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José Aranha, Teresa Enes, Ana Calvão and Hélder Viana
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Preface to ”Applications of Remote Sensing Data in

Mapping of Forest Growing Stock and Biomass”

Forested areas and stock biomass are of interest in a climatic change scenario, with increasing

carbon emissions. The forest canopy plays an important role in ecosystem services, which can provide

soil protection against erosion, water management cycles, biomass production and carbon stock.

Surveying regular forested areas for biophysical measurement and inventory purposes is

time-consuming and very expensive. In this way, remote sensing has proven to be a very important

and useful tool in the cartography of the forested areas in recent years, for canopy changes analysis

and biophysical variable modelling, such as canopy density, basal area growing and biomass

stocking. Based on satellite image bands, it is possible to derive vegetation indices and allometric

models to estimate forest cover characteristics and variations in the amount of biomass.

Nowadays, several spatial agencies provide regular and free satellite images, with high quality

and resolution, over almost all continents and countries. Due to improvements in technology, which

are followed by price reductions, local image capture is increasingly accessible to researchers, giving

them the autonomy to develop and share a wide variety of projects. Several original manuscripts

from different research teams and countries were submitted to this Special Issue, which led to 13

published papers. With regard to study area, the published papers range from purely forested areas

to agroforestry and urban areas. Regarding remote sensing methods and techniques, both free and

commercial satellite images, and LiDAR images collected using UAV and classified were processed.

José Aranha

Editor
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Abstract: To estimate mangrove biomass at finer resolution, such as at an individual tree or clump
level, there is a crucial need for elaborate management of mangrove forest in a local area. However,
there are few studies estimating mangrove biomass at finer resolution partly due to the limitation of
remote sensing data. Using WorldView-2 imagery, unmanned aerial vehicle (UAV) light detection
and ranging (LiDAR) data, and field survey datasets, we proposed a novel method for the estimation
of mangrove aboveground biomass (AGB) at individual tree level, i.e., individual tree-based inference
method. The performance of the individual tree-based inference method was compared with the
grid-based random forest model method, which directly links the field samples with the UAV LiDAR
metrics. We discussed the feasibility of the individual tree-based inference method and the influence
of diameter at breast height (DBH) on individual segmentation accuracy. The results indicated that
(1) The overall classification accuracy of six mangrove species at individual tree level was 86.08%.
(2) The position and number matching accuracies of individual tree segmentation were 87.43% and
51.11%, respectively. The number matching accuracy of individual tree segmentation was relatively
satisfying within 8 cm ≤ DBH ≤ 30 cm. (3) The individual tree-based inference method produced
lower accuracy than the grid-based RF model method with R2 of 0.49 vs. 0.67 and RMSE of 48.42 Mg
ha−1 vs. 38.95 Mg ha−1. However, the individual tree-based inference method can show more detail
of spatial distribution of mangrove AGB. The resultant AGB maps of this method are more beneficial
to the fine and differentiated management of mangrove forests.

Keywords: AGB estimation and mapping; mangroves; UAV LiDAR; WorldView-2

1. Introduction

Mangroves have attracted considerable attention due to their unique morphological characteristics
and diverse eco-environmental service functions [1]. These services include coastal protection,
biodiversity maintenance, and carbon sequestration [2–5]. The organic carbon in mangrove forests
per unit area is four times higher than that of other terrestrial forest ecosystems [6]. Mangroves are
therefore considered a strong candidate for the United Nations Framework Convention on Climate
Change (UNFCCC), the payments for ecosystem services (PES) program [7], and the policymaking
and implementation in blue carbon. However, all these initiatives require accurate biomass and
carbon stock estimations. The aboveground biomass (AGB) of mangroves is one of the fundamental

Forests 2019, 10, 871; doi:10.3390/f10100871 www.mdpi.com/journal/forests1
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parameters describing a mangrove ecosystem’s functioning and is essential for determining its storage
of carbon. Accurate estimate of AGB is critical for mangrove monitoring and management. To build a
beautiful China and protect the ecological marine environment, local governments of coastal areas
in China have been asked to fully implement the bay chief system (A leader responsible system in
governance of bays began in 2017, which was proposed by the State Oceanic Administration, China.)
and conduct pilot work on carbon sinks in marine ecosystems. Strengthening the research on mangrove
biomass will help to support this work.

Biomass estimation methods can be categorized into direct and indirect methods. The direct
approach is a traditional field harvesting method. Among the indirect methods, the allometric
estimation is the most common approach and has become a standard tool for biomass prediction [8].
The basic theory of allometric relationships suggests that in many organisms, the growth rate of one
part of an organism is proportional to the growth rate of growth of another [9]. Thus, researchers have
often used allometric regression equations based on available and measurable woody plant parameters
such as stem diameter, tree height, or crown diameter to estimate biomass [10,11].

To improve the accuracy of mangrove biomass estimation and mapping, more remote sensing data
and methods have been tested and applied to mangroves [4,12–20]. Very high resolution images, such
as WorldView-2 (Digitalglobe, Westminster, CO, USA), GeoEye (GeoEye, Herndon, VA, USA), IKONOS
(Spacing Imaging, Herndon, VA, USA), QuickBird (Digitalglobe, Westminster, CO, USA), digital
photographs, and light detection and ranging (LiDAR) point cloud data, can be used for extracting
individual trees [21–26], as well as the accurate estimation of AGB or carbon stocks at the individual
tree level [27–34]. Yin and Wang (2019) used UAV LiDAR to study the individual tree detection and
delineation (ITDD) of mangroves and proposed a rule-of-thumb that the spatial resolution should be
finer than one-fourth of the crown diameter for ITDD [26]. To date, to the best of our knowledge, no
study has discriminated mangrove species and estimated mangrove biomass in a finer resolution, such
as individual tree or clump level. In addition, despite the wide use of remote sensing techniques to
obtain and retrieve mangrove information, there is no general consensus approach [35]. Because of the
ability to provide spectral information, optical images are considered to be very useful in distinguishing
plant species [36]. While, LiDAR data can provide more information about forest structure [32,33].
Therefore, the integration use of very high spatial resolution WorldView-2 imagery and UAV LiDAR
data may provide the potential for mangrove biomass estimation and mapping at finer resolution.

The overall aim of this study was to use optical remote sensing, UAV LiDAR, field survey
data sets, and allometric equations to estimate and map the AGB of mangroves in Qinglan harbor,
Hainan province, China. In this study, we aimed to (1) compare the merits and demerits of AGB
estimation based on the newly proposed individual tree-based inference method and the grid-based
RF model method, (2) examine the accuracies of AGB estimation for two methods, and (3) map the
AGB of mangroves.

2. Materials and Methods

2.1. Study Site

The study was conducted in the core area of the Qinglan Harbor Provincial Nature Reserve,
located on the northeastern part of Hainan Island, China (Figure 1). The Qinglan Harbor Nature
Reserve is the reserve that has the most abundant mangrove species in China, including 24 true
mangrove species and 10 semi-mangrove species, which account for 88.89% and 100% of the total
number of true- and semi-mangrove species in China, respectively. In China, mangroves in the Qinglan
Harbor Nature Reserve are distributed with the tallest plants, the oldest forests, the most complete
community preservation, and many rare and endangered mangrove species. The total mangrove area
of the Qinglan Harbor Nature Reserve is about 835.5 ha.
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Figure 1. Location of the study area and the sampling plots.

The study area was 386.32 ha, with a mangrove area of 209.99 ha. The landforms are mainly sea
alluvial plain, lagoon plain, sea platform, and mangrove beach. The soil type is mostly alluvial soil
with a smooth soil texture (silty clay). The mean annual temperature is about 24.1 °C, the average
annual rainfall is around 1650 mm and the average tidal range is about 0.89 m. The salinity of its water
ranges between 3‰ and 25‰.

2.2. Field Data Collection

The field surveys were conducted from July to September 2018 and March 2019. A total of 45
plots were surveyed. The base plot area was 10 × 10 m, which was expanded up to 600 m2 depending
on the specific field situation. All individual trees with a diameter at breast height (DBH) of ≥1.5cm
and height that was ≥1.5 m within the plots were counted and measured for species, number, height,
stem girth at breast height (GBH, cm; DBH = GBH/π), and crown cover. A real-time kinetic global
positioning system (RTK-GPS) was used to measure the geographical position of each plot and most
of measured trees. A total of 3832 individual trees and 13 species (Bruguiera sexangula (Lour.) Poir.,
Excoecaria agallocha Linn., Rhizophora apiculata Blume, Aegiceras corniculatum (Linn.) Blanco, Kandelia
candel (Linn.) Druce, Xylocarpus granatum Koenig, Ceriops tagal (Perr.) C. B. Rob., Lumnitzera racemosa
Willd., Heritiera littoralis Dryand., Hibiscus tiliaceus Linn., Sonneratia apetala Buch-Ham., Sonneratia alba J.
Smith, Sonneratia ovata Backer) were recorded in the 45 field plots. 68.89% of the plots had at least 3
types of mangrove species. The mangrove forest was dominated by B. sexangula. The tree density of B.
sexangula was highest among all mangrove species, which was 1.5 times and 2.0 times higher than that
of E. agallocha and L. racemosa, respectively. The summary of the community structure of the mangrove
forest in Qinglan Harbor Nature Reserve was presented in Table 1.
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Table 1. Summary of the community structure of the mangrove forest in 45 sample plots.

Species Count
Density

(Individuals·100 m−2)
RD
(%)

F
(%)

ReF
(%)

BA
(m2)

Dominance
(m2 ha−1)

RDo
(%)

IVI

B. sexangula 1063 8.93 27.74 67.31 20.02 16.514 13.877 46.75 31.50
E. agallocha 694 5.83 18.11 71.11 21.15 4.462 3.750 12.63 17.30
H. tiliaceus 250 2.10 6.53 35.56 10.58 1.371 1.152 3.88 7.00
H. littoralis 18 0.15 0.47 4.44 1.32 1.187 0.997 3.36 1.72
X. granatum 98 0.82 2.56 31.11 9.25 0.887 0.745 2.51 4.77
R. apiculata 402 3.38 10.49 35.56 10.58 3.938 3.309 11.15 10.74
A. corniculatum 469 3.94 12.24 8.89 2.64 0.655 0.550 1.85 5.58
K. candel 4 0.03 0.10 6.67 1.98 0.009 0.007 0.03 0.70
L. racemosa 543 4.56 14.17 28.89 8.59 1.516 1.274 4.29 9.02
C. tagal 112 0.94 2.92 2.22 0.66 0.213 0.179 0.60 1.39
S. ovata 50 0.42 1.31 13.33 3.97 1.453 1.221 4.12 3.13
S. apetala 48 0.40 1.25 13.33 3.97 1.859 1.562 5.26 3.49
S. alba 81 0.68 2.11 17.78 5.29 1.259 1.058 3.57 3.66

Total 3832 32.20 100.00 336.20 100.00 35.322 29.682 100.00 100.00

BA is basal area, BA =
∑

(DBH2 × π)/(4 × 10,000); RD is relative density; F is frequency, which calculated as: F
= number of sample plots occurring in some kind of plant/total number of sample plots × 100; ReF is relative
frequency; RDo is relative dominance; IVI is importance value index, IVI = (relative density + relative frequency +
relative dominance)/3 [37].

The AGB in each field plot was estimated by the allometric equation method. The selection
principles were as follows: (1) Domestic models take precedence over foreign models; (2) the closer the
study area of the model to Hainan, the more preferred it is; (3) the closest forest age takes precedence;
and (4) species with similar DBH are preferred. When no specific allometric equation was available, a
common allometric equation was used (Table 2). We first calculated the AGB of each tree using the
species-specific allometric equations presented in Table 2 and then summed the AGBs in each field
plot. To obtain the AGB density for each plot, we divided the summed AGB of a plot by the plot’s area.

Table 2. Allometric equations for mangrove species used in this study.

No. Species Allometric Equations References

1 B. sexangula AGB = 0.168 × DBH2.42 [38]
2 E. agallocha LogAGB = 1.0996 × logDBH2 − 0.8572 [39]
3 R. apiculata AGB = 0.235 × DBH2.420 [40]
4 C. tagal AGB = 0.1885 × DBH2.3379 [38]
5 L. racemosa AGB = 0.1023 × DBH2.50 [41]
6 A. corniculatum LogAGB = 1.496 + 0.465 × log (DBH2 × H) [42]
7 X. granatum AGB = 0.0823 × DBH2.5883 [38]
8 K. candel LogAGB = 2.814 + 1.053 × log (DBH2 × H) [42]

9 Sonneratia spp. (S. ovata, S.
apetala, and S. alba) AGB = 0.258 × DBH2.287 [43]

10 Others (H. littoralis, H. tiliaceus) AGB = 0.251 × ρ × DBH2.46 [44]

2.3. Remote Sensing Data and Processing

2.3.1. WorldView-2 Imagery

The WorldView-2 optical images were acquired on 5 October 2018. They included a 0.5 m
panchromatic band and eight 2.0 m multispectral bands.

First the images were radiometrically corrected. Then, the multispectral images were
pan-sharpened by the panchromatic image using the NNDiffuse tool in ENVI 5.3 (Harris Geospatial,
Melbourne, FL, USA). Finally, this pan-sharpened imagery was co-registered to the UAV LiDAR data.
The precision was controlled within 0.5 pixels. The mangrove extent of the study area was extracted
using this processed imagery. The detail process of how to extract mangrove extent using high spatial

4
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resolution imagery can refer to our previous work [45]. The main flowchart of remote sensing data
processing and AGB estimation was presented in Figure 2.

 
Figure 2. Workflow of estimating mangrove aboveground biomass (AGB). Case 1 denotes the mangrove
AGB estimation at individual tree level, namely the individual tree-based inference method. Case 2
denotes the common model-based AGB estimation at grid level, namely the grid-based random forest
model method, which is used as a benchmark in this study.

5
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2.3.2. UAV LiDAR Data and Mangrove Canopy Height Model Production

The UAV LiDAR data were collected in March 2018 using a Velodyne VLP-16 puck sensor
(Velodyne LiDAR, San Jose, CA, USA) with a laser wavelength of 903 nm. The sensor can emit 300,000
points per second with an accuracy of 3 cm. The average point density was 94 points/m2. The flight
elevation was 52 m with a speed of 5 m/s. An RTK-GPS was simultaneously used to obtain the base
station position of the UAV LiDAR system with centimeter-level accuracy.

The raw LiDAR data were first computed using aerial triangulation algorithm to obtain accurate
position of each LiDAR point cloud. Then, the noise and outlier points of the LiDAR data were filtered
using LiDAR360 software (GreenValley, Beijing, China). Subsequently, the point clouds were classified
as non-ground and ground points. The ground points were used to produce the digital elevation
model (DEM) using the triangulated irregular net (TIN) interpolation method. Both the ground points
and non-ground points were utilized to generate the digital surface model (DSM) using the inverse
distance weighted (IDW) interpolation method. The canopy height model (CHM) was produced
through subtracting the DEM from the DSM [5]. Finally, the point clouds were normalized using the
DEM subtraction method [26] and masked by the mangrove extent, which was produced from the
WorldView-2 imagery.

2.4. Mangrove Species Classification and Individual Tree Detection

The mangrove classification was conducted in the R language platform using random forest (RF)
algorithm. RF, proposed by Leo Breiman (2001) [46], is an integrated machine learning algorithm based
on decision trees. The bootstrap re-sampling is used to construct the decision tree model by randomly
sampling from the original sample set. The final result is obtained by voting on the prediction of
multiple decision trees. The RF algorithm can be used to classify remote sensing images with complex
spatial distribution or to identify multiple data of different statistical distributions and scales.

From the spectral curves of different mangrove species in Figure 3 and the 0.5 m pan-sharpened
WorldView-2 imagery, we found that S. ovata, S. apetala, and S. alba communities and the mixed
community of S. ovata and A. corniculatum have similar appearances, textures, and spectral features
overall, which means they are difficult to separate. In addition, S. ovata, S. apetala, and S. alba belong to
the same genus of Sonneratia. Therefore, these three species were merged into a class of Sonneratia spp.
H. littoralis and K. candel were hard to discriminate because of their small coverage areas. C. tagal was
usually mixed with L. racemosa in the study area. A. corniculatum and X. granatum were companion
species growing with dominant species, so it was difficult to identify them. Thus, the mangrove species
in the study area were categorized into six types: B. sexangula (BS), E. agallocha (EA), Sonneratia spp.
(SS, including S. alba, S. apetala, and S. ovata), R. apiculata (RA), H. tiliaceus (HT), and L. racemosa (LR).

With the development of remote sensing technology, individual tree extraction based on very
high-density point clouds is becoming possible [19,26,47–54]. Using the marker-controlled watershed
segmentation (MCWS) algorithm [55], Yin and Wang (2019) well detected and delineated individual
mangrove tree [26]. Their result indicated that the spatial resolution of CHM should be finer
than one-quarter of the crown diameter (CD) in order to correctly delineate crown boundaries and
characterize the crown shapes. In the field survey, we found that the crown diameters of a large
amount of L. racemosa and low B. sexangula ranged from 1.0 to 1.5 m. Therefore, the individual tree
was detected based on a 0.25 m spatial resolution CHM, which obtained from the point cloud data of
UAV LiDAR.
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Figure 3. Spectral curves of different mangrove species.

After mangrove individual tree detection, a total of 6800 samples of the six mangrove species
types were randomly collected based on our field survey with a uniform distribution in the study
area. These samples all lay in homogeneous and monoculture communities. Of the 6800 patches,
70%, namely, 4760, were used as training samples and the other 30%, namely, 2040, were used as
independent validation samples.

For the RF classification model, the parameter ntree was set to 1000 and mtry was set to the default
value

√
mtry (mtry denotes the number of predictor variables input). We have tested the values of 500,

600, 700, 800, 1000, 1500, and 2000 for the ntree parameter, and found that when ntree reached 1000 with
mtry using

√
mtry, the error become convergent. For the detail tuning process of the ntree parameter,

refer to the study of Pham and Brabyn (2017) [18]. Because the default value was also widely used in
previous studies [56], we directly utilized this default setting.

2.5. AGB Estimation

Based on the mangrove species classification map at individual tree level and the obtained tree
heights and crown diameters from the UAV LiDAR data, we could divide the mangrove trees into
five strata for each species. The nature break method in ArcGIS (ESRI, Redlands, CA, USA) was used
for the stratification. Because we have measured 3832 trees and obtained their heights, crown cover,
and species, we first classified these trees into the above five strata for each species. Subsequently,
we summed the AGB and the crown cover area according to the six mangrove species and the five
tree height levels (Equation (1)). We divided the summed AGB by the corresponding summed area
to obtain an AGB density for each species at each height level. Finally, these stratum AGB density
values were applied to each individual tree and clump based on its species and height level to produce
a mangrove AGB map for this study area (case 1, Figure 2). The proposed AGB estimation method was
named individual tree-based inference method.

AGBS−h =

∑n
i AGBs−h

i∑n
i Areas−h

i

(1)

where AGBS−h denotes the AGB density of s species at h height level, AGBs−h
i and Areas−h

i respectively
denote the AGB and the area of the ith tree, which belongs to s species and h height level.

In this study, we also estimated the mangrove AGB using the common model-based method at
grid level (case 2, Figure 2), which was used as a benchmark in this study. To construct the inversion
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model, the random forest algorithm was employed due to the good performance of RF in biomass
prediction [18,46]. The size of the grid is 10 × 10 m, which is the same to the minimum size of field
plots. Prior to fitting model, we extract 52 LiDAR metrics for each field sample plot and each 10 × 10
m grid. We first linked the field estimated AGB with these LiDAR metrics and selected 11 optimal
metrics (presented in Table 3). Subsequently, we constructed a prediction model based on the 11 LiDAR
metrics. For the RF regression model, ntree was set to 1000 and mtry was set to the default value

√
mtry.

Finally, we applied this model to all grids and obtained the mangrove AGB map at grid level. This
benchmark method was named the grid-based random forest mode method.

Table 3. List of the selected light detection and ranging (LiDAR) metrics.

LiDAR Metrics Explanation

CC1.3 Canopy cover above 1.3 m.
HSD Standard deviation of heights.

D01 The number of canopy return points in the 1th slice relative to the total points. There
are 12 density metrics in this study from 0 to 24 m with an interval of 2 m

HVAR Variance of heights.
HIQ Interquartile distance of percentile height.
H05 The 5th percentile of height.
H10 The 10th percentile of height.
H80 The 80th percentile of height.
H90 The 90th percentile of height.
H95 The 95th percentile of height.

CTHK Canopy thickness.

2.6. Accuracy Assessment

2.6.1. Validation Mangrove Classification

The producer accuracy, user accuracy, and overall accuracy were employed to assess
mangrove species classification accuracy based on a confusion matrix using the 2040 independent
validation samples.

2.6.2. Validation Biomass Result

The accuracy of the biomass prediction was assessed using the coefficient of determination (R2),
and root mean square error (RMSE) between field estimated and predicted values.

For finer resolution AGB estimation, we used the 45-field estimated AGBs as reference data to
assess the predicted AGBs. For the grid AGB estimation, namely, the benchmark case, we employed
the 10-fold cross-validation method to validate the predicted AGBs. This cross-validation method is
also based on the 45-field estimated AGBs.

2.6.3. Individual Tree Detection

The actual position of the trees was determined by visual interpretation of the UAV LiDAR point
clouds. The average point spacing of the UAV LiDAR point clouds is 0.16 m. So, in most cases,
individual tree or clump could be identified by inspecting the point clouds from different angles [57–59].
When compare the visual interpretation trees and clumps with the machine segmentation trees and
clumps, we could obtain accuracy from spatial matching aspect. Because the visual analysis and
discrimination of individual tree and clump cannot avoid arbitrary and subjective issues. We also
compared the number of actual mangrove trees within a field plot with the number of machine
segmentation trees in the field plot. Therefore, the accuracy of individual tree detection was assessed
by above two aspects: spatial position and number.

For the spatial position aspect, we overlaid the LiDAR point clouds and the segmentation layer to
identify errors. The position of each segmented tree was established as the location of the highest pixel
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in the set of cloud points or pixels that make up the crown [58]. The matching procedure pairs the
closest observed tree location within a given radius for any segmented tree and then eliminates all
the non-minimal pairs with the same observed tree [58]. The search radius in this study was set to
2 m. The mismatch types included omission (OM) and commission (CM) cases. The two mismatch
cases were added up to compose the total number of mismatch (TNM, Equation (2)). Then, the total
accuracy rate of segmentation (TAR) could be obtained by a ratio of the number of right segmented
trees to the total number of segmented trees (TNS, Equation (3)) [58,60].

TNM = OM + CM (2)

TAR = (TNS − TNM)/TNS × 100 (3)

where, TNM denotes the total number of mismatches, TAR denotes the total accuracy rate of tree
segmentation, TNS denotes the total number of segmented trees, OM denotes omission cases, and CM
denotes commission cases.

For the number aspect, the number of trees (Ni) surveyed in a field plot was used as observed
value. The number of individual trees (ni) derived from the individual tree segmentation in the same
field sample plot was used as predicted value. Then, the ratio of the difference between the two values
was used to evaluate the number accuracy. The calculation formula is as follows:

Di = (ni − Ni)/Ni (4)

DA = (
∑

M|Di|≤0.4/N) × 100 (5)

where Di is deviation degree, DA is the accuracy of the summary metric, M is the number of plots that
have different segmentation results, and N is the total number of plots. Di > 0 denotes over-segmentation
and Di < 0 denotes under-segmentation. When |Di| > 0.4, the deviation of segmentation is large
and the accuracy is poor. When 0.3 < |Di| ≤ 0.4, the accuracy of segmentation is acceptable. When
0.2 < |Di| ≤ 0.3, the accuracy of segmentation is moderate. When 0.1 < |Di| ≤ 0.2, the segmentation
accuracy is good. When |Di| ≤ 0.1, the segmentation accuracy is very good and individual tree can be
accurately identified.

3. Results

3.1. Individual Mangrove Tree Extraction

The mismatching statistic of visual interpretation and segmentation results showed that the total
accurate rate of segmentation position in 45 sample plots was 87.43% (Table 4).

Table 4. Accuracy assessment of individual tree segmentation in spatial position aspect. TA denotes
the total accuracy of individual segmentation.

Number of Mismatches
Number of Segmentations TA

Type Commission Omission Sum

Number 221 47 268
2132 87.43%Ratio (%) 10.37 2.2 12.57

Table 5 shows the accuracy of the number of individual tree segmentation. The accuracy of all
tree species except A. corniculatum tree was 57.78% and that of all tree species was 51.11% (Table 5).
Because A. corniculatum trees in the study area were small, appearing as lower wood and clustering,
this was not conducive to the segmentation of individual tree based on crown.
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Table 5. Accuracy assessment of individual tree segmentation in number aspect. OS: over-segmentation,
US: under-segmentation.

Scenario Item |Di| ≤ 0.1 0.1 < |Di| ≤ 0.2 0.2 < |Di| ≤ 0.3 0.3 < |Di| ≤ 0.4 |Di| > 0.4 Total DA

All species except
A. corniculatum

No. plots 5 7 5 9 19 45
Percentage (%) 11.11 15.56 11.11 20.00 42.22 100.00 57.78
No. OS plots 1 1 0 0 4 6
No. US plots 4 6 5 9 15 39

All species

No. plots 4 7 4 8 22 45
Percentage (%) 8.89 15.56 8.89 17.78 48.89 100.00 51.11
No. OS plots 1 1 0 0 3 5
No. US plots 3 6 4 8 19 40

There were 5 or 6 cases with over-segmentation and deviations greater than 0.4 among 45 samples,
of which more than 75% had an average DBH value larger than 20 cm. The number of samples with
under-segmentation and deviations greater than 0.4 in 45 samples was 15–19, and in about 80% of
these samples, the average DBH value was less than 10 cm. This means that when DBH < 10 cm, the
individual tree segmentation was more likely to have under-segmentation and a large deviation value.

3.2. Finer Resolution Mangrove Classification

Table 6 shows the classification accuracy of mangrove species at individual tree level. Table 7
describes the characteristics of tree patches in different mangrove species in the whole study area.
Figure 4 presents the thematic map of the mangrove species.

Table 6. Accuracy of mangrove species classification at individual tree level.

Predicted
Producer Accuracy (%) User Accuracy (%)

BS EA HT LR RA SS Sum

O
bs

er
ve

d

BS 470 14 1 3 18 4 510 92.16 82.89
EA 37 158 15 3 13 0 226 69.91 74.53
HT 6 26 219 2 4 5 262 83.59 90.12
LR 3 7 1 321 11 11 354 90.68 93.31
RA 51 7 6 10 165 10 249 66.27 74.66
SS 0 0 1 5 10 423 439 96.36 93.38

Sum 567 212 243 344 221 453 2040 Overall accuracy = 86.08%

BS: B. sexangula; EA: E. agallocha; HT: H. tiliaceus; LR: L. racemosa; RA: R. apiculata; SS: Sonneratia spp.

Table 7. Characteristics of tree patch in different mangrove species in the whole study area.

Species
Mean Tree
Height (m)

Patch Number
Mean Area of
Patches (m2)

Total Area (ha)
Percentage of
Total Area (%)

BS 8.00 117,413 6.26 73.53 35.01
EA 5.03 76,348 5.21 39.81 18.96
SS 7.84 42,738 6.03 25.78 12.28
RA 6.90 41,450 6.24 25.88 12.32
HT 5.85 40,334 6.19 24.95 11.88
LR 3.78 50,467 3.97 20.05 9.55

Sum 6.43 368,750 5.69 209.99 100.00
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Figure 4. Classification and distribution map of mangroves in the study area.

The overall classification accuracy was 86.08% with the kappa coefficient of 0.83. The majority of
mangrove species could be well discriminated with the producer and user accuracies higher than 80%,
except for E. agallocha and R. apiculata. The accuracies of the two species ranged from 66.27% to 74.66%.

Table 7 portrays that B. sexangula and Sonneratia spp. were the two highest mangrove species
(mean height 8.00 and 7.84 m, respectively) in the study area followed by R. apiculata (mean height
6.90 m). The lowest tree species is L. racemosa. Table 7 also indicates that B. sexangula and E. agallocha
covered 35.01% and 18.96% of the study area, respectively, ranking first and second. The other four
species each covered approximately 10% of the study area.

3.3. AGB Estimates and Prediction

The resultant AGB density values for each species at five height levels were presented at Table 8.
By applying these AGB density values to individual tree and clump, which have the species and
height attributes derived from the UAV LiDAR and WorldView-2 data, the AGB of each patch and
the mangrove AGB map of the study area at individual tree level could be obtained. The RF model
based on 10 × 10 m grids and LiDAR metrics was used as benchmark and to predict the AGB. Figure 5
delineates the field estimated AGBs versus the predicted AGBs with the accuracy metrics.
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Table 8. AGB density of different mangrove species in five height levels (Height: m; AGB: Mg ha−1).
The division of five height levels for each species is based on all this type of trees using the nature
break method.

Level 1 Level 2 Level 3 Level 4 Level 5

BS
Height <5.54 5.54–7.48 7.48–8.91 8.91–10.94 10.94–19.21
AGB 27.03 77.99 112.32 261.87 363.65

EA
Height <3.61 3.61–4.77 4.77–5.89 5.89–7.51 7.51–15.77
AGB 16.62 36.53 45.25 58.53 71.04

HT
Height <4.77 4.77–6.34 6.34–8.17 8.17–10.82 10.82–19.53
AGB 30.93 48.92 78.49 95.27 174.47

LR
Height <3.25 3.25–4.33 4.33–5.25 5.25–6.07 6.07–8.81
AGB 13.19 16.76 23.27 30.58 38.08

RA
Height <5.64 5.64–7.46 7.44–9.46 9.46–12.15 12.15–20.20
AGB 61.47 110.60 191.81 245.74 270.73

SS
Height <5.92 5.92–8.85 8.85–11.33 11.33–14.20 14.20–21.85
AGB 50.14 145.83 465.34 654.25 747.58

  

(a) (b) 

Figure 5. Accuracy comparison of AGB between the field estimated and predicted values. (a): Case 1,
individual tree-based inference method. (b): Case 2, grid-based RF model method.

The R2 of the individual tree-based inference method is 0.49 with an RMSE of 48.42 Mg ha−1.
While, the benchmark, the grid-based RF model method, produced a higher R2 of 0.67 and a lower
RMSE of 38.95 Mg ha−1. Compared with field-estimated AGB, the maximum deviation value of AGB
derived from the individual tree-based inference method was 194.01 Mg·ha−1, and the minimum
deviation was 1.93 Mg·ha−1. The AGB density of the whole study area calculated from the individual
tree-based inference method was 119.34 Mg·ha−1, which was lower than the AGB density produced
from the grid-based RF model method (148.97 Mg·ha−1). The results show that it is feasible to use
the proposed individual tree-based inference method for mangrove AGB estimation in this relatively
complex mangrove forest.

3.4. Spatial Distribution of Mangrove AGB

The comparison of the resultant AGB maps derived from the individual tree-based inference
method and the grid-based RF model method are presented in Figure 6. According to above accuracy
assessment of the two methods, the spatial distribution of the mangrove AGB in the whole study
area can be better represented by the grid-based RF model method based on LiDAR metrics than the
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individual tree-based inference method. While, the AGB map derived from the latter method was able
to portray the AGB distribution at individual tree level for each mangrove species.

 
Figure 6. AGB distribution maps of the study area produced from individual tree-based inference
method (left) and the grid-based random forest (RF) model method (right).

The two mangrove AGB maps both show that the mangrove AGB hot spots lie in the southwest
and middle of the study area, while the AGB cold spots lie in the southeast and north of the study area
(Figure 6). There are also several conspicuous differences between these two maps. First, the low and
middle AGB areas of the left map is overall lower than the low and middle AGB areas of the right map
with one level difference. Second, the very high AGB areas (>300 Mg ha−1) are more obvious in the left
map and cover larger area than those in the right map. Third, the AGB values in the left map are more
heterogeneous than the AGB values in the right map.

Figure 7 portrays the AGB maps of different mangrove species, which were produced by the
individual tree-based inference method. The AGB of B. sexangula showed obvious concentrated
distribution characteristics in space with a range of 112.32 to 363.65 Mg ha−1. E. agallocha spread out
the study area with middle AGB (36.53–58.53 Mg ha−1) accounting for the largest percentage. The
AGB of L. racemosa was no more than 40 Mg ha−1 due to its small individuals and represented disperse
distribution. Sonneratia spp. had the largest AGB value in the study area, which was mainly distributed
in fringe areas to water.
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Figure 7. AGB distribution maps in different mangrove species determined from the individual
tree-based inference method. BS: B. sexangula; EA: E. agallocha; HT: H. tiliaceus; LR: L. racemosa; RA: R.
apiculata; SS: Sonneratia spp.

4. Discussion

4.1. Effect of Mangrove DBH on Individual Tree Segmentation

To explore the relationship between the precision of individual-tree segmentation and the size of
the mangroves, the measured DBHs in 45 samples were graded in two-centimeter intervals, and the
maximum, minimum, and average DBH values in each sample were determined. Then, the Pearson
correlation analysis between the DBH classification and deviation of individual-tree segmentation was
completed (Table A1, Appendix A).

The relationship between the DBH and the deviation was as follows: (1) The relationship between
DBH and the deviation degree of individual-tree segmentation is relatively complex. Taking 14 cm as
the boundary, when DBH < 14 cm, the deviation degree was negatively correlated with DBH, i.e., the
deviation degree increased with the decrease in DBH. When DBH >14 cm, the deviation degree was
positively correlated with DBH, and the deviation increased with the increase in DBH. This indicates
that the accuracy of individual-tree segmentation decreased with the increase in DBH. When DBH < 8
cm, it was significantly negatively correlated with the DBH and the deviation, and when DBH > 30 cm,
the correlation coefficient reached the maximum (0.799), it means that the accuracy of individual-tree
segmentation decreased considerably. The variation of the correlation coefficient also shows that
the accuracy of the segmentation number was relatively ideal within 8 cm ≤ DBH ≤ 30 cm. (2) The
deviation degree has a moderate positive correlation with the maximum DBH and average DBH, but
has little correlation with the minimum DBH. This means that the maximum and average DBHs are
more likely to affect the accuracy of individual-tree segmentation.
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4.2. Comparison of the Individual Tree-Based Inference Method and the Grid-Based RF Model Method

Concerning to AGB estimation accuracy, the grid-based RF model method was relatively higher
than the individual tree-based inference method. This may be due to the fact that the former had
taken fully into account and selected a large number of vegetation indicators reflecting mangrove
biomass information.

In terms of mangrove AGB mapping, the grid-based RF model method can be well compared
with the field AGB due to the same size of resample grids and field plots. However, whether this grid
size is a more accurate AGB mapping method requires more tests and comparison of different sizes of
resample grid. The individual tree-based inference method can well reflect the spatial distribution
of AGB at different heights for mangrove species, and it is also more beneficial to managers to find
problems. From the workflow of this study (Case 1, Figure 2) and the method Section 2.5, we could find
that the proposed inference method is simple and it is easy to repeat this method in other mangrove
forests or fields.

The results of the detailed comparison between the two AGB estimation methods are shown
in Table 9. Although the individual tree-based inference method is considered to provide finer
individual-tree information, but the current CHM-based individual tree segmentation still has
insurmountable defects. For example, many lower and smaller trees are obscured by the upper
tree crown and cannot be effectively identified. In addition, clump mangrove species, such as L.
racemosa, cannot be well distinguished, too. These limitations inevitably reduce the accuracy of the
individual-tree segmentation and then pull down the overall estimation accuracy of the AGB.

Table 9. Comparison of the individual tree-based inference method and the grid-based RF
model method.

Individual Tree-Based Inference Method Grid-Based RF Model Method

M
er

it
s

(1) The AGB is extrapolated on the basis of species,
height stratification. The precise tree height can be
obtained from LiDAR point cloud data.
(2) Finer estimation and mapping of biomass can be
conducted on the tree scale, which is more conducive to
accurate and differentiated management.
(3) Producing large amount of data and detail expression,
so it is suitable for application in management or
management decision-making in small or specific areas.

(1) Using the RF selection of LiDAR indexes, the
relationship of AGB = f (LiDAR indexes) is
constructed, and the equal area extrapolation of
sample-plot AGB is conducted.
(2) The method is relatively mature, and it is the
popular method for AGB estimation and
mapping at present.
(3) The amount of data produced is moderate, the
operation speed is fast, and it is suitable for
application in government decision-making at
the regional level.

D
em

er
it

s

(1) The extrapolation of AGB lacks a strictly
mathematical model. And using tree height stratification
to extrapolate AGB, it implies a premise that there is an
internal relationship between tree height and AGB, but
how this relationship is still not clear.
(2) Owing to the survival competition of cluster
mangroves, the individuals may tend to have taller tree
height, but not necessarily have larger DBH. The AGB
estimated by species-specific allometric models based on
DBH is also not necessarily suitable for the AGB
estimation based on height stratification.
(3) Because the individual tree segmentation is mainly
based on the CHM layer, the AGB of the lower wood
layer under the CHM layer may be ignored.

(1) The AGB extrapolation method is affected by
the distribution details of gaps or non-trees in
sample plots.
(2) AGB estimation based on LiDAR indices focus
on the external structural characteristics of plants,
such as tree height, and crown width, while
neglecting the inherent characteristics of plants,
such as wood density, which affects the accuracy
of AGB estimation.
(3) This extrapolation is not conducive to the fine
expression of AGB at the mangrove plant type
and individual tree level.

C
om

m
on

gr
ou

nd

The initial AGB values for extrapolation depend on the estimation of species-specific allometric models in the
field survey.
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4.3. AGB Comparison with Mangroves in Other Areas

The mangroves in the study area had an AGB value of 82.088–209.520 Mg·ha−1. Compared with
the mangrove AGB in other parts of the world, the AGB of B. sexangular-dominated forest is 204.933
Mg·ha−1, lower than the value of 279.00 Mg·ha−1 in Indonesia [61]. The AGB of E. agallocha-dominated
forest is 82.088 Mg·ha−1, higher than the value of 14.93 Mg·ha−1 for pure E. agallocha forest in India
(Central Sundarbans) [62]. The AGB of Sonneratia spp.-dominated forest is 277.201 Mg·ha−1, higher
than the value of 169.61 Mg·ha−1 in India (Western Sundarbans) [62], the value of 22.30 Mg·ha−1 in
China (Guangdong, Futian) [63] and the value of 189.37 Mg·ha−1 in China (Guangdong, Leizhou) [64],
but lower than the value of 281.20 Mg·ha−1 in Thailand (Southern Ranong) [65]. The AGB of R.
apiculata-dominated forest is 209.52 Mg·ha−1, much lower than those of both pure and mixed forests
found in tropical regions (214.00 Mg·ha−1 in India (Andaman Island) [66], 216.00 Mg·ha−1 in Thailand
(Chumphon Sawi Bay) [67], 298.50 Mg·ha−1 in Thailand (Ranong Southern) [65], 295.50–350.30 Mg·ha−1

in Vietnam (Mekong delta) [68], 460.00 Mg·ha−1 in Malaysia (Matang) [69], and 356.80 Mg·ha−1 in
Indonesia (Halmahera) [70]).

Overall, the AGB of this study essentially aligns with the latitude law of AGB distribution in
mangroves, i.e., AGB increases with the decrease in latitude.

5. Conclusions

In this study, we combined the advantages of WorldView-2, UAV LiDAR, and field survey data
and proposed a novel method to estimate mangrove AGB at individual tree scale, i.e., individual
tree-based inference method, and compared it with the benchmark grid-based RF model method.
Although the AGB estimation accuracy of this new method is less than that of the grid-based RF
inversion method (R2 of 0.49 vs. 0.67 and RMSE of 48.42 Mg ha−1 vs. 38.95 Mg ha−1), the individual
tree-based inference method still has some merits. The individual tree-based inference method can
show the spatial distribution details of mangrove AGB in different mangrove species, which is more
beneficial to the fine management of mangroves. Considering that the mangrove forest in the study
area is complex, the results of the newly proposed method are relatively satisfying.

There are many uncertainties in mangrove AGB estimation due to sampling type, spatial resolution
of remote sensing data, local topography, biophysical conditions, forest structure, wood density, tree
species, size of trees, selection of allometric models, and technical factors related to data processing.
Traditional field surveys are still the most important base for establishing a reliable relationship
between biomass and remote sensing variables. With the support of a variety of remote sensing data,
more targeted field survey methods, such as tree species, habitat, forest age and wood density, will be
further tried.
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Abstract: Above-ground biomass (AGB) plays a pivotal role in assessing a forest’s resource dynamics,
ecological value, carbon storage, and climate change effects. The traditional methods of AGB
measurement are destructive, time consuming and laborious, and an efficient, relatively accurate
and non-destructive AGB measurement method will provide an effective supplement for biomass
calculation. Based on the real biophysical and morphological structures of trees, this paper adopted a
non-destructive method based on terrestrial laser scanning (TLS) point cloud data to estimate the
AGBs of multiple common tree species in boreal forests of China, and the effects of differences in bark
roughness and trunk curvature on the estimation of the diameter at breast height (DBH) from TLS
data were quantitatively analyzed. We optimized the quantitative structure model (QSM) algorithm
based on 100 trees of multiple tree species, and then used it to estimate the volume of trees directly
from the tree model reconstructed from point cloud data, and to calculate the AGBs of trees by using
specific basic wood density values. Our results showed that the total DBH and tree height from
the TLS data showed a good consistency with the measured data, since the bias, root mean square
error (RMSE) and determination coefficient (R2) of the total DBH were −0.8 cm, 1.2 cm and 0.97,
respectively. At the same time, the bias, RMSE and determination coefficient of the tree height were
−0.4 m, 1.3 m and 0.90, respectively. The differences of bark roughness and trunk curvature had a
small effect on DBH estimation from point cloud data. The AGB estimates from the TLS data showed
strong agreement with the reference values, with the RMSE, coefficient of variation of root mean
square error (CV(RMSE)), and concordance correlation coefficient (CCC) values of 17.4 kg, 13.6%
and 0.97, respectively, indicating that this non-destructive method can accurately estimate tree AGBs
and effectively calibrate new allometric biomass models. We believe that the results of this study
will benefit forest managers in formulating management measures and accurately calculating the
economic and ecological benefits of forests, and should promote the use of non-destructive methods
to measure AGB of trees in China.

Keywords: terrestrial laser scanning; above-ground biomass; nondestructive method; DBH;
bark roughness

1. Introduction

Forest biomass is an important indicator of forest productivity, carbon storage and forest carbon
sequestration capacity, and it has been widely investigated by the scientific community [1–3]. As a
developing country, China has taken measures to increase forest biomass and carbon storage by
limiting deforestation and afforestation, and positively supports and implements the mechanism of
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Reducing emissions from deforestation and forest degradation in developing countries (REDD+).
Accurate assessment of forest biomass plays a pivotal role in afforestation management planning, forest
resource monitoring, the assessment of the ecological value of forests, climate change impacts and
policy formulation for forest harvesting, conservation and management [4,5]. The assessment of forest
biomass includes the estimation of both above-ground biomass (AGB) and underground biomass.
However, the underground biomass is not only difficult to quantify, but it is relatively small to the
AGB [6]. Therefore, the estimation of AGB has always been the main focus in biomass research. AGB
calculations rely on tree structure parameters, such as diameter at breast height (DBH), tree height,
crown radius, etc., form which the AGB can be calculated using allometric biomass models, which can
be very effective when applied to tree species and productivity ranges with reliable calibration data.
Conventional methods for AGB measurement, which involve cutting down trees and then drying
them for weighing, are destructive, time-consuming, expensive and laborious, and are consequently
rarely adopted [7,8]. Moreover, the conventional methods can be used only for a small area, as their
accuracy could be compromised when used to estimate the AGB of a forest spanning over a larger
region [2,8–11].

The use of advanced technologies in forestry, especially remote sensing technology, provides
an alternative tool to estimate the AGB with ease and high precision [10,12]. Satellite remote
sensing technology provides distinct advantages for the assessment and mapping of large-scale and
multi-temporal forest biomass and carbon stocks [13], but it is not applicable or uncertain for forest
AGB assessment at the plot and tree level. Recently, the light detection and ranging (LiDAR) technology
was developed and advanced rapidly with its special utilization in forest inventory. Primarily, the
LiDAR include airborne laser scanning (ALS), terrestrial laser scanning (TLS) and mobile laser scanning
(MLS). MLS mounted on vehicles, which is an efficient and effective way to obtain 3D point cloud
data in urban forests or forest areas on flat terrain. It relies on GNSS (Global Navigation Satellite
System) signals for positioning and the coordinate calculation of points [14,15]. This technology has
the ability to generate high spatial resolution and accurate three-dimensional (3D) point cloud data.
Consequently, it has been widely applied in forestry surveys to acquire basic tree parameters [16], as
well as estimate AGB and carbon storage [17,18]. ALS can produce large-scale 3D point cloud data in
a short time, from which tree height, DBH, canopy height and density metrics can be obtained, and
then the AGB of trees can be evaluated. The accuracy of AGB estimates by this technology is not
higher than that of conventional methods [17], but it is nevertheless higher than that of satellite remote
sensing and UAV (unmanned aerial vehicle) aerial photogrammetry [19,20]. However, this method of
assessing the biomass by ALS is prone to problems, including large estimation uncertainties, large
costs, and limited information [21,22]. The system’s performance is compromised in forest areas with
weak GNSS signals or large variations of topography [16,23]. TLS can generate detailed and accurate
parameter information of the 3D structure of trees by calculating the time difference between the
emission and return of laser pulses and analyzing the energy of the returned laser pulses, which is not
affected by GNSS signals and offers opportunities for a consistent and robust framework to support
AGB estimates [3,24].

Terrestrial laser scanning (TLS) has shown great potential for accurately assessing forest biomass
with greater precision than inferred from the nationwide allometric biomass models [8,25]. Yao et al. [26]
used high-precision TLS data to obtain accurate tree structure parameters, and calculated the biomass of
New England forest stands using allometric biomass models of specific tree species, demonstrating the
accuracy and effectiveness of measuring forest AGB using non-destructive methods. Seidel et al. [27]
measured the DBH of individual trees from the TLS data, and predicted the biomass of trees via a
regional allometric biomass model. The mean absolute error and the mean relative error were 12.9 kg
and 16.4%, respectively, which significantly reduced fieldwork efforts in dense forests when compared
to traditional diameter tallying by calipers or tapes. However, this non-destructive measurement
method still relies on an allometric biomass model established by empirical relationships extracted
from a sample of trees to evaluate the AGB. Fundamentally, the essence of this method is still to
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estimate the biomass of trees based on limited structure parameters. A different approach has been
developed to reconstruct the complete 3D structure of trees from TLS data rather than several tree
structure parameters. The quantitative structure models (QSM) developed by Raumonen et al. [28] and
improved by Raumonen et al. [25] and Calders et al. [2] were used to reconstruct the morphological
structure of individual trees from TLS data. The volume of the reconstructed model, including the
trunk and branches, can be measured from a single tree model constructed by a least squares, cylinder
fitting algorithm [28]. The estimated tree volume is converted into the AGB by multiplying by the
basic wood density values of a specific tree species. This method estimates the tree AGB based
on a real biological morphological structure model of a specific tree species, which is completely
different from the allometric biomass model, which only depends on a limited number of tree structure
parameters [8,29].

Some study results have shown the feasibility and effectiveness of the QSM method for the
estimation of forest AGB. Raumonen et al. [25] used the QSM algorithm to reconstruct the tree 3D
structure models of oak and eucalyptus, and then calculated the AGB of oak and eucalyptus using basic
wood density values. Compared with destructively harvested biomass, the calculated biomass of oak
was overestimated by 15.3% to 18.8%, and the average relative absolute error of eucalyptus biomass
was about 28.5%. Calders et al. [2] used this algorithm to estimate the biomass of 65 eucalyptus trees in
tropical areas, with a coefficient of variation of root mean square error (CV(RMSE)), and concordance
correlation coefficient (CCC) of 16.1% and 0.98, respectively, showing a high biomass estimation
accuracy. At the same time, Tanago et al. [8] validated the applicability of the QSM algorithm to the
estimation of the biomass of large trees under complex conditions in tropical regions. The CV (RMSE)
and CCC of the estimated total AGB of trees were 28.37% and 0.95% respectively. Although these
studies all used the QSM algorithm to estimate the AGB of trees, only a few species were involved, and
the QSM algorithm had an impact on the reconstruction results of trees with different biophysical and
morphological structures, which directly affected the final estimation accuracy of biomass [25].

In this study, we used a non-destructive method (QSM) to estimate the AGB of trees from TLS
point cloud data based on their true morphological structure. We hypothesized that different tree
species have different bark roughness and trunk curvature, which could affect the estimation of DBH
from point cloud data. To our knowledge, very limited work has been done to investigate the effects of
bark roughness and trunk curvature on DBH estimates. Therefore, the main objectives of this study
included (1) a quantitative analysis of the influence of TLS data on DBH estimation of tree species
with different bark roughness and trunk curvature, and (2) to optimize the QSM algorithm based on
100 trees of 10 different species. (3) We estimated the AGB of 10 tree species with different biophysical
and morphological structures using a non-destructive method, and the estimation accuracy of AGB of
trees was evaluated by comparing with the results of the regional allometric biomass model of specific
tree species from specific areas.

2. Materials and Methods

2.1. Study Area

The study area was located in Beijing province (39.43◦–41.05◦ N, 115.42◦–117.50◦ E) (Figure 1).
The long-term annual averages of minimum and maximum daily air temperatures in Beijing are 9 ◦C
and 19 ◦C, respectively, with an altitude range of 20–1500 m. Ten rectangular plots, including one
with dimensions of 32 m × 32 m (low stem density) and nine with dimensions of 16 m × 16 m, were
used to obtain experimental data in the study; of those, 2, 2, 3 and 3 were respectively located in
Chaoyang District, Huairou District, Changping District and Fangshan District. The topography of
the plots was characterized by gentle slopes of less than 45 degrees. Data acquisition was carried out
in coniferous, broad-leaved and mixed arbor plantations during the period from March to May of
2018. The main tree species were gingko (Ginkgo biloba), saliz matsudana (Salix matsudana), Chinese
scholartree (Sophora japonica), Chinese pine (Pinus tabulaeformis), Chinese catalpa (Catalpa bungee), white
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wax (Fraxinus pennsylvanica), Chinese white poplar (Populus tomentosa), locust (Robinia pseudoacacia),
metasequoia (Metasequoia glyptostroboides) and China savin (Juniperus chinensis), which are common trees
in the boreal forests of china. The trees specimens had different bark roughness and trunk curvature.
There were low shrubs in the study area, all of which were less than 1.2 m in height, that had no effect
on the acquisition of DBH from the point cloud data of trunks.

Figure 1. Location of the study area. (The pink dots depict the location of the plots).

2.2. Data Acquisition

2.2.1. Field Data Collection

Field surveys were conducted to collect data, including tree species, DBH and tree height
information. The data was collected in ten different sampling plots using traditional forest inventory
methods. An experienced taxonomist accompanied the survey team to identify the tree species in the
field. The allometric growth biomass models used in this study all require DBH greater than 5 cm.
Therefore, the DBH of each tree of more than 5 cm was manually measured using a diameter tape
with millimeter accuracy at DBH height (1.3 m vertical above the ground from the base of the tree).
A total station with centimeter-scale ranging accuracy developed by the South Surveying and Mapping
Technology CO., LTD (Guangzhou, China) was used to accurately measure the tree height in the plot,
which was achieved by the principle of triangulation. The structure parameters of the ten forest types
based on field forest inventory are summarized in Table 1. The growth model of a specific tree species
was used to estimate the tree height in cases where the treetop was not visible due to occlusion by
adjacent trees (a total of 13 tree heights were calculated by the tree growth model) [30–32]. The DBH
and tree height data of 322 trees obtained in the field were used as references, which were provided in
Table S1 of Supplementary Materials.

Table 1. Structural characteristics of ten forest types based on field forest inventory data.

Plot Dominant Species Number of
Trees

DBH (cm) Tree Height (m)

Mean SD Min Max Mean SD Min Max

1 Ginkgo biloba 78 17.4 1.6 13.5 21.5 11.2 1.4 7.9 14.0
2 Salix matsudana 30 22.9 5.5 12.3 40.6 16.3 2.6 8.4 20.6
3 Sophora japonica 33 14.1 3.5 8.8 21.5 13.4 2.5 6.9 16.6
4 Pinus tabulaeformis 28 17.5 2.3 12.3 23.1 9.2 1.5 5.4 11.5
5 Catalpa bungei 22 21.7 2.4 16.2 25.1 16.3 1.3 12.7 18.9
6 Fraxinus pennsylvanica 29 18.4 2.0 14.5 22.8 10.0 0.8 8.7 12.3
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Table 1. Cont.

Plot Dominant Species Number of
Trees

DBH (cm) Tree Height (m)

Mean SD Min Max Mean SD Min Max

7 Populus tomentosa 24 21.1 2.1 17.7 26.2 20.4 2.0 15.3 23.8
8 Robinia pseudoacacia 25 18.9 3.8 12.8 27.2 15.7 2.3 10.5 18.6

9 Metasequoia
glyptostroboides 31 14.6 2.1 8.9 18.6 11.6 1.3 9.4 15.4

10 Juniperus chinensis 22 23.1 3.5 14.9 28.5 11.3 0.8 9.7 13.4

SD stands for standard deviation; Min stands for the minimum value of DBH; Max stands for the maximum value
of DBH.

2.2.2. TLS Data Collection

The TLS data were collected in the spring of 2018 using a FARO Focus S 150 terrestrial laser scanner
produced by FARO Technologies Company (FL, America), a phase-based scanner with a field of view
of 360◦ horizontally and approximately 300◦ vertically, and a minimum horizontal and vertical step size
of 0.009◦ (approximately 40,000 laser pulses for a full hemispherical scan). The maximum rate of the
laser scanner data acquisition was 976,000 points per second, and an acquisition rate of 244,000 points
per second was used in this study. The scanner employed a continuous wave of 1500 nm to measure
distances with a range of up to 153 m. The laser scanning level of the scanner is one level. The system’s
distance error is less than 1 mm within a distance of 25 m, which helped to acquire highly accurate
data for the surveyed forest sample plots. More detailed information about the device is provided
in Table 2. The laser scanner device with an embedded microcomputer can store and preprocess the
point cloud data after completion of data collection. The laser scanner had corresponding FARO Scene
desktop software (FARO Technologies, Inc., version 7.1.0, www.faro.com) for post-processing of point
cloud data. The FARO Scene software was used to assess the quality of the point cloud data and filter
out “ghost points” and discrete points. Finally, by utilizing the functions of “Clear Sky” and “Clear
Contour,” we obtained more reliable 3D spatial data for further modelling.

Table 2. Technical specifications of the FARO Focus S 150 instrument.

Parameter Value

Laser measurement principle Phase-based
Data Acquisition Speed 9.76 × 105 points/sec

Maximum Range 150 m
Laser Power 20 mW

Beam Divergence Angle 0.3 mrad
Scanner Line Speed 2880 rpm
Angular Resolution ±0.009◦

Battery Life 4.5 h
Total Weight 4.2 kg

In order to reduce the effects of tree occlusion and terrestrial vegetation, we used a multi-scan (MS)
approach to obtain better point cloud coverage for the 16 m × 16 m plot, setting scanning positions at
four corners of the plot and the center to perform four consecutive scans of the trees in a clockwise
sequence. In order to obtain similar point cloud coverage, we scanned the 32 m × 32 m plots according
to the layout principle of 16 m × 16 m plots, and scanned a total of 13 positions. Six highly reflective
target spheres were placed throughout the plot for registration of point cloud data at different scanning
sites using Scene software, and the accuracy of registration was within 1 cm. In addition, the acquisition
of all the plot scanning data was conducted at the same scan resolution to eliminate the effects of
different resolution on the modeling results, and carried out under windless conditions, which helps to
avoid inconsistencies in the spatial position of the same branches at different scanning locations.

27



Forests 2019, 10, 936

2.3. Processing of the Point Cloud Data

2.3.1. Filtering

Filtering of the acquired point cloud data is the basis for accurate and precise modeling. In addition,
reducing the size of point cloud data helps to save memory and reduces computation time [25,28]. First,
point cloud data outside the plot area was removed. In order to obtain data for the complete canopy of
the trees located at the edges of the plot, we set a 5 m buffer zone along the boundary of each plot.
Any data beyond this range was excluded from further modeling. Subsequently, point cloud data that
did not contain information on tree attributes in the plot was manually removed by visual inspection.
Secondly, the ground points and other unrelated understory point clouds were also filtered out. We
used the open source software CloudCompare (https://www.danielgm.net/cc/) to automatically filter
the ground points. In addition, the height of the understory shrub vegetation in the plots was less than
1.5 m, so the shrub point cloud data in the plot was removed. Third, in order to make the volume of the
reconstructed trunks more similar to the volume of the real trees, the noise and outliers were removed
from the data, since these could result in the fitting of wrong cylinder models and overestimating the
trunk volume [28,33]. A sphere with a radius of 0.3 cm was used to filter noise points in cloud data of
plots while removing outliers. Finally, visual inspection of the point cloud data of the trees in the plot
was done to manually remove the points from adjacent crowns or stems, if present [34].

2.3.2. Extracting of Individual Trees

In order to achieve accurate modeling of trees and acquisition of their structural parameters,
individual trees were extracted from the acquired point cloud data of each plot. The approaches
typically used to extract individual trees include fully manually, semi-automatic and automated
methods [25,35–37]. Manual extraction of individual trees from large point clouds is inefficient and
time-consuming, and it is difficult to accurately segment branches of trees in a dense forest. Therefore, a
bottom-up automatic extraction algorithm of individual trees based on biological theory and metabolic
ecology theory was used in this study.

The segmentation algorithm of individual trees used in the study, called comparative shortest-path
(CSP), was developed by Tao et al. [37]. It is a bottom-up method based on the 3D structure of point
cloud data. The extraction of individual trees from the plot was mainly composed of three parts. First,
ground points were filtered and normalized. Since the plot terrain was not strictly a two-dimensional
plane, ground points were separated before individual tree extraction in order to eliminate the influence
of topographic fluctuation on the z-value of the point cloud data. The filtered ground points were
generated using a digital elevation model (DEM) of 0.3 m resolution via Kriging interpolation, and
the minimum z value of the point cloud data in each grid was used as the real ground to normalize
the point cloud data in a plot area. Then, the density-based spatial clustering of applications with a
noise algorithm (DBSCAN) was used for automatic identification of tree trunks in the plot, which
required the definition of the minimum number of cluster points or the radius of neighboring points to
determine whether a point belonged to the real trunk surface [37,38]. The point cloud data of a single
trunk in the plot was segmented automatically. A 10 cm thick point cloud slice from the trunk (1.3 m
vertical above the ground from the base of the tree) was used to calculate the DBH value as a seed point
for the tree. Finally, the seed points and the CSP algorithm based on the metabolic ecology theory were
used to segment the canopy point clouds of the trees. According to the distribution of trees in the forest,
the canopy point cloud was mainly divided in three ways. For the forest plots where the sparsely
distributed canopies did not intersect, the point cloud from the trunk was extended to the points of
branches according to the shortest 3D Euclidean geometric distance to complete the segmentation of
canopy point cloud data. For adjacent trees with the same size and canopy intersection, the shortest
path distance from the point to the trunk was calculated based on biological theory, and the points were
assigned to the closest respective target trunks. The remaining points were sequentially calculated one
by one to determine the point cloud data of each tree. For the canopy intersection of trees with large
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differences in size, the distance from the point to the trunk was converted and reduced according to a
power-law relationship between the branch length and the branch radius in according to metabolic
ecology theory. Then, the converted distances were compared to determine the shortest distance,
which yielded the target tree to which the point belonged. The target tree of each point in the point
cloud was determined successively until the whole point cloud data was segmented. The conversion
formula based on the power-law relationship [37] was as follows:

DT
i→Trunk = Di→Trunk/DBH2/3 (1)

where DT
i→Trunk is the distance from the i-th point to the base of the trunk after transformation according

to the power-law relationship; Di→Trunk is the biological distance from the i-th point to the base of
the trunk; DBH2/3 is the fixed scale. More detailed information on the algorithm can be found in
Tao et al. [37].

We used the segmentation algorithm to extract individual trees from 10 plots and visually inspected
the results (Figure 2). The point cloud data of a single tree after segmentation was further checked one
by one, and those trees that were not correctly classified were re-segmented manually, and abnormal
points that did not belong to a specific tree were removed to generate more accurate point cloud data
of single trees. The accuracy of single-tree segmentation directly affects the modeling results of the
QSM algorithm, and thus has an impact on the estimation of aboveground biomass [3,28].

Figure 2. Individual trees extracted automatically from the point cloud data of the plot.

2.3.3. Acquisition of Tree Structure Parameters from TLS Data

The basic parameters of tree height and DBH were obtained from the point cloud data of the plots.
The point cloud slices of 10 cm thickness (1.25 m–1.35 m) were intercepted from the filtered point cloud
data, which after eliminating the effect of topographic fluctuation, and the DBH values of each tree
were calculated using the least squares circle fitting method, which was considered to be the most
accurate DBH estimation method compared with the least square cylinder fitting and the circle Hough
transformation [3,39]. In dense forests it is difficult to measure the height of trees, because their tops
are often occluded by adjacent trees. In order to obtain accurate and reliable tree height information,
the top of each tree should be accurately detected by the scanner, and a sufficient number of tree vertex
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points should be obtained, which is about 1–2 cm in point space at the top of the tree [40]. The scanning
positions of the 10 plots in this study were set up to ensure the detection of tree tops. The point cloud
data of individual trees was used to calculate the tree height, which was defined as:

htree = Zmax (2)

where htree is the calculated height of a tree, while Zmax is the maximum value of the Z coordinate in a
single vertex of the tree point cloud data.

The DBH and tree height values obtained from point cloud data were also compared with those
obtained from field measurements. Analysis of variance (ANOVA) was used to test whether the
differences in DBH and tree height estimates were statistically significant at the 95% level of significance,
and to analyze DBH and tree height, respectively [41]. The linear regression models between estimates
and reference values are also used to show the differences between estimates and reference values.
Precision indicators including bias, root mean squared error (RMSE), relative bias and relative RMSE
(RMSE%) were used to evaluate the precision of DBH and tree height obtained from point cloud data.

2.4. Model Reconstruction and Algorithmic Optimization

2.4.1. QSM Reconstruction Method for Individual Trees

The QSM method can realize the rapid modeling of point cloud data of individual trees and
accurately calculate the modelled tree volume from the reconstructed structure, including the volume
of branches and the trunk. The method mainly achieved accurate tree structure reconstruction and
acquisition of important structural parameters through the following eight steps. (1) The filtered
point cloud data of individual tree is used for tree model reconstruction in QSM algorithm, and the
corresponding cover sets are generated for the point cloud on the tree surface. (2) The neighbor-
relation between the coverage sets is determined according to the size of the cover sets. (3) According
to the size of the cover sets in conjunction with their eigenvalues and vectors, the local geometric
features of the tree, the local directions of the trunk and branches, and the angle between the trunk
and branches are determined. (4) The base of the trunk and branches are identified based on the
characteristics of cover sets and the component parts of the tree are extracted by “growing”. (5) The
generated cover sets of the tree surface are segmented into the corresponding real trunk and branches.
(6) A series of cylinders with different radii, lengths and directions are used to conduct least-squares
piecewise fitting for the point cloud data segmented in the preceding step, and the structure of each
part of the tree is reconstructed. (7) The gap between the fitted cylinders are found and supplemented
with cylinders to complete the cylinder model of the whole tree. (8) The volume and length of the trunk
and branches are calculated automatically from the reconstructed model. The method is described and
validated in detail by Raumonen et al. [28]. There are, mainly, seven parameters in the process of tree
reconstruction, as follows:

tree_qsm (d, r, n, d1, r1, n1, l) (3)

where d and d1 represent the minimum distance between the two centers of the cover sets; r and r1

are the radii of the balls used to generate the cover sets; n and n1 are the minimum thresholds for the
number of points in a given ball; l is the ratio of the length to the radius of the fitting cylinder.

The first three parameters (d, r and n) were used to generate the first cover sets of a single tree,
which primarily filters out the noise in the point cloud data for individual trees caused by small
branches and leaves. The parameters d1, r1 and n1 were used to generate a finer cover, mainly to
determine the neighbor-relation of the cover sets and the local characteristics of the tree. Parameter l
controls the magnitude and is used to fit the cylinder. The smaller the cylinder, the more detailed the
local characteristics of the tree. Figure 3 shows the point cloud data for a single specimen of Ginkgo
biloba and the 3D structure reconstructed using the QSM method.
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Figure 3. 3D structural model of a single Ginkgo biloba tree reconstructed from point cloud data using
the QSM (quantitative structure model) algorithm ((A) original point cloud data for the trees; (B) the
original point clouds of the tree are classified, with blue dots representing the trunk, green dots
representing the branches and dots in other colors representing the rest of the tree; (C) cylinders plotted
over the point cloud data; (D) reconstructed 3D cylinder model of the tree).

2.4.2. Optimization and Sensitivity Analysis of the QSM Algorithm

The algorithm has two important parameters, d and l, which were used to generate the reconstructed
model by defining the covering sets of different sizes and the ratio of the length and radius of the
cylinder, which has an important impact on the reconstruction results [3,8]. Therefore, we used different
parameter values to test ten tree species with different ecological structures to determine the optimal
parameters for each tree species and the sensitivity of the algorithm to different tree species with
different ecological structures. Ten trees of each species were randomly selected to optimize the QSM
algorithm and determine the optimal model parameters of different tree species. All the remaining
data were used for the independent evaluation and precision evaluation of the estimated AGB.

We determined the optimal parameter d from different test values (2.0, 3.0, 4.0, 5.0, 6.0 and 7.0)
and the optimal parameter l from different test values (3, 4, 5 and 6), which gave the most accurate
biomass estimation according to Tanago et al. [8] and Raumonen et al. [28]. The other parameters r, n,
d1, r1 and n1, used the default values d + 2, 3, 6, 7 and 1 cm, respectively. Firstly, the average values of
the individual tree volume of the selected tree species were obtained from the 10 model realizations
using different parameter values for d, after which the biomass calculated by multiplying with the basic
wood density of specific tree species was compared with the biomass calculated using the regional
allometric model of the same tree species. The biomass of ten trees of the tree species was calculated
respectively according to this process, and the RMSE was calculated from the estimated biomass value
and the reference biomass value. The optimal parameter d was determined from the corresponding
parameter value with the smallest RMSE. Then, once the optimal parameter d was determined, the
average value of the individual tree volume was calculated again from the 10 model realizations using
different parameter values l. The biomass of the tree was calculated by multiplying its average volume
by its density, and the calculated tree biomass was compared with the biomass calculated using the
regional allometric model. The biomass of ten trees of the tree species was calculated respectively
according to this process, and the RMSE was calculated from the estimated biomass value and the
reference biomass value. The optimal parameter l was determined using the minimum RMSE. By this
time, the optimal parameters d and l of a tree species were determined. The same operation was
performed for the remaining tree species in turn to determine the optimal QSM algorithm for different
tree species. Finally, the optimal parameters d and l of ten species were determined respectively, and
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the optimized QSM algorithm was used to estimate the individual tree volume of the remaining data
sets and calculate the individual tree biomass via the same process as described above.

