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Radiation detection is important in many fields, and it poses significant challenges for
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Abstract: The characterisation of buried radioactive wastes is challenging because they are
not readily accessible. Therefore, this study reports on the development of a method for
integrating ground-penetrating radar (GPR) and gamma-ray detector measurements for nonintrusive
characterisation of buried radioactive objects. The method makes use of the density relationship
between soil permittivity models and the flux measured by gamma ray detectors to estimate the soil
density, depth and radius of a disk-shaped buried radioactive object simultaneously. The method was
validated using numerical simulations with experimentally-validated gamma-ray detector and GPR
antenna models. The results showed that the method can simultaneously retrieve the soil density,
depth and radius of disk-shaped radioactive objects buried in soil of varying conditions with a
relative error of less than 10%. This result will enable the development of an integrated GPR and
gamma ray detector tool for rapid characterisation of buried radioactive objects encountered during
monitoring and decontamination of nuclear sites and facilities.

Keywords: ground-penetrating radar; gamma ray detector; sensor fusion; nuclear wastes;
nuclear decommissioning; radiation detection; radiological characterisation

1. Introduction

The presence of radioactive objects in the shallow subsurface is a major public health risk because
these objects can induce high levels of radiation above the ground. For example, a cobalt-60 source
found buried at a depth of about 32 cm in a Cambodian hospital induced radiation levels of up to
60 mSv h−1 above the ground [1]. This is about 26,000-times the stipulated effective dose limit of
20 mSv per year [2]. Furthermore, chemical reactions in the soil can lead to the dissolution of these
objects and subsequent contamination of groundwater. For example, the high energy penetrators used
in ammunition are usually made from depleted uranium, which is a by-product of the nuclear fuel
enrichment process. Many of these penetrators get lodged in the ground during military operations and
become potential sources of groundwater contamination because of their high solubility in sand and
other volcanic rock [3]. Therefore, it is important to promptly detect, and safely dispose these objects.

The first stage in the disposal of these buried radioactive objects is their characterisation.
However, this process is challenging because of the difficulty in estimating the depth of these
objects using traditional intrusive methods such as logging and core sampling [4,5]. Therefore,
a number of nonintrusive depth estimation methods have been developed. These can be broadly
divided into three categories, namely: empirical model methods; multiple photo peak methods; and
shielding and collimator methods. The empirical model methods are based on establishing correlations
between distinguishable features in part or all of the gamma spectrum and the depth of the buried
radioisotope. They include: peak-to-valley ratio [6,7], peak-to-scatter ratio [8,9], principal component

Sensors 2019, 19, 2743; doi:10.3390/s19122743 www.mdpi.com/journal/sensors1
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analysis [10–12], and machine learning [5,13,14] methods. However, these methods result in models
whose parameters typically have no physical significance. Furthermore, the use of machine learning
requires a significant amount of data for training. The multiple photo peak methods [15,16] exploit
the difference in the attenuation of two energy peaks in the gamma spectrum in order to estimate the
depth of the source. Consequently, they are limited to radioisotopes with two or more photo peaks
that are sufficiently separated in the gamma spectrum.

The shielding and collimator methods [17–19] use different shielding and collimator configurations
to obtain multiple measurements from which the depth of the radioactive source can be estimated.
These methods have been shown to yield more accurate results compared to other methods [17]
and can be used with any radioisotope. However, the required multiple measurements can only be
acquired sequentially. This can significantly increase the data acquisition time because the acquisition
of the spectrum of a buried source usually requires a long dwell time due to significant attenuation.
In addition, in order to limit the minimum number of measurements required to estimate the depth to
only two, the value of the bulk density of the soil is typically assumed to be known. However, the
bulk density of soil depends on the current condition of the soil, and this varies from one location to
another. Therefore, assuming a constant or generic value will result in errors in the estimated quantities.
Furthermore, the use of historical values will not account for the changes in the soil density that would
have occurred over time due to environmental factors such as rain fall and temperature changes.

Therefore, this work presents the development of a method for integrating gamma-ray detectors
and ground-penetrating radar (GPR) for the retrieval of the soil density, depth and radius of a buried
radioactive object. This eliminates the need for the soil density value to be known a priori. The method
also used two horizontally-separated detectors to enable simultaneous acquisition of the required
measurements, thereby solving the problem of sequential data acquisition. This will improve the rapid
characterisation of buried radioactive wastes.

2. Theoretical Framework

For a radioactive point source buried in an air-soil half-space as shown in Figure 1, the flux Fp

measured by the detector placed above the ground is given by [20]:

Fp =
Sp Ar(E, θ)Ce(E)

4π
(

h+d
cos θ

)2 e−µm(E)ρa
h

cos θ e−µm(E)ρb
d

cos θ (1)

where E is the energy of the point source (keV), θ is the angle of incidence of the source with the
detector (radians), d is the depth of the source in the soil (cm), Sp is the activity of the source (Bq)
and Ar(E, θ) is the angular response of the detector to a point source of energy E incident at angle θ.
This is a dimensionless quantity and is obtained by measuring the response of the detector to a point
source at angles varying from 0–π/2. This calibration should be done with the collimator in place if
the detector is to be used with a collimator. Ce(E) is the detector’s centreline efficiency (cps cm2 Bq−1)
and is calculated from the flux due to a source of known activity placed at a known distance z along
the centerline, i.e.,:

Ce =
Fp4πz2

Sp
(2)

where µm is the mass attenuation coefficient of the point source at energy E (cm2 g−1), ρa is the density
of air (g cm−3), h is the distance from the ground surface to the centre of the detector and ρb is the bulk
density of soil (g cm−3).
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Figure 1. Geometry and parameters for estimating the flux (measured by the detector) due to the point
source Sp in the soil.

If the buried object is assumed to be disk-shaped and the contamination is at most 1–2 mm below
the object’s surface, then it can be approximated as a planar disk source, and the flux Fa measured by
the detector is obtained by integrating Equation (1) over the area of the disk, i.e.,:

Fa =
∫ 2π

0

∫ r

0

Sa Ar(E, θ)Ce(E)

4π
(

h+d
cos θ

)2 e−µm(E)ρa
h

cos θ e−µm(E)ρb
d

cos θ r drdφ (3)

where r and φ are the radius (cm) and angle (radians) of the disk source in polar coordinates and Sa is
activity per unit area (Bq cm−2).

In most buried radioactive source surveys, the quantities of interest are the activity and depth
of the source of the radiation; both of which are estimated from the ratio of two measurements [19].
In other words, the ratio of two measured fluxes F1 and F2 acquired using different detector
configurations is a function that depends only on the source depth, i.e.,

F2

F1
= ratio(d) (4)

The depth estimated from Equation (4) can then be used to estimate the source activity using
Equation (1) or (3) for a point or planar source. However, this two-measurement procedure assumes
that the bulk density of the soil is known. This requirement can be eliminated by acquiring a third
measurement [19]; however, this will increase the data acquisition time.

GPR has the potential of solving this density-dependency dilemma. A GPR system operates
by sending electromagnetic signals into the ground and measuring any portion of the signal that is
reflected by interfaces or objects in the signal propagation path. Using the illustration in Figure 2,
the time t between the reception of the reflection from the ground and that from the disk source is
given by:

t =
2d
v

=
2d
c√
εb

(5)

where v is the speed of the signal in the soil (m s−1), c is the speed of light (299,792,458 m s−1) and εb
is the relative bulk permittivity of the soil (unitless). It should be noted that Equation (5) assumes that
both the transmitting (Tx) and receiving (Rx) antennas are close to each other. Porous materials such
as soil can be considered as a three-phase mixture of air, water and solid particles [21]. Therefore, their
bulk permittivity is a function of the permittivities of these phases and their proportional composition
in the material. Various formulas have been proposed to express this relationship; however, in a
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comparative study [22], it was shown that the formula based on the exponential mixing rule [21] with
the exponent value of 0.65 gave the best result across a variety of materials. This formula is given by:

ε0.65
b =

(
ρb −Wc

ρs

)
ε0.65

s +

(
1− ρb −Wc

ρs
−Wc

)
ε0.65

a + Wcε0.65
w (6)

where the exponent value of 0.65 was obtained from the work of Dobson et al. [23], ρs = 2.65 g cm−3 is
the solid particle density for soils, Wc is the volumetric water content (%), εs = 4.7 is the solid particle
relative permittivity for soils [23,24], εa = 1 is the relative permittivity of air and εw is the relative
permittivity of water, which is given by the real part of the modified Debye’s equation [24], i.e.,

εw = εw,∞ +
εw,0 − εw,∞

1 + (2π f τw)2 (7)

where εw,∞ = 4.9 is the relative permittivity of water at infinity, εw,0 is the static relative permittivity
of water, f is the frequency of the GPR (Hz) and τw is the water relaxation time (s). Both εw,0 and τw

depend on temperature T (◦C) and are given by Equations (8) and (9), respectively [25,26].

εw,0 = 88.045− 0.4147× T + 6.295× 10−4 × T2 + 1.075× 10−5 × T3 (8)

τw =
1

2π
(1.1109× 10−10 − 3.824× 10−12 × T + 6.938× 10−14 × T2 − 5.096× 10−16 × T3) (9)

Combining Equations (5) and (6) will yield Equation (10), which can be solved simultaneously
with Equation (4) to estimate both the soil bulk density and the depth of the source. This integration of
the data from the GPR and gamma detectors can be considered as a type of low-level multisensor data
fusion where data from different sensors are combined using physical models to enable or improve the
estimation of physical parameters [27].

(
2d
ct

)1.3
=

(
ρb −Wc

ρs

)
ε0.65

s +

(
1− ρb −Wc

ρs
−Wc

)
ε0.65

a + Wcε0.65
w (10)

Figure 2. Operation of a ground-penetrating radar (GPR) system. Signals from the transmitter (Tx) are
reflected by objects and detected by the receiver (Rx).

Another important consideration is how to arrange the sensors (i.e., the gamma detectors and
GPR antenna) for efficient data acquisition. Preferably, the arrangement should be such that the sensors
can operate simultaneously. Two ways of positioning two gamma detectors for the measurement of
the radiation fluxes are illustrated in Figure 3. In the first arrangement, both detectors are vertically
displaced by a fixed distance. However, this configuration makes it difficult to simultaneously measure
the fluxes from both detectors because the field of view of the upper detector is completely or
significantly occluded by the lower detector for small objects. This problem does not occur in the

4
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second arrangement where the second detector is horizontally displaced from the reference detector.
This arrangement also has the additional advantage of allowing the GPR antenna to be mounted
between both gamma detectors thereby creating a more compact sensor arrangement. However,
the calculation of the angle of incidence (θ in Equation (3)) for the second detector needs to be modified
to account for the horizontal separation. The modified expression is given by;

θ = arctan
(

a
h + d

)

where a =
√
(x + r cos φ)2 + (r sin φ)2

and x is the horizontal separation.

(11)

Figure 3. Two ways of arranging two detectors to measure the flux from the disk source.
The horizontally-separated arrangement allows both fluxes to be measured simultaneously because
none of the detectors is obstructed.

3. Materials and Methods

The numerical modelling and simulation tools used were Monte Carlo N-Particle Version 5
(MCNP5) [28] and gprMax Version 3.1.4 [29]. MCNP5 is a collection of software codes that is used to
simulate the transportation of subatomic particles, e.g., gammas, neutrons, etc., and their interaction
with materials using Monte Carlo statistical techniques. It is widely used in the modelling and analysis
of nuclear radiation structures and systems and has been extensively proven to have good agreement
with experimental results. gprMax is an open source software code used to simulate the propagation
of GPR signals. At its core, gprMax is a finite-difference time-domain electromagnetic wave solver that
uses Yee’s algorithm to solve the three-dimensional Maxwell’s equations. Its results have also been
extensively validated with experiments [30].

3.1. Selection and Modelling of Sensors

The gamma detector used in the study was the CZT/500S from Ritec (Riga, Latvia). It is a
hemispherical cadmium zinc telluride (CZT) semiconductor detector with a sensitive volume of
0.5 cm3 (Figure 4a). The detector was chosen because of its size and good spectroscopic properties.
In addition, unlike high purity germanium (HPGe) detectors, CZT detectors do not require a cooling
system; therefore, they are very portable and easy to integrate with other systems. Figure 4b shows the
simulated and experimental Cs-137 spectrum from the model and real detectors, respectively. A very
good alignment of the spectrum key features can be observed. The tailing effect in the Compton
valley of the spectrum from the experiment was due to incomplete charge collection caused by poor
electron-hole mobility. This is a characteristic feature of CZT detectors. This feature was not modelled
because of the additional complexity required. However, this will not affect the results of the study
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because the ratio of the area under the photo peak for two simulated spectra will be the same as that
for two experimental spectra. The difference in the position of the Compton peak was likely due to
nonlinearity in the real detector, while the higher background below 300 keV in the spectrum from the
experiment can be attributed to backscatter from surrounding objects.

(a) (b)

Figure 4. (a) MCNP5 model of the gamma detector. The crystal volume is 1 cm × 1 cm × 0.5 cm;
(b) Experimental and simulated Cs-137 spectrum from the model and real detector.

The selected GPR antenna for the study was the 1.5-GHz antenna (Model 5100) from GSSI Inc.
(Nashua, NH, USA). The gprMax model of this antenna is shown in Figure 5. The antenna consists
of a pair of transmitter and receiver bow-tie antennas printed on a circuit board. The antennas are
surrounded by microwave absorbers, which in turn are surrounded by a metallic shield. The entire
assemble is enclosed in a polypropylene case. The development and experimental validation of the
model can be found in [30,31]. It should be noted that the actual centre frequency of the antenna model
was 1.71 GHz with a fractional bandwidth of 103%.

Figure 5. gprMax model of the 1.5-GHz antenna from GSSI Inc. The antenna dimensions are
17 cm × 10.8 cm × 4.3 cm (L×W×H). The skid plate underneath the casing has been removed to
show the inside of the antenna.

6
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3.2. Measurement Scenario Modelling

The measurement scenario was modelled both in MCNP5 and gprMax. The MCNP5 model of
the measurement scenario is shown in Figure 6a. The radioactive object was modelled as a planar
disk source with uniform activity. This is typical of stainless steel objects whose surfaces become
activated by neutron flux in nuclear reactors [32]. The radioisotope used was Cs-137 with a photo
peak energy of 662 keV. Each gamma-ray detector was placed in a cylindrical collimator with inner
radius, thickness and height of 2.4 cm, 1.0 cm and 3.3 cm, respectively. The collimator was modelled as
an alloy of tungsten (95% W, 3.5% Ni and 1.5% Fe) with a density of 18 g cm−3 [33]. The horizontal
distance between the gamma detectors was selected such that it can fit the width of the GPR antenna.
The antenna was modelled as a propylene box since it was not an active component in the MCNP5
simulation. The soil used in the model was a typical soil (51.4% O, 0.6% Na, 1.3% Mg, 6.8% Al, 27% Si,
1.4% K, 5.1% Ca, 0.5% Ti, 0.07% Mn and 5.6% Fe) with a dry density of 1.52 g cm−3 [34].

The gprMax model of the measurement scenario is shown in Figure 6b. This is a replication of the
MCNP5 model using the gprMax antenna model described in Section 3.1. The detectors were modelled
as metallic cylinders since only the lead collimator part of the gamma detectors will affect the GPR
signals. The radioactive object was modelled as a metallic disk of thickness 0.5 cm. The two properties
required to replicate the soil in gprMax were the bulk permittivity and the bulk conductivity. The bulk
permittivity was calculated using Equations (6)–(9) at a temperature of 20 ◦C. The bulk conductivity
was calculated using [35]:

σb =
σw(εb − 4.1)

εw
(12)

where σb is the soil bulk conductivity (Sm−1) and σw is the conductivity of pore water (0.05 Sm−1 [36]).

(a) (b)

Figure 6. Model of the measurement scenario. The radioactive object is a metallic disk with Cs-137
radioactive contamination. (a) MCNP5 model of the measurement scenario. The gamma detectors
are surrounded by 1 cm-thick lead collimators with an inner radius of 2.4 cm and height of 3.3 cm;
(b) gprMax model of the measurement scenario. All labels and dimensions are the same as (a).

3.3. Simulation and Data Processing

Two sets of simulations were performed: MCNP5 simulations to measure the gamma fluxes due
to the buried radioactive object and gprMax simulations to measure the time of flight (signal travel
time) of the GPR signal to the buried radioactive object.
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In the MCNP5 simulations, disk sources of radii of 3 cm, 9 cm and 15 cm were separately buried
in the soil at depths varying from 12 cm–28 cm at 4-cm intervals. All the activities of the sources were
normalised to 1 Bq cm−2, unless otherwise stated. After simulation, a Gaussian function was fitted
to the spectra from the gamma ray detectors in order to estimate the number of full energy photons
detected. This is the required flux due to the buried radioactive object. The energy range used for the
estimation was from 655–672 keV.

In the gprMax simulations, the radioactive object was also buried in the soil at depths varying
from 12 cm–28 cm at 4-cm intervals. The GPR signal was then transmitted and the reflected signals
recorded for processing. The first step in processing the GPR data was the subtraction of the antenna’s
system response from that acquired from the measurement scenario. The antenna’s systems response
is the measured response when the antenna is in air or free space. This subtraction process decoupled
the reflection due to the ground surface from the direct signal from the transmitter to the receiver. This
made the reflected signal from the ground surface easily identified. The required signal travel time was
then the time between the ground reflection and the reflection due to the metallic disk. This process is
illustrated in Figure 7a,b.

Using the estimated gamma fluxes and the signal travel times, Equations (4) and (10) were
simultaneously solved to obtain the soil density, depth and radius of the buried radioactive object.
These results are presented and discussed in the following section.

(a) (b)

Figure 7. GPR signal for metal disk of a radius of 3 cm buried at 24 cm in dry soil, (a) Raw GPR signal
with coupled direct wave and ground reflection; (b) GPR signal after subtraction of the GPR antenna’s
system response.

4. Results and Discussion

The calculated (solid lines) and simulated (markers) ratios of the fluxes (i.e., Equation (4)) from
the gamma detectors for disk sources of different radii buried at different depths in the dry soil are
shown in Figure 8. The uncertainty in the flux ratio was calculated using Equation (13), where δF1 and
δF2 are the uncertainties in the fluxes from Detectors 1 and 2 as calculated by MCNP5. A decreasing
dependency of the ratios on depth can be observed as the depth increased. This is indicated by the
plateauing of the curves and the increasing error bars as the depth increased. This is caused by the
exponential attenuation of the gamma rays as the depth of the source increased. This effect can be
mitigated in practice by increasing the measurement time or by using a detector with higher efficiency.
A decrease in the dependency of the ratios on depth can also be observed as the source radius increases.
This is because the part of the source in the field of view of Detector 2 increases as its radius increases.
Therefore, its measured flux will become increasingly the same as that measured by Detector 1 since
the source has uniform activity.

8
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Figure 8. Flux ratio (i.e., F2/F1) for sources of radii of 3 cm, 9 cm and 15 cm buried at various depths
in dry soil (ρb = 1.52 g cm−3). The solid lines are calculated values, while the markers are the values
from the simulation.

Flux ratio uncertainty =

∣∣∣∣
F2

F1

∣∣∣∣

√(
δF2

F2

)2
+

(
δF1

F1

)2
(13)

The depths and densities obtained by simultaneously solving Equations (4) and (10) using the flux
ratios in Figure 8 and the signal travel time from GPR measurements are shown in Table 1. The values
in parentheses are the relative error in percentage. It can be observed that the estimated depths are
within 5% of their actual values while most of the estimated densities are within 9% of their actual
values. The density estimates with high errors are those obtained when the sources were buried at
12 cm. This is likely caused by the fact that the sources have a large incident angle with respect to
Detector 2 when buried at shallow depths. This results in the reduction of the geometric efficiency
of Detector 2.

Table 1. Simultaneously-estimated depths and soil densities for disk sources of different radii buried at
different depths in dry soil. The values in parentheses are the relative error in percentage.

Actual Values Estimated Values

r = 3 cm r = 9 cm r = 15 cm

d (cm) ρb (g cm−3) d (cm) ρb (g cm−3) d (cm) ρb (g cm−3) d (cm) ρb (g cm−3)

12 1.52 11.8 (2) 1.36 (11) 11.9 (1) 1.34 (12) 12.2 (1) 1.25 (18)
16 1.52 15.7 (2) 1.42 (7) 15.7 (2) 1.43 (6) 15.2 (5) 1.54 (1)
20 1.52 19.8 (1) 1.41 (7) 19.6 (2) 1.45 (5) 19.0 (5) 1.57 (3)
24 1.52 24.0 (0) 1.38 (9) 23.1 (4) 1.52 (0) 23.5 (2) 1.46 (4)
28 1.52 27.7 (1) 1.43 (6) 27.9 (0) 1.41 (7) 27.3 (2) 1.48 (3)

Table 2 shows the depth and density estimates for a disk source (3 Bq cm−2) of a radius of
3 cm buried at a depth of 20 cm in soil of different densities and and volumetric water contents.
The estimates in the first row were obtained using the proposed integrated GPR and gamma ray
detectors approach. The values in the second row were obtained using the measurements from only
the two gamma-ray detectors by minimising the following function:

minimise:
(Rcalc − Rsim)

2

Rsim
(14)
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where Rcalc and Rsim are the calculated and simulated flux ratios respectively. It can be observed that
the combination of the gamma detector and GPR measurements significantly improved the depth
and density estimates especially at high densities and water contents. This is because the additional
measurement from the GPR constrained the solution space to the correct values. The solution space can
also be constrained by using a third gamma detector measurement; however, this will either increase
the data acquisition time if the measurements are acquired sequentially or require the design of a
complicated measurement geometry for simultaneous measurement of all three fluxes. Conversely,
this GPR integration approach is fast, simple, and produces good results.

Table 2. Depth and density estimates for a disk source of radius 3 cm buried at a depth of 20 cm in
three different soil conditions. The values in parentheses are the relative error in percentage.

Estimation Method
Soil 1 (ρb = 1.67 g cm−3, Soil 2 (ρb = 1.82 g cm−3, Soil 3 (ρb = 1.97 g cm−3,

Wc = 15%) Wc = 30%) Wc = 45%)

d (cm) ρb (g cm−3) d (cm) ρb (g cm−3) d (cm) ρb (g cm−3)

gamma detector and GPR 19.8 (1) 1.61 (4) 19.7 (2) 1.93 (6) 19.8 (1) 2.12 (8)
gamma detector only 19.17 (4) 1.48 (11) 17.6 (12) 1.5 (18) 16.83 (16) 1.5 (18)

Finally, the results presented so far assumed that the size (i.e., radius) of the disk source is known.
However, this is typically not the case in practice. Therefore, the retrieval of the radius of the disk
source was also investigated. Since this would require the estimation of three unknowns using two
equations, the problem was reformulated as a constrained minimisation problem where Equations (10)
and (7) are the objective and constraint functions, respectively. The result for disk sources of different
radii buried in the soil at a depth of 12 cm is shown in Table 3. Good estimates can be observed as all
of the estimated values had relative errors of less than 10% except the density and radius estimates for
the disk source of radius of 3 cm. This large error in the estimates for the disk source of radius 3 cm
is likely due to the large incident angle for Detector 2 at shallow depths, which reduced the number
of gamma rays reaching the detector. This reduction in the flux measured by Detector 2 at shallow
depths is more pronounced if the radius of the disk source is small. However, the results confirmed
the ability of the integrated gamma detector and GPR method to estimate the key parameters of soil
density, depth and radius of buried disk sources, simultaneously. Furthermore, this technique can also
be used with other radioisotopes (e.g., Co-60) by substituting the mass attenuation coefficient at the
photo peak energy of the radioisotope in Equation (3).

Table 3. Estimated depths, densities and radii values for disk sources of varying radii buried in the dry
soil at a fixed depth of 12 cm. The values in parentheses are the relative error in percentage.

Actual Values Estimated Values

d (cm) ρb (g cm−3) r (cm) d (cm) ρb (g cm−3) r (cm)

12 1.52 3 10.9 (9) 1.64 (8) 6.6 (120)
12 1.52 9 11.5 (4) 1.47 (3) 9.6 (7)
12 1.52 15 11.6 (3) 1.43 (6) 15.1 (1)

5. Conclusions

The integration of gamma detectors and GPR for nonintrusive characterisation of buried
radioactive objects has been presented. The results showed that this integrated approach is able to
retrieve the key parameters of soil density, depth and radius of disk-shaped radioactive objects buried
in soil of varying conditions simultaneously. It also showed that by using two horizontally-separated
gamma detectors, all the measurements required for the estimation process can be acquired
simultaneously, thereby reducing the time associated with sequential data acquisition. However,
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the method is currently limited to objects having surface radioactive contamination that can be
approximated by a disk. Therefore, there is a need to develop the method further to account for objects
of different shapes. Finally, this study will form the basis for the development an integrated gamma
detector and GPR system. Such a system will enable the rapid characterisation of buried wastes
encountered during the decommissioning of nuclear sites and facilities.
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Abstract: Plastic scintillation detectors are widely utilized in radiation measurement because of
their unique characteristics. However, they are generally used for counting applications because of
the energy broadening effect and the absence of a photo peak in their spectra. To overcome their
weaknesses, many studies on pseudo spectroscopy have been reported, but most of them have not
been able to directly identify the energy of incident gamma rays. In this paper, we propose a method
to reconstruct Compton edges in plastic gamma spectra using an artificial neural network for direct
pseudo gamma spectroscopy. Spectra simulated using MCNP 6.2 software were used to generate
training and validation sets. Our model was trained to reconstruct Compton edges in plastic gamma
spectra. In addition, we aimed for our model to be capable of reconstructing Compton edges even
for spectra having poor counting statistics by designing a dataset generation procedure. Minimum
reconstructible counts for single isotopes were evaluated with metric of mean averaged percentage
error as 650 for 60Co, 2000 for 137Cs, 3050 for 22Na, and 3750 for 133Ba. The performance of our model
was verified using the simulated spectra measured by a PVT detector. Although our model was
trained using simulation data only, it successfully reconstructed Compton edges even in measured
gamma spectra with poor counting statistics.

Keywords: plastic gamma spectra; energy broadening correction; Compton edge reconstruction;
deep learning; deep autoencoder

1. Introduction

Plastic scintillation detectors have poor spectroscopic characteristics because of poor energy
resolution and absence of photo peak in the region of interest, which is above 100 keV. Therefore, it is
hard to conduct radioisotope identification from plastic gamma spectra. Despite their weaknesses,
plastic scintillation detectors have been widely used in radiation monitoring systems, e.g., radiation
portal monitor, because they have unique characteristics such as low cost, are easily made in large
volume, etc. Therefore, various spectral processing techniques have been reported for pseudo
gamma spectroscopy of plastic scintillation detectors. Energy windowing [1–4], F-score analysis [5],
energy weighted algorithms [6,7], and inverse matrix [8] are representative methods for pseudo gamma
spectroscopy. However, these methods can be categorized as indirect pseudo gamma spectroscopic
methods because it is impossible to directly identify the energy of incident gamma rays. Even though
inverse matrix allows unfolding photo peaks in plastic gamma spectra, it works with spectra with
good counting statistics only.

Sensors 2020, 20, 2895; doi:10.3390/s20102895 www.mdpi.com/journal/sensors15
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In contrast, there have been many studies on radioisotope identification, which is one of the
purposes of gamma spectroscopy, using pattern recognition methods, such as library matching [9,10]
and neural network-based classifiers [11,12]. Using library matching methods, it is possible to identify
radioisotopes only if the library data are prepared to match with the measured data. In the case of
neural network-based-classifiers, it is difficult to define practical accuracy. Although the outputs from
neural networks are in the form of probabilities, they do not represent practical accuracy without
confidence calibration [13].

In this paper, we propose a deep autoencoder model to correct the energy broadening effect, which
is one of the weaknesses of the plastic gamma spectra. If the energy broadening effect is corrected,
it is possible to conduct direct pseudo gamma spectroscopy differently from other methods because
Compton edges are represented in gamma spectra. The datasets for this study were generated using
the following procedure; establishment of probabilistic density function (PDF) library for radioisotopes
using the results of Monte Carlo simulations, synthesis of PDFs with dependent random ratios for
various combinations of radioisotopes, and generation of datasets via random sampling. For the
generated and measured plastic gamma spectra, it has been verified that our model can reconstruct
Compton edges from spectral measurement, even from spectra with low counting statistics.

