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MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Juan Manuel Sánchez

Applied Physics Department

University of Castilla-La Mancha

Albacete

Spain

César Coll

Earth Physics and

Thermodynamics Department

University of Valencia

Burjassot

Spain

Raquel Niclòs
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Preface to ”Remote Sensing Monitoring of Land

Surface Temperature (LST)”

The combination of the state-of-the-art in the thermal infrared domain with recent advances in

the capabilities provided by already operating and new satellites, or UAV-based or aerial remote

sensing is boosting the use of land surface temperature (LST) in a variety of research fields.

LST plays a key role in soil–vegetation–atmosphere processes and is crucial in the estimation

of surface energy flux exchanges, actual evapotranspiration, or vegetation and soil properties.

Additionally, LST is considered one of the Essential Climate Variables (ECV) that critically contributes

to the characterization of Earth’s climate. The latest advances in data fusion, downscaling, and

disaggregation techniques provide a new dimension to LST applications in water resource and

agronomic management thanks to improvements in both the temporal and spatial resolutions of

thermal products. However, at the same time, continuous research into LST estimation algorithms

as well as continuous calibration and validation are still required to improve the accuracy of ground

LST data and satellite LST products. Although much research needs to be conducted on the topic of

LST monitoring from remote sensing, we truly hope that the selection of papers published in this book

can help readers become aware of the potential of orbiting thermal sensors and of the necessity to give

them continuity and help them develop and launch higher spatiotemporal resolution platforms.

Juan Manuel Sánchez, César Coll, Raquel Niclòs

Editors
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The combination of the state-of-the-art in the thermal infrared (TIR) domain [1–3] with
the recent advances in the capabilities provided by operating and new satellites [4–10], UAV-
based [11] or aerial remote sensing are boosting the use of land surface temperature (LST) in
a variety of research fields [5,8,9,11,12]. LST plays a key role in soil–vegetation–atmosphere
processes and becomes crucial in the estimation of surface energy flux exchanges, actual
evapotranspiration, or vegetation and soil properties [8,9]. The latest advances in data
fusion, downscaling and disaggregation techniques provide a new dimension to LST
applications in water resource and agronomic management thanks to the improvement in
both the temporal and spatial resolution of thermal products [8–10]. However, at the same
time, continuous research into LST estimation algorithms, as well as continuous calibration
and validation, are still required to improve the accuracy of ground LST data and satellite
LST products [1–5,13,14].

Our aim with this Special Issue was to collect recent developments, methodologies,
calibration and validation and applications of thermal remote sensing data and derived
products, from UAV-based remote sensing, aerial remote sensing and satellite remote
sensing. A total of 20 manuscripts were submitted to our Special Issue and after rigorous
peer-review process, by around 50 anonymous reviewers, 14 papers were finally selected
for publication, by a total of 69 authors. The published papers were those of high-quality
content based on their cutting-edge remote sensing techniques. The geographical distri-
bution of the authors´ institutions is global, with the highest number from the USA (18),
followed by China (15), Spain (7), UK (6), Sweden and Korea (5 each) and many others,
such as The Netherlands, Denmark, Japan, Germany, Italy or Turkey (1 to 3 each).

Published papers cover a wide range of topics, which can be classified in five groups:
algorithms, calibration and validation [1–4], improving long-term consistency in satel-
lite LST [5–7], downscaling LST [8–10], LST applications [11,12] and land surface
emissivity research [13,14].

In total, three papers have been included dealing with algorithms to retrieve LST from
the Landsat series [1–3]. Gerace et al. [1] progressed towards developing an operational
split-window algorithm for TIRS on board Landsat 8 and 9, that might improve the
accuracy achieved by the current single-channel methodology used to derive LST in the
Landsat Collection 2 surface temperature product. The effect of the stray-light correction
implemented in Landsat 8 was evaluated by Guo et al. [2] using ground-measured LST
from SURFRAD sites. Data from this SURFRAD network, together with ARM, were used
by Sekertekin et al. [3] to examine the efficiency of different LST algorithms for daytime and
nighttime Landsat 8 images. Despite the feasibility of the assessment results reported, a
necessity for more robust and homogeneous validations, using ground-measured datasets,
is recognized [2].

Geostationary satellites are also present in this Special Issue. Long-term, consistent
LST archives must account for geostationary satellite sensor updates and Pinker et al. [5]

1



Remote Sens. 2021, 13, 1765

developed a framework to achieve this goal. Choi and Suh [4] developed a nonlinear
split-window LST retrieval algorithm for the next-generation geostationary satellite in
Korea, GEO-KOMPSAT-2A.

The applicability of remote sensing LSTs is sometimes compromised in areas that are
very frequently covered with clouds. Aware of this issue, Zhang et al. [6] and Yoo et al. [7]
introduced approaches for the gap-filling of MODIS LST data, by reconstructing 1 km
clear-sky LST using Bayesian methods [6] or random forest machine learning [7]. This
strategy can improve the applicability of LSTs in a variety of research and practical fields.

As mentioned above, ET modeling from surface energy balance benefits from LST
datum as a key input. Field-scale evapotranspiration modelling requires high spatio-
temporal resolution in the thermal data. This Special Issue includes recent efforts by [8–10]
to fill this gap until next generation of thermal satellites are launched. Sánchez et al. [8]
produced LST maps with 10 m spatial resolution from the combination of MODIS/Sentinel-
2 images and validated their methodology using a ground-based LST dataset gathered
in an agricultural area. Guzinski et al. [9] evaluated several approaches for improving
the spatial resolution of the thermal images by merging Sentinel-2 and Sentinel-3 satellite
data. The resulting data were used to produce surface energy fluxes that were then
validated against flux tower observations in a variety of land covers and climatological
conditions. Downscaling approaches also apply to geostationary satellites, increasing
the frequency of the LST estimates. Njuki et al. [10], in their work also included in this
Special Issue, presented an approach, based on random forest regression, to downscale
the coarse-resolution MSG-SEVIRI to 30 m spatial resolution, based on predictor variables
derived from Sentinel-2 and the ALOS digital elevation model. Although results reported
are promising, particularly for the joint use of the tandem Sentinel-3/Sentinel-2, certain
limitations remain that encourage further research.

Urban environments can be explored from a thermal perspective by using high-
resolution drone solutions. The Special Issue includes a good example by Naughton and
McDonald [11]. Findings shown by these authors elucidate factors that can be applied
to develop better temperature mitigation practices to protect human and environmental
health. Another potential application of LST data is the use of continuous satellite-derived
surface temperatures as input in geophysical models, substituting discrete in situ air
temperature registers extrapolated to different elevations using constant lapse rates, then
providing more realistic estimates. An example is shown by [12] using MODIS imagery.

Field and laboratory emissivity measurements are essential for improving and val-
idating LST retrievals [13,14]. Temperature and emissivity separation algorithms can be
applied when multispectral thermal radiances are available. A manuscript in this Special
Issue by [13] explored the influence mechanism of noise on the LST and surface emis-
sivity retrieval errors of the ARTEMISS algorithm. The authors proposed an improved
method for thermal data with a high noise level and high spectral resolution, which can
reduce LST and emissivity uncertainties. Langsdale et al. [14] made measurements of
manmade and natural samples under different environmental conditions, both in situ and
at laboratory. Differences between laboratory and field spectral measurements highlighted
the importance of field methods for these samples, with the laboratory setup unable to
capture sample structure or inhomogeneity. The emissivity box method was faced to
FTIR-based approaches, showing significant differences in LST retrieval and then stressing
the importance of correct emissivity data specifications.

Although there is much work to be done on the topic of LST monitoring from remote
sensing, we truly hope that the selection of papers published in this Special Issue can help
research communities to become aware of the potential of the orbiting thermal sensors, the
necessity to give them continuity and also to develop and launch higher spatio-temporal
resolution platforms.
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Abstract: The split window technique has been used for over thirty years to derive surface

temperatures of the Earth with image data collected from spaceborne sensors containing two thermal

channels. The latest NASA/USGS Landsat satellites contain the Thermal Infrared Sensor (TIRS)

instruments that acquire Earth data in two longwave infrared bands, as opposed to a single band

with earlier Landsats. The United States Geological Survey (USGS) will soon begin releasing a surface

temperature product for Landsats 4 through 8 based on the single spectral channel methodology.

However, progress is being made toward developing and validating a more accurate and less

computationally intensive surface temperature product based on the split window method for

Landsat 8 and 9 datasets. This work presents the progress made towards developing an operational

split window algorithm for TIRS. Specifically, details of how the generalized split window algorithm

was tailored for the TIRS sensors are presented, along with geometric considerations that should be

addressed to avoid spatial artifacts in the final surface temperature product. Validation studies

indicate that the proposed algorithm is accurate to within 2 K when compared to land-based

measurements and to within 1 K when compared to water-based measurements, highlighting the

improved accuracy that may be achieved over the current single-channel methodology being used

to derive surface temperature in the Landsat Collection 2 surface temperature product. Surface

temperature products using the split window methodologies described here can be made available

upon request for testing purposes.

Keywords: Landsat; land surface temperature; split window algorithm; TIRS; thermal

1. Introduction

The United States Geological Survey’s (USGS) Earth Resources Observation and Science (EROS)

Center will begin distributing higher-level products derived from Landsat image data as part of

their Collection 2 release in early 2020. A global surface temperature (ST) product will be included

in Collection 2 and will contain over thirty-five years of data collected from the various thermal

instruments onboard Landsats 4 through 8. A single-channel algorithm that utilizes the Goddard

Earth Observing System, Version 5 (GEOS-5) reanalysis data for atmospheric characterization along

with a radiative transfer model (e.g., MODTRAN) will be applied to the existing thermal data

archive and to newly collected scenes in a near real-time fashion to produce per-pixel, 30 m surface

temperature data [1,2]. On the other hand, the recent Landsat 8 and upcoming Landsat 9 missions both

contain the dual-band Thermal Infrared Sensor (TIRS) [3] that will enable the use of the split-window

surface temperature algorithm. Recent software updates to the Landsat 8/TIRS image processing

flow have mitigated the adverse effects of the stray light issue [4] that precluded the use of the
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split-window method. Once the radiometric quality of TIRS image data had been brought back to

within requirements, work began on developing a split window algorithm tailored to TIRS image

data. Several considerations were addressed before using data from these instruments to derive Earth

surface temperature with the more accurate and computationally attractive split window algorithm.

This paper presents progress made towards developing and verifying an operational version

of the split window algorithm for the TIRS instruments. Specifically, a discussion of the radiometric

performance of the split window algorithm versus the single channel methodology implemented in

the Collection 2 release is provided with ground-based measurements used as a baseline for reference.

Surface measurements from several sites across the continental United States and near-shore and

inland buoys were used to demonstrate the improved radiometric performance that may be achieved

in future releases of ST products using dual-band Landsat thermal instruments.

An additional discussion regarding the spatial fidelity of split window-derived versus single

channel-derived surface temperature products is also provided. Due to the physical layout of the TIRS

focal plane, the two thermal channels, Band 10 and Band 11, acquire scene content at slightly different

times. As such, an inherent misregistration of image data is evident in the corresponding Level 1

radiance product. Although band-to-band registration is well-within the defined specification [5],

applying the difference terms in the split window algorithm (see Equation (1)) leads to undesired

artifacts in the resulting surface temperature product. The origin of, and strategies to mitigate, these

artifacts are presented along with future considerations necessary to achieve an operational split

window product from Landsat 8 and 9 TIRS image data for Collection 3 processing.

2. Methodologies

Leveraging over twenty years of knowledge and refinements, the split window algorithm used in

this work was initially proposed by Becker and Li, (1990) for the AVHRR instrument [6]. Wan and

Dozier, (1996) generalized the algorithm to enable its utility for other dual-band instruments with

a final adjustment made by Wan, (2014) to improve its performance over bare soils for the MODIS

instruments [7,8]. The final form of the split window algorithm used here is

ST = b0 +

(

b1 + b2
1 − ǫ

ǫ
+ b3

∆ǫ

ǫ2

)

Ti + Tj

2
+

(

b4 + b5
1 − ǫ

ǫ
+ b6

∆ǫ

ǫ2

)

Ti − Tj

2
+ b7(Ti − Tj)

2, (1)

where

• ST is the desired surface temperature [K];

• bk (for k = 0, 1, ..., 7) are sensor-dependent (and potentially water-vapor-dependent) coefficients

that are derived through a training process;

• i and j correspond to the two thermal bands (Bands 10 and 11 for TIRS);

• ∆ǫ = ǫi − ǫj or the difference in band-effective emissivities;

• ǫ = (ǫi + ǫj)/2 or the average of the band-effective emissivities;

• Ti, Tj are the apparent temperatures in the two thermal bands.

Once the b-coefficients are derived for a sensor of interest, the ST can be estimated from dual-band

thermal image data using Equation (1) if the effective emissivity in each band is known (or can be

estimated). This section provides the details of a prototype split window implementation developed

for the Landsat 8/TIRS and Landsat 9/TIRS-2 sensors and a corresponding validation effort conducted

thus far for Landsat 8/TIRS.

2.1. Derivation of the b-Coefficients

The flowchart in Figure 1 illustrates the training process that was performed to derive the

b-coefficients shown in Equation (1). The radiative transfer model, MODTRAN [9], was used to

simulate a representative range of environmental acquisition parameters. Atmospheric profiles from
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the Thermodynamic Initial Guess Retrieval (TIGR) database [10] were used to characterize atmospheric

effects; seven surface temperatures bracketing the temperature of the lowest layer of each atmospheric

profile were used as input [6,7]; and spectral emissivities of natural materials were obtained from the

MODIS UCSB emissivity library [11].

Figure 1. Process flow to derive split window coefficients by propagating modeled surface

temperatures, emissivities, and atmospheric conditions to the top of atmosphere and regressing

the band-effective apparent temperatures against the known input surface temperatures.

The TIGR database is a climatological library of 2311 unique atmospheric profiles that were

categorized from 80,000 radiosondes. The profiles are classified into air masses (i.e., Tropical, Mid-lat1,

Mid-lat2, Polar1, Polar2) that are consistent with MODTRAN’s default atmospheres but provide

a richer and more densified representation of potential atmospheric effects that may be observed

from a spaceborne platform. Temperature, water vapor, and ozone data are delivered at 43 predefined

pressure levels ranging from 1013 mb (millibars) to 0.0026 mb [10]. Figure 2 shows plots of the

2311 atmospheric profiles provided in the TIGR database categorized by airmass. For comparison,

Figure 2 (bottom right) shows the default MODTRAN profiles.

To be consistent with previous efforts and to satisfy the assumption that split window is most

appropriate to be used for surface temperature retrieval when the ground temperature is close to the

air temperature [6,7], seven surface temperatures bracketing the temperature of the lowest layer of

each atmospheric profile were used as input to the forward model. Surface temperatures between

−10 ◦C < t0 < 20 ◦C in 5 ◦C steps were used in this study, where t0 is the temperature of the lowest

atmospheric layer. While some specific applications may warrant an extension of the range used to

train the model (e.g., studies of urban heat island), the traditional range used here is appropriate for

natural materials.

The MODIS UCSB emissivity database was used to provide a representative range of natural

materials as input to the forward model [11]. With 74 unique soils and minerals, 28 unique types

of vegetation, and 11 forms of water (including snow and ice), this database provides 113 unique

spectral emissivities between 8 and 14 µm that can be used to train the model in Equation (1). Note that

man-made materials are included in the MODIS UCSB emissivity database but were excluded in this

study as the TIRS instrument has a spatial resolution of 100 m and was designed for environmental

applications.

Referring again to Figure 1, all parameters described above were provided as input to a forward

model that uses MODTRAN for the atmospheric radiative transfer process to generate at-sensor

spectral radiance. At-sensor, band-effective radiance was calculated by sampling the simulated

top-of-atmosphere spectra with the TIRS spectral response functions, and apparent temperatures (Ti, Tj)

were determined by developing and utilizing a predefined look-up table that relates band-effective
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radiance to blackbody temperature for Bands 10 and 11 of TIRS. Finally, band-effective emissivities

were calculated by sampling the 113 spectral emissivities with the TIRS spectral response functions.

Figure 2. TIGR atmospheric profiles for various atmospheric types compared to MODTRAN’s default

atmospheres. The black data curves are air temperatures as a function of altitude, while the red data

curves are the associated dew point temperatures.

Note from Figure 1 that modeled data were filtered to only include scenarios where the relative

humidity is less than 90%. This was performed to remain consistent with previous studies [12]

and to eliminate saturated atmospheric conditions, which represents a challenging scenario for ST

retrieval. Future work will explore and include higher humidity cases as needed. Nevertheless, with

all the components of Equation (1) determined, ST was regressed against the independent variables to

determine the b-coefficients that best fit the model in a least-squares sense. Table 1 shows a comparison

of the b-coefficients derived in this study versus the b-coefficients derived in Du et al. (2015) [12],

along with the residual retrieval error when these coefficients are applied to the simulated data.

Note that although the same split window algorithm was used, the derived b-coefficients could be

significantly different due to the desired application. For example, Du et al. incorporated man-made

materials into their training process to enable the utility of split window applications over urban areas.

The impact of this training methodology on environmental applications is discussed in Sections 3 and 4.

Table 1. Split window algorithm b-coefficients derived in this study compared the coefficients derived

by Du et al. and the associated root mean square error of the model fits.

b0 b1 b2 b3 b4 b5 b6 b7 RMSE [K]

Du et al. (2015) −0.4117 0.0052 0.1454 −0.2730 4.0666 −6.9251 −18.2746 0.2447 0.87

Proposed Prototype 2.2925 0.9929 0.1545 −0.3122 3.7186 0.3502 −3.5889 0.1825 0.73

2.2. Emissivity Estimation

Once the b-coefficients are derived, estimation of emissivity remains the one unknown in

Equation (1). To be consistent with the single channel methodology used to derive Landsat surface

temperature products in the Collection 2 release, the algorithm used to estimate broadband emissivity

in the existing single channel workflow was mirrored in this study but extended for the TIRS dual-band

instrument. To summarize the existing workflow, ASTER emissivity products that spatially cover the

Landsat scene of interest are ingested and a spectral adjustment is made to estimate the equivalent
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TIRS emissivities. The spectrally-adjusted emissivities are then modified based on observed in-scene

conditions (e.g., emissivities may be modified if snow or vegetation is present in a scene).

The ASTER global emissivity dataset (ASTER-GED) v3 contains worldwide emissivity maps at

100 m spatial resolution. The dataset was compiled using clear-sky scenes acquired between 2000 and

2008. Emissivities were calculated with the temperature emissivity separation algorithm (TES) and the

water vapor scaling (WVS) atmospheric correction algorithm, and are available for all five ASTER TIR

bands centered at 8.3, 8.6, 9.1, 10.6, and 11.3 µm. The ASTER-GED has been validated to an absolute

band error of 1% [13].

To enable an adjustment of the ASTER emissivities to the spectral response of the TIRS bands,

a linear relationship that relates ASTER-observed (Bands 13 and 14) to TIRS-estimated (Bands 10 and 11)

emissivities was developed. Note that ASTER Bands 13 and 14 were used here as they have the most

overlap (spectrally) with the TIRS bands. To develop this relationship, the 113 spectral emissivities from

the MODIS UCSB emissivity database described in Section 2.1 were used. Band-effective emissivities

for Bands 10 and 11 of TIRS were regressed against the corresponding band-effective emissivities for

Bands 13 and 14 of ASTER to derive the coefficients shown in Equations (2) and (3).

ǫ10 = c0 + c1ǫ13 + c2ǫ14 (2)

ǫ11 = c0 + c1ǫ13 + c2ǫ14 (3)

where,

(c0, c1, c2) = (0.6820, 0.2578, 0.0584) for TIRS Band 10,

(c0, c1, c2) = (−0.5415, 1.4305, 0.1092) for TIRS Band 11.

Note that an estimation of the residual errors associated with these relationships can be

made by applying Equations (2) and (3) to the band-effective ASTER data for the 113 emissivities.

The residual errors between the estimated band-effective emissivities can then be compared to

the actual band-effective emissivities (as modeled here). The standard deviations of the residual

emissivities in this simulated context are 0.001 (0.1%) and 0.005 (0.5%) for Bands 10 and 11, respectively.

Since the ASTER emissivity database represents averages over a nine-year period, modifications

were made to the spectrally adjusted emissivities based on observations made by the Operational

Land Imager (OLI), the TIRS reflective band counterpart onboard Landsat 8. Specifically, per-pixel

normalized difference vegetation indices (NDVI) and normalized difference snow indices (NDSI) were

calculated with the OLI. NDSI was computed by dividing the difference in reflectance observed in the

Landsat 8 green band (0.53–0.59 µm) and the shortwave infrared band (1.57–1.65 µm) by the sum of

the two bands [14]. To make the NDVI adjustment, bare soil locations were estimated when the ASTER

NDVI data were less than 0.1, and the Landsat vegetation emissivities adjusted accordingly based on

the Landsat calculated NDVI. Snow locations for NDSI were set to 0.9876 and 0.9724 respectively for

Band 10 and Band 11, where the calculated NDSI was larger than 0.4. A comprehensive description of

the adjustments can be found in Malakar et al. (2018) [1].

2.3. Surface Reference Data Sources

Several sources of surface measurements were used as reference to validate the efficacy of

the split window algorithm as trained here for Landsat’s TIRS instruments. Several land-based

instrumented sites, including three sites from the SURFRAD [15] network and one site from the

Ameriflux [16] network, were used in the assessment. Additionally, the National Oceanic and

Atmospheric Administration (NOAA) buoy network [17] and the NASA Jet Propulsion Laboratory

(JPL) instrumented buoys [18,19] were used to provide reference data over water.

NOAA established the surface radiation budget observing network (SURFRAD) to provide

accurate, high-quality broadband solar and thermal upwelled and downwelled irradiance to support
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climate research, satellite retrieval validation and modeling, and weather forecasting research [15].

The current SURFRAD network consists of seven locations selected to represent diverse climates in

the United States [15]. Note that three sites were chosen for this initial analysis due to their high

spatial uniformity across an extended region. The three sites consist of agricultural land (Goodwin,

Mississippi, US), bare soil (Desert Rock, Nevada, US), and grassland with a high inter-annual variation

of snow cover (Fort Peck, Montana, US).

Each SURFRAD site is equipped with two Eppley Precision Infrared Pyrgeometers (model PIR)

to collect measurements of broadband (4–50 µm) thermal infrared irradiance. The PIR pyrgeometers

have a field-of-view (FOV) of 180 degrees and measure longwave irradiance with an uncertainty

of ∼1.5% [20], which leads to a reported uncertainty of less than 1 K in the retrieved LST [21].

One pyrgeometer is upward facing and the other is downward facing to measure downwelled

atmospheric irradiance and upwelled surface-leaving irradiance, respectively. Data from 1998 to

2009 were collected every three minutes, and every minute thereafter. The data has a quality flag to

indicate failed internal quality checks. A detailed description of the SURFRAD instrumentation at

each site can be found at: https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html.

FLUXNET is a vast global network of more than 800 sites for in-situ flux measurement. Regional

networks contribute to the FLUXNET data, one of which is a group of sites across the Americas called

AmeriFlux. There are hundreds of AmeriFlux sites, with 44 flagged as “core” sites. These core sights

deliver timely data, receiving support from the AmeriFlux Management Project (AMP) to ensure high

quality data collection at 30 min intervals. Since not all sites measure upwelled and downwelled

thermal radiation, the core sights were filtered for spatial uniformity, activity between 2013 to 2018,

and having a sufficient number of upwelled and downwelled infrared observations. Only one site

passed these criteria; namely, the University of Michigan Biological Station (UMBS) [22]. This site is

located within a protected forest of mid-aged northern hardwoods, conifer understory, aspen and old

growth hemlock. The UMBS AmeriFlux site is equipped with a CG4 pyrgeometer from Kipp and

Zonen to measure broadband (4.5 to 42 µm) thermal irradiance. The CG4 pyrgeometer, similar to the

SURFRAD instrumentation, has an FOV of 180 degrees with an instrument uncertainty of less than

3% [20], and temperature uncertainty of ±0.02 K [23].

To estimate the in-situ ST using SURFRAD and AmeriFlux networks, the Stefan–Boltzmann law

is manipulated to derive the following relationship [15]:

STground =

[

1

ǫσ
(Eupwelled − (1 − ǫ)Edownwelled)

]
1
4

[K] (4)

where ǫ represents the broadband emissivity, σ = 5.67 · 10−8
[

W
m2K4

]

is the Stefan–Boltzmann constant,

and E is the measured irradiance
[

W
m2

]

. Broadband emissivity can be retrieved from narrowband

satellite emissivities via empirical relationships (Wang et al., 2005) [24]. However, this approach uses

a combination of broadband emissivity from 8 to 12 µm and 14 to 25 µm. The latter range is from

an emissivity library containing only measurements of minerals and does not include data beyond

25 µm because of the strong atmospheric absorption and weak thermal signals. For these reasons,

the average emissivity of TIRS Bands 10 and 11 that is estimated from image data (as described in

Section 2.2) was used in Equation (4) for this analysis.

When used in conjunction with land-based measurements, water represents a desirable target

for surface temperature validation, as its emissivity is spectrally stable and well-defined [25].

NOAA operates a suite of worldwide instrumented buoys that collect, among other variables,

water temperature. The data are freely available and delivered through their National Data Buoy Center

website [17]. Measurements from thirty-six buoys in the near-shore of the United States coastline were

used as reference in this work, with a bulk to surface adjustment, since measurements are obtained at

depth [26]. Note that Zeng et al. (1999) estimate the uncertainty in skin temperature estimation to be

approximately 0.35 K, which includes measurement uncertainty.
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In addition to the NOAA sensor suite, NASA’s Jet Propulsion Laboratory’s (JPL) instrumented

buoys located in Lake Tahoe, California and Salton Sea, California are attractive sources of reference

data. Lake Tahoe is approximately 1900 m above sea level, and with average lake temperatures ranging

from 5 to 25 ◦C throughout the year [18], it is an attractive cold water target for surface temperature

validation. Alternatively, Salton Sea is located in Southern California and is approximately 70 m below

sea level. With lake temperatures exceeding 35 ◦C, it is an attractive warm water target [19]. The JPL

data used for the validation efforts presented here are made freely available by JPL [18,19].

Referring to Table 2, over 1500 Landsat Level-1 Terrain-Corrected (L1T) TIRS scenes acquired

between 2013 and 2018 were processed with the split window algorithm and the derived surface

temperatures compared to reference measurements acquired from the various sites during the

Landsat 8 overpass. For comparison, and to gauge the fidelity of the presented split window

implementation, the same L1T scenes were processed to surface temperature using split window

with the b-coefficients suggested by Du et al. (2015) [12] and using the single channel methodology [1]

that will be delivered to users in Collection 2.

Table 2. A list of the reference data sources along with the number of measurements utilized for

this work.

Site Name Number of Sites Number of Measurements

SurfRad 3 land sites 727
AmeriFlux 1 land site 186

NOAA Buoys 36 bouys 308
Lake Tahoe (JPL) 4 buoys 234
Salton Sea (JPL) 1 buoy 63

Total 1518

2.4. Geometric Considerations

An initial application of Equation (1) to the TIRS (L1T) image data resulted in undesirable artifacts

in the final surface temperature product; see an example of Lake Ontario, NY in Figure 3. The ST

product derived from the single channel method is shown on the left for visual reference, while the

split window-derived surface temperature image is shown on the right. Clearly, ringing artifacts can

be observed at sharp transitions (edges) in the data; e.g., along the Lake Ontario shoreline as shown

in the zoom windows of Figure 3. Note that the derived surface temperatures in the single channel

method are roughly two degrees warmer than the temperature derived from the split window method.

This discrepancy will be discussed further in Section 3.

To understand the source of these artifacts, a brief background of the TIRS focal plane is required.

Referring to Figure 4, the TIRS focal plane array (FPA) consists of three staggered detector arrays

to cover the 185 km cross-track FOV of the instrument at a ground sampling distance (GSD) of

approximately 100 m. Spectral filters are placed on the FPA detectors to produce detector rows with

the desired spectral band shapes (Band 10 centered at 10.9 µm and Band 11 centered at 12.0 µm).

When imaging in the nominal pushbroom mode, image data are recorded from one row of detectors

in each filtered region and an image interval of the Earth is assembled as the instrument travels

in orbit. Although band-to-band registration is well-within the defined specification for TIRS [5],

the physical layout of the detector arrays along with the read-out sample timing in the along-track

direction leads to an inherent misregistration between the Band 10 and Band 11 images. This amounts

to an along-track offset of the instantaneous fields-of-view (IFOV) of the detectors in the two bands

(note that the magnitude of the offset is much less than the size of the pixel). The TIRS 100-m image data

is upsampled to 30 m data in the final step of the Landsat product generation process in order to match

the spatial resolution of the OLI sensor. The process of upsampling exacerbates the misregistration

offsets due to the fact that the along-track band offset is now a significant fraction of the 30 m pixel.
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When the differences between the band images are calculated as part of the split window algorithm,

the along-track offsets become magnified in the product.

Figure 3. Comparison of the surface temperature product derived from the single channel method

(left) against the split window method (right) for an area around Lake Ontario, NY (Landsat scene

ID: LC08_L1TP_016030_20190413_20190422_01_T1). Note the spatial artifacts along edges in the split

window product. Zoom windows are shown in the upper right of each image. The image area is

roughly 8 by 8 km, and north is up.

Figure 4. The Thermal Infrared Sensor (TIRS) focal plane array consists of three detector arrays (labeled

A, B, and C) arranged to span the cross-track 185 km swath. Spectral filters over the arrays produce the

two thermal bands (Bands 10 and 11).

From a technical perspective, applying and delivering a split window-derived ST product at

the nominal TIRS resolution (100 m) represents an ideal scenario to avoid artifacts introduced by the

algorithm and the upsampling. However, achieving this solution would require a significant deviation

from the existing EROS processing pipeline and would result in a product that differs in resolution

from the other products (e.g., surface reflectance) being released in Collection 2. Alternative solutions

that mitigate the spatial artifacts, yet preserve radiometric fidelity and the 30-meter resolution of the

ST product, have been investigated.

To motivate a potentially desirable solution, Figure 5 shows the contributions of each term in

Equation (1) to the final surface temperature product for the scene in Figure 3. Columns 3 and 4 of

this table were populated by calculating the scene-wide mean and standard deviation, respectively,

of each term in Equation (1). Accordingly, column 3 represents the average magnitude of each term’s

contribution to the final ST product, while column 4 represents the spatial variability introduced by

each term to the final ST product. Note from the values in columns 3 and 4 that the additive terms

12



Remote Sens. 2020, 12, 224

in Equation (1) (highlighted in blue) contribute most of the overall magnitude and variability to the

final ST product for the scene in Figure 3. Conversely, note from the values in columns 3 and 4 that

the difference terms from Equation (1) (highlighted in gray) contribute significantly less information

to the final product. Since the difference terms introduce the artifacts shown in Figure 3, and their

radiometric contribution to the final product is relatively small, a proposed solution to mitigate these

artifacts is to apply a 5 × 5 smoothing filter to the Band 10 and 11 apparent temperature images

for terms b4 through b7 in Equation (1). Recall that the TIRS nominal ground sampling distance is

approximately 100 m, but the calculated full width at half maximum (FWHM) of its point-spread

function is approximately 200 m (see Wenny et al., 2015) [27]. Therefore, averaging the upsampled

30 m data to 150 m will not significantly alter the image data collected by TIRS. Comparing the nominal

standard deviations for the b4 through b7 terms (column 4: gray terms) to the 5 × 5 smoothed standard

deviations, as suggested here (zoomed: gray terms), smoothing has a negligible impact (less than 0.1 K)

on the scene-wide variability observed in the final proposed ST product for the scene in Figure 3.

Figure 5. Table illustrating the contribution of each term from Equation (1) to the final surface

temperature product shown in Figure 3. Columns 3 and 4 of this table were populated by calculating

the scene-wide mean and standard deviation, respectively, of each term in Equation (1). Note that

the additive terms (highlighted in blue) contribute most of the overall magnitude (column 3) and

variability (column 4) to the final ST product. When compared to the difference terms in column 4

(highlighted in gray), the zoom window suggests that smoothing the difference terms has little impact

on scene-wide variability.

While smoothing the difference terms in Equation (1) appears to have negligible impact on

radiometric fidelity, its effect on mitigating the geometric artifacts in Figure 3 is dramatic. Figure 6

shows the single channel ST product (left), the nominal split window ST product (middle), and the

proposed split window ST product (right). Note that the single channel product is presented here for

reference, as it should not exhibit the artifacts described in this section. By visually inspecting the

zoom windows in Figure 6, the artifacts present in the nominal split window product (middle) are

essentially removed with the proposed methodology (right).
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Figure 6. Comparison of surface temperature products: single channel product (left), the nominal

split window product (middle), and the proposed split window product (right) (Landsat scene ID:

LC08_L1TP_016030_20190413_20190422_01_T1). The scene is roughly 8 by 8 km, and north is up.

3. Results and Validation

The 1518 Landsat 8 scenes corresponding to the ground reference sites listed in Table 2 were

processed to surface temperature using the proposed split window method and the coefficients

described here (see Table 1). The difference between the derived ST and the measured (reference) ST

is shown in Figure 7 for all reference sites. Note that the difference data is displayed as a function

of “distance to the nearest cloud (km)” from the pixel where the comparison is made to a reference

measurement. As seen in the figure, the temperature error is greatest when the target pixel is in close

proximity to a cloud, which adds significant uncertainty to the ST retrieval process. The mean error for

the data in Figure 7 is 0.2 K with a standard deviation of 2.73 K. However, ignoring data points within

4 km of a cloud, the mean error becomes 0.02 K with a standard deviation of 1.39 K.

Figure 7. The difference between the reference temperature measurements and the Landsat-derived

surface temperatures for the proposed split window methodology as a function of distance to

nearest cloud.

Surface temperature products using the single channel methodology and the split window

algorithm with the coefficients reported in Du et al. (2015) were also calculated to serve as a comparison

to the proposed method. The results from the three methods can be summarized in Figure 8,

which shows the average differences between the reference temperature measurements and the

Landsat-derived surface temperatures (left), and the corresponding standard deviations of the residuals

(right) as functions of distance to cloud.
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Figure 8. All sites validation: the average differences between the reference temperature measurements

and the Landsat-derived surface temperatures for the three retrieval methodologies (left) and the

corresponding standard deviations of the residuals (right).

In general, for the full set of data compiled in this study, the proposed split window

implementation (blue bars) has better accuracy and precision than the other two algorithms,

as compared to reference data. Figure 8 (left) shows that its retrieved temperatures are, on average,

closer to reference measurements with a slight positive bias that diminishes as distance to the nearest

cloud increases. Notice that the single channel methodology has a significant bias (compared to

reference measurements), which is consistent with the temperature products shown in Figures 3 and 6.

Figure 8 (right) indicates that the residuals about the mean are smaller for the proposed split window

implementation regardless of cloud proximity for the implementation proposed here.

Two interesting observations can be made when categorizing the data in Figure 8 into “land

sites” and “water sites”. Figure 9 (left) shows the mean difference between derived and measured

surface temperatures for the “land sites” while Figure 9 (right) shows the corresponding standard

deviations of the residuals about the mean. The first noteworthy observation from Figure 9 (right)

is that for relatively clear scenes (i.e., clouds are over five kilometers from the ground reference

measurement), all three methodologies show a standard deviation of approximately 2 K, compared to

surface measurements. These values are consistent with those observed in studies using SURFRAD as

a reference for validation of other spaceborne thermal instruments [28–30]. Given that this 2 K residual

error is consistently observed from several spaceborne platforms and that the pyrgeometers used at

the land-based reference sites are sensitive from 4 to 50 µm, this residual error indicates that reflected

solar radiation may be contributing to the signal recorded by the pyrgeometers and that broadband

emissivity uncertainty is potentially a limiting factor in leveraging these sites to be used as reference

sources for applications requiring high accuracy.

A second observation can be made by referring to Figure 10. Figure 10 (left) shows the

mean difference between derived and measured surface temperatures for the “water sites”, while

Figure 10 (right) shows the corresponding standard deviation of the residuals about the mean. The blue

bars indicate that the split window algorithm (as presented here) estimates surface temperature more

accurately and with less residual error than the single channel method (red bars) and the split window

algorithm using the coefficients presented in Du et al. (2015) (gray bars). The under-performance of the

Du et al. coefficients for retrieving water temperature is likely due to the inclusion of man-made

materials into their training process; i.e., the algorithm coefficients are over-fit to land-based

targets. This outcome highlights the potential necessity to develop material-based b-coefficients

for an operational split window implementation.
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Figure 9. Results over land sites: the average differences between the reference temperature

measurements and the Landsat-derived surface temperatures for the three retrieval

methodologies (left), and the corresponding standard deviations of the residuals (right).

Figure 10. Results over water sites: the average differences between the reference

temperature measurements and the Landsat-derived surface temperatures for the three retrieval

methodologies (left), and the corresponding standard deviations of the residuals (right). Note that

there is no reference data for clouds within 0–1 km of a water buoy.

4. Conclusions

The TIRS instruments onboard Landsats 8 and 9 contain two thermal channels, enabling the

use of the split window methodology to derive Earth surface temperature. This work focused on

tailoring the generalized split window algorithm to the specific Landsat bands by deriving appropriate

algorithm coefficients and by addressing the inherent aliasing artifacts in the split window temperature

product. For the scenes tested here, validation efforts illustrate that the split window ST product is

more accurate than the single channel ST product (available in the Landsat Collection 2 release).

The studies presented here demonstrate that smoothing the difference terms in Equation (1) has

a dramatic effect on mitigating aliasing artifacts introduced by band-to-band misregistration and

upsampling of the nominal TIRS image data. Several comparisons (analogous to Figure 5 in Section 2.4)

of the unsmoothed to the smoothed 30 m temperature product indicate that smoothing has little

impact on in-scene variability. Considering the fact that the TIRS nominal ground sampling distance

is approximately 100 m and the calculated FWHM of its point-spread function is approximately

200 m [27], the solution presented here is believed to be appropriate, although quantifying the impact

of smoothing remains an area of ongoing research.
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From a radiometric viewpoint, Figure 10 highlights the potential value of deriving per-material

split window coefficients for an operational implementation. Considering Du et al. tuned their

split window coefficients to support urban heat island applications, the under-performance of their

implementation for the water scenes tested here precludes their coefficients from being used for

environmental applications requiring less than one Kelvin precision. That being said, the simulated

effort conducted by Du et al. highlights potential improvements that can be made to surface

temperature retrieval if atmospheric water vapor can be characterized from image data and accounted

for in the split window implementation; i.e., the b-coefficients in Equation (1) are categorized as

a function of column water vapor. An investigation into the potential improvement of surface

temperature estimation using coefficients categorized by material and column water vapor will

be conducted.

Other considerations to achieve an operational implementation and validation of a split window

algorithm for TIRS in Collection 3 are the development of a quality assurance map and appropriate

validation of the product. The single channel algorithm being implemented in Collection 2 to derive

surface temperature for the Landsat thermal archive contains a quality assurance (QA) band that

was developed based on cloud proximity and atmospheric transmission [2]. While this QA band

will provide information regarding the product’s accuracy, it is highly dependent on Landsat’s cloud

mask and was trained using water observations. The investigation and development of an analogous

but appropriately-trained quality assurance band to accompany a split window-derived surface

temperature product represents an area of ongoing research.

While the efforts reported here represent significant progress toward the development and

validation of an operational split window-derived surface temperature product, the considerations

described above should be addressed before the final form of the algorithm is achieved. Future

validation efforts will include reprocessing of the scenes presented here but with Collection 2

L1T TIRS data, incorporation of additional reference measurements as they become available, and

a categorization of the residual errors with a more appropriate metric; i.e., residual errors between

retrieved and reference measurements will be categorized as a function of atmospheric column water

vapor instead of distance to cloud.
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Abstract: Landsat 8/thermal infrared sensor (TIRS) is suffering from the problem of stray light that

makes an inaccurate radiance for two thermal infrared (TIR) bands and the latest correction was

conducted in 2017. This paper focused on evaluation of land surface temperature (LST) retrieval from

Landsat 8 before and after the correction using ground-measured LST from five surface radiation

budget network (SURFRAD) sites. Results indicated that the correction increased the band radiance

at the top of the atmosphere for low temperature but decreased such radiance for high temperature.

The root-mean-square error (RMSE) of LST retrieval decreased by 0.27 K for Band 10 and 0.78 K for

Band 11 using the single-channel algorithm. For the site with high temperature, the LST retrieval

RMSE of the single-channel algorithm for Band 11 even reduced by 1.4 K. However, the accuracy

of two of three split-window algorithms adopted in this paper decreased. After correction, the

single-channel algorithm for Band 10 and the linear split-window algorithm had the least RMSE

(approximately 2.5 K) among five adopted algorithms. Moreover, besides SURFRAD sites, it is

necessary to validate using more robust and homogeneous ground-measured datasets to help solely

clarify the effect of the correction on LST retrieval.

Keywords: land surface temperature; Landsat 8; stray light correction; split-window algorithm;

single-channel algorithm

1. Introduction

Land surface temperature (LST) is a key parameter in the studies of land surface progress,

such as the surface energy budget, surface moisture budget, and urban ecology, which is important

to nature and human health [1–6]. Remote sensing is an effective way to retrieve LST at the

regional and even global scales [7–9]. Many satellites carry thermal infrared (TIR) sensors, such as

Terra/advanced spaceborne thermal emission and reflection radiometer (ASTER), NOAA/advanced very

high resolution radiometer (AVHRR), Terra and Aqua/moderate resolution imaging spectroradiometer

(MODIS), Landsat 5/thematic mapper (TM), Landsat 7/enhanced thematic mapper plus (ETM+),

Landsat 8/thermal infrared sensor (TIRS), and Sentinel-3/sea and land surface temperature radiometer

(SLSTR). Landsat 8/TIRS is an important part of the Landsat program for monitoring surface energy and

temperature. However, it was discovered to have a considerable stray light problem, which resulted

in an absolute radiometric calibration error to the TIRS images [10,11]. The inaccurate radiometric

calibration of TIRS, especially the excessive error in Band 11, made it difficult to apply the conventional

split-window algorithms on retrieving LST from the two TIR bands of TIRS. Therefore, the data
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provider, United States Geological Survey (USGS), recommends the users to develop a single-channel

algorithm for LST retrieval. However, several studies still proposed different split-window algorithms

for this sensor [12–14]. In certain validation cases, the LST retrieval accuracy from the split-window

algorithms was found to be better than that of the single-channel algorithm [15]. As a result, those

reports have made the readers and users puzzled in choosing retrieval algorithms.

A new stray light correction algorithm proposed by Montanaro et al. [16] demonstrates great

potential toward removing most stray light effects from TIRS images. The algorithm has also been

refined and implemented operationally into the Landsat Product Generation System from early

2017 [17]. Gerace and Montanaro [17] selected 20 scenes (almost offshore water scenes) acquired from

TIRS and MODIS onboard the Terra satellite to verify Landsat 8 brightness temperature before and

after the stray light correction. They found that the absolute radiometric error of TIRS images was

reduced to approximately 0.5% in Bands 10 and 11 on average [17]. This correction should benefit

the LST retrieval from TIRS images. Although García-Santos et al. [18] have compared three methods

for estimating LST from Landsat 8/TIRS images after the stray light correction with 21 observations,

further validation in other regions is necessary for the assessment of LST retrieval accuracy after the

correction. Moreover, the comparison of LST retrieval accuracy before and after the correction has

not been validated using ground-measured data. Hence, the correction influence on the LST retrieval

accuracy in practice remains unknown and thus requires further investigation.

With the above motivations, this study aims to clarify the following two questions: (1) Has the

LST retrieval accuracy improved after the stray light correction? (2) Which algorithm (the split-window

or the single-channel algorithm) is better for LST retrieval from TIRS images after the stray light

correction? To answer the above questions, this paper tries to evaluate the accuracy of the LST

retrieved from Landsat 8 TIRS images before and after the stray light correction by using different

published two-channel split-window and single-channel algorithms. As a result, the remainder of

this paper is organized as follows: Section 2 briefly presents the principles of different split-window

algorithms and the single-channel algorithm; Section 3 introduces the involved Landsat 8 images and

ground-measured LST and their processing; Section 4 focuses on the band radiance and LST evaluation

results to answer the above-mentioned two questions; Sections 5 and 6 provide the discussion and

conclusions, respectively.

2. Landsat 8 LST Retrieval Algorithms

Five representative LST retrieval algorithms were selected for evaluation, including three

two-channel split-window algorithms and one single-channel algorithm with Bands 10 and 11,

respectively. These algorithms have been applied to different TIR sensors and always have been

used as the reference algorithms for a new algorithm or as the state-of-art algorithms for LST

validation [15,18–20]. Therefore, it is proper and valid to adopt these algorithms for validation in

this research. Among the above algorithms, the generalized split-window algorithm was originally

developed as the standard algorithm to estimate LST from MODIS TIR images and then refined in 2014

by adding a quadratic term [21]. The new version was confirmed to perform better than its previous

version. Du et al. [14] applied this algorithm to conduct the LST retrieval from Landsat 8 TIRS images,

and Gerace and Montanaro [17] used their algorithm to check the LST variation before and after the

stray light correction. On the basis of the work of Qin et al. [22], a linear split-window algorithm for

TIR images was proposed by Rozenstein et al. [13] to retrieve LST from Landsat 8/TIRS and had good

performance. The split-window algorithm proposed by Jiménez-Muñoz et al. [12] was inherited from

the mathematical form proposed by Sobrino et al. [23] first and modified by Sobrino and Raissouni [24],

which has been developed to retrieve LST for several TIR sensors, such as AVHRR and ATSR2 [25].

The single-channel algorithm developed by Jiménez-Muñoz et al. [12] was applied to Landsat 5/TM

and Landsat 7/ETM+ with a single TIR band [26,27]. Moreover, USGS recommended users to retrieve

LST from Landsat 8 images with single-channel algorithm because of the serious stray light problem in
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Band 11. Therefore, this algorithm was also analyzed in this study. The details of the above algorithms

are presented in the following part.

2.1. Three Split-Window Algorithms

A. Generalized Split-Window Algorithm by Du et al. [14]

The generalized split-window algorithm Du et al. [14] applied to two Landsat 8 TIR bands

expressed as:

Ts = b0 + (b1 + b2
1− ε

ε
+ b3

∆ε

ε
)

T10 + T11

2
+ (b4 + b5

1− ε

ε
+ b6

∆ε

ε
)

T10 − T11

2
+ b7(T10 − T11)

2 (1)

where T10 and T11 are the brightness temperatures at the top of the atmosphere (TOA) from TIRS Bands

10 and 11, respectively; ε is the average emissivity of the two bands; ∆ε is the band emissivity difference

(∆ε = ε10 − ε11); and bk (k= 0, 1, . . . , 7) refers to the algorithm coefficients, which are obtained directly from

simulation dataset on the basis of the thermodynamic initial guess retrieval (TIGR) [28] atmospheric profile

database and the MODTRAN 5.2 [29] atmospheric transmittance/radiance code. Du et al. [14] calculated

those coefficients independently on column water vapor (CWV) to reduce the effect of atmospheric

water vapor. The CWV was divided into five subranges (0 < CWV ≤ 2.5 g/cm2, 2 < CWV ≤ 3.5 g/cm2,

3 < CWV ≤ 4.5 g/cm2, 4 < CWV ≤ 5.5 g/cm2, and CWV > 5.0 g/cm2). This method was also applied on

Sentinel-3A [30] and improved by dividing the simulation data into temperature subranges. We refined

these algorithm coefficients as Zheng et al. [30] did in two ways to make the evaluation more precise.

First, the largest difference between the bottom air temperature (Tair) and LST used in the simulation

dataset was increased from 20 K in the study of Du et al. [14] to 35 K for a barren or desert surface

that probably has high surface temperature. Second, the brightness temperature of Band 10 (T10) was

divided into several subranges, which were used to determine the coefficients together with the CWV

subranges. T10 varies with LST and atmospheric conditions; thus, in accordance with the value ranges

of T10 under various CWV subranges, T10 was divided into four subranges for 0 ≤ CWV ≤ 2.5 g/cm2

as T10 < 270 K, 270 K ≤ T10 < 300 K, 300 K ≤ T10 < 330 K, and T10 ≥ 330 K. For the other four

CWV subranges, T10 was divided into T10 < 300 K and T10 ≥ 300 K. Table 1 lists the new algorithm

coefficients of Equation (1) for different combinations of CWV subranges and T10 subranges and

the root-mean-square error (RMSE) of the predicted temperature compared with the value in the

simulation dataset.

B. Linear Split-Window Algorithm by Rozenstein et al. [13]

Based on the linear relationship between band radiance and temperature in specified temperature

ranges, the linear split-window algorithm proposed by Rozenstein et al. [13] to estimate LST from

Landsat 8 TIRS image is expressed as:

Ts = A0 + A1T10 −A2T11 (2)

where, A0, A1 and A2 are algorithm coefficients given by following equations derived from thermal

radiative transfer equation [31] and linearizing Planck’s radiance function:

A0 = E1a10 + E2a11 (3a)

A1 = 1 + A + E1b10 (3b)

A2 = A + E2b11 (3c)
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Table 1. The coefficients bk in different column water vapor (CWV) and brightness temperature of Band

10 (T10) intervals, and root-mean-square error (RMSE) of the predicted temperature.

(1) CWV (g/cm2): [0.0, 2.5]

T10 (K) b0 b1 b2 b3 b4 b5 b6 b7 RMSE (K)

<270 −3.1118 1.0153 0.1658 −0.3046 3.1790 8.7989 34.4917 −0.3746 0.11

[270, 300) 1.6214 0.9968 0.1739 −0.3965 4.3444 5.6164 12.8573 −0.1175 0.30

[300, 330) 7.3937 0.9788 0.1917 −0.3384 3.0247 3.2533 −14.4977 0.1291 0.30

≥330 18.0799 0.9517 0.2043 −0.2870 1.5422 3.1292 −23.0479 0.1694 0.18

(2) CWV (g/cm2): [2.0, 3.5]

T10 (K) b0 b1 b2 b3 b4 b5 b6 b7 RMSE (K)

<300 24.9130 0.911 0.174 −0.299 6.351 3.920 −5.582 −0.064 0.54

≥300 27.4670 0.904 0.187 −0.349 5.675 2.842 −7.853 0.023 0.58

(3) CWV (g/cm2): [3.0, 4.5]

T10 (K) b0 b1 b2 b3 b4 b5 b6 b7 RMSE (K)

<300 23.7764 0.9123 0.1443 −0.1902 7.1598 5.9811 −11.5454 −0.0597 0.71

≥300 35.3510 0.8780 0.1534 −0.2077 6.0319 5.2617 −14.5807 0.0270 1.01

(4) CWV (g/cm2): [4.0, 5.5]

T10 (K) b0 b1 b2 b3 b4 b5 b6 b7 RMSE (K)

<300 9.6135 0.9581 0.1128 −0.1213 7.1210 6.8790 −12.5374 0.0257 0.93

≥300 36.4439 0.8736 0.1160 −0.1181 6.4603 7.0560 −16.3845 0.0305 1.32

(5) CWV (g/cm2): [5.0, 6.3]

T10 (K) b0 b1 b2 b3 b4 b5 b6 b7 RMSE (K)

<300 50.7495 0.8021 0.0738 −0.0521 12.3012 9.7371 −15.7669 −0.3001 1.06

≥300 −63.0662 1.2070 0.0466 −0.0323 7.4367 10.3215 −13.6909 −0.0355 1.32

In the above equations, E1, E2 and A are coefficients determined by pixel emissivity and atmospheric

transmittance, and written as:

E1 = D11(1−C10 −D10)/E0, E2 = D10(1−C11 −D11)/E0

A = D10/E0, and E0 = D11C10 −D10C11 (4)

with Ci = εiτi and Di = (1− τi)[1 + (1− εi)τi] (5)

where, εi and τi are the pixel emissivity and atmospheric transmittance of TIRS Band 10 or 11,

respectively. The atmospheric transmittance τi is obtained from the negative correlation with CWV by

the results of MODTRAN 4.0 simulations [13], which is the only empirical fitting step in this algorithm.

Therefore, different from the generalized split-window algorithm, this linear split-window algorithm

is not dependent on the temperature simulation data, but the direct features of atmospheric profiles.

This makes more stable simulation results of this linear split-window algorithm; because the process of

temperature simulation needs more other parameters besides the atmospheric profile, such as the input

LST and emissivity, while the process of transmittance simulation only needs the atmospheric profile.

C. Split-Window Algorithm by Jiménez-Muñoz et al. [12]

A split-window algorithm was introduced by Jiménez-Muñoz et al. [12] to estimate LST for the

TIRS image, that is,

Ts = T10 + c1(T10 − T11) + c2(T10 − T11)
2 + c0 + (c3 + c4w)(1− ε) + (c5 + c6w)∆ε (6)

where, ε is the average emissivity of the two bands, and ∆ε is the band emissivity difference; they are similar

to those in Equation (1). w is the CWV in g/cm2, and c0 to c6 are coefficients. Jiménez-Muñoz et al. [12]

regressed those coefficients and calculated the error of the temperature on the basis of simulation data.
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Their results are shown in Table 2. Similar to the above generalized split-window, this algorithm also

considers the quadratic term of brightness temperature difference of Bands 10 and 11, and obtains the

coefficients by fitting the temperature simulation data directly.

Table 2. Coefficients for the split-window algorithm and the land surface temperature (LST) RMSE

from the linear regression by Jiménez-Muñoz et al. [12].

c0 c1 c2 c3 c4 c5 c6 LST RMSE (K)

−0.268 1.378 0.183 54.30 −2.238 −129.20 16.40 0.6

2.2. Single-Channel Algorithm

This study used the single-channel algorithm developed by Jiménez-Muñoz et al. [27] to retrieve

LST from Landsat 8 TIRS Band 10 or 11 image. This algorithm is expressed as:

Ts = γ[
1

ε
(ψ1Ltoa +ψ2) +ψ3] + δ (7)

where Ltoa is the TOA radiance and calculated from the radiometric calibration on the observation; ε is

the emissivity of Band 10 or 11; and γ and δ are two parameters given by

γ ≈
T2

b

bγLtoa
, and δ ≈ Tb −

T2
b

bγ
(8)

In Equation (8), Tb is the brightness temperature of TIRS Band 10 or 11, that is, T10 or T11. bγ =

c2/λ (c2 = 1.43877 × 104 µm·K; λ is the effective wavelength of TIRS, and bγ is 1324 K for Band 10 and

1199 K for Band 11, respectively). ψ1, ψ2, and ψ3 are atmospheric terms related to the atmospheric

transmittance and downward and upward thermal radiance, and can be nonlinearly related to CWV.

Equation (9) shows the coefficients for Band 10 that are estimated by Jimenez-Munoz et al. [12] from

the Global Atmospheric Profiles from Reanalysis Information (GAPRI) database [32].




ψ1
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ψ3



=




c11 c12 c13

c21 c22 c23

c31 c32 c33







w2

w

1



=




0.04019 0.02916 1.01523

−0.38333 −1.50294 0.20324

0.00918 1.36072 −0.27514







w2

w

1




(9)

Jiménez-Muñoz et al. [12] only provided coefficients for Band 10. However, after the stray light

correction, Band 11 can also be used in the single-channel algorithm. Therefore, coefficients for this

band are required, as well. This study obtained the coefficient matrix C for Band 11 by using the above

TIGR atmospheric profiles. The matrix is

Cb11 =




0.09874 −0.03212 1.06497

−0.81391 −0.94691 −0.17172

−0.00676 1.40205 −0.14864




(10)

2.3. Determination of Pixel Emissivity and Atmospheric CWV

The above split-window and single-channel algorithms require pixel emissivity and atmospheric

CWV as input. The two parameters were both acquired using the same way to maintain constancy

among algorithms.

For pixel emissivity, this study adopted the widely used normalized difference vegetation index

(NDVI)-threshold method to estimate the pixel emissivity. In this method, land pixels were classified

into three types on the basis of their NDVI value, namely, barren soil, fully vegetated, and partly

vegetated pixels [24,33]. NDVI was calculated from atmospherically corrected ground red and

near-infrared band reflectance. The emissivity of partly vegetated pixel was mainly calculated from
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the combination of soil and vegetation component emissivities, which are weighted by the fraction of

vegetation cover (FVC). For convenience, the emissivities of barren soil and fully vegetated pixels were

directly given by soil and vegetation component emissivities, respectively, on the assumption that the

component emissivities slightly change in time. Finally, this method is expressed as:

εp =



εs NDVI < NDVIs(barren soil)

εv f + εs(1− f ) + 4 < dε > f (1− f ), NDVIs ≤ NDVI ≤ NDVIv(partly vegetated)

εv NDVI > NDVIs(fully vegetated)

(11)

where εp is the pixel emissivity, εs is the soil component emissivity, εv is the vegetated component

emissivity, <dε> is the maximum cavity term and is set as 0.01 [34], and f is the FVC. NDVIs is the

NDVI for barren soil pixel, and its value is 0.20; NDVIv is the NDVI for fully vegetated pixel and

valued with 0.86 [35]. Ren et al. [33] improved this method by using flexible component emissivity

instead of the fixed component emissivity in the original method on the basis of the different land

cover types of the fine-resolution observation and monitoring of global land cover product [36].

For atmospheric CWV, the MODIS/Terra total precipitable water vapor 5-Min L2 Swath 1 km

and 5 km (MOD05_L2) product was used in accordance with the location and observation time of

Landsat 8. As one of MODIS standard products, the MOD05_L2 product consists of atmospheric CWV

amounts estimated from two different algorithms, namely, the near-infrared and infrared algorithms.

The spatial resolution of CWV data generated by the near-infrared algorithm is 1 km, whereas that of

the infrared algorithm is 5 km [37]. The water vapor at 1 km was used in this study and the temporal

variation between MODIS and Landsat 8 overpass time was ignored.

3. Landsat 8 Images and Ground-Measured LST

Landsat 8 images and the corresponding ground-measured data of the surface radiation budget

network (SURFRAD) [38] that were usually used for in situ LST validation [15,20,39–47] were obtained

to evaluate the different LST retrieval algorithms as mentioned above. The Landsat 8 image pairs

before and after the stray light correction were obtained from the USGS website to illustrate the LST

retrieval accuracy change before and after the correction. The brightness temperatures T10 and T11 were

consequently calculated from the observation using the radiometric coefficients in the metadata file.

The SURFRAD was established in 1993 through the support of NOAA’s Office of Global

Programs. The primary objective was to support climate research with accurate, continuous, long-term

measurements of the surface radiation budget over the United States. SURFRAD has seven sites,

but only four of them (Bondville_IL (BND), Goodwin_Creek_MS (GCM), Penn_State_PA (PSU),

and Sioux_Falls_SD (SXF)) are suitable for the validation of moderate-resolution remote sensing

images, such as Landsats 5 and 7, owing to the heterogeneity issues [41]. However, given that the error

caused by stray light is related to the ground temperature of the surrounding area and the error is

greater when the surrounding area is warm [17], the Desert_Rock_NV (DRA) site was also selected for

validation to explore the effect of the stray light correction in broader temperature ranges. Since its land

cover type is open shrublands, resulting in some high LST of this site. Meanwhile, DRA site has also

been used in the LST validation of Landsat 8 [20] and other TIR sensors [46,47] in recent years, which

can prove the applicability of the DRA site in some degree. As a result, we finally used the BND, GCM,

PSU, SXF, and DRA sites to validate the Landsat 8 LST retrieval results considering heterogeneity

issues and sufficient temperature range. Table 3 lists the information of the five sites of the SURFRAD

program and the number of clear-sky Landsat 8 images from its launch to August 2017 over each site.

We removed the observations that had a standard deviation of temperature exceeding 1 K for 3 pixels

× 3 pixels around the site center, in order to reduce the error caused by heterogeneity [41]. Finally, a

total of 207 images were obtained for analysis, as shown in Table 3.
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Table 3. The information of the surface radiation budget network (SURFRAD) sites and the image

numbers under clear-sky conditions.

Site Code Name Geolocation Land Cover Clear-Sky Image Count

BND Bondville, Illinois
40.05192◦N
88.37309◦W

cropland 43

GCM Goodwin Creek, Mississippi
34.2547◦N
89.8729◦W

cropland 58

PSU
Penn. State Univ.,

Pennsylvania
40.72012◦N
77.93085◦W

cropland 13

SXF Sioux Falls, South Dakota
43.73403◦N
96.62328◦W

grassland 31

DRA Desert Rock, Nevada
36.62373◦N

116.01947◦W
open

shrublands
62

Each site provides a measurement of the upward surface TIR radiance L↑ and the downward

atmospheric TIR radiance R↓ in the wavelength range of 3–50 µm every 1 min [39]. On the basis of the

thermal radiative transfer equation of the near surface and the Stefan–Boltzmann law, the ground LST

can be calculated as:

Ts_ground =

[
L↑ − (1− ε)R↓

εσ

] 1
4

(12)

In Equation (12), σ is the Stefan–Boltzmann constant with the value of 5.67 × 10−8 W/m2·K4. ε is

the ground broadband emissivity (BBE). BBE in 8–13.5 µm was used, because it is considered as the

best wavelength range for estimating the net longwave radiation under clear sky [48,49]. To obtain this

BBE, we also used the NDVI-threshold method as stated in Equation (11). However, the broadband

component emissivity rather than the band component emissivity was used in Equation (11) for BBE

calculation. Some details of the technique can be found in Ren et al. [33].

4. Band Radiance and LST Evaluation Results

The LST in the ground sites was retrieved from Landsat 8 images by using the above five algorithms.

For simplification, the generalized split-window algorithm by Du et al. [14], the linear split-window

algorithm by Rozenstein et al. [13], and the split-window algorithm by Jiménez-Muñoz et al. [12] were

denoted as SW_Du, SW_Rozenstein, and SW_JM, respectively. The single-channel algorithms were

denoted as SC_10 for using Band 10 image and as SC_11 for using Band 11 image. This section focuses

on the LST evaluation results in two aspects, namely, the band radiance comparison before and after

the stray light correction and the LST retrieval result comparison.

4.1. TOA Radiance Comparison Before and After the Stray Light Correction

After the stray light correction, some changes in band TOA radiance should be observed. On

the basis of the above clear-sky Landsat 8 images over the ground sites, we investigated the band

TOA radiance changes caused by the stray light correction. From the 207 images over the five sites,

Figure 1a shows the TOA radiance difference (∆L) of Band 10 before and after the stray light correction,

and Figure 1b is the case of Band 11. The bias of both bands turned out to be slightly positive, which

meant that the TIRS data became minimally “hotter” after the stray light correction in general. For Band

10, the histogram of ∆L was mostly concentrated larger than zero, with a bias of 0.08 W·m−2·sr−1·µm−1.

A general positive TOA radiance change was observed for this band, although such a change was

unremarkable. For Band 11, ∆L showed a broader distribution but had a similar bias with Band 10,

indicating that the stray light on Band 11 was corrected in a larger scale and the variance of correction

was also greater than that of Band 10.
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was regarded as the reference LST for the evaluation. Figure 2 shows the scatter plot between ΔL 
caused by the stray light correction and SURFRAD ground LST (SURFRAD LST). A negative 
correlation was firstly observed, and the radiance of Band 11 was found to have a more significant 
negative relationship between ΔL and SURFRAD LST than that of Band 10. In the low LST range of 
260–280 K, the stray light correction of Band 11 was 0.2–0.4 W·m−2·sr−1·μm−1, which was larger than 
that of Band 10. In the LST range of 290–300 K, the stray light correction of the two bands became 
nearly the same, with a value of approximately 0.1 W·m−2·sr−1·μm−1, corresponding to a temperature 
difference of approximately 0.7–0.8 K. For LST > 310 K, the absolute value of the stray light 
correction of Band 10 was smaller than that of Band 11. Such modification can result in a remarkable 
effect on the final LST retrieval, especially for the single-channel method. This study analyzed this 
effect, as stated in the following Section 4.2, to clarify the change on LST retrieval result before and 
after the stray light correction. 

 

Figure 1. Histograms of the band top of the atmosphere (TOA) radiance change after the stray light

correction for Landsat 8 thermal infrared sensor (TIRS) of (a) Band 10 and (b) Band 11. ∆L is the

difference between TOA radiance after and before the stray light correction (after minus before).

The effect of stray light is related to LST [17], hence, the relationship between correction results

and LST is necessary to explore. As stated in Section 3, the LST calculated from the SURFRAD data was

regarded as the reference LST for the evaluation. Figure 2 shows the scatter plot between ∆L caused by

the stray light correction and SURFRAD ground LST (SURFRAD LST). A negative correlation was

firstly observed, and the radiance of Band 11 was found to have a more significant negative relationship

between ∆L and SURFRAD LST than that of Band 10. In the low LST range of 260–280 K, the stray light

correction of Band 11 was 0.2–0.4 W·m−2·sr−1·µm−1, which was larger than that of Band 10. In the LST

range of 290–300 K, the stray light correction of the two bands became nearly the same, with a value

of approximately 0.1 W·m−2·sr−1·µm−1, corresponding to a temperature difference of approximately

0.7–0.8 K. For LST > 310 K, the absolute value of the stray light correction of Band 10 was smaller than

that of Band 11. Such modification can result in a remarkable effect on the final LST retrieval, especially

for the single-channel method. This study analyzed this effect, as stated in the following Section 4.2,

to clarify the change on LST retrieval result before and after the stray light correction.
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After considering ∆L of the single band, the relationship between the two bands’ brightness

temperature difference (T10 − T11) and the SURFRAD LST before and after the stray light correction

was investigated. As illustrated in Figure 3, before the correction, the brightness temperature difference

(T10 − T11) had no evident relationship with the ground LST (see Figure 3a). However, after the stray

light correction, the brightness temperature difference (T10 − T11) had a significant positive correlation

with the ground LST (Figure 3b) and the same trend as the simulation data (Figure 3d). This change

showed that the stray light correction process not only improved TOA radiance of two TIRS bands

respectively as stated in the Introduction section, but also produced a more reasonable correlation

on brightness temperature of two Landsat 8 TIRS bands data. Moreover, the change ∆(T10 − T11)

in the brightness temperature difference (T10 − T11) before and after the stray light correction was

also found to be linearly correlated with SURFRAD LST, as shown in Figure 3c. In high temperature

(LST > 320 K), the (T10 − T11) increased, while in low temperature (LST < 280 K), the (T10 − T11)

decreased. Figure 3d shows that (T10 − T11) had an obvious relationship with LST in theory, which

makes it possible to develop a split-window algorithm with the term (T10 − T11) to retrieve LST.

Therefore, the evident and closer-to-theory relationship between (T10 − T11) and LST appeared after

correction was expected to make the refined TIRS image more suitable for the split-window algorithm

than the original TIRS image.
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(denoted as SURFRAD LST). (a) Before the stray light correction and (b) after the stray light correction.

(c) Change (∆(T10 − T11)) in the brightness temperature difference before and after the stray light

correction. (d) Density scatter plot of (T10 − T11) and LST in the simulation dataset.

4.2. LST Retrieval Comparison Before and After the Stray Light Correction

This section focused on the LST retrieval evaluation before and after the stray light correction in

two ways. First, the retrieved LST was compared with the ground-measured LST to check whether the
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LST retrieval accuracy improved after the stray light correction. Second, the LST retrieval accuracy

among different split-window and single-channel algorithms was compared to find the best algorithm

for retrieving LST from Landsat 8 TIRS images.

4.2.1. Overall Comparison of LST Retrieval Results

On the basis of the Landsat 8 images before and after the stray light correction, the above

split-window and single-channel algorithms were used to estimate the LST over the ground sites.

In accordance with the ground reference LST in different sites, Table 4 lists the LST RMSE and bias for

the five algorithms before and after the stray light correction over all five sites.

Table 4. The RMSE and bias of Landsat 8 LST retrieval from five algorithms before and after the stray

light correction over all five sites.

Algorithm
Before Correction After Correction

RMSE (K) Bias (K) RMSE (K) Bias (K)

SW_Du 2.26 1.14 2.81 (+0.55) 1 2.05 (+0.91)
SW_Rozenstein 2.76 −1.06 2.46 (−0.30) −0.09 (+0.97)

SW_JM 2.33 0.58 2.54 (+0.21) 1.37 (+0.79)
SC_10 2.74 −0.17 2.47 (−0.27) 0.54 (+0.71)
SC_11 4.33 0.98 3.55 (−0.78) 1.59 (+0.61)

1 The value in the bracket is the RMSE or bias change after the stray light correction compared to those of
no correction.

Before the stray light correction, three split-window algorithms and SC_10 nearly had RMSEs

smaller than 3.0 K, which was obviously smaller than the RMSE (4.33 K) of SC_11. However, the

absolute values of bias for SW_Du and SW_Rozenstein were greater than 1.0 K, indicating that the

retrieved LST was slightly biased from the ground-measured LST on average. As for the single-channel

algorithm, SC_10 performed better than SC_11; the RMSE of SC_10 was 2.74 K with a bias of −0.17 K,

whereas SC_11 had a larger RMSE of 4.33 K. From the RMSE and bias, the performance of SW_JM

exhibited the best results among the five methods before the stray light correction, with an RMSE of

2.33 K and a bias of 0.58 K. After the stray light correction, the RMSEs of all algorithms were less than

4.0 K. The least RMSE was nearly 2.5 K, which was obtained by SW_Rozenstein, SW_JM, and SC_10.

Among the three algorithms, the biases of SW_Rozenstein and SC_10 were within 0.6 K; therefore,

these two algorithms may be the best algorithms to retrieve LST after the stray light correction. SC_11

still had the worst performance to retrieve LST from the Landsat TIRS images, with an RMSE of 3.55 K

and a bias of 1.59 K.

The comparison of the retrieved results of all sites before and after the stray light correction

indicated that the absolute changes in RMSE and bias for the five algorithms were all within 1.0 K,

which showed only slight changes in retrieved LSTs after the stray light correction on average. For the

split-window algorithms, the RMSE of SW_Rozenstein decreased by 0.3 K, whereas that of SW_Du

and SW_JM increased minimally after the stray light correction. For the single-channel algorithm,

the RMSE of two bands both decreased, indicating an improved performance of the single-channel

algorithm for Landsat 8 TIRS after the correction. The RMSE of SC_11 decreased most among the five

algorithms but was still larger than 3.5 K. However, the bias of all algorithms increased greater than

0.6 K, showing that retrieved LSTs were overestimated after the stray light correction on average, and

the correction might be biased.

Figure 4 demonstrates the comparison of LST retrieval from the five algorithms before and after

the stray light correction. Moreover, because of the particularity of the DRA site mentioned in Section 3,

its result is shown separately with different symbols. From Figure 4, it was found that the retrieved

LST highly linearly correlated to the ground-measured LST, with coefficients R2 larger than 0.95 for

all cases. For the three split-window algorithms (Figure 4a–c), the retrieved LSTs from the corrected

images were generally higher than those from uncorrected images, especially at high ground surface
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temperature. In the case that the retrieved LST before the correction was higher than the ground LST,

the accuracy of LST retrieval naturally decreased if the retrieval LST was higher after the correction. For

the SW_Du algorithm (Figure 4a), most retrieved LSTs before correction were higher than ground LST.

After correction, the retrieval error was greater in most cases. For the SW_Rozenstein algorithm

(Figure 4b), when ground LST was higher than 315 K, the retrieved LST before correction was lower

than the ground LST for most cases. Although the retrieved LST after correction was higher than

that before the correction (similar to the SW_Du algorithm), the accuracy of LST retrieval increased

after the correction, which was different from the SW_Du algorithm. For the SW_JM algorithm

(Figure 4c), under low-temperature conditions (LST < 290 K), the retrieved LST became lower after

the correction. Consequently, the over-high retrieved LST before the correction was getting closer to

the ground LST, leading to the improvement of retrieval accuracy. However, under high-temperature

conditions (LST > 300 K), the retrieved LST after the correction became higher in general, resulting in

a larger error. With the opposite accuracy change of low and high temperatures, the RMSE change of

the SW_JM algorithm finally became very small and was only half of that of the SW_Du algorithm,

as presented in Table 4 (+0.55 K for the SW_Du algorithm and +0.21 K for the SW_JM algorithm).

For the single-channel algorithm (Figure 4d,e), the retrieved LST after the correction increased at low

temperatures but decreased at high temperatures, compared to that of before the correction. The LST

change of the SC_11 algorithm was more evident than that of the SC_10 algorithm (−0.27 K for SC_10

and −0.78 K for SC_11), and the scatter plot result of both algorithms were getting closer to the 1:1 line.

This finding explained the details of accuracy increase in single-channel algorithms for the two TIRS

bands, as shown in Table 4.

The single-channel algorithm is a theoretically derived algorithm; accordingly, the accuracy

changes of SC_10 and SC_11 can be used to check whether the TIRS data are better after the stray light

correction. Table 4 indicates that the errors of the SC_10 and SC_11 algorithms were reduced, meaning

that LST retrieval results got better after the stray light correction and the SC_11 improved more.

Combined with the change in the band radiance before and after the correction, the difference of

retrieved LST can be analyzed clearly. Figure 2 in Section 4.1 illustrates that the TOA radiance of the

two bands after the correction increased at low temperatures and decreased at high temperatures,

resulting that the retrieved LST was closer to the ground LST of the single-channel algorithm on two

bands. This finding from SURFRAD sites provided the proof supporting that the stray light correction

improved not only the TIRS data quality as stated in previous study [17] but also the LST retrieval

accuracy in practice. However, the validations over more robust and homogeneous ground-measured

datasets, such as desert and water sites, are still needed to clarify the sole effect of the stray light

correction on LST retrieval.

Since the DRA site had heterogeneity issues and high ground temperature cases (all from DRA

when SURFRAD LST > 320 K) that had distinguishing features in the result of validation in Figure 4,

the analysis excluding the DRA site is also necessary to help understand the effect of the stray light

correction. Table 5 lists the temperature RMSE and bias of the five algorithms calculated from data of

all sites excluding DRA.

Table 5. The RMSE and bias of Landsat 8 LST retrieval from five algorithms before and after the stray

light correction over all sites excluding DRA.

Algorithm
Before Correction After Correction

RMSE (K) Bias (K) RMSE (K) Bias (K)

SW_Du 2.40 1.30 2.71 (+0.30) 1 1.97 (+0.68)
SW_Rozenstein 2.43 −0.42 2.30 (−0.13) 0.32 (+0.74)

SW_JM 2.47 0.82 2.27 (−0.20) 1.22 (+0.40)
SC_10 2.41 −0.83 2.11 (−0.31) 0.10 (+0.93)
SC_11 3.20 −0.17 2.84 (−0.36) 1.02 (+1.19)

1 The value in the bracket is the RMSE or bias change after the stray light correction compared to those of
no correction.
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SC_10 2.41 −0.83 2.11 (−0.31) 0.10 (+0.93) 
SC_11 3.20 −0.17 2.84 (−0.36) 1.02 (+1.19) 1 The value in the bracket is the RMSE or bias change after the stray light correction compared to 

those of no correction. 

Figure 4. Comparison of retrieved LST before and after the stray light correction for different algorithms.

(a) for SW_Du, (b) for SW_Rozenstein, (c) for SW_JM, (d) for SC_10, and (e) for SC_11. The linear

regression coefficients were obtained from data of all five sites. “Before/After (without DRA)” in

the figure means the data from the other four SURFRAD sites after excluding DRA before or after

the correction; “Before/After (DRA)” in the figure means the data from the DRA site before or after

the correction.

From Table 5, when excluding high ground temperature cases of DRA, there were some differences

from the results including DRA in Table 4. Except the SW_Du, the RMSE of the other four algorithms all

decreased little and RMSEs of five algorithms all were within 3.0 K after the correction. The decreases

on RMSE of SC_10 and SC_11 were both around 0.3 K, narrowing the gap of the RMSE change on SC_10
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and SC_11 in Table 4. This indicated that the correction and improvement of single-channel algorithm

on Band 11 were greater than Band 10 in a high ground temperature range, which was consistent

with the result in Figures 2 and 4d,e. However, the RMSE change of split-window algorithms was

different from Table 4, especially for SW_JM, which will be analyzed in detail in the Discussion section.

Considering the high temperature cases in the practical use, this paper finally kept the DRA site in the

statistical analysis to make the conclusion more universal.

4.2.2. Comparison Results over Each SURFRAD Site

On the basis of the comparison results over all ground sites, we can determine the overall change

on LST retrieval from different algorithms before and after the stray light correction. However,

these sites are different from one another in the land cover type and homogeneity degree, and those

differences may cause confusion in understanding the validation results. Therefore, further analysis of

the results over each site is necessary. Table 6 lists the temperature RMSE and bias of retrieved LSTs

from the five algorithms using the Landsat 8 images before the stray light correction over each site.

Table 7 provides the results after the stray light correction. Figure 5 presents the scatter plots between

the retrieved LST and ground LST.

Table 6 indicates that before the correction, the four other algorithms performed better than SC_11

over BND, GCM, and PSU sites, and their temperature RMSEs were within the range of 1.5–2.7 K.

From Table 7, after the correction, the temperature RMSEs of the single-channel algorithm of two

bands decreased over the three sites. However, the temperature RMSE change of the split-window

algorithms was not the same. The RMSE of SW_Du for the three sites evidently increased, that is,

0.40 K for BND, 0.66 K for GCM, and 0.75 K for PSU. By contrast, the RMSE of the two split-window

algorithms (SW_Rozenstein and SW_JM) over the three sites changed minimally. The temperature

bias of all algorithms of the three sites increased, indicating that the retrieved LST was higher after

correction on average. Figure 5 depicts that the ground LST of these sites was lower than 310 K; in this

temperature range, most of the radiance of Bands 10 and 11 was increased (Figure 2). Therefore, the

retrieved LST results were consistent with the change in radiance.

Table 6 presents that the GCM and PSU sites were suitable to retrieve LST using split-window

algorithms before the stray light correction. The RMSEs of the three split-window algorithms on

the two sites were within the range of 1.5–2.3 K, which were generally smaller than those of the

single-channel algorithms of both bands. After the correction, with an increase on RMSEs of the

split-window algorithms and a decrease on RMSEs of the single-channel algorithms, the superiority of

the split-window algorithms in retrieving LST for the two sites disappeared. SC_10 had the smallest

RMSEs with a small bias over the PSU site, similar to the result obtained over the BND site. At the

GCM site, SC_10 also showed no weakness compared with some split-window algorithms.

For SXF, before the correction, the performance of the split-window algorithms was worse than

that of SC_10 (Table 6), and the SW_Du and SW_JM algorithms even had larger RMSEs than that

of SC_11. The combined analysis of Figure 5a–c implied that for the split-window algorithms on

SXF, when the ground LST was in the range of 300–310 K, the retrieved LST was obviously higher

than the ground LST, corresponding to the poor performance of the split-window algorithms on SXF.

After the correction, the obvious error had disappeared, indicating an improvement in the split-window

algorithms in retrieving LSTs (the RMSE of three split-window algorithms decreased and the biases

of split-window algorithms were closer to 0.0 K). Nevertheless, they still exhibited worse results

than SC_10.

Although DRA was unsuitable for accurate validation because of heterogeneity, as mentioned

in Section 3, DRA still could reveal important information of the effect of the stray light correction

because of its high ground surface temperature, as illustrated in Figure 5. Its RMSE of SC_11 was very

large before correction and reduced by 1.4 K after correction. The large RMSE in Figure 5e was caused

by the poor performance of SC_11 at high temperature, and the improvement was due to the lower
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radiance correction at high temperature on Band 11 (Figure 2). This comparison result confirmed the

good stray light correction of Band 11 at high-temperature conditions.

In conclusion, the biases of five algorithms increased on most cases after the correction, except for

three split-window algorithms on SXF and SC_11 on DRA. However, the RMSE changes were

complicated of different split-window algorithms on different sites. SW_Du and SW_JM mostly kept a

similar change trend on GCM, PSU, SXF, and DRA, but their RMSEs increased after the stray light

correction except on SXF. The RMSEs of SW_Rozenstein decreased on these five sites, except the PSU

site, showing the better performance of SW_Rozenstein after the correction on most cases. The RMSEs

of the single-channel algorithms decreased over all sites after correction. SC_10 had the smallest

RMSEs and good biases on BND, PSU, and SXF after the stray light correction, and its RMSEs were

approximately 2.1 K on these sites. The performance of SW_Rozenstein was close to that of SC_10 after

the correction in RMSE and bias, but the accuracy of SW_Rozenstein was better than that of SC_10 for

the DRA site. Therefore, similar to SC_10, SW_Rozenstein was also a better algorithm than other two

split-window algorithms to retrieve LST for Landsat 8 after the stray light correction.

Table 6. The RMSE and bias of the LST retrieved from Landsat 8 TIRS images on five sites before the

stray light correction.

Algorithms
BND GCM PSU SXF DRA

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

SW_Du 2.64 1.76 1.50 0.20 1.90 1.10 3.41 2.80 1.88 0.78

SW_Rozenstein 2.34 −0.04 2.27 −1.37 1.98 −0.50 2.96 0.87 3.41 −2.56
SW_JM 2.61 1.53 1.68 −0.52 2.06 0.61 3.48 2.44 1.97 0.01
SC_10 2.30 −0.42 2.56 −1.49 2.67 −1.54 2.18 0.15 3.37 1.36
SC_11 3.17 0.03 3.27 −0.33 3.34 −1.44 3.05 0.40 6.21 3.67

Table 7. The RMSE and Bias of the LST retrieved from Landsat 8 TIRS images on five sites after the

stray light correction.

Algorithms
BND GCM PSU SXF DRA

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

RMSE
(K)

Bias
(K)

SW_Du 3.04(+0.40) 1 2.39(+0.63) 2.16(+0.66) 1.43(+1.23) 2.65(+0.75) 1.83(+0.73) 3.13(−0.28) 2.48(−0.32) 3.05(+1.17) 2.21(+1.43)

SW_Rozenstein 2.33(−0.01) 0.71(+0.75) 2.07(−0.20) −0.09(+1.28) 2.13(+0.15) 0.24(+0.74) 2.69(−0.27) 0.58(−0.29) 2.79(−0.62) −1.07(+1.49)
SW_JM 2.52(−0.09) 1.72(+0.19) 1.77(+0.09) 0.67(+1.19) 2.26(+0.20) 1.02(+0.41) 2.70(−0.78) 1.67(−0.77) 3.07(+1.10) 1.70(+1.69)
SC_10 2.19(−0.11) 0.42(+0.84) 2.05(−0.51) −0.43(+1.06) 2.07(−0.60) −0.47(+1.07) 2.12(−0.06) 0.88(+0.73) 3.16(−0.21) 1.56(+0.20)
SC_11 2.87(−0.30) 1.22(+1.19) 2.82(−0.45) 0.58(+0.91) 2.48(−0.86) −0.02(+1.42) 2.98(−0.07) 2.01(+1.61) 4.81(−1.40) 2.91(−0.76)

1 The value in the bracket means the RMSE and bias change after the stray light correction compared to those of
no correction.
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over different sites before and after the stray light correction. (a) is for the SW_Du algorithm, (b) is for

the SW_Rozenstein algorithm, (c) is for the SW_JM algorithm, (d) is for the SC_10 algorithm, and (e) is

for the SC_11 algorithm.

5. Discussion

After the stray light correction, the single-channel and split-window algorithms showed different

accuracy changes in different directions and ranges. The RMSE of single-channel algorithms of two

bands all decreased on each site, but none of the three split-window algorithms showed the same

change (all increased or all decreased) on the five sites. Moreover, different split-window algorithms

had different accuracy changes on overall sites, and even the same split-window algorithm (SW_JM)

had increasing RMSE on all sites when including the DRA site but decreasing RMSE excluding the

DRA site. The first confusing point is why split-window algorithms had such complicated accuracy

changes that seemed to have no regularity. Secondly, when focusing on some specific temperature

ranges, for instance, the high temperature (>320 K), the change of retrieved LSTs by split-window

algorithms before and after the stray light correction was unreasonable. Figure 2 in Section 4.1 shows

that the TOA radiance of the two bands after the correction was reduced under high-temperature

condition (> 320 K). In the case if other factors are regarded as the same, the retrieved LSTs should have

reduced in theory. However, as seen in Figure 4, under the high-temperature condition, the retrieved
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LSTs of the three split-window algorithms increased after the correction, which was inconsistent with

the theoretical expectation. The same unreasonable retrieved LST changes occurred also in some low

temperature cases of SW_Du and SW_JM.

To explain the two confusing points, we must first explain the RMSE change of these algorithms

was made of two parts: the one was the performance of the algorithm before the correction; the other

was the change of retrieved LST before and after the correction. From Figures 4 and 5, it was easy to

find that before the correction, the SW_Du overestimated LST for most cases (bias = 1.14 K (with DRA),

bias = 1.30 K (without DRA)), the SW_Rozenstein underestimated LST for most cases (bias = −1.06 K

(with DRA), bias = −0.42 K (without DRA)), and the SW_JM overestimated LST a little (bias = 0.58 K

(with DRA), bias = 0.82 K (without DRA)). Different performance before the correction will certainly

result in a different accuracy change if these split-window algorithms have the same retrieved LST

change before and after the correction, just as the high temperature cases (>320 K).

Meanwhile, the brightness temperature relationship between Bands 10 and 11, such as the

brightness temperature difference of two bands, has an important effect on the performance of

split-window algorithms. Taking the SW_Du algorithm as an example, from its structure (see Equation

(1)), the coefficients of
(T10+T11)

2 and
(T10−T11)

2 are positive based on the simulation data, and those

coefficients of (T10 − T11)2 are very small. Therefore, the influence of (T10 − T11)2 can be ignored

when analyzing the influence of the brightness temperature change on Ts. Under a high-temperature

condition (LST> 320 K), as illustrated in Figure 3, the decreases in T10 and T11 would tend to cause a low

retrieved LST, but the increase in (T10 − T11) would tend to increase the LST. The result from Figure 4a

shows that the retrieved LST of the SW_Du algorithm after the correction was larger than that before

the correction for the case LST > 320 K, indicating that the increasing effect on retrieved LST caused by

an increase in TOA band radiance difference was greater than the decreasing effect on retrieved LST

caused by a decrease in TOA radiance on Bands 10 and 11. The influence of brightness temperature

difference finally caused the second confusing point above. Moreover, the different split-window

algorithms have different structures and therefore, the brightness temperature relationship (for example

the brightness temperature difference) will influence the performance of the algorithm in different

degree. This can also cause the first confusing point, or more accurately, it was the different structures

that resulted in a different performance of different split-window algorithms before the correction.

In the case that the RMSE change of split-window algorithms was much affected by the brightness

temperature difference of two bands, the accuracy of brightness temperature (radiance) difference

correction could directly determine the performance of split-window algorithms after the correction.

However, the correction did not take into account the relationship between the radiance of two bands.

Even though the radiance of Bands 10 and 11 got closer to the real radiance respectively and the

relationship between the two bands’ brightness temperature difference and LST became closer to

the theoretical result mentioned in Section 4.1, the value of the radiance difference between the two

bands may still be more biased away from the real value, making the performance of split-window

algorithms worse.

Therefore, the structure of split-window algorithms, the performance of split-window algorithms

before the correction and the change of brightness temperature difference between Bands 10 and

11 combined together to cause the confusing results of split-window algorithms before and after

the correction.

6. Conclusions

This study focused on the evaluation of LST retrieval from Landsat 8/TIRS data before and

after the stray light correction on the original observations using ground-measured LST from five

SURFARD sites. Three split-window algorithms (SW_Du, SW_JM, and SW_Rozenstein) and two

single-channel algorithms (SC_10 and SC_11) were investigated.

The stray light correction increased band TOA radiance for low brightness temperature range

(< 305 K for Band 10 and 310 K for Band 11) but decreased such radiance for a high brightness
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temperature range. The relationship between the two bands’ brightness temperature difference and

LST became closer to the theoretical result.

The LST retrieval error of the single-channel algorithm was consequently reduced. The RMSE of

the single-channel algorithm for Bands 10 and 11 decreased by 0.27 K and 0.78 K, respectively.

The improvement in retrieval accuracy for Band 11 at high temperature was obvious. In the

high-temperature site (DRA), the decreased RMSE of the single-channel algorithm for Band 11

was 1.40 K. By contrast, the accuracy of split-window algorithm (such as SW_Du) was unexpectedly

reduced due to the variation in the brightness temperature difference of the two bands, and was

unreasonably inconsistent with the change in radiance. For better use of split-window algorithms,

the development of the split-window algorithms specified for Landsat 8, as well as the stray light

correction on radiance relationship of Bands 10 and 11 may need more concern.

Among the five algorithms, the best two were SW_Rozenstein and SC_10. Before the stray

light correction, the accuracy of the split-window algorithms was generally better than that of the

single-channel algorithm. For the corrected images of overall sites, the accuracy of the SC_10 algorithm

increased, whereas the accuracy of the SW_Du and SW_JM algorithms decreased, even making the

accuracy of the SC_10 algorithm better than that of the SW_Du and SW_JM algorithms. After the

correction, the RMSEs of SW_Rozenstein and SC_10 were approximately 2.5 K over all ground sites.

In BND, GCM, PSU, and DRA sites, the RMSE of the single-channel algorithm for Band 10 was even

within 2.2 K.

The results obtained in this study implied that the accuracy and applicability of the single-channel

algorithm on Landsat 8/TIRS LST retrieval improved after the stray light correction. However, it still

needs to be careful when using split-window algorithms to retrieve LST from Landsat 8/TIRS images.

Meanwhile, it must be noted that the current results were only based on the measurements of five

SURFRAD sites. Future evaluation using more ground-measured datasets over more homogeneous

sites like desert and water sites remains strongly expected to clarify the quality of Landsat 8/TIRS data

and the performance of different LST retrieval algorithms.
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12. Jiménez-Muñoz, J.-C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land Surface Temperature Retrieval

Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843.