We analyzed the sensitivity of the QSM algorithm using the modeling result for different parameter
values of d and l. Sensitivity analysis mainly includes two aspects: the sensitivity analysis of the QSM
algorithm for different parameters of the same tree species, and the sensitivity analysis of QSM the
algorithm for the same parameters of different tree species. The QSM algorithm for tree reconstruction
was implemented in MATLAB software (The MathWorks, Inc., Version Matlab 2018a, Natick, MA,
USA) using a Windows 10 64-bit operating system (Microsoft Corporation, Redmond, WA, USA).

2.5. Estimation of AGB

In the estimation of AGB, the differences in tree biomass caused by the errors in the measurement
operation, the allometric model and the instrument itself were considered to be minimal and
negligible [8,42]. Furthermore, the stem contributed about 70%–80% of the total AGB [43]. We calculated
from the data released by the forestry ministerial standard of the People’s Republic of China that
the biomass of the branches accounted for about 20%–30% of the total AGB. By contrast, the leaves
accounted for only 10% of the total biomass, and we consequently did not consider them when
assessing the AGB via the QSM method.

2.5.1. AGB Estimation from Allometric Biomass Models

The biomasses of individual trees of ten species were estimated using the regional biomass models
specific for each tree species. Those biomass equations were based on variables, such as specific tree
species, DBH and tree height, which were collected during the field inventory. The biomass models
of the ten tree species used in this study, which evaluate the total AGB, including the biomass of
the trunks, branches and leaves, were obtained from published literature and national standards or
references (see Table 3). The table contains the information on the number of modelled tree species,
the DBH range, tree height range, biomass model parameters, tree species density and coefficient
of determination (R2). The modeling data for the tree species, including Robinia pseudoacacia, Salix
matsudana, Juniperus chinensis, Sophora japonica and Fraxinus pennsylvanica, was not available in detail;
therefore, only some information obtained from references is shown. The individual tree biomass
obtained from these biomass models was used as a reference value and compared with the biomass
calculated from the reconstructed QSM models.

Table 3. Information of the allometric biomass models of ten tree species.

Model Source Species Number
DBH

Range
(cm)

Tree Height
(m)

Allometric Biomass
Model AGBest=

Wood
Density(ρ)

(g/cm3)
R2

SFAC [44] Pinus tabulaeformis 149 5.0–32.9 1.6–20.1 0.067765D2.18050H0.43610 0.424 0.9492
Zeng [45] Populus tomentosa 602 5.0–48.9 2.4–31.1 0.06304D2.2460H0.3588 0.452 0.9506

Xiaver et al. [46];
Zhuang et al. [47]

Metasequoia
glyptostroboides 10 8.4–27.5 15.4 (mean) 0.05488(D2H)

0.8583 0.284 0.9970

Liu et al. [48] Ginkgo biloba 13 10.0–27.2 11.1–14.5 e(−1.18+2.62 ln D−0.79 ln H) 0.455 0.9810

Zhang [49] Catalpa bungei 3 10.6–17.8 7.9–10.2 0.053(D2H)
0.895

+
0.018D0.037 0.520 0.9310

Zhou et al. [50] Robinia pseudoacacia - 5.0–30.0 -
0.0261(D2H)

0.9613
+

0.1012(D2H)
0.659

+

0.0057(D2H)
0.8455

0.678 0.9600

Zhou et al. [50] Salix matsudana - 5.0–38.0 -
0.075(D2H)

0.8210
+

0.0110(D2H)
0.9430

+

0.0130(D2H)
0.7520

0.506 0.9210

SFAC [51] Juniperus chinensis - 3.3–33.0 - 0.2479D2.0333 0.597 -
Wang [52] Sophora japonica - - - 0.03D2H + 0.714 0.636 -

Li et al. [53] Fraxinus
pennsylvanica - - 0.0495502(D2H)

0.952453 0.569 -

D stands for DBH; H stands for tree height.
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2.5.2. AGB Estimation from TLS-QSM

We used point cloud data of individual trees to fit the topological structure of whole trees using
cylinders via the QSM algorithm, calculated the volume of each cylinder part, and then managed to
calculate the volume of the trunk and branches of each tree. For given parameters d and l, the random
coverage set generated by the QSM algorithm showed small differences in the reconstruction results.
Therefore, the volume of the individual tree was defined as the average volume of 10 reconstructed
models. The AGB of individual trees was obtained by multiplying the volume of a specific tree
(branches and trunks) by the basic wood density of the corresponding tree species. The basic wood
density values of specific tree species were obtained from the Global Wood Density Database [54,55] or
the literature. We calculated the RMSE, RMSE% and concordance correlation coefficient (CCC) of the
biomass of the QSM model relative to the reference data to evaluate the QSM algorithm. The RMSE
and RMSE% are defined in the following equations:

RMSE =

√√√√∑n
1

(
AGBi

est −AGBi
re f

)2

n
(4)

RMSE% =
RMSE

AGBre f
× 100% (5)

where AGBi
est is the i-th estimation value of AGB, AGBi

re f is the ith reference value of AGB, AGBre f is
the mean of the reference AGB and n is the number of trees.

3. Results

3.1. DBH and Tree Height

A total of 322 trees belonging to ten different species were successfully extracted without
commission or omission errors. The estimated DBHs were compared with the reference DBHs, which
were measured using a diameter tape (Figure 4). Our estimates showed that most of the DBHs of
the ten tree species obtained from the TLS data were below the 1:1 dashed line, indicating that the
DBH estimated from point cloud data was smaller than the one measured in the field (Figure 4a).
The R2 of the linear regression model describing the agreement of LiDAR DBH data with the measured
DBH values was 0.97, and its slope was also 0.97. A detailed analysis of the effects of different bark
roughness and trunk curvature on DBH estimation for each tree species is provided in Appendix A.
The underestimation of DBH from TLS data did not change significantly with the increase of DBH.
As shown in Figure 4b, most of the DBH residuals of the ten tree species were above the y = 0 line,
which was consistent with the result that the DBH values from TLS data in Figure 4a were smaller than
the values measured in the field. There was no significant difference in the residuals of DBH among
different tree species, most of which were between −0.5 cm and 2.0 cm.

A comparison of tree heights from TLS and field measurements, with the tree height measured
by the total station as a reference is shown in Figure 5. Our estimates showed that the determination
coefficient (R2) of the linear regression model describing the agreement between the LiDAR tree height
data and measured tree height data was 0.90, and its slope was 0.99. The tree height of Populus tomentosa
estimated using the TLS data was significantly higher than that measured in situ. The estimated tree
heights of Robinia pseudoacacia and Catalpa bungei were consistent with the measured values and were
evenly distributed on both sides of the 1:1 line. The estimated height of other tree species was mostly
lower than the measured values. A detailed analysis of the effects of different tree species on tree
height estimation is provided in Appendix A. Figure 5b illustrates that the residual values of most
tree heights were more uniformly distributed on both sides of the y = 0 line, and most of the residual
values were between −1 m and 2 m. The tree heights obtained from point cloud data were largely
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underestimated compared with the heights measured in situ. No significant difference was observed
in the distribution range of residual values with the increase of tree height.

Figure 4. Comparison of diameters at breast height (DBHs) from terrestrial laser scanning (TLS) data
and field measurements (reference DBH). (a) Comparison of DBHs and references from different tree
species; (b) residuals of DBHs from different tree species.

Figure 5. Comparison of tree height from TLS data and field measurements (reference tree height).
(a) Comparison of tree height and references from different tree species; (b) residuals of tree height
from different tree species.

The accuracy of DBH and tree height estimation using TLS data is shown in Table 4. It can be seen
that the total bias and RMSE of the DBH calculated via the least square circle algorithm were −0.8 cm
and 1.2 cm, respectively. Among the 322 selected trees with reference DBH values ranging from 8.8 cm
to 40.6 cm, trees with a DBH bias of less than 1.5 cm accounted for 89.1% of the total. The bias and
RMSE of tree heights were −0.4 m and 1.3 m, respectively. The bias of tree height from TLS data was
within 1.5 m and accounted for 80.8% of the total. A more detailed analysis of tree height and DBH of
different tree species is provided in Appendix A.

Table 4. The accuracy of the DBH and tree height estimates utilizing TLS data.

Bias Bias% RMSE RMSE%

DBH (cm) −0.8 −4.3 1.2 6.1
Tree height (m) −0.4 −3.2 1.3 9.7

RMSE stands for root mean square error; RMSE% represents relative root mean square error.
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The analysis of variance showed that there was no statistically significant difference between the
estimated DBH and tree height for all trees and the field measurements (α = 0.05; Table 5). The results
of variance analysis of DBH and tree height supported the hypothesis of equality, with p-values of
0.921 and 0.056, respectively.

Table 5. The results of ANOVA analysis for DBH and tree height estimations for all trees with degrees
of freedom (DF), mean squared error (MS), F-value and p-value.

Parameter DF MS F-Value p-Value

DBH 1 1.5 0.010 0.921
Tree height 1 54.3 3.672 0.056

3.2. Optimization Parameters of the QSM Algorithm

The tree structures of different tree species were reconstructed with different parameters of d and l
values, and the optimal parameters of the reconstructed model were obtained as shown in Table 6.
The optimal value for parameter d was 2 or 3 cm for other tree species except for Salix matsudana,
Fraxinus pennsylvanica and Pinus tabulaeformis. The minimum relative RMSE of Populus tomentosa was
7.1%, while the maximum relative RMSE of Pinus tabulaeformis was 25.6%. The optimal value of the
parameter l for different tree species was evenly distributed between 3, 4 and 5, and there was no
obvious difference between different forest types. The optimal l value of the algorithm had a significant
effect on the reconstruction results of Ginkgo biloba, and the relative RMSE increased from 21.5% to
14.9%. For other tree species, the optimal l value had no significant effect on the accuracy of the
reconstruction results. Therefore, the optimal values of these parameters for the different tree species
were used to reconstruct the model of the remaining data.

Table 6. Optimal values of the model parameters d and l for ten tree species.

Species d/cm dRMSE% l lRMSE%

Ginkgo biloba 2 21.5 3 14.9
Salix matsudana 6 8.6 3 8.0
Catalpa bungei 3 8.0 5 8.5

Fraxinus pennsylvanica 5 15.8 4 17.1
Robinia pseudoacacia 2 7.5 5 8.1
Populus tomentosa 2 7.1 4 7.0
Juniperus chinensis 2 14.3 3 17.0

Metasequoia
glyptostroboides 3 12.0 5 12.7

Sophora japonica 2 17.3 4 19.0
Pinus tabulaeformis 4 25.6 4 24.7

3.3. Estimation of Above-Ground Biomass

When the QSM algorithm was used to reconstruct tree structure, nine individual trees failed to
model, including two Ginkgo biloba, one Salix matsudana, one Robinia pseudoacacia, two Metasequoia
glyptostroboides and three Pinus tabulaeformis. Consequently, the data of these nine trees were eliminated
from modeling. A comparison of the AGB of each tree from the TLS-QSM model and the basic wood
density with the corresponding reference AGB is shown in Figure 6. The comparison between the AGB
calculated by TLS-QSM and the AGB from the regional allometric model indicated that the total RMSE
and CV (RMSE) of the AGB obtained via TLS-QSM were 17.4 kg and 13.6%, respectively. The correlation
between the AGB values from TLS-QSM and the allometric model, expressed by a linear regression
model, was 0.95. The TLS-QSM approach and regional allometric model were highly consistent in
regard to the 95% confidence interval level (CCC = 0.97), with no major systematic deviation from
the 1:1 line (slope of 1.02). Hence, there was no tendency to overestimate or underestimate the AGBs
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of larger trees. Figure 6b shows the distribution of the AGB residuals from different tree species.
Compared with the regional allometric models, the TLS-QSM method for calculating AGB with basic
density has neither systematically tended to overestimate nor underestimate the AGB of a particular
tree species for different tree species.

Figure 6. Comparison of the tree above ground biomass (AGB) obtained through quantitative structure
model (QSM) reconstruction and the AGB derived from allometric models. (a) Comparison of tree AGB
and references from ten different tree species; (b) residuals of tree AGB from ten different tree species.

Figure 7 depicts the average modeled AGB from ten different QSMs for each tree and compares
them to the reference AGB. The QSM algorithm showed significant differences in modeling accuracy
and stability for tree species with different morphological and topological structural characteristics.
The best AGB modeling results were achieved for Salix matsudana and Populus tomentosa, with RMSE,
CV (RMSE) and CCC values of 16.2 kg and 11.6 kg, 7.7% and 6.5% and 0.99 and 0.96, respectively
(Figure 7). When modeling Juniperus chinensis and Pinus tabulaeformis, we found that the branches of
some of the trees were disturbed and destroyed by people. Therefore, the AGB-calculated by the model
was quite different from that of the regional allometric model, and we did not conduct a more detailed
analysis of those values. Ginkgo biloba showed large deviations and large uncertainties compared to
other tree species. Our results showed that small trees showed lesser uncertainties and lesser deviations
from the reference than large trees. The linear regression slopes of the models for Catalpa bungei and
Robinia pseudoacacia were 1.17 and 1.05, respectively, indicating that the TLS-QSM approach slightly
overestimated the AGBs of larger trees. By contrast, the TLS-QSM approach slightly underestimated
the AGBs of the large Populus tomentosa and Sophora japonica, and the slope of their linear regression
models was 0.84.

The analysis of variance showed that there was no statistically significant difference between
the AGB estimates and reference values for different tree species (α = 0.05; Table 7). The results of
variance analysis supported the hypothesis of equality. When the same analysis was performed for ten
different tree species using the assumptions of equal AGB means, p-values were 0.895, 0.811, 0.542,
0.651, 0.559, 0.685, 0.725, 0.881, 0.787 and 0.117 for Salix matsudana, Ginkgo biloba, Catalpa bungei, Fraxinus
pennsylvanica, Robinia pseudoacacia, Populus tomentosa, Juniperus chinensis, Metasequoia glyptostroboides,
Sophora japonica and Pinus tabulaeformis, respectively.
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Figure 7. Scatterplot of biomass estimates of different tree species according to the TLS-QSM
reconstruction model and the allometric model. (a–j) represent ten different tree species. The black
dotted line depicts the 1:1 line. The red line represents the fitted linear regression model of the
QSM-reconstructed biomass and the biomass according to the allometric model. The grey band depicts
the 95% confidence interval of the regression. Error bars are the standard deviation of the 10 QSM
model realizations per tree.

Table 7. The results of ANOVA analysis for AGB estimations for different tree species with degrees of
freedom (DF), mean squared errors (MSs), F-values and p-values.

Species DF MS F-Value p-Value

Salix matsudana 1 203.1 0.018 0.895
Ginkgo biloba 1 21.9 0.058 0.811

Catalpa bungei 1 550.2 0.378 0.542
Fraxinus pennsylvanica 1 236.6 0.207 0.651

Robinia pseudoacacia 1 1578.7 0.346 0.559
Populus tomentosa 1 281.9 0.167 0.685
Juniperus chinensis 1 252.3 0.125 0.725

Metasequoia
glyptostroboides 1 5.3 0.022 0.881

Sophora japonica 1 168.3 0.073 0.787
Pinus tabulaeformis 1 1758.2 2.549 0.117

3.4. Sensitivity Analysis of the QSM Algorithm

We mainly analyzed the sensitivity and stability of the QSM algorithm according to the RMSE
of tree AGBs generated using different values for the parameters d and l, and the standard deviation
produced by the given parameter values in the QSM algorithm for ten modeling times per tree. Tables 8
and 9 respectively, show the differences of AGB for different tree species, calculated using different
values for the parameters d and l in the QSM algorithm. The different values of d had a great influence
on the volume of the trunks and branches reconstructed by the QSM algorithm, and consequently
a great impact on the evaluation of AGB (Table 8). Different tree species had large errors in the
reconstruction results for the same value of d, which indicated that the algorithm was impacted by the
different morphological structures of different tree species. We also found that different parameter
values had no significant impact on the reconstructed trunk volume, but had a great impact on the
volume of the reconstructed branches. Table 9 describes the effects of different values of the parameter
l on the tree AGB reconstructed by the QSM algorithm. It can be seen that different values of l had no
significant impact on the reconstructed AGB of specific trees, which indicates that the parameter l of
the QSM algorithm has low sensitivity and high stability for the reconstruction results.

Table 8. Sensitivity of the QSM algorithm to the parameter d.

Species
RMSE

(d = 2)/kg
RMSE

(d = 3)/kg
RMSE

(d = 4)/kg
RMSE

(d = 5)/kg
RMSE

(d = 6)/kg
RMSE

(d = 7)/kg

Ginkgo biloba 17.6 22.5 29.5 41.1 62.3 75.2
Salix matsudana 23.9 21.4 23.9 18.7 18.1 19.3
Catalpa bungei 14.9 12.9 22.0 18.3 25.0 27.4

Fraxinus pennsylvanica 23.2 19.9 22.6 18.4 23.5 20.2
Robinia pseudoacacia 11.4 17.3 23.0 22.4 28.2 28.6
Populus tomentosa 12.7 17.8 21.1 30.3 40.0 54.3
Juniperus chinensis 21.6 42.3 60.8 77.7 91.1 85.0

Metasequoia
glyptostroboides 9.8 5.5 6.3 10.9 13.9 18.1

Sophora japonica 15.8 19.2 25.6 30.5 38.1 42.2
Pinus tabulaeformis 31.1 28.3 23.3 30.6 36.6 45.7
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Table 9. Sensitivity of the QSM algorithm to the parameter l.

Species RMSE (l = 3)/kg RMSE (l = 4)/kg RMSE (l = 5)/kg RMSE (l = 6)/kg

Ginkgo biloba 12.2 12.7 12.8 14.9
Salix matsudana 16.8 17.4 22.3 22.8
Catalpa bungei 14.5 14.3 13.7 15.0

Fraxinus pennsylvanica 21.2 19.9 24.0 24.8
Robinia pseudoacacia 13.2 13.9 11.9 12.3
Populus tomentosa 13.2 12.4 13.9 13.7
Juniperus chinensis 25.7 30.2 32.5 32.1

Metasequoia
glyptostroboides 7.6 6.7 5.8 6.0

Sophora japonica 17.5 17.4 19.1 19.2
Pinus tabulaeformis 24.8 22.5 24.3 24.5

4. Discussion

TLS is a powerful and effective tool for obtaining 3D point cloud data of the morphological
structures of individual trees, and then extracting a variety of geometric and statistical parameters.
The least squares circle fitting algorithm was used to fit point clouds at DBHs of trees with different
bark roughness and trunk curvature. The results showed that different bark roughness and trunk
curvature had a minor influence on the evaluation of DBH in laser point clouds [56,57]. The comparison
of DBH from TLS data and field measurements shows a high consistency. The precision of the DBH
estimation in our study (RMSE = 1.2 cm) was higher than that reported by Calders et al. [2] and Cabo
et al. [58]. The slope of the fitting line between the estimated DBH and the measured data was 0.97,
which indicated that the DBH of trees was slightly underestimated on the whole. In addition to the
influence of bark roughness, the main reasons for the smaller DBH estimation were the shape of the
trunk and the low density and uneven distribution of point cloud data [40,56]. The precision of the
tree height estimation (RMSE = 1.3 m) in our study was lower than that reported by Cabo et al. [58].
That was likely due to the higher trunk density in our plots, which caused occlusion of tree tops,
leading to the modelling error of the tree height-DBH model. Obtaining tree height from point cloud
data has an obvious advantage over other instruments for measuring tree height since it does not rely
on the artificial selection of tree vertices. This method is more advantageous for measuring tree height
in dense forests where the tops of trees cannot be seen [59,60].

A QSM algorithm optimized for different tree species based on their biophysical characteristics
can provide reliable and highly accurate estimates of AGB. The optimal value for the parameter d
was 2 or 3 cm for all investigated tree species except Salix matsudana, Fraxinus pennsylvanica and Pinus
tabulaeformis, which is consistent with the results of Calders et al. [2] and Tanago et al. [8]. The optimal
value for the parameter l for different tree species was always 3, 4 or 5, which was consistent with the
results of Raumonen et al. [28]. The optimum value for the parameters d and l for different trees species
were obviously different, which was mainly influenced by the different biophysical and morphological
structures of the trees. Different parameters of the QSM algorithm have a great impact on the final
model reconstruction results. The method we used to reconstruct the model from TLS data does not
require prior assumptions about tree structure, nor does it rely on limited tree structure parameters.
Calders et al. [2] used the QSM algorithm to reconstruct the tree structure of Eucalyptus leucoxylon,
E. microcarpa and E. tricarpa, and then evaluated the tree AGB. The results of the AGBs calculated using
their TLS-QSM method were highly consistent with the reference values, with the CV (RMSE) and
CCC being 16.1% and 0.98, respectively. The accuracy of the total AGB estimated using the optimized
QSM algorithm in our study was higher than that reported by Calders et al. [2], and our CV (RMSE)
and CCC were 13.6% and 0.97 respectively. The accuracy of the AGB estimated in our study was
significantly higher than that of an estimate for 29 tropical rainforest trees species during the foliage
period (CV(RMSE) = 28.37%, R2 = 0.90, CCC = 0.95) [8]. The modelled volumes of different tree
species calculated using the QSM algorithm were quite different. In addition to the influence of the
biophysical structure of trees, an important reason is the difference in the stem density in the sample
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plots populated by different species. Among of 322 trees, nine failed to model when performing the 3D
reconstruction of tree structure. Possible reasons include a lack of point cloud data in some trees and
problems in the algorithm itself. Because different point cloud densities will affect the results of QSM
modeling, we used the same scanning resolution and set the same scanning mode and the same point
cloud data processing method in ten sample plots to ensure that the single trees used for QSM model
reconstruction had similar point cloud densities, which reduces the impact of different point cloud
density on the modelling results. The point cloud data of Ginkgo biloba were acquired in the period of
leaf growth, and the acquired data contained the point cloud data of leaves, which led to discrepancies
in the cylinders fitted in the modeling of branches, and further. led to a large standard deviation in the
biomass of individual modelled trees (Figure 7a). By contrast, the point cloud data of Salix matsudana
and Populus tomentosa were less affected by leaves and the biophysical morphologies of the trees were
relatively simple, so that the modelled results showed high consistency with the reference biomasses
(Figure 7b,f). When the QSM algorithm was used to repeatedly model the same individual tree a total
of 10 times, the modelled volume of the trunk was very similar, whereas the modelled volume of the
branches varied greatly, up to several times. An important reason was that the point cloud that newly
grows out of the leaves caused the fitted branches to be bulky. This method can not only calculate the
volume and biomass of trees, but also monitor the annual natural growth of tree volume, as well as
changes of branches and trunks [28]. Kaasalainen et al. [61] used this method to monitor the same tree
in successive years and quantitatively evaluate its growth of tree volume.

There are many factors influencing the calculated AGBs of trees, including allometric biomass
models. The allometric biomass models for a specific area have high accuracy in assessing the biomass
of individual trees. Therefore, all allometric biomass models used in this study were specific for the
area and tree species under investigation. In this study, the single variable (DBH) AGB prediction
model was only adopted for Juniperus chinensis, and the two variable (DBH and tree height) AGB
prediction model, which has higher accuracy of biomass assessment [62], was used for all the other
tree species. There are three main reasons for the inconsistency of the biomass calculated by the QSM
algorithm using basic wood density and regional allometric biomass models. First, the model data
of the regional allometric biomass equations of different tree species are inconsistent, which lead to
differences of model accuracy and inevitable systematic errors of the model itself, all of which had
an impact on the final biomass results for specific trees. Secondly, there is sensitivity and instability
of the QSM algorithm in the process of volume reconstruction of individual trees and the influence
of the differences of basic wood density on the calculation of the AGB of trees. Thirdly, we did not
consider the biomass of leaves in this study, because we found that it accounts for only a small part
(about 10%) of the total AGB, but it also directly affected the calculated AGBs of trees. In addition,
dead branches, lack of branches, incomplete extraction of a tree’s point cloud and other factors also
lead to differences between the calculated AGBs of trees reconstructed using the QSM algorithm and
the biomasses calculated by the model.

We optimized the reconstruction process of the QSM algorithm based on parameters d and l,
which have the most influence on the reconstruction results [2]. The results showed that the optimum
values of parameter d from most of the ten tree species was 2 or 3 cm, which s consistent with the
results of Raumonen et al. [28,63]. For different tree species, the optimal QSM algorithm had obvious
differences. At the same time, the influence of the parameter l on the modeling results was not very
significant. This provides an important reference for researchers who use the QSM algorithm for other
research. The QSM algorithm should further implement the automatic determination of the optimal
parameters of different tree species in the process of structural reconstruction and the automatic output
of the average values of multiple modeling realization as the final result to improve the accuracy of
wood volume and biomass assessment.

Future research will focus on more accurate estimation of tree volume and biomass from point
cloud data and how to use non-destructive approaches to replace the destructive felling of trees to
create and correct new allometric biomass models for specific tree species, especially for large trees.
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5. Conclusions

We quantitatively analyzed the effects of different bark roughness and trunk curvature on DBH
estimation, and the results indicated that neither parameter had a severe impact. The TLS-QSM
method optimized in our study can be used to accurately evaluate the AGB of trees with different
morphological and topological structures from 3D reconstructed data, which compared with the
reference AGB from specific allometric biomass models. However, since we did not harvest trees
in this study, the AGB estimated from TLS data was not compared to the actual value of biomass.
The results of this study show that our optimized approach can provide a potential possibility for the
development and calibration of allometric biomass models, especially for large trees and precious tree
species that are not usually harvested and measured. Using our optimized QSM algorithm, we can
continuously monitor different trees to evaluate their growth, health, economic value and ecological
benefits. In addition, we can also analyze more potential information in a given forest structure based
on the model reconstructed by our optimized algorithm, including the height under the first branch,
the height of the tree crown, tree crown shape, crown volume and so on.
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Appendix A

The least squares circle fitting algorithm was used to fit the DBHs of 10 cm thick slices of trees
with different bark roughness and trunk curves. The estimated DBH from TLS point cloud data was
compared with the measured DBHs, as shown in Figure A1. The estimated DBHs and reference DBHs
of different tree species showed a good linear fit. Bark roughness of ten tree species was measured
using a method similar to that of Sioma et al. [64]. Finally, we classified Salix matsudana, Robinia
pseudoacacia, Metasequoia glyptostroboides and Pinus tabulaeformis into the rough bark group; Catalpa
bungei, Fraxinus pennsylvanica, Sabina chinensis and Sophora japonica into the moderately rough bark
group; and Ginkgo biloba and Populus tomentosa into the smooth bark group. Analysis of variance
(ANOVA) was used to test whether the differences between estimates and reference values of DBH
for different tree species were statistically significant at the 95% level of significance. As can be seen
from Figure A1 and Table A1, the DBHs of the ten tree species from LiDAR point cloud data were
underestimated to different extents compared with the measured DBH. The DBH of the same tree
species was not overestimated with the increase of DBH. The RMSEs of Ginkgo biloba in the smooth
bark group and Juniperus chinensis in the moderately rough bark group were the smallest, both of
which were 0.9 cm. The RMSE of the moderately rough bark group was mostly 1.2 cm. The assessment
accuracy of Metasequoia glyptostroboides, Robinia pseudoacacia and Pinus tabulaeformis in the rough bark
group was the lowest, with RMSE values of 1.4, 1.3, and 1.3 cm, respectively. Therefore, we could infer
that the assessment accuracy of the DBH decreased gradually with the increase of bark roughness,
which indicated that DBH assessment from laser point cloud data would be affected by bark roughness.
However, the accuracy of DBH evaluation of different species with different bark roughness was not
very different.
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Figure A1. Comparison of DBH calculated for tree species with different bark roughness and trunk
curvature with measured DBH (a–j stands for the different tree species).

The accuracy of the DBH estimation for ten different tree species utilizing TLS data is shown in
Table A1. It can be seen that all deviations are less than zero, which indicates that all the calculated
DBH values were underestimated compared with the measured DBH. Catalpa bungei had the largest
bias of −1.2 cm and a relative bias of −5.4%. The bias of Pinus tabulaeformis was the smallest, at −0.1 cm,
and the relative bias was −0.4%. The RMSE of DBH values of the ten tree species ranged from 0.9 cm
to 1.4 cm, which indicates that the differences between species were not very large. The RMSE values
of Metasequoia glyptostroboides, Robinia pseudoacacia and Pinus tabulaeformis were large, at 1.4, 1.3 and 1.3
cm, respectively, and the corresponding relative RMSE values were 9.6%, 7.0% and 7.4%. The RMSE
values of Ginkgo biloba and Juniperus chinensis were the smallest, both at 0.9 cm, and the relative RMSE
values were 4.9%, and 3.9% respectively, which was consistent with the preceding results.
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Table A1. The accuracy of the DBH estimations for ten different tree species utilizing TLS data.

Species Bias (cm) Bias% RMSE (cm) RMSE%

Salix matsudana −1.1 −4.6 1.2 5.3
Ginkgo biloba −0.7 −3.9 0.9 4.9

Catalpa bungei −1.2 −5.4 1.2 5.6
Fraxinus pennsylvanica −0.7 −4.0 1.2 6.6

Robinia pseudoacacia −1.0 −5.3 1.3 7.0
Populus tomentosa −0.8 −3.9 1.0 4.5
Juniperus chinensis −0.5 −2.2 0.9 3.9

Metasequoia
glyptostroboides −1.1 −7.3 1.4 9.6

Sophora japonica −0.9 −6.7 1.1 7.6
Pinus tabulaeformis −0.1 −0.4 1.3 7.4

The analysis of variance showed that there was no statistically significant difference between the
DBH estimates and reference values of other tree species except Ginkgo biloba (α = 0.05; Table A2).
The ANOVA results of the DBH of Ginkgo biloba trees rejected the assumption of equal DBH mean
(p-value = 0.037 < 0.05), and the results of ANOVA of other tree species supported this hypothesis.
When the same analysis was performed for other tree species using the assumptions of equal DBH
means, p-values were 0.337, 0.081, 0.185, 0.372, 0.198, 0.608, 0.052, 0.278 and 0.941 for Salix matsudana,
Catalpa bungei, Fraxinus pennsylvanica, Robinia pseudoacacia, Populus tomentosa, Juniperus chinensis,
Metasequoia glyptostroboides, Sophora japonica and Pinus tabulaeformis, respectively.

Table A2. The results of ANOVA analysis for DBH estimations for different tree species with degrees
of freedom (DF), mean squared errors (MSs), F-values and p-values.

Species DF MS F-Value p-Value

Salix matsudana 1 28.8 0.932 0.337
Ginkgo biloba 1 12.4 4.475 0.037

Catalpa bungei 1 14.6 3.203 0.081
Fraxinus pennsylvanica 1 8.3 1.800 0.185

Robinia pseudoacacia 1 11.6 0.814 0.372
Populus tomentosa 1 8.4 1.706 0.198
Juniperus chinensis 1 3.6 0.268 0.608

Metasequoia
glyptostroboides 1 16.9 3.931 0.052

Sophora japonica 1 13.6 1.199 0.278
Pinus tabulaeformis 1 0 0.005 0.941

A comparison of tree heights calculated from laser point clouds with measured tree heights for
different tree species is shown in Figure A2. We can see that there are obvious differences in tree height
comparisons among different tree species. The tree height of all species except Populus tomentosa was
underestimated to different extents. The reference tree height was obtained using the total station,
and the tree height was calculated using the growth model of the specific tree species in the specific
area where the tree top was not visible. Therefore, the measured tree height in the field was close
to that measured in a destructive way. The slopes of linear fitting for Ginkgo biloba, Salix matsudana,
Catalpa bungei, Sophora japonica and Pinus tabulaeformis were all less than 0.70, whereby the heights of
large trees were overestimated and those of small trees were underestimated. A likely reason for this
is the occlusion of small trees by nearby large trees, especially in forest types with high tree density,
which leads to the mistake of dividing a portion of the large trees into small trees, so that the height
of the small trees is overestimated. In the case of large trees, due to the occlusion by lower trees and
branches preventing the acquisition of sufficient point cloud data in the top part of the tree, there
is a subsequent underestimation of tree height. As shown in Figure A2 and Table A3, there was no
significant difference in the tree height estimated using TLS point cloud data between coniferous and
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broad-leaved forests. The estimation accuracies of the tree heights of Salix matsudana and Populus
tomentosa were the lowest, with an RMSE of 1.6 m in both cases, and relative the RMSEs of 9.8%, and
7.7%, respectively. The tree height estimation accuracies of Catalpa bungei and Fraxinus pennsylvanica
were the highest, with RMSE 1.0 m in both cases, and relative RMSEs of 6.3%, and 9.9%, respectively.

Figure A2. Comparison of tree heights calculated from LiDAR point cloud data of different tree species
with measured tree heights (a–j stand for different tree species).
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Table A3. The accuracy of the tree height estimation for ten different tree species utilizing TLS data.

Species Bias (m) Bias% RMSE (m) RMSE%

Salix matsudana −0.8 −4.9 1.6 9.8
Ginkgo biloba −0.3 −2.7 1.1 9.8

Catalpa bungei −0.4 −2.7 1.0 6.3
Fraxinus pennsylvanica −0.7 −6.5 1.0 9.9

Robinia pseudoacacia 0.3 1.8 1.1 6.9
Populus tomentosa 1.1 5.2 1.6 7.7
Juniperus chinensis −1.1 −10.0 1.3 11.7

Metasequoia
glyptostroboides −0.5 −4.7 1.3 11.3

Sophora japonica −0.5 −3.9 1.4 10.7
Pinus tabulaeformis −0.9 −9.6 1.2 13.0
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Abstract: Dynamic monitoring of carbon storage in forests resources is important for tracking
ecosystem functionalities and climate change impacts. In this study, we used multi-year Landsat data
combined with a Random Forest (RF) algorithm to estimate the forest aboveground carbon (AGC) in
a forest area in China (Hang-Jia-Hu) and analyzed its spatiotemporal changes during the past two
decades. Maximum likelihood classification was applied to make land-use maps. Remote sensing
variables, such as the spectral band, vegetation indices, and derived texture features, were extracted
from 20 Landsat TM and OLI images over five different years (2000, 2004, 2010, 2015, and 2018).
These variables were subsequently selected according to their importance and subsequently used
in the RF algorithm to build an estimation model of forest AGC. The results showed the following:
(1) Verification of classification results showed maximum likelihood can extract land information
effectively. Our land cover classification yielded overall accuracies between 86.86% and 89.47%.
(2) Additionally, our RF models showed good performance in predicting forest AGC, with R2 from
0.65 to 0.73 in the training and testing phase and a RMSE range between 3.18 and 6.66 Mg/ha. RMSEr
in the testing phase ranged from 20.27 to 22.27 with a low model error. (3) The estimation results
indicated that forest AGC in the past two decades increased with density at 10.14 Mg/ha, 21.63 Mg/ha,
26.39 Mg/ha, 29.25 Mg/ha, and 44.59 Mg/ha in 2000, 2004, 2010, 2015, and 2018. The total forest AGC
storage had a growth rate of 285%. (4) Our study showed that, although forest area decreased in the
study area during the time period under study, the total forest AGC increased due to an increment
in forest AGC density. However, such an effect is overridden in the vicinity of cities by intense
urbanization and the loss of forest covers. Our study demonstrated that the combined use of remote
sensing data and machine learning techniques can improve our ability to track the forest changes in
support of regional natural resource management practices.

Keywords: Landsat dataset; forest AGC estimation; random forest; spatiotemporal evolution

1. Introduction

Forests comprise a major part of the terrestrial ecosystems, occupying about 30% of the world’s
land area, and they are the main contributor to carbon (C) emissions and removal [1–3]. They store
more than 80% of forest aboveground carbon (AGC) in terrestrial ecosystems, more than 70% of global

Forests 2019, 10, 1004; doi:10.3390/f10111004 www.mdpi.com/journal/forests49



Forests 2019, 10, 1004

soil organic C [4–6] and more than double the amount of C in the atmosphere [7]. As an important part
of terrestrial ecosystems, forest ecosystems are a huge global carbon pool and they will likely play a
long-term and sustained role in mitigating the impacts of global warming [8–11]. Forest AGC is not
only an important indicator reflecting the basic characteristics of forest ecosystems, but also a basis
for evaluating forest structural functions and production potentials [12–14]. Accurate quantitative
evaluation of forest AGC storages and their spatiotemporal patterns is critical for understanding the
mechanisms that control the global terrestrial C cycle [15–20].

The methods of estimating in forest AGC generally include field survey, model simulation, and
remote sensing inversion [21–24]. The traditional field survey method has high precision [17], but
it is often limited by manpower and material resources, yielding short durations of observation.
Additionally, because the field survey only covers limited locations, when used alone, it cannot estimate
AGC over large areas. The ecological process models take the biological characteristics and growth
mechanisms of vegetation into account, resulting in a higher accuracy of estimation [25]. However,
it needs various parameters of vegetation to simulate forest AGC. If the input data are insufficient or
missing, it will have a great impact on the prediction results. Remote sensing technology has been
commonly used in monitoring forest AGC over broad areas due to its wide coverage of observation,
timeliness, and repetitive data availability [26,27]. As spectral characteristics of land cover show great
differences [28–32], it is one of the important links in current research to accurately quantify various
indicators of forest resources [33,34]. Moreover, studies have found that remote sensing data and its
derived bands have good practicability for simulating forest AGC [35–37]; this is especially the case
when combined with machine learning algorithms that allow for large scale automated analysis of high
dimensional data from satellites [38]. The machine learning approach can derive rich information from
remote sensing data as the input data, and continuously optimize the algorithm’s performance via
empirical learning to make the results more feasible and credible [39–41]. Remotely sensed datasets,
combined with machine learning algorithms for intelligent estimation of forest AGC, support more
efficient and precise observation and management of forest resources [42–44].

Among the numerous machine learning techniques, random forest (RF) has recently emerged
as popular due to its ability to select and rank a large number of predictor variables [45,46] and its
reliance on an ensemble of decision trees as a strategy to improve model robustness. RF is unexcelled
in accuracy among the current algorithms and it can run efficiently on large data bases. It can not
only handle thousands of input variables without variable deletion, but can also give estimates of
what variables are important in the model. Khatami et al. [47] classified images used a surveillance
classification algorithm based on remote sensing data to classify images, and the results showed that
the RF algorithm is superior to the traditional decision tree algorithm. Bargiel et al. [48] included
phenology factors in the classification model and revealed that RF based on the phenology can be better
to identify the crop types. Chen et al. [49] used climatic factors to simulate carbon dioxide flux and the
results showed that the RF model had R2 values of 0.96 and 0.85 at the training and testing phases.

In this study, we focused on Hang-Jia-Hu, a region with rapid economic development in the
northwestern part of Zhejiang, China. This region has a forest area of nearly 6.06 million hectares and
LUCC caused by urban expansion due to socio-economic factors has great impact on forest resources.
Therefore, the timely and efficient estimation of forest AGC in Hang-Jia-Hu has significant importance
to the rational allocation of forest resources. Dynamic monitoring of forest AGC in Hang-Jia-Hu was
carried out based on the Landsat time series remote sensing data combined with the RF algorithm.
The importance of variables in the models and spatiotemporal evolution of forest AGC in the past two
decades were analyzed.
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2. Materials and Methods

2.1. Study Area

Hang-Jia-Hu is located in the northwestern part of Zhejiang Province, China, ranging from
118◦50′15′′ E to 121◦19′6′′ E and from 29◦42′52′′ N to 31◦11′53′′ N (Figure 1). Its climate is subtropical
monsoon and the annual average temperature is 15–18 ◦C, with an average annual precipitation of
about 1100 mm. The 18.1 million hectares study area administratively covered the entire Huzhou City
and Jiaxing City and the northeastern part of Hangzhou City. Most forest in this place is distributed in
the southwest of the study area with the main forest types being broad-leafed forest (BLF), coniferous
forest (CNF), and bamboo forest (BMF).

Figure 1. Study area and forest aboveground carbon (AGC) plots of different years.

2.2. Datasets and Processing

2.2.1. Processing Landsat Times Series Products

30-m multispectral data of Landsat5 TM (2000, 2004, 2010) and Landsat8 OLI (2015, 2018) were
downloaded from the United States Geological Survey (USGS). We selected cloud-free images from the
years with ground observations for four scenes that cover our study area (Table 1). Few scenes image
contain a high amount of cloud, but the region covering the study area is cloudless. Additionally, due
to the poor image quality from 2014, we used the images in 2015 to correspond with field data in 2014.

Satellite remote sensed data are easily influenced by water vapor, aerosol, bidirectional reflection,
and data transmission, which will result in serious fluctuations of time series data and influence the
desired effect in data analysis [50,51]. Therefore, this study applied the Fast line-of-Sight Atmospheric
Analysis of Spectral Hypercubes (FLAASH) [52–54] to eliminate such atmospheric interference in each
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image. A digital elevation model (DEM) [55,56] was used to make terrain corrections, as terrain factors
may affect the brightness values of original imagery.

Table 1. Acquisition date and cloud coverage (C) (%) of the Landsat datasets.

WRS2
row/path

2000 2004 2010 2015 2018

TM 5 C TM 5 C TM 5 C OLI 8 C OLI 8 C

118039 06/06/2000 6.12 19/07/2004 14.2 17/07/2009 0.07 03/08/2015 4.68 15/01/2018 1.28
119038 31/07/2000 0.16 23/05/2004 0.03 24/05/2010 0.00 22/05/2015 15.4 23/02/2018 0.99
119039 17/09/2000 0.03 14/10/2004 0.00 24/05/2010 0.00 13/10/2015 0.63 28/04/2018 12.4
120039 10/10/2000 0.02 08/12/2004 0.01 19/08/2010 11.2 06/02/2015 19.9 19/04/2018 0.05

In addition to the original image bands, we calculated vegetation indices and texture variables
to use as input data to the forest AGC model. The vegetation indices [57–59] included in this study
included: NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index),
SR (Simple Ratio Index), DVI (Difference Vegetation Index), and EVI (Enhanced Vegetation Index).
Additionally, the texture variables based on the gray-level co-occurrence matrix (GLCM) [60,61]
included Mean, Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Angular second moment, and
Correlation [27,58,59,62–64] with different windows (3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11) [27,65,66].
There were 251 total variables derived with the details that are shown in Table 2.

Table 2. Information of remote sensing variables.

Type Name Calculation Model Abbreviation Remarks

Original
Band

Band1 band1 (band2*) B1

Suitable Landsat5 TM (2000,
2004, 2010) and Landsat8 OLI

(2015, 2018) data with*

Band2 band2 (band3*) B2
Band3 band3 (band4*) B3
Band4 band4 (band5*) B4
Band5 band5 (band6*) B5
Band6 band6 (band7*) B6

Vegetation
Index

NDVI (B4 − B3)/(B4+B3) NDVI

L take value for 0.5 [57,67]
SAVI (B4 − B3)(1 + L)/(B4 + B3 + L) SAVI
EVI 2.5 (B4 − B3)/(B4+6B3 − 7.5B1+1) EVI
SR B5/B4 SR

DVI B5 − B4 DVI

Texture

Mean N−1∑
i=0

N−1∑
j=0

iP(i, j) ME
P(i, j) = V(i, j)/

N−1∑
i=0

N−1∑
j=0

V(i, j)

V(i, j) is the ith row of the jth
column in the Nth moving

window; ux =

N−1∑
j=0

j
N−1∑
i=0

P(i, j)

uy =

N−1∑
i=0

i
N−1∑
j=0

P(i, j)

σx =

N−1∑
j=0

( j− ui)
2 N−1∑

i=0
P(i, j)

σy =

N−1∑
i=0

(
i− uj

)2 N−1∑
j=0

P(i, j)

Variance N−1∑
i=0

N−1∑
j=0

(i−mean)2P(i, j) VA

Homogeneity N−1∑
i=0

N−1∑
j=0

P(i, j)
1+(i− j)2

HO

Contrast N−1∑
|i− j|=0

∣∣∣i− j
∣∣∣2
⎧⎪⎪⎨⎪⎪⎩ N∑

i=1

N∑
j=1

P(i, j)

⎫⎪⎪⎬⎪⎪⎭ CON

Dissimilarity N−1∑
|i− j|=0

∣∣∣i− j
∣∣∣
⎧⎪⎪⎨⎪⎪⎩ N∑

i=1

N∑
j=1

P(i, j)

⎫⎪⎪⎬⎪⎪⎭ DI

Entropy −N−1∑
i=0

N−1∑
j=0

P(i, j) log(P(i, j)) EN

Angular second
moment

N−1∑
i=0

N−1∑
j=0

P(i, j)2 SE

Correlation
∑N−1

i=0
∑N−1

j=0 P(i, j)2−μxμy

σxσy
COR

2.2.2. Processing Observed Data

Forest AGC plots and classification verification plots in 2000, 2004, 2010, and 2014 are all derived
from the data of National Forest Inventory (NFI) [20,27] in Zhejiang province. The investigation
method of NFI was systematic sampling, which is usually evenly placed at the intersection of kilometer
grids of 1:50,000 topographic maps. Each plot size is 28.5 m × 28.5 m. Forest AGC data that were
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used in 2018 were derived from a field survey in July, 2019. Each plot of 30 m × 30 m was placed to
cover a homogenous area of bamboo, inside which the number of trees and average diameter at breast
height (DBH) were measured. After calculating the bamboo biomass of each plot by using the growth
model, bamboo AGC was calculated by using the conversion coefficients between biomass and carbon
stocks. Classification verification data in 2018 were manually and evenly selected from the result of
unsupervised classified data and visual interpretation.

Land use in this paper was classified into six types: urban, water, cultivated land (CTL), BLF,
CNF, and BMF based on the data of the NFI and field survey [26]. Maximum likelihood [68,69] was
applied to make the land use classification map. The classification training samples in this paper are
uniformly and evenly selected by the visual interpretation based on the land use spectral reflectance
characteristics. The training samples of each land use type were consistent (400 pixels) and they could
cover the study area. The total number of classification verification samples in 2000, 2004, 2010, 2014,
and 2018 were 171, 175, 191, 156, and 240, respectively, and the numbers of forest verification samples
were 120, 116, 137, 106, and 160. Table 3 details forest AGC plots used to construct the AGC estimation
model from 2000 to 2018.

Table 3. Summary of the forest AGC plots of different years.

Year
Sample Size Unit: Mg/ha

Training Testing Total Min Max Mean SD

2000 160 69 229 1.28 32.11 10.17 6.02
2004 138 59 197 4.92 38.84 20.28 6.66
2010 123 52 175 5.33 43.48 22.89 9.13
2014 - 102 102 2.18 37.49 17.98 7.97
2018 - 42 42 14.08 40.88 27.26 5.93

2.3. Random Forest and AGC Estimation

Breiman first made formal definition of the RF in 2001, which is a bagging of uncorrelated
CART trees learned with randomized node optimization [70–72]. First, the algorithm generates N
bootstrap samples for the training dataset. Second, a regression tree model is built for each bootstrap
sample. Finally, the predicted results are obtained by averaging the predictions from all individual
regressions [20]. RF has three important parameters: (1) the number of random regression trees (Ntree);
(2) number of variables to be randomly sampled at each node in a tree (Mtry), used to search for the
variable that best partitions samples in the training data set and the default number is 1/3 of input
variables [73]; and, (3) the minimum number of terminal nodes (Nodesize) where the default value is 5
in regression analysis [8,49].

Forest AGC samples of different years were divided into two groups to optimize the RF model in
this study (Table 3), with one group of data accounting for 70% samples represented training samples
of the RF model and the remaining 30% represented test samples to test the model accuracy. Training
data were also used to evaluate the importance of input variables to forest AGC and select input
variables for constructing the RF model. Forest in this paper includes three types and each of them
has corresponding forest AGC plots in 2000, 2004, and 2010. In 2014 and 2018, the AGC plots only
have the forest type of BMF. Therefore, we decided to use data in 2000, 2004, and 2010 to construct
individual AGC estimation models by using the forest non-stratification method [65] and applied the
corresponding model to simulate forest AGC in 2000, 2004 and 2010. Subsequently, these three models
are applied to predict forest AGC in 2015 and 2018 and the BMF AGC plots in 2014 and 2018 are used
for verification. The estimation result in 2015 and 2018 with the highest accuracy in the verification
phase will be chosen as the final simulation result. In this paper, we used “RandomForest” package in
the R statistical software [74,75] to construct the forest AGC model. During the process of applying the
model established, we put the entire image data into the model and run it, and use Python to read the
model result into image format, and then perform spatial analysis.
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2.4. Accuracy Assessment

The determination coefficient (R2), root mean square error (RMSE), and relative RMSE
(RMSEr) [27,65] were used to evaluate the accuracy of the RF model. A higher accuracy is indicated by
the higher values of R2 and lower values of RMSE and RMSEr. R2, RMSE, and RMSEr were calculated,
as follows:

R2 = 1−
∑n

i=1
(pi − oi)

2/
∑n

i=1
(oi − oi)

2 (1)

RMSE =

√
1
n

∑n

i=1
(pi − oi)

2 (2)

RMSEr =
RMSE

y
× 100 (3)

In Equations (1)–(3), R2, RMSE, and RMSEr are the indexes to measure model accuracy; pi and oi
are the value of forest AGC samples in the predicted and observed phase in the year of 2000, 2004, and
2010; oi is the average value of observed plots; y is the average value of forest AGC in testing samples;
and, i is the number of samples.

3. Results

3.1. Land Use Classification

Figure 2 presents the classification results using maximum likelihood methods.

Figure 2. Land use maps from 2000 to 2018.
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Table 4 shows the overall accuracy of classification by using confusion matrix. It illustrates that
the overall classification accuracies in different years were above 86.86%, and the highest was 89.47%
with a kappa coefficient above 0.84 and a high of 0.87. The classification accuracies of the BLF, BMF,
and CNF were between 86.67% and 89.62%. Classification verification results show a high level of
precision. Based on this high precision classification result, we extracted BLF, BMF and CNF separately
and use it to mask the forest AGC estimation results.

Table 4. Overall accuracy and kappa coefficient of land use classification.

Year
Overall Accuracy (%) Forest Extraction Accuracy (%)

Accuracy (%) Kappa Coefficient BLF BMF CNF Forest

2000 89.47 0.87 87.71 81.25 91.30 86.67
2004 86.86 0.84 90.00 86.54 88.87 88.89
2010 88.48 0.85 89.15 84.85 90.91 88.57
2015 89.10 0.87 93.75 82.14 91.30 89.62
2018 87.90 0.86 92.50 85.00 90.00 89.17

3.2. RF Model Construction

3.2.1. Parameters Optimization of RF

Training data were used to input into RF to traverse all of the variables values and finally obtain
the optimal parameters. Figure 3 shows the results. Figure 3a presents Mtry, which is used to determine
the minimum amounts of variables in each tree to construct RF. As can be seen from Figure 3a, when
Mtry is a certain value, the model error is the smallest, which is the minimum Mtry value that is
required. Ntree in Figure 3b shows that model error tends to be stable when the Mtry is big enough.
Additionally, we used a 10-fold cross-validation to observe the effect of the number of variables on
the model error. Results in Figure 3c represent the variation trend of average model errors in this
process. It shows that the variables in the model are not as good as possible. When the model traverses
all possibilities, the model error will tend to be stable until a certain amount, when the value of
the model error reaches a minimum. Table 5 lists specific settings for different parameter values of
different models.

Figure 3. (a) Influence of Mtry to model error (Mg/ha), (b) Influence of Ntree to model error (Mg/ha), (c)
Influence of variables number to model error (Mg/ha).

Table 5. Optimized parameters of random forest (RF) models in different years.

Year Nodesize Mtry Ntree Number of Variables

2000 5 20 2500 52
2004 5 21 2500 115
2010 5 24 2500 13
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3.2.2. Variable Importance and Autocorrelation

The RF model in different years was ran 100 times each to observe changes in variables importance.
We listed the first 20 variables with importance scores of different models in Figure 4. Among all of
the variables used in the three models, most of the variables are texture features, while the original
band and vegetation index account for a small proportion. Upon viewing of variable selection in
different models, we found that 80% of the variables are the mean of the texture features in 2000 model.
It reveals that the texture mean at different windows of the original band is important for estimating
forest AGC. In the 2004 model, the sixth band of the original band occupies 45% of the overall variables,
followed by the third band at 40%. Additionally, the texture window of 11*11 accounts for 65% of
the total variables. It illustrated the importance of the texture features of the third and sixth band at
11 × 11 windows to the estimation. In the 2010 model, the mean of the texture features occupies 55% of
the total and the sixth band has a selection probability of 35%, which exceeds other variables. As for
the importance scores, in the model of 2000, the influence of Tb2w7ME on forest AGC estimation is
the largest at an average of 14.83, followed by Tb2w5ME at 14.73. For 2004, Tb311HO has the largest
influence of 8.66, followed by Tb3w9DI with score at 8.61. Tb6w7VA has the largest effect on forest
carbon prediction at a score of 13.67 and is followed by Tb6w11ME at 12.01.

Figure 4. Importance of the first 20 variables measured in %InMSE (the percentage increase in the mean
squared error) from 100 runs of the RF. Note: Tbiwjxx, a texture image developed using the texture
measure xx (xx can be such texture measures as ME, VA, HO, CON, DI, EN, SE, COR) on spectral band
i (bandi) with a window size of j × j pixel (wj).

We calculated the frequency of the top 100 variables in the different RF models to further
understand the proportion of variables in the models. In the 2000 RF model, texture information
accounted for 92%, of which the fourth band has the most texture information, while the highest
window size is w9, and ME accounts for 28.3% of all texture information. Texture information in the
2004 model occupies 98% of the total variables. The number of textures in the third band is up to 24.5%.
W7 and ME have a major advantage in terms of window size and texture value. In 2010, 93% of the
texture information in the first band accounted for 27.6%, and w7 is also the window with the most
selection. The ME value has the same status as the previous two models in selection to establish forest
AGC models.

RF, which is widely used to estimate forest parameters while using remote sensing data, can
effectively solve the multicollinearity problems of complex variables in traditional statistical regression
models [20,76]. Figure 5 shows the collinear relationship between the first 20 variables. A weak
correlation indicates that the RF model could solve the collinearity between variables and the
overfitting problem to ensure the accuracy of the forest AGC estimation. We selected the optimal
number of variables and the optimal variables to build models for different years based on the
optimized parameters.
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Figure 5. Autocorrelation of the first 20 variables in different models.

3.3. Estimation and Evaluation of Forest AGC

We extracted the AGC estimation for the forest covers based on the classification results of the
maximum likelihood method and simulation results of the RF model established above (Figure 6).

Figure 6. Spatial distribution of forest AGC from 2000 to 2018.

The model performance is evaluated with scatterplots of predicted AGC against the observed
data (Figure 7). In the training phase (A) using data from 2000, 2004, and 2010, the models yielded R2
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that ranged from 0.69 to 0.73 (p < 0.01) and RMSE from 3.18 Mg/ha to 4.84Mg/ha. In the testing phase
(B) of the model in 2000, 2004, and 2010, the R2 value was in the range of 0.67–0.73. RMSE and RMSEr
were in the range of 5.58–6.66 Mg/ha and 20.41–23.65. Forest AGC simulation in 2015 and 2018 was
done by using the models in 2004 and 2010, respectively. The models yielded an R2 of 0.57 and 0.32.
RMSE were 5.59 and 5.76 Mg/ha and RMSEr were 23.65 and 20.77 for 2015 and 2018, respectively.

 
Figure 7. Accuracy evaluation of RF model at training phase (A) in 2000, 2004, 2010 and testing phase
(B) in 2000, 2004, 2010, 2015, and 2018.

3.4. Spatiotemporal Evolution of Forest AGC

The total forest area in the study region decreased in the past two decades according to the land
use classifications in different years. However, forest AGC has gradually increased from 2000 to
2018 in many areas, especially in the west of Hangzhou and southwest of Huzhou. We calculated
statistics of forest area, forest AGC, and total AGC storage to understand the change and relationship
between forest area, forest AGC, and the total forest AGC storage in Hang-Jia-Hu during the past two
dacades (Figure 8). The total forest area only increased from 2000 to 2004 and then gradually decreased
afterwards. The total amount of forest area was reduced by 77,713.92 ha with the largest declines
occurring following 2004 and 2010. The forest AGC density increased 3.4 times, from 10.14 Mg/ha in
2000 to 44.59 Mg/ha in 2018, and the growth rate was the highest between 2015 and 2018. The total
forest AGC storage did not decline due to the reduction of forest area, but it followed the same trend
as forest AGC density. It increased from 641.38 Mg C in 2000 to 2472.51 Mg C in 2018, with a growth
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rate of 285%. This reflects that forest AGC density is more influential on to the total forest AGC storage
when compared to the forest area.

Figure 8. Forest area, forest AGC and total forest AGC storage from 2000 to 2018.

Figure 9 shows the interannual variability of forest AGC and total forest AGC storage of 15
sub-regions in Linan (LN), Yuhang (YH), Jiaxing (JX), Jiashan (Js), Anji (AJ), Fuyang (FY), Pinghu
(PH), Deqing (DQ), Hangzhou (HangZ), Tongxiang (TX), Hanning (HN), Haiyan (HY), Huzhou (HuZ),
Xioashan (XS), and Changxing (CX). Forest AGC did not show obvious variations across different
regions (Figure 9a). Forest AGC was the lowest for all subregions in 2000 and the highest in 2018, with
the remaining years fluctuating between 22.57 Mg/ha and 28.43 Mg/ha. The total forest AGC varied
greatly across subregions mainly due to the variation in forest area. LN, AJ, and FY stood out with
over 2 × 106 ha of AGC, while other subregions had less than 1 × 106 ha.

Figure 9. (a) Forest AGC of different regions in different years, (b) Total forest AGC storage of different
regions in different years.
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Figure 10 reveals the spatial distribution of forest AGC change from 2000 to 2018. Overall, forest
AGC in most of the region is increasing, and the increase is mainly distributed in the western part of the
study area. Furthermore, from the above data analysis, forest AGC is increasing during the past two
decades. However, some areas showed a decrease in forest AGC, the reduction phenomenon. Such
decline in forest AGC mainly occurred near the center of Huzhou and towards the south of Hangzhou
in Fuyang District. The magnitude of decline was mainly between −10 Mg/ha and −20 Mg/ha.
The reduction of forest AGC in these areas was mounted to 240,660.36 ha.

Figure 10. Spatial distribution change map of forest AGC.

 

Figure 11. (a) Study area; (b) and (d) urban expansion in the central city of Hangzhou and Jiaxing; and,
(c) and (e) forest AGC reduction due to urban expansion in central city of Hangzhou and Jiaxing.
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Moreover, urban forests have received increasing attention in recent years due to their large C
sequestration capability and the positive impact on the environment, especially in areas with rapid
urban expansion. According to our land use classification, the urban area in the Hang-Jia-Hu region
has expanded into suburbs of the cities over the past 20 years, especially around the metropolitan
areas, such as Hangzhou and Jiaxing. Extensive decreases of forest AGC were particularly evident in
Huzhou City, but not clearly distinguishable in other cities. Therefore, to reveal more details regarding
the urban forest AGC change, we used 15-m pan-sharpened Landsat images to analyze the changes of
land use in Hangzhou City and Jiaxing City (Figure 11). We found that the urban growth took place in
the periphery of Jiaxing and mainly towards the northwest of Hangzhou. In Hangzhou, forest AGC
decreased along with intense urban growth in the northwest plains of the City. The decline of forest
area due to urbanization reached 3157 ha, which corresponded to an AGC storage loss of 25,309 Mg
C. In Jiaxing, forest AGC reduced in all surrounding areas, where the pattern is consistent with the
direction of the urban growth. The forest coverage in Jiaxing was reduced by 3078 ha and the forest
AGC by 20,701 Mg C as a result of urban growth. It is clearly seen that, although the urban expansion
mainly replaced the cultivated lands, it also significantly affected forests.

4. Discussion

In our modeling exercise using RF, we found that land surface texture information is the
most important variables of forest AGC. We calculated the correlation between the variables of the
corresponding optimal number of variables and forest AGC in different models, and presented a
scatter plot of the first eight variables and forest AGC in three models of the training phase to further
understand the specific correlation between variables and forest AGC (Figure 12). The results revealed
that R2 between the input variables in RF and forest AGC was in the range of 0.13 and 0.32 in the
model of 2000, 2004, and 2010. It further reflected that the variables that are involved in RF are closely
related with forest AGC, which means that texture information is one of the most essential factors in
the process of simulating forest AGC. Furthermore, it also reflected that remote sensing technology,
in combination with machine learning algorithms, are an effective means to monitor forest resources in
a precise and timely manner at large spatial scales.

However, there are still defects and deficiencies. Firstly, the temporal mismatch of remote sensing
and field survey data due to the lack of cloud free Landsat scenes corresponding to the exact times
of ground observation can lead to estimation error in the results. Furthermore, different types of
forest surfaces have similar spectral signatures, which could have resulted in misclassification [77].
The verification accuracy of the classification results indicates that the BMF is the main reason for
the precision declining. Secondly, in the verification phase of simulation results, accuracy in 2015
and 2018 were all below the accuracy in the other three models by a degree. Parameter settings for
different modeling due to different raw data vary from year to year. Additionally, different parameter
settings will result in the model being only applicable to the simulation of forest AGC in the input
data year, but not in other years. Finally, RF also has certain flaws in simulation due to the great
requirements for input data. Spatiotemporal distribution of the simulation results show that forest
AGC in different periods is concentrated in a certain range (fluctuating around the average of training
data), which means that RF has a poor simulation effect on the data at both ends of a dataset, which is
consistent with the research result of Gao et al. [65]. High simulation accuracy seems to show that
RF is best suited to simulating AGC at certain range, and making the simulation results have the
same data distribution as the input data is a critical step. Studies have shown that a combination of
multi-source remote sensed data can improve the accuracy of estimation in forest biomass or forest
AGC [78]. Furthermore, forest AGC can be simulated with other types of data, such as meteorological
data, topography, and soil data [79]. The accuracy of forest AGC simulation can be further improved
when considering multivariate remote sensing data and other various impact factors.
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(a) 
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(c) 

Figure 12. (a) Correlation between the first 8 variables and forest AGC in 2000 model. (b) Correlation
between the first 8 variables and forest AGC in 2004 model. (c) Correlation between the first 8 variables
and forest AGC in 2010 model.
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5. Conclusions

Based on the remotely sensed and ground survey data, we used the optimized RF models to
simulate the distribution patterns and temporal changes of forest AGC in the Hang-Jia-Hu region.
Classification by using a maximum likelihood method can present well the land use cover. Additionally,
our models estimated forest AGC for the study area in different years with relatively high accuracies.
The standardized residuals of the testing samples in different models (Figure 13) are all in the range
of −2 to 2, which further illustrates that the optimized RF model has good stability and reliability in
predicting forest AGC. With the estimation results, we found that, during the study period from 2000
to 2018, although the total forest area has decreased, the total AGC storage has significantly increased
as a result of the increased AGC density. However, forest AGC has decreased near the cities due to the
urban expansion in spite of the increase of forest AGC over the entire region.

Figure 13. Standardized residual of the testing phase in different models.
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Abstract: Forest biomass is a major store of carbon and plays a crucial role in the regional and global
carbon cycle. Accurate forest biomass assessment is important for monitoring and mapping the status
of and changes in forests. However, while remote sensing-based forest biomass estimation in general
is well developed and extensively used, improving the accuracy of biomass estimation remains
challenging. In this paper, we used China’s National Forest Continuous Inventory data and Landsat 8
Operational Land Imager data in combination with three algorithms, either the linear regression (LR),
random forest (RF), or extreme gradient boosting (XGBoost), to establish biomass estimation models
based on forest type. In the modeling process, two methods of variable selection, e.g., stepwise
regression and variable importance-base method, were used to select optimal variable subsets for LR
and machine learning algorithms (e.g., RF and XGBoost), respectively. Comfortingly, the accuracy of
models was significantly improved, and thus the following conclusions were drawn: (1) Variable
selection is very important for improving the performance of models, especially for machine learning
algorithms, and the influence of variable selection on XGBoost is significantly greater than that of RF.
(2) Machine learning algorithms have advantages in aboveground biomass (AGB) estimation, and
the XGBoost and RF models significantly improved the estimation accuracy compared with the LR
models. Despite that the problems of overestimation and underestimation were not fully eliminated,
the XGBoost algorithm worked well and reduced these problems to a certain extent. (3) The approach
of AGB modeling based on forest type is a very advantageous method for improving the performance
at the lower and higher values of AGB. Some conclusions in this paper were probably different as the
study area changed. The methods used in this paper provide an optional and useful approach for
improving the accuracy of AGB estimation based on remote sensing data, and the estimation of AGB
was a reference basis for monitoring the forest ecosystem of the study area.

Keywords: aboveground biomass; variable selection; forest type; machine learning; subtropical forests

1. Introduction

The forest ecosystem plays a critical role in the global terrestrial carbon cycle, and it is the research
topic of major scientific projects, such as the International Geosphere-Biosphere Program, the World
Climate Research Programme, and an International Programme of Biodiversity Science [1,2]. Forest
biomass can directly reflect the status and changes of forest ecosystem, and it is the basis for the rational
utilization of forest resources and for improving the ecological environment [3,4]. Accurate and rapid
estimation of forest biomass is particularly important for improving the efficiency of time, capital, and
labor of forest resource investigation and studying the carbon cycle of the terrestrial ecosystem in large
areas [5,6].
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The traditional field measurement for forest aboveground biomass (AGB), which is more accurate
for a small forest stand, cannot be used at the regional scale because it is too costly, labor intensive, and
time consuming [7,8]. Remote sensing data, which have fast, real-time, dynamic, and regional-scale
characteristics, are a frequently used data source for monitoring the dynamics of forests with the
development of remote sensing technology [9,10]. Previous studies have shown that remote sensing
data had a high correlation with AGB and can effectively predict and monitor forest biomass at the
regional scale; thus, various types of remote sensing systems have been used for AGB estimation [11,12].

Among all available satellites, Landsat is currently the only satellite program to provide consistent,
cross-calibrated data spanning more than 40 years for global surface observation [13,14]. The advantages
of the global coverage reflective with increasing spectral and spatial fidelity, the unique record of the
land surface and its change over time, the 40+ year coherent and temporally overlapping observatories
and cross-sensor calibration, and free and open data access policy greatly stimulate new science
and applications of Landsat [15,16]. Many countries have used the Landsat archive to carry out
institutional systematic mapping and monitoring of forests in large areas, e.g., Canada used Landsat
TM and ETM+ data in 2002 to produce the Earth Observation for Sustainable Development map
of forests [17]; Australia used Landsat 5 and 7 data for national-scale carbon inventories [18]; and
Brazil’s National Institute for Space Research used Landsat data to monitor the annual deforestation
rates of the Amazon since 1988 [19]. Landsat 8 was successfully launched on 11 February 2013, to
ensure the continuity of the Landsat record. In addition to being consistent with the Landsat legacy,
the significantly improved signal-to-noise ratio of Landsat 8 promises to enable better sensitivity of
vegetation targets [16]. Therefore, Landsat 8 was used frequently to monitor the status, disturbance,
and recovery of forests [20,21].