2. Materials and Methods

2.1. Deep Autoencoder

An autoencoder is a type of an artificial neural network that generates an output signal whose
dimension is identical to that of the input signal. Figure 1 shows a schematic of autoencoder
architecture [14–16]. As shown in Figure 1, an autoencoder consists of two parts: encoder and
decoder. In the encoder, inputs are encoded into internal representations with reduced dimensions in
the latent space. In the decoder, internal representations are decoded into the reconstructed signal.
In this unsupervised manner, the autoencoder is widely used for dimension reduction in many
applications [17,18]. Furthermore, an autoencoder can be used for noise rejection. If we add noise
signals to training data and train an autoencoder to reconstruct the input signal without the noise,
the autoencoder is optimized to make a function to reject noise signals. A deep autoencoder is an
autoencoder model whose encoder and decoder consist of three hidden layers or more [19].
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HAMAMATSU) [20] and a preamp (E990-501, HAMAMATSU) [21] was used as a plastic scintillation

16



Sensors 2020, 20, 2895

detector. Optical grease (BC630, Saint-Gobain, Courbevoie, France) was applied at the junction between
the crystal and PMT for optical coupling. For optical shielding, the crystal was wrapped with Teflon
and black friction tape. A pulse processor (DP5G, Amptek, Hawthorne, NJ, USA) was used as a
shaping amp with time constant of 2.2 µs and multichannel analyzer. A high-voltage supplier (NHQ
224M, ISEG, Lisboa, Portugal) was used to supply operating voltage to the detector. Experiments to
measure gamma spectra were conducted in an aluminum dark box for the replenishment of optical
shielding. The dark box consisted of a 10 mm thick aluminum case with an internal space of 440 × 440
× 899 (W × H × L) mm. The detector was placed on the shelf of the dark box, and the window of the
detector was located at the center of the dark box. 22Na, 60Co, 133Ba, and 137Cs were used as gamma ray
sources, and the position of the source was fixed at 5 cm from the detector window. Figure 2 shows our
experimental setup. Energy calibration was conducted using a parametric optimization method [22].
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2.2.2. Monte Carlo Simulation

To simulate plastic gamma spectra, we implemented a simulation geometry that was analogous
to the experimental setup using the MCNP 6.2 software [23]. Compositions and densities of materials
were defined from a material data report [24]. Gamma ray sources were defined as point sources. An
F8 tally was used to simulate the spectral response of each source, and history number was set to 108.
The F8 tally is also called a pulse height tally, and it is utilized when simulating deposited energy
distribution according to energy bins, time bins, etc. Herein, we use the F8 tally with defining energy
bins to simulate spectral response of our plastic scintillation detector. Energy bins for the F8 tally
were defined as identical to energy calibrated channel bins. To acquire ideal and energy broadened
pulse height distributions, F8 tallies were defined with and without a Gaussian energy broadening
(GEB) card to acquire ideal and energy-broadened pulse height distributions, respectively. Coefficients
“a”, “b”, and “c” for the GEB card were calculated by a parametric optimization method [22] using
experimental spectra that were analogous to the measurement data to the maximum extent. Coefficient
used for the GEB card is 0.006779 for “a”, 0.3549 for “b”, and −0.4999 for “c”.

In MCNP 6.2, the energy broadening effect can be simulated with the use of a GEB option. When
the GEB option is activated, all particle histories tallied in F8 tally are recorded after random sampling,
which follows Gaussian probability distributions calculated by Equation (1):

f(E0, a, b, c) = Ae
−( 2

√
2 ln 2(E−E0)

a+b
√

E0+cE2
0

)
2

(1)
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where A is a normalization constant; a, b, and c are GEB parameters; E is the broadened energy; and E0

is the original energy before broadening.

2.2.3. Dataset Generation

The datasets were generated by random sampling and data synthesis using simulation data only.
Before dataset generation, we prepared libraries of PDFs for ideal and GEB cases as follows. For pulse
height spectra of 22Na, 60Co, 133Ba, and 137Cs simulated by MCNP code, each spectrum was divided by
the integral value of itself for data normalization. With this procedure, each normalized spectrum could
be represented as a PDF of detector response, because the summation of each normalized spectrum is
one. After PDF libraries were created, we generated datasets as follows. First, ratios for PDF synthesis
were selected as significant figures with first decimal place by dependent random sampling; the
summation of synthesis ratios should be one to keep the synthesized results as PDFs. Some examples
to explain the characteristics of dependent random ratios are as follows. If the synthesis ratio for 22Na
is one, the ratios for others should be zero. If the ratio for 22Na is 0.1, the ratio for 60Co is determined
in the range of 0 to 0.9. If the ratio for 60Co is determined as 0.5, the ratio for 133Ba is selected in a
range of 0 to 0.5. If the ratio of 133Ba is 0, the ratio of 137Cs is 0.4. With this spectral synthesis, data for
multiple radiation sources in various ratios can be generated without additional simulation. Second,
the number of samplings to simulate spectral data was then selected in the range of 40,000 to 100,000.
By randomly selecting the sampling numbers, datasets with various levels of statistical uncertainties
could be generated. This means that it is possible to build an autoencoder model with the ability to
reconstruct Compton edges even from spectra with poor counting statistics with the generated datasets.
Once the synthesis ratios and number of samplings were determined, PDFs were synthesized for ideal
and GEB cases, and spectra were simulated via random sampling with the synthesized PDFs and the
determined number of samplings. Next, spectra were normalized by total sum normalization, which
can be represented as Equation (2),

xi,norm =
xi∑n

i=1 xi
(2)

where xi is the ith element of the original data X, xi,norm is ith element of the normalized data Xnorm,
and n is the number of elements in the original data set.

In this manner, we established a procedure to generate datasets for the ideal case and GEB case
paired with each other. Figure 3 illustrates the dataset generation procedure. With the established
dataset generation procedure, we generated 60,000 spectra as a training set, 2000 spectra as a validation
set, and 2000 spectra as a test set. Figure 4 shows the examples of the generated datasets.
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3.1. Results for Compton Edge Reconstruction with Test Set 

The deep autoencoder was implemented in the Python environment using the Tensorflow [25] 
and KERAS [26] libraries. Hyperparameters for our autoencoder model were determined by trial and 
error as follows. The architecture of our model consists of three hidden layers as the encoder and 
three hidden layers as the decoder. The dimension of the input layer is 500, which means spectral 
data with 500 channel bins are provided as input to the autoencoder. The numbers of neurons in 
encoder layers are 200, 100, and 50, and the numbers of neurons in the decoder layers are 100, 200, 
and 500. This means that the input data are compressed by internal representations with dimension 
of 50 bins during the encoding process, and output with dimension of 500 bins is reconstructed from 
internal representations during the decoding process. For activation functions of hidden layers, a 
ReLU function was used for all layers of the encoder and the first and second layers of the decoder. 
For the third layer of the decoder, a sigmoid function was used as the activation function.  

To train the deep autoencoder, training and validation sets for GEB case were given as input, 
and those for the ideal case were given as desired output. For data normalization, all data given to 
the deep autoencoder were presented as a response function in percentage units by dividing them 
into integral values of themselves and multiplying them by 100. In general, noise signals are added 
to the dataset with additional data processing procedure for an autoencoder to have the ability of 
noise reduction. In our problem, fluctuations in spectral data are coming from not noise signals but 
statistical uncertainties. By generating dataset via random sampling with randomly selected number 
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Figure 4. Examples of generated datasets for different synthesis ratios: (a) 70% 22Na and 30% 60Co;
(b) 60% 137Cs, and 40% 133Ba; (c) 30% 22Na, 30% 60Co, and 40% 137Cs; and (d) 40% 22Na, 30% 133Ba,
and 30% 137Cs.

3. Results

3.1. Results for Compton Edge Reconstruction with Test Set

The deep autoencoder was implemented in the Python environment using the Tensorflow [25]
and KERAS [26] libraries. Hyperparameters for our autoencoder model were determined by trial and
error as follows. The architecture of our model consists of three hidden layers as the encoder and
three hidden layers as the decoder. The dimension of the input layer is 500, which means spectral
data with 500 channel bins are provided as input to the autoencoder. The numbers of neurons in
encoder layers are 200, 100, and 50, and the numbers of neurons in the decoder layers are 100, 200,
and 500. This means that the input data are compressed by internal representations with dimension of
50 bins during the encoding process, and output with dimension of 500 bins is reconstructed from
internal representations during the decoding process. For activation functions of hidden layers, a
ReLU function was used for all layers of the encoder and the first and second layers of the decoder. For
the third layer of the decoder, a sigmoid function was used as the activation function.

To train the deep autoencoder, training and validation sets for GEB case were given as input,
and those for the ideal case were given as desired output. For data normalization, all data given to
the deep autoencoder were presented as a response function in percentage units by dividing them
into integral values of themselves and multiplying them by 100. In general, noise signals are added
to the dataset with additional data processing procedure for an autoencoder to have the ability of
noise reduction. In our problem, fluctuations in spectral data are coming from not noise signals
but statistical uncertainties. By generating dataset via random sampling with randomly selected
number of samplings, we can generate dataset with various level of counting statistics without
additional procedure.
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To compare reconstruction results with desired spectral data, mean absolute percentage error
(MAPE) was used as a loss function, as described by Equation (3),

MAPE =
100%

n

∑n

i=1

Oi − Ii
Ii

(3)

where n is the number of channel bins, i indicates the ith channel bin, O is the Compton edge
reconstructed spectrum, and I is the ideal spectrum given as desired output.

MAPE was employed for the following reason. Although there are various options for the loss
function, most of them represent difference rather than relative difference between two data sets.
Because the data used in this study are plastic gamma spectra, they have relatively high levels of
counts in low and high channels. Therefore, other options are mostly affected by values in the low
channel region, and values in the high channel region tend to be ignored. However, MAPE represents
the relative difference between two data because the subtraction of two data is divided by one of them.
Therefore, it can calculate the difference between two data with equivalent weights for the whole
region of spectral data whether the level of count is high or low.

The deep autoencoder was trained with the ADADELTA optimizer [27] for established training
and validation sets during 1000 epochs. Model checkpoint option was activated as a callback function
to save the best model built during the training procedure by monitoring validation loss, and the best
model in the training procedure was used as the final model. Figure 5 shows a schematic illustration of
the training procedure of our model, and Figure 6 illustrates the training and validation losses during
the training procedure.
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Figure 6. Historical plot of training and validation losses during training procedure. The best model
during the epochs was stored with the use of the model checkpoint option and utilized as the final model.

The performance of Compton edge reconstruction for the trained deep autoencoder was tested
using the generated test set. Averaged test loss was 20.019 for test sets. Figure 7 shows Compton edge
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reconstruction results for several spectra of single and multiple radioisotopes. The deep autoencoder
reconstructed the Compton edges in plastic gamma spectra, even though the spectra contains statistical
uncertainties. Information on spectra and their corresponding MAPE values are presented in Table 1.
Synthesis ratios in Table 1 were not estimated by the deep autoencoder, but rather acquired during the
test set generation procedure.
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Figure 7. Results of Compton edge reconstruction for eight cases in the test set. Each synthesis ratio is
(a) 100% 22Na; (b) 100% 60Co; (c) 100% 133Ba; (d) 100% 137Cs; (e) 70% 22Na and 30% 137Cs; (f) 50% 22Na
and 50% 133Ba; (g) 20% 60Co, 20% 133Ba, and 60% 137Cs; and (h) 40% 22Na, 30% 133Ba, and 30% 137Cs.

Table 1. Information on seven cases in test set and their corresponding mean absolute percentage error
(MAPE) values.

Case The Number of Samplings
Synthesis Ratio

MAPE [%]
γNa γCo γBa γCs

a 76,310 1.0 0.0 0.0 0.0 5.499
b 78,240 0.0 1.0 0.0 0.0 5.025
c 58,955 0.0 0.0 1.0 0.0 10.534
d 56,272 0.0 0.0 0.0 1.0 3.138
e 81,944 0.7 0.0 0.0 0.3 12.374
f 61,253 0.5 0.0 0.5 0.0 8.363
g 59,065 0.0 0.2 0.2 0.6 8.438
h 83,065 0.4 0.0 0.3 0.3 9.716

3.2. Results of Compton Edge Reconstruction for Experimental Data

Reconstructions of Compton edges using the trained deep autoencoder were also conducted
for the experimental data. In the environment described in Section 2.2, plastic gamma spectra were
measured from single to multiple radioisotopes with a measurement period of 3600 s. Background
radiation was also measured, and background-subtracted measured spectra were provided as input
data to our autoencoder. Figure 8 shows the results of Compton edge reconstruction for measured
spectra of single and multiple radioisotopes. Compton edges marked in Figure 8 represent theoretical
energies of each source calculated by the following equation [28] (p. 51),

ECE = E


1− 1

1 + 2E
mec2


 (4)

where E is the energy of incident photon and mec2 is the rest-mass energy of the electron (511 keV).
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measured spectra of (a) 22Na; (b) 60Co; (c) 133Ba; (d) 137Cs; (e) 22Na and 60Co; (f) 22Na and 133Ba;
(g) 22Na and 137Cs; (h) 60Co and 133Ba; (i) 60Co and 137Cs; (j) 133Ba and 137Cs; (k) 22Na, 60Co and 133Ba;
(l) 22Na, 60Co and 137Cs; (m) 22Na, 133Ba and 137Cs; (n) 60Co, 133Ba and 137Cs; and (o) 22Na, 60Co, 133Ba,
and 137Cs.

As shown in Figure 8, the energies of Compton edges in the reconstructed spectra were matched
with their theoretical values calculated by Equation (4).

3.3. Minimum Reconstructible Counts

Similar to minimum detectable activity [29], the number of counts required to reconstruct Compton
edges in plastic gamma spectra should be verified. In previous studies on gamma (or pseudo gamma)
spectroscopy, similar concepts were defined to evaluate performance according to the activity of
radioactive sources or the number of counts in their detection systems [12,30]. However, these cannot
be used directly in our study because of the differences in their detailed concepts. Instead, averaged
MAPE was used as a quality factor to evaluate the minimum reconstructible count (MRC) of the
trained autoencoder. For each radioisotope, averaged MAPEs between reconstruction results and
reconstruction references were calculated as follows. First, measured spectra in Section 3.2 (i.e., input
spectra in Figure 8a–c) were normalized and utilized as PDFs for generating test sets for MRC evaluation.
Second, 100 spectra were generated as test sets with the procedure detailed in Section 2.2 for each
number of counts. Third, Compton edges were reconstructed for the test sets. Fourth, MAPEs between
reconstruction results and reconstruction references were calculated for 100 generated spectra, and the
averaged MAPE value was calculated. In this study, the reconstruction results presented in Section 3.2
(i.e., reconstructed spectra in Figure 8a–c) were used as a reconstruction reference. The threshold for
MRC was determined as 10% of the averaged MAPE by referring to Table 1. Whole steps for MRC
evaluation above were iterated with increment of the number of counts with interval of 50 for each
radioisotope. Figure 9 shows the averaged MAPE according to the number of counts for single-isotope
gamma spectra. MRCs were determined as the counts of which averaged MAPEs were decreased
to less than 10%. Table 2 shows the MRCs of the single isotopes, and Figure 10 shows examples of
generated spectra and reconstruction results corresponding to each MRC. In this table, MRCs are
higher in order of 60Co < 137Cs < 22Na < 133Ba. The reason why MRCs are different depending on
radioisotopes may be related to the intensities of energies of emitted photons and combinations of
radioisotopes. 60Co emits two energies of gamma rays with almost analogous ratios. However, 22Na
emits two energies of photons at different ratios; the intensity for a photon of 511 keV is almost double
that for a photon of 1275.4 keV. This means that a higher number of counts is required to extract features
for Compton edge reconstruction on the Compton continuum generated by a photon of 1275.4 keV.
In the same manner, 133Ba requires the highest number of counts for Compton edge reconstruction due
to the complex Compton edges in the low-energy region. In the case of 137Cs, the MRC was higher than
the MRCs of 60Co, even though it emits one energy of gamma rays. It may because higher number of
counts are required to discriminate following cases; one is 137Cs and the other is small ratio of 133Ba
and 137Cs.

Table 2. Determined minimum reconstructible counts (MRCs) where averaged MAPEs are lower than
10% for each isotope.

Radioisotope Energy [keV] [31] Emission Intensity [%] [31] MRC [#]

22Na
511 179.8

3050 ± 551274.5 99.9

60Co
1173.2 99.9

650 ± 251332.5 99.98
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Table 2. Cont.

Radioisotope Energy [keV] [31] Emission Intensity [%] [31] MRC [#]

133Ba

53.16 2.14

3750 ± 61

79.61 2.65
80.99 32.9
276.4 7.16
302.9 18.34
356 62.05

383.8 8.94
137Cs 661.66 85.21 2000 ± 44

Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 

 

Figure 8. Results of Compton edge reconstruction for experimental data. Each figure represents 
measured spectra of (a) 22Na; (b) 60Co; (c) 133Ba; (d) 137Cs; (e) 22Na and 60Co; (f) 22Na and 133Ba; (g) 22Na 
and 137Cs; (h) 60Co and 133Ba; (i) 60Co and 137Cs; (j) 133Ba and 137Cs; (k) 22Na, 60Co and 133Ba; (l) 22Na, 60Co 
and 137Cs; (m) 22Na, 133Ba and 137Cs; (n) 60Co, 133Ba and 137Cs; and (o) 22Na, 60Co, 133Ba, and 137Cs. 

3.3. Minimum Reconstructible Counts 

Similar to minimum detectable activity [29], the number of counts required to reconstruct 
Compton edges in plastic gamma spectra should be verified. In previous studies on gamma (or 
pseudo gamma) spectroscopy, similar concepts were defined to evaluate performance according to 
the activity of radioactive sources or the number of counts in their detection systems [12,30]. 
However, these cannot be used directly in our study because of the differences in their detailed 
concepts. Instead, averaged MAPE was used as a quality factor to evaluate the minimum 
reconstructible count (MRC) of the trained autoencoder. For each radioisotope, averaged MAPEs 
between reconstruction results and reconstruction references were calculated as follows. First, 
measured spectra in Section 3.2 (i.e., input spectra in Figure 8a–c) were normalized and utilized as 
PDFs for generating test sets for MRC evaluation. Second, 100 spectra were generated as test sets with 
the procedure detailed in section 2.2 for each number of counts. Third, Compton edges were 
reconstructed for the test sets. Fourth, MAPEs between reconstruction results and reconstruction 
references were calculated for 100 generated spectra, and the averaged MAPE value was calculated. 
In this study, the reconstruction results presented in Section 3.2 (i.e., reconstructed spectra in Figure 
8a–c) were used as a reconstruction reference. The threshold for MRC was determined as 10% of the 
averaged MAPE by referring to Table 1. Whole steps for MRC evaluation above were iterated with 
increment of the number of counts with interval of 50 for each radioisotope. Figure 9 shows the 
averaged MAPE according to the number of counts for single-isotope gamma spectra. MRCs were 
determined as the counts of which averaged MAPEs were decreased to less than 10%. Table 2 shows 
the MRCs of the single isotopes, and Figure 10 shows examples of generated spectra and 
reconstruction results corresponding to each MRC. In this table, MRCs are higher in order of 60Co < 
137Cs < 22Na < 133Ba. The reason why MRCs are different depending on radioisotopes may be related 
to the intensities of energies of emitted photons and combinations of radioisotopes. 60Co emits two 
energies of gamma rays with almost analogous ratios. However, 22Na emits two energies of photons 
at different ratios; the intensity for a photon of 511 keV is almost double that for a photon of 1275.4 
keV. This means that a higher number of counts is required to extract features for Compton edge 
reconstruction on the Compton continuum generated by a photon of 1275.4 keV. In the same manner, 
133Ba requires the highest number of counts for Compton edge reconstruction due to the complex 
Compton edges in the low-energy region. In the case of 137Cs, the MRC was higher than the MRCs of 
60Co, even though it emits one energy of gamma rays. It may because higher number of counts are 
required to discriminate following cases; one is 137Cs and the other is small ratio of 133Ba and 137Cs.  

 
Figure 9. Averaged MAPEs according to the number of counts for single isotope gamma spectra. Figure 9. Averaged MAPEs according to the number of counts for single isotope gamma spectra.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

  
(a) (b) 

(c) (d) 

Figure 10. Examples of generated spectra for single isotope corresponding to each MRC and their 
Compton edge reconstruction results. Reconstruction results on (a) generated spectrum for 22Na, (b) 
generated spectrum for 60Co, (c) generated spectrum for 133Ba, and (d) generated spectrum for 137Cs. 

Table 2. Determined minimum reconstructible counts (MRCs) where averaged MAPEs are lower than 
10% for each isotope. 

Radioisotope Energy [keV] [31] Emission Intensity [%] [31] MRC [#] 

22Na 
511 179.8 

3050  55 
1274.5 99.9 

60Co 
1173.2 99.9 

650  25 
1332.5 99.98 

133Ba 

53.16 2.14 

3750  61 

79.61 2.65 
80.99 32.9 
276.4 7.16 
302.9 18.34 
356 62.05 

383.8 8.94 
137Cs 661.66 85.21 2000  44 

To validate the MRC evaluation results, we measured the background and each isotope for 10, 
20, 40, and 80 s corresponding to MRCs of 60Co, 137Cs, 133Ba, and 22Na, respectively, and Compton 
edges were reconstructed from measured net spectra (i.e., background-subtracted spectra). Total net 
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Compton edge reconstruction results. Reconstruction results on (a) generated spectrum for 22Na,
(b) generated spectrum for 60Co, (c) generated spectrum for 133Ba, and (d) generated spectrum for 137Cs.

To validate the MRC evaluation results, we measured the background and each isotope for 10,
20, 40, and 80 s corresponding to MRCs of 60Co, 137Cs, 133Ba, and 22Na, respectively, and Compton
edges were reconstructed from measured net spectra (i.e., background-subtracted spectra). Total net
counts for each measured net spectra were not exactly the same as the MRCs but were within statistical
uncertainties. Figure 11 shows the results of Compton edge reconstruction with experimental spectra
for validating each MRC. Identical to Figure 8, Compton edges marked in Figure 11 were calculated by
Equation (4).
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4. Discussion

A deep autoencoder model was presented to reconstruct Compton edges in plastic gamma spectra.
Our model was trained to reconstruct Compton edges in plastic gamma spectra, even though the
spectra have poor counting statistics, by designing a dataset generation procedure. As shown by
the experimental results, it successfully reconstructed Compton edges in plastic gamma spectra with
statistical uncertainties. Therefore, it was possible to conduct direct pseudo gamma spectroscopy using
Compton edge reconstruction results. Furthermore, the MRCs of single isotopes were evaluated with
the metric of MAPE as a loss function of our model.

Although our model shows good performance on Compton edge reconstruction in plastic gamma
spectra, there are three limitations we are aware of: First, the autoencoder generates data-specific
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results, i.e., it generates wrong results for spectra on radioisotopes that are not included in the training
set; in fact, this is a characteristic of machine learning methods. For example, if untrained radioisotope
is given, the autoencoder generates a spectrum which is one of the trained radioisotope or mixture of
trained isotopes. Second, MRCs may be increased according to the increase in types of radioisotopes.
For example, we evaluated the MRC of 60Co as 650, the minimum value among three isotopes. If,
however, a radioisotope emitting gamma rays of energies similar to those of 60Co with almost analogous
ratios was included in dataset, the MRC of 60Co may be increased because more counts are required
to distinguish 60Co from the isotope. Furthermore, the spectra we used as input are for bare source.
In practice, distortion of spectra may occur because of the presence of material surrounding the
source, and it may affect Compton edge reconstruction performance. Concerning these limitations,
further study is necessary.

5. Conclusions

This paper proposed a neural network model to reconstruct Compton edges in plastic gamma
spectra. Datasets for training and validation of our model were generated by Monte Carlo simulations,
data synthesis methods, and random sampling techniques. Although our model was trained by only
simulation data, it successfully reconstructed Compton edges in simulated and measured gamma
spectra, even though the spectra has poor counting statistics. Concerning the performance of Compton
edge reconstruction according to counting statistics, MRCs were evaluated, and it was found that
MRCs were related to the complexity of energies and intensities for emitted photons.

Many researchers have been reported methods for pseudo gamma spectroscopy such as energy
windowing, F-score analysis, energy weighted, and inverse matrix algorithms. These researches
excluding inverse matrix algorithm were able to find existence of radioactive materials from the
patterns after spectral data processing, rather than identifying the energy of gamma rays incident on
the detector. Even though inverse matrix algorithm was able to identify the energy of gamma rays
from unfolded gamma-ray spectra from plastic scintillators, it does not work for spectra with poor
counting statistics. However, our method allows conducting direct pseudo spectroscopy with the
analysis of reconstructed Compton edges even though the spectra have poor counting statistics.
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Abstract: Major standard organizations have addressed the issue of reporting uncertainties in dose
rate estimations. There are, however, challenges in estimating uncertainties when the radiation
environment is considered, especially in real-time dosimetry. This study reports on the implementation
of Gaussian process regression based on a spectrum-to-dose conversion operator (i.e., G(E) function),
the aim of which is to deal with uncertainty in dose rate estimation based on various irradiation
geometries. Results show that the proposed approach provides the dose rate estimation as a probability
distribution in a single measurement, thereby increasing its real-time applications. In particular,
under various irradiation geometries, the mean values of the dose rate were closer to the true values
than the point estimates calculated by a G(E) function obtained from the anterior–posterior irradiation
geometry that is intended to provide conservative estimates. In most cases, the 95% confidence
intervals of uncertainties included those conservative estimates and the true values over the range
of 50–3000 keV. The proposed method, therefore, not only conforms to the concept of operational
quantities (i.e., conservative estimates) but also provides more reliable results.

Keywords: spectrum-to-dose conversion operator; G(E) function; gaussian process regression; dose
rate uncertainty; real-time dosimetry; operational quantities

1. Introduction

The concepts of equivalent dose and effective dose were first introduced by the International
Commission on Radiological Protection (ICRP) in order to provide recommendations and guidelines for
the protection of people and the environment in an integrated manner in all exposure situations [1–3].
However, given that these concepts are not measurable quantities, the International Commission on
Radiological Units and Measurements (ICRU) defined a few measurable operational quantities to
establish convenient and appropriate evaluations of an equivalent and effective dose [4,5]. In cases of
strongly penetrating radiations, such as gamma rays and neutrons, an adequate operational quantity
for monitoring a specific area is defined by the ambient dose equivalent H*(10) (hereafter referred to
as "ambient dose rate" and used interchangeably with the term "dose rate"). The ICRU defined the
ambient dose rate as, "The dose equivalent at a point in a radiation field that would be produced by
a corresponding expanded and aligned field in the ICRU sphere at a depth of 10 mm on the radius
vector opposing the direction of the aligned field."

The response of the ambient dose rate is highly dependent on photon energy and the angle of
radiation incidence. Therefore, the requirement of IEC 60846:2009 advises that the relative response
of the dose rate to the reference radiation (e.g., Cs-137) within the combined rate range of photon
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energy and the angle of incidence shall be between 0.6 and 1.4 [6]. Intending to minimize the effect
of photon energy on dose rate response and to achieve more accurate estimates of the dose rate,
the use of scintillation detectors is a way to make the response less sensitive to radiation energy
by obtaining an energy spectrum. The G(E) function is a typical example of conversion from the
energy spectrum to dose rate [7–12]; the measured spectrum is directly converted into dose rate
without applying stripping or unfolding methods [13–15]. This method is, therefore, often adopted for
real-time dose measurement. For the estimation of the G(E) function, the most conservative direction
of irradiation, anterior posterior, is typically assumed rather than those in other idealized geometries,
such as rotational and isotropic ones. However, in a real contaminated environment, the irradiation
direction of photons entirely depends on typically unknown source distributions. Although isotropic
or rotational geometry approximate certain real irradiation conditions [9,16], these are not the same as
the idealized ones [17]. In addition, since the response of dosimetry is normalized to the ambient dose
rate under one of the geometric conditions, most errors in dose rate estimation primarily arise from
the calculation of the dose conversion operator. From a safety standpoint, it is necessary to provide
conservative dose rate estimates. In this respect, an alternative is the use of the maximum value for
the dose conversion operator, which would be similarly produced by various irradiation geometries,
as already proposed [18]. However, it is often more important to report the best estimate and the
best evaluation of dose rate uncertainty that includes a conservative estimate. Therefore, a different
approach would be preferable to ensure that the dose rate is presented with the best estimate of the
mean and its expending uncertainty (i.e., 1.96 standard deviations) for real-time applications.