[CrossRef]

13. Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of Land Surface Temperature for Landsat-8

TIRS Using a Split Window Algorithm. Sensors 2014, 14, 5768–5780. [CrossRef] [PubMed]

14. Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface

Temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647–665. [CrossRef]

15. Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between

Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote

Sens. 2014, 6, 9829–9852. [CrossRef]

16. Montanaro, M.; Gerace, A.; Rohrbach, S. Toward an operational stray light correction for the Landsat 8

Thermal Infrared Sensor. Appl. Opt. 2015, 54, 3963. [CrossRef]

17. Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal

infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [CrossRef]

18. García-Santos, V.; Cuxart, J.; Martínez-Villagrasa, D.; Jiménez, M.A.; Simó, G. Comparison of Three Methods

for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data. Remote Sens. 2018, 10, 1450.

[CrossRef]

19. Xu, H. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite.

Chin. J. Geophys. 2015, 58, 741–747.

20. Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data

using the NOAA JPSS Enterprise Algorithm. Remote Sens. 2019, 11, 155. [CrossRef]

21. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity

product. Remote Sens. Environ. 2014, 140, 36–45. [CrossRef]

22. Qin, Z.; Dall’Olmo, G.; Karnieli, A.; Berliner, P. Derivation of split window algorithm and its sensitivity

analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer

data. J. Geophys. Res. Space Phys. 2001, 106, 22655–22670. [CrossRef]

23. Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Multi-channel and multi-angle algorithms for estimating sea and

land surface temperature with ATSR data. Int. J. Remote Sens. 1996, 17, 2089–2114. [CrossRef]

24. Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application

to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [CrossRef]

25. Jiménez-Muñoz, J.-C.; Sobrino, J.A. Split-Window Coefficients for Land Surface Temperature Retrieval From

Low-Resolution Thermal Infrared Sensors. IEEE Geosci. Remote Sens. Lett. 2008, 5, 806–809. [CrossRef]

26. Sobrino, J.A.; Jiménez-Muñoz, J.-C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5.

Remote Sens. Environ. 2004, 90, 434–440. [CrossRef]

27. Jiménez-Muñoz, J.-C.; Cristóbal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the

Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data.

IEEE Trans. Geosci. Remote Sens. 2008, 47, 339–349. [CrossRef]

39



Remote Sens. 2020, 12, 1023

28. Chédin, A.P.; Scott, N.A.; Wahiche, C.; Moulinier, P. The Improved Initialization Inversion Method: A High

Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. J. Clim. Appl.

Meteorol. 1985, 24, 128–143. [CrossRef]

29. Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.;

Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A reformulated atmospheric band model with auxiliary

species and practical multiple scattering options: Update. Defense Secur. 2005, 5806, 662–667.

30. Zheng, Y.; Ren, H.; Guo, J.; Ghent, D.; Tansey, K.; Hu, X.; Nie, J.; Chen, S. Land Surface Temperature Retrieval

from Sentinel-3A Sea and Land Surface Temperature Radiometer, Using a Split-Window Algorithm. Remote

Sens. 2019, 11, 650. [CrossRef]

31. Ottle, C.; Stoll, M. Effect of atmospheric absorption and surface emissivity on the determination of land

surface temperature from infrared satellite data. Int. J. Remote Sens. 1993, 14, 2025–2037. [CrossRef]

32. Mattar, C.; Durán-Alarcón, C.; Jiménez-Muñoz, J.-C.; Artigas, A.S.-; Olivera-Guerra, L.; Sobrino, J.A. Global

Atmospheric Profiles from Reanalysis Information (GAPRI): A new database for earth surface temperature

retrieval. Int. J. Remote Sens. 2015, 36, 1–16. [CrossRef]

33. Ren, H.; Liu, R.; Qin, Q.; Fan, W.; Yu, L.; Du, C. Mapping finer-resolution land surface emissivity using

Landsat images in China. J. Geophys. Res. Atmos. 2017, 122, 6764–6781. [CrossRef]

34. Caselles, E.; Valor, E.; Abad, F.; Caselles, V. Automatic classification-based generation of thermal infrared

land surface emissivity maps using AATSR data over Europe. Remote Sens. Environ. 2012, 124, 321–333.

[CrossRef]

35. Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination

for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and

validation. Remote Sens. Environ. 2010, 114, 540–551. [CrossRef]

36. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer

resolution observation and monitoring of global land cover: First mapping results with Landsat TM and

ETM+ data. Int. J. Remote Sens. 2012, 34, 2607–2654. [CrossRef]

37. Gao, B.; Kaufman, Y.J. MODIS Atmosphere L2 Water Vapor Product; NASA MODIS Adaptive Processing

System, Goddard Space Flight Center: Greenbelt, MD, USA, 2017.

38. Augustine, J.; DeLuisi, J.J.; Long, C.N. SURFRAD—A National Surface Radiation Budget Network for

Atmospheric Research. Bull. Am. Meteorol. Soc. 2000, 81, 2341–2357. [CrossRef]

39. Wang, K.; Liang, S. Evaluation of ASTER and MODIS land surface temperature and emissivity products

using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ. 2009, 113,

1556–1565. [CrossRef]

40. Sekertekin, A. Validation of Physical Radiative Transfer Equation-Based Land Surface Temperature Using

Landsat 8 Satellite Imagery and SURFRAD in-situ Measurements. J. Atmos. Sol.-Terr. Phys. 2019, 196, 105161.

[CrossRef]

41. Malakar, N.; Hulley, G.; Hook, S.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature

Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56,

5717–5735. [CrossRef]

42. Yu, Y.; Tarpley, D.; Privette, J.; Flynn, L.; Vinnikov, K.Y.; Xu, H.; Chen, M.; Sun, D.; Tian, Y. Validation

of GOES-R Satellite Land Surface Temperature Algorithm Using SURFRAD Ground Measurements and

Statistical Estimates of Error Properties. IEEE Trans. Geosci. Remote Sens. 2011, 50, 704–713. [CrossRef]

43. Heidinger, A.; Laszlo, I.; Molling, C.C.; Tarpley, D. Using SURFRAD to Verify the NOAA Single-Channel

Land Surface Temperature Algorithm. J. Atmos. Ocean Technol. 2013, 30, 2868–2884. [CrossRef]

44. Guillevic, P.C.; Biard, J.; Hulley, G.; Privette, J.; Hook, S.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.;

Yu, Y.; et al. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging

Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sens. Environ.

2014, 154, 19–37. [CrossRef]

45. Li, S.; Yu, Y.; Sun, D.; Tarpley, D.; Zhan, X.; Chiu, L. Evaluation of 10 year AQUA/MODIS land surface

temperature with SURFRAD observations. Int. J. Remote Sens. 2014, 35, 830–856. [CrossRef]

46. Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of

Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ.

2019, 225, 16–29. [CrossRef]

40



Remote Sens. 2020, 12, 1023

47. Liu, Y.; Yu, Y.; Yu, P.; Wang, H.; Rao, Y. Enterprise LST Algorithm Development and Its Evaluation with

NOAA 20 Data. Remote Sens. 2019, 11, 2003. [CrossRef]

48. Ogawa, K.; Schmugge, T. Mapping Surface Broadband Emissivity of the Sahara Desert Using ASTER and

MODIS Data. Earth Interact. 2004, 8, 1–14. [CrossRef]

49. Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the Optimal Broadband Emissivity Spectral Range for

Calculating Surface Longwave Net Radiation. IEEE Geosci. Remote Sens. Lett. 2012, 10, 401–405. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

41





remote sensing  

Article

Sensitivity Analysis and Validation of Daytime and
Nighttime Land Surface Temperature Retrievals from
Landsat 8 Using Different Algorithms and
Emissivity Models

Aliihsan Sekertekin 1,* and Stefania Bonafoni 2

1 Department of Geomatics Engineering, Cukurova University, Ceyhan/Adana 01950, Turkey
2 Department of Engineering, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy;

stefania.bonafoni@unipg.it

* Correspondence: asekertekin@cu.edu.tr or aliihsan_sekertekin@hotmail.com; Tel.: +90-531-284-6687

Received: 19 July 2020; Accepted: 25 August 2020; Published: 26 August 2020
����������
�������

Abstract: Land Surface Temperature (LST) is a substantial element indicating the relationship

between the atmosphere and the land. This study aims to examine the efficiency of different

LST algorithms, namely, Single Channel Algorithm (SCA), Mono Window Algorithm (MWA),

and Radiative Transfer Equation (RTE), using both daytime and nighttime Landsat 8 data and in-situ

measurements. Although many researchers conducted validation studies of daytime LST retrieved

from Landsat 8 data, none of them considered nighttime LST retrieval and validation because of

the lack of Land Surface Emissivity (LSE) data in the nighttime. Thus, in this paper, we propose

using a daytime LSE image, whose acquisition is close to nighttime Thermal Infrared (TIR) data

(the difference ranges from one day to four days), as an input in the algorithm for the nighttime

LST retrieval. In addition to evaluating the three LST methods, we also investigated the effect of

six Normalized Difference Vegetation Index (NDVI)-based LSE models in this study. Furthermore,

sensitivity analyses were carried out for both in-situ measurements and LST methods for satellite

data. Simultaneous ground-based LST measurements were collected from Atmospheric Radiation

Measurement (ARM) and Surface Radiation Budget Network (SURFRAD) stations, located at different

rural environments of the United States. Concerning the in-situ sensitivity results, the effect on LST

of the uncertainty of the downwelling and upwelling radiance was almost identical in daytime and

nighttime. Instead, the uncertainty effect of the broadband emissivity in the nighttime was half of the

daytime. Concerning the satellite observations, the sensitivity of the LST methods to LSE proved that

the variation of the LST error was smaller than daytime. The accuracy of the LST retrieval methods

for daytime Landsat 8 data varied between 2.17 K Root Mean Square Error (RMSE) and 5.47 K RMSE

considering all LST methods and LSE models. MWA with two different LSE models presented the

best results for the daytime. Concerning the nighttime accuracy of the LST retrieval, the RMSE value

ranged from 0.94 K to 3.34 K. SCA showed the best results, but MWA and RTE also provided very high

accuracy. Compared to daytime, all LST retrieval methods applied to nighttime data provided highly

accurate results with the different LSE models and a lower bias with respect to in-situ measurements.

Keywords: land surface temperature (LST); daytime LST; nighttime LST; validation; land surface

emissivity (LSE); single channel algorithm; radiative transfer equation; mono window algorithm;

SURFRAD data; Landsat 8
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1. Introduction

Land Surface Temperature (LST), also named skin temperature, refers to the surface temperature

of the Earth. The International Geosphere and Biosphere Program (IGBP) [1] accepted the LST as one

of the high-priority parameters, and the Global Climate Observing System (GCOS) [2] identified it as

an Essential Climate Variable (ECV). Considering space-borne, airborne, and ground-based remote

sensors, LST represents the accumulative radiometric surface temperature of all materials of the surface

cover covering the sensor’s field of view in the observation direction [3]. Thus, LST estimation from

Thermal Infrared (TIR) images is a complicated procedure since the Earth’s surface is composed of

dissimilar materials of varying geometry [4–6]. For example, the LST pixel of a densely vegetated area

represents the surface temperature of vegetation; however, for a sparsely vegetated area, the surface

temperature of vegetation and soil together comprises the LST of the area [5].

LST is a crucial parameter for many fields of interest such as surface energy and water balance,

ecology, agriculture, environment, climatology, meteorology, and hydrology [7–9]. Thus, it provides an

improved understanding of a wide range of applications involving drought monitoring [10–12], Surface

Heat Island (SHI) and urban climate studies [13–17], surface soil moisture and evapotranspiration

estimation [18,19], numerical weather prediction and data assimilation [20,21], surface turbulent flux

estimation [22], monitoring of heat waves [23], earthquake prediction [24,25], forest fire monitoring [26],

and monitoring of geothermal activities [27,28].

The history of satellite-derived LST goes back to TIROS-II satellite, which was launched at the

beginning of the 1960s [29,30]. Through meteorological stations, surface temperature estimation from

radiance measurements is a classical point-based technique; nevertheless, this technique does not stand

for the LST on a large scale. To overcome this drawback, spaceborne TIR remote sensing has been

extensively examined for LST retrieval, and regional and global scale monitoring is the main advantage

of this technology. However, surface parameters (emissivity and geometry), sensor parameters

(spectral range and viewing angle), and atmospheric effects are the major factors that influence the

accuracy of the LST retrieval from TIR data of satellites [5,29,31–33]. Thus, accurate estimation of Land

Surface Emissivity (LSE) and atmospheric parameters is a crucial procedure to obtain LST from TIR

data [34]. Concerning these parameters, various TIR-based multi-channel and single-channel LST

retrieval methods have been proposed by the researchers for different sensor types. Namely, these are

Temperature-Independent Spectral Indices (TISI) method [35], Split Window Algorithm (SWA) [36–38],

Mono Window Algorithm (MWA) [39], Single Channel Algorithm (SCA) [40,41], Radiative Transfer

Equation (RTE) [42,43], and Temperature and Emissivity Separation (TES) method [44]. Among the

LST retrieval methods above, only SWAs do not need atmospheric parameters such as water vapor

profile and/or temperature. The LSE and LST errors arising from the other algorithms largely rely on

the input atmospheric profile’s uncertainties [45].

There are numerous Earth observation sensors, namely, Geostationary Operational Environmental

Satellite (GOES), Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Along-Track

Scanning Radiometer (AATSR), The Spinning Enhanced Visible and Infrared Imager (SEVIRI),

The Advanced Very High Resolution Radiometer (AVHRR), The Visible Infrared Imaging Radiometer

Suite (VIIRS), and Sentinel-3, providing operational daytime and nighttime LST products with low

spatial resolution (from 750 m to 4 km). However, TIR data of Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER) and Landsat satellite series have higher spatial resolution but

lower temporal resolution than the sensors reported above. Regarding these limitations, LST retrieval

having both high temporal and spatial resolution is a challenge for thermal remote sensing studies.

However, LST images obtained from Landsat and ASTER TIR data are unique sources to investigate the

thermal environment of cities and their surroundings due to the higher spatial resolution in TIR bands.

Moreover, Landsat-derived LST is one of the most commonly preferred data for various applications

stated above.

The demand for satellite-based LST products has been increasing rapidly. Thus, the quality of the

LST data used in the studies should be examined by a validation procedure for accurate and reliable
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analyses. Validation provides information about the quantitative uncertainty, enabling the proper use

and application of the product. Thus, any algorithm or product would not be broadly welcomed without

performing thorough calibration and validation [46]. Overall, cross-validation, the Temperature-based

method (T-based) and the Radiance-based method (R-based) are three main techniques considered to

evaluate space-based LST [31,34]. Many researchers have considered one or two of these methods for

satellite-based LST validation derived from Landsat missions [34,47–55], Sentinel-3A [56], GOES [57],

SEVIRI [58,59], MODIS [60–62], AATSR [58,62,63], VIIRS [64], ASTER [65,66] and AVHRR [38]. In this

work, we utilized the T-based technique for LST validation, and further details about this method are

presented in the Methodology Section.

In this study, Landsat 8 data, both daytime and nighttime, were considered for LST retrieval from

RTE, SCA, and MWA methods. In the study, SWA was not examined since the USGS do not recommend

using Band 11 of Landsat 8 for LST retrieval due to the large calibration uncertainty. Furthermore,

we already obtained better results with MWA than with the SWA developed by Mao et al. [36] with

coefficients by Yu et al. [51] in our previous research [34]. Considering the literature, in general,

researchers have used daytime Landsat data to retrieve LST due to the lack of LSE images in the night.

To the best of our knowledge, there is no study published so far that considered nighttime TIR data

of Landsat 8 for both retrieval and validation of nighttime LST. Even though the availability of the

nighttime Landsat TIR data is limited in time and many researchers are not even aware that Landsat

missions acquire nighttime TIR data, it is probable that future Landsat missions may provide much

more nighttime TIR data for the sustainability and strength of the scientific studies. As discussed in the

previous paper of the authors [34], Normalized Difference Vegetation Index (NDVI)-based LSE retrieval

methods are operative and easy to apply for the Landsat data. In this paper, we propose using daytime

NDVI-based LSE, whose acquisition is close to nighttime data (the difference ranges from 1 day to

4 days), as an input in the corresponding methods for the nighttime LST retrieval. Besides, the effect of

six different NDVI-based LSE models on LST retrieval methods was evaluated for both daytime and

nighttime LST analyses. As stated in the day–night algorithm [67], the LSE does not vary dramatically

in several days if snow and/or rain does not exist during a short period. Thus, we assumed that the

daytime LSE will not change in the night for a few days considering the weather condition of the

corresponding time interval. The objectives of this study are to (1) evaluate the efficiency of RTE, MWA,

and SCA methods for both daytime and nighttime Landsat 8 data and in-situ measurements, (2) reveal

the impact of NDVI-based LSE models on LST retrieval methods for both daytime and nighttime data,

(3) encourage the researchers by showing the convenience of the proposed nighttime LST retrieval from

Landsat 8 data for the common usage, and (4) provide sensitivity analyses of in-situ measurements

and LST retrieval methods for both daytime and nighttime data. Concerning the ground-based LST

measurements, upwelling and downwelling thermal radiation measurements were obtained from

Atmospheric Radiation Measurement (ARM) and Surface Radiation Budget Network (SURFRAD)

stations, established over rural areas, simultaneously with TIR data acquisitions. To carry out the

image-processing tasks, we used an automated LST retrieval toolbox, which was provided by the

authors for the use of researchers in the previous study [34].

2. Datasets

2.1. In-Situ LST Measurements and Validation Sites

Surface longwave radiation measurements are important sources for the estimation of in-situ LST

and emissivity [65,68]. There are some programs, namely, SURFRAD [69], FLUXNET [70], ARM [71],

and Baseline Surface Radiation Network (BSRN) [72] that provide long-term and high-quality surface

longwave radiation measurements open to the public. In this study, four stations from SURFRAD and

five stations from ARM, nine stations in total (Figure 1) over rural areas, were utilized to calculate

daytime and nighttime in-situ LST simultaneous with TIR data acquisitions.
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Figure 1. Illustration of the locations and surface covers of the Surface Radiation Budget Network

(SURFRAD) and Atmospheric Radiation Measurement (ARM) stations used in this study.

The SURFRAD network was established by National Oceanic and Atmospheric Administration

(NOAA) in 1993 to support climate-related research over the United States (US) by providing long-term,

continuous, and accurate in-situ surface radiation budget [69]. In 1995, the system started operating

with four stations, and now, seven SURFRAD stations have been serving in different climatological

regions of the US. The SURFRAD data have been utilized in different studies involving assessment of

satellite-based retrievals of surface radiation parameters, climate models, hydrology, and validation

of radiation transfer codes and surface physics packages of weather [69]. To calculate in-situ LST,

quality-controlled measurements of broadband hemispherical upwelling and downwelling longwave

radiation are provided by the SURFRAD stations every 3 min (before 2009) or every minute (after 2009).

Many studies have been carried out using SURFRAD measurements to validate LST retrievals from

satellites [34,47,54,73–75].

The ARM Program was initially founded in 1989 by the US Department of Energy to examine

cloud formation processes. Then, the ARM Climate Research Facility was established in 2003, and this

program added further sites and instruments to the available ones as a scientific user facility. All data,

providing long-term continuous atmospheric measurements, have been freely available since 2003

(https://www.arm.gov/) [76]. Eastern North Atlantic (ENA), North Slope of Alaska (NSA), and Southern

Great Plains (SGP) are three basic ARM sites. In this study, five SGP sites were used for in-situ LST

retrieval. As in SURFRAD stations, ARM SGP stations provide quality-controlled measurements

of upwelling and downwelling longwave radiation for in-situ LST calculation, and many types of
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research were carried out using these stations [61,77–79]. Table 1 presents detailed information about

both ARM SGP sites and SURFRAD sites considered in this study.

Table 1. Characteristics of the SURFRAD and ARM Southern Great Plains (SGP) validation sites used

in the study.

Site Location Site ID Latitude Longitude Elevation Land Cover Type

Fort Peck, Montana FPK 48.308◦N 105.102◦W 634 m Grassland

Table Mountain, Boulder,
Colorado

TBL 40.125◦N 105.237◦W 1689 m Sparse Grassland

Sioux Falls, South Dakota SXF 43.734◦N 96.623◦W 473 m Grassland

Goodwin Creek, Mississippi GWN 34.255◦N 89.873◦W 98 m
Cropland/Natural
Vegetation Mosaic

Omega, Oklahoma SGP E38 35.880◦N 98.173◦W 371 m Pasture

Waukomis, Oklahoma SGP E37 36.311◦N 97.928◦W 379 m Grassland

Medford, Oklahoma SGP E32 36.819◦N 97.820◦W 328 m Pasture

Ringwood, Oklahoma SGP E15 36.431◦N 98.284◦W 418 m Pasture

Byron, Oklahoma SGP E11 36.881◦N 98.285◦W 360 m Pasture

In the validation sites, two pyrgeometers (Eppley Precision Infrared Radiometer) mounted at 10-m

height measure the downwelling and upwelling longwave radiation in the spectral range from 4.0 to

50.0 µm. The instruments are exchanged annually with newly calibrated instruments at each station [69]

and world-recognized organizations perform these calibrations [65]. The Eppley pyrgeometer has

about 4.2 W·m−2 measurement accuracy, and the instrument’s precision is around 2 W·m−2 for

daytime measurements and less than 1 W·m−2 for nighttime measurements [80]. Furthermore,

Guillevic et al. [75] reported that considering the instrumental error, less than 1 K uncertainty is observed

from the retrieved LST. In this study, we also conducted sensitivity/uncertainty analyses for both daytime

and nighttime in-situ measurements in Section 4.1. The spatial representativeness of the pyrgeometer

is about 70 m × 70 m at the surface [34,65], which is appropriate for the Landsat TIR pixel size (100 m

native resampled at 30 m by the US Geological Survey) over homogeneous surfaces. Thus, we selected

the validation sites whose footprint on Landsat 8 TIR pixel has homogeneous surface cover. On the

other hand, many studies have already considered these ARM SGP and SURFRAD stations to validate

low-resolution LST products of MODIS, SEVIRI, GOES, VIIRS, and AATSR [46,58,65,81,82]. Therefore,

the use of these stations in the validation of Landsat-derived LST products is highly acceptable.

2.2. Satellite Data

The Landsat mission has been providing moderate-resolution earth observation data from space

regularly for almost 50 years. Landsat 8 was launched on 11 February 2013, and it is the recent

operational satellite of the Landsat series. Landsat 4 was the first mission providing one thermal band,

and the first TIR data of Landsat 4 dates back to 1982, which makes it possible to study long-term LST

variations together with all Landsat missions both at a regional and local scale. The Landsat 8 satellite

carries two sensors, namely, the Operational Land Imager (OLI) and the TIR sensor (TIRS). The TIRS

sensor has two thermal bands (Band 10 and Band 11), while the OLI sensor has nine reflective bands

with 30-m spatial resolution. The native spatial resolution of TIR bands is 100-m; however, USGS

publishes them at 30-m by resampling.

In this study, 21 pairs of nighttime and daytime Landsat-8 data (Collection 1) from 2013 to 2019

were utilized for the retrieval of daytime and nighttime LST images. Landsat 8 data were freely

obtained through the website of the USGS (https://earthexplorer.usgs.gov/). Band 10 of the TIRS

sensor, and Band 4 (Red (R)) and Band 5 (Near Infrared (NIR)) of the OLI sensor, for the estimation of

NDVI-based LSE, were used in LST retrieval methods. The quality of the used data was checked by

47



Remote Sens. 2020, 12, 2776

the Pixel Quality Assessment (QA) band that provides information for the exclusion of observations

affected by sensor factors, clouds, and cloud shadow [83]. The list of the daytime and nighttime

Landsat 8 images with corresponding validation site names are reported in Appendix A.

3. Methodologies

3.1. Satellite LST Retrieval Methods

In this study, the following three commonly used methods for LST retrieval are examined:

Radiative Transfer Equation (RTE) method, Single Channel Algorithm (SCA) [40], and Mono Window

Algorithm (MWA) [39]. The input atmospheric parameters in the methods, such as downwelling

radiance (L↓
λ

), upwelling radiance (L↑
λ

), and atmospheric transmittance (τ) were calculated using the

Atmospheric Correction Parameter Calculator (ACPC) developed by National Aeronautics and Space

Administration (NASA) of the US. ACPC uses the atmospheric profiles analyzed by the National

Centers for Environmental Prediction (NCEP) as inputs to the radiative transfer codes for a given site

and date to calculate the aforementioned atmospheric parameters [84,85].

3.1.1. Brightness Temperature (Tb) Calculation

The brightness temperature of a target refers to the temperature of a blackbody emitting a similar

quantity of radiation at a specific wavelength [86], and inverse solution of the Planck function is the

way of calculating it. To obtain the brightness temperature image from TIR data, the first step is

converting the Digital Number (DN) values to spectral radiance. This radiance conversion for Landsat

8 TIRs can be applied using Equation (1) [87]:

Lsen
λ

= ML·QCAL+AL (1)

where Lsen
λ

refers to the TOA spectral radiance in Watts/(m2·srad·µm), QCAL is the calibrated and

quantized standard product pixel values (DNs), AL is the additive rescaling factor of the corresponding

band, and ML is the multiplicative rescaling factor of the corresponding band. A metadata file of

the relevant Landsat 8 data contains the values of these parameters. The brightness temperature for

Landsat 8 data can be calculated after radiance conversion using Equation (2):

Tb =
K2

ln
(

K1

Lsen
λ

+1
) (2)

where Tb is the effective at-satellite brightness temperature in Kelvin, K1 in Watts/(m2·srad·µm) and

K2 in Kelvin refer to the calibration constants. K1 and K2 values for the Landsat 8 Band 10 are

774.89 (Watts/(m2·srad·µm)) and 1321.08 K, respectively.

3.1.2. Radiative Transfer Equation Method

The inverse solution of the radiative transfer equation (RTE) is a direct method for LST retrieval

using a single TIR band. This inverse solution can be given by the following expressions:

Lsen
λ

= [εBλ(Ts) + (1− ε)L↓
λ
]τ+ L↑

λ
(3)

where Lsen
λ

(W·m−2·sr−1·µm−1) represents the at-sensor spectral radiance of the corresponding TIR band,

ε refers to the LSE, Bλ in W·m−2·sr−1·µm−1 is the blackbody radiance, Ts is the LST, L↓
λ

and L↑
λ

represent

the downwelling and upwelling radiance, respectively, and τ is the atmospheric transmittance. Bλ at a

temperature of Ts is calculated by the inversion of the Equation (3):

Bλ(Ts) =
Lsen
λ
−L↑

λ
−τ(1− ε)L↓

λ

τε
(4)
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and, eventually, Ts (LST) can be obtained from the inversion of Planck’s law as in Equation (5):

Ts =
K2

ln




K1

Lsen
λ
−L
↑
λ
−τ(1−ε)L

↓
λ

τε

+1




(5)

where K1 and K2 refer to the calibration constants described in the previous section.

3.1.3. Mono Window Algorithm

Qin et al. [39] developed the Mono Window Algorithm (MWA) for the Landsat TM data.

Three essential variables, namely, LSE, effective mean atmospheric temperature, and atmospheric

transmittance are required for LST retrieval using the MWA method. MWA-based LST can be retrieved

by Equation (6):

Ts=
{
a · (1−C−D) + [b · (1−C−D)+C + D] · Tb−D · Ta

}
÷C (6)

where Ta is the effective mean atmospheric temperature in Kelvin, a (−67.355351) and b (0.458606)

are constants of the algorithm, C and D are the parameters of the algorithm calculated as C = ε × τ

and D = (1 − τ)[1 + (1 − ε) × τ]. Table 2 provides empirical equations to estimate the Ta through air

temperature (To), since it is an essential parameter of MWA [39]. In this study, Ta values were computed

for the mid-latitude summer region and To was obtained from the corresponding validation site.

Table 2. The linear equations for the calculation of the effective mean atmospheric temperature (Ta)

from the near-surface air temperature (To) [39].

Region Linear Equations

USA 1976 Region Ta = 25.940 + 0.8805 × To

Tropical Region Ta = 17.977 + 0.9172 × To

Mid-latitude Summer Region Ta = 16.011 + 0.9262 × To

Mid-latitude Winter Region Ta = 19.270 + 0.9112 × To

3.1.4. Single-Channel Algorithm

Jiménez-Muñoz et al. [40] proposed a revised version of SCA for LST retrieval using Landsat TIR

data. Concerning the SCA, Ts is obtained from Equation (7):

Ts = γ

[
1

ε

(
ψ1Lsen

λ
+ψ2

)
+ψ3

]
+δ (7)

where ψ1, ψ2, and ψ3 refer to atmospheric functions defined as:

ψ1 =
1

τ
; ψ2= −L↓

λ
−

L↑
λ

τ
; ψ3= L↓

λ
(8)

Concerning the SCA method in this study, L↑
λ

, L↓
λ

, and τ obtained from NASA’s ACPC were

used for the computation of the ψ1, ψ2, and ψ3. On the other hand, the two parameters, γ and δ,

are computed by:

γ ≈
Tb2

bγLsen
(9)

δ ≈ Tb−
Tb2

bγ
(10)
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where bγ= c2/λi and c2 = 14,387.7 µm·K, and bγ is equal to 1320 K for Landsat 8 Band 10. λi is the ith

band’s effective wavelength given by:

λi =

∫ λ2,i

λ1,i
λfi(λ)dλ

∫ λ2,i

λ1,i
fi(λ)dλ

(11)

where fi(λ) is ith band’s spectral response function. λ1,i and λ2,i refer to the lower and upper boundary

of fi(λ), respectively.

3.2. NDVI-Based Land Surface Emissivity (LSE) Models

Emissivity of a surface represents the ability of the surface to transform heat energy, relative

to a black body, into radiant energy [88]. As presented in the above sections, LSE (ε) is a critical

element for accurate TIR-based LST retrieval. Multi-channel Temperature/Emissivity Separation (TES),

Physically Based Methods (PBMs), and Semi-Empirical Methods (SEMs) methods are three main

types of space-based LSE estimation [31]. The NDVI-Based Emissivity Method (NBEM) [89,90] and

Classification Based Emissivity Method (CBEM) [91,92] constitute the SEMs that are convenient for the

Landsat-derived LSE. CBEM is not feasible because of the need of a priori information about the test

site and in-situ emissivity of each class [93]. NDVI-based LSE models are practical and frequently used

methods due to their easy application providing satisfactory results [88,94,95]. Li et al. [31] introduced

a comprehensive research revealing limitations, advantages, and disadvantages of LSE models for

satellite-derived LST. Moreover, Sekertekin and Bonafoni [34] provided an updated state-of-the-art

table from Li et al. [31], presenting the used satellite missions with the corresponding LSE models.

In this study, we examined the influence of six NDVI-based LSE models on the performance of three

LST algorithms for both daytime and nighttime. To calculate NDVI from Landsat 8 data, firstly, DN

values are converted to the TOA reflectance using the Equation (12) [87]. After applying reflectance

(ρλ) conversion to the R and NIR bands, NDVI is obtained from Equation (13). Specifically:

ρλ =
Mp·QCAL+Ap

sin θSE
(12)

where QCAL is the calibrated and quantized standard product pixel values (DNs), Ap is the additive

rescaling factor of the corresponding band, Mp is the multiplicative rescaling factor of the corresponding

band, and θSE represents the local sun elevation angle. The values of these parameters are obtained

from the Metadata file of the relevant Landsat 8 data.

NDVI =
ρNIR − ρR

ρNIR + ρR
(13)

where ρNIR refers to the reflectance image of the NIR band and ρR is the reflectance image of the R band.

In addition to NDVI, the Fractional Vegetation Cover (FVC or Pv), i.e., the proportion of vegetation,

is another important factor for LSE estimation, and it is calculated from Equation (14) [96] as:

Pv=

[
NDVI − NDVImin

NDVImax − NDVImin

]2

(14)

where NDVImin = 0.2 and NDVImax = 0.5 in a global context [93]. Table 3 presents the expressions

of the six NDVI-based LSE models used in this work (hereafter referred to as LSE1, LSE2, . . . , LSE6).

More details about these models can be found in the previous paper of the authors [34].
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Table 3. The expressions of Normalized Difference Vegetation Index (NDVI)-based Land Surface

Emissivity (LSE) models considered in this study.

Sensor LSE Equations Model ID Reference

Landsat 8
(Band 10)

ε = 1.0094 + 0.047 ln(NDVI) LSE1 Van de Griend and Owe [94]

ε = 0.985Pv + 0.960(1− Pv) + 0.06Pv(1− Pv) LSE2 Valor and Caselles [90]

ε =



0.979− 0.035ρR NDVI < 0.2
0.004Pv + 0.986 0.2 ≤ NDVI ≤ 0.5
0.99 NDVI > 0.5

LSE3 Sobrino et al. [95]

ε =



0.979− 0.046ρR NDVI < 0.2
0.987Pv + 0.971(1− Pv) + dε 0.2 ≤ NDVI ≤ 0.5
0.987 + dε NDVI > 0.5

LSE4 Skoković et al. [97]

ε =



0.973− 0.047ρR NDVI < 0.2
0.9863Pv + 0.9668(1− Pv) + dε 0.2 ≤ NDVI ≤ 0.5
0.9863 + dε NDVI > 0.5

LSE5 Yu et al. [51]

ε =



a1i +
7∑

j=2
ajiρj NDVI < 0.2

0.982Pv + 0.971(1− Pv) + dε 0.2 ≤ NDVI ≤ 0.5
0.982 + dε NDVI > 0.5

LSE6 Li and Jiang [98]

dε = (1− εs)εvF(1− Pv): a term taking the cavity effect into account, which is based on the geometry of the surface.
εs, εv and F refer to soil emissivity, vegetation emissivity and geometrical shape factor (0.55), respectively. ρR: the
reflectance image of R band; ρj: the apparent reflectance in the OLI band j; a1i − a7i: the coefficients obtained
from [98].

3.3. In-Situ LST Estimation

Station-based (in-situ or ground-based) LST measurements were obtained from four SURFRAD

stations and five ARM SGP stations. As stated in Section 2.1, these stations do not measure LST directly;

the upwelling and downwelling components of longwave radiation are considered for LST calculation

regarding Stefan–Boltzmann law:

LST =




F↑
λ
− (1− εb)·F

↓

λ

εb·σ




1/4

(15)

where F↓
λ

and F↑
λ

in W/m2 are the downwelling and upwelling thermal infrared irradiances, respectively,

obtained simultaneously with satellite passages. σ is 5.670367 × 10−8 W·m−2·K−4 that refers to the

Stefan–Boltzmann constant. εb is the broadband longwave surface emissivity that is not measured

by the station instruments, thus [65,68] proposed the computation of the broadband emissivity by

regression from narrowband emissivities of MODIS data, and many studies used these regression

equations for acquiring the εb [52,73,99]. The experimental results in [65,68] revealed that the longwave

broadband emissivity can be used as a fixed value of 0.97, which was also considered in the studies

of [74,100]. In this study, we assumed the broadband emissivity as 0.97, as well. This phenomenon only

affects the accuracy of in-situ LST, not the satellite-based LST accuracy. Heidinger et al. [74] reported

that a 0.01 error in broadband emissivity led to 0.25 K LST error in SURFRAD sites. Furthermore,

Wang and Liang [65] showed that the LST accuracy of SURFRAD sites ranged from 0.1 K to 0.4 K

due to the ±0.01 error in the broadband emissivity. This error is not negligible; however, it is not

an overwhelming uncertainty source compared to the magnitude of the other uncertainties in LST

retrieval [74]. Concerning this study, we also carried out the uncertainty analysis of broadband

longwave surface emissivity and longwave radiation (the downwelling and upwelling components)

on ground-based LST measurements in the next section.

3.4. Sensitivity Analysis of In-Situ LST Measurements and LST Retrieval Methods

Sensitivity analysis is an application of how the error of a model output (numerical, statistical,

or otherwise) can be divided and allocated to different uncertainty sources in the model inputs [101].
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It is difficult to determine the inputs of an algorithm, since these inputs unavoidably have initial errors

affecting the accuracy of the LST retrieval methods [34,49]. To investigate the effect of input parameters’

errors on LST retrievals from both satellites and stations, the following equation is utilized:

δT = Ts(x) − Ts(x + δx) (16)

where δT is the error on the LST; x represents one of the input parameters and δx is the potential

error of this parameter; Ts(x + δx) and Ts(x) refer to the LST calculated for “x + δx” and “x”,

respectively. Some researchers reported the uncertainty of the input parameters on LST retrieval

algorithms [49,102,103]. On the other hand, concerning the sensitivity analysis of in-situ LST

measurements, [65,74] investigated the sensitivity of SURFRAD LST to broadband emissivity. In the

previous paper of the authors [34], we already presented detailed sensitivity analysis for daytime LST

retrieval considering MWA, SCA, and RTE. In this study, we mainly focused on the effect of LSE on

LST retrieval methods for both daytime and nighttime LST retrievals, since we proposed using the

daytime LSE images for nighttime LST retrieval. Furthermore, we also conducted a comprehensive

sensitivity analysis for the in-situ LST measurements that is presented in Section 4.1.

3.5. Temperature-Based (T-Based) Validation Method and Performance Metrics

As stated in the introduction, the Radiance-based method (R-based), Temperature-based method

(T-based), and cross-validation are the main techniques used to evaluate space-based LST [31,34].

The T-based technique, examined in this research, is a direct way of comparing the satellite-derived

LST with in-situ LST simultaneous with satellite pass, and many researchers used this way to validate

satellite-derived LSTs [48,52,62,104,105]. The major benefit of the T-based method is that it makes it

possible to evaluate satellite sensor’s radiometric quality and the efficiency of the LST algorithms based

on emissivity and atmospheric parameters. On the other hand, the capability of the T-based technique

depends mostly on the accuracy of the in-situ LST measurements and how well they represent the LST

at the satellite pixel scale (land cover homogeneity of the study area) [31]. In this study, we considered

both issues as we carried out the sensitivity analysis of the SURFRAD LST measurements and selected

the validation sites whose footprint on Landsat 8 TIR pixel has homogeneous surface cover.

Satellite-derived LST and Station-based LST were analyzed considering the performance metrics

such as Root Mean Square Error (RMSE), Standard Deviation (STD) of Error, and average Bias.

The formulas of these metrics are given by:

RMSE =

√∑
[TL8 − TStation]

2

n
(17)

STD of Error =

√∑[
TError − TError

]2

n
(18)

Bias =

∑
[TStation − TL8]

n
(19)

where TL8 and TStation are the Landsat 8-derived LST and Station-based LST, respectively, and n refers

to the number of data. TError refers to the difference between Landsat 8-derived LST and Station-based

LST, and TError is the mean value of these differences.

4. Results

To present the results of the LST retrieval methods for daytime and nighttime, 21 pairs of

nighttime and daytime Landsat-8 data were utilized to obtain the daytime and nighttime LST images

(see Appendix A). Specifically, concerning the daytime LST, 21 Landsat-8 images were used. On the

other hand, 21 nighttime images, whose acquisition times are close to daytime data (the difference ranges
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from one day to four days), were utilized for the nighttime LST retrieval by using the corresponding

21 daytime reflective data for the NDVI-based LSE computation. We verified that rain and/or snow did

not occur during these 1–4 days of difference. MWA, RTE, and SCA were performed for both daytime

and nighttime LST estimation considering all datasets. The required input atmospheric parameters in

the methods (τ, L↑
λ

, L↓
λ

) were obtained from ACPC that considers the MODTRAN radiative transfer

code, which uses NCEP-based atmospheric profiles as inputs. This section includes two sensitivity

analyses: (i) Sensitivity of in-situ LST measurements and (ii) sensitivity of LST retrieval methods to

LSE. Lastly, the accuracy assessment of the LST retrieval algorithms and LSE models for both daytime

and nighttime at the nine SURFRAD and ARM stations is proposed.

4.1. Sensitivity Results of In-Situ LST Measurements

Concerning the in-situ LST measurements utilized in this work, the average upwelling and

downwelling radiances, respectively, were calculated as 482.18 W/m2 and 331.15 W/m2 for daytime,

and 388.16 W/m2 and 326.68 W/m2 for nighttime. In addition, as stated in the previous section, we used

a fixed broadband emissivity value as 0.97. Thus, these values were considered in the sensitivity

analysis of in-situ LST measurements. To carry out a sensitivity analysis of a method’s output to an

input parameter, the other input parameters are assumed to be fixed. For instance, to manage the

sensitivity analysis of the downwelling radiance in the daytime (Figure 2a), the upwelling radiance and

the broadband emissivity was fixed to 482.18 W/m2 and 0.97, respectively. Then, the sensitivity of the

downwelling radiance to in-situ LST accuracy was revealed by changing the downwelling radiance at

5 W/m2 intervals (Figure 2a). The same procedure was applied to present the sensitivity results of the

other parameters. As reported in Section 2.1, the two pyrgeometers have an accuracy of about 4.2 W/m2

and a precision of around 1–2 W/m2. Considering the daytime sensitivity results, the following results

were obtained: (i) ±5 W/m2 error in downwelling and upwelling radiance led to ±0.024 K and ±0.8 K

error in LST, respectively (Figure 2a,b) and (ii) 0.01 error in the broadband emissivity caused ±0.25 K

error in LST (Figure 2c). On the other hand, nighttime sensitivity results showed that (i) ±5 W/m2

error in downwelling and upwelling radiance led to ±0.029 K and ±0.95 K error in LST, respectively

(Figure 2d,e) and (ii) 0.01 error in the broadband emissivity caused ±0.12 K error in LST. It is evident

from Figure 2 that the uncertainty of the downwelling and upwelling radiance is almost identical in

daytime and nighttime. However, the uncertainty of the broadband emissivity in the nighttime is half

of the daytime.
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Figure 2. Sensitivity results of in-situ Land Surface Temperature (LST) measurements to downwelling

radiance, upwelling radiance, and broadband emissivity, respectively, for both daytime (a–c) and

nighttime (d–f). LST error is computed as in Equation (16).

4.2. Sensitivity Results of LST Retrieval Methods to LSE

In this sensitivity analysis, we mainly focused on the effect of LSE on LST retrieval methods for

both daytime and nighttime LST retrievals, since we proposed using the daytime LSE images for

nighttime LST calculation. A detailed uncertainty analysis of all parameters on LST retrieval methods

(RTE, SCA, and MWA) for daytime can be found in the previous paper of the authors [34]. In the

sensitivity analysis of daytime LST images, the following input parameters were utilized based on the

current datasets: Air temperature, upwelling and downwelling radiances, atmospheric transmittance,

and effective mean atmospheric temperature. Minimum, maximum, and mean near-surface air

temperature values from ground stations and simultaneous with the satellite passages were 282.51 K,

302.41 K, and 295.95 K, respectively. Thus, the near-surface air temperature was assumed to be 295.95 K

in the sensitivity analysis and, as a consequence, the effective mean atmospheric temperature was

computed as 290.12 K. The atmospheric transmittance ranged from 0.63 to 0.94 with a mean value of

0.84, which was used in this analysis. Mean downwelling and upwelling radiances were observed

as 2.06 W·m−2·sr−1·µm−1 and 1.24 W·m−2·sr−1·µm−1, respectively, and these values were utilized in

the sensitivity analyses. The brightness temperature range was assumed between 280 K and 310 K,

because the brightness temperature computed from the daytime Landsat scenes ranged from 282.66 K

to 314.84 K. The LSE value was fixed as 0.97.
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Figure 3 illustrates the sensitivity results of the LST retrieval methods to LSE under a specific

brightness temperature range of daytime. Figure 3a,c,e shows the variations in the error of the LST

under different brightness temperatures for MWA, RTE, and SCA, respectively, when the LSE error

is constant. These figures show that when the LSE error is constant for MWA and SCA, LST error

increases with increasing brightness temperature. Instead, when the LSE error is constant for RTE, the

LST error is stable with increasing brightness temperature. It is important to note that, since the LST

error is computed as in Equation (16), an overestimation (underestimation) of the emissivity produces

a positive (negative) value in the LST error. Figure 3b,d,f represents how LSE error impacts the LST

error for the MWA, RTE, and SCA, respectively, under different brightness temperature conditions.

The findings in these figures support the previous ones (Figure 3a,c,e) by showing that a constant LSE

error produces LST error variations under different brightness temperature conditions for MWA and

SCA, except for RTE. The intercomparison of the results proves that MWA is more sensitive to LSE

error than RTE and SCA under increasing brightness temperatures, while RTE is the least sensitive one.
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∙ − ∙ − ∙μ −

Figure 3. Sensitivity results of Mono Window Algorithm (MWA) (a,b), Radiative Transfer Equation

(RTE) (c,d), and Single Channel Algorithm (SCA) (e,f) to LSE for daytime Landsat 8 images. LST error

is computed as in Equation (16).

In the sensitivity analysis of the nighttime LST images, minimum, maximum, and mean

near-surface air temperature values from the ground stations were 271.65 K, 300.75 K, and 291.07 K,

respectively. Considering the mean value (291.07 K), the effective mean atmospheric temperature

was 285.60 K. The atmospheric transmittance varied between 0.51 to 0.96 with a mean value

of 0.83, while mean upwelling and downwelling radiances were 1.37 W·m−2·sr−1·µm−1 and

2.20 W·m−2·sr−1·µm−1. These mean values were utilized in the sensitivity analyses. A brightness

temperature range from 270 K to 295 K was investigated since the brightness temperature computed from

the nighttime Landsat scenes varied from 267.77 K to 297.22 K. LSE value equal to 0.97 was assumed.
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Figure 4 depicts the sensitivity results of the LST retrieval methods to LSE under a specific

brightness temperature range of nighttime. Figure 4a,c,e demonstrates the variations in the LST error

under different brightness temperatures for MWA, RTE, and SCA, respectively, when the LSE error is

constant. Moreover, Figure 4b,d,f represents how LSE error impacts the LST error for the MWA, RTE,

and SCA, respectively, varying the brightness temperature values. The sensitivity analysis of nighttime

data shows results with a trend similar to the daytime one; however, the variation in the LST error is

smaller than daytime, also considering the lower brightness temperature values in the nighttime.

 

 

−

−

Figure 4. Sensitivity results of MWA (a,b), RTE (c,d), and SCA (e,f) to LSE for nighttime Landsat

8 images. LST error computed as in Equation (16).

4.3. Accuracy of LST Retrieval Algorithms and LSE Models for Daytime

In Figure 5, the accuracy results of the LST retrieval methods for daytime Landsat 8 data are

illustrated based on the six NDVI-based LSE models of Table 3. In this validation test at the nine

SURFRAD and ARM stations, the Landsat 8 image pixel covering the pyrgeometers was selected,

and the estimated LST compared with the corresponding ground LST measurement.

The accuracy varied between 2.17 K RMSE and 5.47 K RMSE considering all LST methods and

LSE models. MWA method with LSE4 and LSE6 presented similar and best results for the daytime.

Using MWA and LSE4, the RMSE, STD of Error, and Bias were 2.17 K, 1.86 K, and −1.13 K, respectively.

Furthermore, the same statistical metrics, in the same order, were 2.17 K, 1.79 K, and −1.24 for MWA

with LSE6. In general, the daytime results revealed that for all LSE models, except for LSE2, MWA

showed slightly better results than RTE, and RTE demonstrated slightly better results than SCA. LSE1

and LSE2 did not offer satisfying results with any of the LST retrieval algorithms. Apart from that,

the other LSE models presented acceptable daytime LST results with MWA, RTE, and SCA. The Bias is

always negative regardless of the approach, highlighting a general overestimation of the Landsat 8

retrieval with respect to the in-situ measurements, especially for higher LST values.
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Figure 5. Daytime LST from Landsat 8, period 2013–2019 (see Appendix A): Accuracy assessment

of MWA, RTE, and SCA retrieval methods with different LSE models at the nine SURFRAD and

ARM stations.
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4.4. Accuracy of LST Retrieval Algorithms and LSE Models for Nighttime

In Figure 6, the accuracy assessment of the LST retrieval methods for nighttime Landsat 8 data

is reported for the six NDVI-based LSE models. Considering all LST methods and LSE models for

the nighttime, the RMSE values ranged from 0.94 K to 3.34 K. In the nighttime LST analysis, the SCA

method with LSE5 presented the best results, with RMSE, STD of Error, and Bias equal to 0.94 K, 0.72 K,

and 0.60 K, respectively. On the other hand, MWA and RTE also provided very high accuracy with the

RMSE equal to 1.01 K and 0.95 K, respectively, when using with LSE5. In general, the nighttime results

revealed that for all LSE models, except for LSE2, all LST retrieval methods provided good accuracies

with the highest RMSE as 1.51 K. As a summary, Table 4 shows the best LST retrieval methods and

LSE models for the proposed daytime and nighttime LST validation test at the nine SURFRAD and

ARM stations.

Table 4. Validation test of Landsat 8 LST retrieval at the nine ground stations: The best LST methods

and LSE models and accuracy results for daytime and nighttime LST.

Data Type LSE ID
LST Retrieval

Method
RMSE (K)

STD Error
(K)

Bias (K)

Daytime LST
LSE4 MWA 2.17 1.86 −1.13
LSE6 MWA 2.17 1.79 −1.24

Nighttime LST LSE5 SCA 0.94 0.72 0.60

Compared to the daytime, during nighttime all LST retrieval methods provided highly accurate

results with the different LSE models. Moreover, the overestimation of daytime LST retrieval is no

longer evident at night, and the bias is clearly reduced. The proposed test with ground measurements as

reference suggests that the use of daytime NDVI-based LSE, whose acquisition is close to nighttime data

(the difference ranges from one day to four days in this work), is an accurate solution for the nighttime

LST retrieval from thermal band observations. We assumed that the LSE does not significantly change

in a short time period if rain and/or snow does not occur: This weather condition was verified for the

selected images.
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Figure 6. Nighttime LST from Landsat 8, period 2013–2019 (see Appendix A): Accuracy assessment

of MWA, RTE, and SCA retrieval methods with different LSE models at the nine SURFRAD and

ARM stations.
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5. Discussion

Numerous factors affect the accuracy of the LST retrieval from satellite TIR data. Atmospheric

profiles, sensor parameters (spectral range and viewing angle), and surface parameters (emissivity

and geometry) are amongst the major factors. On the other hand, development of an LST retrieval

method has its own error sources due to including some parameterization steps for the retrieval of

coefficients and estimation of some initial parameters. Therefore, it is of great importance to conduct

sensitivity/uncertainty analyses for a new method by considering all input parameters. Concerning the

LST validation procedure in space sciences, two main error sources emerge from both ground-based

LST and satellite-based LST. Examining the sensitivity analysis for ground-based LST measurements,

it emerges that the reliability of the upwelling radiance measurements is a key factor for the overall

accuracy of the LST computation. Then, the effect of LSE on satellite-based LST retrieval methods

for both daytime and nighttime were investigated, since we proposed using the daytime LSE images

for nighttime LST retrieval. The results showed that the LST sensitivity to LSE error is typically

dependent on the brightness temperature values suggesting that areas and study periods with lower

Tb could guarantee lower LST errors. Atmospheric parameters needed in the LST retrieval methods

were obtained from the NASA’s ACPC that is based on MODTRAN radiative transfer code. It is

not possible to find in-situ (radiosonde data etc.) atmospheric profiles for any place and any time.

Thus, even though this usage (a simulation of profile information on atmosphere with ACPC) affects

the accuracy of the methods, it is clear from our results and literature that NASA’s ACPC provides

satisfactory and effective simulations.

Comparing the results obtained in this research with the ones of other similar studies would

be helpful for the readers. The daytime LST results of this study were compatible with the results

presented in our previous paper [34]. Yu et al. [51] investigated the daytime LST results from RTE and

SCA methods using Landsat 8 data with LSE5. They determined the RMSE values for RTE and SCA

as 0.9 K and 1.39 K, respectively. However, we obtained 2.71 K RMSE and 2.85 K RMSE for RTE and

SCA, respectively, with the same LSE model. Wang et al. [105] revealed that the generalized SCA and

Practical Single-Channel Algorithm (PSCA) presented 2.24 K and 1.77 K, respectively. We obtained

2.73 K RMSE with the SCA and same LSE model (LSE3). Sekertekin [47] obtained 3.12 K RMSE using

RTE and LSE4, while it was 2.62 K RMSE in this test. Guo et al. [54] used SCA with daytime Landsat

8 data and obtained 2.74 K and 2.47 K RMSE before and after the stray light correction, respectively.

In our study, SCA results ranged from 2.73 K to 2.85 K RMSE under different NDVI threshold-based

LSE models. We also observed negative biases for the selected dataset, whereas Guo et al. [54] did

not observe biases in their case study. These validation studies of Landsat 8-derived LST refer to the

daytime data, and they suggest how the accuracies can differ in similar test sites if the number of

scenes and their acquisition time change.

Validation studies were not previously published for nighttime LST from Landsat 8. This test

shows that, compared to the daytime, the nighttime accuracy is better, the daytime LST overestimation

is no longer present, and the bias is distinctly reduced. It is an interesting and beneficial result for the

researchers thinking of using the nighttime LST data from Landsat-8. Further studies can be conducted

in different land cover types including also urban areas to confirm the effectiveness of the nighttime

LST results. However, it may be difficult to find reliable ground-based LST measurements for accuracy

assessments in these different areas.

Satellite-based LST retrieval methods are generally developed considering different conditions

and assumptions. Thus, no universal method is yet available to provide accurate LSTs from all satellite

TIR data, and it cannot be said that one method is systematically superior to the others. Concerning

the stationarity of the methods used in this study, since RTE and SCA are obtained by the radiative

transfer equation solution, they are valid for each sensor and atmospheric condition. On the other

hand, the MWA is linked to atmospheric parameters and fixed coefficients regardless of the sensor

type. However, these coefficients could be refined for different sensors (with different bandwidths),

and the results validated.
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6. Conclusions

In this study, three LST retrieval algorithms, namely, RTE, SCA, and MWA, were evaluated

using daytime and nighttime Landsat 8 OLI/TIRS data. To the best of our knowledge, this is the first

study proposing the retrieval and validation of nighttime LST from TIR data of Landsat 8, also with a

performance comparison with respect to daytime LST retrieval. Since LSE is one of the most important

factors affecting the accuracy of LST retrieval methods, the effects of six NDVI-based LSE models on

satellite-based LST accuracy were also investigated.

Concerning nighttime LST retrievals, we proposed the combined use of daytime LSE and nighttime

TIR data when the difference in acquisitions of both datasets are close (a few days) and unchanged

weather condition is observed. Concerning the evaluation of the LST retrieval methods and LSE

models under daytime and nighttime conditions, SURFRAD and ARM SGP sites were used to calculate

in-situ LST simultaneous with TIR data acquisitions.

In addition to the accuracy evaluation of the LST methods, we conducted detailed

sensitivity/uncertainty analyses for in-situ measurements and sensitivity of LST methods on LSE for

both daytime and nighttime. Considering the daytime sensitivity results of in-situ measurements,

we proved that ±5 W/m2 error in downwelling and upwelling radiance led to ±0.024 K and ±0.8 K error

in LST, respectively, and 0.01 error in the broadband emissivity caused ±0.25 K error in LST. On the

other hand, concerning the nighttime sensitivity results of in-situ measurements, we observed ±5 W/m2

error in downwelling and upwelling radiance caused ±0.029 K and ±0.95 K error in LST, respectively,

and 0.01 error in the broadband emissivity provided ±0.12 K error in LST. The sensitivity results of

in-situ LST measurements revealed that the uncertainty of the downwelling and upwelling radiance

was almost identical in daytime and nighttime. Nevertheless, the uncertainty of the broadband

emissivity in the nighttime was half of that in the daytime.

Then, we investigated the sensitivity of the LST methods to LSE for both daytime and nighttime

LST retrievals. The sensitivity results indicated that when the LSE error was constant for MWA and

SCA, the LST error increased with increasing brightness temperature. However, when the LSE error

was constant for RTE, LST error was stable with increasing brightness temperature. On the other hand,

the nighttime sensitivity analysis showed identical trends to daytime ones; however, the variation in

the LST error was smaller than daytime mainly due to the lower brightness temperatures.

The accuracy results of the daytime Landsat 8 data at the nine ground stations showed that the

MWA method with LSE4 and LSE6 presented the best results for the daytime. In general, for all the

LSE models, except for the LSE2, the MWA indicated slightly better results than the RTE, and the

RTE demonstrated slightly better results than the SCA for daytime LST retrievals. Considering the

nighttime, the SCA method with LSE5 presented the best results. However, MWA and RTE provided

very similar results with SCA. Compared to the daytime, all LST retrieval methods provided highly

accurate results with the different LSE models in the nighttime. The systematic overestimation of

daytime LST retrieval is no longer present at night, with an evident reduced bias. The validation test

shows that the use of daytime NDVI-based LSE with reflective data close to nighttime thermal data is

a reliable solution for the nighttime LST retrieval.
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Appendix A

Table A1. The list of the daytime and nighttime Landsat 8 images with corresponding validation

site IDs.

Acquisition Time Scene ID
Scene Acquisition Date

and Hour (UTC)
Site ID

Daytime

LC80330322013269LGN01 26.09.2013—17:40

TBL

LC80340322015170LGN01 19.06.2015—17:43

LC80340322017239LGN00 27.08.2017—17:44

LC80340322017255LGN00 12.09.2017—17:44

LC80330322017264LGN00 21.09.2017—17:38

LC80340322018258LGN00 15.09.2018—17:44

LC80350262017198LGN00 17.07.2017—17:48

FPK

LC80360262017205LGN00 24.07.2017—17:54

LC80350262017230LGN00 18.08.2017—17:48

LC80350262017246LGN00 03.09.2017—17:48

LC80350262017246LGN00 03.09.2017—17:48

LC80230362019296LGN00 23.10.2019—16:38 GWN

LC80290292019290LGN00 17.10.2019—17:12 SXF

LC80280352017229LGN00 17.08.2017—17:08
SGP E32 Medford

LC80280342019203LGN00 22.07.2019—17:08

LC80280352017229LGN00 17.08.2017—17:08

SGP E11 ByronLC80280342017245LGN00 02.09.2017—17:08

LC80280342019203LGN00 22.07.2019—17:08

LC80280352019027LGN00 27.01.2019—17:08 SGP E37 Waukomis

LC80280352019027LGN00 27.01.2019—17:08 SGP E15 Ringwood

LC80280352019027LGN00 27.01.2019—17:08 SGP E38 Omega

Nighttime

LC81292122013270LGN01 27.09.2013—04:45

TBL

LC81302122015171LGN01 20.06.2015—04:48

LC81302122017240LGN00 28.08.2017—04:49

LC81302122017256LGN00 13.09.2017—04:49

LC81292122017265LGN00 22.09.2017—04:43

LC81302122018259LGN00 16.09.2018—04:49

LC81282182017194LGN00 13.07.2017—04:39

FPK

LC81272182017203LGN00 22.07.2017—04:33

LC81282182017226LGN00 14.08.2017—04:39

LC81282182017242LGN00 30.08.2017—04:39

LC81272182017251LGN00 08.09.2017—04:33

LT81212082019295LGN00 22.10.2019—03:52 GWN

LT81232142019293LGN00 20.10.2019—04:07 SXF

LC81262102017228LGN00 16.08.2017—04:24
SGP E32 Medford

LC81262092019202LGN00 21.07.2019—04:23
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Table A1. Cont.

Acquisition Time Scene ID
Scene Acquisition Date

and Hour (UTC)
Site ID

LC81262102017228LGN00 16.08.2017—04:24

SGP E11 ByronLC81262102017244LGN00 01.09.2017—04:24

LC81262092019202LGN00 21.07.2019—04:23

LC81262092019026LGN00 26.01.2019—04:23 SGP E37 Waukomis

LC81262092019026LGN00 26.01.2019—04:23 SGP E15 Ringwood

LC81262092019026LGN00 26.01.2019—04:23 SGP E38 Omega
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Abstract: Land surface temperature (LST) is an important geophysical element for understanding

Earth systems and land–atmosphere interactions. In this study, we developed a nonlinear split-window

LST retrieval algorithm for the observation area of GEO-KOMPSAT-2A (GK2A), the next-generation

geostationary satellite in Korea. To develop the GK2A LST retrieval algorithm, radiative transfer

model simulation data, considering various impacting factors, were constructed. The LST retrieval

algorithm was developed with a total of six equations as per day/night and atmospheric conditions

(dry/normal/wet), considering the effects of diurnal variation of LST and atmospheric conditions

on LST retrieval. The emissivity of each channel required for LST retrieval was calculated in

real-time with the vegetation cover method using the consecutive 8-day cycle vegetation index

provided by GK2A. The indirect validation of the results of GK2A LST with Moderate Resolution

Imaging Spectroradiometer (MODIS) LST Collection 6 showed a high correlation coefficient (0.969),

slightly warm bias (+1.227 K), and root mean square error (RMSE) (2.281 K). Compared to the MODIS

LST, the GK2A LST showed a warm bias greater than +1.8 K during the day, but a relatively small

bias (<+0.7 K) at night. Based on the results of the validation with in situ measurements from the

Tateno station of the Baseline Surface Radiation Network, the correlation coefficient was 0.95, bias was

+0.523 K, and RMSE was 2.021 K.

Keywords: land surface temperature; GK2A; split-window method; MODIS; BSRN

1. Introduction

Land surface temperature (LST) can be interpreted as the skin temperature of Earth’s land

and is derived using the upward longwave radiation measured by a satellite sensor [1]. The LST

retrieved from satellites represents the surface temperature of ground pixels that are not contaminated

by clouds and is affected by many factors, such as land use/cover, vegetation, soil moisture,

snow, etc. [2,3]. Land information is used as input and verification data for numerical/climate

models. These are important factors to understand the Earth’s system and land–atmosphere

interactions [4–6]. LST has various research applications, such as studying land use/cover changes [7–9],

drought monitoring [10–12], energy balance estimation [13–15], analyzing urban heat islands [16–18],

studying evapotranspiration [19] and so on [20–22]. As various applied studies using LST have been

conducted, the demand for long-term LST data with high spatial and temporal resolutions as well as

good accuracy is increasing [23,24].

LST is one of the climate elements with very different spatial and temporal variability depending

on the ground condition (land cover, vegetation condition, soil moisture, etc.) of the observation

point. Due to these characteristics, more detailed spatial and temporal field observations are necessary,

but this is not practical in economic and technical terms. So, at present, special observation is only

performed in some areas where the ground condition is relatively homogeneous. The LST observed
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in a field is a value that can represent only a few tens of meters of the radius of the observation

point, therefore, there is a limitation of spatial representation. To overcome this limitation, studies on

retrieving LST from satellites with spatial resolutions from hundreds of meters to several kilometers

have been conducted for more than half a century [25–27]. LSTs retrieved from polar orbit satellites

have a relatively high spatial resolution but long revisit cycles; they help to understand a momentary

phenomenon in detail for a relatively narrow space, such as urban heat islands [28–32]. Moreover,

LSTs retrieved from geostationary satellites have a relatively coarse spatial resolution compared to

polar orbit satellites, but they can continuously retrieve the same observation area in a short observation

period. Owing to these advantages, LSTs retrieved from geostationary satellites can be used to analyze

phenomena occurring in large areas over a long period of time and can also fill in the blank areas of

field observation [33–37].

Many studies have been conducted and different methodologies have been developed to

retrieve high-quality LST data from satellites. For LST retrieval from the radiation observed by

thermal infrared sensors, cloud detection is essential, and it is necessary to know the surface

condition and atmospheric effects [38–40]. LST retrieval methods, assuming that the land surface

emissivity (LSE) is known a priori, can be roughly divided into three groups: single-channel

methods [31,41], multi-channel methods [26,27,33], and multi-angle methods [42,43]. There are

also several methods for retrieving LST and LSE at the same time when the LSE is unknown:

classification-based emissivity methods [44,45], normalized difference vegetation index (NDVI)-based

emissivity methods [46,47], day/night temperature-independent spectral indices-based methods [38,48],

two-temperature methods [49,50], and temperature emissivity separation methods [28,51,52].

Among these various LST retrieval methods, a commonly used one for retrieving LST from

a geostationary satellite is the split-window (SW) method using two adjacent thermal infrared channels

with different absorption capabilities for water vapor and other substances [53–55]. The split-window

method is relatively simple, efficient, and convenient to apply to most sensors, but it is assumed that

the LSE is accurately known in such cases. In addition, the split-window method has various types

of algorithms and thus has different performance characteristics according to the type of algorithm.

Another characteristic of the split-window method is that the accuracy is degraded in a specific region

where the total column water vapor is high or where the satellite viewing zenith angle (VZA) is

large [23].

With improvements in sensor performance on satellites, next-generation geostationary

meteorological satellites (Himawari-8, Geostationary Operational Environmental Satellite (GOES)-16/17,

GEO-KOMPSAT-2A (GK2A)) have started to conduct their observations with high performances in

time and space resolution [56–58]. In addition, the Meteosat Third Generation (MTG) series will be

launched in 2021 as the next system after the Meteosat Second Generation (MSG) series of geostationary

satellites [59]. With improved sensor performance, the space-time resolution of level 2 products has

also been improved. The LST product was designated as the official level 2 product in GOES-16 and

GK2A as in previous satellites (GOES-13/15, Communication, Ocean and Meteorological Satellite

(COMS)). In addition, the European Space Agency (ESA) has adopted LST as an official product on

MTG satellites following MSG satellites, and LST retrieval research is being conducted to prepare for

it. In the case of Himawari-8, a study was conducted to retrieve (LST) for research purposes [55,60].

In the Asia-Oceania region, the COMS was retired on March 31, 2020. The COMS’ follow-up satellite,

GK2A, has been officially operating since 25 July 2019, and replaced COMS’ services [61]. Therefore,

it is necessary to develop an LST retrieval algorithm using GK2A/AMI (Advanced Meteorological

Imager) data.

In this study, we developed an operational LST retrieval algorithm for the GK2A observation

area using GK2A/AMI data from next-generation geostationary satellites in Korea. The contents of

this paper are as follows. The properties of the data are described in Section 2.1, and the process of

developing the simulation dataset using the radiative transfer model (RTM) and LST retrieval process

and methodology are described in Section 2.2. The RTM simulation results and the GK2A LST retrieval
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results are presented in Section 3. In addition, the accuracy, problems, and future improvements of the

GK2A LST retrieval algorithm are presented in Section 4.

2. Data and Methods

2.1. Data

2.1.1. GK2A Data

In this study, we used GK2A/AMI data provided by the Korea Meteorological Administration

(KMA)/National Meteorological Satellite Center (NMSC). GK2A is located at 128.2◦E and started

operational services for 16 channels of AMI on 25 July 2019 [58]. To retrieve LST, level-1B of GK2A/AMI,

level-2 of GK2A/AMI, auxiliary data of solar zenith angle (SZA), and satellite VZA data were used.

The characteristics of the GK2A data used in this study are shown in Table 1. The brightness temperatures

of channel 13 (10.35 µm) and channel 15 (12.36 µm) were used for adapting the split-window method.

These infrared channels have a spatial resolution of 2 km at the nadir point and a temporal resolution of

10 min. Because LST is retrieved only for clear sky and land pixels, cloud mask and land/sea mask data

are necessary. In this algorithm, we used GK2A cloud mask data as developed by NMSC/KMA [62].

In addition, we used the LSE of the two split-window channels derived by the vegetation cover method

(VCM) using the land cover map, GK2A VI, and the look-up table of spectral emissivity [63]. The LSE

data were produced from the GK2A LSE algorithm, and these data have a spectral resolution of 2 km

and a temporal resolution of 1 day. In this study, GK2A LSTs were retrieved for 4 months from July to

October 2019.

Table 1. The characteristics of GK2A/AMI data used in this study.

Name Spatial Resolution (km)
Temporal

Resolution
Description

Channel 13 2 10 min Center wavelength: 10.3539 µm

Channel 15 2 10 min Center wavelength: 12.3651 µm

GK2A Cloud mask data 2 10 min Distinguish clear and cloud pixel

GK2A Land surface
emissivity of Ch. 13

2 1 day Input data of GK2A LST

GK2A Land surface
emissivity of Ch. 15

2 1 day Input data of GK2A LST

2.1.2. Validation data

To validate the retrieved LST, the ground measured upward longwave radiation data were used.

The Tateno station of the Baseline Surface Radiation Network (BSRN) at 140.126◦E and 36.058◦N is

a ground station in Japan and has been measuring upward longwave radiation every 1 min using the

Kipp and Zonen CGR4 pyrgeometer [64–67]. Another type of validation data is high-quality LST data

derived from another satellite. The MODIS LST (MOD11_L2, MYD11_L2 swath Collection 6) datasets

were used for comparison with GK2A LSTs [32]. The spatial resolution of the MODIS LST was 1 km at

nadir. The MODIS LST data are provided every 5 min for the swath region according to the orbit of

Terra/Aqua satellites. In this study, GK2A LSTs were validated using the BSRN and MODIS LST data

for 4 months, from July to October 2019.

2.2. Methodology

The GK2A LST retrieval algorithm is mainly composed of three parts, as shown in Figure 1.

The first part is the development of the LST retrieval algorithm using a simulated pseudo match-up

database with the RTM (shown in Figure 1 on the right side). First, we constructed the pseudo match-up

database through the RTM simulation called MODTRAN4 under various atmospheric and land surface
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conditions. In this simulation, to improve the accuracy of the LST retrieval algorithm, we considered

various impacting factors, such as the diurnal variations of air temperature and LST, spatial-temporal

variations of spectral emissivity, and the non-linear effect of water vapor. To develop LST retrieval

algorithms, we used the reference LST and calculated the brightness temperatures of the two SW

channels with the inverse Planck function from the simulated radiances. The LST retrieval algorithms

were separately developed using a statistical regression method according to the lapse rate (two types:

day/night) and atmospheric conditions (three types: wet/normal/dry).

Figure 1. Flow chart of GK2A’s land surface temperature retrieval process.

The split-window LST retrieval algorithm assumes that the LSE is prior known. In general, LSE is

affected not only by the surface type and status, but also depends on the wavelength. Because the

spatial resolution of the GK2A/AMI infrared channel is 2 km, most pixels are composed of a mixture

of various vegetation and soil. Moreover, most vegetation not only undergoes seasonal variations,

but also, soil conditions are affected by the presence or absence of precipitation (soil moisture and snow

cover). The process of retrieving the GK2A LSE is briefly shown on the left side of Figure 1. The GK2A

LSE algorithm was developed based on the VCM method and calculates the emissivity of a given

pixel as a weighted average according to the fractional coverage of vegetation (FVC) and soil [46,68].

The FVC of a given pixel was derived by the method of Carlson and Ripley (1997) [69] using the 8-days

cycle vegetation index data derived from GK2A/AMI. The snow cover fraction was calculated for the

pixels covered with snow [70], and this was considered in retrieving the daily GK2A LSE.

The central column of Figure 1 shows the process of calculating LST every 10 min using GK2A/AMI

data and pre-calculated emissivity. The GK2A LST was retrieved for clear and land pixels according to

day/night and atmospheric conditions. In the process of calculating the GK2A LST, the SZA of each

pixel was used for the division of daytime, nighttime, and dawn/twilight, as shown in the center of

Figure 1. At this time, the threshold SZA values from the previous study were used [60]. Similarly,

the atmospheric conditions were divided into dry/normal/wet according to the brightness temperature

difference (BTD) threshold to calculate the GK2A LST.
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Unlike the sea surface temperature, the available match-up data (ground-level observational data)

for LST over the GK2A/AMI observation region are severely limited [71–73]. Therefore, to develop

the GK2A LST algorithm from satellite data, we needed to prepare a similar on-site match-up

database. For this purpose, the output from the RTM simulation could be used. As in many

previous studies, the pseudo match-up database was generated through simulations using the

RTM under various atmospheric and surface conditions. We developed an LST retrieval algorithm

using the pseudo match-up database. SeeBor version 5 data have been used as an input profile for

RTM simulations in many studies for the generation of a pseudo match-up database. This dataset

contains 101 pressure levels of temperature, mixing ratio, and trace gases. For each profile in the

dataset, a physically-based characterization of the surface skin temperature and surface emissivity is

assigned [74]. The diurnal variation of LST is not provided in atmospheric profiles, so many studies

have considered the diverse diurnal variation of LST in the RTM simulations according to the land

cover, season, and weather conditions. In the research of [26,34], a large range of temperatures between

the near-surface temperature and ground surface, which consists of five surface temperatures, Ta − 5 K,

Ta, Ta + 5 K, Ta + 10 K, and Ta + 20 K, was considered for each atmospheric profile. In the research

of [27,75], daily variations of LST from Ta − 16 K to Ta + 16 K were considered for each profile. In other

studies [29,76], LST was prescribed for each profile in a range as Ta − 15 K < LST < Ta + 15 K with

different increments of 1.5 K and 1 K, respectively. In [35], LST was considered asymmetrically from

Ta − 6 K to Ta + 14 K in increments of 2 K. In [55], they used six values from Ta − 5 K to Ta + 20 K

at 5 K intervals. In this study, the diurnal variation of LST was asymmetric according to the day

(LSTday = Ta− 2 K ∼ Ta+ 18 K) and night (LSTngt = Ta− 6 K ∼ Ta+ 2 K) at 2 K intervals. In addition,

we included the diurnal variations of air temperature profiles under the planetary boundary layer

using SeeBor data and reference LST, as shown in Figure 2.

Figure 2. Conceptual atmospheric vertical profiles according to diurnal variation of land surface

temperature (LST) and air temperature (bold red line: SeeBor profile; other lines: diurnal variation of

air temperature profiles).
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To generate the pseudo match-up database of the LST and measured spectral radiance, radiative

transfer model simulations under various atmospheric and surface conditions were performed (Table 2).

A total of 2694 sets of SeeBor data used were located at a satellite with a VZA of less than 50◦. To consider

the value of LSE in the RTM simulation, the range of LSE of channels 13 and 15 in the GK2A region was

used, as shown in Table 2. Therefore, the total number of simulations for daytime and nighttime were

3,585,714 (2694 (atm) × 13 (LST) × 11 (εch13) × 11 (∆ε)) and 1,629,870 (2694 (atm) × 5 (LST) × 11 (εch13)

× 11 (∆ε)), respectively.

Table 2. The input conditions of the radiative transfer model simulation according to the various

atmospheric and surface conditions.

Impacting Factors Detailed Conditions

Atmospheric profiles
2694 SeeBor version 5 database

(Viewing zenith angle is lesser than 50◦)

Land surface temperature
Day: Ta − 2 K~Ta + 18 K (a step of 2 K)
Night: Ta − 6 K~Ta + 2 K (a step of 2 K)

Diurnal variation of air temperature

1013 hPa (= Ta)
986 hPa
958 hPa
931 hPa
904 hPa

∆T = LST – Ta
T(1013)’ = T(1013) + 1/2 ∆T
T(986)’ = T(986) + 1/3 ∆T
T(958)’ = T(958) + 1/6 ∆T
T(931)’ = T(931) + 1/12 ∆T
T(904)’ = T(904) + 1/24 ∆T

Land surface emissivity
εch13: 0.9400~0.9900 (a step of 0.005, 11 steps)
−0.02 ≤ ∆ε ≤ 0.01 (a step of 0.003, 11 steps)

if (εch15) > 1, εch15 = 0.9999

Several LST retrieval algorithms from satellites have been proposed to suit the characteristics

of various sensors mounted on each satellite and retrieve LSTs through different approximations

and assumptions. Among the various LST retrieval methods, the SW method was used to retrieve

LST using different atmospheric absorptions of two adjacent infrared window channels in this study.

The SW method assumes that the spectral emissivity of the land surface is a priori known, and the

atmospheric effects can be corrected using thermal infrared channels. The LST was estimated through

a regression analysis on the relationship between the brightness temperature of two infrared channels

and the factors affecting the LST calculation [33,34,36,60,77]. The equation for retrieving LST from

GK2A data is given in Equation (1) as follows:

LST = c0 + c1BTch13 + c2(BTch13 − BTch15) + c3(BTch13 − BTch15)
2 + c4(secθ− 1) + c5(1− ε) + c6∆ε (1)

where BTch13 and BTch15 are the brightness temperatures of GK2A channels 13 and 15, respectively,

θ is the satellite VZA, ε is the average LSE of GK2A channels 13 and 15, and ∆ε is the LSE difference

of GK2A channels 13 and 15. The coefficients of the regression equations (c0~c6) were derived by

simple regression.

As described in Section 2.1.2, MODIS Collection 6 LST data and BSRN Tateno station data

were used for the validation of GK2A/AMI LST. The spatial resolution of the MODIS LST was 1 km.

The MODIS LST data were provided at 5 min intervals as Terra/Aqua satellites moved along their

orbits. Due to the characteristics of LST with large spatial-temporal variability, strict spatial-temporal

collocations are needed. For temporal collocation, the MODIS LST data within ±5 min were used

based on the observation time of GK2A, as in previous studies [60]. For the spatial collocation, a simple

mean of the nearest 9 MODIS pixels (an average of 3 × 3) surrounding the closest MODIS pixel to the

GK2A pixel was used. Validation with MODIS LST data was performed when the pixels had more

than five pixels of clear sky and land.
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In addition, the in situ measurement data, which were observed every minute from the upward

longwave radiation at the Tateno station of the BSRN, were used as the validation data. In the GK2A

observation area, there were few upward longwave radiation data or field-observed LST data, so Tateno

station data were used as validation data. Validation was performed only when the observation times

at GK2A and Tateno station were the same. Spatial collocation was performed by averaging the four

GK2A pixels closest to the Tateno station. The measured upward longwave radiation was converted to

LST using the Stefan–Boltzmann law. The surface type of Tateno station is grass, so we assumed the

average value of the emissivity (ε = 0.986) value corresponding to the grassland from the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral library. The process of

converting the observed upward longwave radiation to LST using the Stefan–Boltzmann law is shown

in Equation (2):

Lsensor = εσT4

T =
(

Lsensor

εσ

) 1
4

(2)

where Lsensor is the value of the measured upward longwave radiation by the CGR4 pyrgeometer

from the Tateno station of the BSRN; ε is the average value of the emissivity corresponding to the

grassland; σ is the Stefan-Boltzmann constant (σ = 5.670374× 10−8 Wm−2K−4); T is the value of ground

temperature converted from the upward longwave radiation at Tateno station.

3. Results

3.1. Results of the Radiative Transfer Model Simulation

To set the threshold value of the LST algorithm, the distribution of brightness temperature

differences (BTD) between channel 13 and channel 15 of GK2A was analyzed. This time, only the

land pixels without clouds were analyzed. The analysis dates were selected as the same day each

month from July 2019 to October 2019, and the count of BTDs accumulated was observed every 10 min.

Figure 3 shows the frequency of BTDs between channel 13 and channel 15 of GK2A. BTD values were

distributed from −3 K to 15 K. Most of the BTDs were counted at over 10 million from 1 K to 7 K.

The results showed a similar distribution to that of the RTM simulated results, which are shown in

Figure 4. Figure 4 shows the BTD distribution between channel 13 and channel 15 of GK2A from the

simulated pseudo match-up database with the RTM. The coefficients of the LST equation (Equation (1))

were obtained from the simulated pseudo match-up database by regression analysis. Using these

coefficients, the root mean square error (RMSE) values between the reference LST and the estimated

LST were calculated. Overall, the distribution of simulated BTDs was similar to that of the actual GK2A

BTDs, except for the −3 K to 0 K range. The RMSE value was relatively large when the simulated BTD

value was less than −1 K or greater than 6 K. The difference between the actual GK2A BTD and the

RTM simulation BTD was less than 0 K. This difference could have been caused by the small amount

of aerosols given the atmospheric profile (SeeBor_v5), which was used for the RTM simulation [74].

Using these results, the threshold values of BTD for dry/normal/wet conditions were determined to be

0 K and 6 K, respectively.
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Figure 3. Distribution of brightness temperature difference between channel 13 and channel 15 of

GK2A for selected days (25 July 2019; 25 August 2019; 22 September 2019; and 4 October 2019).

Figure 4. Distribution of radiative transfer model simulated brightness temperature differences between

channel 13 and channel 15 of GK2A (green histogram) and their root mean square error (RMSE) values

(blue line).

The coefficients of the GK2A/AMI LST equation (Equation (1)) for day/night and dry/normal/wet

conditions were obtained from the RTM simulation results through regression analysis, as shown in

Table 3.
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Table 3. The coefficients of the GK2A/AMI equation (Equation (1)) according to the day/night and

dry/normal/wet conditions.

Conditions c0 c1 c2 c3 c4 c5 c6

Day

Dry −3.7535 1.0146 0.4355 −0.7514 0.5270 46.4021 −76.7542

Normal −2.5794 1.0094 0.5482 0.1148 1.0890 57.0411 −71.3507

Wet 44.8058 0.8136 3.3273 −0.0664 2.7271 62.8262 −74.7224

Night

Dry 2.4418 0.9920 0.7575 −0.3311 0.0106 45.8389 −75.3720

Normal −4.8096 1.0181 0.2986 0.1573 1.0668 50.1998 −49.2833

Wet 21.1556 0.8973 3.5049 −0.1219 1.7965 51.9677 −52.6384

To evaluate the RTM simulation results and the GK2A LST retrieval algorithm, we analyzed the

relationship between the reference LST value and estimated LST values, as shown in Figure 5.

Figure 5. (a) Scatter plot (left) and (b) bias distribution (right) between the reference LST and estimated

LST values using the GK2A/AMI LST retrieval algorithm (gray dotted line in (a) represents the 1:1 line).

The estimated LST generally matched well with the reference LST over a wide range from 245 K

to 330 K. The comparison of the retrieved LST with the reference LST showed that the LST retrieval

algorithm had a high retrieval accuracy in terms of correlation (0.998), bias (0.010 K), and RMSE (0.767 K).

The LST retrieval algorithm, most of the reference LSTs, and the estimated LSTs were distributed based

on a 1:1 line. In addition, most of the bias was less than ±3 K, with a peak value at 0 K. However,

when the LST was greater than 300 K, the LST retrieval algorithm slightly over/underestimated the

LSTs compared to the reference LST.

Figure 6 shows the distribution of RMSEs between the estimated LSTs and reference LSTs based

on the impact factors (lapse rate, BTD, surface emissivity differences, and satellite VZAs that affect

the retrieval accuracy of the LST). Most of the RMSEs are less than 2.1 K, excluding some ranges

where the VZA is larger than 40◦ and the BTD value is larger than 7 K. The reason that the RMSE was

large when the VZA was large appears to be due to the fact that the effect of the emissivity becomes

significant when the VZA is large, as suggested in many studies [78,79]. One of the most distinctive

features of all the cases is that the RMSE was slightly larger when the BTD values were larger than 6 K.

The magnitude of BTDs is mainly caused by the different sensitivities of the two window channels to
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aerosol (channel 13) and water vapor (channel 15). In addition, the GK2A/AMI LST retrieval algorithm

is significantly influenced by the VZA and the surface lapse rate among several impacting factors.

Compared to previous studies that retrieved LST from Himawari-8, RMSE decreased in all ranges [60].

In particular, when BTD was a positive large value in the previous study, most of the RMSEs were

significantly reduced. These results seem to be related to the consideration of the diurnal variation

of the boundary layer temperature in the RTM simulations and the consideration of the effect of

nonlinearity of water vapor in the LST calculation formula.

Figure 6. Distribution of RMSEs for the LST retrieval algorithms based on the different impacting

factors: (a) brightness temperature difference (BTD) and surface lapse rate; (b) emissivity difference

(∆ε) and BTD; (c) ∆ε and surface lapse rate; (d) satellite viewing zenith angle (VZA) and BTD; (e) VZA

and surface lapse rate.

3.2. Comparison of Retrieved GK2A LST and MODIS LST Products

To evaluate the GK2A/AMI LST retrieval algorithm, GK2A LSTs were retrieved for 4 months,

from July 2019 to October 2019, when GK2A started operational observation. Unlike the RTM

simulations, when retrieving LSTs from GK2A/AMI data, the criterion for dividing day and night was

the SZA of each pixel, which is the same as that in previous studies [36,60]. Only clear sky and land

pixels that satisfied the strict spatial-temporal matching conditions were compared and validated,

as mentioned in Section 2.1.2. Figures 7–10 show the spatial distribution of the LSTs retrieved from

GK2A/AMI data and the MODIS LSTs, along with the spatial distribution of their differences between

two datasets for the selected days.
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Figure 7. Spatial distribution of (a) GK2A LST, (b) MODIS (MYD11_L2) LST, (c) differences between

GK2A and MODIS LSTs, and (d) scatter plot between GK2A and MODIS (MYD11_L2) LSTs for

30 August 2019, 1700 and 1705 UTC (gray dotted line in (d) represents the 1:1 line).

Figure 8. Spatial distribution of (a) GK2A LST, (b) MODIS (MOD11_L2) LST, (c) differences between

the GK2A and MODIS LSTs, and (d) scatter plot between the GK2A and MODIS (MOD11_L2) LSTs for

30 August 2019, 0030 UTC (gray dotted line in (d) represents the 1:1 line).

79



Remote Sens. 2020, 12, 3050

Figure 9. Spatial distribution of (a) GK2A LST, (b) MODIS (MOD11_L2) LST, (c) differences between

GK2A and MODIS LSTs, and (d) scatter plot between GK2A and MODIS (MOD11_L2) LSTs for

21 September 2019, 1330 and 1335 UTC (gray dotted line in (d) represents the 1:1 line).

Figure 10. Spatial distribution of (a) GK2A LST, (b) MODIS (MYD11_L2) LST, (c) differences between

the GK2A and MODIS LSTs, and (d) scatter plot between the GK2A and MODIS (MYD11_L2) LSTs for

20 October 2019, 0540 UTC (gray dotted line in (d) represents the 1:1 line).
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Figure 7 shows the spatial distribution of the GK2A LST and MODIS LST and their differences at

1700 and 1705 UTC on 30 August 2019. The two LSTs show similar spatial distributions in large areas

of the Korean Peninsula and northeast China. The difference between the two LSTs was within ±2 K.

In the scatter plot of the two LSTs, the distribution spread slightly to both sides around the 1:1 line

from 270 K to 305 K. The bias and RMSE of this scene are −0.113 K and 1.05 K, respectively.

Figure 8 shows the spatial distribution of the two LSTs at 0030 UTC on 30 August 2019. The area

in which the LST was retrieved is a region between central and southern Australia consisting of desert,

bare soil, and grassland. The difference between the two LSTs in the spatial distribution showed,

where the GK2A LST was greater than the MODIS LST. In particular, the warm bias of the GK2A LST

was more significant in the desert regions of south Australia than in other regions. For this region,

even in the scatter plot, the GK2A LST was higher than the MODIS LST over a wide range (275–310 K).

In this case, the bias and RMSE are 0.81 K and 1.264 K, respectively.

The spatial distribution of the two LSTs and their differences, along with the scatter plot on

21 September 2019, are shown in Figure 9. The observation time of the two LSTs differs by 5 min.

The spatial distribution of the two LSTs is generally similar, but the spatial distribution of the difference

between the two LSTs showed a warm bias in the desert region of Australia’s inland but a cold bias in

south Australia. As shown in the scatter plot, the overall GK2A LST was higher than the MODIS LST

in all ranges (270–305 K). As a result, the GK2A LST shows a warm bias of 0.924 K and an RMSE of

1.554 K.

The spatial distribution of the GK2A LST, the MODIS LST, and their differences at 0540 UTC on

20 October 2019, are shown in Figure 10. The two LSTs have similar spatial distributions in large areas

of Mongolia and China. The differences between the two LSTs were within ±3 K. In the scatter plot

of the two LSTs, the distribution showed a 1:1 line from 270 K to 295 K, but some pixels were spread

around the 1:1 line. The bias and RMSE of this scene are 0.137 K and 1.411 K, respectively.

The indirect validation results of the GK2A LST with the MODIS LST for 4 months (July, August,

September, and October 2019) are shown in Table 4. The correlation coefficient between GK2A LST

and MODIS LST was greater than 0.96 regardless of the satellite (Terra/Aqua) and months. In addition,

the bias showed a warm bias of less than 1.6 K every month. The combined results of the two validation

satellites show a high correlation coefficient (0.969), slightly warm bias (1.227 K), and RMSE (2.281 K).

Because the diurnal variation pattern of LST and the retrieval algorithm are very different

according to day and night, the performance of the GK2A LST algorithm was evaluated accordingly.

Table 5 shows the comparison results between the GK2A and MODIS LSTs according to the daytime

and nighttime. The performance of the GK2A LST algorithm is dependent on the validation time, day,

and night. In general, the skill of the GK2A LST retrieval algorithm for daytime was about two times

worse than that of nighttime, in terms of bias and RMSE, irrespective of the months. The relatively

strong warm biases of the GK2A LST during daytime can be attributed to the current status of the

MODIS LST [80,81]. The biggest feature is that the GK2A LST overestimated more than the MODIS

LST during the daytime, showing a large warm bias (above 1.8 K) and RMSE (above 2.8 K). Moreover,

for nighttime, the RMSE was small due to a relatively high correlation and a small bias compared to

the daytime.
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Table 4. Comparison results of the GK2A LST data and the MODIS LST product (Collection 6) for the

selected four months (July, August, September, and October 2019).

Month

MOD11_L2 MYD11_L2

# of Pixel
(×1000)

Corr. Bias (K) RMSE (K)
# of Pixel
(×1000)

Corr. Bias (K) RMSE (K)

2019.07 22,412 0.961 1.051 2.139 20,485 0.965 1.182 2.236

2019.08 7022 0.960 1.049 2.045 7279 0.974 1.117 2.129

2019.09 21,262 0.958 1.406 2.484 18,120 0.977 1.163 2.257

2019.10 10,577 0.980 1.598 2.601 9397 0.988 1.260 2.237

Total and Ave. 61,275 0.963 1.269 2.328 55,282 0.974 1.180 2.229

# of pixel: 116,557,577, Corr. = 0.969, bias = 1.227 K, RMSE = 2.281 K.

Table 5. Comparison results of the GK2A LST data and the MODIS LST data (Collection 6) for the selected

four months, according to the daytime and nighttime (July, August, September, and October 2019).