For remote sensing-based biomass estimation, multiple types of variables such as spectral bands,
vegetation indices, and texture measures can be used as predictor variables for modeling [22,23].
The previous studies have testified the importance of selecting appropriate variables in improving AGB
modeling [24,25]. Variable selection (also known as feature selection) can select a most effective variable
subset from the full variable set to reduce variable space dimension, and improve the generalization
and intelligibility of the model [26]. Variable selection is one of the most important steps in AGB
modeling. Stepwise regression, which is the most commonly used method of variable selection of
linear regression model, is simple and easy to perform [27]. Many variable selection algorithms (such
as the random forest algorithm) include variable ranking based on some evaluation strategies as a
principal or auxiliary selection mechanism because of their simplicity, scalability, and good empirical
success [28,29].

In addition to variable selection, it is crucial to select a suitable algorithm to establish AGB
estimation models. The traditional statistical regression algorithm, which can build a linear relationship
between forest AGB and remote sensing data, is simple and easy to calculate. One of the traditional
regression algorithms, the linear regression (LR) method was the most widely used method for AGB
estimation in the previous studies [9,30]. However, the traditional statistical regression method cannot
effectively express the complex relationship between forest AGB and remote sensing data under an
indeterminate distribution of data. Therefore, the machine learning algorithms, such as K-nearest
neighbor (KNN), support vector machine, artificial neural network, and decision tree, are applied
to the remote sensing-based AGB estimation for improving the nonlinear estimation ability of the
biomass model [31–34]. Previous studies have indicated that algorithms based on the decision tree,
such as random forest (RF) and gradient boosting (GB), have an excellent performance in biomass
estimation [35,36]. The RF is not only a variable selection algorithm but is also used as a nonlinear
regression algorithm for AGB estimation because of its advantages of fewer adjustable parameters,
high speed and efficiency, and the ability of variable importance calculation and permutation [37,38].
The extreme gradient boosting (XGBoost), as an advanced GB system, is widely used by data scientists
and has provided state-of-the-art results for many fields, especially the financial field, such as credit
risk assessment [39], but its potential has not been fully utilized in forestry.
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The importance of field investigation for remote sensing-based AGB modeling is self-evident.
Since 1973, China has conducted a continuous forest inventory, and in this process has established a
comprehensive database covering many aspects of forest resources, involving forest health, timber
production, and forest ecosystem services. The National Forest Continuous Inventory (NFCI), which
is the first level of the forest inventory system of China, was designed to provide reliable data of
the current status of and changes in the forests in the form of an integrated spatial database [40].
The NFCI survey is carried out every five years at the provincial scale. The sample plots have been
systematically located at the graticule intersection of the national topographic map (scale of 1:100,000
or 1:50,000) [41]. Each tree with a diameter at breast height greater than or equal to 5 cm in the sample
plot was tagged and permanently numbered for remeasurement in subsequent inventory periods.
The NFCI is important for the formulation and refinement of state forest planning, management,
and policy [42]. Therefore, the NFCI was widely used in many studies, including assessment and
monitoring of forest status, conditions and changes, carbon sink and source identification, biomass
estimation, and biodiversity [30,43].

In this paper, we used the NFCI data and Landsat 8 Operational Land Imager (OLI) data in
combination with the LR and two machine learning algorithms, e.g., RF and XGBoost, to establish
models for AGB estimation under the condition of known forest types and then created the AGB map
for the study area using the optimal models. The specific objectives of this study were as follows: (1) to
explore the influence of variable selection for the LR, RF, and XGBoost; (2) to validate the ability of the
RF and XGBoost for estimating AGB; (3) to compare the accuracy of the LR, RF, and XGBoost models
of different forest types; and (4) to draw the AGB map for the study area.

2. Study Area

Hunan Province (21.18 × 104 km2, 24◦38′ N–30◦08′ N, 108◦47′ E–114◦15′ E) is situated in the
south-central region of China (Figure 1). Most of the study areas are located in a subtropical
monsoon humid climate zone, and the annual average temperature, rainfall, and sunshine duration are
14.80–18.50 ◦C, 1200–1800 mm, and 1238.7–1868.7 h, respectively. Therefore, the abundant resources
of sunlight, water, and heat, with rain and heat over the same period, can promote the rapid growth
of trees and enhance the ability of natural regeneration. The forestland area is 13.00 × 104 km2,
accounting for 61.37% of the study area; its forest coverage is 59.68%, and the total standing forest
stock is 5.48 × 108 m3 [44]; it is one of the key forest areas and major timber production bases in
Southern China.

71



Forests 2019, 10, 1073

Figure 1. The location of the study area, including the forest types and observed AGB of the field plots,
and the Landsat 8 scene numbers (P: path, R: row).

3. Data

3.1. Inventory Data

The eighth NFCI data of Hunan Province, which were surveyed in 2014, were used in this
study. The size of each square plot is 25.82 × 25.82 m (approximately 0.0667 ha), and the plots were
systematically allocated based on a grid of 4 km × 8 km. Note that the plots, which were situated on
non-forestry land (such as cropland, water area, urban land, and bare land), or were covered by cloud
in the remote sensing images, were eliminated. Finally, 3886 plots, which recorded around 149,000
trees, were used for modeling in this study (Figure 1).

The AGB of a tree was calculated by using the general one-variable aboveground biomass model,
which can be expressed as [45]:

Ma = a×D7/3 (1)

a = 0.3× p (2)

where Ma (kg) is the AGB of a tree, D (cm) is the diameter at breast height, a is the parameter of a tree
species, and p (g/cm3) is the basic wood density (Table A1). The plot AGB was converted to per hectare
biomass (Mg/ha).
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The plots were classified into three types, namely coniferous, broadleaf, and mixed forest, based
on the species standing volume according to the technical regulation for forest continuous inventory
of China (Table 1). In general, the average AGB of all plots with non-classification of forest types
(abbreviated as “All” in all tables and figures) was 50.06 Mg/ha, within the range of 5.48–268.60 Mg/ha,
with a standard deviation of 35.34 Mg/ha; the average AGB values of coniferous, broadleaf, and mixed
forest were 48.71, 46.63, and 59.43 Mg/ha, respectively (Table 2).

Table 1. Classification standard of forest types.

Forest Type Standard of Division

Coniferous
Pure coniferous forest (single coniferous species stand volume ≥ 65%)
Coniferous mixed forest (coniferous species total stand volume ≥ 65%)

Broadleaf
Pure broadleaf forest (single broad-leaved species stand volume ≥ 65%)
broadleaf mixed forest (broad-leaved species total stand volume ≥ 65%)

Mixed
Broadleaf-coniferous mixed forest (total stand volume of coniferous or broad-leaved

species accounting for 35%–65%)

Compared with the digital elevation model, the high value of AGB is mainly distributed in the
southeastern and western regions with a high altitude and steep slope and has a high vegetation
coverage, low population density, less human interference, and poor economic condition. By contrast,
the low value of AGB is mainly distributed in the low hills and valleys, with a low altitude and gentle
slope; the conditions are opposite, especially in the middle region, which is the valley of Xiangjiang
River with many towns and villages, and cropland. The spatial distribution trend of AGB is consistent
with the topographic features and socio-economic conditions of the study area.

3.2. Landsat 8 Data

The Landsat Surface Reflectance products, which were derived from Landsat 8 OLI satellite
images, were used in this study. The images, which were acquired in October 2015, were downloaded
from the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/, accessed on
20 October 2019). There were 30 screen images (Figure 1).

Radiometric and atmospheric correction of the Landsat Surface Reflectance images was performed
by USGS [46]. For the areas of complex topography and with a great difference in elevation, terrain
correction can effectively eliminate the shadow of the terrain as well as the difference in spectral features
between a sunny slope and a shaded slope due to the topographic relief, preferably reflecting the true
spectral feature of the object [47]. The terrain correction used the C-correction algorithm [48]. Then, the
images were resampled to a pixel size of 25.82 m, the same as the inventory plot. The texture images
were calculated using a grey-level co-occurrence matrix algorithm with 3 × 3, 5 × 5, and 7 × 7-pixel
windows [49]. In addition, 20 vegetation indices were generated for this study (Appendix A). Landsat
8 OLI data were processed by the Environment for Visualizing Images software (Version 5.3.1, Boulder,
CO, USA).

Finally, the remote sensing predictor variables, which were extracted for each plot center, included
the primal images of 6 Landsat Surface Reflectance band images as well as the generated images of 20
vegetation index images and 144 texture images (Table 3).
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3.3. Land Cover Image

The European Space Agency (ESA) Climate Change Initiative (CCI) project, of which the objective
is to realize the full potential of the long-term global earth observation archives as a significant and
timely contribution to the Essential Climate Variables databases required by United Nations Framework
Convention on Climate Change, delivered consistent global Land Cover (LC) maps at a 300 m spatial
resolution on an annual basis from 1992 to 2015 [50]. There is a highly positive result of the accuracy of
the different classes: the highest user accuracy values are found for the classes of cropland (0.89–0.92),
broadleaf forest (0.94–0.96), urban areas (0.86–0.88), bare (0.86–0.88), water bodies (0.92–0.96), and
permanent snow and ice (0.96–0.97); the mixed and coniferous forest has a relatively low user accuracy
value with 0.79–0.81 and 0.82–0.83, respectively [50]. The CCI-LC map for 2014 was downloaded from
the ESA website (http://maps.elie.ucl.ac.be/CCI/viewer/index.php, accessed on 20 October 2019) for
this study.

The typology of CCI-LC was defined using the Land Cover Classification System developed by
the Food and Agriculture Organization of the United Nations, Rome, Italy. The map was consolidated
into seven types based on the typology of CCI-LC: coniferous, broadleaf, and mixed forests, cropland,
urban, water, and other types (non-forestry land, included bare land, grassland, etc.) (Figure 2). Then,
the CCI-LC map was resampled to 25.82 m and snapped to the grid of Landsat 8 images.

Figure 2. Classification of CCI-LC for the study area.

For validation of the accuracy and consistency of classification between NFCI and CCI-LC, the
attribute of the CCI-LC map was extracted by the NFCI plot center. The result indicated that the
producer accuracies of the CCI-LC map of coniferous, broadleaf, and mixed forests were 0.91, 0.88, and
0.82, respectively, and the user accuracies were 0.93, 0.91, and 0.92, respectively; the overall accuracy
and kappa coefficient of coniferous, broadleaf and mixed forests were 0.92 and 0.88, respectively
(Table 4). Therefore, the classified accuracy of the CCI-LC map can satisfy the research needs of
this paper.

Table 4. Confusion matrix of classification between CCI-LC and NFCI.

Forest Type
Classification of CCI-LC Producer

AccuracyConiferous Broadleaf Mixed Cropland Urban Water Other

Classification
based on

NFCI data

Coniferous 1649 76 33 29 7 3 11 0.91
Broadleaf 62 1150 20 53 4 6 14 0.88

Mixed 54 43 627 31 2 5 7 0.82

User Accuracy 0.93 0.91 0.92 − − − − −
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4. Methods

4.1. Algorithms of AGB Estimation

4.1.1. Linear Regression

The LR can quantitatively describe the correlation and significance between variables. The LR,
which assumes a linear relationship between a response and a set of explanatory variables, can be
expressed by the following model [30]:

Y = α0 + α1X1 + α2X2 + · · ·+ αnXn + ε (3)

where Y is the value of AGB, X1, X2, . . . , Xn are the predictor variables, α0 is a constant, α1, α2, . . . ,
αn are the regression coefficients associated with the corresponding variables, n is the number of the
predictor variables, and ε is the error term.

4.1.2. Random Forest

Decision trees are popular because they represent information in a way that is intuitive and easy
to visualize and also have several other advantageous properties. The RF and XGBoost models, two
ensemble techniques that combine the separate decision tree models to improve the ability of models,
were considered in this paper.

RF is a classification and regression algorithm based on decision tree proposed by Breiman [51]
in 2001. RF is one of the most common approaches to capture the complex relationship between
a response and a set of explanatory variables with the following advantages: robustness to reduce
over-fitting, ability to determine variable importance, higher accuracy, fewer parameters that need to be
tuned, lower sensitivity to tuning of the parameters, fast training speed, and anti-noise property [25].

RF randomly collects a new dataset from the original sample dataset by bootstrapping. Generally,
about 2/3 of the original sample data are selected in one bootstrap sample, and the remaining 1/3 of the
data are used as out-of-bag data. Then, each bootstrap sample is used to establish a corresponding
decision tree and combines multiple trees to improve the prediction performance [51]. When RF was
used for regression, the mean of all decision tree prediction results was taken as the final prediction
result. RF has been applied extensively as a classification algorithm [52] and has been used for time
series forecasting in large-scale regression-based spatial applications [25,53].

4.1.3. Extreme Gradient Boosting

XGBoost, which was proposed by Chen et al. [54] and is very popular in data mining and machine
learning competitions all over the world, is an improved gradient boosting decision tree (GBDT).
Compared with the GBDT, XGBoost performs a second-order Taylor expansion for the objective
function and uses the second derivative to accelerate the convergence speed of the model while
training [55]. Unlike the independent decision trees of RF, XGBoost can correct the residual error to
generate a new tree based on the previous tree [56].

The advantages of XGBoost include [54]:

(1) Using the second-order Taylor expression for the objective function, making the definition of the
objective function more precise, and the optimal solution can be easily found;

(2) The addition of a regularization term into the objective function to control the complexity of the
tree to obtain a simple model and to avoid overfitting;

(3) The use of sampling of the column feature to reduce the calculation amount and prevent
overfitting; and

(4) The use of an effective cache-aware block structure for out-of-core tree learning to parallel and
distributed computing makes learning faster for hundreds of millions of examples.
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Generally, XGBoost is a highly scalable tree structure enhanced model, which can handle sparse
and missing data well and can greatly improve the speed of the algorithm and compress computational
memory in large-scale data training.

4.2. Methods of Variable Selection

Variable selection is the process of selecting the minimal and most effective variable subset from
the original variable set to reduce the dimension of variable space and maximize the evaluation
criteria [29]. Generally, the variable selection algorithm should determine four elements as follows:
search starting point and direction, search strategy, evaluation function, and stopping criterion [57],
but the algorithms mainly focus on the search strategy and evaluation function. In this paper, the
stepwise regression approach was used to select the variable for LR, and the variable importance-based
method was used for RF and XGBoost.

4.2.1. Stepwise Regression Approach

Stepwise regression is an important analysis method in LR analysis, which is mainly used to solve
the problem of how to select explanatory variables when the number of explanatory variables is too
many in the LR model so that all explanatory variables significantly impact the response variable in the
regression equation [27]. Stepwise regression is used to introduce the explanatory variables one by one
into the regression equation according to the contribution for the response variable. An introduced
explanatory variable will be removed from the regression equation if it becomes non-significant due
to the introduction of the subsequent new explanatory variable. After each explanatory variable is
introduced or excluded, the F-test based on the sum of squares of partial regression is performed to
ensure that only significant explanatory variables are included in the regression equation. This process
is repeated until no non-significant explanatory variables are selected in the regression equation and
no significant explanatory variables are removed from the regression equation to ensure that the final
set of explanatory variables is optimal.

In this paper, stepwise regression was performed in SPSS software (Version 25, Armonk, NY,
USA), and the probability of the F-test was set to 0.05 and 0.10 for entry and removal, respectively.

4.2.2. Variable Importance-Based Method

Each RF and XGBoost algorithm define two measures for variable importance, which can be
used to rank variables. For RF, the first measure, which is computed from permuting out-of-bag data,
is the percent increase in the mean square error (%IncMSE) of the prediction for each tree, and the
second measure is the total decrease in node impurities (IncNodePurity) from splitting on the variable
averaged over all trees, which is measured by the residual sum of squares [58]. Higher %IncMSE and
IncNodePurity values indicate a more important predictor variable. For XGBoost, the first measure is
calculated by the fractional contribution (Gain) of each feature to the model based on the total gain of
this variable’s splits, and the second measure is calculated by the relative number (Frequency) of times
a feature be used in trees [59]. A higher percentage of Gain and Frequency means a more important
predictor variable.

The acquisition of the optimal variable subset is a continuous search process, which would
generally include four steps [60]:

(1) Subset generation: generate a candidate variable subset according to a certain search strategy.
In this paper, the generalized sequential backward selection approach was used. The start point of
the search is the original full variable set. The dataset was input into the RF and XGBoost models to
obtain the variable importance and descending order, respectively, according to the measures. Then, a
certain number (10%) of variables, which were the most unimportant, were removed to generate a
variable subset.

(2) Subset evaluation: evaluate the prediction performance of the variable subset through an
evaluation function. The generated subset was input into RF and XGBoost models, and the prediction
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accuracy was evaluated using the coefficient of determination (R2). In this paper, there were two
evaluation results in each round, so the corresponding variable subset with high R2 was compared and
then selected as the selected variable subset in this round.

(3) Stopping criterion: determine when the variable search algorithm should stop. After the subset
evaluation, the stopping criterion should be determined. If there is no stopping criterion, the search
process cannot be stopped. In this paper, two stopping criteria were set: first if the number of variables
of the subset was not larger than the set number, which was equal to the number of selected variables
by stepwise regression for different forest types; and, second, if the R2 of the prediction of the subset
did not improve for three consecutive rounds.

(4) Subset validation: used to verify the validity of the selected variable subset. In this paper, a
10-fold cross-validation approach was performed to evaluate the performance of the variable subset in
each round; therefore, the subset validation was not an independent step in the process.

In this paper, the modeling and variable selection of RF and XGBoost were implemented by the R
packages randomForest [58] and xgboost [59], respectively. The workflow of variable selection is shown
in Figure 3.

 
Figure 3. Workflow of the variable selection based on variable importance for RF and XGBoost models.

4.3. Variable Interactions

The two-way interactions between predictor variables graphically using the three-dimensional
partial dependence plot, which was presented by Elith et al. [61], were used in this paper. In these
plots, two of the predictor variables from the model, which are plotted on the x and y axes, are used to
produce a grid of possible combinations of predictor variable values over the range of both variables,
and the remaining predictor variables from the model are fixed at either their means (for continuous
predictors) or their most common value (for categorical predictors). Model predictions are generated
over this grid and plotted as the z-axis. The “model.interaction.plot” function of the R package ModelMap
develops these plots, which can work with both continuous and categorical predictor variables [62].

4.4. Evaluation of AGB Models

The correlation test between the predictor variables and AGB was performed using the Pearson
correlation coefficient in SPSS Statistics software.

In addition to the coefficient of determination (R2), the root-mean-square error (RMSE) and
the percentage root-mean-square error (RMSE%) were also used to evaluate the performance of the
final models:

R2 = 1−
n∑

i=1

(yi − ŷi)
2/

n∑
i=1

(
yi − yi

)2
(4)
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RMSE =

√√ n∑
i=1

(yi − ŷi)
2/n (5)

RMSE% =
RMSE

y
× 100 (6)

where yi is the observed AGB value, ŷi is the predicted AGB value based on models, y is the arithmetic
mean of all the observed AGB values, and n is the sample number. In general, a higher R2 value and
lower RMSE and RMSE% values indicate a better estimation performance of the model.

In addition, the difference of prediction between LR, RF, and XGBoost for different forest types
was evaluated using the F-test.

5. Results

5.1. Role of Predictor Variables

5.1.1. Variable Importance

The result of the Pearson correlation coefficients between the predictor variables and AGB indicated
that 144 variables had a significance level of 0.01 with the AGB, and the texture image variables had a
significant correlation with the AGB. The variable with the highest correlation coefficient was B4T7Mea,
with a value of −0.42.

Twenty-nine LR models were established using the selected predictor variables by stepwise
regression for three forest types (i.e., coniferous, broadleaf, and mixed forest) and all plots with
non-classification of forest types (Table 5). The results indicated that the performance of the models
was improved when the count of predictor variables increased, and the models of different forest types
worked better than the models of all forest plots (R2 values of models for the coniferous, broadleaf,
mixed, and all forest plots were 0.32, 0.37, 0.34, and 0.30, respectively).

The four best models (i.e., model numbers 7, 15, 21, and 29) were selected as the base to compare
the performance of other types of models for the coniferous, broadleaf, and mixed forest (Table 6).
The predictor variables of the LR models were different, and the collinearity statistics of the predictor
variables were less than 5.50, which showed that the selected variables were effective. The predictor
variables of these models were dominated by the image texture information. The standardized
coefficients and the significance levels of the models showed that the texture-type variables contributed
more than other variable types, which indicated that the texture variables were very important for the
AGB estimation using the LR model in this study.

Figure 4 shows the selected predictor variables based on variable importance for the different
forest types of RF and XGBoost models. The predictor variables of the RF and XGB models were not
similar, and the main variables were the texture variables; the correlation and mean were included in all
models, which indicated that the texture images had sufficient information to enhance the performance
of models for AGB estimation. The texture of bands 5, 7, or both with a 7 × 7-pixel window were
frequently involved in the models, indicating the significant roles of these two band texture variables
in AGB estimation.
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Figure 4. Variable importance of RF and XGBoost based on different forest types. The variable
importance of each model was scaled to sum to 1.

However, the selected variables were different for the different forest types. The spectral bands,
vegetation indices, and texture variables played a significant role in the broadleaf, mixed, and coniferous
forest RF models, respectively. The species and canopy layers of broadleaf and mixed forests were
multiple, which could be expressed by abundant spectral information; thus, the spectral and vegetation
index variables could account sufficiently for the AGB estimation; the species composition of the
coniferous forest was relatively single, which mainly consisted of fir and pine, and there was no
obvious difference in the spectrum, whereas the texture information could well explain the AGB
estimation [24,63]. This phenomenon of variable selection is more obvious in RF models than in
XGBoost models. Unlike RF models, besides the texture variables, the spectral variables were also
important for XGBoost models; especially Band4, which was the most important variable in all XGBoost
models. Previous studies have shown that Band4, where the chlorophylls have peak absorption, had a
strong relationship with biomass [64].

In addition, the relationship between the selected predictor variables was calculated using the
Pearson correlation coefficient. We found that RF models mostly split the importance among the
correlated multiple variables, whereas XGBoost models are inclined to centralize the importance at a
single variable. For example, Band4 was significantly correlated with VARI at a significance level of
0.01 with a value of −0.77; they had a similar importance in the RF model, but the importance was
concentrated on Band2 in the XGBoost model for the coniferous forest. This conclusion is the same as
that reported by Freeman et al. [65].

5.1.2. Variable Interactions

The result indicated, surprisingly, that Band4, VARI, or both were involved in almost models,
especially in XGBoost models (Figure 4). Figure 5 shows how Band4 and VARI interact for the AGB
estimation of the XGBoost models. We did not find significant interaction effects in these models, but
we did find subtle interactions. These figures show that Band4 mainly affected the interval with a low
value (<300), but the effect of VARI was different. For the model of the coniferous forest, the high
values of predicted AGB were mainly concentrated in the interval with a low value of VARI (<0.0),
and there were some significant differences with the adjacent interval. In contrast, the high values of
predicted AGB were dispersed in all intervals of VARI with a low interval of Band4, but there were
hardly any high values in other intervals for the model of the broadleaf forest. However, the effects
of VARI and Band4 for the mixed forest model were significantly different from the models of the
coniferous and broadleaf forests. Although the high values of predicted AGB were also concentrated
in the interval with high values of VARI (>0.4), there were many higher values of predicted AGB that
were distributed in other intervals of Band4. For the model of all forest plots, the effect of Band4 and
VARI was more similar to the combination of the models of coniferous, broadleaf, and mixed forests.
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Figure 5. Interaction plots for VARI and Band4 for the XGBoost models based on different forest types.

The interaction plots examine the effects of the two predictor variables with the remaining
variables fixed at their mean value for continuous predictors (or the most common value for categorical
predictors). The plots illustrated that they were seemingly more dependent on VARI than Band4 in
these two-way interactions, although Band4 was the most important predictor in the estimation models.
Compared with the model of all forest plots, each model of the coniferous, broadleaf, and mixed forests
has distinct characteristics, which is beneficial for establishing AGB models with a high accuracy.

5.1.3. Performance of Variable Selection

The forward selection approach, which increases variables step-by-step, was used in stepwise
regression; whereas the backward selection approach, which deletes variables step-by-step, was used
in the variable selection of RF and XGBoost models. For the LR models, the performance of the models
was improved when the number of predictor variables increased (Table 5).

Figure 6 illustrates how the R2 values change with the number of selected variables for RF and
XGBoost models. Each line represents an independent model, and the different colors indicate the
different forest types. The result indicated that the R2 values of models increased when the number of
predictor variables decreased. Generally, the most dramatic change was the line of the mixed forest,
followed by the lines of coniferous and broadleaf forests, whereas the line of all forest plots exhibited
the smallest change in both RF and XGBoost models, although the variation degree of each line was
different between RF and XGBoost models.

Contrasting the lines of the two algorithms, besides that the performance of XGBoost was better
than that of RF, the influence of the number of predictor variables on the performance of models was
also different. For RF, the influence of the number of predictor variables was relatively low, which
manifested in a smooth change of the lines, whereas the influence was dramatic for XGBoost, with
jagged peaks and valleys of the lines. This also indicated the variable selection was more important for
XGBoost than for RF.
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Figure 6. The accuracy of RF and XGBoost models with the selected variable number changing based
on different forest types.

5.2. Evaluation of AGB Models

After the variable selection, we obtained the 12 best models of LR, RF, and XGBoost for different
forest types. The performance of models was expressed by scatterplots, which showed the relationship
between the predicted AGB values and observed AGB values (Figure 7). The plots showed that the RF
model worked better than the LR model, and the XGBoost model worked better than the RF model for
the same forest type. The results also indicated that the model of the broadleaf forest had the highest
accuracy, followed by the models of mixed and coniferous forests, whereas the performance of the
model for all forest plots was the worst for the same algorithm.

 
Figure 7. Scatter plot of the predicted and observed AGB of the LR, RF, and XGBoost models based on
different forest types.
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We found that problems of underestimation and overestimation, which also existed in the previous
studies, were experienced by all models [30,66,67]. Intuitively, the predicted value was higher than
the centerline when the biomass was low but lower when it was high in the figures. This means
that the problem of overestimation and underestimation of remote sensing AGB estimation had no a
fundamental solution, although the performance of models had a significant improvement based on
forest type.

To further verify whether the models differed significantly, the F-test was used (Figure 8).
The confidence level was set at 95%. In Figure 8, the numbers are the p-values, which are from the
F-test, and the color of the checkerboard shows the levels of significance. The F-test results showed that
there were significant differences of the predicted AGB between the LR, RF, and XGBoost models at a
confidence level of 95%, although the p-values were different for these models (especially the p-value
of all forest plots, which was higher than that of the other models).

Figure 8. The comparisons (F-test) of the LR, RF, and XGBoost models based on forest type. The labels
of the vertical and horizontal axes represent the models using a different algorithm. XGB represents the
XGBoost model.

5.3. Mapping AGB

Finally, we drew the two AGB maps for the study area using the XGBoost models: first by
estimating the AGB of the coniferous, broadleaf, and mixed forests according to the forest types in
Figure 2, then combining these into one map (Figure 9a); second by estimating the AGB using all plots
with non-classification of forest types (Figure 9b).

Figure 9. The predicted AGB using XGBoost models based on the different forest types, including (a) AGB
map based on forest type and (b) AGB map based on all plots with non-classification of forest type.

84



Forests 2019, 10, 1073

In Figure 9, two maps of AGB had a similar trend in spatial distribution, which is consistent with
the AGB distribution trend of the inventory plots in Figure 1. The results indicated that the ranges of
predicted AGB for the two maps were different. The values ranged from 3.10 to 235.50 Mg/ha with a
mean of 53.84 Mg/ha for the AGB map based on the forest type (Figure 9a), and the distribution and
range of values were in close proximity to the inventory values in Figure 1. However, the range of
values was from 6.50 to 210.30 Mg/ha with a mean of 52.39 Mg/ha for the AGB map based on all plots
with non-classification of forest type (Figure 9b). In addition, the values of AGB in Figure 9a were
higher than those in Figure 9b in the same area with a high value and were lower in the same area
with a low value. This indicated that the ability of AGB estimation based on forest type was clearly
improved for the high and low values. This improvement is also what we expected.

The degrees of overestimation and underestimation of the two maps were different, although
the problems of overestimation and underestimation still existed. To further verify this conclusion,
we sorted the values of the predicted AGB into three ranges based on the distribution of values:
low (3 < predicted AGB < 25), medium (25 ≤ predicted AGB < 65), and high (65 ≤ predicted AGB
< 236) values (Figure 10). The corresponding values of predicted AGB for the two maps and the
AGB difference (Figure 9a minus Figure 9b) were obtained by the overlaying operations. In the low
range of predicted AGB, most of the values of AGB prediction based on forest types (abbreviated
as “Classification” in Figure 10) were lower than the values of AGB prediction of all plots with
non-classification of forest type (abbreviated as “Non-classification” in Figure 10), and the values of
the difference were mainly distributed from −10 to 2 Mg/ha (Figure 10a); therefore, the “Classification”
map had a better prediction performance. In the medium range, the distribution of the AGB difference
approximated a normal distribution, indicating that two maps had a similar performance for medium
values of AGB (Figure 10b). In the high range, the values of “Classification” were clearly higher than
those for “Non-classification”, indicating that the “Classification” map also had better performance
with respect to the high AGB values (Figure 10c). In summary, the map, which was predicted based on
forest type, better estimated the AGB value than the map with the non-classification of forest type
irrespective of high or low AGB.

Figure 10. Histograms illustrating the difference in pixel number in three ranges. Note that the
vertical axis labels represent the range of the prediction difference between two AGB maps (Figure 9a
minus Figure 9b); Classification: values from Figure 10a, Non-classification: values from Figure 9b.
(a) 3 < Predicted AGB ≤ 25, (b) 25 ≤ Predicted AGB < 65, (c) 65 ≤ Predicted AGB < 236.

6. Discussion

Through this experiment, we increased our understanding of the importance of variable selection,
which can influence the performance of machine learning algorithms. Variable selection is one of the
most important processes in modeling, which can reduce data dimension and the storage space of
data, speed the estimation process, and improve the interpretability and performance of models [29].

Multiple predictor variables, such as spectral bands, vegetation indices, and textures, were
extracted from remote sensing images and were used for modeling AGB in this paper. However,
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these predictors cannot all be used for modeling due to their high correlations and high numbers.
The performance of models was significantly impacted by the number of selected predictor variables
(Figure 6, Table 5). Through the variable selection, the number of predictor variables was reduced
from hundreds to several, which makes it easier to interpret the model. In this study, the Red (Band4),
NIR (Band5), SWIR (Band7) bands, and the derived variables played a more important role than other
bands. In models of AGB estimation, the SWIR band is more sensitive to the shadow of vegetation
and humidity of soil and is less influenced by the atmospheric conditions [16,22,68]; the NIR band
of Landsat 8, of which the wavelength range was adjusted to 0.845–0.885 μm to exclude the effect of
water-vapor absorption at 0.825 μm, is more sensitive to vegetation of different types [13,69]; and the
red band is usually used to distinguish the vegetation type [21,64,70]. We cannot ignore the fact that the
vegetation index variables were also selected frequently, especially VARI, which exists in all XGBoost
models. Compared with other vegetation indices, VARI is minimally sensitive to the atmospheric
effect, and the estimation error of vegetation affected by the atmosphere is less than 10% in a large
area [71,72].

In addition, the textures, which are dominant in all models, were also critical for AGB estimation,
although the importance of the texture predictor variables was different from that in previous
studies [24,30,66]. However, for the different forest types, texture variables and spectral variables
played different roles in AGB models (Figure 4). For example, the spectral variables were more
important than texture variables in the RF model of the broadleaf forest, while the texture variables
were more important in the RF model of the coniferous forest. This illustrated that the role of texture
variables and spectral variables was dependent on forest structure: in the broadleaf and mixed forest
with multiple species and complex structure, the models tended to select the spectral variables, while
in the coniferous forest with relatively fewer species and simple structure, the models tended to choose
texture variables [63,64,73].

Due to the different characters between spectral variables and texture variables, their combination
is beneficial to improve the performance of AGB models, and this improvement was evident in all
models. Moreover, the influence of variable selection was different for RF and XGBoost. We found that
the accuracy of the XGBoost algorithm varied greatly with the number of selected variables compared
with RF (Figure 6). The RF algorithm can be regarded as a parallel ensemble algorithm because
the decision tree of RF is independent; thus, RF is not sensitive to inclusion of the noisy predictor
variables [74,75], whereas the decision tree of XGBoost is generated based on the previous tree; thus,
the noisy predictor variables will influence the accuracy of the subsequent new tree [76,77].

The LR algorithm, which assumes a linear relationship between predictor and predicted variables,
was used frequently in most early biomass estimation studies due to the interpretability of LR [30,78].
However, the relationship between remote sensing data and AGB is complex; thus, the traditional
statistical regression algorithm cannot efficiently describe the relationship between them. Therefore,
machine learning algorithms such as random forest and gradient boosting, which can establish a
complex non-linear relationship between vegetation information and remote sensing images with an
indeterminate distribution of data, were introduced to improve the accuracy of AGB estimation [79].

In our study, we extracted 170 predictor variables from Landsat 8 images; then, a few variables
were selected from these through the variable selection process to build RF and XGBoost models
(Figure 4). We found that the machine learning algorithms prevented overfitting and significantly
improved the estimation accuracy compared with the LR models, and the result also indicated that
the XGBoost model worked better than the RF model (Figure 7). The XGBoost algorithm, which is a
highly flexible algorithm with the ability to correct the residual error to generate a new tree based on
the previous tree, provided an improvement in processing a regularized learning objective to avoid
overfitting [54].

Before this study, few studies had used the XGBoost algorithm to estimate AGB. Li et al. [30]
used a linear mixed-effects model and linear dummy variable model to estimate AGB in the western
Hunan Province of China; the R2 values of total vegetation were 0.41; Zhu et al. [6] used multiple
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algorithms (LR, KNN, logistic regression) to estimate AGB for the Xiangjiang River, and the results
indicated the machine learning algorithm had a good performance for AGB estimation. In contrast, the
results obtained by machine learning methods in this study were better, and the XGBoost algorithm
had a good performance in AGB estimation and could reduce underestimation and overestimation to
some extent.

In this paper, we established the models based on forest type to improve the accuracy of AGB
estimation, and the results indicated this method was valuable. We found that the models based on
forest type had a better performance at the lower and higher values compared to the models of all
plots with non-classification of forest types, especially XGBoost (Figures 7 and 9). In addition, the
problem of overestimation and underestimation, which are the main factors influencing AGB modeling
performance, was not completely solved, although the performance of models had a significant
improvement compared with the previous studies. As to this problem, it is decided by the algorithm
itself on one hand. The decision trees, which are the key components of the RF and XGBoost methods,
cannot extrapolate outside the training set. On the other hand, it is related to the remote sensing
data. For plots with low AGB values, the shrubs, grass, and bare soil will influence the reflectance of
bands; the pixel of Landsat 8 with relatively low spatial resolution (30 × 30 m) is a mixed pixel, which
cannot accurately express the spectral information of land cover. For plots with high AGB values, the
saturation in multispectral sensors such as Landsat 8 OLI is the main reason for underestimation of
AGB [80,81]. Therefore, remote sensing data with higher spatial and radiometric resolution such as
LIDAR data and hyperspectral data, or the approach of mixed pixel decomposition, may be solutions
for AGB estimation. Meanwhile, a modeling approach based on the AGB range may be a useful
method for improving the prediction of AGB, but it needs more sample plots.

The subtropical forests of China are distributed in 13 provinces, including Zhejiang, Jiangsu,
Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Hainan, Guizhou, Sichuan, and Yunnan.
They are one of the dominant distribution areas of forest resources in China. It is necessary to monitor
the subtropical forest change because the forests have been influenced by the improved silviculture,
woody encroachment, climate change, and human activities. The forest biomass estimation based on
traditional field measurements is a relatively accurate method, but it is impossible to implement for
such large areas of subtropical forests. Therefore, remote sensing-based estimation of forest biomass
change is a very important method. The NFCI data, which has been checked and revised many
times by the state and provincial forest departments before it is released, is the only available data
with highest quality in the provincial scale at present. However, the residual atmospheric effects and
calibration errors in satellite data cannot be completely eliminated. Therefore, until the more effective
satellite data are available, we can only hope to improve the accuracy of forest biomass estimation by
using new modeling methods. Despite certain inaccuracies, the performance of the biomass estimation
method used in this study exceeds our expectations, and the selected modeling method of XGBoost
seems to be more effective. The results show that the NFCI data in combination with Landsat 8 can be
successfully applied to biomass estimation. Although the XGBoost models had the relatively high
RMSE and RMSE% values, the total accuracies of models were significantly increased with the variable
selection, and it is still manifested that the methods in this paper were very important and useful for
the provincial-scale accurate estimation of forest biomass, and these methods can also be used to other
similar areas. In addition, we must admit that there are still many sections that could be improved in
our research, such as methods of variable selection, variable data cleaning, and parameter optimization
for machine learning. We will do further research in these aspects in the future.

7. Conclusions

In this study, we selected the subtropical region of Hunan Province, China, as a case study area
to analyze the AGB estimation based on forest type using different modeling algorithms, namely,
LR, RF, and XGBoost. The results indicated the following: (1) Variable selection is a very important
part of machine learning algorithms. In this study, variable selection had a significant effect on the
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performance of XGBoost compared with that of RF. (2) Machine learning algorithms have advantages
in AGB estimation. In this paper, the XGBoost and RF models significantly improved the estimation
accuracy compared with the LR models, and the XGBoost algorithm reduced overestimation and
underestimation to a certain extent, although the problem was not fully eliminated. (3) The method
of AGB estimation based on forest type is a very useful approach to improve the accuracy of AGB
estimation, and the models had a better performance at the lower and higher values compared with
the models using all plots with non-classification of forest types. In this paper, we provided a new
approach when establishing similar models. The result and conclusion may be different for other
areas, but we hope to pay attention to variable selection when using machine learning algorithms in
the future and will try to use various remote sensing data and algorithms to improve the accuracy of
biomass estimation.
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Appendix A

Table A1. The wood density of the tree species or groups.

Tree Species/Groups Wood Density (p) Tree Species/Groups Wood Density (p)

Abies 0.3464 Pinus massoniana 0.4476
Betula 0.4848 Pinus tabulaeformis 0.4243

Cinnamomum 0.4600 Pinus taiwanensis 0.4510
Cryptomeria 0.3493 Pinus yunnanensis 0.3499

Cunninghamia lanceolata 0.3098 Populus 0.4177
Cupressus 0.5970 Quercus 0.5762
Eucalyptus 0.5820 Robinia pseudoacacia 0.6740

Fraxinus mandshurica 0.4640 Salix 0.4410
Larix 0.4059 Schima superba 0.5563

Liquidambar formosana 0.5035 Tilia 0.3200
Paulownia 0.2370 Ulmus 0.4580

Picea 0.3730 Other conifers 0.3940
Pinus armandii 0.3930 Other pines 0.4500
Pinus densata 0.4720 Other hardwood broadleaves 0.6250
Pinus elliottii 0.4118 Other softwood broadleaves 0.4430

Note: The total relative error of the tree species or groups was 2.10%, not exceeding the common allowance of 3%,
and the average of the absolute relative error was 6.37%, less than the error allowance of 10% [45].

References

1. Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116,
363–372. [CrossRef]

2. Gower, S.T. Patterns and mechanisms of the forest carbon cycle. Annu. Rev. Environ. Resour. 2003, 28,
169–204. [CrossRef]

3. Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11,
945–958. [CrossRef]

4. Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res.
Biogeosci. 2009, 114, 1–13. [CrossRef]

88



Forests 2019, 10, 1073

5. Lu, D.; Batistella, M.; Moran, E. Satellite estimation of aboveground biomass and impacts of forest stand
structure. Photogramm. Eng. Remote Sens. 2005, 71, 967–974. [CrossRef]

6. Zhu, J.; Huang, Z.; Sun, H.; Wang, G. Mapping forest ecosystem biomass density for xiangjiang river basin
by combining plot and remote sensing data and comparing spatial extrapolation methods. Remote Sens. 2017,
9, 241. [CrossRef]

7. West, P.W. Tree and Forest Measurement, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2015;
ISBN 978-3-319-14707-9.

8. Crosby, M.K.; Matney, T.G.; Schultz, E.B.; Evans, D.L.; Grebner, D.L.; Londo, H.A.; Rodgers, J.C.; Collins, C.A.
Consequences of landsat image strata classification errors on bias and variance of inventory estimates: A
forest inventory case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 243–251. [CrossRef]

9. Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27,
1297–1328. [CrossRef]

10. Avitabile, V.; Herold, M.; Heuvelink, G.B.M.; Simon, L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Peter, S.;
Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob.
Chang. Biol. 2016, 22, 1406–1420. [CrossRef]

11. Deng, S.; Katoh, M.; Guan, Q.; Yin, N.; Li, M. Estimating forest aboveground biomass by combining ALOS
PALSAR and WorldView-2 data: A case study at Purple Mountain National Park, Nanjing, China. Remote
Sens. 2014, 6, 7878–7910. [CrossRef]

12. Cao, L.; Coops, N.C.; Innes, J.L.; Sheppard, S.R.J.; Fu, L.; Ruan, H.; She, G. Estimation of forest biomass
dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sens. Environ. 2016, 178,
158–171. [CrossRef]

13. Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185,
1–6. [CrossRef]

14. Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.;
Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and
applications. Remote Sens. Environ. 2019, 225, 127–147. [CrossRef]

15. Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29.
[CrossRef]

16. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderso, M.C.; Helder, D.; Irons, J.R.;
Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research.
Remote Sens. Environ. 2014, 145, 154–172. [CrossRef]

17. Wulder, M.A.; White, J.C.; Cranny, M.; Hall, R.J.; Luther, J.E.; Beaudoin, A.; Goodenough, D.G.; Dechka, J.A.
Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project. Can. J. Remote Sens. 2008,
34, 549–562. [CrossRef]

18. Lehmann, E.A.; Wallace, J.F.; Caccetta, P.A.; Furby, S.L.; Zdunic, K. Forest cover trends from time series
Landsat data for the Australian continent. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 453–462. [CrossRef]

19. Shimabukuro, Y.E.; Batista, G.T.; Mello, E.M.K.; Moreira, J.C.; Duarte, V. Using shade fraction image
segmentation to evaluate deforestation in landsat thematic mapper images of the Amazon Region. Int. J.
Remote Sens. 1998, 19, 535–541. [CrossRef]

20. Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using
landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [CrossRef]

21. Chrysafis, I.; Mallinis, G.; Gitas, I.; Tsakiri-Strati, M. Estimating Mediterranean forest parameters using multi
seasonal Landsat 8 OLI imagery and an ensemble learning method. Remote Sens. Environ. 2017, 199, 154–166.
[CrossRef]

22. Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens.
2005, 26, 2509–2525. [CrossRef]

23. Ouma, Y.O. Optimization of second-order grey-level texture in high-resolution imagery for statistical
estimation of above-ground biomass. J. Environ. Inf. 2006, 8, 70–85. [CrossRef]

24. Lu, D.; Batistella, M. Exploring TM image texture and its relationships with biomass estimation in Rondônia,
Brazilian Amazon. Acta Amaz. 2005, 35, 249–257. [CrossRef]

25. Shen, W.; Li, M.; Huang, C.; Tao, X.; Wei, A. Annual forest aboveground biomass changes mapped using
ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for
Guangdong province, China. Agric. For. Meteorol. 2018, 259, 23–38. [CrossRef]

89



Forests 2019, 10, 1073

26. Yu, K.; Wu, X.; Ding, W.; Pei, J. Scalable and accurate online feature selection for big data. ACM Trans. Knowl.
Discov. Data 2016, 11, 1–39. [CrossRef]

27. Wang, Y.; Wen, L.; Chen, M. Dictionary of Mathematics, 5th ed.; Science Press: Beijing, China, 2017; ISBN
9787030533364.

28. Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010,
31, 2225–2236. [CrossRef]

29. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature selection for high-dimensional data.
Prog. Artif. Intell. 2016, 5, 65–75. [CrossRef]

30. Li, C.; Li, Y.; Li, M. Improving forest aboveground biomass (AGB) estimation by incorporating crown density
and using landsat 8 OLI images of a subtropical forest in Western Hunan in Central China. Forests 2019, 10,
104. [CrossRef]

31. Reese, H.; Nilsson, M.; Sandstro, P. Applications using estimates of forest parameters derived from satellite
and forest inventory data. Comput. Electron. Agric. 2002, 37, 37–55. [CrossRef]

32. Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s above-ground biomass
derived from satellite imagery. Environ. Res. Lett. 2008, 3, 1–9. [CrossRef]

33. Nelson, R.; Montesano, P.; Ranson, K.J.; Kharuk, V.; Sun, G.; Kimes, D.S. Estimating Siberian timber volume
using MODIS and ICESat/GLAS. Remote Sens. Environ. 2009, 113, 691–701. [CrossRef]

34. Monnet, J.-M.; Chanussot, J.; Berger, F. Support vector regression for the estimation of forest stand parameters
using airborne laser scanning. IEEE Geosci. Remote Sens. Lett. 2011, 8, 580–584. [CrossRef]

35. Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.;
Nelson, M.D.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and
moderate resolution information. Remote Sens. Environ. 2008, 112, 1658–1677. [CrossRef]

36. Carreiras, J.M.B.; Vasconcelos, M.J.; Lucas, R.M. Understanding the relationship between aboveground
biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sens. Environ. 2012,
121, 426–442. [CrossRef]

37. Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping tree canopy cover and
aboveground biomass in sudano-sahelian woodlands using landsat 8 and random forest. Remote Sens. 2015,
7, 10017–10041. [CrossRef]

38. Zald, H.S.J.; Wulder, M.A.; White, J.C.; Hilker, T.; Hermosilla, T.; Hobart, G.W.; Coops, N.C. Integrating
landsat pixel composites and change metrics with lidar plots to predictively map forest structure and
aboveground biomass in Saskatchewan, Canada. Remote Sens. Environ. 2016, 176, 188–201. [CrossRef]

39. Carmona, P.; Climent, F.; Momparler, A. Predicting failure in the U.S. banking sector: An extreme gradient
boosting approach. Int. Rev. Econ. Financ. 2019, 61, 304–323. [CrossRef]

40. Lei, X.; Tang, M.; Lu, Y.; Hong, L.; Tian, D. Forest inventory in China: Status and challenges. Int. For. Rev.
2009, 11, 52–63. [CrossRef]

41. Zeng, W.; Tomppo, E.; Healey, S.P.; Gadow, K.V. The national forest inventory in China:
History—Results—International context. For. Ecosyst. 2015, 2, 23. [CrossRef]

42. Xie, X.; Wang, Q.; Dai, L.; Su, D.; Wang, X.; Qi, G.; Ye, Y. Application of China’s National Forest Continuous
Inventory Database. Environ. Manage. 2011, 48, 1095–1106. [CrossRef]

43. Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949
and 1998. Science 2001, 292, 2320–2322. [CrossRef]

44. Hunan Provincial People’s Government Natural Resources of Hunan Province. Available online: http://www.
enghunan.gov.cn/AboutHunan/HunanFacts/NaturalResources/201507/t20150707_1792317.html (accessed on
1 November 2019).

45. Zeng, W. Developing one-variable individual tree biomass models based on wood density for 34 tree species
in China. For. Res. Open Access 2018, 7, 1–5.

46. USGS Landsat Surface Reflectance Data. Available online: https://pubs.usgs.gov/fs/2015/3034/pdf/fs20153034.
pdf (accessed on 27 March 2019).

47. Richter, R. Correction of Atmospheric and Topographic Effects for High Spatial Resolution Satellite Imagery.
Int. J. Remote Sens. 1997, 18, 1099–1111. [CrossRef]

48. Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data.
Can. J. Remote Sens. 1982, 8, 84–106. [CrossRef]

90



Forests 2019, 10, 1073

49. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man.
Cybern. 1973, SMC-3, 610–621. [CrossRef]

50. ESA Land Cover CCI Product User Guide. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/
ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 10 April 2017).

51. Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [CrossRef]
52. Yu, Y.; Li, M.; Fu, Y. Forest type identification by random forest classification combined with SPOT and

multitemporal SAR data. J. For. Res. 2018, 29, 1407–1414. [CrossRef]
53. Tyralis, H.; Papacharalampous, G.; Tantanee, S. How to explain and predict the shape parameter of the

generalized extreme value distribution of streamflow extremes using a big dataset. J. Hydrol. 2019, 574,
628–645. [CrossRef]

54. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA,
13–17 August 2016; pp. 785–794.

55. He, H.; Zhang, W.; Zhang, S. A novel ensemble method for credit scoring: Adaption of different imbalance
ratios. Expert Syst. Appl. 2018, 98, 105–117. [CrossRef]

56. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
57. Guyon, I.; Andre, E. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
58. Liaw, A.; Wiener, M. RandomForest: Breiman and Cutler’s Random Forests for Classification and Regression.

Available online: https://cran.r-project.org/package=randomForest (accessed on 25 March 2018).
59. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y. xgboost: Extreme Gradient Boosting. Available online:

https://cran.r-project.org/package=xgboost (accessed on 1 August 2019).
60. Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [CrossRef]
61. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77,

802–813. [CrossRef]
62. Freeman, E.; Frescino, T. ModelMap: Modeling and Map Production Using Random Forest and Related

Stochastic Models. Available online: https://cran.r-project.org/web/packages/ModelMap/index.html
(accessed on 11 September 2018).

63. Suganuma, H.; Abe, Y.; Taniguchi, M.; Tanouchi, H.; Utsugi, H.; Kojima, T.; Yamada, K. Stand biomass
estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia.
For. Ecol. Manag. 2006, 222, 75–87. [CrossRef]

64. Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass
estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [CrossRef]

65. Freeman, E.A.; Moisen, G.G.; Coulston, J.W.; Wilson, B.T. Random forests and stochastic gradient boosting
for predicting tree canopy cover: Comparing tuning processes and model performance. Can. J. For. Res.
2016, 46, 323–339. [CrossRef]

66. Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative analysis of modeling algorithms for
forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018, 10, 627. [CrossRef]

67. Kajisa, T.; Murakami, T.; Mizoue, N.; Kitahara, F.; Yoshida, S. Estimation of stand volumes using the k-nearest
neighbors method in Kyushu, Japan. J. For. Res. 2008, 13, 249–254. [CrossRef]

68. Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Asner, G.P.; Green, R.O. Using imaging spectroscopy to study
ecosystem processes and properties. Bioscience 2004, 54, 523. [CrossRef]

69. USGS Landsat 8 (L8) Data Users Handbook. Available online: https://prd-wret.s3-us-west-2.amazonaws.
com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook_v4.pdf (accessed on 20
September 2004).

70. Barsi, J.; Lee, K.; Kvaran, G.; Markham, B.; Pedelty, J. The spectral response of the Landsat-8 operational land
imager. Remote Sens. 2014, 6, 10232–10251. [CrossRef]

71. Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible
spectral space: A concept and technique for remote estimation of vegetation fraction. Int. J. Remote Sens.
2002, 23, 2537–2562. [CrossRef]

72. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation
fraction. Remote Sens. Environ. 2002, 80, 76–87. [CrossRef]

73. Kelsey, K.; Neff, J. Estimates of aboveground biomass from texture analysis of landsat imagery. Remote Sens.
2014, 6, 6407–6422. [CrossRef]

91



Forests 2019, 10, 1073

74. Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees.
Mach. Learn. 2000, 40, 139–157. [CrossRef]

75. Díaz-Uriarte, R.; Alvarez de Andrés, S. Gene selection and classification of microarray data using random
forest. BMC Bioinf. 2006, 7, 1–13. [CrossRef]

76. Sheridan, R.P.; Wang, W.M.; Liaw, A.; Ma, J.; Gifford, E.M. Extreme gradient boosting as a method for
quantitative structure—Activity relationships. J. Chem. Inf. Model. 2016, 56, 2353–2360. [CrossRef]

77. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very high resolution object-based
land use–land cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett.
2018, 15, 607–611. [CrossRef]

78. Dong, J.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.;
Hughes, M.K. Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools,
sources, and sinks. Remote Sens. Environ. 2003, 84, 393–410. [CrossRef]

79. Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of machine learning approaches
for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 2015, 7, 16398–16421.
[CrossRef]

80. Moghaddam, M.; Dungan, J.L.; Acker, S. Forest variable estimation from fusion of SAR and multispectral
optical data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2176–2187. [CrossRef]

81. Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass
estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

92



Article

Comparative Analysis of Seasonal Landsat 8 Images
for Forest Aboveground Biomass Estimation in a
Subtropical Forest

Chao Li 1, Mingyang Li 1,*, Jie Liu 2, Yingchang Li 1 and Qianshi Dai 3

1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry
University, Nanjing 210037, China; gislichao@njfu.edu.cn (C.L.); lychang@njfu.edu.cn (Y.L.)

2 College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; liujienl@njfu.edu.cn
3 Central South Inventory and Planning Institute of National Forestry and Grassland Administration,

Changsha 410014, China; daiqianshi@126.com
* Correspondence: lmy196727@njfu.edu.cn; Tel.: +86-025-8542-7327

Received: 10 December 2019; Accepted: 25 December 2019; Published: 31 December 2019

Abstract: To effectively further research the regional carbon sink, it is important to estimate forest
aboveground biomass (AGB). Based on optical images, the AGB can be estimated and mapped on
a regional scale. The Landsat 8 Operational Land Imager (OLI) has, therefore, been widely used
for regional scale AGB estimation; however, most studies have been based solely on peak season
images without performance comparison of other seasons; this may ultimately affect the accuracy of
AGB estimation. To explore the effects of utilizing various seasonal images for AGB estimation, we
analyzed seasonal images collected using Landsat 8 OLI for a subtropical forest in northern Hunan,
China. We then performed stepwise regression to estimate AGB of different forest types (coniferous
forest, broadleaf forest, mixed forest and total vegetation). The model performances using seasonal
images of different forest types were then compared. The results showed that textural information
played an important role in AGB estimation of each forest type. Stratification based on forest types
resulted in better AGB estimation model performances than those of total vegetation. The most
accurate AGB estimations were achieved using the autumn (October) image, and the least accurate
AGB estimations were achieved using the peak season (August) image. In addition, the uncertainties
associated with the peak season image were largest in terms of AGB values <25 Mg/ha and >75 Mg/ha,
and the quality of the AGB map depicting the peak season was poorer than the maps depicting other
seasons. This study suggests that the acquisition time of forest images can affect AGB estimations in
subtropical forest. Therefore, future research should consider and incorporate seasonal time-series
images to improve AGB estimation.

Keywords: aboveground biomass; Landsat 8 OLI; seasonal images; stepwise regression; map quality;
subtropical forest

1. Introduction

As an important characteristic of forest ecosystems, forest aboveground biomass (AGB) provides
a basis for ecosystem and forestry research; AGB estimation further provides data critical to estimating
the forest carbon sink [1,2]. In recent years, accurate and rapid AGB estimation has, therefore, become
crucial for forest ecosystem and global climate change research.

Traditionally, high precision AGB field measurement methodologies have involved extensive field
surveys [3]. However, these methods are time-consuming, laborious and destructive; in addition, they
cannot be used to analyze the spatial distribution and dynamic change of AGB on a large scale [4].
Today, remote sensing-based methodologies are more commonly used to estimate AGB as they rapidly
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provide near real-time, dynamic and regional scale data, and the characteristics of the obtained
images are strongly correlated with AGB [5]. Remote sensing data can be divided into two categories:
Passive remote sensing (optical sensors, thermal and microwave) and active remote sensing (radar
and light detection and ranging (LiDAR)) [5–7]. Optical sensors such as Landsat, Systeme Probatoire
d’Observation de la Terre (SPOT), the moderate-resolution imaging spectroradiometer (MODIS),
QuickBird and the Advanced Very High-Resolution Radiometer (AVHRR) have been widely used
for AGB estimation because of their coverage, repetitive observation and cost-effectiveness [6,8]. Of
these sensors, Landsat images are the most commonly used for remote sensing-based AGB estimations
because the sensors provide a long-term data record and have medium spatial resolution, wide spatial
coverage and high spectral sensitivity [9]. In many countries, the spatial resolution obtained using
Landsat is similar to the size of sample plots in national forest inventories; therefore, using Landsat to
estimate AGB can reduce spatial errors associated with matching pixels to sample plots [10].

The information derived from Landsat images significantly correlates with AGB because these
images provide valuable information regarding the forest canopy [11]. In fact, previous studies
have shown that individual spectral bands, vegetation indices, transformed images (using principal
component analysis (PCA)) and textural images are strongly correlated with AGB and can, therefore,
be used to effectively estimate AGB [12–15]. Furthermore, many statistical models can be used in
developing remote sensing-based AGB models. These models can be divided into two categories:
(i) Parametric models (linear, nonlinear, etc.) [16–18] and (ii) nonparametric models (random forest,
RF; artificial neural networks, ANN; support vector machines, SVM; etc.) [14,19–21]. Multiple linear
regression models, however, are most frequently used in AGB research.

Optical sensors mainly provide information about the forest canopy [11]. The canopy structure of
subtropical forests significantly varies between seasons, and even between months [6,22,23]. These
variations can cause differences in remote sensing data [24]. Therefore, AGB estimation can vary
widely when time-series images are used to model AGB in the same study area [25]. Previous studies
have used a single Landsat image (taken during the peak growing season or at a time close to when
the ground survey of national forest inventory plots took place) to estimate AGB [21,26–28]. These
images, however, do not always accurately reflect forest characteristics. For example, dense canopy
cover during the peak growing season often results in extremely saturated images [25,29,30], which
ultimately affects AGB estimation accuracy. Some studies have, therefore, utilized time-series of
Landsat images to estimate AGB, e.g., Zhu and Liu [25], Safari et al. [31] and Powell et al. [32]. These
studies, however, focused on particular forest type or a regional forest. Therefore, there exists a
knowledge gap regarding whether time-series Landsat images affect the accuracy of AGB estimations
in different forest types and whether the estimations differ among forest types.

Given this gap in knowledge, this study explores the use of seasonal Landsat 8 Operational
Land Imager (OLI) images in estimating AGB in a subtropical forest in northern Hunan, China, using
stepwise regression. The main objectives of this study were to: (1) Explore the potential variables of
seasonal time-series data for different forest types when estimating AGB; (2) investigate the potential
of seasonal time-series data in improving the accuracy of AGB estimations in different forest types;
and (3) investigate the uncertainties associated with using seasonal time-series data to estimate AGB.

2. Materials and Methods

2.1. Study Area

The study area is located in Hunan Province, central China (path/row: 124/40), and comprises an
inclined transition zone from the hills of central Hunan to Dongting Plain. The climate is a typical
subtropical monsoon humid climate [33] with an average annual temperature and annual precipitation
of 16.5 ◦C and 1200–1700 mm, respectively. The study area is further characterized by four distinct
seasons: Spring (March to May), summer (June to August), autumn (September to November) and
winter (December to February). Chinese fir (Cunninghamia lanceolate (Lamb.) Hook.) and Chinese red
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pine (Pinus massoniana) plantations, evergreen broadleaf, deciduous and mixed forests dominate this
area with scattered bamboo and shrub lands [34]. A total of 303 forest plots were inventoried in 2014
by the National Forest Continuous Inventory (NFCI) in China (Figure 1).

Figure 1. Study area (red box) in Hunan Province, China (a); the spatial distribution of sample plots
(b); and the distribution of forest types (c).

2.2. Calculation of Plot-Level AGB

A total of 303 sample plots were used in this research including, 125 CFF (coniferous forest) plots,
138 BLF (broadleaf forest) plots, and 40 MXF (mixed forest) plots (Table 1). The area of the sample
plots is 0.067 ha, and the plots were systematically allocated based on a 4 × 8 km grid (NFCI). The
AGB values of the study plots were calculated according to tree species or species groups described
in a previous study [35]. Statistical information regarding the sample plot data based on different
forest types is summarized in Table 1. The AGB values of all sample plots ranged from 5.01 Mg/ha to
151.06 Mg/ha with an average AGB of 48.27 Mg/ha. The mixed forest had the highest mean (±standard
deviation) AGB (52.69 ± 29.45 Mg/ha).

Table 1. Summary of the sample plots by forest type (CFF, coniferous forest; BLF, broadleaf forest; MXF,
mixed forest; TV, total vegetation).

Forest Type
No. of Sample

Plots
Minimum

(Mg/ha)
Mean (Mg/ha)

Maximum
(Mg/ha)

Standard
Deviation

CFF 125 5.01 47.63 118.33 22.89
BLF 138 6.08 47.58 135.08 28.12
MXF 40 22.33 52.69 151.06 29.45
TV 303 5.01 48.27 151.06 26.24

2.3. Remote Sensing Data and Information Extraction

To explore the effectiveness of utilizing seasonal images to estimate AGB, we acquired four
cloud-free Landsat 8 OLI images which covered different forest states within the study area from
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spring to winter during 2013 and 2014 (Table 2). These four Landsat 8 OLI images were Landsat
surface reflectance data downloaded from the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov/). Landsat 8 OLI surface reflectance data are generated using the land
surface reflectance code (LaSRC), which utilizes the coastal aerosol band to perform aerosol inversion
tests, uses auxiliary climate data from MODIS, and a unique radiative transfer model [36].

Table 2. Landsat 8 Operational Land Imager (OLI) imagery acquired for this study.

Remote Sensing Data Month Acquisition Date Cloud Cover (%) Image Type

Landsat 8 OLI (124/40)

January 14 January 2014 0.04 L1TP
April 4 April 2014 0.01 L1TP

August 7 August 2013 0.61 L1TP
October 10 October 2013 0.17 L1TP

To estimate forest AGB in the study area, we calculated and extracted 165 spectral variables: Six
original bands, 12 vegetation indices, the first three bands from principal component analysis, and 144
texture variables using a gray-level co-occurrence matrix (Table 3).

Table 3. Summary of the predictor variables.

Predictor Variable Formula Reference

Landsat 8 OLI original bands 2–7 [31]

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [37]
Atmospherically Resistant Vegetation Index

(ARVI) (NIR − 2R + B)/(NIR + 2R − B) [38]

Corrected Normalized Difference Vegetation
Index (CNDVI)

NDVI * (1 − (SWIR1 −
SWIRmin)/(SWIRmax − SWIRmin)) [39]

Difference Vegetation Index (DVI) NIR − R [40]
Enhanced Vegetation Index (EVI) (NIR − R)/(NIR + R + B) [30]

Generalized Difference Vegetation Index (GDVI) (NIR2 − R2)/(NIR2 + R2) [41]
Linearized NDVI (LNDVI) 4/π * arctan (NDVI) [42]

Normalized Difference Water Index (NDWI) (NIR − SWIR2)/(NIR + SWIR2) [43]
Normalized Green Difference Vegetation Index

(NGDI) (NIR − G)/(NIR + G) [44]

Red-green Vegetation Index (RGVI) (R − G)/(R + G) [10]
Soil-adjusted Vegetation Index (SAVI) (1 + L) * (NIR − R)/(NIR + R + L) [45]

Simple Ratio (SR) NIR/R [46]

Principal Component Analysis (PCA)
The first three PCs from principal component analysis [6]

Texture (window sizes: 3 × 3, 5 × 5, 7 × 7 pixels)
Contrast, Correlation, Dissimilarity, Entropy, Homogeneity, Angular second moment, Mean, and

Variance
[47]

2.4. Vegetation Classification Data

The European Space Agency (ESA) Climate Change Initiative (CCI) was developed to address
climate change at a global level [48]. As part of this initiative, the ESA has derived and consolidated
global CCI land cover (CCI-LC) information including annual landcover maps from 1992 to 2015. For
the present study, we obtained the CCI-LC data of the study area from MERIS and SPOT satellite images
at 300 m spatial resolution [49]. Further, the 2014 CCI-LC map of the study area was downloaded
from the ESA website (http://maps.elie.ucl.ac.be/CCI/viewer/index.php) to obtain forest stratifications
(coniferous forest (CFF), broadleaf forest (BLF), and mixed forest (MXF)) for AGB estimation.

2.5. AGB Estimation Model

Pearson product-moment correlation coefficient was used to analyze the relationships between
plot AGB and spectral variables, and the spectral variables which had significant correlations with
AGB were used as independent variables. Stepwise regression analysis is a frequently used approach
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in AGB research to determine and select the spectral variables which best contribute to forest AGB.
Stepwise regression ultimately results in a regression model containing the variables which best explain
the dependent variable (AGB in this study). During the stepwise regression, multicollinearity, which
creates highly sensitive parameter estimators with inflated variances and leads to improper model
selection, was analyzed between each pair of selected spectral variables using the variance inflation
factor (VIF). In this study, if the VIF of a spectral variable exceeded ten, this spectral variable was
considered seriously collinear with other variables [50,51].

The stepwise regression model developed in this study assumed that a linear relationship exists
between independent (spectral variables) and dependent variables (AGB of different forest types). The
model is defined in Equation (1) and describes the relationship between AGB and spectral variables:

y = a + b1x1 + b2x2 + · · ·+ bnxn + ε, (1)

where y is AGB, a is the constant term, x1, . . . , xn represent the independent variables, b1, . . . , bn

represent the parameters of the independent variables, and ε is the error.
To analyze the accuracy of the AGB models derived from the seasonal images for different forest

types, the following workflow was used (Figure 2).

Figure 2. The workflow for aboveground biomass (AGB) models derived from different scenarios.

2.6. Model Comparison and Evaluation

Model performance was evaluated using ‘10-fold’ cross validation [52], and predicted AGB values
were compared to observed AGB values using three accuracy indicators: Coefficient of determination
(R2), root mean square error (RMSE and RMSE %) and bias. Accuracy indicator Equations (2)–(5) are
as follows:

R2 = 1−
n∑

i=1

(yi − ŷi)
2/

n∑
i=1

(
yi − yi

)2
, (2)

RMSE =

√√ n∑
i=1

(yi − ŷi)
2/n, (3)

RMSE% =
RMSE

y
× 100, (4)

Bias = (yi − ŷi)/y, (5)

where yi is the observed AGB value, ŷi is the predicted AGB value based on models, y is the arithmetic
mean of all observed AGB values, and n is the sample number. In general, a higher R2 value and lower
RMSE and RMSE% values indicate a greater accuracy of the model.