This study presents a new spectrum-to-dose conversion operator concept, called G(E)GPR functions,
which are G(E) functions based on Gaussian process (GP) regression that account for the relative
response to radiation energy and direction of radiation incidence in order to deal with uncertainty
in dose rate estimation. A GP model can be constructed using all the data points of G(E) functions
determined under various irradiation geometries, e.g., the angles of incidence of 0◦, 45◦, and 90◦, and
isotropic geometry. Then, a set of G(E)GPR functions can be obtained through independent realizations
(or equivalently, sample path) of the GP model, where each realization defines a conversion factor
for every possible energy step. Lastly, the obtained G(E)GPR functions are multiplied by an observed
spectrum to make it possible to estimate the mean dose rate value and its associated uncertainty.
Figure 1 illustrates the proposed concept in comparison with the conventional method. This paper
presents simulation results that demonstrate the behavior and performance of the proposed approach.
It is worth noting that although this study focuses on the ambient dose rate, this method can be
applied to any dosimetric quantity (e.g., air kerma) if the target quantity is defined as a function of
radiation energy.

2. Materials and Methods

2.1. G(E) Function

A general description of the G(E) function in terms of the dose conversion coefficient h(E0) at
mono-energy E0 and the response function of a detector R(E, E0), which represents the photon of
energy E0 depositing energy E into the detector, can be expressed as

h(E0) =

∫ Emax

Emin

R(E, E0)G(E)dE, (1)
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where Emin and Emax are the minimum and maximum detectable energies deposited in the detector,
respectively. The total dose rate (D) in multi-energy radiation conditions can, therefore, be
represented as

D =
∑
i
∅(Ei)h(Ei)

=
∑
i
∅(Ei)

∫ Emax

Emin
R(E, Ei)G(E)dE

=
∫ Emax

Emin

∑
i
∅(Ei)R(E, Ei)G(E)dE

=
∫ Emax

Emin
M(E)G(E)dE.

(2)

where ∅(Ei) is the fluence rate at the energy of Ei. In real conditions, the integral of continuous energies
should be changed to the sum of discrete energies (or equivalently, the number of channels N; in this
case, N = 869).

D =
N∑

i=1

M(Ei)G(Ei) (3)
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Consequently, the total dose rate can be directly estimated using the G(E) function and a measured
spectrum. According to related studies [7–9,11], the G(E) function can be expressed as

G(E) =
Kmax∑

K=1

A(K)(log(E))K−M−1, (4)

33



Sensors 2020, 20, 2884

where A(K) is a parameter, Kmax is the number of terms, and M is constant? The values for Kmax and M
were set to 7 and 0, respectively. It should be noted that the optimization of these parameters is not the
main concern of this study. Dose rate can be represented by combining Equations (3) and (4):

D =
N∑

i=1

M(Ei)
Kmax∑

K=1

A(K)(log(Ei))
K−M−1. (5)

To compute A(K), it is required to obtain spectra with known mono or multiple energies and the
corresponding dose rates. The availability of energy sources limits actual experiments; however, Monte
Carlo simulations allow for the use of any energy, so corresponding dose rates can be calculated, given
that detector geometry has been properly defined. Finally, A(K) were obtained using the gradient
descent method [11].

2.2. GP Regression

This section briefly introduces the concept of GP regression employed for implementation purposes
to deal with uncertainty in dose rate estimation. More details can be found in [19,20].

The GP is expressed as a distribution over functions for which any finite subset of variables has
a joint multivariate Gaussian distribution. Since the GP is described by Gaussian distribution, it is
parameterized by its mean function m(x) and positive definite covariance function k(x, x′), also known
as a kernel function:

f (x) ∼ GP(m(x), k(x, x′)) (6)

Typically, m(x) is set to 0 to avoid expensive computations in posterior distribution and make
inferences only via the kernel function. The kernel function takes two indices x and x′ and returns
their corresponding modeled covariance. By choosing an appropriate kernel function, it is possible
to incorporate assumptions such as smoothness and likely patterns that are expected in the data. A
popular choice of the kernel is the radial basis function kernel, where two points are exponentially
correlated, depending on the distance between them.

The main assumption in GP modeling is that output y is an observation of f (x) that has been
corrupted by Gaussian noise ε:

y = f (x) + ε, ε ∼ N
(
0,σ2

ε

)
(7)

where noise term ε is assumed independent and identically distributed with zero means. Hence f (x) is
a latent variable whose posterior distribution will be inferred after observing new samples at various
locations in the domain. The resultant inference is called GP regression.

Suppose training outputs yt have been observed and predictions for test outputs f∗ have been
made. They then follow a joint normal distribution:

[
yt
f∗

]
∼ N

(
0,

[
K(Xt, Xt) + σ2

εI K(Xt, X∗)
K(X∗, Xt) K(X∗, X∗)

])
(8)

where Xt and X∗ are the design matrices for training and test data, respectively. K(Xt, Xt) represents the
covariance matrix between all points observed so far in the training data, which is similarly true for
other covariance matrices of K(Xt, X∗), K(X∗, Xt), and K(X∗, X∗). I is an identity matrix whose diagonal
elements and off-diagonal elements are 1 and 0, respectively? Conditioning f∗ on the observation
yt p

(
f∗ |X t, yt, X∗

)
, the predictive distribution of test points with respect to the mean and covariance

matrix can be written as:
mt(x) = K(x, Xt)

[
K(Xt, Xt) + σ

2
εI

]−1
yt (9)

Kt(x, x′) = K(x, x′) −K(x, Xt)
[
K(Xt, Xt) + σ2

ε

]−1
K(Xt, x′) (10)
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Consequently, the estimation of the posterior mean and covariance are involved in calculating
four different covariance matrices.

2.3. Monte Carlo Modeling and Simulation

A Monte Carlo N-Particle Transport Code (MCNP6) [21] was used to validate the proposed
method. A schematic of the MCNP6 model used for simulations is illustrated in Figure 2. The 5.08
× 5.08 cm (diameter × height) NaI(Tl) crystal with a density of 3.6 g cm−3 was covered by a MgO
reflector with a density of 2 g cm−3, which was surrounded by aluminum with a density of 2.7 g cm−3.
A 20-mm-thick aluminum plate was placed behind the crystal to mimic a phenomenon where photons
are scattered or backscattered in a photomultiplier tube [22]. This is a reasonable assumption because
it considers the scattered effects of the photomultiplier tube on a spectrum as the angle of irradiation
direction changes. A parallel beam of photons distributed over a circular source was irradiated on
the NaI(Tl) detector. In order to obtain G(E)g functions under various directions of irradiation, the
directions of the detector were rotated against the circular source by specific angle α (i.e., 0, 45, and
90), where subscript g is the irradiation geometry that determines the G(E) function. For isotropic
geometry, the detector was centered inside the spherical source, emitting fully isotropic irradiation
of photons.
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Figure 2. Schematic of the calculation geometry defined for MCNP6 simulations. (a) A parallel photon
beam was irradiated on an NaI(Tl) detector. (b) The directions of the detector were rotated against the
circular source by specific angle α. A 20 mm-thick aluminum disk was positioned on the back of the
crystal to consider the scattering in a photomultiplier tube.

Since an actual spectrum is influenced by the broadening effect due to the statistical variation of the
scintillation light signals and various electronic sources of noise, a simulated spectrum must be modified
to accommodate such effects. This can be regarded as a convolution process of an ideal spectrum with
the kernel of a broadening filter. A Gaussian-energy broadening filter is often applied, meaning that
a delta function type of peak becomes a Gaussian function with full-width at half-maximum value
(FWHM = 2.36 × sigma). In the MCNP, a non-linear function with three parameters regarding FWHM
is specified to apply broadening effects on the ideal spectrum. The optimal values of parameters
obtainable from measured spectra were found using a genetic algorithm [23].

3. Results

3.1. G(E) Functions for Idealized Irradiation Geometires

Figure 3 shows the determined G(E) functions of the NaI (Tl) detector as a function of energy
deposited in the crystal under four different irradiation geometries. As expected, the G(E)0 function,
i.e., G(E) function for the angle of incidence of 0, tended to yield higher values over the entire energy
range than those for other directions of photons with respect to the detector axis. Additionally, there
were relatively small differences between the values of G(E) functions for energies above 200 keV,
showing good agreement with previous results [9,12]. This could be ascribed to the fact that the
energy deposition of relatively high energy depends primarily on the volume of the crystal. On the
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other hand, the values of the G(E) functions obtained from different types of irradiation geometry
tended to relatively disperse, especially for energies below 200 keV. This is because the photons in that
energy range have high interaction probabilities with the crystal, so the energy deposition in the crystal
becomes proportional to the projected area of the crystal incident surface. These results suggest that
the estimated dose rate may drift from the true value, especially in the low energy range, depending
on the G(E) functions calculated by different types of irradiation geometry.
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Figure 3. Spectrum-to-dose conversion operator (i.e., G(E) functions) for the angles of incidence of 0
(black dashed line), 45 (green dotted line), and 90 (cyan short-dashed line), and isotropic geometry
(gray dash-dotted line). The inset shows the same graph on a linear scale.

3.2. G(E) Functions Using GP Regression

Figure 4 shows the posterior mean of the GP model as well as its probabilistic nature in the form
of a 95% confidence interval using the data from previously-determined G(E) functions; the G(E)
functions are also illustrated in this figure for comparison. The result shows that the GP model no
longer has a single value for energy but a distribution (i.e., Gaussian distribution) indexed by energy.
In addition, the entire data points of G(E) functions determined under different types of irradiation
geometry were found inside the 95% confidence region of the posterior. In particular, the relative
vertical width of the confidence region with regard to the mean value tended to increase as it moved
to the low energy range, especially for energies below 200 keV, to account for variations induced by
radiation energy and direction of radiation incidence. It should be noted that the absolute values of the
confidence region obtained from the GP model over the entire energy range are almost similar.
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Figure 4. Gaussian process (GP) regression using the data from the previously-determined G(E)
functions under the angles of incidence of 0◦ (black dashed line), 45◦ (green dotted line), and 90◦ (cyan
short-dashed line), and isotropic geometry (gray dash-dotted line). The blue solid line represents
the mean of the GP model. The blue shaded area denotes a 95% confidence interval. The previously
determined G(E) functions are also illustrated for comparison. The inset shows the same graph on a
linear scale.
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Figure 5 shows an example of independent realization functions (i.e., G(E)GPR functions) randomly
sampled from the GP model. As expected, each G(E)GPR function represented a different path because
of the randomness of the stochastic process, fluctuating around the mean of the GP model. This implies
that multiple dose rate values can be calculated using the G(E)GPR functions multiplied by the observed
spectrum, resulting in not only the best dose rate estimate but also its uncertainty, which might contain
the true value. The mean of the GP model was lower than that of the G(E)0 function, which generally
overestimates dose rates, so it nearly coincided with the G(E)ISO function (see Figure 4). That is,
the mean dose rate values and the dose rates estimated by the G(E)ISO function might be in good
agreement. This result is quite promising because isotropic geometry can be a reasonable assumption
for irradiations often received from naturally occurring radioisotopes in homes or the surrounding
environments [9,16].
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Figure 5. Example of three independent realization functions (i.e., G(E)GPR functions) randomly
sampled from the GP model. The solid blue line represents the mean of the GP model. The blue shaded
area denotes the 95% confidence interval.

3.3. Dose Rate Uncertainty Estimation

To validate the proposed method, various spectra were obtained for mono-energy over the range
of 50–3000 keV at certain intervals with various geometries, e.g., the angles of incidence of 0◦, 45◦,
and 90◦, and isotropic geometry. To calculate the uncertainty of the dose rate (i.e., 95% confidence
interval), 100 G(E)GPR functions were randomly sampled from the GP model each time. Figure 6
shows a comparison of the energy response normalized to the energy of 622 keV emitted by Cs-137,
estimated with G(E)GPR functions and the G(E)0 function for the spectra obtained at the angle of
incidence of 0◦. Here, the energy response was calculated by having the ratio of the estimated dose rate
to the true dose rate at certain energy divided by the same ratio at the energy of 662 keV. That is, an
increase in the value of the energy response suggests that the dose rate is overestimated, or vice versa.
As we can see from the figure, the energy responses for the G(E)0 function were reasonably close to
one, which means that the estimated values of the dose rate and true values were in good agreement.
This is because the test spectra were acquired under the same condition used for the G(E)0 function
calculation. These results are not as good as those that were reported by previous studies, especially
for the low energy range. Nonetheless, it is worth emphasizing that the purpose of this study was to
propose a concept that would make it possible to deal with uncertainty existing in the dose rate by
taking into account the relative response of radiation energy and the direction of radiation incidence.
For the dose rates estimated with G(E)GPR functions, the mean values deviated slightly more from the
reference value 0 for energies below 200 keV. The reason is that there might be a discrepancy between
the mean values of G(E)GPR functions sampled from the GP model and those from the G(E)0 function,
which is better suited with respect to the test spectra. In contrast, the proposed method was able to
provide the uncertainty and the mean of the dose rate. As expected, the relative uncertainty tended to
increase with a decrease in energy. In particular, the relative uncertainty increased sharply for energies
under 200 keV because the GP model had relatively wide intervals for that energy range. In addition,

37



Sensors 2020, 20, 2884

the 95% confidence interval of relative uncertainty mostly included the true value and the conservative
values obtained with the G(E)0 function.
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Figure 6. Comparison of energy response normalized to the energy of 622 keV, estimated with G(E)GPR
functions, and the G(E)0 function for the spectra obtained under the angle of incidence of 0. The error
bar shows a 95% confidence interval.

Figures 7–9 show the same comparison of energy response for the spectra obtained at the angles
of incidence of 45 and 90, and isotropic geometry. Although similar trends were observed in the
non-zero angle of incidences, the estimated dose rate values obtained with the G(E)0 function were
overestimated, especially for energies below 600 keV for all geometries in which the test spectra were
acquired, which was expected. This shows the reason that the G(E)0 function is generally used to
provide conservative dose estimates. In particular, the dose rate overestimation for the test spectra,
assuming that photons were irradiated under the angle of incidence of 45◦, is as high as 50% at 70 keV
(see Figure 7). This is because the largest projected area of the crystal incident surface is generated at
that specific angle, which increases interaction probabilities, especially for photons at low energies.
Likewise, the mean values of the dose rate estimate, with G(E)GPR functions, showed similar trends
but were less overestimated. Furthermore, the uncertainties of those estimates included not only the
conservative values estimated by the G(E)0 function but also the true values in most situations. The
uncertainty calculated by the proposed method is much more reliable than those that provide only a
point estimate, because in the real world, it is not possible to know how far an estimate is from the
true value.
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Figure 7. Comparison of energy response normalized to the energy of 622 keV, estimated with G(E)GPR
functions, and the G(E)0 function for the spectra obtained under the angle of incidence of 45. The error
bar shows a 95% confidence interval.
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Figure 8. Comparison of energy response normalized to the energy of 622 keV, estimated with G(E)GPR
functions, and the G(E)0 function for the spectra obtained under the angle of incidence of 90. The error
bar shows a 95% confidence interval.
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Figure 9. Comparison of energy response normalized to the energy of 622 keV, estimated with G(E)GPR
functions, and the G(E)0 function for the spectra obtained under isotropic geometry. The error bar
shows a 95% confidence interval.

4. Discussion

This paper presented how GP regression can be applied to deal with dose rate uncertainty in
real-time applications. The results demonstrated that the proposed approach is much more reliable
and robust in comparison with existing methods. For conventional methods, a way to determine
uncertainties is the statistical analysis of a series of observations (i.e., Type A uncertainties). In this
case, however, they ignore other components of uncertainty determined by scientific judgment based
on published data (e.g., G(E) function). Furthermore, in cases of real-time applications, the estimation
of Type A uncertainties is practically impossible, so the uncertainty associated with dose rate can,
therefore, not be reported. Although previous studies attempted to estimate dose rate uncertainty,
they simply averaged G(E) functions for the angles of incidence of 0◦ and 90◦ over the entire energy
range and neglected the combined effects of the direction of radiation incidence and photon energy on
the detector response [24]. In contrast, this study constructed a GP model that considers the relative
responses to various irradiation geometries and energy to provide the mean and its uncertainty for
the estimated dose rate based on a single spectrum. In addition, the mean dose rate values were
not heavily overestimated under various irradiation geometries, and the 95% confidence interval of
uncertainties included the conservative estimates obtained with the G(E)0 function and true values.
An estimated value without a statement about its associated uncertainty is less informative because
it does not make it possible to quantify the potential risk arising from radiation exposure and does
not indicate the precision of the estimate. Lastly, the calculated uncertainty allows for a quantitative
comparison with results reported by other investigators, which enables its assessment.
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5. Conclusions

This work presented a new method for dose rate estimation that uses GP regression. The presented
results confirmed that numerous G(E)GPR functions that account for the relative responses to radiation
energy and irradiation directions could be randomly sampled from a GP model, making it possible
to deal with uncertainty in dose rate estimation for real-time applications. While the conventional
method overestimates the dose rate by as much as 50% under different irradiation geometries, the mean
values of the dose rate estimated with G(E)GPR functions were closer to the true value. Furthermore,
the overestimated values obtained with the G(E)0 function and the true values were mostly found
within the 95% confidence interval of uncertainty. Therefore, the proposed method conforms to the
concept of operational quantities present in conservative estimates and provides a more reliable dose
rate estimation.
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Abstract: Obtaining the in-depth information of radioactive contaminants is crucial for determining
the most cost-effective decommissioning strategy. The main limitations of a burial depth analysis lie
in the assumptions that foreknowledge of buried radioisotopes present at the site is always available
and that only a single radioisotope is present. We present an advanced depth estimation method
using Bayesian inference, which does not rely on those assumptions. Thus, we identified low-level
radioactive contaminants buried in a substance and then estimated their depths and activities.
To evaluate the performance of the proposed method, several spectra were obtained using a 3 × 3
inch hand-held NaI (Tl) detector exposed to Cs-137, Co-60, Na-22, Am-241, Eu-152, and Eu-154
sources (less than 1µCi) that were buried in a sandbox at depths of up to 15 cm. The experimental
results showed that this method is capable of correctly detecting not only a single but also multiple
radioisotopes that are buried in sand. Furthermore, it can provide a good approximation of the burial
depth and activity of the identified sources in terms of the mean and 95% credible interval in a single
measurement. Lastly, we demonstrate that the proposed technique is rarely susceptible to short
acquisition time and gain-shift effects.

Keywords: remote depth profiling; radioisotope identification; Bayesian inference; uncertainty
estimation; gamma spectral analysis; low-level radioactive contaminants; nuclear decommissioning;
low-resolution detector

1. Introduction

Sites near nuclear power plants are susceptible to large-scale land and building contamination
because of the significant amount of radioactive waste generated by such facilities. It is, therefore,
important to acquire information on the wastes present on these sites on behalf of project management
and engineering services working on environmental restoration [1–3]. In particular, depth profiling of
radioactive contaminants is critical for determining the most cost-effective decommissioning strategy,
because the quantity of radioactive waste required for disposal can be reduced considerably by
removing surface contamination at varying depths [4]. Nevertheless, the task of depth profiling is still
difficult to achieve because porous materials such as soil and concrete covering the contaminants can
act as a shield, resulting in the attenuation of emitted radiation.

One example of such waste is on the beaches of Dounreay in Northern Scotland, where radioactive
soil contaminants are widely spread along the beach [5,6]. This is due to the so-called Dounreay
hot particles that are mainly composed of Cs-137 and Co-60, released from the fuel processing of
the Material Test Reactor at the Dounreay nuclear facility. Other examples of buried radioactive
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contaminants include orphan radioactive sources [7]. An orphan source is generally a sealed source of
radioactive material that has been lost, abandoned, misplaced, stolen, or otherwise transferred without
proper authorization [8].

Therefore, various non-destructive methods for remote-depth profiling have been reported in
many papers [9–18]. However, the majority of the nonintrusive methods reported in these studies
were based on a frequentist approach; that is, they required repeated measurements in order to
provide a mean value with a standard error. Also, the maximum detectable depth of these methods
was not sufficient to detect deeply buried contaminants. Therefore, a new approach, based on
Bayesian inference, has recently been developed [19] to overcome the limitations imposed by older
methods. This method can offer more reliable results because the output of burial depth analysis can
be expressed as a probability distribution, even in a single measurement. In addition, its capability
for maximum detectable depth for weak activity of the 0.94-µCi Cs-137 and 0.69-µCi Co-60 sources
is superior in comparison with the existing methods. However, this method still assumes that only
a single radioisotope is present in the substance and that no other radioisotopes will interfere with
the measurement; a common assumption that is prevalent in other studies. But such assumptions
can seriously undermine the results of a burial depth analysis in which there are different or multiple
radioisotopes present.

Consequently, the objective of this study is first to identify all low-level radioactive contaminants
buried in any substance, and then estimate remote depth profiling for the identified radioisotopes using
Bayesian inference. In this study, radioactive sources of Cs-137, Co-60, Na-22, Am-241, Eu-152, and
Eu-154, which are common elements encountered during decommissioning of nuclear facilities, were
considered for the depth profiling. For convenience, the set of these radioisotopes will hereafter be
referred to as the radioisotope library. Experimental results analyzed from various spectra, composed
of not only single but also multiple radioisotopes, have been addressed to evaluate the performance of
the proposed method. Furthermore, we have investigated the depth estimation performance of the
proposed method in terms of data acquisition time and gain-shift effects due to calibration drift.

2. Materials and Methods

2.1. Bayesian Inference

Probability is one of the quantities that measure an event with an uncertainty that is associated
with that particular event. There are two general philosophies providing different interpretations of
probability: namely, frequentist inference and Bayesian inference [20]. In a frequentist approach, the
probability is associated with the long-term frequency or proportion of events, in which the unknown
parameters are treated as fixed values. That is, a frequentist does not associate probabilities with
random variates, and only repeatable events can have probabilities in a statistical process. In contrast, a
Bayesian approach is rooted in the belief that probabilities can be associated with unknown parameters
(i.e., treated as random variables) to represent the uncertainty in any occurrence. That is, it can lead to
much more intuitive results. For example, suppose you want to know the possibility that Korea will
host the next World Cup. Bayesians are willing to assign a legitimate probability to Korea hosting
the next World Cup based on the degrees of belief on the possible outcomes and every available
information. Unlike Bayesians, frequentists do not assign any numerical probability to the same
event because the World Cup cannot be regarded as a hypothetically repeatable process. This is a
philosophical issue that frequentists can run into [21]. Also, some of the resultant interpretations are
not particularly intuitive.
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A Bayesian inference determines the probability distribution over the parameter or equivalently,
the posterior distribution p(θ

∣∣∣y) of random variables θ, given prior distributions p(θ), and likelihood
function p(y

∣∣∣θ) by applying Bayes’ theorem:

p(θ
∣∣∣y) =

p(y
∣∣∣θ) p(θ)

p(y)
, (1)

In the past, the challenge of applying the Bayesian inference to real-field applications was
mainly around the computation requirement for the intractable high-dimensional integrals in the
evidence p(y). However, it is now possible, owing to recent advances made in computation technology
and in marginal-estimation techniques. The Markov Chain Monte Carlo (MCMC) algorithm is
a technique that is widely used for approximate inference, in which the posterior distribution is
estimated through a collection of samples via the Markov process [22]. Since the late 1940s, there
has been tremendous progress in the field of statistics, seeing the development of such techniques as
the Metropolis Hasting algorithm, the Hamiltonian Monte Carlo, and more recently, the No-U-Turn
sampler [23]. These algorithms were based on MCMC so that they could obtain the posterior probability
of parameters with accuracy. However, their relatively high costs in computation and their inefficient
processes have hindered their usage in real-world applications. An alternative method that can
overcome these limitations is to convert the computation of p(θ

∣∣∣y) to an optimization problem, also
known as variational inference.

With variational inference, we assume there is a parameterized family of distributions q(θ; υ) (or
equivalently, a variational distribution); then, we find the setting of the parameters that minimize the
Kullback-Leibler (KL) divergence to the posterior distribution of interest:

υ∗ = argminKL
(
q(θ; υ)

∣∣∣
∣∣∣p(θ

∣∣∣y)
)
. (2)

The optimized q(θ;υ∗) is then regarded as an approximation to the posterior distribution. Since
the KL divergence involving the posterior distributions lacks an analytic form, we instead maximize
the evidence lower bound (ELBO):

L(υ) = Eq[logp(θ, y)] −Eq[logq(θ; υ)]. (3)

This can be simplified further by taking a mean-field approximation, where the parameters in the
variational family are assumed to be fully factorized to independent variables. However, the difficulties
arising from the model-specific derivations and implementations in developing such algorithms still
hinder its use in practical applications. However, automatic differentiation variational inference
(ADVI), which is a gradient-based method, can resolve this complexity in computation by providing a
recipe for an automatic solution based on variational inference [24]. The underlying idea of ADVI is to
transform the space of latent variables and to automate derivatives of the joint distribution by relying
on the capabilities of probabilistic programming systems. For programming ADVI computation,
we used Python language with the probabilistic programming framework of PyMC3 to establish a
probability model and execute variational inference.

2.2. Model Specification

By defining a mathematical model that describes an observed spectrum in terms of the burial
depth, activity, and shift degree of the spectrum, we can identify buried radioisotopes and obtain
the posterior distribution of the depth and activity of the identified sources. Such a model can be
established by extending the model defined by Kim et al. [19,25]

Mi =

J∑

j=1

A jP jδ j

4πh2 e−µAh f
(
z j, ηi

)
+ cBi f or i = 1, . . . , K (4)
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Here, Mi is the measured spectrum (s−1) with i representing the channel (0 < i ≤ K); J is the total
number of radioisotopes; A j is the activity of the radioisotope (µCi); P j is the total sum of gamma
emission probabilities within the energy range of interest (i.e., 2.8 γs−1Bq−1 for the 511 and 1275
keV gamma rays of Na-22); µA is the linear attenuation coefficient of gamma-ray in air (cm−1); h
is the detection height measured from the detector to the surface of a given material (cm); z is the
buried depth of a radioactive source (0 ≤ z ≤ D cm) in a material from the front surface; η is the
shift degree of the spectrum; Bi is the background spectrum measured for K channels with c being its
proportionality constant; δ is the effective front area (cm−1); and f (z, ηi) is the bilinear interpolation
function. Computation of f (z, ηi) requires a spectrum measurement at depths ranging from 0 to D cm
at certain intervals to determine the K ×D response matrix for a radioisotope. Consequently, f (z, ηi)
can be interpolated using the closest points to the f (z, ηi) among the known values of depths and
channels from the K ×D response matrix [19]. The parameter δ can be obtained experimentally by
placing a source on the material surface (that is, at 0 cm depth), which can be expressed as:

δ =
4πr2N

APe−µAr , (5)

where N is the total net counts of the spectrum (s−1), and r is the detection height (cm) between the
detector and the surface of a material.

Thus, the proposed model defines the function f (z, A, η, c) where the variable marked in bold
type represents a vector notation. In practice, the existence of inevitable uncertainties inherent to the
physical processes, such as radioactive disintegration, has an effect on the measured spectrum. In this
regard, we can assume that the spectrum is normally distributed with a zero mean and variance of σ2

P(M
∣∣∣z, A, η, c) = N

(
f (z, A, η, c), σ2

)
. (6)

The availability of prior distributions for z, A, η, c, and, σ2, which represents our knowledge of
the parameters before taking any measurements, is assumed by Kim et al. [19]. That is, A, c, and σ2

followed gamma distributions with parameters (1, 1); z and η followed uniform distributions with
parameters (0, 18) and (0.85, 1.15), respectively. These prior distributions reflected our belief that the
sources might be buried less than 18 cm in the sand, and their activities would be low.

2.3. Procedures on Spectral Analysis

The spectral analysis of the depth estimation is a two-step process. First, the radioisotopes that
are least likely to have generated an observed spectrum are excluded according to certain criteria [25].
This step is necessary because the model assigns a probability distribution to the parameters of every
radioisotope present in the radioisotope library. For instance, the ratio of the standard deviation σ j to
the mean u j of a radioisotope, i.e., relative standard deviation (RSD), can have a large value where a
certain radioisotope in the library is not contributing to the spectrum. In terms of the magnitude of
RSD, a small value suggests that the data are clustered tightly around the mean while the opposite is
true in a large value of RSD. In addition, a radioisotope that does not attribute to the spectrum may
have a relatively negligible contribution. The relative contribution (RC) of the radioisotope, C j to the
spectrum can be expressed as:

C j =

A jP j

z j
2

∑J
j=1

A jP j

z j
2

. (7)

Here, radioisotopes can be regarded as present when the following conditions are satisfied:

C j > 3% and
σi
ui

< 0.2. (8)
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These thresholds are subject to change depending on the situation. The first analysis can be
thought as the identification step. Second, the identified radioisotopes through the first analysis are
analyzed to obtain their final depths and activities.