Month

Daytime Nighttime

# of Pixel
(×1000)

Corr. Bias (K) RMSE (K)
# of Pixel
(×1000)

Corr. Bias (K) RMSE (K)

2019.07 18,905 0.948 1.890 2.981 23,992 0.976 0.502 1.559

2019.08 6,969 0.953 1.889 2.839 7,332 0.981 0.318 1.375

2019.09 18,076 0.946 2.340 3.486 21,306 0.985 0.407 1.441

2019.10 9,595 0.978 2.269 3.419 10,378 0.990 0.671 1.515

Total and Ave. 53,547 0.953 2.110 3.211 63,010 0.982 0.476 1.490

# of pixel: 116,557,577, Corr. = 0.969, bias = 1.227 K, RMSE = 2.281 K.

3.3. Validation Using In-Situ Observation Data

To evaluate the the GK2A LST algorithm, we conducted a quantitative validation of the GK2A

LST using in situ observation data. As mentioned in Section 2.1.2, the upward longwave radiation data

observed at the Tateno station of the BSRN were used as validation data. Approximately 718 sets from

July 2019 to October 2019 satisfying the spatial-temporal matching conditions with the GK2A LST were

used for the validation of the GK2A LST. In addition, the performance of the GK2A LST algorithm

was evaluated according to daytime and nighttime. The validation results of the GK2A LST with the

data from Tateno station are shown in Figure 11. The GK2A LST is similar to or slightly warmer than

the ground observed LST at Tateno station, regardless of the temperature and time (day and night).

The total correlation coefficient, bias, and RMSE between the GK2A LST and the Tateno LST were 0.95,

0.523 K, and 2.021 K, respectively. However, the GK2A LST was warmer than the ground observed LST;

in particular, the LST was greater than 305 K during the daytime. As shown in Figure 11, the GK2A

LST shows a greater warm bias (0.84 K) and RMSE (2.13 K) during the day than at night (bias: 0.32 K,

RMSE: 1.948 K).
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Figure 11. Scatter plot between the GK2A LST and the LST at Tateno station from upward longwave

radiation (red square symbol: daytime, blue cross symbol: nighttime, gray dotted line represents the

1:1 line).

4. Discussion

In this study, we developed a GK2A SW LST retrieval algorithm using two adjacent infrared

channels in the atmospheric window. GK2A/AMI has three infrared channels (channels 13, 14, and 15)

corresponding to the atmospheric window [58]. Channel 15 is more sensitive to water vapor than the

other two channels. By comparison, channels 13 and 14 are relatively less sensitive to water vapor,

but the sensitivities of the two channels to aerosol and water vapor are slightly different. To select two

of the three channels that can be used to retrieve the GK2A LST, RTM simulation results under the

same RTM input conditions using channels 13 and 15, as well as channels 14 and 15, were analyzed.

The regression coefficients (c0~c6) for the LST retrieval Equation (1) using channels 13 and 15 and

channels 14 and 15, respectively, were derived from the simulated dataset. The scatter plot results of

the estimated LSTs from each dataset are shown in Figure 12.
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Figure 12. Scatter plots between reference LST and estimated LST from RTM simulation using two

channels: (a) channels 13 and 15, and (b) channels 14 and 15.

The two sets of GK2A LST algorithms estimated LSTs in the range of 240 K to 330 K, but the

correlation coefficient and RMSE using channels 13 and 15 showed better results than those using

channels 14 and 15. In the scatter plots, the distribution used channels 14 and 15 showed a wider

spread than that by channels 13 and 15 at over 300 K. This result is similar to that of a previous study

using Himawari-8 [60]. Therefore, channels 13 and 15 were selected for this study.

In addition, several forms of linear and non-linear equations can be selected in the LST retrieval

formula of the SW method [26,27]. When retrieving LST, the linear equation of SW LST algorithms

showed a large error in wet and hot atmospheric conditions, therefore, non-linear equations of SW

LST algorithms have been developed [26,47,77,82,83]. In this study, linear and non-linear equations of

the SW LST algorithms were developed and applied to real GK2A data to compare the accuracy of

the algorithm. The simulation conditions for the RTM are shown in Table 2, and the coefficient of c3

in the LST retrieval equation (Equation (1)) is set to zero to represent a linear algorithm. In addition,

the coefficients of LST retrieval algorithms were derived by dividing into day/night and dry/normal/wet

conditions using the same thresholds of SZA and BTD, as described in Section 3. Table 6 shows the

results of quantitatively comparing the GK2A LST and MODIS LST for one month from the linear

algorithm and non-linear SW LST algorithm. As a result of verifying the GK2A LST calculated with

linear and non-linear algorithms for the September 2019 case with the MODIS LST, the correlation

coefficient between the GK2A LST and MODIS LST was very similar in linear and nonlinear algorithms,

but the bias and RMSE showed better results in nonlinear algorithms.

Table 6. Comparison results of the GK2A LST data and the MODIS LST product (Collection 6) using

a linear algorithm and non-linear algorithm according to the daytime and nighttime in September 2019.

Algorithm

Daytime Nighttime

# of Pixel
(×1000)

Corr. bias (K) RMSE (K)
# of Pixel
(×1000)

Corr. bias (K) RMSE (K)

Linear 18,076 0.944 2.504 3.691 21,306 0.985 0.413 1.670

Non-linear 18,076 0.946 2.340 3.486 21,306 0.985 0.407 1.441
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Even though the non-linear SW LST algorithm was used, the GK2A LST algorithm showed

significant errors during the daytime compared to the MODIS LST. The MODIS Collection 6 LST

product, used as validation data, is an improved version of the MODIS Collection 5 LST product by

Wan (2014) [32]. One of the improvements in the MODIS Collection 6 LST over the Collection 5 LST is

that the MODTRAN simulation is performed by dividing into day and night for the bare soil area and

adjusting the emissivity difference in MODIS bands 31 and 32 over bare soil surfaces [32]. In addition,

a term including the quadratic difference between the brightness temperatures of bands 31 and 32 was

added to the MODIS’ generalized SW algorithm. Even though the MODIS Collection 6 LST product

had many improvements compared to Collection 5, a cold bias still appeared from −1.4 to −3.7 K

during the daytime when compared with in situ measurements [81]. According to the validation study,

MODIS Collection 6 LST showed the RMSE of daytime LSTs as 2.59 K, 2.86 K, and 3.05 K for the Gobi

area, desert steppe region, and sand desert area, respectively [80]. Considering that the cold bias of

the MODIS Collection 6 LST is strong during daytime over bare soil and desert regions, the warm

bias of the GK2A LST algorithm can be regarded as normal rather than a serious problem. However,

a detailed analysis of bare soil and desert areas using more validation data is needed. In the four-month

verification results, the errors in September and October were systematically larger than those in July

and August. So, we tried to find the cause but, unfortunately, we could not. In addition, a relatively

strong warm bias appeared during the day at Tateno station. This seems to be related to the fact that

the land cover at the Tateno point is grass, but most of the area around this point is urban.

To compare the accuracy of the MODIS LST, it was validated using the LST at Tateno station for

the same period as the GK2A LST. The validation results of the MODIS (MOD11/MYD11_L2) LST with

those from Tateno station are shown in Figure 13. The MODIS LST was slightly colder than Tateno LST,

regardless of the daytime and nighttime. The total correlation coefficient, bias, and RMSE between

MODIS LST and Tateno LST were 0.925, −1.047 K, and 2.985 K, respectively. Although the number of

samples was small, the MODIS LST showed a cold bias compared to the in situ LST in both daytime

and nighttime. In particular, the daytime bias (−1.402 K) of the MODIS LST was nearly twice that of

the nighttime (−0.767 K). In the comparative validation results of the GK2A LST and the MODIS LST,

the reason why the warm bias of GK2A is large during the daytime is also considered to be related to

the cold bias of MODIS LST during the daytime.

The number of on-site observation points in the GK2A observation area is not only limited but also

the number of data accessible over the internet is small, so we used observation data from the Tateno

station. The in situ measured radiation represents a narrow area, whereas the retrieved LST from the

satellite is the average temperature corresponding to satellite resolution (2 km × 2 km), so there is

a limitation in the spatial representativeness of in situ observation for the satellite. Since the period for

retrieving and validating the GK2A LST is as short as four months, there is a limit to evaluating the

integrated level of the LST retrieval algorithm.

When retrieving LST from a satellite, the split-window method assumes that the LSE of both

channels is known. In this study, the GK2A LSE data derived in real-time using the modified VCM

method were used [68]. The fractional vegetation cover of a given pixel was calculated using the

GK2A vegetation index (VI) data generated by the maximum value composite with a consecutive 8-day

VI [63]. Based on the calculated fractional vegetation cover, the LSEs were retrieved using the look-up

table according to the land cover and daily snow cover of each pixel. The VI, land cover classification

database, spectral emissivity look-up table, and daily snow cover were calculated from each algorithm,

so they contain errors which also affect the accuracy of the retrieved LST. Therefore, to improve the

accuracy of the GK2A LST, it is necessary to improve the accuracy of these algorithms.
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Figure 13. Scatter plot between the MODIS (MOD11_L2/MYD11_L2) LST and the LST at Tateno

station from upward longwave radiation (red square symbol: daytime; blue cross symbol: nighttime;

gray dotted line represents the 1:1 line).

5. Conclusions

We have developed an operational LST retrieval algorithm for the GK2A viewing area using

GK2A/AMI data from Korea’s next-generation geostationary satellite. To develop the GK2A LST

algorithm, the split-window method was used, and the nonlinearity of water vapor was considered in

the algorithm. The RTM simulation data were constructed taking into account various factors affecting

the LST calculation in MODTRAN 4 (atmospheric profiles, diurnal variation of LST and air temperature

of the boundary layer, and the LSE variations of the two channels). From the RTM simulation data set,

regression coefficients were derived according to the actual water vapor (GK2A BTD: dry/normal/wet)

during the day and night. The GK2A LST was retrieved using the developed GK2A LST algorithm,

and their accuracies were evaluated using MODIS LST and field observations as validation datasets.

As a result of evaluating the output level of the LST calculated by the RTM simulation using the

prescribed LST, there was a correlation coefficient of 0.998, a bias of 0.01 K, and an RMSE of 0.767 K.

When the BTD value is larger than 6 K and the satellite’s VZA is large, the RMSE is large, but the error

is relatively smaller than the result of using the linear algorithm of the previous study [61].
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Using the GK2A LST algorithm developed in this study, LST was calculated from GK2A data for

four months from July 2019 to October 2019. As a result of comparing the GK2A LST with the MODIS

LST, the spatial correlation coefficient of the two LSTs was 0.969, the bias was 1.227 K, and the RMSE

was 2.281 K. Compared to MODIS LST, GK2A LST shows a warm bias greater than 1.8 K during the

day, but a relatively small bias of less than 0. 7 K at night. In particular, the warm bias of the GK2A

LST was higher than that of MODIS LST in desert and barren areas during daytime. MODIS LST

Collection 6, used as validation data, seems to be influenced by characteristics of cold bias in the

desert and on bare soil [80,81]. The results of validation with data from the Tateno station of the BSRN,

which were the field observation data, showed that the correlation coefficient is 0.95, the bias is 0.523 K,

and the RMSE is 2.021 K. Compared to the Tateno LST, the day bias is +0.5 K greater than the night

bias. The reason that the GK2A LST tends to be warmer than the Tateno LST during the day is that the

temperature at Tateno station is the temperature of the grass, while the GK2A LST is the temperature

of the surrounding urban area.

The GK2A LST algorithm developed in this study uses various outputs of GK2A (cloud detection,

VI, snow cover, and LSE) and ancillary data to calculate LST. Therefore, it is possible to improve the

accuracy of the GK2A LST by improving the algorithm that produces the basic input data for LST

calculation. In addition, it is necessary to evaluate the output level of the GK2A LST algorithm using

verification data for a longer time because the surface temperature and atmospheric characteristics

differ depending on the season. As other satellite data (Visible Infrared Imaging Radiometer Suite LST,

Sentinel-3 Sea and Land Surface Temperature Radiometer LST) and additional field observation data

(HiWATER) are starting to be released, it is considered that a cross-comparison study with these data

is necessary for globally continuous LST calculation. In addition, if the accuracy of the GK2A LST

is improved, it will be able to contribute to the establishment of long-term climatological LST data

retrieved from satellites, such as the CCI (Climate Change Initiative) LST project underway by the ESA

(European Space Agency) [84].
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Abstract: Our objective is to develop a framework for deriving long term, consistent Land Surface

Temperatures (LSTs) from Geostationary (GEO) satellites that is able to account for satellite sensor

updates. Specifically, we use the Radiative Transfer for TOVS (RTTOV) model driven with Modern-Era

Retrospective Analysis for Research and Applications (MERRA-2) information and Combined ASTER

and MODIS Emissivity over Land (CAMEL) products. We discuss the results from our comparison of

the Geostationary Operational Environmental Satellite East (GOES-E) with the MODIS Land Surface

Temperature and Emissivity (MOD11) products, as well as several independent sources of ground

observations, for daytime and nighttime independently. Based on a six-year record at instantaneous

time scale (2004–2009), most LST estimates are within one std from the mean observed value and the

bias is under 1% of the mean. It was also shown that at several ground sites, the diurnal cycle of LST,

as averaged over six years, is consistent with a similar record generated from satellite observations.

Since the evaluation of the GOES-E LST estimates occurred at every hour, day and night, the data are

well suited to address outstanding issues related to the temporal variability of LST, specifically, the

diurnal cycle and the amplitude of the diurnal cycle, which are not well represented in LST retrievals

form Low Earth Orbit (LEO) satellites.

Keywords: Land Surface Temperature (LST); satellite retrievals of LST; LST from GOES satellites

1. Introduction

Land surface temperature is an important climate parameter due to its control of the components

of the surface energy budget, such as turbulent heat and moisture fluxes, and upward terrestrial

radiation [1]. For climate applications, information is needed on large scales, and ideally, the diurnal

cycle needs to be resolved. In this study, we develop an approach to derive information on LST

which is applicable to the GOES satellites across multiple missions and multiple satellite sensors.

We report on results obtained during the period (2004–2009) at hourly time intervals, at about 5-km

spatial resolution.
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Since surface ground observations are limited, shelter temperature has been widely used as a

proxy to surface skin temperature to meet large-scale needs. Issues emerging from such an approach

have been addressed previously [2]. While observations from satellites are considered useful for

inferring LST, only a few satellite sensors observe all the necessary parameters needed to derive LST

with high accuracy. Some lack sufficient number of channels to account simultaneously for atmospheric

effects (as needed for implementing the “split window” approach) [3–7]. Others do not observe the

Earth surface at high frequency to resolve the diurnal cycle, or at high spatial resolution, to minimize

the presence of clouds.

Information on surface emissivity is also not readily available at sufficient spectral resolution [8,9].

Moreover, land surface emissivity is generally less than one, and therefore, part of the atmospheric

downward radiation is reflected by the surface and has to be accounted for [10] when converting

ground observations of radiative flux measurements to LST (which is not always done). The

number of successful attempts to derive LST from satellites has been substantial (especially using the

well-established split window approach). A full review of what was done is beyond the scope of this

paper, but a comprehensive summary can be found in Li et al. [11], and is briefly presented below.

The early effort to retrieve LST from satellites over agricultural land made by Price [3] was done

by adopting the Advanced Very High Resolution Radiometer (AVHRR) Sea Surface Temperature

(SST) split window algorithm [12,13]. Becker and Li [14] extended the split window method of

McMillin [15] for SST to LST and took into account the spectral variability in land surface emissivity.

This so called “generalized split window” LST algorithm has been widely used. Additional efforts

include the work of Prata, [16], Sobrino et al. [7], Wan and Dozier [5], Francois and Ottle [17], Coll

and Caselles [18], Trigo et al. [19], and Wan [20]. The approach for accounting for emissivity has

evolved from assignments based on land use to the use of the Normalized Difference Vegetation Index

(NDVI) [21–23]; however, the NDVI concept is not applicable for every surface type. Currently, surface

emissivity is derived from the Advanced Space Thermal Emission and Reflection Radiometer (ASTER),

the Thermal Infrared (TIR) Multispectral Scanner (TIMS), and the Moderate-resolution Imaging

Spectroradiometer (MODIS) [24–29] culminating in the Combined ASTER and MODIS Emissivity over

Land (CAMEL) product to be used here [30,31].

Most of the above referenced studies focus on polar orbiting satellites such as the National Oceanic

and Atmospheric Administration (NOAA)-AVHRR, the Along-Track Scanning Radiometer (ATSR)

and the MODIS instrument aboard Terra and Aqua satellites; the temporal measurement frequency of

these satellites is approximately twice per day. The Land Surface Diurnal Temperature Range (DTR)

is an important element of the climate system and is not captured by the polar orbiting satellites.

Geostationary satellites provide diurnal coverage and observe the surface continuously at a nadir

pixel resolution of about 4 km [32] which led to the development of several algorithms for GEO

satellites [33–35].

While the principles of retrieval methodologies have not changed drastically over time, the

development in auxiliary information, quality of such information, and availability of long term

records of satellite observations make it feasible to formulate a homogeneous approach across various

satellite sensors that can culminate in climatic records of LST. The primary objective of this study is

to present a methodology that can be implemented with different GOES observing systems, using

consistent auxiliary information of highest possible quality and utilizing radiative transfer models

that account for the vertical profiles of atmospheric states for each retrieval. From mid-2004 to 2017,

only one thermal channel is available on the GOES series; the focus of this study is on retrievals using

such a single channel in order that a consistent, long term record can be generated from all the GOES

satellites (including those that allow the implementation of the split window approach). In Section 2,

materials used are described; retrieval algorithm development is presented in Section 3; evaluation of

GOES-E based LST estimates is presented in Section 4; a discussion is provided in Section 5; and a

summary is presented in Section 6.
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2. Materials

2.1. GOES Satellite Data

The GOES system is operated by the National Oceanic and Atmospheric Administration, National

Environmental Satellite, Data and Information Service (NESDIS). The GOES system is based on the

use of satellites designed to operate at an orbit of 35,790 km above the earth, remaining stationary

to a given point on the ground. The GOES provides data at high temporal frequency (15 min)

with continental-scale coverage (N. and S. America). In this study observations from GOES-12

(4/1/2003–4/14/2010) will be utilized (Table 1). Typically, the GOES imager includes five spectral

channels (one visible, four infrared). For GOES 8-10 the channels are located at 3.9, 6.75, 10.7, and

12.2 µm whereas for GOES 11–15, the 6.75 µm channel was moved to 6.5 µm and the 12 µm channel

was moved to 13.3 µm. The visible, mid-infrared and 11 µm band are typically used for cloud screening

while the two thermal infra-red (TIR) bands (10.2–11.2 µm and 11.5–12.5 µm) are used in what is

known as a “split-window” approach to retrieve LST.

Table 1. Summary of GOES-8/GOES-12 channels.

Satellite Channel Symbol Wavelength Objective
Spatial Resolution

(Nadir)

GOES-8 &
GOES12

1 R1 0.67 µm Cloud 1 km × 1 km
2 R2 and T2 3.9 µm Cloud and snow 4 km × 4 km
3 T3 6.7 µm Water vapor 4 km × 4 km
4 T4 10.7 µm Surface temperature 4 km × 4 km

GOES-8 5 T5 12.0 µm
Sea surface

temperature and
water vapor

4 km × 4 km

GOES12 6 T6 13.3 µm . . . . . . 4 km × 4 km

Note: GOES-8 information is provided since cloud algorithm was originally developed for GOES-8. Channel 2 is
separated into the reflected solar radiation component (R2) and the emitted infrared radiation component (T2) [52];
Channel 3 is not used in any of the cloud screening tests.

Aspects of GOES satellite systems that need to be addressed before deriving LST include the

spectral characteristics of the GOES sensors and their filter functions, calibration of visible and IR

channels, cloud screening methodology (that requires snow analysis information) and the selection of

cloud screening tests as appropriate for each satellite configuration, with special distinction between

night-time and day-time conditions. Over the period of this study, two separate operational GOES

Imagers, one located at a longitude of −75◦ (referred to as GOES-East) and one located at a longitude

of −135◦ (referred to as GOES-West) continuously provided imagery over North and South America.

In this study, observation from GOES-East only will be utilized for years 2004–2009. The temporal

sampling of the GOES Imager is every 30-min over North America and every 3-h over the full disk.

Spectral distribution of the GOES 8–15 series are provided in NOAA NESDIS STAR GOES Imager LST

ATBD (Version 3.0).

2.2. Visible and Thermal Channel Calibration

Visible channels are used in the cloud screening part of data processing. Their calibration is done

in two stages. First, applied are the pre-launch calibration coefficients to get the first step “nominal

reflectance” (Apre), and then, the post-lunch calibration coefficients are applied to obtain the final

calibrated nominal reflectance (Apost).

The nominal reflectance is defined as the ratio of reflected radiance to nominal solar irradiance

given as:

Apre = pi*R/F0 (1)

95



Remote Sens. 2019, 11, 1399

where pi = 3.141593, R is satellite observed upwelling radiance, and F0 is the solar irradiance at local

zenith and mean Sun-Earth distance.

The pre-launch nominal reflectance is:

Apre = k (X − Xspace) (2)

where k is the pre-launch calibration constant to convert satellite observed digital counts to nominal

reflectance. X is the instrument raw digital count, Xspace is the raw count of the space scene (has been

adjusted to 29 for all GOES imagers at NOAA). The Post-lunch calibration is applied by multiplying

the Apre by a coefficient:

Apost = Apre*C (3)

The pre-launch coefficient for GOES-12 for radiance calibration was 0.5771 and for nominal

reflectance it was 0.001141.

NOAA/STAR monitors the GOES imager and updates the post-launch coefficients every month.

Coefficients are considered optimal for the days on or after the second Tuesday of the month following

the coefficient generation month. For more details, see: http://www.star.nesdis.noaa.gov/smcd/spb/

fwu/homepage/GOES_Imager_Vis_OpCal.php.

Inter-calibration of the infrared channels on the GOES series of satellites has been performed using

under-passes of the well calibrated NASA Atmospheric Infrared Sounder (AIRS) sensor on the Aqua

platform [36]. Infrared imager data from GOES are stored in GOES Variable Format (GVAR) counts

and radiances can be derived from GVAR counts by applying the calibration and scaling coefficients

using a procedure described in [37].

Calibration of IR channels of GOES imager data is also done in two stages: (1) converting the

imager GVAR raw count to scene radiance; (2) converting the radiance to temperature. To convert a

10-bit GVAR count to scene radiance we use:

R = (X − b)/m (4)

where X is the GVAR raw count (10-bit, range from 0 to 1023), m and b are calibration coefficients. The

values for m and b depend on channel selected, but are constant for a given channel. The obtained

radiance can be convert to effective temperature (K) by inverse of the Planck function:

Teff = C2*n/ln (1 + C1*n3/R) (5)

C1 = 1.191066 × 10e−5 [m·W/(m2·sr·cm−4)], C2 = 1.438833 (K/cm−1), “n” is the central wave-number of

the channel and varies from instrument to instrument.

The effective temperature Teff is further converted to actual temperature by:

T = a + b *Teff + g* Teff
2 (6)

where “a”, “b” and “g” are coefficients and their values and central wave-numbers can be found at:

https://www.ospo.noaa.gov/Operations/GOES/calibration/gvar-conversion.html#radiance.

Evaluation of calibration was done by comparison of radiances in each channel with NOAA values.

2.3. Emissivity Data

A new land surface emissivity Earth Science Data Systems (ESDS) product has been developed in

support of a NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs)

project [30,31] MODIS-ASTER Global Infrared Combined Emissivity product produced from the

University Wisconsin Global Infrared Land Surface Emissivity (UWIREMIS) and the ASTER Global

Emissivity (GED) Database are known as the Combined ASTER and MODIS Emissivity for Land

(CAMEL) and represents a combination of MODIS baseline-fit emissivity database (MODBF). The
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CAMEL ESDR is produced globally at 5-km resolution at mean monthly time-steps and for 13 bands

from 3.6–14.3 micron and extended to 417 bands using a Principal Component (PC) regression approach.

This product has been used in our retrievals of LST.

2.4. MERRA-2 Data

The 6 hourly MERRA-2 re-analysis data (MERRA-2 inst6_3d_ana_Np version 5.12.4) (https:

//disc.gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary) are used to specify the atmospheric

conditions [38]. The re-analysis data are available at [00, 06, 12, 18] hours with a resolution of

0.5◦ × 0.625◦, for 42 pressure levels. Properties include sea-level pressure, surface pressure, geopotential

height, air temperature, wind components, and specific humidity. Since the LST is retrieved at hourly

time scale, the MERRA-2 data are linearly interpolated in time to give the atmospheric state in between

the four analysis times (as needed for input to RTTOV) and linearly interpolated to 0.05◦ × 0.05◦ in

space to match the formulation of this study.

2.5. MOD11

The GOES based LST estimates will be evaluated against LST retrievals from MOD11 Version 6

Land Surface Temperature and Emissivity product [20] (we use both MOD11_L2 data and MOD11C3

data). The MODIS LST data products are produced as a series of nine products. The sequence begins

as a swath at a nominal pixel spatial resolution of 1 km at nadir and a nominal swath coverage of

2030 or 2040 lines along track by 1354 pixels per line in the daily LST product [39]. There are two

algorithms used in the daily MODIS LST processing: the generalized split-window LST algorithm [5]

and the day/night LST algorithm. New refinements made to these two algorithms are described by

Wan [20]. The MOD11_L2 version 6 swath product provides per-pixel land surface temperature (LST)

and emissivity. It is produced daily in 5-min temporal increments of satellite acquisition and has

a pixel size of 1 km. The MOD11C3 Version 6 product provides monthly land surface temperature

(LST) and emissivity values in a 0.05 (5600 m × 5600 m) degree latitude/longitude climate modeling

grid (CMG), which has a Geographic grid with 7200 columns and 3600 rows representing the entire

globe. The MOD11C3 granule consists of day and night LST and their corresponding quality indicator

(QC) layers.

2.6. Ground Observations

• SURFRAD/BSRN

NOAA established the Surface Radiation Budget Network (SURFRAD) in 1993 [40] to support climate

research by providing accurate, continuous, long-term measurements of the surface radiation budget

over the United States. These became the continental U.S. contingent of the International Baseline

Surface Radiation Network (BSRN) [41] as described in [42]. The SURFRAD Network uses Eppley

Precision Infrared Pyrgeometers (model PIR). The general information about the instrumentation can

be found at: https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html.

Specifically, we used the following sites: Desert Rock, Nevada (DRA: 36.62◦N, 116.02◦W; 1007 m);

Fort Peck, Montana (FPK: 48.32◦N, 105.10◦W; 634 m); Bondville, Illinois (BON: 40.06◦N, 88.37◦W;

230 m) and Goodwin Creek, Mississippi (GCM: 34.25◦N, 89.87◦W; 98 m). BSRN sites that provide

data at 1 or 3-min frequency, which makes them suitable for generating information to match the

satellite observations. The upwelling and downwelling longwave radiative fluxes are measured with a

precision infrared radiometer, which is sensitive in the spectral range from 3000 to 50,000 nm.

• ARM SGP

The Atmospheric Radiation Measurement Program (ARM) Near-Surface Observation Dataset came

from the ARM Cloud and Radiation Test Bed site (34◦–39◦N and 94.5◦–100.5◦W). The average elevation

is 314 m. The surface skin temperature used in this paper is observed at 60-sec intervals at the Central
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Facility (36.6◦N, 97.48◦W) of the Southern Great Plains (SGP) site. The instrument used to observe

the skin temperature is the Infrared Thermometer (IRT). It is a ground-based radiation pyrometer

that measures the equivalent blackbody brightness temperature of the scene in its field of view. The

downwelling version has a narrow field of view for measuring sky temperature and detecting clouds.

The upwelling version has a wide field of view for measuring the narrowband radiating temperature

of the ground surface (https://www.arm.gov/capabilities/instruments/irt). Time series and scatter plots

are produced and inspected to compare surface temperature measured by the IRT and a precision

infrared radiometer (PIR). The temperature measuring range is from 173 to 473 K. The accuracy is

the greater value of a) ±0.5 K + 0.7% of the temperature difference between the internal reference

temperature and the object measured or b) the temperature resolution. The spectral sensitivity is from

9.6 to 11.5 µm [43].

• Oklahoma MESONET

The Oklahoma MESONET is an automated network of over 110 remote, meteorological stations

across Oklahoma (http://www.mesonet.org). The surface types are predominantly grassland/wooded,

grassland/cropland. In 1999, infrared temperature (IRT) sensors (Apogee Instruments, Inc.) were

installed at 89 of the MESONET sites. A combination of automated and manual tests was applied

using simultaneous soil and atmospheric measurements to inter-compare observations and ensure that

the skin temperature observations are of research quality [44]. The measurements collected by the

MESONET provided a unique opportunity to inter-compare observations. Fiebrich et al. [45] provide

an evaluation of 5-min-resolution field measurements collected using the sensors. This sensor was

chosen for use because it is water resistant and was designed for continuous outdoor use. Sensor

accuracy is approximately ± 0.2 ◦C from 15 ◦C to 35 ◦C and 0.3 ◦C from 35 ◦C to 45 ◦C. The sensor is

installed at a height of 1.5 m and has a field of view of a diameter circle of 0.5 m. The energy detected

by the sensor is converted to a temperature using the Stefan–Boltzmann law and an assumed surface

emissivity of 1.0. Slight underestimation is caused because the true emissivity of the land surface is

less than 1.0. In addition, slight overestimation is caused by reflected longwave radiation from the

target [46]. While surface reflection of downwelling longwave radiation is ignored, Sun et al. [32]

discussed the effects of these two factors and found that the total effect may be a slight underestimation

of the skin temperature. Generally, estimated impact of uncertainty in relevant parameters on in situ

LST are as follows: radiometric calibration uncertainty of ±0.2 to 0.5 K can impact LST as much as

0.2 K; emissivity uncertainty of ±1% can impact LST by as much as 0.3 K; downwelling atmospheric

radiance uncertainty of ±10% can impact LST by as much as 0.1 K [47].

2.7. Cloud Detection

For cloud masking, various ancillary data are needed such as surface type, snow-free channel-1

radiance, and a pixel position information, all in the same dimension and location as the satellite

images. The land cover data used in this study for cloud screening implementation, are generated at

1-km resolution [48]. This product includes 14 International Geosphere–Biosphere Programme (IGBP)

classes and the underlying surface types are aggregated according to the IGBP classification.

A Coupled Cloud and Snow Detection Algorithm (CCSDA) that was developed initially for use

with GOES-8 satellite is adjusted as appropriate for each GOES satellite is used. The algorithm is

described in [49,50]. Variants of the approach were tested and evaluated in several publications [51].

In the case of the GOES-8 imager four channels were used to detect clouds, snow, and to perform

background analysis for each hour of the diurnal cycle. Beginning with GOES-12, Channel 5 is no

longer available (Table 1) [52].

The CCSDA algorithm is capable of producing its own snow analysis using an algorithm that

applies three tests using three GOES channels. Alternatively, there is a switch to allow the use of a

snow analysis from a different source. The advantage of using the snow analysis generated by the

CCSDA algorithm is that it is updated hourly, which provides a more accurate analysis of the expected
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background when applying the cloud tests. If a daily snow analysis is used, the snow conditions

cannot change for each hour of the cloud analysis, and this may introduce error.

In Table 2 we present a description of the cloud screening tests used for GOES-8, along with an

explanation of how the tests are assembled to determine a clear probability.

Table 2. Cloud Screening Tests for GOES-8.

Test Apply Cloud Detection Variable Cloud That May Be Detected

RGCT Day R1 Highly-reflective cloud
TGCT Day and Night T4 Cold cloud
C2AT Day R2 Weakly Reflective Cloud
TMFT Day and Night T2 − T4 Water cloud + Cirrus + Other Clouds
FMFT Day and Night T4 − T5 Thin Cirrus
ULST Night T2 − T4 Nighttime uniform low stratus
CIRT Night (T2 − T4)/T4 Nighttime cirrus

Note: Reflectance Gross Contrast Test (RGCT); Channel-2 Albedo Test (C2AT); Thermal Gross Cloud Test (TGCT);
Three Minus Five Test (TMFT); Four minus Five Test (FMFT); Uniform Low Stratus Test (ULST); Cirrus IR Test
(CIRT).

The ultimate clear probability (P) can be assembled in various ways on the basis of individual test

results. In this method:

P = n

√√
n∏

1

Pi (7)

Pi is the clear probability from each individual cloud screening test and n is the total number of

cloud screening tests. This assembly method guarantees that the target pixel is cloudy (P = 0) if any

individual test identifies it as cloudy (Pi = 0). Otherwise, it compiles the confidence levels from all of

the individual tests to obtain an overall clear probability.

Referring to Table 2, there was only one cloud screening test that required Channel 5, namely, the

FMFT test. In the cloud screening algorithm for GOES-12 and beyond, the FMFT test will not be used,

and the test assembly method described for GOES-8 is implemented with one less cloud test.

For each cloud test, threshold levels are used to differentiate between clear and cloudy pixels.

For each new satellite, it is necessary to test the thresholds and modify as needed. Here, the cloud

mask method applies two spatial tests and one threshold test on an 11–3.7 µm difference image. This

fourth test compares the temperature from the 11 µm channel to a 20-day clear-sky composite of

11 µm temperatures, and labels the pixel as cloudy if the difference is greater than the threshold. The

pixel level data were gridded to 0.05◦ and compared to the Pathfinder Atmospheres—Extended (PA

TMOS-X) product [34]. Agreement above 95% for various times of the day was found. The only region

which showed slight disagreement between the two independent cloud masks is over areas of complex

terrain in the Western US, but even over these regions the two cloud masks agreed over 85% of the time.

The major difference between the day time and night time algorithms (Table 2) is that there are no

Reflectance Gross Contrast Test (RGCT, when visible channel is missing) and Channel-2 Albedo Test

(C2AT) during the night time. This will mostly affect the detection of reflective clouds. For GOES-12,

the FMFT test could not be used. We have tested the cloud screening algorithm for use at nighttime.

We applied the nighttime algorithm on daytime data and compared to results when the full daytime

algorithm is used. Evaluation of LST estimates in each case is presented in Figure 1. As this figure

shows, the daytime algorithm provides better agreement with ground observations than the nighttime

one yet, the differences are small as illustrated in Figure 1.
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Figure 1. Evaluation of LST for 2004 against a SURFRAD/BSRN station at Desert Rock, NV (DRA) for:

Left: daytime; Right: nighttime.

3. LST Retrieval Algorithm Development for GOES Satellites

Satellite observed radiance R↑o , can be expressed as

R↑o = ǫB(Ts)X + R↑a + (1− ǫ)R↓a X (8)

where ǫ is surface emissivity, B(Ts) is blackbody emission at surface temperature Ts, X denotes the

atmospheric transmittance, R↑a and R↓a are atmospheric emission to space and surface, respectively.

With known surface emissivity and simulated atmospheric emission and transmittance, the surface

temperature can be retrieved

Ts = B−1
[
1

ǫ

(
1

X

(
R↑o −R↑a

)
− (1− ǫ)R↓a

)]
(9)

where B−1 denote the inverse of Planck function for GOES-12 channel 4.

Here, the approach is based on the Radiative Transfer for TOVS (RTTOV) model v11.2 [53–55]

adjusted for the GEO characteristics and driven with MERRA-2 reanalysis fields. The CAMEL data

are also implemented in the method. The advantage of this approach is that it is consistent with

the retrieval approach used at JPL to generate the MOD21 product [56]. The processing sequence is

described in Figure 2.

 

 𝑅↑𝑅↑ = 𝜖𝐵(𝑇௦)X + 𝑅↑ + (1 − 𝜖)𝑅↓ 𝑋𝜖 𝐵(𝑇௦)  𝑇௦ 𝑋𝑅↑ 𝑅↓

𝑇௦ = 𝐵ିଵ 1𝜖 ൬1𝑋 (𝑅↑ − 𝑅↑ ) − (1 − 𝜖)𝑅↓ ൰൨𝐵ିଵ

Figure 2. Flow-chart describing the derivation of LST from GOES observations.

Data processing sequence starts from raw digital counts from GOES satellites. Calibration

is applied to all channels. Channel 4 (10.2 to 11.2 um) was used for LST retrieval. All channels
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except channel 3 (6.7 um) were used in the cloud detection algorithm. After cloud screening, GOES

observations were resampled to a uniform grid of 0.05◦ resolution. The atmospheric radiation and

transmittance were simulated with the RTTOV model using MERRA-2 fields as input. The MERRA-2

fields were first temporally interpolated to satellite observation time and then collocated to satellite

locations. RTTOV calculated upwelling, downwelling radiances and atmospheric transmittance

combined with CAMEL surface emissivity to retrieve the LST according to Equation (11).

4. Evaluation of GOES-E Based LST Estimates

We will present results of evaluation for UMD LST retrievals against MOD11 products, the

BSRN/SURFRAD network over the USA, the ARM/SGP C1 site over the Southern Great Plains, and

the MESONET network over Oklahoma. The issue of evaluation of satellite products of LST against

ground measurements is complex, primarily, due to scale issues and known large spatial variability of

LST. A comprehensive discussion on all aspects of validation issues are described by Guillevic et al. [43]

and Göttsche et al. [57].

4.1. Scale Issues Related to Satellite and Ground Observations

The ground observations are point observations while the satellite LST product is at pixel level

gridded to 0.05◦. To assess the homogeneity of each site, we use the ASTER Global Emissivity

Dataset at 1-km V003 (DOI: 10.5067/Community/ASTER_GED/AG1km.003) available for the period of

2000–2008. It is based on observations from the Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) Global Emissivity Dataset (GED) land surface temperature and emissivity data

products using the ASTER Temperature Emissivity Separation (TES) algorithm with a Water Vapor

Scaling (WVS) atmospheric correction method with MODIS MOD07 atmospheric profiles and the

MODTRAN 5.2 radiative transfer model. The spatial distribution of the emissivity values is illustrated

in Figure 3a and their frequency distribution is shown in Figure 3b. As shown, except for the DRA site,

the 0.05◦ boxes show a high degree of homogeneity at the 1-km scale. As seen from Figure 3b, the

emissivity values range between 0.965–0.980 with two distinct peaks of 0.965 and 0.975 with some lower

values (0.948) at the DRA site. As also shown in the study of Hulley and Hook [58], who compared

ASTER emissivity band 11 (8.6 µm) at 90 m spatial resolution to the same at 1 km, the agreement was

very good. The spatial matching of ground and satellite observations is done by taking the weighted

average of the pixels that fall in the cell box (0.05◦ × 0.05◦) around the target location of the station. The

time matching is done by taking the averages of ±15 min around the start scanning time of GOES12

(this interval is selected based on the duration of the satellite scan).
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Figure 3. (a) Spatial characterization of the sites used in evaluation of the LST products in terms of

emissivity as obtained at 1 km spatial resolution using the ASTER Global Emissivity Dataset 1 km

V003. (b) Frequency distribution of the emissivity values over sites used in evaluation as illustrated in

Figure 3a.
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4.2. Evaluation against MOD11

We have conducted an inter-comparison between MOD11_L2 and our LST retrievals. Before

comparison, the MOD11_L2 data are rescaled to 0.05 × 0.05 degree latitude/longitude grids.

Figure 4 shows an example of comparison between the GOES_RTTOV LST and MOD11_L2 LST

on 11 June 2004 UTC 17:15.

 

Figure 4. Example case of GOES_RTTOV_LST, MOD11_L2 LST and their difference and its distribution

at 11 June 2004 UTC 17:15.

We compared 25 match-up cases for which the two products have overlap and both start scan

at 15 min after same hour in 2004. For most cases, the total number of points in the overlap area is

more than 40,000. Figure 5 presents the correlation coefficients (corr), the mean bias (bias), the standard

deviation (std) and the root mean square error (rmse) between the two products. As seen, in most cases,

the two products yield close correlation. Only in one case the coefficient is less than 0.8. The averaged

corr of all cases is 0.91. More than 50% cases have mean bias less than 2 K, and the averaged value is

1.7 K. The averaged std and rmse are 2.7 and 3.3 K respectively.

4.3. Evaluation against ARM SGP Site at Instantaneous Time Scale

The IRT data are available from two levels of a tower; one instrument was located at 25 m and one

at 10 m above ground. The probability distribution of differences between GOES_RTTOV_LST and

ARM IRT is shown in Figure 6 using all available retrievals. Obviously, most of the differences fall

within the interval of 1 std. Less than 20% of the cases are beyond 1 std. The correlation between the

two data sets is high for both levels, (>than 0.80 for all cases). The mean differences at daytime are

smaller than at nighttime at both levels and the same applies to std and rmse. Numerical values for the

cases of Figure 6 are shown in Table 3. Differences due to the height exposure of the instrument can be

caused by differences in the field of view of the instrument, and as such, different shading effects.
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Figure 5. Evaluation of 25 instantaneous match-ups of LST retrievals from GOES observations against

MOD11_L2. The x-axis provides the numbering of the cases while the y-axis indicates the correlation

(in blue) and the other variables in W/m2.
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Figure 6. Probability distribution of differences between the GOES_RTTOV and ARM SGP C1 LST.

Red dot line: 1 std; Blue dot line: 3 std.

Table 3. Statistical results for cases illustrated in Figure 6.

Corr Mean Bias Std RMS No. Cases

Day Night Day Night Day Night Day Night Day Night

25 m 0.89 0.81 −2.09 −5.12 5.92 7.04 6.28 8.7 11,781 12,335
10 m 0.89 0.80 −2.68 −3.64 5.75 7.37 6.34 8.22 11,940 12,639

Figure 7 shows the results of evaluations for 2004–2009 from tower observations: (a) for daytime

from 25 m level; (b) same as (a) using observations from 10 m level (year 2006 excluded since this year

requires additional quality control); (c) same as (a) for nighttime observations only; (d) same as (b) for

nighttime observations only. Only values within 1 std are used. The satellite product underestimates
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the ARM IRT observations, yet, the difference between them is less than 1% and the std and rmse are

also around 1%; the performance at daytime is better than at nighttime, most likely, due to better cloud

detection during the daytime when observations from the visible channel are available.

 

 

↑ 𝐹 ↓
𝐹 ↑= 𝜀ூோ𝜎𝑇ௌସ + (1 − 𝜀ூோ)𝐹 ↓𝜀ூோ 𝜎

− − − −𝑇ௌ = ቈ𝐹 ↑ −(1 − 𝜀)𝐹 ↓𝜀𝜎 ଵ/ସ

Figure 7. Evaluation of RTTOV based estimates from GOES-E at the SGPC1 ARM test site using

observations at hourly intervals during 2004–2009 for daytime and nighttime from 25 m and 10m tower

level. Data that have differences of less than one std were used.

4.4. Evaluation against SURFRAD/BSRN

The SURFRAD/BSRN network observes upwelling (F↑) and down-welling (F ↓ ) radiative fluxes

which are converted to temperature as follows:

F ↑= εIRσT4
S + (1− εIR)F ↓ (10)

where εIR is the surface broadband emissivity assigned by surface type, σ is the Stefan-Boltzmann

constant and is equal to 5.669 × 10−8 J m−2s−1K−4. Then

TS =

[
F ↑ −(1− ε)F ↓

εσ

]1/4

(11)

The approach we use was also applied by others. The main issue in the conversion is the value of

emissivity. Heidinger et al. [34] use a broadband longwave emissivity assumed to be 0.97. They indicate

that a 0.1 error in emissivity equates to an error in the SURFRAD LST not exceeding 0.25 K. Yu et al. [59]

also used the SURFRAD data to evaluate their LST retrievals following the same procedures. In their

approach, the emissivity is estimated by mapping surface type classification of Snyder et al. [60] to

emissivity (an approach that was popular for some time when direct information on emissivity was not

available). They assume that the mean broadband emissivity of the satellite sensor is applicable. We

use the CAMEL emissivity which is derived spectrally and integrated to the window spectral interval

of the satellite used, and variable at monthly time scale; namely, for each month and for each location
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the spectral values are integrated to give a new broadband value. This is the most advanced use of

surface emissivity in such retrievals.

The scatter plots of the instantaneous GOES_RTTOV LST against SURFRAD sites for both daytime

and nighttime are shown in Figure 8. As seen, the satellite estimates and the ground observations

have very high correlation, mostly above 0.98. For daytime (left panel Figure 8) the differences ranged

between 0.4 (0.2%) to 1.16 (0.4%) while the std ranged between 1.88 (0.6% to 2.53 (0.9%) respectively.

For nighttime (right panel Figure 8) the results are comparable to daytime.

 

 

 

Figure 8. Evaluation of instantaneous GOES based LST estimates at hourly intervals against 4

SURFRAD/BSRN stations, independently for daytime (left panel) and nighttime (right panel) using

observations from 2004–2009.
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4.5. Evaluation against the Oklahoma MESONET Sites

The distribution of sites used in current evaluation is illustrated in Figure 3a. The evaluations

are carried out against all the stations for both daytime and nighttime in January and July during

2004–2007. Results are presented in Figure 9 where outliers outside 1 std were removed. Red color

designates results that have bias smaller than 1 std, ranging from 1.74 to 2.47 K. The retrieved data

have high correlation with the in-situ data (>than 0.9). Results of daytime and nighttime for January

and July are comparable (unlike the results of Figure 6 where all outliers were used).

 

 

 

Figure 9. Evaluation of instantaneous GOES based LST estimates at hourly intervals against

the MESONET stations, independently for daytime (left panel) and nighttime (right panel) using

observations for years 2004–2007.

4.6. Applications

• Seasonal distribution of LST at monthly scale

Since many users of LST data are interested in monthly mean values, we have conducted a

comprehensive comparison at such scale. This was possible due to the availability of both ground

observations and satellite estimates for a period of six years.

The evaluation was expanded to include ground observations at the USA BSRN/SURFRAD sites

and we also used information from MOD11C3, Version: 006 at 0.05◦ (https://lpdaac.usgs.gov/dataset_

discovery/modis/modis_products_table/mod11c3_v006). Derived statistics includes mean values,

standard deviation, maximum/minimum, and medium values for each month are shown in Figure 10.

It is clearly that the GOES_RTTOV LST has very close distribution pattern as it of SURFRAD/BSRN.

It has the ability to describe the annual variability of the LSTs at SURFRAN/BSRN sites. At DRA,

MOD11C3v6 LST yields higher estimations against SURFRAD/BSRN for most seasons, the annual

mean LST for all study years is 306.6 K, which is 3.1 K higher than the value of SURFRAD/BSRN. While
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the GOES_RTTOV estimations are much closer to the site value. The annul mean LST of GOES_RTTOV

is 301.6 K. For BON, both of the MOD11C3v6 and GOES_RTTOV estimations are close to the site

values, except April, May and June. The annul mean LSTs of SUFRAD/BON, GOES_RTTOV and

MOD11 are 287.9 K, 288.0 K, 289.8 K respectively. And for GWN, the GOES_RTTOV has relatively

lower estimation of annual mean LST which is 293.6 K. The site value is 295.1 K. The MOD11 is 295.7 K.

The performance of the satellite estimations at FPK is similar as DRA. The MOD11 annual mean LST is

288.4 K, the GOES_RTTOV is 283.8 K, and the site value is 285.2 K.

 

 

 

Figure 10. Daytime LST Distribution of GOES_RTTOV, SURFRAD/BSRN sites over 2004–2009 for

each month and their monthly mean values compared with MOD11C3v6. Top/Bottom of dashed line:

maxi/min LST; Solid “-”: medium LST: Solid box: quartile of LST. Stars are monthly mean LST of

SURFRAD/BSRN sites (orange), GOES_RTTOV (blue) and MOD11C3v6 (red).

• A six-year climatology of LST over the US

A six year (2004-2009) monthly means of LST at 0.05◦ spatial resolution for January and July at UTC

06:15 and at UTC 18:15 are shown in Figure 11 for illustration of the product.
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Figure 11. Monthly mean LST at 0.05◦ spatial resolution averaged over 6 years (2004–2009) for January

and July; (a) UTC18:15, July; (b) UTC06:15:00, July; (c) UTC18:15, January; (d) UTC06:15, January.

As shown, for July, the differences in surface temperature during these two hours (close to

representing daily max and min), are large. During the daytime, the western part of the US is

dominated by clear sky conditions (the 100th W longitude is known to separate between the humid and

dry parts of the US). During the nighttime, the clear conditions contribute to cooling by emitted LW

radiation especially, over high elevations. Noticeable is also the pronounced latitudinal variability in

the LST during January, dominated by solar zenith angle dependence of heating by SW radiation. The

high spatial and temporal resolution of this product makes it useful for addressing hydrological issues

such as modeling of evapotranspiration, snow-melt, or soil moisture estimation (utilizing morning

heating rates) [61].

In Figure 12 we depict the diurnal variation of LST as observed at four SURFRAD/BSRN stations

and from GOES-12. Notable is the large amplitude at the dry site of Desert Rock (DRA) (characterized

as desert, gravel, flat, rural) as compared to the more vegetated regions at the other sites (BON is grass,

flat, rural; FPK is grass, flat while GWN is grass, hilly, rural). The effect of latitude is also evident.

The amplitude at GWN which is at ~34◦N is much smaller than the amplitudes at the higher latitude

stations (BON at ~40◦ and FPK at ~48◦). Of interest are the differences between satellite estimates and

ground observations which are more noticeable at DRA and FPK than at the other sites. A possible

explanation for DRA is the lower homogeneity of the site compared to the others. The FPK is at higher

elevation than BND and GCM and also at higher latitude so possibly, the cooling of the ground at the

observational site may not represent the grid domain. Additional investigation is needed to better

understand the behavior at these four sites during the earlier part of the day. The full agreement

between the satellite and ground observations from about noon to late afternoon can possibly be due to

more even heating of the ground than at the earlier hours of the day when the higher moisture content

can differentially affect the emissivity. While ground observations are very sparse, the findings shown

in Figure 12 indicate that satellites alone can be used to characterize the diurnal cycle over the domain

of the GOES satellites (a comprehensive analysis over the entire US is needed). This information is of

considerable interest since most satellite based estimates of LST use polar orbiters unable to depict the

true diurnal cycle.
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Figure 12. A six-year average (2004–2009) of the hourly LST at four SURFRAD/BSRN stations as

observed (solid line) and as derived from the GOES observations (broken line).

5. Discussion

Available information on LST and DTR from remotely sensed data is deficient. Discrepancies

and inconsistencies arise due to the quality of the satellite and the ground observations, differences

in their spatial, spectral and temporal resolution, as well as differences in the inference methods and

auxiliary data used. In principle, the well-established split window approach is known to perform

better than the use of a single channel for deriving LST however, the 12 µm channel is not available

any more during the operational period of GOES 12-15. To homogenize satellite observations to obtain

a consistent long term record requires the utilization of observations from a single channel only.

With the advancement in archiving of satellite data, their maintenance in terms of calibration,

geolocation, improved inference schemes and auxiliary information, it is timely to formulate an

approach for deriving long-term, consistent, and calibrated data across multiple satellite sensors, as

demanded by the user community. Progress has also been made in ground observations in terms of

instrument characterization, guidelines for high quality maintenance and calibration. The issue of

optimal coupling between satellite and ground observations is still widely debated.

LST is known to have large spatial variability at different temporal scale (diurnal, annual,

inter-annual) and this variability has an informative value. For instance, the importance of the diurnal

cycle of LST has been widely recognized [62–64] and numerous attempts have been made to estimate

it. In an early attempt [65], used were the International Satellite Cloud Climatology Project (ISCCP)

data (at 280 km resolution C-2 product) [66] in combination with ground observations to derive the

monthly mean diurnal cycle in surface temperature over land (suitable for Global Climate studies).

Duan et al. [64] tried to determine it using High Spatial Resolution Clear-Sky MODIS Data while

Inamdar et al. [33] dis-aggregated the diurnal cycle of LST at the GOES pixel scale to that of the

MODIS pixel scale. Yet, the daytime and nighttime products from polar orbiting satellites (e.g., MODIS)

do not fully represent the daily amplitude as feasible from GEO satellites. Our effort represents a

contribution to the development of a framework for obtaining long term records of consistent LST and

DTR from the entire record of GOES satellites, using a physically based approach and utilizing the best

currently available auxiliary information and the best available ground observations to evaluate the

proposed approach.

In the evaluation process, factors that play a role include differences in ground instrumentation,

their location above the surface, method of estimating LST from the measured outgoing LW radiation,
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calibration and maintenance of the instruments and scale issues between ground observations and

satellite footprints. There is a need to ensure that the satellite observations used represent clear sky

condition. Detailed information on each of these factors is needed for a full assessment of errors in

the retrieved LST products. While under controlled short term experiments the uncertainty of many

of these factors can be minimized, the results obtained are not representative for extended areas and

all seasons.

In this paper, the quality of the new product is evaluated against extensive record of best available

observations and products that are accepted by the scientific community. Specifically, evaluation of a

six-year record of instantaneous LST as well as monthly averages was performed against the DOE

Atmospheric Radiation Measurement (ARM) site at the Southern Great Plains central facility, the

BSRN/SURFRAD stations, MOD11 products and the Oklahoma MESONET sites.

While the quality of the instrumentation used at each site can be traced to factory specifications, it

is not possible to establish how much differences in daily maintenance at each site contribute to the

quality of the observations. The hypothesis of our approach is that by using long term observations

at numerous sites and seasons, the evaluation results do provide an indication on the robustness of

the approach. One of the major factors affecting the evaluation results is related to cloud screening

which vary among methodologies as recently discussed in Ermida et al. [67]. Spatial and temporal

variability in emissivity are also a contributing factors. As reported in [6] a brightness temperature

error due to emissivity error in the 11 µm band is about 3% for a 0.5% error in emissivity and up

to 5% for an emissivity error of 2.0%; these estimates are based on global simulations over a wide

temperature range. To fully understand discrepancies between products, there is a need in controlled

experiments to evaluate independently factors that can cause differences. Till now, available retrievals

are based on different satellite observation, different retrieval methodology, atmospheric inputs and

time periods. An early attempt to compare the performance of several well-known algorithms was

presented in {6]. To make such algorithm comparison consistent the individual methodologies need

to be modified; it is necessary to rederive relevant coefficients of the algorithms used in a systematic

manner using the same inputs. The need for controlled experiments to facilitate discussion on

sources of discrepancies between methods has been recognized by the scientific community and is

conducted frequently. Examples are numerical model evaluation as conducted at Lawrence Livermore

National Laboratory (https://pcmdi.llnl.gov/?projects/amip/0), while controlled experiments to estimate

errors due to aerosols is described in Randles et al. [68]. The objective of the current study is to

present a credible methodology to generate long term time series of LST at best available spatial and

temporal resolution (that currently are possible with a long term outlook), and evaluate it against best

available satellite products and ground observations. Used were long term observations that represent

different climatic regions and seasons that provided statistically robust indication on the soundness

of the propose approach. The need for further work to investigate the sources of discrepancies is

also recognized. Limitations and advantages of each methods and their trade-offs need also to be

fully understood.

6. Summary

In principle, the split window approach is known to perform better than a single channel to

derive LSTs. But the 12 µm channel is not available any more during the operation periods of GOES

12–15. To homogenize satellite observations to a consistent long term record requires the use of a single

channel observation.

We have implemented the RTTOV radiative transfer approach adjusted for GEO channel 4 to

derive LST at the high resolution of about 5-km. The model is driven with the MERRA-2 reanalysis

profiles for water vapor and temperature and the CAMEL product. A homogeneous six year record

of LST at 0.05◦ spatial resolution at hourly time scale was produced from GOES observations and

evaluated for the period of 2004–2009. A six year climatology at monthly time scales was also derived

and used to construct representative diurnal cycles for selected surface type.
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The results shows that there is a close agreement between the GEO and MOD11 products. The

averaged correlation coefficient between them is over 0.9. The averaged difference is less than 2 K and

the averaged rmse is less than 3.5 K. It was also found that the derived LST has very close correlation with

ground-based observations. In most cases, the correlation coefficients are greater than 0.9. The mean

differences between the satellite LST and the station LST are less than 1% and over 80% of the differences

fall within 1 std. The performance of retrieved LST for daytime and nighttime are comparable to each

other after elimination of outliers caused by imperfect cloud detection. The estimated quality of the

LST information can serve as a guideline for users in a wide range of applications, such as a realistic

representation of the diurnal cycle.

Future improvement would be possible by satellite observations of higher spatial resolution,

the incorporation of higher temporal resolution of surface emissivity and improved/innovative

methodologies to remove cloud contamination [68] and by accounting for anisotropy in emissivity

Pinheiro et al. [69], Ermida et al. [70].
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Abstract: The land surface temperature (LST) is a key parameter used to characterize the interaction

between land and the atmosphere. Therefore, obtaining highly accurate, spatially consistent and

temporally continuous LSTs in large areas is the basis of many studies. The Moderate Resolution

Imaging Spectroradiometer (MODIS) LST product is commonly used to achieve this. However, it has

many missing values caused by clouds and other factors. The current gap-filling methods need to

be improved when applied to large areas. In this study, we used the Bayesian maximum entropy

(BME) method, which considers spatial and temporal correlation, and takes multiple regression

results of the Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM),

longitude and latitude as soft data to reconstruct space-complete daily clear-sky LSTs with a 1 km

resolution for China’s landmass in 2015. The average Root Mean Square Error (RMSE) of this method

was 1.6 K for the daytime and 1.2 K for the nighttime when we simultaneously covered more than

10,000 verification points, including blocks that were continuous in space, and the average RMSE of

a single discrete verification point for 365 days was 0.4 K for the daytime and 0.3 K for the nighttime

when we covered four discrete points. Urban and snow land cover types have a higher accuracy than

forests and grasslands, and the accuracy is higher in winter than in summer. The high accuracy and

great ability of this method to capture extreme values in urban areas can help improve urban heat

island research. This method can also be extended to other study areas, other time periods, and the

estimation of other geographical attribute values. How to effectively convert clear-sky LST into real

LST requires further research.

Keywords: land surface temperature; MODIS; Bayesian Maximum Entropy; interpolation

1. Introduction

The land surface temperature (LST), generally defined as the radiative skin temperature of the

ground, is closely related to the radiative budget and energy fluxes between the atmosphere and the

ground [1–4]. LST plays an important role in the estimation of climate models, environmental models

and evapotranspiration models, as well as the calculation of drought indices, soil moisture contents

and mortality rates [5–14].

Compared with LST measurements at ground stations, satellite remote sensing observations

have the advantages of easy acquisition and complete spatial coverage over large areas. Typical LST

products include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),

Moderate Resolution Imaging Spectroradiometer (MODIS) and Meteosat Second Generation Spinning

117



Remote Sens. 2019, 11, 2610

Enhanced Visible and Infrared Imager (MSG-SEVIRI) datasets, with spatial resolutions of 90 m, 1 km

and 3 km, respectively [15–17]. Among them, the MODIS LST product is the most widely used and best

suited for our research because of its appropriate spatial resolution (1 km), high temporal resolution

(four overpasses per day), wide coverage (globe), and high retrieval accuracy (approximately better

than 1 K). The MODIS instruments were launched on the Sun-synchronous satellites of Terra and

Aqua in December 1999 and May 2002, respectively [18]. The MODIS LST products are generated with

bands 31 and 32 of MODIS’s 36 spectral using the split window algorithm [2]. The latest version C6

MODIS LST products have different spatial resolutions of 1 km, 6 km, and 0.05◦ and different temporal

resolutions of daily, eight days and monthly. The MOD11A1 and MYD11A1 are 1 km daily Level 3

products in those MODIS LST products. The transit time of Terra corresponding to MOD11A1 is about

10:30 (22:30), while the transit time of Aqua corresponding to MYD11A1 is about 13:30 (1:30). They are

both processed into sinusoidal projection and stored in tiles containing 1200 rows and 1200 columns.

The quality of MODIS products is continuing to improve, from more than 2 K in the previous versions

to less than 2 K (within ±1 K in most cases) in the C6 version [4]. MODIS LST products have been

widely used in LST research [19–21]. However, the MODIS LST product can only provide usable values

under clear-sky conditions, and its spatial integrity is thus affected by clouds or other atmospheric

disturbances. Taking China as an example, more than half of the pixels per day have no observations

on average, and these gaps seriously hinder the application of the MODIS LST product.

Several gap-filling methods have been developed to reconstruct LSTs under cloudy conditions

to obtain spatiotemporally-continuous LST products. In general, these methods can be divided

into two main groups: clear-sky LST [19–30] and cloudy-sky LST [31–37] methods. Clear-sky LST

represents the retrieved LST assuming no cloud effects, whereas cloudy-sky LST represents the actual

LST of the reconstruction considering cloud effects. Usually, clear-sky LST is slightly higher than

cloudy-sky LST. The methods for reconstructing cloudy-sky LST, mostly based on surface energy

balances, often use passive microwave remote sensing data or require ground station measurements

or shortwave radiation products. Nonetheless, microwave data have a coarse spatial resolution and

an accuracy that needs improvement. Moreover, ground station measurements or shortwave radiation

products with a high spatial and temporal resolution are difficult to obtain. This study focused on

reconstructing the clear-sky LST, first, because improving the accuracy of clear-sky LST is conducive

to further determining the cloudy-sky LST better, and second, because clear-sky LST can be directly

applied to research fields such as numerical weather prediction [38], the identification of diurnal

patterns of urban heat islands [39], and calculation of the Temperature-Vegetation Dryness Index

(TVDI) or Temperature-Vegetation-soil Moisture Dryness Index (TVMDI) [40,41].

The methods for clear-sky LST may be divided into four categories, according to the underlying

principles: considering temporal correlation, considering spatial correlation, considering auxiliary

information, and the hybrid method. Details of each category are as follows: (1) LST has a temporal

correlation because, for the same pixel at different times, the surface properties are the same and only

different weather factors, such as solar radiation and wind speed, cause LST differences. Therefore,

the first category reconstructs LST based on the temporal correlation using temporal interpolation

methods or methods that employ correlations at different times [22,23]; (2) LST also has a spatial

correlation because different pixels at the same time have the same weather factors and different surface

properties (such as elevation and land cover), but only the surface properties cause LST differences.

The second category thus reconstructs LST based on the spatial correlation using spatial interpolation

methods [19,24]; (3) in addition, LST is affected by related factors such as elevation and NDVI. The third

category thus estimates the missing LST using the empirical relationship between LST and the auxiliary

information, which has a similar spatiotemporal resolution to LST and a better spatial coverage

integrity than LST [20,21]; (4) finally, the fourth category is hybrid methods that combine two or three

of the above methods, such as spatiotemporal gap-filling methods or spatial interpolation methods

that consider auxiliary information [25–30]. In general, the hybrid approach is the most promising.

Considering only temporal correlation is not suitable for regions with high spatial heterogeneity. If only
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spatial correlation is taken into account, the results will be inaccurate for areas that have large weather

changes in a short period of time. If only auxiliary information is considered, the accuracy of regression

and the uncertainty of auxiliary information will affect the final results. In previous studies, there have

been relatively few methods suitable for LST reconstruction in large areas. In a region as large as

China, where climate change is complex, spatial heterogeneity is high, and auxiliary information has

considerable uncertainty, a method is needed that can comprehensively and reasonably consider time

correlation, spatial correlation, and auxiliary information, and the uncertainty of auxiliary information

should also be considered.

Bayesian maximum entropy (BME) is a spatiotemporal statistical method proposed by Christakos

that can provide a systematic and rigorous framework for incorporating hard data, soft data and other

sources of information into the estimation of variables [42,43]. BME has several attractive features;

it does not need to make any assumptions regarding the linearity of the estimator, the normality of

the underlying probability laws, or the homogeneity of the spatial distribution. Moreover, BME is

capable of considering uncertainties contained in the data. The method has been successfully applied

to numerous areas, such as air pollution, soil properties, water demand and disease [44–61]. It has also

achieved good results in the gap-filling of remote sensing data [62–64]. The BME method is suitable for

our research because it can not only take advantage of the temporal correlation and spatial correlation

of the LST, but can also explicitly consider the uncertainties of the auxiliary information.

In this study, we applied the BME-based interpolation method to reconstruct 1 km resolution daily

clear-sky LST for China’s landmass considering temporal correlation, spatial correlation and auxiliary

information. The goals of this article are to (1) examine the feasibility of the BME method to reconstruct

LST for the whole of China, (2) discuss the accuracy of the BME method for different land cover types,

and (3) compare the BME method with other commonly used LST reconstruction methods.

2. Materials and Methods

2.1. Study Area

In this study, we selected the land area of 34 provinces in China as our study area. China is located

on the eastern side of the Eurasian continent and the western shore of the Pacific Ocean; it spans

approximately 5500 km from north to south and 5000 km from west to east. The topography across

China is complicated and includes plains, plateaus, mountains, hills and basins. It varies from the

Qinghai-Tibet Plateau at more than 4000 m above sea level (peaking at 8848 m) to its eastern coastline

on the Pacific Ocean. China’s land resources are vast, and its use types are diverse. The cultivated

lands are mainly distributed in the eastern region, the forests are distributed in the south and northeast

regions, the grasslands are mainly distributed in the central and southwestern regions, and the unused

lands are mainly distributed in the northwestern region. China’s climate is governed by monsoonal

circulations, and winters with low temperatures and little rain significantly differ from summers with

high temperatures and abundant rain [65].

2.2. Data Acquisition and Preprocessing

LST can be affected by many factors [20,66,67]. In view of relatively more critical factors across

the Chinese scale and the convenience of data acquisition and processing, NDVI, DEM, longitude and

latitude were selected as auxiliary data to regress LST. The following specific datasets were used in this

study: (1) For LST, we used the MODIS/Aqua LST Daily L3 Global 1 km SIN Grid product (MYD11A1,

Collection 6). LSTs observed throughout the year 2015 were used at local 1:30/13:30 overpass times,

which approximate daily minimum and maximum LST values; in the later part of the article, we call

them daytime LST and nighttime LST; (2) for NDVI, we selected the MODIS/Aqua 16 day 1 km

Vegetation Index product (MYD13A2, Collection6), which has great spatial completeness and the

spatial resolution we need. There are 23 NDVI data sets of MYD13A2 for the entire year of 2015; (3) for

DEM, we used the Shuttle Radar Topography Mission (SRTM) Digital Elevation Data Version 4 at a 90 m
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spatial resolution produced to provide consistent, high-quality elevation data. The original DEM data

were resized using nearest-neighbours from 90 m to 1 km; (4) for land cover data, we used the MODIS

Land Cover Type Yearly Global 500 m product (MCD12Q1) from 2015, which was derived using

supervised classifications of MODIS Terra and Aqua reflectance data. We combined all the land types

into six categories: forests, grasslands, croplands, barren, urban and snow. Evergreen needleleaf forests,

evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed forests,

closed shrublands and open shrublands were merged into forests, whilst woody savannas, savannas

and grasslands were merged into grasslands. Water was not considered in this study. The pixels were

resampled to a 1 km resolution in preparation for the subsequent verification phase; (5) for longitude

and latitude, we gave each grid one longitude value and one latitude value at a 1 km spatial resolution

based on the WGS84 datum.

MYD11A1, MYD13A2 and MCD12Q1 were provided by the Land Processes Distributed Active

Archive Center (LP DAAC) site (https://lpdaac.usgs.gov/). DEM datasets are available from the

CGIAR-CSI SRTM 90 m Database site (http://srtm.csi.cgiar.org). In this study, all the above data were

downloaded, reprojected, stitched and resized with Google Earth Engine (GEE, https://earthengine.

google.com). We processed all the data into 3540 rows × 6166 columns to cover the study area.

2.3. Method

As shown in Figure 1, BME was the core method of this study, and data were prepared for adapting

the BME procedure. The three aspects of considering auxiliary data, time correlation, and spatial

correlation were used to describe how the three most important input parameters of the BME algorithm,

hard data, soft data and covariance models, were constructed. Regarding the auxiliary data, for each

image to be estimated, the pixel LSTs with MODIS observations were taken as the dependent variable,

and the NDVI image that was taken on the date closest to the estimated image and the elevation,

longitude and latitude of the corresponding pixels were taken as independent variables to perform

multiple linear regression and obtain the regression coefficients. Then, via the four independent

variables of the pixels to be estimated and the respective regression coefficients, the regression LSTs of

all the pixels to be estimated were calculated. The regression LSTs were used as the mean value and

the mean square error (MSE) between the dependent variable and the predicted value as the variance

to construct the Gaussian LST distribution as the soft data. The calculation results of the regression

coefficients and the regression R2 of the multiple linear regressions for the daytime and nighttime

are shown in Tables A1 and A2. Regarding time correlation, we subtracted the mean LSTs of 15 days

(7 days before and after) from both MODIS observed LSTs used as hard data and regression LSTs used

as soft data, and the resulting difference values were input into the BME model as real hard data and

soft data, respectively. This is equivalent to the 15 day mean LST minus the LST of the estimated

day, which can be understood as the average trend after removing the special weather factors of the

day; the LST time correlation could then be taken into account by this simple calculation. After such

processing, the LSTs did not need to have trends removed before being input into the BME model,

and only the spatial correlation needed to be considered, which could be achieved by the covariance

function that represents the spatial dependence. The specific cause analysis can be found in lines 4

to 11 of the fourth paragraph of the introduction. Regarding spatial correlation, we calculated the

spatial covariance using the real hard data and soft data mentioned above and input the obtained

spatial covariance function name and parameters into the BME model. The relevant parameters of the

covariance model calculated in this paper are shown in Tables A3 and A4.

From the above, it is worth noting that considering the availability of data and the simplicity

of method processing, this study made the following assumptions when using the BME method to

reconstruct LST: (1) LST changed linearly in a short time (time correlation was considered by subtracting

the 15 day mean LST from the LST of the day to be estimated); (2) for the day to be reconstructed,

one omnidirectional covariance model of that day can be used in the whole study area; (3) NDVI of

each day can be represented by the NDVI data of its adjacent 7 days (the time resolution of the NDVI
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data was 15 days, so the time interval between the selected NDVI and the estimated image on any day

was 0 to 7 days). The main BME conceptual core and framework and the explanations for its use in

this research, are shown below.
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Figure 1. Flowchart describing the land surface temperature (LST) reconstruction model using the

Bayesian maximum entropy (BME) method.

2.3.1. BME Epistemic Paradigm and Conceptual Core

The BME approach belongs to modern geostatistics, which provide insights into spatiotemporal

variables. The epistemic paradigm of BME distinguishes between three main stages of knowledge

acquisition, interpretation, and processing, as follows: (1) The prior stage. Spatiotemporal analysis

and mapping always starts with a basic set of assumptions and the general knowledge base G. G refers

to the background knowledge and the justified beliefs relative to the overall mapping situation; (2) the

meta-prior stage. The specific knowledge base S is considered, including hard and soft data. S refers to

a particular occurrence or state of affairs at a particular location and at a particular time. Hard data

are considered accurate or have a high degree of confidence. Soft data are uncertain observations

expressed in terms of interval values, probability statements, empirical charts, and others. That is to

say, soft data can have varying levels of uncertainty and may be derived from the direct calculation

of the probabilities or the indirect estimation from accumulated experience; (3) the integration or

posterior stage. Information from (1) and (2) is processed by means of logical rules to produce the

required spatiotemporal map. Therefore, the conceptual core of the BME method is that it aims at

informativeness (in terms of prior information relative to the general knowledge G), as well as cogency

(in terms of posterior probability relative to the specific knowledge S). BME combines the maximum

entropy theory with operational Bayesian statistics to construct its scientific mathematical framework

and to implement the above conceptual heart. In general, BME is used to acquire various knowledge

bases and to order these bases in an appropriate manner so that, when taken together, they form

a realistic picture of the phenomenon of interest.

2.3.2. BME Framework

BME has a rigorous cognitive system and a mathematical reasoning framework. The complete

theoretical basis, mathematical formulas and specific derivation processes can be found in reference [43].

The main BME formulas and steps involved in this study are as follows:
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where χk denotes the LST of the estimated pixel, χdata = (χhard, χso f t), χhard represents hard data, and χso f t

represents soft data. In this study, MODIS LST observations were used as hard data and LST Gaussian

distributions obtained by multivariate linear regression were used as soft data. The regression process

is described above. fG(χk, χdata) denotes the prior pdf of the map χmap = (χk, χdata) given the general

knowledge base G. µα(pmap) represents Lagrange multipliers. gα(χmap) is a set of known functions of

χmap. In practical applications, prior knowledge usually includes the first-order statistical moment

(mean trend) and second-order statistical moment (covariance). The mean trend was not adopted

as the first-order statistical moment in this study; rather, the LST difference on the observation day

minus the 15 day mean was used. This was done to take time correlation into account and to remove

LST instability caused by different weather factors, which resulted in a more stable LST distribution.

The second-order statistical moments employed in this study were the spatial covariance functions

derived by the difference values calculated above. Such a priori knowledge in this study could consider

both the temporal correlation dominated by weather factors and the spatial correlation dominated by

surface properties.

fK(χk) = fG
(
χk |χ hard,χso f t

)
= fG(χk |χ data) = fG(χk,χdata)/ fG(χdata) (2)

In Equation (2), fK denotes the posterior pdf of the map χk, given the total knowledge base K

comprised of general knowledge G and specific knowledge S, including hard and soft data. The general

knowledge, hard and soft data used in this study were described earlier.

χk, mean =

∫
χk fK(χk)dχk (3)

We used the BME mean value (χk, mean) as the final estimated LST. The BME mean value could

be calculated from the posterior PDF since we sought to penalize large errors more than smaller ones.

2.3.3. BME Implementation

We used the BMElib algorithm package for BME algorithm implementation in MATLAB [68].

The calculation details for each estimated day are as follows. Firstly, the mean value and mean square

error of the soft data of each prediction point were input into the probaGaussian.m function of the

software package to obtain the soft data information that meets the requirements of the subsequent

input. Secondly, the values and position coordinates of hard and soft data were entered into the

covario.m and corefit.m functions of the software package to obtain the covariance function name

and parameters. Finally, the main function was used to calculate the final result. Information such as

hard data, soft data, and covariance was input into the BMEprobaMoments.m function. In addition,

the maximum effective distance was set to 15 km, the maximum hard data point was set to 20 points,

and the maximum soft data point was set to 3 points.

3. Results

3.1. Spatial Patterns of the Reconstructed LSTs

We selected the 15th day of each month in 2015 to conduct the method experiment and obtained

the spatial distribution results of 12 images for both the daytime and nighttime (Figures 2 and 3).

In the daytime, an average of 43% of the pixels of the MODIS LST products in the study area had LST

observations, and in the nighttime, the value was 51%. That is, there was a missing rate of nearly

one-half before filling gaps. The missing LST could be 100% filled using the BME method to generate

a complete spatial distribution (Table 1).
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Table 1. Availability of Moderate Resolution Imaging Spectroradiometer (MODIS) observed LST and

reconstructed LST for the daytime and nighttime from 15 January to 15 December in 2015.

Date Observed Reconstructed Observed Reconstructed

15 January, 2015 Daytime 39.8% 100% Nighttime 54.6% 100%
15 February, 2015 40.6% 100% 53.2% 100%

15 March, 2015 40.1% 100% 45.2% 100%
15 April, 2015 52.8% 100% 58.2% 100%
15 May, 2015 39.6% 100% 46.2% 100%
15 June, 2015 33.6% 100% 30.1% 100%
15 July, 2015 39.1% 100% 48.1% 100%

15 August, 2015 36.7% 100% 42.2% 100%
15 September, 2015 48.6% 100% 56.8% 100%

15 October, 2015 63.0% 100% 74.8% 100%
15 November, 2015 46.2% 100% 48.0% 100%
15 December, 2015 34.8% 100% 52.7% 100%

Average 42.9% 100% 50.9% 100%

In general, the entire study area showed strong spatial heterogeneity that varied in different

seasons for both the day and night (Figures 2 and 3).

In winter, the lowest LST for the daytime occurred in northeast China, followed by the Qinghai-Tibet

Plateau, whereas the lowest LST for the nighttime appeared in the Qinghai-Tibet Plateau, followed by

northeast China. In summer, the lowest LST during the daytime simultaneously occurred in the

Qinghai-Tibet Plateau and northeast China, whereas during the nighttime, the LST of the Tibetan

Plateau was significantly lower than that in northeast China (Figures 2 and 3). The LST of the

Qinghai-Tibet Plateau in southwest China was obviously low due to its high topography, and the LST

of northeast China affected by Siberian cold air in winter was also low.

 

 

281 Figure 2. Spatial distribution of reconstructed daytime LST from 15 January to 15 December in 2015.
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Figure 3. Spatial distribution of reconstructed nighttime LST from 15 January to 15 December in 2015.

In summer, the highest daytime LST was evident in northwest and central Inner Mongolia,

whereas the highest nighttime LST was widely distributed in the south-central and southeastern

regions, except for the Qinghai-Tibet Plateau. In winter, the highest daytime LST was distributed in

the northwest and southeast regions, but the highest nighttime LST was distributed in the southeast

coastal areas (Figures 2 and 3). The LST was usually higher in the northwest and Inner Mongolia due

to the large number of deserts. LST was also higher in the southern region because of its low latitude

and more solar radiation on the ground.

3.2. Accuracy Assessment

Since the study aimed at clear-sky LST reconstruction, it was not necessary to employ ground

observation points for verification. First, this is because clear-sky LST is the theoretical value that is

assumed not to be affected by clouds, while the ground observed value is the real value that is affected

by clouds, so they cannot be directly compared. Secondly, this is because the acquisition time of the

ground station is difficult to coincide with that of MODIS products, and there are also scale effects

between points and surfaces. The verification method in this paper is for clear-sky LST. We selected

some points with MODIS LST observations to cover them, reconstructed the LST of the covered points

with the BME method, and then compared the reconstructed LST values with the known observations

of MODIS LST. The verification points must have MODIS LST observations as references for the

reconstructed LSTs. Therefore, we selected the points where the MODIS LST observations existed

on the 15th of each month in 2015 as the verification points, which also helped to show the accuracy

change of points with the same positions over time (Figure 4). There were 10,971 test pixels for the

daytime (green points in Figure 4), including 330 forest pixels, 2683 grassland pixels, 537 cropland

pixels, 7376 barren pixels, 38 urban pixels and 7 snow and ice pixels. There were 14,376 test pixels for

the nighttime (blue points in Figure 4), including 218 forest pixels, 6040 grassland pixels, 425 cropland

pixels, 7627 barren pixels, 425 urban pixels and 8 snow and ice pixels. Some of the verification points
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were spatially continuous and they formed regions of various shapes. The maximum diameter of the

regions formed by the verification pixels was close to 60 km, and the estimation accuracy was thus also

of reference value for the missing LST values caused by large cloud cover.
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Figure 4. Distribution of 10,971 verification points in the daytime and 14,376 verification points in the

nighttime, and four verification points in big cities.

The daytime accuracy was mostly lower than that of the nighttime (Figures 5 and 6). The average

mean absolute error (MAE) and RMSE values were 1.1 K and 1.6 K, respectively, in the daytime,

whereas the values were 0.8 K and 1.2 K in the nighttime, respectively (Figure 7d–f). The accuracy

in summer was generally lower than in winter, which decreased and then increased from January to

December (Figures 5, 6 and 7d–f). During the daytime, the maximum RMSE was 3.0 K in July and the

minimum was 0.8 K in January. During the nighttime, the maximum RMSE was 1.9 K in June and the

minimum was 1.0 K in December (Figures 5 and 6). The higher RMSE in summer than in winter may

be due to the higher surface heterogeneity in summer than in winter, and the higher RMSE during the

day than during the night may be due to more serious cloud cover and more missing values during

the day.

In general, the RMSEs of barren land were the largest, with averages of 1.6 K and 1.4 K during the

day and night, respectively, whereas the RMSEs of urban areas were the smallest, with averages of 1.0 K

and 0.6 K during the day and night, respectively (Figure 7a,b). During the daytime, RMSEs ranked

from high to low for barren, grasslands, forests, croplands, urban and snow and ice. During the

nighttime, RMSE was in the order of forests, barren, snow and ice, grasslands, croplands and urban

(Figure 7c).

As shown in Figures 5 and 6, the changes between day and night of urban LST were the most

obvious, and the seasonal changes of ice and snow LST were most obvious. For the daytime, urban LST

was close to the average LST of different land cover types, whereas for the nighttime, urban LST was

generally higher than the average LST of different land cover types. This indicates that the urban areas

have a relatively strong heat island effect at night. The LST of snow and ice was lower in winter and

higher in summer.
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Figure 5. Scatter plots of reconstructed LST versus observed LST for 10,972 pixels for the daytime from

15 January to 15 December in 2015.

 

 

Figure 6. Scatter plots of reconstructed LST versus observed LST for 14,376 pixels for the nighttime

from 15 January to 15 December in 2015.
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Figure 7. RMSE of (a) daytime LST and (b) nighttime LST for each land cover type from 15 January to

15 December in 2015; (c) overall average RMSE for each land cover type in 2015; (d) overall average

mean absolute error (MAE) from 15 January to 15 December in 2015; bias and overall average RMSE

for the daytime (e) and nighttime (f) from 15 January to 15 December in 2015.

In addition, we selected one point in Beijing, Wuhan, Shanghai and Guangzhou to estimate the

LST for 365 days in 2015 and validated the accuracy with MODIS observations. These four verification

points were geographically discrete and located in four major cities of China from north to south

(Figure 4). The results are shown in Figure 8. Beijing had fewer than 200 days with LST observations,

whereas in the other three cities, the number was less than 100. The maximum number of consecutive

missing days was 30 days in Beijing, 40 days in Wuhan, 44 days in Shanghai and 54 days in Guangzhou.

BME could fill 100% of the missing LSTs and reconstruct the uninterrupted LST time curve of each

pixel for 365 days. As seen from the variation range of the curve, the BME method can describe

the change of LST in a relatively fine manner, without smoothing out the maximum and minimum

values. The R2 values of the four urban test sites were all greater than 99%, and, except for the RMSE

in Wuhan of 0.6 K, the RMSE in the other cities in the day or night was less than 0.5 K. Therefore,

the single point test accuracy of the BME method was very high in large cities. The time distribution

of LST demonstrated that there were obvious temperature differences between the day and night in

the four cities. The four seasons changed most obviously in Beijing because it is located in a typical
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north temperate semi-humid continental monsoon climate zone, whereas Guangzhou had the smallest

difference between the four seasons because of the Marine subtropical monsoon climate.
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Figure 8. Temporal pattern of observed LST and reconstructed LST for the (a) daytime in Beijing,

(b) nighttime in Beijing, (c) daytime in Wuhan, (d) nighttime in Wuhan, (e) daytime in Shanghai,

(f) nighttime in Shanghai, (g) daytime in Guangzhou, and (h) nighttime in Guangzhou.
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3.3. Factors that Influence Accuracy

Figures 9 and 10 illustrate the influence of different factors on the LST estimation accuracy

represented by RMSE. For the daytime, the Pearson correlation coefficients between the RMSE of the

reconstructed LST and the four influencing factors multiple linear regression R2, average LST, ratio of

pixels with LST observations to total pixels (namely, completeness) and average NDVI were 0.32, 0.85,

−0.21 and 0.86, respectively; for the nighttime, the corresponding Pearson correlation coefficients were

0.22, 0.55, −0.6 and 0.44, respectively. Therefore, the average temperature and average NDVI were

strongly correlated with RMSE in the daytime, and the mean LST and completeness were moderately

correlated with RMSE in the nighttime. Three rather interesting aspects emerged from the results:

(1) The average LST affected the accuracy of the method, where the higher the average temperature,

the larger the RMSE; (2) the completeness, or the number of missing pixels, slightly affected the

accuracy of the method; (3) the accuracy R2 of multiple linear regression did not affect the accuracy

of the method. In this study, R2 varied from 0.39 to 0.90 (from 0.39 to 0.82 during the daytime and

from 0.79 to 0.90 during the nighttime). This suggests that the BME method has a great ability to

consider the uncertainty of soft data. Since the BME method does not have high requirements for the

accuracy of soft data, it can be applied to other large-scale regions, and there is no need to improve the

regression accuracy by random forest or other regression methods.

 

354 
355 
356 

357 
358 
359 
360 
361 

−362 
−363 

364 
365 
366 
367 
368 
369 
370 
371 
372 
373 

 

374 
375 

376 
377 

378 

Figure 9. Correlation between multiple regressive R2, mean LST and RMSE for the (a) daytime and

(b) nighttime.
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Figure 10. Correlation between the completeness of the observed LST, mean NDVI and RMSE for the

(a) daytime and (b) nighttime.

3.4. Comparisons with Other Methods

We compared the BME method with four other commonly used LST gap-filling methods,

including Crosson’s method of supplementing MYD data with the same day’s MOD data [22], the time
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interpolation method HANTS [23], the Kriging spatial interpolation method, and the hybrid gap-filling

method proposed by Li [30]. It is worth noting that the same hard data and the same spatial covariance

model of the BME method were entered into Kriging, and the only difference was that the Kriging

method does not consider soft data. The RMSEs and error distributions of each method are shown in

Figure 11. In general, the accuracy of each method ranked from high to low, as follows: BME > Kriging

> Hybrid > HANTS > Crosson. It appeared that Crosson’s method had the lowest accuracy, the BME

method had the highest accuracy during the daytime, the Kriging method had the highest accuracy

during the nighttime, the Hybrid method had a stable accuracy in the day and night, and HANTS had

a significantly higher accuracy in the night than in the day.
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Figure 11. Error distribution of LST using the five methods of Crosson, HANTS, Kriging, Hybrid and

BME for the (a) daytime on 15 January, 2015; (b) nighttime on 15 January, 2015; (c) daytime on 15 July,

2015; and (d) nighttime On 15 July, 2015.

4. Discussion

4.1. Accuracy Analysis

The mean RMSEs in this study were 1.6 K for the daytime and 1.2 K for the nighttime, which were

slightly lower than the RMSEs of 3.3 K for the daytime and 2.7 K for the nighttime in Li’s study in

a comparably large area [30]. The single point RMSE of approximately 0.5 K is comparable with the

RMSE of approximately 2 K under cloud-free conditions in Duan’s study, which selected four ground

points for validation [31]. The accuracy of this method is acceptable for large areas with complex

geographical and climatic conditions. In addition, this method has a high accuracy in estimating urban

LST and can be applied to urban heat island research.
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There were different accuracies for different land cover types, which indicates that the accuracy is

affected by land cover [34]. The accuracy of barren land and forest was lower than that of urban and

cropland because the terrain of barren and forest is more complex, and the spatial heterogeneity is

greater. Therefore, the model accuracy can be improved by dividing various terrain regions and then

adopting different covariance models for various regions.

The accuracy decreased with the increase of NDVI and average LST because a high NDVI and

high temperature usually represent the summer climate in China, when the cloud cover is large and

the distribution is concentrated, which results in large LST gaps. The completeness has only a slight

impact on the accuracy, possibly because the accuracy is influenced not only by the number of missing

pixels, but also by their maximum diameter and distribution characteristics [69].

When constructing soft data, the accuracy of multiple linear regression does not affect the accuracy;

this may be due to the ability of BME to fully consider the uncertainty of soft data. The average

regression R2 in this study was nearly 0.6, and in the subsequent application of the BME method to LST

reconstruction, when the average regression R2 in the construction process of soft data is greater than

0.6, it is unnecessary to adopt more complex regression methods to improve the regression accuracy.

4.2. Suggestions for Method Selection

We can learn the characteristics of each LST reconstruction method from Figure 11 and in

combination with previous studies. The accuracy of spatial interpolation models is usually higher

than that of temporal interpolation models [70]. The time interpolation models have some difficulties

in capturing extreme values, and their accuracy is relatively low. Spatiotemporal gap-filling methods

are often unable to fill all the missing values at one time, and one usually needs to iterate several

times until all the missing values are filled. Spatial interpolation methods, especially the ones that

consider auxiliary information, have a high accuracy, but usually take a relatively long time for

calculations [25,26]. The study area in this study was large. To balance the calculation time and

accuracy, we did not select the spatiotemporal covariance model, but rather the spatial covariance

model, to consider the spatial dependence characteristics and the simple 15 day mean value to consider

the time dependence characteristics. The spatiotemporal covariance model can be selected in small

areas [34,71]. With the development of computing power and multi-core parallelism in the future,

the computing speed will become faster.

Suggestions on how to choose an appropriate method to reconstruct LST are as follows: (1) If one

hopes for a short computation time and simple computation steps, one can choose the time interpolation

method; (2) if a high precision and simple calculation steps are required, the spatial interpolation

method is recommended; (3) if one wants to balance the calculation speed and accuracy, we suggest

using the spatiotemporal gap-filling method. All of the above three methods can consider introducing

auxiliary data to improve the accuracy. In addition, note that the Kriging spatial interpolation method

achieved good results in this study area and that Kriging is thus a simple method worth trying.

The BME method that we used is a spatial interpolation method that considers auxiliary information,

and its precision was very high in this study area.

4.3. Exploration of the Accuracy Improvement

In this part, we will explore methods to improve the accuracy and model applicability based on the

assumptions of the method. One assumption of this method was that LST changed linearly in a short

time. We thus subtracted the 15 day mean LST from the LST of the constructed day to consider the time

correlation. Doing so can also make the data closer to a normal distribution and thus replace the step of

trend removal in other BME studies. We selected 18 October, 2015 as an example (there were relatively

more MODIS observed LSTs available on that day), as shown in Figure 12. The green part shows that

the LST of all pixels on this day presents a non-normal distribution, while the purple part exhibits

an approximately normal distribution after subtraction calculation (LST–the mean LST of 15 days) is

performed. This operation achieved the desired effect. However, as can be seen from Figure 8, the time
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variation of LST exhibited both an overall trend and fluctuation. According to the limitation of this

study’s assumption, we may improve the accuracy by taking better account of the time correlation.

We can do so by introducing the Annual Temperature Cycle (ATC) model, which is a general and

smooth curve description of the LST annual change. Considering the time correlation with the LST of

the estimated day minus the LST of the corresponding point on the ATC curve, theoretically, will be

more accurate than considering the time correlation with the LST of the estimated day minus the LST

of the 15 day mean value. We plan to conduct follow-up studies with regards to this.
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Figure 12. Data distribution of the MODIS observed LST and the difference of LST minus the 15 day

mean LST on 18 October, 2015.

The second assumption of this method was that one omnidirectional covariance model of the

constructed day can be used in the whole study area. Here, we want to explore the directivity of the

covariance model. We constructed omnidirectional and directional covariance models for 18 October,

2015 (Table 2, Figure 13). As can be seen from the parameters of directional covariance in the study

area, the overall characteristic is that the directional covariance is significantly affected by longitude

and latitude, and the latitude direction changes faster than the longitude direction.

Table 2. Omnidirectional and directional covariance model parameters for 18 October, 2015.