We generated ten predicted forest AGB maps using the results of 10-fold cross validation, and
the average of these AGB maps was taken as the final spatial distribution of AGB. In addition, the
standard deviation (Stdev) of spatial AGB predictions was calculated to analyze the uncertainty of
each pixel [53,54]. Larger Stdev values indicate higher estimation uncertainty and smaller Stdev values
indicate lower estimation uncertainty.
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3. Results

3.1. Comparison of AGB Estimates Using Seasonal Images of Total Vegetation

The variables of AGB models for total vegetation using seasonal images were selected using
stepwise regression according to the correlation between AGB, the dependent variable and spectral
variables. We found that four variables were included in the AGB models for January, April and
October, whereas six variables were included in the AGB model for August (Table 4). The selected
variables of these models indicated that the textural images of Landsat 8 OLI played an important role
in forest AGB estimation of total vegetation regardless of the season.

Table 4. The selected variables for AGB estimation models for different months based on the
total vegetation.

Month Selected Variables for Total Vegetation

January b6_EN3Jan, b3_EN3Jan, b2_EN3Jan, b5_Jan
April b7_SEM3Apr, b5_Apr, b2_VA7Apr, NDWI_Apr

August b6_COR5Aug, b4_COR7Aug, b5_SEM7Aug,
b5_HO7Aug, b2_CON5Aug, b4_SEM5Aug

October b5_SEM5Oct, b4_CON7Oct, SR Oct, b6_COR3Oct

Note: bi_M, original band i; NDWI_Apr, normalized difference water index of April; SR_Oct, simple ratio of october;
bi_XYjM, textural image developed from spectral band i with a window size of jxj pixels using texture entropy (EN),
angular second moment (SEM), variance (VA), correlation (COR), contrast (CON) or homogeneity (HO).

Based on 10-fold cross validation, the results of model fitting are shown in Table 5. We found that
the use of seasonal Landsat 8 imagery resulted in different AGB estimates. For total vegetation, the
stepwise regression model of the October image showed the highest R2 value (0.39) and the lowest
RMSE (21.67 Mg/ha; 44.1% of the mean) and bias (−0.19 Mg/ha) values. The model based on the
peak season (August) image showed the lowest R2 value (0.27), followed by the January and April
models. Overall, the results demonstrated that the acquisition time of Landsat 8 imagery significantly
influenced AGB estimation, and that the peak season (August) image showed inferior performance
compared to that of the other AGB estimation models.

Table 5. Summary of the accuracy assessment results for the seasonal models based on the
total vegetation.

Month R2 RMSE (Mg/ha) RMSE % Bias (Mg/ha)

January 0.31 21.90 44.8 1.08
April 0.34 21.95 45.0 0.81

August 0.27 22.15 45.7 0.54
October 0.39 21.67 44.1 −0.19

Note: R2, coefficient of determination; RMSE, root mean squared error; RMSE%, relative root mean squared error.

The relationship between the predicted AGB and observed total vegetation AGB for different
seasons using stepwise regression model is shown as scatterplots in Figure 3a1–d1. Each month, we
detected overestimations when the plot AGB value was lower than 30 Mg/ha, and underestimations
when the plot AGB value was higher than approximately 90 Mg/ha. The August model showed the
largest bias (Figure 3c2). The bias calculated for each prediction model showed a skewed distribution
(Figure 3a2–d2), but when the bias was less than −25 Mg/ha or greater than 25 Mg/ha, bias frequencies
of the October model were smaller than those of the other three months.

98



Forests 2020, 11, 45

Figure 3. Model performances were evaluated using 10-fold cross validation and predicted AGB values
were compared to observed AGB values using accuracy indicators. Scatterplots depict the relationship
between predicted and observed AGB estimation values in each month (a1–d1). Histograms depict
model biases (a2–d2).

The above analysis was based on the overall performance of different stepwise regression models
generated for each month, but it cannot provide detailed information regarding the effect of different
forest types on estimation of total vegetation AGB. Table 6 summarizes the RMSE and RMSE% results
for different forest types. For CFF and BLF, the RMSE and RMSE% were lowest when the October image
was used for AGB estimation. For MXF, the RMSE and RMSE% were lowest when the April image
was used for AGB estimation. While the October model resulted in lower R2 and RMSE values than
the April model, the April model performed better in MXF AGB estimation than the October model.

Table 6. Summary of RMSE (Mg/ha) and RMSE% results from different seasonal images under
non-stratified conditions.

Month
RMSE (Mg/ha) RMSE%

CFF BLF MXF CFF BLF MXF

January 20.72 23.14 26.96 42.70 47.42 53.67
April 19.65 22.60 21.06 41.04 48.07 38.10

August 18.50 24.26 27.68 39.32 50.25 54.12
October 18.02 22.69 23.47 37.58 47.31 41.99

Note: CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest; RMSE, root mean squared error; RMSE%,
relative root mean squared error.

3.2. Comparison of AGB Estimates Using Seasonal Images of Different Forest Types

The independent variables selected by the AGB models using seasonal images of the three forest
types are summarized in Table 7. The selected variables varied among each forest type in different
months. However, in general, texture measures were involved in all AGB models, indicating that
when considering different forest types and months, textural information significantly contributed to
improving the AGB predictions in this study.
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Table 7. The selected variables for AGB estimation models in different months based on different
forest types.

Month
Selected Variables for Different Forest Types

CFF BLF MXF

January
b3_VA7Jan, b4_HO5Jan,
b2_COR7Jan, DVI_Jan,

b4_CON3Jan

b5_SEM5Jan, b7_EN3Jan,
b6_SEM3Jan, b3_EN3Jan

b6_SEM5Jan,
b7_SEM7Jan,

b3_COR3Jan, b6_EN3Jan,
b6_SEM7Jan,
b6_CON3Jan,
b5_COR5Jan

April
b2_VA3Apr, b2_VA5Apr,
b2_HO7Apr, b5_EN5Apr,

b6_SEM7Apr

b7_SEM3Apr,
b2_ME7Apr SR_Apr,

b6_ME5Apr,
b2_CON5Apr,
b2_EN7Apr

b6_COR3Apr,
b7_VA3Apr, b2_HO3Apr,

b5_COR3Apr,
b5_COR7Apr

August

b6_COR5Aug,
b5_DI5Aug, b5_DI7Aug,

b4_COR3Aug,
b7_SEM5Aug,
b6_HO5Aug

b6_COR5Aug,
b5_HO5Aug,
b5_SEM5Aug,
b5_HO3Aug,
b5_EN3Aug,

b6_COR3Aug

b4_VA3Aug,
b7_EN3Aug,

b7_COR3Aug,
b3_SEM7Aug,
b6_HO3Aug

October

b6_COR3Oct, SR_Oct
b7_COR3Oct,

b3_ME7Oct b6_SEM3Oct,
b6_EN3Oct

b5_SEM3Oct, PCA3_Oct,
b4_CON7Oct,
b7_ME7Oct,

b2_SEM7Oct, b5_EN3Oct

b6_VA5Oct, b6_VA7Oct,
b5_EN3Oct,

b5_COR3Oct,
b6_SEM3Oct

Note: CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest; bi_M, original band I of month M; DVI_Jan,
difference vegetation index of January; SR_M, simple ratio of month M; PCA3_Otc, band 3 of principal component
analysis in October; bi_XYjM, textural image developed from spectral band i with a window size of jxj pixels of
month M using texture entropy (EN), angular second moment (SEM), variance (VA), correlation (COR), contrast
(CON), mean (ME), dissimilarity (DI) or homogeneity (HO).

We further compared the AGB models derived using seasonal images of three forest types (Table 8).
For the different forest types, we found that regardless of month, MXF model performances were better
than those of CFF and BLF. The performances of the CFF and BLF models did not significantly differ.
Regarding all model performances, R2 value differences ranged from 0.13 for the BLF models to 0.2 for
the MXF models, RMSE (RMSE%) value differences ranged from 1.85 Mg/ha (3.03%) for the BLF models
to 3.92 Mg/ha (7.44%) for the MXF models. Overall, the model obtained using data from the October
image had the least bias, whereas the August model performed had the largest bias; the January and
April models were intermediate. The R2 values were all less than 0.55 and the RMSE% were all larger
than 35%; these results indicated that though the performances of the models for different forest types
were better than those of total vegetation, nearly half of the AGB variation cannot be explained. When
compared to the previously constructed total vegetation models (Table 5 vs. Table 8), the models based
on different forest types resulted in larger R2 and lower RMSE (RMSE%) values and performed better
overall, indicating that consideration of forest type can improve AGB estimation.

100



Forests 2020, 11, 45

Table 8. Summary of the accuracy assessment results for the seasonal models based on different
forest types.

Month Forest Types
Accuracy Indicators

R2 RMSE (Mg/ha) RMSE% Bias (Mg/ha)

January
CFF 0.35 18.53 39.07 0.12
BLF 0.38 21.89 45.65 −0.26
MXF 0.48 20.82 39.52 −0.003

April
CFF 0.43 17.40 35.97 0.22
BLF 0.45 21.18 44.35 −0.09
MXF 0.52 20.16 38.26 −0.003

August
CFF 0.31 19.33 40.10 −0.18
BLF 0.33 23.03 47.38 −0.10
MXF 0.35 23.37 44.36 −0.36

October
CFF 0.47 17.23 35.95 0.04
BLF 0.46 21.34 44.38 −0.02
MXF 0.55 19.45 36.92 −0.0001

Note: CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest; R2, coefficient of determination; RMSE, root
mean squared error; RMSE%, relative root mean squared error.

We further compared the AGB models derived using seasonal images of three forest types (Table 8).
For the different forest types, we found that regardless of month, MXF model performances were better
than those of CFF and BLF. The performances of the CFF and BLF models did not significantly differ.
Regarding all model performances, R2 value differences ranged from 0.13 for the BLF models to 0.2 for
the MXF models, RMSE (RMSE%) value differences ranged from 1.85 Mg/ha (3.03%) for the BLF models
to 3.92 Mg/ha (7.44%) for the MXF models. Overall, the model obtained using data from the October
image had the least bias, whereas the August model performed had the largest bias; the January and
April models were intermediate. The R2 values were all less than 0.55 and the RMSE% were all larger
than 35%; these results indicated that though the performances of the models for different forest types
were better than those of total vegetation, nearly half of the AGB variation cannot be explained. When
compared to the previously constructed total vegetation models (Table 5 vs. Table 8), the models based
on different forest types resulted in larger R2 and lower RMSE (RMSE%) values and performed better
overall, indicating that consideration of forest type can improve AGB estimation.

The relationship between the predicted and observed AGB values of the three forest types in
different seasons using stepwise regression models is shown as scatterplots in Figure 4. Overestimations
occurred in plots with AGB values lower than approximately 30 Mg/ha for CFF, BLF, and MXF, whereas
underestimations occurred in plots with AGB values higher than approximately 100 Mg/ha for each
forest type. The scatter plot constructed using the October data better fit the line y = x, whereas the
scatter plot constructed using the August data was more discrete with serious over- and underestimation
issues (Figure 4). January and April prediction model biases showed skewed distributions (Figure 4),
the model bias of October represented a normal distribution, and the model bias of August was discrete.
Further, the October bias values mostly ranged from −15 Mg/ha to 15 Mg/ha, and there were lower
proportions of bias values <−25 Mg/ha or >25 Mg/ha.
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Figure 4. Model performances were evaluated using 10-fold cross validation and predicted AGB values
were compared to observed AGB values using accuracy indicators. Scatterplots depict the relationship
between predicted and observed AGB estimation values in each month for each forest type (top).
Histograms depict model biases in each month for each forest type (bottom). CFF, coniferous forest;
BLF, broadleaf forest; MXF, mixed forest.
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3.3. AGB Distribution Maps and Map Quality

In addition to model diagnostics, we predicted AGB distribution maps and AGB standard deviation
(Stdev) maps within the study area. Using seasonal images, we constructed AGB spatial distribution
maps based on total vegetation and different forest types (Figure 5). AGB distribution patterns in
different months varied, supporting our previous results (Sections 3.1 and 3.2) which suggested that
seasonal model performances differed. Further, AGB distribution patterns for total vegetation were
narrow (within the range of 25 Mg/ha to 75 Mg/ha; Figure 5a), whereas AGB distribution patterns for
different forest types were discrete (within the range of 0 Mg/ha to 100 Mg/ha; Figure 5b). These results
indicate that models constructed based on forest types can achieve relatively low (<25 Mg/ha) and
high (>75 Mg/ha) AGB values and thus alleviate over- and underestimation. In addition, October
distribution maps were more heterogeneous than those of the other months, further indicating that
October model performances were superior.

Figure 5. Spatial distribution of forest aboveground biomass (AGB) using seasonal images under
different scenarios: (a) The total vegetation; (b) forest types including coniferous forest, broadleaf forest
and mixed forest.

Stdev maps of each scenario are shown in Figure 6. For both total vegetation and different forest
types, the model uncertainties for October were smaller compared with those for January, April and
August, indicating that the October AGB maps were more accurate. Moreover, model uncertainties for
August were larger compared with those for the other three months, indicating that the August AGB
maps were the least accurate. The Stdev values of different AGB ranges for different forest types were
further calculated and analyzed (Figure 7). When mapping the AGB of both the total vegetation and
the different forest types, the Stdev values were greater when the AGB values were <25 Mg/ha or >75
Mg/ha. In this case, the Stdev of the August models were the largest, followed by the January, April
and October models. This result indicated that AGB maps exhibiting these AGB values (<25 Mg/ha
or >75 Mg/ha) showed the largest uncertainty when utilizing the August image. In addition, when
attained AGB values were >75 Mg/ha, all Stdev values for each scenario were larger than three, further
indicating a large amount of uncertainty associated with these particular AGB values.
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Figure 6. Standard deviation (Stdev) maps of AGB values using seasonal images under different
scenarios: (a) The total vegetation; (b) forest types including coniferous forest, broadleaf forest and
mixed forest.

Figure 7. The standard deviation (Stdev) of AGB within different AGB value ranges (TV, total vegetation;
CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest).

4. Discussion

Forests are complex ecosystems containing variable species composition and structure;
therefore, the image information (especially textural information) of these ecosystems also varies
considerably [55,56]. Previous studies utilizing Landsat images to estimate AGB were unable
to determine which spectral variables were best able to predict AGB [6,57]. In this study, the
selected spectral variables used for AGB models of different months and different forest types varied.
Nonetheless, we found that for all forest types, textural images played an important role in AGB
estimation, in accordance with previous research [58]. The selected variables belonged to various
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original bands (bands 2 to 7), indicating that all original bands can be used to estimate AGB in this
study. These results differed from earlier research in which the shortwave infrared (SWIR) bands (e.g.,
Landsat TM spectral bands 5 and 7) were more important in AGB estimation than other bands [59–61].
In addition, in previous research utilizing Landsat imagery, spectral information (e.g., vegetation index,
original band) was often selected to estimate the AGB of coniferous forest given that the structure of
coniferous forest was simple and the importance of spectral information over textural information. On
the other hand, textural information has often been used in the study of broadleaf forest and mixed
forest given that those forests often have multiple canopy layers and more complex structures. In our
study area, because of the low level of forest management, the forest structure was complex; therefore,
in this study, for each forest type, textural information was mostly used to estimate AGB, regardless of
which seasonal image was utilized.

In this study, stepwise regression was used to estimate AGB of different forest types based on
Landsat 8 OLI seasonal images. We found that in our study area, the best month for AGB estimation
was October given that the R2 values of different forest types were higher than 0.39. Overall, this result
indicates that the October image can explain more than 39% of the information regarding the estimated
AGB for each forest type. The less accuracy month for AGB estimation was August given that the R2

value for total vegetation was only 0.27. Stepwise regression is a widely used methodology of fitting
regression models based on the correlation between dependent and independent variables. During
this procedure, the significance of an introduced variable is tested, and the variable that is of least
significant is discarded [62]. While selection of variables depends upon the degree of linear correlation,
selection of variables with low correlation is possible; this can ultimately affect the accuracy of the
model. The forest characteristics of different forest types were heterogeneous. Different forest types
were different in spectral characteristics caused by the heterogeneity of the stand structures and species
compositions. The correlations among the spectral variables and AGB of different forest types were
also different. In this case, the performances of models for different forest types were significantly
different. In our study, among all forest types analyzed, we found that the MXF models achieved the
best results for AGB estimation. This indicates that the image information was most strongly correlated
with MXF compared with other forest types, and therefore, the image can better reflect the condition of
the mixed forest. However, when the forest types were considered in AGB estimation, model accuracy
was further affected by the number of plots [59]. In this study, there were 135 CFF plots and 128 BLF
plots, whereas there only 40 MXF plots. Therefore, MXF models may have been more accurate given
the far fewer number of plots analyzed compared with the models for the other forest types.

In this study, Landsat 8 OLI seasonal images were used to estimate AGB. The four seasonal images
utilized were associated with four seasons of the study area (January (winter), April (spring), August
(summer) and October (autumn)). The results showed that utilization of the peak season (August)
image resulted in inadequate AGB estimation compared with the other seasons, in accordance with
results reported by Zhu and Liu (2014) [25]. These researchers further found that the normalized
difference vegetation index (NDVI)-based AGB estimates of the forest senescing period were better
than those of the peak season in a temperate forest of southeastern Ohio, USA [25]. Furthermore, in
accordance with our results, previous researchers detected over- and underestimations when utilizing
Landsat 8 OLI imagery to estimate AGB in a subtropical forest in western Hunan, China [58]. In
our study, these uncertainties were common among all seasonal images analyzed. The observed
underestimations within the higher range of AGB values may have been a consequence of image
saturation issues affecting model performance [56,63]. Regarding AGB values within the lower range,
model performance was likely affected by mixed pixels, thus resulting in AGB overestimation [64].
While uncertainties were detected among all time-series images, underestimation associated with the
peak season (August) within the high AGB range (>75 Mg/ha) was more serious than that associated
with the other seasons. Taken together, these results suggest that image saturation more strongly
influenced AGB estimation results for August than it did for the other seasons, further indicating that
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the uncertainties were less in the other seasons. In addition, the overestimation associated with the
peak season was greater than that associated with the other seasons.

5. Conclusions

In this study, seasonal Landsat 8 OLI imagery was utilized to estimate forest AGB in a subtropical
forest in northern Hunan Province, China. Study plots were classified according to forest types (CFF,
BLF, MXF and total vegetation) and stepwise regression was used to select appropriate variables and
thus effectively model AGB based on the seasonal images. Subsequently, models of the different
scenarios (different forest types in different seasons) were compared. Given the variables selected during
stepwise regression, we concluded that seasonal image textural information was most significantly
correlated with AGB, and that the study area is made up of forests with complex structures. The
method of AGB estimation based on forest type is very useful for improving the accuracy of AGB
estimation because the model performances for the different forest types (CFF, BLF and MXF) are
better than those for the total vegetation, regardless of season. The time-series images, which reflect
various seasons, can affect AGB estimations, with the autumn image (October) potentially yielding
the most accurate AGB estimations and the peak season (August) image being of poorer quality in a
subtropical forest. We also explored the accuracies of seasonal images in remote sensing-based AGB
estimation. We hope to provide new insight into using Landsat images to improve the accuracy of
biomass estimation.

Future research will focus on the mechanism underlying the cause of these differences when
utilizing seasonal Landsat 8 OLI images in AGB estimation of different forest types.
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Abstract: Urban vegetation biomass is a key indicator of the carbon storage and sequestration capacity
and ecological effect of an urban ecosystem. Rapid and effective monitoring and measurement
of urban vegetation biomass provide not only an understanding of urban carbon circulation and
energy flow but also a basis for assessing the ecological function of urban forest and ecology. In this
study, field observations and Sentinel-2A image data were used to construct models for estimating
urban vegetation biomass in the case study of the east Chinese city of Xuzhou. Results show that
(1) Sentinel-2A data can be used for urban vegetation biomass estimation; (2) compared with the
Boruta based multiple linear regression models, the stepwise regression models—also multiple linear
regression models—achieve better estimations (RMSE = 7.99 t/hm2 for low vegetation, 45.66 t/hm2 for
broadleaved forest, and 6.89 t/hm2 for coniferous forest); (3) the models for specific vegetation types
are superior to the models for all-type vegetation; and (4) vegetation biomass is generally lowest in
September and highest in January and December. Our study demonstrates the potential of the free
Sentinel-2A images for urban ecosystem studies and provides useful insights on urban vegetation
biomass estimation with such satellite remote sensing data.

Keywords: urban vegetation; biomass estimation; Sentinel-2A; stepwise regression; Xuzhou

1. Introduction

According to the World Urbanized Prospects, urban residents are expected to compose 68% of
the global population by 2050 [1], and this would bring increasingly intensive urban heat island
(UHI) effects, environmental degradation, and ecological damage. As an important carrier of urban
ecosystems, urban vegetation—which refers to all naturally growing and human-planted vegetation
within an urban area [2,3]—brings considerable ecological, economic, and social benefits [4]. These
include improving urban microclimates, mitigating UHI effects, increasing surface runoffs, maintaining
the urban carbon–oxygen balance, and equally importantly, enhancing the quality of urban life by
providing spaces for relaxation and recreation [5–8]. As such, the focus of urban eco-environmental
studies has been long on urban vegetation, particularly the biomass of urban vegetation [9]. Urban
vegetation biomass is an effective indicator of the capacity of carbon storage and sequestration, and
ecological effect of an urban ecosystem [10,11]; it is, therefore, important to estimate urban vegetation
biomass in urban eco-environmental management.
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Traditional biomass measurement is simply to remove and weigh all the biomass occurring in
quadrats, which is a labor-intensive and time-consuming practice [12,13]. This method does not allow
quick monitoring and, more importantly, to some extent, might be destructive to the phenomenon
being investigated. Remote sensing, however, provides an alternative to biomass measurement largely
because it makes objective and mostly non-destructive observations of vegetated areas at various
spatial and temporal resolutions. While vegetation biomass cannot be directly derived from remote
sensing image data, remote sensing based estimation requires the use of sample plots to acquire field
measurements for allometric growth equations based modeling and image interpretation for estimation
(e.g., [14]). Vegetation biomass estimation with remote sensing has been summarized and reviewed in
previous studies [15–17]. While optical sensor, radar, and lidar data can be used for biomass estimation
separately or jointly [18–22], multispectral data is the most frequently used data type [15]. Although it
has been widely recognized for its advantages, remote sensing has been mostly used to measure the
biomass of individual vegetation types in natural forest [23,24], grassland [25–27], wetlands [28,29],
and deserts [30] but rarely the biomass of urban vegetation [14,31].

Sentinel satellites are an Earth observation satellite constellation developed by the European
Space Agency (ESA) as part of the Copernicus Program. Sentinel-2 is a wide-swath, high-resolution,
multispectral imaging mission with two twin satellites (Sentinel-2A and Sentinel-2B), supporting
land and climate-change monitoring [32]. Sentinel-2A was launched in June 2015 and has offered
free image data at the ESA’s website as of December 2015. The Sentinel-2 MSI (multispectral imager)
samples 13 different spectral bands ranging from the visible to shortwave infrared of electromagnetic
spectrum, four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution [32].
It has now been used for a variety of forestry applications such as fire damage monitoring [33,34],
forest storage estimation [35,36], and canopy cover calculation [37]. While some researchers have
combined Sentinel-2A with radar data for biomass estimation [24], using such free optical sensor data
alone has not been assessed. Testing the capability of Sentinel-2A data to estimate urban vegetation
biomass would be interesting as Sentinel-2A data is being increasingly important for land monitoring,
particularly for forestry.

In this study, we therefore focus on the modeling of urban vegetation biomass estimation from
Sentinel-2A image data. Quadrat biomass was calculated using the allometric biomass equations with
field measurements, and then vegetation biomass models were constructed with remote sensing derived
variables. Specific objectives are testing the capability of Sentinel-2A data to estimate urban vegetation
biomass and examining whether vegetation type-specific modeling can improve estimation accuracy.

2. Study Area

Bordering the provinces of Shandong, Henan, and Anhui, Xuzhou (33◦43’~34◦58’ N,
116◦22’~118◦40’ E) (Figure 1) is a national key railway hub located in the northwestern part of
Jiangsu province, east China [38]. It has a monsoon-influenced humid subtropical climate with an
annual mean daily temperature of 14.5 ◦C and an annual total precipitation of 832 mm [39]. As a
typical forested city, Xuzhou has received multiple titles and awards such as the National Forest City
in 2012, the National Ecological Gardening City in 2015, and particularly the UN-Habitat Scroll of
Honor Award in 2018 [40], which is attributed largely to the implementation of several greening and
ecological restoration programs in recent decades. Although the importance of urban vegetation to
cities is generally acknowledged here, no research has been conducted to estimate and assess the urban
vegetation biomass for Xuzhou.

The area within the third ring road of Xuzhou (indicated by the red line in Figure 1a) was selected
for this research, covering a geographical area of ~108.51 km2. The area within the third ring road is
traditionally considered as the urbanized part of Xuzhou and home to the majority of Xuzhou’s urban
residents. Its urban green areas have expanded remarkably in recent years and would be an ideal area
for this research. The study area is flat in the central area with thick soil and hilly in the north, east,
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and south parts with thin humus-poor soil. The soil type is leached cinnamon soil, weak alkaline with
pH ranging from 7.63 to 8.07 [41].

 
Figure 1. The location of the study area: (a) the border of the study area (i.e., the third ring road of
Xuzhou) and the sites for field investigations (yellow for low vegetation, green for broadleaved forest,
and purple for coniferous forest); (b) Xuzhou in east China.

According to our fieldwork, most of the trees in the study area are coniferous, consisting largely
of arborvitae trees (Platycladus orientalis). These evergreen trees were mainly planted during the 1950s
and 1960s with 700–3000 trees per hectare [41]. They are usually 5–12 m high (avg. 8.36 m) with
diameters at breast height (DBH) ranging from 5 to 15 cm (avg. 12.47 cm) [41]. Broadleaved forest is
dominated by poplar (Populus euramevicana), black locust (Robinia pseudoacacia), and paper mulberry
(Broussonetia papyrifera) trees. While the poplar trees are usually large (avg. DBH = 21.40 cm) and high
(avg. height = 20 m) and concentrated along rivers and roads, the black locust and paper mulberry
trees are scattered in parks and small hills. Shrubs are mostly found in parks, including colorful and
decorative species such as Buxus megistophylla, and Berberis thunbergii. Grassland is relatively small in
urban Xuzhou, usually in parks and residential/institutional properties. Typical grass includes Setaria
viridis, Ophiopogon bodinieri, Iris tectorum, and Allium macrostemon.

3. Materials and Methods

3.1. Remote Sensing Data

In this study, we used Sentinel-2A image data—freely obtained from ESA’s website—for urban
vegetation biomass estimation. These L1C-level data, which have already been radiometrically
calibrated, were acquired in six different months of 2017 (Table 1). The image quality is generally
good with a mean cloudiness of less than 10%. Although the January and May images were more
cloud-contaminated, the study area remains cloud-free in the images—the images are therefore still
usable. For data preprocessing, they were first atmospherically corrected and then re-sampled to 10-m,
both using SNAP (SentiNel Application Platform), an image processing package developed by ESA for
processing Sentinel data [42]. Lastly, the study area was extracted from the image data in ENVI 5.1
software for further processing.
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Table 1. Remote sensing image data used for urban vegetation estimation.

Image ID Acquisition Time Cloudiness

S2A_MSIL1C_20170115T030041_N0204_R032_T50SNC_20170115T030235 15-Jan-2017 40.88%
S2A_MSIL1C_20170326T025541_N0204_R032_T50SNC_20170326T030153 26-Mar-2017 0.10%
S2A_MSIL1C_20170525T025551_N0205_R032_T50SNC_20170525T030448 25-May-2017 13.40%
S2A_MSIL1C_20170724T025551_N0205_R032_T50SNC_20170724T030446 24-July-2017 1.74%
S2A_MSIL1C_20170922T025541_N0205_R032_T50SNC_20170922T030440 22-Sept-2017 0.82%
S2B_MSIL1C_20171206T030059_N0206_R032_T50SNC_20171206T063334 6-Dec-2017 0.02%

3.2. Urban Vegetation Classification

Based on our preliminary field investigations, we decided to classify the vegetation of the study
area into three coarse categories, namely low vegetation (mostly shrubs and grass), broadleaved
forest (mostly poplar, black locust, and paper mulberry), and coniferous forest (mostly arborvitae
trees). While many areas are characterized by a single vegetation type, there are some areas with
mixed vegetation, which justifies the use of linear spectral mixture analysis (LSMA) [38,43]—where the
spectrum of a pixel is considered a linear combination of spectra of pure endmembers within the pixel
weighted by their fractional abundance. To this end, a wide variety of features, such as spectral features
(spectral reflectance and spectral indices), textural features (calculated by the gray level co-occurrence
matrix), and vegetation abundances (the abundances of coniferous forest, broad-leaved forest, and low
vegetation, obtained by LSMA) were derived from the Sentinel-2A image data and combined with
topographical features (DEM—digital elevation model, and slope and aspect derived from DEM) to
classify urban vegetation classification using the support vector machine (SVM) method. SVM is a
machine learning algorithm used for image classification [44,45] and can achieve high accuracy. We
compared SVM with other classifiers, namely random forest (RF), artificial neural network (ANN), and
quick unbiased efficient statistical tree (QUEST), and found that the SVM produced the best result when
vegetation abundances were added for classification. For a detailed description of the classification
procedure, please refer to our previous research [2]. The produced classification map helps to identify
the dominant vegetation type of each pixel so the biomass of each vegetated pixel can be estimated
with the models constructed later.

3.3. Candidate Variables for Modeling

A total of 116 variables (features) on spectral reflectance, vegetation indices, topographical features,
and vegetation abundances were selected as candidate variables (features) for biomass estimation.
They are given in Table 2 (see Table A1 for their description and calculation formulas).

Table 2. Candidate variables for biomass estimation.

Category Variable Number

Spectral reflectance Blue, Green, Red, VRE1, VRE2, VRE3, NIR, N_NIR, SWIR1, SWIR2 10
Vegetation abundance Low, BLF, CLF 3
Topographical features DEM, Slope, Aspect 3

Vegetation indices SAVI, MSAVI2, OSAVI, DVI, SR1-SR7, RVI, NDVIre1n, NDVIre1, NDVI,
gNDVI, GI, Chlogreen, EVI2, NDII 20

Textural features Mean (*), Var (*), Homo (*), Cont (*), Diss (*), Entr (*), Sec_M (*), Cor (*) 80
Total 116

Note: VRE1–VRE3 represent the spectral reflectance in the three red-edge bands of Sentinel-2A image data and
N_NIR represents the narrow near-infrared band. Low, BLF, and CLF represent the abundances of low vegetation,
broadleaved forest, and coniferous forest. The description and formulas for the vegetation indices are detailed in
Table A1. Mean (*), Var (*), Homo (*), Cont (*), Diss (*), Entr (*), Sec_M (*), and Cor (*) refer to the eight textural
features obtained by the gray level co-occurrence matrix using the 10 original image bands, namely mean, variance,
homogeneity, contrast, difference, entropy, second moment, and correlation.
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3.4. Field Measurements

Biomass sampling is necessary for vegetation biomass modeling. Usually, quadrat biomass is
the sum of the dry weight of every single plant in the quadrat [12,13]. Despite high accuracy, this
method requires the vegetation being investigated to be cut. As such, it is applicable to primeval forest
or experimental plots but not desirable for urban green land. As a frequently used indirect biomass
estimation method [46], the allometric biomass equations, where the quantitative relationships between
the biomass and the growth variables of a plant are established [11], however, provide an alternative
biomass sampling approach in an urban context. As they are reliable for determining tree biomass,
a growing number of biomass equations have been proposed for various vegetation species across
the world [47–54]. In this study, the allometric biomass equations were considered for calculating the
biomass of each quadrat.

From extensive literature, the allometric biomass equations for various types of trees and shrubs
in Xuzhou were summarized (Tables A2 and A3). For grass, a different estimation approach was
adopted in this study: the average unit grassland biomass of Xuzhou is the spatially weighted biomass
of Jiangsu, Anhui, Henan, and Shandong provinces [55] since Xuzhou is located at the junction of these
four provinces (Table 3). Through the calculation, the average unit biomass of Xuzhou’s grassland is
61.89 g/m2.

Table 3. The calculation of the average unit (aboveground) biomass of grassland of Xuzhou [55].

Area Grassland (×104 km2)
(Aboveground) Biomass

of Grassland (Tg)

Average Unit
(Aboveground) Biomass of

Grassland (g/m2)

Jiangsu 0.31 0.17 54.48
Anhui 1.08 0.69 63.89
Henan 1.80 1.14 63.33

Shandong 1.35 0.81 60.00
Total 4.54 2.81 61.89

The growth variables of plants required in the allometric biomass equations were measured in the
field investigations conducted from October to December 2017. The general investigation procedure is
as follows: (1) a total of 192 urban vegetation quadrats were randomly pre-selected over the false-color
Sentinel-2A imagery of the study area and their central coordinates were retrieved; (2) 10 m × 10 m
quadrats were determined (matching the spatial resolution of Sentinel-2A imagery) by navigation in
the field with hand-held GPS (Global Positioning System) devices to these coordinates; (3) the growth
variables of each single plant (shrubs and trees only) in each quadrat were recorded and the biomass
of each single plant using the plant-specific allometric biomass equations was calculated; and (4) the
biomass of the all the plants in a quadrat were summed to obtain the total biomass of that quadrat and
this was repeated for each quadrat.

Note that our records varied with vegetation type. Within each quadrat, we documented the name,
tree height (from the base to the crown), and DBH (diameter at breast height, i.e., ~1.3 m) for trees, the
name, basal diameter, height, and crown width for shrubs, and the name, height, and coverage area for
grass. Different measuring tools were used in accordance with the plants to be investigated and the
parameters to be recorded. The DBHs and basal diameters were measured by a 2-m tape measure with
a minimum scale of 1 mm while shrub heights were measured by a 5-m tape measure with a minimum
scale of 1 mm. For tree heights, we used a telescopic height measuring rod with a maximum range of
20 m and a minimal scale of 1 mm. Photos illustrating the fieldwork are shown in Figure 2.
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Figure 2. Photos taken in the field illustrating the measurements.

Although 192 vegetation quadrats were initially selected, only 140 quadrats of them (shown in Figure 1)
were visited and investigated in practice—because some of the pre-selected quadrats were not accessible for
various reasons (e.g., physical barriers and refusal to access). Among the 140 quadrats were 35 dominated
by coniferous forest, 73 by broadleaved forest, and 32 by low vegetation. The results of quadrat biomass
calculated mainly by using the allometric biomass equations are detailed in Table A4.

3.5. Modeling

3.5.1. Correlation Analysis

Prior to modeling, the relationship between the candidate variables (Table 2) and the vegetation
biomass was examined through correlation analysis. The biomass of the quadrats dominated by
low vegetation, broadleaved forest, and coniferous forest is hereinafter referred to as low vegetation
biomass, broadleaved forest biomass, and coniferous forest biomass, respectively. The correlation
coefficients were computed with and without vegetation types discriminated.

3.5.2. Stepwise Regression Modeling

Stepwise regression (SR) is essentially a multiple linear regression method, but it is different from
the general multiple linear regression in the selection of variables. In a stepwise regression analysis, the
most significant or least significant variable is added to or removed with iteration from the multiple
linear regression model based on its statistical significance [56,57]. At each iteration of adding or
removing a potential independent variable, resultant models are assessed by means of the p-value of an
F-statistic (p-value < 0.05 for statistical significance) [56,57]. Stepwise regression has proved effective
in selecting variables for modeling and has been widely used in different fields [58,59], including
forest biomass estimation [60]. As such, it was considered more suitable for constructing the urban
vegetation biomass estimation models in this study.
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As it is likely that collinearity exists in the predictive variables, the variance inflation factor
(VIF) [57,61] is used to examine it in this study:

VIF = 1/
(
1−R2

i

)
(1)

where Ri is the correlation coefficient between the ith predictive variable and the remaining predictive
variables. There is no multicollinearity if VIF ranges between 0 and 10. If VIF≥ 10, high multicollinearity
exists between variables and some of them should be removed from the model [62].

3.5.3. Boruta Based Multiple Linear Regression Modeling

In addition to the SR modeling, the general multiple linear regression (MLR) is also considered in
this study for comparative analysis. It is too complicated to include all the 116 candidate variables
(Table 2) in the MLR modeling as it would decrease accuracy, cause overfitting, and slow computation.
It is advisable to reduce the dimensionality of data when there are a large number of variables [63].
To this end, a group of important variables is then selected, which is done in this study by using the
Boruta algorithm. Boruta is a feature selection wrapper built around the random forest classification
algorithm and helps to determine important variables [64,65]. A detailed description of this feature
selection technique can be found in [65,66]. The Boruta algorithm can be performed in the statistical
software of R, where important variables are confirmed for modeling and unimportant one are rejected,
and some artificial variables called shadow variables are generated from the original variables [65]).

Despite the capability to locate important variables, the Boruta algorithm does not consider the
collinearity among these variables. Like the SR modeling, closely correlated variables are removed
if VIF ≥ 10. The final MLR biomass estimation models are finally determined until the VIF of each
remaining variable is less than 10.

3.5.4. Accuracy Assessment

While 70% of the calculated quadrat biomass were used for modeling, the remaining 30% were
reserved for assessing the models using two measures, namely the coefficient of determination (Ryz

2)
and the root-mean-square-error (RMSEyz):

R2
yz =

∑n

i=1

(
Bmodeled,i − B

)2
/
∑n

i=1

(
Bcalculated,i − B

)2
(2)

RMSEyz =

√√
1
n

n∑
i=1

(
Bcalculated,i − Bmodeled,i

)2
(3)

where Bmeasured,i is the calculated quadrat biomass, Bmodeled,i is the modeled quadrat biomass, B is the
average of calculated biomass of all quadrats, and n is the number of quadrats.

3.6. Seasonal Variation of Urban Vegetation Biomass

After the accuracy assessment, the superior models can be determined and used for exploring
the seasonal vegetation biomass variation of the study area. With the variables required by the
determined models derived from the Sentinel-2A image data (Table 1), the biomass of low vegetation,
broadleaved forest, and coniferous forest can be estimated for January, March, May, July, September,
and December of 2017, respectively. The total urban vegetation biomass of the study area is then
calculated by summing the estimated type-specific biomass. The change rate (CR) is defined by the
following equation:

CR =
Biomax − Biomin

Biomin
(4)

where Biomax and Biomax are the maximum and minimum biomass of the year 2017.
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4. Results and Analysis

4.1. Urban Vegetation Classification

By the SVM classifier, the urban vegetation of the study area was classified into three types,
namely low vegetation, broadleaved forest, and coniferous forest (Figure 3) in the 24-July-2107 image;
the overall accuracy of this classification was 89.86% with a Kappa coefficient of 0.83. While the central
part of the study area had limited vegetation, vegetated areas were mostly covered by low vegetation,
followed by coniferous forest.

Figure 3. Urban vegetation classification by support vector machine.

4.2. Correlations between Candidate Variables and Urban Vegetation Biomass

4.2.1. For Low Vegetation

There were 14 candidate variables significantly correlated with low vegetation biomass (Table 4).
Eight spectral reflectance variables had negative correlations with all-vegetation biomass, coefficients
ranging from −0.364 to −0.553. It was negatively associated with low vegetation abundance and
positively with coniferous forest abundance. Low vegetation biomass is generally lower than the
biomass of broadleaved and coniferous forests, and more low vegetation in the quadrat means lower
quadrat biomass. The correlation of low vegetation biomass with topographic features was not
significant because low vegetation is usually scattered in the study area. Low vegetation biomass was
negatively correlated with two vegetation indices and two textural features.
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Table 4. Variables significantly correlated with low vegetation biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value)

Blue −0.397 (0.025) SWIR2 −0.364 (0.041)
Green −0.473 (0.006) Low −0.564(0.001)
VRE2 −0.370 (0.037) CLF 0.356 (0.046)
VRE3 −0.397 (0.024) DVI −0.399 (0.024)
NIR −0.553 (0.001) SR6 −0.455 (0.009)

N_NIR −0.460 (0.008) Cor (VRE2) −0.411(0.019)
SWIR1 −0.431 (0.014) Cor (VRE3) −0.423 (0.016)

4.2.2. For Broadleaved Forest

A total of 54 variables were significantly correlated with broadleaved forest biomass (Table 5). Four
spectral reflectance variables were negatively correlated with broadleaved forest biomass. Regarding
vegetation abundance variables, only low vegetation abundance was negatively correlated with
broadleaved forest biomass, but the coefficient was low. As for topographic features, broadleaved
forest grows in relatively flat areas (e.g., parks and residential land) and low-elevated hills in the
study area and, therefore, no significant correlation exists between topography and broadleaved forest
biomass. The biomass was also correlated with seven vegetation indices, higher correlation coefficients
with DVI and SR4. Textural features had close, mostly positive, correlations with broadleaved forest
biomass, although the highest correlation (−0.72), with Cor (VRE2), was negative.

Table 5. Variables significantly correlated with broadleaved forest biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value) Variable Correlation (p-Value)

Green −0.424 (0.000) Homo (Red) 0.255 (0.030) Cont (NIR) 0.357 (0.002)
VRE1 −0.297 (0.011) Entr (Red) 0.245 (0.037) Diss (NIR) 0.339 (0.003)
NIR −0.412 (0.000) Sec_M (Red) 0.231 (0.049) Entr (NIR) 0.322 (0.005)

SWIR1 −0.272 (0.020) Homo (VRE1) 0.252 (0.031) Cor (NIR) −0.379 (0.001)
Low −0.281 (0.016) Diss (VRE1) 0.232 (0.048) Mean (N_NIR) 0.310 (0.008)

MSAVI2 −0.341 (0.003) Entr (VRE1) 0.265 (0.023) Var (N_NIR) 0.332 (0.004)
OSAVI −0.272 (0.020) Mean (VRE2) 0.296 (0.011) Cont (N_NIR) 0.527 (0.000)

DVI −0.382 (0.001) Var (VRE2) 0.268 (0.022) Diss (N_NIR) 0.482 (0.000)
SR4 0.388 (0.001) Cont (VRE2) 0.490 (0.000) Entr (N_NIR) 0.250 (0.033)

gNDVI 0.366 (0.001) Diss (VRE2) 0.433 (0.000) Mean (SWIR1) 0.273 (0.019)
Chlogreen 0.276 (0.018) Entr (VRE2) 0.399 (0.000) Cont (SWIR1) 0.302 (0.009)

EVI2 −0.352 (0.002) Cor (VRE2) −0.720 (0.000) Diss (SWIR1) 0.327 (0.005)
Homo (Blue) 0.275 (0.018) Mean (VRE3) 0.300 (0.010) Entr (SWIR1) 0.369 (0.001)
Entr (Blue) 0.231 (0.049) Cont (VRE3) 0.353 (0.002) Mean (SWIR2) 0.267 (0.023)

Sec_M (Blue) 0.288 (0.014) Diss (VRE3) 0.358 (0.002) Cont (SWIR2) 0.441 (0.000)
Homo (Green) 0.254 (0.030) Entr (VRE3) 0.286 (0.014) Diss (SWIR2) 0.406 (0.000)
Diss (Green) 0.259 (0.027) Mean (NIR) 0.289 (0.013) Entr (SWIR2) 0.373 (0.001)
Entr (Green) 0.294 (0.011) Var (NIR) 0.254 (0.030) Cor (SWIR2) −0.324 (0.005)

4.2.3. For Coniferous Forest

Among the 116 candidate variables, 16 were significantly correlated with coniferous forest biomass
(Table 6). Seven spectral reflectance variables were all negatively correlated with coniferous forest
biomass, with correlation coefficients mostly higher than 0.5. Not surprisingly, only coniferous forest
abundance (CLF) was highly positively correlated with coniferous forest biomass. DEM was the only
topographic feature significantly correlated with coniferous forest biomass, and the negative correlation
is probably linked to the fact that coniferous forest grows in hills and its biomass decreases with
elevation. Coniferous forest biomass was highly significantly correlated with several vegetation indices
but, interestingly, no correlation was found with textural features. The Var (variance), Cont (contrast),
Diss (difference), Entr (entropy) values were all zero while Mean (mean), Homo (homogeneity), Sec_M
(second moment), and Cor (correlation) values were all one—coniferous forest is densely distributed in
the study area, thus no clear textural characteristics.
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Table 6. Variables significantly correlated with coniferous forest biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value)

VRE1 −0.335 (0.049) BLF −0.371 (0.028)
VRE2 −0.637 (0.000) CLF 0.531 (0.001)
VRE3 −0.588 (0.000) DEM −0.337 (0.047)
NIR −0.551 (0.001) SAVI −0.559 (0.000)

N_NIR −0.560 (0.000) MSAVI2 −0.567 (0.000)
SWIR1 −0.636 (0.000) OSAVI −0.514 (0.002)
SWIR2 −0.541 (0.001) DVI −0.562 (0.000)

Low −0.580 (0.000) EVI2 −0.558 (0.000)

4.2.4. For All-Type Vegetation

Results show that 39 variables were significantly correlated with all-type vegetation biomass
(Table 7). In total, ten spectral reflectance variables had negative correlations with all-type vegetation
biomass, coefficients ranging from −0.308 (Red) to −0.496 (Green). It was negatively associated with
low vegetation abundance but positively with broadleaved and coniferous forest abundances. Low
vegetation has lower biomass than coniferous and broadleaved forest and, in a given area (e.g., a
pixel size), the all-type vegetation biomass would be lower if low vegetation abundance is larger
than the other two vegetation abundances. While it had no significant correlation with topographic
features, all-type vegetation biomass was correlated with half of the vegetation indices. The highest
positive correlation coefficient was found with SR4 (0.390) while the highest negative with DVI (−0.396)
(Table A1). In addition, only 14 (17.50% of the total) textural features were significantly correlated with
all-type vegetation biomass and coefficients were generally low.

Table 7. Variables significantly correlated with all-type vegetation biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value) Variable Correlation (p-Value)

VRE1 −0.335 (0.049) BLF −0.371 (0.028) VRE1 −0.335 (0.049)
VRE2 −0.637 (0.000) CLF 0.531 (0.001) VRE2 −0.637 (0.000)
VRE3 −0.588 (0.000) DEM −0.337 (0.047) VRE3 −0.588 (0.000)
NIR −0.551 (0.001) SAVI −0.559 (0.000) NIR −0.551 (0.001)

N_NIR −0.560 (0.000) MSAVI2 −0.567 (0.000) N_NIR −0.560 (0.000)
SWIR1 −0.636 (0.000) OSAVI −0.514 (0.002) SWIR1 −0.636 (0.000)
SWIR2 −0.541 (0.001) DVI −0.562 (0.000) SWIR2 −0.541 (0.001)

Low −0.580 (0.000) EVI2 −0.558 (0.000) Low −0.580 (0.000)
VRE1 −0.335 (0.049) BLF −0.371 (0.028) VRE1 −0.335 (0.049)
VRE2 −0.637 (0.000) CLF 0.531 (0.001) VRE2 −0.637 (0.000)
VRE3 −0.588 (0.000) DEM −0.337 (0.047) VRE3 −0.588 (0.000)
NIR −0.551 (0.001) SAVI −0.559 (0.000) NIR −0.551 (0.001)

4.3. Urban Vegetation Biomass Estimation Models

4.3.1. Stepwise Regression Models

The results of performing SR for constructing vegetation biomass estimation models are presented
in Table A5. All the (adjusted) coefficients of determination (Rnh

2 and adj-Rnh
2) were higher than

0.70, and the fitting was generally good. The variables in the models were less than those (highly)
significantly correlated with vegetation biomass (Tables 4–7). The type-specific and all-vegetation
biomass estimation models are given below.

The SR biomass estimation model for low vegetation:

B = 10× [−171.896− 49.335× Low + 76.406×CLF + 316.404× gNDVI − 13.710
×SR2− 0.365×Cor(VRE2) + 1.087×DEM]

(5)
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The SR biomass estimation model for broadleaved forest:

B = 10× [660.327 −16.739×Cor(VRE2) − 3601.606×Green
+9.944×Cor(SWIR1) − 695.210×OSAVI
−196.861×Var(VRE2) + 98.126×Cont(SWIR1)]

(6)

The SR biomass estimation model for coniferous forest:

B = 10× [183.909 −473.034× SWIR1− 0.016× SR3− 0.232×DEM + 0.299×GI
+14.747×Cor(VRE2)]

(7)

The SR biomass estimation model for all-type vegetation:

B = 10× [213.811 −4566.311×Green− 5.370×Cor(VRE2) + 2655.001×Red
+237.815×Cont(SWIR2) − 108.805×Cont(VRE1)
+0.366×Cor(N_NIR) − 273.149×Var(SWIR1) − 395.915×Var(Blue)
+157.094×Var(VRE1) − 49.701×Cont(Red) + 163.695× Entr(Green)
−203.368× Sec_M(VRE2)]

(8)

4.3.2. Multiple Linear Regression Models

The results of performing the Boruta algorithm in the statistical software of R are shown in
Figure 4. Important variables were labeled as Confirmed in blue, unimportant ones as Rejected in red,
and shadow ones as Shadow in grey.

Using the same biomass data as the SR modeling, the MLR biomass estimation models for low
vegetation, broadleaved forest, coniferous forest, and all-type vegetation were built with the important
variables identified through the Boruta algorithm and the use of VIF.

The MLR biomass estimation model for low vegetation biomass:

= 10× [110.92− 77.401× Low− 199.972× SR6 + 70.94×CLF] (9)

The MLR biomass estimation model for broadleaved forest:

B = 10× [409.043− 12.234×Cor(VRE2) − 2222.677×Green
−696.378×NIR− 124.43×Var(NNIR)

+27.297×Cont(VRE2)]
(10)

The MLR biomass estimation model for coniferous forest:

BB = 10× [170.234− 301.27×VER2− 0.712× Slope] (11)

The MLR biomass estimation model for all-type vegetation:

B = 10× [156.94 −4011.984×Green + 37.17×Cont(VRE2)
+2201.306×Red + 4.449× SR4]

(12)
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Figure 4. Cont.
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Figure 4. Importance of candidate variables: (a) low vegetation; (b) broadleaved forest; (c) coniferous
forest; and (d) all-type vegetation. Important variables are labeled as Confirmed in blue, unimportant
ones as Rejected in red, and shadow ones as Shadow in grey.

4.3.3. Accuracy Assessment

Figure 5 illustrates the results of assessing the SR biomass estimation models for low vegetation,
broadleaved forest, coniferous forest, and all-type vegetation. It shows that Ryz

2 values of the models
for specific vegetation types (viz. the models for low vegetation, broadleaved forest, and coniferous
forest) were all higher than 0.7. The coniferous model had the highest Ryz

2 (0.786) and the lowest
RMSEyz (6.89 t/hm2). The all-type model had a larger RMSE than the type-specific models.

 
Figure 5. Accuracy assessment of the SR biomass estimation models: (a) low vegetation; (b) broadleaved
forest; (c) coniferous forest; and (d) all-type vegetation.
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Similarly, the remaining 30% of field observation data are used to assess the accuracy of the MLR
biomass estimation models. After this, the two types of models are compared in terms of accuracy
measured by the coefficient of determination (Ryz

2) and root-mean-square-error (RMSEyz) (Table 8).

Table 8. Comparing the accuracies of the SR and MLR biomass estimation models (unit for RMSE: t/hm2).

Vegetation Type Low Vegetation Broadleaved Forest Coniferous Forest All-Type Vegetation

Ryz
2 RMSEyz Ryz

2 RMSEyz Ryz
2 RMSEyz Ryz

2 RMSEyz

SR 0.77 7.99 0.73 45.66 0.79 6.89 0.58 45.16
MLR 0.70 10.89 0.62 57.06 0.64 9.67 0.49 60.19

4.4. Seasonal Variation

As the SR models produced better estimates, they were used to calculate the biomass of each urban
vegetation type in January, March, May, July, September, and December of 2017. The type-specific
vegetation biomass and total vegetation biomass are shown in Figure 6.

Figure 6. Type-specific biomass and the total vegetation biomass in the selected months of 2017: (a) low
vegetation; (b) broadleaved forest; (c) coniferous forest; and (d) all vegetation.

Overall, vegetation biomass increased over time and decreased after peaking in autumn.
The highest biomass of low vegetation was in September (28,423 t) and lowest in January and
December (~15,000 t) with a maximal change rate of 87.60%. Despite an increase of 27,150 t biomass
from January to September, the change rate of broadleaved forest was 58.93%, much lower than low
vegetation (Figure 7). The biomass change rate of coniferous forest (25.58%) was the lowest in the three
vegetation types. The total vegetation biomass change was 67,524 t with a change rate of 40.39%.
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Figure 7. The seasonal change rate of vegetation biomass of the study area.

5. Discussion

Correlation analysis is useful to identify what variables are related to the dependent variable [59].
While the biomass of low vegetation and broadleaved forest is correlated mostly with spectral
reflectance, broadleaved biomass is correlated mostly with textural features. Although there might
be close correlations among some of the candidate variables (e.g., NDVI and RVI in the category of
vegetation indices), we here did not provide a full correlation matrix for this because the number of
variables was so large and would take substantial space of the publication. In addition, the use of
stepwise regression and variance inflation factor can avoid the models with correlated variables [57].

Our modeling results show that for both individual vegetation types and all-type vegetation,
the SR models have higher coefficients of determination and lower root-mean-square-errors than
the MLR models. This clearly suggests that the SR modeling outperforms the MLR modeling in the
estimation of urban vegetation biomass. The superiority of SR modeling is also noted in the study of
Xu et al., where degraded grassland biomass was estimated using machine learning methods from
terrestrial laser scanning data [27]. By comparing SR, random forest, and artificial neural network,
they claimed that SR produced the highest accuracy (R2 = 0.84, RMSE = 48.89g/m2). However, it might
be controversial to conclude that SR is best for vegetation biomass modeling as some researchers favor
machine learning algorithms. For example, Lu et al. report that RF (R2 = 0.78, RMSE = 1.34 t/ha)
performs better than SR (R2 = 0.75, RMSE = 1.46 t/ha) in wheat biomass estimation with unmanned
aerial vehicle data [67]. We here do not attempt to compare the results of our models with those of
others because the data for modeling and the contexts (various vegetation types in an urban area vs. a
single type of vegetation in (semi-) environments) were different.

Although some researchers estimated vegetation biomass from remote sensing without
discriminating types [29], our study revealed that vegetation biomass should be modeled for specific
vegetation types for higher modeling accuracy. This is often done for different contexts by other
researchers, e.g., Gao et al. who discriminated broadleaved, coniferous, mixed, and bamboo forest
in China’s Zhejiang province [68], and González-Jaramillo et al. who divided vegetation of the San
Francisco watershed (south Ecuador) into tropical mountain forest, subpáramo, and pastures [23].
In fact, the finding of correlation analysis that variables significantly correlated with vegetation biomass
varies largely with vegetation type implies that type-specific biomass estimations models should
be constructed. Similarly, non-species-specific allometric growth models yielded larger errors than
species-specific ones [69]. Urban vegetation cannot be regarded as a single vegetation type as it varies
largely in biophysical characteristics and thus biomass. Such variations, which might be minimized in
plantations, should be considered for urban green areas. As such, it is important to discriminate urban
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vegetation types through image classification before modeling urban vegetation biomass from remote
sensing image data.

Regarding the seasonal variation of vegetation biomass, coniferous forest has much lower biomass
loss than low vegetation and broadleaved forest, which is because coniferous forest consists mainly
of evergreen arborvitae trees that do not lose their leaves through the year. This suggests that more
coniferous trees should be planted if the biomass loss of low vegetation and broadleaved forest needs
to be compensated. In this multi-season analysis, the same type-specific estimation models were used
for estimating vegetation biomass from remote sensing data imaged in different months. For a plant
species in an area, there is only one allometric growth equation, which is often built with measurements
acquired, e.g., when plants are luxuriant with maximal biomass in a year. The biomass estimation
models constructed with quadrat biomass calculated using these equations should best reflect that
time. If these models are used for other dates, estimation biomass would be less accurate (e.g., due to
less leaves in winter). Remote sensing variables derived from remote sensing images can however
characterize the vegetative status of the plants and compensate the impact.

In addition, there are some other limitations that might undermine the results. Firstly, the allometric
biomass equations for a variety of plant species with high reported accuracies were borrowed from
previous studies, but we were not able to individually verify these equations as this work is out of the
scope of the present study. Secondly, tree biomass could be, to some extent, underestimated from remote
sensing image data. While it is likely that under large coniferous and broadleaved and coniferous trees
grow some low vegetation like grass and bushes, this cannot be recognized in pixels, notwithstanding
the application of linear spectral mixture analysis. Despite these limitations, our study proves the
capability of free optical sensor data like Sentinel-2A to estimate urban vegetation biomass. It would
be interesting if urban vegetation biomass could be regularly monitored; however, this seems currently
challenging as Sentinel-2A data now remains scarce and does not allow a retrospective assessment.

6. Conclusions

This study demonstrates how Sentinel-2A image data can be used for vegetation biomass in an
urban context. The main findings and conclusions of this study are as follows:

• Freely available multispectral Sentinel-2A satellite data has proven its capability in urban vegetation
biomass estimation. The measured biomass of each vegetation type is closely correlated with
different remote sensing derived variables, mostly spectral reflectance for low vegetation and
coniferous forest and mostly textural features for broadleaved forest.

• The vegetation biomass estimation models built by the stepwise regression (SR) outperform those
with the multiple linear regression. It is necessary to discriminate vegetation types in biomass
modeling and the highest accuracy is obtained by the SR model for coniferous forest.

• Highest vegetation biomass occurs in autumn (September) while lowest in winter (January and
December). Low vegetation and broadleaved forest have larger seasonal change rates than
coniferous forest that consists mostly of evergreen trees.

Urban green areas are a key component of urban eco-environment and make a vital contribution
to improving the quality of life and moderating climate. In general, trees have a stronger carbon
sequestration capability and produce more biomass than low vegetation. More coniferous trees can
maintain less biomass loss in winter. However, tree species should be diversified to reduce ecological
vulnerability and guarantee a more robust urban ecosystem and more sustainable urban development.
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Appendix A

Table A1. Formulas used for calculating spectral indices [70].

Spectral Index Formula

Green index (GI) GI = Green/Red
Green normalized different vegetation index (gNDVI) gNDVI = (N_NIR−Green)/(N_NIR + Green)

Normalized difference vegetation index (NDVI) NDVI = (NIR−Red)/(NIR + Red)
Ratio vegetation index (RVI) RVI = NIR/Red

Difference vegetation index (DVI) DVI = NIR−Red
Enhanced vegetation index 2 (EVI2) EVI2 = (NIR−Red)/(1 + NIR + 2.4×Red)
Chlorophyll green index (Chlogreen) Chlogreen = N_NIR/(Green + VER1)

Normalized difference vegetation index (NDVIre1) NDVIre1 = (NIR−VER1)/(NIR + VER1)
Normalized difference vegetation index (NDVIre1n) NDVIre1n = (N_NIR−VER1)/(N_NIR + VER1)

Simple ratio 1 (SR1) SR1 = NIR/VER1
Simple ratio 2 (SR2) SR2 = N_NIR/VER1
Simple ratio 3 (SR3) SR3 = N_NIR/Red
Simple ratio 4 (SR4) SR4 = N_NIR/Green
Simple ratio 5 (SR5) SR5 = N_NIR/Blue
Simple ratio 6 (SR6) SR6 = Blue/VER1
Simple ratio 7 (SR7) SR7 = NIR/Red

Normalized difference infrared index (NDII) NDII = (NIR− SWIR1)/(NIR + SWIR1)
Soil-adjusted vegetation index (SAVI) SAVI = N_NIR−Red

N_NIR+Red+L × 0.5

Modified soil-adjusted vegetation index 2 (MSAVI2) MSAVI2 = 0.5× [(2× NIR + 1

−
√
(2×NIR + 1)2 − 8× (NIR−Red)]

Optimized soil-adjusted vegetation index (OSAVI) OSAVI = (NIR−Red)/(NIR + Red + 0.16)

Note: VRE1–VRE3 represent the three red-edge bands; N_NIR represents the narrow near-infrared bands.

Table A2. Allometric biomass equations for trees, used for calculating quadrat biomass.

Tree species Model R2 Reference

Platycladus orientalis

WS = 0.0573 (D2H) 0.8657 0.97

[71]WB = 0.0043 (D2H) 1.1085 0.89
WL = 0.0038 (D2H) 1.0385 0.84
WR = 0.0485 (D2H) 0.6886 0.80

Robinia pseudoacacia

WS = 0.0681 (D2H) 0.9865 0.9545

[72]WB = 12020 + 0.009 (D2H) 0.8862
WL = −0.549 + 0.007 (D2H) 0.9174

WR = 0.0087 (D2H) 1.0513 0.9472

Metasequoia
glyptostroboides

WS = 0.0146 (D2H) 0.9835 0.993

[73]WB = 0.0243 (D2H) 0.7359 0.993
WL = 0.0949 (D2H) 0.4795 0.982
WR = 0.0102 (D2H) 0.8745 0.975
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Table A2. Cont.

Tree species Model R2 Reference

Populus euramevicana

WS = 0.006 (D2H) 1.098 0.995

[74]WB =0.001 (D2H) 1.157 0.984
WL = 0.012 (D2H) 0.685 0.955
WR = 0.083 (D2H) 0.636 0.915

Cinnamomum camphora

WS = 0.0914 (D2H) 0.7755 0.944

[73]WB = 0.0099 (D2H) 1.0256 0.946
WL = 0.0011 (D2H) 1.1713 0.941
WR = 0.0298 (D2H) 0.8740 0.935

Ginkgo biloba

lnWS = −3.84 + 0.95ln (D2H) 0.98

[75]lnWB = −9.38 + 1.46ln (D2H) 0.852
lnWL = −6.95 + 1.03ln (D2H) 0.853
lnWR = −5.60 + 1.07ln (D2H) 0.967

Platanus acerifolia WT = 0.0690(D2H) 0.9133 / [76]

Larix gmelinii

lnWS = −2.8319 + 0.8379ln (D2H) 0.9996

[77]lnWB = −3.9021 + 0.8822ln (D2H) 0.9015
lnWL = −4.0174 + 0.7659ln (D2H) 0.9007
lnWR = −3.6497 + 0.8247ln (D2H) 0.9994

Broussonetia papyrifera WT = 0.07112 (D2H) 0.910358078 / [78]

Ligustrum lucidum

WS = 0.03939 (D2H) 0.95679 0.97

[79]WB = 0.03357 (D2H) 0.77809 0.84
WL = 0.11613 (D2H) 0.45871 0.61
WT = 0.11394 (D2H) 0.84957 0.97

Koelreuteria bipinnata

WS = 0.08259 (D2H) 0.80831 0.97

[79]WB = 0.00053 (D2H) 1.29104 0.94
WL = 0.01286 (D2H) 0.69408 0.81
WT = 0.12238 (D2H) 0.84468 0.98

Magnolia grandiflora

WS = 0.0649 (D2H) 0.8131 0.969

[73]WB = 0.0431 (D2H) 0.6697 0.904
WL = 0.0254 (D2H) 0.8701 0.837
WR = 0.0885 (D2H) 0.6713 0.883

Liriodendron chinense

WS = 0.02426 (D2H) 0.942303 0.99537

[80]WB = 0.000349 (D2H) 1.268207 0.962865
WL = 0.000419 (D2H) 1.048786 0.834806
WR = 0.023475 (D2H) 0.770233 0.918072

Paulownia fortunei

WS = 0.021158D 2.43244 0.9978

[81]WB = 0.057869D 2.06599 0.9959
WL = 0.060045D 1.54688 0.9891
WR = 0.030740D 2.10612 0.8387

Note: D is DBH (diameter at breast height); H is tree height; WS, WB, WL, refer to the biomass of stem, branch, and
leaves; and WT and WR to the total aboveground biomass and root biomass.

Table A3. Allometric biomass equation of shrubs, used for calculating quadrat biomass [82,83].

Species Model R2 Species Model R2

Ligustrum
quihoui

WB = 26.332 (CH) 0.666 0.950

Buxus bodinieri

WB = 262.879 (CH) 1.546 0.895
WL = 14.646C 1.164 0.972 WL = 224.662 (CH) 1.364 0.890

WR = 18.721 (VC) 0.421 0.965 WR = 294.262 (CH) 1.639 0.889
WT = 52.388 (CH) 0.654 0.959 WT = 756.343 (CH) 1.497 0.913

Berberis
thunbergii

WB = 73.468 (AC) 0.766 0.927
Buxus

megistophylla

WB = 15.572D 1.325 0.979
WL = 3.340 (AC) 0.465 0.601 WL = 20.649 + 9.047ln (CH) 0.902

WR = 29.029 (AC) 0.721 0.785 WR = 9.654D 1.308 0.975
WT = 104.637 (AC) 0.734 0.903 WT = 35.982D 1.212 0.980
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Table A3. Cont.

Species Model R2 Species Model R2

Photinia
serrulata

WB = 0.310 (D2H) 1.097 0.985
Pittosporum

tobira

WB = 765.073 (VC) 0.824 0.991
WL = 0.264 (D2H) 0.916 0.986 WL = 2.958 (D2H) 0.607 0.911
WR = 0.259 (D2H) 1.053 0.988 WR = 445.103 (VC) 0.742 0.972
WT = 0.805 (D2H) 1.051 0.988 WT = 1411.387 (VC) 0.742 0.979

Hibiscus
syriacus

WB = 108.688 (VC) 1.693 0.984
Nandina
domestica

WB = 75.700 (CH) 1.110 0.980
WL = 18.925 (CH) 1.565 0.969 WL = 11.109 + 17.911lnH 0.971
WR = 69.564 (VC) 1.563 0.985 WR = 57.553 (CH) 1.187 0.939
WT = 206.627 (VC) 1.589 0.986 WT = 167.114 (CH) 1.174 0.960

Lagerstroemia
indica

WB = 30.213H 6.318 0.987

Syringa oblata

WB = 0.876 (D2H) 0.894 0.988
WL = 6.656H 5.065 0.994 WL = 0.683 (D2H) 0.715 0.988

WR = 20.934H 5.905 0.989 WR = 0.603 (D2H) 0.877 0.991
WT = 58.305H 6.065 0.989 WT = 2.011 (D2H) 0.863 0.991

Forsythia
suspensa

WB = 0.385 (D2H) 1.025 0.997
WL = 0.187 (D2H) 0.868 0.985
WR = 0.176 (D2H) 0.954 0.990
WT = 0.716 (D2H) 0.989 0.996

Note: D is basal diameter; H is height; C is crown width (which is the average of south-north crown diameter C1
and east-west crown diameter C2; C = (C1 + C2)/2); AC is the area of crown (AC = π × C1 × C2); VC is the volume of
crown (VC = AC × H); WS, WB, WL, refer to the biomass of stem, branch, and leaves; and WT and WR to the total
biomass and root biomass.

Table A4. The calculated biomass for each quadrat. As only 140 of the 192 pre-selected quadrats were
visited and investigated, the quadrat ID ranges from 1 to 192.