2.4. Experimental Setup

Gamma-ray spectra were obtained on radioactive sources buried in a sandbox filled with fine silica
sand by using a 3 × 3 inch hand-held NaI (Tl) detector (NUCARE, Rad IQTM HH200, Incheon, Korea)
that was located 3 cm away from the surface of the box, as depicted in Figure 1a. The detector was
used only for the purpose of acquiring gamma spectra and the recorded raw data were then processed
and analyzed separately through Python. The sandbox was composed of 0.3 cm-thick acrylic sheet
forming a tank of 50 cm × 40 cm × 40 cm (length × width × height). The thickness of the acrylic sheets
was chosen so that the gamma rays emitting from the source would be scattered in the sand matrix.
The activities of the sources used for the experiments were 0.94 µCi, 0.69 µCi, 0.50 µCi, 0.90 µCi, 0.89
µCi, and 0.84 µCi for Cs-137, Co-60, Na-22 Am-241, Eu-152, and Eu-154, respectively. In addition, the
sources were buried in a graduated box (50 cm × 0.3 cm × 0.3 cm) that was inserted into the main box
to position the sources at the exact location in relation to the front of the sandbox surface, as shown in
Figure 1b.
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Figure 1. (a) An acrylic box filled with sand and an NaI (Tl) detector for gamma spectroscopy; and
(b) a graduated box marked with the buried distance of the source measured from the front surface of
the sandbox.

The response matrix was obtained by placing the sources in the graduated sandbox at depths of
0 cm, 3 cm, 7 cm, 12 cm, and 18 cm. Then, the spectra were measured at each depth for 30 min to ensure
that minimal statistical fluctuation was achieved. A background spectrum for the response matrix was
obtained under identical conditions in the absence of sources. For the energy range of spectra, values
were chosen from 20 to 1600 keV (i.e., 563 channels). During these experiments, energy calibration was
performed prior to taking each measurement via the built-in automatic calibration function provided
by the detector system. This function is based on the energy emitted by the primordial radioisotope of
K-40 (1461 keV). The automatic calibration function was not used for the acquisition of the test spectra
because this method automatically compensates the gain-shift effects because of changes in ambient
temperature or calibration drifts [19].
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3. Results

3.1. Case 1: Single Radioisotope

Figure 2 shows the joint probability distributions between the depth and activity of the
radioisotopes analyzed for a spectrum, measured for 300 s for a Cs-137 source buried at a depth of
3 cm. From the first analysis, we can clearly see that the distribution of the Cs-137 is clustered tightly
around the mean, while the distribution of the other radioisotopes (i.e., Co-60, Na-22, Am-241, Eu-152,
and Eu-154) is spread along high values of the depth at low activity. As shown in Figure 3, the values
of the RCs and RSDs for the five radioisotopes did not satisfy the criteria mentioned in Section 2.3,
and therefore only the radioisotope of Cs-137 provided any notable contribution to the spectrum. The
second analysis was then performed on the Cs-137 to determine its burial depth and activity. The
result confirmed that the joint probability distribution of the Cs-137 was closely centered around the
true value of the depth and activity (i.e., 3 cm and 0.942 µCi). It is not always true, however, that the
distributed results of the first and second analyses will yield nearly the same output, as we have seen on
this occasion. This is because it is possible for this method to induce a distortion in the analysis results
by assigning a biased mean of activity to certain radioisotopes during the identification step [25].
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Figure 2. Joint distributions between the depth and activity of the radioisotopes in the radioisotope
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distribution from the first analysis is obscured by that of the second analysis and is hardly visible in the
plot for Cs-137.

Figure 4 shows the estimated depth and activity with a 95% credible interval for all single
radioisotopes, namely: Cs-137, Co-60, Na-22, Am-241, Eu-152, and Eu-154, buried in sand over a
range of 0–15 cm at intervals of 3 cm. The spectra for the analysis were measured for 300 s. From the
experimental results, we found that the proposed technique was capable of correctly identifying the
buried radioisotopes and determining the depth of the identified radioisotopes with the exception
of the Am-241 source at burial depths exceeding 9 cm. At these depths, RSD and RC values for
all radioisotopes in the radioisotope library did not meet the criteria, meaning that there were no
other radioisotopes affecting the spectra except for the background radiation. This was mainly due
to the high attenuation of low-energy photons (e.g., 59 keV) emitted by Am-241. As a consequence,
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the spectra obtained with the Am-241 source buried deeply became almost indistinguishable from a
background spectrum, as shown in Figure 5. Excluding the Am-241, the results confirmed that the
true depth was approximated by the mean value of the estimated depth with a 95% credible interval
for all radioisotopes with very weak activities that were buried in sand over a range of 0–15 cm; the
estimated depths at a depth of 6 cm tend to be slightly higher, probably because of the discrepancy
between the measured spectra and the spectra calculated by interpolation. In addition, the estimated
mean values of the activity with a 95% credible interval for the identified radioisotopes were in close
agreement with the true values. Likewise, the trend in the relationship between the depth and the
activity was also in agreement with the results report by Kim et al. [19].
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Figure 3. (a) RC and (b) RSD of the radioisotopes in the radioisotope library for a spectrum acquired
for 300 s with a Cs-137 source buried in sand at a depth of 3 cm. The red lines denote criteria for the RC
and RSD (i.e., 3% and 0.2, respectively).
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Figure 4. Estimated depth and activity with a 95% credible interval for the single radioisotope of
Cs-137, Co-60, Na-22, Am-241, Eu-152, and Eu-154 buried in sand over the range of 0–15 cm at 3 cm
intervals. The inset shows the estimated activity of the corresponding radioisotope in each figure.
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Figure 5. Experimental spectra with an acquisition time of 30 min for an Am-241 source buried in sand
at depths of 3 cm (blue dash-dotted line), 9 cm (sky-blue dotted line) and 12 cm (red dashed line). The
black solid line represents the background spectrum with the same acquisition time. The inset shows
the enlargement of the spectra in the low-energy region.

3.2. Case 2: Multiple Radioisotopes and Data Acqusition Time

To validate the performance of the proposed method in cases where multiple radioisotopes were
buried at different depths, we measured the spectra with different acquisition times of 10 s, 30 s, and
300 s for Eu-152 and Eu-154 sources that were buried in sand at 3 cm and 6 cm in depth, respectively,
as shown in Figure 6. The reason for the acquisition of the spectra with the reduced acquisition times
was to verify the performance of the proposed method in large-scale field measurements that require
a rapid acquisition. As shown in Figure 7, the radioisotopes that had not contributed to the spectra
(i.e., Cs-137, Co-60, Na-22, and Am-241) could be rejected in the identification step, meaning that our
method can detect the correct radioisotopes for the spectra, even with short acquisition times. The
estimated depth and activity of the identified radioisotopes for the spectra are illustrated as joint
probability distributions in Figure 8. From these results, the distributions between the depth and
activity for the radioisotopes were more closely clustered with increasing acquisition time. In addition,
the center of the distributions got closer to the true values. This can be more clearly seen in Figure 9
where the error bar is in the form of mean and 1.96 standard error (or equivalently, a 95% credible
interval). This shows that the true values of the depth for the identified radioisotopes indeed fell
within the 95% credible interval of the estimated depths analyzed for the spectra. To our surprise, the
mean values of the depth analyzed even for the acquisition time of 10 s closely agreed with the true
values, which is a much better result than that reported by Kim et al. [19]. This was due to the use of
the larger-size more efficient detector. The estimated values of the activity for Eu-154 deviated slightly
from the true values. This was possibly due to a position error in the sources during the measurements.
In this proposed method, the determination of depth depends primarily on a spectral shape; that is,
our approach determines the burial depths of radioisotopes that are most likely to have produced
an observed spectrum through the combination of spectral shapes of each radioisotope at varying
depths. In contrast, the activity was calculated based mainly on the determined depth and counts in
the observed spectrum (see Equation (4)). In this regard, the activity should be accurately estimated
once the depths are exactly estimated and the acquisition time is sufficient to reduce the statistical
fluctuation present in the observed spectrum.
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Figure 6. Experimental spectra with different acquisition times of 10 s (black dash-dotted line), 30 s
(sky-blue dashed line) and 300 s (blue solid line) for the following radioisotopes buried in sand: Eu-152,
3 cm and Eu-154, 6 cm. Obtained spectra were normalized to the total count over the energies of interest
for comparison.
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Figure 7. (a) RC and (b) RSD of radioisotopes in the radioisotope library for three spectra with
acquisition times of 10 s, 30 s and 300 s with the following radioisotopes buried in sand: Eu-152, 3 cm
and Eu-154, 6 cm. The red lines denote criteria for the RC and RSD (i.e., 3% and 0.2, respectively).
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Figure 8. Joint distributions between the depth and activity of identified radioisotopes (i.e., Eu-152
and Eu-154) for experimental spectra acquired with 10 s, 30 s, and 300 s for Eu-152 and Eu-154 sources
buried in sand at depths of 3 cm and 6 cm, respectively. The scatter dots represent the correlations
between the depth and activity, while the red lines and the curves outside the plot area represent their
true values and corresponding densities, respectively.Sensors 2020, 20, x FOR PEER REVIEW 10 of 14 
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Figure 9. (a) Estimated depth and (b) activity of identified radioisotopes (i.e., Eu-152 and Eu-154) in
the form of mean and 1.96 standard error analyzed for experimental spectra with acquisition times of
10 s (black square), 30 s (sky-blue circle), and 300 s (blue triangle). The spectra were acquired with
Eu-152 and Eu-154 sources buried in sand at depths of 3 cm and 6 cm, respectively.

Figure 10 shows more complex spectra obtained with acquisition times of 10 s, 30 s, and 300 s for
Na-22, Am-241, and Eu-152 with burial depths of 10 cm, 3 cm, and 8 cm, respectively. Similar to the
previous case, the radioisotopes that are not part of the spectra (i.e., Cs-137, Co-60, and Eu-154) were
rejected in the identification step and we could therefore correctly detect the radioisotopes of Na-22,
Am-241, and Eu-152. The estimated depth and activity of the identified radioisotopes were reported in
terms of mean and 1.96 standard errors, as shown in Figure 11. Here, trends relating to the acquisition
time can be observed on the standard errors that are similar to those reported in Figure 9. In particular,
the estimated depth of Na-22 for the spectrum with the acquisition time of 10 s showed a relatively
large standard error. Also, it deviated from the true value because of the statistical fluctuations in
the spectrum. Except this, the results indicated that there was a satisfactory agreement between the
estimated and true values for the complex spectrum even where there were the short acquisition times.
However, the estimated activities showed relatively more significant deviations from the true values
because the activity is inversely related to the square of the depth (see Equation (4)).
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Figure 10. Experimental spectra with different acquisition times of 10 s (black dash-dotted line), 30 s
(sky-blue dashed line), and 300 s (blue solid line) for the following radioisotopes buried in sand: Na-22,
10 cm; Am-241, 3 cm; and Eu-152, 8 cm. Obtained spectra were normalized to the total count over the
energies of interest for comparison.
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Figure 11. (a) Estimated depth and (b) activity of identified radioisotopes (i.e., Na-22, Am-241, and
Eu-152) in the form of mean and 1.96 standard error analyzed for experimental spectra with acquisition
times of 10 s (black square), 30 s (sky-blue circle), and 300 s (blue triangle). The spectra were acquired
with Na-22, Am-241, and Eu-152 sources buried in sand at depths of 11 cm, 3 cm, and 8 cm, respectively.
The red dotted lines denote the true values.

3.3. Effect of Gain Shift

To investigate how well the proposed technique would accurately analyze shifted spectra because
of gain-shift effects, we acquired spectra at an acquisition time of 30 s for the Eu-152 and Eu-154
sources at burial depths of 3 cm and 6 cm after calibration drifts had occurred in the detector. Figure 12
shows these spectra with two different magnitudes of the shift (blue-sky dotted line and blue solid
line referred to as “G1” and “G2”) and the normal spectrum (black dash-dotted line) for comparison.
In fact, these shifted spectra would be very difficult to analyze without proper recalibration settings; the
position of the original photo-peak in the high-energy region of the normal spectrum was overlapped
completely by another peak in the G2 spectrum. Nevertheless, the proposed method was able to
exclude the radioisotopes that had not contributed to the shifted spectra in the identification step.
For the G1 spectrum, the estimated depths of Eu-152 and Eu-154 closely agree with the true values
as shown in Figure 13a. For the G2 spectrum, the mean value of the estimated depth for Eu-154 was
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7.52 ± 0.38 (1.96σ) cm, which was slightly overestimated. The activity tended to be underestimated
against the determined depths as the spectrum shifted in a positive direction (see Figure 13b). This was
possibly due to an increase in full width at half maximum as the spectrum moves to higher energies,
resulting in a reduction in the maximum counts in the region of the photo-peaks, which does not
occur in spectra that were shifted mathematically via interpolation. Overall, the presented results
demonstrated a capability to accommodate a shift in the spectra caused by calibration drift in the
complex spectra of multiple radioisotopes.
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In this work, we demonstrated the estimation of remote depth profiling for contaminated low-

level radioactive materials that are composed of single or multiple radioisotopes by applying 

Bayesian inference. An earlier report had already shown that this approach is reliable and robust 

because it allows us to offer the mean and standard error for the estimated depth and activity from a 

single measurement [19]. Also, the reported experimental results demonstrated that significant 

improvements in earlier findings had been achieved. First, the proposed technique does not rely on 

an assumption that we have foreknowledge of a radioisotope present at the site, or that only a single 

radioisotope exists there. Instead, this method first identifies unknown radioisotopes and then 

determines the depth and activity of the identified source(s). Thus, we are not only able to identify 

individual radioisotopes for spectra composed of multiple radioisotopes, but also to provide a good 

approximation of each one’s depth and activity. Second, the results showed that this method can be 

Figure 12. Experimental spectrum composed of Eu-152 and Eu-154 sources buried in sand at depths of
3 cm and 6 cm, respectively (black das-dotted line) and its shifted spectra (sky-blue dashed line and
blue solid line) having different magnitudes of the shift due to calibration drifts. The spectra were
acquired for 30 s.
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Figure 13. (a) Estimated depth and (b) activity of identified radioisotopes (i.e., Eu-152 and Eu-154) in
the form of mean and 1.96 standard error analyzed for a 30-s measured spectrum composed of Eu-152
and Eu-154 buried in sand at depths of 3 cm and 6 cm (black square) and its shifted spectra (sky-blue
circle and blue triangle). The red dotted lines denote the true values.

4. Discussion

In this work, we demonstrated the estimation of remote depth profiling for contaminated low-level
radioactive materials that are composed of single or multiple radioisotopes by applying Bayesian
inference. An earlier report had already shown that this approach is reliable and robust because it
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allows us to offer the mean and standard error for the estimated depth and activity from a single
measurement [19]. Also, the reported experimental results demonstrated that significant improvements
in earlier findings had been achieved. First, the proposed technique does not rely on an assumption
that we have foreknowledge of a radioisotope present at the site, or that only a single radioisotope
exists there. Instead, this method first identifies unknown radioisotopes and then determines the depth
and activity of the identified source(s). Thus, we are not only able to identify individual radioisotopes
for spectra composed of multiple radioisotopes, but also to provide a good approximation of each one’s
depth and activity. Second, the results showed that this method can be applied to both low-level buried
wastes and all gamma-emitting radioisotopes, regardless of the intensity of the gamma-ray energy or
the number of gamma rays emitted, given that photons are not fully attenuated in a substance and
contribute to the spectra to some degree. Lastly, we demonstrated that this method is also capable of
accommodating the gain-shift effects in spectra with multiple radioisotopes.

One of the challenges associated with the measurement point is that it is difficult to find an
optimal position for the detector in relation to the location of the buried radioactive contaminants.
An alternative solution could be to position the detector at the location with the maximum intensity
of total count rate. However, multiple contaminants buried at different depths may not be vertically
positioned. If they are located in that way, the error of the x-y position causes an error of the burial
depth (z position). Further work must be conducted to resolve this issue so that a better approximation
of localized radioactive wastes in three dimensions can be achieved.

5. Conclusions

In this work, we presented a novel method for the remote depth estimation of unknown radioactive
contaminants using Bayesian inference. Experimental results confirmed that this method correctly
identifies radioactive contaminants composed of multiple radioisotopes as well as a single radioisotope
and provides good estimates of depths buried in sand for the identified isotopes in a single measurement.
In addition, we demonstrated that short acquisition time and gain-shift effects did not significantly
degrade the analysis results for spectra composed of multiple radioisotopes. These results showed
significantly improved remote depth estimation capability in comparison with the existing methods.
Therefore, the proposed method is capable of achieving a rapid nonintrusive localization of buried
low-level multiple radioactive contaminants through in situ measurement.
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Abstract: On the Sellafield site there are several legacy storage tanks and silos containing sludge of
uncertain properties. While there are efforts to determine the chemical and radiological properties of
the sludge, to clean out and decommission these vessels, the physical properties need to be ascertained
as well. Shear behaviour, density and temperature are the key parameters to be understood before
decommissioning activities commence. However, limited access, the congested nature of the tanks
and presence of radioactive, hazardous substances severely limit sampling and usage of sophisticated
characterisation devices within these tanks and therefore, these properties remain uncertain. This
paper describes the development of a cheap, compact, and robust device to analyse the rheological
properties of sludge, without the need to extract materials from the site in order to be analysed.
Analysis of a sludge test material has been performed to create a suitable benchmark material for the
rheological measurements with the prototype. Development of the device is being undertaken with
commercial off the shelf (COTS) components and modern rapid prototyping techniques. Using these
techniques, an initial prototype for measuring shear parameters of sludge has been developed, using
a micro-controller for remote control and data gathering. The device is also compact enough to fit
through a 75 mm opening, maximising deployment capabilities.

Keywords: rheology; nuclear decommissioning; rapid prototyping

1. Introduction

The landscape of the nuclear industry is changing nuclear power plants, and as reprocessing
facilities approach the end of their planned lifespan, decommissioning has become a new focal point
for the nuclear industry. This is reflected in academic research as well, with research moving from
reprocessing operations to decommissioning [1]. An example of a decommissioning facility in the
United Kingdom is the Sellafield site. Once the home of the first commercial nuclear reactor producing
electricity on an industrial scale, the nuclear fuel reprocessing capability is approaching the end of its
life cycle with the Thermal Oxide Reprocessing Plant (Thorp) facility stopping shearing in 2018 and
Magnox reprocessing will end in 2020 [2,3].

Decommissioning of nuclear facilities requires a post-operational cleanout of active and hazardous
materials. Using the Sellafield site as an example, there are a number of legacy tanks, silos and other
containers with nuclear waste, often in the form of suspension, that will need to be cleaned out as
part of the decommissioning plans. However, to accomplish this, analysis of remnant material must
be performed to determine and minimise the risks, waste packages and ascertain the appropriate
processes. Due to the hazardous nature of nuclear materials, this often has to be done remotely. Remote,
in situ characterisation is, therefore, one of the key aspects of nuclear decommissioning [4].

The current strategy for analysis of remnant materials mainly focuses on visual inspection,
radiological measurements and chemical composition analysis. Radiological measurements vary
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from using scintillators in storage tanks to determine the activity of remnant materials, pipe crawling
robots assessing the contamination of pipework or autonomous platforms for analysis of floor
contamination [5–8]. Current academic research focuses on imaging systems and the deployment of
these in challenging environments. Advances in chemical composition analysis in nuclear facilities
have introduced laser-induced breakdown spectroscopy (LIBS) as one potential method of remote
analysis [9,10]. Visual inspection aids with assessing structures, waste locations and remnant material
quantities in locations inaccessible to human workers. Most recently, advances in 3D scanning
technologies (such as Light Detection and Ranging, or LiDAR) have been the focal point of research
for visualizing remote areas. Other areas of research interest focus on the deployment platforms for
both traditional camera systems and LiDAR in remote areas, whether through limited openings or
underwater [11].

Currently used methods to ascertain rheological parameters of materials are predominantly
rotational and oscillation rheometry using various geometries, either with samples or on-line [12–14].
Squeeze flow and capillary rheometry is frequently used in industries other than nuclear and academic
research has been exploring these areas, too [15–17]. However, all of these methods utilise large,
expensive equipment and development focus on increasing the precision and measurement range
of devices.

In situ rheology in hazardous environments is, however, an unexplored research area. Research
has been limited to test materials, or it relies on collecting samples from storage containers [18–20].
Novel methods for rheological measurements that have been developed are focused on miniaturisation
and small sample methods, such as quartz crystal microbalance, but these are still in early research
stages [21].

This paper presents work undertaken to develop a compact, cheap and robust device for shear
behaviour analysis and its initial validation in a non-active laboratory environment. The aims are to
propose a novel prototype device; to manufacture this device using rapid prototyping methods and
commercial off the shelf (COTS) components; to calibrate the new device using industrial standard
materials and to validate its performance at a laboratory bench scale. Section 2 provides a summary of
materials and conventional instruments that have been used for analysis and manufacturing. Section 3
provides a description of the designed device, the tests performed, and the results of these tests. Finally,
the discussion and conclusions are presented in Section 4.

2. Materials and Methods

A Bohlin CVO100 (Malvern Panalytical Ltd, Malvern, UK) was used as the baseline, commercially
available, benchtop rheometer for the development of the device. All measurements made with the
commercial rheometer were logarithmically spaced shear rate ramps from 0.1 to 100 s−1 at ambient
temperatures between 21.5 and 22.5 ◦C, with a DIN standard V25 vane and cup and C25 bob and cup
configurations. All measurements consisted of five measurement runs, and the results presented are
averages of those five runs.

A silicone viscosity standard oil (Paragon Scientific Ltd, Merseyside, UK, VIS-RT1K-600) has been
used as the calibration material. It is an industry-standard material used for calibrating rheometers
and viscometers.

Two test materials were chosen to validate the performance of the device when measuring
particulate suspensions. The first material was titanium dioxide (anatase, Sigma-Aldrich, Louis, MO,
USA, 248576). This is an example of a lower viscosity, non-Newtonian particulate suspension. The
TiO2 was supplied as a powder, which was dried and subsequently dispersed in de-ionized water at a
volume fraction of φ = 0.44. TiO2 has been historically used as a very safe test material in the nuclear
industry [20]. Although it has since been replaced with other test materials, it remains an appropriate
test material for the early stages of device development.

The second material was zirconium-molybdate (ZM) suspended in 0.5 M nitric acid. The sample
was synthesised by Johnson Matthey and supplied as a suspension. Some of the supernate was
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decanted, and a sample was dried to ascertain the volume fraction of the suspension. ZM is an example
of a higher viscosity test material. It is the most novel simulant being used in the nuclear industry [22].

A Malvern Mastersizer 3000 (Malvern Panalytical Ltd, Malvern, UK) particle characterisation
system with a wet dispersion unit was used to ascertain the particle size distribution (PSD) of the
two test materials, as shown in Figure 1 Both materials were dispersed in de-ionized water (refractive
index 1.33). TiO2 was stirred at 1800 rpm and measured at approximately 3.7% laser obscuration,
using a refractive index 2.493 and an absorption index 1. ZM was stirred at 2400 rpm and measured at
approximately 30.7% laser obscuration, using a refractive index 1.19 and an absorption index 0.

Figure 1. Particle size distribution (PSD) of the titanium dioxide and zirconium molybdate samples
used in this research.

A majority of the structural components and other parts were manufactured using a fused
deposition modelling 3D printer (Ultimaker 3 extended, Ultimaker, Utrecht, The Netherlands).
Two different materials were utilised as follows. Linkages and outer casings not coming into contact
with chemical substances were made using Ultimaker PLA. PLA is a biodegradable, cheap and
straightforward to use material offering high stiffness. It is the most appropriate material for rapidly
prototyping initial development prototypes, as required for the present work. Measurement geometries
and their corresponding outer cups were manufactured with XSTRANDTM GF30-PP—glass fibre
reinforced polypropylene (Owens Corning, Toledo, OH, USA). This material offers much higher
chemical resistance and thermal stability compared to PLA, making it suited for use with chemically
aggressive substances, such as ZM in nitric acid. Table 1 compares the mechanical and other properties
of these materials.

Table 1. Comparison of the parameters of Ultimaker PLA and XSTRANDTM GF30-PP 3D printing
filaments [23,24].

Ultimaker PLA XSTRANDTM GF30-PP

Tensile strength at yield (MPa) 49.5 60.0
Flexural strength at yield (MPa) 103.0 83.0

Maximum usable temperature (◦C) 50 120
Chemically resistant No Yes

3. Device Development and Results

The present section describes the new device, its calibration and evaluation results.

3.1. Description of Designed Device

The device is a rotational viscometer, using bob and vane geometries with outer cups. It uses a
spring-loaded mechanism to measure the reaction torque from the analysed substance as a function of
the deflection of the drive system.
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Figure 2 illustrates the mechanism and the major parts used in it. A stepper motor (RS Components
Ltd, Corby, UK, RS PRO 535-0372) drives a measurement geometry (described further below and
pictured in Figure 3) with a constant rotational velocity in the substance it is analysing. When the
measurement geometry shears the sample, the reaction torque turns the entire drive assembly in the
opposite direction, as the motor is held in place by a bearing that allows it to rotate around the same
axis as the measurement geometry. A spring connecting the drive assembly to the stationary frame
ensures that the mechanism does not spin continuously, i.e., it only deflects proportionally to the shear
stress of the material that the measurement geometry shears.

Figure 2. Functional schematic and a render of the prototype.

Figure 3. Cutaway render of all the geometries used with the prototype.

Two of the geometries and their respective cups used with the device are designed based on the
dimensions proposed by the ISO 3219 standard, widely used in the design of conventional benchtop
rheometers [25]. They are manufactured with the same dimensions as the V25 vane and C25 bob used
on the Bohlin CVO100 rheometer. The device, however, diverges from the ISO standard in two main
regards. One, since it is deployed by inserting it in a sample, the cup is open on the bottom. This allows
the material to enter the cup and surround the measurement geometry as the device is inserted into the
material. Secondly, the immersion height is not controlled by sampling but by deploying the device.
In the experiments described below, the material height is controlled in the test material vessel.

In potential deployment scenarios, the material height may not be sufficient to fully immerse long
geometries. For this reason, three other geometries have been designed and used, diverging from
the ISO standard. Another consideration is preventing the slip of the geometry when it rotates in the
material. Vanes are often used with suspensions and higher viscosity samples, as they slip less than
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bobs when shearing these samples. Finally, inserting the geometry itself affects the structure of the
sample. Vanes penetrate samples much easier than bobs. Based on all of these considerations, all three
non-standard geometries (i.e., Vane 1, 2 and 3 in Figure 3) take the form of four-bladed vanes.

As described in the ISO standard, the representative shear rate in the middle of the gap between
the geometry and the cup

.
γrep is determined as shown in Equation (1).

.
γrep = Ω·

1 + ( re
ri
)

2

( re
ri
)

2 − 1
, (1)

where Ω is the angular velocity of the geometry, re is the radius of the outer cylinder (cup) and ri is the
radius of the inner cylinder (geometry). It is apparent that the shear rate is dependent on the ratio of
the dimensions of the geometry and the cup, and thus, the ratio has been maintained constant with all
the geometries. To accommodate potential low material heights, the non-standard vanes have been
designed to be shorter and thus require less material to be fully immersed. To ensure that the torque is
not below the detection threshold when performing the measurement, the radius of the geometry has
been increased in comparison with the ISO geometries.

A summary of the geometry dimensions that have been manufactured and used with the prototype
is outlined in Table 2, while the geometry and cup configuration is illustrated in Figure 3.

Table 2. Comparison of the dimensions of geometries used with the device.

ISO Bob ISO Vane Vane 1 Vane 2 Vane 3

Cup Radius re (mm) 13.75 13.75 16.50 22.00 33.00
Geometry Radius ri (mm) 12.50 12.50 15.00 20.00 30.00
Geometry Length L (mm) 37.50 37.50 30.00 20.00 15.00

L/ri (-) 3.00 3.00 2.00 1.00 0.50
Necessary Sample Height (mm) 52.50 52.50 42.50 32.50 27.50

The outer case and internal linkages were 3D printed using a fused deposition modelling
printer with Ultimaker PLA. The bob and vane geometries and the outer cups were 3D printed with
XSTRANDTM GF30-PP. Overall, the largest configuration (ISO vane or bob) of the device is 219 mm long
(i.e., edge of the cable gland to end of the geometry cup) and 75 mm in diameter at the widest point.