Time
(omnidirectional)

Model name Nugget Partial Sill Range (km)

Daytime spherical 0.20 0.76 12.94
Nighttime spherical 0.20 0.79 15.59

Time (directional)
The angle between the principal
axis and the horizontal axis (◦)

Principal/secondary axes
(km/km)

Daytime 0 20.68/7.69
Nighttime 3.52 18.39/10.06
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Figure 13. Directional covariance models of the daytime and nighttime on 18 October, 2015.

Omnidirectional and directional covariance models were input into the method in this study to

calculate the results, and 10,000 points were randomly selected during the day and night for accuracy

verification and comparison. The results show that after considering the directionality of the covariance,

the accuracy in the daytime is slightly improved, and the accuracy of the night is not improved (Table 3).

It is suggested that directionality can be considered during the daytime in the following research.

Table 3. Omnidirectional and directional accuracy verification results for 18 October, 2015.

Time Model Name MAE (K) RMSE (K) R2

Daytime omnidirectional 0.79 1.32 0.98
directional 0.78 1.30 0.98

Nighttime omnidirectional 0.45 0.71 0.99
directional 0.45 0.71 0.99

In addition, large study areas will have problems with spatial covariance models that differ in

different regions. First of all, however, we have not explored how the covariance model changed

in different regions of China’s mainland. Moreover, if we want to fill in the LST of the whole study

area at once, more detailed regional division may make the model more complicated. How to apply

different covariance models in different subregions of the study area is challenging and worthy of

further exploration.

The third assumption of this method was that the NDVI of each day can be represented by the

NDVI data of its adjacent 7 days. We used 15 day NDVI data because it had values on all pixels to

ensure that soft data can be constructed on all LST missing pixels. When the LST was reconstructed on

the 15th day of each month in 2015, the nearest NDVI data were selected on 9 January, 10 February,

14 March, 15 April, 17 May, 18 June, 20 July, 21 August, 22 September, 8 October, 8 November and

11 December. There were no results to prove that the closer the reconstruction date was to the obtained

date of NDVI, the higher the fitting accuracy and the final LST accuracy were. We believe it was feasible

to reconstruct the LST daily with a 15 day NDVI product. Lastly, we cannot accurately calculate the

impact of the uncertainty of NDVI datasets on the uncertainty of the final results, which is a limitation

of this method.

4.4. Recommendations for Future Studies

Due to the characteristics of the BME method, we cannot accurately determine the uncertainty of

the results. At present, we can only obtain the conclusion that at a 1 km spatial resolution, the accuracy

of reconstructing the daily LST of China’s landmass with the BME method is acceptable.

For daytime or nighttime LST reconstruction on a certain day, one covariance model can be

adopted in the whole research area on that day, which can achieve a reasonable accuracy. If one

wants to use this model later, we suggest that it be directly used in the same study area and at the

same spatiotemporal resolutions. If other areas or other resolutions are studied, an accuracy analysis
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should be conducted first to see whether it can meet the actual requirements. The soft data should

also be reconstructed according to the geographic and data characteristics of the other study areas.

One can try to use the four independent variables in this paper or may introduce other auxiliary

data, such as soil moisture and temperature. In the future, we can try to introduce the ATC model,

divide different subregions and adopt different covariance models to improve the accuracy of the BME

method presented in this study.

When using the BMElib package, it is important to be aware of some parameter settings.

The maximum effective distance can be set to a value similar to the range in the covariance model.

In order to balance the calculation accuracy and calculation time, we recommend that the maximum

number of hard data points should not exceed 50 and the maximum number of soft data points should

not exceed 5.

Although clear-sky LST can be applied in some research, the real surface LST is still needed in

many fields. This study calculated clear-sky LST, and if one wants to obtain cloudy-sky LST from

clear-sky LST, one can refer to Zeng’s method [69]. Adding microwave and ground observation data

can also be considered.

5. Conclusions

The MODIS LST product has many missing values over wide areas, which hinders its practical

application. In this study, we reconstructed the seamless 1 km resolution daily clear-sky LST for China’s

landmass based on the BME method, considering spatiotemporal correlation and taking auxiliary data

as soft data. The average RMSE was 1.6 K for the daytime and 1.2 K for the nighttime, with the mean

absolute error (MAE) of 1.1 K for the daytime and 0.8 K for the nighttime, and the corresponding R2 of

0.92 for the daytime and 0.98 for the nighttime.

This method has the following advantages: (1) It simultaneously considers spatiotemporal

correlation and auxiliary data and has a high accuracy in a large area. It has the ability to capture

extreme values; (2) the data in this method are easy to obtain and process; (3) simple linear regression is

used to construct soft data, and there is no need to adopt more complex regression methods to improve

the regression accuracy, as long as the average regression R2 is greater than 0.6; (4) even if the diameter

of the missing area is large or the continuous missing time is long, this method does not need multiple

step-by-step calculations to gradually fill in the missing pixels, and can estimate all the missing pixels

at one time.

There are also some limitations for this method: (1) This method is not applicable when an accuracy

of less than 1 K across the entire Chinese landmass is required; (2) when using the method in other

study areas and spatiotemporal scales, it is necessary to first consider whether the hypothesis of LST

linearity change in a short time and one omnidirectional covariance model can be applied to the entire

study area are valid; (3) the method cannot quantitatively calculate the influence of the uncertainty of

NDVI and DEM data on the uncertainty of the results; (4) the clear-sky LST should be converted to

cloudy-sky LST if the real LST is required.

The results of this study provide a data basis for daily LST analysis and subsequent relevant

studies in large areas of China. For the method, its high accuracy and great ability to capture extreme

values in urban areas can help improve urban heat island research. It can also be applied to the

reconstruction of missing LST values of other years, other regions and other spatial resolutions (such

as Landsat), as well as the estimation of missing values of other geographical attributes.
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Appendix A

Table A1. Regression R2 and regression coefficients of multiple linear regression for the daytime.

Date Regression R2 Intercept
Coefficient
of NDVI

Coefficient
of DEM

Coefficient
of Latitude

Coefficient of
Longitude

15 January, 2015 0.69 366.07 −2.10 −0.004 −1.07 −0.39
15 February, 2015 0.58 371.31 −5.23 −0.004 −1.26 −0.31

15 March, 2015 0.50 381.25 −24.29 −0.005 −1.52 −0.17
15 April, 2015 0.40 369.12 −4.05 −0.005 −0.18 −0.50
15 May, 2015 0.59 388.10 −26.26 −0.007 −0.63 −0.39
15 June, 2015 0.59 343.54 −23.48 −0.007 −0.10 −0.13
15 July, 2015 0.82 373.64 −21.95 −0.008 −0.16 −0.35

15 August, 2015 0.59 320.09 −28.35 −0.005 −0.07 0.10
15 September, 2015 0.39 317.19 −14.30 −0.003 −0.02 −0.03

15 October, 2015 0.50 349.92 −16.69 −0.004 −0.52 −0.19
15 November, 2015 0.67 370.45 −16.05 −0.004 −1.38 −0.21
15 December, 2015 0.59 358.56 −8.76 −0.003 −1.65 −0.14

Table A2. Regression R2 and regression coefficients of multiple linear regression for the nighttime.

Date Regression R2 Intercept
Coefficient
of NDVI

Coefficient
of DEM

Coefficient
of Latitude

Coefficient of
Longitude

15 January, 2015 0.87 337.62 −18.39 −0.005 −0.97 −0.18
15 February, 2015 0.89 336.19 −15.67 −0.006 −0.98 −0.13

15 March, 2015 0.85 330.99 −5.02 −0.005 −1.13 −0.06
15 April, 2015 0.87 338.49 −9.03 −0.005 −0.58 −0.25
15 May, 2015 0.83 350.82 −3.16 −0.007 −0.66 −0.32
15 June, 2015 0.86 300.98 −0.42 −0.005 −0.30 0.03
15 July, 2015 0.90 326.60 −2.70 −0.006 −0.23 −0.21

15 August, 2015 0.85 308.03 −2.69 −0.005 −0.55 0.07
15 September, 2015 0.87 295.45 −2.60 −0.004 −0.34 0.07

15 October, 2015 0.87 310.69 −2.56 −0.005 −0.57 −0.03
15 November, 2015 0.85 331.74 −1.86 −0.005 −1.25 −0.06
15 December, 2015 0.79 324.41 −12.13 −0.005 −0.98 −0.09

Table A3. Names and parameters of the spatial covariance model for the daytime.

Date Model Name Nugget Partial Sill Range (km)

15 January, 2015 exponential 0.34 0.66 4.03
15 February, 2015 exponential 0.67 0.32 11.59

15 March, 2015 exponential 0.38 0.62 5.62
15 April, 2015 spherical 0.50 0.48 5.29
15 May, 2015 exponential 0.40 0.60 7.62
15 June, 2015 exponential 0.57 0.43 9.25
15 July, 2015 spherical 0.69 0.31 10.13

15 August, 2015 gaussian 0.41 0.57 9.78
15 September, 2015 spherical 0.44 0.55 14.39

15 October, 2015 exponential 0.32 0.68 13.78
15 November, 2015 spherical 0.52 0.46 13.28
15 December, 2015 exponential 0.68 0.32 18.56
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Table A4. Names and parameters of the spatial covariance model for the nighttime.

Date Model Name Nugget Partial Sill Range (km)

15 January, 2015 exponential 0.34 0.66 6.34
15 February, 2015 spherical 0.35 0.65 12.08

15 March, 2015 spherical 0.57 0.43 10.17
15 April, 2015 spherical 0.56 0.43 9.57
15 May, 2015 spherical 0.39 0.61 17.30
15 June, 2015 exponential 0.45 0.55 3.56
15 July, 2015 exponential 0.53 0.47 10.54

15 August, 2015 gaussian 0.31 0.67 10.75
15 September, 2015 exponential 0.39 0.61 9.57

15 October, 2015 spherical 0.29 0.71 14.79
15 November, 2015 exponential 0.50 0.50 12.71
15 December, 2015 exponential 0.30 0.70 9.28

References

1. Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces.

Agric. For. Meteorol. 1995, 77, 153–166. [CrossRef]

2. Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space.

IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905.

3. Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface

temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [CrossRef]

4. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity

product. Remote Sens. Environ. 2014, 140, 36–45. [CrossRef]

5. Carlson, T.N.; Gillies, R.R.; Schmugge, T.J. An interpretation of methodologies for indirect measurement of

soil water content. Agric. For. Meteorol. 1995, 77, 191–205. [CrossRef]

6. Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes

in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293.

[CrossRef]

7. Zhang, L.; Lemeur, R.; Goutorbe, J.P. A one-layer resistance model for estimating regional evapotranspiration

using remote sensing data. Agric. For. Meteorol. 1995, 77, 241–261. [CrossRef]

8. Bodas-Salcedo, A.; Ringer, M.A.; Jones, A. Evaluation of the Surface Radiation Budget in the Atmospheric

Component of the Hadley Centre Global Environmental Model (HadGEM1). J. Clim. 2008, 21, 4723–4748.

[CrossRef]

9. Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling.

Agric. For. Meteorol. 2009, 149, 2071–2081. [CrossRef]

10. Gallo, K.; Dan, T.; Yu, Y. Evaluation of the Relationship between Air and Land Surface Temperature under

Clear and Cloudy-Sky Conditions. J. Appl. Meteorol. Climatol. 2011, 50, 767–775. [CrossRef]

11. Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Predicting spatiotemporal mean air temperature using MODIS

satellite surface temperature measurements across the Northeastern USA. Remote Sens. Environ. 2014, 150,

132–139. [CrossRef]

12. Zhang, P.; Bounoua, L.; Imhoff, M.L.; Wolfe, R.E.; Thome, K. Comparison of MODIS Land Surface Temperature

and Air Temperature over the Continental USA Meteorological Stations. Can. J. Remote Sens. 2014, 40,

110–122. [CrossRef]

13. Shi, L.; Kloog, I.; Zanobetti, A.; Liu, P.; Schwartz, J.D. Impacts of temperature and its variability on mortality

in New England. Nat. Clim. Chang. 2015, 5, 988. [CrossRef] [PubMed]

14. Ma, H.; Liang, S.; Xiao, Z.; Shi, H. Simultaneous inversion of multiple land surface parameters from MODIS

optical–thermal observations. ISPRS J. Photogramm. Remote Sens. 2017, 128, 240–254. [CrossRef]

15. Gillespie, A.R.; Matsunaga, T.; Rokugawa, S.; Hook, S.J. Temperature and emissivity separation from advanced

spaceborne thermal emission and reflection radiometer (ASTER) images. In Infrared Spaceborne Remote Sensing

IV, Proceedings of SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation,

Denver, CO, United States, 4–9 August 1996; SPIE: Bellingham, WA, USA, 1996; pp. 82–94.

136



Remote Sens. 2019, 11, 2610

16. Wan, Z. Collection-5 MODIS Land Surface Temperature Products Users’ Guide; University of California:

Santa Barbara, CA, USA, 2007.

17. Jiang, G.M.; Li, Z.L. Split-window algorithm for land surface temperature estimation from MSG1-SEVIRI

data. Int. J. Remote Sens. 2008, 29, 6067–6074. [CrossRef]

18. MODIS Web. Available online: https://modis.gsfc.nasa.gov/ (accessed on 5 November 2019).

19. Neteler, M. Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed

MODIS LST Data. Remote Sens. 2010, 10, 333. [CrossRef]

20. Fan, X.-M.; Liu, H.-G.; Liu, G.-H.; Li, S.-B. Reconstruction of MODIS land-surface temperature in a flat terrain

and fragmented landscape. Int. J. Remote Sens. 2014, 35, 7857–7877. [CrossRef]

21. Zeng, C.; Shen, H.; Zhong, M.; Zhang, L.; Wu, P. Reconstructing MODIS LST Based on Multitemporal

Classification and Robust Regression. IEEE Geosci. Remote Sens. Lett. 2015, 12, 512–516. [CrossRef]

22. Crosson, W.L.; Al-Hamdan, M.Z.; Hemmings, S.N.J.; Wade, G.M. A daily merged MODIS Aqua–Terra land

surface temperature data set for the conterminous United States. Remote Sens. Environ. 2012, 119, 315–324.

[CrossRef]

23. Xu, Y.; Shen, Y. Reconstruction of the land surface temperature time series using harmonic analysis.

Comput. Geosci. 2013, 61, 126–132. [CrossRef]

24. Yang, J.; Wang, Y.; August, P. Estimation of land surface temperature using spatial interpolation and

satellite-derived surface emissivity. J. Environ. Inform. 2004, 4, 37–44. [CrossRef]

25. Ke, L.; Ding, X.; Song, C. Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using

Geostatistical Approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1602–1606. [CrossRef]

26. Metz, M.; Rocchini, D.; Neteler, M. Surface Temperatures at the Continental Scale: Tracking Changes with

Remote Sensing at Unprecedented Detail. Remote Sens. 2014, 6, 3822. [CrossRef]

27. Weiss, D.J.; Atkinson, P.M.; Bhatt, S.; Mappin, B.; Hay, S.I.; Gething, P.W. An effective approach for gap-filling

continental scale remotely sensed time-series. ISPRS J. Photogramm. Remote Sens. 2014, 98, 106–118. [CrossRef]

[PubMed]

28. Yu, W.; Ma, M.; Wang, X.; Tan, J. Estimating the land-surface temperature of pixels covered by clouds in

MODIS products. J. Appl. Remote Sens. 2014, 8, 083525. [CrossRef]

29. Sun, L.; Chen, Z.; Gao, F.; Anderson, M.; Song, L.; Wang, L.; Hu, B.; Yang, Y. Reconstructing daily clear-sky

land surface temperature for cloudy regions from MODIS data. Comput. Geosci. 2017, 105, 10–20. [CrossRef]

30. Li, X.; Zhou, Y.; Asrar, G.R.; Zhu, Z. Creating a seamless 1km resolution daily land surface temperature

dataset for urban and surrounding areas in the conterminous United States. Remote Sens. Environ. 2018, 206,

84–97. [CrossRef]

31. Duan, S.-B.; Li, Z.-L.; Leng, P. A framework for the retrieval of all-weather land surface temperature at a high

spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ.

2017, 195, 107–117. [CrossRef]

32. Duan, S.-B.; Li, Z.-L.; Tang, B.-H.; Wu, H.; Tang, R. Generation of a time-consistent land surface temperature

product from MODIS data. Remote Sens. Environ. 2014, 140, 339–349. [CrossRef]

33. Jin, M.; Dickinson, R.E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite

thermal infrared radiances. J. Geophys. Res. Atmos. 2000, 105, 27037–27047. [CrossRef]

34. Kou, X.; Jiang, L.; Bo, Y.; Yan, S.; Chai, L. Estimation of Land Surface Temperature through Blending MODIS

and AMSR-E Data with the Bayesian Maximum Entropy Method. Remote Sens. 2016, 8, 105. [CrossRef]

35. Lu, L.; Venus, V.; Skidmore, A.; Wang, T.; Luo, G. Estimating land-surface temperature under clouds using

MSG/SEVIRI observations. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 265–276. [CrossRef]

36. Shwetha, H.R.; Kumar, D.N. Prediction of high spatio-temporal resolution land surface temperature under

cloudy conditions using microwave vegetation index and ANN. ISPRS J. Photogramm. Remote Sens. 2016,

117, 40–55. [CrossRef]

37. Zhang, X.; Pang, J.; Li, L. Estimation of Land Surface Temperature under Cloudy Skies Using Combined

Diurnal Solar Radiation and Surface Temperature Evolution. Remote Sens. 2015, 7, 905–921. [CrossRef]

38. Scarino, B.; Minnis, P.; Palikonda, R.; Reichle, R.H.; Morstad, D.; Yost, C.; Shan, B.; Liu, Q. Retrieving Clear-Sky

Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data.

Remote Sens. 2013, 5, 342. [CrossRef]

137



Remote Sens. 2019, 11, 2610

39. Lai, J.; Zhan, W.; Huang, F.; Voogt, J.; Bechtel, B.; Allen, M.; Peng, S.; Hong, F.; Liu, Y.; Du, P. Identification of

typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sens. Environ. 2018,

217, 203–220. [CrossRef]

40. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index

space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [CrossRef]

41. Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-soil Moisture Dryness

Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [CrossRef]

42. Christakos, G.; Li, X. Bayesian Maximum Entropy Analysis and Mapping: A Farewell to Kriging Estimators?

Math. Geosci. 1998, 30, 435–462.

43. Christakos, G. Modern Spatiotemporal Geostatistics; Oxford University Press: Oxford, UK; New York, NY, USA, 2000.

44. Christakos, G.; Serre, M.L.; Kovitz, J.L. BME representation of particulate matter distributions in the state of

California on the basis of uncertain measurements. J. Geophys. Res. 2001, 106, 9717–9731. [CrossRef]

45. Kolovos, A.; Christakos, G.; Serre, M.L.; Miller, C.T. Computational Bayesian maximum entropy solution of

a stochastic advection-reaction equation in the light of site-specific information. Water Resour. Res. 2002, 38,

51–54. [CrossRef]

46. Heywood, B.; Brierley, A.; Gull, S. A quantified Bayesian Maximum Entropy estimate of Antarctic krill

abundance across the Scotia Sea and in small-scale management units from the CCAMLR-2000 survey.

CCAMLR Sci. 2006, 13, 97–116.

47. Brus, D.; Bogaert, P.; Heuvelink, G. Bayesian Maximum Entropy prediction of soil categories using a traditional

soil map as soft information. Eur. J. Soil Sci. 2007, 59, 166–177. [CrossRef]

48. Lee, S.J.; Wentz, E.A. Applying Bayesian Maximum Entropy to extrapolating local-scale water consumption

in Maricopa County, Arizona. Water Resour. Res. 2008, 44. [CrossRef]

49. Lee, S.-J.; Yeatts, K.B.; Serre, M.L. A Bayesian Maximum Entropy approach to address the change of support

problem in the spatial analysis of childhood asthma prevalence across North Carolina. Spat. Spatio-Temporal

Epidemiol. 2009, 1, 49–60. [CrossRef]

50. Lee, S.-J.; Wentz, E.A.; Gober, P. Space–time forecasting using soft geostatistics: A case study in forecasting

municipal water demand for Phoenix, Arizona. Stoch. Environ. Res. Risk Assess. 2010, 24, 283–295. [CrossRef]

51. Money, E.S.; Sackett, D.K.; Aday, D.D.; Serre, M.L. Using River Distance and Existing Hydrography Data Can

Improve the Geostatistical Estimation of Fish Tissue Mercury at Unsampled Locations. Environ. Sci. Technol.

2011, 45, 7746–7753. [CrossRef]

52. Reyes, J.M.; Serre, M.L. An LUR/BME Framework to Estimate PM2.5 Explained by on Road Mobile and

Stationary Sources. Environ. Sci. Technol. 2014, 48, 1736–1744. [CrossRef]

53. Lee, S.-J.; Chang, H.; Gober, P. Space and time dynamics of urban water demand in Portland, Oregon and

Phoenix, Arizona. Stoch. Environ. Res. Risk Assess. 2015, 29, 1135–1147. [CrossRef]

54. Shi, Y.; Zhou, X.; Yang, X.; Shi, L.; Ma, S. Merging Satellite Ocean Color Data with Bayesian Maximum

Entropy Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3294–3304. [CrossRef]

55. Sun, X.-L.; Wu, Y.-J.; Lou, Y.-L.; Wang, H.-L.; Zhang, C.; Zhao, Y.-G.; Zhang, G.-L. Updating digital soil maps

with new data: A case study of soil organic matter in Jiangsu, China. Eur. J. Soil Sci. 2015, 66, 1012–1022.

[CrossRef]

56. Yang, Y. Improving Environmental Prediction by Assimilating Auxiliary Information. J. Environ. Inform.

2015, 26, 91–105. [CrossRef]

57. Kolovos, A.; Smith, L.M.; Schwab-McCoy, A.; Gengler, S.; Yu, H.-L. Emerging patterns in multi-sourced data

modeling uncertainty. Spat. Stat. 2016, 18, 300–317. [CrossRef]

58. Yang, Y.; Zhang, C.; Zhang, R. BME prediction of continuous geographical properties using auxiliary

variables. Stoch. Environ. Res. Risk Assess. 2016, 30, 9–26. [CrossRef]

59. Yu, H.L.; Ku, S.C. A GIS tool for spatiotemporal modeling under a knowledge synthesis framework.

Stoch. Environ. Res. Risk Assess. 2016, 30, 665–679. [CrossRef]

60. He, J.; Kolovos, A. Bayesian maximum entropy approach and its applications: A review. Stoch. Environ. Res.

Risk Assess. 2017, 32, 859–877. [CrossRef]

61. Xiao, L.; Lang, Y.; Christakos, G. High-resolution spatiotemporal mapping of PM2.5 concentrations at

Mainland China using a combined BME-GWR technique. Atmos. Environ. 2018, 173, 295–305. [CrossRef]

62. Li, A.; Bo, Y.; Zhu, Y.; Guo, P.; Bi, J.; He, Y. Blending multi-resolution satellite sea surface temperature (SST)

products using Bayesian maximum entropy method. Remote Sens. Environ. 2013, 135, 52–63. [CrossRef]

138



Remote Sens. 2019, 11, 2610

63. Gao, S.; Zhu, Z.; Liu, S.; Jin, R.; Yang, G.; Tan, L. Estimating the spatial distribution of soil moisture based on

Bayesian maximum entropy method with auxiliary data from remote sensing. Int. J. Appl. Earth Obs. Geoinf.

2014, 32, 54–66. [CrossRef]

64. Tang, Q.; Bo, Y.; Zhu, Y. Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products

using Bayesian maximum entropy method. J. Geophys. Res. Atmos. 2016, 121, 4034–4048. [CrossRef]

65. Qin, D.; Ding, Y. Climate and Environmental Change in China 1951–2012; Springer-Verlag: Berlin/Heidelberg,

Germany, 2016.

66. Coops, N.C.; Duro, D.C.; Wulder, M.A.; Han, T. Estimating afternoon MODIS land surface temperatures

(LST) based on morning MODIS overpass, location and elevation information. Int. J. Remote Sens. 2007, 28,

2391–2396. [CrossRef]

67. Zhao, W.; Duan, S.-B.; Li, A.; Yin, G. A practical method for reducing terrain effect on land surface temperature

using random forest regression. Remote Sens. Environ. 2019, 221, 635–649. [CrossRef]

68. Christakos, G.; Bogaert, P.; Serre, M. Temporal GIS: Advanced Functions for Field-Based Applications;

Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.

69. Zeng, C.; Long, D.; Shen, H.; Wu, P.; Cui, Y.; Hong, Y. A two-step framework for reconstructing remotely

sensed land surface temperatures contaminated by cloud. ISPRS J. Photogramm. Remote Sens. 2018, 141,

30–45. [CrossRef]

70. Pede, T.; Mountrakis, G. An empirical comparison of interpolation methods for MODIS 8-day land surface

temperature composites across the conterminous Unites States. ISPRS J. Photogramm. Remote Sens. 2018, 142,

137–150. [CrossRef]

71. Christakos, G.; Yang, Y.; Wu, J.; Zhang, C.; Mei, Y.; He, J. Improved space-time mapping of PM2.5 distribution

using a domain transformation method. Ecol. Indic. 2018, 85, 1273–1279. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

139





remote sensing  

Article

Estimation of All-Weather 1 km MODIS Land Surface
Temperature for Humid Summer Days

Cheolhee Yoo 1 , Jungho Im 1,* , Dongjin Cho 1, Naoto Yokoya 2 , Junshi Xia 2 and

Benjamin Bechtel 3

1 School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology,

Ulsan 44919, Korea; yoclhe@unist.ac.kr (C.Y.); djcho@unist.ac.kr (D.C.)
2 Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project (AIP), Mitsui Building, 15th Floor,

1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; naoto.yokoya@riken.jp (N.Y.); junshi.xia@riken.jp (J.X.)
3 Department of Geography, Ruhr-University Bochum, 44807 Bochum, Germany; benjamin.bechtel@rub.de

* Correspondence: ersgis@unist.ac.kr; Tel.: +82-52-217-2824

Received: 9 March 2020; Accepted: 26 April 2020; Published: 28 April 2020
����������
�������

Abstract: Land surface temperature (LST) is used as a critical indicator for various environmental

issues because it links land surface fluxes with the surface atmosphere. Moderate-resolution imaging

spectroradiometers (MODIS) 1 km LSTs have been widely utilized but have the serious limitation

of not being provided under cloudy weather conditions. In this study, we propose two schemes to

estimate all-weather 1 km Aqua MODIS daytime (1:30 p.m.) and nighttime (1:30 a.m.) LSTs in South

Korea for humid summer days. Scheme 1 (S1) is a two-step approach that first estimates 10 km LSTs

and then conducts the spatial downscaling of LSTs from 10 km to 1 km. Scheme 2 (S2), a one-step

algorithm, directly estimates the 1 km all-weather LSTs. Eight advanced microwave scanning

radiometer 2 (AMSR2) brightness temperatures, three MODIS-based annual cycle parameters, and

six auxiliary variables were used for the LST estimation based on random forest machine learning.

To confirm the effectiveness of each scheme, we have performed different validation experiments

using clear-sky MODIS LSTs. Moreover, we have validated all-weather LSTs using bias-corrected

LSTs from 10 in situ stations. In clear-sky daytime, the performance of S2 was better than S1. However,

in cloudy sky daytime, S1 simulated low LSTs better than S2, with an average root mean squared

error (RMSE) of 2.6 ◦C compared to an average RMSE of 3.8 ◦C over 10 stations. At nighttime, S1 and

S2 demonstrated no significant difference in performance both under clear and cloudy sky conditions.

When the two schemes were combined, the proposed all-weather LSTs resulted in an average R2 of

0.82 and 0.74 and with RMSE of 2.5 ◦C and 1.4 ◦C for daytime and nighttime, respectively, compared

to the in situ data. This paper demonstrates the ability of the two different schemes to produce

all-weather dynamic LSTs. The strategy proposed in this study can improve the applicability of LSTs

in a variety of research and practical fields, particularly for areas that are very frequently covered

with clouds.

Keywords: MODIS; AMSR2; annual cycle parameters; random forest; cloudy sky LST

1. Introduction

Land surface temperature (LST) is the radiative temperature of the land surface, which plays a

crucial role in understanding various environmental problems such as heatwaves, drought, wildfire,

air quality, and urban heat islands [1–7]. Since LST reflects the energy flux stability at the boundary of

the surface and atmosphere, it is also used as a major parameter in modeling global physical processes,

including hydrological and biogeochemical cycles [8–10]. Therefore, it is important to obtain accurate

LST over large areas on both high spatial and temporal domains.
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With the continued development of remote sensing technology, LST has been retrieved from

satellite data for large areas with high temporal and spatial resolution. Thermal infrared (TIR)

sensors are the most widely used in producing satellite-based LST. Several algorithms, such as

single-channel, split-window, and temperature and emissivity separation (TES) techniques, have

been developed to provide TIR-based LST [11]. One of the most well-known TIR-based LST datasets

is the moderate-resolution imaging spectroradiometer (MODIS) LST onboard the Terra and Aqua

satellites. MODIS offers global LST products within a 1–2 K accuracy range, with a relatively high

spatial resolution of 1 km, four times a day (two daytime and two nighttime LSTs). In addition,

LST products are provided by several other TIR sensors with different specifications in both low

earth orbit and geostationary orbit satellites: The visible infrared imaging radiometer suite (VIIRS),

spinning enhanced visible and infrared imager (SEVIRI), and advanced spaceborne thermal emission

and reflection radiometer (ASTER). Unfortunately, TIR-based LST is significantly affected by weather

and atmospheric conditions; particularly, the surface temperature under clouds is not available.

Some studies have been conducted to fill the gaps in LST data caused by clouds [12–26].

Previous studies aimed at overcoming the lack of TIR-based LST data under cloudy areas can be

divided into four groups. The first group reconstructs LSTs in cloudy areas by combining spatially,

temporally, or spatiotemporally neighboring clear sky LSTs [13,18,22,25]. In particular, recent studies

have looked at modeling by combining multiple algorithms, such as regression and interpolation,

using spatial and temporal information of multi-temporal LSTs [16,21,26]. The second group not only

uses multiple LSTs, but also auxiliary variables that are highly correlated with LST, to estimate cloudy

sky LSTs, using statistical methods such as regression kriging and spline interpolation. However, the

critical limitation in the methods of these first two groups is that they assume that LST under cloudy

weather conditions is not different from that under clear sky conditions. In general, clouds reduce

incoming shortwave radiation during daytime by blocking the Sun, and increase downward longwave

radiation during nighttime. Thus, nighttime LSTs in cloudy conditions are only slightly lower than

those under clear skies, while the difference in daytime LST is more significant [27]. Consequently, it is

essential to model LSTs under cloudy conditions.

The third group uses physical modeling approaches like surface–energy balance (SEB) theory,

which is adopted to derive cloudy LSTs from spatially neighboring clear sky LSTs. The effect of the

clouds is simulated using a correction term that takes into account surface insolation, air temperature,

and wind speed [15,17,23,24]. The SEB techniques, however, require complex parameterization with

air temperature and wind speed as input data. Although the variation of LST is assumed to be based

on insolation during the daytime, the method is not able to be applied to nighttime [17].

The fourth group uses passive microwave (PMW)-based data to overcome the issue of cloudy areas

in TIR-based LST data. PMW-based data are less affected by water vapor and clouds than TIR-based LST

data. Brightness temperature (BT), measured by the advanced microwave Sscanning radiometer-earth

observing system (AMSR-E) and advanced microwave scanning radiometer 2 (AMSR2) sensors, are

frequently used as PMW-based data to estimate LST. Although PMW-based BT has limitations of

coarse spatial resolution (10–25 km), it could be used as supporting data in estimating missing values

of TIR-based LSTs under cloudy conditions [14]. For example, Shwetha and Kumar resampled 25-km

AMSR-E/AMSR2-based BTs directly into 1 km, using them as input variables for artificial neural

networks with auxiliary data of elevation, latitude, and longitude to model the all-weather 1 km

LST [19]. Meanwhile, many studies have derived the PMW-based LST using the original resolution of

BT (i.e., 10–25 km), rather than resampling it to 1 km and then downscaling it to a high resolution to

merge with TIR-based LST [12,20]. PMW-based methods simulate cloudy sky LSTs based on the fact

that PMW can penetrate clouds. However, the previous studies have limitations in terms of spatial

accuracy in merging coarse PMW-based data with high-resolution TIR-based LST.
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In South Korea, summers can often be scorching, causing a variety of disasters, including

heatwaves and tropical nights. During these hot summers, Northeast Asia, especially South Korea, is

usually covered by clouds transported by the East Asia monsoon [28]. Therefore, the reconstruction

methods using temporally or spatially neighboring clear sky LSTs could not be successfully applied in

this area in summer due to a very high cloud cover rate. Moreover, daytime LST on humid summer

days (i.e., July and August) in South Korea is generally high under clear sky conditions, but it drops

sharply in cloudy weather, such as during the rainy season or typhoon periods. Previous studies,

however, have failed to consider the variability (i.e., rapid change) of LST under cloudy conditions.

In addition, many studies have used air temperature rather than LST as in situ data to validate their

cloudy sky LST predictions [16,29,30]. However, it should be noted that air temperature and LST often

show different patterns in regions with heterogeneous land surfaces [31,32].

This study proposes two different schemes for estimating all-weather 1 km MODIS LSTs for

humid summer days over South Korea, based on machine learning, using multiple datasets made up

of AMSR2 BTs, and the annual cycle parameters (ACPs) of satellite TIR-derived LSTs. The first scheme

(S1) is a two-step approach that first estimates 10 km LSTs and then downscales the LSTs from 10 km

to 1 km. The second scheme (S2) is a one-step algorithm that directly estimates the 1 km all-weather

LSTs. The primary objective of this study is to investigate how well the two schemes that we propose

simulate dynamic humid summer LSTs under clear- and cloudy sky conditions through a series of

validation processes. The remainder of this paper is organized as follows. Section 2 presents the study

area and the data we used. Section 3 introduces the methods in detail, including the framework of

our two proposed schemes. In Section 4, the distribution of clear and cloudy sky LSTs in the summer

season are analyzed using in situ station data for daytime and nighttime. Then, the two different

schemes are evaluated by a series of validations, especially using in situ LSTs for both clear and cloudy

conditions. Finally, Section 5 presents the conclusion of this study.

2. Study Area and Data

2.1. Study Area

The study area is the mainland of South Korea with an area of approximately 99,728 km2 (latitude

34◦ N–38.5◦ N and longitude 126◦ E–129.5◦ E) (Figure 1). South Korea generally has a humid,

continental climate affected by the Asian monsoons, with a large amount of precipitation in summer

during the rainy season (usually from the end of June to the end of July). The annual mean temperature

is about 10–15 ◦C; August, the hottest month, has a mean temperature of 23–26 ◦C. Humidity ranges

from 60%–75% on a national scale, with summers (July and August) rising to 70%–85%. The southern

coast is subject to late-summer typhoons. As seen in Figure 1, the dominant land-cover categories of

the study area are forest (67.7%), agricultural land (22.2%), urban areas (4.6%), and others, including

grass, water, barren, and wetlands (5.5%).
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Figure 1. (a) Study area and in situ reference data locations with 1 km elevation derived from Shuttle

Radar Topography Mission (SRTM) digital elevation model (DEM), and (b) The landcover provided by

Ministry of Environment of South Korea (http://egis.me.go.kr).

2.2. Saetellite Data

The AMSR2 onboard the global change observation mission 1st-water (GCOM-W1) satellite,

launched in May 2012, provides global PMW-based BT data. It acquires a set of daytime and nighttime

microwave data twice a day: The equator crossing time is 1:30 p.m. for the ascending pass, and

1:30 a.m. for the descending pass. The AMSR-2 has seven frequencies, with both vertical and horizontal

polarizations, and approximately 62 × 35, 62 × 35, 42 × 24, 22 × 14, 19 × 11, 12 × 7, and 5 × 3 km

spatial resolution at 6.9, 7.3, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz, respectively. Among these, we used

the four frequencies (36.5, 23.8, 18.7, and 10.7 GHz) mostly used for the estimation of LST in the

previous studies [30]. Low frequency data resampled into a 10 km resolution were downloaded from

the Japan Aerospace Exploration Agency (https://gcom-w1.jaxa.jp) for 2013–2018. We used daily

MODIS daytime and nighttime Aqua LST data (MYD11A1) because the equatorial-crossing times of

Aqua MODIS are nearly the same as those of AMSR2 (1:30 p.m.–daytime and 1:30 a.m.–nighttime).

The MYD11A1 LST data, which have 1 km spatial resolution, were retrieved using a generalized

split-window algorithm [33]. The MYD11A1 products from 2013–2018 were downloaded from

Earthdata Search (https://search.earthdata.nasa.gov/search). South Korea’s elevation was retrieved

from the shuttle radar topography mission (SRTM) digital elevation model (DEM), with 30 m spatial

resolution (https://earthexplorer.usgs.gov). Global man-made impervious surface (GMIS) data with

30 m spatial resolution derived from Landsat images for the year of 2010 [34] were obtained to get the

fractional impervious surface in this study.

2.3. In Situ LST Data

In situ LSTs (1 a.m./p.m. and 2 a.m./p.m.) from 2013 to 2018, obtained from the automated

surface observing systems (ASOSs) operated by the Korea Meteorological Administration, were used

as reference data. As shown in Figure 1a, a total of 10 ASOSs were selected based on the following

conditions: First, the stations close to the coastline were excluded, because satellite-based LST data

could be contaminated from the influence of ocean water included in the grid; and second, the stations
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that have high bias were also excluded from the reference data, after applying the bias-correction

method described in Section 3.1.

3. Methods

3.1. LST Pre-Processing

The 1 km MODIS LSTs with quality control (QC) flags of ‘cloud’ were considered to be pixels

under cloudy sky conditions, and all others were clear sky LSTs. To train the model and validate

the estimated LST under cloudy areas, we used in situ LSTs measured at ASOSs. However, there

are spatial scale differences between the MODIS LST (1 km) and the point-based ASOS LST; thus,

a systematic bias could occur. To solve this problem, we fitted in situ LST and MODIS LST under clear

sky conditions using polynomial regression by station [35], to bias-correct in situ LSTs for both daytime

and nighttime (Equation (1)).

Y = aX2 + bX + C (1)

where X is the in situ LST and Y is the MODIS LST under clear sky conditions. a, b, and c represent the

coefficients. We used the quadratic function because many ASOSs have observed that in situ LSTs rise

more rapidly than MODIS LSTs at high temperatures in the summertime.

The MODIS and in situ LSTs from March to October, starting from 2013 through to 2018 at each

station were used for the bias-correction. Only MODIS LSTs with good quality were used based on the

QC flags, and the hourly in situ LSTs were linearly interpolated to the MODIS view time. We excluded

the winter season (December through February) because the range of winter LSTs is not compatible

with that of summer LSTs, which are the target variable of this study. Finally, we selected a total of

10 ASOSs for validation, with a calibration error (RMSE) < 2.5 ◦C for both daytime and nighttime

in July–August (summer season) from the bias-correction analysis. Figure 1 shows the geographic

distribution of the ten ASOSs used in this study. Appendix A describes the statistical results of before

and after bias correction of the 1 km in situ LSTs at the 10 stations.

In addition, clear sky 1 km MODIS LSTs were aggregated to 10 km based on the 10 km AMSR2

grid area. At this stage, only 1 km MODIS LSTs where 95% or more clear sky LSTs exist in a 10 × 10 km2

area were used for aggregation. We also fitted the in situ LSTs and the 10 km MODIS LSTs under clear

sky conditions using polynomial regression in the same way as the bias correction of the 1 km LSTs at

the selected 10 ASOS stations to produce the bias-corrected in situ LSTs at 10 km scale.

3.2. Pre-Processing of Input Variables

Table 1 describes the input variables used for the estimation of LST under cloudy conditions.

A total of 10 AMSR2 BTs were projected onto MODIS LSTs, whilst AMSR2 pixels from near the coastline

were masked to eliminate the effects of ocean water. Due to the shift of the flight overpass path, the

areas of missing AMSR2 BT values were also excluded.

The 1 km MODIS annual cycle parameters (ACPs), including mean annual surface temperature

(MAST), yearly amplitude surface temperature (YAST), and LST phase shift relative to the spring

equinox (theta) were calculated for each of daytime and nighttime based on the following equation [36].

f(d) = MAST + YAST ∗ sin

(
d2π

365
+ theta

)
(2)

where d represents the day of the cycle relative to the spring equinox. The ACPs were created for

each year of the study period and averaged to construct one MAST, YAST, and theta each for daytime

and nighttime.

We aggregated the 30 m SRTM elevation and 30 m GMIS impervious surface fraction to the 1 km

resolution of MODIS. Latitude and longitude values were extracted from the information contained in

the MODIS tiles. This study converted DOY to values ranging from −1 to 1 within a one-year period,
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using a sine function that considers seasonality (i.e., setting the middle of summer as 1 and the middle

of winter as −1) [37].

Table 1. Description of input variables used in this study.

Type Variables Acronym

AMSR2 BT

36.5 GHz horizontal polarization 36H
36.5 GHz vertical polarization 36V
23.8 GHz horizontal polarization 23H
23.8 GHz vertical polarization 23V
18.7 GHz horizontal polarization 18H
18.7 GHz vertical polarization 18V
10.7 GHz horizontal polarization 10H
10.7 GHz vertical polarization 10V

Annual cycle parameters
Mean annual LST (K) MAST
Mean annual amplitude of LST (K) YAST
Phase shift relative to spring
equinox on the Northern
hemisphere

theta

Auxiliary variables

Elevation (m) Elev
Impervious surface fraction (%) Imp
Latitude (◦) Lat
Longitude (◦) Lon
Converted day of year DOY
Year as a discrete value Year

3.3. Random Forest (RF)

In this study, we applied machine-learning random forest (RF) to estimate the LST for all-weather

conditions. RF has been widely used to conduct a variety of classification and regression tasks [38–43].

RF comprises classification and regression trees, producing a variety of independent trees to make a

final decision through two randomizations: (1) Random selection of training samples and (2) random

selection of predictor variables at each node of a tree [44]. This randomization is aimed at solving

the overfitting problem and reducing the sensitivity of a model that comes from training sample

configurations [45]. When a variable is randomly permuted, RF calculates the relative variable

importance from out-of-bag (OOB) samples, measuring the mean squared error (MSE) of the OOB

portion of samples in each tree. The same process is implemented whenever each input variable is

perturbed, and the difference between the two MSEs of all trees is averaged. The larger the increase in

the percentage of MSE (%incMSE) of a variable, the greater the contribution of the variable. It should

be noted that the relative variable importance is considered as the sum of local contributions, not

global importance [46–48]. The RF was implemented using the R statistical software through the

“ranger” add-on package, with default model parameter settings (e.g., the number of trees set as 500).

The “ranger” is a fast implementation of RF, or recursive partitioning, and is known to be suited to

high-dimensional data with large datasets [49].

3.4. Schemes for Estimating All-Weather LSTs

In this study, we proposed two schemes (S1 and S2) to estimate all-weather MODIS LSTs. The S1

is based on a two-step approach (see Figure 2). The first step is estimating 10 km LSTs for daytime and

nighttime. We used the following independent variables: Four different frequencies of the AMSR2 of

two polarization BTs (10H/V, 18H/V, 23H/V, and 36H/V), along with five 10 km resampled auxiliary

variables (Elev, Lat, Lon, DOY, and year). The aggregated 10 km MODIS LSTs under the clear sky

condition were used as a target variable. Moreover, we used the 10 km bias-corrected in situ LSTs

under the cloudy sky condition from 10 stations as a dependent variable together to train the model

with the real LST characteristics under the cloudy skies. RF was applied to predict LSTs by training the
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samples from March to October between 2013 and 2018. Finally, the 10 km LSTs were produced based

on the developed model using the input variables under all-weather conditions.

Figure 2. Flowchart of scheme 1(S1) suggested in this study. Procedures are divided into two main

steps: Estimating 10 km land surface temperatures (LSTs) (left) and the spatial downscaling of LSTs to

1 km (right).

The second step involved the spatial downscaling of LSTs from 10 km to 1 km. We used RF to

develop the downscaling model for each date. The Elev, Imp, Lat, Lon, and ACPs (i.e., MAST, YAST,

and theta) were used as input variables, considering the surface properties and spatial distribution

characteristics of 1 km LSTs. At first, the 1 km MAST, YAST, and theta with 1 km auxiliary factors—Elev,

Imp, Lat, and Lon—were aggregated to 10 km for independent variables for the RF model, and the

10 km LSTs, constructed in the first step, were used as the dependent variable. After the model was

trained for each date, the original high-resolution 1 km input variables were put into the RF model

to finally produce the 1 km all-weather LSTs, after the residual correction proposed by Hutengs and

Vohland [50].

The second scheme S2 is a one-step algorithm that directly estimates 1 km all-weather LSTs

(Figure 3). To create this scheme, first we downscaled all 10 km AMSR2 BTs to 1 km using bilinear

resampling. The resampled BTs together with 1 km auxiliary variables (i.e., MAST, YAST, theta, Elev,

Imp, Lat, Lon, DOY, and Year) were used as input variables in RF. We used the 1 km clear sky MODIS

LSTs and the 1 km bias-corrected in situ LSTs under cloudy skies from ten stations as target variables

for daytime and nighttime separately. RF models were built for each year with the samples of the

entire study area from March through October being used for training. We put the input variables of

all-weather conditions into the developed RF model to produce 1 km LSTs for both clear and cloudy

sky conditions.
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Figure 3. Flowchart of scheme 2(S2) for directly estimating 1 km all-weather LSTs in one-step.

3.5. A Series of Validations

For the first step of the first scheme, S1, two types of validations were implemented using the

clear sky 10 km aggregated MODIS LSTs focusing on the summertime (i.e., July and August). In the

first validation, we randomly divided July and August samples into training and validations sets

(80%/20% split). In the humid summer, however, most of the area in South Korea is often covered by

clouds for the whole day. So, for the second validation, we randomly divided the samples of July

and August by date: 80% for training and the remaining 20% for validation. In the second step of

S1, LSTs downscaled into 1 km by RF were validated using all clear sky MODIS LSTs in the summer.

At this stage, we compared the performance of RF with other downscaling techniques in two ways:

(1) A bilinear resampling of 10 km LSTs to 1 km; (2) a lapse-rate technique using Equation (3), which

assumes that the temperature difference comes from elevation, suggested by Dual et al. [12]:

LST1 km = TLR× (Elv1 km − Elv10 km) + LST10 km (3)

where LST1km is the downscaled LST at 1 km scale; LST10km represents the predicted 10 km LSTs in

step 1; Elv1km is the surface elevation at 1 km scale; Elv10km is the surface elevation at 10 km scale;

and the TLR is the temperature lapse rate, which is defined as the rate of temperature decrease with

elevation in the troposphere (average TLR value is 6.5 K/km; [51]). For the second scheme, S2, first and

second validations similar as in S1 were performed.

Moreover, the estimated all-weather 1 km LSTs, including those under cloudy skies, were validated

using bias-corrected in situ LSTs of 10 ASOSs in summer. Among the 10 ASOS stations, data at one

station were used as validation and the others were used to train the model with in situ cloudy

LSTs as targets. This leave one-station out cross-validation (LOOCV) was repeated for all 10 stations.

The coefficient of determination (R2; Equation (4)), RMSE (Equation (5)), normalized RMSE (nRMSE;

Equation (6)), and bias (Equation (7)) were used to evaluate the performance of the models for each

validation step.

R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

, y =
1

n

∑n

i=1
yi , (4)

RMSE (◦C) =

√
∑n

i=1

(ŷi − yi)
2

n
, (5)

nRMSE (%) =
RMSE

(ymax − ymin)
× 100 , (6)
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Bias (◦C) =
∑n

i=1

(ŷi − yi)

n
, (7)

where yi is the measured value, ŷi is the predicted value, ymax and ymin represent the maximum and

minimum values of observations, and n is the number of samples.

4. Results and Discussion

4.1. Analysis of Clear and Cloudy Sky in Situ LSTs in Summer

Figure 4 depicts the boxplots of bias-corrected LSTs for the 10 in situ stations under clear sky

and cloudy sky conditions. It should be noted that the average LSTs in clear skies were higher than

those of cloudy skies for all stations in the daytime. Although high LSTs also appear under cloudy

sky conditions, LSTs are considerably lower when compared to clear sky LSTs. The boxplot (Figure 4)

shows that the upper quartile of cloudy sky LSTs is close to the lower-quartile of clear sky LSTs for

most in situ stations. One possible reason for this is an increasing cloud-cover on rainy days in humid

areas in the summer, where precipitation reduces the surface sensible heat [12,52]. When the sky is

heavily cloudy in the daytime, most of the Sun’s energy does not reach the surface, preventing the

heating up of the Earth. Otherwise, at nighttime, clear sky and cloudy sky LST distributions do not

differ significantly for all the stations. There is no incoming radiation from the Sun at night, therefore

LSTs do not rise significantly. The average nighttime LSTs—early overnight—under cloudy skies have

a nearly identical range as, or only slightly lower than, the clear sky LSTs.

Figure 4. Boxplots of bias-corrected in situ LSTs under clear and cloudy skies for daytime and nighttime

for each station. Refer to Figure 1 for station numbers.

Among the 372 days, the total number of summer days (July–August) for the six years (2013–2018),

the size of good-quality clear sky samples was very small, especially for the daytime (see the sample size

in Tables A1 and A2). This implies that the temporal or spatial interpolation approach to reconstructing

LSTs in cloudy conditions could not be effectively applied to the summer season because of a large

amount of cloud contamination.
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4.2. Evaluation of Two Schemes Using Clear Sky LSTs

Figure 5 shows the results of the first (upper) and second (lower) validations for summer daytime

and nighttime for Scheme 1(S1). The R2 values for estimating 10 km daytime and nighttime LSTs were

0.82 and 0.85, respectively, in the first validation. The RMSE values have a daytime LST of 1.40 ◦C and

a nighttime LST of 0.95 ◦C. Considering their similar nRMSE, the main reason for the RMSE difference

between daytime and nighttime is likely the range difference in the temperature distribution. In the

second validation, the R2 (RMSE) values for estimating 10 km daytime and nighttime LSTs were 0.79

(1.55 ◦C) and 0.88 (1.14 ◦C), respectively. The accuracy of the two RF-based validations corresponds to

the MODIS LST validation error of 1–2 K [53–55]. In particular, the second validation results were

similar to the first validation in terms of accuracy (i.e., R2 and nRMSE), even with a separate validation

dataset by date. These results imply that the constructed 2-step RF-based model is robust for humid

areas where clouds often cover most regions in summer. However, since we performed both validations

using the MODIS clear sky LSTs, the effect of clouds was not considered. Thus, accuracy assessment

using in situ LST data under cloudy conditions was needed.

Figure 5. Density scatter plots between the estimated and 10 km moderate-resolution imaging

spectroradiometer (MODIS) LSTs for scheme 1(S1) from two validation results for daytime and

nighttime. The color ramp from blue to red corresponds to increasing point density. Black dashed lines

show the regression line and red solid lines represent the line of identity (y = x).

Figure 6 shows the validation results of the second step for Scheme 1, using clear sky MODIS

LSTs estimated with the bilinear resampling (Bilinear), the lapse rate approach (Lapse rate), and

the proposed RF-based algorithm (RF) among the different land covers. RF outperformed the other

two techniques with higher correlation and lower RMSE in most land covers for both daytime and

nighttime. For daytime, RF showed R2 of 0.6–0.8 and RMSE of 1.6–3.0 ◦C with some variation according

to land cover. This accuracy is considered significant with an average range value of RMSE similar
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to approximately 2.0 K, which is the target accuracy in several daytime LST retrieval studies [56–58].

The reason why urban areas showed lower performance than other land covers might be that the

relatively high LSTs in urban areas were not accurately simulated when downscaling 10 km LST to

1 km, considering the fact that RF underestimated the downscaled LSTs (mean bias: −1.5 ◦C, not

shown). Moreover, it has been reported that MODIS daytime LSTs in urban areas have relatively

high uncertainty [16,59]. Note that the RF outperformed the lapse rate approach, which assumes the

dependency of cloudy LSTs only on the altitude for all land covers in the daytime [12]. The RF appears

to simulate the surface thermal heterogeneity well in daytime, using not only Elev, but also the Imp

and ACPs—MAST, YAST, and theta—as input variables.

Figure 6. Model performance of three downscaling approaches (bilinear resampling (bilinear), lapse

rate, and random forest (RF)) in the second step for scheme 1 by land cover for daytime (a) and

nighttime (b).

For nighttime, the RF model returned highly accurate results, with R2~0.8 to 0.9 and RMSE< 1.5 ◦C

with some variations by land cover. The lapse rate approach showed worse performance than the other

two methods for most land cover types. Duan et al. used an average lapse rate of 6.5 K/km for both day

and night [12]. However, the lapse rate could be applied to the air temperature of the troposphere, not

the LSTs, which implies that the LST difference by altitude does not seem to be significant on the local

scale. Interestingly, the bilinear and RF models did not show much difference for nighttime, where

RF showed slightly better performance than the bilinear interpolation in terms of R2 and RMSE for

most land covers. This suggests that the nighttime LST is thermal-homogenous enough for bilinear

interpolation to achieve good results.

Table 2 summarizes the results of the first and second validations for a 1 km clear sky LST

estimation in S2. The first validation showed excellent performance resulting in R2 > 0.9 and RMSE

< 1 ◦C for both daytime and nighttime. The second validation, however, dividing samples by date,

yielded relatively low accuracy, which is possibly due to the daily LST variations. It is not surprising

that the prediction performance of S2 by time over humid areas in the summer would be less accurate

than the first validation, because clouds covered most areas for specific days, which might not have

been trained well. In particular, cloudy areas in the summer daytime have an LST range different from
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clear sky areas (Figure 4); therefore, S2-based 1 km LSTs need further investigation using in situ data

under cloudy conditions.

Table 2. The two validation results of the 1 km LST estimation from scheme 2(S2) for daytime

and nighttime.

Daytime R2 RMSE (◦C) nRMSE (%) Bias (◦C) Sample Size

Validation1 0.93 0.97 3.2 0.00 139,876
Validation2 0.79 1.62 5.9 0.16 138,307

Nighttime R2 RMSE (◦C) nRMSE (%) Bias (◦C) Sample Size

Validation1 0.96 0.53 2.7 0.02 353,114
Validation2 0.79 1.07 6.5 0.03 298,575

4.3. Spatial Distribution Analysis of All-weather LSTs from Two Schemes

Figures 7 and 8 show the all-weather average daytime and nighttime 10 km LSTs of S1 from

July through August for each year. The overall spatial distribution of the daytime and nighttime

LSTs appeared similar, but the range of the daytime LSTs (22.1–34.0 ◦C) was considerably higher

than that of the nighttime LSTs (16.0–22.6 ◦C). This is because the differences in heat capacity and

evapotranspiration by land type result in a wide range of LSTs in the daytime, affected by incoming

solar radiation [22]. Elevation (see Figure 1) yielded a negative spatial relationship with LSTs for

both daytime and nighttime, which is consistent with the results of Bertoldi that showed that LST

decreases with increasing elevation because of complex factors such as air temperature and vegetation

amount [60]. In this study, therefore, the elevation input variable contributes significantly to the LST

estimation model. In terms of land cover (see Figure 1), LSTs were relatively low in both the daytime

and nighttime in the forested areas, widely distributed in the study area. Meanwhile, the cropland

areas showed higher temperature values than in forests, especially for the western part of the study

region, which is consistent with the results of Lee et al. [61]. The urban areas also showed relatively

high LSTs compared to other landcovers, because of the highly impervious surfaces in both daytime

and nighttime [32,62].

The developed 10 km LSTs of S1 also showed a temporal variation over six years (2013–2018).

For example, South Korea experienced unprecedented extreme temperatures (i.e., a heatwave) in the

summer of 2018 [63], where the developed LSTs show distinctly high-temperature distribution for both

daytime and nighttime (Figures 7f and 8f). Furthermore, 10 km LSTs were relatively high at nighttime

of summer 2013 (Figure 8a), which is consistent with the analysis of Choi and Lee that showed frequent

tropical night events in South Korea in summer 2013 [64]. Overall, the LSTs estimated using S1 on the

10 km scale seem to accurately describe both spatial and temporal patterns of LSTs in summer daytime

and nighttime.

Figure 9 shows the mean and variance of the 2013–2018 1 km all-weather LSTs produced by S1

and S2 for summer in both the daytime and nighttime. In the daytime, it should be noted that S2

generally simulated LSTs higher in urban and agricultural areas than S1 (Figure 9a,b). The difference

in the estimated LSTs between S1 and S2 might also be due to S2 overestimating the low LSTs under

cloudy conditions. The bias of the second validation of daytime was relatively high (~0.16), as shown

in Table 2. At nighttime, the S1 and S2 showed similar LST distributions, except urban areas where the

S1 LSTs were slightly higher than the S2 ones.
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Figure 7. Spatial distribution maps of average estimated all-weather 10 km LSTs for scheme 1(S1)

during July and August for each year; 2013 (a) to 2018 (f) for daytime.

Figure 8. Spatial distribution maps of average estimated all-weather 10 km LSTs for scheme 1(S1)

during July and August for each year; 2013 (a) to 2018 (f) for nighttime.
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Figure 9. Spatial distribution maps of average all-weather 1 km LSTs (upper) and the variance (lower)

during July and August from 2013 to 2018 produced by the two schemes (S1 and S2) for daytime

(a,b, e–f) and nighttime (c,d, g–h).

Note that the variance of S1 LSTs is quite a lot higher than S2 in most areas in the daytime

(Figure 9e–f). The relative variable importance (%) explains this fact as provided by RF (Figure A1).

Among the several input variables, only AMSR2 BTs showed temporal changes. In S2, temporally

constant variables, such as Lat, YAST, theta, and MAST, played significant roles in the RF model

(Figure A1c); therefore, S2 could be relatively limited in simulating the temporal variations of LSTs.

In the case of S1, AMSR2 BTs were used only to construct the 10 km LSTs first (step 1), whereas ACPs

were used only for step 2. Therefore, S1 could simulate the temporal pattern of daily LSTs accurately

by downscaling the proposed 10 km LSTs to 1 km for each day in step 2. At nighttime, S1 and S2 had

similar LST variance for most areas (Figure 9g–h). In particular, LSTs in summer nighttime have a

distinctly lower variance than those in the daytime (Figure 9e–f), which implies that the nighttime

does not show significant temperature changes in summer regardless of weather conditions.

Many previous studies that predicted 1 km cloudy sky LSTs have used auxiliary variables that are

indirectly related to LST, such as elevation, latitude, and longitude [12,19]. It should be noted that

ACPs (i.e., MAST, YAST, and theta) have been identified as crucial variables by RF for both S1 and S2

(Figure A1). This suggests that ACPs are useful in estimating LSTs for all-weather conditions, due to

their characteristics representing the spatial distribution of LSTs, without being affected by clouds.

4.4. Comparison of Two Schemes Using in Situ LSTs

The clear and cloudy sky 1 km LSTs produced from the two schemes were validated (i.e., LOOCV)

using the 1 km bias-corrected in situ LSTs measured at the 10 stations (Table 3 for daytime and Table 4

for nighttime). It should be noted that S1 showed negative biases for most stations, which implies that

S1 tended to underestimate 1 km LSTs under clear sky conditions. In particular, the RMSE of S1 was

relatively high with a large negative bias, especially for stations 5. This might be because the station

was located in built-up urban areas, where S1 LSTs were possibly underestimated, as presented in

Figure 9. On the other hand, in the case of S2, the bias under clear sky conditions was close to zero and
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slightly positive for most stations. Therefore, S2 produced higher accuracy than S1 for high LSTs under

clear sky conditions in the daytime.

Table 3. The leave one-station out cross-validation (LOOCV) results of the estimated 1 km clear and

cloudy sky LSTs from scheme 1 (S1) and scheme 2 (S2) using bias-corrected in situ LSTs at 10 stations

during July and August from 2013 to 2018 for daytime. Refer to Figure 1 for station numbers.

Station

Clear Skies Cloudy Skies

R2 RMSE (◦C) Bias (◦C) R2 RMSE (◦C) Bias (◦C)

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1 0.54 0.58 2.6 1.9 −1.7 0.3 0.77 0.76 2.2 2.7 −1.2 1.9
2 0.63 0.72 2.5 1.7 −1.6 0.4 0.73 0.67 2.6 2.4 −1.5 1.1
3 0.71 0.73 3.9 2.8 −3.0 1.1 0.74 0.65 2.9 5.6 −0.1 4.6
4 0.73 0.76 1.7 1.7 −0.6 0.9 0.73 0.67 2.1 3.3 0.0 2.4
5 0.65 0.64 4.9 1.8 −4.5 0.1 0.81 0.77 3.9 3.2 −3.2 2.1
6 0.76 0.64 2.8 4.0 −0.1 2.5 0.81 0.80 2.9 5.8 1.6 5.2
7 0.63 0.65 2.2 1.5 −1.8 0.7 0.82 0.79 2.2 1.7 −1.8 0.9
8 0.56 0.64 2.2 2.3 0.1 1.2 0.81 0.77 2.1 3.5 1.2 2.9
9 0.74 0.71 3.8 2.3 −3.3 1.1 0.81 0.80 2.4 5.1 −0.2 4.4
10 0.44 0.48 1.9 2.1 −0.4 1.1 0.80 0.75 2.5 4.7 1.0 4.0

Table 4. The leave one-station out cross-validation (LOOCV) results of the estimated 1 km clear

and cloudy sky LSTs from scheme 1(S1) and scheme 2(S2) using 1 km bias-corrected in situ LSTs for

10 stations during July and August from 2013 to 2018 for nighttime. Refer to Figure 1 for station numbers.

Station

Clear Skies Cloudy Skies

R2 RMSE (◦C) Bias (◦C) R2 RMSE (◦C) Bias (◦C)

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1 0.92 0.89 0.7 0.9 0.1 0.2 0.70 0.68 1.3 1.3 −0.7 −0.8
2 0.89 0.87 1.3 1.0 −1.0 −0.5 0.68 0.64 2.2 2.0 −1.9 −1.7
3 0.87 0.82 1.0 1.2 −0.4 −0.2 0.71 0.70 1.9 1.9 −1.5 −1.5
4 0.87 0.87 0.9 0.8 0.1 0.0 0.74 0.73 1.3 1.4 −0.8 −0.9
5 0.90 0.88 1.2 1.0 −0.7 −0.3 0.63 0.69 2.1 1.8 −1.6 −1.4
6 0.87 0.85 1.0 1.0 0.3 0.1 0.60 0.60 1.5 1.6 −0.8 −0.9
7 0.83 0.81 0.9 0.9 0.5 0.2 0.69 0.69 1.0 1.1 −0.1 −0.3
8 0.76 0.71 1.0 1.1 0.2 0.1 0.70 0.71 1.1 1.2 −0.4 −0.5
9 0.84 0.84 1.0 1.0 −0.3 0.0 0.68 0.68 1.7 1.7 −1.2 −1.1
10 0.87 0.82 0.7 1.0 0.1 0.1 0.70 0.72 1.4 1.4 −0.7 −0.7

In the daytime under cloudy skies, S1 outperformed S2 for most stations. At stations 2, 3, 4, 8, and

10, S1 exhibited a significant increase in R2 compared to S2. High temporal correlations of S1 imply

the effective simulation of temporal variations of LSTs. Unlike the clear sky conditions, the RMSE of

S1 was much smaller compared to S2 for most stations under cloudy skies. One possible reason for

the high RMSE in S2 is that low LST values under cloudy areas could be overestimated based on the

high bias of the S2 RF model under cloudy sky conditions (see also Figure 9). The RMSEs of S1 (from

2.1 to 3.9 ◦C in summer) for daytime under cloudy skies are comparable to or lower than those from

the literature (RMSE of 4.3–8.3 ◦C for four stations in China [65], RMSE of 5.1–5.6 ◦C for two sites in

Africa [17], RMSE of 1.8–2.7 ◦C for three stations in North China [30], and RMSE of 3.5–4.4 ◦C for four

stations in China [12]), although those studies focused on all seasons, not only summer. It should be

noted that Zhou et al. reported that the accuracy of LST estimation under the cloudy sky conditions in

summer was lower than the other seasons [26].

Figure 10 represents the temporal distribution of the S1, S2, and in situ LSTs at station 9 for

July–August 2017, when the LSTs dynamically changed. In the daytime, extremely high LSTs were

well predicted by S2, such as for 13-July and 7-August, as opposed to S1; however, relatively low

LSTs were better predicted by S1. It should be noted that there were days when the very high LSTs

sharply dropped, such as between 6 July and 7 July, as well as 13 July and 15 July. S1 simulated these
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rapid temperature changes better than S2. Furthermore, there were many days with large amounts

of precipitation, which resulted in low LSTs (i.e., 10 August and 14 August) in the humid summer.

LSTs for such days were also better simulated by S1 with an improved temporal correlation.

Figure 10. Time-series of the estimated LSTs for schemes 1(S1) and 2(S2), and 1 km bias-corrected in

situ LSTs with daily precipitation at station 9 for (a) daytime and (b) nighttime during July and August

in 2017 (except the missing days due to advanced microwave scanning radiometer (AMSR2) gaps

between paths). Daily precipitation data were obtained from automated surface observing systems

(ASOSs) operated by the Korea Meteorological Administration.

At nighttime, R2 was significantly high in both S1 and S2, the RMSE was less than 1 ◦C, and

the bias converged to zero for most stations under the clear sky conditions (Table 4). Under cloudy

skies, S2 yielded higher R2 at some stations compared to S1. Nevertheless, both S1 and S2 produced

RMSE < 2 ◦C under the cloudy sky conditions, which suggests that the nighttime LSTs are relatively

less affected by atmospheric phenomena, such as precipitation and clouds (Figure 10b).

4.5. Two Scheme Combinations

We further examined the combination of the two schemes (S1 and S2) to improve estimation

performance, based on the difference of the LST distribution between clear and cloudy sky conditions,

as analyzed in Section 4.1. The LSTs developed from S2 were used for days with relatively high

LSTs, whereas S1 was used for days with lower temperatures. Appendix A describes the detailed

combination methods of the daytime. For nighttime, the average of S1 and S2 LSTs was used since

both schemes resulted in high accuracy [66].

Table 5 shows the results of the LOOCV of all-weather LSTs, as well as of S1, S2, and Scheme

combined (SC) models, using bias-corrected in situ LSTs for daytime and nighttime. In the daytime SC,

R2 was relatively high and RMSE was distinctly lower at many stations when compared to S1 and

S2. For nighttime, the SC exhibited significantly higher R2 than did S1 and S2 for several stations,

and the RMSE of SC was also generally close to S1 or S2, whichever was lower. The superiority of

SC to S1 and S2 is consistent with previous studies’ findings that the combination of different models

improves performance by overcoming the limitations of each individual model [67]. Therefore, we
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propose all-weather LSTs by combining two different schemes with an average R2 of 0.82 and 0.74 and

with RMSE of 2.5 ◦C and 1.4 ◦C for daytime and nighttime, respectively, over the 10 in situ stations.

Table 5. The leave one-station out cross-validation (LOOCV) results of the estimated 1 km all-weather

LSTs from scheme 1(S1), scheme 2(S2) and scheme combined (SC) using 1 km bias-corrected in situ

LSTs at 10 stations during July and August from 2013 to 2018 for daytime. Refer to Figure 1 for

station numbers.

Station

Daytime (All-weather) Nighttime (All-weather)

R2 RMSE (◦C) R2 RMSE (◦C)

S1 S2 SC S1 S2 SC S1 S2 SC S1 S2 SC

1 0.78 0.77 0.82 2.2 2.5 1.9 0.76 0.73 0.75 1.1 1.2 1.2
2 0.75 0.72 0.79 2.5 2.3 2.3 0.73 0.68 0.72 2.0 1.8 1.9
3 0.80 0.73 0.82 3.2 5.0 2.6 0.73 0.71 0.73 1.7 1.7 1.7
4 0.78 0.74 0.79 2.0 3.0 2.1 0.76 0.76 0.77 1.2 1.3 1.2
5 0.83 0.79 0.81 4.1 3.0 3.3 0.70 0.73 0.73 1.9 1.7 1.7
6 0.83 0.80 0.85 2.9 5.5 3.0 0.66 0.67 0.68 1.4 1.5 1.4
7 0.83 0.81 0.82 2.2 1.7 2.1 0.74 0.74 0.75 1.0 1.0 1.0
8 0.82 0.81 0.83 2.1 3.2 2.2 0.71 0.71 0.73 1.1 1.2 1.1
9 0.84 0.83 0.82 2.8 4.5 2.5 0.73 0.73 0.74 1.5 1.5 1.5
10 0.82 0.76 0.80 2.3 4.3 2.6 0.74 0.76 0.76 1.3 1.3 1.2

5. Conclusions

In this study, we estimated all-weather 1 km MODIS LSTs for daytime and nighttime in South Korea

for the humid summer days. We used eight AMSR2 BTs, three ACPs (i.e., MAST, Yast, and theta),

and six auxiliary variables for the LST estimations based on RF machine learning. Both clear sky

MODIS LSTs and the bias-corrected in situ LSTs under cloud sky conditions were used as a dependent

variable to provide the models with the LST characteristics for clear and cloudy skies. We have

proposed two schemes: A two- step approach (S1) first estimates 10 km LSTs and then involves the

spatial downscaling of LSTs from 10 km to 1 km. S2 is a one-step algorithm that directly estimates the

1 km all-weather LSTs, which we have evaluated using a series of validations. In clear sky daytime,

S2 slightly outperformed S1, but in cloudy sky daytime, S1 had an average R2 of 0.78 and RMSE of

2.6◦C, an improvement when compared to S2 (R2 of 0.74 and RMSE of 3.8 ◦C) for the bias-corrected 10

in situ stations. At nighttime, S1 and S2 showed no significant difference in performance regardless

of cloud conditions. We further examined the combination of the two schemes (S1 and S2) in order

to improve estimation performance, producing promising results, with R2 of 0.82 and 0.74 and with

RMSE of 2.5 ◦C and 1.4 ◦C for daytime and nighttime, respectively, over the 10 in situ stations. This

study has revealed that the two-step-based S1 was better able to simulate low LSTs in cloudy sky,

humid summer daytime conditions (i.e., rainy days) than S2. Moreover, we found that ACPs appear

relatively important for the estimation of LSTs in light of spatial variability. To our knowledge, this is

the first study to predict all-weather 1 km MODIS LSTs that focuses on humid summer days in great

detail. Nevertheless, there is still room for further validation of the constructed LSTs over built-up

areas since an insufficient number of in situ stations in urban land cover were used in this study.

Although we have focused this study on South Korea, we believe that the suggested schemes

could be successfully used over other regions frequently covered with clouds in humid summer

seasons. Recently, new MODIS Aqua LST datasets (MYD21A1D for daytime and MYD21A1N for

nighttime) were produced utilizing the ASTER temperature/emissivity separation (TES) technique

suitable for hot and humid conditions, although the approach has, thus far, only been tested using a

small number of measurements [68]. It is expected that the proposed technique may be used to predict

MYD21 LSTs under cloudy sky conditions.
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Appendix A

A.1. Before-and after 1 km Bias-corrected in situ LSTs

Tables A1 and A2 show the relationship between good-quality MODIS LSTs and in situ LSTs before

and after bias correction under clear skies, in daytime and nighttime, respectively. In the daytime,

before bias correction, the R2 of the time series data showed a relatively significant range of 0.46–0.76,

but the RMSE and bias were quite high. The significant spatial thermal difference within a 1 km grid in

the daytime, especially for the summer season, could result in the underestimation of MODIS LSTs

when compared to the in situ data [69]. After the bias correction, the RMSE decreased towards 2 ◦C at

the 10 stations in which the range of errors were similar to that of the typical MODIS LST validation

results (i.e., ~2 K; [59]). The bias converged close to 0, indicating a very slightly negative signal at

some stations after correction. For the nighttime, before bias correction, the temporal R2 was relatively

higher than in the daytime for most stations, and the RMSE and bias were significantly lower than the

daytime. These results are consistent with previous studies’ findings that the MODIS LST validation

error is much lower at nighttime than in the daytime [70,71]. After the bias correction, the RMSEs

were under 1.5 ◦C and the bias was close to zero for all stations. The reason that the nighttime has a

lower bias correction error than the daytime is possibly due to the higher thermal homogeneity in one

MODIS grid (i.e., 1 km resolution) at the nighttime without solar shortwave radiation.

Table A1. The relationship between clear sky MODIS LSTs and the before-and-after 1 km bias-corrected

in situ LSTs during July and August from 2013 to 2018 for the 10 stations in daytime. Refer to Figure 1

for station numbers.

Station
Number

Before Bias-correction After Bias-correction
Sample

SizeR2 RMSE
(◦C)

Bias
(◦C)

R2 RMSE
(◦C)

Bias (◦C)

1 0.62 10.50 8.89 0.64 1.88 −0.06 15
2 0.75 9.01 7.29 0.74 2.00 −1.05 16
3 0.64 18.49 17.71 0.64 2.20 −0.12 26
4 0.65 14.23 13.43 0.66 1.97 −0.20 30
5 0.56 11.41 10.31 0.67 2.38 −0.09 15
6 0.61 17.45 16.92 0.60 2.12 −0.51 16
7 0.57 9.55 8.15 0.59 2.06 0.15 21
8 0.46 11.37 10.30 0.46 2.39 −1.19 27
9 0.76 11.22 10.38 0.77 1.99 −0.74 15
10 0.54 16.43 15.20 0.53 2.15 −0.43 23
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Table A2. The relationship between clear sky MODIS LSTs and the before-and-after 1 km bias-corrected

in situ LSTs during July and August from 2013 to 2018 for the 10 stations at nighttime. Refer to Figure 1

for station numbers.

Station
Number

Before Bias-correction After Bias-correction
Sample

SizeR2 RMSE
(◦C)

Bias
(◦C)

R2 RMSE
(◦C)

Bias (◦C)

1 0.77 3.34 3.02 0.78 1.38 0.01 58
2 0.72 2.60 2.27 0.72 1.28 0.02 34
3 0.78 2.99 2.64 0.79 1.14 −0.05 55
4 0.85 2.37 2.10 0.86 1.01 0.01 48
5 0.84 2.54 2.24 0.84 1.11 0.02 46
6 0.83 2.30 1.88 0.83 1.21 0.03 67
7 0.66 3.96 3.74 0.66 1.30 0.06 59
8 0.52 3.37 3.00 0.52 1.46 0.10 62
9 0.69 2.42 1.91 0.70 1.47 0.10 49

10 0.70 2.96 2.55 0.70 1.29 0.00 71

A.2. Variable Importance Calculated from the RF Models

Figure A1 shows the normalized relative variable importance calculated from the RF models for

the two schemes. The normalization was done by sum to 100%. Daily variable importance of step 2 in

S1 were averaged before normalization.

Figure A1. Normalized relative variable importance calculated from the RF models of two steps (step 1

and step 2) for scheme 1 (S1), the orange bar; and scheme 2(S2), the blue bar, for daytime (a–c) and

nighttime (d–f).

A.3. Two Scheme Combination (SC) Methods of Daytime

In Section 4.1, the upper quartile of cloudy sky LST was close to the lower quartile of clear sky

LST for most in situ stations in the daytime. We used the AMSR2 BT to select the dates of daytime high
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and low LSTs. First, all of the eight daytime AMSR2 BTs listed in Table 1 were aggregated to 1 km as a

MODIS grid using bilinear resampling. Temporal correlations of AMSR2 BTs and in situ data at the

10 stations were performed over all-weather conditions in summer; we selected 10V, which showed the

highest correlation, as the reference variable (Table A3). The 75th percentile (i.e., upper quartile) value

of 1 km AMSR2 BT 10V was then calculated over the summer study periods (July–August, 2013–2018)

for each pixel. Finally, the LSTs developed from S2 were used for days when the BT of AMSR2 10V

was over the 75th percentile, and S1 was used for days when the BT of AMSR2 10V was below the 75th

percentile, based on the results in Section 4.4.

Table A3. The temporal correlation (Pearson correlation coefficient; R) results between eight AMSR2

BTs and the 1 km bias-corrected in situ LSTs during July and August from 2013 to 2018 for the 10 stations

in daytime. Refer to Figure 1 for station numbers.

Station
AMSR2 BTs

10H 10V 18H 18V 23H 23V 36H 36V

1 0.86 0.90 0.84 0.88 0.81 0.86 0.73 0.77
2 0.85 0.89 0.79 0.87 0.74 0.82 0.61 0.73
3 0.88 0.90 0.82 0.83 0.73 0.74 0.55 0.57
4 0.89 0.90 0.86 0.86 0.80 0.81 0.70 0.72
5 0.89 0.91 0.89 0.90 0.87 0.88 0.82 0.83
6 0.85 0.90 0.87 0.89 0.86 0.87 0.74 0.76
7 0.80 0.89 0.86 0.87 0.85 0.86 0.75 0.77
8 0.89 0.90 0.88 0.89 0.86 0.87 0.81 0.82
9 0.91 0.93 0.88 0.91 0.88 0.90 0.77 0.79
10 0.71 0.84 0.85 0.89 0.84 0.87 0.79 0.82

Average 0.85 0.90 0.85 0.88 0.82 0.85 0.73 0.76
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Abstract: Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal

InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing

spatio-temporal requirements are available. These techniques are generally based on the Visible

Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption

that the relationship between spectral bands is independent of the spatial resolution. In this work,

we adopted a previous downscaling method and introduced some adjustments to the original

formulation to improve the model performance. Maps of Land Surface Temperature (LST) with

10-m spatial resolution were obtained as output from the combination of MODIS/Sentinel-2 images.

An experiment was conducted in an agricultural area located in the Barrax test site, Spain (39◦03′35” N,

2◦06′ W), for the summer of 2018. Ground measurements of LST transects collocated with the MODIS

overpasses were used for a robust local validation of the downscaling approach. Data from 6 different

dates were available, covering a variety of croplands and surface conditions, with LST values ranging

300–325 K. Differences within ±4.0 K were observed between measured and modeled temperatures,

with an average estimation error of ±2.2 K and a systematic deviation of 0.2 K for the full ground

dataset. A further cross-validation of the disaggregated 10-m LST products was conducted using

an additional set of Landsat-7/ETM+ images. A similar uncertainty of ±2.0 K was obtained as

an average. These results are encouraging for the adaptation of this methodology to the tandem

Sentinel-3/Sentinel-2, and are promising since the 10-m pixel size, together with the 3–5 days revisit

frequency of Sentinel-2 satellites can fulfill the LST input requirements of the surface energy balance

methods for a variety of hydrological, climatological or agricultural applications. However, certain

limitations to capture the variability of extreme LST, or in recently sprinkler irrigated fields, claim the

necessity to explore the implementation of soil moisture or vegetation indices sensitive to soil water

content as inputs in the downscaling approach. The ground LST dataset introduced in this paper will

be of great value for further refinements and assessments.

Keywords: Downscaling; thermal infrared; land surface temperature; disaggregation; Copernicus
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1. Introduction

Time series of fine spatial and temporal resolution Thermal Infrared Images (TIR) are essential in

a variety of agricultural applications, water resources management or irrigation scheduling, based

on surface energy balance modeling [1–4]. However, spatio-temporal resolution of the operational

TIR satellite sensors results are insufficient for some applications and services, including agriculture.

The importance of high-resolution TIR images is being claimed [5–9]. The limitation in the TIR domain

remains, since the revisit time for high spatial resolution TIR sensors is typically poor, while the spatial

resolution for those with a high revisit frequency is too coarse. In practice, the spatial resolution

requirements of satellite-derived surface temperature for agricultural applications are <50 m to face

certain physical limitations related to the sensor’s point spread function in TIR observations [2,10,11].

As for the temporal resolution, daily TIR observations are desired, although this requirement could be

relaxed to 3 days as a minimum threshold [7,11].

The Copernicus conceptual mission LSTM [12] could complement other planned high-resolution

TIR missions (e.g., the JPL-NASA Landsat 9-10 or the Indian-French TRISHNA mission [13]) and

fulfill the spatio-temporal requirements stated above. In the meantime, downscaling methods are

contributing to filling this gap by downscaling the TIR coarse resolution to finer resolutions [3,14–17].

Several techniques have been proposed in the literature to enhance the spatial resolution of the TIR

domain over vegetated areas by linking TIR and reflectance information in the Visible Near Infrared

(VNIR) [18–21]. These techniques are generally based on the assumption that there exists a relation

between the vegetation cover and the LST. According to these approaches, a relation between the TIR

and VNIR bands is first obtained at coarse spatial resolution, and then applied at the finer resolution of

the VNIR bands, assuming that this relation is scale invariant.

The Normalized Difference Vegetation Index (NDVI) or the Fractional Vegetation Cover (FVC)

are the most commonly used inputs in sharpening techniques, although some studies have recently

explored the possibility of implementing other combinations of reflectance values that can better

characterize the surface response [17,22,23]. There are also some efforts attempting to integrate

soil moisture delineated vegetation indices [24], and even radar-derived soil moisture [25] in the

formulations of the LST downscaling.

For years, the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced

Along-Track Scanning Radiometer (AATSR) were combined with Landsat or Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) imagery to downscale LST from 1000 m× 1000 m

to ~1 ha (10,000 m2) scale. Higher resolution VNIR sensors, such as Formosat or the Satellite pour

l´Observation de la Terre (SPOT), have been also used to improve the disaggregated LST pixel

size [10,26].

The synergistic use of Copernicus Sentinel-2 (S2) and Sentinel-3 (S3) imagery could offer the

desired solution of high spatial and temporal resolution [8,26,27]. Although no TIR information is

provided, the Sentinel-2A and -2B tandem offers a 3–5-day repeat cycle, and a 10–20 m spatial resolution

in the VNIR bands. Revisit time for S3 reduces to 1–2 days, with a spatial resolution of 1000 m for their

thermal channels. The relationship between TIR and VNIR bands could be extracted from S3 and then

applied to S2 VNIR data. Sobrino et al. [27] explored the conceptual combination of the MultiSpectral

Instrument (MSI), on board the Sentinel-2, and the Ocean and Land Color Instrument/Sea and Land

Surface Temperature Radiometer (OLCI/SLSTR), on board the Sentinel-3, to show an improvement

in LST products derived from AATSR at that time, before the Sentinel-3 data were available. High

spatial resolution data from S2 was used to improve the characterization of the sub-pixel heterogeneity

through a better parameterization of surface emissivity, although no downscaling was applied by

these authors. A machine learning algorithm was proposed by Guzinski and Nieto [8] to sharpen

low-resolution TIR observations from S3 using high-resolution VNIR S2 imagery. Huryna et al. [28]

applied the methodology introduced by Agam et al. [19] to the combination of S3–S2 imagery. However,

the methodology was tested using Terra/MODIS or Landsat observations in both works, due to the

lack of high-resolution TIR data to use for cross-validation.
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Despite the extraordinary growth of downscaling studies in the past decade, the assessment

of the thermal sharpening techniques has been traditionally conducted by cross-validation with

derived LST products at original Landsat or ASTER TIR spatial resolutions, 60–100 m and 90 m,

respectively [1,8,17,21,28]. Comprehensive ground validations of disaggregated LST are quite scarce,

due to the lack of robust datasets covering high contrast heterogeneous areas.

This paper continues the work initiated by Bisquert et al. [1]. These authors tested the application

of different downscaling techniques in an experimental site in Barrax (Albacete, Spain) from the

combination MODIS-Landsat to provide LST at fine spatial and temporal resolutions, to fulfill the

requirements in the estimation of surface energy fluxes and evapotranspiration in the agricultural areas

of semi-arid regions, where small land holdings dominate. Bisquert et al. [1] analyzed both classical

methods based on the VNIR-LST regression, as well as more advanced approaches based on Neural

Networks (NN) or Data Mining (DM). Linear, quadratic and exponential relationships, proposed in the

literature, were tested and results were compared to those obtained by applying NN and regression

trees in a DM approach using reflectance values from all the spectral bands available. These authors

observed that NN and DM, as well as the nonlinear regression tested, have the risk of overfitting, being

very sensitive to noise in the samples. They concluded that the simpler NDVI-LST linear regression

led to the better results in this case. Bisquert et al. [1] explored the technique results for the different

land covers in the Barrax area, and found the largest uncertainties for irrigated croplands, especially in

summer when cover heterogeneity and irrigation effects are stressed. As a follow-up, Bisquert et al. [26]

extracted disaggregated LST maps at a 10-m spatial resolution for the first time, using high-resolution

SPOT-5 images in the framework of the Spot-5 Take 5 project. Results shown in [26] were encouraging

for the further application of the model to operational S2 images.

In this context, the objective of this paper is to revise and adapt the downscaling technique

to the combination MODIS-S2 to derive operational LST maps with a spatial resolution of 10 m.

Some adjustments to the original formulation of the approach were introduced to reduce the model

uncertainty by adding an additional image-based parametrization of the residual as a function of the

VNIR response. Ground LST data from an experimental campaign carried out in the summer of 2018

were used for the model evaluation. The variety of croplands and the contrast in the surface conditions

during the experiment in the selected area allowed a comprehensive analysis of the performance of the

downscaling technique, not achieved before. Strengths and limitations of the models were discussed,

and also some guidelines for the optimal use of this technique with Sentinel-3 and Sentinel-2 imagery

are given.

This paper is structured as follows. Section 2 describes the study site, the field measurements and

the satellite imagery used, as well as the downscaling methodology. Results of the ground validation

and distributed assessment are shown in Section 3. Interpretation of the results and comparison with

previous studies comprise Section 4. Finally, Section 5 summarizes the main conclusions of this work.

2. Materials and Methods

2.1. Study Site and Measurements

This work was conducted in the semi-arid area of Barrax, southeast Spain (39◦03′ N, 2◦06′ W).

This is a very flat area with an average altitude of 700 m a.s.l, close to Albacete (Figure 1), traditionally

used by ESA (European Space Agency) as a test site in different international campaigns [29–31].

Irrigated and rainfed crops combine in this agroecosystem, with field size ranging from small terrains

below 1 ha to large pivots over 50 ha (Figure 1). This large variety makes Barrax a perfect target to

assess the performance of a downscaling technique and explore its strengths and weaknesses.

Ground measurements of LST (LSTg) were registered in “Las Tiesas” experimental farm during

the summer of 2018, concurrent with EOS-Terra/MODIS overpasses, and covering a total of 10 different

crops in 13 independent fields (Figure 1). The temperatures were measured using four hand-held

infrared radiometers (IRTs) Apogee MI-210. These radiometers have a broad thermal band (8–14 µm),
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with a 22◦ field of view and an accuracy of ±0.2 K, according to the manufacturer (Apogee Instruments,

Inc.). In fact, the similar Apogee SI-121 radiometers (same radiometer, but with a field of view of 18◦ and

without datalogger) were calibrated against a National Institute of Standards and Technology (NIST)

blackbody, during a comparison of TIR radiometers carried out in Miami by the Committee on Earth

Observation Satellites (CEOS), and the accuracy was established at 0.2 K [32]. Special care was taken

with the ground measurements in the sparse crops (vineyard and almond orchards), by averaging soil

and canopy component temperatures to obtain representative values of the target LST. The radiometers

were manually carried back and forth along transects on the fields pointing at nadir view, at a height of

1.5–2 m above the ground surface. Temperatures were registered at a rate of 5–10 measurements/min,

in transect distances of 30–50 m/min, and then covering several hectares with each IRT. The 10-min

averages centered at the satellite overpass time were considered. Radiometric temperatures were

corrected from atmospheric and emissivity effects [33]. Downwelling sky radiance was measured with

each radiometer and emissivity data were obtained through the Temperature-Emissivity Separation

(TES) procedure [34,35] from in situ thermal radiance measurements using a multispectral radiometer

CIMEL Electronique CE 312-2 [36].

 

 

 

 

̊

Figure 1. Overview of “Las Tiesas” experimental farm. Measurement sites are located over a S2 false

color composition corresponding to date 25 July 2018. Labels for the different study fields are explained

in the adjacent Table, together with indication of crop type and field size.

2.2. Satellite Images

Terra/MODIS images with near nadir observations of the study site (field of view <25◦) were

selected to minimize the bowtie effect [37]. Six different dates were used for this work (Table 1).

MODIS VNIR and TIR data were extracted from the MOD09GQ, and MOD11_L2 products, respectively,

downloaded from the NASA Earthdata Search tool. MOD09GQ offers surface Red and NIR reflectivity

values at a 250 m spatial resolution. MOD11_L2 product provides LST, atmospherically corrected with

a split-window algorithm, at a 1000 m spatial resolution [38].

Sentinel-2A and Sentinel-2B images concurrent or within ±1-day timing difference with MODIS

were used (see dates in Table 1). S2 Level-2A products were downloaded from the Copernicus Open

Access Hub, and they contain 10-m surface reflectance values. Bands 4 and 8 were used to compose the

Normalized Difference Vegetation Index (NDVI). Figure 2 shows an example of the spatial distribution

of the NDVI over the study site. Note the wide range in NDVI values available in the area during the

experiment. Plot in Figure 3 shows the NDVI values for the different crop fields in the selected dates.
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Table 1. List of satellite images used in this study, with indication of overpass time. Number of crop

fields where LSTg data were measured per date is included (N). Meteorological conditions in the area

at the overpass time are also listed: air temperature (Ta), relative humidity (Hr) and wind speed (u).

All dates correspond to the year 2018.

