RGB image technique.
However, features extracted from digital images with nonlinear relationship with nutrient content
cannot be explained through linear regression model [110]. Machine learning techniques, along with
digital images, could be used to model and predict genotypes’ responses to stressful conditions and
find the ones that are more resistant to stress and nonstress environments by analyzing all phenomic
and omics (metabolomic and genomic) data. Big data—imaging and remote-sensing data—can be
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interpreted through machine learning for high-throughput stress phenotyping [111]. Ravari et al. [52]
applied an MLP-ANN and the TOL, MP, GMP, HM, SSI, STI, YI, and YSI indices to predict the salinity
tolerance of 41 Iranian wheat cultivars (Triticum aestivum L.). They found that the YSI, MP, GMP,
and STI were the best predictors of salinity-tolerant cultivars. In Arabidopsis (Arabidopsis thaliana),
miRNA expressions were used as input features to predict plant responses to abiotic stresses of drought,
salinity, cold, and heat using machine learning models of decision tree (DT), SVM, least-square support
vector machines (LSSVM), and Naïve Bayes (NB). It was concluded that miRNA-169, miRNA-159,
miRNA-396, and miRNA-393 had the highest contributions to plant response towards abiotic stresses
and the SVM with Gaussian kernel had better performance than other machine learning methods
in prediction of plant stress response (R2 = 0.96) [8]. Deep CNN along with traditional machine
learning method was used for identification and classification of maize drought stress through the
field-obtained data under optimum moisture, light drought, and moderate drought stress. Authors
reported identification accuracy of 98.14%, which was more than Gradient Boosting Decision Tree
(GBDT) method [19].

Deep CNNs have been widely used to classify and detect various plant diseases—biotic
stress [112–115]. Image recognition and classification of maize leaf diseases, including northern
corn leaf blight (Exserohilum), common rust (Puccinia sorghi), and gray leaf spot (Cercospora) diseases,
have been conducted using deep CNN with an accuracy of 93.35% [116]. In cucumber (Cucumis sativus),
a semantic segmentation model based on CNN was developed to segment the powdery mildew disease
on leaf images at pixel level, and pixel accuracy of CNN model (96.08%) was more than segmentation
methods of K-means, Random forest, and GBDT [28]. In pearl millet (Pennisetum glaucum), DNNs
has been applied for identification of mildew disease, and accuracy of 95.00% was reported for the
developed model [37].

2.5. Classical Mating Designs and Hybrid Breeding Programs

The integration of statistics into genetics led to some classical mating designs such as mean
generation analysis [117], diallel crosses analysis [118–120], line × tester analysis [121], North Carolina
designs [122], and triple test cross [123,124]. These methods have been used for genetic analysis of
crops in order to find the nature of gene actions (additive, dominance, and epistasis) involved in
controlling important morphological, phenological, and yield component characteristics, to calculate
broad and narrow sense heritability and predict the outcomes of cross-breeding programs.

The prediction of parental combinations is critical to the choice of superior combinational
homozygous parental lines in F1-hybrid breeding programs [125]. However, it is a challenging task
with a large number of cross combinations when there are many inbred parental lines. Therefore,
the prediction of the yield performance of cross combinations of parental lines may significantly reduce
the required time and budget of F1-hybrid breeding programs [126]. ANN could be used to predict
parental combinations and calculate the correct values of general and specific combining abilities (GCA
and SCA) in mating designs, such as topcross, line × tester, and diallel cross. Khaki et al. [126] applied
matrix factorization and a neural network to predict the yield performance of cross combinations
of inbreds and testers of unsown maize on the basis of historical yield data collected from the
crossing of other inbreds and testers. The proposed model was significantly better than other models
such as deep factorization machines (DeepFM), generalized matrix factorization (GMF), LASSO, RF,
and neural networks.

3. Applications of Machine Learning in In Vitro-Based Plant Biotechnology

Biotechnology-based breeding methods (BBBMs) complement classical breeding methods in rapid
plant improvement. In vitro regeneration, as the main core of many in-vitro-based breeding methods,
has numerous plant breeding applications. In situ and ex situ conservation and micropropagation
(proliferation) are direct applications of in vitro regeneration [127]. In endangered rare plant species,
like medicinal plants, in vitro culture is an effective strategy for mass propagation, germplasm
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conservation, and production of bioactive compounds [128]. Several factors determine the fate of
cultured cells in in vitro regeneration of plants. These are the plant genotype, plant growth regulators
(PGRs), culture medium components, explant type, explant age, enhancer additives-elicitors, etc. [127].
These factors can be divided into three main categories: initial triggers of regeneration (environmental
signal inputs and physical stimuli), epigenetic and transcriptional cellular responses to the initial
triggers, and molecules that manage the formation and development of the new stem cell niche [129].
The combination and interactions between these factors lead to multifactorial nature of the in vitro
plant regeneration process. Basal culture medium components, plant genotype, PGRs, explant type,
and explant age are all multilevel factors with different applicable combinations. The inclusion
of other factors results in a very complex situation for interpretation. Plant cells and tissues have
nondeterministic and nonlinear developmental patterns in a stressful in vitro environment [130].
The analysis of variance of factorial experiments and simple means comparison analysis with classical
methods such as LSD, Tukey’s HSD, and Duncan’s test, are the main statistical methods used to interpret
the effects of interaction between effective factors in most in vitro regeneration studies [128,131,132].

Murashige and Skoog (MS), modified MS (MMS), Gamborg’s B5 medium Woody Plant Medium
(WPM), and Driver and Kuniyuki Woody Plant Medium (DKW) are the most commonly used basal
culture media in in vitro regeneration studies. Basal medium manipulation is a promoting strategy
that has been applied to increase the output of in vitro studies [133]. However, due to the large number
of micro- and macroelements in the culture medium, it is difficult to manipulate their concentrations.
In this situation, prediction of the effect of culture media components on the target characteristics
of in vitro regenerants is the right solution. Artificial neural networks have been applied in these
experiments to predict the best culture media components for efficient propagation of different plant
species [29,31,134].

Different combinations of auxin and cytokinin PGRs can determine the developmental fate of
cultured cells and tissues toward organogenesis and/or somatic embryogenesis. The cytokinin/auxin
ratio is also very important in in vitro studies [135]. Niazian et al. [131] found that
2,4-dichlorophenoxyacetic acid (2,4-D) combined with kinetin resulted in indirect somatic
embryogenesis of cultured hypocotyl segments of ajowan medicinal plants, whereas a combination of
3-methoxy(-6-benzylamino-9-tetrahydropyran-2-yl) purine and naphthalene acetic acid led cultivated
explants toward an indirect shoot regeneration pathway. Arab et al. [30] combined artificial neural
networks and genetic algorithms to predict and optimize the effect of cytokinin–auxin plant hormone
(BAP, KIN, TDZ, IBA, and NAA) combinations and concentrations on the number of microshoots
per explant, the length of microshoots, developed callus weight, and the quality index of plantlets
in in vitro proliferation of Garnem (G ×N15) rootstock. The ANN model predicted the number and
length of microshoots with high accuracy. The highest values of the variable sensitivity ratio for the
proliferation rate were related to the BAP (19.3), KIN (9.64), and IBA (2.63) inputs. An MLP-ANN
was developed to predict the physical properties of embryogenic callus and the number of somatic
embryos in in vitro regeneration of ajowan under the effect of different combinations of the explant
age, concentrations of 2,4-D, kinetin, and sucrose inputs [25]. The ANN model predicted the physical
properties of embryogenic callus (area, perimeter, Feret diameter, roundness, and true density) and the
number of somatic embryos better than the multiple linear regressions. Fifteen-day-old hypocotyl
explants × 1.5 mg/L 2,4-D × 0.5 mg/L Kin × 2.5% (w/v) sucrose was the best combination of inputs with
the highest measured and predicted number of somatic embryos [25].

Apart from culture medium components and PGRs combination, ANN has been applied to
model the sterilization step of in vitro regeneration. Hesami et al. [27] applied an MLP-ANN along
with a genetic algorithm to model and optimize the contamination frequency and explant viability
under the influence of seven input variables, i.e., HgCl2, Ca(ClO)2, nanosilver, H2O2, NaOCl, AgNO3,
and immersion times, in an in vitro culture of chrysanthemum. The lowest contamination frequency
(0%) and the highest explant viability (99.98%) resulted from 1.62% NaOCl at 13.96 min immersion
time. The sensitivity analysis of the ANN showed that the immersion time was the most important
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variable affecting the contamination frequency and explant viability [27]. ANNs are also used to
simulate in vitro growth of plant tissue cultures, distinguish embryos from nonembryos, predict the
formation of plantlets from embryos, estimate the biomass of cell cultures, simulate the distribution of
temperature in a culture vessel, identify and estimate the in vitro induced shoot length, and cluster
in vitro regenerated plantlets [130].

Other in vitro-based breeding methods, such as artificial polyploidy induction, doubled haploid
production, plant gene transformation, and genome editing methods also have multifactorial nature
and require multivariate statistical methods to interpret the results. Different chemical enhancers can
be used in in vitro doubled haploid production methods (induced parthenogenesis and androgenesis)
to improve the haploid induction efficiency, e.g., PGRs, osmoprotectants, cellular antioxidants, reactive
oxygen species scavengers, polyamins, stress hormones, chlormequat chloride, compatible solutes,
DNA demethylating agents, histone deacetylase inhibitors, cell wall remodeling agents, ethylene
inhibitors, and other applicable additives. They enhance tolerance to inductive stresses and improve the
final efficiency of doubled haploid production [108]. ANN models may improve the efficiency of in vitro
doubled haploid production and solve the problem of recalcitrant species/genotypes by predicting the
best combination(s) of these additives in interaction with other influencing factors, such as the plant
genotype, the surrounding environment of donor plants, physical treatments (inductive stresses) of
cultured gametophytic cells, the developmental stage of initial gametophytic cells, and culture medium
components. The ANN predicted the callus induction percentage in androgenesis (anther culture) of
tomato (Lycopersicon esculentum L.) under the influence of plant genotype, the concentrations of 2,4-D
and kinetin PGRs, and the concentration of gum Arabic better than the MLR model [50].

Plants’ vigor and performance are commonly enhanced by mitotic-induced polyploidy. It consists
in in vivo and in vitro application of mitotic spindle poisons [136]. In vitro-induced polyploidy is a
multifactorial procedure. The efficiency of in vitro-induced polyploidy may be affected not only by
in vitro regeneration parameters (basal culture medium components, combination of PGRs, additives,
etc.) but also by the plant genotype, the developmental stage of initial explants as well as the
type, dosage, and duration (exposure time) of the application of the antimitotic agent. Due to the
genotype dependency, different genotypes of plant species exhibit different responses to concentrations
of the antimitotic agent applied [137]. This results in significant interaction of the plant genotype
and antimitotic agent in artificial polyploidy induction. Although there have been no reports on
the application of ANN to model and predict the results of in vitro-induced artificial polyploidy, it
might increase the efficiency by predicting and finding the best combination and interaction of all
influential factors.

Agrobacterium-mediated gene transformation is a well-known method of plant gene transformation
and genetic engineering. However, various parameters must be optimized for an efficient gene delivery,
including the Agrobacterium strain cell density, the time of inoculation, the type and concentration
of antibiotics to kill Agrobacterium, the type and concentration of selectable antibiotics, and the
concentration of acetosyringone [138]. These influencing factors along with in vitro regeneration
factors result in a multi-variable nature of Agrobacterium-mediated gene transformation [127]. It is
obvious that machine learning algorithms could be used to predict and optimize Agrobacterium-mediated
gene transformation, especially in important Agrobacterium-recalcitrant plant species.

4. Coupled Machine Learning-Image Processing for High-Throughput Phenotyping and
Precision Agriculture

Classical measurement of plants’ physical features by visual assessment is a laborious,
time-consuming, costly, and error-prone process in both conventional and in vitro-based plant breeding
studies. This step can be accelerated and facilitated by the machine vision method, which is more
accurate and precise than visual assessment. Nondestructive measurement of physical features,
both outdoors and in vitro, is another important advantage of image processing [25]. Automated
non-invasive fast scoring of several plant traits through high-throughput phenotyping platforms can
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speed up and facilitate the phenotyping of plant populations and selection of superior varieties [139].
The integration of precise measured image-based characteristics with omics data could help to identify
the key traits involved in the mechanisms of stress tolerance and acclimation [109]. On the other hand,
the ability of deep learning in the identification of plants’ features provides a great opportunity for
further advances in image analysis [98]. Combined image processing (for feature extraction) and
machine learning (for data analysis) is a powerful strategy required for faster and precise image-based
plant phenotyping [140]. The use of deep learning techniques in computer vision can accelerate plant
breeding programs such as plant phenotyping and classification of genotypes [141]. Coupled image
processing-ANN has been used to measure phenotypic characteristics and assess genetic diversity and
classify different plant species [38,65,142,143]. Deep learning, especially CNN, has become a powerful
tool for image analysis in recent years [49]. Uzal et al. [48] applied a computer vision method for feature
extraction along with developed convolutional neural networks to estimate the number of seeds in
soybean pods and then to classify the obtained data. In most cases, the convolutional neural networks
learnt to detect each seed in the pod, which indicates their high classification efficiency. There are other
advanced imaging techniques, which are more efficient than simple visualization techniques and can
be used to analyze in-field images instead of indoor methods. Recently, an R-based pipeline has been
developed, which enables analysis of orthomosaic images from agricultural field trials and calculation
of the number of plants per plot, canopy cover percentage, vegetation indices, and plant height [139].
A deep neural network model trained with such in-field images could very effectively classify and
estimate desired characteristics from in-field images [48]. Coupled image processing-artificial neural
network has been used in BBBMs for in vitro modeling of somatic embryogenesis in ajowan [25] and
androgenesis-based haploid induction in tomato [50]. Plant phenotyping and precision agriculture
could be significantly different in terms of the spatial and temporal resolutions, although both
generate big data sets in a format of image. These are information- and technology-based domains
with specific demand and challenges. Precision agriculture is an agricultural management system
based on spatial and temporal variability in crop and soil factors within a field (with environmental
parameters). However, in phenotyping systems, the crop field parameters are homogenous and datasets
in molecular, cellular, and whole plant levels are considered for plant phenotyping. Precision agriculture
examines spatial heterogeneities within crop stands, whereas the appearance and performance of
a genotype under distinct environmental conditions are examined in plant phenotyping [144,145].
High-throughput salt-stress phenotyping has been reported in okra (Abelmoschus esculentus L.) through a
trained DNN using physiological and biochemical traits, such as fresh weight, SPAD, elemental contents,
and photosynthesis-related parameters, measured from 13 genotypes under salt stress treatment [36].
Establishment of high-throughput phenotyping platforms (HTPPs) to phenotype physiomorphological
traits under highly heterogeneous field environment, in a precise, labor-, and cost-effective manner,
is essential to bridge the gap between genomics and phenomics [146]. Machine learning algorithms
can be used for image-based plant stress phenotyping in a wide scale from leaf and canopy to
filed range. Identification, classification, quantification, and prediction of big data, obtained from
higher-throughput phenotyping systems such as unmanned aerial system (UAS) technology and
ground robots, can be conducted through deep learning algorithms [147]. In carrot (Daucus carota),
a precision agriculture approach was conducted through on-farm punctual carrot sampling data
incorporated into the satellite imagery data using a random forest regression algorithm. Accuracy of
developed model to predict carrot yield using database composed of spectral bands was acceptable
(R2 = 0.82; RMSE = 2.64 mg ha−1; MAE = 1.74 mg ha−1) [26].

5. A Proposed Idea for Plant Ploidy Level Determination through Image
Processing-Machine Learning

In chromosome engineering studies (polyploidy and haploid induction), one important step
is taken to verify the ploidy level. It can be confirmed through direct (chromosome counting) or
indirect methods (morphological and anatomical indicators and flow cytometry). Although the direct

144



Agriculture 2020, 10, 436

method of chromosome counting is reliable and unambiguous [148], it is laborious, time consuming,
and complicated and requires highly skilled operators [149]. Indirect verification of the ploidy level
through classical markers, such as stomatal morphometric data (stomatal density per unit area,
the number and size of stomata), the density of chloroplasts per stomatal guard cells, size of guard
cells and pollen size, is a rapid and simple method [150], but not completely reliable. Flow cytometry
is a reliable method based on direct correlation between the nuclear DNA content and ploidy level.
However, according to a recent study, the comparison of the DNA content in standardized leaf punch
samples is not a reliable method to recognize putative doubled haploids, as there is a DNA content
equivalence between haploid and diploid samples [151].

Machine learning algorithms can be used for ploidy level identification of plants. Recently, a deep
learning-based object detection algorithm has been developed for evaluating the stomatal density and
elucidating the variation in the stomatal density among various soybean accessions [49]. This DNN
could also be useful for ploidy level prediction. There have been two reports on the use of other
methods to identify the ploidy level in plants. Altuntaş et al. [33] used convolutional neural networks
to recognize haploid and diploid maize seeds through R1-nj anthocyanin color marker data of 1230
haploid and 1770 diploid maize seed images. The accuracy and sensitivity of the model amounted to
94.22% and 94.58%, respectively [33]. Remote sensing has also been applied to determine the ploidy
level of quaking aspen (Populus tremuloides Michx.) [152].

Here, we offer another idea to identify the ploidy level of plants through coupled image
processing-supervised deep neural network using visual data of cellular patterning of the epidermal
layer. Haploids have smaller and more densely packed epidermal and mesophyll cells (more cells per
same unit area) than doubled haploids. This results in an equivalent DNA content per unit leaf area for
haploids and their counterpart diploids [151]. Cellular patterning in the epidermis and mesophyll can
be specific to each ploidy group. Therefore, epidermal cell patterning (size shape and number) could
be used as ploidy level recognition and classification criteria [151]. The use of imaging techniques
for precise feature extraction of leaf punch samples (the cellular pattern, including the cell size and
number) and the subsequent modeling of captured images (classification modeling) through deep
learning approaches, particularly CNN, results in an image-based model, which can be used to estimate
the ploidy level in chromosome engineering studies of different plant species (Figure 3). It is a more
precise, fast, and cost-effective method of ploidy level distinction, which could also be used in other
branches of plant science, e.g., in genetic diversity, evolutionary, and species invasiveness studies.Agriculture 2020, 10, x FOR PEER REVIEW 16 of 24 
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6. Conclusions

Most classical statistical methods use only simple statistics and few influential factors to assess
the biological features of plants. For example, Yp and Ys are the only indices used to identify
drought-tolerant plant genotypes in yield-based drought tolerance assessment methods. However,
there are other influential factors, such as cellular, physiological, and phytochemical pathways,
which are involved in plants’ responses to environmental stress. The tolerance of different plant species
to biotic and abiotic stresses, as complex biological processes, can be efficiently enhanced through
large-scale analysis of phenomic, metabolomic, and genomic data. Machine learning models are
capable of processing large amounts of data (imaging and remote-sensing data) for high-throughput
stress phenotyping. The analysis of different omics and phenomic data may result in more precise
interpretation of GEI and yield stability. Plants’ qualitative and quantitative characteristics can be
predicted more precisely by analysis of climate data (temperature, humidity, sunshine, precipitation,
etc.), soil factors, agricultural operations data (harvest date, information on diseases, crop status,
ground temperature, etc.), topographic, and meteorological data. Big data analysis enables more
efficient classification of plants’ phenotypes and genotypes. Machine learning techniques are able to
manage large amounts of data in various areas of plant breeding, which can lead to more accurate
results and better interoperation than classical statistical methods. Artificial neural networks can be
used for pattern recognition, nonlinear regression, and classification purposes in plant tissue culture
studies because they can handle binary, continuous, categorical, and fuzzy datasets. The present
review can give an overview of applications of machine learning to plant breeders. It would be helpful
to adopt the correct method of data analysis in future studies, which in turn can increase the output
of studies.
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Abstract: The innovation in science and technical knowledge has prompted an enormous amount of
information for the agrarian sector. Machine learning has risen with massive processing techniques
to perceive new contingencies in agricultural development. Machine learning is a novel onset for the
investigation and determination of unpredictable agrarian issues. Machine learning models actualize
the need for scaling the learning model’s performance. Feature selection can impact a machine
learning model’s performance by defining a significant feature subset for increasing the performance
and identifying the variability. This paper explains a novel hybrid feature extraction procedure,
which is an aggregation of the correlation-based filter (CFS) and random forest recursive feature
elimination (RFRFE) wrapper framework. The proposed feature extraction approach aims to identify
an optimal subclass of features from a collection of climate, soil, and groundwater characteristics
for constructing a crop-yield forecasting machine learning model with better performance and
accuracy. The model’s precision and effectiveness are estimated (i) with all the features in the dataset,
(ii) with essential features obtained using the learning algorithm’s inbuilt ‘feature_importances’
method, and (iii) with the significant features obtained through the proposed hybrid feature extraction
technique. The validation of the hybrid CFS and RFRFE feature extraction approach in terms of
evaluation metrics, predictive accuracies, and diagnostic plot performance analysis in comparison
with random forest, decision tree, and gradient boosting machine learning algorithms are found to be
profoundly satisfying.

Keywords: correlation filter; crop yield prediction; hybrid feature extraction; machine learning;
recursive feature elimination wrapper; precision agriculture

1. Introduction

The advancement in science and machine learning has accounted for a colossal amount of
information in the agrarian field subjecting to examination and incorporating procedures such as crop
yield forecasting, investigation of plant diseases, enhancement of crops, etc. Machine learning has
ascended with enormous processing strategies to conceive new opportunities in multi-disciplinary
agrarian innovations. Though machine learning strategies handle immense sums and variations of
information, accomplishing a superior performing model is a pivotal plan that needs to be focused.
Further, this actualizes the need for scaling the learning model’s performance. Feature extraction is
a technique for determining a significant subgroup of features utilizing various statistical measures
for model construction [1]. It can impact a machine learning model’s performance by enlisting a
substantial feature subset for boosting the performance and categorizing the variability. The most
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prevailing feature selection measures are the filter methods, which are generally faster, and the wrapper
methods that are more reliable but computationally expensive.

Together with colossal data advances and improved measure reinforcement, machine learning
has risen to determine, assess, and envision intensive information techniques in an agriculture
operative environment. Exuberant upgrades in machine learning have tremendous potential results.
Many researchers and authorities in present agribusiness are looking at their speculation at an
increasingly prevalent scale, helping to accomplish progressively exact and steady forecasts. Precision
agriculture is also known as “site-specific agriculture”, an approach to deal with farm management
utilizing information technology. Precision agriculture assures that the crops and soil receive precisely
what they require for optimum health and profitability [2]. Present-day agrarian frameworks can
discover significantly more machine learning methods to use enhancements more efficiently and adjust
to different natural changes [3–5]. The objective of precision agriculture is to guarantee productivity,
manageability, and conservation of the environment [6]. Machine learning in precision agriculture
endows a crop management system that assists in yield forecasting in crops, crop disease management,
distinguishing the crop weeds, acknowledging crop assortments, forecasting of agricultural climate,
and many others. In the machine learning procedure, insignificant features in preparing a dataset will
decline the forecasting efficiency [7]. Due to the extensive increase in the data amount, a pre-processing
strategy such as feature selection grows into an essential and demanding step when using a machine
learning technique [8,9].

1.1. Background

Feature selection is characterized as the way towards removing the excessive and unessential
features using statistical measures from a dataset, to embellish the learning algorithm. It is an active
explorative area in artificial intelligence applications. The predominant aim of feature extraction is
to achieve an appropriate subgroup of features for defining and delineating a dataset. In machine
learning, feature selection strategy gives us a method for lowering calculation time [10], enhancing
forecasting results, and improving perception of the data. In other words, feature selection is an
extensively used pre-processing procedure for higher-dimensional data. It incorporates the following
objectives:

• Enhancing forecasting precision
• Lowering the dimensions
• Removing superfluous or insignificant features
• Improving the data interpretability
• Enhancing the model interpretability
• Decreasing the volume of the required information.

The feature extraction processes can be classified based on various standards, as depicted in
Figure 1. Depending on the training data employed, they are grouped as supervised, unsupervised,
and semi-supervised. Based on their inter-relationship with the learning models, they are classified as
a filter, wrapper, and hybrid models. Depending on the search strategies, it is organized as a forward
increase, backward deletion, and random models [11]. Additionally, considering the output type,
they are classified as feature ranking and subset selection models. For higher-dimensional features,
this issue cannot be resolved by consolidating all potential outcomes.

Filter techniques can recognize and eliminate insignificant features, but they cannot expel repetitive
features because they do not consider conceivable dependencies between features [12]. The filter method
evaluates the significance of a feature subgroup entirely depending on the intrinsic characteristics
of data such as correlation, variance, F measure, entropy, the ratio of information gain, and mutual
information [13,14].
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Figure 1. Overview of feature selection methods for machine learning algorithms.

The wrapper-based feature selection method [15] encompasses a feature selection algorithm over
an induction algorithm. The wrapper approach is mainly helpful in solving issues such as generating a
fitness function when it cannot be efficiently expressed with an accurate analytical equation. Various
search algorithms such as forward and backward elimination passes, best-first search, recursive feature
elimination [16] can be utilized to discover a subset of features by means of augmenting or limiting the
corresponding objective function. Wrapper techniques are usually identified by the immense caliber of
the selected features; however, they have a higher computational cost.

Another intermittently investigated methodology for feature selection is hybrid methods.
They involve strategies endeavored to have an acceptable compromise between the computational
effort and efficiency [17–19]. These methods encompass those techniques that integrate both filter and
wrapper methods. It accomplishes the balance of precision and computing time.

1.2. Literature Review

It has been analyzed that the agriculturist’s income rises or falls depending on the outcomes
they acquire from their harvests. In an interest to enhance and support the process of determination
and resolution, it is vital to perceive the definite prevailing association between the crop yield and
numerous factors impacting it [20]. The factors are present in a higher level of intricacy in time
and space, and the decisions are to be perceived considering the effects of soil [21], climate [22],
water availability [23], landscapes, and several others that are concerned in assisting the crop yield [24].
Generally, a considerable part of agribusiness-based frameworks cannot be delineated by the essential
stage-wise condition or by a definite equation, particularly at the stage when the dataset is convoluted,
strident, deficient, or assorted. Structuring of these frameworks is complicated and imminent but has
exceptional importance for analysts for forecasting and simulation.

Feature selection methods have been enforced in prediction and classification problems to choose
a reduced list of features, which makes the algorithm to perform faster and produce precise results.
Some specific issues are continuously handled with an extraordinary number of features. In the
literature, some hybrid feature selection methods for agrarian frameworks combing both the filter
and wrapper approaches are proposed. Muhammed et al. have proposed the identification and
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categorization of citrus diseases in the plant [25] depending on the improved accentuated segmentation
and feature extraction. The procedure encompasses two phases: (1) detection of lesion spots in plants
and (2) classification of citrus disease. The optimal features are defined by enforcing a hybrid feature
extraction process, which includes the principal component analysis score, entropy, and skewed
covariance vector. Yu et al. explored a new procedure of “reduced redundancy improved relevance”
framework-based feature selection to choose an efficient wavelength spectrum for the hyperspectral
images of cotton plants, enabling the categorization of foreign substances in cotton plants [26].
Prediction of moisture content between wood chips using the least square Support Vector Machine
(SVM) kernel feature selection method has been endorsed by Hela et al. [27].

Wenbin et al. defined an efficient mutual information-based feature selection algorithm integrating
information theory and rough sets [28]. The evaluation function can choose candidate features that
comprise of high pertinence concerning the class and low redundancy among the selected characteristic
features, in such a way that the redundancy is removed. Hosein et al. introduced a new feature
extraction method, which is the combination of an advanced ant colony optimization algorithm (ACO)
with an adaptive fuzzy inference system (ANFIS) [29]. It enabled them to choose the best subgroup of
features from the various observed soil characteristics that leverage the soil cation exchange capacity
(CEC), which is a valuable property representing the soil fertility status. Feature selection is highly
essential for dimensionality reduction in the case of hyperspectral images. Ashis et al. endorsed a
supervised hybrid feature extraction procedure combining the Self-adaptive differential evolution
(SADE) algorithm with a fuzzy K-neighbor classifier wrapper [30] for the hyperspectral remote sensed
images of agricultural data over Indiana, Kennedy Space Center of Florida, and Botswana. Somayeh et
al. proposed a hybrid Genetic Algorithm—Artificial Neural Network feature extraction method to
identify the significant features for the pistachio endocarp lesion problem [31]. Pistachio endocarp
lesion (PEL) is one of the most significant causes of the damage of the pistachio plant. The study was
framed to identify the biotic and abiotic agents that impact the existence of PEL.