The prototype was designed to remove as many sensitive electronic components from the
deployment environment. Hence, the electronic circuitry consists of two main assemblies (Figure 4).

Figure 4. Schematic of the electronic components used with the prototype.

The Control Unit houses all the data acquisition and control electronics necessary to drive the
mechanism and read the data from an on-board sensor. All of the components used are COTS products.
A Cortex-M4F (180 Mhz rated core speed) based microcontroller was selected as it supports the C++

based programming language, has integrated digital-to-analogue conversion (DAC) functionality and
16-bit resolution analogue-to-digital conversion (ADC) functionality. It controls the stepper motor
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through a Pololu DRV8834 stepper motor driver (Pololu Corporation, Las Vegas, NV, USA) and
reads the output of the Bourns 6630S0D-C28-A103 continuous turn potentiometer (Bourns, Riverside,
CA, USA) in the viscometer device. Furthermore, it reads two buttons used to start and stop the
pre-tensioning and measurement procedures and controls the 74HC595 shift register used to display
the current state of the prototype through 4 LED indicators on the top panel of the Control Unit. All
of the Control Unit components are in a PLA housing. The overall dimensions of the housing are
100 mm × 80 mm × 53 mm. All of the units can be seen in Figure 5.

Figure 5. Experimental setup with the prototype. Devices from left to right: laptop, external power
supply, control unit, viscometer prototype device in a beaker immersed in a sample of TiO2.

The prototype is programmed with two procedures. One is to zero the mechanism to establish
the origin of the measurement. This procedure runs the geometry in the opposite direction of the
measurement rotation in a ramp-up of rotational velocity, which deflects the mechanism. When the
mechanism deflects beyond a pre-programmed value, the program switches to a ramp down to allow
the mechanism to settle, in what will be used as a zero position. This procedure serves to eliminate all
potential deflection and tensioning of the mechanism during deployment.

The second procedure is the measurement itself. The prototype is programmed to supply a
ramp-up of rotational velocities in integer values. The stepper motor supplies this velocity for a total
of 12 s, measuring the deflection of the mechanism in the last six seconds to allow the mechanism to
fully deflect before the measurement. In those six seconds, the microcontroller reads and saves the
value from the potentiometer every 400 ms, logs the time since it started the measurement procedure
and saves the rotational velocity value it is currently supplying to the geometry.

3.2. Calibration Procedure

A silicone viscosity standard oil (Paragon Scientific VIS-RT1K-600) was used as the calibration
material. A baseline measurement was performed using a Bohlin CVO100 rheometer with this oil,
using a logarithmically spaced shear rate ramp from 0.1 to 100 s−1 over 30 s, with a DIN standard V25
vane a C25 bob and cup configurations. Five runs were made with both geometries, with the averaged
shear stress results and the linear fits of data presented in Figure 6. The results are plotted as a function
of rotational velocity since the prototype device supplies rotational velocity in revolutions per minute.
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Figure 6. Shear stress as a function of the rotational velocity of silicone viscosity standard oil on a
commercial rheometer with: (a) C25 bob and cup configuration; (b) V25 vane and cup configuration.

The same calibration oil was then used with the prototype and all of its geometries. The prototype
supplied rotational velocities in the range of 1 to 100 rpm with the bob and 2 to 200 rpm with the vanes
(corresponding to roughly 1 to 100 s−1 on the commercial rheometer). The spacing is approximately
logarithmic, limited by the fact that the prototype can supply only integer values of revolutions per
minute. Five runs with the standard oil were performed for each geometry and the raw data were
fitted with linear functions, as illustrated by Figure 7.

Figure 7. Potentiometer bit output as a function of revolutions per minute of silicone viscosity standard
oil with the prototype with (a) C25 bob and cup configuration; (b) Selection of vanes.

The raw data collected with the potentiometer in the prototype indicates the torque applied to the
vane. The raw data were fitted with a linear function and, using data collected with the conventional
rheometer, the relationship between the raw data and expected shear stress based on the conventional
rheometer measurement was determined. Using this approach, the conversion constants between raw
data and shear stress were obtained for each geometry. Summary of calibration data can be seen in
Table 3.

Table 3. Summary of calibration data.

ISO Bob ISO Vane Vane 1 Vane 2 Vane 3

R2 of raw data fit (-) 0.9826 0.9970 0.9968 0.9786 0.9793
Slope of prototype raw data fit (-) 502.73 218.72 276.74 285.94 633.86

Slope of commercial rheometer data fit (Pa) 1.1614 0.7197
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Figure 8 summarises the calibration results for all five geometries. Vane 3 offers the best low shear
stress detection rate. However, the linearity is limited in the higher shear stress regions. Smaller vanes,
namely the ISO and Vane 1 geometries exhibit better repeatability and linearity in higher rotational
velocities, but as the torques are lower, low shear stress detection is relatively poor. The bob geometry
and Vane 2 exhibit the poorest results overall. With the bob geometry, this can be attributed to the
potentially highest sensitivity to axial misalignment of the bob and the cup, with the results being
affected by the uneven gap between the bob and the cup.

Figure 8. Shear stress results obtained with all five prototype geometries during the calibration
procedure, in comparison to a conventional rheometer.

All the geometries exhibit repeatable, systematic deviations from the expected linear response to
the silicone oil. Therefore, a compensation procedure was created to remove the nonlinearities. For all
the geometries, the relative deviation from the expected value of shear stress was plotted against
the shear stress measured with the prototype. Polynomial functions were fitted to the values of the
deviation as a function of the measured shear stress, as illustrated in Figure 9. To ensure a good fit
using low order functions, only data in the range necessary to be compensated were fitted. These
functions are subsequently used to determine the compensation value for the measured results. Actual
reported shear stress values are, therefore, defined as the measured shear stress minus the value of the
polynomial function at that measured shear stress.

It is important to note that the results obtained with this procedure must be used carefully and
that the compensation should only be used within the range of the fitted data, see Figure 9. The results
discussed below illustrate instances in which the procedure appears to be appropriate or not.

One aspect of using vanes in rotational rheology that needs to be considered when interpreting
the results are secondary flows and vortices appearing in the sample. Research on quantifying the
onset of secondary flows using vanes is limited and only applied to one phase materials. Onset of
Taylor vortices can be described using the Taylor number. For concentric cylinders, with the outer
cylinder stationary and the inner cylinder rotating, in the middle of the gap between the geometries,
the Taylor number Ta is often calculated as shown in Equation (2) [26].
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Ta =
ri(re − ri)

3Ω2
i

ν2 , (2)

where ν is the kinematic viscosity of the sample.

Figure 9. Non-linearity of the prototype with Vanes 1, 2 (first five values are off the scale and not used in
calculations) and Vane 3 using a silicone viscosity standard oil and fitting functions for compensation.

The onset of turbulent flow in the same setup as considered in the calculation of the Taylor number
is referred to as the rotational Reynolds number and can be calculated as illustrated in Equation (3).

Re =
ri(re − ri)Ωi

ν
. (3)

It is important to note that these parameters have been validated and used with concentric
cylinders and their validity for vanes with particulate suspensions has not been investigated in the
literature to date. Rotational rheology using vanes assumes the material shears along the blades of the
vanes, and thus vanes are often described using the same principles as concentric cylinders. Current
research and rheology laboratory equipment suppliers suggest that vanes are more susceptible to
both turbulent flows and Taylor vortices. However, it is apparent from Equations (2) and (3) that it
is assumed here that both vanes and bob geometries exhibit the same behaviour. Both Taylor and
Reynolds numbers have been calculated using the viscosity and angular velocity determined on
the rheometer with the calibration silicone oil and the dimensions of the geometries used with the
prototype. The results are illustrated in Figure 10.

65



Sensors 2019, 19, 3299

Figure 10. Potential indicators of secondary effects when measuring standard silicone oil: (a) Taylor
number for all geometries; (b) Reynolds number for all geometries.

3.3. Measurements with TiO2 Suspension

The titanium dioxide suspension is low viscosity, and the shear stress is below the detection level
of most geometries, with the exception of Vane 3. Using this geometry, as shown by Figure 11, the
uncompensated data aligns with the expected values. However, at approximately 80 rpm, the slope of
the curve changes and for high shear rate regions the prototype starts to report values higher than
expected. The most likely explanation is secondary flows starting to appear in the analysed material.
It is apparent that the compensation procedure is not appropriate for low viscosity sample such as
used here, as it causes under-reporting.

Figure 11. Shear stress results obtained with a rheometer, the prototype (using vane 3) and compensated
prototype values with titanium dioxide suspension.

The Taylor and Reynolds numbers calculated using the rheometer collected data, but with the
dimensions of Vane 3, are illustrated by Figure 12. Secondary flow effects appear to start at around
80 rpm, corresponding to Ta = 6 and Re = 7.5. These values are low, compared to reported thresholds
indicating the onset of secondary effects in current literature.
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Figure 12. Potential indicators of secondary effects when measuring titanium dioxide suspension with
Vane 3: (a) Taylor number; (b) rotational Reynolds number.

3.4. ZM Suspension

ZM suspension has a much higher viscosity in the low rotational velocity regions. It is also
demonstrably shear thinning. It is apparent from Figure 13 that the values obtained with Vane 2 and
Vane 3 are higher than expected. With Vane 2, this can be attributed to the relatively poor calibration
results. With Vane 3, some over-reporting is expected due to the non-linearity of the response of the
prototype. Vane 1 appears to offer the best approximation of the results without compensating the
results. All three geometries report shear thinning behaviour.

Figure 13. Shear stress results obtained with the rheometer and the prototype with Vanes 1, 2 and 3:
(a) Measured values; (b) Compensated values.

The compensation procedure does not seem appropriate for Vane 1 in this case, as it changes the
slope of the curve. Vane 2 is affected similarly. However, the values obtained with the prototype are
still higher than expected across the measurement range. The procedure works well for Vane 3, as the
slope of the data is still the same, but results are much closer to the expected values.

The potential onset of secondary flow seems to be delayed as opposed to the lower viscosity
sample. This is consistent with the calculations of the Taylor and Reynolds numbers, as increased
viscosity is expected to delay the onset of secondary flows. The secondary flow effects appear only with
Vane 3, from approximately 150 rpm, corresponding to Ta = 3.5 and Re = 6, as illustrated in Figure 14.
These values are similar to those obtained with titanium dioxide suspension.
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Figure 14. Potential indicators of secondary effects when measuring zirconium molybdate suspension
with Vane 1, 2 and 3: (a) Taylor number; (b) rotational Reynolds number.

4. Discussion and Conclusions

This paper has described the development of a relatively compact and robust device to analyse
the rheological properties of sludge without the need to sample materials. Analysis of a sludge test
material has been performed to create a suitable benchmark material for the rheological measurements
with the prototype.

The results presented in this paper show the advantages and disadvantages of the proposed
mechanism and measurement geometries to obtain shear behaviour data of suspensions. The prototype
device and all necessary electronics are all either COTS components, or 3D printed, and the total price
of the prototype is less than £250. The device also only requires freeware programs to run and transfer
data to a PC.

The calibration procedure shows the non-linearity of all geometries. Non-standard geometries
offer responses that can be compared with ISO/DIN standard geometries. Larger geometries offer
beneficial low shear stress responses, making them suitable for low viscosity samples and potentially
for yield stress analysis. The prototype is able to reproduce measurements of lower viscosity suspension
samples using the calibration and compensation methods proposed in this article.

No secondary flow effects were observed with any of the geometries using the 1Pa·s silicone
standard oil. Potential secondary flow effects were observed in the suspensions at angular velocities
over approximately 100 rpm. However, as the tool is being developed for ascertaining low shear rate
behaviour, these effects are not prohibitive. Further investigation would be necessary to quantify the
onset of these effects. The present results indicate that secondary flows might start appearing at very
low Taylor and rotational Reynolds numbers <10.

Vane 3 offers the most comparable results, with a compensation procedure appropriate for the
zirconium molybdate sample. Shear-thinning behaviour was correctly reproduced with all three
vanes on the ZM sample, and the compensation procedure lowers the deviation from the expected
results considerably. A more advanced mathematical model could further improve the compensation
procedure. The performance indicates that the prototype would be suitable for deployment, especially
considering the low manufacturing costs and the potential to reuse components. Vane 3 is the obvious
candidate as it requires the least material to be present in the deployment area and provides the most
accurate and consistent results. However, it also requires careful interpretation of high shear rate
results due to the possibility of the onset of secondary flows.

The device is compact enough to fit through a 75 mm opening, maximising deployment capabilities.
The deployment of the device can be accomplished in various ways, depending on the deployment
area. The first option is manual deployment, which would be suitable for smaller containers that
can be approached by operators. The device would simply be lowered into the container using an
extension rod. The second option relates to the assessment of settled bed behaviour in larger tanks.
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Multiple underwater remotely operated vehicles (ROVs) have been designed and deployed on various
sites and are capable of carrying payloads such as the proposed device [27]. The prototype could be
carried and detached from the carrying platform when it reaches the required position. Lastly, for
remote tanks, pipe crawler and tracked robots have been used to carry sensors and other payloads and
these platforms could deploy the device in harder to access areas [28,29]. In all instances, the tether
would serve not only a data transferring function but also as a means of recovery of the device from
these areas. The device is light (0.5 kg in the laboratory scale configuration), and the casing is robust
enough to support a recovery procedure using a tether. The simple assembly would make it easy to
reuse the internal components if necessary and decontaminate the outer casing, cups and geometries
after use. If the device cannot be decontaminated, the low price supports the case to use the device
only once before disposal.

Potential future development of the device could include lowering friction in the mechanism, which
would improve low shear stress detection and repeatability of the measurements. A more complex
mathematical model for the non-linearity compensation would be beneficial for the interpretation of
the results. Lastly, understanding the onset of secondary flows in various particulate suspensions
would be necessary to increase the operating range of the instrument.

Overall, the precision and performance of the proposed mechanism makes it suitable for
preliminary analysis of sludge in situ. The capability of the current stage of the prototype would make
it useful for determining the rough properties of the materials, to inform further decisions as necessary
in the upcoming steps of Post Operational Clean Out (POCO).
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Abstract: A low voltage (−20 V) operating high-energy (5.48 MeV) α-particle detector with a high
charge collection efficiency (CCE) of approximately 65% was observed from the compensated
(7.7 × 1014 /cm3) metalorganic vapor phase epitaxy (MOVPE) grown 15 µm thick drift layer gallium
nitride (GaN) Schottky diodes on free-standing n+-GaN substrate. The observed CCE was 30% higher
than the bulk GaN (400 µm)-based Schottky barrier diodes (SBD) at −20 V. This is the first report of
α–particle detection at 5.48 MeV with a high CCE at −20 V operation. In addition, the detectors also
exhibited a three-times smaller variation in CCE (0.12 %/V) with a change in bias conditions from
−120 V to −20 V. The dramatic reduction in CCE variation with voltage and improved CCE was a
result of the reduced charge carrier density (CCD) due to the compensation by Mg in the grown
drift layer (DL), which resulted in the increased depletion width (DW) of the fabricated GaN SBDs.
The SBDs also reached a CCE of approximately 96.7% at −300 V.

Keywords: high-energy α-particle detection; low voltage; thick depletion width detectors

1. Introduction

The measurement of the energy spectrum of charged particles plays an important role in studying
the fusion reactions of nuclear reactors and in particle physics research conducted at facilities like the
Large Hadron Collider. Gallium Arsenide (GaAs) has been the primary contender as an alternative
to Si-based detectors. However, due to its low displacement energy (Ed) of 10 eV [1], the lifetime
of the GaAs detector is limited. Low Ed results in the easier displacement of Ga and As atoms
from their respective crystal lattice, thereby weakening their lattice structure. Gallium Nitride (GaN)
was considered as an alternative in high-energy charged particle detection due to its higher Ed

(20 eV) [1]. The high Ed of GaN would improve the radiation tolerance of the GaN detector, as reported
by B.D. Weaver et al., by comparing the radiation damage on GaN and GaAs [2]. The report also
determined that GaN could withstand twice the dosage in comparison to GaAs. GaN also has a larger
bandgap of 3.4 eV [3] in comparison to GaAs (1.42 eV) and Si (1.12 eV), which enables GaN detectors to
operate at higher temperatures. The superior material characteristics of GaN have encouraged multiple
research groups in exploring applications of GaN devices in radiation detection. GaN devices have

Sensors 2019, 19, 5107; doi:10.3390/s19235107 www.mdpi.com/journal/sensors71
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performed exceedingly well as α-particle detectors [4–13] and neutron detectors [14–17]. The structure
of these GaN detectors can be classified into three types, namely double Schottky contact (DSC)
structure, mesa structure and sandwich structure.

The first ever GaN alpha particle detector was realized by Vaitkus et al. [4] with the DSC structure.
The detector had a 2 µm GaN epi-layer, which resulted in the detection of 410 keV alpha particles with a
92% charge collection efficiency (CCE). Similarly, other research groups have successfully implemented
different types of mesa structures and achieved the higher CCE of 100% due to a lower trapping
impurity concentration. Compared to DSC structures and mesa structures, sandwich structures
have the potential to generate the thickest depletion widths (DWs), which enables the detection
of higher energies. The development of the sandwich structures of GaN detectors was primarily
limited by the unavailability of free-standing substrates. With the improvement in the GaN growth
technologies, researchers have been able to produce high-quality free-standing GaN substrates and
epitaxial films. This has led many research groups to explore the sandwich structure for GaN-based
radiation sensors [4–6,8]. GaN detectors with thin epitaxial films detect only fractions of the typical
energies emitted by actinides (4 MeV to 6 MeV), such as U-235 (4.268 MeV), 241Am (5.48 MeV) and Pu
(4.67 MeV). While different thicknesses of epitaxial drift layers (DLs) (2 µm to 12 µm) were tested, they
could only detect energies in the range of 0.5 MeV [4] to 4.5 MeV [5], which is on the lower end of
detection requirements. To detect higher energies, researchers increased the DWs of the detector by
fabricating them on bulk GaN substrates. These detectors generate a 27 µm DW at very high voltages
(−550 V) to detect high energies (5.48 MeV) [6]. The high voltage required to generate a thick DW
in bulk GaN-based detectors increases both the complexity and size of the detector, thus severely
affecting its portability. In this work, for the first time we design and fabricate GaN-on-GaN Schottky
barrier diodes with compensated metalorganic vapor phase epitaxy (MOVPE) grown GaN DL to detect
5.48 MeV α-particles (241Am source), even at −20 V.

2. Design of α-Particle Detector

To design an α-particle detector that works in low-bias conditions and detects high α-particle
energies, we employed GaN-on-GaN Schottky barrier diodes (SBDs) with a sandwich structure
(see Figure 1). The thin epitaxial GaN layer was very lowly doped, resulting in a thick DW, while the
highly doped substrate gave mechanical strength to the detector and formed a good ohmic contact,
which helped to reduce the biasing voltage needed.
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The thickness of the DL plays an important role in determining the maximum thickness of DW,
thereby the maximum energy that can be detected. The DL required to detect 5.48 MeV emitted by
241Am was calculated through Stopping and Range of Ions in Matter (SRIM) simulations by considering
GaN density (6.1 g/cm3) and α-particle mass (4.003 amu). Figure 2 shows the SRIM-calculated range of
the thickness required in GaN to absorb α-particles with energies between 10 keV and 6 MeV. From
this graph, we found that we needed a 14.54 µm DW to detect α-particles with 5.48 MeV. Hence, SBDs
with a DL of minimum 15 µm were required for 5.48 MeV α-particle detection.
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The 15 µm thick GaN DL was grown by MOVPE at 1080 ◦C (100 kPa) on hydride vapor
phase epitaxy (HVPE)-grown free-standing GaN substrates with a charge carrier density (CCD) of
1 × 1018/cm3. The growth rate of 3.5 µm/h was maintained during the growth. The grown DL exhibited
low CCD, which was measured using Van der Pauw, Hall and secondary ion mass spectrometry (SIMS)
analyses (See Figure 3 and Table 1). From SIMS analysis, the concentrations of different elements
present were extracted. While the measured values of O were below the detection limit (3 × 1015 /cm3),
all C, Si, Mg and Fe were present. For the calculation of CCD, we list the extracted concentrations of Si
and Mg in Table 1. Though the calculated CCD from SIMS was nominally negligible, the calculated
values from SIMS were in a similar range of CCD measured by Hall measurements. Panchromatic
cathodoluminescence (CL) measurements were also performed to count the threading dislocation
density (TDD), which was an average of 2.65 × 106/cm2 on the MOVPE-grown GaN DL.Sensors 2019, 19, 5107 4 of 12 
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Table 1. Concentration of Si and Mg measured through SIMS with the corresponding CCD extracted
from SIMS and Hall measurements.

Si (ND)
(/cm3)

Mg (NA)
(/cm3)

CCD = ND − NA
(/cm3)

SIMS Hall

154.79 × 1014 147.09 × 1014 7.7 × 1014 7.5 × 1014

3. Detector Fabrication and Measurement Setup

3.1. Detector Fabrication

The fabrication of SBDs started with a thorough cleaning of the GaN-on-GaN wafer with piranha
solution and organic cleaning (acetone and isopropanol) and dipping in buffered oxide etchant (BOE)
for two minutes to ensure the formation of an excellent metal-semiconductor interface [18]. After the
surface preparation, the ohmic contact was formed by depositing Ti/Al/Ni/Au (20/120/40/50 nm) on
the N-face (backside) of the wafer, followed by rapid thermal annealing at 775 ◦C for 30 s in N2

ambience. The selection of Ti was to form a low-resistance contact as Ti helps generate large amounts
of N-vacancies after annealing [18], which increases CCD and promotes tunneling. The second element
Al was used to absorb excessive Ti material [19], while Ni was used as a barrier metal, which confines
the downward diffusion of the fourth layer (Au) [20]. The top layer of Au was required to protect
layers below from oxidization [21]. Multiple SBDs of different sizes were then fabricated by depositing
Ni/Au (50/1000 nm) on the Ga-face of the wafer. Ni was selected as the first layer due to the difference
in work functions of Ni (5.04 eV) and GaN (4.2 eV) [22], which helps form Schottky contact. After the
formation of SBDs, electrical characterization was performed, followed by the dicing of the wafer into
individual SBDs. Each SBD was then mounted on a dual in-line package (DIP) by connecting the
ohmic contact of the SBD and the ground of the DIP with conductive Ag paste. The Schottky contact
was wire bonded using 20 µm diameter Au wires (see Figure 4).Sensors 2019, 19, 5107 5 of 12 
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3.2. α-Particle Measurement Setup

241Am was used as a source for the generation of 5.48 MeV α-particles with an active area of 7 mm2

placed at 8 mm from the detector (as shown in Figure 5). The α-particle source had radionuclides
deposited onto a stainless-steel disc of 16 mm diameter, which was held in place by a plastic holder.
The GaN SBD detector was connected to a pre-amplifier, amplifier and signal-processing circuit to
detect the change in the current flowing through the SBDs due to the interaction with an α-particle.
A Si surface barrier detector from ORTEC was used as a reference, along with an ORTEC-671 amplifier
for energy calibration.
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4. Results and Discussion

4.1. Current–Voltage (I–V) Characteristics

The I–V characteristics were measured using a B1505A power device analyzer at room temperature.
Mg-compensation of the GaN DL helped to reduce the CCD by two orders of magnitude, from
4.6 × 1016/cm3 to 7.7 × 1014/cm3. The huge reduction in CCD resulted in the increase of the breakdown
voltage by approximately three times, from 462 V to 1480 V, and the reduction of the reverse
leakage current by approximately three orders (see Figure 6). A very low reverse leakage current of
3 pA at −20 V bias is low enough for event-by-event counting to acquire α-particle energy spectra.
The SBD also exhibited an average ideality factor and Schottky barrier height of 1.03 and 0.79 eV,
respectively [23–25]. The near-unity ideality factor signified an excellent metal-semiconductor interface
at the Schottky-semiconductor contact [26]. Similarly, the extracted barrier height of 0.79 eV was
similar to other reported Ni-based Schottky contacts [27,28].
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4.2. Capacitance–Voltage (C–V) Characteristics

C–V measurements were also performed to extract the DW of the GaN-on-GaN SBDs. No significant
variation in capacitance value was observed for a voltage range of −20 V to 5 V (see Figure 7), which
signifies the complete depletion of the DL [10,29].
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DW can be extracted from the C–V characteristics using Equation (1):

C = ε0εr(A/DW) (1)

A uniform DW of approximately 15 µm was measured at all voltages (−20 V to 5 V), which implies
the complete DL is depleted even at 0 V.
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4.3. Detection of α-Particle Spectra

The performance of an α-particle detector is primarily defined by its CCE. CCE is the ratio of
detected energy and incident energy, which is dependent on the DW of the detector. The acquired data
was calibrated using a standard Si detector as a reference. In this process, the fabricated GaN detector
and the reference Si detector were connected to the same measurement setup separately, without
changing the settings. The final detected energy is described by the following equation [6]:

E= E0 + WGaN/WSi × k × Channel (2)

where E is the absorbed energy; E0 represents energy loss at the metal interface, which was estimated
based on the Transport of Ions in Matter (TRIM) simulation to be 183 keV for an Au/Ni (1000/50 nm)
contact; k is a calibration factor of the reference Si detector; WGaN (8.9 eV) [30] and WSi (3.6 eV) are the
energies required to generate an electron-hole pair in GaN and Si, respectively.

4.3.1. Variation in α-Particle Spectra-Air vs. Vacuum

Figure 8 shows the comparison of the energy spectrum of GaN detectors biased at −100 V
measured in a vacuum and in air. About a 7% reduction in CCE was observed when the detectors
were measured in air. When an α-particle passes through the vacuum, all its energy is transferred
to the detector, resulting in high-energy detection. When α-particles traverse through air, scattering
results in loss of energy. This loss in α-particle energy results in a lower CCE. For practical applications,
portability and cost are important factors and the need for a vacuum restricts portability and also
increases the cost of the system. While the presence of air results in a 7% drop in CCE, compensated
SBDs could still be considered for practical applications.
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4.3.2. Low Voltage α-Particle Detection

The α-particle energy spectra obtained under low-bias conditions (−20 to −80V) are shown in
Figure 9a. It can be observed that with the decrease in applied bias, the detected energy also decreases.
The decrease in detected energy is due to the reduction in DW at lower bias conditions. Reduced DW
decreases the path length of the α-particle inside DW, thereby limiting the ability to detect high-energy
α-particles. To check detector performance uniformity, four detectors were tested under similar
conditions and only a small variation of approximately 2% was observed in measured CCE. Figure 9b
shows the variation of CCE with the voltage of our detectors compared with other published bulk
GaN detectors (sandwich structures). Our detectors exhibited very low variation in CCE (7%) with a
change in voltage (−20 V to −80 V) when compared to the variation shown by a 450 µm thick bulk GaN
detector (32.7%) [6] and a 500 µm thick bulk GaN detector (58.1%) [7]. The low variation in CCE is
mainly due to the presence of a thick DW even at low-bias conditions, which was achieved by reducing
CCD by the compensation of DL.
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Figure 9. (a) Acquired α-particle spectra of GaN SBDs for different applied voltages (−20 V to −80 V)
and (b) Comparison of measured charge collection efficiency (CCE) of SBDs vs. applied voltages (−20 V
to −80 V) with state-of-the-art reported values.

4.3.3. High Voltage α-Particle Detection

Our detectors were also biased at higher voltages to obtain a thicker DW leading to a higher CCE,
similar in the range reported by others using bulk GaN detectors [6,7]. Our detector performance
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improved from 72% at −80 V to 96.7% at −300 V (see Figure 10a), which is the lowest reported voltage
at which 5.48 MeV α-particle was successfully detected. The high-voltage performance of these
detectors was compared with other published α-particle detectors. Of the many published reports,
only Q. Xu et al. reported a high CCE of 100% while detecting a 5.48 MeV α-particle. However, their
detectors need to be biased up to −550 V, which is 250 V higher than our detectors (see Figure 10b).
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due to the reduction in the straggling (statistical distribution of energy losses) of α-particles by 
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Figure 10. (a) Acquired α-particle spectra of GaN SBDs for different applied voltages (−100 V to −300 V)
and (b) Comparison of measured CCE of SBDs vs. applied voltages (−100 V to−550 V) with state-of-the-art
reported values.