ID Biomass (kg) ID Biomass (kg) ID Biomass (kg) ID Biomass (kg)

1 1005.74 2 654.00 3 1192.37 5 1372.71
6 1711.81 7 11,250.00 8 972.12 9 1286.95
10 2118.96 11 1043.43 13 1258.78 14 1114.78
15 502.87 16 431.85 17 638.50 21 985.40
22 918.67 23 989.10 24 1212.90 25 349.37
26 732.72 27 838.38 28 1580.27 29 383.54
30 110.76 31 100.03 33 766.57 34 1556.81
35 917.00 36 56.07 37 383.64 38 1171.94
39 759.66 40 519.31 41 1383.84 42 1300.94
43 711.91 45 1158.74 46 831.58 47 447.30
48 906.36 50 607.56 51 362.14 52 325.44
53 734.24 54 634.06 55 2152.83 56 965.29
59 240.68 60 777.64 63 2042.87 65 1237.21
66 1573.60 67 901.01 68 1641.06 69 805.89
70 612.32 71 1658.79 72 433.56 74 2225.07
75 257.17 76 893.24 77 1209.58 80 8.23
82 706.14 83 989.41 84 1105.56 86 551.12
87 38.43 88 222.73 90 879.47 91 1285.60
92 17.95 94 442.08 95 822.52 96 680.24
97 1085.41 99 1153.80 100 188.35 101 11,085.08
106 2771.95 107 590.58 110 884.22 111 1531.30
116 984.55 117 3452.27 118 525.76 119 120.16
121 371.84 123 663.12 124 559.32 126 1610.53
127 866.05 129 3437.13 132 384.20 134 2179.22
135 216.23 137 2915.05 139 610.32 140 6.19
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Table A4. Cont.

ID Biomass (kg) ID Biomass (kg) ID Biomass (kg) ID Biomass (kg)

142 1100.06 143 1634.99 145 973.77 146 364.50
147 1421.20 148 1841.15 149 2707.82 151 969.84
152 2899.26 153 6.19 154 1176.14 156 1100.67
157 3279.12 158 6.19 159 1265.47 162 1007.43
163 2240.88 164 1189.30 166 6.19 168 6.19
169 6.19 170 698.32 172 198.72 173 6.19
174 1772.22 175 2304.31 176 6.19 177 6.19
178 1045.89 179 131.80 180 78.79 181 888.34
182 64.71 183 320.74 185 210.05 187 724.18
188 308.44 189 1002.98 190 6.19 192 623.21

Table A5. The results of the SR modeling.

Vegetation Type Rnh
2 Adj-Rnh

2 Variable Coefficient VIF

Low vegetation 0.853 0.818

Constant −171.896
Low −49.335 1.382
CLF 76.406 3.254

gNDVI 316.404 3.181
SR2 −13.710 4.274

Cor (VRE2) −0.365 1.311
DEM 1.087 1.207

Broadleaved forest 0.821 0.805

Constant 660.327
Cor (VRE2) −16.739 2.095

Green −3601.606 1.066
Cor (SWIR1) 9.944 2.317

OSAVI −695.210 1.375
Var (VRE2) −196.861 5.043

Cont (SWIR1) 98.126 5.674

Coniferous forest 0.838 0.810

Constant 183.909
SWIR1 −473.034 1.151

SR3 −0.016 1.346
DEM −0.232 1.109

GI 0.299 1.461
Cor (VRE2) 14.747 1.079

All vegetation 0.754 0.721

Constant 213.811
Green −4566.311 4.279

Cor (VRE2) −5.370 1.889
Red 2655.001 4.530

Cont (SWIR2) 237.815 9.833
Cont (VRE1) −108.805 6.695
Cor (N_NIR) 0.366 1.905
Var (SWIR1) −273.149 3.947

Var (Blue) −395.915 3.295
Var (VRE1) 157.094 4.905
Cont (Red) −49.701 3.396

Entr (Green) 163.695 9.353
Sec_M (VRE2) −203.368 4.150
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Abstract: Forest biomass reflects the material cycle of forest ecosystems and is an important index to
measure changes in forest structure and function. The accurate estimation of forest biomass is the
research basis for measuring carbon storage in forest systems, and it is important to better understand
the carbon cycle and improve the efficiency of forest policy and management activities. In this study,
to achieve an accurate estimation of meso-scale (regional) forest biomass, we used Ninth Beijing Forest
Inventory data (FID), Landsat 8 OLI Image data and ALOS-2 PALSAR-2 data to establish different
forest types (coniferous forest, mixed forest, and broadleaf forest) of biomass models in Beijing. We
assessed the potential of forest inventory, optical (Landsat 8 OLI) and radar (ALOS-2 PALSAR-2)
data in estimating and mapping forest biomass. From these data, a wide range of parameters
related to forest structure were obtained. Random forest (RF) models were established using these
parameters and compared with traditional multiple linear regression (MLR) models. Forest biomass
in Beijing was then estimated. The results showed the following: (1) forest inventory data combined
with multisource remote sensing data can better fit forest biomass than forest inventory data alone.
Among the three forest types, mixed forest has the best fitting model. Forest inventory variables and
multisource remote sensing variables can match each other in time and space, capturing almost all
spatial variability. (2) The 2016 forest biomass density in Beijing was estimated to be 52.26 Mg ha−1

and ranged from 19.1381–195.66 Mg ha−1. The areas with high biomass were mainly distributed in
the north and southwest of Beijing, while the areas with low biomass were mainly distributed in the
southeast and central areas of Beijing. (3) The estimates from the RF model are better than those from
the MLR model, showing a high R2 and a low root mean square error (RMSE). The R2 values of the
MLR models of three forest types were greater than 0.5, and RMSEs were less than 15.5 Mg ha−1,
The R2 values of the RF models were higher than 0.6, and the RMSEs were lower than 13.5 Mg ha−1.
We conclude that the methods in this paper can help improve the accurate estimation of regional
biomass and provide a basis for the planning of relevant forestry decision-making departments.

Keywords: forest biomass estimation; forest inventory data; multisource remote sensing; random
forest; biomass density

1. Introduction

Forest ecosystems are an important component of the terrestrial ecosystem. Forests store 76%~98%
of the organic carbon in terrestrial ecosystems [1] and play an irreplaceable role in mitigating global
warming caused by the increase in atmospheric carbon dioxide [2]. Forest biomass reflects the material
cycle of forest ecosystems and is an important indicator for measuring changes in forest structure
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and function. Additionally, forest biomass is closely related to the carbon sources and sinks in forest
ecosystems [3]. Because the monitoring of forest biomass resources is expensive and time consuming,
most countries do not have effective monitoring systems. Therefore, accurate estimations of forest
biomass can effectively replace forest monitoring systems and are an important basis for assessing
ecosystem processes, the carbon balance of ecosystems and climate change [4].

Meso-scale forest biomass estimations are usually obtained from forest inventory data [5]. In many
countries, the use of large-scale forest inventories is considered an effective method for estimating
biomass accurately [6]. China conducts a large-scale forest resource survey every five years to provide
good data for statistical forest resources. Using these inventory data, forest biomass can be estimated at
provincial or national scales [7]. However, with the continuous change in the forest resource structure
of China, there have been some problems with these inventory data in regional biomass estimation [8].
To obtain the total volume or biomass of forest, the volume or biomass of one tree is calculated, and
then the volumes or biomasses of all the trees in the sample plot are added together. Obviously, this
method requires a high amount of manpower and material resources [9]. Moreover, inventory data
cannot fully reflect forest information [6,10]. Therefore, we need data that cover a wide area and
contain a high amount of vegetation information to supplement forest inventory data.

With developments in technology, remote sensing has increased the possibilities for forest biomass
research [11,12]. The use of remote sensing data in the research of meso-scale biomass is an important
technical method. Various remote sensing indicators based on optical sensors, such as the normalized
difference vegetation index (NDVI) and other factors obtained by image transformations, have been
shown to be well correlated with the ground vegetation, providing reliable information for forest
biomass estimation [13–15]. However, applications with optical data are often limited due to the
complexity of biomass in time and space and limitations in the spatial and spectral characteristics of
satellite data [16]. More abundant remote sensing data are needed to depict detailed forest information.
Lidar can penetrate dense forests, provide accurate three-dimensional information of trees, and then
be used to obtain forest biomass [17]. However, because of its limited coverage, high cost and
inconvenience to transport, Lidar is not suitable for forest biomass estimation at the meso-scale [18].
Synthetic Aperture Radar (SAR) data, such as L-band Advanced Land Observing Satellite/Phased
Array L-band Synthetic Aperture Radar (ALOS/PALSAR) [19] and X-band TerraSAR-X data, are widely
used in the estimation of forest biomass [20,21]. SAR is not affected by illumination and climate
conditions and it can penetrate vegetation to obtain information, covering relatively large areas in a
short period of time [20].

At the meso-scale, many studies have demonstrated the potential of optical and radar remote
sensing-derived indicators to estimate forest biomass [22,23]. However, there is a large range and
many uncertainties of remote sensing. For example, the resolution of remote sensing images might
be insufficient, and the vertical structure information of forest canopies cannot be obtained, which
has certain limitations in high biomass areas. Therefore, at the regional scale, the accuracy of forest
biomass estimation using remote sensing data is low [24].

Optical and radar remote sensing data can match forest inventory data in time and space [25].
In addition, these data can provide forest attributes and structural information that are missing
from inventory data. Therefore, combining multisource remote sensing data with forest inventory
data for regional forest biomass research provides a more consistent spatial and temporal analyses
than forest inventory data alone. Generally, the uncertainty in the estimation can be reduced by
this combination [25]. Furthermore, this combination can promote the application of forest biomass
estimation and other ecological research at the meso-scale. However, there is little information
on the potential of the combination of sample plot survey data with multisource remote sensing
data to estimate and map biomass. Most forest biomass estimation studies focus on the impact
of environmental variables on forest biomass [26]. Therefore, it is necessary to better assess and
understand the modeling potential of sample survey factors and remote sensing factors to provide
decision makers with information on forest resources.
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In this study, by synthesizing the existing technical means, we combined forest inventory data
with multisource remote sensing data to estimate forest biomass and improve the accuracy of biomass
estimation at the regional scale. There are three objectives of the present study: the primary objective
is to assess the potential of forest inventory data combined with multisource remote sensing data in
modeling and mapping forest biomass. The second objective is to estimate the biomass of different
forest types in Beijing in 2016 and provide data support for regional biomass estimation. The third
objective is to estimate biomass using multiple linear regression (MLR) and the random forest (RF)
model and compare the performances of the two models.

2. Materials and Methods

2.1. Data Collection

2.1.1. Forest Inventory Data

The National Forest Resources Continuous Inventory system is a method of forest resource
investigation that aims to understand the status and dynamics of macroforest resources and periodically
reviews both with fixed sample plots. It is an important part of the comprehensive monitoring system
for forest resources and ecological conditions in China. China’s Ministry of Forestry has carried out
eight consecutive national surveys and inventories of forest resources [27]. According to the technical
regulations of the national forest resources continuous inventory, systematic sampling is used to lay
out fixed sample plots, the size of which is 4 km × 4 km, and the sample plots are laid out at the
intersection point of the kilometer network of the newly compiled 50,000 or 100,000 topographic map
of the country. To ensure that the sample points are not repeated and missed, computer technology
such as GIS, is used as far as possible [28]. In recent years, the collection of forest inventory data
depends primarily on manual work, and it is supported by high-tech survey instruments that can
automatically collect data to improve the accuracy of inventory results [29].

In this study, we used the Ninth Beijing Forest Inventory data of 2016, which involve 1431
sample plots located in all districts and counties of Beijing, as shown in Figure 1, covering coniferous,
broadleaf and mixed coniferous-broadleaf forest types. The dataset describes in detail plot locations,
measurement dates and forest compositions. For each plot, multiple attributes were collected, including
the mean diameter at breast height (DBH), mean tree height, mean age, crown density, volume, land use
and cover, and ecological conditions. The biomass, mean DBH, mean tree height, mean age and crown
density were used as the inventory variables to establish the model, as shown in Table 1. The real
biomass value was calculated using the equation for the biomass-volume relationship of the stand
type and age group [30]. The stem volume of each tree was provided by FID, and the stand volume of
each fixed sample plot was the sum of all tree volumes. The area of each plot was 0.0667 hectares.

Table 1. Statistics of the main forest inventory dataset (plot number and biomass of the three forest
types in Beijing, China).

Forest Types
Coniferous Forest (n1 = 663) Mixed Forest (n2 = 272) Broadleaf Forest (n3 = 496)

Max Min Mean Max Min Mean Max Min Mean

Biomass (Mg ha−1) 260.45 5.08 51.83 170.45 21.63 51.78 138.23 11.82 51.71
Mean H(m) 32.40 1.00 7.42 27.7 1.50 7.41 22.80 1.50 7.41

Mean DBH (cm) 51.00 1.00 12.8 40.60 3.50 12.8 42.50 3.00 12.8
Mean age 115 1 25 100 3 24 80 3 24

Crown density 90 20 48 90 20 48 90 20 48

There are significant differences in topography and administrative functions among different
districts in Beijing. From the topographic point of view, the northwest is a mountainous area with a
higher terrain, and the southeast is a plain; from the administrative function point of view, the central
part of Beijing is the capital and core functional area, the Northwest Mountainous Area and the
southwest are ecological conservation functional areas, and the plain is a densely populated scientific

137



Forests 2020, 11, 163

and technological innovation and economic development area, which also leads to differences in forest
biomass distribution. More than 80% of Beijing’s forest resources are distributed in mountainous
counties in the west and north of the city. The forest coverage in mountainous areas of Beijing has
reached more than 50%, but the forest area in the plain of southeast Beijing accounts for less than 20%
of the whole city.

Figure 1. Spatial distribution map of the forest sample plots in Beijing.

The forest ecosystem contains arbors, shrubs and herbs, but the amount of biomass from shrubs
and herbs is less than the amount of arboreal biomass [31]. Therefore, this study considers only arboreal
biomass and does not consider shrub and herb biomass.

2.1.2. Remote Sensing Data and Preprocessing

We used optical (Landsat 8 OLI) and radar (ALOS-2 PALSAR-2) remote sensing sources.

Landsat 8

Landsat 8 Operational Land Imager (OLI, which developed by Bauer Aerospace and Technology
Corp, Colorado, USA) images included a 15 m panchromatic band, with a spectral range from 0.500 to
0.680 μm and eight 30 m multispectral bands, with a spectral range from 0.433 to 2.300 μm. They were
selected for biomass estimation due to their suitability in terms of their resolution ratio; a spatial
resolution of approximately 30 m by 30 m is adequate to assess information at the forest stand level.
We selected eight Landsat 8 OLI scenes of Beijing with low cloud cover as the research images. The
image range was 122 to 124 paths and 31 to 33 rows. The image acquisition time used in this study was
June-August 2016, and the time phase was basically the same as the time phase of the Beijing forest
inventory data.

The image preprocessing steps included geometric correction, radiation correction, atmospheric
correction, and image clipping. Because the downloaded images were Level-1 data products, the
geometric accuracy was high, so only radiation and atmospheric corrections were needed.

Based on the preprocessed Landsat 8 OLI data, we acquired the surface reflectance for 6 bands
of the Landsat 8 OLI (Band 2-Band 7) and then acquired the vegetation indices, namely, normalized
difference vegetation index (NDVI), difference vegetation index (DVI) and ratio vegetation index
(RVI) (Table 2), through band processing and the Landsat 8 OLI image calculation. The NDVI,
DVI, and RVI are commonly used vegetation indices that are sensitive to vegetation, as shown in
Equations (1)–(3). Another dataset was derived by image transformation from the original satellite
band, which involved tasseled cap transformation (TCT) and texture features as shown in Table 2.
Tasseled cap transformation, also known as a K-T transform, is an image enhancement method for
vegetation information extraction. It can enhance vegetation information of images. After the K-T
transform, the same number of components as the number of bands can be obtained, and the second

138



Forests 2020, 11, 163

component is the green index, which has a strong relationship with the vegetation coverage and
biomass on the ground [32]. Therefore, based on the TCT coefficients of the OLI sensor onboard
Landsat 8, we chose the second band generated from the TCT, which was marked as the greenness [32].

Table 2. Remote sensing factors calculated from the Landsat 8 and ALOS-2/PALSAR-2 images.

Factor Type Remote Sensing Factors Data Source

Band value Band 2, Band 3, Band 4, Band 5, Band 7 Landsat 8 OLI
Vegetation index NDVI, DVI, RVI Landsat 8 OLI

Tasseled cap transformation Greenness Landsat 8 OLI
Texture analysis Mean, Variance, Contrast, Correlation, Second moment Landsat 8 OLI

Backscattering coefficients Γ0
HH, Γ0

Hv, Γ0
HH + Γ0

Hv, Γ0
HH − Γ0

Hv, Γ0
HH/Γ0

Hv ALOS-2/PALSAR-2

In addition, we extracted the texture factor of the image. Texture is an important feature of remote
sensing images and can be extracted by using the gray-level cooccurrence matrix (GLCM). Previous
research has shown that Band 2 of a Landsat 8 OLI image contains much information about the image;
thus, we extracted the texture feature of Band 2. The larger the selected window is, the greater the
information content will be [33]. According to the sample area, five texture eigenvalues were extracted
from the 15 × 15 window, namely, the mean, variance, contrast, correlation and second moment [34],
as shown in Equations (4)–(8):

Normalized Difference Vegetation Index (NDVI):

NDVI =
NIR1−R
NIR1 + R

(1)

Difference Vegetation Index (DVI):

RVI =
NIR1

R
(2)

Ratio Vegetation Index (RVI):
DVI = NIR1−R (3)

Mean(ME):

ME =
N−1∑
i, j=0

iPij (4)

Variance(VA):

VA =
N−1∑
i, j=0

Pij(i−ME)2 (5)

Contrast(CO):

CO =
N−1∑
i, j=0

iPij(i− j)2 (6)

Correlation (CC):

CC =
N−1∑
i, j=0

iPij

∣∣∣∣∣∣∣
(i−ME)( j−ME)√

VAiVAj

∣∣∣∣∣∣∣ (7)

Second Moment(SM):

SM =
N−1∑
i, j=0

iPij
2 (8)

Using bilinear interpolation, the average values of the remote sensing factors at and near sampling
points can be extracted. This method effectively solves the problem that occurs when sampling sites
do not match the image completely and can cover areas that the inventory data cannot fully cover, thus
improving the estimation accuracy.
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ALOS-2/PALSAR-2

We downloaded six images of ALOS-2/PALSAR-2 (L-band) taken in 2016 from Japan Aerospace
Exploration Agency (JAXA (http://www.eorc.jaxa.jp/ALOS/en/index.htm)). The PALSAR data had a
25-m spatial resolution and contain two polarized bands, HH and HV. The preprocessing of PALSAR
data was completed by the JAXA. The digital numbers (DN) of the PALSAR signal amplitude were
extracted and converted to gamma naught backscattering coefficients (dB) in decimal units using the
following equation [35,36]:

Γ0 = 10× log10DN2 −CF (9)

where Γ0 is the backscattering coefficient, DN is the digital number value of pixels, and CF is the
calibration factor, which equals −83 [36]. Then, we calculated the sum, difference and ratio values
using the backscattering coefficients of HH and HV, as shown in Equations (10)–(12):

sum = Γ0
HH + Γ0

Hv (10)

difference = Γ0
HH − Γ0

Hv (11)

ratio = Γ0
HH/Γ0

Hv, (12)

where Γ0
HH and Γ0

Hv are the backscattering coefficients of HH and HV in decibels.

2.2. Multiple Regression Model

The allometric growth equation is the most widely used model for estimating forest biomass.
Many studies have confirmed the advantages of the allometric growth equation for estimating
forest biomass [37–39]. This model regresses a correlated variable (biomass) based on one or more
independent variables. The DBH and tree height, as the two most relevant factors of biomass, are
often used in biomass prediction in the form of single or compound variables. Based on the allometric
model and previous research results, we introduced new variables (Landsat 8 data and backscattering
coefficients) into the model to explore its ability to estimate forest biomass, as shown in Equation (13).

ln(B) = β0 + a ln
(
d2H

)
+ β1x1 + β2x2 + . . .+ β jxj (13)

where B is the biomass of the sample plot, each xj is an independent variable ( j = 1, 2, 3 . . .), β j is the
regression coefficient of xj, β0 is a constant, and a is the regression coefficient of the model.

However, the remote sensing variables were highly collinear. To overcome this problem, we used
a stepwise regression analysis method, which gradually screens variables and leaves highly correlated
variables that are not collinear in the model, to retain a model that was not very complex and to
reduce the number of calculations. The basic idea of stepwise regression is to introduce variables
into the model one by one. After introducing an explanatory variable, we need to conduct F-test and
t-test for the selected explanatory variables one by one. When the original explanatory variables are
no longer significant due to the introduction of later explanatory variables, they will be deleted. To
ensure that only significant variables are included in the regression equation before each new variable
is introduced. This is a repeated process until neither significant explanatory variables are selected
into the regression equation nor insignificant explanatory variables are removed from the regression
equation. To ensure that the final set of explanatory variables is optimal.

2.3. Feature Selection and Random Forest Model

We used R to establish an RF model to estimate forest biomass. The RF model was a classification
and regression algorithm based on decision trees [40]. By establishing and combining multiple decision
tree predictions (1000 trees in our study), the average value of all the decision tree prediction results
was taken as the final prediction result [41]. The RF model can effectively alleviate the problem of
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overfitting and is insensitive to the collinearity between variables, so it is suitable for establishing
a nonlinear model [42]. RF is increasingly used to perform biomass regression and estimate forest
biomass [43,44].

First, subsets of variables were selected as input for the RF prediction using feature selection
to ensure that the input variables were highly correlated with biomass. Feature selection refers to
the selection of subsets from the original feature set to optimize a certain evaluation criterion so that
the model established with the optimal feature subset can achieve a prediction accuracy similar to
or better than that of the model established without feature selection. RF provides an increase in the
mean-squared error (percentage of IncMSE, where IncMSE indicates the increase in MSE) for each
independent indicator, quantifying the increase in the MSE when the indicator is randomly permuted.
This error measures the relative importance of each indicator, where a high IncMSE implies that the
indicator has a high weight in the model prediction and vice versa [23]. Then, we used the data after
feature selection as the independent variable, forest biomass as the dependent variable, and the random
forest software package in R to establish an RF model.

2.4. Model Accuracy Evaluation

To test these models, we assessed the prediction accuracy on randomly selected subsets (20%) of
the original dataset retained before the model was developed. To evaluate the advantage of the use of
an advanced regression tree model versus more traditional approaches, the performance of the RF
model was computed and compared with that of a stepwise multiple linear regression model.

We used the proportion of variance explained (R2) and the root mean square error (RMSE) to
evaluate the model performance on the complete datasets. In addition, we computed the relative
RMSE (RMSE%), the bias and the relative bias (bias%). Bias was calculated as the difference between a
population mean of the measurements or test results and an accepted reference or true value, R2 values
were used to judge the model, and RMSE, Bias%, RMSE% reflect the precision of the model [45].

These statistics were calculated as follows:

R2 = 1−
∑
(yi − ŷi)

2

∑(
yi − yi

)2 (14)

RMSE =

√∑
(yi − ŷi)

2

n− 1
(15)

RMSE% =
RMSE

yi
× 100% (16)

Biasc =
1
n

n∑
i=1

(yi − ŷi) (17)

Bias% =
BIAS

yi
× 100% (18)

where yi is the observed biomass of the plot, ŷi is the predicted biomass of the plot, and yi is the mean
biomass of n plots.

3. Results

3.1. Univariate Correlation Analysis

Previous studies have typically analyzed the relationship between a single remote sensing variable
and the forest biomass or have used the original band and variables transformed from images for
feature selection [46,47]. Through the Pearson correlation coefficient (r), we analyzed the ability of
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each variable to estimate biomass and obtained the correlation between each variable and the biomass,
as shown in Table 3.

Table 3. Coefficients of correlation between forest biomass and variables.

Variables Code
Correlation (r)

Coniferous Forest Mixed Forest Broadleaf Forest

FID

d2H N1 0.492 0.510 0.489
Crown density N2 0.373 0.451 0.401

Mean age N3 0.455 0.412 0.359

Original bands

B2 X1 0.359 0.290 0.367
B3 X2 0.118 0.257 0.213
B4 X3 0.219 0.197 0.156
B5 X4 0.237 0.211 0.181
B7 X5 0.235 0.243 0.221

Vegetation index
NDVI X6 0.336 0.332 0.317
DVI X7 0.105 0.116 0.132
RVI X8 0.089 0.124 0.098

Tasseled cap Greenness X9 0.239 0.159 0.224

Texture (15 × 15)

Mean X10 0.196 0.195 0.174
Variance X11 0.089 0.077 0.103
Contrast X12 0.130 0.114 0.082

Correlation X13 0.138 0.211 0.243
Second moment X14 0.145 0.056 0.097

Backscattering
coefficients

Γ0
HH X15 0.135 0.125 0.126
Γ0

Hv X16 0.165 0.187 0.173
Γ0

HH + Γ0
Hv X17 0.148 0.099 0.106

Γ0
HH − Γ0

Hv X18 0.132 0.071 0.121
Γ0

HH/Γ0
Hv X19 0.127 0.126 0.187

Among all variables, forest inventory variables were highly correlated with biomass in three forest
types. Different remote sensing variables (OLI data and PALSAR data) showed different degrees of
correlation. The shortwave infrared (SWIR) optical band (Band 7) showed the greatest relevant biomass
among the Landsat data because it allowed an effective separation between high- and low-biomass
data. The importance of the SWIR wavelengths in biomass prediction is consistent with previous
studies [40]. In addition, Band 5, Band 4, Band 3, Band 2, the NDVI, and the greenness were also highly
correlated with biomass, and the most relevant texture factors were the mean, correlation and second
moment. The other Landsat variables had little correlation with biomass. SAR data can penetrate dense
forests and obtain the vertical structure information of forests, so the PALSAR HH and HV backscatter
coefficients and their derivative variables (sum, difference, ratio) were correlated with forest biomass.
In addition, correlations between the forest biomass and HV backscatter coefficients of different forest
types were higher than those between the forest biomass and HH backscatter coefficients, which is in
line with previous research results [22,48]. All these factors can be considered potential variables for
forest biomass estimation.

3.2. Results of Forest Biomass Model Establishment

3.2.1. Multiple Stepwise Regression Model

To avoid overfitting, the multiple stepwise regression method was used to screen variables and
establish a multiple linear model. The results are as follows:

The multiple stepwise regression model of coniferous forests was:

ln(BC) = 3.821 + 0.226×N1 + 0.111N2 + 0.139N3 − 0.120X1 − 0.246X6 − 0.089X10 − 0.656X16 + 0.538X17 − 0.308X19 (19)

The multiple stepwise regression model of mixed forest was:

ln(BM) = 3.776 + 0.291×N1 + 0.155N2 + 0.108N3 − 0.153X1 + 0.302X2 − 0.132X3 − 0.05X4 + 0.052X6 + 0.037X13 (20)
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The multiple stepwise regression model of broadleaf forests was:

ln(BB) = 3.810 + 0.127×N1 + 0.137N2 + 0.181N3 + 0.110X1 + 0.039X6 − 0.088X9 + 0.024X13 + 0.043X15 − 0.057X18 (21)

Then, the biomass estimation model was obtained as follows:

BC = e

3.821 + 0.226×N1 + 0.111N2 + 0.139N3 − 0.120X1

−0.246X6 − 0.089X10 − 0.656X16 + 0.538X17 − 0.308X19 (22)

BM = e

3.776 + 0.291×N1 + 0.155N2 + 0.108N3 − 0.153X1

+0.302X2 − 0.132X3 − 0.05X4 + 0.052X6 + 0.037X13 (23)

BB = e

3.810 + 0.127×N1 + 0.137N2 + 0.181N3 + 0.110X1

+0.039X6 − 0.088X9 + 0.024X13 + 0.043X15 − 0.057X18 (24)

where Xi and Ni in each formula correspond to the variables in Table 3.
P values represent the probability that the sample results differ from the original hypothesis.

The smaller the P value is, the more significant the results are. Generally speaking, p < 0.05 indicates
a significant difference, and p < 0.01 indicates a very significant difference. Table 4 shows that the P
values of the model coefficients of different forest types, which are less than 0.05, some of which are
less than 0.01. These results show that the differences in the selected variables are significant.

Table 4. P values of the coefficients of models for different forest types.

Forest Type Variables p-Value

Coniferous
forest

N1 0.001
N2 0.004
N3 0.010
X1 0.011
X6 0.020

X10 0.010
X16 0.015
X17 0.009
X19 0.022

Mixed forest

N1 0.002
N2 0.001
N3 0.004
X1 0.016
X2 0.011
X3 0.002
X4 0.015
X6 0.008

X13 0.037

Broadleaf forest

N1 0.005
N2 0.003
N3 0.010
X1 0.033
X6 0.02
X9 0.01

X13 0.025
X15 0.019
X18 0.002

3.2.2. Random Forest Model

First, feature variables were selected for the variables involved in the modeling. The importance
of the variables was ranked according to IncMSE%, and the unimportant variables were eliminated.
Generally, the number of final variables is 1/3 of the total number of input variables [49]. Table 5 shows
that d2H and the mean age are two very important variables in the RF model. IncMSE% was more
than 20% in the different forest types. NDVI, Band 2 and Band 7 were also important to the model with
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regard to optical data. The most influential backscattering coefficient factors were Γ0
Hv and Γ0

HH − Γ0
Hv.

The IncMSE% of these factors were all higher than 10%.

Table 5. The IncMSE% of the top five most important variables in the biomass fitting of different forest
types in the random forest model.

Forest Type Variables IncMSE%

Coniferous forest

d2H 40.82
The mean age 19.83
Band 2 15.39
NDVI 12.36
Γ0

Hv 11.15

Mixed forest

The mean age 32.28
d2H 25.52
Γ0

HH − Γ0
Hv 18.48

Band2mean 14.23
Crown density 11.88

Broadleaf forest

d2H 43.46
Crown density 23.02
Band 7 12.77
Γ0

Hv 11.70
NDVI 10.08

3.3. Model Precision Evaluation and Comparison of Two Models

To test the goodness of fit of the model, 20% of the samples were used for validation. We analyzed
the scatter diagrams of different forest types in Figure 2 and obtained the accuracy of the linear
regression and RF models in Table 6.

MLR

(a1) (b1) (c1)

RF

(a2) (b2) (c2)

Figure 2. Graphs of the predicted versus observed values of three forest types for two models. (a1) and
(a2) Coniferous forest; (b1) and (b2) Mixed forest; (c1) and (c2): Broadleaf forest.

Figure 2 shows that correlations between the estimated biomass and observed biomass in the
coniferous forests, mixed forests, and broadleaf forests were all better for the RF models than for
linear regression. In the linear model, as the biomass value increased, the performance of the model
decreased, and most of the high-value biomass was underestimated. In particular, the high biomass
values of mixed forests were greatly underestimated. RF can improve the performance of the model.
When the biomass was less than 100 Mg ha−1, the difference between predicted and observed values is
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lower than that of the linear model; the error under higher biomass values was slightly larger, and
some of the higher values were underestimated.

Table 6. Estimation accuracy of different models.

Model Forest Type R2 RMSE (Mg ha−1) RMSE% Bias (Mg ha−1) Bias%

MLR
Coniferous forest 0.59 14.15 29.65 0.34 0.71

Mixed forest 0.7 14.54 27.92 0.9 1.73
Broadleaf forest 0.53 15.26 32.48 0.16 0.33

RF
Coniferous forest 0.66 13.23 27.24 −2.67 −5.50

Mixed forest 0.77 11.09 22.89 −3.34 −6.89
Broadleaf forest 0.64 11.98 27.02 −4.02 −9.08

Table 6 shows that the Bias% values were all near 0, and the RMSE% ranged from 27.92% to
32.48% for the MLR model. For the RF model, the Bias ranged from −2.67 to −4.02 and the RMSE%
ranged from 22.89%–27.24%. These results showed that the two types of models were relatively
stable and could be used to estimate biomass. However, an improvement in performance was found
in the RF models for coniferous forest (R2 = 0.66, RMSE = 13.23 Mg ha−1), mixed forest (R2= 0.77,
RMSE = 11.09 Mg ha−1), and broadleaf forest (R2 = 0.64, RMSE = 11.98 Mg ha−1), in comparison to
the linear regression models for coniferous forest (R2 = 0.59, RMSE = 14.15 Mg ha−1), mixed forest
R2 = 0.70, RMSE = 14.54 Mg ha−1), and broadleaf forest (R2 = 0.53, RMSE = 15.26 Mg ha−1). Generally,
the RF model was characterized by a high R2 and a low RMSE, indicating a good fitting result.

For the same model with different forest types, the fit of the mixed-forest models was better than
that of the models with the other two forest types. The R2 of the linear regression model based on
mixed forests was 0.11 and 0.17 higher than the R2 of the linear regression models based on coniferous
forests and broadleaf forests, respectively. The R2 of the RF model based on mixed forests was 0.11 and
0.13 higher than the R2 of the RF models based on coniferous forests and broadleaf forests, respectively,
and the RMSE was 4.35 and 4.13 Mg ha−1 lower, respectively. Overall, the model for mixed forests had
a high estimation accuracy.

3.4. Results of Biomass for Different Forest Types and Spatial Distribution of the Forest Biomass
Density in Beijing

Based on the model estimation results, the forest biomass and biomass density of coniferous
forests, broadleaf forests and mixed forests were estimated, the kriging interpolation was used and
biomass density distribution maps of three forest types were obtained. Biomass of different forest
types are shown in Table 7 and biomass density distribution in Figure 3.

Table 7. Biomass and biomass density of each forest type.

Forest Type Area (ha−1) Biomass (Mg) Biomass Density (Mg ha−1)

Coniferous forest 663 35,622.99 53.73
Mixed forest 272 13,926.40 51.20

Broadleaf forest 496 25,196.80 50.80

The total forest biomass obtained from the survey data was 74,746.10Mg, and the biomass density
was 19.14–195.66 Mg ha−1, with an average biomass density of 52.26 Mg ha−1. Among these values, the
total biomass of coniferous forest was 35,622.99 Mg, the average biomass density was 53.73 Mg ha−1;
the total biomass of mixed forest was 13,926.40 Mg, the average biomass density was 51.20 Mg ha−1; the
total biomass of broadleaf forest was 25,196.80Mg, and the average biomass density was 50.80 Mg ha−1.
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Figure 3. Biomass density distribution in Beijing, China (a) Coniferous forest; (b) Mixed forest; (c)
Broadleaf forest; (d) all forest sampling plots.

As shown in Figure 3, the biomass distribution of arbor forests was basically consistent with
the distribution of forestland in Beijing. The high-biomass area corresponded to dense forestland,
and most of these forests were mature and overmature and were mainly distributed in the north and
southwestern part of Beijing. The low-biomass area was mainly located in the southeast and central
parts of Beijing. Because this area is urban with mostly developed land, the biomass in this area is low.
The biomass density in most areas of Beijing was less than 70 Mg ha−1.

The distribution of the three types of forest was obviously different. Coniferous forests were
mainly distributed to the west and south of Beijing, mixed forests were mainly distributed in the west,
and broadleaf forests were mainly distributed in the north and southwest.

This study did not consider shrubs and herbs, so the estimation of biomass can be considered
relatively conservative but can also represent the basic situation of biomass in Beijing. At present,
China’s biomass estimation system is still not perfect. This study provides a feasible method for
regional biomass estimation.

4. Discussion

4.1. Forest Biomass Estimation Model Based on Forest Inventory and Multisource Remote Sensing Data

In this paper, we propose a novel approach to modeling and mapping the biomass of forests at
the regional scale that provides more detailed and accurate information than other approaches, such as
estimating using only a single remote sensing data source or forest inventory data.

We combined forest inventory data with multisource remote sensing data (OLI and PALSAR) to
estimate forest biomass, capturing almost all forest biomass spatial variability, and producing spatially
explicit biomass estimates over regions.

According to the biomass characteristics of different forest types, it is very important to select
variables with a high importance to the model [48]. The forest inventory factors selected in this study
included not only the DBH and height, which are the two most relevant factors to biomass [38,39,50]
but also the mean age and canopy density, which have received increasing attention in recent studies.
Many previous studies have demonstrated that these two factors show a good correlation with
biomass [40,51], which is consistent with our results. Landsat optical data are sensitive to forest
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vegetation, and their spatial resolution is suitable for the sample plot size. Zheng et al. confirmed that
the red and NIR bands (Bands 4 and 5, respectively) are effective predictors of biomass [13]. Zheng
et al. found that the SWIR band (Band 7) showed a satisfactory estimation ability in forests with a
high canopy density [52], Foody et al. found that the NDVI and other vegetation indices are strongly
correlated with biomass [53]. These results are consistent with our results. The models established
by these factors fit the data relatively well. Multiple-variable PALSAR data have a higher correlation
with forest biomass than individual-variable PALSAR HH and HV data because of their ability to
detect canopy structure and retrieve forest biomass [54,55]. In addition, the biomass estimation model
based on multisource remote sensing data combined with forest inventory data had a higher accuracy
than that based on single-source data. Zhao used Landsat TM and ALOS PALSAR data to establish
forest biomass models in Zhejiang Province. The R2 of each forest type was below 0.5 [56]. Urbazaev
used SAR backscatter, Landsat images and topographic factors to obtain the best R2, a value of only
0.62 [57], which was lower than the accuracy in this study. This indicates that our model is suitable for
estimating forest biomass in Beijing.

Optical and radar data are an effective supplement to inventory data, provide spatial information
for estimating regional forest biomass, and can continuously estimate forest biomass [51]. In the
results, the R2 and RMSE of the three forest types were all greater than 0.5 and less than 20 Mg ha−1.
The models are reliable, but the model accuracy differed among different forest types.

In our results, mixed forests had the highest estimation accuracy, followed by coniferous forests
and broadleaf forests, which is inconsistent with previous research.

Previous studies have shown that coniferous forest biomass estimation models have a high
accuracy [58]. This inconsistency may be because the three types of modeling factors included in
this study are highly sensitive to the structure of mixed forests. Moreover, differences in the study
area location, tree species and forest types lead to different model estimation accuracies for different
forest types.

However, the R2 values of the model were all less than 0.8, which indicates the present model has
less precision than the model established in a previous study [25]. A possible reason is that previous
studies have mostly focused on small-scale areas. Our research mainly focuses on meso-scale areas,
including a variety of terrain and environmental conditions, causing different environmental factors to
have a certain impact on the modeling accuracy.

4.2. Estimation and Spatial Distribution of Forest Biomass in Beijing

The results of this study suggest that it is possible to produce spatially explicit biomass estimates
over regions if adequate inventory data and remote sensing data are available. This meso-scale study
was based on a relatively large sample size.

Because the data set used in this research did not contain all sample plot data from the forest
inventory in Beijing, it can represent the distribution but not the total amount of biomass, while biomass
density can represent the state of forest resources in Beijing well [9]. The 2016 forest biomass density
range of Beijing was estimated by this model to be 19.14–195.66 Mg ha−1, and the average biomass
density was 52.26 Mg ha−1. The forest biomass density in Beijing increased compared with previous
studies [24].

Overall, forest resources show a pattern of more forests in mountainous areas, less forests in
plains, as well as more forests outside urban areas and less forests in urban areas [59]. This is consistent
with the distribution map of biomass density obtained in this study, as shown in Figure 3. However,
this study shows that the biomass density in the central city is high, which is inconsistent with the
distribution of forest resources in Beijing. This result may be caused by the fact that in recent years,
the central city has insisted on the construction of ecological cities and increases in the area of green
space, so the forest biomass has increased.
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China is vigorously promoting the construction of eco-cities. At the meso-scale, forestry biomass
estimation and biomass density mapping can provide decision makers with detailed information on
forest resources to strengthen the management of forest resources.

4.3. Comparing Performance between MLR and RF Models

We also compared the performance of the MLR model and the RF model. We found that the
prediction effect of the linear model for extreme biomass values (extremely high or very low) was not
completely ideal. Low values were overestimated, and high values were underestimated, which is also
common in previous studies [25,60]. The range in biomass for the multiple regression prediction is
larger than that for the RF model.

This finding indicates that this model may be applicable only in the estimation of biomass values
within a certain range. The use of the RF model had a positive impact on the estimation accuracy of
extreme values [23]. The results showed that the RF model captured the complex nonlinear relationship
between the optical and SAR data and biomass and compensated for the lack of inventory data,
capitalizing on the strengths of both the forest inventory and remote sensing data. Therefore, the fit of
the RF model is better than that of the linear regression model.

Linear regression and RF model contain different independent variable factors. Because of the
collinearity between variables, some variables will be eliminated in linear model, while RF model
can fully consider the fitting problem. The two model types include forest investigation factors such
as d2H, crown density and the mean age, indicating that the FID variables has a greater impact on
the estimation of biomass and is not affected by collinearity. The RF models contain more PALSAR
variables, and the model accuracy is higher, which indicates that the PALSAR variables are more
sensitive to forest biomass.

Certainly, there are still some limitations in our research. Two thirds of Beijing is plain, and one
third is mountainous area. Terrain correction is a part of remote sensing image correction under rugged
surface, which can offset the influence of terrain to a certain extent, and is helpful to improve the
accuracy of biomass estimation. Therefore, the research of terrain correction will be strengthened in
future research. In the image preprocessing stage, the inaccuracy of the biomass models based on forest
types and age classes and the lack of a consideration for the impact of environmental factors such as
topography, soil and hydrology on biomass, which will be strengthened in the future research. Despite
these problems, this study aimed to improve the performance of the regional forest biomass model
and can provide a reference and support for future plans of relevant forestry departments, which has
certain practical significance.

5. Conclusions

This paper proposed an approach for establishing the forest biomass of different forest type
models and calculating forest biomass in Beijing by combining forest inventory data with multisource
remote sensing data. The approach can capture all spatial variability and provide a reliable method
for estimating forest biomass at a meso-scale with a high efficiency and low cost. In addition, we
used this model to predict the forest biomass in Beijing in 2016. Among the three studied forest types,
coniferous forest had the highest biomass density. According to the distribution of forest biomass
in Beijing, the northern and southwestern parts of Beijing had a high biomass, while the central and
eastern parts have a low biomass density. At present, there is no perfect biomass estimation system in
China. Therefore, this method can provide a basis for meso-level biomass estimation and a reference
for the planning of relevant forestry decision-making departments.
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Abstract: Understanding the spatiotemporal characteristics of trade-offs and synergies among
multiple ecosystem services (ESs) is the basis of sustainable ecosystem management. The ecological
environment of valley basins is very fragile, while bearing the enormous pressure of economic
development and population growth, which has damaged the balance of the ecosystem structure
and ecosystem services. In this study, we selected two typical valley basins—Guanzhong Basin
and Hanzhong Basin—as study areas. The spatial heterogeneity of trade-offs and synergies among
multiple ESs (net primary production (NPP), habitat quality (HQ), soil conservation (SC), water
conservation (WC), and food supply (FS)) were quantified using the correlation analysis and spatial
overlay based on the gird scale to quantitatively analyze and compare the interaction among ESs in
two basins. Our results found that: (1) Trade-offs between FS and other four services NPP, HQ, SC,
and WC were discovered in two basins, and there were synergistic relationships between NPP, HQ, SC,
and WC. (2) From 2000 to 2018, the conflicted relationships between paired ESs gradually increased,
and the synergistic relationship became weaker. Furthermore, the rate of change in Guanzhong Basin
was stronger than that in Hanzhong Basin. (3) The spatial synergies and trade-offs between NPP
and HQ, WC and NPP, FS and HQ, SC and FS were widespread in two basins. The strong trade-offs
between pair ESs were widly distributed in the central and southwest of Guanzhong Basin and
the southeast of Hanzhong Basin. (4) Multiple ecosystem service interactions were concentrated in
the north of Qinling Mountain, the central of Guanzhong Basins, and the east of Hanzhong Basin.
Our research highlights the importance of taking spatial perspective and accounting for multiple
ecosystem service interactions, and provide a reliable basis for achieving ecological sustainable
development of the valley basin.

Keywords: ecosystem services; trade-off; synergy; multiple ES interactions; valley basin

1. Introduction

Ecosystem services (ESs) are the benefits that people derive from ecosystems [1–3] and include four
categories (supporting, regulating, provisioning, and cultural services). According to the Millennium
Ecosystem Assessment (MEA) reported, 60% of worldwide ecosystem services have degraded or been
in an unsustainable state because of the rapid economic development and global population growth.
Therefore, it is urgent to improve the capacity of ESs by improving the eco-management measures to
maintain social and economic sustainable development [4].

Due to the diversity of ecosystem services, the heterogeneity of the spatial distribution and the
selectivity of human use, the multiple relationships between ecosystem services show the dynamic
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variation under the influence of natural factors and human activities, which are characterized by
different patterns such as trade-offs and synergies [5]. Trade-offs are the situations where one service
increases at the cost of another services [6–8]. Such as, in an agricultural system, increasing fertilizer
use to improve crop yields may have significant negative effects on water purification, and indirectly
decrease fishery and recreational values [9]. Synergies are the reverse of trade-offs, which can be
defined as situations in which both services either increase or decrease [6]. For instance, increasing net
primary productivity simultaneously increases the values of water yield and soil conservation [10]. In
addition, the ecosystem has diverse functions and, thus, provide multi-level services to humans. The
multiple relationships of the ecosystem service is a challenge for local ecological management [11].
Moreover, trade-offs and synergies between ESs can differ in different regions because of landscape
heterogeneity across the region, and the interactions between ESs would behave in diverse ways during
different periods [12]. At the same time, the distinct ecosystem management strategies of the local
region may also cause various interactions among multiple ESs. Therefore, identifying trade-offs and
synergies between the ecosystem service could provide a powerful message to policy makers, and
better inform management choices to achieve a “win-win” situation [13,14].

The identification of trade-offs and synergies between ecosystem services can be conducted through
the methods: statistical analysis [15–17], mapping comparison [18,19], model simulation [20,21],
and scenario analysis [22,23]. In this, correlation statistical analysis is a common method used in
trade-off and synergy analysis, which can usually be used in combination with other methods. By
spatial correlation analysis and calculating the changes of the relationship between ESs, which can
quantitatively reveal the relationship between ESs within a certain period. However, there are still
some limitations in previous studies, such as trade-off and synergy analysis. These are mostly based
on quantitative statistical analysis, lack of dynamic trend changes of relationships between ES for
long time series, and mostly consider the pairwise interactions between ES [10,24] while neglecting
the study of multiple ecosystem service interactions. Furthermore, to local ecological management,
policymakers need to know the location of trade-offs and synergies among multiple ESs. Therefore,
spatial explicit analysis of trade-offs and synergies will be the core research in the future study of an
ecosystem service.

With global population growth and rapid economic development, urbanization has brought a great
threat to local ecological environments. The expansion of urban land, the influx of migrant populations,
the reduction of carbon storage and soil degradation, which have occurred in the typical valley
basins [4], Yanhe Watershed [25], Guanzhong-Tianshui economic region [26], and Grain-for-Green
Programme region [27], are the relevant examples. Guanzhong Basin and Hanzhong Basin is located
in the central and south of Shaanxi Province, respectively, as typical Shaanxi valley basins, which
are sensitive to climate change, natural disaster, landscape fragmentation, and rapid degeneration
of biodiversity [24]. In addition, Guanzhong Basin and Hanzhong Basin is located on either side of
Qinling Mountains, which is the geographical boundary of northern and southern of China. Therefore,
they have clear differences of the natural environment and social development.

Therefore, we used the Guanzhong Basin (as an economically developed region) and Hanzhong
Basin (as the ecological environment region), as case study areas to explore the temporal and spatial
variations of trade-offs and synergies among multiple ecosystem services and compare the region
difference. Based on five ESs (net primary production (NPP), habitat quality (HQ), soil conservation
(SC), water conservation (WC), food supply (FS)) from 2000 to 2018, the identification of trade-offs,
and synergies between paired ESs and correlation coefficients were calculated by spatial statistical
analysis. Meanwhile the spatial distributions of multiple interactions among ESs were classified by
spatial overlay analysis based on the gird cell. Then, we compare the difference of trade-offs and
synergies between Guanzhong Basin and Hanzhong Basin, in order to provide a theoretical basis for
ecological management decisions in Northwestern China.
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2. Materials and Methods

2.1. Study Area

The Guanzhong Basin and Hanzhong Basin both belong to Shaanxi Province located in the middle
part of inland China. Considering the unification of natural data and social statistical data, we used an
administrative boundary to divide the Guanzhong Basin and Hanzhong Basin as study areas (Figure 1).
Guanzhong Basin is located between the Loess Plateau and the Qinling Mountain. The region is
between 33◦35′ N and 35◦51′ N and between 106◦19′ E and 110◦36′ E. The terrain is low in the west
and high in the east. Meanwhile, Weihe River (a tributary of the Yellow River) runs through the central
region, which forms a large area of alluvial plain. The Guanzhong Basin is a warm temperate zone
with a semi-humid climate, distinct four seasons, hot and rainy summer, and cold and dry winter,
which has diverse vegetation types and agrotypes. It is the important part of national and western
economic and an ecological balanced development strategy base [28]. With the rapid development
of economy, it has attracted much influx of external population until 2017. The total population was
approximately 23.94 million. The GDP was 1409.20 billion and accounted for 64.35% of Shaanxi
Province. The ecological environment is greatly damaged by human activities.

Figure 1. The geographical location and land use types of study areas in 2018.

Hanzhong Basin is located between Qinling Mountain and Daba Mountain (geographical
coordinate is 32◦08′54” N~33◦53′16”N, 105◦30′50”E~108◦16′45”E). While the Han River (a tributary of
the Yangtze River) runs through the whole region, the terrain is gradually decreasing from northwest
to southeast. The Hanzhong Basin is a typical north subtropical monsoon climate zone. The climate is
often mild and humid, and there is no chilly winner and there is a hot summer. Species diversity is
rich and it has a fine ecological environment. The forest coverage rate is 52%, the vegetation coverage
rate of forest and grass is up to 60%, and it has the reputation of “Land of Fish and Rice” and “Land of
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Abundance.” By 2017, the GDP was 133.33 billion, the population was 3.44 million, the crop areas were
2102.10 km2, and the grain yield reached 1.04 million tons. The region agriculture output contributes
to more than 20% of the gross output. The level of economic development is low.

2.2. Data Sources

The data used in this study were obtained using the following sources.
(1) The land use/cover map in 2000 with a spatial resolution of 30 m × 30 m were applied from the

Cold and Arid Region Sciences Data Center (http://westdc.westgis.ac.cn), 2005 and 2017 were provided
by National Earth System Science Data Sharing Infrastructure (http://www.geodata.cn), 2010 and 2018
were down from Resource and Environment Data Cloud Platform (http://www.resdc.cn). The land
use/cover data both covered six primary types and 25 secondary land use types. According to the
actual land use settings in Shaanxi Province, and the need for quantitative evaluation of ecosystem
services, the land cover types were classified into the following six categories: (1)Crop land, including
plain dryland and irrigated land, mainly for agricultural cultivation. (2) Forest land, containing
closed forest land, shrubbery, sparse wood land, and other forest land. (3) Grass land, referring to
high, middle, and lower cover grassland. (4) Water area, including lake, river, reservoirs, and ponds,
bottomland. (5) Settlements, containing urban land, rural residential area, industrial and mining, and
other conservation land. (6) Unused land, which is currently unused and may be hard to use, including
sand, bare land, swale land, saline land, and others.

(2) Digital elevation model with a resolution of 30 m was used to calculate the terrain factors in the
Revised Universal Soil Loss Equation (RUSLE) model, which are available for download at Geospatial
Data Could Platform (http://www.gsclooud.cn).

(3) The soil and vegetation type map of Shaanxi Province were extracted from 1:1,000,000 soil and
vegetation database of China, respectively. Those were used to compute the soil conservation and
net primary production, which were obtained from the National Earth System Science Data Sharing
Infrastructure (http://www.geodata.cn).

(4) The Normalized Difference Vegetation Index (NDVI) was divided from the MOD13A2 product
synthesized by the Maximum Value Composite (MVC) Method 16d and downloaded from the United
States Geological Survey with a spatial resolution of 250 m (http://ladsweb.modaps.eosdis.nasa.gov).

(5) Meteorological data was obtained from the China Meteorological Science Data Sharing Service
System (http://data.cma.cn), including average temperature, precipitation, wind speed, average air
pressure, maximum temperature, minimum temperature, sunshine duration, solar radiation and
more. Furthermore, via ArcGIS software using the Kriging interpolation method, we obtained the
meteorological raster dataset.

(6) Major food productions, population, and gross domestic product were obtained from the
Shaanxi statistical yearbooks and some statistical yearbooks from Hanzhong City and other cities from
2000 to 2018.

2.3. Quantifying Ecosystem Services

2.3.1. Net Primary Productivity (NPP)

Net Primary Productivity (NPP) is defined as the amount of organic energy produced by plant
photosynthesis minus the energy consumed through autotrophic respiration [29]. This paper uses
the Carnegie-Ames-Stanford approach (CASA) mode to estimate the value of NPP(net primary
production) [30]. The formula is below.

NPP(x, t) = APAR(x, t) × ε(x, t) (1)

where NPP (x, t) represents the net primary productivity of pix x during month t (g C·m−2·month−1),
ε(x, t) describes the light utilization efficiency of pix x during month t (g C·MJ−1), and APAR(x, t) is the
absorbed photosynthetically active radiation(MJ·m−2).
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2.3.2. Habitat Quality (HQ)

Habitat quality refers to the ability of the ecosystem to provide conditions appropriate for
individual and population persistence, and it depends on a habitat’s proximity to human land uses
and the intensity of these land uses [31,32]. InVEST models’ habitat quality as a proxy for biodiversity,
ultimately, estimates the extent of the habitat across the landscape, and their state of degradation [15].
The model integrates information on land use and threats to biodiversity to produce the habitat quality
map [33]. The habitat quality of each grid is indicated by habitat suitability (value range from 0 to 1,
1 indicates the highest suitability of the habitat, while areas on the landscape that are not habitat get a
quality score of 0) and habitat degradation. There are four factors in the function: each threat’s relative
impact, the relative sensitivity of each habitat type to each threat, the distance between habitats and
sources of threats, and the degree to which the land is legally protected [34]. In this study, threats
included urban land, rural residential areas, and industrial and mining construction land and cropland.
Moreover, the impact of these four threats on habitat decreased as the distance from the degradation
source increases. Now, we choose a linear distance-decay function to describe how a threat decays
over space. The impact of threat r that originated in gird cell y, ry, on habit in gird cell x is given by irxy,
and the quality of the habitat in parcel x that was in LUCC j is given by Qxj and was represented by the
following equations.

irxy = 1−
(

dxy

drmax

)
if linear (2)

irxy = exp
{
−
(−2.99

drmax

)
dxy

}
if exponential (3)

Qxj = Hj

⎛⎜⎜⎜⎜⎜⎝1−
⎛⎜⎜⎜⎜⎜⎝ Dz

xj

Dz
xj + k2

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ (4)

where r was the threat source of habitat, dxy is the linear distance between grid cells x and y, drmax is
the maximum effective distance of threat r‘s reach across space, Hj indicates the habitat suitability of
LULC type j, Dxj is the total threat level in grid cell x with LULC j, and z (we hard code z = 2.5) and
k are scaling parameters, which are half of the maximum degradation. Furthermore, the sensitivity
of different threat sources for land use is based on the InVEST 3.2.0 user’s guide and other previous
studies [26,35].

2.3.3. Water Conservation (WC)

Water conservation affects the ecosystem process and crop production through various land
covers. Region rainfall, evapotranspiration, storage, and sorption are vegetation processes. Water
conservation is integrated as the performance of water circulation and a different natural ecosystem,
such as forest, vegetation coverage, and soil. We calculated water conservation through the summation
of canopy interception, litter absorption, and soil storage.

Q = Q1 + Q2 + Q3 (5)

In the above equation, Q indicates the total amount of water retention capacity (t·year−1). Q1,
Q2, and Q3 indicates the amount of vegetation canopy interception (t·year−1), the amount of the litter
retention capacity (t·year−1), and the interception amount of the soil layer (t·year−1).

Q1 =
∑

(αi × βi × Si) (6)

Q2 =
∑

(εi × γi × Si) (7)

Q3 =
∑

(pi × hi × Si) (8)
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where αi is the annual rainfall (mm), βi is the canopy retention (%), Si is the area of vegetation type
(ha), εi is the litter dry weight (t/ha), γi is the maximum water holding capacity (%), pi is the soil
non-capillary porosity (%), and hi is soil thickness (mm) [36,37].

2.3.4. Soil Conservation (SC)

The Revised Universal Soil Loss Equation (RUSLE) is most widely used to calculate the average
annual soil loss from each pixel of land. Based on the soil erosion theory and natural runoff observational
data, the RUSLE model is applied using GIS software with some factors, including meteorological
station dataset, the NDVI (normalized difference vegetation index) dataset, soil surveys, topographic
maps, and land use data [38,39]. Therefore, the soil conservation is estimated from the difference
between potential soil erosion and actual soil erosion [40].

Am = R×K ×C× LS× P (9)

Ap = R×K × LS (10)

Ac = Ap −Am (11)

In the above formula, Am is the amount of actual soil erosion (t·ha−1·year−1), Ap is the potential
soil erosion (t·ha−1··year−1), Ac is the amount of soil conservation (t· ha−1··year−1), R is the rainfall
erosivity factor, and K is the soil erodibility factor, which indicates the physical and chemical properties
of soil. C is a dimensionless crop management factor. LS includes the slope length factor (L) and
the slope factor (S). P is the soil conservation measures factor, which reflects people using different
protection measures to prevent soil erosion of various land use types.

2.3.5. Food Supply (FS)

Food supply services are one of the most important provisioning services in agricultural
ecosystems [41]. Food is the most basic material that humans obtain from the natural ecosystem, which
plays a decisive role in social development [42]. In this study, we use the land use dataset and region
statistical yearbook data to estimate the total food supply of each land use in the study area, in order to
realize the spatialization of the food supply. The equation is as follows.

Gi = Ai ×Ni (12)

In the above equation, Gi is the amount of ith food for each pixel. Ai is the ith food area (km2).
The study area was divided into the unit grid of 1 km×1 km which is equal to 1km2. Ni is the yield of
ith food for the unit area (t/km2).

Ni =
Fi
Si

(13)

where Fi is the total yield of food in the study area (t·year−1). Si is the total area of the ith food (km2) in
this research, which represents the area of each land use type. Among this, the grain, oil-bearing, and
vegetables belong to the cropland. The output of meat and milk belong to the grassland. The aquatic
products belong to the water area.

2.4. Spatial Correlation Analysis

The spatial statistical mapping method based on correlation coefficients on a pixel scale are used
to quantify the relationship between ecosystem services. This method could explore the continuous
temporal changes of various ecosystem services. Meanwhile, the relationship between ESs can be
spatially expressed by quantitative mapping. In this paper, the correlation coefficient for each pair of
ecosystem services is calculated by ArcGIS software (ArcGIS 10.2) at a pixel scale [25]. Furthermore,
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the correlation coefficients of two time series based on each pixel were calculated by Spearman’s
coefficient. Its expression is shown below.

rxy =

n∑
i=1

n∑
i=1

(
xij − x

)(
yij − y

)
√

n∑
i=1

(
xij − x

)2
√

n∑
i=1

(
yij − y

)2
(14)

where rxy is the spatial correlation coefficient, with values ranging from −1 to 1. If rxy > 0, represents
the positive correlation between two variables, which indicates that the two services are synergistic.
If rxy < 0, represents the negative correlation between two variables, which means there are trade-offs
between two services. xij, yij indicates gird values for different types of ecosystem service spatial
datasets.

3. Results

3.1. Spatial Distributions of Ecosystem Services

Figure 2 depicts spatial distribution of average ecosystem services in the two areas of study.
In Guanzhong Basin, the average of NPP was 6.25 t·ha−1·a−1, the higher value of NPP was concentrated
in the southwest, and the lowest was observed in the middle of the basin. While in Hanzhong Basin,
the average of NPP is 8.21 t·ha−1·a−1, which is more than the Guanzhong Basin. The higher HQ was
distributed in the northern Qinling mountain, which aggregated in forestland in the Guanzhong Basin.
The average of HQ was 0.45 in the Guanzhong Basin, and 0.55 in the Hanzhong Basin. Moreover,
the distribution of WC varied greatly in the Guanzhong Basin. Areas with high water conservation
(WC) were concentrated in the north of Qinling Mountain and the southern of Xi’an City. It showed
a clear trend from low in the north to high in the south in the Hanzhong Basin. Areas with high
soil conservation (SC) were in the southwest of the Guanzhong Basin, but the central of the basin
was mainly concentrated in crop land with low SC. Moreover, it could be seen the lower SC was
in the central of the Hanzhong Basin, and lowest SC was just 0.01 t·ha−1·a−1. The highest value
reached 1270 t·ha−1·a−1. Furthermore, the higher FS was mostly observed in the central region of the
Guanzhong Basin, concentrated in farmland. The low values were in the southwest of Baoji City and
most areas of the Tongchuan City. In the Hanzhong Basin, the food supply of crop land in the middle
region was relatively higher, and those with low FS were distributed in the northern and southeastern
basin, which are concentrated on forest land.

3.2. Spatial Correlations between Ecosystem Services

3.2.1. Trade-Offs and Synergies Analysis

We used the correlation analysis function to explore the trade-offs and synergies between each
ES (Figure 3). In two basins, we could find that food supply (FS) with the other four services
(soil conservation (SC), net primary productivity (NPP), habitat quality (HQ), and water conservation
(WC)) both had negative relationships. While the negative relationships between FS and HQ were
stronger than others, the correlation coefficient was −0.6333 and −0.5934 in the Guanzhong Basin and
the Hanzhong Basin, respectively. In addition, NPP, HQ, SC, and WC presented positive relationships,
and positive relationships between NPP and HQ were bigger in the Guanzhong Basin, where the
correlation coefficient was up to 0.6173. The relationship between WC and SC was weak with only 0.03
and 0.002 in the Guanzhong Basin and the Hanzhong Basin, respectively. At the same time, in the
scatterplot, as the FS changed, the other four ESs changed in opposite directions, while WC, HQ, NPP,
and SC both had a consistent trend. Consequently, the trade-offs and synergies were identified by the
correlation coefficient and the correlation diagram. The results indicated that trade-offs between FS and

159



Forests 2020, 11, 209

the other four services (NPP, HQ, SC, and WC) were discovered in two basins, and there were synergic
relationships between NPP, HQ, SC, and WC. It could be explained that strong capacity of carbon
storage and water retention was concentrated in forest land and grass land, but the food production
was low. While the food production was bigger in cropland, the value of NPP and soil conservation
was smaller. Moreover, because cropland is a core threat source of habitat quality, the habitat quality
was low, which caused trade-offs between the food supply and habitat quality. When comparing the
differences between the two basins, the trade-off between FS and NPP was clear in the Gunanzhong
Basin. The correlation coefficient was −0.4790. While the synergy between WC and HQ was evident in
theHanzhong Basin, the correlation coefficient was 0.3208. Consequently, the relationships between
ecosystem services in Guanzhong Basin were more complex than those in the Hanzhong Basin. The
trade-offs between FS and HQ, NPP, and SC were stronger in the Guanzhong Basin.

Figure 2. The spatial distribution of average ecosystem services in valley basins from 2000 to 2018.
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(A) 

 

(B) 

Figure 3. The relationships between average ecosystem services in the Guanzhong Basin (A) and in
the Hanzhong Basin (B) from 2000 to 2018. Based on the R software, pie chart, and scatter plot can
directly indicate the relationships between ecosystem services. For example, in the pie chart, the blue
color represented positive values, the red color represented negative values, and the intensity of the
color increased uniformly as the correlation value increased. The shading of the lower triangular in the
figure had the same meanings in color as the circles of the upper triangular. Furthermore, the intensity
of color scaled in proportion to the magnitude of correlation values, besides the circles were filled
clockwise for positive values and anti-clockwise for negative values. In the scatter plot, all data may
be considerably enhanced by the addition of linear regression lines, (loess) smoothed curves, and so
forth. The key diagonal represented the kernel density curve and the lower horizontal axis was the
shaft figure. Other figures contained linear and smooth fitting curves.

3.2.2. Temporal Analysis of Trade-Offs and Synergies

Trade-offs and synergies between ecosystem services at different periods varied greatly. We further
explored the temporal changes of trade-offs and synergies from 2000 to 2018 (Figure 4). In the Guanzhong
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Basin, there was a stable decrease of the synergistic relationship between NPP and HQ, NPP and SC,
and HQ and SC. While the relationship between NPP and WC, HQ and WC, SC and WC presented a
sudden drop in 2010, even between NPP and WC, SC and WC appeared to have negative relationships.
From the temporal variations of correlation coefficients, it could be seen that WC increased with the
decreasing trend of NPP in 2010. Some areas of the forest increased as the crop land and grassland
decreased, which might increase the conflict between WC, NPP, and SC. The trade-offs between FS and
other four ESs showed a fluctuating change during this period. Compared with 2000, the negative
relationship between HQ and FS has decreased, whereas the trade-off between FS and WC became
strong in 2010. In the Hanzhong Basin, the positive relationship between NPP and HQ presented
an evident decreasing trend. It also discovered the relationship between NPP and WC, SC and WC
appeared to have a decreasing trend in 2010. Moreover, the negative relationship between WC and FS
was weaker. While the conflict relationship between NPP and FS, SC and FS decreased. Therefore, we
found the synergistic relationship became weak as it changed and presented a decreasing trend in the
Guanzhong Basin, which presented to be somewhat stronger than those in the Hanzhong Basin. On
the other hand, the trade-offs between FS and SC, FS and WC were strong in the Guanzhong Basin and
the conflicted relationship became more pronounced. On the whole, the change trend of the trade-off
relationship in the Guanzhong Basin was slightly faster than that in the Hanzhong Basin.

 

Figure 4. Spatial correlation coefficient for each pair of ecosystem services in two basins from 2000
to 2018.
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3.3. Spatial Heterogeneity of Paired Ecosystem Service Interaction Based on the Grid Scale

Through the above study, we found that the multiple interactions among ES were different and
had clear temporal and spatial characteristics. The spatial correlation coefficients based on the gird
from 2000 to 2018 were shown in Figure 5, which were checked according to significance (p < 0.05).
In this paper, we calculated spatial correlation coefficients between regulating and supporting services
as well as provisioning and regulating services. Since this study involved five different services in two
regions, we took four pairs services (HQ and NPP, WC and NPP, FS and HQ, FS and SC) with good
correlation, as an example.