The works discussed until now attempts to consider the advantages of the filter and wrapper
methods and associate them appropriately. In addition, each proposed strategy utilizes its own selection
procedures and assessment measures. As observed, the hybrid-based feature extraction procedures
have been examined limited for agrarian datasets, and the current processes involve constraints
either in their assessment measures or the number of characteristic features processed. Concerning
the reasons as mentioned above, a new hybrid-based feature extraction process, unlike the other
hybrid measures, is proposed, which uses a correlation-based filter stage—CFS and the random forest
recursive feature elimination wrapper stage—RF-RFE. CFS can effectively screen redundant, noisy,
and irrelevant features. CFS also enhances performance and reduces the size of improved knowledge
structures efficiently than other filter measures. It is also computationally inexpensive, which provides
a better feature subset to ease the performance of wrapper, which is usually computationally expensive.
RF-RFE based wrapper, though computationally expensive, gives high-quality feature outputs. Since in
the proposed approach, the RF-RFE wrapper is combined with the filter approach, the computational
time is reduced. Another advantage of RF-RFE is that it does not demand any reconciliation to develop
competing results.

1.3. Aim of the Paper

In this paper, a new hybrid-based feature extraction procedure combining correlation type filter
CFS and a recursive feature elimination-based wrapper RF-RFE is developed. The proposed technique
is applied to the paddy crop dataset to determine a prime collection of features for forecasting crop
yield. Until now, the hybrid feature selection combination of CFS filter and RF-RFE wrapper has not
been enforced to recognize the significant subset of features for yield prediction in crop development.
The empirical results determine that the proposed method selects significant features amongst other
algorithms by removing those that do not contribute to enhanced prediction results. The remainder of
the paper is systemized as follows. Section 2 explains the methodology for the proposed hybrid feature
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abstraction method depending on the CFS RF-RFE wrapper, the data considered for the study along
with the significant agrarian parameters and the details about the various machine learning models
experimented and the evaluation metrics used. Section 3 demonstrates the experimental framework
and outcomes of the developed hybrid feature extraction process on the agricultural dataset with
various machine learning methods. Section 4 presents a discussion of results and future works. Finally,
Section 5 winds up with the conclusion of the proposed work.

2. Materials and Methods

2.1. Proposed Hybrid Feature Selection Methodology

The two predominant feature extraction processes in machine learning are filter and wrapper
methods. Wrappers frequently give better outcomes than filter processes, as feature extraction is
advanced for the specific learning algorithm that is utilized [32]. Due to this, wrappers are very
expensive to run and can be obstinate for substantial databases comprising numerous features.
Moreover, as the feature selection process is tightly connected with the learning algorithm, wrappers
are less frequently used than filters. In general, filters execute rapidly than the wrapper; as a result,
filters portray a vastly improved possibility of scaling to databases with a substantial number of
features. Filters can afford the same benefit as wrappers. When an enhanced precision for a specific
learning algorithm is recommended, a filter can provide a smart beginning feature subset for a wrapper.
In other words, the wrapper will be provided with a reduced feature set by the filter, thus helping
the wrapper to scale efficiently for bigger datasets. The hybrid approach, which is an association of
wrapper and filter methods, utilizes the ranking information from the filter method.

Further, this enhances the search in the optimization algorithm, which is used by the wrapper
methods. This method exploits the advantage of both the wrappers and the filters. By connecting
these two methods, we can enhance the predictive efficiency of pure filter methods and curtail the
execution duration of pure wrapper methods. In this section, the proposed feature extraction procedure
is explained, which conforms to the hybrid CFS filter—RF-RFE wrapper approach. A framework
representing the proposed approach is explained in Figure 2.

Figure 2. A framework of the proposed hybrid feature selection approach.
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Generally, the hybrid filter-wrapper feature selection method comprises typically of two phases:

• The initial phase utilizes the filter method to minimize the size of the feature set by discarding the
noisy insignificant features.

• The final phase utilizes the wrapper method to identify the ideal characteristic feature subgroup
from the reserved feature set.

In the first step during the filter stage, the features are arranged depending on a correlation-based
heuristic evaluation function. This process objective is to distinguish the characteristic features
that are persistent with the information framework. The features are categorized based on their
significance. With the purpose of confining the exploration into the space of all conceivable feature
subgroups, this process permits a decent estimate of features as a beginning for the next step. In the
second phase, i.e., the wrapper phase, the objective is to assess the features examining them as a
subgroup rather than in the explicit case. Then, they are enforced to random forest-based recursive
feature elimination selection process. Figure 3 explains the proposed hybrid feature selection system
architecture. The following subsections delineate each phase of the proposed strategy.

Figure 3. Architecture diagram of proposed hybrid CFS and RF-RFE feature selection approach.

2.1.1. Filter Stage—Correlation Based Feature Selector (CFS)

A filtering process assesses the quality of feature subsets depending on statistical measurements
as evaluation criteria. In machine learning, one of the processes of selecting features for forecasting
results can be attained based on the correlation among the features, and that such a feature selection
strategy can be useful to regular machine learning algorithms. A feature is beneficial if it is conforming
to a class or predicts the class [32]. A characteristic feature (Xi) is observed to be pertinent if and only if
there prevail some probability (P) xi and y such that P(Xi = xi) > 0 as in Equation (1),

P(Y = y
∣∣∣Xi = xi) , P(Y = y) (1)

Experimental proof from the feature selection literature demonstrates that in addition to the
insignificant features, superfluous features need to be removed as well. A feature is recognized as
superfluous if it is exceedingly associated with one or more other features.

Moreover, this resulted in a hypothesis for feature extraction, which is a useful, acceptable
characteristic feature subgroup that incorporates features that are significantly associated with class but
dissociated with one other. In this scenario, the features are specific tests that measure characteristics
identified with the variable of importance. For instance, a precise forecast of an individual’s achievement
in a subject can be obtained from a composite of various tests estimating a wide assortment of qualities
rather than an individual test, which estimates a restricted set of qualities. In a given feature set if the
association among the individual feature and an extrinsic variable is recognized, and the inter-relation
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among every other pair of the features is given, then the association among the complicated test
comprising of the total features and the extrinsic variable can be determined from Equation (2),

r =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(2)

The above equation defines the Pearson’s correlation coefficient. Where xi and x defines the
observed and average values of the features considered. yi and y defines the observed and average
values of the dataset class. If a group of n features has just been chosen, the correlation coefficient can
be utilized to assess the connection between the group and the class, incorporating inter-correlation
among the features. The significance of the feature group increases with the correlation between the
features and classes. Additionally, it diminishes with an increasing inter-correlation. These thoughts
have been examined in the literature on decision making and aggregate estimation [33]. Defining the
aggregated correlation coefficient among the features and output variables as rny = p(Xn, Y) and the
aggregate among varying features as rnn = p(Xn, Xn). The group correlation coefficient calculating the
relevance of the feature subset is given as follows in Equation (3),

J(Xn, Y) =
nrny√

n + (n− 1)rnn
(3)

This shows that the association between a group and an external feature is an operation of the
total number of individual characteristic features in the group. The formula from [34] is obtained
from the Pearson’s correlation coefficient by standardizing all the variables. It has been utilized in the
correlation-based feature selection algorithm enabling the addition or deletion of one feature at a time.
The following pseudo-code in Algorithm 1 explains the selection procedure using CFS filter.

Algorithm 1 CFS filter-based feature selection method

SELECT FEATURES
INPUT:
Dtrain—Training dataset

P—The predictor
n—Number of features to select

OUTPUT:
Fx—Selected feature set

BEGIN:
F0 = Ø
x = 1
while |Fx| < n do

if |Fx| < n− 1 then
Fx = CFS (Fx−1, Dtrain, P)

else
Add the best-ranked feature f′ to Fx−1

end if
x = x + 1

end while
END

Predicting the feature importance based on correlation-based filters defines the following
conclusions:

• The higher the correlation among the individual and the extrinsic variable, the higher is the
correlation among the combination and external variables.
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• The lower the inter-correlation among the individual and the extrinsic variable, the lower is the
correlation among the combination and extrinsic variable.

For efficient prediction, it is obvious to remove the redundant features from the dataset. If another
feature manages an existing feature’s forecasting ability, then it can be removed safely. Further,
to improvise the forecasting performance of the system, the reduced feature set obtained is passed on
the next step of wrapper-based feature selection.

2.1.2. Wrapper Stage—Random Forest Recursive Feature Elimination (RF-RFE)

Wrapper methods use forecasting accuracy to validate the feature subset. Wrappers use the
learning machine as a black box in scoring the feature subsets depending on their forecasting ability.
Recursive feature elimination [34] is fundamentally a recursive process that ranks features based on a
significance measure. RFE is a feature ranking procedure depending on a greedy algorithm. As per
the standard of feature ranking, in all iterations, RFE will start eliminating from the full feature set
the least significant features one after the other to obtain the most significant features. The recursion
is required since, for a few processes, the pertinent significance of specific characteristic features can
vary considerably on assessing beyond an alternate subgroup of features in the course of step-wise
elimination. This is concerned primarily with profoundly correlated features. Depending on the order
in which the features are discarded, the final feature set is constructed. The feature selection procedure
itself comprises just acquiring the initial n features from this ranking.

Random forest falls under the ensemble-based prediction or categorization process. Substantially
it grows several distinct prediction trees and utilizes them together as a combined predictor. The final
prediction of a given dataset is determined by implementing an absolute rule among the choices
of the respective predictors. Further, to create unassociated and distinctive insights, every tree is
developed utilizing just a smaller dataset of the preparation set. Besides, to maximize the dissimilarity
among the trees, the algorithm includes random contingency in the pursuit of optimal splits [35].
The wrapper stage of the proposed hybrid approach depends on the extent of the significance of the
variable provided by the random forest. For each individual tree in the random forest, there exists a
subgroup of the feature set which is not utilized at the time of training since every tree is developed on
a bootstrap sample. These subgroups are generally termed as out-of-bag, which gives the unbiased
measure of predicting the errors.

Random forest evaluates the significance of characteristic features infiltrating the framework
as follows:

• In all iterations, each feature is shuffled, and over this shuffled data set, an out-of-bag estimation
of the forecasting error is made.

• Naturally, when trying to alter this way, the insignificant features will not change the prediction
error, inverse to the significant features.

• The corresponding loss in efficiency among the actual and the shuffled datasets is accordingly
associated with the efficiency of the shuffled features.

The following pseudo-code in Algorithm 2 explains the feature selection using RF-RFE.
In the RF-RFE approach, the proportion of characteristic feature significance is connected with the

recursive feature elimination algorithm. RF-RFE wrapper model is developed based on the perception
of building a model (here the model is random forest) frequently and select either the best or worst
operating feature. Removing the feature aside and recurring the process with the remaining features.
This operation is carried out until all the features in the dataset are consumed. The features are then
ranked depending on the order in which they are eliminated. In other words, this performs a greedy
optimization search to determine the best performing feature subset. The following section describes
the dataset and various agronomical factors impacting crop yield.
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Algorithm 2 RF-RFE wrapper-based feature selection method

INPUT:
D0 = [d1, d2, . . . , dn,]—Training dataset
F = [ f1, . . . , fn]—Set of n features
Ranking Method M(D, F)
S = [1, 2 . . . m]—Subset of features

OUTPUT:
Final ordered feature set Fs

BEGIN:
S = [1, 2 . . . m]
Fs = []
while S , [] do
Repeat for x in {1 : n}

Ranking feature set utilizing M(D, F)
S(f∗)← F’s last ranked feature
Fs(n − x + 1)← S(f∗)
S (Fs)← S (Fs) − S(f∗)

end while
END

2.2. Significant Agrarian Parameters and Dataset Description

Machine learning has surged collectively with enormous intelligence progress and better methods
to create unique contingencies to determine, assess, and appreciate information pervasive techniques
for agrarian frameworks. Machine learning algorithms need an appropriate amount of data for efficient
processing. Data with befitting attributes simplifies the effort of examining uniformity by eliminating
the features that are superfluous or excess concerning the learning objective. This section explains in
detail the various agrarian factors to be considered for yield prediction along with the study area and
dataset description.

2.2.1. Agronomical Variables Impacting Yield of Crops

There are a variety of factors identified for crop yield and the vulnerabilities required for their
development. The most crucial factors that affect crop yield are the climate, soil productiveness,
and groundwater characteristics. These factors can epitomize an enormous risk to farmers when they
are not checked and supervised precisely. Moreover, considering the ultimate objective to maximize
the yield of the crop and curtail the hazard, it is vital to see explicitly the factors that affect crop yield.
The following factors play a crucial role in crop enhancement.

Climate

A preeminent and the most overlooked variable that affects crop yield is climate. Climatic
conditions extend past just wet and dry. While rainfall is the indispensable segment of the atmosphere,
there exist few other distinct perspectives to recognize such as wind speed, humidity, temperature,
and the widespread prevalence of pests during certain climatic conditions [36]. Conflicting patterns
in climate lead to an excessive risk to crop and may prompt favorable conditions for specific weeds
to grow.

Soil Productivity

There exist several nutrient supplements such as nitrogen, potassium, phosphorus that constitutes
plant macronutrients and magnesium, zinc, calcium, iron, sulfur, etc. that constitutes plant
micronutrients [37]. Every one of them is proportionally fundamental to the crop yield, regardless
of the way that they are required in differing amounts. The accountability of nutrients for crop
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yield is indispensable for crop growth enhancement, protein formation, photosynthesis, and so forth.
The unavailability of these nutrients can reduce the crop yield by conversely impacting the relevant
growth factors.

Groundwater Characteristics and Availability

Water receptivity specifically influences the crop yield, and yield efficiency can change
comprehensively given the varying precipitation pattern, utilizing both amount and time span.
Almost no measure of rainfall can result in crop death; at the same time, ample precipitation can cause
adverse effects [38]. The essential and synthetic parameters of groundwater perform an essential role
in surveying the quality of water. The hydrochemical analysis uncovers the nature of water that is
appropriate for irrigation, agriculture, industrial use, and drinking purposes.

2.2.2. Crop Dataset and Study Area Description

The crop data required for the proposed study is obtained from the various village blocks including
Arcot, Sholinghur, Ponnai, Ammur, Kalavai, and Thimiri of the Vellore district of Tamil Nadu in
India. The crop considered for the study is paddy. This district lies between 12◦15′ to 13◦15′ north
latitude and 78◦20′ to 79◦50′ east longitude. Paddy is one of the significant economic crops grown
in this district, and hence this district is examined for analysis. Unlike the regular soil and climatic
parameters, the dataset comprises of distinctive climatic, soil, groundwater characteristics together
with the fertilizer amount absorbed by the plants of the experimented region. Table 1 explains, in brief,
the various parameters used for the experimental study. The data is observed for a time span of
20 years. The dataset contains paddy yield utilizing the region cultivated (in hectares), production of
paddy (in tonnes), and crop yield obtained (kilogram/hectare). The data relevant to environmental
aspects such as precipitation, air temperature, potential evapotranspiration, evapotranspiration of
reference crop, and exceptional climatic features such as frost frequency of ground, diurnal temperature
range, wind speed, humidity has been used which is obtained from the Indian water portal metadata
tool. The data of soil and groundwater properties comprises of soil pH, topsoil density, amount
of macronutrients existing in the soil, and the distinct groundwater characteristics such as type of
aquifer, transmissivity, rock layer permeability, water conductivity, and the number of micronutrients
existing in the groundwater before and after the monsoon period. Unlike the standard parameter set,
the proposed work includes considering all the parameters from various aspects, including climate,
hydrochemical properties of groundwater, soil, and fertilizer amount, to construct an efficient feature
subset enhancing the prediction of crop yield achieving better precision than the traditional approach.
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The following section describes the various machine learning models and evaluation metrics used
for the assessment of the proposed feature selection method.

2.3. Machine Learning Models and Evaluation Metrics

The proposed CFS filter RF-RFE wrapper hybrid statistical feature selection algorithm is tested by
implementing it with the following machine learning algorithms, namely:

• Random forest
• Decision tree
• Gradient boosting.

2.3.1. Machine Learning

Decision trees are an information-based supervised machine learning algorithm [39]. They are a
tree structure similar to a flow diagram, where every interior node indicates an analysis performed
on the attributes, branch depicts the output of the test, and the label of a class is defined by every
terminal node [40]. The significant objective of the decision tree is to identify the distinct features that
represent the essential data concerning the target element, and then the dataset is split along these
features such that the sub dataset’s target value is as pure as possible. For evaluating the proposed
hybrid feature selection method, a decision tree regressor with a maximum depth of four and best
splitter value is constructed. Random forest is an ensemble-based [41] supervised machine learning
algorithm, which combines several decision trees. The random forest algorithm is not biased, as there
are several trees, and each is prepared on a subgroup of data. For evaluating the proposed hybrid
feature selection with random forest, the regressor model is instantiated with 550 estimator decision
trees and 40 random states. Boosting algorithms are a subclass of ensemble algorithms and one of
the most widely used algorithms in data science [42], converting weak learners to strong learners.
Gradient boosting [43] sequentially trains several models, and every new model consistently reduces
the loss function of the entire procedure utilizing the gradient descendant process. The principal
objective of this algorithm is to build a new base learner, which is maximally correlated with the loss
function’s negative gradient, which is related to the entire ensemble.

The algorithm’s predictive performance with the crop data set is observed using the proposed
hybrid feature selection method. A machine learning model’s efficiency is defined by assessing a
model against various performance metrics or using various measures of evaluation. The various
performance metrics examined for the assessment of the developed work are:

• Mean Square Error (MSE),
• Mean Absolute Error (MAE),
• Root Mean Squared Error (RMSE),
• Determination Coefficient (R2),
• Mean Absolute Percentage Error (MAPE).

2.3.2. Metrics of Evaluation

Evaluation metrics define the performance of the model. A significant aspect of the evaluation
measure is their capability to differentiate among the results of various learning models. The various
performance metrics used for evaluation for this study are explained in this subsection.

Mean absolute error: Given an array of predictions, mean absolute error calculates the average
importance of the errors [44]. It is the arithmetical mean of the absolute variation between the actual
observation and the forecasted observation and is defined as follows in Equation (4).

MAE =
1
n

∑n

j=1

∣∣∣∣y j − y′j
∣∣∣∣ (4)
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Here n is defined as the size of the sample, y j depicts the original target measure and y′j defines
the forecasted target measure.

Mean Squared Error: Mean squared error is a significant criterion to determine the estimator’s
performance. Further, this defines how close a regressor line is to the dataset points [45]. The formula
for calculating mean squared error is defined as follows in Equation (5).

MSE =
1
n

∑n

j=1

(
y j − y′j

)2
(5)

Root mean square error: It is an estimation of the residuals or forecasted error’s standard
deviation [46]. To be more precise, it explains how well the information is concentrated on the best fit
line. The formula for calculating the root mean squared error is defined as follows in Equation (6).

RMSE =

√
∑n

j=1

(y j − y′j)
2

n
(6)

Determination Coefficient: The statistical measure R-squared or determination coefficient is
utilized to determine the accuracy of the fit of the regression framework [47]. To be more defined
determination coefficient defines how the developed framework is superior to the baseline framework.
It is defined in Equation (7) as follows:

R2 =




n(
∑

xy) − (∑ x)(
∑

y)
√
[n

∑
x2 − (∑ x)2][n

∑
y2 − (∑ y)2]




2

(7)

Mean Absolute Percentage Error: This represents how far the model’s prediction deviates from
its corresponding output. It is the average of the percentage errors. It is the sum of the individual
absolute errors divided by each period individually. It is defined in Equation (8) as follows:

MAPE =
1
n

∑n

j=1

y j − y′j
y j

(8)

2.3.3. Cross-Validation

During the development of the deep learning models, the dataset is subjectively split into training
and test set, where the maximum amount of information is taken as a training set. Despite the fact the
test dataset is small, there exists a possibility of leaving out some critical data that may have upgraded
the model. In addition, there exists a concern for significant data variance. To deal with this issue,
k-fold cross-validation is utilized. It is a process that is utilized to evaluate the deep learning models by
re-sampling the training data for upgrading the performance. Arbitrarily splitting a time series data
for cross-validation may results in a temporal dependency problem, as there is a specific dependence
on past observation, and also data leakage from response to the lag variable will undoubtedly occur.
In such cases, forward-chaining cross-validation is performed for time series data. It performs by
beginning with a small subset of information originally for training, predict for the following data,
and deciding the precision of the predicted data. The same predicted data points are encased as a
part of the subsequent training data subset, and the respective data points are predicted. For the
proposed approach, five-fold forward chaining cross-validation is implemented. The cross-validation
is implemented using python’s Sklearn machine learning library. The results of cross-validation are
tabulated in Table 2.

The dataset is normalized using min-max scaling. The training and the test sets are split using
the train_test_split function of Sklearn. The size of the training and the test dataset is determined
by the test_size parameter, which is set as 0.3 for the experiment, indicating that 70% of the data is
reserved for training, and 30% of the data is fixed for testing. The best value of “K” for cross-validation
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is determined using the cross_val_score function. K defines the number of groups the given data is to
be split into. The dataset is split into five subsets. The error metric determined is the R2 score, which is
affixed in every iteration and attains the optimal value determining the overall model accuracy.

Table 2. Dataset testing with 5-fold forward chaining cross-validation.

Model Data
Subset

Training Data
(In Years)

Test Data
(In Years)

Correlation
Measure Value R2 Score

1 1996–2000 2001–2003 0.77 0.82
2 1996–2003 2004–2006 0.84 0.86
3 1996–2006 2007–2009 0.61 0.70
4 1996–2009 2010–2012 0.76 0.84
5 1996–2012 2013–2016 0.86 0.89

The following section illustrates in detail the experimental framework of the CFS and RF-RFE
based hybrid feature selection method for various machine learning frameworks such as gradient
boosting, random forest, and decision tree.

3. Results

This section briefs about the experimental results obtained utilizing the proposed hybrid statistical
feature extraction procedure over the existing machine learning algorithms. Feature selection is an
automated process of choosing the most relevant attributes or significant features from a dataset
that enhances a predictive model’s performance. The proposed CFS filter RF-RFE wrapper hybrid
statistical feature selection algorithm is tested by implementing it with the following machine learning
algorithms, namely:

• Random forest
• Decision tree
• Gradient boosting.

Some of the machine learning algorithms comprise of a beneficial inbuilt method termed as
feature importance. These methods are generally utilized for forecasting, for observing the most useful
variables on the model. This information can be used to engineer new features, eliminate the noisy
feature data, or to continue with the existing models. This measure is used as one of the reference
values for evaluating the developed hybrid feature extraction framework. The evaluation of the model
is done in three phases.

• In the first phase, the models are constructed using all the features or variables in the dataset,
and the prediction results are validated using various statistical evaluation measures.

• In the second phase, models are constructed using the algorithm inbuilt ‘feature_importances’
methods, where only significant features alone are selected, and the prediction results are evaluated.

• In the third phase, the models are built utilizing the developed hybrid feature extraction method.
The most significant features as per the proposed approach are selected, and the prediction results
are evaluated.

3.1. Machine Learning Algorithms Performance Estimation in Terms of Evaluation Metrics

For validating the proposed hybrid feature selection method, a gradient boosting tree with 500
regression estimators, and a learning rate of 0.01 is constructed. The efficiency and accuracy measures
for all the experimented models are determined with:

• All the features,
• Selective features obtained through inbuilt feature importance method and
• Features obtained through proposed hybrid feature selection methods.
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The evaluation metrics are used to define the executing model’s performance. The residuals
which are obtained during the experiments are the variations between the predicted and actual values.
By observing the residual spread magnitude, the efficiency and the precision of the model are defined.
The evaluation measures obtained through the developed hybrid feature extraction process is found to
be better than the other experimented methods, which are depicted in Tables 3–5.

Table 3. Performance metric evaluation of machine learning models with all the dataset features.

Algorithm Name
The Performance Measure with All Features in the Dataset

MAE MSE RMSE R2 MAPE (%)

Random Forest 0.203 0.082 0.286 0.53 21.3
Decision Tree 0.481 0.378 0.614 0.48 48

Gradient Boosting 0.334 0.208 0.456 0.41 33

Table 4. Performance metric evaluation of machine learning models with algorithm inbuilt feature
importance method.

Algorithm Name
The Performance Measure with Algorithm Inbuilt Feature

Importance Method

MAE MSE RMSE R2 MAPE (%)

Random Forest 0.202 0.08 0.284 0.59 20
Decision Tree 0.356 0.225 0.474 0.50 35

Gradient Boosting 0.323 0.196 0.443 0.45 31

Table 5. Performance metric evaluation of machine learning models with the proposed hybrid feature
selection algorithm.

Algorithm Name
Performance Measure with CFS Filter and RF-RFE Wrapper

Feature Selection Method

MAE MSE RMSE R2 MAPE (%)

Random Forest 0.194 0.07 0.265 0.67 19
Decision Tree 0.341 0.182 0.426 0.55 33

Gradient Boosting 0.306 0.187 0.433 0.48 29

3.2. ML Algorithms Performance Estimation in Terms of Accuracy

Assessment of the model’s efficiency is a significant model enhancement procedure. It empowers
in analyzing the ideal framework for representing the information and executing the information for
fore coming iterations. Accuracy measure analyses the relativity of the forecasted value to the original
value. It is the rate of accurately predicted model predictions. Table 6 represents the experimented
model accuracy measures with all the features in the dataset, with particular features obtained
through the algorithm in-built feature_importance method and with the features obtained through
the proposed hybrid feature extraction procedure. The outcomes delineate the fact that the models
perform with better accuracy when tested with the proposed hybrid CFS-filter RF-RFE wrapper feature
selection algorithm.

Figure 4 graphically defines the performance metric results of the machine learning models with
all the features, with selective features obtained through algorithm inbuilt feature_importance method
and with the features obtained through the proposed hybrid feature selection method.

Figures 5–7 graphically represent the machine learning models’ accuracy using all the features in
the dataset for the specific features obtained through the feature importance method and the features
obtained through the proposed hybrid feature selection method. Figure 5a depicts the accuracy
measure of the gradient boosting algorithm using the features obtained by implementing the proposed
CFS RF-RFE feature selection method, which is 85.41%. Figure 5b defines the 84.4% accuracy measure
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attained using the gradient boosting algorithm’s inbuilt feature selection method. Figure 5c describes
the accuracy measure attained by the gradient boosting algorithm using all the features of the dataset,
which is 83.71%.

Table 6. Machine Learning Model Accuracy with the proposed hybrid feature selection algorithm.

Algorithm Name
Model Accuracy with

All Features in the
Dataset (%)

Model Accuracy with
Algorithm Inbuilt

Feature Importance
Method (%)

Model Accuracy with
CFS Filter and RF-RFE

Wrapper Feature
Selection Method (%)

Random Forest 90.84 90.94 91.23
Decision Tree 77.05 80.75 82.58

Gradient Boosting 83.71 84.4 85.41

Figure 4. Performance metric results of the machine learning models with (a) all dataset features,
(b) selective features through algorithm in-built feature importance method, (c) features obtained
through the proposed hybrid feature selection method.
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Figure 5. Gradient boosting model accuracy measure using: (a) proposed CFS RF-RFE feature selection
method, (b) algorithm in-built feature importance method, (c) all the features in the dataset.

Figure 6. Random forest model accuracy measure using: (a) proposed CFS RF-RFE feature selection
method, (b) algorithm in-built feature importance method, (c) all the features in the dataset.
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Figure 7. Decision-tree model accuracy measure using: (a) proposed CFS RF-RFE feature selection
method, (b) algorithm in-built feature importance method, (c) all the features in the dataset.

Figure 6a depicts the accuracy measure of the random forest algorithm using the features obtained
by implementing the proposed CFS RF-RFE feature selection method, which is 91.23%. Figure 6b
defines the 90.94% accuracy measure attained using the random forest algorithm’s inbuilt feature
selection method. Figure 6c describes the accuracy measure attained by the random forest algorithm
using all the features of the dataset, which is 90.84%.