The detector’s energy resolution was extracted to be 71 keV from the full wave at half maximum
(FWHM) of the α-particle spectra measured at −100 V. The measured energy resolution is 30% better
than other reported bulk GaN-based detectors (121 keV) [6]. The improved energy resolution was due
to the reduction in the straggling (statistical distribution of energy losses) of α-particles by placing
the detector normal to the source. SRIM simulations were also performed to study the effect of the
incident angle on energy resolution [27] (see Figure 11). An increase in the angle between the incident
α-particle and the surface of the detector increases the FWHM of the detected spectral energy from
97.8 keV to 163.8 keV. This increase in FWHM is due to the increase in straggling when the source is
placed at an angle to the detector, resulting in a reduction of straggling.
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4.4. Benchmarking

Figure 12 compares the low voltage performance of GaN-on-GaN SBD detectors with the
state-of-the-art α-particle detectors reported so far, as a function of detected energies. About 30%
higher CCE was observed in the compensated 15 µm thick GaN DL-based α-particle detectors at −20 V.
In addition, our detectors also exhibited 96.7% CCE at −300 V, which is 250 V lower than the published
literature. These promising results pave the way to achieve high CCE, low operating voltage and
portable α-particle detectors.
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5. Conclusions

In conclusion, we demonstrated a low-voltage (−20 V) operating 5.48 MeV α-particle detector with
a record-high CCE of 65% using 15 µm thick compensated MOVPE-grown GaN DL on HVPE-grown
bulk n+-GaN substrate. The measured CCE was 30% higher than the previously reported values
at −20 V. The detectors also exhibited a high CCE of 96.7% at −300 V and the spectral resolution of
71 keV, which was 250 V lower and 30% better than the previously reported values. The improved
performance in α-particle detection was due to the formation of a thicker DW, even at low voltages.
The demonstrated vertical GaN-on-GaN SBD with compensated DL for portable α-particle detectors
presented great potential to work even at low voltages.
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Abstract: We report the γ-ray ionizing radiation response of commercial off-the-shelf (COTS)
monolithic active-pixel sensors (MAPS) with different integration times and gains. The distribution
of the eight-bit two-dimensional matrix of MAPS output frame images was studied for different
parameter settings and dose rates. We present the first results of the effects of these parameters on the
response of the sensor and establish a linear relationship between the average response signal and
radiation dose rate in the high-dose rate range. The results show that the distribution curves can
be separated into three ranges. The first range is from 0 to 24, which generates the first significant
low signal peak. The second range is from 25 to 250, which shows a smooth gradient change with
different integration times, gains, and dose rates. The third range is from 251 to 255, where a final
peak appears, which has a relationship with integral time, gain, and dose rate. The mean pixel value
shows a linear dependence on the radiation dose rate, albeit with different calibration constants
depending on the integration time and gain. Hence, MAPS can be used as a radiation monitoring
device with good precision.

Keywords: COTS commercial MAPS; radiation response; integral time; gain

1. Introduction

In a nuclear accident or in a strong radiation field, the detection of high dose-rate radiation
and wide-range γ-rays is expensive and inefficient [1]. The use of commercial off-the-shelf (COTS)
complementary metal oxide semiconductor (CMOS) monolithic active-pixel sensors (MAPS) as a
γ-ray radiation detector has been reported. Martín Pérez et al. observed that the radiation response
characteristic can be used for radiometric imaging [2], and that MAPS can be used to classify particles
and the sensor is sensitive to soft X-rays [3]. Galimberti and Wang reported successful radiation
detection using commercial off-the-shelf MAPS [4]. Ma et al. used Advanced RISC Machine (ARM)
microcontrollers and ZigBee modules in combination with MAPS to detect low-energy radiation [5,6].
Arbor et al. reported a linear relationship between the MAPS radiation response signal, and the dose rate
of γ-ray radiation field was proven [7]. Early reports on the application feasibility of using smartphones
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as a radiation measure detector have been published [8], Wei et al. also reported using mobile phones
with MAPS cameras for radiation detection, which confirmed that after calibration, smartphones can
be used as γ-ray measuring devices and for radiation safety control of high-level radioactive sources
such as industrial radiography, γ-ray irradiation facilities, and medical treatment [9–11]. Another
report focused on determining the heavy particle effect using an active-pixel sensor, which produced a
significant radiation response from a single event [12]. However, few papers report the effect of setting
the parameters of a MAPS video surveillance camera on the radiation response signal in the strong
γ-ray radiation range. According to the MAPS working process, the integral time and gain of the set
parameters most directly affect the radiation response signal.

In this study, we examined the distribution of eight-bit two-dimensional matrix of the MAPS
output frame image using different setting parameters and dose rates. The image data are expressed in
the form of a distribution curve. The abscissa is the pixel value, and the ordinate is the count of pixels
of the pixel value in the image. We present the first result of the effect of different parameter values on
the response signal and the linear relationship between the statistical value of the response signal and
radiation dose rate in the high-dose rate range.

The rest of this paper is organized as follows: The experimental setup and the data processing
methods are detailed in Section 2. The experimental results and the data processing are described in
Section 3. Our conclusions are presented in Section 4.

2. Experiments

2.1. Initial Parameters of Image Sensors

In the experiments, we used COTS CMOS MAPS (IMX 322 LQJ, Sony Corporation, Tokyo, Japan, )
with 6.4 mm pixel-type and approximately 2.43 M effective pixels, which are low cost (about USD $35),
have low background noise, and are easy to obtain. The sensor provides an 8-bit response for each
pixel. The chips are operated with 2.7 V, 1.2 V digital, and 1.8 V interface triple power supplies. All the
COTS sensors were shaded with a layer of opaque plastic material and placed inside a homemade dark
box to prevent any interference from visible light and to maintain constant room temperature during
video recording. The test sensor was employed with no lenses and was operated in monochromatic
mode with a rolling shutter. The integration time of the sensor is adjustable from 1/25 to 1/10,000 s.
The parameter settings of the sensors were controlled by software, and video was recorded at a frame
rate of 25 frames per second (fps) in a video format and streamed to hard disk. The integration time
and gain of the sensors were manually adjusted; all the autoregulation and noise reduction functions
and the white balance were turned off. Based on previous research results, radiation damage can be
ignored when the radiation dose is less than 30 Gy [13] for the MAPS with a 4 T structure used in this
study. The background noise with pixel values between 1 and 5 is the most common before irradiation,
and the number of pixels with values greater than 10 is less than 0.2% of the total. The picture of the
MAPS module samples is shown in Figure 1.

Figure 1. Picture of the monolithic active-pixel sensors (MAPS) module.
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2.2. Experimental Setup

A cylindrical 60Co source from the China Institute of Atomic Energy (CIAE, Beijing, China) was
used in all experiments. 60Co provides γ-rays of 1.17 and 1.33 MeV. The average activity of the source
was 130 kCi, whereas the radiation non-uniformity was less than 5%. The ambient temperature
during sensor testing was 20 ◦C. The CMOS MAPS sample sensors were irradiated with dose rates
ranging from 51.61 to 479.24 Gy/h, which were obtained from low to high dose rates using a movable
slider. The dose rates at each point on the slide track were calibrated. The total ionizing dose was
measured using a radiochromic film dosimeter, and the dose rate was calculated as the ratio of the
total ionizing dose to the irradiation time. The experimental setup is shown in Figure 2. The test
sensors were operated nearly continuously during all experiments. Signal data were transmitted using
a 4800LX cable, and the maximum video bitrate was 13 Mbps. Video files were recorded at 25 fps by a
computer during all experiments, and the data were imported using MATLABR 2014a (Math Works Inc.,
Natick, MA, USA) and then split into individual frames. During experiments, the systems controlling
aperture, shutter, gain, and white balance were set to manual, and noise reduction functions and
exposure compensation functions were turned off. All the data were collected before the dose rate
reached 30 Gy.

Figure 2. Experimental setup: (a) Schematic view of the experimental system and (b) picture of the
experimental setup.

The recorded video data were processed on a PC by MATLAB. Each frame of the video was
transformed into an 8-bit gray value matrix for analysis. The 8-bit gray value is the sensor in

85



Sensors 2019, 19, 4950

analog-to-digital converter (ADC) units, and the range of gray value was from 0 to 255. To obtain
more accurate statistics, radiation response events in 100 consecutive frames were counted together.
The mean pixel value (Sk) of the selected images at the radiation dose rate of k was calculated as follows:

Sk =
1

MN

j=M∑

j=1

i=N∑

i=1

(
Ei, j − Ii, j

)
(1)

where Ii,j is the pixel value of the ith pixel in the jth frame before irradiation, Ei,j is the pixel value of
the ith pixel in the jth frame at the radiation dose rate of k, M is the number of frames, and N is the
pixel count.

3. Discussion

Figure 3 shows the distribution of the count fraction of pixel signals at a dose rate of 51.61 Gy/h
and using two gains, 6 and 42 dB, in frames captured with integration times ranging from 1/8000 to
1/25 s. For a gain of 6 dB (Figure 3a), the first peak corresponds to gray levels below 15. The position
of peak shifts to larger pixel values with increasing of integration time, which indicates that more
pixels yield stronger pixel signals due to exposure to more photons. However, no obvious change in
the position of peak for the larger gain of 42 dB (Figure 3b) was observed. For both amplifications,
the height of the pixel value distributions between 75 and 200 followed the integration time; longer
integration times yield higher count fraction distributions. The count and maximum value of peaks in
that range increased with larger integration time, and curves at 42 dB were smoother than those at
6 dB with the exception of integration times of 1/100 and 1/240 s. This indicates that the distribution for
lower integration times and larger gains is smoother, which indicates that a quantization issue exists in
the sensor. We noticed that a significant peak exists in the range larger than 250; the peak is narrower
and smaller at the larger gain of 42 dB. The shape of radiation response events has been reported [13],
and this peak might be caused by some saturation and supersaturation radiation response events
in frames.

Figure 3. Distribution of the count fraction of pixels at a dose rate of 51.61 Gy/h and (a) a gain of 6 dB
and (b) a gain of 42 dB in frames captured at using integration times ranging from 1/8000 to 1/25 s.

We calculated the average pixel value in Figure 3 in the range between 75 to 250 for each integration
time. The relationship between the average pixel value and integration time at the irradiation dose
rate of 51.61 Gy/h is plotted in Figure 4. Figure 4 shows that for integration times larger than 1/480 s,
a linear relationship exists between the average pixel value and integration time. The linearity for 6 dB
is better than that of 42 dB.
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Figure 4. Average pixel value as a function of the integration time for a gain of 6 and 42 dB during
irradiation at 51.61 Gy/h.

The distribution of count fractions of pixels at a gain of 6 dB and at six irradiation dose rates from
64.48 to 265.22 Gy/h at three integration times of 1/100, 1/240, 1/480 s are shown in Figure 5. The pixel
value was calculated using Equation (1). As the irradiation dose rate increases, the maximum value
increases, and the number of pixels with values larger than 25 increases. A peak for pixel signals larger
than 250 occurred at irradiation doses rate larger than 200 Gy/h. This peak occurred at all measured
integration times.

Figure 5. Cont.
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Figure 5. Distribution of the count fractions of pixels at a gain of 6 dB for six different dose rates in
frames captured at integration times of 1/100, 1/240, and 1/480 s: (a) 64.48, (b) 95.00, (c) 119.5, (d) 153.41,
(e) 200.32, and (f) 265.22 Gy/h.

We calculated the average pixel signal in Figure 5 in the range between 25 to 250, i.e., excluding
the peak around 250. The relationship between mean pixel value and dose rate at the integration times
of 1/100, 1/240, and 1/480 s is shown in Figure 6. The linearities of the fit of 1/100, 1/240, and 1/480 s are
0.9985, 0.9986, and 0.9964, respectively.

Figure 6. Average pixel signal as a function of irradiation dose rate for integration times of 1/100, 1/240,
and 1/480 s at a gain of 6 dB.
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Figure 7 shows the distribution of count fractions of pixels at a gain of 6 dB and integration times
of 1/240 and 1/480 s at dose rates ranging from 64.48 to 265.22 Gy/h. The pixel value was calculated
using Equation (1). The position of the peak shifts to larger pixel values with increasing dose rates as
more pixels receive hits and even multiple hits. This is particularly clear for the first peak, i.e., the peak
with values below 25. Figure 7 compares the effects of dose rate changes on the distribution under
different integration times. The peak locations of these curves in the range larger than 25 also depend
on the integration time. The same peak structure was observed for both integration times, but the peak
locations move with integration time.

Figure 8 shows the distribution of the count fraction of pixels at an integration time of 1/100 s at
four dose rates captured using gains of 6, 12, 24, and 42 dB. The figure compares the effect of adjusting
the gain on the statistical curve under different dose rates. The graphs show that for higher gains,
more pixels have higher signals, and higher radiation dose rates yield higher pixel values. All graphs
display peaks in the same location irrespective of the gain. This indicates issues with the sensor.

Figure 7. Distribution of the count fraction of pixels at a gain of 6 dB and for two integration times
captured at dose rates ranging from 64.48 to 265.22 Gy/h.

Figure 8. Distribution of the count fraction of pixels for an integration time of 1/100 s at four dose rates
captured using gains of 6, 12, 24, and 42 dB.

89



Sensors 2019, 19, 4950

Figure 9 shows the distribution of the count fraction of pixels at an integral time of 1/100 s captured
at different dose rates ranging from 51.61 to 119.50 Gy/h, and measured using gains of 12, 24, and 48 dB
using dose rates ranging from 51.61 to 479.24. For 6 dB, we observed that the peak at low pixel values
moves to the right with increasing dose rate. However, this was not observed for any of the higher
gains. Figure 9 shows that larger gains result in more pixels with larger values. Peaks are generated at
the same positions for gains from 12 dB. This indicates a quantization issue in the data as the same
photons should yield higher signals at higher gains.

Figure 9. Distribution of the count fraction of pixels at an integration time of 1/100 s for four values
of the gain captured at dose rates ranging from 51.61 to 119.50 Gy/h (from b to d), and from 51.61 to
479.24 Gy/h (a).

In summary, we can control the distribution range of pixel values between 0 and 255 by adjusting
the integration time or gain and we can separate the distribution curves into three ranges. The first
range is 0 to 24, which incorporates the first significant peak. The second range is 25 to 250, which shows
a smooth gradient change with different integration times, gains, and dose rates. The last range is 251
to 255, where a peak occurs that is related to integration time, gain, and dose rate. Since the γ-ray dose
rate detection relies on the pixel values of frames, studying the response signals is crucial. The results
show that a more stable response is obtained for larger gains and lower integral times. However,
a lower integral time means less sampling efficiency of the radiation response signal and a smaller
dynamic range, which is an important factor affecting the detection accuracy and efficiency.

Figure 10 shows the dependence of the mean pixel signal on the irradiation dose rate for gains of
6, 12, 24, and 42 dB at an integration time of 1/25 s, where only pixels with signals ranging between 25
to 250 in Figure 9 are included. The pixel value was calculated using Equation (1). The linearity of
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the linear fit of 6, 12, 24, and 42 dB are 0.9997, 0.9996, 0.9990, and 0.9998, respectively, demonstrating
good linearity.

Figure 10. Mean pixel value as a function of the irradiation dose rate for gains of 6, 12, 24, and 42 dB at
an integration time of 1/25 s.

4. Conclusions

In this work, we investigated the effect of integration time and gain of COTS MAPS on ionizing
radiation detection. We discussed the potential use of MAPS at a high dose rate and wide range γ

radiation detector. The pixel response distribution range of pixel value can be controlled by adjusting
the integration time or gain from 50 to 265 Gy/h. The distribution curves can be separated into three
ranges. The first range is 0 to 24, which generates the first significant peak. The second range is from 25
to 250, which shows a smooth gradient change with different integration times, gains, and dose rates.
The last range is 251 to 255, which might be caused by some saturation and supersaturation radiation
response events in the frames. This peak occurs for all measured integration times at an irradiation
dose rate ranging from 51.61 to 265.22 Gy/h. More pixels with larger pixel values are generated with
larger dose rates, which shifts the position of peak to larger pixel values. The mean pixel value shows a
linear dependence on the radiation dose rate, albeit with different calibration constants depending on
the integration time and gain. Hence, MAPS can be used with good precision as a radiation monitoring
device under different settings for different doses.
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Abstract: This article presents the possibility of using a scintillation detector to detect partial discharges
(PD) and presents the results of multi-variant studies of high-energy ionizing generated by PD in air.
Based on the achieved results, it was stated that despite a high sensitivity of the applied detector,
the accompanying electromagnetic radiation from the visible light, UV, and high-energy ionizing
radiation can be recorded by both spectroscopes and a system commonly used to detect radiation. It is
also important that the scintillation detector identifies a specific location where dangerous electrical
discharges and where the E-M radiation energy that accompanies PD are generated. This provides a
quick and non-invasive way to detect damage in insulation at an early stage when it is not visible
from the outside. In places where different radiation detectors are often used due to safety regulations,
such as power plants or nuclear laboratories, it is also possible to use a scintillation detector to identify
that the recorded radiation comes from damaged insulation and is not the result of a failure.

Keywords: radiation sensing technologies; partial discharges; scintillations; air insulation; photomultiplier

1. Introduction

The earlier a source of partial discharges (PD) is detected, the faster it can be reacted to,
thus reducing the probability and cost of failure. PD detection is the recording of signals from
phenomena associated with discharges. Early detection of electrical discharges in electrical devices
and wires is an important part of diagnostics in electrical engineering. The subject area of this paper
relates to high-voltage diagnostics with respect to PD. Understanding the phenomenon of electric
discharges, their occurrence mechanisms, and propagation is a significant factor that helps to improve
the diagnostics of energy devices. Research studies associated with electrical discharges increase
the overall knowledge of this dangerous phenomenon and contribute to the development of the
branch. Currently, in the high-voltage diagnostics of insulation systems, several methods are applied,
which allow for the assessment and evaluation of PD. The most widely-known and commonly used
research methods are the electric [1] and Ultra High Frequency (UHF) [2–5] methods, dissolved
gas analysis (DGA) or Density Funcitonal Theory (DFT) [6,7] method, and the acoustic emission
method [8,9]. During the occurrence of PD, air ionization and ozone production occur. Ozone testing
can be effective, in itself, to assess PD levels [10]. The fact that the oxygen molecules are ionized
shows the appearance of high-energy E-M radiation. Technological progress in optics enabled the
development of a relatively new method for identification and localization of PD in air, with regards
to the spectroscopy method [11,12]. Spectrophotometer enables for a more precise determination of
the location where PD occurs. However, there is a gap in research on PD, both in the energy balance
and in the phenomena related to the generation of PD. There are studies suggesting the generation of
electromagnetic radiation during PD [13,14]. They can have a significant impact both on energy loss
and safety, but also on the results of measurements of other values measured during PD detection.
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They may also have an impact on faster wear of electrical insulation in cables or on faster degradation
of the cable itself. Some articles describe the stimulation to generate PD with X-ray pulses [15,16].
The discharges themselves generate X-rays. All of this leads to the destruction of the insulation. It can
also cause a false interpretation of the E-M radiation source in objects such as nuclear laboratories and
nuclear power plants. In such cases, it is worth knowing that the source of the registered radiation
is PD. Some articles describe PD that occur in fission chambers [17]. This article and the studies
presented in it fill this gap. Additionally, with regard to the influence of radiation on the conductors
and their insulation.

In this paper, we consider the emission of high-energy electromagnetic radiation. The main aim is
to investigate if and how much high-energy radiation is emitted by PD. Based on previous studies,
it was stated that emission of high-energy ionizing radiation constitutes a significant phenomenon
occurring during the generation of PD in oil.

The condition of the electric discharge is the presence of ionizing factors or free-electron sources.
In gases, e.g., the air, which is a natural dielectric, light flashes and other accompanying effects, e.g.,
acoustic, can be observed. Other phenomena, which are not immediately visible, can be measured
using many methods. Often, the discharge is determined by the phenomena resulting from the
acceleration of electrons and ions by the electric field in the discharge itself.

Complete discharges may occur as a spark or electric arc. This form causes a low resistance short
circuit of the electrodes. The discharge occurs between two electrodes and is characterized by low
internal electrical resistance. In the area of the electric arc, the gas is highly ionized and reaches a high
temperature. In the air, under atmospheric pressure and with a current flow of 1 Ampere, it is about
5000–6000 Kelvin. The ionized gas is in the form of a plasma and its temperature depends on the type
of gas, its pressure, but also on the current, and the type of electrodes. A PD is a local breakdown of a
small part of the electrical insulation under high-voltage stress.

The mechanism of PD and the process of breakdown using gas insulation are similar to those in
ideal liquid dielectrics. Insulating liquids in real systems are often contaminated with dissolved gasses
or small solids. All of this influences the process of dielectric decomposition. Air testing is an attempt
to measure the energy of the radiation itself in a facility where it is easier to register. The results can be
used in subsequent studies to model the phenomenon in different isolation centers or under different
environmental conditions.

Scintillation detectors are widely used in medical and industrial imaging. Different scintillation
materials and photomultiplier models are used in the construction. Choosing the right scintillator and
photomultiplier for planned research and measurements requires determining the characteristics of
the scintillation material. New materials are still being produced [18,19]. Existing solutions in different
configurations are also being tested [20]. Reducing the impact of radiation on electrical equipment can
be achieved by selecting the right scintillator. The most widely used scintillator is NaI(Tl). Its properties
have been studied since the 1950s. Recently, its spectroscopic and luminescent properties at liquid
nitrogen temperature have also been studied [21]. Apart from the scintillator, the detection systems
also have detectors of light coming from the scintillator. The most commonly used are conventional
photomultipliers (PMT). More and more often, however, detectors using silicon photomultiplier (SiPM)
are used. The energy resolution for the NaI-SiPM detector is as good as the NaI-PMT detector [22].

2. Measuring Setup

The main object in the test stand is to create a system for generating full and partial electrical
discharges. It is comprised of a set of PD model sources supplied by a high-voltage transformer.
The transformer is controlled from a control panel, which is connected to a computer. In order to reduce
interference of the electric field, a wireless driver for Xbee radio link is applied for data transmission.
The component applied for electromagnetic radiation measurement was made up of a scintillation
detector based on a scintillating crystal, photomultiplier tube, a measuring card (Figure 1), and a
compact precise controlled 3-dimensional (CPC3D) system, which allows for a precise positioning
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of the detector in any point in space with an accuracy of 0.1 mm. As it was written, the radiation
measurement system consisted of a scintillation detector. The detector itself can be divided into three
parts. The first element is a scintillation crystal responsible for changing high-energy radiation to
radiation with a different wavelength range. Another element of the detector is a photomultiplier.
The last element is a measuring card. The scintillation crystal NaI(Tl) with dimensions of 1.5′′ × 1.5′′
was used in the construction of the scintillation detector. The scintillator was placed in front of the
photomultiplier in a scintillation probe directed towards the radiation source. In the measurements,
the Adit photomultiplier, model B38B01W with the maximum voltage between the cathode and the
anode being 1500 V, was used. The photomultiplier had a system of 6 dynodes amplifying the signal.
The photocathode of the photomultiplier was a semitransparent alloy called Bialkali (Sb-K-Cs) and it
cooperated well with the NaI(Tl) crystal. The spectral range of the photomultiplier operation ranges
from 300 nm to almost 650 nm of visible light wavelength. The photomultiplier and scintillator
consisted of a scintillation probe manufactured by Ludlum. The detectors power supply voltage was
700 V, while the preamplifier was supplied by a 3.7 V lithium-polymer battery with a capacity of
13,000 mAh. The preamplifier applied was the GS-1100 PRO from Gamma Spectacular. Data recorded
by the detector and its measuring card are transmitted to the computer via fiber optic cables. It is
possible thanks to the use of an integrated circuit, based on the PIC32 microcontroller and HFBR1521
module. The task of the system is to receive data from the measuring card and transmit it in real-time
to the computer. For this purpose, the circuit board receives data from the measuring card, then they
are modulated at the input to the fiber optic link, and then demodulated and transmitted to the
computer. To convert the voltage scintillation pins into a digital form, the LTC1864 analog–digital
converter manufactured by Linear Technology is used. The converter is a 16-bit chip with a maximum
sampling frequency of 250 kHz. The power supply current shall not exceed 0.85 mA. The driver uses
the successive approximation (SAR) method using switched capacities. Communication with the host
microcontroller is via the serial interface SPI. The circuit is powered by 5V.Sensors 2019, 19, x FOR PEER REVIEW 4 of 15 
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Figure 1. Scintillation detector based on a scintillating crystal, photomultiplier tube, and a measuring card.

The construction of the CPC3D is 2 × 2 × 2.5 m and is aluminum-based with an arm able to
move in three dimensions. The detector is installed on the arm and is positioned next to the negative
electrode during measurements, or at a specified distance from this electrode depending on a test trial.
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Tests were performed for the following 3 systems enabling the generation of PD, a needle–needle
system, a sphere–sphere system, and a system for generating surface discharges.

At the same time, for the possibility of verifying the obtained results, the PD phenomenon was
also measured using the electric method. For apparent charge measurements, the MPD600 system
is used, which meets all modern standards and is contemporary. The measurement configuration
consisted of a 1 nF MCC210 coupling capacitor, a 30 µF four-pole CPL542A (also used for impedance
measurement), and an MPD600 as a PD analyzer.

3. Measurement Methodology

Prior to the measurements, the detector was calibrated using a source of radiation, which was,
in this case, americium (241Am). Afterward, americium was placed near the electric field generated
by surface discharges. The distance between the detector and the source of discharges was 30 cm,
whereas americium was positioned between the detector and the positive electrode near the detector.
During the calibration procedure, supply voltage value was increased until the breakdown of the system
occurred (see Figure 2b). The energy radiation spectrum was recorded during the voltage increase
period, several minutes after its disappearance, and subsequently several seconds after americium
was removed from the detector area. The registered signals are shown in Figure 2a. From Figure 2a,
energy radiation of significant quantity (up to 30 counts) and characteristic values (about 20 keV
and 50 keV characteristic for 241Am) can be recognized independently of the supply voltage value.
After removal of the americium, no high-energy signals were detected. Both during calibration and
radiation measurements, stable environmental conditions were ensured, i.e., constant temperature,
humidity, and atmospheric pressure. A more detailed description of the measuring system and the
calibration of the detectors can be found in [13,23].

As an insulating medium, air at atmospheric pressure was considered in the presented research
studies. Tests were performed for 3 systems enabling generation of PD:

◦ A needle–needle system, installed at various distances between the electrodes, changed with a
step of 20 mm from 20 mm to 200 mm for each measurement trial;

◦ A sphere–sphere system (the diameter of the spheres = 50 mm) for distances between the
electrodes from 20 mm to 200 mm, increased by 20 mm for every next measurement;

◦ A system for generating surface discharges, where a 3 mm glass plate was applied as the insulator
between the electrodes.

Investigations of surface discharges were carried out for three different distances between the
detector and the PD source, as well as for three different distances between the positive electrode and
the glass plate (for each distance between the detector and the PD source). During the measurements,
the supply voltage value was increased until the breakdown of the system occurred.

At the same time, together with radiation measurements, the electrical method was applied to
determine the apparent charge of the phenomenon. The possibility to relate the results to existing and
recognized methods is intended to demonstrate that radiation detection can be an important means of
the non-invasive location of PD. It is also possible to verify that PD occurred during the recording
of energy in the X-ray range. Examples of electrical measurement results obtained are presented
in Table 1, where QIEC is the apparent charge compliant with the standard IEC 60270, QPeak is the
maximum apparent charge, N is the number of counts of PD/s, IDis and PDis are the current and power
of discharge, and D is the PD density. Results of measurements using electric method in application to
similar electrode systems can be found in [3].
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Table 1. Examples of electrical method measurement.

Parameter Needle–Needle System Sphere–Sphere System

Breakdown voltage 72 kV 64 kV
QIEC 353.4 nC 18.57 nC
QPeak 504.7 nC 28.74 nC

N 57.19 kPD/s 68.14 kPD/s
IDis 1.261 mC/s 40.01 mC/s
PDis 105.7 W 2.354 W

D 167.4 pC2/s 133.1 fC2/s

97



Sensors 2019, 19, 4936

4. Analysis of the Results

Examples of the energy spectra recorded during measurements in the needle–needle and
sphere–sphere systems are depicted in Figures 3 and 4, respectively. Example results obtained
using the system for generating surface discharges are shown in Figures 5 and 6. In the presented
Figures, along the ordinate, the energy value in keV is given, along the abscissa, the elapsed time is
given, and the color bar is associated with the number of counts, which relates to the overall number
(quantity) of energy pick of a particular energy value, registered by the device. The high-energy signals
were recognized as locally increased density of counts, which were assumed to be caused by local
breakdowns, thus PD occurred in the medium. Areas with increased high-energy radiation are marked
with arrows. Additionally, some of the presented images do not show any significant changes in
radiation, which is also marked on the respective images.Sensors 2019, 19, x FOR PEER REVIEW 7 of 15 
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Figure 3. Example energy spectra of partial discharges (PD) in the needle–needle system for the
following distances between the electrodes, (a) 100 mm, breakdown after t = 51 s (b) 180 mm,
breakdown after t = 68 s, and (c) 200 mm, breakdown after t = 88 s. Supply voltage increased from 0 kV
to 42 kV, 68 kV, and 72 kV.