Terra/MODIS Sentinel-2 Landsat-7/ETM+ LSTg Data Ta Hr u

Date Time
Viewing
Angle (◦)

(A/B) (Path/Row)-Time (N) (◦C) (%) (ms−1)

22 June 11:14 19 A (22 June) no image 9 28.2 33.1 2.4
5 July 11:17 10 B (5 July) no image 9 23.9 37.1 3.9
9 July 11:02 0 A (10 July) (199/33)-10:32 7 30.1 33.0 1.5
16 July 11:08 12 B (15 July) (200/33)-10:38 8 24.3 37.3 6.4
23 July 11:14 24 A (23 July) no image 9 29.7 34.1 1.5
25 July 11:02 2 B (25 July) (199/33)-10:32 9 28.6 37.6 2.0

 

          Terra/MODIS  Sentinel-2  Landsat-7/ETM+ LSTg data Ta Hr u 
(ºC) (%) (ms-1)

22 June  11:14 19 A (22 June)  no image 9 28.2 33.1 2.4 
5 July  11:17 10 B (5 July) no image 9 23.9 37.1 3.9 
9 July  11:02 0 A (10 July) (199/33)-10:32 7 30.1 33.0 1.5 

16 July  11:08 12 B (15 July) (200/33)-10:38 8 24.3 37.3 6.4 
23 July  11:14 24 A (23 July) no image 9 29.7 34.1 1.5 
25 July  11:02 2 B (25 July) (199/33)-10:32 9 28.6 37.6 2.0 

 

 

Figure 2. Sentinel-2 Normalized Difference Vegetation Index (NDVI) image of “Las Tiesas” farm,

corresponding to date 25 July 2018.
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Figure 3. Distribution of the Sentinel-2 NDVI values for the different sites labeled in Figure 1, and the

images/dates listed in Table 1.
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Landsat-7/ETM+ overpasses were also available for 3 of the selected dates (9, 16 and 25 July).

Although ETM+ TIR band has a resolution of 60 m, a cubic convolution resampling to 30 m is applied

for user distribution. Thus, these images, with a 30-m spatial resolution, were used as a reference for

an extended validation of the disaggregated LST. For the VNIR bands the Landsat Surface Reflectance

(CDR) product was used, whereas the original TIR data in band 6 were corrected from atmospheric

and emissivity effects following the method proposed by Galve et al. [39].

2.3. Downscaling Approach

Bisquert et al. [1] tested different downscaling methods with pairs of Landsat/MODIS images

in this Barrax area. A modification of the sharpening method presented by Agam et al. [19] showed

the best results. This method is based on the linear relationship established between NDVI and LST

at the MODIS 1000 m resolution (NDVIMOD and LSTMOD, respectively). The approach outlined by

Bisquert et al. [1] has been revised and adapted to the combination MODIS-S2 and used in this work as

a basis to derive 10-m LST maps.

The flowchart in Figure 4 shows the main steps and calculations of this downscaling algorithm

that can be summarized as follows:

1. The aggregation of the VNIR bands was carried out by averaging the reflectance values in the

red and NIR bands of the 10-m S2 pixels, and 250-m MODIS pixels within an equivalent 1000 m

MODIS pixel;

2. NDVI values were calculated from both S2 (NDVIS2) and MODIS (NDVIMOD) VNIR data at

1000 m resolution;

3. Differences between S2 and MODIS VNIR data due to spectral resolution, atmospheric correction,

viewing angle or pixel footprint were corrected through a normalization extracted from the

1000 m NDVI, then applied to 10-m S2 NDVI (NDVIN);

4. The 1000 m coarse spatial resolution required a previous selection of “pure” pixels for the

NDVI-LST adjustment. This selection was based on a confidence value calculated from the

comparison between NDVIMOD and aggregated NDVIN. This confidence value was computed as

the ratio between the standard deviation from the 4 × 4 pixels belonging to each 1000 m pixel,

and its mean value, as suggested by [18]. Pixels with confidence values within the lowest quartile

were selected in this step;

5. A linear regression was established between NDVIMOD and LSTMOD at 1000 m, using data from

those “pure” pixels, and then applied to the NDVIN values to obtain a prime estimate of 10-m

LST (LSTprime);

6. The Bisquert et al. [1] algorithm included a residual (RLST) correction to account for the

local conditions, and to correct the possible deviations produced by the NDVI-LST equation.

This residue was calculated as the difference between the original and predicted LST at a coarse

resolution, and this residue value was then added equally to all high-resolution pixels composing

a coarse pixel. Since this residual correction leads to some boxy effect, Bisquert et al. [1] used

a Gaussian filter to smooth. This final step was revised, and a modification is introduced in

this work by adding a smoothing based on a linearization between the residual RLST and the

NDVIMOD itself from 1000 m data. This linear relationship between the residue and the NDVI

was then applied to 10-m NDVIN (Figure 4);

7. Finally, 10-m LST values were obtained by adding this residual RLST to original 10-m LSTprime

data from step 5. This new protocol to derive the residue values was expected to reduce the LST

deviation, particularly in small size fields surrounded by a different cover, and then contribute to

an overall improvement in the model performance.
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Figure 4. Flowchart of the downscaling methodology, including the different processing steps, inputs

and outputs. Variable descriptions are included in the text.

This downscaling procedure was applied to pairs of MODIS-S2 images. When no Sentinel-2

image was available concurrent with the MODIS overpass, close in time images (±1 day) were used,

under the assumption of minimum changes in NDVI. Note the normalization procedure applied in

step 3 reduced possible differences at this point.

The assessment of the MODIS-S2 downscaling method was carried at both local and distributed

scales, by comparison with ground measurements and Landsat-7/ETM+ LST products, respectively.

In this last case, the comparison was established at the 30-m spatial resolution provided by U.S.

Geological Survey (USGS). Following Gao et al. [20], the aggregation of 10-m S2 LST was done

through the Stefan-Boltzmann law, with the assumption of similar emissivity values for adjacent pixels.

Some differences may arise due to the 20–30 min delay in acquisition time between MODIS and ETM+

sensors. A normalization procedure was applied to minimize these discrepancies in LST values [1].

A linear regression between the aggregated Landsat and MODIS images at 1000 m was obtained, and

then applied at 30-m spatial resolution, for each pair of MODIS-ETM+ images.

The model performance was quantified in terms of classical statistical metrics, such as the

determination coefficient (r2), the root mean square difference (RMSD), the systematic difference

parameter (Bias), the mean absolute deviation (MAD), or the mean absolute deviation in percentage

(MADP) [40]. Following Schneider et al. [41], other statistics considered more robust and less influenced

by outliers were also calculated, such as the median bias (Me), robust standard deviation (RSD) and

robust RMSD (R-RMSD). The skewness and kurtosis were also included, which quantitatively describe

the distribution of the differences between the estimated and observed values.

3. Results

3.1. Ground Validation

The field scale assessment was performed using the ground data as a reference. IRT radiometric

temperatures were corrected from atmospheric and emissivity effects, and average values for each

10-min transect/field were calculated. A total of 51 LSTg data were available for this study (Table 1).

Measured LSTg values were in the range 297–327 K. The lowest values were observed for fully vegetated

crops (grass, potato, or maize), whereas the largest values corresponded to bare soil, soil dominated
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crops (vineyard and almond orchard) and senescence cereals. Standard deviation of LSTg data per

crop field were <±1.5 K in 90% of the dataset, with a maximum value of ±1.9 K, showing the thermal

homogeneity of the fields and the thermal stability during the 10-min interval.

The methodology described above was applied to the six pairs of MODIS-S2 images listed in

Table 1. Mean values of 5 × 5 high-resolution pixel arrays, centered in the location of the ground

transects, were calculated and plotted against LSTg (see Figure 5). Disaggregated LST values ranged

from 302 to 322 K, pointing to a certain limitation of the disaggregation technique to reproduce extreme

low and high temperatures. Values of the standard deviation for the 5 x 5 pixel averages were <± 2.0 K.

All parcels in this study were provided with sprinkler irrigation system, except the vineyard

and almond orchard, where drip irrigation was supplied. Irrigation was scheduled and frequently

applied during the study period. For a few hours after an irrigation event, a cooling effect occurs

consequence of the wetted surface. This effect is stressed when sprinklers are used. This was the case

of 20% of our dataset, with 12 ground transects collected just a few hours/minutes after irrigation

events. These points are plotted with non-filled circles in Figure 5. Note the evident overestimation of

the disaggregated LST compared to LSTg values, with differences >10 K in some cases. These results

reinforce Bisquert et al. [26] findings pointing a shortcoming of the method over wet soil areas.

Certain limitations were also observed for the highest LST values. By stablishing a threshold of

325 K, only five data were excluded corresponding to fallow and tilled barley or poppy.
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Figure 5. Linear regression between disaggregated LST10m and ground-measured values (LSTg).

Crop fields under recently irrigated conditions are labeled with a non-filled circle. Outlier high LST

values are labeled with triangles. Dashed line represents the 1:1 agreement.

Focusing on LST data lower than 325 K, and excluding points corresponding to recently irrigated

conditions, a good agreement (r2 = 0.90) is observed between disaggregated LST10m and LSTg values

(Figure 5). Differences range between ±4.0 K, with a systematic deviation of 0.2 K and a RMSD value

of ±2.2 K (see Table 2). The kurtosis values (~−1) indicate a behavior close to the normal distribution,

while the negligible skewness observed indicates a LST-difference distribution closely centered at 0.

The plot in Figure 6 superposes results obtained running the Bisquert et al. [1] algorithm.

Good agreement is also observed by this original formulation, although some scatter is added, with an

increase in the RMSD value up to ±2.7 K in this case.

MODIS LST values are superposed to plot in Figure 6 too, showing a large scatter (RMSD=±8.0 K)

and discrepancies >10 K. This deviation is stressed for low temperatures registered in small size

vegetated parcels that are surrounded by bare soil or other croplands with higher LST. This effect was

already observed by Bisquert et al. [26].
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Figure 6. Disaggregated LST10m (dots) and Moderate Resolution Imaging Spectroradiometer (MODIS)

LST (crosses) versus ground LST measurements (LSTg). Non-filled dots represent results using the

original Bisquert et al. [1] formulation of the downscaling approach. Error bars are not included in this

figure for cleanliness. Dashed line represents the 1:1 agreement.

Table 2. Quantitative analysis of the differences between disaggregated LST or MODIS LST,

and ground-measured LST data. The statistics include: mean bias (Bias); standard deviation (SD); mean

absolute deviation (MAD); Mean Absolute Deviation in Percentage (MADP), obtained as the MAD

divided by the mean observed value; root mean square difference (RMSD); coefficient of determination

(r2); median bias (Me); robust standard deviation (RSD); robust RMSD (R−RMSD); skewness (S);

and kurtosis (K).

N = 34
Min
(K)

Max
(K)

Bias
(K)

SD
(K)

MAD
(K)

MADP
(%)

RMSD
(K)

r2 Me
(K)

RSD
(K)

R-RMSD
(K)

S K

LST10m −3.6 3.9 0.2 2.2 1.9 0.6 2.2 0.90 0.2 2.8 2.8 −0.04 −1.2

LST10m (Bisquert et al. [1]) −4.5 5.7 0.4 2.7 2.3 0.7 2.7 0.90 0.5 3.3 3.4 0.06 −0.8

LST_MOD −4.2 20.5 4.4 6.8 5.4 1.7 8.0 0.10 1.2 7.7 7.8 1.1 0.3

3.2. Distributed Assessment

Beyond the ground validation at a field scale, the model performance was assessed at a larger

distributed scale by using the three concurrent Landsat-7/ETM+ images as a reference. The Single-Band

Atmospheric Correction (SBAC) tool, recently introduced by Galve et al. [39], was used in this work

for the correction of the TIR data.

Prior to the downscaling assessment, the feasibility of the Landsat-derived LST data needs to be

tested. Ground data were also used to evaluate the Landsat-7/ETM+ LST estimates. The plot in Figure 7

shows the comparison between estimated and ground-measured LST values for a total of 21 data

available for the three Landsat dates/images. Differences ranged within ± 3.5 K, except four cases

corresponding to 1.1 and 1.2 sites. Note that these are small size parcels (<2 ha), for which the spatial

resolution of Landsat 7/ETM+ is not fine enough, resulting in an overestimation of the LST values in

these vegetated targets (potato and grass). Excluding these data from the analysis, a good matching

with the 1:1 line was observed, with a coefficient of determination of r2 = 0.96. An average error of

RMSD = ±1.8 K was obtained. These results are in agreement with those reported by Galve et al. [39],

using data from 2015–2016 in this same agricultural area. A RMSD value of ±1.6 K was obtained by

these authors using ground LST data measured in six of the crop fields within “Las Tiesas” experimental

farm also used in the present work.
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Note significant differences in terms of LST between MODIS and high-resolution sensors (Landsat

or ASTER) up to 2–3 ◦C have been reported, induced by difference in the retrieval algorithm,

atmospheric correction, sensor performance, acquisition time, view geometry, or spectral response

function [10,42–45]. Weng et al. [44] pointed out that comparison of thermal data from different sensors

requires some pre-processing procedure. In this work, the differences in the spectral characteristics

and overpass time (20–30 min difference) between Landsat and MODIS were minimized by applying a

normalization process to the Landsat bands [1]. The disaggregated LST10m were aggregated to the

equivalent 30 m Landsat pixels (LST30m) by a 3 × 3 pixel averaging, based on the Stefan-Boltzmann

law, following Gao et al. [20].

 

 N Bias 
(K) 

SD 
(K) 

MAD 
(K) 

MADP 
(%) 

RMSD 
(K) r2 Me 

(K) 
RSD 
(K) 

R-RMSD 
(K) 

9 July 67826 0.7 2.5 1.9 0.6 2.6 0.55 0.5 2.8 2.8 
16 July 116015 -0.4 1.4 1.2 0.4 1.4 0.63 -0.6 1.7 1.8 
25 July 90804 0.9 1.8 1.5 0.5 2.0 0.75 0.8 2.2 2.3 
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Figure 7. Linear adjustment between L7-ETM+ estimates and ground-measured LST values.

Data collected in Sites 1.1 and 1.2 (field extension <2 ha) are labeled with non-filled dots. Dashed line

represents the 1:1 agreement.

Figure 8 shows the comparison between the original 30-m LST derived from L7-ETM+, and LST

disaggregation products at 10-m spatial resolution, for a subset of 10 × 10 km2 centered in the “Las

Tiesas” experimental farm. Visual inspection points the significant improvement in the capacity to

discriminate the different field borders. Although the real potential of the downscaling approach is

revealed when focusing on parcels <5 ha, where 3 × 3 thermal pixels of L7-ETM+ can be hardly fit

in, being these areas the main responsible of the scatter (r2 = 0.82) observed in the regression plot in

Figure 9.

To quantify the performance of the downscaling approach at a full scene perspective, pixel-to-pixel

differences were calculated at the 30 m spatial resolution for the selected subset of 10× 10 km2 (Figure 9).

Statistical metrics of the differences are listed in Table 3. Considering more than 270,000 pixel/data, an

average RMSD of ±2.0 K was obtained, with a minor overestimation of 0.3 K.

Table 3. Quantitative analysis of the differences plotted in Figure 9. Statistical metrics as defined

in Table 2.

N
Bias
(K)

SD (K)
MAD

(K)
MADP

(%)
RMSD

(K)
r2 Me

(K)
RSD
(K)

R-RMSD
(K)

9 July 67826 0.7 2.5 1.9 0.6 2.6 0.55 0.5 2.8 2.8

16 July 116015 −0.4 1.4 1.2 0.4 1.4 0.63 −0.6 1.7 1.8

25 July 90804 0.9 1.8 1.5 0.5 2.0 0.75 0.8 2.2 2.3

Average 274643 0.3 1.9 1.4 0.5 2.0 0.82 0.010 2.1 2.1
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Figure 8. Disaggregated LST10m (left column), LST derived from original 30 m L7-ETM+ Thermal

InfraRed (TIR) band (center), and MOD11A1_LST product (right column). Examples corresponding to

dates 9 July 2018 (up), 16 July 2018 (middle), and 25 July 2018 (bottom).
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Figure 9. Disaggregated LST30m versus L7-ETM+ LST for the full dataset (left). Dashed line represents

the 1:1 agreement. Histograms of pixel-to-pixel differences between disaggregated LST30m products

and LST estimates from L7-ETM+ images for three concurrent MODIS and Landsat-7 overpasses (right).
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4. Discussions

Agromomy management decisions based on TIR data need confidence in LST estimates.

An absolute uncertainty <1.5 K is traditionally reported as a requirement [7,46]. The translation

of this uncertainty to ET accuracy depends on the model but ranges between 10% and 20% [47,48].

Based on this threshold, the results obtained in this work (average RMSD = ±2.2 K) are encouraging.

Additionally, the 10-m pixel size and the revisit frequency of the MODIS data, much better than the

3–5 days revisit frequency of S2A and S2B satellites, can fulfill the LST input requirements of the

surface energy balance methods for a variety of hydrological, climatological or agricultural applications.

At this point, no significant differences in the model performance were observed in connection with the

collocation delay between the MODIS overpass and the Sentinel-2 image used, i.e., ±1-day mismatch

seems not to have had an effect on the disaggregation.

With the new treatment of the residuals (RLST) introduced in this work, as part of the downscaling

scheme, an improvement around 20% was obtained in the performance of the original formulation of

the model [1] that simply included a Gaussian filter, as suggested by Anderson et al. [2].

Ground validation results are in agreement with those obtained by Bisquert et al. [26] using

MODIS-Spot 5 pairs in this case. These authors reported a bias of 0.2 K and a RMSD of ±2.4 K

based on the comparison between disaggregated 10-m LST and ground-measured LST values for

10 different dates and five different fields. Regarding the distributed assessment, our results are similar

to the RMSD value of ±2.6 K reported by Bisquert et al. [26] at a scene scale. In a first work using

MODIS-Landsat combination [1], these authors reported an average RMSD = ±2.0 K for disaggregated

60-m LST in this case.

In this context, Agam et al. [19] tested a sharpening model (TsHARP) over extensive corn/soybean

fields in central Iowa, USA. RMSD values between ±0.7 and ±1.4 ◦C were obtained by sharpening

down simulated MODIS thermal maps at 1000 m to 250 m and between ±1.8 and ±2.4 ◦C by sharpening

simulated thermal Landsat maps from 60 and 120 m to a VNIR 30 m resolution. Also using TsHARP,

Duan and Li [49] disaggregated MODIS LST from 1000 m to 90 m, with an uncertainty of ±2.7 ◦C.

Jeganathan et al. [14] tested TsHARP from MODIS over a heterogeneous agricultural landscape in India,

and found uncertainties ranging ±2–3 K, using ASTER thermal data as a reference. Eswar et al. [23]

used a thermal sharpening technique with five different indices to downscale MODIS LST from 960 m

to 120 m, and compared this with the Landsat 7 LST data at different sites in India. These authors

found that NDVI/FVC showed better result for wet areas, whereas the Normalized Difference Water

Index (NDWI) was found better for dry areas. Yang et al. [17] used the multiple linear regression

models to downscale the aggregated Landsat TIRS (360 m) image to 90 m, using a relation of LST with

multiple scale factors in an area of mixed land covers (water, vegetation, bare soil, impervious surface),

and then compared with the pure Landsat LST. The result found was satisfactory with coefficient of

determination of 0.87 and RMSD of ±1.13 K. Merlin et al. [10] used a time series of higher resolution

Formosat-2 images to test a new disaggregation procedure of kilometric thermal data over an irrigated

cropping area in northwestern Mexico during an agricultural season. RMSD values about ±3 ◦C were

obtained by these authors.

Many of these previous studies already pointed larger uncertainties in disaggregated LST over

irrigated lands [1,10,26]. This is a weekness that remains in the present work since, although

affected, VNIR reflectivity data does not fully capture the cooling effect produced in a wetted surface.

Therefore, the downscaling technique still fails at reproducing LST values for spots with an undergoing

irrigation or recently irrigated targets. In an attempt to face these limitations, some works incorporate

additional reflectance information in the regression algorithms. Gosh and Joshi [22] tested several

regression algorithms using EO1-Hyperion hyperspectral data over different land use land cover

scenes. These authors used three pairs of coincident Hyperion and Landsat 7-ETM+ images as a

reference for the assessment. Liu et al. [24] compared the performances of a thermal disaggregation

technique, based on three different indices: temperature vegetation dryness index (TVDI), NDVI and

fractional vegetation cover (FVC), over a humid agriculture region. These authors found the smallest
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RMSD using TVDI, with an improvement of 0.2 K in comparison to the results obtained using NDVI or

FVC. A similar reduction of the uncertainty in 0.2 K was obtained by Amazirh et al. [25], thanks to the

inclusion of Sentinel-1 radar data, linked to surface soil moisture, in a new formulation to improve the

LST disaggregation methodology. These authors used Sentinel-1 imagery to derive 100-m resolution

LST, and the results were compared with Landsat LST, used as a reference over two heterogeneous sites

(irrigated and rainfed). However, average RMSD values for the six dates of study resulted over ±3.0 K,

with even worse accuracy during summer. So, further efforts are still required to improve this soil

moisture integration. Further works should also explore the inclusion of additional Sentinel-2 bands in

the shortwave infrared (SWIR) in the sharpening scheme, since they might account for vegetation and

soil water content [50].

Another finding is this work is the difficulty of the downscaling approaches to reproduce

excepcionally high LST when these conditions are constrained to small parcels in the image, and there

is a lack of coarse original MODIS pixels showing this homogeneous thermal conditions. The modeled

relationship LST-VNIR reflectivities may not fully cover these conditions, leading to an underestimation

of LST.

Focusing on the combination of S3-S2 images, very few quantitative studies have been conducted.

In a first attempt, Huryna et al. [28] applied TsHARP sharpening. These authors reported LST

differences of ±1.3–1.5 K, when compared with sharpened to 60-m S3 temperature with reference

Landsat 8 temperature at 60 m, with a positive bias of 0.3–0.6 K, depending on the study site. However,

the lack of local measurements prevented these authors from conducting a ground assessment.

Further research should merge Sentinel-2 and Sentinel-3 imagery and conduct robust assessment of

the downscaling results. Collections of ground LST measurements under a variety of surface and

environmental conditions are then required, and the dataset gathered in the framework of this work is

potentially attractive for this aim.

5. Conclusions

This work adds to the previous literature dealing with thermal infrared downscaling. The 10-m

LST maps generated from the combination MODIS-S2 can contribute to fill the gap until high

spatial-temporal resolution TIR images are available. The linear relation NDVI-LST was adopted as a

basis for the downscaling approach. Results obtained encourage the parametrization of the residual

as a function of the NDVI as a key step in the algorithm (an improvement of 0.5 K was achieved).

The variety of surface conditions and the wide range of NDVI and LST values in the semi-arid area

of Barrax allowed a robust assessment of the downscaling approach. An average estimation error

of ±2.2 K in LST10m resulted from the ground validation. This evaluation was reinforced by the

pixel-to-pixel comparison of rescaled LST30m with Landsat-7/ETM+ LST estimates, showing a similar

RMSD of ±2.0 K for the distributed assessment.

Findings in this study highlight the limitations of the methodology to capture the variability of

extreme LST, and the problems in recently sprinkler irrigated fields. Results indicate the need for

caution, since disaggregated LST under these conditions may result artificially higher than expected.

Despite the weaknesses, this work gives promising insights for the adaptation of this methodology

to the tandem S3-S2 in coming works. Further research could also benefit from the ground LST dataset

introduced in this paper for a comprehensive performance assessment.

Finally, note that the benefits of this research may extend to other applications, such as monitoring

volcanic activity and wildfire, estimating evapotranspiration or assessing drought severity.
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Abstract: The Sentinel-2 and Sentinel-3 satellite constellation contains most of the spatial, temporal

and spectral characteristics required for accurate, field-scale actual evapotranspiration (ET) estimation.

The one remaining major challenge is the spatial scale mismatch between the thermal-infrared

observations acquired by the Sentinel-3 satellites at around 1 km resolution and the multispectral

shortwave observations acquired by the Sentinel-2 satellite at around 20 m resolution. In this study

we evaluate a number of approaches for bridging this gap by improving the spatial resolution of

the thermal images. The resulting data is then used as input into three ET models, working under

different assumptions: TSEB, METRIC and ESVEP. Latent, sensible and ground heat fluxes as well as

net radiation produced by the models at 20 m resolution are validated against observations coming

from 11 flux towers located in various land covers and climatological conditions. The results show

that using the sharpened high-resolution thermal data as input for the TSEB model is a sound

approach with relative root mean square error of instantaneous latent heat flux of around 30% in

agricultural areas. The proposed methodology is a promising solution to the lack of thermal data

with high spatio-temporal resolution required for field-scale ET modelling and can fill this data gap

until next generation of thermal satellites are launched.

Keywords: evapotranspiration; data fusion; field-scale; machine-learning; physical model;

Sentinel-2; Sentinel-3

1. Introduction

The fluxes of water (e.g., evapotranspiration—ET) and energy (e.g., of latent and sensible

heat) at the surface of the Earth are critical to quantify for many applications in the fields of

climatology, meteorology, hydrology and agronomy. Easy access to reliable estimations of ET is

considered a key requirement within natural resource management, and if ET can be estimated

accurately enough it holds a vast potential to assist in the current attempts of meeting the UN

Sustainable Development Goals (SDG), e.g., SDG2—zero hunger, or SDG6—clean water and sanitation

(https://sustainabledevelopment.un.org, last accessed 10 December 2018).

Water and energy fluxes show large spatio-temporal variability since they are highly dependent

not only on the meteorological conditions, but also on different characteristics and properties of the land

surface, such as soil moisture/water availability, land cover type and amount of vegetation biomass

and its health. Remote sensing data can provide spatially-distributed information about relevant land

surface states and properties used to model the relevant fluxes and hence this technology addresses

181



Remote Sens. 2020, 12, 1433

a key limitation of conventional point scale observations when estimating fluxes at watershed and

regional scales. In particular, thermal remote sensing has been widely used for assessing land surface

turbulent fluxes [1]. While there are a variety of existing remote sensing ET methods and data options

available [2,3], none is fully satisfying the user needs for reliable, operational and easy accessible

estimates and tools able to derive ET at agricultural-parcel scale. The limitations have so far primarily

been centred on the lack of suitable satellite-based input data sources.

With the recent launch of Sentinel-2 and Sentinel-3 satellites, the data foundation for producing

operational ET maps has been set since as a constellation they contain most of the required spatial,

temporal and spectral characteristics [4]. Sentinel-3 Sea and Land Surface Temperature Radiometer

(SLSTR) instrument acquires daily thermal infrared (TIR) information of the surface at ca. 1 km scale [5].

However, the reliable estimation of ET in agricultural and heterogeneous landscapes requires that the

model’s spatial resolution matches the dominant landscape feature scale, usually tens or hundreds of

meters. Sentinel 2, with a spatial resolution ranging from 10 to 60 m and 5 day revisit time with Sentinel

2A & B combined [6], can resolve part of these scaling issues, although it lacks a TIR instrument

at high spatial resolution such as in the Landsat missions. Therefore sharpening [7–9] and/or

disaggregation methods [10] are required to bridge the spatial gap between the currently available

Sentinel constellation’s thermal-infrared (referred to as “thermal” in the reminder of the paper) and

optical-shortwave (referred to as “shortwave” in the reminder of the paper) observational capabilities

in order to optimally exploit the synergies of both types of sensors for field-scale ET estimations. The

aim of this study is to develop an optimal combination of thermal sharpening and ET modelling

methods for the derivation field-scale ET with combined Sentinel-2 and Sentinel-3 observations.

Several data fusion methods have been proposed to merge low resolution thermal infrared

imagery with high resolution shortwave imagery in order to obtain estimates of surface temperature

(Trad) and/or ET at high spatial resolution. In this study we focus on different, but possibly

complementary, approaches: empirical and semi-empirical methods that exploit relationships between

shortwave bands and thermal or ET data (hereinafter called image sharpening methods); and

physically-based ET downscaling methods (hereinafter called ET disaggregation).

Thermal image sharpening uses information from the thermal and shortwave images themselves

to calibrate empirical or semi-empirical models. Those models relate coarse resolution Trad (or ET)

with coarse resolution (or fine resolution aggregated to coarse resolution) shortwave bands, and then

apply the calibrated model to the fine scale shortwave image, producing either a sharpened Trad, or

directly an ET product.

One of the first attempts to sharpen Trad was TsHARP [11], who tested different regression models

between Trad and NDVI. Since then, TsHARP has been utilised as reference method for developing and

testing other sharpening methods [8,12,13]. The Data Mining Sharpening (DMS) approach [8] used

local and global regression trees between reflective bands and Trad of homogeneous samples at coarse

scale (based on coefficient of variation threshold). Residual analysis was performed to ensure energy

conservation (based on emitted radiances) between original resolution and sharpened images. To avoid

overfitting of regression trees such as in DMS the use of random forests was proposed instead [14].

Following with the machine learning algorithms, Yang et al. [15] used an Artificial Neural Network

with Genetic Algorithm and Self-Organizing Feature Mapping trained with different land surface

parameters for each land cover class (vegetation, bare soil, urban and water). A different approach used

an unmixing method to derive brightness temperature and emissivity at fine scale [16]. The unmixed

brightness temperature and emissivity were then the inputs to a generalized split-window algorithm

to retrieve fine resolution Trad.

The use of a contextual algorithm can also be applied in sharpening, such as is the case of

DISPATCH-LST (DISaggregation based on Physical And Theoretical scale CHange) by Merlin et al. [7]

who used shortwave information on fractional vegetation cover and fractional photosynthetically

active vegetation cover in contextual scatterplots of fractional green vegetation cover versus Trad

and albedo versus Trad to define minimum and maximum soil and canopy endmember temperatures.
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Finally, two or more different methods can be used together and combined through weighted averaging,

such as in Chen et al. [17], who combined TsHARP and a Thin Plate Spline interpolation by weighting

their corresponding residuals. Besides of the fact that all methods described above can be used as well

to sharpen ET, other studies have already suggested methods to directly downscale coarse scale ET

using shortwave data [18–21]. In any case, shortwave images provide limited information related to

some surface energy balance processes, such as turbulent transport, soil moisture, and meteorological

forcing. Therefore ancillary variables could be included in Trad or ET sharpening such as land cover

maps (to account for different aerodynamic roughness), local meteorology, or surface geometry [22].

A previous study [4] found that using a “disaggregation” approach [10,23] significantly enhanced

the accuracy of turbulent fluxes derived with sharpened Trad. That approach ensures spatial consistency

between fluxes derived at fine and coarse spatial scales by first estimating them at the coarse scale at

which the thermal observations were acquired. In the following step, the low-resolution air temperature

is varied to adjust the flux estimates for all high-resolution pixels falling within one low-resolution

pixel. This is repeated until a consistency between the two scales is obtained. This approach assumes

that since the coarse scale estimates are derived with Trad at original spatial resolution they are of

higher accuracy. The disaggregation was shown to improve ET model skill when compared with

outputs produced at either coarse or fine resolution alone [4,23,24].

The sharpened Trad can be used as input to land-surface energy flux models. The latent heat

flux λE (or energy used for ET) can be estimated as the residual of the surface energy budget, using

estimates of the net radiation (Rn), soil heat flux (G) and sensible heat flux (H). The thermal-based

ET models were originally formulated for computing H, which is governed by the bulk resistance

equation for heat transfer [25], and is driven by the gradient between an ensemble surface temperature,

called the “aerodynamic surface temperature” (T0), and the surface layer air temperature. Besides of

the estimation of that surface-to-air temperature gradient, the estimation of H requires the modelling

of an aerodynamic resistance term, which can be viewed as a simplification of the complex turbulent

transport of heat, momentum and water vapour, by using a similarity with Ohm’s law for electric

transport. These resistances therefore represent how efficiently a scalar (heat, momentum or water

vapour) is transported from one point to another following a gradient (i.e., vertical differences of

temperature and/or vapour pressure). Several formulations and/or parametrizations have been

proposed to describe these turbulent transport processes but generally they include variables related

to surface aerodynamic roughness, wind speed as well as wind attenuation through the canopy, and

atmospheric stability [26].

The challenge in resistance energy balance models is that T0 cannot be directly estimated by

remote sensing [27,28]. Hence, remote sensing ET models differ from each other on how the existing

difference between the radiometric temperature (Trad) observed by satellite sensors and T0 is considered.

Single-source or bulk transfer schemes for modelling H treat soil and canopy as a single flux source

and often employ an additional resistance term (RAH , usually dependent on the Stanton number kB−1)

because heat transport is less efficient than momentum transport from land surface (see e.g., Garratt

and Hicks [29] or Verhoef et al. [30]). Appropriately calibrated, one-source energy balance (OSEB)

models have shown satisfactory estimates of surface energy fluxes in heterogeneous landscapes [31–34].

However, due to the difficulty in robustly and parsimoniously parametrizing RAH for OSEB schemes

at different landscapes, climates, and observational configurations [35], the two-source energy balance

(TSEB) modelling approach was developed [36]. TSEB models partition the surface energy fluxes and

the radiometric temperature between nominal soil and canopy sources, and include a more physical

representation of processes related to Trad and T0 without requiring any additional input information

beyond that needed by single-source models using more sophisticated kB−1 parametrizing. However,

because direct measurements of canopy (TC) and soil (TS) temperatures rarely are available, in most

applications these component temperatures are derived from a measurement of the bulk surface

radiometric temperature Trad. Partitioning of Trad between TC and TS requires some assumptions

related to the evaporative efficiency of soil or canopy [36–38].
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Finally, like all remote sensing retrievals, satellite radiometric temperature is prone to uncertainty

due to sensor noise, surface emissivity and atmospheric effects. To overcome this issue in ET estimation,

several methods have been proposed based on either contextual models [39–41], by constraining the

ET range between hot (no ET) and cold (potential ET) pixels [31,32], or using time-differenced morning

temperature rise [42,43]. Regarding the contextual methods, all of them require homogeneous forcing

and coupling between land surface/atmosphere which is a disadvantage when applied at large scales.

In addition, those models assume that the coldest pixel in the image means potential transpiration,

and the hottest pixel means zero transpiration which is not always the case (e.g., in humid and

sub-humid areas).

In this study we will evaluate three different ET models driven by Sentinel-2 and Sentinel-3

imagery: METRIC [32] is a one source energy balance model that is less sensitive to heat transfer

coefficient parametrizing than other OSEB model such as SEBS [33]; TSEB-PT [36] as a widely used two

source energy balance model; and ESVEP [44] as a hybrid contextual-two source energy balance model.

2. Materials and Methods

In this section we first describe the evaluated ET models (Section 2.1), before presenting the

validation sites (Section 2.2) and the input data sources (Section 2.3).

2.1. Description of ET Models

The energy balance can be expressed as (1)

Rn ≈ G + H + λE (1)

where net radiation Rn is a key element in the energy budget of the land surface as it determines

the available energy that the land utilises for water evapotranspiration (latent heat flux, λE) and for

heating up the overlying air layer (sensible heat flux, H). Equation (1) assumes that other energy terms

(heat advection, heat storage in the canopy layer, and energy for photosynthesis) are negligible. Since

ET is the combined process of soil evaporation and canopy transpiration, Rn can be also be partitioned

into soil (Rn,S) and canopy net radiation (Rn,C), with both sensible and latent heat flux also partitioned

between soil (i.e., evaporation process) and canopy (transpiration).

Using remote sensing data to derive Rn has proven to be a sound alternative to ground-based

measurements of both shortwave and longwave net radiation. Different approaches have been

proposed to estimate surface albedo, ranging from empirical relationships between ground measured

albedo and the different reflective bands in satellite [45] to more physically based methods relying on

modeling the surface anisotropic effects [46,47]. Indeed, one of the major challenges when estimating

albedo with satellite remote sensing data is that such sensors typically measure the outgoing radiance

at a given direction while the estimation of albedo needs to account for the outgoing radiance in all the

directions of the hemisphere [48,49]. Methods based on the modelling of those bidirectional effects

have proven to be effective to overcome this challenge. In this study, we use a method for retrieving

soil and canopy shortwave net radiation, proposed by Kustas and Norman [50], based on the different

spectral behaviour of soil and vegetation for the photosynthetically active radiation (PAR) and near

infrared (NIR) regions of the spectrum. Such approach is based on the radiative transfer model (RTM)

described in Campbell and Norman [51] to obtain estimates of soil and canopy albedo as well as

canopy transmittance in the PAR and NIR. This approach requires as inputs Leaf Area Index and leaf

inclination distribution [52], the different bihemispherical reflectances and transmittances of soil and a

single leaf, and the proportion of diffuse irradiance. However, this approach assumes homogeneous

canopies and it requires some corrections when dealing with clumped canopies [53], which were also

used in this study.

On the other hand, longwave net radiation is primarily driven by the thermal radiation emitted by

the surface, which depends on surface emissivity and skin temperature following the Stefan-Boltzman
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law. Besides, Kirchoff’s law can be applied to derive the atmospheric longwave radiation that is

absorbed by the surface. When running OSEB models (i.e., METRIC), only those two components are

taken into account. However, when using TSEB models (i.e., TSEB-PT and ESVEP), surface anisotropy

can also be accounted for when estimating the net longwave radiation, considering that leaves and soil

have different temperatures and hence emit different amounts of thermal radiation [50].

Soil heat flux G is usually assumed to be a ratio of the soil net radiation. Choudhury et al. [54],

Bastiaanssen et al. [31] suggested that G is ca. 35% of net radiation of the soil around midday hours

and this is the approach used in this study by TSEB models. Since net radiation of the soil cannot

be computed when using OSEB models, a specific equation suggested by Bastiaanssen et al. [31] is

used instead.

In all three evaluated models, λE is estimated as residual of Equation (1). The main difference

between the models is in the way in which H is calculated, as briefly described in the sections below.

2.1.1. Mapping Evapotranspiration at High Resolution with Internalized Calibration, METRIC

Sensible heat flux in METRIC [32] is derived in a contextual manner by finding hot and cold

pixels (Equation (2)).

H = ρCp
δT

RAH
(2a)

δT = c + m Trad (2b)

where δT is the estimated gradient between aerodynamic and air temperature, estimated as a linear

equation function of Trad with c and m parameters are linearly solved from expressing Equation (2b)

from two cold and hot endpoints:

m =
δThot − δTcold

Thot − Tcold
(3a)

c = δThot − m Thot (3b)

METRIC scales λE between these two hot (Thot) and cold (Tcold) endmembers based on a linear

relationship between actual ET and reference ET using the standardised ASCE Penman-Monteith

equation for an ideal alfalfa field [55]. Therefore, METRIC, as opposed to SEBAL [31], does not assume

zero sensible heat flux at the cold pixel, which can have a positive impact on model accuracy at well

watered areas under large vapour pressure deficit conditions. According to Allen et al. [32], cold pixels

yield a 5% larger ET than the reference ET (λEcold = 1.05λEre f ), but earlier in the season and off-season,

cold pixel ET is instead a function of fractional cover or NDVI: λEcold/λEre f = f (NDVI). On the

other hand, METRIC overcomes the issue of estimating kB−1 by computing RAH using the profile at

two different heights above z0H . Finally the authors stated the need for either computing an “excess

resistance” in aerodynamically rough and dry surfaces when using the δT calibration performed

over agricultural areas, or calibrating different δT slopes at different land covers/environmental

conditions [32].

For Equation (2) to hold true, δT and H require constant wind speed at the application domain,

so the model uses wind speed at blending height to overcome this issue. It also requires constant

irradiance and air temperature, i.e., δT changes are only either due to root-zone soil moisture or

aerodynamic roughness. Furthermore, the model requires heterogeneity in hydrologic and vegetation

conditions and therefore we applied METRIC over two different vegetation domains, short vegetation

(crops, grass and shrubs) and tall vegetation (broadleaved and conifer forests as well as wooded

savannas). Finally, METRIC is sensitive to the definition of hot and cold pixels. Several different

methodologies to find those endmember values were proposed, which can be especially challenging in

heterogeneous areas where pixels become mixed at coarse spatial resolution. In our case we adopted

the Exhaustive Search Algorithm solution proposed by Bhattarai et al. [56].
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2.1.2. Priestley-Taylor Two-Source Energy Balance Model, TSEB-PT

Two-source energy balance models treat the land surface as two layers, soil and canopy,

contributing to the energy and water fluxes (Equation (4))

Rn,C = HC + λEC (4a)

Rn,S = HS + λES + G (4b)

where soil (canopy) sensible heat flux is computed from the gradient between the soil

(canopy) temperature (TS and TC respectively) and the air temperature at the sink-source height

(equivalent to T0). In the TSEB-PT model [28,36,53], an electrical circuit analogy is used in which H

from soil and canopy are estimated based on three aerodynamic resistances to heat transport arranged

in a series network. Since TC and TS are unknown a priori, they are estimated in an iterative process in

which it is first assumed that green canopy (expressed as the fraction of LAI that is green, fg) transpires

a potential rate based on Priestley–Taylor formulation [36]:

λEC = αPT fg
∆

∆ + γ
Rn,C, αPT = 1.26 (5)

where αPT is the Priestley and Taylor [57] coefficient, ∆ is the slope of the vapour pressure to air

temperature curve and γ is the psychrometric constant. Then the canopy transpiration is sequentially

reduced (i.e., αPT < 1.26) until realistic fluxes are obtained (λEC ≥ 0 and λES ≥ 0).

TSEB-PT probably is the model that requires most accurate retrievals of physical inputs (LAI

and Trad), and studies already reported larger uncertainty in senescent vegetation (i.e., fg < 1) and

very dense (high LAI) or tall vegetation [43,58]. It is more complex than METRIC and therefore has

a large number of parameters and modelling options. Finally, the Priestley–Taylor formulation was

shown to produce larger uncertainty in high advection conditions, cases in which initializing λEC

with a Penman-Monteith formulation showed better results [37]. Combining TSEB-PT model with the

disaggregation approach (described in Section 1) results in a disTSEB model [23].

2.1.3. End-Member-Based Soil and Vegetation Energy Partitioning, ESVEP

ESVEP is based on a trapezoid Trad − fcover framework, in which it considers fluxes acting in a

“parallel” soil and canopy system [44]. As in TSEB-PT, ESVEP partitions Trad as a linear weight of

emitted radiance. Other similar models to ESVEP are HTEM [59] and TTEM [60], but ESVEP solves

the trapezoid in a pixel-per-pixel basis overcoming the need for homogeneous weather forcing and

roughness (Equation (6a)).

TS,max =
ra (Rn,S − G)

ρaCp
+ TA (6a)

TC,max =
raRn,C

ρaCp

γ
(

1 + rb,dry/ra

)

∆ + γ
(

1 + rb,dry/ra

) −
vpd

∆ + γ
(

1 + rb,dry/ra

) + TA (6b)

TS,min =
ra (Rn,S − G)

ρaCp

γ

∆ + γ
−

vpd

∆ + γ
+ TA (6c)

TC,min =
raRn,C

ρaCp

γ (1 + rb,wet/ra)

∆ + γ (1 + rb,wet/ra)
−

vpd

∆ + γ (1 + rb,wet/ra)
+ TA (6d)

where ra is the aerodynamic resistance, rb,dry and rb,wet are resistances of dry and wet canopy

respectively, ρa is the density or air, Cp is specific heat capacity at constant pressure, γ is psychrometric

constant and vpd is vapour pressure deficit of the air.
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2.2. Validation Sites

Year 2017 measurements from eleven eddy covariance (EC) sites were used in this study, covering a

wide range of land cover types and climates. Sites are summarised in Table 1 and data used in validation

included the four components of net radiation Rn(shortwave/longwave downwelling/upwelling), soil

heat flux G, sensible heat flux H, and latent heat flux λE. In addition, friction velocity, Monin-Obukhov

length, and wind direction data from the EC system was used to estimate the satellite pixel footprint

contribution [61,62] to the turbulent fluxes at the satellite overpass. Validation sites comprise

5 agricultural sites, both irrigated and rainfed, including row crops (e.g., Sierra Loma vineyard) and

an olive grove (Taous). In addition, two sites over grassland, one humid meadow (Grillenburg) and

a semi-arid steppe (Kendall Grassland), one in conifer (Hyltemossa) and one in broadleaved forests

(Harvard Forest) are also included in the validation list. Finally, complex heterogeneous landscapes

are represented by two wooded savannas (Dahra and Majadas de Tiétar). From all these sites, 3 are in

Mediterranean climate, and two more in semi-arid climates, whereas the rest of the sites are located in

temperate climates.

Table 1. Description of eddy covariance sites used for validation. Sites are listed in alphabetic order. Z

shows the EC measurement height in meters, while the contact person for the EC tower is credited in

PI column.

Site (Abrevation) Land Cover Climate Location Z (m) PI/Reference

Choptank (CH) Cropland, irrigated
(rotation of corn and
soybean)

Temperate United States
39.058743 N
75.851282 W

5 William P. Kustas
(ARS-USDA)

Dahra (DA) Savanna Semi-arid Senegal
15.40278 N
15.43222 W

9 Torbern
Tagesson (Univ.
Copenhagen) [63]

Grillenburg (GR) Grassland, meadow Temperate Germany
50.950013 N
13.512583 E

3 Christian Bernhofer
(T.U. Dresden)

Harvard Forest (HF) Broadleaved forest Temperate United States
42.536874 N
72.172578 W

30 J. William Munger
(Harvard Univ.)

Hyltemossa (HTM) Conifer forest
(spruce)

Temperate Sweden
56.097584 N
13.419056 E

27 Michal Heliasz (Lund
Univ.)

Kendall Grassland
(KG)

Grassland, steppe Semi-arid United States
31.73652 N
109.94185 W

6.4 Russell Scott
(ARS-USDA) [64,65]

Klingenberg (KL) Cropland (spring
barley and catch
crops)

Temperate Germany
50.8931 N
13.5224 E

3.5 Christian Bernhofer
(T.U. Dresden)

Majadas de Tieétar
(MT)

Savanna Mediterranean Spain
39.940332
N 5.774647 W

15.5 Arnaud Carrara
(CEAM)

Selhausen (SE) Cropland (sugar beets
and winter barley)

Temperate Germany
50.870623 N
6.449653 E

2.3 Marius Schmidt
(Jülich)

Sierra Loma (SL)
(previously known as
Borden)

Cropland, irrigated
(vineyard)

Mediterranean United States
38.289355 N
121.11779 W

5 William P. Kustas
(ARS-USDA) &
Joseph Alfieri
(ARS-USDA) [66,67]

Taous (TA) Cropland, rainfed
(olive)

Mediterranean Tunisia
34.93111
N 10.60153 E

9.5 Gilles Boulet
(CESBIO) & Dalenda
Boujnah (Institut de
l’Olivier)

Error metrics included mean bias error (∑ (Obs. − Pred.)/N), root mean squared error (RMSE =
√

∑ (Obs. − Pred.)2/N), relative RMSE (RMSE/Obs), and Pearson correlation coefficient between
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observed and predicted. Due to the lack of energy closure in the eddy covariance data, unless

otherwise stated all metrics were computed after adding the energy balance residual (residual =

Rn,EC − GEC − λEEC − HEC) to the latent heat flux, taking the assumption that errors in measurements

of λE are larger than errors in the measurements of H [68].

2.3. Input Data Sources

The input data required to run the evapotranspiration models came from three main and

two ancillary sources. The main sources were: Sentinel-2 shortwave observations, Sentinel-3

thermal observations and European Center for Medium-range Weather Forecasts (ECMWF) ERA-5

meteorological reanalysis data. The ancillary sources were: a digital elevation model (DEM) from the

Shuttle Radar Topography Mission (SRTM) satellite, and land cover map created as part of the ESA

Climate Change Initiative (CCI).

2.3.1. Satellite Data

The main satellite data inputs come from the Sentinel-2 (both A and B) and Sentinel-3 (A only)

satellites. Sentinel-2 and Sentinel-3 were chosen as the primary satellite data sources for this study for

a number of reasons. Firstly, as mentioned previously, when treated as a constellation those satellites

are able to satisfy the need for temporally dense observations at high spatial resolution and with good

radiometric accuracies. Secondly, they are part of the Copernicus programme, meaning that there is a

guaranteed long-term continuity of data into the future. Thirdly, the data from those satellites is free

and open and will remain so, again due to being part of the Copernicus programme.

High-resolution shortwave observations needed to characterise the state of vegetation in the

evapotranspiration model as well as to sharpen TIR data were obtained by the MultiSpectral Instrument

(MSI) on board of the Sentinel-2A & 2B satellites. MSI acquires reflectance information in 13 spectral

bands (with central wavelength ranging from 444 nm to 2202 nm) with a spatial resolution of 10 m,

20 m, or 60 m (depending the spectral band) and global geometric revisit of at least 5 days when both

satellites are considered [6]. The MSI sensor has 3 spectral bands in the leaf-pigment sensitive red-edge

part of the electromagnetic spectrum and two bands in water-content sensitive shortwave-infrared part

of the spectrum, in addition to the more traditional visible and near-infrared bands, which makes it

well suited for vegetation mapping and monitoring [69]. For each of the validation sites, all Sentinel-2

images for year 2017 were visually scanned and the ones which were cloud, fog and shadow free in

the closest vicinity of the flux towers locations were selected for processing.

L1C top of the atmosphere images were converted to bottom-of-atmosphere (BOA) reflectances

(L2A) using the Sen2Cor atmospheric correction processor [70] v2.5.5. BOA reflectance values were then

used as input to the Biophysical Processor [71] available in the SNAP software v6.0.1 (step.esa.int—last

accessed 28 November 2018) in order to obtain effective values of green Leaf Area Index (LAI),

Fractional Vegetation Cover (FVC), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR),

Canopy Chlorophyll Content (CCC) and Canopy Water Content (CWC). The outputs of the SNAP

Biophysical Processor have been validated in a number of studies, with good performance in

herbaceous crops [72,73] but overestimation of LAI in bare-soil cases and underestimation of LAI in

forests [74]. Those inaccuracies could have an impact on the results of this study in semi-arid and

forested areas.

The fraction of vegetation which is green and transpiring ( fg) was estimated

based on Fisher et al. [75] (Equation (7)):

fg = FAPAR/FIPAR (7)

where FIPAR is the fraction of photosynthetically active radiation intercepted by green and brown

vegetation. FAPAR was obtained from the biophysical processor as described above, while FIPAR was

derived iteratively from Equation (8) of Campbell and Norman [51]:
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FIPAR = 1 − exp
−0.5PAI

cos θ
(8)

where θ is the solar zenith angle at the time of the S2 overpass, and PAI is the plant area index with

initial PAI equal to LAI and in subsequent iterations

PAI = LAI/ fg (9)

until fg converges. Two assumptions made in Equation (8) are that all intercepted PAR comes from

the solar beams, and that both FAPAR and FIPAR are computed from a canopy with a spherical

leaf inclination distribution. Indeed, from the the average leaf angle histogram, from which the

training database was built in Weiss and Baret [71], most training cases in the Biophysical processor

correspond to a spherical distribution (mode at 60◦ leaf angle). Equation (9) was subsequently used

within the land surface models to convert LAI, which was assumed to represent green LAI [71], into

PAI. Afterwards, PAI, leaf bi-hemispherical reflectance and transmittance, together with constant

values for soil reflectance in the visible (VIS = [400–700] nm, ρsoil,VIS = 0.15) and near infrared

(NIR = [700–2500] nm, ρsoil,NIR = 0.25) were used to quantify the shortwave net radiation of the

soil and canopy. Leaf chlorophyll concentration (i.e., Ca+b = CCC/LAI) was used to derive the leaf

bihemispherical reflectance and transmittance in the visible spectrum after a curve fitting of 45,000

ProspectD [76] simulations. Likewise, equivalent water thickness (i.e., Cw = CWC/LAI) was used to

retrieve leaf bihemispherical reflectance and transmittance in the NIR spectral region.

The thermal data needed to drive the evapotranspiration model was obtained from the Sea and

Land Surface Temperature Radiometer (SLSTR) on board of the Sentinel-3A satellite [5]. SLSTR contains

3 thermal infrared (TIR) channels (with two dynamic range settings—for fire monitoring and for

sea/land surface temperature monitoring) with 1 km spatial resolution and less than two days temporal

resolution with one satellite (less than one day with both A and B satellites) at the equator. For each

selected S2 scene, all the S3 scenes falling on the day of S2 overpass or within ten days before and after,

were selected for processing. In the current study we used the L2A Land Surface Temperature (LST)

product as downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/—last

accessed 10 September 2019). The accuracy of this product is reported to be below 1 K when comparing

against in situ radiometer measurements and independent operational reference products [77].

Finally, the parameters in the ET models that could not be directly retrieved from shortwave

observations (e.g., vegetation height or leaf inclination angle) were set based on a land cover map and a

look-up table (see Table 2). The CCI landcover map from 2015 [78], which was produced with a global

coverage and 300 m spatial resolution, was used as the initial input layer before being reclassified

into the smaller number of classes as shown in Table 2. Out of the parameters set according to the

look-up table, the vegetation height (hC) has the largest influence on the modelled fluxes as it effects

aerodynamic roughness [79,80]. Therefore in herbaceous classes where it can change throughout the

growing season (grasslands and croplands) it was scaled with PAI using a power law, with maximum

value hC,max indicated in Table 2 reached at a prescribed maximum PAI PAImax (5 in croplands and 4

in grasslands) and a minimum value set to 10% of the maximum value.
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Table 2. Land cover based Look-Up-Table for ancillary parameters used in ET models. CCI-LC is

the land cover code for the ESA’s CCI land cover legend (http://maps.elie.ucl.ac.be/CCI/viewer/

download/CCI-LC_Maps_Legend.pdf—last accessed 13 April 2020); hC,max is the maximum canopy

height occurring when PAI reaches PAImax; fC is fraction of the ground occupied by a clumped canopy

( fC = 1 for a homogeneous canopy); wC is canopy shape parameter, representing the canopy width to

canopy height ratio; lw is the average leaf size; χ Campbell [52] leaf angle distribution parameter.

CCI-LC hC,max (m) PAImax (–) fC (–) wC /hC (–) lw (m) χ

0 0 0 0 0 0 0
10 1.2 5 1 1 0.02 0.5
11 1 5 1 1 0.02 0.5
12 2 5 0.5 2 0.1 1
20 1.2 5 1 1 0.02 0.5
30 1.2 5 0.5 1 0.05 0.5
40 1.2 5 0.5 1 0.1 0.5
50 10 5 1 1 0.15 1
60 10 5 1 1 0.15 1
61 10 5 1 1 0.15 1
62 10 5 0.4 1 0.15 1
70 20 5 1 2 0.05 1
71 20 5 1 2 0.05 1
72 20 5 0.4 2 0.05 1
80 20 5 1 2 0.05 1
81 20 5 1 2 0.05 1
82 20 5 0.4 2 0.05 1
90 15 5 1 1.5 0.1 1

100 8 5 0.75 1.5 0.15 0.8
110 8 5 0.25 1 0.02 0.5
120 1.5 4 1 1 0.05 1
121 1.5 4 1 1 0.05 1
122 1.5 4 1 1 0.05 1
130 0.5 4 1 1 0.02 0.5
140 0.05 1 1 1 0.001 1
150 2 2 0.15 1 0.05 1
151 10 5 0.15 1 0.1 1
152 1.5 4 0.15 1 0.05 1
153 0.5 4 0.15 1 0.02 0.5
160 10 5 1 1 0.1 1
170 10 5 1 1 0.1 1
180 1 5 1 1 0.02 0.5
190 20 0 0 0 0 0
200 0 0 0 0 0 0
201 0 0 0 0 0 0
202 0 0 0 0 0 0
210 0 0 0 0 0 0
220 0 0 0 0 0 0

2.3.2. Meteorological Data Source

The meteorological data used in this study consists of air temperature at 2 m, dew point

temperature at 2 m, wind speed at 100 m, surface pressure, total column water vapour (TCWV),

aerosol optical thickness (AOT) at 550 nm and surface geopotential. Those inputs are obtained from

the ECMWF ERA5 reanalysis ensemble means dataset [81]. The only exception was AOT which come

from the Copernicus Atmosphere Monitoring Service (CAMS) forecast dataset [82], since it is not

included in ERA5. Inputs at the time of the satellite overpass are computed by linear interpolation

between the previous and posterior reanalysis timestep. Due to the low spatial resolution of the air

temperature and wind speed fields (tens of kilometers) they are assumed to represent the surface

conditions derived from conditions above the blending height (100 m above the surface) rather then
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the actual surface conditions. Therefore, air temperature at 100 m is calculated using the 2 m estimate,

ECMWF surface geopotential, SRTM DEM and lapse rate for moist air. Those 100 m estimates are then

used as inputs into the land surface flux models. AOT together with TCWV, surface pressure, SRTM

DEM elevation and solar zenith angle at the time of Sentinel-3 satellite overpass were used to estimate

the instantaneous shortwave irradiance on a horizontal surface at the satellite overpass [83,84].

2.4. Thermal Data Sharpening Approach

The thermal data sharpening approach used in this study is based on ensemble of modified

decision trees. The basic scheme of the method (Figure 1) is based on Gao et al. [8] and has

been previously applied by Guzinski and Nieto [4] to sharpen thermal data to be used as input

to evapotranspiration models. Each S3 scene is matched with an S2 scene acquired at most ten days

before or after the S3 acquisition and the regression model used for sharpening is derived specifically

for each scene pair.

Figure 1. General thermal sharpening workflow. Explanatory variables include both shortwave bands

as well any other ancillary explanatory variable, such as elevation, land cover type or exposure. Model

could be any regression model, such as multivariate linear regression or machine learning techniques.

Briefly, the atmospherically corrected Sentinel-2 shortwave data (all the 10 m and 20 m spectral

bands) with a spatial resolution of 20 m is resampled to match the pixel sampling of the SLSTR

sensor (around 1 km spatial resolution). Concurrently, the SRTM DEM is used to derive slope and

aspect maps which, together with S3 overpass time, are used to estimate the solar irradiance incident

angle of a flat tilted surface. The DEM and the solar angle maps are also resampled to the SLSTR

resolution. A multivariate regression model is then trained with the three resampled datasets used as

predictors and the Trad used as the dependent variable. The selection of training samples is performed

automatically by estimating the coefficient of variation (CV) of all the high-resolution pixels falling

within one low-resolution pixel and selecting 80% of pixels with lowest CV. The regression model

is based on bagging ensemble [85] of decision trees. The decision trees are additionally modified

such that all samples within a regression tree leaf node are fitted with a multivariate linear model, as

proposed by [8].

The regression models are trained on the whole S2 tile (100 km by 100 km) as well as on subsets of

30 by 30 S3 pixels in a moving window fashion. Once they are trained they are also applied on the whole
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scene and on each window. The bias between the predicted high-resolution Trad pixels aggregated to

the low-resolution and the original low-resolution Trad is calculated and the outputs of the whole-scene

and moving-window regressions are combined based on a weight inversely proportional to the bias [8].

Finally, the Trad predicted by the regression model is corrected by comparing the emitted longwave

radiance of the sharpened fine Trad versus the original coarse Trad. A bias-corrected Trad is therefore

re-calculated by adding an offset all fine scale pixels falling within coarse scale pixel in order to remove

any residual bias. This is done to ensure the conservation of energy between the two thermal images

with different spatial resolutions [8]. The output of the sharpening is a 20 m representation of the LST.

This image sharpening approach relies on the direct or indirect relationship that different regions

of the shortwave spectrum have with the radiometric temperature and/or the ET process. For instance

the temperature of denser canopies, with higher contrast between visible and near-infrared bands,

is lower than the temperature of bare soils [86,87]. In addition, surfaces with higher water content

(i.e., larger absorption in the short-wave infrared) have a larger evaporative capability and hence lower

temperature [88]. Likewise, higher chlorophyll concentrations (i.e., larger absorption in the red and

red-edge regions) might lead to higher light and water use efficiency and hence lower temperatures.

The information contained in the DEM (i.e., the altitude and solar illumination conditions) also has a

direct relationship with radiometric temperature, with sunlit areas having higher temperatures than

shaded ones and lower altitude sufraces having higher temperatures than higher altitude surfaces.

3. Results

The overall performance of the tested models using sharpened temperatures from Decision Trees

regressor (hereinafter Trad,DT) is shown in Table 3. Scatter plots of modelled versus measured fluxes

for all the validation sites are in the Supplement. We removed all the cases in which the S3 image

was contaminated by clouds in the vicinity of the flux towers or in which the SLSTR view zenith

angle was larger than 45 degrees. In addition, we filtered all cases where estimated Rn ≤ 50 W m−2,

assuming that noisy outputs will be produced under low available energy, as well as those yielding

unrealistic fluxes during daytime (≤−500 W m−2 and ≥1000 W m−2). After filtering the data, more

than 400 cases were available overall for the following analyses. However, it is worth noting that

ESVEP yielded significantly fewer valid retrievals. This issue might be due to the fact that ESVEP’s

end-member estimation equations were designed and parametrised for herbaceous crops [44] while

in this study they were applied to varied land-covers. All models returned a similar performance

regarding the estimation of Rn, with mean bias between −10 and −24 W m−2, RMSE ranging between

49 and 59 W m−2 and r above 0.91. This similar behaviour is explained by the fact that all models share

the same approach and same inputs in modelling net shortwave radiation, which is the component

with larger magnitude of Rn. Likewise, G showed similar behaviour as well, but in this case GMETRIC

is computed differently as it is a function of surface Rn [31,32] as opposed to TSEB and ESVEP where,

as two-source models, G is computed from Rn,S [36,44].

The main differences in model performance are therefore in the estimation of turbulent fluxes

(i.e., sensible and latent heat fluxes), and TSEB (TSEB-PT and disTSEB) usually produced most accurate

estimates in terms of RMSE (≈80 W m−2, 45% relative error, in H; and ≈90 W m−2, 45% relative error,

in λE) and higher correlation between observed and predicted values (≈0.67 for H and ≈0.76 for λE).

disTSEB performs slightly better than TSEB-PT but the difference is not significant. For METRIC and

ESVEP, the RMSE values are in all cases higher than 120 W m−2 (going as high as 220 W m−2 in case of

H modelled with ESVEP) and with lower correlation (≤0.47).

The choice of closing the energy balance gap in field measurements by assigning it to λE has

influence on the above results. Therefore, in Table 4 we also present the accuracy statistics of the

turbulent fluxes when Bowen ratio is preserved during the energy gap closure procedure. The overall

ranking of the models is preserved with the TSEB models still obtaining the lowest RMSE and highest

correlation coefficients. However, the differences between the models (particularly in case of RMSE) are

not as large as in Table 3. In particular the RMSE of the TSEB models increases significantly while there
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is a decrease in r, while the influence of closure method on the other two models is much weaker with

the RMSE of ESVEP even decreasing slightly. In subsequent analysis we always assign the residual

energy to λE.

Table 3. Error metrics for METRIC, TSEB-PT, disTSEB (TSEB-PT with flux disaggregation) and ESVEP

modelled fluxes using Decision Tree sharpened temperatures and closing the energy balance gap in

field measurements by assigning residual energy to latent heat flux. N, number of valid cases; Obs.;

mean of observed values (W m−2); bias, mean difference between predicted and observed (W m−2);

MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative

RMSE (–); r, Pearson correlation coefficient (–).

Variable Model N Obs. Bias MAE RMSE rRMSE r

H

METRIC 450 177 49 103 156 0.885 0.238
TSEB-PT 467 178 −47 65 81 0.454 0.670
disTSEB 452 178 −38 62 76 0.429 0.671
ESVEP 386 166 81 140 220 1.323 0.380

λE

METRIC 417 201 −29 100 128 0.637 0.472
TSEB-PT 459 194 22 72 89 0.457 0.756
disTSEB 442 196 24 72 88 0.451 0.769
ESVEP 326 221 −51 111 140 0.635 0.420

Rn

METRIC 505 446 −10 39 51 0.113 0.920
TSEB-PT 505 446 −14 44 56 0.125 0.908
disTSEB 480 449 −10 40 49 0.110 0.927
ESVEP 496 446 −24 46 59 0.132 0.907

G

METRIC 498 76 −1 40 50 0.668 0.497
TSEB-PT 498 76 14 44 54 0.718 0.452
disTSEB 473 77 3 41 50 0.657 0.505
ESVEP 491 76 22 47 60 0.790 0.410

Table 4. Error metrics for METRIC, TSEB-PT, disTSEB (TSEB-PT with flux disaggregation) and ESVEP

modelled fluxes using Decision Tree sharpened temperatures and closing the energy balance gap in

field measurements by preserving the Bowen ratio. N, number of valid cases; Obs.; mean of observed

values (W m−2); bias, mean difference between predicted and observed (W m−2); MAE, Mean Absolute

Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson

correlation coefficient (–).

Variable Model N Obs. Bias MAE RMSE rRMSE r

H

METRIC 450 231 −6 115 164 0.709 0.151
TSEB-PT 467 235 −103 118 145 0.618 0.417
disTSEB 452 233 −93 111 138 0.592 0.422
ESVEP 386 225 22 157 219 0.972 0.254

λE

METRIC 417 141 31 92 125 0.885 0.477
TSEB-PT 459 134 82 94 124 0.919 0.698
disTSEB 442 137 83 95 125 0.916 0.699
ESVEP 326 158 12 102 134 0.847 0.388

In order to evaluate the model sensitivity and uncertainty to different vegetation types, we have

split the results of Table 3 into four main vegetation types, depending on differences in aerodynamic

roughness, horizontal homogeneity and/or seasonal dynamics/senescence (i.e., croplands, grasslands,

savannas and forests, Table 5). Similar to the overall results, the TSEB models output most accurate

turbulent fluxes across all four vegetation types. They obtain the best results for H in grassland

(RMSE ≈ 70 W m−2, r ≈ 0.8) and for λE in cropland (RMSE ≈ 80 W m−2, r ≈ 0.75). In grassland and

cropland TSEB-PT and disTSEB produce very similar fluxes while in savanna disTSEB improves the

accuracy of modelled H and λE by up to 10 W m−2. METRIC has its best overall performance in
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savanna (RMSE of 132 W m−2 and r of 0.43 for H; RMSE of 99 W m−2 and r of 0.61 for λE) followed

by cropland while ESVEP produces inaccurate H in all vegetation types (rRMSE > 1) and its best

overall λE in grassland. It should also be noted that RMSE of Rn is for all models double in savanna

(≈65 W m−2) than in the other land cover types. This is due to vegetation being most sparse at those

sites meaning that uncertainties in estimation of albedo and emissivity of soil have the biggest influence

on shortwave and longwave net radiation respectively. Finally, very few valid cases are available to

evaluate the forest sites and hence the results are not very conclusive, with the TSEB models again

outperforming the METRIC and ESVEP.

Table 5. Error dependence on land cover for METRIC, TSEB-PT, disTSEB (TSEB-PT with flux

disaggregation) and ESVEP modelled fluxes using Decision Trees sharpened temperatures. N, number

of valid cases; Obs.; mean of observed values (W m−2); bias, mean difference between predicted and

observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2);

rRMSE, Relative RMSE (–); r, Pearson correlation coefficient (–).

Variable Land Cover Model N Obs. Bias MAE RMSE rRMSE r

H

cropland

METRIC 187 158 61 92 115 0.726 0.285
TSEB-PT 189 158 −57 71 86 0.546 0.503
disTSEB 177 157 −48 68 83 0.532 0.440
ESVEP 166 147 78 125 190 1.292 0.309

grassland

METRIC 103 195 18 132 204 1.050 0.164
TSEB-PT 110 197 −24 58 73 0.369 0.788
disTSEB 108 196 −26 58 71 0.365 0.792
ESVEP 92 185 50 120 198 1.070 0.437

savanna

METRIC 148 189 37 83 132 0.700 0.425
TSEB-PT 151 187 −50 62 78 0.416 0.671
disTSEB 150 187 −35 55 68 0.364 0.701
ESVEP 114 176 107 177 275 1.564 0.364

forest

METRIC 12 160 260 278 370 2.306 −0.030
TSEB-PT 17 202 −45 74 98 0.485 0.661
disTSEB 17 202 −35 76 94 0.468 0.657
ESVEP 14 193 110 156 184 0.953 0.692

λE

cropland

METRIC 179 256 −80 105 135 0.527 0.550
TSEB-PT 183 254 11 67 82 0.322 0.748
disTSEB 169 261 13 69 83 0.320 0.738
ESVEP 145 269 −83 111 142 0.527 0.525

grassland

METRIC 91 136 88 122 147 1.079 0.491
TSEB-PT 108 128 55 79 92 0.718 0.786
disTSEB 106 127 64 82 96 0.756 0.794
ESVEP 79 134 31 93 110 0.825 0.446

savanna

METRIC 140 165 −38 78 99 0.602 0.610
TSEB-PT 151 160 8 71 88 0.549 0.642
disTSEB 150 161 5 63 79 0.490 0.723
ESVEP 89 215 −67 117 151 0.702 0.131

forest

METRIC 7 337 −64 121 173 0.512 0.763
TSEB-PT 17 282 55 109 138 0.488 0.909
disTSEB 17 282 51 118 143 0.509 0.899
ESVEP 13 256 −93 177 198 0.774 0.770
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Table 5. Cont.

Variable Land Cover Model N Obs. Bias MAE RMSE rRMSE r

Rn

cropland

METRIC 222 441 −4 27 38 0.086 0.955
TSEB-PT 222 441 −10 32 42 0.096 0.950
disTSEB 200 450 −6 29 37 0.081 0.962
ESVEP 218 444 −22 37 49 0.111 0.942

grassland

METRIC 113 475 −15 36 45 0.094 0.929
TSEB-PT 113 475 −9 34 43 0.090 0.936
disTSEB 111 472 −7 33 42 0.089 0.937
ESVEP 110 474 −12 34 42 0.089 0.939

savanna

METRIC 153 425 −15 62 69 0.163 0.815
TSEB-PT 153 425 −23 72 79 0.187 0.763
disTSEB 152 424 −17 60 68 0.159 0.830
ESVEP 153 425 −36 69 80 0.189 0.790

forest

METRIC 17 511 −5 20 27 0.053 0.994
TSEB-PT 17 511 −1 18 24 0.047 0.995
disTSEB 17 511 −1 18 24 0.047 0.995
ESVEP 15 486 −6 17 24 0.049 0.996

G

cropland

METRIC 222 43 28 41 50 1.166 0.303
TSEB-PT 222 43 46 56 64 1.509 0.253
disTSEB 200 43 34 48 56 1.297 0.228
ESVEP 218 42 55 62 74 1.754 0.255

grassland

METRIC 113 144 −66 68 75 0.518 0.799
TSEB-PT 113 144 −43 49 60 0.419 0.677
disTSEB 111 143 −46 50 61 0.429 0.710
ESVEP 110 147 −42 49 59 0.403 0.647

savanna

METRIC 153 78 2 19 23 0.293 0.792
TSEB-PT 153 78 12 25 30 0.381 0.622
disTSEB 152 78 −3 27 32 0.418 0.472
ESVEP 153 78 23 28 34 0.435 0.724

forest

METRIC 10 −2 25 25 32 21.275 0.959
TSEB-PT 10 −2 9 9 11 6.989 0.905
disTSEB 10 −2 8 8 9 6.083 0.770
ESVEP 10 −2 13 13 14 9.383 0.981

The agriculture class was further split into herbaceous and woody types, with results shown

in Table 6. The former sub-class represents crops such as corn, soybean or wheat while the latter

represents olive groves and vineyards. TSEB models produce the most consistent results for both

types of crops, although somewhat surprisingly the RMSE of λE in woody crops (76–79 W m−2) is

significantly lower than in herbaceous crops (91–93 W m−2), while opposite is the case for RSME of H

(69–71 W m−2 in herbaceous crops and 91–94 W m−2). rRMSE of λE in both agricultural sub-classes

was 0.32 which is of the same magnitude as energy closure gap at the validation sites (e.g., the mean

value at CH was 0.34 at the times at which fluxes were modelled). METRIC is very clearly performing

better in woody crops, while ESVEP obtains better results for H in herbaceous crops and better results

for λE in woody crops. It is also worth noting that Rn and G showed larger relative errors in woody

crops than in herbaceous crops, since woody canopies are more complex and therefore more difficult

to capture by the models and/or parametrizations used [89,90].
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Table 6. Crop type dependent errors for METRIC, TSEB and ESVEP modelled fluxes using Decision Tree

sharpened temperatures. N, number of valid cases; Obs.; mean of observed values (W m−2); bias, mean

difference between predicted and observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE,

Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson correlation coefficient (–).

Variable Land Cover Model N Obs. Bias MAE RMSE rRMSE r

H

herbaceous

METRIC 66 135 115 120 144 1.068 0.452
TSEB-PT 67 134 −39 55 71 0.528 0.509
disTSEB 67 134 −31 55 69 0.517 0.470
ESVEP 62 133 46 78 107 0.805 0.440

woody

METRIC 121 171 31 77 96 0.558 0.320
TSEB-PT 122 172 −67 80 94 0.547 0.515
disTSEB 110 171 −58 75 91 0.533 0.424
ESVEP 104 155 98 152 225 1.452 0.258

λE

herbaceous

METRIC 58 289 −151 157 189 0.656 0.215
TSEB-PT 59 288 −42 78 93 0.324 0.662
disTSEB 59 288 −33 77 91 0.316 0.676
ESVEP 55 285 −118 126 149 0.523 0.605

woody

METRIC 121 241 −46 80 99 0.411 0.738
TSEB-PT 124 238 36 61 76 0.318 0.840
disTSEB 110 247 38 65 79 0.321 0.823
ESVEP 90 259 −62 101 137 0.529 0.522

Rn

herbaceous

METRIC 68 461 −23 30 38 0.082 0.976
TSEB-PT 68 461 −36 40 47 0.102 0.975
disTSEB 68 461 −29 35 42 0.091 0.976
ESVEP 67 460 −36 39 47 0.102 0.975

woody

METRIC 154 433 5 26 38 0.087 0.952
TSEB-PT 154 433 1 29 40 0.092 0.952
disTSEB 132 444 6 26 33 0.075 0.968
ESVEP 151 437 −16 36 50 0.115 0.929

G

herbaceous

METRIC 68 48 7 42 51 1.062 0.447
TSEB-PT 68 48 34 55 64 1.351 0.296
disTSEB 68 48 22 49 60 1.261 0.234
ESVEP 67 46 34 51 62 1.328 0.395

woody

METRIC 154 40 38 41 49 1.221 0.507
TSEB-PT 154 40 51 57 64 1.591 0.472
disTSEB 132 40 41 48 53 1.314 0.490
ESVEP 151 41 64 67 79 1.955 0.458

Finally, Table 7 lists the model performance depending on whether sites are under Mediterranean

and semi-arid climate (i.e., water limited sites), or sites under temperate climate (i.e., energy limited

sites). First of all it is worth noting that due to cloud coverage conditions, more valid cases are obtained

over semi-arid conditions than in temperate areas. TSEB models showed similar range of errors in

both climatic conditions, with RMSE in λE at around 85 W and 99 W m−2 for semi-arid and temperate

conditions, and correspondingly around 80 and 70 W m−2 for H. ESVEP and METRIC yielded more

varying results between climates, with METRIC producing more accurate estimates of both H and λE

in semi-arid conditions and ESVEP showing better performance for H in temperate climates and better

performance for λE in semi-arid climates.
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Table 7. Climate dependence of errors for METRIC, TSEB and ESVEP modelled fluxes using Decision

Trees sharpened temperatures. N, number of valid cases; Obs.; mean of observed values (W m−2); bias,

mean difference between predicted and observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE,

Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson correlation coefficient (–).

Variable Climate Model N Obs. Bias MAE RMSE rRMSE r

H

semi arid

METRIC 354 190 28 95 149 0.780 0.270
TSEB-PT 365 191 −51 69 84 0.438 0.676
disTSEB 350 191 −41 64 78 0.411 0.670
ESVEP 296 177 87 155 242 1.370 0.337

temperate

METRIC 96 126 126 133 182 1.441 0.356
TSEB-PT 102 134 −32 53 71 0.530 0.635
disTSEB 102 134 −26 52 69 0.513 0.637
ESVEP 90 132 62 92 122 0.927 0.586

λE

semi arid

METRIC 335 178 -6 90 114 0.641 0.534
TSEB-PT 366 170 32 71 86 0.504 0.763
disTSEB 349 171 33 70 85 0.498 0.776
ESVEP 245 202 −30 103 134 0.665 0.391

temperate

METRIC 82 295 −123 140 174 0.589 0.419
TSEB-PT 93 289 −19 79 99 0.343 0.739
disTSEB 93 289 −10 79 98 0.341 0.750
ESVEP 81 278 −115 135 157 0.564 0.646

Rn

semi arid

METRIC 401 442 −9 42 53 0.121 0.893
TSEB-PT 401 442 −11 47 59 0.133 0.877
disTSEB 376 446 −8 42 52 0.116 0.902
ESVEP 398 444 −23 48 62 0.140 0.876

temperate

METRIC 104 462 −13 29 38 0.082 0.976
TSEB-PT 104 462 −23 35 43 0.093 0.975
disTSEB 104 462 −17 31 40 0.086 0.976
ESVEP 98 453 −26 35 43 0.094 0.977

G

semi arid

METRIC 401 84 −3 41 52 0.616 0.431
TSEB-PT 401 84 11 44 54 0.643 0.398
disTSEB 376 86 0 41 50 0.582 0.467
ESVEP 398 84 21 49 61 0.727 0.316

temperate

METRIC 97 40 7 36 45 1.104 0.480
TSEB-PT 97 40 26 43 55 1.362 0.399
disTSEB 97 40 16 38 51 1.272 0.358
ESVEP 93 39 29 42 53 1.355 0.477

4. Discussion

4.1. ET Model Intercomparison

Overall results listed in Table 3 show that TSEB models produced more robust estimates

of both sensible and latent heat fluxes, with lower errors around 80 to 90 W m−2 and larger

correlation coefficient, while at the same time returning more valid cases than the other two

models, METRIC and ESVEP. Those errors are within the expected and reported errors in literature,

e.g., Kalma et al. [2] showed errors in λE ranging between 24 and 105 W m−2 for a wide range of

models, Chirouze et al. [58] reported errors for TSEB > 100 W m−2 in a semi-arid area of Mexico, and

50 W m−2 errors are reported in Tang et al. [35]. Choi et al. [91] found TSEB-PT and METRIC produced

similar errors of 54 W m−2 in a watershed in Iowa, US. However it is worth noting that most of the

reported errors in these studies [35,58,91,92] used actual surface temperature at high spatial resolution

(e.g., Landsat or ASTER), whereas in this study we used low resolution temperature sharpened to

high spatial resolution, which provides an additional input uncertainty to the models. For that reason,

Section 4.2 is dedicated to this issue in depth.
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TSEB-PT was developed trying to solve some of the issues in sparse vegetation and semi-arid

conditions previously raised by less complex models [36], and therefore it adapts better to a wider

range of climatic and vegetation conditions [1] as it was shown in Tables 5 and 7. METRIC, on the other

hand, was primarily designed for standard crops and requires concomitant presence of stressed and

well watered-full vegetation conditions within the scene itself. This more often happens in semi-arid

climate where irrigated crops and rainfed crops and natural vegetation are present. Those cases in

which, either due to the increased presence of clouds (i.e., fewer available pixels in the scene) or in

regions where these hot and cold pixels cannot be simultaneously found, METRIC would produce

more uncertain retrieval, as already pointed by Choi et al. [91] and Tang et al. [35] (in humid or

sub-humid areas), or even would not produce any valid data. Similarly, ESVEP was designed and

tested in an agricultural area located in a subhumid and monsoon climate [44] and therefore certain

assumptions and parameterizations taken in that model might not transfer well to other vegetation or

climatic conditions.

Despite of TSEB being the model with the largest required amount of input data, this study

proposed several new approaches to retrieve some of those inputs operationally, with special focus on

exploiting the spectral capabilities of Sentinel-2, in particular the bands in the red-edge region that

is sensitive to leaf pigments. A simple empirical approach relating leaf bihemispherical reflectance

and transmittance with the leaf biochemical properties resulted in accurate estimates of net radiation.

More importantly, due to the larger uncertainty of TSEB models over senescent vegetation, we derived

a method to obtain both total LAI and its green fraction based on Fisher et al. [75] FAPAR/FIPAR

relationship. Nevertheless, more research is needed to systematically derive other vegetation properties

such as canopy height/aerodynamic roughness or vegetation clumping.

Finally, it is worth pointing out that even in situ EC measurements are prone to uncertainty as is

confirmed for instance by the usual energy imbalance in those systems. Particularly we found a larger

disagreement between observed and predicted net radiation in Dahra (see Figures in the Supplement).

We hypothesise that this could be due to two possible reasons. Firstly, our modelled irradiance, with

depends on TCWV and aerosol optical thickness, could be more noisy at Dahra than the other sites, due

to unaccounted dust aerosols in that site placed over the Sahel. The second issue might be the actual

Rn measurements, as in this site only a NR-lite (Kipp & Zonen, Netherlands) is available to measure

global Rn that might be less accurate than the radiometers at the other sites, which are measuring the

four components of radiation. In addition, Harvard Forest site lacks in situ G measurements, which

effects the energy balance closure correction. This issue together with the fact that very few cases are

available in forests (Table 5), leads us to avoid strong conclusions regarding the performance of the

models in forested areas.

4.2. Sharpening and Disaggregation

As was previously mentioned, thermal sharpening relates empirically or semi-empirically coarse

resolution surface temperature with fine resolution multispectral and other ancillary data. This

technique could be a sound alternative to the lack high resolution thermal imagery for operational

activities. However, previous studies in thermal sharpening have reported some uncertainties when

compared to actual Trad temperatures, with errors ranging up to 3.5 K [7–9,11,12,14]. Therefore, for

some applications requiring ET estimates at higher accuracy (i.e., precision agriculture), sharpening

might not be considered as a suitable substitute of Trad but complementary to it, such as in the fusion

approach by Knipper et al. [93].

In order to reduce flux retrieval errors with sharpened Trad inputs, we also tested a flux

disaggregation method [10,23]. Our results listed in Tables 3–7 show that disTSEB model, i.e., coarse

S3 TSEB-PT fluxes disaggregated with fluxes derived with TSEB-PT and fine resolution sharpened Trad,

yielded only modest improvement (5 W m−2 reduction in RMSE in case of H and only 1 W m−2 in

case of λE) to the TSEB-PT model, i.e., running TSEB directly on the sharpened Trad imagery. The one

exception was at the savanna sites (see Table 5) where using disaggregation reduced the errors in H by
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around 12% and errors in λE by around 10%. However, previous studies have shown the robustness

of this approach to overcome limitations of the likely less reliable fine resolution Trad images [4,93,94].

Furthermore, coarse input data must be produced beforehand for thermal sharpening and hence it

is readily available for running the models at coarse resolution, which indeed is computationally

inexpensive given the much lower number of pixels within a scene. Therefore, flux disaggregation

would still be recommended when running TSEB-PT with sharpened temperatures.

In addition, the sharpening of a coarse resolution Trad image using fine resolution images acquired

on different days, with a maximum of 10 days offset, might lead to additional uncertainties. This is

caused by the fact that some changes in either land cover properties, (e.g., vegetation growth, harvests,

fires) or moisture conditions (e.g., rainfall or irrigation) might happen between the Sentinel 2 and 3

acquisitions. Figure 2 shows that at a general level (all validation sites taken together) this does not

appear to be a significant issue as the error does not increase as the day offset between thermal and

shortwave acquisitions gets larger. Particularly relevant in this analysis is H since it is the energy

component that is directly related to Trad, and hence more prone to errors in sharpening. However,

more studies should be conducted to look at the effect of the day offset in particular situations, e.g., in

crops during senescence or with localized irrigation patterns. It might be also worth to investigate

using high-resolution radar data (e.g., from Sentinel-1), which is sensitive to soil moisture, in the

thermal data sharpening approach [95]. Furthermore, the Landsat family of satellites could also be

utilised during the sharpening since they acquire thermal data at around 100 m spatial resolution

although at 8 days (two satellites) to 16 days (single satellite) temporal resolution. Using observations

from those satellites would both increase the temporal density of the high-resolution data but also

capture physical processes and properties which are not reflected in the shortwave data, such as near

soil surface soil moisture and soil evaporative efficiency.

Finally, some studies have reported larger errors than in this study, but they were using coarser

resolution imagery [43]. This is probably due to the scale mismatch between the coarse pixel estimate

and the footprint of the EC towers’ measurements. We evaluated this by comparing fluxes modelled at

Sentinel-2 (i.e., with sharpened Trad) and Sentinel-3 spatial resolutions against measurements form

towers. This was done for all the sites put together and also for the validation sites split into two

categories: those in which the tower is located in a landscape feature too small to have significant

effect on the original resolution Sentinel-3 Trad (category “small” containing CH, KL, GR and SE sites),

and those where the opposite is true (category “large” containing SL, DA, HF, HTM, MT TA and KG

sites). The results (Table 8) indicate that using sharpened Trad is most important when modelling H in

the “small” category. However, the correlation of high-resolution fluxes against tower measurements

is in almost all the cases higher than that of low-resolution fluxes and rRMSE is lower or the same in

case of turbulent fluxes. Therefore, even though sharpened Trad might be more prone to errors than

actual high-resolution Trad, it is still a good option for downscaling fluxes for model validation [4],

addressing therefore the vegetation cover variability within coarse resolution pixels. Nevertheless,

there is still an open question on how feasible thermal sharpening is for early detection of water stress

at small scales, compared to using high resolution thermal imagery. This issue is especially relevant

for precision irrigation tasks and therefore future studies should address this topic.
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Figure 2. Error (modelled–measured) distribution of fluxes modelled with TSEB-PT and disTSEB

models using sharpened Trad depending on offset days between a Sentinel-3 Trad image and the

fine-scale Sentinel-2 multispectral image. Error computed for all sites together.

Table 8. Landscape feature size dependence of errors for low and high resolution TSEB-PT modelled

fluxes using Decision Trees sharpened temperatures. N, number of valid cases; Obs.; mean of observed

values (W m−2); bias, mean difference between predicted and observed (W m−2); MAE, Mean Absolute

Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative RMSE (–); r, Pearson

correlation coefficient (–).

Feature Size Variable Resolution N Obs. Bias MAE RMSE rRMSE r

all

H
Sentinel-2 467 178 −47 65 81 0.454 0.670
Sentinel-3 456 176 −38 73 89 0.509 0.548

λE
Sentinel-2 459 194 22 72 89 0.457 0.756
Sentinel-3 446 196 13 71 92 0.467 0.726

Rn
Sentinel-2 505 446 −14 44 56 0.125 0.908
Sentinel-3 481 446 −12 42 56 0.126 0.902

G
Sentinel-2 498 76 14 44 54 0.718 0.452
Sentinel-3 474 74 13 43 51 0.690 0.491

small

H
Sentinel-2 85 121 −29 48 65 0.534 0.514
Sentinel-3 88 120 4 65 88 0.736 0.186

λE
Sentinel-2 76 290 −35 73 88 0.303 0.706
Sentinel-3 79 290 −26 70 88 0.303 0.694

Rn
Sentinel-2 87 452 −27 38 46 0.101 0.964
Sentinel-3 90 451 −11 30 37 0.083 0.970

G
Sentinel-2 87 45 28 47 58 1.283 0.301
Sentinel-3 90 46 8 45 57 1.250 0.016

200



Remote Sens. 2020, 12, 1433

Table 8. Cont.

Feature Size Variable Resolution N Obs. Bias MAE RMSE rRMSE r

large

H
Sentinel-2 382 191 −51 69 84 0.441 0.673
Sentinel-3 368 189 −49 75 90 0.475 0.620

λE
Sentinel-2 383 175 33 72 89 0.507 0.770
Sentinel-3 367 176 21 72 93 0.525 0.719

Rn
Sentinel-2 418 445 −11 45 58 0.130 0.897
Sentinel-3 391 445 −13 45 60 0.135 0.884

G
Sentinel-2 411 82 11 43 53 0.652 0.444
Sentinel-3 384 81 15 42 50 0.614 0.515

4.3. Effects of Ancillary Inputs

Ancillary data is required to characterise the canopy structure, since it affects both the radiation

transmission through the canopy [53], and hence albedo and radiation partitioning, as well as the

surface aerodynamic properties [79]. In this study we have used a static land cover map at global scale

to assign some standard values to each land cover type (Table 2). However, the large difference in

spatial resolution between the S2 data and CCI map can lead to visible artefacts in the output fluxes

when modelled at 20 m resolution, especially on the edges of two classes with different vegetation

properties (e.g., croplands and forests). However, those spatial artefacts seem not to have any influence

on the validation results. Nevertheless, some discrepancies were found between the land cover type

flagged by the map and the actual type at the validation sites. In Majadas de Tiétar, CCI-LC flagged

the site as cropland (CCI-LC = 11), thus hc,MAX = 0.5 m, fc = 1 and lw = 0.02 m, but actually this

site is a savanna with 8 m tress at 20% coverage (CCI-LC = 30). In addition, the prescribed values

that were assigned in Table 2 are very general, as they are trying to fit a global-based land cover

legend. Therefore they can significantly deviate from the site’s actual values. Indeed, all croplands

were assumed to be not clumped ( fc = 1) although row crops, like the vineyard in Sierra Loma, or

orchards like the olive grove in Taous have very different canopy structure compared to a standard crop.

Therefore, a significant improvement could be expected if a more area-specific surface characteristics

parametrization was used, either using some ancillary remote sensing like SAR imagery or LiDAR or a

regional/local oriented land cover classification.

To conclude, atmospheric forcing from numerical weather prediction models might add some

uncertainty to the ET model compared to using local meteorological data, specially for precision

agriculture where access to local agrometeorological stations is possible. In this study we relied

on ERA5 reanalysis data and despite large discrepancy between spatial resolution of ERA5 (tens

of kilometres) and point scale measurements from the towers there is a strong agreement for the

most important meteorological parameters (Figure 3). Instantaneous shortwave irradiance, which

was computed at the Sentinel 3 overpass time using ECMWF AOT and TCWV dataset, showed no

systematic bias but a RMSE of 29 W m−2. This in turns directly effects on the accuracy of Rn (Tables 3–7),

and indirectly that of λE since it is estimated as a residual of the energy balance. Therefore, errors

in λE could be significantly reduced if more accurate inputs of irradiance were used, especially over

temperate areas (i.e., radiation limited) which are more sensitive to uncertainty in available energy. On

the other hand, the errors in both air temperature (RMSE = 1.8 K) and windspeed (RMSE = 1.3 m s−1)

affect mainly on the retrievals of sensible heat flux. This issue become more relevant in the estimation

of λE over semi-arid (i.e., water limited) areas. For near-real-time applications it is necessary to use

forecast or analysis data, instead of the ensemble mean reanalysis data, and those issues could become

more evident.
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Figure 3. Scatterplot between the input ERA5 ensemble meant reanalysis data and in situ measurements

for the main atmospheric forcings. Data from all validation sites is shown on the same plot.