Figure 7a depicts the accuracy measure of the decision tree algorithm using the features obtained by
implementing the proposed CFS RF-RFE feature selection method, which is 82.58%. Figure 7b defines
the 80.75% accuracy measure attained using the decision tree algorithm’s inbuilt feature_selection
method. Figure 7c describes the accuracy measure attained by the decision tree algorithm using all the
features of the dataset, which is 77.05.

3.3. Regression Performance Analyses—Diagnostic Plots

Concerning validation of the regression results of the machine learning models, using the
features from the developed hybrid feature extraction process, the regression diagnostic plots [48]
are constructed. Regression diagnostic plots enhance the exploratory performance of the regression
model through a set of accessible procedures to evaluate the legitimacy of the model. This assessment
might be an investigation of the model’s hidden statistical hypothesis or evaluation of model structure
by considering plans that have less or diverse illustrative factors. They also assist in investigating
subgroups of perceptions, searching for samples that are either ineffectively represented by the model,
such as the outliers or those having a comparatively massive impact on the regression model forecasts.
Residuals are generally leftovers of the resultant variable after fitting a model to data. However,
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residuals could indicate how ineffectively a model represents the data. They also uncover unexplained
patterns in the information by the experimented model. Utilizing these statistics, we can review if the
regression hypotheses are met and also enhance the model in an explorative manner. The diagnostic
plots represent residuals in four different ways, which are presented in Figure 8. This section compiles
the results obtained from the various machine learning models using the proposed hybrid CFS filter
and RF-RFE wrapper feature selection method and also evaluated the forecasting models against
various error measures. The following section discusses the results and future scope.

Figure 8. Residual diagnostic plots for regression analysis: (a) residuals vs. fitted plot, (b) normal Q–Q
plot, (c) scale-location plot, (d) residuals vs. leverage plot.

4. Discussion

As a point, this section discusses the results obtained from the proposed model and also it briefs
the future scope of the current study.

The residuals vs. fitted graph facilitates to observe the non-linear residual patterns. There can be
a non-linear relation among the actual and the predictor variable, and such patterns could appear in
these plots in case if the model does not catch them initially. The evenly distributed residuals about the
horizontal line without any definite patterns demonstrate non-linear relationships. Figure 8a shows
that the model data has met the linear regression assumptions well. There exists no distinctive data
pattern referring to the linear spread of data.

The Q–Q plot analyses if the residuals follow a normal distribution with minimum deviation.
It is better if the residuals interlined well on the straight line with minimum deviation. If the residual
tends to possess a higher magnitude than expected from a normal distribution, then the p-values and
confidence intervals fail to sufficiently account for complete data variability. Figure 8b depicts that
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the residuals are almost carefully plotted to the diagonal line indicating the normal distribution of
the residual. The scale location plot observes if residuals are dispersed evenly within the range of
the predictor. It enables us to verify the hypothesis of equal variance, i.e., homoscedasticity [49]. It is
better to have a horizontal line with arbitrarily distributed points. Figure 8c indicates that the residuals
are spread randomly. The residuals vs. leverage points enable to identify the most influential data.
All the outliers cannot be influential i.e., they may or may not create much importance to the regression
line. Cook’s distance enables to create a margin. The outliers with the highest Cook’s distance score
or those occurring outside the cooks’ distance are the influential outliers. Figure 8d delineates that
there exist no influential outliers. Thus, the regression diagnostic plots define the enhanced model
performance with the developed hybrid feature extraction process. A final reduced set of parameters
after the proposed hybrid feature extraction process is listed in Table 7.

In addition to the feature extraction methods, an exploratory data analysis process, namely
factor analysis is carried out to identify the influential variables or latent variables. It assists in data
interpretation by decreasing the number of variables. Factor analysis is a linear statistical model that
explains the variance among the observed variables, and the unobserved variables are called factors.
Factors are associated with multiple observed variables comprising of similar response patterns. It is a
process of investigating whether the variables of interest x1, x2 . . . xn are linearly related to the minimal
number of factors f1, f2 . . . fn. The primary objective of factor analysis is to minimize the observed
variables and identify the unobserved variables. Moreover, this can be achieved by utilizing the factor
extraction or factor rotation. Further, the proposed work factor analysis is implemented in python
using the factor_analyzer package. Before implementing the factor analysis, it is necessary to assess
the factorability of the dataset. Besides, this is determined using the Kaiser–Meyer–Olkin (KMO) test,
which measures the data suitability for factor analysis. It defines the adequacy for the entire model
and every observed variable. The KMO value varies from 0 to 1, where less than 0.1 is considered
inadequate. The overall KMO for the crop dataset is observed to be 0.82, indicating its effectiveness
in proceeding for factor analysis. The number of factors is defined based on the scree plot using
the eigenvalues. The scree plot process defines a straight line for every factor and its eigenvalue.
The variables whose eigenvalues are greater than one are considered as factors.

From the scree plot in Figure 9, it is observed that there are 32 factors whose eigenvalues are greater
than 1. These factors define a cumulative variance of 57%. Factor analysis explores massive datasets
and determines underlying associations, defining the group of inter-related variables. However,
more than one interpretation can be made from the same data factors. This method generates 32
decisive factors that are close to the number of features determined by our proposed feature extraction
method. The overall performance and the comparative results represent the fact that the proposed
feature extraction process produces enhanced performance results than the other feature extraction
process. Hence improves the predictive capability of the frameworks and their efficiency with lower
error measures of MAE, MSE, and RMSE and higher value of determination coefficient. The diagnostic
plots also result in delineating the enhanced exploratory performance of the models.
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Figure 9. Scree plot defining the number of factors for factor analysis.

Future Scope

However, in this study, we have considered a varied set of parameters, including climatic, soil,
and groundwater factors for forecasting crop yield. In the future, we can consider more extrinsic
variables related to pesticides and weed infestations. Further improvement of the statistical filter-based
selection using the adaptive prototype-based selection for improved performance can be considered.
A more defined hybrid feature selection measure with the combination of deep learning wrappers with
less complexity can be considered as an exciting area of research. As a part of the future work, we can
consider building an ensemble feature selection model by combining the CFS Filter approach with the
artificial neural network (ANN) based wrapper approach for agricultural applications. In another future
work, we can also consider building a stacked generalization model-based crop yield forecasting model,
using the features extracted through this proposed approach. Further, this stacked generalization
model can be built by using ANN as the meta-learner. The following section concludes the paper.

5. Conclusions

Agriculture is a predominant sector among the most arduous departments incorporating the
outcome of the analytical evaluation. Undoubtedly within an explicit sector, circumstances are
consistently varying, starting with one sector to another. There exists unstable weather, diverse soil
characteristics, persisting crop diseases, and pest infestations that influence crop yield and precision
agriculture. There is an overwhelming capacity for machine learning to reform agribusiness by
integrating various factors to forecast yield. Machine learning models secure a high degree to analyze
the factual information, translate the data achieved, giving more in-depth knowledge into the process.
To streamline the predictive model’s learning process and for the efficient representation of the dataset,
feature selection using various statistical measures is a crucial and significant stage. In this paper,
a hybrid feature extraction process to address the feature extraction problem in machine learning
models is proposed. A real-time dataset of soil, water, and climatic parameters from the Indian
water portal and directorate of rice development Patna is used for the current study. The models are
constructed in predicting the paddy crop yield for the interesting study area based on the climate,
soil, and hydrochemical properties of groundwater. A list of 45 features was considered for model
construction. Out of them, the most significant features for foreseeing the yield of crops in an interesting
study area is determined using a hybrid feature extraction strategy. The proposed hybrid statistical
feature extraction method is a mixture of CFS and RF-RFE wrapper, respectively. The filter method
is initially implemented using correlation measures to eliminate the superfluous and non-essential
features, which results in a reduced subgroup of features. These essential features obtained can be
subjected to the construction of an intelligent agrarian model for the crop prediction procedure.
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The advantage of the CFS filter among the other filter methods is the significantly shorter
computation time. A wrapper method is then enforced on the reduced subgroup of features to find the
feature set with high predictive accuracy. One of the essential highlights of the RF-RFE wrapper is
that it does not need any fine-tuning to obtain competing results. Experimental results also confirm
that the developed hybrid feature extraction method is superior to the other existing inbuilt feature
selector methods. In addition, the efficiency of the results with fewer error measures shows improved
prediction accuracy of the machine learning models.
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Abstract: Rapid and accurate evaluation of cultivated land quality (CLQ) using remotely sensed
images plays an important role for national food security and social stability. Current approaches for
evaluating CLQ do not consider spectral response relationships between CLQ and spectral indicators
based on crop growth stages. This study aimed to propose an accurate spectral model to evaluate
CLQ based on late rice phenology. In order to increase the accuracy of evaluation, the Empirical
Bayes Kriging (EBK) interpolation was first performed to scale down gross primary production (GPP)
products from a 500 m spatial resolution to 30 m. As an indicator, the ability of MODIS-GPPs from
critical growth stages (tillering, jointing, heading, and maturity stages) was then investigated by
combining Pearson correlation analysis and variance inflation factor (VIF) to select the phases of
CLQ evaluation. Finally, a linear Partial Least Squares Regression (PLSR) and two nonlinear models,
including Support Vector Regression (SVR) and Genetic Algorithm-Based Back Propagation Neural
Network (GA-BPNN), were driven to develop an accurate spectral model of evaluating CLQ based
on MODIS-GPPs. The models were tested and compared in the Conghua and Zengcheng districts of
Guangzhou City, Guangdong, China. The results showed that based on field measured GPP data,
the validation accuracy of 30 m spatial resolution MODIS GPP products with a root mean square
error (RMSE) of 7.43 and normalized RMSE (NRMSE) of 1.59% was higher than that of the 500 m
MODIS GPP products, indicating that the downscaled 30 m MODIS GPP products by EBK were more
appropriate than the 500 m products. Compared with PLSR (R2 = 0.38 and RMSE = 87.97) and SVR
(R2 = 0.64 and RMSE = 64.38), the GA-BPNN model (R2 = 0.69 and RMSE = 60.12) was more accurate
to evaluate CLQ, implying a non-linear relationship of CLQ with the GPP spectral indicator. This is
the first study to improve the accuracy of estimating CLQ using the rice growth stage GPP-driven
spectral model by GA-BPNN and can thus advance the literature in this field.

Keywords: CLQ; GA-BPNN; GPP-driven spectral model; rice phenology; EBK
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1. Introduction

Cultivated land quality (CLQ) has significant influence on agricultural production and resident
living [1–3]. The CLQ often changes dramatically under conditions of human disturbances or
environments [4]. Thus, rapid and accurate quantification of CLQ is critical. Traditionally,
the assessment of CLQ is usually conducted using field measurements, which is time-consuming and
costly. More importantly, this method lacks the ability to generate spatial distributions of CLQ [5–7].
Using remotely sensed data offers the potential of obtaining accurate and spatially explicit estimates of
CLQ with low cost and has attracted the attention of scholars [8–12].

Current studies on CLQ evaluation using satellite imagery can be divided into two categories:
traditional CLQ evaluation methods and pressure-state-response (PSR) based approaches. In the
former group of CLQ evaluation methods, remote sensing data were only utilized to obtain some
traditional indicators of CLQ, such as soil properties. One typical example is the study of Yang et al.
(2012) in which Landsat TM images were used to derive soil organic matter, soil acidity, soil texture,
and then generate the estimates of CLQ based on gradation regulations on the quality of farmland
in China [13]. Instead of soil fertilizer variables, Zhao et al. (2012) utilized normalized difference
vegetation index from Landsat TM imagery to evaluate CLQ [14]. However, the evaluation efficiency
of CLQ using satellite image-driven evaluation methods is limited because the use of the methods is
dependent on field measurements.

While, of the PSR based methods, CLQ is directly evaluated using remote sensing spectral
indicators. For example, Liu et al. (2010) developed a linear model for evaluating CLQ based
on predictors, including slope, sandy area ratio in a pixel, and modified soil-adjusted vegetation
index [4,15]. Liu et al. (2019) generated the spatial distribution of CLQ estimates based on the Genetic
Algorithm-Based Back Propagation Neural Network (GA-BPNN) model. The authors utilized five
remote sensing data derived predictors, including Slope, Vegetation Index, Temperature Vegetation
Dryness Index, Road Accessibility, and Patch Fractal Dimension, and found that CLQ was significantly
and nonlinearly correlated with the spectral predictors [16]. Xie et al. (2018) developed a frequent
pattern-growth algorithm for improving the evaluation efficiency of CLQ [17]. At present, there
have been no reports about CLQ evaluation using gross primary production (GPP). Some scholars
have used GPP to evaluate cultivated land productivity. Ma et al. (2018) explored the estimation of
cultivated land productivity using the mean GPP from 2000 to 2018 and analyzed the change trend
and amplitude of cultivated land productivity, implying that GPP provided the potential to evaluate
CLQ [18]. Although the studies demonstrated the possibility of rapidly evaluating CLQ, the spectral
responses between CLQ and remote sensing indicators were ignored. Moreover, the prediction accuracy
of CLQ is affected by the selected spectral indicators in the PSR framework due to the limitations of
image spatial and spectral resolutions.

This study aimed to propose an accurate spectral response model of CLQ based on GPP spectral
indicators from the MODIS-GPPs from 2011 to 2015 at different growth stages of late rice and the
corresponding temporal CLQ for mapping CLQ. Here, CLQ is defined as the farmland utilization quality
grade and represents the degree of anthropogenic use and natural conditions of cultivated land [19].
The Empirical Bayes Kriging (EBK) interpolation was first employed to perform spatial downscaling
transformation of the MODIS GPP images from 500 m spatial resolution to 30 m. The accurate spectral
model based on GA-BPNN was then developed and validated by comparing it with a linear partial
least squares regression (PLSR) and a non-linear support vector regression (SVR). The comparison
of the models was made in the study area mentioned next. It is expected that the study can offer a
powerful tool to rapidly and accurately estimate CLQ.
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2. Materials and Methods

2.1. Study Areas

The study area (Figure 1) is situated in the Conghua and Zengcheng District of Guangzhou,
Guangdong of China (22◦26′–23◦56′ N, 112◦57′–114◦03′ E). The annual average temperature is
21 ◦C and the annual average precipitation is about 1900 mm, concentrating between April and
September [20–22]. The cultivated land area of Guangzhou in 2015 was 13,485.99 hm2 with an annual
crop yield of 440,900 tons (referencing the Statistical Communiqué of Guangzhou on the 2015 National
Economic and Social Development), of which the paddy field was 11,885.16 hm2 with the average paddy
stand size of about 0.25 hm2, accounting for 87.91% of the total cultivated land area. The cultivated
land is mainly concentrated in Conghua and Zengcheng Districts. Rice is the principal crop in the study
area, with an annual double rotation system (early rice: March–June and late rice: August–November).
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Figure 1. The study area location in Guangzhou City (a), and Conghua and Zengcheng District (b),
respectively, with a total of 420 sample plots for cultivated land quality (CLQ) (training sample plots are
in yellow and validation sample plots for the model in purple) and another set of 240 sample plots in
red for validating multi-scale Moderate-resolution Imaging Spectroradiometer (MODIS) gross primary
production (GPP) products; (c,d) the validation areas for mapping at Aotou Town of Conghua District
and Zhongxin Town of Zengcheng District.

2.2. Data

In this study, to match the 500 m spatial resolution of MODIS GPP products, field sampling plots
of 500 m by 500 m were designed and within each plot, biomass was taken at five locations with one
placed at the plot center and the other four at the middle points from the plot center to the corners
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along the diagonal lines. The GPP was estimated with an empirical regression model [23]: GPP = NPP
0.524 ,

where NPP was acquired from the following equation.

NPP =
B× β
α

(1)

where B is the dry biomass obtained from each of the sampled plots at the heading stage and dried
in a constant temperature drying oven at 110 ◦C. The α is the ratio of aboveground biomass to total
biomass, and β is the percentage of carbon in the biomass. For cultivated land, the value of α is usually
0.8 [24], and β is 45% [25]. The rice samples were first destructively collected in the field sample plots
and oven-dried at 110 ◦C for 50 min in the laboratory, and the temperature was then adjusted to 85 ◦C
for 10 h until the sample weights did not change. The samples were finally taken out and weighed.

Moreover, a total of 660 sample data were extracted from the CLQ map obtained from the
Guangzhou National Land Department and the CLQ values were derived using gradation regulations
on farmland quality in China (Regulation for gradation on agriculture land quality GB/T 28407-2012) [26].
The plot sampled area is 30 m × 30 m, matching the 30 m spatial resolution of the downscaled MODIS
products. The 660 samples were randomly divided into three groups: 294 samples in yellow for
modeling (Figure 1b), 126 sample in purple for validation of the estimated CLQ (Figure 1b), and another
dataset of 240 sample plots in red for assessing the accuracy of mapping CLQ at the regional scale
(Figure 1c,d). In addition, 2011–2015 MODIS/Terra 8-day GPP products (MOD17A2H Version 6) at
a spatial resolution of 500 m × 500 m were acquired from the Land Processes Distributed Active
Archive Center (LP DAAC/NASA). The MODIS Re-projection Tool (MRT) was employed to convert the
sinusoidal projection into the Albers Equal Area projection for the MODIS GPP products. The scaling
factor of 0.1 was utilized to obtain the standard MODIS-GPP products [27].

According to the rice growth phases recommended by Ricepedia [28], the rice growth process can
be characterized by five stages: seedling, tillering, jointing, heading, and maturity. In fact, the seedling
stage was not taken into account because of the too small values of MODIS-GPPs detected and the impact
of water on the spectral reflectance of rice. Thus, four growth stages were considered. Moreover, the dates
of the acquired MODIS-GPP images with cloud cover less than 5% were consistent with the times of the
four rice growth stages (Table 1) and the synchronous satellite-field experiment was carried out.

Table 1. Acquisition dates of MODIS-GPPs and corresponding with rice growth stages.

Growth Stage Tillering Stage Jointing Stage Heading Stage Maturity Stage

Acquisition date
(m/d/y)

8/20/2011–8/27/2011 9/13/2011–9/20/2011 10/15/2011–10/22/2011 11/8/2011–11/15/2011
8/19/2012–8/26/2012 9/12/2012–9/19/2012 10/14/2012–10/21/2012 11/7/2012–11/14/2012
8/20/2013–8/27/2013 9/13/2013–9/20/2013 10/15/2013–10/22/2013 11/8/2013–11/15/2013
8/20/2014–8/27/2014 9/13/2014–9/20/2014 10/15/2014–10/22/2014 11/8/2014–11/15/2014
8/20/2015–8/27/2015 9/13/2015–9/20/2015 10/15/2015–10/22/2015 11/8/2015–11/15/2015

2.3. Methods

2.3.1. Downscaling of MODIS GPP Products Based on the EBK Interpolation

The EBK was used to downscale the MODIS GPP products from a 500 m spatial resolution to
30 m [29,30]. The EBK is superior compared with the conventional spatial downscaling methods that
rely solely on the spectral data of images and do not take into account image texture and structure,
as well as with the classical kriging methods that ignore the explanation of the error introduced by
modeling semivariograms [31]. The EBK is a powerful non-stationary algorithm and divides an image
into subsets and uses simulation to makes the process automatic for spatial interpolation [32]. In this
method, the following Kriging Equation (2) was utilized to predict GPP values [30,33,34]:

Z(x0) =
n∑

i=1

λi·Z(xi)
+

n∑

i=1

si·U(xi)
(2)
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where Zi, (i = 1, . . . , n) is the GPP value at location xi, λi, (i = 1,2,3 . . . ,n), represents the kriging
weight generated using the parameters of cross-variograms, and si, (i = 1,2,3 . . . ,n) is the kriging
weight estimated on the basis of a cross-variogram between Z(xi)

and U(xi)
. The n denotes the total

number of observations. The variable U(x) was a standardized rank that was calculated as [30]:

U(xi)
=

R
n

(3)

where R represents a rank of the Rth order statistic of GPP on the land surface at location xi. Downscaling
the 500 m MODIS GPP products to the 30 m spatial resolution using EBK was performed using ArcGIS
10.3 Geostatistical Analyst (Environmental Systems Research Institute, Inc., Redlands, CA, USA).

2.3.2. Selecting the Phases of GPP

The important step in selecting the phases for CLQ evaluation was the determination of the
relevant growth stage. In this study, Pearson product moment correlation that quantifies the linear
relationship between two variables [35,36] was applied to obtain the spectral variables with the highest
coefficients at the significance level of 0.05. The correlation coefficient is calculated as:

ri =

∑N
n=1

(
Rni −Ri

)
(y− y)

√∑N
n=1

(
Rni −Ri

)2 ∑N
n=1(y− y)2

, (4)

where ri is the correlation coefficient between growth stage and CLQ, N is the total number of CLQ
samples. Rni is the ith growth stage of the nth CLQ sample, Ri is the average of the CLQ sample values
in the ith growth stage, and y is the nth CLQ, y is the average value of CLQ.

Moreover, the Variance Inflation Factor (VIF) was applied to mitigate the collinearity among the
GPP predictors, which is calculated as [37,38]:

VIF =
1

1−R2
i

(5)

where, R2
i is the determination coefficient between the ith predictor and the remaining independent

variables. The larger the VIF, the greater the collinearity between the predictors. In general, the values
from 0 to 10, 10 to 100, and equal to and greater than 100, respectively, imply no strong and
serious collinearity.

2.3.3. Partial Least Squares Regression

In this study, to improve the evaluation of CLQ, GA-BPNN was proposed and compared with
PLSR and SVR to predict CLQ using GPPs.

As a linear multivariate model, PLSR relates two data matrices, X and Y. Compared with traditional
regression, however, PLSR can be used to analyze the predictors that have strong correlations [39,40],
which is expressed as follows:

Y = Xβ+ ε, (6)

where Y is the response variable CLQ, X is the predictor GPP at different stages, β is the regression
coefficient, and ε is the residual.

2.3.4. Support Vector Regression

The SVR is a widely used supervised learning method for solving the problem of regression
fitting. Different from the traditional process from induction to deduction, SVR greatly simplifies
the usual regression process by making efficient “transductive inference” from training samples to
prediction [41–43]. Traditional regression algorithms use training samples to generate a model (a global
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trend) that is used to predict values of the dependent variable at unknown locations. In SVR, the values
of 2011–2015 MODIS-GPPs as predictors x in this study are first plotted onto an m-dimensional feature
space (m–number of predictors) and a linear model with its epsilon band-acceptable prediction surface
is constructed in the feature space.

f (x) = ω∅(x) + b (7)

where f (x) presents CLQ estimates, ∅(x) denotes the GPP set of nonlinear transformations, b is the
error term, and ω is the weight coefficient. After preprocessing of data, the error term often has a
zero mean and can be dropped. According to structural risk maximization principles, ω and b are
calculated by following the objective function R(x).

R(x) =
1
2
‖ω‖2 + 1

l

l∑

i=1

∣∣∣ f (xi) − yi
∣∣∣
ε

(8)

where
∣∣∣ f (xi) − yi

∣∣∣
ε

is the insensitive loss function, ε is the error tolerance of the insensitive loss function,
l denotes the number of samples, ‖ω‖2 reflects the flatness of in the m-dimensional space.

The model complexity can be simplified by minimizing ‖ω‖2. By introducing (non-negative) slack
variables ξi, ξ∗i , i = 1, . . . , n and penalty factor (C) to derive the deviation of training samples outside
the insensitive loss function, SVR is formulated by minimizing the following objective function:

R
(
ω, ξi, ξ∗i

)
= 1

2‖ω‖2 + C
l∑

i=1
(ξi + ξ

∗
i )

s.t.



yi −∅(x) − b ≤ ε+ ξ∗i
ω∅(x) + b− yi ≤ ε+ ξ∗i
ξi, ξ∗i ≥ 0, i = 1, . . . , n

, (i = 1, . . . , n)
(9)

The above problem can be translated into the following dual problem:

min

α
(∗)
i εR2l

1
2

l∑
i,j=1

(
αi −α∗i

)(
αj −α∗j

)(
∅(xi)∅

(
xj
))
+ ε

l∑
i=1

(
α∗i + αi

)
−

l∑
i=1

yi

(
α∗i −αi

)

s.t.



l∑
i=1

(
αi −α∗i

)
= 0

0 ≤ α(∗)i ≤ C, i = 1, . . . , l.

(10)

where αi −α∗i is the transformation of the ω variable after introducing the Lagrange factor. The SVR
function is obtained by solving the above problems:

f (x) = ω∅(x) + b =
l∑

i=1

(
α∗i −αi

)
K(xi, x) + b (11)

where K(xi, x) = ∅(xi)∅(x) is kernel function.

2.3.5. Genetic Algorithm-Back Propagation Neural Network

The GA-BPNN model is developed by combining a back propagation neural network (BPNN)
with the genetic algorithm optimization (GA). The BPNN has been widely used to find solutions
for nonlinear relationships. The training samples are used to train the multi-layer BPNN using
the error back propagation (BP) algorithm. During the process of modifying the weights, however,
the standard BP algorithm ignores previous gradient direction, which often leads to the oscillation and
slow convergence of the learning process [44]. The GA mimics biological evolution processes and has
the capacity of finding global optimum solutions of the problems and thus can be utilized to optimize
the thresholds and weights of the BPNN [45]. Therefore, the combination of BPNN and GA results
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in an integrated model that provides the potential of improving the efficiency and accuracy of the
predictions. The flow chart of GA-BPNN with its structure [46] is shown in Figure 2.
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3. Results

3.1. Downscaling of MODIS GPPs by EBK Interpolation

To improve the accuracy of evaluating CLQ, 2011–2015 MODIS-GPPs with the 500 m spatial
resolution were scaled downs to a 30 m spatial resolution using the EBK interpolation. Compared
with the original standard MODIS-GPP for the same date, the downscaled MODIS-GPP on the 233rd
to 289th day in 2013 shows more detailed information (Figure 3), indicating that the quality of the
downscaled data is higher than the original standard data.
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Table 2 shows the comparison results of MODIS-GPPs between the spatial resolutions of 500 m
and 30 m based on the field observations (dry biomass) of 30 samples plots. The average MODIS-GPP
was 475.09 g C/m2 for the 500 m, 472.73 g C/m2 for 30 m, and the average field observation was 465.49
g/m2. Compared with the field observations, the 30 m spatial resolution MODIS GPP has a root mean
square error (RMSE) of 7.43 and a normalized RMSE (NRMSE) of 1.59%, while the corresponding
values for the 500 m MODIS GPP were 33.43 and 7.18%. The results imply that the downscaled
MODIS-GPPs by EBK interpolation can reflect the productivity of cultivated land more accurately than
the unscaled MODIS-GPPs.

Table 2. Comparison of the original 500 m spatial resolution MODIS-GPPs from the 289th day in 2013
with their downscaled 30 m products by the Empirical Bayes Kriging (EBK) method based on the dry
biomass field observations of 30 sample plots.

Plot# Field Observations
30 m MODIS-GPPs 500 m MODIS-GPPs

Estimates Absolute Error (%) Estimates Absolute Error (%)

1 514.23 521.95 1.50 530.31 3.13
2 485.68 496.85 2.30 485.82 0.03
3 519.91 529.79 1.90 525.33 1.04
4 685.27 688.70 0.50 731.61 6.76
5 538.52 546.06 1.40 555.16 3.09
6 592.24 599.94 1.30 609.87 2.98
7 639.33 645.08 0.90 571.20 10.66
8 402.12 411.77 2.40 407.59 1.36
9 437.78 445.66 1.80 447.50 2.22
10 451.55 460.13 1.90 490.44 8.61
11 555.35 560.35 0.90 598.75 7.81
12 299.14 307.52 2.80 352.92 17.98
13 317.47 325.09 2.40 330.34 4.05
14 506.90 515.01 1.60 520.97 2.78
15 408.60 416.77 2.00 447.72 9.57
16 438.98 446.44 1.70 415.71 5.30
17 457.91 464.78 1.50 446.98 2.39
18 448.84 456.02 1.60 450.13 0.29
19 393.27 399.95 1.70 409.76 4.19
20 494.46 501.87 1.50 459.74 7.02
21 394.18 401.67 1.90 395.16 0.25
22 379.54 386.38 1.80 389.23 2.55
23 425.62 431.58 1.40 431.13 1.29
24 380.76 387.62 1.80 383.95 0.84
25 567.61 572.15 0.80 682.55 20.25
26 401.86 410.30 2.10 370.57 7.79
27 539.04 543.35 0.80 541.45 0.45
28 541.05 546.46 1.00 509.82 5.77
29 364.34 372.00 2.10 368.16 1.05
30 383.00 390.66 2.00 392.90 2.59

Mean 465.49 472.73 1.64 475.09 4.80
Stdev 91.77 91.00 97.57
RMSE 7.43 33.43

NRMSE
(%) 1.59 7.18

3.2. Model Comparison for CLQ Evaluation

In this study, to reduce the calculation burden, variance inflation factor (VIF) was used to perform
the analysis of collinearity of the GPPs among four growth stages given a year for developing the
models of evaluating CLQ based on 420 sample points. The results in Table 3 indicate that there is
collinearity among the GPPs in the four growth stages. Therefore, all data at the four growth stages
were selected to construct spectral models.
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Table 3. The variance inflation factors (VIFs) of MODIS-GPPs at the key growth stages.