Based on the achieved analysis, no significant differences in the value of recorded energy,
measured in keV, and in the quantity (count no) of generated ionization events were observed.
The electromagnetic field distribution between virtual electrodes might constitute a significant factor
in this case.

Despite a high sensitivity of the applied high-energy radiation detector, no significant changes in
the energy spectrum were noticed for the sphere–sphere system, whereas for the needle–needle system
and the system for generating surface discharges noticeable changes were observed.

In Figure 3a–c, energy spectra measured during generation of PD for the needle–needle system
mounted at the distances of 100 mm, 180 mm, and 200 mm are presented, respectively. For lower voltage
values (see Figure 3a) no significant radiation was registered. From Figure 3b, it is recognized, that right
before the breakdown, which occurred after about 68 s, a sudden change of the counted number of
ionizing events was noticed, accompanying an increase in energy value up to about 70 keV. In Figure 3c,
locally increased concentrations of ionizing events were also observed. The increased energy values
were recorded for measurement times 43–48 s, 55–57 s, 60–70 s, and 89–91 s, which correspond to the
values of voltage equal to about 40 kV, 45 kV, 50–55 kV, and 72 kV respectively. In other time periods,
no significant radiation of energy recorded was noticed.

In Figure 4a–c, energy spectra measured during generation of PD for the sphere–sphere system
mounted at the distances of 100, 180, and 200 mm are presented, respectively. As mentioned, for all
investigated distances no significant changes in the energy spectrum and no locally increased densities
of high-energy events were noticed.

In Figures 5 and 6, energy spectra measured during the generation of surface PD at the distance
between electrodes being 3 mm (Figure 5) and 10 mm (Figure 6) are presented respectively. For both
presented cases, the detector was localized at a distance of 30 mm to the PD source.
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From Figure 5, it is recognized at time t, in the range 43–48 s, the values of energy are reaching
from 10 keV to 30 keV. These signals were emitted by supply voltage ranging from 3.3 kV to about 7 kV.
The most significant emission (up to 9 counts per ionizing event) was registered when the radiation
detector was moved further from the PD source, at a distance equal to 30 mm. In Figure 6, it was
observed that after time t = 38 s, while supplying the testbed with voltage values from 30 kV to 42 kV,
the registered energy signals reached values from 10 keV to 40 keV. In this case, ionizing radiation was
not recognized during the generation of discharges at lower voltages.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 15 

 

 

(a) 

(b) 

Figure 4. Cont.

100



Sensors 2019, 19, 4936

Sensors 2019, 19, x FOR PEER REVIEW 10 of 15 

 

(c) 

Figure 4.  Example energy spectra of PD in the sphere–sphere system (  50  mm) for the following 
distances between electrodes, (a) 100 mm, breakdown after t = 104 s, (b) 180 mm, breakdown after t = 
102 s, and (c) 200 mm, breakdown after t = 105 s. Supply voltage increased from 0 kV to 64 kV, 83 kV 
kV, and 88 kV. 

In Figures 5 and 6, energy spectra measured during the generation of surface PD at the distance 
between electrodes being 3 mm (Figure 5) and 10 mm (Figure 6) are presented respectively. For both 
presented cases, the detector was localized at a distance of 30 mm to the PD source. 

From Figure 5, it is recognized at time t, in the range 43–48 s, the values of energy are reaching 
from 10 keV to 30 keV. These signals were emitted by supply voltage ranging from 3.3 kV to about 7 
kV. The most significant emission (up to 9 counts per ionizing event) was registered when the 
radiation detector was moved further from the PD source, at a distance equal to 30 mm. In Figure 6, 
it was observed that after time t = 38 s, while supplying the testbed with voltage values from 30 kV 
to 42 kV, the registered energy signals reached values from 10 keV to 40 keV. In this case, ionizing 
radiation was not recognized during the generation of discharges at lower voltages.  

Figure 4. Example energy spectra of PD in the sphere–sphere system (50 mm) for the following
distances between electrodes, (a) 100 mm, breakdown after t = 104 s, (b) 180 mm, breakdown after
t = 102 s, and (c) 200 mm, breakdown after t = 105 s. Supply voltage increased from 0 kV to 64 kV,
83 kV, and 88 kV.Sensors 2019, 19, x FOR PEER REVIEW 11 of 15 

 

 
Figure 5. Example energy spectra of surface PD for the distance between the electrodes equal to 3 
mm, supply voltage increased from 0 to 36 kV, breakdown after t = 49 s. The distance between the 
detector and the PD source was 30 mm. 

  

Figure 5. Example energy spectra of surface PD for the distance between the electrodes equal to 3 mm,
supply voltage increased from 0 to 36 kV, breakdown after t = 49 s. The distance between the detector
and the PD source was 30 mm.
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Figure 6. Example energy spectra of surface PD for the distance between the electrodes equal to 10
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detector and the PD source was 30 mm.

5. Conclusions and Summary

The results obtained during research studies of ionizing radiation generated by PD in air were
presented in this paper. The main aim was to investigate if and how much high-energy radiation is
emitted by PD. Three PD generation systems were built. In a number of experiments, the influence
of the distance between the high-voltage and ground electrodes, the distance between the radiation
detector and PD source, and the supply voltage value on the registered radiation were estimated.
Based on the achieved results the following statements were made:

• For the needle–needle spark gap system, local concentrations of the counted ionizing radiation
events were noticed during the increase of supply voltage level. This was due to local breakdowns
(PD) of the system tested. The mentioned indicates that the high-energy component exists and
should be included as one of the phenomena accompanied by PD. This information is crucial e.g.,
for one who aims to investigate the balance of PD generation energy. Furthermore, the results
presented suggest that the highest counted number and the highest energy was recorded right
after the system breakdown;

• The energy spectra obtained during the generation of surface discharges also confirm the existence
and measurability of the ionizing radiation;

• However, for the sphere–sphere spark gap system, such a characteristic spectrum was not obtained.
One possible reason for it may be in the different electromagnetic field distribution between
electrodes of various shapes (needle, sphere, and plate).

In general, we can state that an increase in the supply voltage did not have had any effect on the
possibilities of recording ionizing radiation events. Furthermore, changes in the distance between
the detector and the PD source, and changes in the distance between the electrodes, have not shown
any unambiguous correlation or impact on the registered high-energy radiation. Nevertheless, it may
be assumed that by supplying the setup with higher voltage values and by increasing the distance
between the electrodes, the higher energy may be recorded. It may also be assumed that the distance
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between the detector and PD source has an effect on the number of recorded scintillation events and
their energy value.

In future studies, research on the elemental composition of the electrodes, which may affect the
achieved results, may be carried out. Moreover, the impact of humidity variations and other factors
affecting the nature of the PD phenomenon may be interesting for investigation.

An important effect of detecting ionizing radiation and measuring its energy may be the correlation
between the intensity of this radiation and the rate of degradation of the insulation of power lines.
So far, the destructive effect of temperature and mechanical damage during discharges has been
observed. The widening of known factors influencing the destruction of insulation is an important
step towards the development of the discipline of electrical engineering and the reduction of operating
costs of power equipment and power lines.

Another important element of the presented research is the possibility of using scintillation
detectors in places where E-M radiation may come from another source. Determination of the spectra
from electric discharges will allow for a calm assessment of the radiation source in places such as
nuclear power plants, etc.
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Abstract: This study reports on the implementation of Bayesian inference to improve the estimation of
remote-depth profiling for low-level radioactive contaminants with a low-resolution NaI(Tl) detector.
In particular, we demonstrate that this approach offers results that are more reliable because it
provides a mean value with a 95% credible interval by determining the probability distributions of
the burial depth and activity of a radioisotope in a single measurement. To evaluate the proposed
method, the simulation was compared with experimental measurements. The simulation showed
that the proposed method was able to detect the depth of a Cs-137 point source buried below 60 cm in
sand, with a 95% credible interval. The experiment also showed that the maximum detectable depths
for weakly active 0.94-µCi Cs-137 and 0.69-µCi Co-60 sources buried in sand was 21 cm, providing an
improved performance compared to existing methods. In addition, the maximum detectable depths
hardly degraded, even with a reduced acquisition time of less than 60 s or with gain-shift effects;
therefore, the proposed method is appropriate for the accurate and rapid non-intrusive localization of
buried low-level radioactive contaminants during in situ measurement.

Keywords: remote-depth profiling; gamma spectral analysis; Bayesian inference; uncertainty
estimation; radioactive nuclear waste; radiological characterization; nuclear decommissioning;
radiation detection; low-resolution detector

1. Introduction

During the life cycle of nuclear facilities, a significant amount of radioactive waste is generated,
resulting in large-scale land and building contamination. Characterization of these wastes is critical
for decommissioning those contaminated sites because it can provide essential information related to
design specifications and project planning required for environmental restoration [1–3]. In particular,
acquiring knowledge of the depth profiling of radioactive contaminants is critical for choosing the most
cost-effective decommissioning strategy because removing surface contamination at varying depths
can significantly reduce the total disposal volume [4]. However, depth profiling remains challenging
because porous materials, such as the soil and concrete that entrain the contaminants, also act as
shielding materials. In fact, examples of wastes commonly encountered during the decommissioning
of nuclear facilities include wastes buried inside such porous materials [5–7].

Traditional destructive methods, such as logging and core sampling, have been used for depth
estimation; however, they are expensive and time-consuming [7,8]. Thus, various non-destructive
techniques have been developed for remote-depth profiling including the relative attenuation
method [9,10], principal component analysis (PCA) [11–13], and the approximate three-dimensional
linear-attenuation method [14–16]. The relative attenuation method takes the relative difference in the
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attenuations of two primary peaks (i.e., the 32-keV X-ray and 662-keV gamma-ray peaks of Cs-137)
in a measured spectrum to find the depth profile. However, the use of X-rays limits not only the
maximum detectable depth to less than 2 cm due to their high attenuation, but also the number of
specific radioactive sources. On the other hand, the PCA method extracts two principal component
coefficients related to the depth of the buried radioactive source from a set of previously measured
spectra with different burial depths. The synthetic angle is then defined based on the extracted
coefficients to estimate the source depth. However, this method cannot effectively estimate the depth
of a source buried more than 5 cm beneath the surface. Finally, the approximate three-dimensional
linear attenuation method employs the well-known linear attenuation model [17] in 3D coordinates
combined with information obtained from multiple measurements of gamma ray intensities on the
surface of the material in which the radioactive contaminant is buried. This approach shows a clear
improvement over earlier methods in terms of the maximum detectable depth up to 12 cm in sand
for a 8.89-µCi Cs-137 source. Nonetheless, the aforementioned methods provide point estimates for
the penetration depth of radioactive contaminants. That is, they ignore the uncertainty invariably
associated with statistical fluctuations arising from physical processes that can only be determined by
performing tedious repetitive measurements. In addition, the maximum detectable depth of existing
methods is insufficient to detect significant amounts of internal contamination buried deep within a
substance [5]. Likewise, gain-shift effects can degrade the performance of the existing methods because
almost all detector-based systems are sensitive to changes in ambient temperature.

Therefore, we propose an advanced remote-depth estimation method for measuring buried
radioactive contamination using Bayesian inference. Both simulation and experimental testing were
conducted using a low-resolution NaI(Tl) detector to evaluate the performance of the proposed method
under many possible scenarios. In addition, this work also emphasizes the influence of data-acquisition
time and gain shifts upon the depth-estimation process. Lastly, we evaluated the sensitivity of the
proposed model in terms of the prior distributions.

2. Materials and Methods

2.1. Bayesian Inference

In statistical inference, there are two different approaches to probability interpretations, namely
frequentist inference and Bayesian inference [18]. The frequentist inference is based on the idea that
probability is equal to the expected frequency of occurrence over a long period. In this case, the
frequentist assigns unknown parameters to fixed values. Thus, the frequentist inference does not allow
probability statements about the parameters of a statistical process. For instance, the fact that a 95%
confidence interval for the normal mean value is within a certain range does not mean that 95% of this
confidence interval contains the true value [18]. Instead, what it means is that there is a 95% chance
that, when computing confidence intervals repeatedly many times, the true mean would lie in the 95%
confidence interval. By contrast, Bayesian inference is based on the idea that probability represents the
degree of belief in an event. That is, this concept allows us to treat the parameters as random variables.
In this sense, a Bayesian statistician would say that there is a 95% probability that the true value will
fall within the 95% credible interval of the given data range.

The objective of Bayesian inference is to determine the posterior distribution p
(
θ
∣∣∣y

)
of random

variables θ given prior distributions p(θ) and likelihood function p
(

y
∣∣∣θ
)

. This consideration is
well-represented in Bayes’ theorem [19]:

p
(
θ
∣∣∣y

)
=

p
(

y
∣∣∣θ
)

p(θ)

p(y)
, (1)

where p(θ) is the probability in our belief of θ without observation of the data y; p(y) is an evidence
or normalization constant, from which the probability of the data is determined by integrating all
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possible values of θ ; and p
(

y
∣∣∣θ
)

is the probability of observing y generated by a model with θ. In fact,

p
(
θ
∣∣∣y

)
is the refined probability of our belief in θ once y has been taken into account.

The difficulty in applying Bayesian inference to many practical applications arises when the
intractable high-dimensional integrals of the evidence must be computed. However, recent advances
in computation and in marginal estimation techniques using variational inference make it possible to
solve such problems. The underlying idea behind variational inference is to convert the computation of
the posterior distribution into an optimization problem. First, a parameterized family of distributions
q(θ; υ) (or equivalently, a variational distribution) is postulated. Then, we find the member of that
particular family that minimizes the Kullback–Leibler (KL) divergence [19] of the exact posterior
distribution. In fact, the KL divergence measures the closeness of the two distributions:

KL
(
q(θ; υ)

∣∣∣∣
∣∣∣∣p
(
θ
∣∣∣y

))
= Eq


log

q(θ; υ)

p
(
θ
∣∣∣y

)



= −
(
Eq[log p(θ, y)] −Eq[log q(θ; υ)]

)
+ log p(y), (2)

where p(y) is intractable but has a constant value. Thus, minimizing the KL divergence is now
equivalent to maximizing the evidence lower bound (ELBO):

L(υ) = Eq[log p(θ, y)] −Eq[log q(θ; υ)]. (3)

To simplify the inference further, a mean-field approximation can be assumed, where the
parameters can be fully factorized into independent parts:

q(θ1, . . . , θn) =
N∏

i=1

qi(θi). (4)

Despite efforts at simplifying via mean-field approximation in the variational inference,
model-specific derivations and implementations are still required, making the process rather complex.
Automatic differentiation variational inference (ADVI) [20] can solve this problem by offering an
algorithm for automatic solutions associated with variational inference. ADVI begins by transforming
p(θ, y) into the unconstrained real-valued random variables p(θ, ζ). This transformation removes all
original constraints on the latent variables, allowing us to consider the Gaussian distribution. Then,
ADVI recasts the gradient of the variational objective function as an expectation over q In this way,
one can make use of Monte Carlo methods to approximate ∇θ log(θ, y). Further re-parameterization
of the gradient in terms of a standard Gaussian is performed for the purpose of achieving efficient
computation of the Monte Carlo approximations. Finally, ADVI uses a stochastic gradient optimization
approach for the variational distribution. We implemented ADVI in the Python language together
with the probabilistic programming framework of PyMC3 [21]. This powerful library allowed us to
easily specify a probability model and then perform variational inference.

2.2. Likelihood Function and Priors

In order to compute the posterior distribution of the depth of a buried radioactive source, we
begin by defining a mathematical model that describes an observed spectrum in terms of the burial
depth, activity, and relative shift magnitude of the spectrum (and hence, the shift). The spectrum
measured from a collimated detector can be calculated as follows:

Mi = N0δε = APδε =
APδ
4πh2 e−µAh f (z, ηi) + cBi for i = 1, . . . , K, (5)
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where Mi is the measured spectrum (s−1); i is the channel or energy index (0 < i ≤ K) ; N0 is the
total intensity of gamma rays originally emitted from the source (s−1); δ is the effective front area
of the detector (cm2); ε is the correction coefficient due to the attenuation in a material, gain-shift
effects caused by temperature, and the inverse-square law; A is the activity in the radioisotope of
interest per decay (µCi); P is the total gamma emission probability (i.e., 2 γs−1 Bq−1 for the 1173-
and 1333-keV gamma rays of Co-60); µA is the linear attenuation coefficient of gamma rays in air
(cm−1); h is the detection height between the detector and the surface of a material (cm); z is the buried
depth of a radioactive source (0 ≤ z ≤ D cm) in a section of material from the front surface; η is the
relative magnitude of the shift in the spectrum; Bi is the background spectrum in the measurement
environment with K channels; c is its proportionality constant; and f (z, ηi) is the function for bilinear
interpolation. To compute f (z, ηi) the K ×D response matrix (or equivalently, the reference spectra),
for a radioisotope should be determined by measuring the spectra at different depths ranging from 0 to
D cm with certain intervals. It should be noted that all spectra obtained for the response matrix were
normalized to the total count of the spectrum measured at a depth of 0 cm. Consequently, f (z, ηi) can
be calculated as follows:

f (z, ηi) =
1

(zH − zL)(iH − iL)
[zH − z z− zL]

[
f (zL, iL) f (zL, iH)
f (zH, iL) f (zH, iH)

][
iH − i
i− iL

]
. (6)

As shown in Figure 1, f (z, ηi) is the interpolation point. In addition, f (zL, iL), f (zH, iL), f (zL, iH),
and f (zH, iH) are the closest points to the f (z, ηi) among the known points from the K ×D response
matrix. In other words, the spectrum of 512 channels with the buried depth of the source at z cm and
the shifted magnitude of η in the spectrum can be expressed as:

M =
APδ
4πh2

[ f (z, η), f (z, 2η), . . . , f (z, 512η)] + cB. (7)

Here, the value δ can be calculated from a laboratory experiment by placing a radioactive source on
the surface of the material (at 0 cm in depth), and can be expressed as:

δ =
4πr2N

APe−µAr , (8)

where N is the total net counts in the spectrum (s−1) and r is the detection height (cm).
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As a matter of fact, our model prescribes the function f (z, A, η, c). Nonetheless, the measured
spectrum in practice experiences inevitable interference from the presence of irreducible uncertainties
arising from physical processes, such as radioactive disintegration. Thus, the spectrum can be assumed
to have a normal distribution with a zero mean and variance of σ2:

M ∼ f (z, A, η, c) + N
(
0, σ2

)
, (9)

P(M
∣∣∣z, A, η, c) = N

(
f (z, A, η, c), σ2

)
. (10)

When the initial information about the distributions of z, A, η, c, and σ2 is available, it should be
included as the priors. Table 1 shows the priors prescribed by the model where A, c, and σ2 should
be continuous and positive-only, and the gamma distribution can therefore be selected accordingly.
However, one may wonder how the parameters were determined, that is, a shape parameter α and an
inverse scale parameter β in the gamma distribution, because the parameters represent our degree of
belief. In this work, we divided the measured spectrum by the acquisition time and analyzed them
on a one-second basis, which was true in case of the background spectrum. In this regard, the most
probable value of c would be one. Therefore, the determination of the parameters with gamma(1, 1),
i.e., the mean and variance are equal to one, would be reasonable. In addition, the parameters can be
considered as being equal to gamma(1, 1) since σ2 is expected to yield a small value. Although the
choice on the parameters in the gamma distribution for A could be somewhat ambiguous, it would
still be appropriate to determine the parameters with gamma(1, 1); this was because our belief is
that the level of the source activity would be low. On a contrary, the parameters z and η should be
confined within certain ranges. In fact, the range for z was selected from 0 to D cm, which was the
maximum burial depth of the radioactive contaminant to be considered; the value D was selected as
50 cm (or 60 cm) such that the proposed method would search extensively for the burial depths of the
source ranging from 0 to 50 cm. As for the parameter η, the value was chosen from a range of 0.85
and 1.15 in consideration of the relative Cs-137 peak positions in the NaI(Tl) spectra depending on the
temperature ranging from 0 to 50 ◦C such that the selected range would contain all possible values for
the shift magnitude [22]. It is worth emphasizing that any values for the parameters (i.e., α and β) in
which their multiplication would be equal to one or other choices that would yield a small mean value
in the gamma distribution is possible. In addition, other distributions, such as a truncated normal
distribution and triangular distribution, could be selected based on knowledge of the evaluators. Since
the selection on prior distributions could influence posterior distributions, the sensitivity analysis
on prior distributions was necessary to verify the robustness of our model, which is presented in
Section 3.5.

Table 1. The priors prescribed in the model.

Variable Prior

z uniform(0, D)
A gamma(1, 1)
η uniform(0.85, 1.15)
c gamma(1, 1)
σ2 gamma(1, 1)

2.3. Monte Carlo Modeling and Simulation

In order to validate the proposed method, we performed Monte Carlo modeling and simulations
using Monte Carlo N-Particle Transport Code, version 6 (MCNP6) [23]. A schematic of the MCNP6
model used for the simulation is reported in Figure 2. The simulation model consists of a NaI(TI)
detector located 6 cm away from the surface of a box that is filled with sand of density 1.7 g cm−3 [24].
The detector itself is surrounded by a hollow cylindrical lead shield lined with copper for minimizing
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the scattered gamma rays and X-ray fluorescence from lead. A pulse-height tally was used to simulate
the gamma-ray spectra. In addition, an FT8 Gaussian-energy-broadening card was applied to mimic
the physical spectra as realistically as possible. In fact, this feature simulates the peak-broadening effect
arising from a physical radiation detector based on coefficients “a,” “b,” and “c.” These coefficients
allow the MCNP6 to recognize the continuous values of the full width at half maximum (FWHM) in
the energy range of interest based on the non-linear function in Equation (11), where E is the incident
gamma-ray energy. We employed parametric optimization using a genetic algorithm to find the
optimal value of these coefficients [25]:

FWHM = a + b
√

E + cE2. (11)
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Figure 2. Schematic of the geometry defined for MCNP6 simulation. A collimated NaI(Tl) detector was
placed 6 cm away from the front surface and a radioactive Cs-137 source was located inside silica sand.

The radioisotope Cs-137, which is one of the most predominant anthropogenic radioactive
contaminants, arising as it does in fission fragments from spent nuclear fuel, was used and treated as a
point source during the simulation. To obtain the response matrix, the point source was placed in sand
at depths of 0, 1, 3, 5, 7, 10, 15, 20, 25, 30, 40, 50, and 60 cm. At each depth, a total of 3 × 109 particles
were generated to achieve a sufficient counting statistic in the simulated spectra. For the test spectra,
the point source was buried at a depth from 0 to 60 cm with 3-cm intervals. In this case, a total of 2 ×
108 gamma particles were transported at each depth.

2.4. Experimental Setup

The experimental setup for the acquisition of gamma-ray spectra is shown in Figure 3a. The setup
was composed of a sandbox filled with fine silica sand in which a radioactive source was buried and
the two-inch NaI(Tl) detector was located 6 cm away from the box surface. The dimensions of the box
were 50 cm × 40 cm × 40 cm (length × width × height), and it was constructed from acrylic sheets
of thickness 0.3 cm. The use of acrylic and its thickness were chosen to allow almost all gamma rays
to scatter exclusively within the sand matrix. In the experiment, a sealed Co-60 source was used in
addition to Cs-137, because Co-60 is also found in nuclear environments resulting from the neutron
activation of steel parts. The activity of the Cs-137 and Co-60 sources were 0.94 µCi and 0.69 µCi,
respectively. The source was buried in a graduated box (50 cm × 3 cm × 3 cm) filled with sand, as
shown in Figure 3b. Then, the box was inserted into the sandbox such that the exact distance of the
source from the front of the sandbox would be achievable. The detector was placed inside a cylindrical
lead collimator with a thickness of 2 cm, clad in a 0.5-cm-thick copper layer.
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Figure 3. (a) Experimental setup for the gamma-ray measurement and (b) a graduated box for adjusting
the burial depth of a radioactive source.

In the experiment, the spectra for the response matrix and the test set were measured at the same
position of each radioactive source, as mentioned in Section 2.3, up to depths of 50 cm and 48 cm,
respectively. The spectra for the response matrix were measured for 50 min to minimize statistical
fluctuations in the spectra, while the test spectra were measured for 10 min. In addition, a background
spectrum for the response matrix was also acquired under the same condition but without sources.
Furthermore, the energy ranges of the spectra for Cs-137 and Co-60 were chosen from 300 to 1500 keV
(i.e., 369 channels) and 700 to 1500 keV (i.e., 246 channels), respectively. During the experiment, energy
calibration was not strictly performed because the proposed model was capable of compensating for
gain-shift effects.

3. Results

3.1. Depth Estimation of the Buried Cs-137 Based on Simulated Spectra

Figure 4 shows the joint probability distributions of the depth and activity of Cs-137 sources
for selected depths, where the red line represents the true values for the depths and activities. As
expected, the joint distribution gradually spread out with a strong positive correlation with increasing
source depth. This was mainly due to the increased number of gamma rays scattering in the sand
matrix and the decreased number of detected photons, which consequently caused an increase in the
statistical fluctuations in the spectra. Moreover, the positive correlation was clear because the activity
was inversely related to the square of the depth (see Equation (5)). In this regard, the estimated values
of the activity changed more sensitively when the source was deeply buried.

The estimated depth with a 95% credible interval for the Cs-137 source buried in sand over a
range from 0 to 60 cm with 3-cm intervals is shown in Figure 5a. It shows that the true depth was
well-approximated by the mean value of the estimated depth up to 45 cm. Beyond this depth, the
estimated values tended to be underestimated. Nonetheless, all true depths fell within the 95% credible
interval of the estimated depths until reaching a depth of 60 cm. In fact, the values for the source
depths used to generate the response matrix rarely included those used to generate the test spectra. In
other words, the interpolation method estimated the spectra that were not predetermined at certain
depths well and therefore it was not necessary to take measurements for the response matrix at every
single depth. As shown in Figure 5b, the estimated activities also closely agreed with the true activities,
considering the 95% credible intervals. However, it is worth noting that the credible interval of the
activities was more susceptible to fluctuation due to the inverse-square law.
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Figure 4. Joint probability distributions between the depth and activity of Cs-137 for selected depths
simulated via MCNP6. The scatter dots in the central area depict the correlations between the estimated
depth and activity with red lines representing true values, while the curves outside the plot area
represent their corresponding densities.
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Figure 5. (a) Estimated depth and (b) activity with a 95% credible interval for spectra simulated with
Cs-137 buried in sand from 0 to 48 cm with 3-cm intervals.

3.2. Depth Estimation of Buried Cs-137 and Co-60 Based on Experimental Spectra

The estimation of the joint probability distributions of the depth and activity of Cs-137 for selected
depths is reported in Figure 6. From the plots, we can see a similar trend to the simulation results. In
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particular, this can be clearly seen in Figure 7a, in which the true depth was well-approximated by the
estimated depth up to 21 cm. Beyond this, the value of the estimated depth began to be underestimated
and to fluctuate. It is interesting to note that this depth was much lower than the value obtained
using simulations. This was because the influence due to the attenuation and background became
significant with increasing source depth, resulting in no remarkable feature differences in the acquired
spectra, as illustrated in Figure 8a. In addition, the weak activity of the Cs-137 source used for the
experiment could also be attributed to the obtained result. By contrast, noticeable feature differences
were observed in the spectra at depths from 0 to 21 cm, as shown in Figure 8b. Based on the results, the
maximum detectable depth of Cs-137 for the experimental setup was determined to be 21 cm.
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Figure 6. Joint probability distributions between the depth and activity of Cs-137 for selected depths, as
measured experimentally. The scatter dots in the central area depict the correlations of estimated depth
and activity, with red lines representing true values, while the curves outside the plot area represent
their corresponding densities.
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Figure 7. (a) Estimated depth and (b) activity with a 95% credible interval for spectra measured from
Cs-137 buried in sand from 0 to 48 cm with 3-cm intervals.
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Figure 8. Normalized spectra for different depths of Cs-137 with a 600-s acquisition time: (a) the 

source was buried at depths of 21, 30, and 48 cm; and (b) the source was buried at depths of 0, 12, and 

21 cm. The spectra were normalized to the total count across all energies for comparison purposes 

only. The inset shows the spectra within the energy range used for analysis. 