5. Conclusions

The multispectral shortwave images acquired by the Sentinel-2 satellites at 10–20 m spatial

resolution are highly suitable for characterizing vegetation in order to derive inputs required for

evapotranspiration models. At the same time, thermal data acquired daily by Sentinel-3 satellites is

also suitable as input to the ET models. However, its low spatial resolution (1 km) needs to be increased

if the models are to be run at the scale of predominant landscape features, which is usually on the

order of tens of meters. This study evaluated three thermal-based remote sensing ET models (METRIC,

ESVEP and TSEB-PT) and a thermal sharpening method (ensembles of modified Decision Trees) in

order to derive methodology for operational estimates of water and energy fluxes using Sentinel data

and applicable for the whole globe. Further evolution of the thermal sharpening methodology by

using other data sources with high spatial resolution and variable temporal resolutions, e.g., Sentinel-1

radar [95] or Landsat thermal observations [96], is planned.

TSEB-PT produced overall the most accurate estimates in terms of sensible heat and latent

heat (i.e., evapotranspiration) fluxes, being robust in different land covers and climates. Additional

disaggregation step further improved TSEB-PT output accuracy in savanna ecosystems. Without

any site-specific tuning and relying only on global datasets the methodology achieved RMSE of

80–90 W m−2 for modelled instantaneous H and λE across eleven validation sites located in different

land cover classes and climatic conditions. In an agricultural setting the modelled fluxes were more

accurate with rRMSE of λE of around 0.3 which is of the same magnitude as uncertainty of the

measured turbulent fluxes from the validation dataset. Until a new generation of thermal satellites are

launched [97], the proposed methodology will be useful solution for overcoming the lack of thermal

data with high spatio-temporal resolution required for operational ET modelling at field scale.
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Abstract: Land surface temperature (LST) plays a fundamental role in various geophysical processes

at varying spatial and temporal scales. Satellite-based observations of LST provide a viable option

for monitoring the spatial-temporal evolution of these processes. Downscaling is a widely adopted

approach for solving the spatial-temporal trade-off associated with satellite-based observations of LST.

However, despite the advances made in the field of LST downscaling, issues related to spatial averaging

in the downscaling methodologies greatly hamper the utility of coarse-resolution thermal data for

downscaling applications in complex environments. In this study, an improved LST downscaling

approach based on random forest (RF) regression is presented. The proposed approach addresses

issues related to spatial averaging biases associated with the downscaling model developed at the

coarse resolution. The approach was applied to downscale the coarse-resolution Satellite Application

Facility on Land Surface Analysis (LSA-SAF) LST product derived from the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) sensor aboard the Meteosat Second Generation (MSG) weather satellite.

The LSA-SAF product was downscaled to a spatial resolution of ~30 m, based on predictor variables

derived from Sentinel 2, and the Advanced Land Observing Satellite (ALOS) digital elevation model

(DEM). Quantitatively and qualitatively, better downscaling results were obtained using the proposed

approach in comparison to the conventional approach of downscaling LST using RF widely adopted

in LST downscaling studies. The enhanced performance indicates that the proposed approach has

the ability to reduce the spatial averaging biases inherent in the LST downscaling methodology and

thus is more suitable for downscaling applications in complex environments.

Keywords: LST; downscaling; LSA-SAF; Sentinel 2; random forest; DEM; spatial averaging biases

1. Introduction

Land surface temperature (LST) plays a critical role in surface energy balance and partitioning

and hence drives water and biogeochemical cycles [1–3]. The dynamics induced by this cycling,

through land–atmosphere interactions, play an essential role in the evolution of weather and climate [4].

Consequently, LST has been widely used as a critical parameter in the estimation of an array

of geophysical variables, such as evapotranspiration [5–7], soil moisture [8,9], vegetation water

stress [10,11], and urban heat fluxes [12,13], to support various applications, ranging from but not limited

to agriculture, climate change, urban climate, forest fire monitoring, energy and water management.

Cognizant to the fundamental role of LST in the understanding of various geophysical processes,

and the need to capture their spatial-temporal evolution, space-borne missions often include thermal

infra-red (TIR) sensors dedicated to LST mapping. However, the applicability of LST products derived
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from these sensors for operational purposes is hampered by the inherent spatial-temporal trade-off in TIR

imagery. Downscaling, also referred to as disaggregation, has come to the fore as a cheaper alternative

solution to the spatial-temporal trade-off problem associated with TIR imagery [14,15]. Downscaling can

be defined as the synergistic utilization of the complementary nature of the high-resolution visible

near-infrared (VNIR) imagery and the coarse resolution TIR imagery, sometimes supported by ancillary

information to discern the spatial distribution of thermal elements at the resolution of the VNIR imagery.

Although various downscaling methods have been proposed, statistical downscaling methods are often

preferred over other downscaling methods owing to their simplicity [14,15]. Statistical downscaling

techniques based on the well-established relationship between LST and vegetation indices (VI) [16], such as

the disaggregation procedure for radiometric surface temperature (DisTrad) [17], and the algorithm for

sharpening thermal imagery (TsHARP) [18] have shown excellent performance in relatively homogeneous

vegetation canopies. However, the assumptions made in the LST-VI feature space-based approach are

rarely satisfied in fragmented landscapes undermining their performance [14,15,19].

Consequently, statistical downscaling methods that utilize multiple predictor variables such as

multiple linear regression and machine-learning algorithms are often preferred in heterogeneous

landscapes over the LST-VI feature space-based approaches [15,20]. Machine learning-based methods,

in particular, have consistently shown superior performance in comparison to other downscaling methods

in complex environments. This is due to their ability to learn the complex, often non-linear statistical

relationships that exist between the predictor variables and LST in such complex landscapes [15,21].

In a study by Li et al. [21], the ability of random forest (RF), artificial neural networks (ANN), support vector

machines (SVM) and TsHARP to downscale the Moderate Resolution Imaging Spectroradiometer (MODIS)

LST in two complex environments around the city of Beijing in China, were compared. In both regions,

all the machine learning-based algorithms produced higher downscaling accuracies in comparison to the

TsHARP method. Also, their study obtained better downscaling results with RF and ANN compared

to SVM. In another study, Hutengs and Vohland, [22] applied RF to downscale MODIS LST product

from a spatial resolution of ~1 km to 250 m of the MODIS VNIR reflectance in the Jordan River valley,

a region characterized by complex terrain. The results of their work showed an improved performance

of up to 19% for the RF-based downscaling in comparison to the TsHARP method. In yet another study,

Pan et al. [23] utilized remote-sensing indices derived from Landsat 8 Optical Land Imager (OLI)

to downscale MODIS LST using RF in an urban area located in an oasis–desert transition in China.

They reported better accuracies in the downscaled LST based on RF as compared to LST derived from

Landsat 8. Besides providing superior robust downscaling performance, machine learning-based

downscaling methods have contributed immensely in our understanding of the influence of different

predictors on LST under varying environments, such as in arid regions [23,24], complex terrain [22,25],

and urban areas [26], among others.

Since its first application in the downscaling of LST by Hutengs and Vohland, [22], RF has become

popular in the downscaling of TIR data. Being a non-parametric ensemble learning method [27],

the model is less prone to overfitting and has the ability to handle high dimensional multicollinear

data [28,29], which explains its superior performance and popularity in downscaling applications.

However, although the ensemble decision tree with bagging approach adopted in constructing the RF

model reduces the risk of overfitting, the model constructed is the average of the randomly constructed

decision trees. Thus, RF is unable to predict data beyond the range of data presented during the model

training. Since the methodology adopted in statistical downscaling methods involves a transfer of

the model built at the coarse resolution to predict LST at the fine resolution, RF regression-based

downscaling approaches will introduce biases related to spatial averaging in the downscaled LST.

This issue has not been addressed in downscaling studies since it is generally assumed that the model

error correction procedure in the downscaling methodology is sufficient to correct for biases in the

model. However, as noted in Bindhu, Narasimhan and Sudheer, [30] and Essa et al. [31], the assumption

made in the model error correction procedure is rarely satisfied in complex, heterogeneous landscapes.

The procedure is based on the assumption that the model error computed at the coarse resolution pixel
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remains constant for the fine-resolution LST pixels that constitute the coarse resolution pixel. In such

environments, the validity of this assumption will tend to decrease as the differences in the spatial

resolution between the original LST and the downscaled LST increase. On the other hand, the spatial

averaging biases inherent to RF will increase with increasing differences in the spatial resolution. Thus,

a downscaling approach that takes into account the effect of spatial averaging in RF regression-based

downscaling methodology is needed. Such an approach could harness the potential of TIR data

derived from the high temporal but low spatial resolution images from geostationary satellites such as

MSG, the Geostationary Operational Environmental Satellite (GOES), and Himawari-8 to provide high

spatial-temporal TIR data, alleviating the spatial-temporal trade-off problem associated with TIR imagery.

In this study, an improved universally applicable RF regression-based downscaling approach,

which minimizes the spatial averaging biases related to the model trained at the coarse resolution,

is presented. The approach is applied to enhance the spatial resolution of the Satellite Application

Facility on Land Surface Analysis (LSA-SAF) LST product from a spatial resolution of ~3 km at the

sub-satellite view to ~100 m based on Sentinel 2 and Advanced Land Observing Satellite (ALOS) digital

elevation model (DEM)-derived predictor variables. The downscaled LST maps are then validated

against LST maps derived from Landsat 8. The approach is tested in a region in Kenya, comprising

the Kenyan Rift valley system, the Kenyan highlands and the arid and semi-arid lands (ASAL) in the

northern part of the country.

2. Materials and Methods

2.1. Methodology

2.1.1. Proposed Downscaling Approach

The conventional approach of downscaling LST in RF is represented by the steps described

by Equations (1)–(4). This approach has been widely adopted in various LST downscaling studies

(e.g., [21–24]). The studies differ mainly in terms of the chosen predictor variables and the target

coarse-resolution LST product.

The proposed approach follows the steps of the conventional approach from Equations (1)–(4).

On the other hand, Equations (5)–(9) describe the extension of the conventional approach of downscaling

LST in RF to derive the proposed improved approach for downscaling LST using RF regression.

In the first step, an RF regression linking model is trained using the coarse resolution LSA-SAF

LST and predictor variables derived from Sentinel 2 and ALOS DEM. The linking model is defined

using Equation (1) and describes the relationship between the predictor variables and the target LST at

the coarse-scale.

LSTCR = F(Var_CRi . . . , Var_CRn) (1)

where, LSTCR is the coarse resolution LSA-SAF LST, F is the linking model at the coarse resolution,

Var_CR is the predictor variable aggregated to the resolution of the LSA-SAF LST, while i and n denotes

the ith and nth selected predictor variable, respectively.

The linking model developed in Equation (1) is scene dependent, but the relationship it describes

is assumed to be valid across multiple spatial scales within the scene, thus for each scene, a new model

should be trained. Based on this assumption, the linking model is applied to the predictor variables at

the fine spatial resolution to predict LST at the fine spatial resolution using Equation (2).

LSTFHR = F(Var_HRi . . . , Var_HRn) (2)

where LSTFHR is the high-resolution LST modeled using the coarse resolution model F, and Var_HR is

the predictor variable at the fine spatial resolution.

However, since the selected predictor variables cannot fully account for all the variations in LST,

the linking model has an inherent error; thus, the derived high-resolution LST should be corrected
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for this error. The model error correction procedure involves a spatial aggregation of the modeled

high-resolution LST to the coarse resolution and subsequently computing the model error (∆LSTCR) as

the difference between the original coarse resolution LSA-SAF LST and the aggregated LST from the

model, as shown in Equation (3).

∆LSTCR = LSTCR − LSTFHR (3)

where LSTFHR is the predicted LST from Equation (2) aggregated to the coarse resolution. Prior to

aggregation to the coarse scale, the high-resolution LST was first converted to radiance using the

Stefan–Boltzmann law. Subsequently, the high-resolution radiance was aggregated to the coarse

resolution and then converted to the aggregated LST at the coarse resolution by inverting the

Stefan–Boltzmann equation. The emissivity used in the Stefan–Boltzmann equation was derived from

fractional vegetation cover using the method of Jimenez-Munoz et al. [32]. The fractional vegetation

cover was derived from the Normalized Difference Vegetation Index (NDVI) using the method of

Carlson and Ripley [33]. The bare soil and full vegetation cover emissivity values adopted in the

vegetation fraction based emissivity method are 0.97 Sobrino et al. [34], and 0.99 Sobrino et al. [35],

respectively. This step was included in the aggregation procedure to avoid introducing biases in the

aggregated LST owing to the non-linear relationship between radiance and LST.

In the model error correction step, it is assumed that the contribution to the model error by the fine

resolution pixels that constitute the coarse resolution pixel is constant. Based on this assumption, the model

error is resampled to the original resolution of the predictor variables and added to the high-resolution LST

obtained using Equation (2) to derive the final downscaled LST as shown in Equation (4).

LSTHR = LSTFHR + ∆LSTHR (4)

where LSTHR is the final downscaled LST based on the conventional approach, and ∆LSTHR is the

disaggregated model error.

However, in spatially heterogeneous environments and in particular, where the difference in

spatial scales between the fine resolution predictor variables and the coarse resolution LST is large, this

assumption is rarely satisfied.

The other shortcoming in the downscaling approach, especially when regression tree-based

machine-learning algorithms such as RF are applied, is the assumption that the model developed

in Equation (1) is valid across multiple spatial scales. The training data used to derive the model at

the coarse-scale is an average representation of the spatial variability within the scene. Thus, as the

difference in spatial scales between the fine resolution predictor variables and the coarse resolution LST

increases, more spatial details which were not present at the coarse-scale will emerge. Since regression

tree-based machine-learning algorithms are poor at predicting data outside the range of data present

during training, the model trained at the coarse resolution will rarely capture such spatial details.

To counter this problem, the high-resolution LST obtained in Equation (4) is used to construct

a new RF regression model and predict new data range-enhanced LST at the fine resolution using

Equation (5).

LST f HR = f (Var_HRi . . . , Var_HRn) (5)

where LST f HR is the data range enhanced high-resolution LST, and f is the RF regression model trained

at the fine resolution.

Unlike the LST predicted using Equation (2), the LST from Equation (5) is less affected by issues

related to averaged data ranges in the training data. However, the LST from Equation (5) still needs

to be corrected for the model error, since the selected predictor variables cannot entirely account

for the variations in LST. Also, it should be adjusted for the averaging effect related to the constant

redistribution of the model error in the fine resolution LST obtained using Equation (4). Thus, the final

corrected LST is represented by Equation (6).
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LSTNHR = LST f HR + ∆LSTHR + ∆LSTAVG (6)

where LSTNHR is the final downscaled LST using the proposed approach and ∆LSTAVG is the averaging

effect in the model error correction procedure.

The difference between the LST from Equation (4) and LST from Equation (5) is assumed to be

primarily related to the averaging effect in the model error correction procedure. Thus, the averaging

effect can be approximated using Equation (7).

∆LSTAVG = LST f HR − LSTHR (7)

Substituting Equation (4) into Equation (7) and rearranging the terms yields:

∆LSTHR + ∆LSTAVG = LST f HR − LSTFHR (8)

Equation (8) indicates that the corrections for the model error and the averaging errors can be

approximated as the difference between the LST predicted using Equation (5), and LST predicted using

Equation (2). Thus, Equation (6) can be rewritten as follows:

LSTNHR = 2× LST f HR − LSTFHR (9)

Equation (9) represents the final proposed approach for downscaling LST in complex environments

using RF regression.

Besides enhancing the spatial details in the LST predicted at the fine resolution, the proposed

approach indirectly incorporates the coarse-resolution model error correction as shown in Equation (8).

Thus, the impact of the coarse-resolution model error correction on the downscaled LST should be

less pronounced since the approach does not assume a constant redistribution of the coarse-resolution

model error.

Due to the indirect incorporation of the model error correction as opposed to the direct addition of the

model error in the conventional method (Equation (4)), the proposed approach will also predict LST even

for cloud-contaminated pixels during the overpass time of the thermal sensor. However, the LST predicted

for the cloud contaminated pixels will be highly uncertain since the RF regression models used to derive

LST f HR and LSTFHR do not contain any information on LST under cloudy conditions. Thus, we strongly

recommend masking out the cloud-contaminated pixels using the cloud mask of the thermal image.

2.1.2. Random Forest Model Description

Random forests [27] are an ensemble decision tree-based supervised machine learning algorithm.

The ensemble consists of an average over several randomized and de-correlated decision trees adapted

for either classification or regression. For regression purposes, non-linear multivariate regression trees

are constructed, with a set of decision rules being used to determine the splitting when building the

trees. A bootstrap sample which contains about two-thirds of the observations is selected during

model training to grow each tree, and by using a randomly selected subset of predictors, the chance of

model overfitting is reduced. Splits are achieved by minimizing a cost function between the target and

the predictors resulting in a regression tree.

A third of the unseen observations during model training are used to compute the popular out-of-bag

(OOB) error estimate in RF [27]. A prediction is constructed for each of the unseen data instances using

only those regression trees in which the respective data instance was not used in training. The average

error over all OOB predictions is then used to derive the overall OOB score, providing a convenient way

of assessing the performance of the model. On the other hand, improvements recorded on the splitting

decision at each split node and for each tree are used to derive variable importance rankings, enabling

the assessment of the contribution of each predictor to the final model. Other advantages include the
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ability of RF to account for correlations among features [29,36], to handle continuous and categorical

data simultaneously, and the relatively small number of model parameters needed [37].

In this study, the RF regression framework for the downscaling of LST was implemented in Python

using the scikit-learn (sklearn) package [38].

2.1.3. Selection of Predictor Variables

Multiple predictors are often needed to adequately describe variations in LST in fragmented

landscapes owing to the complex interactions between LST and various factors related to climate,

land use and land cover (LULC), and topography [22]. However, besides the computation demand that

comes with increasing the number of predictors in machine-learning algorithms, it has been shown

that an increase in the number of predictors increases the risk of model overfitting [39]. Additionally,

despite the ability of RF to handle high-dimensional and correlated variables, it has been shown that

high-dimensional variables can lead to inflated OOB accuracy scores and model instability [40].

Given these shortcomings, an objective feature selection approach based on the recursive feature

elimination with cross-validation (RFECV) implemented through the sklearn package was chosen for

selecting predictor variables. RFECV is a combination of the iterative feature elimination criterion

proposed by Guyon et al. [39] and a cross-validation (CV) data splitting strategy. The iterative feature

elimination involves the removal of the least ranked feature at each step based on weights computed

based on a minimization objective function. In this study, an RFECV with the mean squared error

(MSE) as the objective function and a CV of 3 (default in sklearn) was adopted. The predictors selected

through the RFECV criterion were then used to train the RF regression linking model.

2.1.4. Validation of Downscaled Land Surface Temperature (LST) Maps

Owing to the scarcity of in situ LST measurements, checking for product consistency against

results obtained from other models or LST products is a generally accepted indirect validation

approach in LST-related studies [1,41]. As such, per pixel comparison between LST maps derived

through downscaling and LST maps derived from Landsat 8 was performed to check for consistency

between the downscaled LST against the one derived from Landsat 8. The performance of the

downscaling approaches was evaluated in terms of the root mean squared error (RMSE), the coefficient

of determination (R2) and bias, described by Equations (10)–(12), respectively.

RMSE =

√√
1

n

n∑

i=1

(LSTm − LSTr)
2 (10)

where LSTm is the modeled LST, LSTr is the reference LST and n is the total number of pixels.

R2 = 1−

∑
(LSTr − LSTm)

2

∑(
LSTr − LSTr

)2
(11)

where LSTr is the mean reference LST.

Bias =

∑n
i=1(LSTm − LSTr)

n
(12)

2.2. Study Area and Data

2.2.1. Study Area

The study area is located in Kenya and lies roughly between 35◦E and 38◦E, and 3◦S and 3◦N as

shown in Figure 1. The study area coverage was influenced mainly by the availability of coinciding

orbital paths for both Sentinel 2 and Landsat 8. The red dotted line in Figure 1 indicates the separation

between the two orbital paths of Sentinel 2, 092 to the right, and 135 to the left, which makes up a
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mosaic of the study area. On the other hand, the orbital path for Landsat 8 in Figure 1 corresponds to

orbital path number 168, and is a mosaic of tile numbers 059, 060 and 061, and forms the validation

area for the downscaling. Although the orbital path of Landsat 8 falls exclusively on orbital path 092

of Sentinel 2, the study area was extended to cover path 135 to increase the thermal contrast within

the study area. Since the time lag between the overpass dates for path 092 and 135 is three days at

maximum, it was assumed that no significant discrepancies would arise on the reflectance mosaic

obtained from the two orbits. The total study area consists of a mosaic of approximately 24 full tiles of

Sentinel 2.

 

Figure 1. Map showing the study area and the coverage of data used.
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The study area is characterized by pronounced topographical differences with elevation ranging

from as low as 259 m above sea level (masl) in the northern parts to as high as roughly 5184 masl on

top of Mt. Kenya. The study area is straddled from north to south by the eastern branch (Kenyan Rift

valley system) of the East African Rift System (EARS). The Kenyan Rift Valley system cuts in between

the Mau Escarpment and the Aberdares Mountain Ranges at the central part of the study area, creating

areas with sharp elevation drop between the mountains and the floor of the valley. Variations in climatic

conditions within the study area are mainly topography-induced. Mean daily air temperature range

from less than 10 ◦C in the mountains to above 30 ◦C in the low lying ASAL regions. The study area is

also characterized by highly fragmented LULC due to the highly mixed land use related to small scale

farming activities.

2.2.2. Data Acquisition and Processing

Table 1 shows the datasets used in this study, their characteristics, and their respective sources.

Table 1. Datasets used in this study, their source and their characteristics.

Dataset
Temporal

Resolution
Spatial

Resolution
Processing Level Source

Sentinel 2 5 days 20 m Level 1C (TOA) https://scihub.copernicus.eu/dhus/#/home

LSA-SAF LST 15 min ~3 km
Operational

product
https://landsaf.ipma.pt/en/products/land-

surface-temperature/

ALOS DEM Once 30 m Void filled
https://www.eorc.jaxa.jp/ALOS/en/

aw3d30/data/index.htm
Landsat 8 OLI
(band 4 and 5)

16 days 30 m C1 Level-2 (BOA) https://earthexplorer.usgs.gov/

Landsat 8 TIR
(band 10 and 11)

16 days 100 m C1 Level-1 (TOA) https://earthexplorer.usgs.gov/

Total column
water vapor

Hourly 30 km Model output
https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=

form

The LSA-SAF LST product [42] was used as the coarse target resolution LST for building the

model. The LST product from LSA-SAF is an operational LST product disseminated through the

Satellite Application Facility on Land Surface Analysis (Land-SAF) of the European Organization for

the Exploitation of Meteorological Satellites (EUMETSAT) in near real-time at time intervals of 15 min

and at a spatial resolution of approximately 3 km at sub-satellite. It is derived from the split window

channels of the SEVIRI sensor onboard the MSG suite of weather satellites based on the generalized

split-window algorithm proposed by Dozier, [43] adopted for the SEVIRI sensor [42,44]. The product

has consistently been shown to meet the set target RMSE of 2 K [45,46].

The ALOS World 3D-30m (AW3D30) DEM [47], was used to derive topography-related predictors,

namely Elevation, Slope, and Aspect. ALOS DEM is considered the most accurate of the current freely

available DEM’s averaging an RMSE of 1.78 m for the vertical height [48]. The ALOS DEM-derived

predictor variables were then aggregated to the sampling resolution (100 m) of Landsat 8 TIR bands,

which was adopted as the base resolution for the downscaling model in order to match the spatial

resolution of the validation LST maps derived from Landsat 8.

Sentinel 2 Level 1C products represent the top of atmosphere (TOA) reflectance and were

downloaded and converted to surface or bottom of atmosphere (BOA) reflectance by correcting

for atmospheric effects using the Sen2Cor algorithm [49]. A total of 11 bands were obtained after

atmospheric correction since the coastal aerosol, and the cirrus bands do not contain surface information,

thus not included as part of the Level 2A product produced by the Sentinel Application Platform (SNAP)

software. The bands obtained after atmospheric correction include Blue, Green, Red, Near Infrared

(NIR), Red Edge 1 (RE1), Red Edge 2 (RE2), Red Edge 3 (RE3), Narrow Near Infrared (NNIR), Shortwave

Infrared 1 (SWIR1), Shortwave Infrared 2 (SWIR2), and the Water vapor (wvp band). The cloud and

cloud shadow masks produced during the atmospheric correction procedure were applied to the
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remaining surface reflectance bands to obtain cloud-free pixels. Cloud-free pixels from two consecutive

overpasses were then used to create composite images, with reduced effects of cloud contamination.

The dates for the Sentinel 2 images used to generate the composite images, the LSASAF LST acquisition

dates, and the corresponding Landsat 8 overpasses are shown in Table 2.

Table 2. Acquisition dates for images used in the study.

LSA-SAF Landsat 8 (Path 168) Sentinel 2 (Orbit 092) Sentinel 2 (Orbit 135)

13 January 2018—07: 45 13 January 2018—07: 42
[14 January 2018

and
19 January 2018]

[12 January 2018
and

17 January 2018]

29 January 2018—07: 45 29 January 2018—07: 42
[24 January 2018

and
29 January 2018]

[27 January 2018
and

1 February 2018]

1 February 2019—07: 45 29 January 2018—07:42
[29 January 2019

and
3 February 2019]

[1 February 2019
and

6 February 2019]

21 March 2019—07: 45 29 January 2018—07: 42
[20 March 2019

and
25 March 2019]

[18 March 2019
and

23 March 2019]

The composite surface reflectance images were then resampled and co-registered to match the

sampling spatial resolution (100 m) of Landsat 8 TIR bands. The resampled surface reflectance bands

were then used directly as predictor variables. Additionally, the surface reflectance bands were used to

derive the additional remote sensing predictor variables shown in Table 3.

Landsat 8 imagery and Total Column Water Vapour (TCW) product from the European Centre

for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5) were used to derive LST maps for

validating the downscaled LST maps. Landsat 8 LST maps were derived based on the generalized

split-window algorithm proposed by Li and Jiang, [41] for Landsat 8 data. Before the derivation of the

LST maps from Landsat 8, all the datasets were resampled to the sampling resolution (100 m) of Landsat

8′s TIR bands. It should be noted that, although stray light contamination had plagued the TIR bands

of Landsat 8 [50], an operational stray light correction procedure was implemented in 2017 to correct for

these artifacts [51]. Gerace and Montanaro, [51] report that the fidelity of the corrected bands is within

the range of that of MODIS TIR channels. Li and Jiang, [41] reported an error of less than 1 K using

their generalized split-window algorithm in comparison to the MOD11_L2 V6 MODIS LST product,

indicating the ability of the algorithm to retrieve LST from the TIR bands of Landsat 8 accurately.

Table 3. Sentinel 2-derived remote-sensing indicators.

Remote Sensing Indicator
Targeted

Surface/Characteristics
Formulation Author

Normalized Difference
Vegetation Index (NDVI)

Vegetation (NIR−Red)

(NIR + Red)
[52]

Enhanced Vegetation
Index (EVI)

Vegetation 2.5×
(NIR−Red)

(NIR + 6×Red− 7.5× Blue + 1)
[53]

Soil-Adjusted Vegetation
Index (SAVI)

Vegetation (NIR−Red)

(NIR + Red + 0.5)
× (1 + 0.5) [54]

Fraction Vegetation
Cover (FVC)

Vegetation cover/density

(
(NDVI−NDVIs

(NDVIv −NDVIs)

)2

Where

NDVIv = 0.86 and NDVIs = 0.20

[33,55]

Bare Soil Index (BSI) Bare soil surfaces (SWIR1 + Red) − (NIR + Blue)

(SWIR1 + Red) + (NIR + Blue)
[56]
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Table 3. Cont.

Remote Sensing Indicator
Targeted

Surface/Characteristics
Formulation Author

Normalized Difference
Built-up Index (NDBI)

Built-up areas SWIR1−NIR

SWIR1 + NIR
[57]

Normalized Difference Water
Index (NDWI)

Water bodies (Green−NIR)

(Green + NIR)
[58]

Normalized Multi-band
Drought Index (NMDI)

Soil and Vegetation
moisture stress

NIR− (SWIR1− SWIR2)

NIR + (SWIR1− SWIR2)
[59]

Normalized Difference Water
(Moisture) Index (NDMI)

Vegetation Water Content (NIR− SWIR1)

(NIR + SWIR1)
[60]

3. Results

3.1. Selection of Predictor Variables

The results of the predictor variable selection process are shown in Figure 2 and Table 4. Figure 2

shows the influence of increasing the number of predictor variables on the model’s performance.

The model performance increases drastically when predictor variables are increased from 1 to about

12 variables, as indicated by the decrease in the RMSE with increasing variables. Beyond 12 variables,

increasing the number of variables yields minimal effect on the model performance.

(SWIR1 + Red) − (NIR + Blue)(SWIR1 + Red) + (NIR + Blue)SWIR1 − NIRSWIR1 + NIR
(Green − NIR)(Green + NIR)

NIR − (SWIR1 − SWIR2)NIR + (SWIR1 − SWIR2)
(NIR − SWIR1)(NIR + SWIR1)

shows the influence of increasing the number of predictor variables on the model’s performance. 

Figure 2. Variation of the root mean squared error (RMSE) obtained through recursive feature

elimination with cross-validation (RFECV) with an increasing number of predictors.

Table 4 shows the total number of variables selected, the RMSE values obtained during the

variable selection process using RFECV, and the OOB score values for models trained using all the

variables and the RFECV selected variables, respectively. In three of the four days, RFECV variable

selection resulted in 20 variables except for 13 January 2018, when 18 variables were selected. Overall,

the performance of the models based on the two sets of predictor variables is more or less the same.
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Table 4. Error metrics obtained with all variables and RFECV selected variables.

Date
All Variables Selected Variables

Total Selected Variables
OOB Score [-] RMSE [K] OOB Score [-] RMSE [K]

13 January 2018 0.93 1.49 0.93 1.48 18
29 January 2018 0.95 1.47 0.96 1.46 20
1 February 2019 0.95 1.48 0.95 1.48 20
21 March 2019 0.93 1.54 0.94 1.53 20

Average 0.94 1.50 0.95 1.49 20

Figure 3 shows the individual variables selected through RFECV for each day and their respective

percentage contribution to the final model. Although the RFECV variable selection did not show much

variation in the number of selected variables across the days considered, the individual variables

selected vary across the days, as observed in Figure 3. Topography-related variables and indices are

constantly selected, and only reflectance variables change during the selection process across the four

days. In terms of the contribution of the variables to the final model, vegetation indices, i.e., NDVI,

Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation Index (SAVI), and the Fraction Vegetation

Cover (FVC), have the highest contribution to the final model. The least contribution is observed in

reflectance variables. Elevation follows the vegetation-related indices in the contribution to the final

model. From Figure 3, it is also observed that the overall trend in terms of the percentage contribution

by the topography-related variables is mostly unchanged.

Figure 3. Histograms showing the contribution of each selected predictor variable to the final model

for each day corresponding to the four Landsat 8 overpass dates used in the study.

3.2. The Prediction Ability of the Selected Model

Figure 4 shows the scatterplot between the original LSA-SAF LST and the predicted LST obtained

using the RF regression model built on the selected variables at the coarse-scale, with the data split into
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70% to 30% training and validation sets, respectively. The spread between the points is quite linear

and follows the one-to-one line.

Figure 4. Relationship between LSA-SAF LST and random forest (RF) model-predicted LST at 3km for

each day corresponding to the four Landsat 8 overpass dates used in the study.

To investigate the ability of the developed model to predict LST at high resolutions, LST predicted

by the model was compared to LST derived from Landsat 8. The results of the comparison are shown

in Figure 5. The results indicate a linear relationship between the predicted LST and Landsat 8 LST.

However, compared to results at the coarse scale (Figure 4), a decrease in the model performance

is observed in Figure 5. There is a reduction in the model performance both in terms of the R2 and

the RMSE. Notably, a significant departure from the linear trend is observed in both the upper and

lower limits of the scatterplots. At the lower limits, Landsat 8 LST decreases without a corresponding

decrease in the predicted LST. In contrast, at the upper limits, Landsat 8 LST increases without a

corresponding increase in the predicted LST. Although the model performance at the high resolution is

considerably lower, the trend in the model performance in terms of both the R2 and the RMSE observed

in Figure 5 is consistent with the trend in the model performance seen in Figure 4.
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Figure 5. Relationship between Landsat 8-derived LST and RF-predicted LST at 100 m for each day

corresponding to the four Landsat 8 overpass dates used in the study.

3.3. Downscaling Results

Figure 6 shows LST maps derived from Landsat 8 and the downscaled LST maps obtained using

the conventional RF approach and the proposed RF approach. The downscaled LST maps from both

approaches show consistency with Landsat 8-derived LST maps both in terms of the spatial details

and variations in the LST across the four days. One notable difference is the considerably lower

amount of pixels with missing data (white patches) in the maps derived using the proposed approach

in comparison to the maps obtained using the conventional approach as well as from Landsat 8.

The pixels with missing data are mainly related to cloud cover, and to a lesser extent, water bodies.
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Figure 6. LST maps derived from Landsat 8 (top) and the downscaled LST maps (middle and bottom)

corresponding to orbit 168 of Landsat 8 for the four Landsat 8 overpass days used in the study.

Figure 7 shows LST maps for a section of the Aberdares Mountain ranges, one of the areas in

the study area that is characterized by complex terrain. The downscaled LST maps in Figure 7 show

more spatial details than the coarse-scale LSA-SAF LST maps. The spatial details in the downscaled

maps are also consistent with the ones observed in the Landsat 8 LST maps. However, the maps

obtained using the proposed approach show enhanced details, which are more consistent with the

ones observed in the Landsat 8 LST maps, especially in the transition zones between the mountains

and the surrounding areas.
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Figure 7. A zoom-in to the area labeled A in Figure 1 showing variations in LST in the complex terrain

of the Aberdares Mountain ranges.

Figure 8 shows an ASAL area in the semi-arid northern part of Kenya. Similar to the observations

in Figure 7, enhanced spatial details are observed in the downscaled images in comparison to the

LSA-SAF LST maps. In addition, more spatial details and better spatial consistency with Landsat 8

LST maps are observed in the maps derived using the proposed approach than in the conventional

approach. However, it is also observed that the downscaled maps from both approaches show slightly

higher LST than that observed in the Landsat 8 LST maps.
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Figure 8. A zoom-in to the area labeled B in Figure 1 showing variations in LST in an arid and semi-arid

land (ASAL) area.

Figure 9 shows the linear regression results between the Landsat 8 derived LST and the downscaled

LST from the two approaches. The regression results confirm the spatial consistency observed between

Landsat 8 LST maps and downscaled LST maps in Figure 6. A strong linear relationship is observed

between the Landsat 8 LST and the downscaled LST using both downscaling approaches. However,

the proposed approach shows a slightly better performance in terms of the R2 in comparison to the

conventional approach on 29 January 2018 and 1 February 2019 while a slight deterioration in the R2 is

observed on 13 January 2018 and 21 March 2019. In terms of the RMSE, the proposed approach performs

marginally better than the conventional approach across all the days. In terms of the bias, the proposed

approach shows a better performance than the conventional approach across all the days apart from

13 January 2018. With regards to the spread of points relative to the one-to-one line, the proposed

approach shows less scatter, especially at the lower temperatures. However, the proposed approach

shows more scatter in the upper-temperature ranges in some of the days, e.g., on 21 March 2019.

Based on the scatterplots, it is also evident that, in general, both downscaling approaches tend to

overestimate the LST observed by Landsat 8 at the higher LST values.
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Figure 9. Relationship between Landsat 8 LST and the downscaled LST based on the two approaches

for each day corresponding to the four Landsat 8 overpass dates used in the study.

Table 5 shows the statistical results for three categories of vegetation cover classified based on

NDVI ranges.

Table 5. Statistical results across three vegetation cover categories based on NDVI.

Vegetation
Coverage

Downscaling
Approach

Statistical
Metric

Date

13 January
2018

29 January
2018

1 February
2019

21 March
2019

Average

Sparsely
Vegetated

[0 <NDVI < 0.2]

Conventional

R2 0.58 0.59 0.66 0.59 0.61
RMSE 2.50 2.55 2.46 2.96 2.62
Bias −0.73 0.76 1.12 1.13 0.57

Proposed
R2 0.52 0.52 0.61 0.53 0.55

RMSE 2.53 2.62 2.48 2.94 2.64
Bias −0.78 0.29 0.96 1.00 0.37

Partially
Vegetated

[0.2 < NDVI <
0.5]

Conventional

R2 0.44 0.52 0.58 0.47 0.50
RMSE 3.76 3.19 2.99 3.94 3.47
Bias −2.43 −0.81 −0.64 −1.49 −1.34

Proposed
R2 0.46 0.65 0.65 0.53 0.57

RMSE 3.46 2.04 1.56 2.87 2.48
Bias −2.41 −0.57 −0.41 −1.17 −1.14

Fully Vegetated
[0.5 <NDVI < 1]

Conventional

R2 0.33 0.53 0.53 0.31 0.43
RMSE 4.44 3.29 3.57 4.49 3.95
Bias −2.99 −0.54 −1.29 −1.70 −1.63

Proposed
R2 0.51 0.77 0.74 0.56 0.65

RMSE 3.51 2.26 1.63 3.12 2.63
Bias −2.67 −0.14 −0.82 −0.75 −1.10

Based on the statistical results presented in Table 5, the least performance based on the conventional

approach is observed in the fully vegetated areas. In contrast, the best performance based on the

conventional approach is observed in the sparsely vegetated areas. The proposed approach shows

a significant improvement in the performance of the downscaled LST in partial and full vegetation

canopies based on both the R2 and the RMSE in comparison to the conventional approach. In terms

of the R2, an average increase of 0.07 and 0.22 is observed in the partially and fully vegetated areas,

respectively. In terms of the RMSE, an average reduction of 0.99 and 1.32 K is obtained in the partially

and fully vegetated areas, respectively. However, in the sparsely vegetated areas, the proposed

approach shows a slight deterioration. An average reduction of 0.06 in the R2 and an increase of 0.02 K

in the RMSE is observed in the sparsely vegetated areas. The proposed approach shows a lower bias
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across the three classes of vegetation coverage in comparison to the conventional approach. Based on

the bias, it is also observed that both approaches overestimate the Landsat 8 LST in the sparsely

vegetated areas and underestimate Landsat 8 LST in both the partially and fully vegetated areas.

4. Discussion

The main goal of this study was to reduce the spatial averaging bias inherent in LST downscaling

methodology using RF regression in complex environments. As noted in Kustas and Anderson, [2],

in complex environments, the partitioning of available energy at the land surface is influenced by

many other factors besides soil moisture and vegetation cover. Thus, as highlighted in Hutengs and

Vohland, [22], Yang et al. [24] and Zhao et al. [25], additional predictor variables, especially those that

have an influence on albedo, surface emissivity, and solar insolation are vital for downscaling LST in

complex environments. The results shown in Figure 2 are a confirmation of the added benefits of using

multiple predictors variables in the downscaling of LST in complex environments. However, based on

the results in Figure 2 and Table 4, it is evident that there is a limit to the number of predictor variables

that are beneficial to the model performance. As observed in Figure 2, it appears that the inflection point

in terms of the contribution of the predictor variables to the model performance is about 12 variables.

Thus, most of the predictor variables beyond the inflection point are likely redundant. The redundancy

may likely be due to correlated predictor variables or simply because some predictor variables have

little correlation with LST. Although RF is not highly affected by feature correlation, it is beneficial to

carry out variable selection since, as pointed out in Guyon et al. [39] and Millard and Richardson, [40],

besides reducing the computation demand, the choice of predictors in machine learning reduces the

dimensionality problem and thus lowers the risk of model overfitting. Based on the results presented

in Figure 3, it appears that reflectance bands constitute most of the redundant predictors. They are

the most affected during the process of variable selection in RFECV, and in most cases, have the least

contribution to the final model, indicating that they are weaker LST predictors. Similar findings have

been reported in Yang et al. [24] and are attributed to the fact that, unlike remote-sensing indices, raw

reflectance bands contain less information on the characteristics of the surface. The high contribution

by vegetation indices to the linking model observed in Figure 3 is an assertion to the well-established

LST-VI feature space concept reported in Sandholt et al. [16]. On the other hand, the stable contribution

by topography-related variables shows the significant influence of topography on LST in complex

terrain and agrees with findings in Hutengs and Vohland, [22] and Zhao et al. [25].

Although the risk of overfitting in RF is low even in the presence of correlated variables [27,29,36],

Strobl et al. [29] note that correlation has huge influence on the variable importance measures generated

using RF. The considerable variations in each vegetation index’s contributions despite their relatively

constant combined contribution to the final model observed in Figure 3 across the four days support

the argument by Strobl et al. [29]. Through random selection of predictor variables, the effect of

collinearity on the prediction ability of RF is reduced since the contribution of the other correlated

variables is significantly reduced because the impurity they can remove is already removed by the first

randomly selected predictor variable. Besides, as noted in Strobl et al. [29], the random selection of

predictor variables allows for the inclusion of marginalized predictors in the ensemble, thus improving

the stability of the model. However, since the random permutation importance approach employed in

the computation of variable importance in RF assesses the change in the model performance based

on the presence or absence of the selected variable, collinear variables will tend to compensate for

each other during the process of random permutation, leading to biases in the variable importance

derived from RF. Thus, as observed in Figure 3 any of the correlated variables can be selected to remove

the impurity when splitting the nodes making it difficult to determine the individual contribution

of each predictor variable to the final model. Consequently, as argued in Matsuki et al. [36] the

contribution of the correlated vegetation related variables in Figure 3 can only be interpreted as group

and not independently.

226



Remote Sens. 2020, 12, 3507

Results presented in Figure 4 indicate that the linking models built using Equation (1) are capable of

predicting LST in each of the respective model training scenes. A high linear relationship exists between

the modeled LST against the 30% unseen LST data set aside during model training, as confirmed by the

high R2 (0.94 on average), indicating the selected predictors can largely explain the thermal variability

in the respective scenes. However, upon transfer to the fine spatial resolution, the model performance

deteriorates. This deterioration is primarily due to the inability of the selected predictor variables

to account for other variations in LST at fine resolution [17]. However, the trend observed on the

extreme edges of the scatterplots in Figure 5 cannot be attributed solely to the inability of the predictor

variables to capture variations in LST at high resolution. This trend is attributed to the inability of

the RF model to predict beyond the data range present in the training data. This trend indicates that

the model developed at the coarse-scale largely represents the average conditions within the scene,

thus cannot adequately capture the variations in LST under extreme conditions.

Based on visual comparison of the downscaled LST maps presented in Figure 6, not much

difference can be discerned between the conventional approach and the proposed approach, apart from

less cloud contamination in the maps derived from the proposed approach. However, the zoomed-in

areas shown in Figures 7 and 8 indicate that besides lesser cloud contamination, more spatial details

consistent with Landsat 8 LST maps are observed in the LST maps derived using the proposed approach.

This improvement is attributed to the step implemented to enhance the data range in the RF regression

model and the model error correction procedure adopted, which avoids a constant redistribution of

the model error calculated at the coarse-scale. However, this step results in the proposed approach

reproducing LST even under cloud-contaminated pixels, resulting in less cloud-contaminated LST

maps. Although this might be appealing to the user, as suggested in the methodology, it is strongly

recommended to mask out the cloud-contaminated pixels. As pointed out in Martins et al. [44],

clouds alter the redistribution of the incoming shortwave and longwave radiation at the surface

resulting in an entirely different energy balance at the surface in comparison to the energy balance

under clear sky conditions. The relatively poor performance in terms of the spread of scatter points

observed on 13 January 2018 in Figure 9 also suggests that cloud cover may influence the downscaling

results since cloud masking may not detect all the cloud-contaminated pixels. Besides, as pointed out

in Kustas et al. [17] and Hutengs and Vohland, [22], downscaling of LST is influenced considerably by

thermal contrast within the scene, which may be affected by excessive cloud cover. The reduced thermal

contrast may lead to an imbalance in the distribution of LST values in the target LST when training the

model. As noted in Millard and Richardson [40], imbalances in the target variable will increase the

risk of model overfitting, undermining the model’s prediction ability. However, the effect may also be

related to the effect of cloud cover on Landsat 8 LST, since the coarse resolution, TCW product used

cannot capture the high spatial variability in atmospheric water vapor under cloudy conditions.

The statistical results shown in Table 5 and the scatterplots in Figure 9 indicate that the proposed

approach is superior to the conventional approach, especially in vegetated areas. Vegetated areas

mainly correspond to the lower temperatures where much of the improvement in the scatter in Figure 9

is observed. The weaker performance in vegetated areas compared to the sparsely vegetated areas based

on the conventional approach, appears to contradict results from other studies, e.g., in Kustas et al. [17]

and Agam et al. [18]. However, the weaker performance is mainly attributed to topography since most

of the fully vegetated areas correspond to forested areas in the mountains. In contrast, the sparsely

vegetated areas are mostly located in low lying areas where the effect of topography is less pronounced.

As pointed out in Hutengs and Vohland, [22], the complex terrain in mountainous areas has profound

implications on LST downscaling. The significant improvement observed in the fully vegetated areas

using the proposed approach can be attributed to an improved ability of the proposed approach to

capture the spatial details in the complex mountain environment. The enhanced spatial details are due

to reduced spatial averaging errors related to the coarse model and the model error correction in the

proposed approach.
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The biases observed in the downscaled LST in both approaches may be partly related to systematic

differences in the Landsat 8 LST and the coarse-resolution LSA SAF LST. However, the tendency by the

downscaled LST to overestimate the Landsat 8 LST in the arid sparsely vegetated areas may also be

partly attributed to the inability of the selected predictor variables to capture the thermal variability

related to other factors such as soil moisture. In addition, it should also be noted that Landsat 8-derived

LST has been shown to underestimate observed LST in arid environments [23]. The underestimation

is partly related to the use of vegetation cover to obtain emissivity in the calculation of LST from

Landsat 8 [41]. The constant bare surface emissivity adopted in the vegetation cover-based emissivity

method cannot capture the enormous variations in emissivities depicted by bare surfaces. Thus, it is

difficult to draw conclusions from the performance of the downscaling results obtained in the arid

sparsely vegetated areas in the absence of reliable LST estimates.

5. Conclusions

In this study, an improved approach for downscaling coarse-resolution TIR data in complex

environments based on RF regression is presented. The approach is applied to downscale the

coarse-resolution LSA-SAF LST (~3 km) to ~100 m using predictor variables derived from Sentinel 2

and ALOS DEM. Visually, the LST maps obtained based on the proposed downscaling approach show

more spatial details, which are more consistent with the Landsat 8-derived maps as opposed to the

conventional RF-based downscaling approach.

Quantitatively, comparison with LST derived from Landsat 8 indicates that the proposed approach,

in general, outperforms the conventional approach. The proposed approach shows an overall decrease

in the bias across all the three vegetation cover categories. Significant improvements are also observed

in the forested mountainous areas, where a 0.22 increase in the R2 and a decrease of 1.32 K in the RMSE

is obtained. In the partially vegetated areas, the R2 improved by 0.07, while a reduction in the RMSE

by 0.99 K is achieved. On the other hand, a slight decrease in performance, a 0.06 decrease in the R2,

and an increase of 0.02 K in RMSE is observed in the sparsely vegetated areas. Concrete conclusion on

the performance of the downscaling results in the sparsely vegetated areas cannot, however, be made

owing to uncertainties inherent in Landsat 8 LST in arid regions.

The improved performance observed based on the proposed approach indicates that the approach

is suitable for correcting for spatial averaging errors related to the model trained at the coarse resolution

in regions characterized by complex terrain.
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Abstract: Urbanization and climate change are driving increases in urban land surface temperatures

that pose a threat to human and environmental health. To address this challenge, we must be able to

observe land surface temperatures within spatially complex urban environments. However, many

existing remote sensing studies are based upon satellite or aerial imagery that capture temperature

at coarse resolutions that fail to capture the spatial complexities of urban land surfaces that can

change at a sub-meter resolution. This study seeks to fill this gap by evaluating the spatial variability

of land surface temperatures through drone thermal imagery captured at high-resolutions (13 cm).

In this study, flights were conducted using a quadcopter drone and thermal camera at two case

study locations in Milwaukee, Wisconsin and El Paso, Texas. Results indicate that land use types

exhibit significant variability in their surface temperatures (3.9–15.8 ◦C) and that this variability is

influenced by surface material properties, traffic, weather and urban geometry. Air temperature

and solar radiation were statistically significant predictors of land surface temperature (R2 0.37–0.84)

but the predictive power of the models was lower for land use types that were heavily impacted

by pedestrian or vehicular traffic. The findings from this study ultimately elucidate factors that

contribute to land surface temperature variability in the urban environment, which can be applied to

develop better temperature mitigation practices to protect human and environmental health.

Keywords: land surface temperature; drones; unmanned aerial vehicles; thermal remote sensing

1. Introduction

Urban areas across the world are subject to thermal stresses caused by the surface urban heat island

(SUHI) effect where urban land surfaces experience higher temperatures than their surrounding rural

areas. This is in large part due to the replacement of undeveloped vegetated land with anthropogenic

materials that absorb more solar radiation and have different heat capacity and surface radiative

properties [1]. This results in higher surface temperatures that pose a significant threat to human

health [2], as well as higher storm runoff temperatures that can harm aquatic life [3–5]. These stresses

are only expected to grow with increases in global temperatures and urban populations; therefore, it is

critical that we understand the fundamental processes that drive land surface temperature (LST) to

develop solutions that can protect human and environmental health.

To that end, thermal remote sensing is an important tool for evaluating urban land surface

temperatures. This includes satellite sensors such as ASTER, MODIS and Landsat that can capture

land surface temperatures at 30 m–1 km resolutions [6]. Data from these satellites have been used to

extensively study urban land surface temperatures and their effects [7–14]. However, while satellite

remote sensing is valuable for evaluating LST across a city scale, the spatial resolution precludes its

applications to smaller spatial scales that better reflect the spatial complexity of the urban environment.

To acquire higher resolution thermal data, studies have used aerial reconnaissance or downscaling
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techniques [15,16]; however, these are still at resolutions (4–10 m) that cannot capture changes that

occur on a sub meter resolution. Furthermore, satellite remote sensing is temporally constrained to

intervals between 1–14 days. Aerial flights do not have the same temporal constraints; however, doing

so at on-demand temporal resolutions would not be economically practical. Therefore, these methods

are inadequate for evaluating changes in urban LST that occur throughout the day or capturing the

spatial heterogeneity of urban LST at small scales.

This challenge is important to overcome as urban land surfaces are spatially complex and

significant variations in land cover can occur on a sub meter spatial resolution [17]. While existing

research has demonstrated that the spatial configuration of land use classifications at a city scale are

important (i.e. industrial, residential, forest) [18,19], less is known about the importance of the spatial

configuration and variations in LST at smaller scales (i.e., sidewalks, grass medians, flowerbeds, etc.).

In addition, the urban environment is dynamic and land surface temperatures can be significantly

influenced by other factors besides land cover material properties [20]. Land surface temperature

may therefore vary significantly across small spatial scales; however, the factors that control this

variation are not well defined. Doing so requires direct measurements of surface temperatures across

wide spatial and temporal scales, yet little research to date has evaluated the spatial variability in

temperature among urban land use types in sub-meter resolutions. This may be due to measurement

limitations, as satellite data is too coarse and in-situ temperature probes are too expensive to densely

distribute across an urban landscape. Therefore, new and innovative approaches to measuring land

surface temperatures at small spatial and temporal scales are needed to assess thermal variability

across land use types in the urban environment.

Unmanned Aerial Vehicles (UAVs) or drones, are a technology that can meet this challenge.

Recent advances in UAVs and radiometric thermal cameras have made it possible to capture land

surface temperatures on-demand and at sub-meter spatial resolutions that accurately reflect the spatial

complexity and detail of land surface temperatures in the urban environment [21]. UAVs also have

advantages in that they can be flown on demand to capture LST at temporal resolutions unmatched by

satellite or aerial imagery. While the limited battery life of around 30 minutes for quad-copter UAVs

constrains the area that can be captured in a single flight, their spatial and temporal resolutions offer

significant advantages for evaluating the variability of LST in the urban environment at fine spatial

and temporal scales.

We therefore present a study to evaluate the variability of temperatures across urban land surfaces

using a UAV. In this study, we apply a UAV and radiometric thermal camera to capture land surface

temperatures at high-resolutions (13 cm) in two case study locations: Milwaukee, Wisconsin and

El Paso, Texas. Using data collected throughout a calendar year, we evaluate the variability in land

surface temperatures, develop models to predict mean land surface temperature based upon weather

parameters and evaluate the diurnal trends in urban land surface temperature. To do so, we (1)

quantify land surface temperature variability across different surface types, (2) evaluate variance in

temperature across different surface types based upon meteorological and/or other derived parameters

(e.g., albedo, normalized difference vegetation index, apparent thermal inertia, etc.), (3) predict land

surface temperature based upon meteorological parameters and (4) assess diurnal variability in land

surface temperature magnitude and uncertainty. Ultimately, this study helps to elucidate factors that

contribute to land surface temperature variability in the urban environment at small spatial scales,

which can then be applied to develop better temperature mitigation strategies.

2. Materials and Methods

2.1. Case Study Locations

Two case study locations were chosen for this project: (1) a portion of Marquette University’s

campus in Milwaukee, WI and (2) a portion University of Texas El Paso’s (UTEP) campus in El Paso,

Texas (Figure 1). The Marquette and UTEP case study areas were roughly 21,300 m2 and 27,300 m2,
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respectively and included a balance of both natural landscape and impervious gray surfaces. Surface

types within each case study location were manually delineated using ESRI’s ArcMap software.

The nine surfaces types identified at Marquette and UTEP and their respective surface areas are listed in

Table 1. The specific locations on each campus were chosen for their variety of surface types, similarities

in land use between the two locations and suitability for drone takeoff/landing and flying. In addition,

these locations provide a contrast in geography, climate and weather that are helpful in testing the

generalizability of our findings. For example, Milwaukee’s climate is classified by Koppen and Geiger

as Dfa (Humid Continental Hot Summers With Year Around Precipitation) and receives 870 mm of

precipitation annually, while El Paso is classified as BWk (Cold Desert Climate) and receives 221 mm

of precipitation annually [22,23].

 

 

(a) (b) 

Figure 1. Visual imagery of the case study locations: Marquette University (a) and University of Texas

El Paso (UTEP) (b). Visual imagery of Marquette was captured from a drone on 11 August 2018. Visual

imagery of UTEP was pulled from Google Maps on 13 March 2019.

Table 1. Surface types and surface areas within each case study location.

MARQUETTE UTEP

Surface Type Surface Area (m2) Surface Type Surface Area (m2)

Grass 2738 Rooftop (rammed earth) 503
Sidewalk 904 Desert Shrub 173
Rooftop (composite) 336 Rooftop (composite) 2047
Road (asphalt) 3299 Parking Lot (asphalt) 1350
Parking Lot (concrete) 908 Sidewalk (concrete) 9808
Rooftop (rubber) 6,057 Road (asphalt) 4253
Canopy Cover 4758 Parking Lot (concrete) 4081
Shrub/mulch 2272 Grass 1270
Solar 65 Canopy Cover 3782

2.2. Equipment

Remote sensing data was collected using a DJI Matrice 100 (M100) quadcopter UAV. The M100

was deployed at our case study locations with three types of camera payloads—visual, multispectral

and infrared. These cameras include the DJI Zenmuse X3 visual (12 MP), Zenmuse X3 multispectral

(Blue-Green-NIR 680–800 nm at 12 MP) and DJI Zenmuse XTR radiometric thermal (13 mm, 30 Hz and

spectral bandwidth of 7–13 µm). Additionally, ground temperatures were validated using a Nubee

NUB8380 Digital Infrared Thermometer.
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2.3. Data Collection Methods

Two datasets were collected during the 2018 calendar year: (1) surface temperature measured at

12:00 PM across the entire year and (2) surface temperature measured on a diurnal cycle. To evaluate

surface temperature across the entire year, fourteen flights in Milwaukee and one in El Paso were

recorded between 26 February and 13 September 2018 (Table 2). To evaluate the diurnal cycle of

temperature, three flights in Milwaukee and one in El Paso measured temperature throughout the

day at 9:00 AM, 12:00 PM, 3:00 PM and 5:00 PM (Table 3). Weather data was collected at Marquette

from a station on top of Engineering Hall and weather data at UTEP was collected from a weather

station 10.5 km away at El Paso International Airport. Each station recorded air temperature, relative

humidity, wind speed, wind direction, relative humidity, solar radiation and atmospheric pressure.

Drone imagery was captured autonomously using a third-party photogrammetry software called

Pix4Dcapture. Using this software, autonomous flight paths were programmed to the drone prior

to each mission. Programmed flight path information included drone speed, altitude and image

overlap. Drone speed was set at 54 km/h for visual and multispectral flights but set at a lower threshold

of 30.6 km/h for thermal flights due to the difference in image capture speed between the two camera

technologies. The flight altitude for each mission was set to the United States Federal Aviation

Administration (FAA) maximum allowable limit of 120 m, which resulted in thermal imagery at a 13 cm

pixel size. Finally, the image overlap was set to 85%, which provided reliable overlap for stitching an

orthomosaic during data processing.

Table 2. Flight log and summary of meteorological variables recorded for Marquette and UTEP during

fifteen noon flights.

Flight
Number

Flight Date
Flight
Time

Air Temp
(◦C)

Relative
Humidity (%)

Wind Speed
(m/s)

Wind Dir
(Degrees)

Solar Rad
(kW/m2)

Pressure
(kPa)

MU 1 26 February2018 12:00 PM −1.7 54 4.0 225 0.00 102.2
MU 2 12 April 2018 12:00 PM 12.4 65.8 6.8 285 0.41 100.2
MU 3 8 May 2018 12:00 PM 26.4 22.1 4.2 218 0.81 101.7

UTEP 1 20 May 2018 12:00 PM 27.8 26 5.8 120 0.96 101.7
MU 4 13 June 2018 12:00 PM 25.3 33.3 3.4 321 0.89 101.2
MU 5 29 June 2018 12:00 PM 31.5 54.7 5.4 193 0.80 101.0
MU 6 11 July 2018 12:00 PM 25.9 44.1 2.0 91 0.78 101.9
MU 7 12 July 2018 12:00 PM 27.4 43.2 5.9 204 0.60 101.8
MU 8 17 July 2018 12:00 PM 25 38.9 3.0 38 0.74 101.6
MU 9 18 July 2018 12:00 PM 22.5 56.3 3.1 101 0.83 101.8
MU 10 25 July 2018 12:00 PM 28.6 31.9 2.5 271 0.83 101.4
MU 11 10 August 2018 12:00 PM 25.8 58.8 2.3 84 0.77 101.3
MU 12 31 August 2018 12:00 PM 25.8 49.9 4.0 158 0.09 101.6
MU 13 12 September 2018 12:00 PM 26.1 55.3 3.1 168 0.56 101.9
MU 14 13 September 2018 12:00 PM 22.8 64.9 4.2 127 0.68 102.0

Table 3. Flight log and summary of meteorological variables recorded for Marquette and UTEP during

four diurnal flights.

Flight
Number

Flight Date
Flight
Time

Air Temp
(◦C)

Relative
Humidity (%)

Wind Speed
(m/s)

Wind Dir
(Degrees)

Solar Rad
(kW/m2)

Pressure
(kPa)

MU1 13 June 2018 9:00 AM 22.5 42.8 4.4 320 0.73 101.1
MU1 13 June 2018 12:00 PM 25.3 33.3 3.4 321 0.89 101.2
MU1 13 June 2018 3:00 PM 27.5 20.1 3.0 328 0.80 101.2
MU1 13 June 2018 5:00 PM 27.9 19.8 2.0 285 0.51 101.2
MU2 17 July 2018 9:00 AM 23.8 37.7 3.1 8 0.52 101.6
MU2 17 July 2018 12:00 PM 25 38.9 3.0 38 0.74 101.6
MU2 17 July 2018 3:00 PM 25 41.2 3.0 38 0.76 101.7
MU2 17 July 2018 5:00 PM 22.8 57.9 3.4 34 0.50 101.7
MU3 10 August 2018 9:00 AM 27.4 46.1 2.4 33 0.70 101.3
MU3 10 August 2018 12:00 PM 25.7 58.8 2.3 84 0.77 101.3
MU3 10 August 2018 3:00 PM 27.4 46.1 2.4 33 0.70 101.3
MU3 10 August 2018 5:00 PM 27.4 33.4 2.4 37 0.43 101.2

UTEP1 20 May 2018 9:00 AM 25 32 5.8 90 0.66 101.8
UTEP1 20 May 2018 12:00 PM 27.8 26 5.8 120 0.96 101.7
UTEP1 20 May 2018 3:00 PM 31.1 17 4.0 120 0.83 101.4
UTEP1 20 May 2018 5:00 PM 31.1 21 4.9 90 0.50 101.3
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2.4. Thermal Data Processing

After data collection in the field, a series of post-processing steps were performed using Pix4D

and ESRI’s ArcMap to stitch the drone thermal imagery into orthomosaics, correct temperature values

for emissivity and extract surface temperature data for analysis. First, Pix4D was used to stitch the

captured thermal images into orthomosaics, export the orthomosaics as a 32-bit TIFF and georeference

them for application within ArcMap.

Once in ArcMap, an emissivity correction was applied to each thermal orthomosaic. Emissivity is

a measure of how well a material can emit energy as thermal radiation and different materials have

different values of emissivity depending on their surface properties [24]. Land use classifications that

were previously delineated for each case study area were used to apply emissivity values to the target

surfaces. The emissivity values for each land use classification used in this study are listed in Table 4

and are based upon a review of emissivity studies. These emissivity values were then applied in the

following emissivity correction equation derived from Stefan-Boltzmann Law:

Ttarget =
4

√
T4

sensor − (1− ε) ∗ T4
background

ε
(1)

where Ttarget is the actual temperature of the target surface [K], Tsensor is the temperature measured by

the infrared camera [K], Tbackground is the recorded air temperature [K] and ε is the emissivity value

of the target surface [25]. This equation was used to correct each surface type for their respective

emissivity before performing spatial data analysis.

Table 4. Emissivity values for each surface type.

Land Use Type Emissivity Value Reference

Grass 0.979 [26]
Shrub/mulch 0.928 [27]
Road (asphalt) 0.95 [28,29]
Parking Lot (concrete) 0.91 [29–31]
Sidewalk (concrete) 0.91 [24,29–31]
Rooftop (tar and stone) 0.973 [24]
Rooftop (black rubber) 0.859 [24]
Solar Panel 0.85 [32]
Canopy Cover 0.977 [33]

Once the thermal data were corrected for emissivity, spatial data analysis was performed in

ArcMap. First, a land use feature map was created that categorized the surface types in each case

study location. Then inconsistencies within these areas, such as a parked car within a parking lot,

human traffic on a sidewalk or construction materials on the street, were clipped and removed for each

flight. Once these inconsistencies were removed, zonal statistics was applied to compute summary

statistics of each surface type such as mean and standard deviation of the land surface temperature.

A complete flow-chart of the process from flight programming to developing summary statistics is

shown in Figure 2. In total this process took about 3 h to complete for each flight.

Figure 2. Flow chart of data collection and processing.
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2.5. Surface Parameters

In addition to surface temperature, three other material properties were derived from visual and

multispectral imagery, converted into spatial distribution rasters and averaged for each surface type.

These include albedo (S), normalized difference vegetation index (NDVI) and apparent thermal inertia

(ATI). Albedo, a measure of solar reflectance of a material, was derived from blue, green, red and

near-IR image bands as shown in the following equation:

S = cbbk + cggk + crrk + ciik (2)

where cb = 0.17, cg = −0.13, cr = 0.33 and ci = 0.54 are derived constants and bk, gk, rk and ik are the band

reflectance’s for—blue, bk (420–492 nm); green, gk (533–587 nm); red, rk (604–664 nm); and near-IR, ik
(833–920 nm) [34].

Visual and multispectral imagery were also used to derive NDVI, which is a measure of the

degree of live vegetation and is commonly used to evaluate soil moisture dynamics, erosion potential

and plant and crop health. As shown in Equation (3), NDVI is a function of near-IR and red band

reflectance and is estimated on a scale of −1 to +1, with higher values indicating higher vegetative

cover and greater plant health [35].

NDVI =
(NIR−Red)

(NIR + Red)
(3)

Finally, ATI was derived for each surface type from albedo (S), solar correction (SCR) and the

diurnal temperature amplitude (DTA) (Equation (4)). ATI is an estimation of thermal inertia from

remotely sensed observations and can be estimated from diurnal changes in temperature. Specifically,

ATI is derived from solar correction (SCR), albedo (S) and the diurnal temperature amplitude (DTA),

where DTA is the difference between the maximum and minimum surface temperature recorded at the

time the remote images were captured and SCR is the solar correction factor (Equation (5)), which is

dependent on geographic location, the local latitude (θ) and the solar declination (ϕ) [36].

ATI =
SCR(1− S)

DTA
(4)

SCR = sinθ sinϕ(1−
(
tanθ tanϕ)2

)
+ cosθ cosϕ arccos(−tanθ tanϕ) (5)

2.6. Model Development

Drone observations were applied to develop empirical models of land surface temperature.

These include (1) a regression model to predict spatially averaged surface temperatures at 12:00 PM

based upon meteorological variables and (2) a model to assess diurnal variability and predict surface

temperatures throughout a given day.

Multi-variable regression models were developed to predict spatially averaged surface temperature

of the fourteen Milwaukee and single El Paso 12:00 PM flights using MATLAB and the statistical software

package JMP 13 [37]. Response screening was performed for each of the respective datasets to identify

the strength of relationship between surface temperature (response) and meteorological parameters

(predictors). Between the two case study locations, six surface types that were common to both locations

were used as response variables: grass, canopy cover, concrete parking lot, concrete sidewalk, composite

rooftop and road surface. Meteorological predictor variables included air temperature, relative humidity,

preceding 24 h rainfall, wind speed, wind direction, barometric pressure and solar radiation. After

response screening, stepwise linear regression was then performed to predict land surface temperature

based upon meteorological parameters as represented in following equation:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk (6)
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where y is the response variable, β0, β1, . . . , βk are the regression coefficients and x1, x2, . . . , xk are

the predictor variables for k predictors [38]. These models were developed using data from both the

Milwaukee and El Paso flights; therefore, to evaluate the influence and leverage of the El Paso dataset

we computed Cook’s D influence and hat matrix leverage statistics [38].

Finally, we explored the variation in surface temperatures as they change throughout the day (9

AM, 12 PM, 3 PM and 5 PM) and evaluated if this variation could be explained by any meteorological

parameters. In addition to exploring diurnal changes in variability, we applied the data to develop a

model to predict land surface temperatures throughout the day for the six land use types common

to each location. To do so, we applied the drone data collected on the four diurnal flight missions to

estimate land surface temperatures based upon the solar radiation and the difference between the air

and land surface temperatures, which have been found to be statistically significant predictors for

diurnal estimates of pavement temperatures [39].

First, we computed a parameter (g) based upon the drone-derived mean land surface temperature

and measured air temperature and solar radiation:

g =
(
Ts − Ta

)
∗ S (7)

where Ts is the mean surface temperature of the land use, Ta is the measured air temperature and S

is the measured solar radiation (kW). Next, g at a given hour i was estimated using a Gaussian peak

model given by the following:

gi = a ∗ e−0.5∗( i−b
c )

2

(8)

where gi, is the parameter g at hour i, a is the peak value, b is the critical point and c is the growth

rate [40]. Using this model, the mean land surface temperature can be predicted based upon air

temperature and solar radiation for any time of day using the following:

Ts,i = Ta,i + (gi/Si) (9)

where Ts,i is the estimated surface temperature at hour i and Ta,i and Si are the air temperature and solar

radiation at hour i. Taken as a whole, these models test both the suitability of predicting drone-derived

mean land surface temperatures based upon meteorological variables, as well as the generalizability of

our findings by including data from sites in two different geomorphologic and climatic regions.

3. Results

3.1. Surface Temperature Variability

We evaluated the land surface temperature variability of each flight across common land use

types and generally found that green surfaces had a greater degree of variability than gray surfaces,

with the exception being the rubber rooftop. As an example, the distribution of surface temperature

data (1,986,543 total data points) is shown in Figure 3 for a flight recorded on July 11, 2018. The six gray

surfaces recorded a smaller distribution of temperature on average but had more extreme values than

green surfaces (Figure 3a). Gray surfaces retain more heat from the sun because of their high emissivity

and ATI and therefore typically have higher surface temperatures. Additionally, non-normal behavior

was identified for both canopy cover and rubber rooftop (Figure 3b). Canopy cover exhibits a left skew

while the rubber rooftop exhibits a right skew. The canopy cover had a variation of tree types and

therefore a variation of leaf area indices (LAI), which may be a reason for the skew in the temperature

data. The rubber rooftop also exhibited a strong right skew, which may be due to small materials on

the roof surface, such as ventilation pipes and drainage grates, that were difficult to detect and may

not have been removed from the dataset. Therefore, this caused a distribution of lower temperatures

to be recorded.
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(a) (b) 

Figure 3. Boxplot distribution of surface temperature (a); and histogram of surface temperature (b).

Data from flight recorded on July 11, 2018. Note GRS = grass; SM = shrub/mulch; CPY = canopy; PL =

parking lot; SW = sidewalk; RTC = composite rooftop; RTR = rubber rooftop; RD = road; SLR = solar.

We then summarized the average temperature, standard deviation and coefficient of variation of

each surface type for the fourteen recorded flights in Milwaukee, WI and the single flight in El Paso,

TX (Table 5). Generally, gray surfaces exhibited higher temperatures throughout the year than green

surfaces. In El Paso, the asphalt parking lot exhibited the highest average temperature (51.7 ◦C) and

grass exhibited the lowest (41.6 ◦C), while in Milwaukee the black rubber rooftop exhibited the highest

average temperature (57.4 ◦C) and canopy cover exhibited the lowest (30.4 ◦C). In terms of variation, the

lowest degrees of variation typically occurred in the parking lots and grass. However, there is a noted

difference in the variation between the two locations; the road in Milwaukee had the highest coefficient

of variation of 0.32, while the road in El Paso had the lowest at 0.04. This may be due to a difference in

traffic on the days that flights were conducted. The location in Milwaukee is located near the city center

and is subject to heavy and constant vehicular traffic, while the location in El Paso is in a restricted

traffic area and experienced very low vehicle activity on the weekend that the flight was conducted.

Table 5. Average temperature, standard deviation and coefficient of variation of nine surface types From

14 recorded flights on Marquette University campus and from one flight recorded on UTEP’s campus.

Location Surface Type Temp (◦C) Standard Dev (◦C) Coeff. of Variation

MU

Grass 34.7 7.9 0.15
Shrub/mulch 40.7 6.2 0.12
Canopy 30.4 7.2 0.16
Parking Lot 38.7 4.2 0.08
Sidewalk 36.3 11.2 0.21
Rooftop—Composite 47.6 6.2 0.1
Rooftop—Rubber 57.4 15.8 0.22
Road 32.5 15.4 0.32
Solar Panels 47.0 7.2 0.13

UTEP

Grass 41.6 6.1 0.1
Canopy 46.6 6.3 10
Desert Shrub 46.2 6.7 0.11
Parking Lot
(asphalt) 51.7 4.9 0.07
Parking (concrete) 45.3 7.4 0.12
Sidewalk 43.1 8.2 0.13
Rooftop—Composite 47.3 7.2 0.11
Rooftop—Dzong 46.2 6.3 0.1
Road 48.4 2.8 0.04
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The distribution of the average temperature, standard deviation and coefficient of variation for the

fourteen Milwaukee, WI flights is further illustrated in Figure 4. The shrub/mulch, composite rooftop

and solar panels have the most consistent variability among the land use types as shown in the boxplot

distribution of their coefficient of variation, while the greatest spread in variation occurred in the road

and sidewalk. This may indicate that areas that are not subject to human traffic (e.g., shrub/mulch

flower beds, rooftops and solar panels) have more consistent variability in their temperatures, while

other areas that are subject to intermittent human traffic (e.g., roads and sidewalks) have inconsistent

temperature variabilities. We also evaluated if the variability in land surface temperature correlated

with any meteorological parameters but found no statistically significant predictors.
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Figure 4. Boxplot distribution of average temperature, standard deviation and coefficient of variation

from 14 recorded flights in Milwaukee, WI.

We evaluated the variation in surface temperatures throughout the day and found that the highest

degree of variation occurred at noon. This is demonstrated in the Figure 5, which shows box plots of

the standard deviation for six land use types: grass, canopy, parking lot, sidewalk, composite roof and

road for data from both MU and UTEP. As illustrated, all land use types have the greatest standard

deviation in temperatures during 12:00 PM, with lower levels of deviation in the morning and late

afternoon. This trend suggests that as surfaces heat up, they do so at different rates, which contributes

to more variability during mid-day.

3.2. Impact of the Built Environment

We also evaluated the spatial distribution of surface temperature to locate and identify factors

of the built environment that contribute to temperature variability. Figure 5 illustrates the spatial

distribution of surface temperatures for a flight on July 8th, 2018. One factor of variability is the

reflectance and shaded cover from nearby buildings. For example, sidewalks in close proximity to

Engineering Hall exhibited higher temperatures, most likely due to the sun’s reflectance off its glass

paneling. Two similarly sized sidewalk areas were compared and results show the average temperature

was 4.7 ◦C hotter for the location closer to the building than the one farther away. In comparison

to the sidewalk, parking lot land uses had more consistent variability, perhaps because there were

fewer nearby buildings or large trees to exacerbate (glass reflectance) or reduce (shaded cover) their

temperature. This indicates proximity to nearby buildings or other structures can be a significant factor

of uncertainty in predicting surface temperatures.
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Figure 5. Standard deviation distributions for six land use types at hour 9, 12, 15 and 17 at both the

MU and UTEP locations.

Other sources of land surface temperature uncertainty are traffic and parked cars. Traffic flow

along a roadway intermittently blocks the suns radiation, thereby impacting the surface temperatures

of the roadway pavement below. This creates a concentrated pocket of cooler surface temperatures

called a heat shadow, which results in variations in surface temperatures across the pavement. This is

especially pronounced in pavement lots with parked cars as illustrated in Figure 6b, which shows the

distribution of surface temperatures within a parking lot. In this figure a parked car rooftop, pavement

surface and heat shadow recorded temperatures of 69.6 ◦C, 47.8 ◦C and 49.0 ◦C, respectively, all within

a space of ~50 m2.

 

°

  

(a) 

(b) 

High: 70 °C 

Low: 2.8 °C 

High: 89 °C 

Low: -2.8 °C 

Figure 6. Spatial distribution of temperature from a flight recorded on 11 July 2018 (a) and zoomed in

spatial distribution of temperature for the concrete parking lot from a flight recorded on 11 July 2018

(b). The hotter surfaces (red) in the right image are parked cars and the cooler surfaces (blue) are heat

shadows visible after parked cars leave.
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3.3. Surface Properties and Land Surface Temperature

Drone data was applied to derive surface properties including albedo, NDVI and ATI, of the

surface types in the case study (Table 6). The light concrete parking lot exhibited the highest albedo

(0.673) while grass exhibited the lowest (0.317). The spatial distribution of temperature, albedo, NDVI

and ATI at the Milwaukee, WI case study location is shown in Figure 7. As illustrated, these surface

material properties have a large degree of variation across the case study area.

Table 6. Average albedo, normalized difference vegetation index (NDVI) and apparent thermal inertia

(ATI) values for each surface type.

Surface Type Albedo NDVI ATI

Grass 0.317 0.369 0.198
Shrub/mulch 0.502 0.402 0.183
Canopy 0.378 0.490 0.209
Parking Lot 0.673 0.091 0.121
Sidewalk 0.472 0.144 0.195
Rooftop–Composite 0.580 0.101 0.156
Rooftop–Rubber 0.406 0.096 0.219
Road 0.518 0.117 0.179
Solar 0.333 0.143 0.217
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Figure 7. Spatial distribution of tempearture (a), albedo (b), NDVI (c) and ATI (d) for a flight recorded

on 11 August 2018.

To further explore this variability and assess its impact on surface temperatures, we plotted these

surface properties against land surface temperature. Figure 8 illustrates temperature plotted against its

respective albedo for the 611,460 total data points captured by the drone imagery and results show

clusters that form for different surface types. Some of these clusters exhibit either a (1) low range

in albedo and high range in temperature or (2) high range in albedo and low range in temperature.

For example, the road exhibits a low range in albedo and high range in temperature, implying the

variability in roadway temperatures are more dependent on meteorological (e.g., exposure to solar

radiation) and human (e.g., traffic) variables than physical properties (e.g., albedo). On the other

hand, the parking lot has a higher but similar range in albedo, yet it has a much lower variability in

temperature. This could be due to the fact that the parking lot has a range of materials from asphalt

to concrete coupled with a much lower level of traffic as compared to the roadway, which is more

homogenous and experiences constant vehicular traffic that intercepts land surface exposure to solar

radiation. Therefore, this graphic may support the previous statement that there are anthropogenic

variables, such as intermittent human foot or vehicular traffic, that are significant to land surface
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temperature processes. Overall these results suggest that patterns in the physical properties of urban

materials may provide insight into surface temperature variability.
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Figure 8. Surface temperature data plotted against albedo from a flight recorded on 11 August 2018.

3.4. Temperature Prediction Models

Drone observations were applied to develop empirical models of land surface temperature. These

include (1) a regression model to predict spatially averaged surface temperatures at 12:00 PM based

upon environmental variables and (2) a diurnal model to predict surface temperatures throughout a

given day.

3.4.1. Spatially Averaged Surface Temperature Regression Model

Multi-variable linear regression models were developed to predict spatially averaged surface

temperature and it was found that air temperature and solar radiation are significant predictors (Figure 9).

Standard least squares regression was applied to develop models that predict the surface temperature

of six land use types: grass, canopy cover, parking lot (concrete), sidewalk, rooftop (composite) and

road. The models had an average R2 of 0.71 with the parking lot having the greatest of (0.89) and

the road the lowest (0.37). The parked cars and heat shadows were clipped out as inconsistencies

before analysis occurred and therefore the parking lot surface had the most homogenous distribution

of temperatures. The grass model had the second greatest R2 (0.84) and had a similarly homogenous

distribution. Contrarily, the roadway surface had a much less homogenous distribution of temperatures

and thus the road model had a low predictive power and statistical significance. This may be due in large

part due to the difficulty of clipping out inconsistencies related to nonstationary objects (e.g., moving

cars) combined with their impact on pavement temperatures.

The data collected in El Paso, TX was evaluated for influence and leverage and it was found that it

did not have high influence or leverage in any of the six models. To evaluate influence we used Cook’s

D and found that the El Paso data points all fell below the threshold of 2.4 (max 0.19) to be considered

high-influence points [38]. In addition, we used the hat matrix to evaluate leverage and found that no

El Paso data points exhibited high leverage in the model. The agreeability of the data across the two

case study areas indicates that the findings in this study may have generalizability beyond the case

study locations.
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1.85+0.62*AT+8.05*SR 

R2=0.37 

p-value=0.06 

20.6+1.13*AT+0.67*SR 

R2=0.78 

p-value=0.0001 

14.87+0.61*AT+11.53*SR 

R2=0.70 

p-value=0.0007 

8.81+1.17*AT+4.31*SR 

R2=0.89 

p-value<0.0001 

11.71+0.40*AT+15.85*SR 

R2=0.68 

p-value=0.0011 
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R2=0.84 
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Figure 9. Temperature prediction models of six surface types: grass (a), canopy cover (b), parking lot

(c), sidewalk (d), composite rooftop (e) and road (f). UTEP datapoint is fitted in green. Note the 95%

confidence intervals are in blue.

3.4.2. Diurnal Prediction Model

Finally, models were developed to predict land surface temperature throughout the day based

upon the air temperature and solar radiation (Equations (7)–(9)). The diurnal data was fit with a

Gaussian peak distribution and it was found that the parking lot and composite rooftop had the best

model fit with an R2 of 0.83 and 0.78, respectively, while all other models had an R2 value of 0.53

or below (Figure 10). While this approach is constrained by a limited number of data points from

four flights and only four numerical x-axis variables, there are a few insights we can gain from these

results. The first is that these models confirm what was found in the previous regression models: it

is much easier to predict the land surface temperature of homogenous materials, such as pavements

and rooftops, than it is to predict land surfaces that have a greater distribution in texture and material,

such as canopy. The second is that anthropogenic variables, such as pedestrians and vehicular traffic

that are difficult to quantify, may influence the ability to predict surface temperatures based upon

meteorological variables. This was shown by the lower model fit in the high-traffic roadways and

sidewalks as compared to the low-traffic parking lot.
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Figure 10. Gaussian peak models of six surface types: grass (a), canopy cover (b), parking lot (c),

sidewalk (d), composite rooftop (e) and road (f). Note that GRS = grass; CPY = canopy; PL = parking

lot; SW = sidewalk; RTC = composite rooftop; AT = air temperature; SR = solar radiation; t = time.

4. Discussion

We have presented a case study that applied high resolution drone measurements (13 cm) to

evaluate urban surface temperatures and results indicate that there is a wide variability in surface

temperature behavior across urban land use types. Some of the uncertainty in land surface temperature

variability may be attributable to human movement patterns, land surface properties or urban geometry.

Results indicate that mean land surface temperatures can be predicted based upon solar radiation and

air temperature. By elucidating some of the factors that influence land surface temperature variability,

we hope to contribute to the growing body of knowledge centered around land surface temperature in

the urban environment.

To this end, our findings suggest that when parameterizing models, it is important to understand

the unique relationship between surface material properties, urban geometry, weather and human

movement. For example, the results indicate that pedestrian or vehicular traffic may have an impact

on land surface temperature variability across sidewalks, parking lots and streets. Depending on the

volume of cars, either parked or moving, this can greatly impact the temperature profile of paved
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surfaces. Parked cars can create heat shadows which cool the surface below and our study demonstrates

that when a car moves it can reveal temperatures as low as 8.3 ◦C cooler than the exposed surface.

In addition, results have identified several factors of urban geometry that affect land surface

temperatures. Urban factors such as building reflectivity and surface altitude can impact solar radiation,

which then influences surface temperatures in locations impacted by these effects. For example,

sidewalks often lie near buildings and depending on a buildings reflectance or shadows this can

make sidewalk temperatures more vulnerable to temperature fluctuations. In this study, sidewalk

temperatures impacted by glass reflectance were on average 4.7 ◦C hotter that sidewalks not impacted

by reflectance. Therefore, knowledge of the spatial distribution of urban geometry is important for

predicting and evaluating land surface temperatures in the built environment. While addressing urban

geometry or pedestrian and vehicular traffic within our prediction models is outside of the scope of

this project, future work should evaluate how to incorporate these important parameters into land

surface temperature predictions.

Results indicate air temperature and solar radiation are significant predictors of mean land surface

temperature in both of our models and it was found this relationship holds true in both Milwaukee,

WI and El Paso, TX. Because the model holds true across two different climatic regions, the models

developed in this project may be generalizable beyond their case study regions. In addition, these

models can also be easily applied as air temperature and solar radiation are commonly measured

across the world. The generalizability of these findings also has important implications for engineering

applications that use predictions of land surface temperatures. Urban land surface temperatures are

often used by public health officials to mitigate the impact of the urban heat island effect on human

health [2], in developing binders and mixers of pavement in roadway designs [41] or to estimate the

impact of land surface temperatures on receiving stream temperatures [42–44].

This study also demonstrates several advantages and disadvantages of using drones as compared

to satellite or in-situ imagery. The case studies we evaluated were restricted to the size of a city block

around 46,000 m2 and even though battery life would have allowed us to collect an area ten times this

size, we were restricted by United States Federal Aviation Administration UAV pilot rules that restrict

the flight of UAVs to within line of sight of the pilot. In an urban environment with tall buildings the

line of sight may be the primary constraint on coverage area. Therefore, a disadvantage of UAVs is

that flight time and legal restrictions may constrain the flight areas to small portions of a city. However,

this could be overcome with fixed-wing drones that are able cover a greater area, in addition to relaxed

regulations that allow flights beyond the line of sight [45]. Despite the restriction on the spatial extent

of the study area, advantages of UAVs over satellites or in-situ methods are their ability to collect

distributed temperature data at spatial resolutions (13 cm) that reflect small scale changes in the urban

environment. In addition, satellite data is restricted to daily to weekly observations while drones can

be flown on-demand, which allows them to capture temperature changes throughout the day.

Overall, this study highlights the utility of using drone observations to capture the variability of

urban land surface temperatures at small spatial scales. Urban environments are spatially complex,

making it difficult to capture the spatial distribution of observable phenomena outside of high-resolution

remote sensing techniques. Our findings suggest that drones could also be good tools for evaluating

the variability of other parameters of the urban environment that are important for environmental

studies such as soil moisture, leaf area index or impervious cover. Therefore, it is important for studies

such as this one that evaluate the spatial complexities of the urban environment in order to improve

the methods that we use to model and understand urban systems.

5. Conclusions

The main objectives of this work were to apply drone imagery to capture land surface temperature

variability and develop models to predict mean land surface temperatures. This was done through the

application of high-resolution thermal imagery as a parameterizing tool for model development. The

results revealed that land surface temperature variability is extensive and influenced by numerous
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variables related to urban environments and that air temperature and solar radiation are significant

predictors of mean land surface temperature. Conclusions from this study hold true in both Milwaukee,

WI and El Paso, TX, indicating they could be generalizable to regions beyond these two case

study locations.

The key findings from this study were:

• Land surface variability was significant and ranged between (3.9–15.8 ◦C) for common land

use types.

• Areas that experienced pedestrian or vehicular traffic exhibited higher variabilities than comparable

surfaces that did not. In Milwaukee, the high-traffic road had a coefficient of variation of 0.32 as

compared to 0.08 for the low-traffic parking lot. This indicates that human traffic may impact

land surface temperatures due to the heat-shadow effect.

• Urban geometry has an influence on land surface temperatures; shadows and reflectance from

buildings showed a significant influence on the temperatures of nearby land surfaces throughout

the day. Sidewalk temperatures impacted by glass reflectance were on average 4.7 ◦C hotter that

sidewalks not impacted by reflectance.

• Land surface temperature variability is low in the morning, peaks at noon and goes back down

in the evening. This may indicate that as surfaces heat up, they do so at different rates, which

contributes to more variability during mid-day.

• Air temperature and solar radiation were significant predictors of spatially averaged surface

temperature in both of our models.

• Data were consistent in the models between Milwaukee, WI and El Paso, TX, suggesting that the

findings in this study may be generalizable beyond the case study locations.

Overall, our findings suggest that land surface temperature variability in the urban environment

can come from several sources including surface material properties, urban geometry, weather and

pedestrian and vehicular traffic. This has direct implications for land surface temperature models that

are used for urban environmental studies. As climate change and urbanization continue to exacerbate

the SUHI, studies such as this are important for gaining a better understanding of the complexities of

land surface temperatures. Ultimately this improved understanding will help to develop better methods

and procedures to mitigate the impact of land surface temperatures on human and environmental health.

Author Contributions: J.N. provided investigation, data collection, data analysis, and writing of the original
draft. W.M. contributed conceptualization, supervision, data collection and draft editing.

Funding: This project was funded by the Marquette OPUS College of Engineering Earl B. and Charlotte Nelson
Award.

Acknowledgments: The authors would like to acknowledge and sincerely thank Saurav Kumar and Wissam
Atwah at the University of Texas El Paso for their help in collecting data in El Paso, Tx.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.;

Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570. [CrossRef] [PubMed]

2. Shahmohamadi, P.; Che-Ani, A.I.; Etessam, I.; Maulud, K.N.A.; Tawil, N.M. Healthy Environment: The Need

to Mitigate Urban Heat Island Effects on Human Health. Procedia Eng. 2011, 20, 61–70. [CrossRef]

3. U.S. Environmental Protection Agency. The Assessment, Total Maximum Daily Load (TMDL) Tracking and

Implementation System (ATTAINS); U.S. Environmental Protection Agency: Washington, DC, USA, 2019.

4. White, P.A.; Kalff, J.; Rasmussen, J.B.; Gasol, J.M. The effect of temperature and algal biomass on bacterial

production and specific growth rate in freshwater and marine habitats. Microb. Ecol. 1991, 21, 99–118.

[CrossRef] [PubMed]

5. Beitinger, T.L.; Bennett, W.A.; McCauley, R.W. Temperature Tolerances of North American Freshwater Fishes

Exposed to Dynamic Changes in Temperature. Environ. Biol. Fishes 2000, 58, 237–275. [CrossRef]

248



Remote Sens. 2019, 11, 1722

6. Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat

island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [CrossRef]

7. Jiang, Y.; Fu, P.; Weng, Q. Assessing the impacts of urbanization-associated land use/cover change on land

surface temperature and surface moisture: A case study in the midwestern united states. Remote Sens. 2015,

7, 4880–4898. [CrossRef]

8. Liu, L.; Zhang, Y. Urban heat island analysis using the landsat TM data and ASTER Data: A case study in

Hong Kong. Remote Sens. 2011, 3, 1535–1552. [CrossRef]

9. Sekertekin, A.; Kutoglu, S.H.; Kaya, S. Evaluation of spatio-temporal variability in Land Surface Temperature:

A case study of Zonguldak, Turkey. Environ. Monit. Assess. 2016, 188, 1–15. [CrossRef]

10. Sobrino, J.A.; Oltra-carrió, R.; Sòria, G.; Jiménez-muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.;

Cuenca, J.; Romaguera, M.; et al. Evaluation of the surface urban heat island effect in the city of Madrid. Int.

J. Remote Sens. 2013, 34, 3177–3192. [CrossRef]

11. Mallick, J.; Kant, Y.; Bharath, B.D. Estimation of land surface temperature over Delhi using Landsat-7 ETM+.

J. Ind. Geophys. Union. 2008, 12, 131–140.

12. Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A.

Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens.

2018, 11, 48. [CrossRef]

13. Granero-Belinchon, C.; Michel, A.; Lagouarde, J.-P.; Sobrino, J.A.; Briottet, X. Multi-Resolution Study of

Thermal Unmixing Techniques over Madrid Urban Area: Case Study of TRISHNA Mission. Remote Sens.