 
Figure 5. Spatial trade-offs and synergies of paired ecosystem services in two valley basins. ** Correlation
were all significant at the 0.01 level. * Correlation were all significant at the 0.05 level. (a,b): Spatial
trade-offs and synergies for HQ (habitat quality) and NPP (net primary production) in Guanzhong and
Hanzhong Basin, respectively. (c,d): Spatial trade-offs and synergies for WC (water conservation) and
NPP. (e,f): Spatial trade-offs and synergies for FS (food supply) and HQ. (g,h): Spatial trade-offs and
synergies for FS and SC (soil conservation).

For HQ (habitat quality) and NPP (net primary production) (Figure 5a), the strong synergies
(p < 0.01 and p < 0.05) were spatially aggregated in the north-east of Weinan City and the western
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region of the Guanzhong Basin, mostly concentrated in the forest land, which nearly accounted for
17.83%. Strong trade-offs (p < 0.01 and p < 0.05) account for 3.40%, which were in the south-east of
Weinan City and the central region of the basin. At the same time, the strong synergies (p < 0.01 and
p < 0.05) were mostly found in the edge of the Hanzhong Basin, which accounted for 20.93%, while the
strong trade-offs accounted for 10.31% of the land use types that were in the central region of the basin
and in the southeast of the Ningqiang County (Figure 5b).

For WC (water conservation) and NPP (Figure 5c), the average spatial correlation coefficient
during 2000–2018 was 0.14 with a standard deviation of 0.34. Strong synergies (p < 0.01 and p < 0.05)
were spatially aggregated in the northern edge of the Guanzhong Basin, which accounted for 26.44%,
mostly discovered in the forest land. Strong trade-offs (p < 0.01 and p < 0.05) that accounted for 0.81%
of the land use types were in the central region of the Xi’an City. Meanwhile, in the Hanzhong Basin,
the average spatial correlation coefficient was 0.07 with a standard deviation of 0.44 from 2000-2018.
Strong synergies (p < 0.01 and p < 0.05) were accounted for 28.91%, which were concentrated in the
north-east and Mian County. The strong trade-offs (p < 0.01 and p < 0.05) were discovered in the
west-south of the basin region and Zhenba County, which accounted for 0.82% (Figure 5d).

For FS (food supply) and HQ (Figure 5e), the trade-off relationships were widespread in two
basins. In the Guanzhong Basin, the average spatial correlation coefficient during 2000–2018 was −0.30
with a standard deviation of 0.64. Strong trade-offs (p < 0.01 and p < 0.05) were spatially aggregated in
the surrounding areas of the Guanzhong Basin and the edge of the bigger city (e.g., crop land and
grass land) accounted for 46.94%. The strong synergies (p < 0.01 and p < 0.05) accounted for 21.20%
of the land use types that were in the north-east of the basin and the central of Xian City. While the
average spatial correlation coefficient during 2000–2018 was −0.40 with a standard deviation of 0.68
in the Hanzhong Basin (Figure 5f). It could be seen that the trade-offs widely exited in the edge of
the basin and the strong trade-offs were approximately 57.46%. The strong synergies accounted for
20.17% of the land use types in the central region of the Hanzhong Basin and the settlements around
the bigger county.

For SC (soil conservation) and FS (Figure 5g), the strong trade-offs (p < 0.01 and p < 0.05) were
concentrated on the north-west region of the Guanzhong Basin and the north region of the Qinling
Mountain (mostly concentrated on the forest land). While strong synergies (p < 0.01 and p < 0.05)
accounted for 30.12%, which were in the central area of the basin and the north-east of Weinan City,
which concentrated on the crop land. Furthermore, strong trade-offs were spatially aggregated in the
south-west of the Hanzhong Basin and in grassland, which accounted for 9.56% of the whole basin.
Strong synergies were aggregated in the northwest and the central region of the basin, which was
concentrated in the grassland (Figure 5h).

3.4. Multiple Interactions among Ecosystem Services

3.4.1. Spatial Explicit Analysis of Multiple ESs Interactions

Figure 6 depicts the multiple interactions among ES from the perspective of the valley basin as
a whole unit (the detailed method was seen in Appendix A). The relationship among multiple ESs
in the Guanzhong Basin varied greatly. The complex relationships were discovered in the central
region of the basin and the northern Qinling Mountain. In the Guanzhong Basin, the FS gradually
decreased, while NPP, HQ, SC, and WC showed a simultaneous continuous increase from 2000 to
2018. This phenomenon meant that NPP, HQ, SC, and WC had synergistic interactions, and the four
services had trade-off interactions with FS. It occurred in the west of Baoji City and the north of
Xianyang City, which accounted for 8.31%. SC and FS simultaneously decreased, and NPP, HQ, and
WC showed continuous increases. This result indicated the synergistic interaction occurred among
NPP, HQ, and WC, and had trade-offs with SC and FS. It was greatly aggregated in the edge of the
basin concentrated on grassland, which accounted for 4.21%. NPP, SC, and WC showed a simultaneous
continuous increase, while HQ and FS showed a simultaneous decrease. This phenomenon declared
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that synergistic interactions occurred among NPP, SC, and WC, and these three services showed
trade-offs with HQ and FS, which accounted for 4.88% in the north of Tongchuan City and the forest
land around the bigger city. NPP and FS continuously increased, and HQ, SC, and WC simultaneously
underwent a continuous decrease throughout these years. Synergies occurred among NPP and FS, and
two services exhibited trade-offs with HQ, SC, and WC. This phenomenon accounted for 5.45% of the
whole region was in the east of Xi’an City (Figure 6A) and the southeast of Baoji City. Furthermore, the
NPP gradually increased, and HQ, SC, WC, and FS simultaneously underwent a continuous decrease
from 2000 to 2018. Trade-offs occurred among NPP and those four services accounted for 4.98%, which
were in the northern margin of the Qinling Mountain (Figure 6B).

 

Figure 6. The spatial patterns of multiple interactions among ecosystem services (ESs) in two basins from
2000 to 2018. Because the ecosystem service assessments were based on the gird scales, the interactions
among multiple ESs were complex. Some bigger area proportions and clear interactions were shown
in the figure, and others are collectively named “other interactions”; ‘+’ indicated an increase of
service; ‘−’ indicated a reduction. For example, “NPP+, HQ+, SC−, WC−, FS−” indicates that NPP
(net primary production), HQ (habitat quality) increase simultaneously (suggesting synergies), SC
(soil conservation), WC (water conservation), FS (food supply) decrease simultaneously, and the two
services NPP, HQ both exhibit trade-off relationships with other three services WC, SC, FS. Moreover,
We selected four evident trade-offs location (A–D) where the areas were 1km2, and further amplified
and analyzed these interactions.

In the Hanzhong Basin, the relationship between multiple ESs was fairly simple than Guanzhong
Basin but showed evident spatial differences. The trade-offs among FS and other four services (NPP, HQ,
SC, WC, which simultaneously increased, suggesting synergies) was aggregated in the northwest of
the basin accounting for 6.88% of all land use types (Figure 6C). NPP and HQ showed a simultaneous
continuous increase, and SC, WC, and FS showed a simultaneous continuous decrease. It indicated
that NPP and HQ had a synergistic relationship, and both presented trade-offs with the other three
services (SC, WC, and FS). This phenomenon accounted for 5.89% of land use types that were in the
southeast of the basin. HQ and WC showed a simultaneous continuous decrease, and NPP, SC, and
FS showed a simultaneous continuous increase from 2000 to 2018. This phenomenon meant that
NPP, SC, and FS services had a synergistic relationship, and the two services HQ and WC both had
trade-off relationships with the other three services. It was aggregated in the central of the basin,
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which accounted for 7.99% of the land use types. The trade-offs among NPP and FS (simultaneously
increased, suggesting synergies) and the three services (HQ, SC, and WC simultaneously decreased)
were spatially aggregated in the southeast region of the basin, which accounted for 9.06% and were
located in the west of the Xixiang County and the edge of the Zhenba County. Furthermore, the FS
gradually increased, and the other four services (NPP, HQ, SC, and WC) showed a simultaneous
continuous decrease from 2000 to 2018. These results were aggregated in the west of Xixiang County
and the southeast of Zhenba County (Figure 6D).

3.4.2. Trade-Off Relationships in Various Land Use Types

The interactions among multiple ESs were complex based on the gird scale across two basins,
so we further analyzed the patterns of trade-offs among multiple ESs in various land use types
(Figure 7). In the Guanzhong Basin, the trade-offs among FS and other services (NPP, HQ, SC, and WC)
(simultaneous increase) were mostly concentrated in the forest land and crop land, and occupied 51.34%
and 36.90%, respectively. The trade-offs among NPP, HQ, WC (simultaneous increase, suggesting
synergies), and SC, FS (simultaneous decrease) accounted for 40.44% that were located in the grass
land, and 34.83% were located in the forest land. Meanwhile, the trade-offs among NPP, SC, and WC
(simultaneous increase, suggesting synergies), and HQ and FS (simultaneous decrease) were mostly in
the forest land, which accounted for 72.19%. it was discovered that the trade-offs among NPP and other
services HQ, SC, WC, FS (simultaneous decrease) were concentrated in the forest land and settlements.

 

Figure 7. Trade-offs and synergies among multiple ecosystem services in different land use types.

In the Hanzhong Basin, the synergies occurred among the NPP, HQ, SC, and WC (simultaneous
increase), and exhibited trade-offs with FS that were aggregated in the crop land and forest land, which
accounted for 48.02% and 42.98%. At the same time, the trade-offs among NPP and HQ (simultaneous
increase, suggesting synergies), and SC, WC, FS (simultaneous decrease) was also concentrated in
crop land and forest land. While the trade-offs among NPP, SC, FS (simultaneous increase, suggesting
synergies), and WC, HQ (simultaneous decrease) accounted for 57.10% and 31.29% in crop land and
grass land, respectively. It was found in the forest land and crop land that accounted for 38.72%
and 57.27% where the trade-offs occurred among NPP and FS (simultaneous increase, suggesting
synergies), and HQ, SC, and WC (simultaneous decrease). Furthermore, the trade-offs among FS and
other services NPP, HQ, SC, and WC (simultaneous decrease) were aggregated in grass land and
crop land, which accounted for 43.89% and 40.55%. Overall, the trade-off relationships were mainly
concentrated on crop land and forest land in the Guanzhong Basin, while, in the Hanzhong Basin,
these were aggregated in forest land and grass land.
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4. Discussion

4.1. Difference Analysis of the Guanzhong and Hanzhong Basin

Because of this unique geographical location and climate environment, the land use structure
and vegetation coverage exit spatial differences in the Guanzhong Basin and Hanzhong Basin, which
directly generate the spatial heterogeneity of ecosystem services and the spatial correlation relationships
between ecosystem services in two basins. For example, in terms of the land use structure, crop land
was dominated in the Guanzhong Basin that accounted for 45.17%, and provided the provisioning
services even though it has gradually decreased in recent years, which was concentrated in the
central area of the basin and surrounding urban land of the bigger city. In comparison, the ecological
environment is better in the Hanzhong Basin. Vegetation coverage is relatively high and the land
use types were dominated by grassland and forest land, which accounted for 41.08% and 30.11%,
respectively, concentrated in the edge of the basin. Consequently, the provisioning service was higher in
the Guanzhong Basin and the regulating service was little bigger in the Hanzhong Basin. Furthermore,
accompanying with other natural environment factors such as rainfall or spatial patterns of vegetation
and different soil types, it determined the distinct temporal and spatial distribution characteristics of
each ecosystem service in two basins. Under the interaction of various ecosystem services, trade-offs,
and synergies presented different spatial and temporal patterns in two basins. For instance, our
results showed the correlation direction between paired ES, which was the same in two basins, but the
strength and change rate of trade-offs and synergies was strong in the Guanzhong Basin than that in
the Hanzhong Basin. As the rapid economic development and the expansion of construction land,
ecosystem services have suffered a down trend in the Guanzhong Basin over the past years. Meanwhile,
it increased the conflict of human demand for the ecosystem. At the same time, results showed the
strong trade-offs were discovered in the central region of the Guanzhong Basin, particularly in the
edge of Xi’an City as the capital of Shaanxi Province. The construction land was expended with the
population growth. The demand of supply services gradually increased, while the value of regulating
services continued to decline, so it became the higher decreasing areas of ecosystem services, which
caused the strong trade-offs [42]. Furthermore, the regulating services were mostly provided by forest
land, grassland, and water areas. The trade-off relationships became strong since these areas decreased.
For example, in the southeast region of the Hanzhong Basin, the conversion of grassland to cropland
lead to strong trade-offs between FS and SC. Therefore, the local government should formulate the
corresponding target and ecological restoration approach, according to the regional ecological demand
and social development, in order to realize the sustainable supply of ecosystem services [24,43].

4.2. Temporal and Spatial Changes of Trade-Offs and Synergies

Our results showed the synergies between NPP, habitat quality, soil conservation, and water
conservation that existed in two basins. This result agrees with other published findings [18,33,41].
Nevertheless, when the trade-off or synergy is weak in a region, it could be easily changed from
trade-offs to synergies or inverse under the influence of local policy and planning [20]. Since 2001, the
government has implemented the Reforestation of Cultivated Land project in the Shaanxi Province.
Some deep slope of crop land is converted into forest land or grassland. Consequently, services provide
by crop land were reduced, whereas water conservation services by grassland were greatly improved.
It was discovered that relationships between NPP and WC as well as SC and WC were changed into
negative relationships in 2010 in two basins because, compared with 2005, the increased rate of WC
was much higher than that of SC, while NPP showed a decreasing trend. Although its crop land
has decreased, demand for food supply in the urban area was enhanced, and it could enhance the
giving services in grassland and water areas. Consequently, the conflict relationship between FS and
WC was reduced, even when presented with a synergic relationship in the Guanzhong Basin in 2010.
Therefore, the research found the trade-offs and synergies between ESs have temporal variations under
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the influence of different land use structures, environment factors, and social development demand
(e.g., urban expansion) [44].

In addition, the landscape structure determines the ability of the ecosystem to provide the
service, which humans ultimately depend on [45]. Ecosystem service relationships are affected by
land use conflict [46,47]. Furthermore, spatial correlation analysis illustrates the differences of spatial
distribution of two ecosystem services for a given year, ignoring the prerequisites of dynamic changes of
ecosystem services and true interaction when considering the trade-offs and synergies [25]. Therefore,
based on the correlation coefficients of two time series on the gird scale, we could further explore
the spatial distribution of trade-offs and synergies between paired ES. Among these trade-offs, those
between regulating services and the food supply service have drawn more attention. For example,
our results showed a negative relationship between the food supply and soil conservation based on
the whole region. However, the spatial synergistic relationships between FS and SC were widely
distributed in the two basins, especially in the central region of the Guanzhong Basin. This result may
be interpreted as well managed and high yield farmland in the central region of the valley basin, which
is beneficial for soil conservation. Both services showed an increasing trend simultaneously. On the
other hand, it could be explained that the synergy disappeared, which showed a negative relationship
between two services because of the data integration and land use conflict on the whole region scale.
For instance, both forest land and grass land could generate the benefit of soil conservation and food
supply where it may represent synergy, but their closeness to soil conservation and food supply was
inconsistent. Moreover, the closeness may be changed over time [25]. Spatial scale and temporal
change play the important roles in the relationship between paired ES. Meanwhile, Felipe suggested
there was no single relevant scale to analyze the relationships among multiple ESs [48]. Consequently,
more place-based studies with sensitivity analysis are needed for our further understanding of the
spatiotemporal dynamic interactions among multiple ESs [49] in order to select the optimized spatial
range for achieving the highest values of various ecosystem services.

4.3. Multiple ESs Interactions

There is no generalizable theoretical basis to ensure the balance of economic and ecology. Thus,
acquiring knowledge of how multiple ESs interactions occur locally is more likely to achieve a win-win
situation [50]. Contrasted with previous studies that focused on trade-offs and synergies between
paired ESs [34,41], we explored the multiple ESs interactions based on the grid cells. Regarding
the inherent complexity of integrated social and ecological systems, most of the ecosystem services
interact with one another. A simple consideration of only ES might generate an unexpected and
dramatic decline in other ESs [51]. Trade-offs often occur when provisioning service is increased as a
consequence of the decrease use of other services. Nevertheless, oversupply of the services may result
in the trade-offs with other services or an unsustainable eco-environment, which causes a conflict
between human demand and ecological protection. Furthermore, each of the ecosystem services
presented a distinct change based on the gird scales, which reflected the multiple interactions among ES.
For instance, results show the trade-offs between NPP and FS (simultaneously increased, suggesting
synergy) and HQ, SC, and WC (simultaneously decreased) were widespread in two basins when
compared with other multiple interactions. This phenomenon indicated that, when it is transformed
from grassland to forestland or from grassland to crop land, both NPP and food supply simultaneously
increased and appeared as synergy. Based on the different land use change, identified the causes,
and the locations of the multiple interactions among ES, which could help decision-makers develop
targeted ecosystem management strategies [52].

4.4. Limitations and Future Study Directions

It is necessary to consider the influencing mechanism and future scenario predictions in a future
study of ecosystem services [4]. For instance, future scenarios aim to provide a theoretical basis for the
government’s ecological planning and recommendations by the simulation of ecosystem services in
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different land structure allocations [11]. Furthermore, the current ecological protection policy directly
increases NPP, SC, and WC and some regulating services lead to the decrease of food supply services
and other provisioning services, which might be unable to meet human needs. Therefore, future
research aims to develop an integrated framework for simulating ESs based on the combination of land
use type, climate change, government policy, and topography factors. At the same time, it could analyze
the region difference and multiple ESs spatial interactions, and then select the appropriate scenario.

In this study, the ecosystem services simulation was based on a raster dataset but lacked cultural
services. Under the strategic background of “One Belt and One Road” and “Guanzhong-Tianshui
economic zone,” local social and economic developments have faced unprecedented opportunities.
The social cultural value would play an important role in ecosystem functions, and there could also
be a large uncertainty about the impact of human activities on the ecosystem process [38]. How to
estimate the cultural services more reasonably, and how to simulate future ecosystem services under
the influence of social-economic and eco-environment factors in particular, will be the main factors
focused on in future research studies.

5. Conclusions

The Guanzhong Basin and Hanzhong Basin were selected as case study areas. Our research
quantified the spatial relationship among multiple ESs (NPP, HQ, WC, SC, and FS) and explored
the spatial distribution of multiple ESs interactions based on the gird scales. Results showed the
direction of the correlation coefficient between paired ES was the same in two basins, but the extent
of the correlation coefficient was stronger in the Guanzhong Basin than that in the Hanzhong Basin.
Meanwhile, our results demonstrated the spatial trade-off relationships between paired ES were
spatially aggregated in the central and the southwest of the Guanzhong Basin, and the southeast of
the Hanzhong Basin. Furthermore, the multiple ES interactions were spatially heterogeneous on the
gird scales across two basins. Moreover, land use change might cause the various trade-offs among
multiple ES. For example, the conversion of crop land to forest land lead to NPP, HQ, SC, and WC to
continuously increase and exhibited trade-offs with FS in the Guanzhong Basin. While in the Hanzhong
Basin, the conversion of grassland to crop land lead to a continuous increase in NPP and FS and
exhibited trade-off interactions with the three services SC, WC, and HQ. This information may help
policymakers develop targeted and local ecological management measures. Furthermore, our funding
could provide a theoretical basis for the sustainable development of society, economy, and ecology in
Northwest China.
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Appendix A

In this study, multiple interactions among ESs were calculated by spatial overlay analysis based
on ArcGIS. The specific calculation steps are as follows.

Step 1 We set up a set of five digit codes and make each ES correspond to one digit, respectively.

Table A1. Different digits codes for each ecosystem service.

Digits Code
Ten Thousand

Digits
Thousand

Digits
Hundred

Digits
Ten Digits Single Digits

ES NPP HQ SC WC FS

Step 2 We made the subtraction operations on each ES in 2000 and 2018 by the ArcGIS raster
calculation, and reclassified the difference value 1, 2, and 3 to increased, reduced, and no
change pixel, respectively.

2018 NPP 2010 NPP
23 15 9 13 17 10
20 24 17 15 20 19
28 6 21 22 6 12
14 13 11 7 15 8

2018 NPP–2010NPP

reclassify
⇒

NPP_Reclassified
10 −2 −1 10,000 20,000 20,000
5 4 −2 10,000 10,000 20,000
6 0 9 10,000 30,000 10,000
7 −2 3 10,000 20,000 10,000

Step 3 We performed spatial overlay operations for the reclassified layers, and recognized the
interactions among multiple ecosystem services by interpreting the codes in the pixels of
the output layers of overlay analysis.

NPP_Reclassified HQ_Reclassified SC_Reclassified
10,000 20,000 20,000 02000 03000 02000 00200 00200 00200
10,000 10,000 20,000 01000 02000 02000 00200 00200 00100
10,000 30,000 10,000 02000 02000 02000 00100 00200 00200
10,000 20,000 10,000 02000 02000 01000 00200 00100 00100

WC_Reclassified FS_Reclassified
00010 00020 00020 00002 00001 00001
00020 00020 00020 00001 00002 00001
00020 00010 00020 00002 00001 00001
00010 00010 00010 00001 00001 00002

Spatial Overlay

ES_Layer_Overlaid

12,212 23,221 22,221
11,221 12,222 22,121
12,122 32,211 12,221
12,211 22,111 11,112

The results of the table indicates the locations where multiple interactions among ecosystem
services occurred based on the gird cell. For example: the code 12212” indicates that NPP, WC increased
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simultaneously (suggesting synergies), HQ, SC, FS decreased simultaneously, and the two services
NPP, WC both exhibited trade-offs with the three services HQ, SC, and FS.
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Abstract: Forest aboveground biomass (AGB) is an important variable in assessing carbon stock or
ecosystem functioning, as well as for forest management. Among methods of forest AGB estimation
laser scanning attracts attention because it allows for detailed measurements of forest structure.
Here we evaluated variables that influence forest AGB estimation from airborne laser scanning (ALS),
specifically characteristics of ALS inputs and of a derived canopy height model (CHM), and role
of allometric equations (local vs. global models) relating tree height, stem diameter (DBH), and
crown radius. We used individual tree detection approach and analyzed forest inventory together
with ALS data acquired for 11 stream catchments with dominant Norway spruce forest cover in the
Czech Republic. Results showed that the ALS input point densities (4–18 pt/m2) did not influence
individual tree detection rates. Spatial resolution of the input CHM rasters had a greater impact,
resulting in higher detection rates for CHMs with pixel size 0.5 m than 1.0 m for all tree height
categories. In total 12 scenarios with different allometric equations for estimating stem DBH from
ALS-derived tree height were used in empirical models for AGB estimation. Global DBH models
tend to underestimate AGB in young stands and overestimate AGB in mature stands. Using different
allometric equations can yield uncertainty in AGB estimates of between 16 and 84 tons per hectare,
which in relative values corresponds to between 6% and 37% of the mean AGB per catchment.
Therefore, allometric equations (mainly for DBH estimation) should be applied with care and we
recommend, if possible, to establish one’s own site-specific models. If that is not feasible, the global
allometric models developed here, from a broad variety of spruce forest sites, can be potentially
applicable for the Central European region.

Keywords: norway spruce; LiDAR; allometric equation; individual tree detection; tree height;
diameter at breast height; GEOMON

1. Introduction

Forests provide multiple ecosystem services at various spatial scales and constitute an important
sink of sequestered atmospheric carbon [1,2]. Carbon stocks are an important input in climate models,
and responsible forest management is a way to mitigate the impact of global climate change [3].
Accurate and consistent estimation of AGB can help to reduce current uncertainties regarding carbon
fluxes [4,5]. Several methods exist for calculating AGB, these range from destructive methods to
satellite-based estimations. Estimation can be improved by combining multiple approaches [6,7].

Traditionally, forest AGB and carbon stocks have been assessed by measuring tree dimensions
in permanent field plots and then using allometric equations (e.g., [8,9]). In recent years, we have
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seen a move toward remote sensing as the primary tool for monitoring forest AGB and carbon
stocks (e.g., [10]). The rapid development of laser scanning systems is making them great tools for
estimating tree heights and forest biomass [11,12]. Airborne laser scanning (ALS), in particular, has
been established as a standard technology for high-precision three-dimensional topographic data
acquisition [13]. It has a powerful penetrating ability and can obtain vertical structure information for
forests, thereby improving accuracy in estimating forest height and structure [14,15]. ALS is mostly
operated in form of small-footprint discrete-return or waveform systems and allows for estimating
AGB using area-based or individual tree detection approaches [16–20]. Because remote sensing-based
AGB estimates are nevertheless indirect, high quality and large quantities of traditional field inventory
data and AGB destructive sampling are still needed.

AGB estimates for both approaches depend upon canopy characteristics, such as tree branching
and foliage structure, because these elements intercept laser pulses in various canopy height layers.
Consequently, the accuracy of ALS-based AGB models can vary by species and forest types [21].
Bouvier et al. [22] demonstrated, that plot size significantly impacted AGB model performance within
pine forest in southwestern France. The accuracy of ALS-based models can potentially vary with the
ALS data point density. For instance, Montagnoli et al. [23] investigated the utility of low-density ALS
data (<2 pt/m2) for estimating AGB within mixed broad-leaved forest in Italy. Wu et al. [24] reported
an overall decreasing trend in error of ALS-derived AGB estimates as LiDAR point density increased
from 0.5 to 8 pt/m2 within forested landscape in east-central Arizona. Brovkina et al. [25] used high
point density LiDAR data (50 pt/m2) for AGB estimation within mixed spruce and beech forest in the
Czech Republic.

The main objective of this study is to obtain deeper insight into variables that influence estimation
of aboveground biomass from ALS data. Specifically, we will evaluate (i) the effect of various ALS point
densities and spatial resolutions of input canopy height model rasters on individual tree detection, and
(ii) the impact and transferability of site-specific relationships between tree height and stem diameter
at breast height (DBH) on estimates of Norway spruce forest AGB in the Czech Republic. The first part
of our study should provide suggestions which ALS data to choose for operational AGB estimation.
The second part should fill a gap in assessment of uncertainty in AGB estimates caused by usage of
allometric equation from different sources as this issue is rarely addressed in scientific literature.

2. Materials and Methods

The overall methodology of spruce forest AGB estimation from ALS data using the individual tree
detection approach and testing the effects of various ALS inputs and allometric equations is depicted
in Figure 1 and is described in further detail in the following sections.

2.1. Study Sites

Forest inventory and airborne laser scanning (ALS) data for this study were collected at 11 small
forested stream catchments that are located across the Czech Republic (Figure 2). The catchments are
part of the GEOMON network that was established primarily to study long-term effects of decreasing
acid depositions on the recovery of forested ecosystems, and on soil and water chemistry. Field
observations was begun in 1994 [26,27]. The catchments are predominantly covered by productive
forests of Norway spruce (Picea abies L. Karst) and they represent a large variety of environmental
conditions in the Czech Republic. Catchments’ characteristics are summarized in Table 1, and further
details are provided by Oulehle et al. [27].

In addition to the sites from the GEOMON network, we also used forest inventory data from
another site to test the impact of local allometric equations on AGB estimation. That external site,
known as Bílý Kříž, is located in a mountainous area near the Czech Republic and Slovakia borders
within the Moravian-Silesian Beskydy Mountains (49◦30’N, 18◦32’E, 800 to 920 m a.s.l.). It is an
experimental research site for long-term monitoring of CO2 and energy fluxes of a Norway spruce
forest monoculture (40 years old in 2018) and, as such, it is included into Integrated Carbon Observation
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System (ICOS). Site characteristics are reported in Table 1. Hereinafter, this site is referred to as “BK”
and allometric equations computed for this site are labeled as “outside”.

Forest inventory
data

R = f(H)
local & global

DBH = f(H)
local & global

DBH = f(H)
local "outside"

AGB estimates

Individual tree
detection

AGB estimation

Cross-comparison
of AGB estimates

Manual tree
detection

Validation

Validation datasets
50 x 50 m

Detected trees for each CHM dataset

AGB estimates for combinations of input
CHM and allometric equations 

ALS point density
4 pt/m2 (2 km alt.)

ALS point density
8 pt/m2 (1 km alt.)

CHM
0.5 m

CHM
1.0 m

CHM
0.5 m

CHM
1.0 m

Figure 1. Methodological design of this study (DBH = diameter at breast height, R = crown radius, H =
tree height, AGB = aboveground biomass, ALS = airborne laser scanning, CHM = canopy height model).
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Figure 2. Location of small forested stream catchments within the GEOMON long-term monitoring
network (circles with labels) and the Bílý Kříž site (cross with BK label) in the Czech Republic. The sites
are characterized (and abbreviations explained) in Table 1.
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Table 1. Characteristics of small forested stream GEOMON catchments located across the Czech
Republic (mean characteristics computed for the period 1994–2016). Last row reports characteristics of
an external Bílý Kříž site (computed for the period 1988–2018).

Catchment Name Area Elevation Mean Mean ann. Forest Mineral Bedrock Forest
(Abbreviation) (ha) (m a.s.l.) temp. (◦C) precip. (mm) Floor pH Soil pH Type Age (yr)

Anenský potok
(ANE)

27 480–540 8.0 673 4.00 4.67 Paragneiss 40–60

Červík
(CER)

185 640–960 6.0 1212 3.40 4.13
Sandstone,
Claystone 40–60

Na Lizu
(LIZ)

98 830–1025 5.5 892 3.50 4.38 Paragneiss 60–100

Loukov
(LKV)

66 470–660 7.5 754 3.64 4.33 Granite 40–80

Lysina
(LYS)

27 830–950 5.0 1005 3.37 4.33 Granite 40–60

Na Zeleném
(NAZ)

60 740–800 6.0 800 3.86 5.07 Amphibolite 60–100

Pluhův bor
(PLB)

22 690–800 6.0 861 3.85 5.82 Serpentinite 60–100

Polomka
(POM)

69 510–640 7.0 697 3.77 4.37
Paragneiss,
Orthogneiss 61–80

Salačova Lhota
(SAL)

168 560–7745 7.0 675 3.46 4.30 Paragneiss 60–80

U dvou louček
(UDL)

33 880–950 5.0 1502 3.75 4.43 Gneiss 20–40

Uhlířská
(UHL)

187 780–870 5.5 1250 3.50 4.33
Granite,

Granodiorite 20–40

Bílý Kříž
(BK)

0.25 800–920 6.3 1230 n.a. n.a.
Sandstone,
Claystone 40

2.2. Field Data

Field data (i.e., tree species identification, stem diameter at breast height (DBH), tree height (H),
crown radius (R), height to crown base and crown completeness) were measured at the GEOMON
sites during the 2015 vegetation season and in the case of NAZ during 2016. These parameters
were recorded for all trees with DBH greater than 5 cm within a circular plot of 500 m2 (r = 12.6 m).
In total, 81 forest inventory plots were sampled and the numbers of plots varied between 5 and 10 per
catchment according to the area of each. Selection of the plots followed stratified random sampling,
where strata were determined based on forest management maps, as well as local soil and orography
conditions. The center of each plot was recorded using differential GPS with a horizontal accuracy of
about 1 m. Mean values of the measured tree parameters per catchment are summarized in Table 2.

Field measurements for H and DBH of Norway spruce trees at the external site Bílý Kříž are
recorded differently than at the GEOMON sites. This dataset contains H and DBH measurements that
have been recorded in every vegetation season since 1997 for all trees with DBH > 2.0 cm growing
within a fenced area (i.e., 290 trees measured in 2017, details in Table 2).

Field measurements of tree parameters were primarily used to construct empirical models
(so-called allometric equations), which were either specific for each GEOMON catchment (local models)
or for all catchments together (global models) or for the external site (outside models). The first set of
allometric equations was established between R and H using a linear model (Equation (1)):

R = aH + b (1)

Estimates of R were used to tune a tree detection algorithm (described in Section 2.4). The second
set of allometric equations was established between DBH and H using an exponential model
(Equation (2), further labeled as local1, global1, or outside1) and a power model (Equation (3), further
labeled as local 2, global 2, or outside 2):

DBH = exp(a + bH) (2)
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DBH = aHb (3)

Table 2. Forest characteristics per stream catchment as measured in field surveys during 2015–2016.
Mean values are presented together with standard deviation. Last row reports characteristics measured
at the Bílý Kříž site in 2017.

Catchment
No. of
Plots

No. of
Sampled Trees

Mean Tree
Height H(m)

Mean Stem
DBH (cm)

Mean Crown
Radius R(m)

Norway
Spruce (%)

Beech
(%)

Others
(%)

ANE 5 108 30.1 ± 3.3 36.6 ± 8.8 3.0 ± 0.9 81.5 0.9 17.6 1

CER 9 359 16.2 ± 10.3 19.8 ± 14.3 2.3 ± 1.1 68.8 26.5 4.7
LIZ 10 431 21.6 ± 8.7 24.6 ± 12.1 2.0 ± 0.9 80.3 4.6 15.1 2

LKV 7 312 20.6 ± 9.2 23.7 ± 12.7 2.1 ± 1.2 81.7 4.2 14.1 3

LYS 5 358 11.8 ± 6.9 16.5 ± 11.5 1.8 ± 0.7 100.0 0.0 0.0
NAZ 7 216 19.1 ± 7.0 26.9 ± 11.1 1.7 ± 0.7 90.7 0.5 8.8
PLB 5 143 20.7 ± 5.7 27.8 ± 9.5 2.6 ± 0.9 93.7 5.6 0.7

POM 7 143 30.7 ± 6.5 39.4 ± 12.1 2.8 ± 1.2 94.4 3.5 2.1
SAL 10 345 25.2 ± 7.6 28.6 ± 12.9 2.4 ± 1.0 74.2 0.6 25.2 4

UDL 6 372 9.2 ± 2.8 15.9 ± 5.6 2.0 ± 0.5 100.0 0.0 0.0
UHL 10 399 10.7 ± 3.9 16.8 ± 6.8 1.7 ± 0.8 96.5 0.2 3.3

BK outside 1 290 16.9 ± 2.0 20.1 ± 4.1 1.9 ± 0.3 100.0 0.0 0.0

Other common tree species are 1 European larch (Larix decidua) 10% and Scots pine (Pinus sylvestris) 5%.
2 Silver birch (Betula pendula) 10% and European larch 4%. 3 Scots pine 9% and common alder (Alnus
glutinosa) 3%. 4 Scots pine 17% and European larch 8%.

DBH estimates were used to compute a single tree biomass and subsequently forest AGB.
The allometric equations (Equations (1)–(3)) were established for two tree species: the dominant

Norway spruce and less abundant European beech. The spruce models were applied to all other
coniferous trees found in our study sites. The allometric equation for European beech was created only
as a global model, as there was not enough data for site-specific local models. The beech global model
was applied to all other deciduous trees found in our study sites.

Before the allometric equations were constructed, the input field data were harmonized such that
a comparable number of samples was selected across all catchments and all tree height categories.
In the first step, all dead and broken trees were removed from the forest inventory database. In the
second step, we used stratified random sampling to eliminate the influence of tree height distribution.
The remaining trees were assigned into height categories at 5 m intervals (<5 m, 5–10 m, 10–15 m,
etc.). From each height category, n samples were randomly selected (n = 20 for spruce local allometric
equations, n = 40 for spruce global equations, n = 100 for spruce local equation established for Bílý
Kříž, and n = 20 for beech global equation). According to Sullivan et al. [28], stratified sampling
should produce smaller prediction error for larger sample pools. In the third step, the models
(Equations (1)–(3)) were fitted to input data and outlying samples were removed based on 95%
confidence interval of these preliminary models. Final models were constructed then by fitting
Equations (1)–(3) to the cleaned data. The quality of the models was assessed by root mean square
error (RMSE) computed between the predicted (P) and observed (O) values:

RMSE =

√
1
n

n

∑
i=1

(Pi − Oi)2, (4)

2.3. Airborne Laser Scanning Data

Airborne laser scanning data for 11 GEOMON sites (Table 2) were acquired during August 2017.
ALS data were recorded using a Riegl LMS—Q780 scanner on board Flying Laboratory of Imaging
Systems [29] that is operated by the Global Change Research Institute CAS (CzechGlobe). ALS data
were recorded at two nominal pulse densities: 4 pulses per m2 (flight altitude at 1000 m above the
ground level, further labeled as 1000 AGL) and 2 pulses per m2 (flight altitude at 2000 m above the
ground level, further labeled as 2000 AGL). For larger catchments, the pulse densities were doubled
due to 50% overlap between flight lines. Moreover, because the Riegl system allows for multiple echo
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recording, the real point cloud densities varied between 8 and 18 pt/m2 for datasets acquired at 1000
AGL and between 4 and 8 pt/m2 for datasets acquired at 2000 AGL.

Pre-processing of the raw ALS data encompassed full-waveform decomposition and
georeferencing in RiProcess software (RIEGL GmbH) and exporting a point cloud in LAS format after
a strip adjustment. In the next step, the point clouds were transformed into a canopy height model
(CHM) raster. The CHM calculation included noise removal, ground filtering, and rasterization using
the LAStools software package (Rapidlasso GmbH) and the approach reported by Khosravipour [30]
to create a pit-free CHM. In total, four CHMs were prepared for each catchment (i.e., rasters with pixel
sizes 0.5 m and 1.0 m for 1000 AGL and 2000 AGL data, respectively).

Because the assessment of ALS input data properties (point density and CHM pixel size) on tree
detection and AGB estimates was part of this study, the ALS input datasets were compared at the level
of point clouds and at the level of CHM first. We computed histograms for height distribution and
descriptive statistics for the entire catchment area and per forest inventory plot.

2.4. Individual Tree Detection and Its Verification

Individual tree detection and estimation of tree H is a prerequisite step for AGB estimation.
The individual tree detection was executed for four CHMs per catchment and furthermore expanded
by two scenarios to evaluate the effect of local and global models estimating tree crown R. In total
eight tree detection results were generated for each catchment. The tree detection algorithm is based
on previous work of Novotný [31], and it was further extended and modified in this study. It is fully
automated and implemented in Python. The algorithm requires several parameters to be specified by
a user to optimize results of the tree detection. Parameter selection and description of basic steps in
the algorithm are as follow:

1. Identification of local maxima in CHM.
2. Applying a forest mask to remove those local maxima that were not classified as trees. (We

used a mask of coniferous, broadleaf, and non-forested areas that was prepared from airborne
hyperspectral images acquired simultaneously with ALS. For the sake of brevity, this was not
described in the methods section.)

3. Removal of those local maxima lower than a certain threshold Hmin. (We used Hmin = 5 m.)
4. Estimation of a crown R, which was computed as the weighted mean of R obtained from

three methods:

(a) allometric equation R = f(H) based on forest inventory data,
(b) slope breaks—a distance from the local maxima (tree top) to the nearest place where the

slope changes from decreasing to increasing,
(c) semivariogram—a range value in a variogram model between height values and a distance

from the local maxima.
(We used weight factors wa = 0.6, wb = 0.2, wc = 0.1.)

5. Removal of those local maxima closer to one another than an expected crown R of the higher tree.
6. Removal of false tree detection at the edge of forest stands.(Here, we applied a condition

that maximally 5% of all pixels within an expected crown R can be outside the range of
0.1 × Htop and 1.05 × Htop.)

7. Export to a point shapefile.

Accuracy of the individual tree detection could not be assessed by means of direct comparison
with measured tree positions as these had not been recorded during the field surveys. Therefore,
we selected six validation plots (50 × 50 m) from our ALS data and identified individual tree positions
in the point cloud manually (hereafter termed reference trees). Each validation plot was located in
a different catchment and these represented a variety of forest types in terms of mean tree height.
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Two plots represented forests with mean tree height less than 15 m, two plots were selected for mean
tree height between 15 and 25 m, and the last two were selected for mean tree height greater than
25 m. Trees from manual and automated detections were paired by searching the closest neighborhood
of our reference trees (in case of CHM with pixel size 0.5 m the maximum distance of three pixels
was searched; in case of CHM with pixel size 1.0 m the maximum distance was two pixels). For each
validation plot we computed detection, omission, and commission rates.

2.5. Biomass Estimation from ALS

Total AGB (computed as sum of its components including stems, branches, leaves) was computed
according to equations established by Wirth et al. [32] for Norway spruce and by Wutzler et al. [33] for
European beech and other deciduous tree species. All equations for AGB computation were chosen in
their simplest forms, using DBH as the only input variable (summarized in Table 3).

Table 3. Parameters of the allometric models used for tree biomass (and its components) for estimating
spruce and beech biomass and its components. W is dry mass of the biomass component, DBH is
diameter at breast height, and H is tree height.

Spruce Simple Model Beech
(Wirth et al. [32]) (Wutzler et al. [33])

Components ln(W) ααα βββ W ααα βββ γγγ

stem α + β ln (DBH) −2.50602 2.44277 α(DBH2H)β 0.0293 0.974 -
needles/leaves α + β ln (DBH) −3.19632 1.9162 α(DBHβ H)γ 0.0377 2.430 −0.913
living branches α + β ln (DBH) −3.96201 2.2552 α(DBHβ H)γ 0.1230 3.090 −1.170

dry branches α + β ln (DBH) −3.22406 1.6732 - - - -

The DBH field measurements were used directly to compute AGB for each field-surveyed plot
and subsequently scaled up to represent the entire catchment area (further labeled as “field-based
AGB”). The results of individual tree detection with the estimates of tree H from ALS were used
to retrieve DBH first and then compute ALS-based estimates of AGB. We used six models for DBH
recalculation from ALS-based tree H (local 1 and 2, global 1 and 2, outside 1 and 2). In combination
with two input point cloud densities, two CHM pixel sizes, and two allometric equations predicting R
from H (local and global), we had 48 scenarios for assessing the effect of different parameters.

The ALS-based AGB estimates were cross-compared between the scenarios and compared with
the field-based results. The actual variable to be compared is AGB in tons per hectare of forest. We
calculated this value for field data as the sum of AGB for individual trees divided by plot size times the
percentage of forest cover. The mean value computed from all plots was taken as an estimate of AGB
per catchment. We calculated AGB per plot from ALS data as the sum of individual trees inside a circle
with an area of 1000 m2 around the plot center divided by the area times the percentage of forest cover.
The decision to double the plot size (1000 for ALS vs. 500 for field) should minimize inaccuracies in
geometric position (field GPS vs. aircraft IMU accuracy). We calculated AGB per catchment from ALS
data as the sum of all individual trees divided by area of catchment times the percentage of forest
cover. The forest cover was estimated from ALS point clouds and publicly available orthophoto maps
using Google Earth to visually check differences in forest cover between 2015 and 2017.

Comparison between the ALS-based scenarios and with the field-based results was evaluated
using linear fit, R2, and RMSE. Additionally, we evaluated dispersion of points around the 1:1 line and
computed 1:1 error as:

1 : 1 err =
1
n

n

∑
i=1

|AGBfield(i)− AGBlidar(i)|
AGBfield(i)

, (5)
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3. Results and Discussions

3.1. Allometric Equations

The 11 small forested catchments from the GEOMON network used in this study represented
broad regional variability in Norway spruce dominated forest stands. Field data were used to establish
allometric equations to predict tree crown R and stem DBH from tree H. All allometric equations are
summarized in Table 4. Only a simple linear model was tested for the tree crown R. Two models,
the exponential (Equation (2)) and the power (Equation (3)) models, were tested for predicting stem
DBH from tree H. Figure 3 shows examples of allometric equations used in spruce DBH estimation for
two local sites (LYS and BK) and the global model for spruce and beech trees (graphs with the local
allometric equations for all other sites are presented in the Supplementary Material S1).

Table 4. Allometric equations for estimating tree crown radius (R) and stem diameter at breast height
(DBH) from the measured tree height (H) for Norway spruce. Local equations are computed for each
catchment and the global equation is computed for all catchments together. In the last row, we also
included the local model that was computed outside the GEOMON catchments for the Bílý Kříž
study site.

R = aH + b DBH = exp(aH + b) DBH = aHb

(Local/Global) (Local1/Global1/Outside1) (Local2/Global2/Outside2)
Catchment a b RMSE a b RMSE a b RMSE

ANE 0.124 −0.841 0.639 0.065 1.640 4.484 0.051 1.933 4.641
CER 0.067 0.947 0.322 0.050 2.038 3.848 0.688 1.182 4.431
LIZ 0.038 1.174 0.618 0.055 1.900 3.276 0.753 1.125 3.523
LKV 0.076 0.517 0.657 0.063 1.714 3.063 0.487 1.266 3.630
LYS 0.095 0.668 0.268 0.073 1.821 3.995 1.002 1.121 3.325

NAZ 0.063 0.443 0.471 0.044 2.401 4.654 1.051 1.096 3.828
PLB 0.111 0.259 0.576 0.060 1.971 4.398 0.891 1.120 4.983

POM 0.069 0.458 0.846 0.051 2.044 5.911 0.265 1.450 6.294
SAL 0.072 0.559 0.593 0.064 1.623 2.499 0.332 1.366 2.798
UDL 0.135 0.709 0.336 0.122 1.595 2.875 2.431 0.846 3.152
UHL 0.142 0.193 0.479 0.085 1.786 2.540 1.518 1.096 2.624

ALL global 0.056 1.052 0.553 0.050 2.086 4.651 1.036 1.059 4.736
BK outside n.a. n.a. n.a. 0.970 1.417 1.591 1.232 0.991 1.095

The allometric equation for tree crown R estimation from tree H is important in our algorithm for
individual tree detection from ALS data. However, as this relationship has scarcely any practical use
in forest management, it is difficult to find reliable data or existing models in the scientific literature.
Therefore, this linear relationship was determined solely from our available field data, with RMSE
varying between 0.268 and 0.657 m for local models and equal to 0.553 m for the global model. Its use
in tree detection is further discussed in Section 3.3, but, as the detection rates with the global model
were generally higher for all tree height categories, we can consider the global model to be more robust
and to slightly outperform the local models.

In forestry practice, the relationship between stem DBH and tree H is generally reported as
H = f(DBH) and mathematically expressed using various models, including power, exponential,
hyperbolic, and others [34]. For the purpose of AGB estimation from ALS, however, the reverse form
of DBH = f(H) is required. Simple mathematical inversion is not always feasible, though, due to the
asymptotic nature of the published models. Thanks to our own field data collected for a large variety
of spruce trees, we could test two mathematical models: the exponential and power expression. RMSE
of the exponential model varied between 2.499 and 4.654 m and RMSE of the power model varied
between 2.624 and 4.983 m. Although for most of the catchments the exponential model resulted in
lower RMSE than did the power model, for biomass estimation, the exponential model seemed to be
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more sensitive to tree H. For tall trees, therefore, it could yield unrealistic (too high) estimates of DBH
and thus of AGB (further discussed in Section 3.4).

Figure 3. Allometric equations for prediction of stem diameter at breast height (DBH) from tree
height (H). (a) local model for Norway spruce established for the LYS catchment, (b) local model for
the external site Bílý Kříž, (c) global model for Norway spruce computed from all catchments, and
(d) global model for European beech computed from all catchments. Graphs for local equations from
other sites are presented in Supplementary Material S1.

3.2. Comparison of ALS Input Data

Before the AGB estimation from the ALS data, we evaluated differences between two ALS input
datasets with different point densities (1000 AGL, 2000 AGL). We compared histograms for height
distributions extracted from point clouds, as well as from CHM rasters, for the entire catchment area
and for each forest inventory plot. Figure 4 shows an example from the CER catchment (for brevity’s
sake, the other sites are not presented). The histograms are not identical for point clouds and CHMs
because the point cloud data contain all points (including multiple returns from the canopy profile),
whereas the CHM rasters refer only to the top-of-canopy layer. Height distribution in CHM with 1 m
resolution tends to be slightly shifted to the right compared to CHM with resolution 0.5 m. This is
because the rasterization technique we used lays just one 1m pixel over a bunch of points instead of
four 0.5 m pixels, which makes the tree tops (and crown borders) less sharp.

Comparison at the level of point clouds and CHM rasters showed very similar canopy height
distributions across all the sites. Therefore, we could assume that the point densities of the ALS input
data (1000 AGL vs. 2000 AGL) will likely not affect the results of individual tree detection and tree
height estimation.
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Figure 4. Histograms for height distributions of ALS input data acquired at point density of 8 pt/m2

(1000 AGL) and 4 pt/m2 (2000 AGL) at the level of the entire Červík (CER) catchment (top graphs) and
at the level of a single forest inventory plot (CER 8k) of size 500 m2 (bottom graphs). Comparison of
height distribution is shown for point cloud data (left) and for the canopy height model rasters with
pixel sizes of 0.5 m (middle) and 1.0 m (right).

3.3. Tree Detection

Results of tree detection were obtained for eight scenarios combining four CHMs (pixel size
0.5 and 1.0 m, point density from 1000 AGL and 2000 AGL) and two allometric equations for tree
crown R estimation. Results from the automated tree detection were verified for six validation squares
distributed across three tree height categories (more precisely, located within ANE, CER, LIZ, PLB,
UDL, and UHL catchments). In each case, detection and commission rates were computed for each
tree height category and for all validation plots together (Figure 5). We achieved detection rates from
0.75 to 0.90, which is in line with other studies. For instance, Luo et al. [35] reported overall accuracy of
0.87 for comparison between automatically segmented trees and visual examination in Tahoe National
Forest (USA). Wang et al. [7] reported R2 of 0.8–0.9 for comparison of plot-level field-based and
ALS-based tree counts in Heihe River Basin (China).

Almost no differences in detection and commission rates were found between the results obtained
from the ALS data of different point densities (1000 AGL, 2000 AGL). This had been expected after
comparison of the ALS input data (Figure 4, Section 3.2). Similar conclusions had been reached by
Bouvier et al. (2019), who reported almost no influence of ALS pulse densities (0.5, 1, 2, and 4 pulses
per m2) on metrics derived for AGB estimation in a pine forest.

Pixel size of the input CHM raster had a stronger effect on tree detection. Detection rates varied
between 0.78 and 0.90 for the CHM with 0.5 m pixel size, and lower values between 0.55 and 0.79
were found for the CHM with 1.0 m pixel size. On the contrary, higher commission rates (0.17–0.39)
were found for the CHM with 0.5 m pixel size and lower values for the CHM with 1.0 m pixel size
(0.05–0.19). Higher detection rates were found for the global model when we quantified the effect of
global vs. local allometric equation used to estimate tree crown R in the tree detection phase.

Detection rates also varied between the tree height categories. Detection rates in forests with
tree height below 15 m were lowest, whereas those rates for forests with tree height above 25 m were
highest. Similar results had been found by Kaartinen et al. [36], who analyzed accuracies of tree
detection from ALS data with point densities of 2, 4 and 8 pt/m2 in Southern Finland forests with
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prevailing Scots pine, Norway spruce, and silver birch. The best accuracy was observed for taller trees.
For the local maxima method, the RMSE in tree location was estimated as 1.2 m, 0.7 m, and 0.5 m for
tree height classes 10–15 m, 15–20 m, and >20 m, respectively.

Figure 5. Verification of tree detection. Detection and commission rates calculated for three forest
height categories (a–c) and all categories together (d) using manual identification of trees.

From the point of view of the final AGB product, the effect of tree detection omission and
commission errors compensated one another to some extent. We saw this especially in the tree height
category 15–25 m with the local model and in the tree height category 25–35 m with the global model.
One more interaction worth noting is that underestimating of the tree count can be compensated
by an overestimation of the DBH model, thus ending up with a false agreement between field- and
ALS-based AGB totals. This happened in our case with CHMs having 1.0 m pixel size.

Based on the results of the tree detection we eliminated half of our scenarios. For AGB assessment,
we retained only the results of tree detection from CHM with pixel size of 0.5 m from 1000 AGL.

3.4. Biomass Estimation

AGB at plot level and at entire catchment level was computed for 12 scenarios using as input
the CHM raster with pixel size 0.5 m from 1000 AGL. The 12 scenarios considered two allometric
equations for tree crown R estimation and six allometric equations for tree stem DBH estimation (the
power and the exponential local, global, and outside models).

Intercomparison between field-based and ALS-based AGB estimates at plot level is summarized
for all scenarios in Table 5. RMSE between field- and ALS-based estimates varied between 93 and
171 t/ha (if we omit two outstanding scenarios with exceptionally high RMSE > 326 t/ha). In general,
we can conclude that all ALS-based scenarios overestimated AGB especially for plots with taller trees
and higher biomass in comparison with the field-based estimates. ALS-based AGB estimation derived
using local allometric equations for both crown radius and DBH was the scenario with best precision
as expressed by steep slope (1.054) and low offset (8.561) in linear fit which was also the tightest
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(R2 = 0.667, RMSE = 93 t/ha). All the plots of all three height classes were evenly distributed around
the 1:1 line, which is expressed by the lowest value of 1:1 error equal to 0.264 (see Figure 6, and we
refer our readers to the Supplementary Material S2 to see the same figure for the other scenarios).

Two comparisons between ALS-based estimates are presented in Figure 7. Both graphs show AGB
estimates using the local allometric equations for both crown R and stem DBH vs. global allometric
equations, but the two plots show difference by equation type (exponential vs. power type). Most
plots differed within the range of ±50%, while the majority of those in height class >25 m laid within
the range ±20%.

Table 5. Numerical comparison of different scenarios for AGB estimation from ALS data. The first
two columns describe the scenario itself by specifying which type of allometric equation was used in
the tree detection phase for estimating tree crown radius (R = f(H)) and for stem diameter estimation
(DBH = f(H)). The remaining variables evaluate the agreement between field- and ALS-based estimates
of AGB (R2 and RMSE were computed based on linear regression with equation AGBALS = a·AGBfield

+ b; 1:1 error tells how far the points deviate from the 1:1 line).

Scenario Definition Agreement between Field- and ALS-Based AGB Estimates

R = f(H) DBH = f(H) a b R2 RMSE 1:1 Err

global local 1 1.361 −45.178 0.566 148 0.331
global local 2 1.206 −10.008 0.584 127 0.318
global global 1 1.513 −82.611 0.549 171 0.421
global global 2 1.236 −26.731 0.606 124 0.352
global outside 1 1.775 −180.363 0.314 326 0.569
global outside 2 1.308 −20.776 0.594 134 0.396
local local 1 1.185 −23.365 0.631 113 0.272
local local 2 1.054 8.561 0.667 93 0.264
local global 1 1.327 −55.018 0.580 140 0.365
local global 2 1.111 −10.644 0.630 106 0.322
local outside 1 1.565 −150.356 0.301 296 0.507
local outside 2 1.175 −3.875 0.620 114 0.354

Figure 6. AGB comparison at plot level between estimates based on field data and ALS data (scenario
based on the CHM raster with pixel size of 0.5 m and combination of two local models, one for
tree crown R estimation and the other for the stem diameter at breast height estimation). The linear
regression line (dash-dot) is presented together with the 1:1 line (solid) and symbols differentiate tree
height categories. Histograms on the right-hand side show deviation from the 1:1 line for different tree
height categories.
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Figure 7. Comparison of AGB estimates at plot level based solely on ALS data. The effect of local vs.
global model for DBH estimation is shown: exponential eq. (left) and power eq. (right). Solid line
highlights 1:1 line and the dashed lines indicate 20% and 50% deviation from 1:1 line.

Total AGB estimates for the entire catchment areas under 12 scenarios using ALS data are
summarized in Table 6. Comparison between the field- and ALS-based AGB estimates is presented
in Figure 8 for two contrasting scenarios, one using the local allometric equations, the other one
using only the global equations. Figures for the other scenarios are presented in the Supplementary
Material S3.

Figure 8. Comparison of total AGB for entire catchment areas based on estimates obtained from field
data and from ALS data using local allometric equations (left) and global allometric equations (right).
Linear regression line (dashed) is presented together with a 1:1 line (solid).

Forest AGB (as estimated from the R:local, DBH:local 2 scenario) varied between 119 and 398 t/ha
according to forest stand age. For example, the lowest AGB was observed at the UDL and UHL sites
with mean forest age between 20 and 40 years. In general, global DBH models tend to underestimate
AGB in young stands and overestimate AGB in mature stands. This will likely remain true despite the
fact that there might be some differences between field- and ALS-based estimates because of the two
year gap between the data acquistion. We assume that yearly increment in AGB is not very high (less
than 10% for younger stands and less than 5% for mature stands). An exception was seen in the PLB
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catchment, where AGB was underestimated every time. We know that there was a logging activity
between 2015 and 2017 at that site. Furthermore, specific bedrock chemistry (alkaline serpentinite, see
Table 1) suppress tree growth due to nutrient imbalance [37] leading to shorter trees with the same
DBH compared to other sites.

We achieved linear fit between field-based and ALS-based AGB estimate at catchment level
varying from 0.822 to 0.673 in terms of R2 and from 40 to 90 t/ha in terms of RMSE. ALS-based AGB
estimation derived using local allometric equations for both crown R and stem DBH had the greatest
precision as expressed by steep slope (a = 0.928) and low offset (b = 11.205) in linear fit which was also
the tightest (R2 = 0.822, RMSE = 40 t/ha). Our results are in agreement with those from other studies,
such as that of Mutwiri et al. [17], who reported R2 of 0.7–0.8 in comparing field- and ALS-based AGB
estimates within montane forest in Kenya. Similar levels of accuracy were reported by Shao et al. [20],
with R2 of 0.6 for AGB estimates in Yellowwood State Forest (USA), and Wang et al. [7] reporting R2 of
0.6–0.8 for estimates in Heihe River Basin (China). Ferraz et al. [18] analyzed differences between field-
and ALS-based AGB estimates for different forest types and reported highly variable results with R2

ranging between 0.37 and 0.99.
Based on the results presented in Table 6 it is clear that the exponential local allometric equation

(type 1) for DBH estimation that was established outside the GEOMON catchments produces unrealistic
estimates of AGB, especially for sites with mature and tall spruce trees. This could be expected, because
the dataset at the Bílý Kříž site contains data only for spruce trees younger than 40 years. Therefore,
the allometric equation for DBH estimation, especially the exponential model, is scarcely transferable
to older trees. If we remove the results for the “outside 1” model from Table 6, we are able to assess
uncertainty or variability in AGB estimation from the remaining scenarios. The uncertainty (measured
as standard deviation) in AGB estimates varies from 16 t/ha (observed at catchment CER) up to
84 t/ha (observed at catchment POM). In relative values, it goes from 6% to 37% of the field-based
AGB estimation per catchment. Similarly, Bellan et al. [38] reported underestimation of 10% in total
AGB when transferring field-based allometric equations AGB = f(DBH) from one spruce stand in the
Czech Republic to another.

Table 6. Total aboveground biomass estimates per catchment (t/ha) obtained directly from the field data
(in the first row) and from airborne laser scanning data for 12 scenarios, differing in their combinations
of local or global allometric equations for (i) estimation of tree crown radius R in tree detection and (ii)
stem diameter estimation in biomass computation.

Scenario Definition Total Aboveground Biomass Per Catchment (t/ha)

R = f(H) DBH = f(H) ANE CER LIZ LKV LYS NAZ PLB POM SAL UDL UHL

field field 313 218 343 328 265 313 255 393 363 143 113
global local 1 371 239 330 346 241 275 160 563 355 195 158
global local 2 359 273 319 332 240 302 170 547 326 127 150
global global 1 359 268 355 341 134 192 121 572 376 67 80
global global 2 393 272 387 386 165 220 155 530 401 61 90
global outside 1 2470 2680 2165 2081 359 1040 348 6082 2717 57 108
global outside 2 344 242 346 344 152 197 142 461 352 61 87
local local 1 362 236 331 335 234 268 158 403 354 176 147
local local 2 349 270 321 326 235 294 168 398 327 119 142
local global 1 352 264 356 334 131 186 120 410 377 64 77
local global 2 387 270 389 382 161 214 153 393 403 56 86
local outside 1 2373 2564 2171 1958 346 973 341 4051 2694 52 100
local outside 2 339 240 347 341 149 193 140 343 354 57 83

4. Conclusions

This study explored variables influencing estimation of AGB for Norway spruce dominated
forests from ALS data. Specifically, we looked at the influence of ALS data point densities and spatial
resolution of corresponding CHM for individual tree detection and role of allometric equations for
tree crown radius and stem DBH estimation in forest AGB estimation. We conclude that variable point
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densities of ALS data (4–18 pt/m2) did not influence the results for individual tree detection. Therefore,
we recommend using ALS data with point density around 5 pt/m2 for operational estimation of spruce
forest AGB in the Central European region. Spatial resolution of the input CHM rasters had a greater
impact on tree detection, higher detection rates were achieved for CHMs with pixel size 0.5 m than
1.0 m for all tree height categories.

AGB estimation from ALS data is largely dependent on the allometric equations that estimate
basic tree parameters, such as crown radius and stem diameter, from an easily retrievable tree height.
In common forestry practice, these allometric equations often do not exist (such as for crown radius)
or they are reported in inverse form (such as estimating tree height from stem diameter). Thanks to
the large database of forest inventory parameters that was compiled for small forested catchments
within the GEOMON monitoring network in the Czech Republic (about 3000 trees), we could establish
our own allometric equations for Norway spruce and European beech. Because the GEOMON sites
cover a broad variety of environmental conditions and spruce-dominated forests, we can consider the
global allometric models to be representative for the Czech Republic, and potentially for the Central
European region.

We computed AGB at the catchment level for 12 scenarios with varying allometric equations and
the results showed that uncertainty varied from 16 up to 84 t/ha. In relative values, it goes from 6%
to 37% of the field-based AGB estimation per catchment. Therefore, allometric equations mainly for
DBH estimation should be applied with care. We can recommend establishing one’s own site-specific
models, but this requires investments into field data collection. Direct comparison between ALS-based
AGB estimates using local and global models showed variation as much as 20% (both positive and
negative) for the highest tree height class and as much as 50% for the lowest tree height class.

The main advantages of the ALS-based approach for estimating forest AGB are full spatial
coverage and an ability to detect real spatial distribution of trees whereas field-based estimation relies
on a limited number of sampling plots and requires extrapolation to the stand level.
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allometric equations; [S2] Comparison of AGB estimates at plot level; [S3] Comparison of AGB estimates at stream
catchment level.
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Abbreviations

The following abbreviations are used in this manuscript:

AGB Aboveground biomass
1000AGL Flight altitude at 1000 m above the ground level
ALS Airborne laser scanning
ANE Anenský potok site
BK Bílý Kříž site
CAS Czech Academy of Sciences
CER Červík site
CHM Canopy height model
CHM Canopy height model
CzechGlobe Global Change Research Institute CAS
DBH Diameter at breast height
GEOMON Network of study sites (see Section 2.1)
H Tree height
ICOS Integrated Carbon Observation System
LIZ Na Lizu site
LKV Loukov site
LYS Lysina site
NAZ Na Zeleném site
PLB Pluhův bor site
POM Polomka site
R Crown radius
RMSE Root mean square error
SAL Salačova Lhota site
UDL U dvou louček site
UHL Uhlířská site
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Abstract: Quantifying stand volume through open-access satellite remote sensing data supports
proper management of forest stand. Because of limitations on single sensor and support vector
machine for regression (SVR) as well as benefits from hybrid models, this study innovatively builds a
hybrid model as support vector machine for regression kriging (SVRK) to map stand volume of the
Changbai Mountains mixed forests covering 171,450 ha area based on a small training dataset (n= 928).
This SVRK model integrated SVR and its residuals interpolated by ordinary kriging. To determine
the importance of multi-sensor predictors from ALOS and Sentinel series, the increase in root mean
square error (RMSE) of SVR was calculated by removing the variable after the standardization. The
SVRK model achieved accuracy with mean error, RMSE and correlation coefficient in –2.67%, 25.30%
and 0.76, respectively, based on an independent dataset (n = 464). The SVRK improved the accuracy
of 9% than SVR based on RMSE values. Topographic indices from L band InSAR, backscatters of L
band SAR, and texture features of VV channel from C band SAR, as well as vegetation indices of the
optical sensor were contributive to explain spatial variations of stand volume. This study concluded
that SVRK was a promising approach for mapping stand volume in the heterogeneous temperate
forests with limited samples.

Keywords: ALOS-2 L band SAR; Sentinel-1 C band SAR; Sentinel-2 MSI; ALOS DSM; stand volume;
support vector machine for regression; ordinary kriging

1. Introduction

Forest stand volume, as an ecosystem service, forms the basis for decision-making at diverse
levels [1]. Spatial explicit information on forest stand volume is critical for indirect estimation
of aboveground biomass for quantifying carbon sequestration and carbon dioxide exchange [2].
Field-based inventories of forest stand volume, the conventional approach, is costly and spatially
limited [3]. Progress has been made in mapping forest volume by remote sensing modeling based on
multisource satellite and inventory data for spatially continuous and temporally uniform predictions [4,5].
Those remote sensing algorithms were divided into two categories, i.e., physical and empirical models,
and the latter included statistical regressions, machine learning techniques, and hybrid approaches [6–8].
Physically based models depend on numerous geometry and biochemistry factors, which may not be
readily available [9,10]. Statistical regressions model stand volume by estimating equation parameters
related to remote sensing variables [11,12]. These regressions have advantages on modeling explicit
relationships and applications at large scales [13,14]. Machine learning algorithms have no assumption
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on input variable distribution, type and number, which achieve robust and accurate predictions
on complex relationships [15,16]. Among the various machine learning techniques, support vector
machine is acclaimed for its capacity of dealing with small training datasets in remote sensing-based
classification [17,18]. After the re-design to predict quantitative outputs and solve regression problems,
this algorithm came to be the support vector machine for regression (SVR) and acquired wide successes
in stand volume modeling [19,20]. Hybrid approaches involve either the statistical regression or
machine learning model between the target variable and remote sensing predictors, interpolating
residuals of predictions by kriging, and combining them [21–23]. Those two-step approaches both
consider the spatial heterogeneity conveyed by remote sensing predictors and autocorrelation of
neighboring observed data [24,25]. Those approaches, especially machine learning combined ordinary
kriging of residuals such as artificial neural network kriging (ANNK) and random forest kriging (RFK),
have yielded accurately spatial predictions [26,27]. However, support vector machine for regression
kriging (SVRK) modeling for mapping forest volume has rarely been tested and reported.

Stand volume modeling with open-access satellite data has been comparable, repeatable, and
has long-term monitoring [28–30]. With the global coverage, Sentinel-1 C band synthetic aperture
radar (SAR) and Sentinel-2 multispectral instrument (MSI) images provide capabilities for stand
volume modeling using both active and passive remote sensing techniques [31,32]. The Advanced
Land Observing Satellite (ALOS/ALOS-2) Phased Array type L band SAR (PALSAR/PALSAR-2) from
L band SAR have penetrability, which contain comprehensive information on the orientation and
structure of tree canopy and stems within the pixel [33,34]. It makes the ALOS/ALOS-2 images with
global observations particularly useful for stand volume mapping [35,36]. The ALOS digital surface
model (DSM) from L band interferometric SAR (InSAR) with accurate values of elevation and can
provide useful topographic indices to estimate stand volume [37–39]. Reported studies have explored
the potential of multi-sensor data using the SVR in volume mapping [31,40,41]. However, how
volume predictions would be affected by using SAR and MSI predictors based on the SVR deserves
further exploration.