Years
Growth Stages Tillering Jointing Heading Maturity

2011 1.971 1.981 4.611 2.874
2012 1.407 2.687 4.130 3.451
2013 1.274 4.092 7.679 4.468
2014 1.421 1.667 3.257 3.448
2015 2.073 1.699 2.655 1.026

In this study, three kinds of models including PLSR, SVR, and GA-BPNN were developed for
comparing the evaluation accuracy of CLQ. For each of the years from 2011 to 2015, one PLSR model
was obtained based on 294 training samples using CLQ as the response variable and GPPs at the four
growth stages as the predictors. With the same training datasets for the years, the corresponding SVR
and GA-BPNN models were constructed. The prediction accuracies of CLQ from all the models were
assessed based on the values of RMSE, NRMSE and the coefficient of determination (R2) between the
estimated and observed CLQ values [45] according to the training and validation samples. The obtained
2011–2015 PLSR evaluation models are:

ˆCLQ = 2128.457 + 0.008×GPPTillering/2011 + 9.388×GPPJointing/2011 + 14.073×
GPPHeading/2011 − 4.620×GPPMaturity/2011

(
R2 = 0.38, P < 0.001

) (12)

ˆCLQ = 2562.905 + 0.238×GPPTillering/2012 + 0.428×GPPJointing/2012 + 3.778×
GPPHeading/2012 + 5.437×GPPMaturity/2012

(
R2 = 0.39, P < 0.001

) (13)

ˆCLQ = 2336.989 + 6.886×GPPTillering/2013 + 6.834×GPPJointing/2013 − 0.401×
GPPHeading/2013 + 2.444×GPPMaturity/2013

(
R2 = 0.40, P < 0.001

) (14)

ˆCLQ = 2451.9366 + 0.586×GPPTillering/2014 + 6.341×GPPJointing/2014 + 0.516×
GPPHeading/2014 + 6.911×GPPMaturity/2014

(
R2 = 0.38, P < 0.001

) (15)

ˆCLQ = 2328.035 + 3.458×GPPTillering/2015 + 3.791×GPPJointing/2015 + 5.946×
GPPHeading/2015 − 4.830×GPPMaturity/2015

(
R2 = 0.35, P < 0.001

) (16)

For the development of SVR models, the support vector machine (SVM) was selected as
epsilon-SVR, its loss function was set as 0.1, and the range of kernel parameter and penalty parameter
was set as (2−8, 28) [47]. Moreover, the obtained GA-BPNN models had a three-layer network and a
hidden layer with 13 neuron nodes. A total of 1000 iterations was used with 10 maximum runs. Both
learning rate and learning objective were 0.01. The mutation probability, crossover probability and
population size were respectively 0.1, 0.3, and 10 [36]. The obtained models based on the 294 training
samples are compared in Figure 4.

Based on the scattered graphs from the training samples in Figure 4, the points of estimated vs.
observed CLQ are overall randomly distributed at both sides of the 1:1 lines. However, the accuracies
of the predicted CLQ values vary greatly depending on the models. Overall, the estimates of CLQ
from the PLSR models for 2011 to 2015 have smaller R2 values and greater RMSE and NRMSE values,
then the SVR models and the GA-BPNN models. This indicates that the GA-BPNN models performed
best, implying that CLQ was nonlinearly correlated with GPPs.
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In addition, the predicted CLQ values from the models were validated for their accuracy using
126 validation samples in Figure 5. Given a year and a model, the points of predicted vs. measured
values of CLQ were randomly placed at both sides of the 1:1 line. But, the PLSR models led to
obvious overestimations and overestimations for the smaller and greater CLQ values, respectively.
The overestimations were mitigated by SVR models and more mitigation was achieved by the GA-BPNN
models. Among the three kinds of models, the GA-BPNN models have the smallest average RMSE of
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67.37, than the SVR models with average RMSE of 73.04 and the PLSR models with average RMSE of
92.45 for years from 2011 to 2015, indicating that the GA-BPNN models have the strongest ability of
predicting CLQ.
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3.3. Mapping CLQ at the Regional Scale

The rice growth stage GPP-driven spectral model for year 2013 was used to map the CLQ for
Aotou Town of the Conghua District and Zhongxin Town of the Zengcheng District to validate its
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capacity of predicting CLQ at the regional scale in Figure 6. The referenced values of CLQ were
grouped into five classes based on the gradation regulations on agriculture land quality in China
(Regulation for gradation on agriculture land quality GB/T 28407-2012). The R2, RMSE, and NRMSE values
of the predictions from the GA-BPNN model were calculated based on 60 sample data in Aotou and
Zhongxin town, respectively (Figure 7). The prediction accuracies with RMSE of 73.32 and 104.35
and NRMSE of 10.47% and 17.75% show that the GA-BPNN model is appropriate to map CLQ at
both towns.
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4. Discussion

The CLQ implies the carrying capacity of land productivity and is critical for food supply and
security. However, CLQ often changes dramatically due to human activity induced disturbances and
environmental changes [4]. Thus, it is necessary to realize real-time monitoring and evaluation of CLQ
in agricultural regions, especially vulnerable or urban fringe areas [48,49]. Previous studies [4,15,16]
on remote sensing-based evaluation of CLQ mainly focused on retrieving spectral indicators in both
the traditional evaluation system and the PSR framework system. However, it is impossible to acquire
accurate CLQ data using the previous evaluation methods due to ignoring spectral relationships of
spectral indicators from crop growth stages with CLQ. This study is the first attempt to propose the
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spectral models relating CLQ to GPP spectral indicators obtained from four growth stages of late rice
phenology for evaluating CLQ. It is expected that this study can enhance the literature in this field.

Based on the comparison of the evaluation results from three kinds of models, SVR (average
R2 = 0.64 and NRMSE = 9.78%) and GA-BPNN (average R2 = 0.69 and NRMSE = 8.59%) models
performed better than the PLSR model (average R2 = 0.38 and NRMSE = 11.55%), implying that there
is obvious non-linear correlation of CLQ with GPP spectral indicator. This conclusion is consistent
with the findings of previous studies [16], indicating that the non-linear models are appropriate. It was
also found that the GA-BPNN models provided more accurate predictions of CLQ than the SVR and
PLSR models, which was mainly attributed to the integration of BPNN with GA which has the ability
of optimizing the BPNN weights and thresholds. For the SVR models, however, the kernel function
and penalty factor used only referenced expert experiences and they were limited in the accuracy of
CLQ evaluation [50–52].

Based on the field measured GPP values, moreover, the accuracy of the 30 m MODIS GPP
generated by the EBK interpolation, with 7.43 of RMSE and 1.59% of RRMSE, was higher than those of
the 500 m MODIS GPP, with 33.43 of RMSE and 7.18% of RRMSE, showing the improvements of 26%
in RMSE and 5.59% in NRMSE, respectively. These results show that the downscaled 30 m MODIS
GPPs were more accurate than the original 500 m spatial resolution products. Although previous
studies have shown that machine learning algorithms provide potential on CLQ evaluation, with R2 of
0.59 and NRMSE of 11.19% [16], the GA-BPNN model proposed in this study shows stronger ability
for CLQ evaluation with R2 = 0.69 and NRMSE = 8.59%, implying that the GPP spectral indicator
provides a direct and effective means for estimating CLQ. The further application of the GA-BPNN
model to mapping CLQ for Aotou Town and Zhongxin Town resulted in NRMSE values of 10.47% and
17.75% based on 120 validation samples. This indicated that the GA-BPNN model proposed in this
study had great potential to map CLQ at a large scale.

It should be noticed that in this study the experiment was conducted only for paddy fields in
which cultivated lands often have good and excellent quality. We are currently unable to verify whether
the GA-BPNN model based on the relationship of CLQ with GPP can perform well in other types of
cultivated lands. Therefore, in the future, we will expand the study to other kinds of cultivated lands
with different grades of CLQ. Moreover, in order to further validate the GA-BPNN model for CLQ
evaluations, larger sample sizes should be employed. In addition, a limited accuracy assessment using
MODIS GPPs with 500 m spatial resolution was undertaken in this study. The spatial resolution of
the used images will affect the evaluation accuracy of CLQ because when the rice planted areas that
are smaller than the spatial resolution of the images dominate the study area, mixed pixels will exist.
The GPP products from finer spatial resolution images acquired from different sensors should be tested.
As the correlation coefficient method meets the assumption of normal distribution of data, it was used
for determining the use of GPP from the four growth stages. In future study, more powerful methods
may be introduced to obtain the growth stages of the crops. Finally, more evaluation algorithms
(such as Random Forest and Deep Learning) should be attempted to improve the evaluation efficiency
and accuracy for CLQ.

5. Conclusions

This study attempted to obtain an accurate spectral model for evaluation of CLQ based on the
GPP spectral indicator at four important growth stages of late rice phenology by comparison of PLSR,
SVR, and GA-BPNN models using the measurements of CLQ from 294 training samples and the
corresponding GPP data from MOD17 products. This study was conducted in the Zengcheng and
Conghua district of Guangzhou City and led to the following conclusions: (1) The downscaled 30 m
spatial resolution MODIS GPP data by the EBK interpolation with NRMSE of 1.59% were more reliable
than the original 500 m resolution MODIS GPP products with NRMSE of 7.18%; (2) The GA-BPNN
spectral model showed the strongest prediction ability for CLQ (RMSE = 60.39) compared to the
PLSR and SVM models, indicating the existence of a nonlinear relationship of CLQ with GPP spectral
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indicators; (3) The NRMSE values of CLQ predictions from the GA-BPNN model for two validation
areas were relatively small (12.14% and 18.39%), further implying that the GA-BPNN model based on
rice phenological data could be applied to accurately mapping CLQ at the regional scale. This study is
the first report to provide an effective means for CLQ evaluation using a crop growth stage GPP-driven
spectral model with GA-BPNN.
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Abstract: Corn yields vary spatially and temporally in the plots as a result of weather, altitude, variety,
plant density, available water, nutrients, and planting date; these are the main factors that influence
crop yield. In this study, different multispectral and red-green-blue (RGB) vegetation indices were
analyzed, as well as the digitally estimated canopy cover and plant density, in order to estimate corn
grain yield using a neural network model. The relative importance of the predictor variables was
also analyzed. An experiment was established with five levels of nitrogen fertilization (140, 200,
260, 320, and 380 kg/ha) and four replicates, in a completely randomized block design, resulting in
20 experimental polygons. Crop information was captured using two sensors (Parrot Sequoia_4.9,
and DJI FC6310_8.8) mounted on an unmanned aerial vehicle (UAV) for two flight dates at 47 and
79 days after sowing (DAS). The correlation coefficient between the plant density, obtained through
the digital count of corn plants, and the corn grain yield was 0.94; this variable was the one with the
highest relative importance in the yield estimation according to Garson’s algorithm. The canopy
cover, digitally estimated, showed a correlation coefficient of 0.77 with respect to the corn grain yield,
while the relative importance of this variable in the yield estimation was 0.080 and 0.093 for 47 and 79
DAS, respectively. The wide dynamic range vegetation index (WDRVI), plant density, and canopy
cover showed the highest correlation coefficient and the smallest errors (R = 0.99, mean absolute
error (MAE) = 0.028 t ha−1, root mean square error (RMSE) = 0.125 t ha−1) in the corn grain yield
estimation at 47 DAS, with the WDRVI index and the density being the variables with the highest
relative importance for this crop development date. For the 79 DAS flight, the combination of the
normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), WDRVI,
excess green (EXG), triangular greenness index (TGI), and visible atmospherically resistant index
(VARI), as well as plant density and canopy cover, generated the highest correlation coefficient and
the smallest errors (R = 0.97, MAE = 0.249 t ha−1, RMSE = 0.425 t ha−1) in the corn grain yield
estimation, where the density and the NDVI were the variables with the highest relative importance,
with values of 0.295 and 0.184, respectively. However, the WDRVI, plant density, and canopy
cover estimated the corn grain yield with acceptable precision (R = 0.96, MAE = 0.209 t ha−1,
RMSE = 0.449 t ha−1). The generated neural network models provided a high correlation coefficient
between the estimated and the observed corn grain yield, and also showed acceptable errors in
the yield estimation. The spectral information registered through remote sensors mounted on
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unmanned aerial vehicles and its processing in vegetation indices, canopy cover, and plant density
allowed the characterization and estimation of corn grain yield. Such information is very useful for
decision-making and agricultural activities planning.

Keywords: vegetation indices; UAV; neural network; corn plant density; corn canopy cover;
yield prediction

1. Introduction

Corn is one of the main food crops for the population, and together with wheat and rice, it is one
of the most important cereals in the world. According to the United States Department of Agriculture
(USDA), in 2019, a global area of 192.21 million hectares was estimated, with China and the United States
being the countries with the largest sown area [1]. In Mexico, 7.4 million hectares of corn was sown in
2018, with a national production of 27.7 million tons and a mean yield of 3.83 t ha−1 [2]. For the Mexican
population, it constitutes the basis for alimentation, providing energy and proteins [3]. In Mexico,
86% of the surface is cultivated under rainfed conditions in plots of less than 5 ha. Some of these
producers use the agroecosystem called “milpa”, in which several species (beans, pumpkins, and others)
are grown on the same plot of corn [4]. Meanwhile, according to Food and Agriculture Organization
(FAO), the world population will increase by 35% by 2050, reaching 9100 million inhabitants, mainly in
developing countries [5]. To feed this population, food production must sustainably increase by 70%,
considering the safety and conservation of natural resources. Some studies indicate that corn yield
could decrease in the coming years as a result of anthropogenic climate change [6–9]. There are three
main impacts of climate change on agriculture: (a) deterioration in crop yields; (b) effects on production,
consumption, and commercialization; and (c) effects on per capita caloric consumption and child
nutrition [10]. Corn crop yield is directly related to many factors like the environment, management
practices, genotype, and their interactions [11]. The influence of regional climate patterns and large-scale
meteorological phenomena can have a significant impact on agricultural production [12]. Genotypes
have improved significantly over the years, and important technological developments have been
made in the machinery used in management practices. Under these circumstances, yield prediction can
be important data for food production, making well-informed and timely economic and management
decisions. Correct early detection of problems associated to crop yield factors can help increase the
yields and subsequent incomes of farmers. Accurate, objective, reliable, and timely predictions of crop
yields in large areas are fundamental to help guarantee the adequate food supply of a nation and assist
responsible politicians to make plans and set prices for imports/exports [13].

Yields in corn crops vary spatially and temporally in the plots, according to the conditions present
in each site such as weather, altitude, variety, planting density, available irrigation or the amount of
rain (water supply), the available nutrients for the plant (soil plus fertilizer), and the date of sowing,
which are the main factors that influence the yield of a plot. In recent decades, corn yield has increased
as a result of genetic improvement and agronomic management. Increases in plant density and the use
of synthetic fertilizers have been the main factors responsible for increases in corn yields. Plant density
(number of plants per unit area) is one of the components of grain yield (number of ears per unit
area, number of grains per ear, grain weight) that has an impact on the final corn yield [14]; however,
its accurate measurement after plant emergence is not practical in large-scale production fields owing
to the amount of labor required [15].

Precision agriculture (PA) is a management concept based on observation, measurement,
and response to variability of the crops in the field [16]. PA technology allows farmers to recognize
variations in the fields and apply variable rate treatments with a much finer degree of precision
than before. Identifying spatial and temporal variability within the field shows the potential to
support crop management concepts to satisfy most of the growing environmental, economic, market,
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and public pressures on agriculture [17]. Remote sensing is generally considered one of the most
important technologies for precision agriculture and intelligent agriculture; it can monitor many crops
and vegetation parameters through images at various wavelengths [18]. With the development of
unmanned aerial systems (UAS), their use in remote sensing and precision agriculture offers the
possibility of obtaining field data in an easy, fast, and profitable way, resulting in images with high
spatial and temporal resolution. The successful adoption of remote sensing based on unmanned aerial
vehicles (UAV) depends on changes in sensitivity on vegetation indices (VI) and growth stages [19].
Processing different vegetation indices has been associated with physiological parameters of the plant,
such as plant pigments, vigor, aerial biomass, yield estimation, plant physiology, and stress. Xue and
Su in 2017 [20] reviewed the developments and applications of 100 vegetation indices (VIs) in remote
sensing; some VIs employ a range of reflectance values in a narrow band of the electromagnetic
spectrum for more precise measurements correlating them with the grain yield, providing reliable
information for yield forecasting [21,22], but they require more technologically advanced sensors. As a
low-cost alternative, there are VIs that are obtained from red-green-blue (RGB) images calculated
from commercial cameras. These have shown in some studies their ability to predict grain yield,
quantify nutrient deficiencies, and measure the impact of diseases [23–25].

The factors that affect crop yields, such as soil, climate, and management, are so complex that
traditional statistics cannot give accurate results. Various machine learning techniques have been
used for yield prediction, such as decision trees, self-organizing maps (SOMs), multivariate regression,
support vector machines, association rule mining, and neural networks [26–31]. As a machine learning
tool, the artificial neural network (ANN) is an attractive alternative to process the massive data set
generated by production and research in precision agriculture [11]. The models used in machine
learning relate crop yield, as an implicit function of input variables, for example, climate variables,
soil, and water characteristics, which can be a very complex function, not necessarily linear. Recently,
different types of neural networks have been used to predict yield in wheat, soybean, rice, corn,
and tomato, using databases of genotypes, environment, management practices, and multispectral
images, obtaining acceptable results [32–37].

Studies have been carried out to estimate corn yield, using data obtained from remote sensors
and ANN. Fieuzal et al. [38] use multi-temporal data from satellites and radar, as well as a neural
network in the estimation of maize yield with an R2 of 0.69. On the other hand, in another study [39],
polarimetric synthetic aperture radar (PolSAR) and neural network data are used in the estimation
of corn biomass, obtaining good results with an R = 0.92. Han et al. [40] estimate the aerial biomass
of corn from spectral information, plant height, and structural information using data from remote
sensors and unmanned aerial vehicles with machine learning regression algorithms, obtaining good
results (R2 = 0.69). Michelon et al. [41] use ANN and chlorophyll readings to estimate corn productivity,
resulting in a correlation coefficient of 0.73 in stage V6. Olson et al. [19] related vegetation indices and
crop height with maize yield, finding high correlations; another approach uses yield data from parents
to predict maize yield in plant breeding using neural networks [42]. Canopy cover, plant density,
and vegetation indices calculated from data collected by remote sensors can be used to forecast corn
grain yield using neural networks. As far as we know, this is the first study where canopy cover,
plant density, and various vegetation indices are estimated from images obtained by UAVs to forecast
corn grain yield using a neural network.

In this study, the corn grain yield was estimated through the use of a neural network for a
corn crop established under different doses of nitrogen fertilization from multispectral and digital
images acquired by sensors mounted on an unmanned aerial vehicle. The images were processed
and vegetation indices, canopy cover, and plant density were extracted. A neural network was
designed having the following input parameters: vegetation indices (normalized difference vegetation
index, NDVI; normalized difference red edge, NDRE; wide dynamic range vegetation index, WDRVI;
excess green, EXG; triangular greenness index, TGI; visible atmospherically resistant index, VARI),
canopy cover, and plant density.
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2. Materials and Methods

2.1. Study Site

An experiment was established in a plot on 5 April 2018 at the Colegio de Postgraduados,
Campus Montecillo, located on the Mexico-Texcoco highway, km. 36.5 Montecillo, Texcoco, State of
Mexico (19◦27′40.58” N, 98◦54′8.57” W, 1250 m above sea level). Soil texture is sandy, bulk density of
1.45 g cm−3, organic matter of 1.59%, pH of 9.1, and electrical conductivity of 1.72 dS m−1. Five nitrogen
levels (140, 200, 260, 320, and 380 kg ha−1) were evaluated in a completely randomized block
experimental design with four replicates, resulting in 20 experimental units (120 m2 per unit), using the
Asgrow Albatross corn variety. A drip-band irrigation system with drippers at 20 cm separation and a
flow of 1.6 L/h was designed to irrigate each experimental unit. The five nitrogen levels were applied
to the irrigation water at dose intervals of 30% for the first 40 days, 50% of the dose at 40–80 days,
and 20% after 80 days. The sowing was done by hand with a distance of 80 cm between rows and 30 cm
between plants, with three seeds per hole. Weeds were controlled manually. A mean temperature
of 16.9 ◦C was present during the experiment period, and a total precipitation of 470 mm occurred,
with these conditions being very close to the normal conditions.

The experimental units were harvested at the end of September 2018, harvesting the entire area
of the experimental unit, so the total weight harvested corresponded to an area of 120 m2 (0.8 m
separation × 6 rows × 25 m long) for all replicates of each treatment in the experiment. The harvested
ears and grains were dried at approximately 14% humidity, so grain yield (t ha−1) was calculated
according to the following:

Gy =
X

120
× 10, (1)

Grain yield per plant (g plant−1) was calculated according to the following:

Gyp =
X× 1000

Np
, (2)

where X represents grain weight per experimental area (kg m−2), Gy is grain yield, Gyp is grain yield
per plant, and Np is the number of plants present in the area.

2.2. Acquisition and Analysis of Data from Remote Sensors Mounted on Unmanned Aerial Vehicles

Four orthomosaics were used in this work according to Table 1, which were acquired by a 72 g
Parrot Sequoia camera with a 16 Mpx RGB sensor. It also incorporates four single band sensors with a
spectral bandwidth in green (530–570 nm), red (640–680 nm), red edge (730–740 nm), and near infrared
(NIR) (770–810 nm) of 1.2 Mpx, and a 35 g solar sensor for real-time correction of lighting differences.
The Parrot Sequoia camera was attached to a 3 DR SOLO quadcopter (3D Robotics, Berkeley, CA,
USA) with flight autonomy of 20 min, with a horizontal precision range of 1–2 m. Two orthomosaics
used in this work were generated from a 20 Mpx DJI RGB sensor integrated into a DJI Phantom 4
quadcopter (DJI, Shenzhen, Guangdong, China), with a load capacity of 1.388 kg and autonomy per
flight of 30 min, equipped with a GPS/GLONASS satellite positioning system with a vertical precision
range ±0.5 m and horizontal precision range of 1.5 m.

Table 1. Flight log, sensors, and orthomosaics on different days after sowing (DAS).

DAS Development Stage Date Sensor No. of Images Area (m2)
Ground Sampling

Distance (GSD) (cm)

47 V8 21 May DJI FC6310 272 10,067 0.49
47 V8 21 May Parrot Sequoia 752 9409 2.15
79 R0 22 June DJI FC6310 188 7720 0.49
79 R0 22 June Parrot Sequoia 752 9409 2.15

V8: Vegetative stage—eight leaves with collar visible; R0: Reproductive stage—anthesis.
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The four flights were carried out in a period from 21 May to 22 June 2018, at a flight height
of 30 m. The images were acquired with 80% overlap and 80% sidelap, and the orthomosaic was
generated with the Pix4D software (Pix4D SA, Lausanne, Switzerland) using structure-from-motion.
The structure-from-motion processing technique searches for features in individual images that are
used to relate to features that match between overlapping images, called keypoints; using these key
points, camera parameters can be calibrated to external parameters (such as position, scale, and image
orientation) and a point correlation (matching) is performed based on the characteristics, identifying and
relating similar characteristics between images in common areas or overlapping areas. The calculated
3D position of the matched points is densified and textured with the corresponding images, from which
the orthomosaic is generated by projecting each textured pixel onto a 2D plane [43,44]. Ground control
points (GCP) were added for orthomosaic georeferencing according to Figure 1a. The required GCP
density depends on the required project accuracy, network geometry, and the quality of images [45,46].
Six marks were placed as ground control points (GCPs) distributed in the experimental plot for each
flight. A Global Navigation Satellite System (GNSS) Real Time Kinematics (RTK) V90 PLUS Hi-Target
system (Hi-Target Surveying Instrument Co., Ltd., Guangzhou, China) was used to record the center
of each control point with RTK precision, Horizontal: 8 mm + 1 Part Per Million (ppm) Root Mean
Square (RMS), and Vertical: 15 mm + 1 ppm RMS. Table 1 shows the summary of the images acquired
in each flight and the area covered for the four orthomosaics at 47 and 79 days after sowing (DAS).
Moreover, the corn growth stages for each flight are shown (V8 and R0). Generated orthomosaics
showed a ground sample distance (GSD) of 0.49 cm/pixel and a model RMS error of 5.6 cm for the
20 Mpx RGB sensor. The multispectral images obtained by the Sequoia camera were processed in
the Pix4D software, which integrates the camera’s light sensor to correct the estimated reflectance
and performs a radiometric calibration using a calibration panel image [47]. The multispectral Ag
template and the calibration panel by Airinov provided by the camera were used, defining the known
reflectance values for each spectral band of the panel equal to 0.171, 0.216, 0.268, and 0.372 for green,
red, red edge, and NIR, respectively. The obtained orthomosaics showed a ground sampling distance
of 2.15 cm/pixel.

Six vegetation indices were estimated based on the generated orthomosaics. Three vegetation
indices based on the reflectance of the visible spectrum (RGB): TGI (triangular greenness index),
EXG (green extraction index), and VARI (visible atmospherically resistant index), according to Table 2,
and three multispectral indices based on the reflectance in the near infrared, the red, and the red edge
bands: NDVI (normalized difference vegetation index), NDRE (green extraction index), and WDRVI
(wide dynamic range vegetation index). The calculation of the vegetation indices was done using
the raster calculator module of the Open Source program licensed under the GNU—General Public
License of the Geographic Information System (QGIS) software.
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Figure 1. (a) Experimental plot and polygons sampled in the extraction of vegetation indices,
canopy cover, and plant density; (b) binary image resulting from the classification of vegetation and
soil; (c) polygon selected for the sampling of the canopy cover and plant density.
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Table 2. Vegetation indices estimated from multispectral and visible images. RNir, Rred, RRE, RGreen,
RRed, and RBlue are the reflectance values for the near infrared, red, red edge, green, red, and blue
bands, respectively.

Vegetation Index Formula Reference

Triangular greenness index TGI = RGreen − 0.39RRed − 0.61RBlue [48]

Excess green index EXG = 2 g − r − b [49]

Visible atmospherically resistant index VARI = (RRed − RGreen)/(RGreen + RRed − RBlue) [50]

Normalized difference vegetation index NDVI = (RNir − RRed)/(RNir + RRed) [51]

Normalized difference red edge NDRE = (RNir − RRE)/(RNir + RRE) [52]

Wide dynamic range vegetation index * WDRVI = (α·RNir − RRed)/(α·RNir + RRed) [53]

* WDRVI with an α coefficient value of 0.1 presented a good relationship with corn canopy cover [53].

The variables r, g, and b of the EXG index are normalized values of the red, green, and blue
channels, respectively, according to

r =
RN

RN + GN + BN
, g =

GN

RN + GN + BN
, b =

BN

RN + GN + BN
(3)

RN =
R

Rmax
, GN =

G
Gmax

, BN =
B

Bmax
(4)

where RN, GN, and BN are the normalized values of each band; R, G, and B are the non-normalized
values of the red, green, and blue channels, respectively; and Rmax = Gmax = Bmax are the maximum
digital numbers for each channel (255 on the 0–255 scale).