2019, 11, 1251. [CrossRef]

14. Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature

disturbances. Sci. Total Environ. 2019, 664, 995–1004. [CrossRef] [PubMed]

15. Deng, C.; Wu, C. Estimating very high resolution urban surface temperature using a spectral unmixing and

thermal mixing approach. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 155–164. [CrossRef]

16. Nichol, J.E.; Wong, M.S. High resolution remote sensing of densely urbanised regions: A case study of Hong

Kong. Sensors 2009, 9, 4695–4708. [CrossRef] [PubMed]

17. Cooper, B.E.; Dymond, R.L.; Shao, Y. Impervious Comparison of NLCD versus a Detailed Dataset Over Time.

Photogramm. Eng. Remote Sens. 2017, 83, 429–437. [CrossRef]

18. Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands:

A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [CrossRef]

19. Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of

land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63.

[CrossRef]

20. Chudnovsky, A.; Ben-Dor, E.; Saaroni, H. Diurnal thermal behavior of selected urban objects using remote

sensing measurements. Energy Build. 2004, 36, 1063–1074. [CrossRef]

21. Gaitani, N.; Burud, I.; Thiis, T.; Santamouris, M. High-resolution spectral mapping of urban thermal properties

with Unmanned Aerial Vehicles. Build. Environ. 2017, 121, 215–224. [CrossRef]

22. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification

updated. Meteorol. Z. 2006, 15, 259–263. [CrossRef]

23. National Weather Service Forcast Office. Available online: https://www.weather.gov/mkx/ (accessed on

17 July 2019).

24. Marshall, S.J. We Need To Know More About Infrared Emissivity. Proc. SPIE 1982, 313, 119–128.

25. Blonquist, J.M.; Norman, J.M.; Bugbee, B. Automated measurement of canopy stomatal conductance based

on infrared temperature. Agric. For. Meteorol. 2009, 149, 1931–1945. [CrossRef]

26. Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A. Variability of emissivity and surface

temperature over a sparsely vegetated surface. Water Resour. Res. 1994, 30, 1299–1310. [CrossRef]

27. Wittich, K.P. Some simple relationships between land-surface emissivity, greenness and the plant cover

fraction for use in satellite remote sensing. Int. J. Biometeorol. 1997, 41, 58–64. [CrossRef]

28. Ramamurthy, P.; Bou-Zeid, E. Contribution of impervious surfaces to urban evaporation. Water Resour. Res.

2014, 50, 2889–2902. [CrossRef]

29. Chen, H.; Ooka, R.; Huang, H.; Tsuchiya, T. Study on mitigation measures for outdoor thermal environment

on present urban blocks in Tokyo using coupled simulation. Build. Environ. 2009, 44, 2290–2299. [CrossRef]

249



Remote Sens. 2019, 11, 1722

30. Larsson, O.; Thelandersson, S. Estimating extreme values of thermal gradients in concrete structures.

Mater. Struct. 2011, 44, 1491–1500. [CrossRef]

31. Salamanca, F.; Krpo, A.; Martilli, A.; Clappier, A. A new building energy model coupled with an urban

canopy parameterization for urban climate simulations—Part I. formulation, verification, and sensitivity

analysis of the model. Theor. Appl. Climatol. 2009, 99, 331. [CrossRef]

32. Herb, W.R.; Janke, B.; Mohseni, O.; Stefan, H.G. Thermal pollution of streams by runoff from paved surfaces.

Hydrol. Process. 2008, 22, 987–999. [CrossRef]

33. Spectrolab, Inc. Spectrolab Photovotaic Products Data Sheet; Spectrolab, Inc.: Sylmar, CA, USA, 2012.

34. Ban-Weiss, G.A.; Woods, J.; Levinson, R. Using remote sensing to quantify albedo of roofs in seven California

cities, Part 1: Methods. Sol. Energy 2015, 115, 777–790. [CrossRef]

35. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index.

Remote Sens. Environ. 1997, 62, 241–252. [CrossRef]

36. Sohrabinia, M.; Rack, W.; Zawar-Reza, P. Soil moisture derived using two apparent thermal inertia functions

over Canterbury, New Zealand. J. Appl. Remote Sens. 2014, 8, 1–16.

37. SAS Institute. JMP®8 User Guide, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2009.

38. Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 2002;

Volume 36.

39. Thompson, A.M.; Wilson, T.; Norman, J.M.; Gemechu, A.L.; Roa-Espinosa, A. Modeling the effect of summertime

heating on urban runoff temperature. J. Am. Water Resour. Assoc. 2008, 44, 1548–1563. [CrossRef]

40. Guo, H. A Simple Algorithm for Fitting a Gaussian Function [DSP Tips and Tricks]. IEEE Signal Process. Mag.

2011, 28, 134–137. [CrossRef]

41. Solaimanian, M.; Kennedy, T.W. Predicting Maximum Pavement Surface Temperature Using Maximum Air

Temperature and Hourly Solar Radiation; Transportation Research Board: Washington, DC, USA, 1993.

42. Herb, W.R.; Janke, B.; Mohseni, O.; Stefan, H.G. MINUHET (Minnesota Urban Heat Export Tool): A Software

Tool for the Analysis of Stream Thermal Loading by Stormwater Runoff ; Project Report No. 526; St. Anthony Falls

Laboratory, The University of Minnesota: Minneapolis, MN, USA, 2009.

43. Roa-Espinosa, A.; Wilson, T.B.; Norman, J.M.; Johnson, K. Predicting the Impact of Urban Development on

Stream Temperature Using a Thermal Urban RunoffModel. Methods 2003, 369–389.

44. Hailegeorgis, T.T.; Alfredsen, K. High spatial–temporal resolution and integrated surface and subsurface

precipitation-runoffmodelling for a small stormwater catchment. J. Hydrol. 2018, 557, 613–630. [CrossRef]

45. Ravich, T. A Comparative Global Analysis of Drone Laws: Best Practices and Policies. In The Future of

Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; Custers, B., Ed.; T.M.C. Asser Press:

The Hague, The Netherlands, 2016; pp. 301–322. ISBN 978-94-6265-132-6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

250



remote sensing  

Article

Quantifying the Congruence between Air and Land
Surface Temperatures for Various Climatic and
Elevation Zones of Western Himalaya

Shaktiman Singh 1,* , Anshuman Bhardwaj 1 , Atar Singh 2, Lydia Sam 1, Mayank Shekhar 3,

F. Javier Martín-Torres 1,4 and María-Paz Zorzano 1,5

1 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå

University of Technology, 97187 Luleå, Sweden; anshuman.bhardwaj@ltu.se (A.B.); lydia.sam@ltu.se (L.S.);

javier.martin-torres@ltu.se (F.J.M.-T.); zorzanomm@cab.inta-csic.es (M.-P.Z.)
2 Department of Environmental Science, Sharda University, Greater Noida 201310, India;

2015002854atar@dr.sharda.ac.in
3 Birbal Sahni Institute of Palaeosciences, Lucknow 226007, India; mayank_shekhar@bsip.res.in
4 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, 18100 Granada, Spain
5 Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850 Madrid, Spain

* Correspondence: shaktiman.singh@ltu.se; Tel.: +46-920-492-043

Received: 21 October 2019; Accepted: 2 December 2019; Published: 4 December 2019
����������
�������

Abstract: The surface and near-surface air temperature observations are primary data for

glacio-hydro-climatological studies. The in situ air temperature (Ta) observations require intense

logistic and financial investments, making it sparse and fragmented particularly in remote and

extreme environments. The temperatures in Himalaya are controlled by a complex system driven by

topography, seasons, and cryosphere which further makes it difficult to record or predict its spatial

heterogeneity. In this regard, finding a way to fill the observational spatiotemporal gaps in data

becomes more crucial. Here, we show the comparison of Ta recorded at 11 high altitude stations

in Western Himalaya with their respective land surface temperatures (Ts) recorded by Moderate

Resolution Imagining Spectroradiometer (MODIS) Aqua and Terra satellites in cloud-free conditions.

We found remarkable seasonal and spatial trends in the Ta vs. Ts relationship: (i) Ts are strongly

correlated with Ta (R2 = 0.77, root mean square difference (RMSD) = 5.9 ◦C, n = 11,101 at daily

scale and R2 = 0.80, RMSD = 5.7 ◦C, n = 3552 at 8-day scale); (ii) in general, the RMSD is lower for

the winter months in comparison to summer months for all the stations, (iii) the RMSD is directly

proportional to the elevations; (iv) the RMSD is inversely proportional to the annual precipitation.

Our results demonstrate the statistically strong and previously unreported Ta vs. Ts relationship

and spatial and seasonal variations in its intensity at daily resolution for the Western Himalaya. We

anticipate that our results will provide the scientists in Himalaya or similar data-deficient extreme

environments with an option to use freely available remotely observed Ts products in their models to

fill-up the spatiotemporal data gaps related to in situ monitoring at daily resolution. Substituting Ta

by Ts as input in various geophysical models can even improve the model accuracy as using spatially

continuous satellite derived Ts in place of discrete in situ Ta extrapolated to different elevations using

a constant lapse rate can provide more realistic estimates.

Keywords: Himalaya; land surface temperature; air temperature; topography; MODIS

1. Introduction

Air temperature (Ta) is an important proxy for energy exchange between land-surface and

atmosphere, making Ta one of the most important parameters in climate research [1,2]. Ta is generally
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observed at a height of about 2 m above the land surface and it is considered as a critical parameter for

glacio-hydrological studies because it controls the rate of melting of snow and ice and the proportion

of form of precipitation [3,4]. In addition, it also regulates the evolution of flora and fauna in an area,

ultimately controlling the evolution of the ecological niche [5]. Ta is also important for determining

the atmospheric water vapor saturation point and thus for the formation of fogs and clouds. The

gradient between the air and ground temperature is relevant for estimating the sensible heat flux (i.e.,

the convective heat flux loss from surface to the air) for calculations of the surface energy balance [6].

The surface-to-air temperature difference is particularly important for evapotranspiration [7]. In

other regions, such as the Arctic, the Ta difference is taken as a critical parameter to monitor climate

change [8]. Therefore, it is imperative to have accurate estimates of Ta for various natural science

disciplines including glaciology, hydrology, ecology, and climatology. The measurement of Ta using

in situ automatic meteorological stations is cost intensive due to involved instrumentation and

maintenance which makes the spatial continuity of data sparse, particularly in remote environments.

This spatially discontinuous nature of in situ Ta measurements adds uncertainty in geospatial modelling

in mountainous terrain when the Ta representing single data points are extrapolated to a continuous

surface based on fixed lapse rates [9–11].

The land surface temperature (Ts) in a remote sensing perspective is the measure of how hot or

cold the top canopy skin layer of the Earth at a particular location will feel when touched [12]. The

measure of Ts is largely dependent on net solar radiation, sensible heat flux, reflectance property of

the surface, aerodynamic resistance, and the density of air [13]. Although the Ts is closely related

to Ta, it can be significantly influenced by the surface characteristics, buffering effects of vegetation

and the periodicity of the shortwave radiation emitted from the sun [14]. Over the past decade,

the remotely-sensed Ts measurements have been used to map permafrost in different parts of the

world [14–17]. There have been several attempts to estimate Ta using remotely-sensed Ts in different

ecological systems [18–22]. The root mean square difference (RMSD) between Ta from meteorological

stations and Ts from Moderate Resolution Imagining Spectroradiometer (MODIS) on Terra [23] and

Aqua [24] satellites was estimated to be ±2.20 ◦C in Indo-Gangetic plain [25], ±1.33 ◦C in Portugal [18],

±5.48 ◦C in mountainous regions of Nevada, United states of America [19],±2.97 to±7.45 ◦C in northern

Tibetan Plateau, China [26], ±4.09 to ±4.53 ◦C in a mountainous region of sub-Arctic Canada [27], and

±1.51 to ±3.74 ◦C over different ecosystems in Africa [22]. A recent study attempted to analyze the

temperature trend using the 8-day Ts corrected using the difference between Ts and Ta calculated for

87 meteorological stations in the Chinese part of Himalaya and Tibetan Plateau [28]. Most of these

published studies have compared the Ta and Ts at monthly or 8-day scales while several prominently

used ecological and glacio-hydrological models in Himalaya that require daily temperature data as

input parameter [4,29]. Moreover, such comparative studies for high mountains of Central or Western

parts of Himalaya are completely missing.

The observed temperatures in Himalaya are scarce and fragmented in spatiotemporal domain

due to difficult terrain, inhospitable weather conditions, and logistic difficulties in setting-up the

weather stations [29]. The Himalayan mountains serve as a source of fresh water supply [30,31] and

hydropower generation [32] to the densely populated mountainous regions of Indian Subcontinent.

The Himalayan rivers mainly consist of the meltwaters coming from snow and glaciers [30] and this

runoff is largely dependent on the seasonal temperatures [4,33]. The glaciers in Himalaya are losing

mass in general with a few exceptions [29,33]. However, the quantification of the changes evident

in glacierized regions in Himalaya with respect to the changing temperatures are largely uncertain

due to unavailability of well-distributed and spatiotemporally continuous network of meteorological

stations [29]. Furthermore, the lack of a definite and abiding framework for mutual climatological

data sharing among various research and academic organizations in Himalayan countries makes

regional-scale glacio-hydro-climatological modelling and interpretations more uncertain [29]. In this

respect, there are two significant research gaps: (i) the studies comparing Ta with Ts for a large spatial

domain are completely missing for the Central and Western Himalaya, and (ii) owing to this research
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gap, the glacio-hydrological community is further unsure of the significant role that spatiotemporally

continuous satellite-derived surface temperatures can play as a substitute for spatially discontinuous

Ta observations. The land-surface temperature is more likely proxy of energy exchange between

land-surface and atmosphere for phenomena which are more strongly linked to ground processes [27].

The main aim of the present study is to understand and quantify the statistically significant trends

in Ts − Ta variation over a large spatiotemporal domain in Western Himalaya. Here, we start with

providing a description of the study area, followed by data and used methods, and finally we discuss

and conclude the main findings of the analyses.

2. Study Area

In the present paper, we analyze the relationship between daily and 8-day mean Ta from 11

high-altitude weather stations (Table 1) in Western Himalaya (Figure 1) and the respective daily and

8-day mean Ts measured by MODIS. The daily and 8-day night- and day-time Ts observations from

Version 6 of Terra MODIS (MOD11A1 and MOD11A2 available from February, 2000) and Aqua MODIS

(MYD11A1 and MYD11A2 available from July, 2002) were used to calculate average daily and 8-day

Ts, respectively.

 

−

 

Figure 1. The map showing the location of the stations considered in the study for comparison of land

surface temperature (Ts) and air temperature (Ta) with elevation (Aster GDEM v2, 2011) profile of

the region.

The stations in the present study are located over a large elevation range above sea level (1587–4280

m) (Figure 1). All the stations used in the analysis are located above 2100 m except for Srinagar

which is located at 1587 m. These stations are located in three different Himalayan states of India

namely Uttarakhand, Himachal Pradesh, and Jammu and Kashmir. In addition, we have also

included one station (Shiquanhe) from the Chinese part of the region in the study (Figure 1). These

stations represent various precipitation regimes of the region such as monsoon dominance, westerly
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dominance, the precipitation-transition zone from monsoon-to-westerly dominance, and orographic

precipitation-shadow zone. The topographic variations, i.e., altitudes and orography, among the

Himalayan ranges not only govern the temperatures but also the precipitation [34]. Here, we aim

to further untangle the degree of control of the altitude and orography in deciding the correlation

between Ts and Ta in the Himalaya.

Table 1. Details of meteorological stations used for comparison in the present study.

Sl. No.
Name of the

Station
Elevation

(m)
Period Organization

Precipitation
Regime

1. Kalpa 2707 07-Jul-02–31-Dec-09 IMD Transition
2. Kaza 3631 07-Jul-02–31-Dec-09 IMD Shadow
3. Namgia 2832 07-Jul-02–31-Dec-09 BBMB Transition
4. Rakchham 3046 07-Jul-02–31-Dec-09 BBMB Transition
5. Malling 3588 07-Jul-02–31-Dec-09 BBMB Transition
6. Losar 4122 07-Jul-02–31-Dec-09 BBMB Shadow
7. Mukteshwar 2311 13-Dec-15–30-Sept-19 GHCN Monsoon
8. Shimla 2202 01-Jan-16–30-Sept-19 GHCN Monsoon
9. Shiquanhe 4280 06-Jul-02–30-Sept-19 GHCN Shadow
10. Skardu 2181 02-Oct-02–30-Sept-19 GHCN Shadow
11. Srinagar 1587 05-Jul-02–30-Sept-19 GHCN Shadow

3. Materials and Methods

3.1. Air Temperature (Ta)

The Ta is generally observed at a height of about 2 m above the land surface. Ta data observed at

11 different stations was used in the present study (Table 1). The data for five stations from Global

Historical Climatology Network (GHCN) which was acquired from National Centre for Environmental

Information (NCEI), NOAA web portal (https://www.ncei.noaa.gov/) [35] had observed daily mean

Ta estimated using hourly or 6-hourly observations (Version 3). For the other six stations of Bhakra

Beas Management Board (BBMB) and India Meteorology Department (IMD), the Ta was calculated

using the daily maximum and minimum observations due to unavailability of daily mean Ta. This

method of averaging the daily maximum and minimum temperatures for calculation daily mean

temperature is widely used due to the instrumentation, logistic, and computational simplicity [36].

Although the method produces bias in the output due to inability to track the diurnal asymmetry [37],

it has been used by considerable number of studies to make acceptable estimates requiring Ta [36].

In order to understand the degree of bias for our study area, we compared the given daily mean Ta

with mean of daily maximum and minimum Ta for the five stations of GHCN for which all the three

parameters were available. The analysis showed that the RMSD was less than 1.62 ◦C with a very high

correlation (R2 > 0.96) for all the stations. In addition to the daily Ta, we also calculated 8-day mean Ta

for comparison with the corresponding 8-day Ts explained in next section. The observations were

carefully checked for systematic and random errors before using it for further comparison. The stations

used in the present study are distributed broadly over four different precipitation zones (Table 1,

Figure 1). The precipitation varies significantly in these precipitation zones. The monsoon dominated,

transition zone, westerlies dominated, and precipitation shadow zone receive >1500, 200–800, 600–800,

and <150 mm total annual precipitation on an average, respectively.

3.2. MODIS Data

The daily, and 8-day night- and day-time Ts from MODIS satellites on Terra (MOD11A1 and

MOD11A2 available from February, 2000) and Aqua (MYD11A1 and MYD11A2 available from July,

2002) satellites [23,24] was downloaded from NASA Earthdata portal (https://earthdata.nasa.gov/) [38]

and was used to calculate average of daily and 8-day Ts (Table 2). The remotely-sensed Ts from

MODIS (version 006) has been observed to have RMSD of less than 0.5 K in comparison to the
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in situ measurements of the Ts [39] and therefore has been widely used for multiple scientific

applications [18,19,22,25–28,40].

Table 2. Details of Moderate Resolution Imagining Spectroradiometer (MODIS) data used in the

present study.

Sl. No. Data Characteristics
Terra Aqua

MOD11A1 MOD11A2 MYD11A1 MYD11A2

1. Temporal resolution Daily 8-day Daily 8-day
2. Spatial resolution 1 km 1 km
3. Available from February, 2000 July, 2002

4.
Local day time of

observation
10:30–11:30 12:30–13:30

5.
Local night time of

observation
21:30–22:30 00:30–01:30

The local time for the pass over the study area for Terra is around 10:30 and 22:30 and for Aqua is

around 13:30 and 01:30 during day and night, respectively. The 8-day land surface temperature data

MOD11A2 and MYD11A2 is a simple pixel wise average of all the respective MOD11A1 and MYD11A2

data collected during the 8-day period. The days with all the four observations, including the day and

night-time measurements available from both Terra and Aqua were included in the comparison at

both daily and 8-day scale. Equation (1) was used to compute the average of four MODIS observations

during a day or 32 MODIS observations during an 8-day period (referred as Ts in ◦C) from the pixel

value corresponding to every station given in Table 1.

Ts =
T T

d
+ T T

n + T A
d
+ T A

n

4
− c, (1)

where,

T T
d
= Terra day-time observation

T T
n = Terra night-time observation

T A
d
= Aqua day-time observation

T A
n = Aqua night-time observation

c = Constant for conversion from kelvin to Celsius (273.15)

For every data point of daily and 8-day Ts, two night-time and two day-time satellite observations

were used. It moderated the calculated daily Ts for further comparison with Ta. Therefore, every

data point of daily Ts is average of four MODIS observations during that day and 8-day Ts is average

of 32 MODIS observations during that 8-day period. Since, the satellite observation from MODIS is

unavailable in cloud cover condition and the calculated daily Ts for comparison with Ta can have

large data gaps, we decided to also include MODIS 8-day Ts in the analyses. For 8-day Ts, the data

available is comparatively more continuous due to correction of cloud contamination [39]. Although,

the 8-day MODIS observations are more efficient in terms of temporal continuity, it compromises with

the temporal resolution. Additionally, the number of data points available for comparison for 8-day

average is significantly less than the dataset available for daily average. Thus, the average Ts used in

our analyses, and referred to hereafter, is essentially the average of four-times daily and 8-day MODIS

Ts observations and all the results should be considered accordingly. Therefore, based on these data

limitations, we finally compared the average of four-times daily and 8-day MODIS Ts observations

with observed daily mean Ta for five GHCN stations and with the average of observed daily maximum

and minimum temperatures for the remaining six stations.
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3.3. Statistical Analyses

We applied different statistical tools and tests to analyze the relationship between Ts and Ta.

Firstly, the coefficient of correlation (r), coefficient of determination (R2), standard error of regression

(SE), and root mean square difference (RMSD) between Ts and Ta for all the stations was calculated.

The SE is the standard deviation of the difference between two datasets while RMSD is the square root

of mean of squared difference between two datasets. The R2 explains the efficiency of the regression

model. In other words, it is the degree to which the independent variable will be able to explain

the dependent variable. During the analysis, the Ta was considered to be the dependent variable

(y) and Ts was considered as the independent variable (x). The p-values for all the analyses were

<0.01 at 99% confidence level. Additionally, we estimated these statistical parameters for all available

data for different climate zones namely monsoon-dominated, transition, westerlies-dominated, and

precipitation shadow and for all the stations. The value of modified R2 which is adjusted for the

number of predictors was observed to be around unadjusted R2 and therefore was not shown in the

table. The p-value for each of the analyses was found to be less than 0.01 at 99% confidence level

showing the effect of predictors. In addition, we analyzed the variation in the magnitude of the

coefficient of the difference between Ts and Ta observed after the multiple regression taking January as

the base month. We also plotted the box and whisker plots for the daily difference between Ts and Ta

to graphically represent the overall range of the data, median of the data, and distribution of the data

in different quartiles.

4. Results

4.1. Ts vs. Ta Relationship

We performed different statistical analyses to derive several first-hand conclusions regarding the

relationship between Ts and Ta in the Himalayan region. The results show a strong relationship between

observed daily mean Ta and its respective daily mean Ts in general for all the stations (R2 = 0.77, RMSD

= 5.9 ◦C, SE = 4.76, n = 11,101, p-value <0.01 at 99% confidence level) with variations corresponding

to the altitudinal locations of the stations (Figure 2 and Table 3). The strongest relationship between

Ta and Ts at daily scale was observed for Shimla (R2 = 0.94; RMSD = 1.5 ◦C, SE = 1.2 ◦C, n = 304,

p-value <0.01 at 99% confidence level) and Mukteshwar stations (R2 = 0.94; RMSD = 1.6 ◦C, SE =

1.2 ◦C, n = 355, p-value <0.01 at 99% confidence level) which are located on the southern slopes in

monsoon-dominated precipitation regime. The coefficient of determination is considerable for all the

stations (R2 > 0.69, p-value <0.01 at 99% confidence level) at daily scale.

Table 3. Summary of all the statistical tests used for analysis between Ts and Ta for all the stations,

climate regimes and for all observations at daily and 8-day scale. (R2 = Coefficient of determination;

SE = Standard Error of Regression; RMSD = Root mean square difference).

Name of the Station
Observations R2 SE RMSD Regression Equation

Daily 8-day Daily 8-day Daily 8-day Daily 8-day Daily 8-day

Srinagar 1771 664 0.96 0.97 1.38 1.23 2.7 2.5 Ta = 0.96Ts − 1.64 Ta = 0.92Ts − 0.72
Skardu 193 35 0.82 0.93 2.06 1.22 4.3 3.2 Ta = 0.94Ts − 2.67 Ta = 0.82Ts − 0.71
Shimla 304 55 0.94 0.97 1.22 0.96 1.5 1.4 Ta = 0.97Ts + 1.43 Ta = 0.94Ts + 1.78

Mukteshwar 355 63 0.94 0.96 1.16 1.05 1.6 1.2 Ta = 1.03Ts + 0.62 Ta = 0.99Ts + 0.76
Kalpa 866 337 0.87 0.89 1.93 1.95 2.7 2.5 Ta = 0.80Ts + 0.93 Ta = 0.83Ts + 0.98

Namgia 1141 338 0.92 0.95 1.96 1.78 3.0 2.6 Ta = 0.75Ts + 2.39 Ta = 0.79Ts + 2.14
Rakchham 820 310 0.79 0.88 2.45 2.09 3.1 2.9 Ta = 0.77Ts + 2.63 Ta = 0.79Ts + 2.71

Malling 1093 332 0.77 0.85 2.83 2.51 5.2 4.5 Ta = 0.59Ts + 2.51 Ta = 0.64Ts + 2.30
Kaza 1028 333 0.80 0.83 4.29 4.37 7.4 7.2 Ta = 0.83Ts − 3.92 Ta = 0.86Ts − 4.17
Losar 1019 308 0.69 0.77 7.12 6.59 8.1 7.8 Ta = 0.81Ts − 2.16 Ta = 0.84Ts − 3.23

Shiquanhe 2511 777 0.88 0.97 3.19 1.56 8.7 8.9 Ta = 0.82Ts − 6.43 Ta = 0.80Ts − 6.46
Monsoon-Dominated 659 118 0.94 0.96 1.19 1.02 1.5 1.3 Ta = 1.00Ts + 1.01 Ta = 0.96Ts + 1.31

Transition 3920 1317 0.82 0.88 2.56 2.31 3.7 3.2 Ta = 0.69Ts + 2.45 Ta = 0.74Ts + 2.27
Westerlies-Dominated 1964 699 0.95 0.97 1.51 1.24 2.9 2.5 Ta = 0.95Ts − 1.61 Ta = 0.91Ts − 0.69
Precipitation Shadow 4558 1418 0.77 0.85 4.92 4.22 8.4 8.4 Ta = 0.80Ts − 4.70 Ta = 0.80Ts − 5.06
Overall Observations 11,101 3552 0.77 0.80 4.76 4.49 5.9 5.7 Ta = 0.87Ts − 1.83 Ta = 0.85Ts − 1.63
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Figure 2. The scatter plot between daily Ts (x-axis) and Ta (y-axis) for all the stations and overall

observations with respective coefficient of determination (R2) and root mean square difference (RMSD)

in ◦C.

The R2 and RMSD for all the stations show slight improvement for 8-day average (Figure 3 and

Table 3). The relationship between Ta and Ts for 8-day average was also found to be strongest for

Shimla (R2 = 0.97; RMSD = 1.4 ◦C, SE = 0.96 ◦C, n = 55, p-value <0.01 at 99% confidence level) and

Mukteshwar stations (R2 = 0.96; RMSD = 1.2 ◦C, SE = 1.05, n = 63, p-value <0.01 at 99% confidence

level). Overall, the Ta and Ts relationship was found to be stronger (R2 = 0.96; RMSD = 5.7 ◦C, SE

= 4.5, n = 3552, p-value <0.01 at 99% confidence level) at 8-day scale for all the stations as well. The

regression equation for all the analyses was also given which can be used for estimating Ta for different

climate regimes with continuity over large spatiotemporal domain using Ts (Table 3) at both daily and

8-day scales.
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Figure 3. The scatter plot between 8-day Ts (x-axis) and Ta (y-axis) for all the stations and overall

observations with respective coefficient of determination (R2) and RMSD in ◦C.

The number of data points available for 8-day analysis is significantly less in comparison to the

daily analysis (Table 1). Additionally, the use of 8-day data gives spatiotemporal continuity due to

correction of cloud contaminated pixels but poses a restriction on the frequency of comparisons. We

decided to represent the analysis of the relationship between Ta and Ts at daily scale henceforth because

there was very small improvement in the results observed after the use of 8-day data and the daily

observation are crucial for different geophysical models as explained in the Introduction section. We

noticed certain spatial patterns in the daily differences between Ts and Ta which are discussed in detail

in the following paragraphs.

4.2. Altitudinal Relationship

First, we present the relationship between Ts − Ta by considering altitudinal positions of the

stations. The variation in altitude affects the Ta due to difference in density of air which causes a

reduced green-house effect in the higher reaches. The RMSD between Ts and Ta for stations has a direct

correlation with the elevation of the station (Figures 2–4). Although, the RMSD increases systematically

with increase in elevation in general, small variation in this trend is observed for northernmost stations

(Skardu and Srinagar). The annual mean RMSD is strongly correlated to the elevation (R2 = 0.74)

in general (Figure 5a) except for two stations (Skardu and Srinagar), which even when located at

comparatively low elevations show higher magnitude of RMSD (Figure 4). The R2 is stronger for

monsoon season (Figure 5b) in comparison to annual (Figure 5a) and summer season values (Figure 5c).

The observed Ta was unavailable for Skardu for winter months (Figure 5d). Therefore, the R2 is highest

for winter when compared to monsoon, summer, and annual analysis. Furthermore, the magnitude of

Ts − Ta is observed to be higher in summer months in comparison to the winter months for all the

stations in general (Figure 4).
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Figure 4. Graph showing the monthly mean of RMSD between daily Ts and Ta for different stations with

respective elevation. The RMSD is higher in summer months and increases with increase in elevation.

 

 

Figure 5. The graph showing the relationship between average of RMSD between daily Ts and Ta

for each station and its corresponding elevation for (a) the entire study period, (b) monsoon (JASO),

(c) summer (MAMJ), and (d) winter (NDJF). The map shows the precipitation intensity (mm/h) data

from Tropical Rainfall Measuring Mission (GES DISC, 2016) for the period 1 January 1999 to 31 December

2017 plotted through GIOVAANI (https://giovanni.gsfc.nasa.gov/giovanni/) [41].

4.3. Seasonal Relationship

The difference between mean monthly Ta and Ts (i.e., Ts − Ta) for the entire period of study shows

high inter-monthly variability for all the stations except for the stations in monsoon-dominated regions

(Figures 5 and 6). The mean monthly Ts is lower in comparison to mean monthly Ta for southern slopes

(Figure 6a) and increases with increasing latitudes (Figure 6c) except for the stations in westerlies

dominated areas (Figure 6d). The magnitude of difference between mean monthly Ts and mean monthly

Ta is negative for the stations in monsoon-dominated areas and positive for the stations in precipitation

259



Remote Sens. 2019, 11, 2889

shadow and westerly-dominated regions. In the precipitation-transition zone, the difference is positive

for summer months and negative for winter months except for Rakchham, the southernmost station

of the transition zone (Figure 5). For Rakchham, the Ts − Ta values are negative throughout the

year similar to the stations in monsoon-dominated areas (Figure 6b). This might be a result of the

added effect of humidity in the near-surface atmosphere and presence of snow on land surface which

moderates the difference between Ts and Ta [42] throughout the year in monsoon-dominated regions.

In the precipitation-transition zone, the difference is partly moderated by the presence of snow during

winter months and partly humidity during summer months, particularly for the southernmost stations

of the zone (Rakchham and Kalpa) (Figures 5 and 6b) which receive enough precipitation through both

monsoon and westerlies. Ts − Ta values for the stations in westerly-dominated region are regulated

mainly by the presence of snow during winters (Figures 5 and 6d), which tends to cool the surface due

to high albedo [42]. The Ts − Ta values for the stations in precipitation-shadow zone are significantly

high and positive in magnitude throughout the year in comparison to all the other stations due to the

perennial cold-arid atmospheric conditions (Figures 5 and 6c). This confirms the role of water cycle

on this gradient and shows that in the absence of soil-atmosphere water cycle (dry conditions) the

magnitude of the difference between Ts − Ta increases and is more positive.

 

−

 

Figure 6. Graph showing the mean monthly difference between daily Ts and Ta for the entire period

for which the data is available for stations in (a) monsoon-dominated areas, (b) transition zone, (c)

precipitation shadow zone, and (d) westerlies-dominated areas. The observed Ta for Skardu for winter

months was unavailable. The Ts − Ta values for the stations in the precipitation-shadow zone (c) are

significantly higher and positive in magnitude, due to the perennial cold-arid atmospheric conditions.

The comparison of Ts and Ta showed high inter-monthly variability throughout the study period.

Therefore, we performed an additional analysis where we estimated the seasonal effect of each month

on the difference between Ts and Ta (Figure 7) in reference to a base month. For this multiple regression

analysis, January was considered as the base month since the Ts − Ta values in January were least for

all the stations in general (Figure 6). This analysis further corroborates the above-discussed aspect that

the Ts − Ta coefficient values are larger in summer months in comparison to winter months (Figure 7).

Additionally, the difference in coefficient and RMSD is high for stations in precipitation shadow regions

(Kaza, Shiquanhe and Losar) in comparison to the stations in monsoon-dominated areas (Shimla and

Mukteshwar) (Figures 6 and 7).
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Figure 7. Graph showing the effect of each month on the Ta in reference to the month of January for

stations in (a) monsoon-dominated areas, (b) transition zone, (c) precipitation shadow zone, and (d)

westerlies-dominated areas. The observed Ta for Skardu for winter months was unavailable.

To further corroborate the effect of seasonality and the presence of snow and humidity on the

Ts − Ta values, we created monthly box and whisker plots of daily difference between Ts and Ta

(Figure 8). The whisker for the stations in precipitation shadow zone and transition zone is longer

showing the high monthly variability of the difference value in comparison to the stations in monsoon

and westerlies-dominated areas. This is due to the presence of snow during the winter and humidity in

the atmosphere in summer regulating the difference between Ts and Ta in the monsoon dominated areas.

Additionally, the size of the boxes are smaller for the stations in monsoon and westerlies-dominated

areas explaining the presence of maximum data points close to the median representing that throughout

the year the difference between Ts and Ta is regulated by presence of snow or atmospheric moisture.

On the contrary, the boxes for stations in precipitation shadow zones which receive significantly less

precipitation throughout the year, are wider in size representing large variation in the difference

between Ts and Ta throughout the year. The boxes for the stations in the southern part of the transition

zone are smaller in summer and wider in winter showing the effect of humidity due to some influence

of monsoon owing to their spatial closeness to the monsoon-dominated region. Besides, both the boxes

and whiskers for the stations in north-eastern part of the transition zone, closer to the precipitation

shadow zone, are wider in size showing the variability due to lack of both snow and humidity.
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−

Figure 8. Box and whisker plots showing the monthly variation of daily difference between Ts and

Ta for the entire period for which the data is available for stations in (a) monsoon-dominated areas,

(b) transition zone, (c) precipitation shadow zone, and (d) westerlies-dominated areas.

5. Discussion

The observed near-surface air temperature is one of the most important climate parameters used

in different kinds of environmental studies particularly in Himalaya where the interaction between

high elevation, climate, and cryosphere is highly significant and complex. It is extremely difficult to

capture the spatial heterogeneity of the near-surface temperature [43] which is the primary forcing

data for different glacio-hydrological models [3,4,44–46]. It is also used as primary data for climate

change assessment [47,48], agro-climatic [40], ecological [49,50], and socio-economic [51,52] studies.

Our results present a freely available substitute for station recorded Ta with high temporal and spatial

resolution. Conclusively, the Ts is highly correlated with Ta throughout the study area at both daily

and 8-day scales. The correlation is highest at the stations located at Southern slope (Shimla and

Mukteshwar) with significantly low RMSD in comparison to the stations located in the Eastern part

(Losar and Shiquanhe). Although, the degree of congruence between Ts and Ta is slightly higher in the

8-day dataset (R2 > 0.77) in comparison to the daily dataset (R2 > 0.69), the number of data points

available for comparison is significantly low. The overall RMSD improved by 0.2 ◦C on an average

by using the 8-day dataset. The largest improvement in RMSD was observed for Skardu (1.1 ◦C) but

the number of data points available for correlation was significantly less than other stations. The

overall SE improved by 0.38 ◦C except for Kalpa and Kaza for which it deteriorated by 0.02 and 0.08
◦C, respectively. It is interesting to note that for Shiquanhe which is located in precipitation shadow

zone and highest altitude among all the stations, shows largest improvement in SE (by 1.63 ◦C) and

reduction in RMSD (0.2 ◦C).

The difference between Ts and Ta is primarily controlled by elevation, the land surface

cover characteristics, and near-surface humidity. At higher altitudes, the thinner atmosphere

shows lesser water holding capacity and the atmosphere saturates faster, thus allowing for lesser

evaporation/sublimation in a given pressure-temperature scenario [53]. This puts a constraint on the

limit of specific humidity in the high elevations and the comparatively lesser number of available

water molecules in the near-surface atmosphere cannot trap the same amount of heat as those at lower

elevations. This can provide a basis for the observed high values of Ts − Ta at the higher altitudes. The
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intercept of the regression between Ts and Ta shows increase for the stations in monsoon, transition,

and westerlies-dominated areas. On the contrary, the stations in precipitation shadow zone show

a sharp decrease in the intercept of the regression at high elevations (>3600 m). The slope of the

regression between Ts and Ta is higher for stations in low elevation and precipitation-dominated

areas (0.80–1.03) in comparison to the stations in high elevation and in transition-to-precipitation

shadow zones (0.59–0.86). This observation is supported by a study which shows decrease in slope

and degree of correlation in high elevation [54]. The high difference between Ts and Ta for the stations

in dry atmosphere at high altitude may partially be due to the heat from the Sun and cooling of

near-surface atmosphere due to heat exchange from surrounding air and temperature lapse rate [55].

The presence of more humidity moderates the difference between Ts and Ta in precipitation dominant

areas. The difference between Ts and Ta is highest with positive magnitude when the land surface

is snow-free and the near-surface atmosphere is dry. On the contrary, the Ts and Ta is negative and

lower in magnitude when the land surface is covered by snow and/or atmosphere is more saturated

with moisture regardless of high altitude. In addition to the elevation and precipitation regime, season

was observed to have significant control over the difference between Ts and Ta. The summer months

were observed to have a significantly higher effect on Ta in reference to January, in general for all the

stations. The inter-monthly variability was observed to be very high for year-round humidity-deficient

transition zones and precipitation shadow zones in comparison to the monsoon-dominated and

westerlies-dominated regions. It can be interpreted that the energy exchange between the surface and

near-surface atmosphere in the precipitation dominant areas is more efficient in comparison to the

precipitation deficient areas.

The lower magnitude of RMSD between Ts and Ta represents lower gradient of temperature

between the land surface and near-surface air due to the cold bias caused by snow cover which

protects the surface from warming because of its high albedo [42]. A possible contributing factor to this

seasonal disparity can be the reported perpetually melting seasonal snow in Himalayan mountains [55]

under the changing regional climate. The causal mechanism for this relationship deserves a separate

detailed investigation. However, a possible cause of such observations can be linked to the fact that

the diurnal temperatures even in the mid-winter months often cross the freezing point causing a

certain degree of melting to prevail [56]. This can start a cascading event where during the preliminary

warming phase, the average snowpack temperature reaches and stays at 0 ◦C isotherm until the

melting typically starts within the snowpack prior to the ripening phase as meltwater is retained

within the snowpack [57]. This meltwater may subsequently refreeze owing to the diurnal cycles of

temperature and the latent heat released during this process can additionally warm the snow surface

and the surrounding air, further minimizing the temperature difference [56]. In addition to the seasonal

change in the land cover characteristics, the variation in humidity in the near-surface atmosphere is

an important factor controlling the difference between Ts and Ta. It was recently proposed that the

amount of moisture content on the land surface has a cooling effect on land surface temperature [40].

Thus, the precipitation regime in which a particular station is located can further provide us several

clues regarding the observed variations in Ts − Ta values. These precipitation regimes have been

previously characterized [34] and in the following discussion, we take a focused approach towards

revisiting the Ts − Ta variations with respect to the respective precipitation scenarios.

All the statistical results and the regression equation between Ts and Ta have specific trends

for particular climate setting and elevation which can be used to estimate Ta using Ts (Table 3) for

glacio-hydrological and climate change studies in data-deficient Himalaya. For example, the RMSD

ranges between 1.2–1.6, 2.6–5., 2.5–4.3, and 7.2–8.9 ◦C for the stations in monsoon-dominated, transition,

westerlies-dominated, and precipitation shadow zones, respectively, for both daily and 8-day products.

The slope and intercept of the regression equations between Ts and Ta are also similar for the stations

in the same precipitation regime. The paper demonstrates different patterns of variation of Ts − Ta in

different climate regimes within the region of study. Due to the inherent limitations of the available

data, some of this analysis may be revised in the future by specific dedicated studies, in particular to
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asses if the relationships hold on daily scales and with what error bar. Some possible error sources for

this analysis may come from the scarcity of the data, and the fact that we compared data from different

instrumentation accuracies and cadences. Ta is measured by three different organizations and two

calculation methods are used for daily mean air temperature during different observation periods. The

correlation of the instantaneous observation of Ta in relation to satellite derived Ts can be investigated

by analyzing the diurnal variation of Ta in relation to the time of pass of the satellite [58]. There are

different parameters like wind speed and fractional vegetation which have additional effects on the

difference between Ts and Ta, which have not been investigated in the present study [54,55] and can be

interesting research questions for future investigations in the region.

6. Conclusions

Unavailability of reliable temperature observations with spatial continuity along with the extreme

weather conditions and difficult terrain in the remoteness of Himalaya hampers our understanding of

the cryosphere-climate coupling in these mountains. Here we attempt to compare remotely sensed

Ts with respect to in situ Ta observations over different precipitation and altitudinal zones of the

Western Himalaya. Although, there are several studies available from different parts of the globe

attempting to estimate Ta using Ts or vice-versa using monthly or 8-day MODIS data, we provide an

understanding of the spatiotemporal variability of the Ta vs. Ts relationship at diurnal scales. The

results show a strong and statistically significant relationship between Ts and Ta in general with a

spatiotemporal consistency, thus projecting satellite-derived Ts as a viable alternative to the in situ Ta

for glacio-hydro-climatological studies. We also provide regression equations to facilitate modeling of

gridded Ta using corresponding Ts for different regions of Western Himalaya. MODIS in combination

with Sea and Land Surface Temperature Radiometer (SLSTR) onboard Sentinel-3 can provide better

capability to overcome cloud gaps and ensuring spatiotemporal continuity for Ts future studies in

this direction.
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Abstract: There are numerous algorithms that can be used to retrieve land surface temperature (LST)

and land surface emissivity (LSE) from hyperspectral thermal infrared (HTIR) data. The algorithms

are sensitive to a number of factors, where noise is difficult to handle due to its unpredictability.

Although there is a lot of research regarding the influence of noise on retrieval errors, few studies

have focused on the mechanism. In this study, we selected the automatic retrieval of temperature

and emissivity using spectral smoothness (ARTEMISS) algorithm—the representative of the iterative

spectral smoothness temperature-emissivity separation algorithm family—as the research object

and proposed an improved algorithm. First, we analyzed the influence mechanism of noise on the

retrieval errors of ARTEMISS in theory. Second, we carried out a simulation and inversion experiment

and analyzed the relationship between instrument spectral resolution, noise level, the ARTEMISS

parameter setting and the retrieval errors separately. Last, we proposed an improved method

(resolution-degrade-based spectral smoothness algorithm, RDSS) based on the mechanism and law

of the influence of noise on retrieval errors and provided corresponding suggestions on instrument

design. The results show that RDSS improves the accuracy of temperature inversion and is more

effective for thermal infrared data with a high noise level and high spectral resolution, which can

reduce the LST inversion error by up to 0.75 K and the LSE median absolute deviation (MAD) by

31%. In the presence of noise in HTIR data, the RDSS algorithm performs better than the ARTEMISS

algorithm in terms of temperature-emissivity separation.

Keywords: hyperspectral thermal infrared; spectral smoothness; temperature-emissivity separation;

sensitivity analysis; noise

1. Introduction

Land surface temperature (LST) and land surface emissivity (LSE) are two key physical

parameters characterizing the state of the land surface, which are applied in various areas such

as mineral mapping [1–3], gas plume detection [4], soil moisture inversion [5] and oil-film thicknesses

measurement [6]. The LST is sensitive to the external environment and reflects the energy budget of

an object during a period; the LSE, determined by the object itself, reflects its physical and chemical

properties. The LST and LSE of an object can be simultaneously derived from thermal infrared

(generally 8–14 µm) data through a temperature-emissivity separation (TES) algorithm. TES is a

crucial issue in thermal infrared remote sensing, which can be seen as an underdetermined equation

problem, i.e., obtaining N+1 unknowns (N emissivities at each band and one temperature) by solving
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N equations (one sensor output radiance with N bands). Consequently, it needs at least one additional

constraint to make the underdetermined equations solvable.

For thermal infrared data with low or medium spectral resolution, LST is the principal retrieval

goal compared with LSE. In this case, the primary task of TES algorithms for multiband thermal infrared

data is to determine LSE. Many algorithms were developed for the inversion of LST from multispectral

thermal infrared data, such as the split-window method [7], grey body emissivity [8], reference channel

method [9], normalized emissivity method (NEM) [10,11], temperature independent spectral indices

(TISI) [12], spectral ratio method [13], NDVI-based emissivity method (NBEM) [14–17] and advanced

spaceborne thermal emission and reflection radiometer temperature-emissivity separation (ASTER

TES) [18]. Among them, NBEM, TISI and ASTER TES are widely used methods [19]. Based on the

relationship between NDVI and LSE, NBEM determines the LSE at specific bands with the help of visible

near-infrared data. The ASTER TES method iteratively adjusts the average emissivity according to the

empirical relationship between the change range of emissivity and the average emissivity to obtain

the optimal LST. TISI transforms ground-leaving radiance under some approximation of the Planck

function to make it reflect the spectral shape of emissivity. The day and night algorithm, based on TISI,

has obtained good results on LST inversion of multi-band thermal infrared remote-sensing data [17].

TISI is theoretically suitable for thermal infrared remote sensing data of any spectral resolution;

however, it cannot obtain absolute values of the retrieval emissivity spectrum. Therefore, TISI requires

other data or theoretical constraints to solve the problem. The improvement of hyperspectral thermal

infrared (HTIR) remote sensing technology brings new opportunities for the development of thermal

infrared remote sensing. Unlike multi-spectral remote sensing, HTIR remote sensing is applied to

retrieve not only LST but also LSE more accurately, which gives full play to the role of LSE on the

fields of classification, identification and parameter inversion of the land surface (especially urban land

surfaces of various types). As a result, the application scenarios of HTIR remote sensing are different to

those of multispectral thermal infrared remote sensing. To adapt to new application scenarios, the goal

of TES of HTIR remote sensing is to obtain the LST and LSE with the highest accuracy under the

smallest number of universal and reasonable additional constraints. At present, scholars have proposed

or improved a number of TES algorithms for HTIR data [20–35]. Unlike multispectral thermal infrared

inversion methods, most TES algorithms for HTIR data have far fewer constraints. One well-known

assumption of HTIR TES algorithms is that the LSE of most objects [36] is much smoother than the

spectral curve of atmospheric downwelling radiance.

Iterative spectrally smooth temperature-emissivity separation (ISSTES) [21] is a representative

TES algorithm based on the concept of spectral smoothness for HTIR data. ISSTES uses a smoothness

index as a cost function measuring the atmospheric residue in the estimated LSE, and iteratively

optimizes the estimated LST until the cost function is minimized and the corresponding LSE is

considered optimally smoothed. The automatic retrieval of temperature and emissivity using spectral

smoothness (ARTEMISS) improved ISSTES [22] by updating its cost function. ARTEMISS uses the

standard deviation of the estimated at-sensor radiance and true at-sensor radiance as the cost function,

instead of the absolute deviation of the estimated LSE and true LSE. Based on ARTEMISS, the quick

temperature-emissivity separation (QTES) algorithm [23] was modified to retrieve LST and LSE from

HTIR data measured near the ground. QTES uses a narrow spectral range (9.5–10 µm) instead of

the entire spectral range of data when searching for the optimal temperature. In addition to the

three algorithms proposed by Borel mentioned above, researchers have successively proposed many

other TES algorithms based on the concept of spectral smoothness. The spectral smoothness method

(SpSm) [24] uses the first derivative of estimated LSE spectrum as cost function. The downwelling

radiance residual index (DRRI) [25] algorithm uses downwelling radiance residual index to measure

roughness of LSE curve on several selected three-channel groups. The correlation-based temperature

and emissivity separation (CBTES) method [26] constructs a cost function to measure the correlation

between the estimated LSE and the atmospheric downwelling radiation, based on the concept that LSE

is not directly related to atmospheric downwelling radiation, but when estimated LST is not accurate,

270



Remote Sens. 2020, 12, 2295

estimated LSE will include residual atmospheric absorption information. The stepwise refining

temperature and emissivity separation (SRTES) [27] considers self-emitting radiation of the land surface

a function of wavenumber in a narrow spectral range, where LSE can be seen as a constant and the Planck

function can be expressed in a linear form. However, atmospheric downwelling radiation still contains

unignorable atmospheric absorption features. SRTES utilizes the residual atmospheric downwelling

radiation of calculated self-emitting radiation as a criterion and obtains both the LSE at specified bands

and the LST by the stepwise refining method. The correlation-wavelet method [28] considers the

land surface self-emission curve as a fundamental-frequency signal and atmospheric downwelling

radiance as a high-frequency signal, and obtains the land surface self-emission from ground-leaving

radiance by filtering out the atmospheric characteristics based on the spectral smoothness concept.

The correlation-wavelet method calculates the correlation between the emissivity curves calculated by

taking into the atmospheric downwelling radiance and by direct wavelet filtering without considering

atmospheric downwelling radiance. At the maximum correlation, the corresponding temperature is

seen as the optimal retrieval temperature. Meanwhile, the emissivity curve is synthesized by wavelet

signals of different scales whose proportion is calculated based on the correlation. A TES algorithm for

low-emissivity materials [29] is based on the bias characteristic of atmospheric downwelling radiance,

namely when retrieval LSE deviates from its true value, atmospheric downwelling radiance also

deviates from its true value and the deviations are the same at the bands of the atmospheric absorption

peak and valley. Some researchers have tried to reduce the unknowns of equations by reducing the

dimensions of the emissivity, making the underdetermined equations solvable. One way to reduce

the dimensionality is to divide the emissivity curve into several segments, each of which is the linear

function of the wavelength. Based on the segmented linear constraints, three TES methods have

been proposed, namely, the linear spectral emissivity constraint (LSEC) [30], the improved LSEC

(I-LSEC) [31] and the pre-estimate shape LSEC (PES-LSEC) [32], which all take the sum of squared

residuals of the estimated and true ground-leaving radiance as cost function. Another way to reduce

the dimensionality is using the wavelet transform. The wavelet transform method for separating

temperature and emissivity (WTTES) [33], which expresses LSE as a function of low-frequency wavelet

coefficients, reduces the number of unknowns from N + 1 to N/2 + 1, and iteratively searches for the

optimal wavelet coefficient and LST. The multi-scale wavelet-based TES algorithm (MSWTES) [34]

is based on the fact that both high frequencies of ground-leaving radiance and the LSE calculated

according to inaccurate LST are closely correlated with the atmospheric downwelling radiance.

From the perspective of the spectral curve, the above TES algorithms follow similar basic concepts.

For eliminating the influence of the “thorns” of a curve due to atmospheric absorption lines, the TES

algorithms first aim to obtain a degraded approximate spectral curve close to the true spectral curve.

For example, ISSTES estimates the LSE from equations directly; LSEC and WTTES estimate LSE after

modifying its expression. Then, they search for the optimal LST, which minimizes the cost function

and calculates its corresponding LSE as the final retrieval LSE. In addition to the idea of spectral

smoothness, there is a new idea from the perspective of statistics, which assumes that the LSE spectra

of natural and man-made materials can be well represented in a given subspace of the original data

space. Based on the new idea, the dictionary subspace based temperature and emissivity separation

(D-SBTES) [35,36] uses a singular value decomposition to extract the basis matrix of the subspace from

the emissivity spectra dictionary to obtain the retrieval emissivity. However, D-SBTES suffers from

several factors, such as noise, the rank of basis matrix adopted to address the emissivity subspace and

the true land surface temperature, and it is more suitable for high-emissivity objects.

Overall, spectral smoothness has been a reasonable strategy widely used in the field of TES.

Among the TES algorithms mentioned above, the most commonly used cost function is the standard

deviation of the simulated at-sensor radiance and true at-sensor radiance, and a classic and common

method to approximately process the LSE curve is the boxcar average. Therefore, for this study we

researched ARTEMISS, which is the representative algorithm of the spectral smoothness TES family

and has first-rate performance.
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There are many impact factors to the performance of a TES algorithm for HTIR data,

mainly including (1) sensor-related parameters (e.g., sensor altitude, spatial resolution, spectral range,

spectral resolution and instrument noise), (2) data pre-processing (before TES) related residual errors

(e.g., radiation calibration, spectral calibration and atmospheric correction) and (3) the algorithm’s

limitations (e.g., the adopted assumptions or constraints) [37–48]. The sensor altitude affects the

amount of atmospheric radiation entering the sensor. The higher the sensor altitude, the greater

the inversion error [37,44]. If the spatial resolution is low, non-isothermal mixed pixels will appear

in the thermal infrared hyperspectral image, which makes it difficult to separate the temperature

emissivity accurately [39,41,42]. The spectral range of 7.5–8 µm, containing dense atmospheric

absorption lines, is usually used to retrieve atmospheric parameters; however, the inversion requires

a sufficient spectral resolution. The spectral range of 8–12.5 µm is usually used to retrieve the

LST and LSE; the higher the spectral resolution, the smaller the retrieval errors [42,43]. A sufficient

signal-to-noise ratio is necessary to obtain a unique solution for TES, and the retrieval error increases

linearly with instrument noise [37,40,42]. The radiation calibration needs to have sufficient accuracy

in order to make the simulated and measured radiance match [42]. The spectral calibration error

greatly affects the temperature and emissivity errors even if the atmospheric correction has no

error [40,45–48]. The influence of atmospheric correction errors (atmospheric upwelling radiance,

atmospheric downwelling radiance and atmospheric transmittance) on the retrieval results varies by the

TES algorithm. Among the three atmospheric parameters, atmospheric downwelling radiance has most

of the influence on retrieval errors, especially for low-emissivity objects [41,43,45,46]. The adopted cost

function is a mathematical expression of the adopted assumption for a TES algorithm, which certainly

affects algorithm performance, regardless of whether the algorithm solves the underdetermined

problem by increasing the constraints (e.g., spectral smoothness assumption) or reducing unknowns

(e.g., piecewise linear constraint) [37,38,44,47,48].

The above factors, excluding the algorithm’s limitations, can be classified as systematic errors and

random errors. The systematic errors can be reduced or removed by some correction methods based on

the study of error patterns. For example, besides laboratory calibration, scene-based spectral calibration

is able to improve further the spectral calibration accuracy of the field-measured data, which selects

some atmospheric absorption channels as the reference channel to perform spectral calibration on the

measured data, and the minimum error of the center wavelength shift is within 1 nm [49]. The sensor

altitude, spectral range and resolution depend on the equipment development level and the external

conditions during data acquisition. They mainly affect errors of the atmospheric parameters (input

parameters for separating temperature and emissivity), and the accuracy of atmospheric correction

increases with the improvement of technology [40,50,51]. The random errors, however, are much more

difficult to deal with. Like noise, it is uncontrollable and limited by the detector technology, and it

is difficult to remove the noise non-destructively after data acquisition. Therefore, the influence of

random errors on the TES algorithms is also widely researched [25–28,30–32,37,40–44,47,48]. However,

most research on this issue has been about how much noise causes the temperature and emissivity

inversion errors, and only a few studies have focused on the influence mechanism of noise on the

TES algorithms.

Here, we selected the ARTEMISS algorithm—a representative of the iterative spectral smoothness

TES algorithm family with a good application effect—as the research object. The influence mechanism of

noise on the retrieval errors of ARTEMISS is derived from the cost function. The relationships between

the instrument spectral resolution, noise level, the ARTEMISS parameter setting and the retrieval

errors are investigated through simulation experiment. On the basis of the mechanism and law of the

influence of noise on the retrieval errors obtained from the experiment, the resolution-degrade-based

spectral smoothness (RDSS) algorithm, an improved method, is proposed. Corresponding suggestions

on the instrument design are also provided. Section 1 reviews TES algorithms and impact factors.

Section 2 theoretically analyzes how noise affects the retrieval results of ARTEMISS. Section 3 describes

the data simulation experiment, implementation of TES and the evaluation metrics for the retrieval
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results (Section 3.1) and the results of a sensitivity analysis of ARTEMISS regarding noise and smoothing

window size (Section 3.2). Section 4 proposes the RDSS algorithm based on ARTEMISS, and presents

the validation results. Sections 5 and 6 present the discussion and conclusions, respectively.

2. Background

The temperature-emissivity separation is based on radiative transfer theory. Ignoring multiple

scattering, the radiative transfer equation (RTE) [9,52,53] is as follows:

L(λi, T) = Lg(λi, T)τ(λi) + Lu(λi) (1)

Lg(λi, T) = ε(λi)B(λi, T) + [1− ε(λi)]Ld(λi) (2)

B(λi, T) =
c1

λi
5 · exp

(
c2
λiT
− 1

) (3)

where L(λi, T) is the at-sensor radiance at i-th band and LST of T, i ∈ [1, N]; N is the number of

bands; Lg(λi, T) is the ground-leaving radiance, including the object’s self-emitting radiance and

reflected atmospheric downwelling radiance; Lu(λi) is the atmospheric upwelling radiance; τ(λi) is

the atmospheric transmittance; ε(λi) is the land surface emissivity; B(λi, T) is the blackbody radiance

at T and Ld(λi) is the atmospheric downwelling radiance.

The original ARTEMISS algorithm includes two parts: atmospheric correction and temperature-

emissivity separation. This study focuses on the influence of instrument noise on the retrieval LST

and LSE of ARTEMISS. Therefore, this study only discusses the temperature-emissivity separation

process of ARTEMISS, assuming the three atmospheric parameters (τ(λi), Ld(λi) and Lu(λi)) known

and without errors. Then, we know Lg(λi, T) according to Equation (1). Given temperature estimation

T̂, we can obtain the LSE according to Equation (2). The emissivity is calculated by,

ε̂(λi) =
Lg(λi, T) − Ld(λi)

B
(
λi, T̂

)
− Ld(λi)

(4)

where ε̂(λi) is the LSE estimation and B
(
λi, T̂

)
is the blackbody radiance at T̂.

According to the concept of spectral smoothness, the goal of ARTEMISS is to find an optimal LST

estimation where the corresponding LSE is the smoothest. ARTEMISS uses the standard deviation of

estimated at-sensor radiance and true at-sensor radiance as the cost function. When the cost function

reaches the minimum, the corresponding LST estimation is the optimal LST. The process of ARTEMISS

temperature-emissivity separation is as follows:

Given an LST estimation, the LSE estimation can be calculated using Equation (4); then, a boxcar

average is performed on it and one can obtain the smoothed LSE estimation ε̂(λi):

ε̂(λi) =
1

3

i+1∑

j = i−1

ε̂
(
λ j

)
(5)

Then, the estimated at-sensor radiance, L f it(λ, T̂, ε̂) is calculated according to the RTE:

L f it(λ, T̂, ε̂) = ε̂(λ)B(λ, T)τ(λ) + [1− ε̂(λ)]Ld(λ)τ(λ) + Lu(λ) (6)

Then, the standard deviation (cost function) of the estimated at-sensor radiance and the true

at-sensor radiance is calculated:

σ(T̂, ε̂) = σ(L f it(λ, T̂, ε̂) − L(λ, T̂, ε̂)) (7)
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We iteratively cycle through Equations (5)–(7) until the cost function reaches the minimum, and the

corresponding temperature is seen as the optimal LST. Then we obtain the retrieval emissivity with the

optimal temperature through Equation (4).

The above processes do not consider instrument noise. In fact, the output radiance of the

thermal infrared hyperspectral sensor inevitably includes instrument noise. Instrument noise is a

kind of random noise. In this study, the instrument noise is represented by additive Gaussian white

noise, and the bands are uncorrelated. That is, to the right side of in Equation (1), add a noise term

η(λi). Accordingly, to the right side of in Equation (2), also add a noise term
η(λi)

τ(λi)
. Then ε̂(λi) in

Equation (4) becomes,

ε̂(λi) =
[B(λi,T)−Ld(λi)]ε(λi)+

η(λi)
τ(λi)

B(λi,T̂)−Ld(λi)

=
B(λi,T)−Ld(λi)

B(λi,T̂)−Ld(λi)
ε(λi) +

η(λi)
τ(λi)

B(λi,T̂)−Ld(λi)

(8)

where ε̂(λi) and ε(λi) are the estimated emissivity and its true value respectively and T̂ and T are the

estimated temperature and its true value respectively.

For simplicity, ε̂(λi), ε(λi), B(λi, T̂), B(λi, T), τ(λi), Lu(λi), Ld(λi) and η(λi) will be abbreviated

in the following equations as ε̂i, εi, B̂i, Bi, τi, L↑
i
, L↓

i
and ηi respectively. We bring Equations (5) and (8)

into Equation (7), and the cost function of ARTEMISS, i.e., Equation (7), becomes

σ
(
T̂, ε̂

)
= σ

([
εi−1+εi+εi+1

3

(
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i

)
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i
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−

[(
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i

)
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i
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])
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i
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3
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τi−1
+ 1

3

B̂i−Ld
i

B̂i+1−Ld
i+1

ηi+1τi

τi+1
− 2

3ηi




(9)

where σ(·) in the right side of Equation (9) refers to

√
1
N

∑N
i = 1 [(·)

2].

In Equation (9), the first three items are not related to noise and the last three items are noise-related.

The items not related to noise are fixed and determined by the temperature. In general, the cost function

is smallest when T̂ = T. However, after noise appears, the cost function may not be the minimum

value when T̂ = T. That is to say, after the coupling of noise, temperature and transmittance, different

noise levels may cause different optimal T̂ appearances for the same emissivity.

3. Sensitivity Analysis of ARTEMISS

This section analyzed the relationship between instrument spectral resolution, the noise level,

the ARTEMISS parameter setting and the retrieval errors of ARTEMISS through simulation data.

This section described the simulation experiment in Section 3.1 and the results in Section 3.2.

3.1. Simulation Experiment

A thermal infrared hyperspectral imager is the primary tool used to acquire HTIR remote sensing

data. The instrument’s settings and performance directly affect data quality, which in turn affects

the accuracy of subsequent TES process. On the contrary, the TES algorithms also influence the

development of HTIR instruments over time. Based on this background and recent research [48],

this study mainly uses the instrument’s key parameters, such as spectral range, noise level, spectral

resolution and ARTEMISS parameter setting, to explore their influence on the accuracy of the TES

algorithm. Note that the scenes simulated in this study were only isothermal homogeneous pixels,

the complex radiation transfer process among non-isothermal heterogeneous pixels involves other
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complex problems, such as pixel decomposition, which may not be conducive to focusing on evaluating

the relationship between the accuracy of the TES algorithm and the selected impact factors.

During the simulation of at-sensor radiance, this study considered three impact factors unrelated

to the algorithm itself (i.e., spectral range, noise level and spectral resolution) and four input parameters

(i.e., atmospheric model, sensor altitude, surface temperature and surface emissivity), as shown in

Table 1. They were set as follows:

Table 1. Primary variables setup of simulation experiment.

Variable Value Number

Spectral range 7.5–12.5 µm, 8–12.5 µm 2
Random noise From 0 to 0.5 K with an incremental step of 0.05 K 11
Spectral resolution 50 nm, 35 nm, 10 nm, 5 nm 4
Sensor altitude 2 km, 10 km, 750 km 3

LST

Atmospheric temperature + offset

6
Offset:
(1) from −5 K to 20 K with an incremental step of 5 K
when atmospheric temperature ≤ 280 K;
(2) from −10 K to 15 K with an incremental step of 5
K when atmospheric temperature > 280 K.

LSE All emissivity spectra covering thermal infrared
wavelengths from ASTER 2.0

1524

Atmospheric model

Tropical Model, 299.7 K

5

Mid-Latitude Summer Model, 294.2 K
Mid-Latitude Winter Model, 272.2 K
Sub-Arctic Summer Model, 287.2 K
Sub-Arctic Winter Model, 257.2 K

Total — 12,070,080

(1) Spectral range: 7.5–13.5 µm is generally regarded as the atmospheric window of thermal

infrared remote sensing. Considering the low detector response efficiency at 12.5–13.5µm and the

atmospheric absorption at 7.5–8.0 µm, this study used two spectral ranges: 7.5–12.5 µm and 8–12.5 µm.

(2) Noise level: considering that a HTIR imager is a system, the noise in calibrated data is an

accumulation of noise from the radiance entering the imager to have been calibrated, including detector

noise, circuit noise, calibration source noise, etc. The calibration errors include both systematic and

random errors. This study only considered the random calibration error, which is more difficult to be

removed than systematic error. Therefore, the noise here refers to a comprehensive noise equivalent

temperature difference, namely the random error in calibrated data, which is simulated by a Gaussian

function [37,44]. Taking the current noise equivalent temperature difference (NEDT) of the instrument,

which is generally below 0.3 K [54], and other sources of random errors into account, in this study we

tested 11 noise levels, and the specific value was from 0 to 0.5 K with an incremental increase of 0.05 K.

(3) Spectral resolution: the HTIR imager splits the thermal infrared radiation spectrum into

hundreds and thousands, approximately continuous and narrow bands, and the spectral response

of each channel conforms to the Gaussian distribution [55,56]. When dealing with multi-spectral

thermal infrared data, the spectral response function is usually obtained by direct measurement [57,58].

However, for the HTIR imager, the spectral response performance at each channel is usually fitted by a

Gaussian function after spectral calibration by devices such as a monochromator, and described by the

center wavelength and full width at half height (FWHM) obtained by fitting. Practically, the spectral

response function of the HTIR imager is obtained by putting the center wavelength and FWHM at each

band into a Gaussian function. In general, the spectral resolution of HTIR imagers is higher than 100 nm

(one hundredth of a wavelength). The spectral resolution of most current airborne instruments is above

50 nm [54]. Four spectral resolutions (50 nm, 35.2 nm, 10 nm and 5 nm) were tested to analyze the

influence of the spectral range and spectral resolution on the retrieval results (Table 1). The two spectral

resolutions of 50 nm and 35.2 nm were from the airborne thermal-infrared hyperspectral imager system
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(ATHIS) [55] and hyperspectral thermal emission spectrometer (HyTES) [59] respectively. The other

two spectral resolutions of 10 nm and 5 nm were set to provide theoretical analysis for the design and

development of HTIR instruments with higher spectral resolution in the future.

(4) Atmospheric model: to include as many atmospheric conditions as possible, we chose

five atmospheric models from moderate resolution atmospheric transmission (MODTRAN)

software developed by Spectral Sciences, Inc., Burlington, United States [60], including tropical

atmospheric model, mid-latitude summer (winter) atmospheric model and sub-arctic summer (winter)

atmospheric model.

(5) Sensor altitude: the development of HTIR imagers is currently in its infancy. There are

no spaceborne HTIR instruments in orbit yet, and airborne HTIR imagers are still the mainstream.

Thus, airborne HTIR data are the main source currently available. The sensor altitude directly affects

atmospheric transmittance and path radiance. With due consideration of the airborne HTIR remote

sensing scene, this study sets three sensor altitudes of 2 km, 10 km and 750 km for low aerial, high

aerial and spaceborne instruments, respectively.

(6) Surface temperature: the heat between the land surface and atmosphere is frequently exchanged.

LST generally fluctuates more than atmospheric bottom temperature. Therefore, the surface temperature

is set around the atmospheric temperature. That is, the surface temperature is equal to the atmospheric

temperature plus an offset. In the simulation, when the atmospheric temperature was higher than 280

K, the offset was set from −5 to 20 K with an incremental step of 5 K; when the atmospheric temperature

was lower than 280 K, the offset was set from −10 to 15 K with an incremental step of 5 K.

(7) Surface emissivity: the theoretical basis of ARTEMISS is that the smoothness of LSE is higher

than the downwelling radiance spectrum of the atmosphere. It is necessary to choose a dataset

containing a large number of spectra to test the influence of the fluctuation of spectral curves of

different ground objects on inversion accuracy. We chose the advanced spaceborne thermal emission

and reflection radiometer (ASTER) 2.0 spectral library [61], which is often adopted in a remote sensing

numerical simulation experiment. There are 2445 spectra of different ground objects in the library.

Among them, 1524 emissivity curves covering thermal infrared wavelengths were selected, simulating

the majority of scenarios in practical applications. The selected dataset involves common ground

object types including stony mineral (909), rock (388), manmade (84), soil (75), stony meteorite (60),

vegetation (4), water (4), snow (4) and ice (1) [48].

The influence of ARTEMISS’s smooth window size on the inversion accuracy was studied during

the process of TES in this study. The method used in [48] was adopted in the terms of searching for the

optimal temperature; the specific settings were as follows:

(1) Smooth window size setting: here, the algorithm parameter refers to the best window size

for smoothing, where the retrieval error is the smallest among the several window sizes for a group

of data at a certain noise level. We used the ARTEMISS algorithm with 17 smoothing window sizes

(from 3 to 35 with an incremental step of 2) to retrieve the simulated at-sensor radiances to analyze the

relationship between the ARTEMISS spectral smoothing window sizes and the retrieval errors.

(2) The strategy of optimal temperature solution: to reduce the computational complexity and

avoid the local minimum of the cost function, the strategy of the optimal temperature solution

adopted in this study was the same as in [48]. First, a search range of temperature was set, as

in [48]. Then, the cost function was calculated for each temperature in the temperature search range.

Finally, the temperature corresponding to the minimum cost function value was seen as the optimal

temperature. According to the literature [48], the optimal temperature obtained with a search range of

true LST ± 100 K is basically same with that obtained with a search range of true LST ± 20 K. Therefore,

in order to save calculation time, the true surface temperature ± 20 K was set as the temperature search

range in this study.

We used the root mean square error (RMSE) metrics to evaluate the retrieval temperature error.

The RMSE of a group of retrieval LSTs with a certain spectral parameter and noise level is defined as:
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RMSET =

√√√√
1

Ns

Ns∑

j = 1

(
T̂ j − T j

)2
(10)

where j ∈ [1, Ns], Ns is the number of the samples in the group of data to be evaluated; and T̂ j and T j

are the retrieval LST and the real LST of a sample in the group of data to be evaluated respectively.

The RMSE is sensitive to the amplitude of error at some bands (especially large errors), but it is

not sensitive to the overall deviation tendency of retrieval LSE from its true LSE. The overall deviation

means that the amplitudes of error at all bands are about the same. Therefore, we used both the RMSE

and median absolute deviation (MAD) to evaluate the retrieval LSE. This strategy can simultaneously

measure the emissivity error in terms of both details and overall morphologies.

The RMSE and MAD of a group of retrieval LSEs with a certain spectral parameter and noise

level are defined as:

RMSEε =
1

Ns

Ns∑

j = 1

√√√
1

N

N∑

i = 1

(
ε̂ j(λi) − ε j(λi)

)2
(11)

MADε =
1

Ns

Ns∑

j = 1

median
(
ε̂ j(λi) − ε j(λi)

)
(12)

where j ∈ [1, Ns], Ns is the number of samples in a group of data to be evaluated; i ∈ [1, N], N is

the number of bands of a retrieval LSE spectrum;

√
1
N

∑N
i = 1

(
ε̂ j(λi) − ε j(λi)

)2
is RMSE of retrieval

LSE spectrum; median
(
ε̂ j(λi) − ε j(λi)

)
is MAD of retrieval LSE spectrum and ε̂ j(λi) and ε j(λi) is the

retrieval and true LSE of sample j at the i-th band, respectively.

The data simulation included two processes: the ultra-high-resolution (1 nm) at-sensor radiance

simulation and sensor output radiance simulation, as detailed in article [48]. The simulation experiment

was based on the interface data language (IDL), Exelis Visual Information Solutions, Inc. MODTRAN

was called by an IDL program to simulate the atmospheric parameters. All other experimental

processes were implemented by the IDL code. In order to facilitate the drawing and explanation of the

results, the simulation results were classified into eight groups according to spectral range and spectral

resolution in this article, as shown in Table 2.

Table 2. Groups of simulated hyperspectral thermal infrared (HTIR) data.

Name Spectral Range/µm Spectral Resolution/nm Similar Sensor

Group1 7.5–12.5 50
Group2 7.5–12.5 35.2 HyTES
Group3 7.5–12.5 10
Group4 7.5–12.5 5
Group5 8–12.5 50 ATHIS
Group6 8–12.5 35.2
Group7 8–12.5 10
Group8 8–12.5 5

3.2. Results Analysis

3.2.1. The Relationship of the Retrieval Errors of ARTEMISS vs. the Noise Level and
Spectral Parameters

This study retrieved eight groups of simulated HTIR data with two spectral ranges (7.5–12.5 µm

and 8–12.5 µm) and four spectral resolution (50 nm, 35.2 nm, 10 nm and 5 nm) by the ARTEMISS

algorithm and measured the retrieved LST and LSE errors. Figure 1 shows the retrieved LST errors of

the eight groups of simulated HTIR data as a function of the noise level.
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Figure 1. Plot of automatic retrieval of temperature and emissivity using spectral smoothness

(ARTEMISS) land surface temperature (LST) inversion errors varying with noise equivalent temperature

difference (NEDT), spectral range and spectral resolution.

For all eight groups of simulated HTIR data shown in Figure 1, the retrieved LST errors of

ARTEMISS increased linearly, roughly with the noise level. For the four groups of simulated data

with high spectral resolution of 10 nm and 5 nm, after the NEDT of 0.2 K, the retrieved LST errors

increased with the noise level at a slower growth rate. For the eight groups of simulated data except

the two with the spectral resolution of 5 nm, the retrieved LST errors of ARTEMISS decreased as the

spectral resolution increased. However, the two groups of data with a spectral resolution of 5 nm

show differences to each other. For the spectral range of 8–12.5 µm, the retrieved LST errors of 5 nm at

8–12.5 µm (refers to Group8 with a spectral resolution of 5 nm and in a spectral range of 8–12.5 µm)

were smaller than those with a lower spectral resolution (50 nm and 35.2 nm) and were consistent

with those of 10 nm and a spectral range of 8–12.5 µm in terms of both amplitude and trend. For the

spectral range of 7.5–12.5 µm, the retrieved LST errors of 5 nm at 7.5–12.5 µm were larger than those

with a lower spectral resolution (35.2 nm and 10 nm) and were numerically similar with those of 50 nm

at 7.5–12.5 µm. For the spectral resolutions of 50 nm and 32.5 nm, the retrieved LST errors with a

spectral range of 7.5–12.5 µm were smaller than those in the spectral range of 8–12.5 µm. Among the

eight groups of results, the group with 10 nm at 8–12.5 µm had the smallest retrieved LST error (e.g.,

LST RMSE = 0.11 K, 0.55 K and 1.10 K when NEDT = 0.05 K, 0.20 K and 0.50 K, respectively), 50 nm

at 8–12.5 µm had the largest retrieval LST error (e.g., LST RMSE = 0.46 K, 1.20 K and 2.56 K when

NEDT = 0.05 K, 0.20 K and 0.50 K, respectively). The results suggest that for temperature inversion,

a higher spectral resolution and wider spectral range do not necessarily lead to smaller LST inversion

errors. The results of this study show that, considering noise, 10 nm at 8–12.5 µm was the most

suitable setting for thermal infrared hyperspectral temperature inversion among the eight spectral

settings investigated.

Figure 2a,b shows the RMSE and MAD of ARTEMISS retrieved LSE for eight groups of simulated

HTIR data. Figure 2a shows that the retrieved LSE RMSEs of ARTEMISS increased approximately

linearly with the noise level for all eight groups of simulated HTIR data, which is consistent with the

retrieved LST RMSEs in Figure 1. However, the retrieved LSE RMSEs show a significant difference

between the two spectral ranges. The retrieved LSE RMSEs of all four groups of data in the spectral

range of 8–12.5 µm were smaller than the retrieved LSE RMSEs of four groups of data with in spectral

range of 7.5–12.5 µm. Moreover, the relationship between the retrieved LSE RMSEs and the spectral

resolution were different in the two spectral ranges. For the four groups of data in spectral range of
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7.5–12.5 µm, the retrieved LSE RMSEs of ARTEMISS increased as the spectral resolution increased;

in contrast, for the four groups of data in the spectral range of 8–12.5 µm, the retrieved LSE RMSEs

of ARTEMISS decreased as the spectral resolution increased (except the group of 5 nm at 8–12.5 µm).

Among the eight groups, 10 nm at 8–12.5 µm had the smallest LSE RMSEs (0.0021, 0.0082 and 0.0203

when NEDT = 0.05 K, 0.20 K and 0.5 K, respectively), while the 5 nm at 7.5–12.5 µm had the largest

LSE RMSEs (0.0173, 0.0418 and 0.0796 when NEDT = 0.05 K, 0.20 K and 0.5 K, respectively). Figure 2b

shows that the trend of the retrieved LSE MADs of ARTEMISS was close to that of the retrieved LST

RMSEs for the eight groups. For the eight groups of data with two spectral ranges, the retrieved

LSE MADs of ARTEMISS roughly increased linearly with the noise level. Moreover, the relationship

between the retrieved LSE MADs and the spectral resolution were the same for the two spectral ranges.

The retrieved LSE MADs decreased as the spectral resolution increased, except for 5 nm at 7.5–12.5 µm.

Among the eight groups, 5 nm at 8–12.5 µm had the smallest retrieved LSE MADs and 50 nm at

8–12.5 µm had the largest retrieved LSE MADs.
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Figure 2. Plots of ARTEMISS retrieved land surface emissivity (LSE) errors varying with NEDT,

spectral range and spectral resolution. (a) The retrieved LSE root mean square error (RMSE) and (b)

the retrieved LSE median absolute deviation (MAD).

The LSE RMSE represents the degree to which the retrieved emissivity spectrum deviates from

the true value at each band numerically, while LSE MAD represents the degree to which the retrieved

emissivity spectrum deviates from the true spectral curve in the overall shape. Figures 1 and 2b show

that the smaller the temperature inversion error, the smaller the emissivity MAD, indicating that the

more accurate the temperature inversion, the closer the overall trend of the inversion emissivity curve

is to the true spectrum curve. Both the retrieved LST errors and the retrieved LSE MADs of the four

groups of data with a spectral range of 7.5–12.5 µm are between those of 10 nm at 8–12.5 µm and 50 nm

at 8–12.5 µm with a spectral range of 8–12.5 µm. However, the retrieved LSE RMSEs of all four groups

of data with a spectral range of 7.5–12.5 µm were larger than those with a spectral range of 8–12.5 µm.

The reason for this seemingly contradictory phenomenon is that, compared to 8–12.5 µm, the retrieved

LSE spectra with a spectral range of 7.5–12.5 µm (especially 7.5–8.0 µm is where dense atmospheric

absorption lines exist) have large outliers in some bands, as shown in Figure 3. The existence of the

huge outliers causes the cases that although the retrieved LSE has a large RMSE, the overall shape

of the retrieved emissivity is closer to the true curve than some retrieved LSE with a small RMSE.

The finding that in terms of the spectral range of 7.5–12.5 µm, the higher the spectral resolution is,

the larger the retrieved LSE RMSE, suggests that for the cases with a spectral range of 7.5–12.5 µm,
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the higher the spectral resolution was, the more outliers of the retrieved LSE RMSE occurred. This also

suggests that for thermal infrared hyperspectral remote sensing, the spectral range of 8–12.5 µm is

more suitable for temperature inversion, which is similar to the statement in [42].
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Figure 3. A case of outliers occurring in the retrieved LSE spectrum.

3.2.2. The Relationship of the Retrieval Errors vs. the Optimal Window Size Spectral Smoothing

To investigate the effect of the window size for the spectral smoothing index in ARTEMISS on the

retrieved LST and LSE errors, we tested 17 spectral smoothing window sizes for ARTEMISS, going

from 3 to 35 in increments of 2 for eight groups of simulated data with two spectral ranges and four

spectral resolutions. In the process of a simulated radiance spectrum inversion, we looped the window

size for spectral smoothing, calculated the cost functions and found the smallest one among all of the

cost functions under 17 window sizes. The temperature at the minimum cost function was considered

as the retrieved LST, the corresponding emissivity was the retrieved LSE, and the corresponding

window size was the optimal spectral smoothing window size because the retrieved LST error was

close to zero in the majority of cases. Figure 4 has eight subplots for the eight groups of simulated data,

each of which shows the distribution of the optimal spectral smoothing window size vs. the noise level

under a certain spectral setting. The distributions of the optimal spectral smoothing window size vs.

the noise level show a consistent trend for the eight spectral settings. For each noise level, the window

size with the largest proportion is 3. Generally, the larger the window size, the smaller the proportion

(except 35, at the end of the window size range). In the ideal situation without noise, a window size of

3 has the most advantageous proportion in the optimal spectral smoothing window size distribution,

especially when the spectral resolution is high (e.g., 10 nm and 5 nm); as the noise level increased,

the proportion of the window size 3 gradually decreased for a certain spectral setting. The results

suggest that when the hyperspectral thermal infrared data is noisy, it may be beneficial to improve the

accuracy of temperature inversion by increasing the spectral smoothing window size in some cases.
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Figure 4. The distribution of the optimal spectral smoothing window size varying with the noise level.
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4. The Proposal and Validation of the RDSS Algorithm

4.1. RDSS—An Improved TES Algorithm Based on ARTEMISS

The coupling of temperature and emissivity, as shown in Equation (9), suggests that the temperature

is easier to determine than the emissivity in the TES process. Therefore, most algorithms adopt the

strategy of first determining the temperature and then calculating the emissivity. Hence, accurately

determining the temperature has also become the key to TES. We rewrite Equation (9) by combining

the items determined by the temperature estimation and the items determined by both the temperature

estimation and noise as follows:

σ
(
T̂, ε̂

)
= σ

((
fε
(
B̂i

)
+ fη

(
B̂i

))(
B̂i − Ld

i

)
τi −

(
Bi − Ld

i

)
εiτi − ηi

)
(13)

where fε
(
B̂i

)
and fη

(
B̂i

)
are the emissivity estimation after box-average smoothing and the residual

containing noise respectively. For the algorithms that use the standard deviation of the simulated

at-sensor radiance and the actual at-sensor radiance as the cost function, fε
(
B̂i

)
and fη

(
B̂i

)
can also be

considered as the approximately processed emissivity and residual noise, respectively. They can be

expressed as
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fη
(
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=

1

3
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i−1

+
1

3

ηi

τi

B̂i − Ld
i

+
1

3

ηi+1
τi+1

B̂i+1 − Ld
i+1

(15)

When the emissivity approximation processing can remove the “thorns” in a curve caused by

atmospheric background radiation and obtain relatively accurate fε
(
B̂i

)
, and the noise residuals fη

(
B̂i

)

with a noise item ηi of 0 or close to 0, the searched optimal temperature is likely to be equal or much

closer to the true temperature. As the magnitude of noise residuals fη
(
B̂i

)
and noise term ηi increase,

it is likely that the signs of the items will cancel each other out, resulting in the searched optimal

temperature deviating from the true surface temperature. The results of ARTEMISS sensitivity on

the spectral smoothing window size in Section 3.2.2 suggest that increasing the spectral smoothing

window size did not effectively reduce the inversion error; different window sizes are needed to

find the optimal temperature as close to the true one possible when different noises, emissivity and

transmittances are coupled together. However, it will add computation complexity and cost much

more computation time. That is to say, it is difficult to remove the influence of noise on the optimal

temperature search simply by emissivity approximation processing. Therefore, in this study, from the

perspective of reducing the noise of the data, we filtered the variables participating in the calculation

of the emissivity estimation with a unified filter. The unified filter ensured the variables were at the

same spectral resolution while eliminating the noise in the at-sensor radiances. We named the TES

algorithm proposed in this study the resolution-degrade-based spectral smoothness (RDSS) algorithm.

The calculation process of RDSS is:

(1) Unified filtering: before calculating the emissivity with Equation (4), we filtered each variable

participating in the calculation of the emissivity estimation with mean filtering. The calculation method

was as follows:

Ṽ = F(V) (16)

where F is the filter function, V is the variable to be filtered and Ṽ is the filtered variable. Here,

the variables refer to the ground-leaving radiance, the atmospheric downwelling radiance and the

blackbody radiance.

282



Remote Sens. 2020, 12, 2295

Specifically, the calculation method for filtering the variables in Equation (4) with a mean filter

was as follows:

[̃
Lg(λi, T), L̃d(λi), B̃

(
λi, T̂

)]
=

1

2Nr + 1

Nr∑

j = −Nr

[
Lg

(
λi+ j, T

)
, Ld

(
λi+ j

)
, B

(
λi+ j, T̂

)]
(17)

where L̃g(λi, T), L̃d(λi) and B̃
(
λi, T̂

)
are the filtered Lg

(
λi+ j, T

)
, Ld

(
λi+ j

)
and B

(
λi+ j, T̂

)
, respectively,

with the mean filter; and 2Nr + 1 is the spectral smoothing window size.

(2) Emissivity estimation and approximate processing: to avoid the local minimum value issue,

taking advantage of the fact that the object temperature has a finite value range as a physical parameter,

this study adopted the strategy of an exhaustive search to find the optimal temperature. We determined

a temperature search range Tsupin f and the incremental step δT (also named as the temperature

resolution), then calculated the emissivity estimations for all of the temperatures in the search range

and approximately processed the emissivity estimations (i.e., boxcar average):

ε̂


λi, Tin f ()

L̃g(λi, T) − L̃d(λi)

B̃(λi, T−̃diin f


 (18)

ε̃


λi, Tin f ()

1

3

1
∑

∑

j = −1

ε̂
(
λi+ j, Tin f ()

)

 (19)

where ε̂
(
λi, Tin f ()

)
is the emissivity estimation at the temperature of Tin f , k is the steps,

k = 0, 1, 2, . . . ,
(
Tsup − Tinf

)
/δT and ε̃

(
λi, Tin f ()

)
is the corresponding emissivity estimation of

ε̂
(
λi, Tin f ()

)
after approximate processing.

(3) Cost function calculation and the optimal temperature determination. We calculated the cost

functions for all temperatures in the temperature search range according to the approximate processed

emissivity. The calculation method was as follows:

σ(Tinf + δT · k) = σ
((

B̃(λi, Tinf + δT · k) − L̃d(λi)
)
ε̃(λi, Tinf + δT · k) + L̃d(λi) − L̃g(λi, T)

)
(20)

in f arg min
k

(
σ
(
Tin f ()

)
()

)
T̂opt = T (21)

where T̂opt is the optimal temperature estimation, i.e., the retrieved temperature.

(4) Final emissivity calculation: we substituted the retrieved temperature from (3) and the other

three variables before filtering them into Equation (4) to obtain the final emissivity. The calculation

method was:

ε̂opt(λi) =
Lg(λi, T) − Ld(λi)

B
(
λi, T̂opt

)
− Ld(λi)

(22)

where ε̂opt(λi) is the final emissivity estimation, i.e., the retrieved emissivity.

4.2. Validation Results Analysis

4.2.1. The Retrieval Errors of the RDSS Algorithm

We retrieved the eight groups of simulated HTIR data with two spectral ranges (7.5–12.5 µm and

8–12.5 µm) and four spectral resolutions (50 nm, 35.2 nm, 10 nm and 5 nm) using the RDSS algorithm

and measured the retrieved LST and LSE errors. Figures 5 and 6 show the retrieved LST errors and

the retrieved LSE errors of the eight groups of simulated HTIR data as a function of the noise level,

respectively. The change trends of the retrieved LST and LSE errors of the RDSS algorithm with noise,

spectral resolution and spectral range were basically the same as those of the ARTEMISS algorithm,
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namely both the LST and LSE errors increase with noise linearly. The difference is that in terms of the

magnitude of errors, the LST and LSE errors of RDSS were smaller than those of ARTEMISS except for

some LSE RMSEs.

 

μ
μ

 

Figure 5. The plot of resolution-degrade-based spectral smoothness (RDSS) algorithm LST inversion

errors varying with NEDT, spectral range and spectral resolution.

 

μ
μ

  
(a) (b) 

Figure 6. Plots of RDSS retrieved LSE errors varying with NEDT, spectral range and spectral resolution.

(a) The retrieved LSE RMSE and (b) the retrieved LSE MAD.

Figure 7 shows a comparison chart of RDSS and ARTEMISS on the retrieved LST error, and Table 3

shows the corresponding error list. They show that under most noise and spectral settings, the retrieved

LST error of RDSS are reduced by varying degrees, with a maximum reduction of 0.75 K (Group4,

NDET = 0.5 K). The reduced values of the retrieved LST errors vary for different noise levels and

spectral settings. Specifically, the reduced degrees of RDSS LST errors increase with the noise level;

however, LST errors of RDSS are larger than ARTEMISS when there are no noise or less noise. The initial

noise level at which LST errors of RDSS became smaller than ARTEMISS decreased as the spectral

resolution increased. For example, the initial noise level decreased from 0.15 (Group1) and 0.2 K
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(Group5) with a spectral resolution of 50 nm to 0.05 K and 0.05 K (Group4 and Group8) with the spectral

resolution of 5 nm, respectively. The above trends indicate that in terms of temperature inversion,

RDSS was more effective for data with high noise levels and a high spectral resolution. The same

temperature inversion accuracy can be obtained by RDSS, while the instrument design specifications

or data correction accuracy were reduced.

Table 3. The retrieved LST error list of the RDSS and ARTEMISS and their differences.