The Changbai Mountains Mixed forests, as the richest eco-region in temperate forests of
northeastern China, play a key role in carbon cycles and ecosystem services both at regional and
global scales [42–45]. Hence, in this study, we innovatively developed a SVRK model based on limited
samples and open-access satellite predictors, and adopted it to map stand volume of the Changbai
Mountains Mixed forests, a vital eco-region of temperate ecosystems. The specific objectives were
to: (1) determine and compare the relationships of forest volume with multi-sensor variables from
ALOS-2, Sentinel-1, Sentinel-2 and ALOS DSM; (2) map stand volume by the SVRK modeling; and (3)
analysis spatial variations of stand volume and provide managerial suggestions for forest farms in the
study area.

2. Materials and Methods

2.1. Study Area and Field-Measured Stand Volume

The study area covers 171,450 ha and 12 forest farms belonging to Forestry Bureau of
Dunhua County (Figure 1). The site is located within the western mountainous area of Yanbian
Korean Autonomous Prefecture of Jilin Province, northeast China. The climate is four-season,
monsoon-influenced and humid continental, with an annual average temperature and precipitation of
3.28 ◦C and 632 mm, respectively [25]. Characterized by the dense cover of the Changbai Mountains
mixed forests, the major forest types include deciduous broadleaved forest and mixed broadleaf-conifer
forest with natural vegetation [43]. Dominant tree species include Tilia amurensis (Rupr.), Juglans
mandshurica (Maxim.), Fraxinus mandschurica (Rupr.), Mongolian oak (Quercus spp.) and Betula platyphylla
(Suk.). Typical soils are dark-brown earths, meadow, bog, chernozem, and peat soil.
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Figure 1. The outline of the study area, sampling sites, and employed open-access satellite remote
sensing data derived from Advanced Land Observing Satellite (ALOS), ALOS-2, Sentinel-1, and
Sentinel-2 series. Date include (a) Sentinel-2 Level-1C, (b) ALOS-2 yearly mosaic, (c) Sentinel-1 Level-1
GRD, (d) Sentinel-2 Level-2A, and (e) ALOS Digital Surface Model products.

The field campaign was carried out in September 2017. Stratified sampling design was used by
masking non-forest areas and randomly generating the distribution of sampling plots in forest areas,
while the plots that were impossible to access were replaced by the nearest sites. Following the national
guidelines for forest resource survey [46], eight teams took part in collecting measured data under
the same protocol. A total of 1392 squared 30 m by 30 m samples were established (Figure 1a). At
each sample site, tree species, diameter at breast height (DBH, the diameter at 1.3 m from the ground),
and tree height were measured and recorded. Age classes from young to over-mature were acquired
from the forest manager’s archives at the local forestry bureau for further analysis (Figure 1a). Stand
volume was estimated by DBH and tree height according to the National Standard of China: Tree
volume tables (LY/T 1353–1999) [47]. The field-measured stand volume was from 1 to 499.8 m3/ha,
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and was divided into six levels with the same frequency, with the median and standard deviation
(SD) value of 146.3 and 56.2 m3/ha, respectively (Figure 2a). The values of measured volume were
mainly below 200 m3/ha with 85.57 % (Figure 2b). The 1,392 sampling sites were randomly divided
into training (n = 928) and validation (n = 464) sets (Figure 1a) for training and assessing the models.
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Figure 2. The values of measured stand volume. (a) Field sample profiles of volume in the study site
from Plot 1 to 1,392; (b) Components of volume.

2.2. Satellite Data Pre-Processing and Derived Variables

The adopted multi-sensor satellite data are listed in Table 1. The 25-m ALOS-2 L band SAR yearly
mosaic images of 2017 were downloaded from the ALOS Research and Application Project of EORC,
the Japan Aerospace Exploration Agency to acquire the normalized backscatter coefficients (gamma
naught values) (Table 2), which was sensitive to stand volume [36,48,49]. Images were converted
to gamma naught values in decibel unit (dB) from 16-bit digital number (DN) (Figure 1b) using the
following Equation (1) [50]:

γ0= 10 log10

(
DN2

)
− 83 (1)

where γ0 is gamma naught backscatter coefficient of horizontal transmit-horizontal channel (HH) or
horizontal transmit-vertical channel (HV); DN is the polarization data in HH or HV.

Table 1. The adopted ALOS-2, Sentinel-1, Sentinel-2, and digital surface model (DSM) data.

Sensors Elements Time Spatial Resolution (m)

ALOS-2 N043E127/N043E128/
N044E127/N044E128 2017 25

Sentinel-1 D633_FCEE of
Sentinel-1B 20170927 10

Sentinel-2
T52TCP/T52TCN of

Sentinel-2A, 20170923
10

T52TDN of Sentinel-2B 20170925

ALOS N042E127/N042E128/
N043E127/N043E128

Derived from PALSAR
data during 2006 to 2011 30
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Table 2. Remote sensing indices from the ALOS and Sentinel series data for volume mapping.

Source Image Relevant Variables Description

ALOS-2
L band SAR

Polarization
HV Normalized backscatter coefficient of horizontal

transmit-vertical channel in dB

HH Normalized backscatter coefficient of horizontal
transmit-horizontal channel in dB

Sentinel-1
C band SAR

Polarization
VV Normalized backscatter coefficient of vertical

transmit-vertical channel in dB

VH Normalized backscatter coefficient of vertical
transmit-horizontal channel in dB

Texture

VV/VH_CON Contrast
VV/VH_DIS Dissimilarity

VV/VH_HOM Homogeneity
VV/VH_ASM Angular second moment
VV/VH_ENE Energy
VV/VH_MAX Maximum probability
VV/VH_ENT Entropy
VV/VH_MEA Gray-level co-occurrence matrix (GLCM) mean
VV/VH_VAR GLCM variance
VV/VH_COR GLCM correlation

Sentinel-2
MSI

Multispectral
bands

B2 Blue, 490 nm
B3 Green, 560 nm
B4 Red, 665 nm
B5 Red edge, 705 nm
B6 Red edge, 749 nm
B7 Red edge, 783 nm
B8 Near infrared, 842 nm
B8a Near infrared, 865 nm
B11 Short-wave infrared, 1610 nm
B12 Short-wave infrared, 2190 nm

Vegetation
indices

RVI Ratio vegetation index, B8/B4
DVI Difference vegetation index, B8–B4

PVI Perpendicular vegetation index,
sin(45◦)×B8–cos(45◦)×B4

NDVI Normalized difference vegetation index,
(B8 − B4)/(B8 + B4)

SAVI Soil adjusted vegetation index,
1.5 × (B8 − B4)/(B8 + B4 + 0.5)

NDVI5 Normalized difference vegetation index with bands 4
and 5, (B5 − B4)/(B5 + B4)

NLI5 Non-linear vegetation index with bands 4 and 5,
(B52 − B4)/(B52 + B4)

NDVI6 Normalized difference vegetation index with bands 4
and 6, (B6 − B4)/(B6 + B4)

NDVI7 Normalized difference vegetation index with bands 4
and 7, (B7 − B4)/(B7 + B4)

NDVI8a Normalized difference vegetation index with bands 4
and 8a, (B8a − B4)/(B8a + B4)

MSI Moisture stress index, B8/B11

EVI5 Enhanced vegetation index with bands 4, 5 and 2,
2.5 * (B5 − B4) / (B5 + 6 * B4 − 7.5 * B2 + 1)

S2REP Sentinel-2 red-edge position index,
705 + 35 × [(B4 + B7)/2 − B5] × (B6 − B5)

Transform indices
TCW Tasseled cap wetness, 0.1509 * B2 + 0.1973 * B3 + 0.3279

* B4 + 0.3406 * B8 + 0.7112 * B11 + 0.4572 * B12

TCB Tasseled cap brightness, 0.3037 * B2 + 0.2793 * B3 +
0.4743 * B4 + 0.5585 * B8 + 0.5082 * B11 + 0.1863 * B12

TCG Tasseled cap greenness, −0.2848 * B2 − 0.2435 * B3 −
0.5436 * B4 + 0.7243 * B8 + 0.0840 * B11 − 0.1800 * B12

ALOS
DSM

Topographic
indicators

H Elevation
S Slope
A Aspect
M Surface roughness

SPI Stream power index, Ln[Ac × tanβ × 100]

Sentinel series images were downloaded from the Copernicus Sentinel Scientific Data Hub. The
data included one Sentinel-1 C-band SAR and three Sentinel-2 MSI images. The SAR image was at
a high-resolution (HR) Level-1 ground range detected (GRD) processing level with a pixel size of
10 m [51]. Promising results demonstrated that the normalized backscatter coefficients and texture
features from Sentinel-1 images could improve forest parameter estimation [32,52]. Sentinel-1 Toolbox
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in SNAP software (version 6.0, European Space Agency, Paris, France) was used to acquire Sentinel-1
variables with a map projection (Figure 1c) by image calibration, speckle reduction using the Refined
Lee Filter, terrain correction by the Range-Doppler, and grey level co-occurrence matrix analysis
with 3 × 3-pixel window [52–54]. The Sentinel-2 Level 1C data were top-of-atmosphere reflectance,
which were processed by orthorectification and registration [55]. The MSI data had 13 spectral bands,
including four in 10 m (bands 2–4, 8), six in 20 m (band 5–7, 8a, 11–12), and three in 60 m (band
1, 9–10) spatial resolutions, respectively [55]. The 10-m Sentinel-2 Level 2A data (Figure 1d) were
atmospherically corrected from the Level 1C data by the radiative transfer model-based SEN2COR
atmospheric correction processor (version 2.5.5, European Space Agency, Paris, France), and were
resampled by Sentinel-2 Toolbox in SNAP. Spectral indices were strongly related to reflectance, and were
useful in volume mapping, especially some with red edge bands (band 5, 6, 7, and 8A) [56,57]. Totally,
26 variables from Sentinel-2 were selected and extracted based on previous findings (Table 2) [58,59].

The ALOS Global Digital Surface Model (AW3D30) used in this study was a global dataset
generated from L band SAR images collected using the ALOS from 2006 to 2011 (Figure 1e). The
data were download from the Japan Aerospace Exploration Agency to extract topographic indices
from previous researches by Spatial Analyst of ArcGIS software (version 10.0, ESRI, RedLands, CA,
USA) [60,61]. All remote sensing variables were re-projected into UTM Zone 52 WGS84, and then
resampled to the 30 m pixel size by ArcGIS.

2.3. Support Vector Machine for Regression Kriging (SVRK) and Modeling Evaluation

The pairwise Pearson’s product-moment correlation analysis was operated to determine predictor
variables from multi-sensor indices. It consisted of two steps: the selection of variables which were
significantly related to field-measured volume (p < 0.05) as candidates; the disposal of candidates that
were collinear (r ≥ 0.8), except the one that had the largest correlation coefficient with volume [62].
Those analyses were performed in SPSS software (version 21.0, IBM, Armonk, NY, USA).

The SVRK model built in this study is the extension of SVR, which integrated SVR prediction and
estimation of the residuals by ordinary kriging using Equation (2). SVRK considers spatial parametric
non-stationarity with the effects of multi-sensor predictors derived from the benefits of SVR. It also
added the spatial dependence of the residuals interpolated through ordinary kriging to the estimated
trend, as part of the spatial autocorrelation:

VSVRK= VSVR+ROK. (2)

where: VSVRK, VSVR are predication of stand volume based on SVRK and SVR, respectively; ROK is the
estimated residuals of volume from the SVR prediction.

The implementation of SVRK includes two steps, as shown in Figure 3. SVR is firstly used to model
the relationship between stand volume and multi-sensor predictors, as a non-linear machine learning
method. It uses kernel functions to project the training data onto a new hyperspace where complex
non-linear patterns can be simply illustrated (Figure 3a) [63,64]. The optimal hyperspace, constructed
by SVR, fits training data and predicts with minimal empirical risk [65]. The SMO (sequential minimal
optimization) algorithm is used to solve the quadratic programming optimization problem step-by-step.
It updates the SVR function, as shown in Equation 3, to reflect the new values until the Lagrange
multipliers converged [66]:

f (x) =
n∑

k = 1

(αk − α∗k)K
(
xk, xj

)
+ b (3)
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where x is a vector of the input predictors, f (x) . is an optimal function developed by SVR, b is a
constant threshold, K(xk, xj) is the radial basis function (RBF) kernel with the best bandwidth parameter
σ, and αk are α∗k the weights (Lagrange multipliers) with the constraints given in Equation 4.

⎧⎪⎪⎨⎪⎪⎩
∑n

k = 1

(
αk + α

∗
k

)
= 0

0 ≤ αk, α∗k ≤ C
(4)

where C is the regularization parameter for balancing between the training error and model complexity.

 

Figure 3. Illustration of support vector machine for regression kriging (SVRK). It includes (a) the first
step as the support vector machine for regression (SVR) algorithm and (b) the second step as the sum
of SVR and residuals interpolated by ordinary kriging. I, Imean, and Isd are raw, mean and standard
deviation values, respectively.

In this study, SVR was conducted in WEKA software (version 3.8, The University of Waikato,
Hamilton, New Zealand). Parameters of SVR, C, and σ, were selected by the smallest root mean square
error (RMSE) based on field-measured volume in training dataset (Figure 1a). In order to determine
the importance of multi-sensor predictors on volume mapping, the training data was standardized
(Figure 3a), and then the increases in RMSEs were calculated as the predictors were excluded one by
one from the SVR model.

At the second step, the residuals resulting from SVR are estimated using the ordinary kriging
approach (ROK) (Figure 3b). Ordinary kriging, a widely used geostatistical technique, generates an
optimal unbiased estimation by the semivariogram [67]. The semivariogram can be modeled by
spherical, exponential, and Gaussian functions with three parameters—nugget, range and sill [68].
The nugget is an observation error, and sill is the magnitude of spatial autocorrelation [69]. Thus,
the stronger spatial autocorrelation is denoted by the larger value of sill relative to nugget [69]. The
range parameter shows on which distance the spatial autocorrelation does not influence any more [69].
The Kolmogorov-Smirnov test (K-S) was used to examine the distribution of residuals based on the
stationarity assumption of ordinary kriging. The interpolation of residuals by ordinary kriging was
conducted in ArcGIS with the smallest RMSE. Finally, volume prediction by SVRK (VSVRK) were
acquired as the sum of VSVR and ROK.

The validation set (Figure 1a) was used to test the performance of volume mapping by SVRK
based on the mean error (ME), RMSE, and correlation coefficient between the measured and predicted
parameters (r) [70]. In order to better estimate accuracy, the mean measured value of stand volume
(146.1 m3/ha in Figure 2a) was applied to divide the ME and RMSE. The relative improvement (RI)
based on RMSE of SVRK over SVR was used as another index for accuracy evaluation [25].

199



Forests 2020, 11, 296

3. Results

3.1. Relationship between Field-Measured Volume and Remote Sensing Variables

In total, 31 variables were significantly related to stand volume (p < 0.05) (Table 3), including
seven from SAR, 20 from MSI, and four from DSM. The backscatters from different wavelengths all had
strongly positive correlations with volume, while variables from ALOS-2 had the closer relationship
than that from Sentinel-1. The backscatter from HH was more sensitive to volume than that from
HH. Among 10 kinds of texture features from Sentinel-1, only the GLCM mean and variation were
actively related to volume. In other words, the increasing texture regularity and variety of VV and VH
backscatters indicated the growth of stand volume. It was shown that backscatter texture from VV was
more relevant to volume than that from VH.

Table 3. Related variables and predictors derived from multi-sensor satellite data for stand volume
mapping. * denotes significance with a p-value of the t-test being below 0.05; ** denotes strong
significance with a p-value below 0.01.

Source Image Related Variables r Collinear With Predictors

ALOS-2 HV 0.138 ** / Yes
HH 0.181 ** / Yes

Sentinel-1

VV 0.075 ** / Yes
VV_MEA 0.090 ** VV/VH_ VAR, VH_MEA Yes
VV_VAR 0.087 ** VV/VH_MEA, VH_VAR No
VH_MEA 0.057 * VV/VH_ VAR, VV_MEA No
VH_VAR 0.061 * VV/VH_MEA, VV_VAR No

Sentinel-2

B2 −0.192 ** / Yes
B3 −0.111 ** B5, TCW Yes
B4 −0.162 ** / Yes
B5 −0.079 ** B3, B11, TCW No
B11 −0.111 ** B5, B12, TCW No
B12 −0.145 ** B11 Yes
RVI 0.145 ** NDVI, NDVI5, NDVI6, NDVI7, NDVI8a No
DVI 0.087 ** PVI, SAVI, TCG No
PVI 0.087 ** DVI, SAVI, TCG No

NDVI 0.175 ** RVI, NDVI5, NDVI6, NDVI7, NDVI8a Yes
SAVI 0.110 ** DVI, PVI, TCG Yes

NDVI5 0.151 ** RVI, NDVI, NDVI6, NDVI7, NDVI8a No
NLI5 0.065 * / Yes

NDVI6 0.165 ** RVI, NDVI5, NDVI, NDVI7, NDVI8a No
NDVI7 0.166 ** RVI, NDVI5, NDVI, NDVI6, NDVI8a No
NDVI8a 0.167 ** RVI, NDVI5, NDVI, NDVI6, NDVI7 No

MSI 0.105 ** / Yes
S2REP 0.063 * / Yes
TCW −0.074 ** B3, B5, B11 No
TCG 0.087 ** DVI, PVI, SAVI No

ALOSDSM

H 0.252 ** / Yes
S 0.154 ** M Yes
A 0.091 ** / Yes
M 0.117 ** S No

As for Sentinel-2 variables, the reflectance of B2–B5, B11, and B12 as well as TCW were negatively
related to volume, while the other 13 variables represented the positive correlation. All Sentinel-2
volume-related variables displayed the strong correlation (p < 0.01), excluding NLI5 (p < 0.05).
The vegetation indices that were calculated by characteristic red-edge bands of Sentinel-2 closely
connected with volume. Variables from Sentinel-2 had similar performances with that from ALOS-2,
which showed the greater sensitivity to volume than Sentinel-1 indices.
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All four topographic indicators from ALOS DSM showed the strongly positive influence on the
increase of volume. It was indicated that variables from DSM was distinguished in the correlation
analysis with volume than that from MSI and SAR. Above all, elevation, ALOS-2 backscatters,
the texture features of VV channel of Sentinel-1, and the vegetation indices from Sentinel-2 were
comparatively vital for stand volume prediction.

3.2. Modeling Forest Volume by SVRK

3.2.1. Support Vector Machine for Regression (SVR) Modeling for Volume Mapping

To degrade the redundancy, 15 variables that had r values of the correlation analysis among
predictor candidates above 0.8 were disposed [62]. The predictors involved in modeling were the
following 16 list in Table 3. After standardization of training data, the optimal SVR model was built by
C and σ setting as 1000 and 0.01, respectively, with the minimum RMSE being 40.58 m3/ha. Based on
the magnitude of increase in RMSEs (Figure 4), the SVR model showed topographic indicators as the
most important predictor for explaining the spatial variations of stand volume, followed by ALOS-2
backscatters, Sentinel-2 indices and texture features of VV channel from Sentinel-1. The VV backscatter
from Sentinel-1 was marginal in volume prediction by SVR.
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Figure 4. Variable importance shown by increase in the root mean square errors (RMSEs) of SVR
models after excluding a predictor.

By the optimal SVR model, the predicted values of stand volume in the study area ranged from 5.37
to 523.84 m3/ha, with the mean and SD of 150.26 and 26.04 m3/ha, respectively (Figure 5a). Predicted
values were divided into six levels by intervals of field-measured volume values in Figure 2a. The
map depicted that the high-altitude region (Figure 1e) was the large forest volume area, with values
ranging from 195.51 to 523.94 m3/ha. Zones with small values of volume (5.37 to 94.40 m3/ha) were
located close to the non-forest area. Among six levels of stand volume, the smallest and largest occupy
the minority of the study area. It was revealed that the SVR model overestimated the small values,
and underestimated the large volume, compared to field-measured data.
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Figure 5. Stand volume mapping by SVR (a), and its residuals interpolated by ordinary kriging (%,
divided by the mean measured value of stand volume) (b) as well as final prediction by SVRK (c).

3.2.2. Integration of SVR Prediction and its Residuals by Ordinary Kriging

The residuals were calculated by the field-measured volume and SVR predicted values based on
training data. The result of K-S showed that volume residuals from the SVR model possessed a normal
distribution (p < 0.05), which could be used to calculate experimental semivariograms for ordinary
kriging interpolation (Figure 6). Nugget values of spherical, Gaussian, and exponential models were
1478.7, 1509.1, and 1500.5, respectively. Range values were 16.97, 11.44, and 3.16 km, respectively. Sill
values were 1689.04, 1673.94, and 1550.52, respectively. The strongest spatial autocorrelation is shown
in the spherical model with the largest values of sill relative to nugget. While, the exponential model
of ordinary kriging in Figure 6c was chosen to interpolate residuals from SVR with smallest RMSE
39.18 m3/ha. Based on Equation (2), the SVRK model was built.

By the optimal ordinary kriging model (Figure 6c), the distribution of volume residuals from
the SVR model were obtained (Figure 5b). The interpolated values of volume residuals ranged from
–29.29 to 45.85% (–42.79 to 66.99 m3/ha), with the mean and SD of 0.74 and 14.56 m3/ha, respectively.
It was demonstrated that the overestimation of small volume values was located in the western and
southern parts of the study area with residuals ranging from –29.29% to –20%. While the SVR model
underestimated large volume values in the northern part of the study area, and residuals were from
40.01% to 45.85%.
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Figure 6. Experimental variograms and fitted models of residuals from SVR by (a) spherical,
(b) Gaussian, and (c) exponential models.

3.3. Models Assessment and Volume Mapping

Table 4 presented the accuracy of the SVR and SVRK models for estimating volume of the
validation set (n = 464). The comparison of SVR and SVRK models demonstrated that additional
prediction of residuals by ordinary kriging as the spatial autocorrelation, was more accurate than only
considering influences of predictor variables from multi-sensor satellite data (Figure 7). It was indicated
by ME values that both two models overestimated stand volume. SVRK remarkably improved accuracy
of volume prediction over SVR by 9% (3.77 m3/ha) based on RMSE values.

Table 4. Accuracy assessment of stand volume modeling based on independent validation data.

Model
ME RMSE r RI

m3/ha % m3/ha %

SVR −4.49 −3.07 40.73 27.88 0.70 /
SVRK −3.9 −2.67 36.96 25.30 0.76 0.09

y = 0.46x + 82.46
R² = 0.49

0

110

220

330

440

550

0 110 220 330 440 550

Pr
ed

ic
te

d 
vo

lu
m

e 
(m

3 /h
a)

Field-measured volume (m3/ha)

(a) SVR
Fitted Line

------ 1:1 Line

y = 0.59x + 63.10
R² = 0.58

0

110

220

330

440

550

0 110 220 330 440 550

Pr
ed

ic
te

d 
vo

lu
m

e 
(m

3 /h
a)

Field-measured volume (m3/ha)

(b) SVRK
Fitted Line

------ 1:1 Line

Figure 7. Scatter plots of predicted versus observed volume from validation data based on SVR (a) and
SVRK (b) models.
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The distribution of forest volume based on the SVRK model was acquired by combing the
Figure 5a,b as the Figure 5c. By the optimal SVRK model, the predicted values of stand volume in
the study area ranged from 0.18 to 532.83 m3/ha, with the mean and SD of 150.99 and 30.83 m3/ha,
respectively (Figure 5c). Based on SVRK mapping, the northern part of the study area with high
altitude had the largest volume values ranging from 195.51 to 532.83 m3/ha. In the south with low
altitude and nearby the non-forest area, the smallest volume values ranged from 0.18 to 94.40 m3/ha.
The map showed different distribution of stand volume with the SVR result, while values remained
similar (Figure 5a,c). The six levels of stand volume in the SVRK map covered relatively equal areas
than that in the SVR result, especially the largest (≥ 195.91 m3/ha). It was illustrated that the error,
which was caused by the SVR model with the overestimation of small values and underestimation of
large volume, was reduced. Forest volume of the SVRK map showed the greater spatial variation than
that of the SVR. Namely, combining interpolation values of residuals, the spatial distribution of forest
volume was much closer to the measured data (SD = 56.2 m3/ha).

4. Discussion

4.1. Multi-Sensor Satellite Predictors of Forest Volume Mapping

The role of multi-sensor variables on volume mapping was revealed by correlation coefficients
(Table 3) and importance (Figure 4). SAR was able to penetrate forest canopy to a certain depth,
and related to roughness and water content of vegetation [71], so that its variables were valuable for
volume prediction. The elevation as a proxy of InSAR height, was dominant in volume prediction
of this study. It was support from previous findings that InSAR height and its slope parameter
were directly proportional to volume [72,73]. It was found that HV was more contributive to stand
volume prediction than HH and VV channel; yet, VH backscatter was not significantly related. It was
owing to the stronger sensitivity of HV backscatter to the forest growth stage than the HH and VV
polarizations [74,75]. All backscatters showed positive relationships with volume. This was likely due
to an increase in the volume of scattering with the growth of trees [76].

The penetrability was weaker with shorter wavelength. It resulted in the weaker capability of C
band SAR for volume prediction than that of L band SAR according to our findings. It also revealed
saturation problems of backscatters. The measured forest volume values in the study area were
partially above 200 Mg/ha (Figure 2a), which were larger than the common saturation value of C band
and smaller than that of L band SAR backscatters [48,77]. The results indicated that texture features of
SAR data were much more helpful than original backscatters to forest volume prediction, which was
consistent with existing researches [52,78]. However, textural indices from Sentinel-1 was marginal
in this study for volume mapping compared to the previous finding [79]. It was resulted from the
decrease in the heterogeneity by texture analysis and large variations of stand volume in the study area.

As optical sensor data, MSI variables, i.e., reflectance and spectral indices, were powerful for the
retrieval of horizontal forest structures such as vegetation types, canopy cover and DBH [80,81]. Results
revealed that the short-wave infrared (SWIR) band was the highly ranked variable for predicting
stand volume. It was explained by the closer relationship between SWIR spectral band and vegetation
properties, i.e., canopy biomass and water content, compared to other electromagnetic spectrum
regions [82]. In line with existing studies, reflectance of optical bands and spectral indices were quite
helpful in volume prediction [83,84], whereas, the role of red-edge bands and their vegetation indices
in this study was minor than that in previous researches [58,85]. This may be caused by the diversity
of tree species in the study area with different responses to various red-edge bands, the average
relationships of which were weaker. In a word, topographic indices from L band InSAR, backscatters
of L band SAR, texture features of VV channel from C band SAR and vegetation indices of MSI were
recommended for stand volume mapping based on open-access satellite data in the heterogeneous
temperate forests.
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4.2. SVR versus SVRK

It was a pioneering study that built the SVRK hybrid model and utilized it to map stand volume.
The optimal RBF-kernel SVR model trained in this study as the first step achieved higher accuracy than
multiple linear regressions and SVR models with various kernels based on similar multi-sensor satellite
data [31,32], while the SVR model in this study was less accurate than that built by ALOS optical and
SAR variables [20]. It was attributed to coarser spatial resolution of L band SAR data and the complex
composition of tree species in the study area. Moreover, the density of training dataset of this study
(928 samples/171450 ha) was quite smaller than that of the reported research (77 samples/83.71 ha).

Results demonstrated that SVRK improved the mapping accuracy by incorporating interpolation
values of residuals to SVR models (Figure 5 and Table 4). The value of the accuracy improvement of
SVRK was smaller than that of RFK and ANNK for soil carbon prediction as reported [86–88]. It was
resulted from the weaker autocorrelation of residuals from SVR compared with that of soil attributes,
as well as the smaller sampling density. It was denoted that stand volume was influenced more by
multi-sensor variables, and values of nearby sites affected less. The autocorrelation of volume residuals
from SVR was weaker than that of biomass errors from RF, while the accuracy improvement of SVRK
(RI = 0.09) for volume mapping was much more than that of RFK (RI = 0.07) for biomass prediction [25].
This is due to the higher spatial heterogeneity and the smaller training dataset of this study. The study
concluded that SVRK was a promising approach for mapping stand volume with a small training
dataset in heterogeneous temperate forests.

4.3. Spatial Variations of Stand Volume and Forest Management

The spatial distribution of forest volume derived by SVRK with more equal area of each level than
the result of the commonly used SVR model was much closer to the measured data (Figures 2 and 5a,c).
Whereas, the stand volume map (SD = 30.83 m3/ha) displayed smaller spatial variations than measured
data (SD = 56.2 m3/ha). The large variations of measured values of stand volume was resulted from the
positively skew distribution with the majority below 300 m3/ha (Figure 2b). The maximum measured
volume of 499.84 m3/ha belonged to a mature Pinus koraiensis (Sieb. et Zucc.) dominant natural forest
site in the northern part of the study area. The smaller variations of SVRK-derived volume mainly
resulted from the coarse mapping resolution as 30 m in this highly heterogeneous forest landscape.
The smallest and largest levels of stand volume (< 94.90 and > 195.51 m3/ha) still occupied smaller
areas than other four levels. It was illustrated that 30-m multi-sensor data from mosaic L band SAR
and InSAR, C band SAR and MSI displayed a saturation problem in detecting small and large values
of stand volume.

The volume values of different forest ages were summarized as Table 5 from the SVRK prediction
by multi-sensor satellite data. Based on spatial and age variations of stand volume, certain measures
can be taken for the sustainable forest management. In young forests, minimum, maximum and mean
were all the smallest among five classes, while the variation was largest. The larger values of stand
volume in young forests was mainly attributed to the high stand density. With tree growth, more space
and resource competition occur among individual trees. Thus, young forests with volume above
195.51 m3/ha should be the critical focus areas, which need thinning (Figure 5c). However, the young
forests with volume below 94.90 m3/ha should be enclosed for cultivation. The volume variation of
middle-age forests was second-largest. Middle-age forests with volume above 195.51 m3/ha also require
thinning, while the increment felling should be conducted in smaller volume areas. Near-mature
forests obtained the smallest maximum of stand volume. Management measures in these forests can
include the artificial promotion of natural regeneration and beforehand regeneration. Forest manager
can selectively cut weak, pest-infested, and diseased trees in mature and over-mature forests.
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Table 5. Stand volume of forests with different ages in the study area.

Age Minimum Maximum Mean
Standard
Deviation

Coefficient of
Variation (%)

Yong 0.18 358.78 134.79 29.91 22.19
Middle-age 0.21 520.56 138.30 29.79 21.54

Near-mature 1.18 463.83 152.51 28.47 18.67
Mature 1.71 532.83 156.38 30.09 19.24

Over-mature 7.91 521.99 160.48 30.64 19.09

5. Conclusions

Machine learning modeling with remote sensing data combined sample plot data has become a
well adopted method to generate spatially explicit estimates of forest parameters. Among that, SVR
has achieved wide success in application and has been praised for its ability to deal with small training
datasets. A major shortcoming of machine learning is that it ignores the spatial autocorrelation of
neighboring observed data. The main objective of the study was to build a hybrid model, i.e., SVRK,
which integrated SVR and its residuals by ordinary kriging, based on a small training dataset. Then
SVRK was used to map stand volume, the most common forest parameter needed for sustainable forest
management at all scales. This study also determined the potential of open-access satellite predictors
from multi-frequency SAR data in predicting volume in the heterogeneous temperate forests. As the
first exploration of the SVRK modeling, this study provides an informative foundation for decision
makers and other researchers on stand volume mapping with limited samples in northeastern China.

Based on the results of this study, the following was concluded:

(1) SVRK can accurately predict stand volume of the heterogeneous Changbai Mountains Mixed
forests with RMSE of 25.3% based on the low sampling density of 928 samples/171,450 ha, which
improved accuracy of 9% than SVR.

(2) Topographic indices from ALOS DSM as L band InSAR, backscatters of ALOS-2 as L band
SAR, and texture features of VV channel from Sentinel-1 as C band SAR, as well as vegetation
indices of Sentinel-2 MSI as the optical sensor were vital for explaining the observed variability of
stand volume.

(3) The northern part of the study area with high altitude had the largest volume values ranging from
195.51 to 532.83 m3/ha. In the south with low altitude and near a non-forest area, the smallest
volume values ranged from 0.18 to 94.40 m3/ha.

(4) Yong forests should be paid attention to and certain measures can be taken for sustainable forest
management. Indeed, young forests with large volume need thinning, while that with small
values should be enclosed for cultivation.
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Abstract: Long-term monitoring of vegetation is critical for understanding the dynamics of forest
ecosystems, especially in Southeast Asia’s tropical forests, which play a significant role in the global
carbon cycle and have continually been converted into various stages of secondary forests. In Thailand,
long-term monitoring of forest dynamics during the successional process is limited to plot scales
assuming from the distinct structure of successional stages. Our study highlights the potential of
coupling airborne light detection and ranging (LiDAR) technology and stand age data derived from
Landsat time-series to track back forest succession, and infer patterns in the plant area index (PAI)
recovery. Here, using LIDAR data, we estimated the PAI of the 510 sample plots of a seasonal
evergreen forest dispersed over the study area in Khao Yai National Park, Thailand, capturing
a successional gradient of tropical secondary forests. The sample plots age was derived from the
available Landsat time-series dataset (1972–2017). We developed a PAI recovery model during the
first 42 years of the succession process. We investigated the relationship between the model residuals
and PAI values with topographic factors, such as elevation, slope, and topographic wetness index.
The results show that the PAI increased non-linearly (pseudo-R2 of 0.56) during the first 42 years of
forest succession, and all three topographic factors have less influence on PAI variability. These results
provide valuable information of the spatio-temporal PAI patterns during the successional process
and help understand the dynamics of tropical secondary forests in Khao Yai National Park, Thailand.
Such information is essential for forest management and local, regional, and global PAI synthesis.
Moreover, our results provide significant information for ground-based spatial sampling strategies to
enable more accurate PAI measurements.

Keywords: forest succession; LiDAR; leaf area index; plant area index

1. Introduction

Among the world’s tropical forests, specifically Southeast Asia’s tropical forests are considered to
contribute significantly to carbon storage and climate mitigation, but they also belong to the major
deforestation areas [1,2]. After deforestation, these forests feature patches of deforested areas and
various stages of recovered forest through succession [3,4], where each stage has different forest
structural attributes, species diversity, species composition, and capability in the forest ecosystem [3,5].

Currently, collecting spatiotemporal data, data on patterns, and data on the rate of forest recovery
still represent a challenge, especially in tropical forests, while it is required for a better understanding
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of the functionality and dynamics of forest ecosystems. For decades, many studies have attempted to
explore the recovery of forests after disturbance [3,6,7]. Among the forest attributes, the leaf area index
(LAI), defined as the one-sided leaf area per unit ground surface area [8,9], is one of the most significant
biophysical variables [10] that is required for quantitative analysis of physical and biological processes
related to vegetation dynamics and the modelling of ecosystem processes at local, regional, and global
scales [11,12]. Therefore, long-term LAI monitoring following stand regrowth would further enhance
our understanding of the dynamic changes in tropical forests and the climate impacts on tropical
forest ecosystems.

Data on directly measured LAI in the field, especially in tropical forests, are very rare [13]
due to the labor intensive work that is limited in time and space [14,15]. With the advancement
of technology, indirect methods are now widely used, mainly through optical sensors such as the
LI-COR LAI-2000 Plant Canopy Analyzer (which produced by LI-COR Inc., Lincoln, NE, USA) and
digital hemispherical photography (DHP) [15,16]. However, the use of these methods is still limited
in inaccessible sites, due to their spatial scale, and they often involve large uncertainties, especially
related to the dense, tall, and heterogeneous canopies in tropical forests [14,15]. At regional and global
scales, remotely sensed data meet the requirement for spatial and temporal estimates of LAI over large
landscape areas. Most of the estimated LAIs via passive remote sensing data rely on the empirical
relationships between field-based measured LAIs and spectral information [9,17,18]. Although passive
satellite-based approaches are highly suitable for a wide range of observations, they suffer from several
factors, such as weather conditions, the signal saturation of spectral reflectance in dense tropical forests,
and an inability to capture the vertical LAI [10,19].

The light detection and ranging (LiDAR) technology collects the three-dimensional (3D) forest
structure and helps to overcome many shortcomings of passive optical sensors. LiDAR has, hence,
attracted much attention because of the advantage of monitoring forest structure and secondary
succession of many different types [20–22]. Currently, LiDAR data is being widely and successfully
used to derive LAIs [23–25]. In previous efforts, some studies estimated LAI from LiDAR data
based on the empirical relationship between the ground-based measured LAI and LiDAR-derived
metrics, such as mean height, maximum height, percentile height, and canopy density metrics [23–25].
Including the leaf, stems, twigs, and fine branches, the plant area index (PAI) is usually measured
through the use of optical sensors and the value of PAI is comparable to the LAI value because leaf
area is generally much larger than branch area, and the majority of branches are shaded by leaves [26].
With the advent of such voxel-based approaches, the term PAI instead of LAI was used. Due to a lack
of recent literature on PAI, LAI will also be used for comparison where possible throughout the paper.
Recently, voxel-based approaches have been developed to improve the estimation of PAI in tropical
forests. With this approach, LiDAR data are reconstructed in the form of a 3D voxelized space of the
forest structure and converted into PAIs by applying the Beer-Lambert law [27]. These approaches now
become a promising method to obtain the PAI with high accuracy because they are not influenced by the
orientation of the sun, or the spatial distribution, size, or shape of canopy components. Such methods
can, thus, overcome the problem of the leaf clumping effect and signal saturation.

Although LiDAR data can be used effectively to retrieve the vertical PAI with high accuracy in
tropical forests, they are limited in areas intended for long-term monitoring, as this technology is
relatively costly. To investigate long-term PAI dynamics in successional gradients, data with a high
temporal and spatial resolution is required. There are many studies that investigated the combination
of high temporal resolution satellite images (e.g., Landsat) and high spatial resolution LiDAR data
for estimating the dynamics of aboveground forest [28,29]. Recently, this approach has also been
successfully applied to the assessment of forest aboveground biomass and its resilience in Thailand [30].
Until recently, however, there have not been any studies examining the long-term vertical PAI in
successional gradients of tropical forests. Therefore, combining Landsat time-series datasets with high
spatial resolution LiDAR data may be a promising way to achieve highly accurate PAI values for the
past years along secondary forest successions.
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The main aim of this study was to estimate the PAI and model the PAI recovery using LiDAR data
combined with a Landsat time-series dataset in the secondary forest site in Khao Yai National Park,
Thailand. Here, the landscape contains a mosaic of secondary forest with different ages surrounded
by old-growth forest. The effects of topographic factors, including elevation, slope, and topographic
wetness index (TWI) on the model residuals were also investigated. These factors are well known
to influence forest growth and LAI, especially TWIs, which are widely used as topography-based
indicator of soil-moisture. This is the first attempt to study the PAI and its recovery modeling in
Thailand and Southeast Asian using LiDAR data in successional gradients.

2. Materials and Methods

2.1. Study Area

The study area is located in Khao Yai National Park in central Thailand (Figure 1). It covers
an area of approximately 64 km2, with an elevation ranging from 700 to 800 m above mean sea
level [7,31]. At this altitude, the forest is seasonal evergreen with a dry season from November to April.
The average annual precipitation is ca. 2100 mm, and the annual temperature ranges between 19 to
28 ◦C [7]. This area has been strongly affected by anthropogenic activities since the end of the 19th
century to the establishment of the park in 1962, mostly through low-intensity agriculture. Since 1962,
some areas have been maintained through the practice of open fires (for space opening to accelerate
the growth of natural grasses) by the park managers. Therefore, the study area is a landscape mosaic
consisting of forest patches of different ages, even if old-growth or relatively mature forest dominates
the landscape [32].

 
Figure 1. Location of the study site in Thailand (a) and in the Khao Yai area (b). The map (c)
represents the canopy height in the study site with three stand initiation stage plots (SIS; red dots),
three stem exclusion stage plots (SES; blue square), Mo Singto or permanent old growth stage plot
(OGS; red rectangle), and 444 Landsat time-series plots (LTS; black squares).
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2.2. Field Datasets

Two forest inventory datasets with different successional stages were used in this study to estimate
PAI change patterns with forest age. The first dataset included six inventory of 60 m × 80 m (0.48 ha)
size, established from March to May 2013 [32]. These plots were located across the study area in
different successional stages, including three plots in the stand initiation stage (SIS) and three plots
in the stand exclusion stage (SES). The second dataset comprised a 30-ha Mo Singto plot, which is
defined as old growth stage (OGS). The Mo Singto plot is a permanent plot established in 1996 in the
Mo Singto area located in a large area of old-growth forest in the central part of Khao Yai National Park.
This permanent plot is part of the global network of large forest plots of the Center for Tropical Forest
Science (CTFS) of the Smithsonian Tropical Research Institute (STRI). The plot age was estimated by
Chanthorn et al. [32], based on Landsat imagery and interviewing the old rangers, as 15–20 years for the
SIS stage, 35–40 years for the SES stage, and more than ~200 years for the OGS stage. To homogenize
its scale, the Mo Singto plot was subdivided into subplots of 0.5 ha, resulting in 60 plots with 50 m ×
100 m.

2.3. Forest Age Datasets

The age of secondary forest pixels in the study area was obtained from Jha et al. [30], whose study
was based on LiDAR and a Landsat time-series dataset (LTS). Jha et al. [30] employed a random forest
algorithm to classify the Landsat time-series (1972 to 2017) dataset using training pixels derived from
the mean height of the Canopy height Model (CHM) from LiDAR (2017) at a 60-m resolution. In total,
34 images from Landsat 1-3 MSS (1972–1983), Landsat 4-5 TM (1984–2011), and Landsat 8 OLI and
TIRS (2013–2017) (http://glovis.usgs.gov) were classified into forest and non-forest areas with over 90%
accuracy. Using 34 classified Landsat time-series images and applying the quality filters, Jha et al. [30]
further selected 550 secondary forest pixels with various recovery ages, in which pixels experienced
a shift from non-forest to forest areas. Methodological details on the classification and selection of
secondary pixels with respect to age are given in Jha et al. [30].

Based on Jha et al. [30], and after excluding pixels that were not located in our footprint of 1 m
LiDAR-derived CHM, we obtained 444 secondary forest pixels (LTS pixels) for use in this study.

2.4. LiDAR Data Acquisition

Airborne discrete return LiDAR (ALS) data was collected by Asian Aerospace Services Limited of
Bangkok on 10 April 2017 over an area of 64 km2 (Figure 1c). LiDAR data was acquired using a RIEGL
LMS Q680i full-waveform laser scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria),
installed into a Diamond Aircraft “Airborne Sensors” DA-42 fixed-wing plane (Asian Aerospace
Services, Bangkok, Thailand). The flight altitude was approximately 500–600 m above the ground level
with a 60◦ field of view. The pulse repetition frequency was 400 kHz. The average point density was
22 pts m2. Post processing of LiDAR data, including point cloud classification into ground, non-ground,
and noise removal were done by AAS engineering (Aerospace Services Limited) using TerraScan,
Terrasolid Version 14 (Terrasolid Ltd., Helsinki, Finland).

2.5. Overall Methodology

Firstly, all the sample plot coordinates were used to extract the point clouds for estimating the PAI.
Secondly, all sample plot point clouds were used to estimate the PAI using the Amapvox software [27]
and R programming software (which created by Ihaka, R. and Gentleman, R., University of Auckland,
New Zealand). Then, the PAI was used to generate a recovery model by plotting against stand age.
Simultaneously, the point clouds were also used to generate the digital surface model (DSM), digital
terrain model (DTM), and canopy height model (CHM). The topographic factors were extracted from
the DTM using the RSAGA package in R (which developed by Alexander Brenning, Jena, Germany).
Finally, the topographic factors were used to assess their impact on the variability of the PAI recovery
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model, while PAI data were used to assess the correlation with the CHM. The overall methodology is
illustrated in Figure 2; details of the methodology are explained in the next sections.

 
Figure 2. Overall methodology.

2.5.1. LiDAR Data and Topographic Factors Extraction

The point clouds classified as ground were interpolated to generate a DTM at 1 m resolution.
The point clouds classified as non-ground points were used to generated a DSM with the same spatial
resolution. A 1 m resolution CHM was then computed by subtracting the DTM from the DSM. Finally,
we used the CHM to extract the canopy height at the plot level for assessing the correlation between
forest canopy height and PAI data.

For creating topographic factors, the elevation was derived directly from the DTM, while both
slope and TWI were computed from the DTM as the primary attribute using the RSAGA package in R.
The slope was defined at each point in the DTM as a function of a gradient in the X and Y direction [33]:

Slope = arctan
√
(fx)2 + (fy)2 (1)

TWI was calculated by combining the slope angle and specific catchment area (SCA), where SCA
is considered as the factor that describes the tendency of the area to receive water [34]. The equation
for TWI is computed as follows:

TWI = ln
(

SCA
tanφ

)
(2)

where ln is the natural algorithm, SCA is the specific catchment area, and φ is the slope angle.

2.5.2. Estimation of LiDAR-Based Plant Area Index

We estimated the PAI of 510 sample plots, including 444 60 × 60 m pixels for which a forest starting
recovery date was available, six 80 × 60 m successional sample plots, and 60 old-growth plots with
an area of 50 × 100 m. For each plot, we first extracted all ALS points whose projected coordinates
fell within the pixels using R Second, each plot containing point clouds was contructed in a form
of a 3D voxelized space (m3). Then, a local vegetation transmittance of each voxel was computed
as the ratio of the sum of existing energy and the sum of entering energy normalized by the mean
optical path length in each voxel, which was implemented in AMAPvox (version 1.3.5) [27], available
at http://amap-dev.cirad.fr/projects/amapvox/files?sort=filename%2Csize. The equation for estimating
transmittance P of an individual voxel is:
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P =

[∑n
i PFOuti × Si × li∑n
i PFEnti × Si × li

] 1
1
n

∑n
i li

(3)

where P is the transmittance, PFEnti is the incoming fraction of pulse I, PFOuti is the exiting fraction of
pulse i, li is the length of pulse i optical path, and Si is the cross section of a pulse at the voxel center.

To control the uncertainty in plant area density (PAD) estimation, which is related to low sampling
intensity, the transmittance of each voxel was then refined using a hierarchical linear mixed model in R.
Individual voxels, which were nested in a 5 × 5 × 5 m neighborhood, were treated as “random” effects,
while the neighborhood was treated as a “fixed” effect. Subsequently, the PAD was computed for
each voxel from the transmittance values by applying Beer-Lambert’s turbid medium approximation,
assuming isotropic transmittance as shown in Equation (4) [27]:

P(θ) = e−G(θ).PAD.l (4)

where P(θ) is the gap probability for inclination θ (view angle/shooting angle), G(θ) is the ratio of
foliage area projected in direction θ to actual, and l is the optical path length.

Finally, the PAI values were obtained from the vertical integration of the PAD profiles (Figure 3).

 

Figure 3. Example of PAD voxelization of LiDAR data point clouds applying AMAPVOX software.

2.5.3. Statistical Analyses

Nonlinear regression analyses were used to explore the change in PAI along the forest
chronosequence. The PAI recovery model was, thus, of the form:

PAI = a + b(Tc) + ε (5)

where PAI is the Plant Area Index, a, b, c are model parameters to be inferred, T is the forest age, and ε

represents the model residuals.
For the statistical test, pseudo-R2 was used to assess the fitted non-linear model. To evaluate the

effects of topographic factors (elevation, slope, and TWI) on the variation of the PAI (in terms of PAI
residuals and PAI values) over 42 years and the correlation between PAI and CHM, correlation through
stepwise multiple regression analysis were performed. PAI residual values of the PAI recovery model
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were individually regressed through ordinary least square regressions. All of the statistical analyses
were performed using the statistical program R version 3.6.2.

3. Results

3.1. Forest Successional Structure and Spatial PAI Variability

An example of the three successional stand characteristics with the LiDAR-derived CHM and the
frequency of canopy height per plot is shown in Figure 4. The LiDAR-derived CHM characteristics
are clearly differed in each of the successional sample plots. The crown canopy size and tree height
increased from the initiation to the old-growth stage following regeneration, while the canopy was
dense in the exclusion stage only but sparse in the initiation and old-growth stages due to disturbed
areas and gap formation. In addition, the canopy indicates the characteristics of forest succession by the
vertical stratification along with its height. Both initiation and old-growth stages had a heterogeneous
upper canopy surface due to canopy gaps and variations in height, while the exclusion stage showed
a smooth upper canopy surface, with a lack of understory.

Figure 4. Example of the characteristics of the three forest successional stages. Each row represents the
Canopy height Model (CHM), three-dimensional (3D) point clouds, and canopy height distribution of
each stage, respectively. (a–c) represent the characteristics of SIS. (d–f) represent the characteristics of
SES. (g–i) represent the characteristics of OGS.

Table 1 shows the characteristics of the successional sample plots, including mean PAI, mean canopy
height, and stand age. We found that the PAI values varied with forest successional stage, canopy
height, and age. The PAI values were lowest in the initiation stage plots and higher in the stem
exclusion and old-growth stage plots, respectively. Moreover, the tree canopy height indicated that the
stand height increased following the stand development stage. This result indicates that PAI values
increase when the tree height increases. For all sample plots (secondary successional plots, Mo Singto
sample plots, and LTS plots), the values of the secondary successional plots and those of OGS plots
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seem to fit into the trend of the LTS sample plots (R2 0.75, p < 0.001; Figure 5). The mean PAI was
7.07 m2 m−2 and ranged from 2.69 to 11.02 m2 m−2 (s.d. =1.85 m2 m−2), while the mean canopy height
was 16.57 m and ranged from 5.34 to 28.41 m (s.d. = 5.56 m).

Table 1. Means and standard deviations of the PAI, the canopy height, and the age.

MeanPAI
(m2 m−2)

MeanCHM
(m)

Age (Years)
Number of

Sample Plots

Stand initiation stage plots (SIS) 4.19 ± 0.3 9.25 ± 0.3 8–20 3
Stem exclusion stage plots (SES) 6.63 ± 0.3 20.22 ± 1.8 35–41 3
Old-growth stage plots (OGS) 8.92 ± 0.65 21.87 ± 2.71 >200 60

 

Figure 5. Relationship between PAI and canopy height model for all datasets. The regression model
is illustrated by the black line. Red dots represent the PAI in SIS from the successional sample plots,
blue dots represent the PAI in SES from successional sample plots, green dots represent PAI in OGS
from Mo Singto sample plots, and black dots represent the PAI from LTS sample plots.

3.2. PAI Recovery Analysis

The LiDAR-derived PAI recovery along the successional gradient is illustrated in Figure 6.
The LiDAR-derived PAI of the plots ranged from 1.36 to 11.02 m2 m−2, with a mean of 6.81 m2 m−2.
We found that the PAI accumulation increased non-linearly through time during the 42 years.
The relationship between PAI and age was best modeled with a non-linear power model and an
exponent higher than 1. However, as shown in Figure 6, the exponent value indicated a close to linear
relationship with a pseudo-R2 of 0.56, indicating an increase in the PAI with recovery time during the
42 first years of the succession. Note that the model predicted a non-null PAI in year zero because
we defined forests as areas with a mean top canopy height greater than 5 m, following the Food and
Agriculture Organization of the United Nations (FAO) [35] definition of forests. After 20 years, the PAI
was predicted to be 6.30 m2 m−2, and 7.58 m2 m−2 after 40 years. For the neighboring old-growth forest
in which the forest age was more than 200 years, the median of the estimated PAI was 8.87 m2 m−2 and
ranged from 8.05 to 10.63 m2 m−2 (Figure 6).
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Figure 6. Relationship between the PAI estimated from the LiDAR and past time after disturbance (grey
dots). The red line represents the fitted power model. Red dots represent the PAI of SIS in successional
sample plots. Blue dots represent PAI of SES in successional sample plots. The box plots represent the
PAI values of the OGS in Mo Singto plots with a forest age of ~ 200 years. The box edges indicate the
25th and 75th percentiles, the solid line indicates the median.

Topographic factors showed mixed effects on both the PAI values and residual values. As shown
in Figure 7 and Table 2, a weak trend was observed in the relationship between both the PAI values and
residual values, and topographic factors such as TWI, slope, and elevation. Results from the stepwise
multiple regression analysis are shown in Table 2 and an interpretation is described below Table 2.

Figure 7. The left colmn showed the relationship between PAI residuals and (a) topographic wetness
index (TWI), (c) elevation, and (e) slope. The right colmn showed the relationship between the PAI
values and (b) TWI, (d) elevation, and (f) slope. The color grediants represent the the past time
after disturbance.
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Table 2. Effects of topographic factors on PAI values and residual values using stepwise multiple
regression analysis.

Description Coefficients p-Value S.E. t Stat

Depedent PAI value
Slope 0.10156 ** 0.000 0.02096 4.85

Elevation −0.30905 * 0.017 0.12877 −2.40
Elevation2 0.00020 * 0.020 0.00008 2.33
Intercept 126.02670 * 0.010 48.82904 2.58

Dependent PAI residual value
Slope −0.11043 * 0.016 0.04588 −2.41

Elevation 0.15834 0.070 0.08728 1.81
Elevation2 −0.00011 0.057 0.00006 −1.91
Intercept −56.76872 0.088 33.20418 −1.71

Note: * Significant coefficients at the 95% confidence level; ** Significant coefficients at the 99% confidence level.
S.E. = Standard error.

By the backward stepwise elimination method, the variable TWI was dropped from the PAI
model, suggesting that TWI did not significantly influence PAI value. On the contrary, the slope had
a significant and positive linear effect on the PAI value. When the slope increases by one unit, PAI is
predicted to increase by 0.1016 unit on average, while controlling elevation.

Elevation had a significant quadratic effect on PAI (Table 2), where the effect of elevation on PAI
varies by the level of elevation. Using differential calculus, the effect of elevation on PAI was expressed
by the following equation:

Marginal effect of elevation on PAI = 2 × 0.0001977 × Elevation − 0.3090521 (6)

This implies that at elevation = 700, the effect of elevation was −0.0323, indicating that when
elevation increases from 700 to 701, PAI is expected to decrease by 0.0323 on average, while controlling
for slope. Likewise, we obtained the effect of elevation as −0.0125 at elevation = 750, 0.0073 at elevation
= 800, 0.0270 at elevation = 850, and 0.0468 at elevation = 900. As elevation increases from 700, the effect
on PAI is initially negative, but increases and reaches zero when elevation is between 780 and 790.
Thereafter, the effect turns positive and continues increasing. In other words, the PAI value took its
minimum when elevation was between 780 and 790.

Likewise, the backward stepwise elimination method was used to analyze the PAI residuals after
the time variable was accounted for. In this analysis, the slope variable was dropped, suggesting that
slope did not significantly influence PAI residual. This also implies that time and slope were correlated.

TWI had a significant and negative linear effect on PAI residual. When TWI increases by one unit,
PAI residual is predicted to decrease by 0.1104 unit on average, while controlling elevation. Elevation
was not statistically significant at 5% significance level. This can mean that elevation had no significant
effect on PAI residual. If we consider a 10% significance level, then quadratic effects were identified,
where the effect of elevation on PAI residual varies by the level of evelation. Using differential calculus,
the effect of elavation on PAI residual was expressed by the following equation:

Marginal effect of elevation on PAI = 2 × (−0.0001096) × Elevation + 0.1583402 (7)

This implies that at elevation = 700, the effect of elevation was 0.0049, indicating that when
elevation increases from 700 to 701, PAI residual is expected to decrease by 0.0049 on average,
while controlling for TWI. Likewise, we obtained the effect of elevation as -0.0061 at elevation = 750,
−0.0170 at elevation = 800, −0.0280 at elevation = 850, and −0.0389 at elevation = 900. As elevation
increases from 700, the effect on PAI residual is initially positive, but decreases and reaches zero
when elevation is between 720 and 730. Thereafter, the effect turns negative and continues increasing.
In other words, PAI residual took its maximum when elevation was between 720 and 730.

222



Forests 2020, 11, 520

4. Discussion

4.1. Spatial PAI Variability

The spatial variability in the PAI was derived from the LiDAR-derived PAI for all sample
plots. For successional sample plots, we found that the PAI values differed greatly among the three
successional stages, which related to canopy height and stand age. The PAI values were higher in
old-growth plot than in stem exclusion and stand initiation stage plots (Table 1). The old-growth stage
included a larger number of tall trees with random gaps, while the stem exclusion stage included
trees with a smaller crown size and lower height, and the stand initiation stage included the smallest
and lowest number of trees (Figure 4). This result indicates that differences in forest structure have
a strong impact on the PAI value. For the LTS plots, the results also showed that the older areas had
higher PAI values (Figure 8a,b). For all 510 plots, the PAI varied from 2.69 to 11.02 m2 m−2 (mean =
7.07). The coefficient of variation was 26.12%, indicating a high spatial variability of the PAI at the
investigated sites. Compared to other studies, our PAI values were in the range (2.66–12.94) reported
by Clark et al. [36], who conducted the first direct measurements in the heterogeneous landscape of the
tropical forest, and Vincent et al. [27] and Tang et al. [22], who both obtained PAI via LiDAR technology.
With respect to the tree height, the relationships between the PAI and CHM were significant (R2 = 0.75,
p-value = 0.001) (Figure 5), indicating that the stand height is a key variable in understanding the
spatial distribution and variability of the PAI over large areas.

Figure 8. (a) Map showing the past time after disturbance of LTS sample plots. (b) Map showing the
PAI values of LTS sample plots.

4.2. Long-Term PAI Accumulation Through Succession

The LAI is considered to be one of the most valuable determinants of forest growth and productivity.
At the same time, long-term monitoring during the succession of the LAI in tropical forests is very
scarce. We demonstrated that the combination of LiDAR and data of the classified forest age obtained
from time-series Landsat data can quantify the long-term PAI accumulation over 42 years of succession
in a tropical moist forest in Khao Yai National Park, Thailand. As a result, our analyses showed that
a non-linear power model with an exponent greater than 1 was the best fit to our data, indicating
an increase in the PAI during the first stage over the 42 years of succession (Figure 6). In agreement
with the model, the estimated PAI of the successional field plots, which were used for validating our
model, also showed that the PAI increment following the succession stages and their values were close
to our predicted PAI (Figure 6). In addition, our study showed that the PAI increased gradually in the
first 20 years and continued to increase twofold after 40 years. Compared to the PAI estimated for
adjacent old-growth forests (mean = 8.92 m2 m−2, more than 200 years), the average PAI (mean = 8.07
m2 m−2) after 42 years of succession decreased by 0.85 m2 m−2. These differences were very small
when compared to the deviation in forest age. Accordingly, our results suggest that the PAI would
increase rapidly during the first 42 years of forest succession, while it would only slightly increase
thereafter and remain constant afterwards. In tropical forests, LAI predictions along successional
gradients, assuming the distinct structure of successional stages or ages, are limited and were only
reported on the plot scale (mostly ~0.5–1 ha). Chanthorn et al. [7] reported that the estimated LAI
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differed considerably between successional stages, i.e., 3.83, 5.47, and 3.81–5.74 m2 m−2 for very young
forests, smooth young forests, and old-growth forest, respectively. Although we conducted our study
in the same study area, the LAI is very different due to the different methodology and sensor used.
Tang et al. [22] reported that LAI values were estimated to be 1.74, 5.20, and 5.62 m2 m−2 for open
pasture, secondary forest, and old-growth forests, respectively. These studies showed a similar pattern
when compared to our study, i.e., the LAI increased rapidly during successional stand development,
and, then, the increase weakened during the transformation of secondary to mature forests. However,
the estimated LAI values of these studies differs greatly from that of our study (Table 1), and the rate
of recovery remains unclear because the LAI values were estimated with a different methodology,
successional stage definition, and in a different study site.

4.3. Topographic Factors Influence the Variation in the PAI Increase

Topographic factors were found to be critical factors in determining the variation in the PAI across
the landscape in several previous studies [37]. In those studies, topographic factors were proposed
to be the most important factors contributing to tree growth and LAI variation in tropical forests.
Moser et al. [38] found that the LAI decreased by 40%–60% in the elevation range of 1000–300 m.
Unger et al. [39] reported that the LAI significantly decreased in the elevation range of 500–2000 m by
about 1.1 per 1000 m. Liu et al. [40] reported a positive correlation between the LAI and soil moisture.
However, this positive correlation was only found in clay-rich soil, which indicates that soil texture is
one of the relevant factors determining the soil moisture-LAI relationship [41]. At our site, all three
topographic factors, TWI, slope, and elevation showed week relationship with the PAI residual values
and PAI values, indicating that the variability in the PAI in this study area was less influenced by
these factors (Figure 7, Table 2). It has been hypothesized that the variability in the PAI is due to the
variation in soil nutrients and properties during succession. In addition, our study site is a special case
in that it is a natural ecosystem, affected by anthropogenic activities, such as agriculture, before the
establishment of the park, and maintained as pasture land by fire. The study area comprises a mosaic
of secondary forest patches, with different age and surrounded with old growth forest. Therefore,
some of the sample plots are in the transition zone and/or large trees were partly left in the secondary
forests, which probably affected the PAI variability in the recovery model.

5. Conclusions

Study on PAI patterns in the successional forests after disturbance is rare in the tropics. This study
demonstrated the combined use of LiDAR data and stand age data derived from Landsat time-series
to determine PAI patterns in a forest succession in Khao Yai National Park, Thailand. The PAI values
non-linearly increased following forest successional stages with a rapid increase during the first
20 years, twofold increase during the first 40 years or, so but a constant slow increase after 200 years
onward. Effects of the topographic factors on PAI values and residuals are less significant or weak in
our study.

These findings provide an information of the long-term PAI recovery patterns during successional
processes and the spatial variation in the PAI in heterogeneous tropical moist forests following
disturbance. This information is very important for understanding the vegetation regrowth and the
rate of change in a disturbed area as the large areas of tropical forests have experienced overexploitation,
forest fires, and forest degradation. Our study findings can also provide the information on PAI values
in tropical forests in Southeast Asia, where such values are still limited. The information on the spatial
variation of the PAI in in the successional forests as a consequence of forest disturbance is critically
needed for the development of ecological surveys and ground-based sampling strategies for ecological
research and conservation. Further study on the effects of soil conditions and seasonal variations of
vegetation on the PAI values could improve our understanding of the PAI patterns under various
environmental and topographic factors.
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Abstract: Shrubs growing in former burnt areas play two diametrically opposed roles. On the one
hand, they protect the soil against erosion, promote rainwater infiltration, carbon sequestration and
support animal life. On the other hand, after the shrubs’ density reaches a particular size for the
canopy to touch and the shrubs’ biomass accumulates more than 10 Mg ha−1, they create the necessary
conditions for severe wild fires to occur and spread. The creation of a methodology suitable to
identify former burnt areas and to track shrubs’ regrowth within these areas in a regular and a multi
temporal basis would be beneficial. The combined use of geographical information systems (GIS) and
remote sensing (RS) supported by dedicated land survey and field work for data collection has been
identified as a suitable method to manage these tasks. The free access to Sentinel images constitutes a
valuable tool for updating the GIS project and for the monitoring of regular shrubs’ accumulated
biomass. Sentinel 2 VIS-NIR images are suitable to classify rural areas (overall accuracy = 79.6% and
Cohen’s K = 0.754) and to create normalized difference vegetation index (NDVI) images to be used in
association to allometric equations for the shrubs’ biomass estimation (R2 = 0.8984, p-value < 0.05
and RMSE = 4.46 Mg ha−1). Five to six years after a forest fire occurrence, almost all the former burnt
area is covered by shrubs. Up to 10 years after a fire, the accumulated shrubs’ biomass surpasses
14 Mg ha−1. The results described in this paper demonstrate that Northwest Portugal presents larger
shrubland areas and greater shrub biomass accumulation (average 18.3 Mg ha−1) than the Northeast
(average 7.7 Mg ha−1) of the country.

Keywords: sentinel 2; landsat; remote sensing; GIS; shrubs biomass; bioenergy; vegetation indices

1. Introduction

Portugal is an European country with a constituent land mass and 4 separate archipelagos.
The former is located in the east of the Iberian Peninsula with an area of approximately 90,000 km2.
From the mainland area (52%) there are: forest stands (39%), dense shrubland (12%), and sparse
shrubland (1%) [1,2]. Between the mid-1980s and 2020, due to increasing human rural abandonment
and edaphoclimatic conditions, a large number of forest fires occurred in mainland Portugal during the
summer. The intensity of these fires increased dramatically each decade [3–7]. The same edaphoclimatic
conditions that make the territory prone to wildfire occurrences, however, also create suitable ecological
conditions for shrub regrowth after the fires. Previously published results [8–12] demonstrate that,
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five years after wildfire occurrence, the fire scars are no long visible because they have been covered by
shrubs as well as with the growth of scattered trees from self seedling processes.

Shrublands assume several diametrically opposed roles. On the one hand, they constitute the
vegetable fuel that will eventually burn, and a social-economic problem. Portuguese law [13], specifies
that it is mandatory to cut shrubs 10 m alongside the road network and 50–100 m beside other man-made
structures on a regular basis. This has led to the use of fire as a means to eliminate the remaining
cut area. On the other hand, these shrubs are also a source of carbon [12,14,15], they promote water
and nutrients circulation in forested areas [8,16,17], protect the soil from erosion processes [16–19],
support animal life, and promote biodiversity [8,19]. In essence, the ecological benefits to these
shrublands could be summarised in two words: ecosystem services [20–22]. This is a central measure
within European Community [22] and used as a way to assess forested areas’ values. Thus such
shrublands could take on an unanticipated new economic role potentially generating biofuel for power
plants [23,24].

Analysis of shrubland location and its biomass accumulation is therefore important as it could
influence the working processes for several stakeholders: forest management [25,26], wildfire hazard
reduction, ecosystem surveying and biomass harvesting for energy production.

The calculation of forest biomass can be achieved using destructive processes, such as cutting
and weighing vegetation in sampling plots. Subsequently, the results obtained can be analysed using
appropriate geostatistics processes [23] that generate indicative biomass maps.

The results obtained through these destructive processes can later be used to adjust allometric
equations enabling the estimation of biomass weight based on the volume collected. This is a
non-destructive process. The results can also be used in conjunction with relevant satellite images.
This can also support the calculation used in the allometric models for accumulated biomass estimation.
This is achieved by comparing the relevant bands from the satellite images as well as analyzing the
vegetation indices calculated by means of those same bands. This is a good example of a non-destructive
method of estimating biomass.

It is important to note, however, that the first phase of a process to calculate and estimate
accumulated biomass always begins with a destructive method.

The assessment of land cover dynamics in former burnt areas of forest as well as shrubs’ regrowth
must be carried out over vast areas of territory, and on an annual basis. It also requires the use of
appropriate computer technology. Firstly, remote sensing techniques (RS) can be used for image
processing and classification to create updated land cover maps. Secondly, geographic information
systems (GIS) can be employed to record, manipulate, and present data. In addition, GIS allows the
combination of multiple data sources enabling spatial analysis and can enhance the sampling process
too. It is recognized that annual fieldwork for data collection is very expensive and time consuming,
thus the use of RS and GIS provides a cheaper and appropriate sampling mechanism. Previous research
in this subject area has generated several RS based approaches that used multitemporal satellite image
classification and comparison.