TGI index was normalized to have a value in the range of the others indices, between 0 and 1,
according to the following:

Ynor =
Y−Ymin

Ymax −Ymin
, (5)

where Ynor is the normalized index value, Y is the index value without normalizing, Ymin is the
minimum index value, and Ymax is the maximum index value.

2.3. Plant Count, Determination of Plant Density, and Estimation of Canopy Cover

The corn plants present in the study area were counted digitally according to García et al. [54].
The orthomosaics were transformed from the RGB color model to the CIELab model, where we only
worked on the channel a* to extract the vegetation. Corn plant samples were selected at 47 days
after planting, twelve of them for each experimental area. Through normalized cross-correlation with
the normxcorr2 command in Matlab (Mathworks, Natick, MA, USA), the corn plants present in the
binary image were classified and, using an image component labeling technique, assigning a label
(1 ... i), the pixels of each plant were grouped. The area of the plants selected in the correlation was
used as a criterion, counting plants with 20% less than the minimum area of the smallest selected
sample. The digitally counted plants were registered in a table. The plant density (plants m−2) in each
experimental area was calculated according to the following:

Pd =
Np
Ea

, (6)

where Pd is the plant density in plants/m2, Np is the number of plants present in the sampled area,
and Ea is the sampled area in square meters.

The canopy cover was calculated from the generated TGI vegetation index, using the Open
Source program licensed under the GNU—General Public License of the Geographic Information
System (QGIS) and System for Automated Geoscientific Analyses (SAGA) [55]. In QGIS, the K-Means
Clustering for Grids module was used to group the pixels into two classes: soil and vegetation,
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through the combined method of minimum distance and simple scaling [56]. The K-means method of
image segmentation is a technique that does not use the histogram for the segmentation process, so it
is not affected by the noise introduced in the image, evaluating and grouping the different pixels in
similar data sets, being suitable for large data sets. On the other hand, the K-means approach in image
segmentation is fast and efficient in terms of computational cost [57,58]. In the classification of pixels
into two classes in QGIS, a binary raster was generated, where pixels with a value of 0 belong to soil
and pixels with a value of 1 belong to vegetation, or vice versa. Thus, the estimation of the percentage
of canopy cover was obtained by the following:

Cc =
NP
TP

(7)

where Cc is the canopy cover, NP are the pixels corresponding to vegetation per unit area, and TP is
the total pixels per unit area.

Sampling was carried out in four 11 m2 polygons for each replicate, according to Figure 1a. In each
of them, the canopy cover (Figure 1b,c) and the plant density for the two flight dates were calculated.

2.4. Vegetation Pixels’ Segmentation and Extraction of the Indices Values

The images acquired through the sensors and the orthomosaics generated from them contain
reflectance corresponding to soil and vegetation, but only the reflectance corresponding to vegetation
was of interest to us. With the eCognition software and the object-based image analysis (OBIA)
technique, multi-resolution segmentation was realized. This combines pixels or adjoining objects
present in the image based on spectral and shape criteria. It also works according to the scale of the
objects present; large scale results in large objects, and vice versa [59]. The homogeneity criterion
measures how homogeneous or heterogeneous the object present in the image is, calculated from
a combination of object color and shape properties. Color homogeneity is based on the standard
deviation of the spectral colors. Shape homogeneity is based on the deviation of a compact (or smooth)
shape and can have a value of up to 0.9. In the segmentation process, a 10-scale value was used and the
homogeneity criteria like shape and compactness were 0.1 and 0.5, respectively. For the classification
of the segmented pixels in the image, three classes present in the image (Figure 2a,b) were determined:
soil, vegetation, and shadows. Supervised classification of the nearest neighbor was used to select
pixel samples for each class; they were compared with the other objects present with respect to the
mean and standard deviation of the supervised sample [60].
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Once the pixels present in the image were classified, we exported the pixels classified in the corn
class (Figure 3a,b) as polygons in shape file format, with the QGIS software. The mean values of the
indices calculated for each polygon of corn class were extracted through the zone statistics complement;
the values were stored in a shape file. The mean values obtained from the indices were extracted for 76
sampled polygons, 4 per replicate of the 5 treatments as the average of the mean values of all the pixels
classified as corn contained in each polygon. The sample polygon of each replicate on the edge of the
crop was discarded to eliminate edge effects.
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Figure 3. Segmentation and classification of objects present in the orthomosaics for the extraction
of pixels belonging to and classified as corn plants: (a) image of the crop without segmentation and
classification; (b) image of the crop with a shape of polygons generated from the segmented and
classified pixels of corn plants.

2.5. Development and Training of the Feed-Forward Neural Network

A multilayer perceptron type feed-forward neural network was developed using Matlab software
(Mathworks, Natick, MA, USA). A feed-forward neural network contains multiple neurons arranged
in layers: input, hidden, and output. The information goes in one direction, so there are no cycles or
loops [61]. The input layer receives values of the input variables (x1, x2, ..., xn); between the input
layer and the hidden layer are the weights (w1, w2, ..., wn) that represent the memory of the network;
and the output neurons return the output (y1, y2, .., yn) through the sum of all the inputs multiplied
by the weights plus a value associated with the neuron, called bias (b) [62].

y =
∑i=n

i=0
WiXi + b, (8)

The outputs of the neurons before passing to the other nodes are transformed through an activation
function f(x) to limit the output of the neuron. The precision in the prediction by a neural network
is related to the type of activation function used; the non-linear activation functions are the most
used (Sigmoid, Hyperbolic Tangent, Rectified liner Unit (ReLU), Exponential Linear Unit (ELU),
Softmax) [63,64], so the final output (a) will be as follows:

a = f
(∑i=n

i=0
WiXi + b

)
, (9)

As input parameters or variables, we used the mean value of the vegetation indices, the canopy
cover, and the plant density, as well as the yield in tons per hectare as labels and output parameters.
In total, 70% of the total data entered into the neural network was used for training, 15% for validation,
and 15% for testing using a random partition of the entire data set. For each combination of input
variables, the neural network was trained ten times using ten different random data sets. The training
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algorithm used was Levenberg–Marquart [65,66], which is a training function that updates the values
in the weights and bias according to the Levenber–Marquart optimization. Tan-sigmoid was used
as activation function, as it defines the behavior of the neurons in charge of calculating the degree or
state of activation of the neuron, according to the total input function [67]. The descending gradient
with momentum type was used as a learning rule, as it calculates the change in weight (W) for a given
neuron. On the basis of the weights of the input neurons and the error (E), the weight W, the learning
rate (LR), and the moment constant (MC) are calculated, according to the descent of the gradient with
momentum. The objective of training the neural network is to minimize the resulting errors for a
training data set by adjusting the weights (W).

2.6. Statistical Analysis

For the performance analysis of the estimated yields by the neural network, estimated yields were
compared to the observed yields, estimating the root mean square error (RMSE), the mean absolute
error (MAE), and the correlation coefficient (R) in the training, validation, testing, and total data entered
into the neural network. The correlation coefficient between the observed yields and the vegetation
indices, the plant density, and the canopy cover was also estimated.

Es = (EY−OY), (10)

MAE =
1
N

∑N

i=1

∣∣∣(Es)i

∣∣∣, (11)

RMSE =

√∑N
i=1(EY−OY)2

N
, (12)

where N is the number of the sampled polygon,
∣∣∣(Es)i

∣∣∣ is the absolute value of Es, EY is the estimated
yield, and OY is the observed yield.

2.7. Variables’ Relative Importance in the Yield Estimation Using Garson’s Algorithm

Neural network models are difficult to interpret and it is difficult to identify which predictors
are the most important and how they relate to the property being modeled. The weights connecting
neurons in a neural network are partially analogous to the coefficients in a generalized linear model,
and these weights combined with their effects on model predictions represent the relative importance of
predictors in their associations with the variable being predicted [68]. Garson’s algorithm discriminates
the relative importance of the predictor variables for a single response variable, that is, the force
with which a specific variable explains the predicted variable is determined by identifying all the
weighted connections between the nodes of interest, and identifying the weights that connect to the
specific input node that passes through the neural network and reaches the variable that is being
predicted. This allows to obtain a unique value for each descriptor variable used in the neural network
model [69,70]. To know the predictor variables’ relative importance (NDVI, NDRE, WDRVI, EXG, TGI,
VARI, canopy cover, and density) in the corn yield estimation, Garson’s algorithm was used.

3. Results and Discussion

3.1. Corn Plant Vegetation Indices

The segmentation and classification of objects into soil and vegetation allowed to filter mean
values of the vegetation indices with respect to the pixels belonging to corn plants. Table 3 shows the
mean values computed through segmentation and classification of the objects present in the image for
two dates in the corn crop development. Differences are observed in the mean values of the vegetation
indices for 47 and 79 days after sowing. The classification of the pixels captured in the sensors into
two classes allowed us to extract the values of the indices belonging to corn, so the result was a mean
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value of the vegetation. Contrarily, if the classification of the pixels into classes was not carried out,
there would be a bias when considering pixels belonging to soil and shadows in the mean computation
for the polygons taken as a sample, resulting in a mixed value of corn plants and soil pixels. Vegetation
indices values increased for 79 DAS with respect to the values shown for 47 DAS, except for the VARI
index, which did not present a wide variation with the crop development. Similar results were shown
in the studies carried out by Gitelson et al. [53,71]. Vegetation indices did not show differences for the
nitrogen treatments used; similar results are reported by Olson et al. [19].

Table 3. Mean values of the vegetation indices and yield for each replicate of the treatments under
different degrees of nitrogen fertilization.

DAS Treatment

Vegetation Index

NDVI NDRE WDRVI EXG TGI VARI Yield (g plant−1)

Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV Mean Std DeV

47

N140 0.46 0.05 0.19 0.02 −0.55 0.04 0.40 0.03 0.40 0.03 0.12 0.02 109.3 19.6
N200 0.48 0.04 0.19 0.01 −0.53 0.04 0.42 0.03 0.42 0.03 0.13 0.02 134.0 2.7
N260 0.46 0.05 0.18 0.02 −0.55 0.05 0.41 0.02 0.41 0.02 0.13 0.02 135.6 2.7
N320 0.46 0.04 0.18 0.01 −0.55 0.04 0.42 0.04 0.42 0.04 0.13 0.02 137.1 3.6
N380 0.47 0.05 0.19 0.02 −0.53 0.05 0.43 0.02 0.43 0.03 0.14 0.01 138.3 5.3

79

N140 0.90 0.02 0.26 0.02 −0.13 0.06 0.53 0.03 0.54 0.01 0.13 0.02 109.3 19.6
N200 0.91 0.01 0.26 0.03 −0.10 0.06 0.54 0.03 0.54 0.01 0.14 0.02 134.0 2.7
N260 0.90 0.01 0.25 0.02 −0.13 0.06 0.52 0.03 0.54 0.01 0.13 0.02 135.6 2.7
N320 0.90 0.01 0.25 0.02 −0.12 0.05 0.53 0.04 0.54 0.01 0.13 0.02 137.1 3.6
N380 0.90 0.01 0.25 0.02 −0.11 0.05 0.53 0.03 0.54 0.01 0.13 0.02 138.3 5.3

3.2. Plant Density, Canopy Cover, and Yield

Figure 4 shows the correlation coefficient at 47 and 79 days after sowing between the canopy
cover, plant density, and yield; it also shows the correlation coefficient between the applied nitrogen
dose and grain yield per plant. The canopy cover calculated through the TGI index is closely related to
the density and grain yield of corn; the higher the density, the higher the cover and yield for 47 and 79
DAS. Therefore, corn yield has a direct response to canopy cover and planting density. For the period
from 47 to 79 DAS, the canopy cover increased by an average of 15% with a standard deviation of 5%.
The correlation coefficient for canopy cover was similar for both flight dates, around 0.76. Plant density,
according to Figure 4c, showed a high correlation with a coefficient of 0.94; thus, at a higher density,
an increase in grain yield is expected. This means that plant density explained 94% of the yield.
Positive yield responses have been reported with an increase in planting density, a significant increase
of 4.5–6, moderate of 6–7.5, and low of 7.5 to 9 plants per square meter [14]. The different nitrogen
treatments applied to the experiment influenced grain yield per plant; as the nitrogen dose increases,
there is a positive gain in grain yield per plant, as observed in Figure 4d, with mean grain weight yield
per plant of 109.3, 134.0, 135.6, 137.1, and 138.3 g per plant for 140, 200, 260, 320, and 380 kg ha−1,
for the conditions of the experimental site and the variety used.

3.3. Vegetation Indices and Yield

For flights at 47 DAS and 79 DAS, six vegetation indices (NDVI, NDRE, WDRVI, EXG, TGI, VARI)
were generated; three multispectral indices and three indices in the visible spectrum (RGB). Figure 5
shows the correlation coefficient between the vegetation indices corresponding to the corn class and the
observed grain yield at 47 DAS. During the 47 DAS, the WDRVI index presented values ranging from
−0.45 to −0.63 with a correlation coefficient of 0.54, thus presenting the highest correlation at this crop
stage. Meanwhile, the NDRE index showed a low correlation of 0.23 with values ranging from 0.15 to
0.24. The NDVI ranged from 0.36 to 0.55. In the study carried out by Maresma et al. [72], they found
that the WDRVI better explained the corn grain yield with different nitrogen treatments; on the other
hand, the index is reported to be sensitive to the leaf area index (LAI) and the canopy cover [53].
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Figure 4. (a) Correlation between the canopy cover at 47 days after sowing (DAS) and yield;
(b) correlation between the canopy cover at 79 DAS and yield; (c) correlation between plant density
and yield; (d) correlation between the applied nitrogen dose and grain weight per plant.

At 72 DAS, the correlation coefficient of the vegetation indices with respect to the observed corn
grain yield increases slightly for all the indices, which is related to the increase in canopy cover and the
presence of more pixels in the corn class and fewer pixels in the soil category. In Figure 6, the NDVI,
NDRE, and WDRVI showed correlation coefficients of 0.68, 0.31, and 0.65, respectively, and the indices
values resulted in ranges of 0.86–0.92, 0.21–0.31, and −0.241 to 0.003, respectively. These increases in the
vegetation indices are related to the increase in biomass, leaf area index (LAI), leaf chlorophyll content
(LCC), canopy cover (CC), and yield [23,50,72–74]. The NDVI can explain 0.68 of the corn grain yield.
Figure 6 shows a proportional relation between an increase in grain yield and an increase in the NDVI
index; the same is true for the NDRE and WDRVI. Regarding the normalized EXG, TGI, and VARI
indices computed in the visible spectrum (RGB) for 47 DAS, Figure 5d,e show that EXG and TGI
presented low correlation coefficients, 0.22 and 0.23, respectively. The VARI in Figure 5f showed a better
fit regarding to these indices, with a correlation coefficient of 0.52. In Figure 6, the values of the indices
were found between 0.338–0.503, 0.335–0.501, and 0.02–0.19 for EXG, TGI, and VARI, respectively,
according to the sampled polygons. In Figure 6 at 79 DAS, 0.71 of the yield can be explained by the
EXG index, while VARI showed a value of 0.67. TGI showed a low correlation coefficient. The values of
the indices ranged as follows: 0.47–0.60, 0.51–0.55, and 0.10–0.18 for EXG, TGI, and VARI, respectively.
Some research works indicate that the VARI has a high correlation with grain yield, chlorophyll content,
and the fraction of photosynthetically active radiation intercepted [75,76].
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Figure 5. Correlation of vegetation indices and yield at 47 DAS. (a) Normalized difference red edge
index (NDRE); (b) normalized difference vegetation index (NDVI); (c) wide dynamic range vegetation
index (WDRVI); (d) excess green (ExG); (e) triangular greenness index (TGI); (f) visible atmospherically
resistant index (VARI).
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Figure 6. Correlation of vegetation indices and yield for 79 DAS for corn crops. (a) Normalized
difference red edge index (NDRE); (b) normalized difference vegetation index (NDVI); (c) wide
dynamic range vegetation index (WDRVI); (d) excess green (ExG); (e) triangular greenness index (TGI);
(f) visible atmospherically resistant index (VARI).

3.4. Training, Validation, and Testing of the Artificial Neural Network for Estimating Yield

A feed-forward neural network was created with 2 layers and 40 neurons, where a combination of
the normalized vegetation indices, plant density, and canopy cover, according to Table 4 for 47 DAS,
was entered as input parameters. Another neural network for 79 DAS was created to estimate the
corn grain yield of 76 sampled polygons obtained from all of the experimental treatments. The results
are shown in Table 4; in column one, we have the combination of input parameters: NDVI, NDRE,
WDRVI, EXG, TGI, VARI, canopy cover (C), and plant density (D). The correlation coefficient for
training, validation, testing, and total entered data is also presented, as well as the mean absolute error
(MAE) and the root mean square error (RMSE).
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For 47 DAS, which is shown in Table 4 and Figure 7, the input parameters WDRVI, plant density,
and canopy cover showed the highest correlation coefficient and the smallest errors for the corn
grain yield estimation (R = 0.99, MAE = 0.028 t ha−1, RMSE = 0.125 t ha−1) when the total data
were used. Using the same parameters above, except plant density as input parameter in the neural
network, the correlation coefficient decreased, and the errors increased (R = 0.87, MAE = 0.584 t ha−1,
RMSE = 0.784 t ha−1), which indicates that plant density is an important parameter in estimating yield
for this flight date. A combination of six vegetation indices (NDVI, NDRE, WDRVI, EXG, TGI, VARI),
plant density, and canopy cover generates a model with high correlation in yield estimation (R = 0.97),
with a mean absolute error of 307 kg per hectare and a root mean square error of 400 kg per hectare.
Doing the same analysis, but without plant density, a lower correlation was obtained with the total data
(R = 0.92, MAE = 0.512 t ha−1 y RMSE = 0.643 t ha−1), having greater precision than the combination of
WDRVI and canopy cover. On the other hand, a combination of only six vegetation indices as input
parameters resulted in a correlation of 0.86 and an MAE of 0.622 t ha−1, with an RMSE of 0.809 t ha−1

when using the total data in yield estimation. This is good if we consider that there is a decrease
in computational cost in obtaining plant density and canopy cover. The EXG index, canopy cover,
and plant density showed a correlation coefficient of 0.98. In general, combinations that include
canopy cover presented high correlation coefficients (R ≥ 0.80), and incorporating plant density as an
input parameter increased the value of the correlation coefficient (R ≥ 0.95). The multispectral indices
without canopy cover and plant density as input parameters showed a good correlation (R = 0.73,
MAE = 0.811 t ha−1, RMSE = 1.093 t ha−1) in yield estimation. The RGB indices without canopy cover
and plant density showed a lower correlation than the multispectral indices, explaining 0.67 of the corn
grain yield. Plant density and canopy cover showed a high correlation (R = 0.96, MAE = 0.298 t ha−1,
RMSE = 0.441 t ha−1).

For 79 DAS, which is shown in Figure 8 and Table 4, the six vegetation indices, canopy cover,
and plant density presented the highest correlation coefficient and the smallest errors (R = 0.97,
MAE = 0.249 t ha−1, RMSE = 0.425 t ha−1) when the total data were used. The EXG index, canopy
cover, and plant density also showed a good correlation coefficient and small errors (R = 0.97,
MAE = 0.280 t ha−1, RMSE = 0.431 t ha−1) in yield estimation. Vegetation indices and canopy cover
increased the correlation coefficient with respect to 47 DAS, while the indices without canopy cover
and plant density maintained a similar correlation coefficient for all the data. The TGI index and
canopy cover showed the lowest correlation and biggest errors (R = 0.54, MAE = 1.017 t ha−1,
RMSE = 1.380 t ha−1) in the yield estimate. The multispectral vegetation indices and the visible
vegetation indices presented a high correlation in the estimation of corn grain yield at 47 and 79 DAS
for the different nitrogen doses tested, presenting slightly higher correlations at 47 DAS.
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Figure 7. Yields estimated by the neural network during 47 DAS for all observed yield data. (a) Yield
estimated with the NDVI, NDRE, WDRVI, EXG, TGI, and VARI vegetation indices, as well as planting
density (D) and canopy cover (C); (b) yield estimated with the NDVI, NDRE, WDRVI, EXG, TGI, VARI
vegetation indices, as well as C; (c) yield estimated with the NDVI, NDRE, WDRVI, EXG, TGI, and
VARI vegetation indices; (d) yield estimated with the NDVI, NDRE, and WDRVI vegetation indices;
(e) yield estimated with EXG, TGI, and VARI vegetation indices; (f) yield estimated with the WDRVI
vegetation index, as well as D and C.
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Figure 8. Yields estimated by the neural network during 79 DAS for all observed yield data. (a) Yield
estimated with the NDVI, NDRE, WDRVI, EXG, TGI, and VARI vegetation indices, as well as plant
density (D) and canopy cover (C); (b) yield estimated with the NDVI, NDRE, WDRVI, EXG, TGI,
and VARI vegetation indices, as well as C; (c) yield estimated with the NDVI, NDRE, WDRVI, EXG,
TGI, and VARI vegetation indices; (d) yield estimated with the NDVI, NDRE, and WDRVI vegetation
indices; (e) yield estimated with EXG, TGI, and VARI vegetation indices; (f) yield estimated with the
WDRVI vegetation index, as well as D and C.
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3.5. Variables’ Relative Importance in the Yield Estimation Using Garson’s Algorithm

The importance of the predictor variables (NDVI, NDRE, WDRVI, EXG, TGI, VARI, density,
and canopy cover) with respect to the predicted variable (yield) is shown in Figure 9; this was calculated
using Garson’s algorithm. The results show that the density is the most important predictor for the 47
and 79 DAS with a relative importance of 0.269 and 0.295, respectively; the WDRVI index (0.175) was
the second best predictor in importance for the 47 DAS; while the NDVI index (0.184) for the 79 DAS.
The VARI index was the least important predictor in the yield estimation for the 47 and 79 DAS with
0.058 and 0.031 relative importance, respectively.
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4. Conclusions

In the present study, the corn grain yield was estimated designing a neural network model based
on vegetation indices, canopy cover, and plant density. The relative importance of the predictor
variables was also analyzed. The information obtained through the digital processing of images taken
by unmanned aerial vehicles allowed to monitor the crop development. The correlation coefficient
between the plant density, obtained through the digital count of corn plants, and the corn grain
yield was 0.94; this variable was the one with the highest relative importance in the yield estimation
according to Garson’s algorithm. The canopy cover, digitally estimated by object-oriented classification
and using the TGI index, showed a correlation coefficient of 0.77 with respect to the corn grain yield,
while the relative importance of this variable in the yield estimation was 0.080 and 0.093 for the 47 and
79 DAS, respectively. The WDRVI, plant density, and canopy cover showed the highest correlation
coefficient and the smallest errors (R = 0.99, MAE = 0.028 t ha−1, RMSE = 0.125 t ha−1) in the corn
grain yield estimation at 47 DAS, with the WDRVI and the density being the variables with the
highest relative importance for this crop development date. For the 79 DAS flight, the combination of
the NDVI, NDRE, WDRVI, EXG, TGI, and VARI indices, as well as plant density and canopy cover,
generated the highest correlation coefficient and the smallest errors (R = 0.97, MAE = 0.249 t ha−1,
RMSE = 0.425 t ha−1) in the corn grain yield estimation, with the density and the NDVI being the
variables with the highest relative importance with values of 0.295 and 0.184, respectively. However,
the WDRVI, plant density, and canopy cover estimated the corn grain yield with acceptable precision
(R = 0.96, MAE = 0.209 t ha−1, RMSE = 0.449 t ha−1). The generated neural network models provided a
high correlation coefficient between the estimated and the observed corn grain yield; it also showed
acceptable errors in the yield estimation. The spectral information registered through remote sensors
mounted on unmanned aerial vehicles and its processing in vegetation indices, canopy cover, and plant
density allow the characterization and estimation of corn grain yield. Such information is very useful
for decision-making and agricultural activities planning.

At the time of establishing agricultural crops, different techniques, tools, and management are
used during the crop development, so it is desirable to carry out future trials for different climates,
soils, management, and varieties to have a broader database and with greater parameters to be used in
the modeling of crop yields through the use of neural networks.
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Abstract: One of the essential factors in the root zone environment that affects plant growth is
temperature. Determining the optimal root zone temperature condition in a hydroponic system
during cultivation could lead to an improvement in plant growth. An optimal control strategy can
be determined by identifying the eco-physiological process using a dynamic model. However, it is
difficult to develop a dynamic model of the responses of plant growth to root zone temperature because
the eco-physiological processes of plants are quite complicated. We propose an intelligent approach
that can deal with this complex system. Non-linear autoregressive with exogenous input (NARX)
neural networks were used to develop a dynamic model of the responses of plant growth to root
zone temperature. The responses of chili pepper plant growth as affected by root zone temperature
were measured during 60 days of cultivation inside a growth chamber using a non-destructive and
continuous system based on a load cell. Five datasets of dynamic responses of plant growth were
obtained for system identification. The results suggest that the application of a neural network is
useful for modeling the dynamic response of plant growth to root zone temperature in hydroponic
cultivation, with promising performance.

Keywords: plant growth; dynamic response; root zone temperature; dynamic model; NARX neural
networks; hydroponics

1. Introduction

In recent years, there has been growing interest in adopting hydroponic systems for crop
production worldwide. In combination with protected agriculture such as greenhouses and plant
factories, about 3.5% of the worldwide area has adopted hydroponic systems for crop production [1].
As a soilless technology, the benefits of adopting a hydroponic system for growing plants are flexibility
and accuracy in controlling the root zone environment. By using a hydroponic system, the root zone
environmental factors that influence crop growth and development can be controlled in optimal
conditions during each cultivation stage [1]. Thus, the crops can grow to their maximum potential.
Given its potential advantages, hydroponic culture is categorized as an intensive method of crop
production. In comparison with soil culture, hydroponic systems can offer a higher yield, yet lower
water and land usage [1].

Among the root zone environmental factors, temperature is one of the most important factors
that influence plant growth and development [2]. It has been reported that the mechanisms of
nutrient and water absorption processes within the roots are mainly regulated by root zone temperature
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(RZT) [3–5]. Therefore, RZT has been widely used as the determining factor for promoting plant growth
in hydroponic systems. For instance, during cold and hot air temperatures in winter and summer,
instead of completely controlling the air temperature, RZT control is used as a more economical and
wise solution to maintain plant growth under greenhouse cultivation [6,7]. A better understanding of
optimal RZT in hydroponic cultivation could lead to the improvement of plant growth.

Studies on environmental control technology for plant production systems [8–11] suggest that
the optimal plant conditions during cultivation vary between growth stages. This is because the
physiological status of the plant is changing and is remarkably affected by changes in environmental
factors. This control approach is mainly used in modern protected agriculture that applies real-time
control techniques such as optimal and adaptive control as its control strategy [9,12,13]. For realizing
the optimal strategy, an exact dynamic model of an eco-physiological process is necessary. This is
because by predicting and simulating the behavior of the eco-physiological process of a plant using a
dynamic model, an optimal control strategy can be determined easily [14]. This means that the model’s
accuracy plays a major part in the performance of optimal control strategies. Moreover, a dynamic
model is also used to better understand the process behavior and synthesis of the control system [15].

In order to control the growth of plants using the RZT, a dynamic model of the process is necessary.
By constructing a dynamic model of the process, the optimal control strategy of RZT in hydroponic
systems can be determined. In recent years, various studies on eco-physiological modeling and
environmental control technology for plant production systems in protected cultivation have been
intensively conducted [8,9,11,13,14,16,17]. In our previous study, we examined and identified the
response of the leaf water content of plants as affected by changes in the RZT within a short period of
time [18]; however, the dynamic response of plant growth as affected by change in the RZT has not
been identified. A better understanding of this system is necessary for a comprehensive study on plant
growth control in plant production systems.

It is well known that there are two main methods for the model-building of a system. First is
theoretical modeling, which applies a mathematical method from a well-defined system based on
theoretical analysis, e.g., derived from physical and chemical laws [19]. The other approach is
experimental modeling, which is also known as system identification, in which a model is constructed
based on the measurement of input–output signals of a system. One major advantage of system
identification is that it can be applied for an unknown process [19]. The building of a dynamic model of
the eco-physiological process of a plant, however, is difficult to conduct successfully using theoretical
modeling. This is because most of the eco-physiological processes of plants have strong non-linearity,
time delay, and time-varying parameters, which can be characterized as a complex system with
uncertain parameters [8,14,20–22]. This unknown process is also termed a black box system.