Groups\NEDT(K) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

G1 1

A 2 0.14 0.30 0.51 0.78 0.99 1.22 1.45 1.65 1.84 2.05 2.22

R 3 0.44 0.48 0.58 0.70 0.84 0.96 1.09 1.25 1.38 1.50 1.66

Dif 4 −0.30 −0.18 −0.07 0.08 0.15 0.26 0.36 0.40 0.46 0.55 0.56
RDif

5 — — — 10% 15% 21% 25% 24% 25% 27% 25%

G2

A 0.05 0.21 0.42 0.62 0.84 1.02 1.20 1.41 1.56 1.73 1.89
R 0.13 0.20 0.32 0.46 0.59 0.72 0.85 1.00 1.11 1.22 1.34

Dif −0.08 0.01 0.10 0.16 0.24 0.31 0.35 0.41 0.45 0.51 0.55
RDif — 5% 24% 26% 29% 30% 29% 29% 29% 29% 29%

G3

A 0.00 0.19 0.39 0.61 0.80 0.94 1.11 1.27 1.44 1.60 1.77
R 0.01 0.14 0.29 0.45 0.59 0.71 0.83 0.96 1.08 1.18 1.30

Dif 0.00 0.05 0.10 0.16 0.21 0.23 0.27 0.31 0.36 0.42 0.48
RDif — 26% 26% 26% 26% 24% 24% 24% 25% 26% 27%

G4

A 0.00 0.25 0.54 0.77 0.98 1.18 1.36 1.59 1.83 2.10 2.34
R 0.00 0.19 0.39 0.61 0.76 0.91 1.04 1.18 1.31 1.43 1.59

Dif 0.00 0.06 0.15 0.17 0.22 0.27 0.33 0.41 0.52 0.66 0.75
RDif — 24% 28% 22% 22% 23% 24% 26% 28% 31% 32%

G5

A 0.30 0.46 0.69 0.97 1.20 1.46 1.70 1.91 2.14 2.36 2.56
R 0.89 0.91 0.97 1.05 1.15 1.26 1.39 1.52 1.67 1.76 1.91

Dif −0.58 −0.45 −0.28 −0.08 0.04 0.20 0.31 0.39 0.47 0.59 0.65
RDif — — — — 3% 14% 18% 20% 22% 25% 25%

G6

A 0.11 0.27 0.48 0.70 0.92 1.13 1.33 1.53 1.69 1.87 2.02
R 0.27 0.32 0.41 0.53 0.67 0.80 0.92 1.07 1.17 1.30 1.42

Dif −0.17 −0.05 0.07 0.17 0.25 0.33 0.41 0.45 0.53 0.57 0.59
RDif — — 15% 24% 27% 29% 31% 29% 31% 30% 29%

G7

A 0.00 0.11 0.24 0.41 0.55 0.64 0.75 0.87 0.97 1.07 1.20
R 0.01 0.06 0.13 0.20 0.28 0.35 0.43 0.48 0.56 0.62 0.67

Dif 0.00 0.05 0.11 0.21 0.27 0.29 0.33 0.39 0.41 0.45 0.53
RDif — 45% 46% 51% 49% 45% 44% 45% 42% 42% 44%

G8

A 0.00 0.11 0.26 0.45 0.57 0.69 0.78 0.88 0.99 1.11 1.23
R 0.00 0.06 0.11 0.19 0.26 0.35 0.41 0.50 0.55 0.61 0.67

Dif 0.00 0.05 0.14 0.26 0.31 0.34 0.37 0.39 0.44 0.50 0.57
RDif — 45% 54% 58% 54% 49% 47% 44% 44% 45% 46%

1 Group 1. 2 ARTEMISS. 3 RDSS. 4 Difference between RDSS and ARTEMISS (i.e., RDSS – ARTEMISS). 5 Relative
difference between RDSS and ARTEMISS (RDSS – ARTEMISS)/ARTEMISS). 6 The gray values show how much
RDSS performs better than ARTEMISS and the bold values are the maximum reduction in error. Figure 8 shows a
comparison of RDSS and ARTEMISS on the retrieved LSE RMSEs, and Table 4 is a list of the RMSE corresponding to
Figure 8. Figure 9 shows a comparison chart of RDSS and ARTEMISS on the retrieval LSE MADs, and Table 5 is a
list of the MAD corresponding to Figure 9. The results of LSE RMSE show that unlike the retrieval LST RMSE, for a
few of the eleven noise levels and eight spectral settings (31 of 88 cases), the retrieved LSE RMSEs from the RDSS
are smaller than those of the ARTEMISS algorithm. From the perspective of LSE RMSE, it seems that the RDSS
had limited improvement on the emissivity inversion accuracy, and was not as good as ARTEMISS in terms of the
overall effect. However, the results for LSE MAD tell another story.
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Table 4. The retrieved LSE RMSE for RDSS and ARTEMISS and their differences.

Groups\NEDT(K) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

G1

A 0.0005 0.0071 0.0121 0.0173 0.0224 0.0274 0.0322 0.0371 0.0417 0.0464 0.0509
R 0.0016 0.0140 0.0248 0.0343 0.0423 0.0506 0.0592 0.0685 0.0772 0.0888 0.0954

Dif −0.0011 −0.0068 −0.0127 −0.0171 −0.0199 −0.0232 −0.0270 −0.0314 −0.0355 −0.0425 −0.0445
RDif — — — — — — — — — — —

G2

A 0.0002 0.0082 0.0133 0.0185 0.0235 0.0283 0.0330 0.0376 0.0420 0.0465 0.0508
R 0.0006 0.0138 0.0254 0.0358 0.0468 0.0576 0.0705 0.0843 0.0982 0.1107 0.1203

Dif −0.0004 −0.0056 −0.0121 −0.0174 −0.0233 −0.0293 −0.0374 −0.0467 −0.0562 −0.0642 −0.0695
RDif — — — — — — — — — — —

G3

A 0.0000 0.0127 0.0208 0.0280 0.0348 0.0417 0.0481 0.0544 0.0602 0.0660 0.0710
R 0.0000 0.0192 0.0416 0.0735 0.1081 0.1576 0.1927 0.2392 0.2591 0.2950 0.3037

Dif 0.0000 −0.0065 −0.0208 −0.0455 −0.0733 −0.1159 −0.1446 −0.1848 −0.1989 −0.2290 −0.2327
RDif — — — — — — — — — — —

G4

A 0.0000 0.0172 0.0265 0.0345 0.0418 0.0488 0.0554 0.0619 0.0683 0.0741 0.0796
R 0.0000 0.0095 0.0252 0.0427 0.0565 0.0720 0.0831 0.0994 0.1082 0.1221 0.1318

Dif 0.0000 0.0078 0.0013 −0.0082 −0.0147 −0.0232 −0.0277 −0.0375 −0.0399 −0.0480 −0.0522
RDif — 45% 5% — — — — — — — —

G5

A 0.0010 0.0039 0.0071 0.0104 0.0138 0.0171 0.0204 0.0238 0.0272 0.0306 0.0339
R 0.0026 0.0042 0.0063 0.0085 0.0108 0.0131 0.0155 0.0179 0.0203 0.0226 0.0251

Dif −0.0015 −0.0003 0.0008 0.0019 0.0030 0.0040 0.0050 0.0059 0.0069 0.0079 0.0088
RDif — — 11% 18% 22% 23% 25% 25% 25% 26% 26%

G6

A 0.0004 0.0030 0.0057 0.0084 0.0112 0.0139 0.0167 0.0195 0.0222 0.0250 0.0278
R 0.0011 0.0028 0.0048 0.0068 0.0089 0.0110 0.0132 0.0153 0.0174 0.0196 0.0217

Dif −0.0007 0.0001 0.0009 0.0016 0.0023 0.0029 0.0036 0.0042 0.0049 0.0054 0.0061
RDif — 3% 16% 19% 21% 21% 22% 22% 22% 22% 22%

G7

A 0.0000 0.0021 0.0041 0.0061 0.0082 0.0102 0.0122 0.0143 0.0163 0.0183 0.0203
R 0.0000 0.0018 0.0038 0.0057 0.0076 0.0095 0.0115 0.0134 0.0156 0.0175 0.0198

Dif 0.0000 0.0002 0.0004 0.0005 0.0006 0.0007 0.0007 0.0008 0.0007 0.0008 0.0005
RDif — 10% 10% 8% 7% 7% 6% 6% 4% 4% 2%

G8

A 0.0000 0.0037 0.0067 0.0095 0.0123 0.0150 0.0175 0.0202 0.0227 0.0254 0.0278
R 0.0000 0.0061 0.0128 0.0216 0.0308 0.0399 0.0483 0.0560 0.0635 0.0706 0.0778

Dif 0.0000 −0.0024 −0.0061 −0.0120 −0.0185 −0.0249 −0.0307 −0.0359 −0.0407 −0.0453 −0.0500
RDif — — — — — — — — — — —

 

 

\

Figure 7. The comparison of the retrieved LST errors of RDSS and ARTEMISS.
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Table 5. The retrieved LSE MAD for the RDSS and ARTEMISS algorithms and their differences.

Groups\NEDT(K) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

G1

A 0.0004 0.0024 0.0044 0.0065 0.0087 0.0109 0.0131 0.0154 0.0176 0.0200 0.0223
R 0.0010 0.0023 0.0037 0.0052 0.0068 0.0084 0.0100 0.0116 0.0134 0.0150 0.0168

Dif −0.0006 0.0001 0.0007 0.0013 0.0019 0.0026 0.0032 0.0038 0.0043 0.0050 0.0055
RDif — 4% 16% 20% 22% 24% 24% 25% 24% 25% 25%

G2

A 0.0001 0.0020 0.0037 0.0056 0.0075 0.0093 0.0112 0.0131 0.0151 0.0170 0.0190
R 0.0004 0.0017 0.0030 0.0044 0.0058 0.0072 0.0087 0.0102 0.0117 0.0133 0.0149

Dif −0.0003 0.0003 0.0007 0.0012 0.0017 0.0021 0.0025 0.0029 0.0033 0.0037 0.0041
RDif — 15% 19% 21% 23% 23% 22% 22% 22% 22% 22%

G3

A 0.0000 0.0013 0.0027 0.0040 0.0054 0.0067 0.0082 0.0098 0.0115 0.0132 0.0152
R 0.0000 0.0011 0.0023 0.0035 0.0047 0.0059 0.0072 0.0085 0.0099 0.0114 0.0129

Dif 0.0000 0.0002 0.0004 0.0005 0.0007 0.0009 0.0010 0.0013 0.0015 0.0019 0.0022
RDif — 15% 15% 13% 13% 13% 12% 13% 13% 14% 14%

G4

A 0.0000 0.0013 0.0026 0.0039 0.0053 0.0068 0.0085 0.0105 0.0128 0.0155 0.0183
R 0.0000 0.0011 0.0022 0.0034 0.0047 0.0060 0.0073 0.0087 0.0102 0.0117 0.0136

Dif 0.0000 0.0002 0.0003 0.0005 0.0006 0.0008 0.0012 0.0018 0.0026 0.0038 0.0047
RDif — 15% 12% 13% 11% 12% 14% 17% 20% 25% 26%

G5

A 0.0009 0.0033 0.0059 0.0086 0.0114 0.0141 0.0169 0.0196 0.0224 0.0252 0.0279
R 0.0022 0.0035 0.0050 0.0067 0.0084 0.0102 0.0120 0.0139 0.0157 0.0175 0.0195

Dif −0.0013 −0.0002 0.0009 0.0019 0.0029 0.0039 0.0048 0.0058 0.0067 0.0077 0.0085
RDif — — 15% 22% 25% 28% 28% 30% 30% 31% 30%

G6

A 0.0003 0.0024 0.0045 0.0066 0.0088 0.0109 0.0132 0.0153 0.0175 0.0197 0.0218
R 0.0010 0.0022 0.0036 0.0051 0.0066 0.0081 0.0097 0.0112 0.0128 0.0144 0.0160

Dif −0.0006 0.0002 0.0009 0.0015 0.0022 0.0028 0.0035 0.0041 0.0047 0.0053 0.0059
RDif — 8% 20% 23% 25% 26% 27% 27% 27% 27% 27%

G7

A 0.0000 0.0013 0.0025 0.0038 0.0050 0.0062 0.0075 0.0087 0.0100 0.0112 0.0125
R 0.0000 0.0010 0.0021 0.0032 0.0042 0.0052 0.0063 0.0073 0.0083 0.0094 0.0104

Dif 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0017 0.0019 0.0021
RDif — 15% 16% 16% 16% 16% 16% 16% 17% 17% 17%

G8

A 0.0000 0.0011 0.0023 0.0034 0.0045 0.0057 0.0069 0.0081 0.0093 0.0106 0.0120
R 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100

Dif 0.0000 0.0001 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011 0.0013 0.0016 0.0020
RDif — 9% 13% 12% 11% 12% 13% 14% 14% 15% 17%

 

 

\

Figure 8. The comparison of the retrieved LSE RMSEs of RDSS and ARTEMISS.
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Figure 9. A comparison of the retrieved LSE MADs using the RDSS and ARTEMISS algorithms.

Figure 8 shows a comparison of RDSS and ARTEMISS on the retrieved LSE RMSEs, and Table 4

is a list of the RMSE corresponding to Figure 8. Figure 9 shows a comparison chart of RDSS and

ARTEMISS on the retrieval LSE MADs, and Table 5 is a list of the MAD corresponding to Figure 9.

The results of LSE RMSE show that unlike the retrieval LST RMSE, for a few of the eleven noise levels

and eight spectral settings (31 of 88 cases), the retrieved LSE RMSEs from the RDSS are smaller than

those of the ARTEMISS algorithm. From the perspective of LSE RMSE, it seems that the RDSS had

limited improvement on the emissivity inversion accuracy, and was not as good as ARTEMISS in terms

of the overall effect. However, the results for LSE MAD tell another story.

Figure 9 and Table 5 show that the retrieved LSE MADs of RDSS have similar distribution with

the retrieved LST RMSE for the eight groups of data. For the majority of cases (79 out of 88 cases),

the retrieved LSE MADs of RDSS were smaller than those of ARTEMISS. The results of LSE RMSE and

LSE MAD behaved differently, probably due to the RMSE itself. The RMSE of an emissivity will be

much larger because of some large abnormal values, although the retrieved temperature was accurate.

As shown in Figure 10, there were some cases where the retrieved LSE of RDSS with a small LST error

and LSE MAD was much closer to the true value from the perspective of the trend of the emissivity

curve; however, the RMSE of the emissivity calculated using the accurate temperature was relatively

large due to the influence of individual outliers. The phenomenon that the RMSE of an emissivity did

not decrease but increased when the retrieved temperature was more accurate was also described in

another paper [34].
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 Figure 10. A case with a small LST error and LSE MAD but large LSE RMSE.

This study used MAD to evaluate the retrieved LSE error to measure the quality of the retrieved

LSE curve from the perspective of the overall degree of deviation of emissivity from the true value.

However, MAD cannot be compared with RMSE in terms of values, because MAD focuses on the

deviation degree of the overall trend, which is different from the commonly used RMSE in terms of

magnitude. We used the percentage of MAD to measure the reduction of the retrieved LSE error, as an

indicator reflecting how close the trend of the emissivity curve retrieved by RDSS was to the true

emissivity curve. Table 5 shows that the maximum relative decline in the percentage of LSE MAD

can reach 31% (G5, 0.45 K). As the noise increased, the decline in the percentage of the LSE MAD

of RDSS increased accordingly. When there was no noise or less noise, however, the MAD of RDSS

instead increased. This is similar to the retrieved LST error in terms of change characteristics. However,

the decline in the percentage of MAD of RDSS did not increase with the spectral resolution. In the range

of 7.5–12.5 µm (G1–G4), the decline in the percentage of retrieval LSE MAD firstly decreased, and then

increased along with the spectral resolution (it reached a minimum when the spectral resolution was

10 nm); in the range of 8.5–12.5 µm (G5−G8), the decline in the percentage of retrieved LSE MAD

gradually decreased as spectral resolution increased. Overall, when the noise level was greater than 0.1

K, the decline in the percentage of the retrieved LSE MAD of RDSS was greater than 10%, which proved

the effectiveness of the RDSS algorithm.

4.2.2. The Relationship of RDSS and the Window Setting

During spectral degradation, the window setting (2Nr + 1 in Equation (17)) is a key parameter.

Different window settings may lead to different results, and temperature inversion is the key of the

iterative spectral smoothness TES algorithms. The results of this study, at least the LSE MAD results,

suggest that the improvement of temperature inversion accuracy is beneficial to the improvement of

emissivity inversion accuracy. Therefore, we set 17 spectral smoothing window sizes, ranging from 3
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increasing incrementally by 2–35, and separated the temperature and emissivity of the eight sets of

simulated data to study the effect of window size on the performance of RDSS. First, we performed a

mean filter cyclically with a window size on a radiance curve to obtain spectral degraded radiance

curves under different window settings; second, we retrieved the temperatures under different window

settings by RDSS, and looped the two steps for the eight groups of data; finally, we measured the

retrieved temperature errors under different window settings.

Figure 11 shows the retrieved LST errors for the RDSS algorithm varying with 11 noise levels

under 17 window settings for the eight groups of data. For the four groups of data with lower spectral

resolutions (G1–2 and G5–6), 3 was the optimal window setting using RDSS, where the retrieved LST

errors were the lowest among the 17 window settings under all or most noise levels. For the four

groups of data with higher spectral resolutions (G3–4 and G7–8), the optimal window setting increased

rapidly with the noise level. For the two groups of data with a spectral range of 7.5–12.5 µm (G3 and

G4), the optimal window setting tended to be stable when the noise level was above 0.15 K, i.e., 27 for

G3 and 31 for G4. For the group of data in the spectral range of 8–12.5 µm and the spectral resolution

of 10 nm (G7), the optimal window setting tended to be stable at a noise level above 0.25 K—5 for

G7. For the group of data in a spectral range of 8–12.5 µm and with a spectral resolution of 5 nm (G8),

the optimal window setting was not stable but fluctuated in the range 5–21 when the noise level was

above 0.05 K. It is worth noting that for the cases in G8 (5 nm at 8–12.5 µm), as the noise increased,

the retrieved LST errors corresponding to the optimal window setting and the second optimal one,

or even some other window settings, were very close to each other, and their difference was within

0.01 K. Therefore, it can be considered that when separating the LST and LSE with RDSS for HTIR

data, we obtained the minimum LST error with a window setting of 3 for HTIR data with a spectral

resolution in the tens of nanometers, and need to increase the window setting according to the spectral

range and spectral resolution for HTIR data with a spectral resolution of 10 nm.

 

 

Figure 11. The retrieved LST errors of RDSS under different window size settings.

5. Discussion

This study focused on the sensitivity of an iterative spectral smoothness TES algorithm to the

spectral range, spectral resolution, noise and smooth window size. We analyzed the characteristics of

the influence of the four variables on temperature and emissivity inversion accuracy, and proposed an
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improved algorithm called RDSS. Compared with previous studies, this study analyzed the influence

of the key spectrometer indices on the inversion error more comprehensively, especially the spectral

resolution and the smooth window size.

The improved method, RDSS, performs spectral degradation on the input data, which can

eliminate the effect of random noise on the search for the optimal temperature and improve the

accuracy of temperature and emissivity inversion. In terms of method validation, the effect of random

noise on RDSS was mainly studied in this study, while the effect of atmospheric error on RDSS needs

further study. However, RDSS can also further improve the inversion accuracy by effectively removing

random noise in atmospheric correction errors. For the systematic errors in atmospheric correction,

the performance of the RDSS algorithm is similar to the ARTEMISS algorithm.

The results of this study also provide a valuable reference for the performance improvement

of hyperspectral thermal infrared instruments and data processing. The improvement in spectral

resolution is beneficial to reducing the error of temperature inversion. However, for a HTIR imager,

the spectral resolution is dependent on the spatial resolution. In other words, the spatial resolution

may decrease while the spectral resolution is improved, which will lead to the increase of mixed pixels.

Without a good pixel decomposition algorithm, the accuracy of TES may decrease. Therefore, it is

not a case of “the higher the spectral resolution, the better”. The choice of spectral resolution needs

to consider the application requirements, inversion algorithm, instrument design and other factors,

and seek the optimal solution. This may be a very meaningful research topic.

From the perspective of the coupling of temperature and emissivity, accurately determining

the temperature is an extremely critical step in the TES process. It is naturally believed that the

improvement on the accuracy of temperature inversion will bring corresponding improvements in the

accuracy of emissivity inversion. However, there are some anomalies that when the retrieval LST error

is reduced to a certain value, the RMSE of retrieved LSE increases instead of decreasing. The emissivity

of an object is a spectral curve composed of a set of digits, and the evaluation of the retrieval LSE error

is equivalent to the measurement of the relationship between the two sets of digits, i.e., the retrieved

LSE and the true value. The temperature of an object, however, is a unique value. Therefore, there is

a certain difference between the retrieved LSE errors and the retrieved LST errors on the evaluation

method. Moreover, the emissivity retrieved from the HTIR data is mostly used for target identification

or surface parameters inversion. We adopted MAD alongside RMSE by combining the evaluation

index and the application target in the evaluation of the retrieved LSE. In addition, the retrieved LSEs

were not denoised before accuracy evaluation in the experiment, resulting in the retention of many

outliers. In the practical application of HTIR data, however, the retrieved LSE curves can be denoised

to eliminate outliers; at this moment, the evaluation of the trend of LSE becomes particularly important.

Furthermore, the highest spectral resolution in the simulation experiment of the study was set to 5 nm,

which is mainly considering that the spectral resolution of the emissivity of the ground objects in

the ASTER spectral library is 10 nm or lower. Therefore, cases with a higher spectral resolution than

5 nm need further research when there are emissivity spectra of ground objects with sufficiently high

spectral resolution.

6. Conclusions

We focused on the study of instrument noise, a widely existing factor that is difficult to

eliminate losslessly in hyperspectral thermal infrared data, and focused on optimizing instrument

design. Taking the ARTEMISS algorithm—the representative of the iterative spectral smoothness TES

algorithm family with a good application effect—as the object of study. Supplemented by atmospheric

radiation transfer simulation software and emissivity spectral library, we carried out simulation and

inversion experiments; studied the relationship between the spectral resolution of the instrument,

noise level, the ARTEMISS parameter setting and the inversion error; and proposed an improved

method—RDSS—based on the mechanism and law of the influence of noise on the inversion error.
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The law of the spectral response range, spectral resolution and noise on the inversion error obtained

in this study provide a reference for the future development of airborne and spaceborne thermal

infrared hyperspectral imagers and optimize the instrument design. The improved TES algorithm can

be used for temperature and emissivity inversion of various thermal infrared hyperspectral remote

sensing data. The resistance of this method also provides a certain surplus space for the design of the

instrument in NEDT.
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Abstract: Correct specification of a target’s longwave infrared (LWIR) surface emissivity has been

identified as one of the greatest sources of uncertainty in the remote sensing of land surface temperature

(LST). Field and laboratory emissivity measurements are essential for improving and validating LST

retrievals, but there are differing approaches to making such measurements and the conditions that

they are made under can affect their performance. To better understand these impacts we made

measurements of fourteen manmade and natural samples under different environmental conditions,

both in situ and in the laboratory. We used Fourier transform infrared (FTIR) spectrometers to

deliver spectral emissivities and an emissivity box to deliver broadband emissivities. Field- and

laboratory-measured spectral emissivities were generally within 1–2% in the key 8–12 micron

region of the LWIR atmospheric window for most samples, though greater variability was observed

for vegetation and inhomogeneous samples. Differences between laboratory and field spectral

measurements highlighted the importance of field methods for these samples, with the laboratory

setup unable to capture sample structure or inhomogeneity. The emissivity box delivered broadband

emissivities with a consistent negative bias compared to the FTIR-based approaches, with differences

of up to 5%. The emissivities retrieved using the different approaches result in LST retrieval differences

of between 1 and 4 ◦C, stressing the importance of correct emissivity specification.

Keywords: land surface temperature; land surface emissivity; measurement uncertainties; emissivity

box method; Fourier transform infrared spectrometer; portable spectrometer

1. Introduction

Emissivity is a spectrally varying property of a material, describing at any particular wavelength

the efficiency at which an object emits electromagnetic radiation as a function of its temperature. It is

mathematically defined as the ratio between the electromagnetic radiation actually emitted by the

object at the wavelength in question, and that emitted by a black body at the object’s thermodynamic
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(or kinetic) temperature [1]. Kirchhoff’s law of thermal radiation furthermore states that at any

particular wavelength, the absorptivity of a surface is equal to the emissivity of the surface if it is in

thermal equilibrium with its surroundings, meaning for example that a perfect blackbody absorbs all

the arriving electromagnetic radiation and re-emits the absorbed energy according to Planck’s radiation

law [2]. However, natural materials are not perfect blackbodies, and most are selective radiators,

which may emit electromagnetic radiation according to Planck’s radiation law at certain wavelengths,

but not others. It is therefore important to understand their spectrally varying emissivity across

the electromagnetic spectrum, including within the longwave infrared (LWIR) spectral atmospheric

window (8–13 µm) where most remote sensing of land surface temperature (LST) is conducted. This is

particularly the case when estimating LST remotely, where knowledge of the target’s surface emissivity

in the LWIR is essential when converting infrared brightness temperature (BT) measurements into

accurate estimates of LST [3].

Emissivity depends on the chemical makeup of a material, and its geometry, surface roughness,

and moisture content and as such can show strong seasonally varying cycles and land use/land cover

variability [4]. Most soils and vegetation emissivities vary between a minimum of around 0.6 to a

maximum of at or close to 1, while pure metals for example can have far lower values [2]. Unfortunately,

relatively small errors in the assumed emissivity of a surface can induce quite large impacts on the

finally estimated LST. For typical earth surface conditions, Jiménez-Muñoz and Sobrino [5] calculated

that emissivity uncertainties of 0.01 typically result in LST uncertainties of around 0.6 K. Given the

many applications of LST–such as deriving evapotranspiration and monitoring droughts [6]–recent

years have seen an increase in interest in improving the accuracy of LST retrieval as evidenced by the

development of new thermal infrared (TIR) sensors capable of LST retrieval such as the ECOsystem

Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) [7] and the classification

of LST as an essential climate variable (ECV) by the World Meteorological Organisation’s Global

Climate Observing System (GCOS) [8]. The correct specification of surface spectral emissivity has

been identified as the greatest source of error in current satellite-based measurements of LST [9] and it

therefore is essential to try to minimise emissivity uncertainties in order to maximise the accuracy of

remotely sensed LST estimates.

Multiple field and laboratory techniques for measuring emissivity have been developed, enabling

both spectral emissivity measurement and broadband emissivity retrieval [10–14]. Although unable to

perfectly capture field conditions known to impact surface spectral emissivity, such as soil moisture [15]

or canopy structure [16], laboratory-based emissivity measurements are often preferred to field-based

measurements (for samples that can be transported without modifying the sample and its emissivity).

This is because, unlike field measurements, laboratory measurements can be collected under highly

controlled conditions, thus reducing errors that might result from changing atmospheric or thermal

conditions in the field for example [17]. Online spectral emissivity libraries consist predominately

of such laboratory-derived emissivity spectra [18–22]. Data from these spectral libraries have been

used extensively to “ground-truth” airborne and satellite LST and emissivity outputs [14,23–25],

for the derivation LST algorithm coefficients [26–28] and in the calibration of LWIR satellite and

airborne sensors [29]. However, a recent inter-comparison of laboratory emissivity measurements

of the same samples reported some quite significant differences in emissivity values from different

laboratory measurement setups [30]. For example, they found standard deviations of ±2.52% (0.024)

in the emissivities derived for distilled water within the LWIR atmospheric window (8–14 µm).

These uncertainties are much larger than those previously reported for laboratory setups [15] and larger

than those typically reported with field measurements [11,31,32], thus highlighting the continuing

importance of field-based surface emissivity measurements. This is particularly true given that such

in situ measurement approaches allow measurements of emissivity under “natural conditions”—for

example for samples such as vegetation that is difficult to preserve while transported.

Given that the correct specification of surface spectral emissivity is the greatest source of error

in current satellite-based measurements of LST [9], and the discrepancies that have been found both
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within laboratory and between field and laboratory measurements detailed above, there is a need for

further rigorous examination of the degree of agreement between current approaches to emissivity

measurement. With this in mind, we conducted a study to compare different field and laboratory

spectral emissivity measurement approaches, using the same targets to better understand the emissivity

differences that can result from use of different measurement approaches and/or different measurement

conditions. We have focused on Fourier transform infrared (FTIR) spectrometer-based emissivity

measurement systems since these are the most common type used to provide spectral emissivity

measurements, applying to the measured spectra a variety of different post-processing approaches to

derive the surface emissivity information. We also include a comparison of these spectrally resolved

data to the broadband emissivities produced using an “emissivity box”, a popular low-cost method of

broadband field emissivity determination that uses a sequence of LWIR radiometer measurements and

a specially constructed box [33]. The impact of the emissivity measurement uncertainties from these

methods on calculation of in situ LSTs is assessed as the last stage of our investigation.

2. Emissivity Measurement Techniques

Summarised in Table 1 are different field emissivity measurement techniques deployed in previous

studies. The most utilised are variants of the emissivity box method, detailed in Rubio et al. [33,34],

which provide broadband LWIR emissivity estimates, and approaches based on spectral radiance

measurements made by field portable FTIR spectrometers, which provide spectrally resolved LWIR

emissivity data [31]. As detailed by Rubio et al. [33,34], the two primary variants of the box method

are the two-lid approach [35] and the one lid approach [36]. Both involve a bottomless box with highly

reflective (for example polished aluminium) inner walls and a LWIR radiometer to make the broadband

measurements. During each measurement, the box is covered by a lid with a small central hole through

which the radiometric measurements are made, with the lid having either high reflectance (the “cold

lid”) or high emissivity (the “hot lid”). A sequence of four radiometer measurements with the box and

lids in different configurations provide the data to estimate the broadband emissivity of the surface

over which the box is placed [33,34].

Table 1. Overview of various different field emissivity measurement techniques, with variants of the

first approaches considered in this study.

Method Overview References

Emissivity Box Method
One- and two-lid variants of the emissivity
box method, used to determine the LWIR
broadband emissivity of a surface

[33–39]

Portable FTIR
Spectrometer Approach

Use of field-portable Fourier Transform
Infrared (FTIR) spectrometer to estimate
LWIR surface spectral emissivity

[31,32,40,41]

Temperature and
Emissivity (TES) retrieval
algorithm applied to a
multi-band radiometer

Application of the Advanced Spaceborne
Thermal Emission and Reflection Radiometer
(ASTER) Temperature and Emissivity
Separation (TES) algorithm with in situ
radiance measurements obtained using
multi-band radiometers

[42,43]

Novel Emissiometer

Novel instrument combining an oscillating
TIR radiance source with digital signal
processing to determine the band-effective
emissivity of a radiometer

[12,44]

Sun Shadow Method

Similar approach to day/night LST retrieval
algorithm adapted to in situ measurements in
sun and sun-shadow with spectroradiometer
to derive spectral emissivities

[45,46]
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The field spectrometer approach to the emissivity measurement is detailed by Salvaggio and

Miller [32], and involves the spectrometer measuring the emitted LWIR signal from the surface and

using this, along with a measurement of the downwelling LWIR atmospheric radiation, to derive

the surface’s spectral emissivity. The downwelling component is most commonly assessed using a

downward looking measurement of a gold Lambertian panel, which reflects almost all of the LWIR

atmospheric radiation irradiating it.

In addition to field emissivity approaches, there exist a number of laboratory-based methods to

assess surface emissivity, generally based on FTIR spectroscopic techniques, which provide surface

spectral emissivity values. The spectrometers measure either LWIR sample emission or directional

hemispherical reflectance (DHR) [10]. In the emission mode the emissivity estimate is derived through

comparison of the spectral radiance emitted by the sample to that emitted by a blackbody at the same

temperature (for example [19]). Being lab-based, this approach generally means the sample must be

heated to temperatures significantly above the laboratory such that any low emissivity features in

the resulting emissivity spectra are not simply “filled in” by reflected LWIR radiation coming from

the surroundings at the same temperature as the sample. Consequently, the method is unsuited to

samples such as vegetation [47]. To avoid this, FTIR spectrometers operating in the DHR mode are

used, generally with a source of intense LWIR radiation that is used to illuminate the sample and assess

its LWIR reflectance via consecutive measurements of the sample and a highly reflective reference

standard such as Infragold [48]. Emissivity is then calculated from the LWIR reflectance spectra using

Kirchhoff’s law [49].

Many field emissivity and LST validation studies have used the box method since the

equipment is relatively simple, inexpensive, easily portable, and with minimal power requirements

(e.g., [11,14,50–54]). Multiple studies have assessed the quality of emissivities derived using the

approach, typically by comparing them to full spectral emissivity data coming from laboratory

measurements convolved to the waveband of the LWIR radiometer used in the box [15]. The conclusions

of these studies generally indicate that the quality of the box-derived field emissivity data is

highly dependent on the measurement conditions, particularly for the one-lid variant [11,15,33].

Under favourable measurement conditions, a strong degree of agreement is seen between the data

derived by the box method and that of the various laboratory spectral measurement approaches applied.

Mira et al. [15] and Nerry et al. [38] for example both observed that the two-lid box method produced

broadband LWIR emissivity estimates with a mean error of ±0.5% under stable field conditions (low

winds and constant cloud conditions that help keep the sample surface temperature consistent while the

measurements are made). Göttsche and Hulley [11] reported less than 1% difference for sand samples

in Gobabeb (Namibia) where clear, cold skies with low winds made measurement conditions optimum.

However, under less suitable conditions (e.g., high winds and variable cloud cover), the sensitivity of

the derived surface emissivity value to changes in the sample temperature during the measurement can

result in large errors. A change of 3 K over the measurement period results in emissivity errors of up to

2% in the one-lid method for example [34]. While such percentage errors seem small, due to coupling

of LST and emissivity, a 1% error in specified emissivity will generally result in about a 0.5 K error in

the derived LST [9]. Hence the accuracy of surface emissivity data is key to accurate LST derivation.

Compared to the box method, fewer studies exist comparing field- and lab-derived emissivity

data based on FTIR spectrometer measurements [31,32,47,55,56]. However, as with the box method,

the studies that have been conducted found that the accuracy of the field-derived data is highly

dependent on the environmental conditions that existed during the measurement. For example,

Salvaggio and Miller [32] assessed the field spectral emissivity data coming from measurements

made with the Designs and Prototypes (D&P) µFTIR system, specifically designed for field emissivity

measurement. Under ideal measurement conditions (stable, low winds and clear skies), the mean

absolute emissivity error was less than 1% for most surface samples, with the D&P spectral

measurements processed to spectral emissivity using Horton et al.’s [57] spectral smoothness approach.

However, more problems were observed with measurements made under conditions of high humidity
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and air temperature, and/or more variable conditions [31,55]. Horton et al. [57] found that a 0.5 K

change in sample temperature during the measurement procedure resulted in errors in the final

calculated emissivity of 2.5%. As a result, samples with relatively low thermal inertia (such as dry

soils) or samples that experience rapid evaporative cooling in the near-surface layer (such as water,

damp soils, or dewy vegetation) can show higher errors under changing environmental conditions,

such as high winds [17].

As well as these meteorological factors, observed differences between laboratory and field

emissivity measurements (whether the latter be from the box- or FTIR-based approaches) are often

attributed to physical changes in the sample, which may occur between the field and the laboratory,

for example in terms of its structure and surface moisture [15]. Such possibilities for error further

highlight the importance of field emissivity measurements. However, since the accuracy assessment of

the field methodologies is often performed through comparison with laboratory-derived measurements,

any differences between the laboratory and field sample conditions can affect the evaluation. Studies that

intercompare the emissivities of the same samples derived by different field measurement approaches

may help to redress this issue, but few such studies exist. Those that have been conducted considered

are restricted to few sample types (e.g., soils or sands) or have been based on rather limited comparisons,

for example due to differing instrument spectral responses [12]. A critical finding is that of Mira et al. [15],

who observed emissivity differences between 2% and 7% in the 8–9 µm LWIR band between the values

derived using the two-lid emissivity box and the TES-retrieved radiometer approach (see Table 1),

corresponding to a 0.7–2.6 K error in derived LST.

3. Methods

Measurements were made of multiple manmade and natural samples with varying physical

structures during two field campaigns in the UK and Italy using four methods: (i) a laboratory FTIR

spectrometer setup at King’s College London operating in DHR mode, (ii–iii) two portable field FTIR

spectrometers with different processing approaches, and (iv) a two-lid emissivity box constructed at

King’s College London.

3.1. Instrumentation, Measurements, and Post-Processing

3.1.1. Emissivity Determination Using the Laboratory FTIR Spectrometer

In the laboratory, high spectral resolution (4 cm−1) surface emissivity spectra of the target samples

were derived from directional hemispherical reflectance LWIR spectral measurements made by a

Bruker Vertex 70 FTIR spectrometer with an external highly reflective gold integrating sphere and an

external thermal infrared source, as shown in Figure 1. The full measurement setup is detailed in

Langsdale et al. [30], and the measurements covered the spectral range 2.5–16 µm, extending beyond

the normal LWIR atmospheric window (8–13 µm).

The data coming from the laboratory system shown in Figure 1 can be processed to surface spectral

emissivity using either the substitution or comparative methods, which are detailed in Hecker at al. [58].

The authors of [30] found that surface spectral emissivities derived using the comparative method,

which uses the internal wall of the diffusely coated gold integrating sphere as the reference target,

on the same laboratory system were within 1.5% of the mean of those derived by a wide range of

international laboratories’ measurements (spectral range 8–14 µm). To measure emissivity using this

comparative method, the target surface was placed directly underneath the sample port of the external

integrating sphere and illuminated with the LWIR beam coming from the external source. The reflected

spectral radiance (Vs(λ)) was then measured and compared to a subsequent measurement of the

reflected radiance from the internal wall of the integrating sphere (Vr(λ)), enabling the calculation of

sample reflectance (ρs(λ)):

ρs(λ) =
Vs(λ) −Vo(λ)

Vr(λ) −Vo(λ)
ρr(λ) (1)
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where Vo(λ) is an open port measurement as detailed in Hecker et al. [58] and ρr(λ) is the absolute

reflectance of the internal gold wall of the integrating sphere (ρr(λ) ≈ 0.97 across 2.5–14 µm) used as

the reference target. An internal rotating mirror was used to move the infrared beam illumination

between the sample and the reference position. Sample spectral emissivity (εs(λ)) was then calculated

from reflectance using Kirchhoff’s law [59]:

εs(λ) = 1− ρs(λ) (2)

 

μ

−

μ
μ

 

Figure 1. (a) Laboratory setup for surface spectral emissivity determination based on measurements

made by a Bruker Vertex 70 FTIR spectrometer installed at King’s College London along with an

external water-cooled longwave infrared (LWIR) radiation source and a gold-coated integrating sphere.

(b) Details of the inside of the integrating sphere, showing the gold coating used as the reference target

in the comparative method and rotating mirror to direct the measurement beam from entrance port to

sample port/internal wall.

For each sample, a minimum of the three emissivity measurements was collected to enable

consideration of measurement variability. More measurements were made for low reflectance samples

(card, grass and water) and for inhomogeneous samples (gravel and grass). Each individual spectral

measurement consisted of either 500 or 1000 coadded scans, with the higher number of scans used for

samples with low LWIR reflectances.

3.1.2. Emissivity Determination Using the Field Portable FTIR Spectrometers

Two portable FTIR spectrometers were deployed in this study (Table 2). The first was the

aforementioned D&P µFTIR spectrometer [31,32,40], specifically designed for surface emissivity

measurement in the field (Figure 2). The instrument operates in passive emission mode to measure

emitted LWIR radiation, and uses the two-temperature blackbody approach for its calibration. It has a

45◦ mirror (rotating to allow angled measurements) within an enclosed tube. The main improvement

on the µFTIR design described originally in Korb et al. [31] and Hook and Kahle [40] is the inclusion of

a Stirling cycle cooling for the detector in place of liquid nitrogen. The second FTIR deployed was a

Bruker EM27, also with a Stirling cycle cooled detector and an internal blackbody target that can be

rapidly heated and cooled to provide the necessary two point calibration [30]. Though this system is

designed primarily for atmospheric remote sensing, it is easily adapted to assess surface emitted LWIR

radiation via attachment of a 45◦ flat high IR reflectance gold mirror as shown in Figure 2. This mirror

can then be used to reflect the surface target emitted and gold-panel reflected LWIR radiation into the

spectrometer. The system, its 12 V battery/inverter and a controlling laptop were mounted on a rugged

trolley for relatively easy transport around a field site. Spectral resolutions used were the maximum
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for the two systems, namely 0.5 cm−1 for the EM27 and 4 cm−1 for the D&P µFTIR, with spectral

sampling intervals in practice of 0.25 cm−1 and 3 cm−1. The D&P was available for the measurements

in Italy only.

Table 2. Instrument specifications for the portable FTIR spectrometers deployed herein, namely a

Bruker EM27 FTIR spectrometer and the Designs and Prototypes µFTIR [31,40,60].

Parameter Bruker EM27 Designs and Prototypes µFTIR

Spectral Range 4.5–14.3 µm (700–2200 cm−1) 2.0–14.0 µm

Spectral Resolution 0.5 cm−1 4 cm−1

Sampling Rate 0.25 cm−1 3 cm−1

Interferometer Michelson Michelson
Detector HgCdTe HgCdTe

Dimensions (cm) 40 × 36 × 27 33 × 46 × 32
Weight 18 kg 12.4 kg
Power 40 W (Average), 80 W (Max) 18 W

FOV (@ 1 m) 1.7◦ (60 mm) 4.8◦ (78 mm)
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Figure 2. (a) Field-deployed Designs and Prototypes µFTIR spectrometer and (b) field-deployed

Bruker EM27 FTIR spectrometer with a 45◦ mirror attachment fitted to view upwelling radiation from

the surface, here shown assessing downwelling LWIR atmospheric radiation via observations of an

Infragold panel.

To retrieve surface spectral emissivities from the passive LWIR spectra collected by either of

the FTIR instruments, the calibration blackbody temperatures were first set to appropriately bracket

the sample temperature [17]. As recommended by Salvaggio and Miller [41], the hot and cold

blackbody temperatures used for the calibrations were set to approximately 10 K above and below

the estimated sample temperature to reduce extrapolation error, although very high ambient air

temperatures encountered at the Italian field site required the cool blackbody to be elevated above

this limit. Sample temperature was itself estimated using a FLIR i7 handheld LWIR thermal imaging

camera. Consecutive spectral measurements were then made of the sample (L) and of a 13 cm × 13 cm

Labsphere Infragold panel (Lpanel), with the panel measurement used as a proxy for the downwelling
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LWIR atmospheric signal. The panel has a known and spectrally flat emissivity (εpanel), provided by

the manufacturer as 0.03± 0.01 across 2.5–14 µm range. The panel was placed in the same configuration

as the sample, positioned just above the sample location.

The D&P µFTIR spectrometer comes with its own software to estimate sample emissivity across

7.5–12.0 µm from these measurements. Sample temperatures are estimated using the “Maximum

Spectral Temperature” method detailed in Salvaggio and Miller [32] and developed by Korb et al. [31]

and Hook and Kahle [40]. Emissivity uncertainties were taken as the standard deviation of multiple

measurements. The measurement procedure takes around 25 min for a complete set of measurements.

For the EM27 we developed our own emissivity measurement approach and software, with the full

measurement sequence (three consecutive and repeated measurements of the sample and Infragold

panel along with spectral calibration) typically taking around 20 min. From the measurements of the

gold panel, downwelling radiance (L↓) spectra were first estimated as:

L↓(λ) =
Lpanel(λ) − εpanel(λ)LBB

(
Tpanel, λ

)

1− εpanel (λ)
(3)

where Tpanel is the kinetic temperature of the Infragold panel (K), measured with a contact k-type

thermocouple (manufacturer-stated accuracy ±0.1 K) and LBB

(
Tpanel, λ

)
is the blackbody spectral

radiance at temperature Tpanel calculated using the Planck function such that:

LBB

(
Tpanel, λ

)
=

2hc2

λ5

(
e

hc
λkTpanel − 1

) (4)

where h is the Planck constant (6.62606957× 10−34 Js), c is the speed of light (299, 792, 458 ms−1), and k

is the Boltzmann constant (1.3806488× 10−23 JK−1).

If the sample temperature (Ts) is accurately known, the surface spectral emissivity (ε(λ)) of the

sample can be retrieved through use of a rearranged radiative transfer equation appropriate to a

surface-viewing sensor positioned close to the target [32]:

ε(λ) =
L(λ) − L↓(λ)

LBB(Ts, λ) − L↓(λ)
(5)

where LBB(Ts) is the blackbody spectral radiance at temperature (Ts). However, sample temperature

can vary even over short timescales (e.g., due to wind), and can be hard to assess accurately in the field

for certain targets (e.g., vegetation) even under good measurement conditions. We therefore avoided

having to specify Ts by using the “spectral smoothness” approach [57], an approach determined

as optimal for emissivity derivation based on field-portable FTIR measurements by Salvaggio and

Miller [32]. We implemented this by identifying a realistic sample temperature range as in Salvaggio

and Miller [32] and calculating emissivity using Equation (5) for all temperatures within this range

(in increments of 0.01 K). The sample temperature was taken to be the temperature, which minimised

residuals in the resulting emissivity spectra that were clearly associated with atmospheric absorption

and emission features in the 8.12–8.60 µm range of the short wavelength lobe of the silicate doublet.

Emissivity uncertainties for the EM27 were calculated through propagation of the uncertainties in

the input parameters. Uncertainties in the gold panel temperature and emissivity were taken as the

manufacturer-stated accuracy (0.01 K and 0.01 respectively), which in the sample temperature as

the 0.01 K precision, and that in the sample and gold panel spectra as the standard deviation of the

measurement coadds (minimum 12 per spectra). Due to its extremely low emissivity, no adjustment

was made for self-emission of the 45◦ mirror used to direct LWIR radiation from the sample to the

spectrometer, nor for errors related to the fact that the cold sky temperatures are far lower than

the minimum temperature of the two-point blackbody calibration. The typically low values of the
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downwelling radiation from the cold (clear) sky compared to the LWIR emission from the samples,

along with the high emissivities (and thus low reflectances) of the samples, mean that uncertainties in

the assessment of the downwelling sky radiation do not have much impact on the final emissivity

uncertainty [31].

3.1.3. Emissivity Determination Using the Emissivity Box

We constructed a two-lid emissivity box at King’s College London (Figure 3), based on the design

of Rubio et al. [33,34] with (i) an improved outer thermal insulation layer surrounded by a robust

outer case, (ii) a 3D-printed angled port to hold the radiometer at a constant view zenith angle of 5◦

to reduce the “Narcissus” effect, as in Göttsche and Olesen [37], (iii) continuous 1 Hz sampling of

the radiometer measurements as in Göttsche and Olesen [37] to enable identification and rejection of

erroneous readings (e.g., when conditions were not stable) during post-processing readings, and (iv) the

addition of a “heating tray” to help the hot lid more quickly achieve its optimal temperature, while also

reducing heat loss in cooler conditions. While our design could also be used for the one-lid approach,

the two-lid method is considered more robust in windy or otherwise variable field conditions [34],

some of which we encountered during our study.

 

 

Figure 3. (a) Insulated emissivity box with the cold base and battery-powered hot lid. Details include 
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Figure 3. (a) Insulated emissivity box with the cold base and battery-powered hot lid. Details include

(b) internal walls of highly polished aluminium, (c) a 3D printed 5◦ radiometer port for consistent

off-centre angled sampling to avoid the “Narcissus” effect, and (d) evenly distributed electronic heating

pads on the hot lid enabling heating up to at least 60 ◦C when combined with the heating tray.

Broadband surface emissivity was determined using our emissivity box via a sequence of BT

measurements made with a Heitronics KT15.85 IIP radiometer fitted in the angled radiometer port to

sequentially view the target surface and the base, as described in [31]. This radiometer is the same

model as that used at the four permanent LST validation stations described in Göttsche et al. [50]

and operates over the spectral range 9.6–11.5 µm, which is located well within the LWIR atmospheric

window (Figure 4). BT measurements from the radiometer (T, kelvin) were converted into spectral

radiances (L, Wm−2sr−1µm−1) using Planck’s radiation law (Equation (4)) evaluated at the effective

radiometer central wavelength (approximately 10.55 µm; the exact value depending on the target

temperature). Laboratory calibration tests confirmed the radiometer to have an absolute accuracy of
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±0.5 K plus 0.7% of the difference between the BT of the target and the radiometer body temperature

(taken as the ambient temperature). For example, if the ambient temperature was 300 K and the target

BT was recorded as 295 K, the absolute accuracy was determined to be ±(0.5 + [0.7/100 × 5]) = ±0.535 K.

When fitted into the angled port, the observed surface area was 170 cm2.
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Figure 4. Spectral response function of the Heitronics KT15.85 radiometer (blue, left axis) overplotted

on the atmospheric transmission of a standard mid-latitude summer atmosphere (red, right axis)

calculated using MODTRAN 5.0 [61].

To make the measurements necessary to estimate the targets surface emissivity, the box was first

placed on the target surface sample and left for two minutes to ensure stabilised temperatures.

Measurements then proceed as in Figure 5, with the rationale for this sequence explained in

Rubio et al. [33]. Using the same nomenclature as in Rubio et al. [33] and Figure 5 the broadband

emissivity (ε0) of the target surface if the box were ideal was calculated as:

ε0 =
L3 − L1

L3 − L2
(6)

where (in order of measurement), L2 is the sample radiance measured when the box is over the ground

sample with the cold lid in use, L1 the sample radiance made with the hot lid in use instead of the cold

lid and L3 the radiance obtained when putting the box with the hot lid on over a cold base with the

same emissivity as the cold lid.

However, the box departs from non-ideal behaviour (because the emissivity of the hot lid cannot

be 1 and the emissivity of the cold lid cannot be 0) as detailed by Rubio et al. [34], who developed a

correction factor (δε) for these effects equal to:

δε = (1− ε0)


1−

(
L3 − L2

)
(1− εc)

(L3 − L2) − (L3 − L1)P + (L2 − Bc)Q


 (7)

where εc is the emissivity of the polished aluminium, the term Bc the radiance measured through the

box with the cold lid on top and cold base below (effectively equal to the blackbody spectral radiance at

the temperature of the aluminium), and P and Q are box-specific parameters between 0 and 1 defined
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by the box geometry and material properties such that P = f (εc, εh) and Q = g(εc) (see [34] for exact

expressions of P and Q).
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Figure 5. Radiance measurement sequence for the two-lid variant of the emissivity box method,

using nomenclature from Rubio et al. [33]. Measurements proceed from left (L2) to right (Bc).

The final broadband emissivity estimate of the target sample surface is then given by the sum of

the outputs from Equations (6) and (7):

ε = ε0 + δε (8)

The emissivity of the hot lid is that of the high emissivity paint it was covered in (provided by the

manufacturer as εh = 0.98). Prior to field deployment, measurements were conducted to determine

the emissivity of the cold lid as derived in Appendix 1 of Rubio et al. [34]:

ε =
B(Trad)

σT4
kin

(9)

where B(T) is the spectral radiance derived from Planck’s radiation law at temperature T (kelvin) as in

Equation (4) and σ is the Stefan–Boltzmann constant
(
5.67× 10−8Js−1m−2K−4

)
. Through this method,

the emissivity of the polished aluminium (εc) of the cold lid was determined as 0.05, resulting in P and

Q as 0.0123 and 0.4223 respectively for the box deployed herein. These values were derived again

based on measurements made at the end of each field campaign to identify any changes, associated for

example with oxidisation of the box interior aluminium surface or damage to the paint of the hot lid,

but no such changes were found.

A minimum of five repeated measurements were collected per sample, with averages and standard

deviations of the multiple measurements calculated. Uncertainties for each sample were taken as

the standard deviation of the multiple measurements. Example values for the two-lid box method

developed at King’s College London are shown in Table 3.

Table 3. Example values for the two-lid box measurements, with gravel, grass, and sand shown.

Measured temperatures are expressed in kelvin and equivalent radiances in brackets in Wm−2sr−1µm−1.

Sample L2 L1 L3 Bc ε0 δε ε

Gravel 303.25 (10.27) 304.02 (10.39) 318.36 (12.77) 304.59 (10.48) 0.952 0.001 0.953
Grass 299.23 (9.65) 299.81 (9.74) 317.98 (12.71) 304.02 (10.39) 0.971 −0.002 0.969
Sand 304.02 (10.39) 305.74 (10.66) 322.38 (13.49) 303.44 (10.30) 0.913 0.004 0.917
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3.2. Sites and Experimental Samples

Field measurements for the study were made in three locations: a disused airfield at Alconbury

(UK), a farm in Grosseto (Italy), and Duxford Aerodrome (UK; Figure 6). In total, fourteen different

surface samples were considered, detailed in Table 4 and shown in Figure 7. These included manmade

samples such as a large tarpaulin used as calibration targets in an accompanying airborne campaign,

and natural samples such as homogeneous areas of grass, sand, and water.

 

 

−

−

−

Figure 6. Sites in the UK and Italy where the study measurements took place, showing (a) detail of

Duxford where measurements of grass, gravel, tarmac, and the tarpaulins were collected; (b) detail

of Grosseto indicating locations of the same tarpaulin measurements there; (c) detail of the runway

area at Alconbury, showing the grass and the tarmac where all non-grass samples were placed for field

measurement, and (d) the relative locations of the three field sites.

Field measurements were collected in the late afternoon at all sites to try to maximise thermal

contrast between target radiance and downwelling radiance, as recommended in Salvaggio and

Miller [41]. All data were collected under stable and generally low wind, clear sky conditions,

with these considered suitable for application of the two-lid box method. Air temperatures at the

UK sites were between 19 and 25 ◦C, with wind speeds recorded in Alconbury and Duxford of

3.6 ± 0.9 ms−1 and 4.3 ± 0.3 ms−1 respectively. Air temperatures in Italy were higher (between 30 and

32 ◦C) with a recorded wind speed of 2.3 ± 0.5 ms−1. Relative humidity throughout the measurement

period was 44% ± 4%, 56% ± 6%, and 60% ± 7% in Alconbury, Duxford and Grosseto respectively.
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Figure 7. All samples considered in this study other than distilled water. Samples (a) to (d)

were measured for the Alconbury comparison and show (a) black hardboard card on the tarmac,

(b) construction sand, (c) green grass in Alconbury, and (d) polystyrene. Samples (e) to (l) were

measured in Italy, with (e) the beach near Grosseto from where sand was collected, (f) the short green

grass in Grosseto, (g) the gravel drive in Grosseto with emissivity box pictured, (h) a close-up the grey

tarpaulin in Grosseto, (i) the white, grey and black tarpaulin photographed from the plane in Grosseto,

Italy while in use as calibration targets, (j) gravel in Duxford during measurement, (k) green grass in

Duxford, and (l) tarmac in Duxford.

Table 4. Samples considered for the field and laboratory emissivity inter-comparison, with the number

of measurements made using each indicated in brackets in the final column. Note that the three

tarpaulins were measured by the EM27 in both Duxford (UK) and Grosseto (Italy).

Sample Description Sample ID
Location
(Field)

Date
Instruments

Field Lab

Black hardboard card
(5 mm × 240 mm × 303 mm)

Card Alconbury, UK May-18 EM27 (3) Vertex (5)

Polystyrene
(40 mm × 160 mm × 150 mm)

Polystyrene Alconbury, UK May-18 EM27 (3) Vertex (4)

Green grass
(max. 200 mm height)

Grass_Alc Alconbury, UK May-18 EM27 (3) Vertex (5)

Construction sand Sand_Alc Alconbury, UK May-18 EM27 (3) Vertex (3)
Distilled Water DistilledWater Alconbury, UK May-18 EM27 (3) Vertex (4)

Sandy gravel drive Gravel_Gro Grosseto, Italy Jun-19
Box (5), EM27 (1),
D&P (3)

-

Short dry grass Grass_Gro Grosseto, Italy Jun-19
Box (5), EM27 (1),
D&P (3)

-
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Table 4. Cont.

Sample Description Sample ID
Location
(Field)

Date
Instruments

Field Lab

Beach sand Sand_Gro Grosseto, Italy Jun-19
Box (5), EM27
(1–Grosseto,
3–Duxford)

Vertex (3)

White PVC tarpaulin
(630 gsm)

WhiteTarp

Duxford, UK
(Box, EM27);
Grosseto, Italy
(EM27)

Jun-19
Box (5), EM27
(1–Grosseto,
3–Duxford)

Vertex (3)

Grey polyester tarpaulin
(matte finish)

GreyTarp

Duxford, UK
(Box, EM27);
Grosseto, Italy
(EM27; D&P)

Jun-19
Box (5), EM27
(1–Grosseto,
3–Duxford), D&P (3)

Vertex (3)

Black polyester tarpaulin
(matte finish)

BlackTarp

Duxford, UK
(Box, EM27);
Grosseto, Italy
(EM27)

Jun-19
Box (5), EM27
(1–Grosseto,
3–Duxford)

Vertex (3)

Gravel driveway
(gravel pieces 10–40 mm)

Gravel_Dux Duxford, UK Jun-19 Box (5), EM27 (3) Vertex (6)

Short green grass mixed with
clover

Grass_Dux Duxford, UK Jun-19 Box (5), EM27 (3) -

Homogeneous road tarmac Tarmac Duxford, UK Jun-19 Box (5), EM27 (3) -

3.2.1. Sample Preparation

For the EM27-based field emissivity measurements conducted in Alconbury in May 2018, the black

card, construction sand, and polystyrene (Figure 7a,b,d) were placed onto the runway tarmac shown

in Figure 6c for measurement. For measurement of the sand, an area greater than the instrument FOV

and with a depth of at least 3 cm was prepared on the tarmac. Distilled water was poured into a plastic

tray to a depth of 15 mm for measurement, while the grass measurement (Figure 7c) was conducted on

the vegetated area neighbouring the runway as indicated in Figure 6c.

For the other field-based emissivity measurements, all samples aside from the beach sand

(Sand_Gro) were measured as found and as shown in Figures 6 and 7. A sample of beach sand

(Sand_Gro) was collected from the beach shown in Figure 7e for measurement the following day at the

same time as the other targets. The emissivity measurements of the tarpaulins, which were being used

as calibration targets for airborne remote sensing measurements, were collected when the tarpaulins

were laid out for the overhead flights as shown in Figure 6b.

For the laboratory emissivity measurements, flat samples such as the tarps, card, and polystyrene

were placed under the sample port of the integrating sphere shown in Figure 1a, with no gap between

port and sample. To preserve the structure and moisture content of the Alconbury grass sample,

a section of turf was extracted (Figure 8a–b) and measured the following morning in a foil container of

high reflectivity, with the grass pressed underneath the sample port while ensuring no blades went

inside the integrating sphere. This method was chosen over the method detailed in Salisbury and

D’Aria [48] as it better mimicked field conditions. Distilled water, construction sand, and gravel were

all placed into petri dishes such as that in Figure 8c, and measured as close to the sphere port as

possible without risk of contaminating the inside of the sphere. Due to the uneven shapes and surfaces

of the gravel, some gaps were observed between the sample and sphere (distances < 10 mm) as shown

in Figure 8d. However, as with the grass, it was determined as preferable to measure the sample

unaltered rather than change the structural composition so as to best mimic field conditions.
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Figure 8. Laboratory preparation of (a) the grass sample from Alconbury from the side and (b) from

above, (c) the gravel sample from Duxford from above, and (d) underneath the sample port of the

external integrating sphere.

3.3. Emissivity Measurement Comparison

The surface spectral emissivities derived from measurements made by the two portable FTIR

spectrometers (EM27 and D&P) along with those from the laboratory setup (Vertex 70) were compared

to determine the absolute emissivity differences and the degree of agreement of the identified spectral

features. The comparison was limited to the spectral range 8–13 µm, since this covers the wavelength

range commonly employed in LST retrieval algorithms [62]. Measurements of the tarpaulins made

using the EM27 in both Italy and the UK were compared to enable assessment of the performance of

the same method in different environments.

Each FTIR-derived emissivity spectrum was then convolved with the Heitronics K15.85 radiometer

spectral response function (Figure 4) to obtain broadband emissivity values comparable with those

derived from the emissivity box.

3.4. Evaluation of Impact on LST

To understand the impact of any noted emissivity differences on LST estimation, a scenario

was simulated for a near-surface Heitronics KT15.85 radiometer observing six samples measured in

Grosseto and Duxford. Atmospheric transmissivity and path radiance effects were negligible due

to the near-surface nature of the simulated observations, and sample-specific input values for land

surface BT and sky BT were taken from in-situ LWIR radiometer measurements collected during the

campaign (Table 5). Input emissivities (ε) used were the broadband emissivities derived for each of
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the measurement methods used to assess the emissivity of that sample. LSTs corresponding to the

radiometer were calculated for each sample input emissivity as in Guillevic et al. [3]:

LST = B−1
[
1

ε

(
Lsurf − (1− ε)L

↓

sky

)]
(10)

where B−1(L) is the inverse Planck function describing the blackbody equivalent temperature (T, kelvin)

of spectral radiance (L, W.m−2.sr−1.µm−1), Lsurf the spectral radiance (W.m−2.sr−1.µm−1) corresponding

to the input surface viewing BT, and L↓
sky

the downwelling atmospheric LWIR spectral radiance

(W.m−2.sr−1.µm−1) corresponding to the sky viewed BT. Uncertainties were calculated and propagated

as in Ghent et al. [63] and detailed in Appendix A.

Table 5. Input surface viewing and sky viewing brightness temperatures used to simulate land surface

temperature with the measured emissivities.

Sample Location
Surface Viewing

BT (K)
Sky Viewing

BT (K)

White Tarpaulin Grosseto, IT 300 250
Black Tarpaulin Grosseto, IT 330 250
Grey Tarpaulin Grosseto, IT 330 250

Grass Duxford, UK 300 240
Gravel Duxford, UK 310 240
Tarmac Duxford, UK 320 240

4. Results

4.1. Emissivity Measurement Inter-comparison

4.1.1. Spectral Emissivities

Emissivity spectra (8–13µm) for the Alconbury surface samples are shown in Figure 9, as measured

in the field using the EM27 and in the laboratory using the Vertex 70. Figure 10 shows the spectral

emissivities of the white, grey, and black tarpaulin as measured in the laboratory using the Vertex 70

and in Grosseto and Duxford using the EM27 and D&P spectrometers. Field- and laboratory-derived

emissivity spectra of the other samples from Grosseto and Duxford are shown in Figure 11.

Alconbury

Results from Alconbury (Figure 9) enable a direct comparison of the laboratory (Vertex 70)

and field-measured (EM27) spectral emissivities. The closest absolute agreement is found for the

graybody samples (grass and water), with high and spectrally flat emissivities within 1% of each other

between 8 and 12 µm. The laboratory and field measurements of polystyrene and card are generally

within 2% across 8–12 µm, but differences of up to 0.04 are observed at points for the polystyrene

(for example around 9.56 µm). For the sand sample, the laboratory and field measurements are

within 2% between 9.8 µm and 12 µm but there are differences of 10–15% in the restrahlen bands

over 8.0–9.5 µm, with the laboratory measured emissivity higher than the EM27 field measured

emissivity. For the other samples, between 8 and 12 µm the field-derived emissivities tend generally

to be slightly higher than the laboratory-derived values. Beyond 12 µm, there is increased noise in

the field-measured (EM27) emissivity spectra, which could be due to increased atmospheric effects at

these longer wavelengths (Figure 4).

Some non-physical spectral emissivities (>1) are observed in the laboratory measurements of

the graybody samples and in the field measurements of the grass shown in Figure 9. Increased

uncertainties are also observed for both field and laboratory measurements of the graybody samples

compared to the other samples. Given that the surface temperatures of water and grass are sensitive
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to even low winds [17], increased field uncertainties and noise for these sample measurements are

probably due to varying sample temperatures during the measurement. The emissivities greater than

unity found in the laboratory measured data appear also to be largely due to noise. Increased noise

for these samples is expected due to the limitation of measuring samples of high spectral emissivity

(low spectral reflectance) using a laboratory setup operating in directional hemispherical reflectance

mode. An alternative explanation of the non-physical emissivities of the grass sample for both field

and laboratory measurements could be canopy scattering, with increased emissivities due to the cavity

effect [16].

 

μ
μ μ

Figure 9. Laboratory-measured (Vertex) and field-measured (EM27) surface spectral emissivities

of five different samples, as measured in Alconbury (UK) in May 2018. Values are the mean of all

measurements, with the surrounding shaded area indicating the corresponding uncertainty as detailed

in Section 3.1. The numbers of measurements made of each sample were listed in Table 4. Grey shaded

area indicates the spectral range of the Heitronics KT15.85 IIP radiometer used for the emissivity

box measurements.
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Figure 10. Spectral emissivities of (top to bottom) the black tarpaulin, white tarpaulin, and grey

tarpaulin based on data collected in the laboratory (Vertex) and field using (i) the Bruker EM27 FTIR

spectrometer (EM27) in both Grosseto, Italy and Duxford, UK and (ii) the Designs and Prototypes µFTIR

spectrometer (D&P, grey tarpaulin only). Values are the mean of all measurements, with the surrounding

shaded area indicating the corresponding uncertainty as detailed in Section 3.1. The numbers of

measurements made of each sample were listed in Table 3. Grey shaded area indicates the spectral

range of the Heitronics KT15.85 IIP radiometer used for the emissivity box measurements.

Considerable spectral variability is observed in the three non-graybody surfaces measured at

Alconbury, with emissivities going down to about 0.6 (polystyrene, ~8.8 µm). The restrahlen bands

(8–9.5 µm) and the Christiansen peak near 12.3 µm are clearly evident in both field and laboratory

spectra of sand, although the minima in the restrahlen bands are weaker in the laboratory measurement.

Despite absolute differences, the wavelengths at which specific spectral features are observed at

correspond very well between the field (EM27) and laboratory (Vertex 70) measurements of the

non-graybody samples, particularly for the polystyrene.
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Figure 11. From top left clockwise, spectral emissivity measurements of (i) gravel from Duxford,

(ii) beach sand in Grosseto, (iii) the sandy gravel drive in Grosseto, and (iv) short grass in Grosseto.

Measurements were made using a Bruker Vertex 70 laboratory setup, a Designs and Prototypes µFTIR

spectrometer (D&P) operated in the field, and a Bruker EM27 also operated in the field. Values are the

mean of all measurements, with the surrounding shaded area indicating the corresponding uncertainty

as detailed in Section 3.1. The numbers of measurements made of each sample were listed in Table 4.

Grey shaded area indicates the spectral range of the Heitronics KT15.85 IIP radiometer used for the

emissivity box measurements.

Grosseto and Duxford

Considering the spectral measurements of the samples from Grosseto and Duxford,

the measurements of the tarpaulin made in the laboratory and those collected using the D&P µFTIR in

Grosseto and the EM27 in the field at Duxford are all within 2% of each other between 8.0 and 12.0 µm

(Figure 10). These differences are in line with the Alconbury measurements, and comparable with other

studies that have compared emissivity measurement approaches [11,15]. However, agreement between

the laboratory and field measurements of the gravel sample from Duxford is poor by comparison,

with a difference of up to 8% observed between the EM27 (field) and Vertex (lab) measurements in the

restrahlen bands between 8.0 and 9.5 µm (Figure 11). Furthermore, as with the sand measurement from

Alconbury shown in Figure 9, while the restrahlen bands are clearly evident in the EM27 measurements

of the gravel in Duxford (Gravel_Dux), these minima are weaker in the laboratory measurements.

The increase in noise in the derived spectral emissivity data beyond 12 µm for field measurements

made using the EM27 in Alconbury (Figure 9) is again observed for all EM27 field measurements in

Grosseto and Duxford (Figures 10 and 11 respectively). The EM27 measurements of the white tarpaulin

and grass in Grosseto additionally show non-physical emissivities (>1) above 12 µm, which appeared

systematic and not attributable solely to noise. Conversely, a decrease in spectral emissivity above

12 µm is observed in the EM27 measurements of the gravel in Grosseto, beach sand in Grosseto,

and gravel in Duxford (Figure 11).

Spectral emissivity data of the same tarpaulins measured in the field in Duxford and in Grosseto

using the same EM27 setup show larger differences than anticipated, in both spectral shape and
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magnitude (Figure 10). The Duxford EM27 measurements were in better agreement with the laboratory-

and D&P-measured spectra than the Grosseto EM27 measurements, particularly so for the grey

tarpaulin where the EM27 measurements collected in Grosseto failed to identify certain spectral

features. The EM27 measurements in Duxford by contrast were in close agreement (<1%) to those of the

D&P (from Grosseto) and the laboratory measurements. Despite the Duxford measurements appearing

to perform relatively better than those from Grosseto, high uncertainties are also observed in the

Duxford spectral emissivity measurements of the white tarpaulin. The PVC coating of this particular

target had slightly specular characteristics, which may have made the emissivity more variable

between measurements as the EM27′s retrieval method is intended for samples with Lambertian

behaviour surfaces.

The sand, grass, and gravel samples from Grosseto shown in Figure 11 enable direct comparison of

the data from the two portable FTIR spectrometers, with measurements collected almost simultaneously

and under identical field conditions. The spectral emissivities of sand derived with the EM27 and the

D&P instruments were within 1% of each other between 8.5 and 12.0 µm, and the gravel emissivities

were within 2% of one another over the same range, with the increased differences for the gravel likely

attributable to the increased variability within this material. There was also strong agreement seen

between the spectral features for the beach sand and gravel road. These results promote confidence

in the emissivity data derived from both FTIR instruments over the 8.5–12.0 µm range. While the

measured emissivities of the grass from the two FTIR spectrometers were also within 2% of each,

non-physical (>1) noisy emissivities are observed in the EM27 data of the grass sample in Grosseto,

as was also observed in this instrument’s measurement of the Alconbury grass sample (Figure 9).

Below 8.5 µm, spectral emissivities retrieved using the D&P µFTIR spectrometer seem to be

consistently lower than those derived using the EM27, particularly for the grass sample (Grass_Gro) in

Figure 11. This could indicate insufficient correction of atmospheric features in the post-processing

of the D&P data, since this region has increased absorbance from atmospheric water vapour [17].

Outside this spectral region, EM27-derived emissivity spectra appeared consistently noisier than those

from the D&P, as can be observed again in the grass measurements from Grosseto (Figure 11).

4.1.2. Broadband Emissivities

The derived broadband emissivities for all samples measured in Grosseto and Duxford with the

EM27 and D&P systems are shown in Figure 11, alongside those derived using the two-lid emissivity

box. Agreement between the FTIR-derived values and those of the emissivity box is excellent for some

samples, such as the gravel road in Grosseto (Gravel_Gro) where the EM27 and D&P measurements

were within 0.1% (0.001) of those of the emissivity box (Figure 12). However, for other samples the

emissivity box provides broadband emissivities consistently lower than those of the FTIR systems,

with differences of over 5% (0.05) for the grey tarpaulin for example (whereas for this sample the EM27

in Duxford, D&P in Grosseto and the laboratory Vertex 70 deliver broadband emissivities within 0.5%

of each other).

Considering the different sample types, we observe that there were consistent discrepancies

between the measurements of the two grass samples collected in Grosseto and Duxford using the EM27

and the emissivity box. For both, the emissivities of the vegetation as measured by the box method

had a negative bias compared to the EM27 (Figure 12), with the EM27-derived values more in line

with vegetation measurements reported elsewhere [39,51]. However, the measurement of the grass

sample in Grosseto collected using the D&P was similar to the box-derived emissivity of that sample.

Given this unclear performance and the non-physical emissivities observed in the EM27-derived

emissivities of the grass samples from Alconbury (Grass_Alc, Figure 9) and Grosseto (Grass_Gro,

Figure 11), further work is recommended to understand the performance of the EM27-based system

over such targets.
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Figure 12. Broadband LWIR emissivities of target samples measured in Grosseto and Duxford by

the EM27 and D&P FTIR systems, derived via the convolution of these surface spectral emissivity

data with the spectral response function of the Heitronics KT15.85 radiometer shown in Figure 4.

Matching broadband emissivity values derived using a two-lid emissivity box and that same Heitronics

radiometer are shown alongside. Error bars show the uncertainties of each estimate.

Uncertainties were consistently around 0.010 for the box emissivity measurements, which is

comparable with other studies making use of the emissivity box [15,37,52]. However, these were

consistently higher than uncertainties from the other methods (with the exception of the white tarpaulin

measurement collected using the EM27 in Duxford, which had a band-averaged uncertainty of 0.028).

The increased uncertainty, and the lack of consistency found here in the relative emissivity values in

comparison to the range of other sensors deployed, lead us to question the ability to reliably use the

box method—and thus its suitability for calibration and validation studies.

4.2. Impact of Measurement Differences on LST Estimation

Table 6 shows the LST values and uncertainties calculated as detailed in Section 3.4 for each

sample and input emissivity, with maximum and minimum derived LSTs highlighted in red and blue

respectively. LSTs derived using emissivities from the two-lid emissivity box were the highest for all

samples other than for the white tarpaulin, reflecting the consistent negatively biased emissivities

delivered by this method relative to the others. In the case of the grey tarpaulin, the derived LSTs using

the box-derived emissivities were 3.92 ◦C higher than those based on emissivities from the D&P µFTIR,

EM27, or Vertex FTIR spectrometer as inputs. The magnitude of this bias again questions the reliability

of the emissivity box approach.
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Table 6. Calculated LSTs and LST uncertainties (◦C) for the six samples, each calculated using the

emissivities derived with the various field and laboratory emissivity measurement methods considered

herein, with the median and interquartile range (IQR) for each sample.

Sample
Calculated LST (◦C)

TL-Box D&P
EM27

(Grosseto)
EM27

(Duxford)
Lab Median IQR

WhiteTarp 29.48 ± 0.38 28.00 ± 0.36 29.74 ± 0.45 29.00 ± 0.37 29.24 0.80
GreyTarp 63.44 ± 0.39 59.52 ± 0.37 60.91 ± 0.39 59.59 ± 0.38 59.52 ± 0.37 59.59 1.39
BlackTarp 61.95 ± 0.38 60.09 ± 0.38 59.77 ± 0.37 59.46 ± 0.37 59.93 0.86
Gravel_Dux 28.72 ± 0.37 28.52 ± 0.36 28.20 ± 0.37 28.53 0.26
Grass_Dux 39.23 ± 0.37 37.70 ± 0.36 38.49 0.79

Tarmac 49.75 ± 0.37 49.15 ± 0.37 49.45 0.30

Differences between LSTs calculated using the broadband emissivities derived from the FTIR-based

methods deployed herein are smaller than those resulting from use of the box-derived emissivities.

However, we still observe LSTs differing by up to 1 ◦C (white tarpaulin), which, given that the

GCOS target accuracy and currently achievable requirements for LST as an ECV are 1 ◦C and 2–3 ◦C

respectively [28], highlights the continuing importance of reducing uncertainties on emissivity retrieval.

5. Discussion

Comparison of the spectral emissivities found the majority of emissivities from field and laboratory

spectrometers to be within 1–2% of each other for most of the spectral range 8.5–12.0 µm. These levels

are broadly in line with other studies [11,12] and give confidence in the measurements and methods

for selected samples. Outside of 8.5–12.0 µm, differences between emissivity measurements increased

and increased noise levels were observed in the EM27 spectra. A potential cause for the reduced

performance of the EM27 beyond 12 µm could be extrapolation error from calibration to the cold sky

temperatures, which Korb et al. [31] observed to create spectral artefacts between 11 and 13 µm due to

nonlinearity of the MCT detector responses over wide signal ranges. However, if this were the case,

this decrease in emissivities beyond 12 µm would likely be observed in the EM27 measured spectra of

all samples, which was not the case. Furthermore, no systematic distortion in the EM27 spectra was

apparent at wavelengths below 12 µm as would likely be if this were the cause. While emissivities from

8.5 to 12.0 µm were satisfactory for most applications from field to satellite scale, with the majority

of satellite thermal bands used for LST calculation located in this region [2], further investigation is

required if field emissivities accurate outside of this range are required.

The differences between the laboratory (Vertex 70) and field (EM27) measurements in the restrahlen

bands of the sand sample from Alconbury (Figure 9) and the gravel sample from Duxford (Figure 11)

raise questions about the relative performances of these laboratory and field setups in this region for

samples with strong restrahlen features. Further investigation in particular is recommended for the

laboratory setup, since the EM27 measurements of the sand and gravel drive samples in Grosseto

compared well with the D&P measurements of the same samples (Figure 11). In the case of the gravel

sample from Duxford, a likely cause of this lack of agreement is the inhomogeneity of the sample

(Figure 8c) together with the different field-of-regards between the two measurement techniques,

with the diameter of the sample port in the laboratory setup half that of the field-of-regard for the

EM27 in the setup deployed in Duxford (diameters of 25 mm and 50 mm respectively). A contributing

factor to the higher emissivity in the laboratory measurement could also be that the gap between the

gravel sample and sample port in the laboratory (discussed in Section 3.2.1) decreased the measured

sample reflectance and increased the derived emissivity. Although neither of these interpretations

are applicable to the sand measurements, these issues highlight the impact that the different scales

and designs of laboratory and field instrumentation can have on the retrieved emissivity. This is

particularly important when using emissivity from in situ measurements for calibration/validation
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activities over targets such as gravel that are apparently homogeneous in satellite/airborne sensor

pixels but heterogeneous at the sub-pixel level [64]. In this study, field measurements were found to be

vital for such samples as they observe a larger area than laboratory measurements and can more easily

cope with the target sample structure.

A key limitation of this study was that only one sample was measured by all four methods

(GreyTarp, Figure 9). With this sample however, strong agreement was seen between the laboratory,

D&P and EM27 (Duxford) while the broadband emissivity from the emissivity box measurement of

the sample was considerably lower. The negative bias in emissivity box measurements of this sample

and other samples compared to the other methods as shown in Figure 12 questioned the reliability

of the emissivity box approach for calibration and validation activities, particularly since use of the

emissivities from the box in this study were found to result in positive biases of up to 4 ◦C when used

to simulate in situ LSTs from radiometer observations.

The differences between the EM27 measurements of the tarpaulins made in Grosseto and

Duxford indicate field conditions have a strong impact on output emissivities. Interestingly, the EM27

measurements of the tarpaulin from Grosseto were found to be in poorer agreement with the laboratory

and D&P measurements from Grosseto than the EM27 measurements of the tarpaulin from Duxford,

despite being made at the same time and location as the D&P measurements. However, as shown in

Figure 11, other measurements made with the EM27 and D&P in Grosseto were in closer agreement,

with the D&P and EM27 measurements of gravel, grass, and sand made in Grosseto within 2%

across 8.5–12 µm. More measurements with the D&P (e.g., in Duxford) would have assisted here in

understanding the relative performance of these two field spectrometers. Increased noise in the EM27

measurements of the grass sample compared to the D&P measurements was likely an artefact of the

different instrument spectral resolutions (EM27 at 0.5 cm−1 and D&P at 4 cm−1). However it could

also indicate reduced sensitivity in the EM27 instrument compared to D&P. The latter interpretation

was identified as the calculated sample temperature of the grass that was five degrees lower than

the measured ambient air temperature (30.5 ◦C), thus reducing signal to noise [41]. This should be

investigated further since if this is the case the performance of the EM27 will be limited for measurement

of cold samples in hot environments due to the reduced signal to noise ratio for these samples unless

modifications are made to improve the sensitivity of the instrument.

Two potential causes were identified for the poor agreement in the EM27 tarpaulin measurements

from Grosseto compared to those from Duxford. Firstly, the calculated temperatures of the white

and grey tarpaulin were within just 2 ◦C of the cold blackbody temperature used in the EM27′s two

temperature calibration, with Hook and Kahle [40] finding that absolute errors in field emissivity

measurements increased where the sample temperature was close to the temperature of the calibration

blackbody. Care should therefore be taken to ensure the blackbody temperatures are at least 5 ◦C either

side of the estimated sample temperature, but the high ambient temperatures in Grosseto meant the

power required to cool the blackbody to the necessary temperature was insufficient—an issue now

resolved by the use of a more powerful inverter in the EM27 setup. This could also have been the cause

of the high uncertainties in the EM27 measurement of the white tarpaulin from Duxford (Figure 10),

since the calculated sample temperature was also only 0.5 ◦C above the cold blackbody temperature.

A second potential cause of the differences in the tarpaulin measurements made in Grosseto and

Duxford using the EM27 was identified through comparison of the measured downwelling radiances

and humidity in Grosseto and Duxford (not shown). Increased downwelling radiances were observed

throughout the Grosseto campaign compared to Duxford, which corresponded with increased humidity

(Section 3.2). Furthermore, greater variability between consecutive measurements of the gold panel in

Grosseto than in Duxford indicates downwelling radiances were changing more rapidly with time

in Grosseto—providing increased scope for changes between the sequential measurements of the

panel and the sample being collected. Environmental conditions therefore indicate reduced stability

and increased humidity, both factors known to impact the accuracy of retrieved emissivities [17,31].

This interpretation was supported by the increased atmospheric emission lines between 8 and 9 µm
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apparent in the EM27 spectra collected in Grosseto compared to Duxford (Figure 10). This may have

impacted the EM27 measurements more than it did the D&P measurements due to (i) the higher

spectral resolution and (ii) the spectral smoothness retrieval method used to derive emissivity from the

EM27, which relies on minimizing atmospheric features across 8.12–8.60 µm and therefore is optimal

for stable atmospheres. Consideration of the tarpaulin emissivity measurements derived from the

two different locations (Grossetto and Duxford) therefore highlights that measurement accuracies and

uncertainties were highly sensitive to environmental conditions, and that care should be taken to

ensure the blackbody calibration temperatures properly bracket the sample temperature.

The measurement of vegetation was shown to prove challenging for all methods, with non-physical

emissivities and high noise levels observed and differences between the broadband emissivities. In the

case of the EM27, non-physical emissivities and high noise were attributed to increased variability

in sample temperatures during measurement [57]. However, we also observed that the calculated

sample temperature of the Alconbury grass (Grass_Alc, Figure 9) was just 1 K hotter than the cold

blackbody temperature. As discussed above with the tarpaulin measurements, this could have led to

increased errors. With respect to the laboratory measurements, while non-physical emissivities and

high noise levels were observed in the measurements of the Alconbury grass (Figure 9), it is difficult to

determine if there is a systematic problem with measurement of vegetation or if this was an exception

as only one sample was measured in the laboratory. Measurements of additional vegetation samples

in the laboratory would have enabled further analysis but no samples were collected in Grosseto

and Duxford, as they would have deteriorated before measurement in the laboratory due to the gap

between the collection date and measurement date. An increased number of scans would improve

the signal-to-noise ratio and is therefore recommended for future measurement of low reflectance

samples. However it should also be considered whether a setup operating in the DHR mode could be

used to make measurements of vegetation, since vegetation tends to have non-isothermal properties

(with different temperatures in different parts of the sample) but Kirchhoff’s law theoretically requires

samples to be isothermal [47]. Salisbury and D’Aria [48] avoided this by cutting vegetation samples

and arranging them in a continuous monolayer on an adhesive tape substrate. However, this is also

known to impact the emissivity by changing the structural composition and does not take into account

any exposed soil components [65]. The non-isothermal properties of vegetation samples could also be

the cause of the non-physical emissivities of the grass sample for the EM27-derived field measurements

(which assumes a uniform sample temperature to calculate emissivity with the spectral smoothness

method). This supports Ribeiro de Luz and Crowley’s [47] argument for development of radiative

transfer models that account for non-isothermal structures. Given that one of the major applications

of LST from satellite and airborne sensors is monitoring evapotranspiration and crop health [66],

further work on measurement of vegetation samples in both the laboratory and the field is therefore

recommended. This is particularly important since the vegetation samples considered in both Duxford

and Grosseto were limited to homogeneous short cropped grass, while in reality more complex samples

containing exposed soil and more complex canopy structures are likely to also need assessing.

This study considered the impact these emissivity differences would have on LST algorithm

validation activities through simulating in situ LSTs from field radiometers. However, in situ emissivity

values from the laboratory or field instrumentation are also important for the development of LST

and land surface emissivity (LSE) retrieval algorithms from satellite or airborne sensors, despite the

development of new hyperspectral and multispectral thermal sensors and new physical retrieval

algorithms (e.g., [26,67]) capable of simultaneous LST/LSE retrieval without the need for input emissivity

estimates from land cover maps or other sources [62]. An example of such an application is in derivation

of the coefficients for the Maximum–Minimum Difference (MMD) module in the TES algorithm [26]

used to produce the operational Moderate Resolution Imaging Spectroradiometer (MODIS), ASTER,

and ECOSTRESS LST/LSE products [53,68]. In this case, a negative bias in emissivity inputs would

cause reduced maximum emissivities for the same min–max difference, thus shifting the regression

curve, changing the coefficients in the MMD module and impacting the retrieved LSTs and LSEs. It is
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crucial therefore for LST and LSE retrieval algorithm development and validation activities that work

continues on improving and understanding uncertainties surrounding in situ emissivity measurement

methods in the field and laboratory.

6. Summary and Conclusions

We conducted an inter-comparison of four different methods of LWIR surface emissivity retrieval,

encompassing methods that derived full spectral emissivity data and broadband emissivities, and which

operate in the field and in the laboratory. The methods considered are based on field measurements

made with two portable FTIR spectrometers (a Bruker EM27 and a D&P µFTIR) operating in the

emission mode, a laboratory FTIR spectrometer (Vertex 70) operating in directional hemispherical

reflectance mode, and a two-lid emissivity box based on the design of Rubio et al. [33] also deployed in

the field. Fourteen target samples were considered across four field sites covering both the UK and

Italy, and these include man-made materials such as tarpaulins and natural materials such as sand,

grass, and water.

The majority of the derived spectral emissivities were within 1–2% of each other between the

major part of the LWIR atmospheric window (8.5–12.0 µm), with identification of spectral features

also in agreement between the different field and laboratory approaches. This degree of agreement

is consistent with that found by other studies comparing field and laboratory methods of spectral

emissivity determination. Differences of up to 15% were observed between the laboratory and field

measurements for samples with strong restrahlen features, suggesting a need for further investigation

into the laboratory setup’s performance when measuring samples with these features. Consideration

of the gravel sample from Duxford suggests that field instrumentation can be more suitable than

laboratory directional hemispherical reflectance setups for non-homogeneous samples and samples

with complex structures. Beyond 12 µm, significant noise and an unexplained drop off in spectral

emissivity was observed in certain of the EM27 retrieved emissivities. As a result, we recommend use

of EM27 emissivity spectra should be limited to within the 8.0–12.0 µm region. Similarly, although

fewer measurements were made using the D&P, increased noise and a decrease in emissivity below

8.5 µm indicates that the D&P-system may deliver emissivities not fully to be trusted below this

wavelength, at least in the configuration used herein.

Differences between field measurements made of the same samples using the EM27 but in different

locations under different environmental conditions identified some issues. In particular the power

supply was inadequate to cool the internal blackbody to the ideal temperature when ambient conditions

were particularly warm, leading to the cold blackbody temperature being probably too similar to the

target sample temperature to give well calibrated data. This has now been resolved through installation

of a higher power inverter. Some increased noise was also evident in certain EM27 measurements,

and we recommend that for comparatively cool samples such as vegetation data collection should

be done at times to maximise thermal contrast with the surroundings. The time taken to collect each

spectral measurement should also be minimised under conditions of potentially changing atmospheric

humidity, for example by reducing the number of scans or lowering the measurement spectral resolution

(Salisbury [17] advise that 8 cm−1 is generally adequate for spectral emissivity determination).

Measurement of vegetation samples was found to be challenging for all methods due to

reduced signal-to-noise, canopy scattering, varying sample temperature during the measurement and

non-isothermal properties. Using the measured emissivities to simulate near-surface LST observations

of grass found differences of 1.5 ◦C depending on which method of emissivity determination was used.

Given that a major application of LSTs is for agriculture and use in evapotranspiration models [6],

accurate measurement of the emissivity of vegetation at the field and laboratory scale is crucial,

so further work towards understanding the uncertainties at both the field and laboratory scale

is recommended.

We derived broadband emissivities from the spectral emissivity measurements and compared

these with those calculated using the two-lid emissivity box method. We found a lack of consistency
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in the emissivity values measured with the box and increased uncertainties compared to the other

methods. This indicates that its performance was inferior to that of the FTIR-based approaches, albeit it

is based on far cheaper and more available technology.
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Appendix A

This appendix presents the calculation of uncertainties associated with the evaluation of the

impact on LST presented in Section 3.4. The error sources on LST were identified as that of the surface

radiation (L↑), downwelling radiation (L↓), and emissivity (ε). All terms are wavelength (λ) dependent

but the wavelength terms were omitted for clarity.

To calculate the uncertainty on the derived LST observations, the equivalent uncertainties in

radiance units
(
UL↑/↓

)
for both surface and sky viewing radiometer observations were first determined

from the manufacturer stated uncertainty of the radiometer in temperature units (UT↑/↓) through the

differential of the Planck function with respect to temperature (T) such that:

UL =

∣∣∣∣∣
∂B

∂T

∣∣∣∣∣UT=
c1c2e

c2
λT

λ6T2
(
e

c2
λT − 1

)2
UT (A1)

where c1 and c2 are constants such that c1 = 2hc2 and c2 = hc
k (with h, c and k as defined in Section 3.1.2).

The uncertainty of the land surface radiance (ULsurf
) was then calculated using Equation (8) in

Ghent et al. [63] such that:

ULsurf
= Lsurf

√√√√√√√√√√√√√√√U2
L↑

+


(1− ε)L↓

√
U2
ε

(1−ε)2 +
U2

L↓

L2
↓




2

(
L↑ − L↓(1− ε)

)2
+

U2
ε

ε2

(A2)

where Uε is the uncertainty on the emissivity observation. Using the uncertainty of the surface radiance,

we then calculated the absolute uncertainty of a given LST observation (ULST) using Equation (9) in

Ghent et al. [63]:

ULST = C2




c1

(
ULsurf

λ5L2
surf

)

(
c1

Lsurfλ5 + 1
)
λ

(
ln

c1

Lsurfλ5 + 1
)2




(A3)
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