A literature review on the use of GIS, RS, and combined RS/GIS for forest biomass and shrubs’
biomass [25–29] enabled the consideration of different approaches to biomass estimation and mapping
on given dates. This resulted in the use of particular regression models that were based on specific
vegetation indices [30–34], and are presented in Table 1.

It should be noted that almost all of these previously presented data were not based on a shrubs’
biomass time series sampling system thus do not account for any variation due to elapsed time over
the former burnt areas. The use of allometric equations adjusted for a given geographic area requires
local validation before it is used elsewhere, i.e., necessitating field work for data collection and the use
of mathematical models for data analysis.
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Table 1. Biomass regression models based on vegetation indices.

Allometric Model R2 (Adj) Ref

Trees, shrubs and herbaceous
y = 73,709.9241 − 48,420.44 χ1 + 67,242.43 χ2

where, y = Biomass (kg), χ1 = NDVI value, χ2 = NDVI MIR index value
0.70 [30]

Trees, shrubs and herbaceous
Log10 y = 3.7163 − 0.01078 χ1 + 0.007065 χ2

where, y = Biomass (kg), χ1 = Brightness value, χ2 =Wetness value
0.66 [31]

Shrubs
y = 46:678 χ1 + 7:929 χ2 + 32:565

where, y = Biomass (kg), χ1 = Brightness value, χ2 = RVI (ratio vegetation index)
0.70 [31]

Total biomass
AGB prediction = 3.35 + 3.13 VV + 0.21 VH + 1.53 NDVI

where: VV—the backscatter coefficients for a specific polarization; VH—the backscatter
coefficients for a specific polarization; NDVI—normalized difference vegetation index.

0.66 [32]

Shrubs Biomass
y = 0.18363 + 0.85669 NDVI

where, y = Biomass (Mg), NDVI—normalized difference vegetation index
0.74 [33]

Fractional green vegetation cover (fc)
fc = 0.114 + 1.284 NDVI (R2 = 0.89) 0.89 [34]

After 18 years of carrying out fieldwork to measure the volume and the weight of shrublands,
the authors’ main aim now is to present a suitable methodology that enables the estimation of the
accumulated shrubs’ biomass. This process takes into account the elapsed time after wildfires, based on
satellite imagery processing and classification. The methodology is non-destructive and does not
require fieldwork for data collection, thus allows accurate estimates when used in conjunction with RS
techniques. It also enables stakeholders to perform dynamic analysis using satellite images in time
series processing. To achieve this main aim, the authors adopted a methodology using Sentinel 2
images processing and classification as a way to identify former burnt areas, shrubland and to adjust
an allometric equation that enables to estimate shrubs’ biomass through using NDVI images.

This methodology also incorporates the elapsed time after identifying any wildfire occurrence
effect on the shrubs’ regrowth as an estimate. This then enables the creation of accurate maps related
to the shrubs’ biomass accumulation. It also established that, if the growth rate in the Northwest
area of Portugal is different from that of the Northeast area (comparison was using annual satellite
images), then this may have an influence on the adjustment of allometric equations. In addition this
methodology has used dynamic models to identify forest fire hazards and also used design logistics
models for biomass harvesting for energy purposes. These can indicate the areas where the intervention
of forest managers (necessary to comply with the law) has taken place. Another unexpected result of
this methodology was to help design post fire ecosystem recovery actions.

2. Materials and Methods

2.1. Study Area Characteristics and Sampling Plots Location

The study area is located in North Portugal (Figure 1) and comprises a forested area of 813,846 ha
(432,000 ha forest stands and 381,846 ha shrubland).
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Figure 1. Study area (North Portugal) and Portugal world geographical location.

This is a very fragmented landscape and the small forest areas are often side by side with shrubland
and agricultural areas. It should be noted that, for cultural reasons, the rural population often uses
fire as an instrument for pruning as well as a method for removing any residues. The result of this
approach is that a higher number of rural fires every year occurs than is actually appropriate for this
type of landscape.

The study area in Northern Portugal includes many morphological and edaphoclimatic conditions
typical of this region. Altitude ranges from sea level (0 m) to 1546 m in the Gerês mountains (Figure 2).
Mean annual accumulated precipitation ranges from 1000 to 2400 mm in the Northwest areas and from
600 to 1200 mm in the Northeast areas. Mean annual temperature ranges from 12.5 ◦C to 15.0 ◦C in the
Northwest areas and from 7.5 ◦C to 12.5 ◦C in the Northeast areas.

Figure 2. Sampling plots location.

2.2. Data Sources

2.2.1. Using GIS in the Project

The project aims were to analyse former burnt areas, assess potential vegetation regrowth and
to estimate the shrubs’ biomass taking into account the elapsed time since any wildfire took place.
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The initial process used the burnt areas data. It is possible to download a set of vector files representing
the burnt areas’ perimeter by year of occurrence from the Portuguese Forest Services website [35] or
the European Forest Fire Information System [36].This information has been used to establish one of
the layers within the GIS project since 2000. Every year, the burnt areas’ vector file is updated with new
burnt areas boundaries. Spatial analysis then enabled new calculations to be made such as identifying
fire recurrence areas as well as assessing the time since the last occurrence of a fire in the same areas.

For the period between 2000 and 2016, 10 sampling plots per year after the last fire were selected.
This resulted in 170 sampling points, dispersed throughout North Portugal. In 2017 and 2018, after the
severe rural fires that occurred in those years, the GIS project was updated and new sampling plots
were added, increasing the number of samples to 234.

These sample points (Figure 2) were then used to create a survey GIS project (e.g., ArcPad, Survey
123, QField) that was transferred to a DGPS receiver (Trimble Inc., Sunnyvale, CA, USA). All the
sample points were also marked (based on the GIS layout) on the Topographic Plan of Portugal on a
1/25000 scale. These were then printed to support fieldwork in areas with no GNSS signal.

Thus the data generated from 2000 to 2018 were used to identify the sampling points on the
ground enabling us to record any shrub regrowth since the last known fire occurrence.

Circular 500 m2 sampling plots (12.62 m in radius) were used along with the cross transect method.
Two 25.24 m fiberglass tape measures were stretched perpendicularly across each sampling plot. Then,
the shrubs intersecting each fiberglass tape were measured in 3 dimensions: length, width, and height.
This enabled a calculation of the volume, assuming that the shrubs canopy was a sphere, and by using
Equation (1).

Vsh = 1/6 π L W H (1)

where Vsh = shrubs canopy volume (m3); L = length (m), W =width (m), H = height (m) (Formula
demonstration in Appendix A).

After measuring the total shrubs’ volume along the 2 transects within the sampling plot, 10 shrub
plants, 5 per transect (at the edges of the plot, halfway from the center and in the center) were cut in
order to be weighed. They were then placed in plastic bags, brought to the lab, put to dry in the shade
and weighed after reaching 30% moisture. The achieved results for the 500 m2 circular sampling plots
were then extrapolated to an area of 1 hectare and the amount of shrub biomass per plot was estimated
using Equation (2).

Biomass = V W 200/Mxw (2)

where Biomass in Mg ha−1, V = total shrubs volume along the 2 transects (m3), W = average shrubs
weight (Mg m−3 at 30% moisture), Mxw =maximum width measured along both transects (Formula
demonstration in Appendix A).

2.2.2. The Processing and Classification of Sentinel 2 Images

Sentinel 2 images were freely downloaded either from the Copernicus Hub website [37] or from
the Glovis website [38].

As the study area is not covered by a single image, eight Sentinel 2 images were used, two per
year, for the years of 2016, 2017, 2018, and 2019. All of them were recorded in the summer season.

It was not possible to download Sentinel-2S2A images for the years 2017, 2018 and 2019.
Only Sentinel-2L1C were available. When processing these images for the various dates, it was noticed,
after computing the NDVI images, that the calculated values for the water surfaces (e.g., dams) were
not consistent. This situation led to performing Sentinel-2 SEN2COR280 Processor (7.0.0) analysis
by SNAP. For this reason, an images atmospheric calibration was performed, based on the spectral
signature of the water collected by the research team with a spectra radiometer Ocean Optics VIS NIR
(Spectrecology, Inc., St Petersburg, FL, USA) and on the atmospheric scattered model proposed by
Chavez (1988) [39]. This procedure was carried out in order to have the same spectral signature for all
water surfaces. Each image was also submitted for atmospheric correction because solar elevation and
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the state of the atmosphere introduce differences in the radiation detected by the sensor for the same
area on different dates [40–43].

To ensure that differences in reflectance are due to changes in land cover, and not caused by
radiometric distortions, it was also necessary to apply a radiometric correction. One of the most
used models for atmospheric correction is a process called dark object subtraction (DOS) proposed by
reference [39]. This process is based on an atmospheric scattering model and reduces the haze effect by
calculating the expected minimum for a given band after atmospheric correction. This was carried
out in relation to the following criteria: at-satellite radiances were converted to surface reflectance by
correcting for both solar and atmospheric effects. Then, at-satellite radiance values were converted
into surface reflectance using a DOS approach [39]. This assumes no atmospheric transmittance loss
and no downward diffuse radiation. The surface reflectance of the dark object was assumed to be 1%,
and thus the path radiance was assumed to be the dark-object radiance minus the radiance contributed
by 1% surface reflectance [39–43].

Spectral reference signatures, such as water, bare soil and dense shrubland, were created after
dedicated work using an Ocean Optics VIS NIR spectra radiometer.

After the images processing operations, a RGB false colour composition image and an NDVI
image was created for all dates. The Sentinel 2 RGB482 composition was used, because it employs the
near infrared band in the green channel which allows the highlighting of vegetation thus enabling an
identification of the burnt areas, both recent and old.

Based on the analysis of these new images, and with the support of the GIS project and the
orthophotomaps made available by Bing Maps, spectral signatures were created to support the images
supervised classification. In a second stage, spectral signatures for the main rural and forest land cover
classes were created, namely:

- Agriculture
- Bare soil
- Deciduous
- Burnt areas
- Coniferous
- Grass
- Rocky areas with shrubs
- Shrubs
- Urban areas
- Water

These spectral signatures were then used to perform supervised classification techniques using the
10 m Sentinel 2 bands: B2, B3, B4, and B8. The minimum distance, maximum likelihood, and random
forest were tested.

After the supervised classification process completed, a new image was created indicating the
burnt areas and shrubland. This is a necessary step whereby a raster mask is created then applied to
the NDVI image in order to estimate the shrubs’ biomass that has regrown on former burnt areas.

This raster mask is required because the vector files represent all of the annual burnt areas created.
When placed over the relevant satellite images showing the burnt areas boundary or perimeter, they do
not consider the unburnt ‘islands’, nor the rocky areas [44–46]. Thus, to calculate biomass estimates by
means of a vector mask may lead to overestimations. In order to be able to calculate the amount of
shrub biomass that regenerated in the former burnt areas, it is necessary to create a raster mask that
represents only the areas that were actually burnt.

Finally, the sampling points attribute table in the GIS was updated with the NDVI values using a
known technique that enables extracting raster values to point-type vector files. Lastly, this attribute
table was exported in dBase format and processed in Excel. This way, it was possible to analyse the
relationship that could be established between the measured shrubs’ biomass, and that which was
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calculated using dedicated field work. In addition an NDVI value was also calculated using satellite
images processing techniques.

Figure 3 outlines a summary of all the working stages used in this research.

Figure 3. Work flow chart.

3. Results

3.1. Landcover Characterization

The landcover characterization work carried out was based on false colour RGB482 composition
visual analysis (Figure 4) and used NDVI images (Figure 5) for interpretation (all dates). The ensuing
results for 2019 are shown in Figures 4 and 5.

Figure 4. Sentinel 2 images (summer 2019) for the study area using false colour composition RGB482.
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Figure 5. Sentinel 2 images (summer 2019) for the study area using an NDVI calculation.

As healthy vegetation has its maximum spectral reflectance in near-infrared wavelength,
the Sentinel 2 band 8 (near-infrared) was used and coloured in green. Thus, green tonalities depicted
in the RGB482 images indicated vegetation density and consequently the darker the green colour
indicated the denser the vegetation.

The vegetation index NDVI was calculated using the normalized difference between the
near-infrared and the red images. As the vegetation red reflectance is always lower to the near-infrared
reflectance, the positive NDVI achieved values could also indicate vegetation density. Thus, the higher
the NDVI values the denser the vegetation. Each of the dots depicted in Figure 2 represent a sampling
point within a former burnt area. Analysing the NDVI image, Figure 5, it appears that the old burnt
areas are in various states of vegetation recovery. It seems, therefore, that the Northwest area of
Portugal has more dense vegetation and less burnt areas scars than the Northeast area.

It appears, however, that neither the green colour intensity shown in the RGB482 images (Figure 4)
nor the NDVI values (Figure 5) enable a classification of the vegetation type (e.g., burnt areas, forest land,
shrubland). These two images alone only infer the potential density of the vegetation cover. Thus,
it was necessary to carry out further analysis using Sentinel 2 images and an assisted classification
process to classify the land cover in classes.

Using the results from the Sentinel 2 images supervised classification process as well as the
Minimum Distance Classifier, enabled us to state that the main land cover features are suitable to be
classified accurately as presented in Table 2. This classification accuracy is particularly high for forest
features. For example, burnt areas and shrubland was easy to identify and classify with an accuracy
over 80%.

It was possible, therefore, to create a mask image for use with an associated NDVI image in order
to isolate burnt areas and shrubland. This mask was later used to ‘cut’ the NDVI image enabling a
shrub biomass calculation to be carried out along with the allometric equation application.

With an overall accuracy of 79.6% and a Cohen’s K coefficient of 0.754, it can be stated that the
Sentinel 2 images were found to be suitable for use in forestry applications as well as in the dynamic
analysis of former burnt areas too. The Sentinel 2 classified images created a raster mask that was used
subsequently to isolate the burnt areas and the shrubs areas.
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Table 2. Achieved results after confusion matrix for classification accuracy from Sentinel-2 images.

Sample Class N Pa (%) Ua (%) Ce (%) Oe (%)

Agriculture 77 46 80 54 20
Bare soil 35 80 48 20 52

Deciduous 31 87 68 13 32
Burnt areas 16 100 89 0 11
Coniferous 161 96 96 4 4

Grass 13 69 69 31 31
Rocky and shrubs 46 83 64 17 36

Shrubs 67 84 92 16 8
Urban areas 31 48 65 52 35

Water 9 89 100 11 0

N: Number of ground control points; Pa: Producer’s accuracy; Ua: User’s accuracy; Ce: Commission error; Oe:
Omission error.

3.2. Allometric Model for Shrub Biomass Estimation

For the allometric equation adjustment, 110 pairs (NDVI, shrub biomass) were used: 46 extracted
from 2016 image, 33 from 2017 image and 31 from 2018 image. In a first approach to data processing,
descriptive statistics were calculated for each date and region, as presented in Table 3.

Table 3. Descriptive statistic for the sub-samples.

2016 2017 2018

NW NE NW NE NW NE

NDVI
Count 28 30 21 12 23 8

Minimum 0.388 0.378 0.280 0.136 0.048 0.120
Maximum 0.700 0.700 0.696 0.655 0.694 0.688
Average 0.590 0.580 0.552 0.345 0.521 0.390

Standard deviation 0.090 0.100 0.144 0.193 0.219 0.259
Age

Count 28 30 21 12 23 8
Minimum 5 5 3 3 1 2
Maximum 15 15 15 11 15 14
Average 8.7 8.7 8.6 4.8 7.8 5.9

Standard deviation 3.4 3.4 4.1 2.6 4.2 4.5
Shrub biomass

Count 28 30 21 12 23 8
Minimum 3.49 4.80 1.73 0.46 0.19 0.67
Maximum 34.48 37.60 34.48 27.90 30.82 37.60
Average 17.04 18.76 16.46 6.50 15.97 12.77

Standard deviation 8.24 10.37 11.62 8.69 10.26 14.58

Subsequently, student-t tests were performed in order to verify that the sample points for the NW
area of Portugal are different to those of the sample points for the NE area. As no significant differences
were found, all the sampling points for each year were then merged into a single sample file.

The NDVI and shrub biomass values were centered and reduced in order to verify if this composite
sample had a normal distribution. Descriptive statistic and accumulated probability values were
calculated. Initially, the descriptive statistic for NDVI and shrubs biomass was calculated, shown
in Table 4. Then, accumulated probability values were calculated as depicted in Figure 6.
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Table 4. Descriptive statistic for the total sample.

NDVI (Dimension Less) Shrubs Biomass (Mg ha−1)

Count 110 110
Minimum 0.048 0.186
Maximum 0.700 37.596
Average 0.525 15.494

Standard deviation 0.179 10.781
Standard error 0.342 0.696

Median 0.596 15.291

Figure 6. Normal cumulative curves to NDVI (top) and to shrubs biomass (bottom).

The achieved results show that both distributions presented a normal distribution (Figure 6).
In the third stage of the process, a XY graphical representation was used in order to analyse the

relationship that could be established between NDVI values and shrub biomass (Figure 7). The resulting
graphic shows a narrow points cloud on the left for the minimum values and a scattered cloud on the
right for the maximum values. This indicates that there were constraints in the regression analysis for
the allometric equation calculation, possibly suggesting that there were too few options available.

During the regression analysis processing, it was noted that the NDVI tends to saturate at 0.7,
suggesting that the shrubs’ growth process maybe asymptotic to approximately 50 Mg ha−1. This maybe
due to the nature of the plants and the space they occupy over periods of time. As a consequence
of the approach adopted, the ensuing model led to better results than anticipated. It is presented in
Equation (3).

Shrub biomass = 70.078 NDVI 2.8113 (3)

R2 = 0.8984 (p-value < 0.05) and RMSE = 4.46 Mg ha−1
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Figure 7. Relationship between NDVI and shrub biomass.

3.3. Shrub Biomass Estimation Using NDVI Image Processing

When the regression analysis completed, the adjusted allometric equation was used to generate
the shrubs’ biomass estimation using the NDVI. It was also applied to the 2019 Sentinel 2 images before
the final calculation. General NDVI images were submitted to mask extraction in order to create new
images indicating the former burnt and shrub areas, as depicted in Figure 8.

Figure 8. Accumulated shrubs’ biomass in former burnt areas in the North of Portugal, estimated using
an NDVI image summer 2019 and an allometric equation.

The results show that it is possible to account for an extent of some 172,022 ha and of 1,323,222 Mg
of accumulated shrubs’ biomass in the Northeast area. Likewise some 209,824 ha and 3,835,047 Mg can
be identified in the Northwest area. On average, the Northeast area has approximately 7.7 Mg ha−1

and the Northwest has 18.3 Mg ha−1 of accumulated shrubs’ biomass identified in the former burnt
areas and shrubland.
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4. Discussion

4.1. Sentinel 2 Images

The Sentinel 2 images, bands B2, B3, B4 and B8 (VIS–NIR), were deemed to be suitable for use in
rural areas characterization and mapping, mainly in forested and shrubland areas, as demonstrated by
the calculated overall accuracy (OA = 79.6) and the Cohen’s K coefficient (k = 0.754) described earlier.

It was possible to classify, with good accuracy, the forest features in deciduous, coniferous and
shrubs areas too. It was not possible, however, to classify mixed forest stands of deciduous and
coniferous woodlands as the classification methods only isolate deciduous clusters from coniferous
clusters. It was also not possible to classify forest stands by species.

Due to their spectral signatures, burnt areas were identified and classified with an users’ accuracy
of 89%. It was only possible to classify these former burnt areas, i.e., younger than a year and a half,
after the fire because this timeframe indicates when a vegetative period has taken place and the shrubs
were beginning to grow in these burnt areas. For example, if two full years have passed since the fire,
the former burnt areas classification through satellite images starts to present results that confuse these
areas with agricultural land and rocky areas with scattered vegetation.

The B4 and B8 bands enabled us to calculate NDVI images which proved to be adequate for the
shrubs’ biomass characterization and quantification. This was demonstrated using the statistical values
of correlation between NDVI and shrubs biomass (r = 0.853) and the determination coefficient for the
allometric equation (R2 = 0.8984).

4.2. Shrubland Characterization

Vegetation, mainly shrubs, has a great potential to regrow on former burnt areas. The capability to
colonize the space and to produce biomass is closely related to local morphology and edaphoclimatic
conditions. As previously presented in Table 3, after calculating descriptive statistics for sub-samples
and after adjusting allometric equations to each year, no statistically significant differences were found.
In order to guarantee the accuracy of the estimates obtained by the general allometric equation now
presented, however, it is necessary to verify if the growth rate of the shrubs is different in the two
study areas. To achieve this, an allometric equation per area to the pairs was developed using: age and
shrubs’ biomass. This is presented as Equations (4) and (5).

NW region: Shrub biomass = −0.0062 t3 + 0.2089 t2 − 0.2738 t + 2.279 (4)

R2 = 0.7349 (p-value < 0.05) and RMSE = 4.9 Mg ha−1

NE region: Shrub biomass = −0.0072 t3 + 0.2211 t2 − 0.2738 t + 2.043 (5)

R2 = 0.6921 (p-value < 0.05) and RMSE = 3.7 Mg ha−1

The resulting shrubs’ estimates, by means of these two equations, showed that there was no
statistically significant differences found between regrowth rate in either of the study areas. This is
shown in Figure 9.

The Northwest study area was found to have better morphological and edaphoclimatic conditions
for shrubs’ regrowth after fire than the Northeast area, possibly because the latter had retained burnt
area scars for a longer time. After 30 years of forest fires, many of the mountainous areas had lost
almost all vegetation and, as a consequence, top soil too. Figures 4 and 5 show that these areas
are now characterized by small forested spaces or shrub zones surrounded by rocky extents with
scattered shrubs.
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Figure 9. Estimations for shrubs regrowth rates in the study area.

The achieved results were classified regarding the average value of accumulate shrubs’ biomass
according to the elapsed time after the last fire event and the sampling date. This reclassification
process enabled us to calculate the accumulated shrubs’ biomass amount per class and also to create a
histogram for the number of available hectares per class. The results are shown in Figure 10.

Figure 10. Accumulated shrubs biomass in summer 2019.

Although the growth rates in the two areas are not significantly different, it appears that the
Northwest area is more densely vegetated than the Northeast. This was expected since this former
area is facing the Atlantic Ocean, has a milder climate and greater rainfall than the Northeast
landlocked territory.

It can be noted that for both of the study areas, within two years, the vegetation was capable to
regrow enough to disguise the black landscape caused by fire. After five years, almost all the former
burnt area was covered by vegetation and the accumulated shrubs’ biomass grew up to 5 Mg ha−1 (30%
moisture). Thus it can be demonstrated that in up to five years after a fire occurrence, the ecosystem
will recover as evidenced by the fire hard index ranges from very low to medium. It appears that
between five and 10 years after a fire, the accumulated shrubs’ biomass can reach 14 to 18 Mg ha−1.
In terms of the ecosystem, the situation is favorable, but in terms of fire danger less so. Between 10 and
15 years after a fire, the shrubs’ accumulated biomass can reach 26 Mg ha−1. It must be noted, however,
that this biomass already has a large wood structure that gives it properties suitable for its use as fuel
for thermoelectric power plants. This means that this shrubs biomass has a potential economic value
that could change very dense shrubs areas from a severe fire hazard issue into a green fuel source.
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4.3. Allometric Equation for Shrub Biomass Estimation

The accumulated shrubs’ biomass estimation was made using an allometric equation based on the
elapsed time after a fire, as previously presented in Section 4.2 and also shown in Equations (4) and (5)
as well as Figure 9. In addition the NDVI values derived from satellite image processing, also played a
significant role (described earlier in this paper).

When working in a large area that presents different morphological and edaphoclimatic
characteristics and which requires the use of multiple satellite scenes, it is appropriate to verify
in advance if there are differences in the shrubs’ growth rate and if there are differences in relation to
the year under study. It was verified, as previously stated, that no statistically significant differences
were found in relation to the shrubs’ growth rate of the bush in the two study areas.

To verify the second hypothesis, an allometric equation for each date was adjusted. This is
presented in Table 5.

Table 5. Allometric equations adjusted for the 3 years in analysis.

Date Allometric Equation R2 (Adj) RMSE (Mg/ha)

2016 66.383 NDVI 2.6073 0.894 4.08
2017 68.476 NDVI 2.6053 0.876 4.22
2018 58.139 NDVI 1.9541 0.855 4.95

Each of the allometric equations used the 110 sampling points and consequently the results
generated were very similar with no significant differences found between estimates. These are shown
in Figure 11.

Figure 11. Relationship between NDVI and shrubs biomass estimates.

As no statistically significant differences were found between the shrubs’ biomass estimations
using the three previously presented equations, a general equation was developed using the 110
sampling points (Equation (3)).

The adjusted allometric equation described here proved to be suitable for assessing the shrubs’
biomass estimation using NDVI values. Employing this method also made it possible to monitor the
shrubs’ biomass regrowth in the former burnt areas on a regular basis by means of Sentinel 2 image
processing and classification.

As neither the shrubs’ growth rates are significantly different for either study area or the use of the
allometric equations (adjusted for each of the years: 2016, 2017, and 2018) led to statistically significant
estimates between them and to the general equation, it can be state that the methodology was suitable
to be used in this area for any year. This has been demonstrated by using accurate estimates of the
accumulated shrubs’ biomass (based on satellite imagery) and on a regular basis. It also enables
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the monitoring of the shrubs’ biomass variation as well as calculating the biomass gains and losses.
Biomass gains can be converted into sequestered carbon and used to analyse the ecosystem’s state of
health as well as its production capability [47,48]. It can also be used to update the fire hazard indices
calculation and to identify the places most prone to be burnt by large fires and, therefore, requiring
special attention. Biomass losses can be converted into carbon released into the atmosphere by forest
fires [9] or used to calculate the intensity of forest fires. The difference between post-fire gains and
losses can be used to calculate the fire severity [46,49] in any given spot.

This equation was adjusted for the North Portugal study areas and it is suggested that it could be
used in other territories with similar morphological and edaphoclimatic conditions. It is important to
remember, however, that such work requires a validation process for any area.

5. Conclusions

Free Sentinel 2 images were an asset to derive multi temporal and dynamic studies about land
cover, for monitoring former burnt areas and to estimate the shrubs’ biomass accumulation.

The achieved results enable us to state that the methodology presented in this manuscript proved
to be robust and that the NDVI derived from Sentinel 2 images can be used to calculate accurate and
dynamic estimates of accumulated shrubs biomass.

The allometric equation presented here also allowed us to estimate the shrubs’ biomass using
Sentinel 2 images without depending on the vector files provided by EFFIS or by ICNF (Portuguese
Institute for Nature and Forest). Comparing the shrubs’ biomass estimates achieved through the two
allometric equations, using NDVI and using elapsed time after fire, demonstrated that no statistically
significant differences were found. Thus, it can be stated that the allometric equation presented in this
manuscript incorporated the effect of elapsed time after the fire.

The combined use of GIS and RS techniques, complemented by regression analysis proved to be
useful for monitoring the shrubs’ regrowth in the former burnt areas. It was also useful to analyse
the land cover dynamics and also to quantify the accumulated shrubs’ biomass. GIS supported
data records, management, and the sampling system development was helpful whilst RS supported
multitemporal land cover analysis and biomass estimation using associated satellite image processing.
Classification also offered major benefits too.

Regression analysis and allometric equation adjustments were found to be suitable processes to
assign the biophysical data that was collected via field work as well as the use of the freely available
satellite images. This led to the calculation and estimatation of the shrubs’ biomass.

Although the NDVI saturates only measured 0.7, it was still possible to obtain good estimates of
the shrubs’ biomass before the complete canopy closure which is when the accumulated values reach
their maximum. It was discovered that the NDVI values were not, however, specific for all types of
vegetation. Consequently it was always necessary to create a raster mask in advance that identified the
type of vegetation or area under analysis in order to define the estimates for those particular places
of interest.

From a forest management perspective, it was found that, after five years, the accumulated
shrubs’ biomass starts to be a fire hazard related issue as it creates a horizontal continuous coverture
which encourages any fire to spread. If it was 10 years since the last fire occurrence, the amount of
accumulated shrubs’ biomass was found to be over 14 Mg ha−1 which led to a severe wild fires spread.
This is commonly referred to as a 10 year of fire recurrence cycle in Portugal.

The methodology presented in this paper was found to be suitable for use in forest land
management and also served a number of unexpected different purposes. From an ecological
persepective it has been demonstrated that, over a two-year period, the vegetation was capable
of enough regrowth to minimize erosion actions and to support animal life. In a five-year period,
it appears that almost all the former burnt areas are covered by vegetation. From this point of view
it may be possible to use the shrubs’ biomass for energy purposes but it was found that only after a
10-year period that the amount of accumulated shrubs’ biomass became economically valuable to cut
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and transport elsewhere. This was determined by the monetary biomass value for any potential power
plant location, the man hours cost involved to capture it as well as the necessary transportation costs.
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Appendix A

Additional information:

• Sentinel-2S2A_20160828T113040_20160828T164718_A006183_T29TPG_N02_04_01
• Sentinel-2S2A_20150804T113226_20160319T010337_A000606_T29TPN_N02_04_01
• Sentinel-2L1C_T29TPG_A010759_20170714T112114
• Sentinel-2L1C_T29TNG_A010759_20170714T112114
• Sentinel-2L1C_T29TPG_A015621_20180619T112602
• Sentinel-2L1C_T29TNG_A006784_20180624T112452
• Sentinel-2L1C_T29TNG_A021341_20190724T112448
• Sentinel-2L1C_T29TPG_A021484_20190803T112140

Formulae demonstration:
Vsh = 1/6 π L W H (A1)

where Vsh = shrubs canopy volume (m3), L = length (m), W = width (m), H = height (m), and the
volume of a sphere = 4/3 π r3.

In order to use the shrubs dimensions measured along the transect, the equation can be rewritten as:

Volume of shrub canopy= 4/3 π Length/2 Width/2 Height/2

Volume of shrub canopy= 4/24 π Length Width Height

Volume of shrub canopy= 1/6 π Length Width Height

Biomass = V W 200/Mxw (A2)

where Biomass in Mg/ha V = Total shrubs volume along the 2 transects (m3) W = Average shrubs
weight (Mg/m3 at 30% moisture) Mxw =Maximum width measured along both transects.

In a 500 m2 sampling plot, the plot radius is 12.62 m. This way, each transect has 25.24 m. The 2
transect account for 50.48 m.

When measuring the shrubs along these transects, the sum of shrubs width plus shrubs length
define the area occupied by shrubs within the 2 cross section transects. Using the maximum measured
shrubs width and the length of both transects is possible to calculate the maximum area for the
2 transects.

Sampling area =Maximum width 50.48 m

For converting the measured shrubs biomass within the sampling area, it is necessary to convert
this area to 1 hectare.

10,000/Maximum width 50.48 ≈ 200/Maximum width
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Abstract: Precise growing stock volume (GSV) estimation is essential for monitoring forest carbon
dynamics, determining forest productivity, assessing ecosystem forest services, and evaluating forest
quality. We evaluated four machine learning methods: classification and regression trees (CART),
support vector machines (SVM), artificial neural networks (ANN), and random forests (RF), for their
reliability in the estimation of the GSV of Pinus massoniana plantations in China’s northern subtropical
regions, using remote sensing data. For all four methods, models were generated using data derived
from a SPOT6 image, namely the spectral vegetation indices (SVIs), texture parameters, or both.
In addition, the effects of varying the size of the moving window on estimation precision were
investigated. RF almost always yielded the greatest precision independently of the choice of input.
ANN had the best performance when SVIs were used alone to estimate GSV. When using texture
indices alone with window sizes of 3 × 5 × 5 or 9 × 9, RF achieved the best results. For CART, SVM,
and RF, R2 decreased as the moving window size increased: the highest R2 values were achieved
with 3 × 3 or 5 × 5 windows. When using textural parameters together with SVIs as the model input,
RF achieved the highest precision, followed by SVM and CART. Models using both SVI and textural
parameters as inputs had better estimating precision than those using spectral data alone but did not
appreciably outperform those using textural parameters alone.

Keywords: machine learning algorithms; forest growing stock volume; SPOT6 imagery;
Pinus massoniana plantations

1. Introduction

Forest growing stock volume (GSV) is one of the most important forest characteristics,
both economically and environmentally, because it is a key determinant of forest productivity [1].
Precisely estimating forest GSVs on large scales is crucial for monitoring forest carbon dynamics,
assessing forest ecosystem services, and evaluating forest quality [2–5]. Traditional ground-based
GSV estimation strategies that rely on field measurements of tree height and diameters at breast
height (DBH) are time-consuming and labor-intensive [1]. GSV is estimated over large areas almost
everywhere in the world, and estimates are often precise. The (additional) benefits of including remote
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sensing (RS) data in this process are that spatially explicit information can be produced (i.e., maps) and
that the precision of population parameter estimates can be improved.

Several modelling approaches, both parametric and non-parametric, have proven capable of
precisely estimating forest variables such as the leaf area index, canopy cover, height, basal area,
and stock volume based on RS data [4,6–10]. The most popular parametric regression methods
for modelling forest attributes are simple or multiple linear regression models. Commonly used
non-parametric models include classification and regression trees (CART), k-nearest neighbor (k-NN),
random forest (RF), and support vector machine (SVM). Although many researchers have performed
comparative evaluations of different machine learning algorithms (MLAs), no single technique has been
revealed as universally superior for predicting forest inventory attributes [8,11,12]. Different machine
learning algorithms (MLAs) have different estimating precisions; for example, CART achieves the
lowest precision, SVM and ANN tend to achieve moderate performance, and RF has achieved the
highest precision and lowest error for the forest variables under consideration [4]. Zhang et al. [12]
found that ANN and SVM were similarly effective at estimating sawgrass aboveground biomass (AGB),
with correlation coefficients (r values) exceeding 0.9. However, ANN offered the most precise total
biomass estimates (r = 0.94). Wang et al. [13] found that the MLR method generally outperformed SVM
and RF at predicting site-level AGB. The GSV of Pinus massoniana plantations has not been estimated
extensively in China’s northern subtropical regions. Therefore, there is a need to evaluate and compare
the performance of different MLAs in this specific task.

The spectral information in optical remote sensing images generally provides insufficient
information to precisely assess the state of vegetation in dense forests with complex structures.
Therefore, texture parameters derived from remote sensing images are commonly analyzed to assess
the spatial distribution of image tone variance and thereby acquire spatial information on vegetation
cover, especially in complex and dense forests [14]. Several recent studies have concluded that
textural parameters from high-resolution satellite images are more useful than spectral information
for estimating forest variables because the interpretation of spectral data is complicated by saturation
when studying multi-layer forests with full canopy cover [6,12,14–19]. However, it is not yet clear
whether combining spectral and texture-based features can enable more precise estimation of forest
variables than analyses based on textural information alone. Chrysafis et al. [5] argued that combining
spatial and textural information yielded at most marginal improvements in precision over texture-only
models when estimating GSV in a Mediterranean forest. However, others have reported that forest
variables such as the leaf area index (LAI) can be estimated more precisely by combining spectral
and textural features than by relying solely on one type or the other [6,15,17]. Texture is a complex
parameter and obtaining precise texture information over the entire forest area is challenging. This is
because texture values are highly sensitive to texture measures, landscape type, physiological growth
period, associated parameters (i.e., moving window size, direction), and the type of remote sensing
image [5,20]. It is still worthwhile to explore whether a large or small moving window size should be
used in various forest types, and with an inversion algorithm.

Pinus massoniana is a major coniferous tree that is widely distributed in the subtropical forests
of South China and exhibits relatively high tolerance to acid rain, drought, and phosphorus
deficiency [21,22]. It is central to forest ecosystems and is also an economically important source
of timber and wood pulp [23]. Few efforts have been made to evaluate the capability of modern
remote sensing techniques for mapping Pinus massonian GSV in the subtropical area of China [24,25].
A growing stock volume map of Pinus massoniana trees in in the subtropical area of China has never
been generated and published. The specific objectives of this study were therefore to: (1) examine the
ability of four MLAs (CART, SVM, ANN, and RF) to predict the GSV of Pinus massoniana plantations,
(2) compare the effectiveness of spectral vegetation indices (SVIs) and texture data derived from SPOT6
images for forest GSV quantification, and (3) assess the influence of texture index window size on the
precision of forest GSV estimation.
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2. Materials and Methods

2.1. Study Area

This study focused on an approximately 7600 ha region of Pinus massoniana plantations near Taizi
mountain in Jingshan County of China’s Hubei Province (30◦48′–31◦02′ N and 112◦48′–113◦03′ E)
(Figure 1). Topographically, the area is characterized by a hilly landscape with moderate slope and its
elevation is between 40.3 and 467.4 m above sea level. It has a subtropical monsoon climate with a
mean temperature of 16.4 ◦C. The average annual precipitation is 1094.6 mm, of which over 53% falls
between April and August. The dominant soil type at the site is yellow-brown soil. Yellow-brown soil
is a transitional soil between yellow, red, and brown soils, which are common in mixed subtropical
evergreen broad-leaved and deciduous broad-leaved forests widely. The landscape of the study area
is characterized by pure forests, mixed forests, shrub land, water, cultivations, and forest openings.
The percentage of forest cover is 85%. The main tree species in the area are Pinus massoniana Lamb.
and Quercus acutissima Carr. Less abundant species include Cunninghamia lanceolata (Lamb.) Hook.,
Ilex chinensis Sims, Platycarya strobilacea Sieb.et Zucc., Liquidambar formosana Hance, Dalbergia hupeana
Hance, Pistacia chinensis Bunge., and Celtis sinensis Pers. [26].

Figure 1. A portion of the study area and the location of the sample plots over a SPOT6 Multispectral
Image (MSI) image acquired on 6 August 2015.

2.2. Data

2.2.1. Field Data and Stand Volume Estimation

The field sample plots were established in August 2015, August 2018, and November 2019. In total,
68 square plots of the size 20 × 20 m each were established in pure Pinus massoniana plantations
by applying the method of combining stratified sampling and random sampling. Considering the
standards for division of Pinus massoniana plantation age, there were 17 plots of young forest,
11 of middle-age forest, 15 of near-mature forest, 11 of mature forest, and 14 of over-mature forest.
Sample plots in every group of forest ages were distributed randomly in terms of geography. In each
plot, trees with DBH over 5 cm were tallied. DBH, tree height (H), and crown diameter (CD) of
the individual tree in the plot were all measured. Trees with a DBH below 5 cm were excluded.
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The LAI-2200 instrument (LI-COR Inc., Li-Cor, Lincoln, NE, USA, 2010) was used to indirectly measure
the leaf area index (LAI) of each plot. Measurements were taken either under overcast conditions,
or alternatively within two hours after sunrise or before sunset. At each site, two above-canopy and
nine low-canopy readings were taken with an opaque, 180◦, view-restricting cap placed over the sensor
in order to mask out the operator [6]. After finding the total number of all trees in a plot, the stand
density (Density) was estimated in trees per hectare (trees ha−1). The survey also provided information
about aspect, slope, and slope position. A differential global positioning unit (Trimble GeoXH6000
GPS units) was used to locate the center and the four corners of each plot, allowing the plots to be
geo-referenced against satellite data. The summarized characteristics of the 68 plots are documented in
Table 1.

The volumes of each individual growing trees were predicted by applying the allometric model
(Equation (1)) based on DBH and H. These models yielded the following expression [27]:

V = 0.00006228789 × DBH1.849839 × H0.9843411 (1)

where, V is the individual tree volume, DBH is the tree diameter at a height of 1.3 m, and H is the
total tree height. The volumes estimated from all individual trees within a sample plot were summed
to obtain the GSV of the sample plot, which was then up-scaled to per hectare. The GSV of the plot
was measured in cubic meter per hectare (m3 ha−1). The field data revealed that the plot-level GSVs
varied widely, ranging from 10.20 to 319.82 m3 ha−1, with a mean of 140.84 m3 ha−1. The inconsistency
between the time of sample plot data collected in 2018 and 2019 and remote sensing (RS) image was
an important factor which contributed to low precision of forest parameter estimation. We used the
growth model of Pinus massoniana tree for conversing volume values of 2018 and 2019 to V values of
2015. The formula was as follows [28]:

V = 0.000025058 × A2.5983243 (R = 0.996) (2)

where, V is volume of a single tree and A is the stand age.

Table 1. The summarized characteristics of the 68 plots surveyed in August 2015, August 2018,
and November 2019.

No. of
Plots

Density
(Stem ha−1)

Average
DBH (cm)

Average
Height (m)

GSV
(m3 ha−1)

LAI
Canopy
Density

Aspect Slope Elevation

1 825 18.4 15.6 170.47 4.14 0.5 Shady 3◦ 95.0
2 775 17.2 13.1 119.98 3.40 0.5 Shady 4◦ 95.2
3 525 19.3 13.1 98.96 4.21 0.4 Shady 0◦ 83.1
4 2400 9.3 5.4 50.84 5.30 0.8 Sunny 2◦ 65.9
5 1375 10.3 5.6 35.95 5.24 0.8 Sunny 2◦ 73.9
6 2450 9.4 4.8 47.67 4.65 0.8 Sunny 4◦ 77.6
7 2175 10.2 5.9 59.00 5.25 0.8 Sunny 1◦ 83.4
8 2775 9.0 5.2 53.62 5.22 0.8 Sunny 3◦ 82.0
9 1350 22.3 18.0 234.93 3.33 0.4 Sunny 1◦ 79.1
10 2925 8.2 4.7 42.98 6.37 0.9 Sunny 2◦ 93.7
11 1850 20.2 15.6 249.51 5.53 0.6 Sunny 1◦ 110.4
12 900 13.9 9.5 70.46 5.23 0.7 Shady 2◦ 94.3
13 1200 8.4 5.2 10.20 5.50 0.8 Sunny 1◦ 87.7
14 1400 6.7 4.5 10.38 7.08 0.9 Sunny 3◦ 110.2
15 900 19.0 11.8 185.77 3.98 0.5 Sunny 3◦ 120.5
16 900 19.3 12.6 209.23 3.39 0.5 Sunny 3◦ 109.6
17 425 27.3 14.9 175.58 4.51 0.5 Shady 2◦ 91.2
18 800 17.4 10.1 143.82 5.46 0.7 Shady 1◦ 88.8
19 375 26.9 14.3 185.99 4.24 0.6 Shady 4◦ 95.1
20 600 20.3 13.7 139.56 2.91 0.4 Shady 3◦ 116.7
21 1300 26.2 16.2 270.60 6.13 0.8 Shady 2◦ 93.7
22 650 20.4 15.4 164.76 2.58 0.4 Shady 5◦ 128.1
23 625 19.5 15.8 150.89 2.35 0.4 Shady 4◦ 124.1
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Table 1. Cont.

No. of
Plots

Density
(Stem ha−1)

Average
DBH (cm)

Average
Height (m)

GSV
(m3 ha−1)

LAI
Canopy
Density

Aspect Slope Elevation

24 500 21.9 14.2 137.85 5.08 0.7 Shady 1◦ 88.6
25 550 22.0 14.4 199.61 4.51 0.7 Shady 2◦ 91.8
26 675 28.3 16.8 162.44 5.81 0.7 Shady 0◦ 104.6
27 435 27.1 18.2 225.16 3.96 0.6 Shady 2◦ 88.8
28 450 22.1 16.5 133.50 2.52 0.4 Sunny 8◦ 91.0
29 425 25.8 17.6 172.23 2.84 0.4 Sunny 5◦ 99.7
30 475 18.7 14.7 140.05 4.52 0.6 Sunny 0◦ 101.8
31 925 18.2 15.8 222.18 3.47 0.5 Sunny 2◦ 114.7
32 450 25.4 16.6 155.50 2.58 0.4 Sunny 0◦ 111.0
33 375 24.5 19.5 29.23 3.66 0.5 Shady 2◦ 115.4
34 425 34.2 20.4 290.30 3.05 0.6 Shady 5◦ 121.4
35 275 29.2 22.8 193.28 3.54 0.5 Shady 1◦ 115.5
36 350 31.6 21.1 175.27 3.89 0.6 Shady 2◦ 121.4
37 375 27.1 20.4 212.70 5.55 0.7 Shady 1◦ 108.0
38 300 32.1 20.1 168.31 3.61 0.5 Shady 1◦ 94.5
39 1875 13.7 10.1 54.78 6.08 0.8 Sunny 3◦ 190.1
40 725 22.0 16.9 219.12 3.16 0.6 Shady 0◦ 145.7
41 725 21.8 17.5 221.66 3.59 0.6 Sunny 0◦ 150.2
42 525 23.7 18.4 106.95 5.31 0.7 Sunny 5◦ 164.9
43 400 31.7 18.5 193.38 2.24 0.4 Sunny 7◦ 99.4
44 325 30.6 18.1 208.49 3.31 0.6 Shady 2◦ 95.0
45 500 26.9 16.5 222.52 4.58 0.6 Shady 5◦ 86.8
46 1000 5.2 5.2 38.31 5.30 0.9 Sunny 3◦ 97.7
47 600 20.5 16.2 165.05 6.28 0.9 Shady 4◦ 110.3
48 350 27.2 16.9 166.20 4.24 0.7 Shady 2◦ 144.4
49 900 19.3 12.6 209.24 3.39 0.5 Sunny 3◦ 109.6
50 650 8.2 5.2 41.41 5.18 0.8 Sunny 2◦ 98.5
51 775 8.7 5.4 57.26 5.97 0.8 Sunny 1◦ 91.1
52 825 9.0 4.0 52.00 7.34 0.9 Shady 3◦ 98.5
53 750 9.5 5.0 61.91 7.60 0.8 Shady 1◦ 107.9
54 775 7.8 5.5 52.97 5.50 0.8 Shady 7◦ 96.8
55 1000 22.1 16.5 250.98 6.08 0.8 Shady 1◦ 110.6
56 575 7.7 5.2 35.46 7.34 0.9 Shady 1◦ 100.1
57 1450 11.0 8.2 69.46 3.33 0.4 Sunny 6◦ 121.0
58 400 20.5 14.7 163.53 1.42 0.4 Sunny 5◦ 100.0
59 400 26.4 17.1 178.21 1.95 0.5 Sunny 0◦ 92.5
60 1850 10.6 9.6 89.74 4.24 0.6 Shady 4◦ 90.5
61 2075 9.6 9.1 81.48 1.24 0.4 Sunny 4◦ 115.0
62 875 20.6 21.4 319.82 2.17 0.5 Sunny 4◦ 102.5
63 400 15.6 8.2 26.41 2.04 0.4 Sunny 2◦ 95.6
64 750 13.4 8.1 33.16 2.08 0.4 Shady 3◦ 97.8
65 1000 19.2 11.2 184.09 2.20 0.5 Sunny 0◦ 96.5
66 375 23.5 19.4 153.87 3.66 0.6 Shady 3◦ 97.6
67 675 17.1 17.5 145.46 3.81 0.7 Shady 2◦ 95.5
68 925 28.9 24.9 275.53 2.03 0.8 Sunny 2◦ 98.0

2.2.2. SPOT 6 Image and Processing

This study was based on a single SPOT 6 panchromatic-multispectral image that was acquired on
6 August 2015 under clear sky conditions. The panchromatic image had a spatial resolution of 1.5 m
while the resolution of the multispectral image was 6 m. The panchromatic image was orthorectified
using ground control points and digital elevation model (DEM) data. Then, the corrected panchromatic
image was used to rectify the multispectral data. The raw digital number values for the multispectral
data were converted to spectral radiance values and then into top of atmosphere (TOA) reflectance.
Atmospheric correction was performed using the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) approach [29]. All image processing was performed using the ENVI 5.1
software package.
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2.2.3. Spectral Vegetation Indices and Texture Parameters

The average surface reflectance values from the multispectral data were used to compute
eight vegetation indices (VIs) (Table 2) that are widely used in forest studies: the Atmospherically
Resistant Vegetation Index (ARVI), Difference Vegetation Index (DVI), Enhanced Vegetation Index (EVI),
Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Difference Vegetation Index (NDVI),
Non-Linear Vegetation Index (NLI), Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR).
Eight texture parameters—the Mean (MEAN), Homogeneity (HOM), Contrast (CON), Dissimilarity
(DIS), Entropy (ENT), Variance (VAR), Angular Second Moment (ASM), and Correlation (COR)—were
calculated (see Table 3) based on the SPOT6 panchromatic band at the maximum spatial resolution of
1.5 m using the GLCM method [30].

Table 2. Spectral Vegetation index and its calculation formula.

Spectral Vegetation Indices (SVIs) Formula

1. Atmospherically Resistant Vegetation Index (ARVI) [31] ARVI = NIR−RB
NIR+RB , RB = R− γ(B−R)

2. Difference Vegetation Index (DVI) [32] DVI = NIR−R
3. Enhanced Vegetation Index (EVI) [33] EVI = G NIR−R

NIR+C1R−C2B+L

4. Modified Soil Adjusted Vegetation Index (MSAVI) [34] MSAVI =
2NIR+1−

√
(2NIR+1)2−8(NIR−R)

2
5. Normalized Difference Vegetation Index (NDVI) [35] NDVI = NIR−R

NIR+R
6. Non-linear Vegetation Index (NLI) [36] NLI = NIR2−R

NIR2+R
7. Soil Adjusted Vegetation Index (SAVI) [37] SAVI = (1 + L) NIR−R

NIR+R+L
8. Simple Ratio (SR) [38] SR = NIR

R

Notes: B, R, and NIR represent SPOT6 reflectance in the blue, red, and near-infrared wavelengths, respectively.
Parameters L and γ represent the SAVI term (set to 0.5) and the ARVI term (set to 1), respectively. The coefficients
used in the EVI algorithm are C1 = 6.0, C2 = 7.5, C3 = 1, and G = 2.5 [17].

Table 3. Formula of texture measurements used in this study [30].

Grey Level Co-Occurrence Matrix
Based Texture Parameter Estimation

Formula

1. Mean (MEAN) MEAN = 1
N2

N−1∑
i, j=0

Pi, j

2. Homogeneity (HOM) HOM =
N−1∑
i, j=0

i
Pi, j

1+(i− j)2

3. Contrast (CON) CON =
N−1∑
i, j=0

iPi, j(1− j)2

4. Dissimilarity (DIS) DIS =
N−1∑
i, j=0

iPi, j
∣∣∣1− j

∣∣∣
5. Entropy (ENT) ENT =

N−1∑
i, j=0

iPi, j
(
− ln Pi, j

)
6. Variance (VAR) VAR =

∑
i, j(Xij−μ)2

n−1

7. Angular Second Moment (ASM) ASM =
N−1∑
i, j=0

iPi, j
2

8. Correlation (COR)

COR =

∑N−1
i, j=0 iPi, j−μ1μ2

σ2
1σ

2
2

μ1 =
N−1∑
i=0

i
N−1∑
j=0

Pi, j

μ2 =
N−1∑
j=0

j
N−1∑
j=0

Pi, j

σ2
1 =

N−1∑
i=0

(i− μ1)
2 N−1∑

j=0
Pi, j

σ2
2 =

N−1∑
j=0

( j− μ2)
2 N−1∑

j=0
Pi, j

Here, i and j are the row and column numbers. N is the number of
pixels that are summed. μi, μj, σ2

i , and σ2
j are the means and standard

deviations of Pi and Pj. P(i, j) is the normalized cooccurrence matrix.
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2.2.4. Optimum Window Selection

Image texture is a function of the image’s spatial resolution. Texture parameters derived with the
GLCM method are highly sensitive to the moving window size [20]. Small window sizes are known to
exaggerate differences within the window but retain a high spatial resolution, whereas larger windows
may cause inefficient extraction of texture information due to over-smoothing of textural variations [39].
There is no consensus as to what moving window size is optimal, so it is necessary to test a range
of window sizes to determine which provides the best speed and precision when estimating GSV.
Therefore, seven window sizes were used to estimate the stand volume in this work: 3 × 3, 5 × 5, 7 × 7,
9 × 9, 11 × 11, 13 × 13, and 15 × 15.

2.3. Machine Learning Algorithms (MLAs)

2.3.1. Classification and Regression Tree (CART)

The CART algorithm is a basic machine learning method proposed by Breiman et al. [40].
The regression tree algorithm was used to build models because the response variable in this study
was the forest GSV. The CART algorithm was implemented with the “rpart” in the R software package
(version 3.4.3; R Core Team, Viennna, Austria, 2017). Feature selection and pruning are the two core
issues in decision tree algorithms. The Gini index and post-pruning were used as the binary split
criterion for the selection of split features and to modify the tree, respectively.

2.3.2. Support Vector Machine (SVM)

Support vector machines (SVM) use a nonlinear kernel function to project input data onto a
high-dimensional feature space, where complex non-linear patterns can be simply represented [12,41].
In the new hyperspace, the SVM aims to identify an optimal hyperplane that fits the data and minimizes
the training error and the complexity of the model [42]. The Gaussian radial basis kernel function
of the form was used in this study [43,44]. The best regularization and bandwidth parameter were
determined using the training data. The SVM model was implemented with “e1071” packages in the R
software package.

2.3.3. Artificial Neural Network (ANN)

A multi-layer neural network with a back-propagation algorithm, which may be the most
popular type, was used in this study [42,45]. In this context, the neurons in the input layer were the
predicted variables selected by the Boruta algorithm, while the number of neurons in the hidden layer,
which carried weights representing the linkages between the predictors and GSV data, was determined
using both the training and validation data. The output layer was a single neuron that represented
the output values of the forest GSV. We examined the number of neurons ranging from 1 to 10 in the
hidden layer to build different models. The ANN algorithm was implemented with the “neuralnet”
package in the R software package.

2.3.4. Random Forest (RF)

Ntree (i.e., to the number of variables) and Mtry (i.e., to the number of variables to randomly
sample as candidates at each split) parameters are highly sensitive to prediction robustness of RF
algorithms [12]. Wang et al. [46], Breiman [47], and Zhao et al. [4] have all indicated that the default
values are often a good choice, and that the influence of user-defined parameters on the sensitivity of
prediction is very small. Thus, the Ntree value was set to 500 and the Mtry value was set to one-third
of the predictive variables. The RF algorithms were implemented with the “randomForest” package in
the R software package.
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2.4. Model Testing and Comparison

The field data was randomly divided into training (70%) and testing (30%) data. The testing data
(n = 20) was used to validate the CART, SVM, ANN, and RF models. A random selection of training
samples was repeated 100 times to reduce variability. Three common statistical parameters, namely the
coefficient of determination (R2), root mean square error (RMSE), and relative RMSE (rRMSE) were
calculated to evaluate the models’ performances.

RMSE =

√∑n
i=1 (ŷi − yi)

2

n
(3)

rRMSE = RMSE/y (4)

where ŷi was the predicted forest GSV and yi was the forest GSV observed in the field.

3. Results

3.1. Effects of Moving Window Size on the Precision of GSV

The effect of varying the moving window size on the precision of GSV estimation depended on
the algorithm used for variable selection. The R2 decreased with increasing moving window size when
CART, SVM, and RF were used to estimate the GSV. In other words, 3 × 3 and 5 × 5 window yielded the
highest R2 and lowest RMSE and rRMSE when using these methods (Table 4). For the ANN method,
the R2 initially decreased with the moving window size and then increased, the highest R2 values (0.83)
was achieved with this model when using a window size of 15 × 15 in this case (Table 4).

Table 4. The effects of window size on the precision of forest growing stock volume estimation.

Methods Window Sizes R2 RMSE (m3/ha) rRMSE (%)

CART

3 × 3 0.77 36.78 29.43%
5 × 5 0.76 36.61 29. 29%
7 × 7 0.78 37.71 30.17%
9 × 9 0.68 42.95 34.36%

11 × 11 0.68 42.49 33.99%
13 × 13 0.43 60.06 48.03%
15 × 15 0.57 50.59 40.47%

SVM

3 × 3 0.72 40.07 32.05%
5 × 5 0.73 39.64 31.71%
7 × 7 0.64 45.64 36.51%
9 × 9 0.71 41.44 33.16%

11 × 11 0.68 43.81 35.05%
13 × 13 0.67 44.57 35.65%
15 × 15 0.67 44.70 35.76%

ANN

3 × 3 0.73 39.60 31.45%
5 × 5 0.73 39.92 31.94%
7 × 7 0.61 49.29 39.43%
9 × 9 0.65 46.90 37.54%

11 × 11 0.70 42.99 34.39%
13 × 13 0.77 38.19 30.55%
15 × 15 0.78 35.78 28.63%

RF

3 × 3 0.78 36.71 29.37%
5 × 5 0.84 35.96 28.77%
7 × 7 0.75 42.54 34.03%
9 × 9 0.72 43.35 34.67%

11 × 11 0.66 47.36 37.89%
13 × 13 0.61 51.25 41.00%
15 × 15 0.74 42.35 33.88%

CART = classification and regression tree, SVM = support vector machine, ANN = artificial neural network (ANN),
RF = random forest, R2 = the coefficient of determination, RSME = root mean square error, and rRMSE = the
relative RMSE.
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3.2. Performance of CART, SVM, ANN, and RF

To evaluate the performance of CART, SVM, ANN, and RF for predicting the forest GSV when
using only textural parameters, four machine learning algorithms were compared in terms of their
precision (R2) and RMSE (Figure 2). When the window size was set as 3 × 3, 5 × 5, and 9 × 9,
RF demonstrated the best regression performance in terms of model precision and RMSE. The ANN
achieved the highest precision when the window size was 11 × 11, 13 × 13, or 15 × 15 (Figure 2).

Figure 2. The coefficient of determination (R2) and root mean square error (RMSE) the forest GSV
estimated by different regression models (classification and regression tree, CART; support vector
machine, SVM; artificial neural network, ANN; random forest, RF) with different textural information
calculated with different window sizes; (a) 3 × 3 window size, (b) 5 × 5 window size, (c) 7 × 7 window
size, (d) 9× 9 window size, (e) 11× 11 window size, (f) 13× 13 window size, and (g) 15× 15 window size.

On the other hand, a comparative analysis based on texture parameters and textural parameters
together with SVIs demonstrated that RF was the best method for estimating GSV. The R2 values for
models generated using this method ranged from 0.82 to 0.86 (Figure 3). For models using only SVI
data as inputs, ANN yielded the highest precision followed by SVM and RF. When using textural
parameters together with SVIs as inputs, SVM achieved the second highest precision (Figure 3).
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Figure 3. Scatter plots of predicted versus observed growing stock volume (GSV) using classification and
regression tree (CART), support vector machine (SVM), artificial neural network (ANN), and random
forest (RF) models for (a) spectral vegetation indices (SVIs), (b) texture features, and (c) SVIs plus
texture features. R2 = the coefficient of determination, RSME = root mean square error, and rRMSE = the
relative RMSE.

3.3. Performance of Spectral, Texture, and Fusion of Spectral and Texture Information

Regression models using SVIs as inputs achieved worse estimating precision than those using
textural parameters independent of the choice of regression method. The R2 value for the model
based on texture data alone (the R2 values were 0.76, 0.75, 0.66, and 0.82 for CART, SVM, ANN,
and RF, respectively) was substantially higher than that for the model based on SVIs alone (Figure 3).
Likewise, the RMSE and rRMSE values for the model based on textural parameters alone were
considerably lower than those for the model based on SVIs alone. The RMSE values were 36.61 m3/ha,
37.96 m3/ha, 45.44 m3/ha, and 32.36m3/ha, and the rRMSE values was 29.29%, 30.37%, 31.45%,
and 25.89% for CART, SVM, ANN, and RF, respectively. Fusing spatial and textural information did
not greatly increase the estimating precision relative to that achieved using textural parameters alone,
although minor improvements were observed with the SVM and RF methods (Figure 3). The R2

values achieved with the CART methods when using textural parameters alone as inputs were almost
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equal to those achieved using textural parameters together with SVIs (Figure 3). Figure 4 indicates the
importance of explanatory variables when the RF algorithm is used. The NDVI and MEAN calculated
with 3 × 3 and 5 × 5 window sizes, were of higher importance than the other variables.

Figure 4. The importance of explanatory variables: (a) spectral vegetation indices (SVIs), (b) texture features,
(c) SVIs plus texture features when the Random Forest (RF) algorithm was used. VImp = the variable’s
importance values, NDVI =Normalized Difference Vegetation Index, ARVI =Atmospherically Resistant
Vegetation Index, DVI = Difference Vegetation Index, EVI = Enhanced Vegetation Index, SAVI = Soil
Adjusted Vegetation Index, MSAVI=Modified Soil Adjusted Vegetation Index, NLI =Non-linear Vegetation
Index, SR = Simple Ratio. Texture (3 × 3 + 5 × 5) was the value of textural parameters when window size
was set as 3× 3 or 5× 5. MEAN 3 × 3, VAR 3 × 3, DIS 3 × 3, ASM 3 × 3, CON 3 × 3, COR 3 × 3, ENT 3 × 3,
and HOM 3 × 3 were Mean, Variance, Dissimilarity, Angular Second Moment, Contrast, Correlation,
Entropy, and Homogeneity values when the moving window size was set as 3× 3. MEAN 5× 5, VAR 5 × 5,
DIS 5× 5, ASM 5× 5, CON 5× 5, COR 5× 5, ENT 5× 5, and HOM 5 × 5 were Mean, Variance, Dissimilarity,
Angular Second Moment, Contrast, Correlation, Entropy, and Homogeneity values when the moving
window size was set as 5 × 5.

4. Discussion

The GSV of Pinus massoniana plantations was estimated using four machine learning algorithms
(CART, SVM, ANN, and RF) together with spectral and textural information from a SPOT6 image.
The effect of varying the window size on the precision of GSV estimation was investigated, and the
usefulness of textural parameters from SPOT6 images for forest GSV estimation was assessed.

Image texture is a complex aspect of visual perception [48]. The optimal moving window size for
extracting textural parameters from the SPOT6 image generally depends on the choice of regression
method. In this study, the CART, RF, and SVM methods performed best with 3 × 3 or 5 × 5 moving
windows, while 15 × 15 windows were best for ANN. These results are consistent with those of
previous studies [6,49], in which small windows (3 × 3 or 5 × 5) were found to be best when using the
multiple linear regression method to estimate forest variables. Small window sizes increase sensitivity
to interpixel differences in the proportions of tree crown and shadow and may better detect fine-scale
variation in pixel brightness, whereas larger windows may extract texture information inefficiently due
to over-smoothing of textural variation [50–52]. Some researchers have suggested that the window
size should match that of the sample plots to increase precision [7,53,54]. Moreover, Chryasfis et al. [5]
concluded that no single window size could adequately characterize the texture conditions in different
phenological scenes when using the bagging least absolute shrinkage and selection operator (LASSO)
algorithm. One of the reasons ANN performed well at 15 × 15 windows, while CART, RF, and SVM

259



Forests 2020, 11, 540

performed better at 3 × 3 or 5 × 5 windows, may be related to the autocorrelation of texture parameters
from different window sizes.

MLAs have fewer assumptions, higher methodological accuracy, and high non-linear adaptation,
and can efficiently model the complex non-linear relationships between forest biophysical parameters
and RS data [55–59]. Four machine learning regression algorithms, CART, SVM, ANN, and RF were
explored in this study. The RF method yielded more precise GSV estimates than the other tested
methods (CART, SVM, and ANN) when texture parameters alone, or a fusion of spectral and texture
information, were used. This is consistent with the results of Zhao et al. [4], who found that RF achieved
the greatest precision when estimating forest variables in black locust plantations on the Loess Plateau.
Similarly, Fallah et al. [60] concluded that SVR and RF outperformed k-NN in volume/ha estimation.
These results may be due to the fact that RF is more sensitive to overfitting during model training,
and can handle high data dimensionality [47,61,62]. The algorithm of the random forest method
naturally includes the interactions of variables which are often ignored in other models because of
their complexity [63]. However, Zhang et al. [12] found that ANN and SVM were the best methods
for estimating sawgrass marsh AGB, with both methods achieving correlation coefficients (r) above
0.9, while ANN was the best method for total biomass estimation (r = 0.94). ANN achieved the
best estimating precision independently of the SVIs of input data in this study. This result may be
explained by the fact that ANN has advantages in complex pattern learning and generalizing in noisy
environments. For CART, it was observed that for larger values of observed GSV, the predicted values
of GSV were systematically lower (i.e., always below the 1:1 line), although high R2 was obtained
when texture parameters or a combination of texture parameters and SVIs were used. This may be
contributed to by over-fitting. Another reason for underestimation may be due to optical saturation
under the conditions of high biomass in dense forests [64]. Overall, CART, SVM, ANN, and RF each
have their own advantages. The selection of MLAs may be related to the type of RS information applied.
For example, in this study, ANN could be used when applying SVIs alone for GSV estimation, and RF
was a good choice when texture parameters or a fusion of textural and spectral information were used.
The main drawback of these MLAs was that they did not reveal the functional relationships between
the target and predictor variables. MLAs are often referred to as “black box” approaches [7,12,42,65].

Models using textural parameters as inputs achieved greater precision than spectral models,
confirming that high-resolution textural information is more useful than spectral data for forest
parameter estimation, especially in dense and complex forests characterized by a mosaic of dense and
sparse vegetation cells [6,7,66]. Our results indicate that combining spectral and textural parameters
yields, at best, marginal improvements in estimating precision compared to using textural parameters
alone when estimating forest GSV. This is consistent with the conclusions of Chrysafis et al. [5], based on
their work on Mediterranean forests. Textural information was indispensable in the estimation of
forest parameters, especially when a high-resolution image was adopted. However, there were many
uncertainties that needed to be considered, such as window size. It may be necessary to determine the
optimal moving window size for extracting textural parameters.

In this research, forest GSV tended to be overestimated at lower values and underestimated at
higher values (Figure 3). This uncertainty may be contributed to the inconsistency between the time of
in-site data collection and RS image, although we applied the growth model of Pinus massoniana tree
for stand volume conversion from 2018 or 2019 to 2015. The growth was calculated from the stand age
of forest, which decreased the precision in our study. We suggested that it was better to keep the time
of field data surveyed consistent with time of RS acquisition in estimation of forest parameters.

5. Conclusions

Four machine learning regression algorithms including classification and regression tree (CART),
support vector machine (SVM), artificial neural network (ANN), and random forest (RF) algorithms
were used to estimate the growing stock volume (GSV) of Pinus massoniana plantations in the northern
subtropical area of China based on spectral vegetation indices (SVIs) and textural parameters extracted
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from a SPOT6 remote sensing image. The RF method was found to offer the best performance for GSV
estimation, although SVM, CART, and ANN also performed reasonably well. Increasing the size of the
moving window used when extracting data from the SPOT6 image reduced the predictive performance
of the CART, SVM, and RF methods, and the highest coefficient of determination (R2) values in these
cases were achieved with 3 × 3 or 5 × 5 windows. Using both spatial and textural parameters as model
inputs improved estimating precision relative to using spectral data alone. However, the combined
approach did not appreciably outperform models using only textural parameters as inputs.
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