One useful approach to identifying a black box system is artificial neural networks (ANNs) [23].
ANNs are an information-processing approach inspired by the biological neural system. Artificial
neural networks can identify a complex system without requiring prior knowledge of the relationships
among the parameters within the system by learning from its input–output signals [24–26].
With these capabilities, artificial neural networks are useful in handling uncertainties and non-linear
relationships [23]. Moreover, artificial neural networks are a general-purpose approach to dealing with
such a complex system. Not only effective for non-linear regression, artificial neural networks are also
useful for other applications such as classification, clustering, pattern recognition, and forecasting.
Further, analysis using artificial neural networks does not require restrictive assumptions about the
data (non-parametric), which makes this approach flexible to use [23]. These properties make artificial
neural networks superior to other statistical methods in the identification of a complex system [26].
Given this ability, artificial neural networks have high potential to successfully identify the complex
eco-physiological process of plants. In the agricultural sector, the artificial neural network technique
has been extensively developed in various applications [9,27,28]. Hence, system identification using
the artificial neural networks mentioned above may be useful in constructing a model of the dynamic
response of plant growth to RZT.
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The present study is an attempt to apply an artificial neural network to model the dynamic
responses of plant growth as affected by change in the RZT in hydroponic chili pepper plants.
The dynamic model proposed here was developed using system identification based on artificial neural
networks in a single input–single output (SISO) system. The model estimates the output variable of
dynamic response in plant growth using the input variable of RZT.

2. Materials and Methods

2.1. Plant Materials

Pepper (Capsicum annum L.) is an important commodity, and it is one of the most popular
crops grown in protected agriculture all over the world [29]. Moreover, peppers are well known as
temperature-sensitive cultivars [30–33]. Hence, in this study, a pepper cultivar was used.

Chili pepper seeds (Capsicum annum L. cv. Takanotsume Togarashi; Takii Seed Ltd., Kyoto,
Japan) were sown in seedling trays and germinated at a controlled room temperature of 26 ◦C.
After germination, at 15 days after seeding (DAS), the seedlings were transplanted to soilless media of
water-soaked polyurethane sponge blocks (2.3 × 2.3 × 2.7 cm) and grown in a greenhouse at day/night
temperatures of 25/20 ◦C under ambient light. Seedlings were watered as needed and supplied with
nutrient solution (Otsuka liquid fertilizer; OAT Agrio Co., Ltd., Tokyo, Japan) at 1 dS m−1.

2.2. Experimental Design

At 35 DAS, the plants were transferred to a growth chamber (2.5 × 2.5 × 2 m; (NK System; Nippon
Medical and Chemical Instruments Co., Ltd., Osaka, Japan). During observations, the growth chamber
was set up consistently with a 12 h photoperiod of 270 µmol m−2 s−1 PPFD (photosynthetic photon flux
density) as measured at the base of the growth chamber using a T&D TR-74i illuminance ultraviolet
(UV) recorder (T&D Corporation, Matsumoto, Japan), day/night temperature 25/20 ± 1◦C, relative
humidity 55/70 ± 5%, and nutrient solution 2.3 ± 0.2 dS m−1. Meanwhile, the dissolved oxygen level of
the nutrient solution was maintained with the application of an air bubble generator.

To obtain adequate information about the dynamic response of plant growth to RZT, five random
patterns of RZT were applied in the range 15–37 ◦C. Each pattern consisted of three sample plants
planted in an independent deep flow technique (DFT) hydroponic system. A total of 15 plants were
used for this experiment. To control the RZT, each pattern was equipped with an automatic independent
water temperature control system using a NETC-3 thermostat (Newmarins Co. Ltd., Fukuoka, Japan).
The thermostat regulated the nutrient solution temperature by controlling a ceramic water heater
(Power Safe PRO, Nisso, Japan) and cooling water circulator (FCW-10 Fine Circulators; TGK Co. Ltd.,
Tokyo, Japan), which circulated cooling water through a copper pipe inside the hydroponic system.
To supply the nutrient solution inside the container, an automatic system periodically pumped each
container with nutrient solution. The control system is depicted in Figure 1.

2.3. Measurement of Plant Growth

Dynamic changes in plant development were monitored through changes in the fresh weight of
the plants during observation. In a controlled environment, the fresh weight of a plant provides useful
information on the status of the plant and is also an indicator of plant growth [34–36]. In this study,
an automated non-destructive plant weight measurement system for pepper plants was developed.
The measurement system consisted of a CZL635 micro load cell (loads up to 5 kg and 0.05% precision;
Phidgets Inc., Calgary, Canada), load cell support structure, and plant holder, as illustrated in Figure 1.
However, because the plant roots were in the nutrient solution, the weight of the plant roots was
balanced by buoyant force. Thus, only the weight of the plant shoots was measured. To record the
change in plant weight during the experiment, data were sampled at five-minute intervals and stored
on a microcomputer (Raspberry Pi 3 Model B+; Raspberry Pi Foundation, Cambridge, UK).
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Figure 1. Root zone temperature control system and plant growth measuring system using a load
cell sensor.

The dynamic response of plant growth was determined as the growth rate of plant weight,
which measures the sensitivity of the change in plant weight (∆W, [g]) with respect to the change in
time (∆t, [d]), as shown in the following equation:

WR(t) =
∆W
∆t

(1)

2.4. System Identification Method

2.4.1. Data Preprocessing

Sensors produce a large number of data points, which can be an advantage in modeling; therefore,
these data need to be reliably preprocessed. In supervised learning models, unreliable data could lead
to wrong outputs, which affect model performance [37]. Data preprocessing methods were applied in
this study to avoid unreliability and to organize data for model development.

Data that deviate considerably from the remaining observations can be defined as outliers. In this
study, to detect and remove outliers from time series data, the Hampel Identifier method [38] was
applied. The missing data then need to be replaced to maintain completeness and the trend of time
series data. Thus, the missing observation data were replaced by the moving average interpolation of
their latest neighboring time series data.

The response of plant growth to changes in environmental conditions can be categorized as a long
response that can be identified daily. Thus, resampling or aggregation of time series data was needed.
In this step, data were resampled on a daily basis using the averaging procedure and then smoothed
using the Savitzky–Golay filter [39]. All data preprocessing was performed using the Matlab® Signal
Processing Toolbox™ R2019a (MathWorks® Inc., Natick, MA, USA).

2.4.2. Dynamic Neural Networks for System Identification

In the present study, system identification was considered as a single input–single output system
with unknown parameters. Figure 2 shows a block diagram of the SISO system. For the control system
of plant growth, the output variable of plant growth response (WR) was estimated from the input
variable of RZT (RT).

Artificial neural networks are gaining attention as a general solution for handling non-linear system
problems due to their universal approximation capabilities [23]. However, specific neural network
architectures are required to solve certain problems optimally. Thus, in recent years, many variants of
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artificial neural network architecture have been developed. For identification of a dynamic system,
in this study, a non-linear autoregressive with exogenous input (NARX) network [40] is considered.
NARX networks are a particular class of artificial neural networks characterized by a feedback
procedure on the output which can identify any non-linear dynamic system. NARX networks have
been employed in various applications of dynamic systems. NARX networks also showed better
performance in the prediction of long-term dependencies [41]. Moreover, in particular, for constructing
a dynamic model in control system problems, NARX has been widely employed with excellent
performance [18,40,42–45].

Figure 2. Block diagram of the single input–single output (SISO) system for system identification,
and non-linear autoregressive with exogenous input (NARX) network structure with three layers,
one input time series of the root zone temperature T(k), one hidden layer (h), one output time series
of the growth rate of plant weight WR(k), and a time-delay (dt) neural network for identifying a
dynamic model.

The NARX network for identifying the dynamic response of plant growth to RZT and for creating
a black box model for simulation is illustrated in Figure 2. In this study, the NARX network structure
consists of three layers: input, hidden, and output layers. Moreover, a feedback loop procedure was
applied to produce time-series historical input and output data for dynamic identification [23,41].

To identify the dynamic system, the NARX network applies historical input data with
time delay (dt) operators, T(k), T(k− 1), . . . , T(k− dt), and historical output data with time delay
operators, WR(k− 1), . . . , GWR(k− dt), to the input layer, and applies the current output value
WR(k) to the output layer as training signals [23]. Backpropagation with the Levenberg–Marquardt
algorithm was then used [46] to train the network. Meanwhile, for prediction, the current output
WR(k) was estimated from historical input data T(k), T(k− 1), . . . , T(k− dt) and historical output data
WR(k− 1), . . . , WR(k− dt), as shown in Equation (2):

WR(k) = f (T(k), T(k− 1), . . . , T(k− dt), WR(k− 1), . . . , WR(k− dt)) (2)

A program created using the Matlab® Deep Learning Toolbox™R2019a (MathWorks® Inc., Natick,
MA, USA) was used to develop the model [47]. The workflow of model development in this study is
illustrated in Figure 3.
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Figure 3. The workflow of model development using NARX neural networks.

2.4.3. Model Validation and Model Structure Selection

To obtain sufficient accuracy of the identified model, data for identification were divided into
three independent datasets: training, validation, and test [48]. The training dataset was the sample of
data used by the learning algorithm to fit the model. The trained model was then evaluated using
the unbiased validation dataset while tuning the model parameters. During the training process,
the validation dataset was also used for regularization by the early stopping training process to
prevent model overfitting when generalization was not improving [46]. Four patterns of observation
datasets were used for the training and validation datasets, with the proportions of 75 and 25%,
respectively. This means that in each dataset, as many as 45 and 15 days of data were used for training
and validation, respectively.

Because the structure of the neural network model is significant in the performance of the model,
the model parameters, which consist of the time-delay operator and the number of neurons in the
hidden layer, needed to be determined. Here, the model parameters were determined through trial
and error based on cross-validation. Cross-validation provides an unbiased and robust evaluation of
the final model by evaluating the performance of the identified model by comparing the test dataset
and estimated data obtained from the model simulation [48].

2.4.4. Model Performance

To measure the performance of the proposed model, two performance criteria were used:
the root-mean-squared error (RMSE) and the coefficient of determination (R2) [48]. The RMSE
calculates the error variance of the predicted and observed values (the closer to zero, the better the
model performance for RMSE), as shown in Equation (3):

RMSE =

√√
1
n

n∑

i=1

(yi − ŷi)
2. (3)
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Meanwhile, the coefficient of determination is used to evaluate a model’s ability to explain and
predict future outcomes. The value of R2 ranges from 0 to 1 (the closer to 1, the better the model fits),
and is calculated using Equation (4):

R2 =
(n

∑n
i=1 ŷiyi −

∑n
i=1 ŷi

∑n
i=1 yi)

2

(
n
∑n

i=1 ŷi2 − (
∑n

i=1 ŷi)
2)(n ∑n

i=1 yi2 − (
∑n

i=1 yi)
2) (4)

where n is the number of data points, yi is the actual value or network output, and ŷi is the predicted
value or network target.

3. Results

3.1. The Response of Plant Growth to Root Zone Temperature (RZT) for Identification

The time series data of plant weight development were successfully collected using the plant
weight measurement system based on a micro load cell. However, much unreliable data were also
recorded during observation. Figure 4 shows an example of the raw data from sensor number 14,
consisting of numerous suspicious records or outliers. These outliers appeared because of a system
error and probably because of unintentional actions, such as unintentional touching of the plants or
sensor during observation. The application of data preprocessing effectively removed the unreliable
records and reduced the noise from the observed data.

Figure 4. Sample preprocessing of observation data from sensor 14: (a) the original data were cleaned
of unreliable records using the Hampel Identifier and reconstructed using the moving average method;
(b) the cleaned data were then resampled on a daily basis and smoothed using the Savitzky–Golay filter.

Figure 5 shows daily changes in plant weight, the growth rate of plant weight, and the RZT of
hydroponic cultivation for 60 days of observations, which started at 35 days after seeding. These 60 days
of observation correspond to the initial stages of pepper plant growth. The data on plant weight are
the average values of three pepper plants. Typical patterns of the growth in plant weight under five
different RZT treatments are shown. For Pattern 5, however, data were obtained up to only 55 days
because of a faulty sensor that produced unreliable records.

In this study, a model was developed based on the measured data for the input and output
variables of the system using neural networks. From the observations, the data on growth in plant
weight represent the accumulation of plant weight over time. Meanwhile, the growth rate of plant
weight measured the sensitivity of the change in plant weight to the change in time, which means that
the dynamic effect of RZT treatment on the growth in plant weight can be identified more clearly by
using a growth rate variable. Therefore, to achieve a control strategy, the growth rate of plant weight
was chosen as the controlled output for neural network model identification.
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Figure 5. Typical daily change in plant weight (a), the growth rate in plant weight (b), and the RZT
(c) in hydroponic pepper cultivation.

3.2. Determination of the Model Structure

The growth rate of plant weight, as determined by the RZT, was then identified by using neural
networks, and a black box model for predicting the growth rate of plant weight was developed. Because
the final model structure is determined by the model parameters (dt), which are a combination of
time-delay order and the number of neurons in the hidden layer (h), these parameters were determined
to find the best performance of the identified model. The effect of the time-delay order and the number
of neurons in the hidden layer on model performance was investigated. Figure 6 shows the effect
of the model parameters on the estimation error (RMSE). It was found that the RMSE reached its
minimal value with the combination of 2 and 10 for the time-delay order and the number of neurons
in the hidden layer, respectively. For the second model performance, identical results were obtained,
with R2 reaching the best value when the time-delay order and number of neurons in the hidden layer
were 2 and 10, respectively. Therefore, the foregoing suggests that the neural network structure with
time-delay order dt = 2 and number of neurons in the hidden layer h = 10 is useful for identification.

3.3. Identification Results

The performance of the identified neural network model was evaluated by comparing the
estimated values and the independent test dataset with the observed values. Figure 7 shows a
comparison of the estimated dynamic response calculated by the neural network model and the
observed response for the growth rate of plant weight. With RMSE and R2 values of 0.49 g and 0.99,
respectively, it was found that the estimated response closely correlated with the observed response.
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Figure 6. The relationship between the time-delay order (dt), the number of neurons in the hidden
layer (h), and model performances: (a) root-mean-squared error (RMSE) and (b) R2.

Figure 7. Comparison of the estimated response calculated by the developed neural network model
and the observed growth rate of plant weight.

3.4. Estimation of the Characteristics of Plant Response

Using the identified neural network model, the relationship between RZT and the response of
plant growth was then estimated to provide an insight into the basic properties of the dynamic system
model. Figure 8 shows the estimated step response of the growth rate of plant growth to stepped input
from 20 to 21, 23, 25, 27, and 29 ◦C. In general, the step responses dramatically increased as the step
input of RZT increased. However, through the given range of five step inputs, the dynamic system
model generated five different characteristics of the step response. The gain of step response from 20 to
21 ◦C was slightly faster, but then immediately steady. Meanwhile, the gains of step response from 20
to 23 ◦C and 20 to 25 ◦C were largest. In general, with change in the input variable of RZT, the gain in
the step response of growth rate in plant weight gradually increased with time. These results show
how the model simulates the dynamic characteristics of step response for different input conditions,
which illustrates the ability of RZT in various ranges to control plant growth in a dynamic system.
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Figure 8. Estimated step response of the growth rate of plant weight to stepped RZT input, obtained
via simulation.

3.5. Estimation of the Relationship between RZT and the Growth Rate of Plant Weight

In order to confirm the relevance of the model in this study, the estimated relationship between
RZT and the average growth rate in plant weight, which also represents plant growth, was examined
via model simulation. Figure 9 shows the estimated static relationship between RZT and the growth
rate of plant weight. The estimated value of the growth rate of plant weight was obtained from the
average of the step response calculated using the identified model, where the step input value was set
as stationary from various values. From the simulation, it can be seen that the growth rate of plant
weight increased with RZT. However, above the range 25 to 26 ◦C, the growth rate tended to decrease
with RZT. In general, it was found that the relationship between RZT and the growth rate of the plant
showed strong non-linearity and peaked in the range of 24 to 26 ◦C. This result is consistent with a
previous study which reported that the optimal RZT range for bell pepper (Capsicum annum L.) is in
the range 25 to 27 ◦C or less in terms of yield [49] and 24 ◦C in terms of shoot dry weight [50].

Figure 9. The estimated static relationship between the growth rate of plant weight and RZT, obtained
via simulation.
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4. Discussion and Conclusions

In this study, the dynamic responses of plant growth as affected by changes in the RZT were
examined using an automatic plant weight measurement system based on a load cell. Since plant tissue
is composed mostly of water, the fresh weight of a plant is very sensitive to changes in environmental
conditions. For this reason, in order to examine the fundamental eco-physiological behavior of the
response of plant growth to RZT, experiments were conducted in a strictly controlled environment
using a growth chamber, where light intensity, temperature, and relative humidity were controlled
precisely. As the environmental conditions inside the growth chamber were maintained constant, it can
be assumed that the responses of plant growth were affected by the changes in RZT.

Then, an artificial neural network was used to construct a dynamic model of the responses of
plant growth as affected by changes in the RZT in hydroponic cultivation. Based on the examination,
it was found that the NARX networks presented in this study were useful in identifying the complex
process of the dynamic response of plant growth as affected by changes in the RZT over 45 days of
cultivation. The NARX networks were shown to be capable of performing long-term dependency
prediction, as also shown by [40,41]. The model also successfully performed step response simulation,
which is typically conducted in control studies to estimate the basic properties of a dynamic system [19].
This suggests that dynamic optimization can potentially be applied to the system in order to maximize
plant growth. Moreover, from the simulation, estimation of the static relationship between the response
of plant growth and RZT can also be generated. The static relationship was determined as having
strong non-linearity with an upside-down parabolic curve peaking in the range of 24 to 26 ◦C, which is
consistent with previous studies on the relationship of plant growth and RZT [49,50]. This suggests
that a reliable computational model can be useful to predict the dynamic behavior of plant growth as
affected by RZT.

In previous studies, the examination of dynamic plant growth control using root zone
environmental factors in hydroponic cultivation was limited to nutrient solution concentration [16].
Meanwhile, optimal temperature control of the root zone environment, which is one of the essential
determining factors in hydroponic cultivation, had not been thoroughly investigated [18]. Identification
of the dynamic responses of plant growth as affected by RZT, which was conducted in this study,
may be useful for a better understanding of plant growth control in plant production systems.

However, the artificial neural network model presented in this study cannot be applied in
cultivation systems as it is. This is because the model is limited to the specific range of environmental
conditions in the setup used during the experiment. More data on plant response in broader
environmental conditions are required to construct a more robust model. For an artificial neural
network model, more training data are better for identification. Given that one of the significant
advantages of an artificial neural network model is the ability to re-train the current model using new
data, this model has great potential for further development.
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Abstract: In the area of plant protection and precision farming, timely detection and classification of
plant diseases and crop pests play crucial roles in the management and decision-making. Recently,
there have been many artificial neural network (ANN) methods used in agricultural classification
tasks, which are task specific and require big datasets. These two characteristics are quite different
from how humans learn intelligently. Undoubtedly, it would be exciting if the models can accumulate
knowledge to handle continual tasks. Towards this goal, we propose an ANN-based continual
classification method via memory storage and retrieval, with two clear advantages: Few data and high
flexibility. This proposed ANN-based model combines a convolutional neural network (CNN) and
generative adversarial network (GAN). Through learning of the similarity between input paired data,
the CNN part only requires few raw data to achieve a good performance, suitable for a classification
task. The GAN part is used to extract important information from old tasks and generate abstracted
images as memory for the future task. Experimental results show that the regular CNN model
performs poorly on the continual tasks (pest and plant classification), due to the forgetting problem.
However, our proposed method can distinguish all the categories from new and old tasks with good
performance, owing to its ability of accumulating knowledge and alleviating forgetting. There are
so many possible applications of this proposed approach in the agricultural field, for instance,
the intelligent fruit picking robots, which can recognize and pick different kinds of fruits; the plant
protection is achieved by automatic identification of diseases and pests, which can continuously
improve the detection range. Thus, this work also provides a reference for other studies towards
more intelligent and flexible applications in agriculture.

Keywords: similarity; metric; memory; deep learning

1. Introduction

In the field of intelligent agriculture, for instance, plant protection and precision farming,
there are incremental progresses in agricultural image processing, e.g., classification of crop pests,
and harvest yield forecast. Step advances are catalyzed by the developed various computerized
models, which have covered a wide range of technologies, such as machine learning, deep learning,
transfer learning, few-shot learning, and so on. For instance, several machine learning methods were
adopted in crop pest classification [1,2]. The convolutional neural networks were used to diagnose
and identify the plant diseases from leaf images [3,4]. The deep learning neural networks showed a
powerful and excellent performance on several agricultural applications, such as plant identification [5],
crop classification [6,7], fruit classification [8], weed classification [9], animal classification [10],
quality evaluation [11], and field pest classification [12,13]. The transfer learning technology helped
fine-tune the pre-trained models to reduce the difficulty of model training [14,15]. The few-shot
learning method reduced the requirements for the scale of the training dataset [16]. There were also
some related agricultural research surveys [17–19], providing more comprehensive views.
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Although the abovementioned methods achieved good performance on some special tasks,
they are still far away from the true intelligence in this area. Specifically, one deep neural network is
designed for a special task with a static evaluation protocol. The entire dataset will be split in two
parts: A training set used for learning and a testing set used for accuracy evaluation. Once the training
period completes, the structure and parameters of this model are fixed, and any new knowledge cannot
be learned again. This is quite different from how humans learn.

Biological learning is to continually learn new skills (tasks) and accumulate knowledge throughout
the lifetime [20]. We can also incorporate new information to expand our cognitive abilities without
seriously breaking past memories, which results from the good balance between synaptic plasticity and
stability [21,22]. As known, the basic principle of deep learning networks is the back-propagation error
and gradient descent. However, from the perspective of biological cognition, our learning process is
more likely through similarity matching, rather than back-propagation error or gradient descent in
the brain [23]. So, the bio-inspired work in this article will be around metric learning and continual
learning. The metric learning aims to learn the internal similarity between input paired data [24],
which is suitable for classification and pattern recognition in agriculture. Continual learning requires
the designed model to continuously learn new tasks without forgetting old ones, that is, keeping good
performance on both new and old tasks.

Continual learning is an approach inspired from the biological factors of the mammalian brain.
In this topic, the most important thing is the stability–plasticity dilemma. In detail, plasticity means
to integrate novel information to incrementally refine and transfer knowledge, and stability aims
not to catastrophically interfere with consolidated knowledge. For a stable continual learning
process, two types of plasticity are required: Hebbian plasticity for positive feedback instability and
compensatory homeostatic plasticity, which stabilizes neural activity [25]. So far, the main methods to
realize continual learning can be divided into three categories: (1) Store and replay, including previous
data or memory. The limitation is that the storage of old information will lead to large working memory
requirements; (2) regularization approaches, such as learning without forgetting (LWF), elastic weight
consolidation (EWC), etc. They alleviate catastrophic forgetting by imposing constraints on the update
of the neural weights. However, the additional loss terms for protecting consolidated knowledge
will lead to a trade-off on the performance of old and novel tasks; and (3) dynamic architectures,
which change the structure of networks in response to new information, e.g., re-training with an
increased number of neurons or network layers. Obviously, the limitation is the continuously growing
complexity of the architecture with the increasing number of learnt tasks.

In this study, in order to imitate human learning and memory patterns to maintain a good
performance on both new and old tasks, we propose an artificial neural network (ANN)-based
continual classification method via memory storage and retrieval, including the convolutional neural
network (CNN) and generative adversarial network (GAN). Looking at ourselves, how do we remember
past events? We only keep the most important information in our brain, throwing out the details and
abstracting the inner relationships. These life experiences inspire us to find a way to abstract and
preserve prior knowledge in memory. The memory only records the most important information from
prior events, automatically ignoring the details. Inspired by this, we used the GAN to extract central
information from old tasks and generate abstracted images as memory. For the similarity matching
tasks in agriculture, it has a good effect on both new and old tasks, alleviating the forgetting problem.
The main contributions of this work are as follows:

(1) The CNN model only requires few raw data, which is helpful for practical applications, such as
classification and pattern recognition.

(2) The proposed method based on memory storage and retrieval can deal with the sequential tasks
and maintain a good performance on both new and old tasks, without forgetting.

(3) This work has two important advantages: Few data and high flexibility. It provides a foundation
for other relevant studies toward more flexible applications in agriculture.
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Clearly, there are so many possible applications of this proposed approach in the field of agriculture,
for instance, intelligent fruit picking robots, which can recognize and pick different kinds of fruits,
and plant protection through automatic identification of diseases and pests, which can continuously
improve the detection range to show the ability to upgrade the developed model.

2. Materials and Methods

2.1. Crop Pest and Plant Leaf Datasets

The typical deep neural networks require amounts of data to train the model, while the metric
learning method only needs few raw data. In this research work, we collected two common cross-domain
agricultural datasets: Crop pests and plant leaves. The crop pest dataset was collected from the
open dataset [26], which provides images of important insects in agriculture with natural scenes and
complex backgrounds, close to the real world. The plant leaf dataset was collected from the famous
open dataset (PlantVillage). Generally, the image preprocessing for deep neural networks includes the
target cropping, background operation, gray transform, etc. Here, we used the raw images to make
this study closer to the practical application.

In the crop pest dataset, there are 10 categories and the number of samples in each class is 20.
The total number of samples is 200, which is a small dataset compared to that required for the traditional
deep learning models based on back-propagation error. Some samples of the crop pest dataset are
shown in Figure 1.
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The plant leaf dataset also includes 10 classes, and the number of samples in each class is 20.
The parameter sizes of these two databases are the same. Some samples of the plant leaf dataset are
shown in Figure 2.
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2.2. Classification with Metric Learning Based on CNN

Metric learning learns the inner similarity between input paired data using a distance metric,
which is aimed at distinguishing and classifying. The typical metric learning model is the Siamese
network [27]. The Siamese network basically consists of two symmetrical neural networks sharing
the same weights and architecture, which are joined together at the end using some energy function.
During the training period of the Siamese network, the inputs are a pair of images, and the objective is
to distinguish whether the input paired images are similar or dissimilar. The workflow of the Siamese
network is shown as Figure 3.
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Figure 3. The workflow of the Siamese network.

As shown in Figure 3, there are four blocks. Now, we considered them one by one. For block 1,
it means the input paired images, including the images X1 and X2, fed to network A and network B,
respectively. They may come from the same category or not.

For block 2, there are two convolutional neural networks (CNNs), named network A and network
B. The role of network A and network B is to generate the embeddings (feature vectors) for the input
paired images. Since the inputs of the model are images, we used a CNN to generate the embeddings.
Remember that the role of the CNNs here is only to extract features but not to classify. This differs with
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the traditional deep learning classification models. It is required that the two CNNs in the Siamese
network have shared weights and structure, which means the two CNNs, in fact, have the same
topology, as shown in Figure 4.
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Here, the shared structure and parameters of CNN are shown in Table 1. Specifically, the output
shape of the layers in CNN, and the size and number of kernels used in the convolutional layers
and max-pooling layers are included. The programming tool used was ‘Jupyter Notebook’, which is
a popular web-based interactive computing environment. We realized the functions with Python
language and the environmental backend was TensorFlow. Our programming files and used image
dataset were uploaded to the ZENODO.org, which is free and open for other researchers [28].

Table 1. The CNN structure and parameters in the Siamese network.

Layers Output Shape Kernel Size Kernel Num Stride Parameters

Input (64, 64, 3) 0
Conv2D (64, 64, 6) (3, 3) 6 1 168

MaxPooling2D (32, 32, 6) (2, 2) 0 2 0
Conv2D (32, 32, 12) (3, 3) 12 1 660

MaxPooling2D (16, 16, 12) (2, 2) 0 2 0
Conv2D (14, 14, 24) (3, 3) 24 1 2616

MaxPooling2D (7, 7, 24) (2, 2) 0 2 0
Dense (50) 58,850
Dense (2) 102

Then, for block 3, the embedding is referred to the output of the last dense layer of CNN, as shown
in Figure 4. Network A and network B generate the embeddings for the input images X1 and X2,
respectively. These embeddings are fed to block 4, the energy function, which gives the similarity
between the paired inputs. The Euclidean distance is adopted as the energy function, which is the
most common way to measure the distance between the two embeddings in the high-dimensional
space. The expression of block 4, the energy function, can be written as Equation (1):

E(X1, X2) = ‖ fNA(X1) − fNB(X2)‖2 (1)

The value of E represents the similarity between the outputs of the two networks: If X1 and X2

are similar (from the same category), the value of E will be less. Otherwise, the value of E will be large
if the inputs are dissimilar (from different categories).

To train the Siamese network well, the loss function is very important. The loss function guides
the iteration of parameters of CNNs in the Siamese network. Since the goal of the Siamese network is
to understand the similarity between the paired input images, we used the contrastive loss function,
expressed as Equation (2):

Contrastive Loss = Y × E2 + (1−Y) × [max(margin− E, 0)]2 (2)
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where E is the energy function and Y is the true label, which is 0 if the two input images are from the
same category and 1 if the two input images are from different categories. Some examples of the input
pairs are shown in Figure 5.
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Figure 5. Examples of the input pairs.

In Equation (2), the term margin is used to set the threshold, that is, when input pairs are
dissimilar, the Siamese network needs to hold their distance greater than the margin; otherwise,
there will be a loss during the training period. Here, the margin was set as 1. When the training period
is done, the distribution of embeddings will have a group effect, where different groups represent
different categories.

2.3. Continual Classification with Metric Learning Based on CNN and GAN

From the bio-inspired perspective, we aimed for the model to be more flexible and able to handle
continual tasks. Continual learning, also called lifelong learning, differs from transfer learning or other
traditional networks. As known, a typical deep neural network is designed for some specific task, e.g.,
crop pest classification. After the training period, the weights and structure of the designed model are
fixed, with an excellent performance on the specific task. However, if we want the model to perform
another new task directly, e.g., plant leaf classification, it will have a very bad performance unless it
is trained again from scratch or uses transfer learning. However, if we train the model by the new
dataset, the distribution of weights will change to ensure a good performance on a new task. Since the
weights of the network are modified, the network loses the ability to recognize the old task; in other
words, it forgets the old knowledge. For transfer learning, the forgetting problem of old knowledges
still exists. Obviously, traditional learning way has very poor flexibility.

If we want a model that can continually learn new tasks without forgetting old knowledge,
it should have some bio-inspired ability, such as memory. In this study, we proposed a continual
classification method based on memory storage and retrieval to maintain a good performance on both
new and old tasks. Look at ourselves, how do we remember past events? We only keep the most
important information in our brain, throwing out the details and abstracting the inner relationships.
These life experiences inspire us to find a way to abstract and preserve prior knowledge in memory.

Here, we used the GAN to perform information abstracting and memory storage, which is a
technique to learn to generate new data with the same statistics as the raw dataset, which consisted of
two parts: Generator and discriminator. The basic workflow of GAN is shown as Figure 6.
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The generator and discriminator are both deep convolutional neural networks, and their structures
are shown in Table 2.

Table 2. The generator and discriminator in GAN.

Generator Discriminator

Layers Output Shape Layers Output Shape

Input (64) Input (64, 64, 3)
Dense (32, 32, 128) Conv2D (62, 62, 128)

Conv2D (32, 32, 256) Conv2D (30, 30, 128)
Conv2DTranspose (64, 64, 256) Conv2D (14, 14, 128)

Conv2D (64, 64, 256) Conv2D (6, 6, 128)
Conv2D (64, 64, 3) Dense (1)

The GAN chains the generator and discriminator together, expressed as Equation (3):

GAN(X) = discriminator(generator(X)) (3)

The generator and discriminator contest with each other in a game. We trained the discriminator
using samples of raw and generated images with the corresponding labels, such as any regular image
classification model. To train the generator, we started with the random noise and used the gradients of
the generator’s weights, which means, at every step, moving the weights of the generator in a direction
that will make the discriminator more likely to classify the images decoded by the generator as “real”.
In other words, we trained the generator to fool the discriminator.

Since the GAN can carry out the memory storage for old tasks, the workflow of our proposed
continual metric learning method can be shown as Figure 7, which is mainly based on memory storage
and retrieval.

When the first task comes, the task data will be organized as pairs and fed to the metric learning
model (Siamese network). The output result is the similarity between input pairs, that is to say whether
the input images are from the same category or not. Besides, the task data will also be fed to the GAN
after data augmentation, due to the small scale of the raw database. Then, the GAN generates the
abstracted images that represent the most important information of the old tasks, after the amount
of iterations. We call this process memory storage. When the second task comes, the new task data
and the data from memory will be mixed together, and fed to the metric learning model. We call this
process memory retrieval.

243



Agriculture 2020, 10, 178
Agriculture 2020, 10, x FOR PEER REVIEW 8 of 15 

 

 

Figure 7. The workflow of continual metric learning. 

When the first task comes, the task data will be organized as pairs and fed to the metric learning 

model (Siamese network). The output result is the similarity between input pairs, that is to say 

whether the input images are from the same category or not. Besides, the task data will also be fed to 

the GAN after data augmentation, due to the small scale of the raw database. Then, the GAN 

generates the abstracted images that represent the most important information of the old tasks, after 

the amount of iterations. We call this process memory storage. When the second task comes, the new 

task data and the data from memory will be mixed together, and fed to the metric learning model. 

We call this process memory retrieval. 

3. Results 

3.1. Single Task Experiment with the Basic CNN Model 

In order to testify the performance of the metric learning model on similarity matching for a 

single task, we carried out experiments on a crop pest dataset and plant leaf dataset, respectively. For 

these two datasets, we prepared the input data as paired images. In detail, the total number of input 

pairs was 10,000, which may have contained a small number of duplicates because of the random 

combinations. We spilt the training set and testing set by the ratio of 8:2, that is, 2000 input pairs were 

used to test the accuracy. During training, 25% of the training data were taken out for the validation 

set. In summary, there were 6000 pairs for training, 2000 pairs for validation, and 2000 pairs for 

testing. 

For the crop pest dataset, the loss and accuracy of the CNN model is shown in Figure 8.  

  
(a) loss (b) accuracy 

Figure 8. The loss and accuracy on the crop pest dataset. 

It is shown that the variation trend of the training loss is consistent with that of the validation 

loss. The variation trend of the training accuracy is also consistent with that of the validation 

Figure 7. The workflow of continual metric learning.

3. Results

3.1. Single Task Experiment with the Basic CNN Model

In order to testify the performance of the metric learning model on similarity matching for a
single task, we carried out experiments on a crop pest dataset and plant leaf dataset, respectively.
For these two datasets, we prepared the input data as paired images. In detail, the total number of
input pairs was 10,000, which may have contained a small number of duplicates because of the random
combinations. We spilt the training set and testing set by the ratio of 8:2, that is, 2000 input pairs were
used to test the accuracy. During training, 25% of the training data were taken out for the validation
set. In summary, there were 6000 pairs for training, 2000 pairs for validation, and 2000 pairs for testing.

For the crop pest dataset, the loss and accuracy of the CNN model is shown in Figure 8.
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It is shown that the variation trend of the training loss is consistent with that of the validation
loss. The variation trend of the training accuracy is also consistent with that of the validation accuracy.
This indicates that there is no overfitting problem in the training. The testing accuracy is 100%,
which means the model can distinguish the input paired images well. The distribution of embeddings
from the crop pest dataset is shown in Figure 9.
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Figure 9. The distribution of embeddings from the crop pest dataset.

Through the distribution of the model’s output embeddings, it can be seen that the metric learning
model has good ability for similarity matching on the single task, that is, the images from the same
category gather while those from different categories are far away from each other.

Similar experiments on the other dataset were also carried out. The loss and accuracy of the
CNN model on the plant leaf dataset is shown in Figure 10. The variation trends of the training
loss and training accuracy are consistent with those of the validation loss and validation accuracy,
which indicates that there is also no overfitting problem in the training period. The distribution of the
model’s output embeddings of images from the plant leaf dataset is shown as Figure 11, which also
shows the good ability of the similarity matching on a single task to distinguish the input paired
images well.
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3.2. Continual Tasks Experiment with the Basic CNN Model

As mentioned earlier, we hope that the model can be more flexible and able to handle continuous
tasks, accumulating knowledge like humans to perform well on both old and new tasks. So, we carried
out the experiments on sequential tasks to testify the continual performance of the CNN model, namely,
the basic metric learning model.

For these two datasets, two occurring orders exist, that is, from the crop pest task to the plant leaf
task, and the opposite one. For the first case, the testing accuracy of the two tasks is shown in Figure 12.
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At the first stage, the model has a good performance on the crop pest dataset, which was verified
in Section 3.1. However, it has a very bad performance on the other dataset. The reason is that
the other dataset is an unknown task and has never been seen before; this result is understandable
and acceptable.
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At the second stage, the model begins to learn the plant leaf task. Note that the model also
learnt the crop pest task in the past. After the training period, the testing accuracy on the plant leaf
task increases to 100% while that of the crop pest dataset decreases to nearly 50%, which is almost a
blind guess. So, the extent of catastrophic forgetting for the crop pest task is nearly 50%. The new
distribution of output embeddings from the old crop pest task is shown in Figure 13, which indicates
that the basic metric learning model has lost the ability to distinguish the similarity between input
paired images. The extracted features (embedding) of samples from different categories are mixed,
and cannot be separated. This is an undesired forgetting problem!
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For the second case, from the plant leaf task to the crop pest task, the experimental result of the
testing accuracy is shown in Figure 14. The testing accuracy on the plant leaf task decreases from 100%
to 60%, which means the extent of catastrophic forgetting for the plant leaf task is 40%. We found
that, regardless of the occurring order of sequential tasks, the basic metric learning model does have a
serious forgetting problem, as shown in Figures 12 and 14. In other words, after new learning, the basic
metric learning model can no longer do the previous task well, due to the forgetting.
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The distribution of embeddings from the old plant leaf task is shown in Figure 15, which is
very mixed and chaotic, losing the ability to distinguish and classify the similarity between input
paired images.
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3.3. Continual Tasks Experiment with Our Proposed Method

As known, due to the forgetting problem, the basic CNN model cannot balance new and old tasks.
Taking tthe sequential tasks from the crop pest dataset to the plant leaf dataset as an example, we used
the designed GAN model to abstract the most important information of the old task (crop pest) and
generated the abstracted images as memory for the future task, automatically ignoring the trivial
details. When a new task comes, the abstracted images in memory will be retrieved and mixed with
the new dataset, and then fed to the metric learning model.

Owing to this mechanism, the metric learning model can accumulate knowledge and better
understand what it has learnt. The stored memory can be expanded, as does the increased ability to
handle more continual tasks. The distribution of the model’s output embeddings, corresponding to the
testing images from both new and old tasks, is shown in Figure 16.

The results show the ability of our method to continually distinguish the similarity between input
paired images and classify the testing images. All the categories from new and old tasks are separated
clearly, which means that the metric learning model has a good performance on both new and old tasks,
alleviating the forgetting problem. Compared with Section 3.2, the alleviated extent of catastrophic
forgetting for the crop pest task and plant leaf task is 50% and 40%, respectively.

In addition, the results presented above are clear, and easily assessed. However, this is not always
the case if we want to go further, e.g., an evaluation for the grouping results. In our opinion, the sum
of the nearest distances between centers of groups will be a good choice. In detail, firstly, the center
point of each group is calculated by the mean value; then, for every group center, the nearest distance
with others is calculated; and finally, the sum of the nearest distances between the centers of groups
is calculated, which is called the score. The evaluation metric should be proportional to the score,
which means the larger the score is, the better the model’s performance is.
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4. Discussion

We conduct the discussion about this work from the following three aspects.

4.1. Idea and Contents

The existing traditional models cannot accumulate the knowledge from old tasks, which means
that they are all task specific, only focusing on the current task while forgetting the prior ones. This is
a lack of flexibility and is quite different from humans’ learning style. Besides, at present, there are
mainly two basic types of neural network learning principles: Probability based on back-propagation
error and similarity-based metric comparison. The former is more mature, but metric-based similarity
learning is closer to biological learning.

So, from the bio-inspired perspective, we imitated the way biology learns and remembers,
and proposed a continual metric learning method based on memory storage and retrieval to balance
old and new tasks. Through several comparative experiments, it was found that the basic metric
learning model can perform a single task excellently, distinguishing different categories well. However,
when it is faced with continual tasks, the obvious forgetting problem occurs, and its poor flexibility
loses the ability of dealing with old tasks. However, the addition of memory storage and retrieval in
our method helps alleviate the forgetting problem, as all the categories from old and new tasks can be
separated clearly, with good performance on both old and new tasks.

4.2. Contributions to Existing Research

We proposed an ANN-based continual classification method via memory storage and retrieval,
combining the CNN and GAN technology, on the common agricultural datasets, such as the crop pest
dataset and plant leaf dataset. The key contributions are two points: Few data and high flexibility.

As known, the big scale of the dataset is the basic requirement for the existing typical deep neural
networks. However, the collection and labelling of big datasets are laborious and time consuming. So,
research based on few data is a promising way. The metric learning used in this work only requires
few raw data, because what it cares about is the paired inputs. Although the size of the raw dataset is
small, the number of combinations of pairs from the same category and different categories can be
expanded hundreds of times. Besides, the proposed continual learning method based on memory
storage and retrieval increases the flexibility of the classification model, allowing it to balance old and
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new tasks, by accumulating knowledge and alleviating forgetting. This can be regarded as another
small step towards more intelligent and flexible studies in agriculture.

4.3. Limitations and Future Works

Although the numerical solution described in this study achieved a good performance on both
new and old tasks with its continual learning ability, it still has some limitations. The key structure
consisted of CNN and GAN. The CNN is relatively easy to implement with a stable performance,
while the GAN is usually not stable and hard to train, and indeed requires experience. Besides,
the number of sequential tasks is two, namely the crop pest dataset and plant leaf dataset, hence the
work at this stage is only primary continual learning in agriculture. In future, we would like to analyze
more tasks to develop the robust continual learning model, considering the complex combination of
popular technologies in neural networks and information extraction.

5. Conclusions

In this study, we proposed an ANN-based continual classification method via memory storage
and retrieval, combining the CNN and GAN, with two clear advantages. One is few data, as the metric
learning model based on CNN works well from few data, which significantly reduces the difficulty of
image collection and annotation; the other is flexibility, as continual classification based on memory
storage and retrieval can balance old and new tasks through the accumulation of knowledge and
alleviation of forgetting. The results show that the regular CNN can deal with a single task well
and classify the categories clearly. However, when it comes to continuous tasks, there is a serious
forgetting problem. With the addition of memory storage and the retrieval mechanism, the modified
continual model can distinguish all the categories from both old and new tasks, without the forgetting
problem. There are so many possible applications of this proposed approach in the field of agriculture,
for instance, intelligent fruit picking robots, which can recognize and pick different kinds of fruits;
and plant protection by the identification of diseases and pests, which can continuously improve
the detection range. This work lays a foundation and provides a reference for other relevant studies
towards more intelligent and flexible applications in the agricultural area.
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Abstract: Biotic stress, which includes infection by pathogenic fungi, causes losses of wheat yield in
terms of quantity and quality. Ear Fusarium is caused by strains of F. graminearum and F. culmorum,
which can produce mycotoxins—deoxynivalenol (DON) and nivalenol (NIV). One of the wheat’s
defense mechanisms against stressors is the activation of biosynthesis pathways of antioxidant
compounds, including ferulic acid. The aim of the study was to conduct pilot studies on the basis of
which neural models were created that would examine the impact of the variety and weather conditions
on the concentration of ferulic acid, and link its content with the concentration of deoxynivalenol
and nivalenol. The plant material was 23 winter wheat genotypes with different Fusarium resistance.
The field experiment was conducted in 2011–2013 in Poland in three experimental combinations,
namely: with full chemical protection; without chemical protection, but infested with natural disease
(control); and in the absence of fungicidal protection, with artificial inoculation by genus Fusarium
fungi. As a result of the pilot studies, three neural models—FERUANN analytical models (ferulic acid
content), DONANN (deoxynivalenol content) and NIVANN (nivalenol content)—were produced.
Each model was based on 14 independent features, 12 of which were in the form of quantitative data,
and the other two were presented as qualitative data. The structure of the created models was based
on an artificial neural network (ANN) of the multilayer perceptron (MLP) with two hidden layers.
The sensitivity analysis of the neural network showed the two most important features determining
the concentration of ferulic acid, deoxynivalenol, and nivalenol in winter wheat seeds. These are the
experiment variant (VAR) and winter wheat variety (VOW).

Keywords: winter wheat; grain; artificial neural network; ferulic acid; deoxynivalenol; nivalenol;
MLP network; sensitivity analysis; precision agriculture; machine learning

1. Introduction

During the growing season, wheat is exposed to numerous biotic and abiotic stresses. The factors
causing abiotic stress are intense solar radiation, low or high temperature, excess or shortage of water,
strong winds, etc. Biotic stress includes pests or diseases [1,2]. The plant’s response to stress depends
on many factors, including the applied variety, age, and developmental stage of plant. Numerous
developmental, morphological, and physiological adaptations enable the passive avoidance of stress.
The active interaction of the plant and stressor cause defense responses that prevent or tolerate changes.
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One of the most important biogenic stressors is the infestation of crops by pathogenic fungi.
This results in crop losses, the level of which depends on the variety, meteorological conditions,
and cultivation technology. Potential losses can be minimized using appropriate agrotechnical
measures and fungicide protection [3]. The most effective method for limiting the effects of disease
infestation is the use of varieties containing resistance genes for individual diseases. In such cases,
during plant cultivation, the accumulation of various combinations of many genes are applied [4].

A completely different strategy should be adopted in the case of Fusarium, because of the
specificity of both the pathogen and the mechanism of pathogenesis. Resistance to Fusarium is a
quantitative trait, associated with the presence of many quantitative trait loci (QTL) [5–9]. Almost
every wheat chromosome has been identified with this type of QTL [10]. One of the most effective
R genes that fight Fusarium is Fhb1 from the Sumai 3 wheat variety. Unfortunately, this variety has
many unfavorable agronomic traits strongly linked to the Fhb1 gene. Growers are therefore looking
for other sources to fight this disease.

Pathogenic fungi cause not only quantitative, but also qualitative losses in the wheat yield as well as
a reduction in grain quality parameters (thousand grain weight, falling number, sedimentation number,
and total protein content) [11–16]. Quality losses are not only the result of the development of pathogen
mycelium, but also the effect of secondary metabolite production by fungi called mycotoxins. Fusarium
fungi, mainly F. culmorum and F. graminearum, produce deoxynivalenol (DON) and zearalenone, which
are highly toxic to humans and animals [17]. In 2005, the European Union introduced a standard
where the maximum allowable DON concentration was set at 1250 µg/kg of unprocessed wheat grain
(1.25 ppm (parts per million)).

In addition to genetic studies on wheat resistance to Fusarium, research has also been conducted
on the biochemical aspects of plant responses to a massive pathogen attack. Based on the literature
sources [18,19] and our own [20,21] research, it was found that antioxidative processes based on the
significantly increased biosynthesis of the low-molecular antioxidants of the plant have a significant
impact on pathogenesis, and constitute the first line of defense against pathogens. Based on the
concentration of the selected phenolic acids, including ferulic acid, it is possible to assess the degree of
disease risk at an early stage of pathogenesis [20,22]. Taking into account all of the current information
on the mechanism of wheat resistance to Fusarium [20,23,24], as well as the results of chemical analyzes
from three years of field experiments on wheat, it was decided to use modern methods of data
analysis to determine the relationship between the concentration of ferulic acid; the concentration of
deoxynivalenol and nivalenol (NIV), depending on weather conditions; and the infestation degree by
fungal diseases.

Recently, increasing interest in microbiological forecasting is being observed, which has been
mainly used for the examination of bacterial pathogens in the context of food. Modern computer
technologies are used in other interdisciplinary research areas. Many new methods, such as artificial
neural network (ANN), fuzzy logic, and genetic algorithms, which are part of artificial intelligence
methods, are being used for multidimensional data analysis. Recent years show that there has been
a significant increase in the use of nonlinear data modeling methods in agriculture. Particularly
important analysis results are observed when using artificial neural networks, the results of which are
often compared with classical statistical methods, e.g., multiple regression. As a result of the possibility
of learning and generalizing data, the use of ANN gives better results than statistical methods. Neural
modeling methods are used in classification, identification, and prediction, therefore, their potential is
significant for practical application in broadly understood agriculture [25–39].

One of the most interesting uses of ANN is crop yield prediction. Forecasting of winter rapeseed
and winter wheat yield has been applied in many works [40–45]. Because of the fact that plant yield is
affected by many factors, such as meteorological conditions, fertilization level, and soil cultivation
method, the use of modern data analysis techniques brings even more accurate results. In addition,
because of the unique properties of data processing, ANN can simultaneously analyze empirical data
in a quantitative and qualitative form. Such data are not possible to achieve using classical statistical
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methods, as they are usually limited only to the quantitative interpretation of the analyzed data.
Therefore, the purpose of the work is to conduct pilot studies on the basis of which neural models will
be produced that examine the impact of the variety and weather conditions on the concentration of
ferulic acid, and to link its content with the concentration of deoxynivalenol and nivalenol.

2. Materials and Methods

2.1. Site Location

The field experiment was conducted during the 2011–2013 growing seasons in Poland at the
Mikulice Breeding and Production Facility belonging to the Małopolska Plant Breeding Station
(50◦00′26.7′′ N 22◦26′25.2′′ E; Figure 1).
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The plant material was 23 winter wheat genotypes (Table S1) with different Fusarium wilt
resistance, as follows: 13 wheat lines obtained from Polish plant breeding companies; seven genotypes
from six European countries; and three from the Department of Genetics and Plant Breeding, the Poznań
University of Life Sciences [20]. The experiment had the following two factors: the first was the variant
of protection and the second was the wheat genotype. All of the wheat genotypes were sown onto
3 m2 plots in three replications in three different variants:

- full chemical crop protection (CH)—fungicides: Duet Ultra 497 SC (epoxyconazole, thiophanate
methyl) at a concentration of 0.6 l·ha−1, and Capalo 337.5 SE (fenpropimorph, epoxyconazole,
and metrafenone) at 2 l·ha−1;

- no chemical crop protection, natural infestation (K);
- no chemical crop protection, artificial inoculation with fungi from the genus Fusarium (I).

No fungicides were applied to the experimental plots of K and I.
The genotypes were sown on 29 September 2010, 27 September 2011, and 28 September 2012, and

harvested on 5 August 2011, 2 August 2012, and 7 August 2013.
The inoculum used in the inoculation was produced from three isolates obtained from

F. graminearum and three isolates obtained from F. culmorum.
After the appearance of first symptoms, the severity of the Fusarium wilt was assessed. The disease

index (DI) was calculated from the following formula [46,47]:

DI =
number of infected plants

total number of plants
× 100 (1)

The average monthly temperatures and monthly precipitation, measured according to the (World
Meteorological Organization) WMO guidelines for the years 2011–2013, were obtained from a Vantage
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Vue 6357 UE 9 meteorological station (Davis Instruments) located approximately 400 m from the
experimental field (Table S2).

After harvest, the plant height was measured and chemical analyzes were carried out (Table 1).

Table 1. Data structure in the neural models.

Symbol Unit of Measure Variable Name The Scope of Data

Quantitative data

P1-3 mm Sum of precipitation from 1 January to 31 March 90–102
T1-3

◦
C Average air temperature from 1 January to 31 March −1.6–−1.1

P4 mm Sum of precipitation from 1 April to 30 April 25–29
T4

◦
C Average air temperature from January 1 April to 30 April 9.9–10

P5 mm Sum of precipitation from 1 May to 31 May 4–70
T5

◦
C Average air temperature from 1 May to 31 May 15.6–16

P6 mm Sum of precipitation from 1 June to 31 June 102–103
T6

◦
C Average air temperature from 1 June to 31 June 18.3–18.7

P7 mm Sum of precipitation from 1 July to 31 July 33–58
T7

◦
C Average air temperature from 1 July to 31 July 19.5–21.4

WH cm Wheat height 67–122
DI % Disease index 0–95

Qualitative data

VAR word Experimental variant
Inoculation
Protection

Control

VOW word Variety of wheat

MUSZELKA
SMH 8489
KBP 08.17
ARKADIA
STH 9011

NAD 08104
STH 9035

AND 394/07
BAMBERKA

SMH 8540
KBP 08.8

SVPC 87185
CHD 7143/04

82/2011
TARKUS
91/2011

PRAAG 8
20816

83/2011
FREGATA

ERTUS
20818

UNG 136.6.1.1.

VAR: experiment variant; VOW: winter wheat variety. FERUANN analytical models (ferulic acid content), DONANN
(deoxynivalenol content) and NIVANN (nivalenol content).

2.2. Determination of Ferulic Acid

The ferulic acid in the samples was analyzed after alkaline and acidic hydrolysis [20]. Analysis
was performed using an Aquity H class (Ultra Performance Liquid Chromatography) UPLC
system equipped with a Waters Acquity PDA detector (Waters Corporation, Parsippany, NJ, USA).
Chromatographic separation was performed on an Acquity UPLC® BEH C18 column (100 mm ×
2.1 mm, particle size 1.7 µm; Waters CorporationWaters, Dublin, Ireland). The elution was done
with a gradient using the following mobile phase composition: (A) acetonitryl with 0.1% formic acid
and (B) 1% aqueous formic acid mixture (pH = 2). The concentrations of phenolic compounds were
determined using an internal standard at wavelengths of λ = 320 nm and 280 nm. Compounds were
identified based on a comparison of the retention time of the analyzed peak with the retention time of
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the standard, and by adding a specific amount of the standard to the analyzed samples. The detection
level was 1 µg/g. The retention time for ferulic acid was 17.50 min.

2.3. Determination of Trichothecenes

The grain samples were analyzed for the presence of trichothecenes, according to
Perkowski et al. [48]. The trichothecenes of group B (DON and NIV) were analyzed as TMS
(trimethylsilylsilyl ethers) derivatives. The analyses were run on a gas chromatograph (Hewlett
Packard GC 6890) hyphenated to a mass spectrometer (Hewlett Packard 5972 A, Waldbronn, Germany),
using an HP-5MS, 0.25 mm × 30 m capillary column. Quantitative analysis was performed in the
single ion monitored mode (SIM) using the following ions for the detection of DON, 103 and 512,
and NIV, 191. Qualitative analysis was performed in the SCAN mode (100–700 amu).

2.4. The Method of Constructing Neural Models

For the construction of three FERUANN analytical models (ferulic acid content), DONANN
(deoxynivalenol content), and NIVANN (nivalenol content), artificial neural networks were applied
using an Automatic Network Designer (AND) from Statistica v7.1 (StatSoft Inc., Tulsa, OK, USA).
Each model was the result of learning 10,000 networks, one of which was selected for further analysis.
For creation of the models, 138 data were used, and were divided into three sets, namely: learning,
validation, and test. The structure of sets was divided into appropriately 70%:15%:15%. (96:21:21 cases
for each set). Based on previous research [40–44], MLP (multilayer perceptron) topology networks with
two hidden layers were selected for the analysis. This type of network is mainly used for regression or
classification data analysis. Because of the use of AND, the assessment parameters for each neural
model were adopted based on the following indicators: standard deviation, mean error, error deviation,
mean absolute error, quotient deviations, and correlation. The best neural model was selected based
on the highest correlation value and the lowest mean absolute error value. After selecting one neural
model for each variant, a sensitivity analysis of the neural network was performed. This analysis
determines the value of each independent variable (network input) in the FERUANN, DONANN,
and NIVANN models produced. To determine the extent of the independent variable, the “error
quotient” indicator was used. This indicator describes the ratio of error to error obtained using all
of the independent features. This means that the greater the value, the greater the importance of the
feature. If the value of the error quotient was less than 1, a given variable could be removed from
the model to improve its quality. However, this is not mandatory. The indicator of the error ratio is
“rank”, which indicates the order of variables through a decreasing error value—rank 1 for a specific
independent variable is of greatest importance for the network.

3. Results

As a result of the analyzes, three independent neural models, FERUANN, DONANN,
and NIVANN, were created. Each model was based on 14 independent variables, 12 of which
were in the form of quantitative data, and the other 2 were presented as qualitative data (Table 1).
The structure of the generated models was based on the multi-layer perceptron (MLP) ANN type with
two hidden layers. The FERUANN model had nine neurons in the first hidden layer and six neurons in
the second hidden layer. Accordingly, the DONANN model had 13 and 7 neurons, and the NIVANN
model 13 and 4 neurons (Figure 2).
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The best network fit for each model was selected from 10,000 networks, based on the best
qualitative indicators. In the FERUANN model, the correlation coefficient was 0.9887, while in the
DONANN model, the correlation coefficient was 0.9919. The last NIVANN model had a slightly lower
correlation coefficient of 0.8106, however, it was still at an acceptable level (Table 2).

Table 2. The quality and structure of the neural models produced.

FERUANN DONANN NIVANN

Neural Network Structure MLP
14:38-9-6-1:1

MLP
14:38-13-7-1:1

MLP
14:38-13-4-1:1

Learning error 0.0210 0.0175 0.0244
Validation error 0.0349 0.0308 0.0301

Test error 0.0492 0.0356 0.2288
Mean 1646.79 2.9708 0.0705

Standard deviation 1034.54 4.2031 0.1146
Average error 12.84 0.0541 0.0076

Deviation error 156.89 0.5336 0.0672
Mean Absolute error 114.34 0.3705 0.0220
Quotient deviations 0.1516 0.1269 0.5861

Correlation 0.9887 0.9919 0.8106

FERUANN: ferulic acid content; DONANN: deoxynivalenol content; NIVANN: nivalenol content; MLP:
multilayer perceptron.

In the next step, sensitivity analysis of the generated FERUANN, DONANN, and NIVANN neural
models was performed (Table 3). As a result, the independent variables that had the greatest impact
on the concentration of ferulic acid, deoxynivalenol, and nivalenol were identified. In the FERUANN
model, the largest error quotient was achieved by experiment variant (VAR), which amounted to
7.0823. Another feature in this model was winter wheat variety (VOW), which reached a much lower
level of just 3.1471. Other independent variables in this model have reached values slightly higher
than 1, which indicates z low impact on the ferulic acid content, but they should be left in the model.
The situation is slightly different with the DONANN model. As before, the independent variables VAR
and WOV achieved the highest values 1.3778 and 1.1069, respectively, but the other five independent
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features (T1-3, P6, T7, WH, and DI) achieved an error quotient smaller than 1. In view of the above,
these features can be removed from the model, as their impact on the final result of the analysis is scant.
The NIVANN model pointed out the two most important independent qualitative variables—VOW
and VAR—whose error quotients were 1.6315 and 1.4793, respectively. Other independent variables,
as in the FERUANN model, have reached an error quotient above 1. This means that they should be
left in the model. All of the sensitivity analysis results of neural networks are presented in Table 3.

Table 3. Sensitivity analysis of neural networks.

Variable

Model

FERUANN DONANN NIVANN

Quotient Rank Quotient Rank Quotient Rank

P1-3 1.5973 4 1.0917 3 1.1436 7
T1-3 1.1977 9 0.9860 13 1.0629 11
P4 1.3120 7 1.0347 7 1.2597 4
T4 1.0780 11 1.0477 6 1.1246 8
P5 1.0027 14 1.0754 4 1.3281 3
T5 1.2976 8 1.0731 5 1.0381 12
P6 1.3718 5 0.9784 14 1.0977 9
T6 1.6332 3 1.0335 8 1.1894 6
P7 1.1242 10 1.0122 9 1.2163 5
T7 1.5276 5 0.9930 12 1.0853 10

WH 1.0355 12 0.9963 11 1.0025 14
DI 1.0163 13 0.9979 10 1.0292 13

VAR 7.0823 1 1.3778 1 1.4793 2
VOW 3.1471 2 1.1069 2 1.6315 1

FERUANN: ferulic acid content; DONANN: deoxynivalenol content; NIVANN: nivalenol content; WH: DI: VAR:
experiment variant; VOW: winter wheat variety.

4. Discussion

One may find many relationships in the literature between genotype resistance and the resulting
Fusarium wilt infestation, and the level of mycotoxin contamination [49]. Most often, ear Fusarium
wilt is caused by F. graminearum and F. culmorum, which can produce mycotoxins from the group
of trichothecenes, including DON and NIV. The production of toxins by individual strains of fungi
depends on many factors, which include, first of all, the pathogen–plant interaction or the prevailing
climatic conditions. The degree of ear infestation observed in the field is the result of the resistance of
types I and II of the genotype. Type I is the resistance of the plant to the infection itself, and type II is
resistance against spreading the pathogen in the ear [50].

Miedaner et al. [49] observed a significant effect of genotypic variability on DON accumulation
in wheat. The most resistant varieties significantly affected DON production in the Mesterházy [51]
experiment. In the most resistant varieties, a very low toxin contamination of grain was
observed, despite the high toxin production by pathogenic fungi. Similarly, in the experiments
by Miedaner et al. [49] and Paul et al. [3], the most resistant varieties accumulated less DON. In our
own research, 23 wheat genotypes were used. The lines obtained from Polish breeding companies,
according to the breeders, were characterized by varied resistance to Fusarium and other fungal
diseases. Three winter wheat lines brought from the Department of Genetics and Plant Breeding
of the Poznań University of Life Sciences were characterized by a high resistance to both mildew
and Fusarium. These lines come from crossing English and French half-dwarf forms with leading
Polish varieties. The remaining seven genotypes were varieties and lines from six European countries
(Germany, the Czech Republic, Austria, the Netherlands, Hungary, and Sweden), which were used as
sources of resistance to Fusarium. The current independent observations indicate a significant role of
the variety in shaping the quantitative profile of the analyzed toxins. In the built neural models of
DONANN and NIVANN, the error quotient for the variety reached a value of 1.1 in DON production,
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and 1.63 in the production of NIV. In turn, high correlations between field infestation and DON content
in the grain were observed by Miedaner et al. [52] and Mesterházy [51]. The content of DON and NIV
has been presented in detail in the publication Stuper-Szablewska et al. [21]. The content of DON was
not dependent on the index disease calculated on the basis of the field observations. Index disease also
had a very low significance in cases of NIV accumulation (13th position in the constructed NIVANN
neural model). Potential differences are probably as a result of the large race diversity of pathogens,
genotypes used, and environmental conditions [49].

The results of the studies on the effect of fungicides as a research factor on the extent of Fusarium
infestation and the content of DON are not unambiguous, this may result from the use of fungicides
containing various active substances, different doses and terms of application, diversity of pathogens
attacking the plant, differences between varieties, and various weather conditions [53]. In the studies
of Homdork et al. [54], the use of triazole fungicide lowered the concentration of DON in grain after
inoculation compared with the control group. In turn, the use of fungicide in conditions of natural
infestation did not have a significant impact on the level of DON and NIV reduction in the grain [55].
In studies conducted at various locations in the USA regarding the effect of tebuconazole on the content
of DON, Paul et al. [3] found that the use of fungicide was more effective in reducing Fusarium wilt
infestation in comparison with the level of DON reduction. Independent research found a significant
impact of the experimental combination on the concentration of DON and NIV. The presence of a
fungicide during a pathogen attack is an additional stressor for both plants and the pathogen itself.
The use of chemical plant protection limits the development of the pathogen, which in response
increases mycotoxin biosynthesis.

Genetically determined plant resistance to Fusarium can be modified by humidity and air
temperature. In the conducted neural network sensitivity analysis, weather conditions from early
January to the end of the vegetation period had an impact on the level of mycotoxins and ferulic acid.
Only winter temperature (T1-3), end of vegetation period in July (T7), and rainfall from June (P6)
affected the content of DON in the conducted experiment.

Field tests aimed at demonstrating the relationship between the level of pathogens, mycotoxins,
and weather conditions are very difficult, because of the inability to prepare an experiment in which
only one factor will change. In view of the above, literature data on the subject are very divergent, e.g.,
Miedaner et al. [49] could not relate weather conditions with the content of DON and NIV.

However, some authors suggest that some morphological features are important during Fusarium
infection [56]. Their occurrence protects plants against necroses to which the pathogen may lead.
Snijders [57] believed that on the one hand, tall plants tend to have a lower level of natural infection by
Fusarium; on the other, many semi-dwarf plants with increased resistance to Fusarium can be selected.
Probably, which is confirmed by our own research, the genotype of the plant itself is more important
than its height. In the sensitivity analysis of neural models, the content of DON was not dependent on
the height of the plants, and its impact on the NIV content was very small.

One of the most important defense mechanisms of wheat against stressors of various etiologies is
the activation of the biosynthesis pathways of antioxidant compounds. One may find verification in
literature sources, which has also been confirmed by our own research, that ferulic acid is one of the
main compounds actively participating in the plant’s immune mechanisms [58].

In the study [58], the profiles of bound phenolic acids were similar in all of the wheat genotypes
analyzed, and ferulic acid accounted for 72% to 85% of all acids. The authors observed a strong
genotypic diversification in the ferulic acid content in the analyzed winter wheat genotypes, ranging
from 181 to 742 mg/kg. In the research by Hernández et al. [59], the ferulic acid content ranged from
439 mg/kg (Raposo variety) to 1450 mg/kg (Colorado variety). The influence of the variety on the
ferulic acid content is confirmed by numerous studies; however, differences in the examined content of
this acid are observed [60–62]. Stuper-Szablewska et al. [21] showed that the average content of ferulic
acid under control conditions was 844 mg/kg, 780 mg/kg, and 771 mg/kg in the years of the study.
After inoculation, these values increased to 2248 mg/kg, 2574 mg/kg, and 3145 mg/kg, respectively [21].
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The large range of variability of ferulic acid content in wheat varieties is also caused by the
impact of environmental conditions and the interaction of the genotype with the environment [63].
An additional factor affecting the content of this acid is the occurrence of infection [21,64].

5. Conclusions

The harmful effect of mycotoxins imposes actions aimed at their minimization in raw materials
and products intended for humans and animals. The most effective preventive action is limiting
their formation in the field, by the cultivation of resistant genotypes. In the constructed FERUANN,
DONANN, and NIVANN neural models, variety was a factor that significantly affected the content
of ferulic acid, deoxynivalenol, and nivalenol in winter wheat seeds. This confirms the significant
role of growing new varieties. Resistance breeding is carried out in many countries, and despite the
difficulties, numerous resistant varieties are available, characterized by slower and the subsequent
development of symptoms of Fusarium compared with sensitive varieties. As part of the pilot study
discussed in this work, inoculation and fungicide spraying were treated as stressors. Both of these
factors activate nonenzymatic resistance mechanisms, including phenolic acid biosynthesis. As a
result, it was observed in our independent research in the FERUANN neural model that the applied
experimental variant determined the ferulic acid content to the greatest extent. The variety feature also
had a significant impact on the presence of ferulic acid.

The results of the conducted research using artificial neural networks indicate the possibility
of the practical application of neural modeling methods to analyze the concentration of ferulic acid,
deoxynivalenol, and nivalenol in winter wheat grain.
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Abstract: A significant part of cereal production is intended for agri-food processing, which implies
a necessity to search for and implement modern storage systems for this product. Stored grain
is exposed to many unfavorable factors, particularly caryopsis macro-damage caused mainly by
grain weevil (Sitophilus granarius L.). This triggers a substantial decrease in the value of the stored
material, thus resulting in serious economic losses. Due to this fact, it is necessary to take steps to
effectively detect this pest’s presence when grain is delivered to storage facilities. The purpose of
this work was to identify the representative physical characteristics of wheat caryopsis affected by
grain weevil. An automated visual system was developed to ease the detection of damaged kernels
and adult weevils. In order to obtain the empirical data, a decision was made to take advance of
SKCS 4100 (the Perten Single Kernel Characterization System). The measurements obtained were
used to build the training sets necessary in the process of ANN (artificial neural network) learning
with digital neural classifiers. Next, a set of identifying neural models was created and verified,
and then the optimal topology was selected. The utilitarian goal of the research was to support the
decision-making process taking place during grain storage.

Keywords: artificial neural network (ANN); Grain weevil identification; neural modelling classification

1. Introduction

Cereal grain storage is mainly conditioned by ambient temperature and humidity, which constitute
crucial parameters affecting the quality of stored grain. The presence of living organisms that cause
direct losses resulting from their infestation is also important. There are also notable indirect losses
in the stored material resulting from contamination with excretions and secretions, as well as from
moistening and heating. Stored grain may be infested by many different organisms, such as bacteria,
fungi, mites, and insects. One of the most damaging grain pest species in Europe is the grain weevil
(Sitophilus granarius L.) [1]. It can cause up to 5% of losses in stored crops. This pest is often a cleverly
hidden grain destroyer. Although its beetles can be easily detected during sieving, unfortunately,
the identification of eggs, larvae, and pupae is difficult and requires appropriate laboratory tests.
Weevil feeding on grains significantly reduces the germination capacity of grain from 93% to 7%.
Its presence and development cause an increase in humidity and temperature of the stored mass. These
conditions foster the development of fungi, as a result of which grain mold appears, which in turn
causes a drastic decrease in grain quality and consequently its value.

An important task for managers of any grain storage facility is to prevent the establishment
and development of grain weevil in stored crops. The identification and recognition of pests should
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therefore take place before the grain is taken to silos. This procedure must be quick, efficient, and precise,
which implies a necessity to automate this identification process [2–6].

An effective identification of the effects of grain weevil feeding on stored grain entailed
the designing, manufacturing, and verification of the new, original classification model [7–11].
The commonly recognized separation properties, such as those represented by artificial neural
networks, imply the legitimacy of using them in the process of identifying grain damage caused
by grain weevil [12]. It ought to be emphasized that the source literature provides no examples of
any effective use of neural modeling in the process of identifying internal macro-damage to wheat
caryopsis caused by pests feeding on them. Moreover, there is no scientific knowledge concerning
the determination of the type and level of significance of the representative properties of the infected
wheat grain, which would enable the identification of the negative effects of this pest [13–15].

2. Materials and Methods

2.1. Materials

Grain weevil (Sitophilus granarius L.) (Figure 1) is a winged cosmopolitan beetle from the
Curculionidae family. Although it belongs to the subclass of the winged insects, it is deprived of
volatile wings. It belongs to the group of the most damaging storage pests. Depending on the age of
the individual, the grain weevil’s color ranges from light-brown to black.
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characterized by their high fertility. During one day, a female can lay from one to nine eggs, and 
during its life, can lay about 150 eggs. Usually a typical female lays one egg in one grain, thus 
providing the right amount of food for its offspring. A grain weevil egg has an oval shape, with a 
pointed edge, with a size of 0.65–0.30 mm. The intensity of grain weevil procreation depends on the 
following factors: 

• the air temperature, 
• the air humidity, 
• the amount of available food. 

Becoming a member state of the European Union, Poland was obliged to adopt the mandatory 
standards related to food products as well as the requirements set out by institutions accepting and 
purchasing cereals. These standards also define the methods of assessing the quality of the material 
provided. All these standards can be found in the Commission Regulation No. 687/2008 [RK (EC) 

Figure 1. Grain weevil (Sitophilus granarius L.) in the context of the grain storage process [16].

Young individuals are light-brown, whereas adults are dark. The body length of grain weevils
ranges from 2 to 5 mm. Most often grain weevils hide in small cracks and avoid sunlight. Grain weevils
are characterized by their high resistance to hunger. At a temperature of about 12 ◦C, a grain weevil
can survive 115 days without food. A female grain weevil makes a hole in grain and deposits her egg
inside, and then covers it with an adhesive/a viscous substance mixed with starch coming from grain.
The sealed hole made by the pest is not visible with the naked eye. Grain weevils are characterized by
their high fertility. During one day, a female can lay from one to nine eggs, and during its life, can lay
about 150 eggs. Usually a typical female lays one egg in one grain, thus providing the right amount
of food for its offspring. A grain weevil egg has an oval shape, with a pointed edge, with a size of
0.65–0.30 mm. The intensity of grain weevil procreation depends on the following factors:

• the air temperature,
• the air humidity,
• the amount of available food.

Becoming a member state of the European Union, Poland was obliged to adopt the mandatory
standards related to food products as well as the requirements set out by institutions accepting and
purchasing cereals. These standards also define the methods of assessing the quality of the material
provided. All these standards can be found in the Commission Regulation No. 687/2008 [RK (EC)
687/2008], and they clearly state that the goods delivered to storage facilities should be free of any
storage pests. In the regulation (Official Journal No. 29 item 189) issued in 2007, there is a statement
that the presence of a storage pest disqualifies a given product as being seed that is sellable to markets.
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It is due to the fact (among others) that one of the criteria for assessing the seed quality is the minimum
germination capacity, which is 85% for wheat. In case of grain weevil infestation, this capacity decreases
to as low as 7%.

The research conducted in this study involved four varieties of spring wheat showing signs of
damage caused by grain weevil (Sitophilus granarius L.), namely the following varieties: Torka, Narwa,
Banti, and Symfonia. The empirical material was obtained from two selected plant breeding stations:
(Plant Breeding Strzelce Ltd. 99-307 Strzelce, Poland) and (Agricultural Plant Breeding–Kobierzyce
Seeds Ltd. 55-040 Kobierzyce, Poland) The samples were selected randomly. The characteristics
of the above varieties were prepared on the basis of the data published on the producer’s website
(www.hr-strzelce.pl):

Torka—This kind of wheat belongs to the elite group of wheat that possesses very good flour
baking value. It is characterized by a large 1000 grain mass (45–52 g), good resistance to lodging,
average protein content, good to very good flour yield, very good wholesomeness, and average to
good prolificacy.

Narwa—This variety is characterized by very good baking value, very high protein and gluten
content, 1000 grain mass over 50 g, good shattering and fouling resistance, good wholesomeness, and
early maturation.

Banti—This variety is characterized by high protein content, good baking value, tendency to
ear-sprouting, and average 1000 grain mass.

Symfonia—This variety has a 1000 grain mass of approx. 45 g, as well as high fouling and shatter
resistance (8 in the 9-point scale). Additionally, it is resistant to powdery mildew, blight, leaf and chaff

septaria, and stem base diseases. It is recommended for cultivation all over the country and in the
areas where it is necessary to grow varieties with very good winter hardiness (6.5 in the 9-point scale).

The empirical studies were conducted in the specialist laboratory of the Department of Entomology
of the Plant Protection Institute—the National Research Institute in Poznan (IOR–PIB Poznan). For the
experiments, an appropriate number of beetles were prepared via special breeding. Then, using a
stereoscopic microscope, the males were separated from the females on the basis of the morphological
differences in the structure of the snout and abdomen. The study used 50 polypropylene containers
(height 65 mm, diameter 38 mm, capacity 60 mL), which had a suitable construction enabling air inlet
but prevented the tested pests from getting out of the container. Four hundred randomly selected
caryopses were put into each container, and then 20 pairs of grain weevil beetles were placed inside
(20 males and 20 females). The period of time when the beetles were kept in particular containers was
5, 10, 15, and 20 days. During that time, all the grain weevil individuals were feeding, copulating,
and laying eggs, which in turn developed into larvae. The containers were placed in an incubator in
order to make it possible to take measurements and obtain empirical data at the same time. After the
incubation period of the grain weevils feeding on the caryopses, the samples were cleared of the
beetles and other pollutants. Four hundred caryopses were randomly selected from each sample and
placed in a SKCS 4100 (Single-Kernel Characterization System) Perten Instruments, Sweden appliance.
The scheme of obtaining empirical data is presented in Figure 2:
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The experimental data were saved on the hard drive of the SKCS 4100 appliance, and then collected
and organized/segregated into Microsoft Corporation Excel spreadsheets (in the form of .csv files).
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The empirical data obtained was converted to the training set relevant to the ANN (artificial neural
network) simulator implemented in the commercial package from Statistica v. 10- StatSoft Polska.
The generated training set, essential in the neural modeling process, was then used to generate the
ANN file.

2.2. Method

In order to create the optimal neural model, the following scheme of procedure was put in place
(Figure 3).
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In order to create the classification neural models, a neural network simulator implemented in
Statistica v. 10 package was used [1,18–20]. The most important stage of the ANN generation was the
preparation of the training files containing encoded selected representative properties, constituting
the empirical basis for the classification [20–23]. For this purpose, four numerical input variables
and one nominal output variable were determined, which resulted from the nature of the formulated
scientific problem and represented the characteristic parameters of the process examined. As the input
variables, the following four descriptors were adopted and used, which constituted the basic physical
characteristics of the stored caryopses:

− mass (mg),
− equivalent diameter (mm),
− humidity (%),
− hardness (according to the selected hardness scale).

The values of all the aforementioned physical properties were obtained from 400 caryopses
randomly selected from each sample. The tests were repeated in the following time intervals: 0 day
(control—a combination without pests), and 5, 10, 15, and 20 days from the moment the pest came
into contact with the grain. The data collected and classified in this way was converted to a form of
training set, which was necessary to generate the ANN. The set of the neural models was created in the
Statistica v. 10 program with a simulator implemented in the “Neural Networks” module [20,24–27].

The output variable was encoded in the form of a dichotomous binary nominal variable.
The training set consisted of 1800 randomly selected data, and it was divided proportionally 2:1:1
into training, validation, and test sets. These tests included, respectively, 900, 450, and 450 training
files. According to the procedure adopted, the test set was not used in the network training process,
therefore it was important in the final assessment of the optimal neural model. The structure of the
training file is presented in Table 1.

Table 1. Part of a training file.

No. Mass (mg) Equivalent Diameter (mm) Humidity (%) Hardness Grain Weevil (Yes, No)

1 34.7 3.0 14.4 118.6 yes
2 34.6 3.1 12.8 69.9 yes
3 34.7 2.9 14.3 81.3 no
. . . . . . . . . . . . . . . . . .

1799 34.5 2.8 14.3 60.1 no
1800 34.5 2.7 15.3 86.6 yes
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3. Results and Discussion

A set of 100 different neural topologies was generated. The selection of the neural network typology
at the initial phase was conducted with an automatic designer, which did the experiments on its own
with different network architectures with the use of different learning processes for a given network.
Next, two different types of neural networks were tested for each kind of dataset. It was the parameters
of the given neural network, such as correlation, coefficient of total determination, and quotient of
standard deviations, that determined the selection of the best neural network. Following the selection
of the given network, the process of learning the network was implemented. During this process, based
on the selected algorithm, special attention was put on its ability of approximation and generalization,
based on quality measurements with the lowest root mean square (RMS) error. Also, during this same
process of learning/training, an error curve of both the training set and the valuation set was observed.
In the event that there was an increase in those errors, the training/learning process was stopped
and all the necessary modifications of the network architecture were made by adding or removing
neurons or hidden layers. A change of learning algorithms was also applied. Those actions are aimed
at eliminating the phenomenon of network “overlearning”. Otherwise, the network will not come
up to the expected results. RBF (radial basis function) topology with structure 4:10:1 turned out to be
the best ANN topology generated. Nowadays, RBF networks belong to the category of basic types of
neural networks. These types of networks are most commonly applied in the non-linear approximation
of numerical variables. Additionally, they are applied in cases concerning classification (Bishop [1],
Nabney [4]), where they reconstruct the density function of the distribution of informing variables. The
redial neuron is defined by its core and the parameter called “radius”. The point in n-dimensional
space is defined with N numbers, which precisely corresponds to the number of weighs in the linear
neuron; on this account, the core of the radial neuron is stored in the set of parameters determined in
the software Statistica, also as “weighs” (though when determining common “weigh” activation, only
the distance between the weigh vector and the input signal vector is determined). Radius (or, in other
words, deviation) is stored in the neuron as the so-called threshold [28]. The input layer was composed
of four neurons with a PSP (postsynaptic function), a linear function, and a linear activation function.
The hidden layer was composed of four radial neurons with a radial PSP function and an exponential
activation function. The network output consisted of one neuron with a linear PSP function and a linear
(saturated) activation function, representing a two-state nominal variable [29,30]. The generated neural
model was trained using optimization algorithms implemented in Statistica v. 10 package. The centers
were determined with the k-means method, whereas the deviations were determined with the k-nearest
neighbors method. The output layer was optimized with the pseudo-inverse technique. The structure
of the generated RBF network is presented in Figure 4. Where:

A—input layer: PSP function: linear, activation function: linear saturated function;
B—hidden layer: PSP function: radial activation function–Gauss function;
C—output layer: PSP function: linear saturated function, activation function: linear saturated function;
PSP—postsynaptic potential.

The basic properties of RBF networks are as follows:

− RBFs are one-direction networks;
− RBFs are trained with a “no teacher” technique;
− they have a three-layer architecture: there is an input, hidden (radial) layer, and output layer,
− the declared connections in the network allow only communication between the neurons from

the neighboring layers;
− the input neuron activation functions are of linear nature, the hidden neuron functions are of

nonlinear (radial) nature, and the output neurons are fully linear.

RBF networks are characterized by one hidden layer, a short training process, and a small size
(Figure 4).
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(RBF).

A hidden neuron in these networks performs a function that is changing radially around the
selected center and the assuming non-zero values only in the vicinity of this center. The mathematical
basis for RBF network functioning is T. Cover’s theorem on separability of patterns, which posits that a
complex classification problem cast non-linearly into the high-dimensional space is more likely to be
linearly separable than in the projection into a low-dimensional space.

A standard measure of the quality of the generated neural model is the RMS (root mean square)
error, which is defined in the following way [28,31,32]:

RMSE =

√∑n
i=1(yi − zi)

2

n
, (1)

where

− n—number of cases;
− yi—real values;
− zi—values set with network.

The RMS error values for the generated neural model were as follows:

− 0.2322 for the training file;
− 0.2462 for the validation file;
− 0.2502 for the test file.

The estimation of the level of significance of the ANN input parameters is usually identified
by means of the procedure of the analyzing the neural model’s sensitivity to the input variables.
This procedure is used to assess to what extent a selected input signal affects the identification process
of the input variable. In this way, the information on the rank of the input signal is obtained in the
form of error increase quotient [33,34]. If the error increase quotient is below 1, it means that a given
property has no influence on the grain weevil identification process. In the described case, all input
signals had an error quotient above one. Therefore, it can be concluded that each of the properties
did take part in the identification process of the output signal of the optimal ANN, albeit, each of
them with a different rank. Humidity was in the first place in the ranking of the input signals of the
neural model, obtaining the highest level of the error increase quotient. Such a high rank may prove
that the occurrence of pests causes observable changes in the level of water that a caryopsis contains.
The following ranks (from highest to lowest) are, respectively, mass, equivalent diameter, and hardness
(Table 2).
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Table 2. Sensitivity analysis of the model RBF 4:10:1.

Mass Equivalent Diameter Humidity Hardness

Ratio 1.075 1.022 1.118 1.002
Rank 2 3 1 4

4. Conclusions

The generated RBF-type ANN topology of the 4:10:1 structure was verified in terms of the quality
of the identification process and the possibility of its application to solve the problem of identifying
grain weevil in stored wheat grain. By applying RBF (instead of Multi-Layer Perceptron MLP), it was
observed that the neural network finds approximation that is better suited to the local features of the
dataset but with worse extrapolation. Neural networks with radial base functions were applied to
deal with classification issues, approximation of functions with numerous variables, and in issues
concerning predictions. In those areas of application where sigmoid functions have an established
position, the implementation of the generated ANN model will enable automation of the process
involving recognition of grain weevil occurrence, which will allow to undertake appropriate measures
to protect the stored grain from further losses caused by this pest.

The conclusions resulting from the analysis conducted are as follows:

1. The results of the study demonstrated that artificial neural networks can be used as effective tools
supporting the process of identifying pests feeding on stored wheat grain.

2. The generated RBF-type neural model with the structure 4:10:1 proved to be optimal in the process
of solving problems of grain weevil identification, based on four selected physical properties of
the caryopses.

3. The analysis of the sensitivity of the generated neural model to the input variables demonstrated
the existence of various ranks for individual representative signals. The fact that humidity ranked
the highest indicates a high degree of significance of this variable. The subsequent parameters
are mass, equivalent diameter, and hardness (in this order).

4. The results of the study indicate the possibility of supporting the decision-making processes
taking place during agricultural products storage. In particular, the generated RBF-type (4:10:1)
neural model may constitute the kernel of the IT system supporting the process of identification
of the degree the stored grain is infected by grain weevil.
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