The same experiment was also performed with the Co-60 source. Figure 9a shows the estimated 
depth with a 95% credible interval for the Co-60 source buried in sand from 0 to 48 cm with 3-cm 
intervals. As expected, the same trend was observed as in the Cs-137 case; the true depth was well-
approximated by the mean value of the estimated depth up to 21 cm and the estimated depth 
gradually deviated from the true depth and fluctuated beyond the depth of 21 cm. The reason for this 
was the same as that mentioned earlier, namely differences in spectral features became negligible 
with increasing source depth, as shown in Figure 10. 

Figure 8. Normalized spectra for different depths of Cs-137 with a 600-s acquisition time: (a) the source
was buried at depths of 21 cm, 30 cm, and 48 cm; and (b) the source was buried at depths of 0 cm,
12 cm, and 21 cm. The spectra were normalized to the total count across all energies for comparison
purposes only. The inset shows the spectra within the energy range used for analysis.

The same experiment was also performed with the Co-60 source. Figure 9a shows the estimated
depth with a 95% credible interval for the Co-60 source buried in sand from 0 to 48 cm with 3-cm
intervals. As expected, the same trend was observed as in the Cs-137 case; the true depth was
well-approximated by the mean value of the estimated depth up to 21 cm and the estimated depth
gradually deviated from the true depth and fluctuated beyond the depth of 21 cm. The reason for this
was the same as that mentioned earlier, namely differences in spectral features became negligible with
increasing source depth, as shown in Figure 10.
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Figure 9. (a) Estimated depth and (b) activity with a 95% credible interval for spectra measured from
Co-60 buried in sand from 0 to 48 cm with 3-cm intervals.
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Figure 10. Normalized spectra for different depths of Co-60 with a 600-s acquisition time: (a) the 

source was buried at depths of 21, 30, and 48 cm; and (b) the source was buried at depths of 0, 12, and 

Figure 10. Normalized spectra for different depths of Co-60 with a 600-s acquisition time: (a) the source
was buried at depths of 21 cm, 30 cm, and 48 cm; and (b) the source was buried at depths of 0 cm,
12 cm, and 21 cm. The spectra were normalized to the total count across all energies for comparison
purposes only. The inset shows the spectra within the energy range used for analysis.

3.3. Effect of Acquisition Time

To perform an in-depth analysis of the sensitivity with respect to acquisition time, gamma-ray
spectra with reduced acquisition times were analyzed at the same varying depths as those mentioned
in Section 3.2. Figure 11a,b shows the estimated depths with 95% credible intervals analyzed for
the spectra of Cs-137 with acquisition times of 10 s and 60 s, respectively. Despite the very short
acquisition time, an identical trend was observed as in the spectra obtained over 600 s; the true depths
were well-approximated for the mean values of the estimated depths up to 21 cm, which was the
maximum detectable depth found in Section 3.1. Surprisingly, even at depths beyond the maximum
detectable depth, the true depths seemed to yield a better approximation using the estimated depths
with consideration of the 95% credible intervals. This may have been due to the statistical fluctuation
in spectra caused by the reduced acquisition time, resulting in a more extensive search of the parameter
space of the depth and activity. In fact, this is clearly seen in Figure 12b; the joint distributions gradually
diverged to neighboring depths and activities with decreasing acquisition time. It is worth mentioning
that 10-s acquisition times are extremely short for a typical in situ measurements, which can lead to a
highly fluctuating spectrum, as reported in Figure 12a.
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Figure 11. Estimated depth with a 95% credible interval analyzed for Cs-137 buried in sand over the
range of 0 to 48 cm at 3-cm intervals from the experiment and the corresponding value of the true
depth: (a) acquisition time of 10 s and (b) acquisition time of 60 s.

Sensors 2019, 19, x 16 of 21 

 

 
(a) 

 
(b) 

  

Figure 12. (a) Normalized spectra for Cs-137 buried at depths of 18 cm with acquisition times of 10 

(black solid line), 60 (blue-sky dashed line), and 600 (blue dash-dotted line) seconds. (b) Joint 

probability distributions between the depth and activity analyzed for the same spectra; the red line 

represents the true value of the depth and activity. The inset shows the spectra within the energy 

range used for analysis. 

3.4. Effect of the Gain Shift 

To demonstrate the ability to accommodate shifts in the spectra mainly due to temperature 
variations in the proposed model, spectra were measured with the Cs-137 source buried at a depth 
of 18 cm with the gain factor adjusted from 0.60 to 0.70 with 0.01 increments. Note that the test spectra 
were acquired with a gain factor of 0.65. In Figure 13a, we can see that the estimated depth fluctuated 
only slightly near the true depth for the spectra obtained with gain factors between 0.63 and 0.70. 
Furthermore, the true value of the depth fell within a 95% credible interval of the estimated depth 
within the investigated range. As expected, the trend of the change in the estimated shift increased 
with the increasing gain factor, as shown in Figure 13b. This was mainly because the model, 
combined with the bilinear interpolation method, scanned the shifted spectrum and searched for the 
probability distributions of the depth and shift that were most likely to have generated the spectrum 
via Bayesian inference. However, the estimated depth tended to increase and was thereby 
overestimated below the gain factor of 0.63. This was likely due to the slope connecting the Compton 
continuum and Compton valley in the spectrum becoming increasingly steep as the spectrum shifted 
in a negative direction, which is a typical phenomenon occurring when more gamma rays are 
scattered in a substance. Figure 14 shows an example of the spectra measured with gain factors of 
0.63 and 0.70. It should be noted that these shifted spectra would be difficult to analyze without any 
recalibration. 

Figure 12. (a) Normalized spectra for Cs-137 buried at depths of 18 cm with acquisition times of 10 s
(black solid line), 60 s (blue-sky dashed line), and 600 s (blue dash-dotted line). (b) Joint probability
distributions between the depth and activity analyzed for the same spectra; the red line represents
the true value of the depth and activity. The inset shows the spectra within the energy range used
for analysis.

3.4. Effect of the Gain Shift

To demonstrate the ability to accommodate shifts in the spectra mainly due to temperature
variations in the proposed model, spectra were measured with the Cs-137 source buried at a depth of
18 cm with the gain factor adjusted from 0.60 to 0.70 with 0.01 increments. Note that the test spectra
were acquired with a gain factor of 0.65. In Figure 13a, we can see that the estimated depth fluctuated
only slightly near the true depth for the spectra obtained with gain factors between 0.63 and 0.70.
Furthermore, the true value of the depth fell within a 95% credible interval of the estimated depth
within the investigated range. As expected, the trend of the change in the estimated shift increased
with the increasing gain factor, as shown in Figure 13b. This was mainly because the model, combined
with the bilinear interpolation method, scanned the shifted spectrum and searched for the probability
distributions of the depth and shift that were most likely to have generated the spectrum via Bayesian
inference. However, the estimated depth tended to increase and was thereby overestimated below
the gain factor of 0.63. This was likely due to the slope connecting the Compton continuum and
Compton valley in the spectrum becoming increasingly steep as the spectrum shifted in a negative
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direction, which is a typical phenomenon occurring when more gamma rays are scattered in a substance.
Figure 14 shows an example of the spectra measured with gain factors of 0.63 and 0.70. It should be
noted that these shifted spectra would be difficult to analyze without any recalibration.
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3.5. Sensitivity of Prior Distributions 

To verify the robustness of our model with respect to the sensitivity to the prior distributions, 
experimental spectra for the Cs-137 source buried in sand from 0 to 48 cm with 3-cm intervals were 
analyzed using different prior distributions. Figure 15a shows the results using the following prior 
distributions: 𝑧 followed a triangular distribution with parameters (0, 50, 4); 𝐴 followed a gamma 
distribution with parameters (50, 0.2); 𝜂 followed a uniform distribution with parameters (0.1, 1.1); 

Figure 13. (a) Estimated depth and (b) estimated shift analyzed for the spectra of Cs-137obtained by
changing the gain factor of the amplifier between 0.60 and 0.70 with 0.01 intervals.
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Figure 14. Example of the spectra of Cs-137 obtained with a gain factor of 0.63 (black solid line) and
0.70 (gray dashed line).

3.5. Sensitivity of Prior Distributions

To verify the robustness of our model with respect to the sensitivity to the prior distributions,
experimental spectra for the Cs-137 source buried in sand from 0 to 48 cm with 3-cm intervals were
analyzed using different prior distributions. Figure 15a shows the results using the following prior
distributions: z followed a triangular distribution with parameters (0, 50, 4); A followed a gamma
distribution with parameters (50, 0.2); η followed a uniform distribution with parameters (0.1, 1.1); c
followed a gamma distribution with parameters (5, 5); and σ2 followed a gamma distribution with
parameters (0.1, 1). In other words, evaluators believed that the activity of Cs-137 source could be
at a high level (i.e., the mean value was equal to 250 µCi) and buried deep (i.e., the mean value was
equal to 18 cm). In addition, the observed spectrum could be shifted negatively. On the other hand,
Figure 15b shows the results using the following prior distributions: A, η, and c all followed uniform
distributions with parameters (0, 1010); z followed a truncated normal distribution with parameters
(25, 1010, 0, 50) supported by z ∈ [0, 50]; σ2 followed a half-normal distribution with parameters (0, 3)
supported by σ2 ∈ [0,∞]. Such a wide range of distribution can be non-informative for the data on a
small numerical scale. In other words, evaluators would have very limited information. Thus, we
confirmed that the same trends were observed up until the maximum detectable depth (i.e., 21 cm),
as seen from the Cs-137 case (see Figure 7a), regardless of their different beliefs; the estimated depth
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agreed well with the true depth up to 21 cm. It is worth emphasizing that the proposed model may
not be completely free from the choice on the prior distributions. Nevertheless, evaluators with some
knowledge of radiation measurements may have a minimal influence over the posterior distributions.
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Figure 15. Estimated depths with a 95% credible interval for measured spectra for a Cs-137 source
buried in sand from 0 to 48 cm with 3-cm intervals. These results were obtained with the prior
distributions as reported within each figure. The letters marked in blue are the prior distributions that
account for different beliefs.

4. Discussion

We presented an application of Bayesian inference to improve the estimation of remote depth
profiling for low-level radioactive contaminants. From the simulation and experimental results, we
confirmed that the proposed technique has significant advantages compared to existing methods for
localized radioactive wastes. First, our approach allowed us to determine the probability distribution for
parameters of interest, i.e., depth, activity, and shift, with improved reliability in a single measurement.
From the measurement perspective, inherent uncertainty due to quantum physics is inevitable and
must therefore be quantified. Thus, we should be able to provide measurement analysis in a statistical
manner. However, previous depth estimation methods calculate uncertainty only via tedious repetitive
measurements. Second, the proposed model yields a larger value for the maximum detectable depth.
Recent studies have shown that the maximum detectable depths of 8.89-µCi Cs-137 and 0.24-µCi Co-60
buried in sand are 12 cm and 3 cm, respectively [14–16]. In fact, the activity intensity of the Cs-137
used in this work was about 10 times weaker than that of the Cs-137 used in those studies. Hence, the
maximum detectable depth of 21 cm for both weakly active 0.94-µCi Cs-137 and 0.69-µCi Co-60 sources
buried in sand was indeed a significant improvement in comparison to existing methods [9–16]. Third,
the proposed technique provided a much faster and more accurate estimation of depths up to the
maximum detectable depth (i.e., 21 cm), which was achieved within 60 s, even for sources with a weak
activity. This is advantageous because radiological characterization for decommissioning involves
scanning or measuring a wide range of sites, given that the activity of radioactive contaminants is
not high enough in general. Fourth, the proposed technique was less susceptible to the gain shifts
caused by temperature changes. One of the challenging issues for in situ measurement systems is that
detectors are sensitive to changes in the ambient temperature, which can cause gain shifts. Therefore,
regular quality control measurements become more critical to ensure a stable system operation. Thus,
the present method automatically calibrated the degree of shift in the spectrum that would have been
affected within the range of the prior distribution (see Table 1), which incorporated the magnitude of
shifts in spectra due to temperature variation in the NaI(Tl) detectors [22]. In addition, the output of
the shift could be used as a real-time indicator to demonstrate how stable the measurement systems
are in operations on site. Finally, we confirmed that our model was not very sensitive to the choice of
the prior distributions such that evaluators with some knowledge of radiation measurements would
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be able to obtain similar results. This feature is important for many practical applications because a
Bayesian model is said to be non-robust and sensitive depending on the prior distributions.

However, this technique has some difficulties. One of the challenges in applying this technique lies
in the establishment of a response matrix for materials in which a certain radioactive source is buried.
To do this, the setup of materials affecting the attenuation of gamma rays should be carefully performed
in order to mimic a real environment. Another difficulty is that the detector cannot simply be located at
an optimal position in which the radioactive contaminants are buried; however, this can be resolved by
placing the detector at the position in which the maximum intensity of the total count rate would likely
be observed by taking a uniform scanning time. Lastly, most remote depth estimation methods assume
that only a single radioisotope exists and that no other radioisotopes interfere with the measurement. In
practice, such assumptions are sometimes not applicable. Furthermore, foreknowledge of radioisotopes
present at a site is not available in some cases. Therefore, a better solution would be to integrate the
likelihood function for quantitative analysis of radioisotopes, as proposed in Kim et al. [26] with the
likelihood function used in this particular work. This solution will enable an accurate depth estimation
for multiple radioactive sources without foreknowledge of the radioisotopes present.

5. Conclusions

In this work, we demonstrated an advanced method for remote depth estimation of localized
radioactive contaminants using Bayesian inference. This approach, which is completely different from
frequentist inference, allowed us to estimate the uncertainty of the depth and activity via a single
measurement. The results of the simulation and experiment for Cs-137 and Co-60 sources buried
in sand showed a significant improvement in the maximum detectable depth compared to those of
existing methods. In addition, experimental results confirmed that the level of accuracy and the
depth limit were preserved, even with a short acquisition time. Furthermore, the proposed technique
was capable of accommodating for gain-shift effects caused by temperature variations, enabling a
rapid non-intrusive localization of buried radioactive contaminants during in situ measurements as
a consequence.
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Abstract: Global concern for the illicit transportation and trafficking of nuclear materials and other
radioactive sources is on the rise, with efficient and rapid security and non-proliferation technologies
in more demand than ever. Many factors contribute to this issue, including the increasing number
of terrorist cells, gaps in security networks, politically unstable states across the globe and the
black-market trading of radioactive sources to unknown parties. The use of passive gamma-ray
and neutron detection and imaging technologies in security-sensitive areas and ports has had more
impact than most other techniques in detecting and deterring illicit transportation and trafficking of
illegal radioactive materials. This work reviews and critically evaluates these techniques as currently
utilised within national security and non-proliferation applications and proposes likely avenues
of development.

Keywords: passive radiation detection; gamma-ray; neutron; illicit trafficking; national security;
non-proliferation

1. Introduction

Due to the hazardous ionising and activating nature of neutron and gamma radiation, there is a
requirement to control and monitor the radiological materials, which produce them. Neutron and
gamma-ray detection can directly lead to the identification of radiological sources in general, including
nuclear materials. Due to the potential of these materials to be developed into nuclear weapons, these
substances can pose direct threats to national security, and so are of great interest.

Illicit trafficking of nuclear materials and other radiological sources present a global threat
that international organisations such as the IAEA (International Atomic Energy Agency) are forced
to tackle frequently [1,2]. The IAEA Incident and trafficking database reported 3235 confirmed
incidents of nuclear and other radioactive materials out of regulatory control between 1993 and
2017. Of these incidents, 278 were associated with trafficking or malicious use of materials such
as highly-enriched uranium, plutonium and plutonium–beryllium neutron sources [2]. This issue
highlights the importance of the effective control of nuclear and radiation materials at national and
international cross points such as borders, ports and airports.

Effective application of radiation detection techniques requires knowledge of the environment in
which the technology will be implemented, and the associated circumstances. In a controlled detection
area such as an airport checkpoint, border line checkpoint, cargo inspection checkpoint or air cargo
inspection, the space, and in most cases the physical contact time, allow for a reasonable level of
flexibility. In an uncontrolled detection area such as buffer zones, airports terminals, train stations and
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public roads, space and physical contact time are less flexible and require more advanced detection
technologies [3].

This review compares the various technologies utilised in radiation portal monitoring (RPM) of
illicit radioactive materials including radiation sources, by-product materials and nuclear materials,
with a view of identifying their advantages and limitations.

2. Radioactive Materials, Nuclear Materials and Radiation Sources:

Radioactive materials are defined by the IAEA as materials being designated in the national law
or by a regulatory body as being subject to regulatory control because of their radioactivity [4]. Nuclear
material is similarly defined as:

• Any plutonium isotope concentration except that with 80% or more of 238Pu,
• Uranium enriched in the isotopes 233U or 235U,
• Uranium containing the mixture of isotopes as occurring in nature other than in the form of ore

or ore-residue,
• Any material containing one or more of the above [4].

A radiation source is usually defined as artificially refined radioactive material produced outside
the nuclear fuel cycles of research and power reactors [4,5]. The choice of radiation detection
technology employed is primarily based on the radiation type being emitted, the amount of radiation,
the energy spectra and whether the radioactive isotope needs to be identified. Predominantly, nuclear
security-based applications are interested in detecting either gamma-rays (typically E > 10 keV),
and/or neutrons [6–8]. Gamma-rays are typically emitted from an excited nucleus going from a
higher energy state to a lower energy state, usually following the decay of its parent nucleus. Several
mechanisms, such as fission and fusion reactions, neutron capture reactions, annihilation reactions
and activation processes, can all result in the emission of gamma-rays. Because gamma-ray assay and
spectra measurements are the easiest and most common technologies, they are of tensed to identify
and differentiate different nuclear materials and their isotopic composition [7]. Figure 1 shows the
gamma-ray intensity spectra and characteristic peaks for various nuclear material isotopes [7,9,10].

Other gamma emitting radiation sources that are often found to be involved in illicit trafficking
are 192Ir, 137Cs and 241Am [2]. Figure 2 shows gamma-ray characteristic peaks of these three isotopes.

Neutron emission detection and neutron assay is another common procedure used to detect and
identify nuclear materials and radiation sources [6,7]. Neutron sources in nature and industry can be
categorised as spontaneous fission sources, reactor sources, alpha-neutron sources, photo-neutron (or
gamma-neutron) sources and ion accelerator sources as shown in Table 1 [6,11–13].

Table 1. Neutron sources and average energies.

Neutron Source Neutron Source Type Average Neutron Energy (MeV) Half-Life (Years)
252Cf Spontaneous fission 1–3 (2.35 1) 2.645

241Am-9Be Alpha-neutron source 4.2 432.2
239Pu-9Be Alpha-neutron source 4–5 24,114 years
124Sb-9Be Photo-neutron source 0.025 (close to mono-energetic) 0.164 (60 days)

D-D reaction Accelerator source 2.4 (close to mono-energetic) N/A
D-T reaction Accelerator source 14.1(close to mono-energetic) 12.32

1: Reference [8], page 93.
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Production of tritium from accelerator-based sources is affected by the closure of tritium-production
reactors, non-proliferation policies and funding cuts. Other sources of tritium are breeding redactions
in lithium blankets [14]. Other possible sources of neutron are D_Li-reactions [15] and spallation
reactions [16]. Neutron multiplicity υ̃, or the number of neutrons emitted per fission, is a parameter
obtained in the result of an analysis or measure. Table 2 gives a list of spontaneous fission isotopes
commonly subjected to neutron multiplicity assays [6,7,10,17].

Table 2. Spontaneous fission isotopes and neutron multiplicity.

Isotope Neutron Number Total Half-Life (Years) Average Spontaneous Fission Multiplicity
242Cm 146 0.447 2.528
249Bk 152 0.877 3.4
252Cf 154 2.645 3.768

248Cm 148 3.84 3.161
240Pu 146 6.56 2.151
238Pu 144 87.7 2.21
238U 143 4.47 × 109 2.0
235U 146 7.04 × 108 1.87

Induced fission multiplicity depends on the fission isotopes and the energy of the incident
neutrons [17,18]. Figure 3 illustrates neutron spectrum multiplicity for nuclear materials 235U and
239Pu as functions of energy.
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Unlike gamma-rays, the wide energy spectrum of emitted neutrons, and the change in their
energy as they traverse materials, make source identification through the energy of emitted neutrons
a less effective method of detection. However, the increasing volume of research in this field
such as the research in the field of neutron scattering cameras may indicate the emergence of new
technologies [19–23].

3. Problem Definition and Authorities’ Requirements

The major concern involving illicit trafficking and proliferation of nuclear materials is the threat of
using these materials in criminal activities and terrorist acts. This concern has been gradually increasing
during the last three decades and is becoming a definite threat in times of international instability and
travel. The subject of illegal nuclear trafficking and unlawful nuclear acts is becoming the primary
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concern of international and global agencies such as the IAEA [24], European Commission [25] and
Interpol [26]. Other factors including the economic and political impacts of this illicit trafficking are
also part of the multithreaded problem.

As with many illegal acts at the international level, security plans and prevention policies along with
international legislation have been implemented to deter and prevent illicit trafficking and to promote
nuclear non-proliferation. Examples of these plans and treaties are the Treaty on Non-proliferation of
Nuclear Weapons in 1970 [27] and IAEA safeguards agreement and Code of Conduct on the Safety and
Security of Radioactive Sources in 2004 [28]. Another example of international cooperation to deter
illicit trafficking of nuclear materials is demonstrated by the adoption of the practices espoused in the
Handbook of Nuclear Law produced by the IAEA [29]. This is the result of international organisations
assisting legislation and regulatory bodies in member states in creating a strong and robust regulatory
framework [29]. Other international, regional and cross continent agreements such as the International
Convention for the Suppression of Acts of Nuclear Terrorism (ICSANT) [30] are part of the global effort
to combat and prevent illicit trafficking of nuclear and radiological materials.

The safeguarding of radioactive materials in general is a continuous process, from the generation
stage to the decommissioning stage, especially for nuclear materials. The uninterrupted tracking of
these materials is the optimal method to safeguard and diminish the possibilities of illegal trafficking.
While the situation norm is the controlled and legal transport of radioactive materials, incidents are
still reported [2]. A series of protocols and procedures have been implemented at the national and
international level to prevent these incidents. One of the most important factors in this process is
the implementation of the means of detecting, identifying and localising radioactive materials using
radiation detection equipment and radiation imaging techniques.

The main purpose of implementing detection and imaging technologies in these applications is
the timely and accurate identification of illegal acts and the generation of evidence to enforce legal
proceedings to eliminate trafficking networks [24,31]. The implementation of radiation detection and
imaging technologies varies from state to state, but these technologies are generally implemented on
sites where radioactive sources’ life cycles are spent, such as nuclear reactors, hospitals, etc., and at
national and international cross borders. Many parameters affect the efficacy of radioactive material
detection, with the main factor being the performance of the technologies employed, especially their
ability to identify and localise radioactive sources [32]. Other directly related parameters that can
influence the choice of technology employed are the field of view, the potential targets and the time
constraints. The area of interest is the location where the detection or imaging instrument will be
stationed and the zone that needs to be monitored. As implied in the Introduction, this area can be
categorised as controlled or uncontrolled and varies in terms of the size of the area to be scanned,
the detector to source distance, the number of people/vehicles/items to be monitored and the extent
of the shielding or obstructions in the vicinity. The nature of the potential targets affects the choice
of detection or imaging system due to their inherent shielding characteristics, i.e., nuclear material
hidden inside the engine block of a large truck will be difficult to detect from a distance due to the
significant shielding this environment affords. In addition, regulations that preclude the use of active
interrogation systems on targets for health and safety reasons may also affect the selection process, if
scanning pedestrians or queues of passengers, for instance. Timing is another parameter that affects
the selection process. Controlled areas such as airports and land ports are busy areas. For example, the
daily average number of people at a busy airport like Heathrow Airport is over 200,000 passengers per
day [33]. There will be a limit to how long passengers can be held for security checks for logistical
reasons. Therefore, detection efficiency, data analysis speed and spatial resolution are key aspects
of the specification of the technologies employed. The size of the detection or imaging system can
as well be seen as a factor on the selection process. Pocket-type instruments are used to detect the
presence of radioactive materials and in some cases the radiation level, usually to calculate personal
dose. Hand-held instruments have higher sensitivity and can be used to detect, locate and characterise
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radioactive sources. Finally, fixed and vehicle-based devices are usually used at borders cross-points,
seaports and similar controlled areas [32].

The IAEA suggests that there are over a hundred different forms of non-destructive analysis
techniques available to be used in the process of identifying radioactive materials [31]. However, the
most common detection and imaging devices utilise gamma-rays and/or neutrons. The specification
of suitable gamma-ray and neutron detection equipment varies according to legislation and the
safeguarding abilities of states. A set of criteria have been recommended by the IAEA in a collaboration
with World Custom Organization (WCO), EUROPOL and INTERPOL. The main components in this
set of recommendations are [31,32]:

Gamma-ray systems’ requirements:

• At a mean dose rate of 0.2 µSv/h, the alarm of the system should be activated when the dose rate
increases in a period of 1 s by 0.1 µSv/h for a pocket size instrument, by 0.05 µSv/h for a handheld
instrument and 0.1 µSv/h for a fixed-installation instrument, for a duration of one second with
99% detection accuracy.

• False alarm rate should be minimal, with background measures of 0.2 µSv/h, with a false alarm
rate of less than one every 12 h for pocket size instruments, less than six per hour for handheld
instruments and less than one per day for fixed-installation instruments.

Neutron systems requirements:

• The alarm of the system should be activated above a threshold of 20,000 n/s with a source to
detector distance of 0.25 m for handheld instruments and 20,000 n/s in 5 s with source to detector
distance of 2.0 m for fixed-installation instruments, using a system with 99% detection accuracy.

• False alarm rate should be minimal with less than six per hour for handheld instruments and one
per day for fixed-installation instruments.

Similarly, the American National Standard for Evaluation and Performance of Radiation Detection
Portal Monitors for Use in Homeland Security have a set of criteria for gamma-ray and neutron
equipment; however, the set of requirements are relative to initial reference settings within the
equipment [34]. Applying these requirements might limit direct implementation and might affect
the response of the system. Test and Evaluation Capabilities and Methodologies Integrated Process
Team (TECMIPT) Test Operations Procedures (TTOP) For Radiation Detection Systems—Specific
Methods specifies the minimum performance requirements for gamma-ray and neutron detection
instruments [35]. These specifications have direct implementation and offer detailed requirements
relative to the size category of the system.

Gamma-ray systems’ requirements:

• The alarm of the system should be activated when the count increases above the background level
by 0.5 µSv/h in 2 s for Radionuclide Identification Devices (RIDs) in the pocket and handheld
size categories.

• The alarm of the system should be activated with 232Th, 137Cs, and 133Ba, 60Co and 57Co sources
moving past the system at a speed of 2.22 m/s and distance of closest approach of 3 m for RIDs in
the fixed installation size category.

• False alarm rate should be minimal with less than one every 10 h for pocket size and handheld
instruments and less than one every two hours for fixed-installation size instruments.

Neutron systems requirements:

• The alarm of the system should be activated when the exposure is above the threshold of 20,000
n/s in 2 s with 252Cf sources with a source to detector distance of 0.25 m for RIDs in the pocket size
and handheld size categories.
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• For a moving 252Cf source with activity of 20,000 n/s and moving past the system at a speed of
2.22 m/s at a distance of closest approach of 3 m, the system has to be able to detect the source
with up to 1 cm steel or 0.5 cm of lead of shielding for RIDs in the fixed installation size category.

• False alarm rate should be minimal with less than one every 10 h for pocket size and handheld
instruments and less than one every two hours for fixed-installation size instruments.

4. Physical and Electronic Collimations

Neutrons and gamma-rays are uncharged high-energy radiation fields. Conventional converging
and diverging techniques, as well as other optical techniques, are not applicable in this case. A device is
needed to precisely identify the lines along which detected radiation fields are generated. Collimation
is the key word here. Collimation of incident radiation can be done physically and/or electronically.
Physical collimation and electronic collimation are well-established imaging techniques in the field of
radiation detection. The basic concepts of each of these two collimation technique are discussed in
this section.

4.1. Physical Collimation

Physical collimators are patterns of highly attenuating materials positioned in front of a detector
to limit the direction of incident radiation quanta to specific directions. As a result, a shadow image
is formed on the detector resulting in greatly improved spatial resolution. However, this approach
causes a noticeable decline in the efficiency of the system since it limits the number of detectable
radiation quanta [36]. Physical collimation for gamma-rays is more effective at lower energies as the
probability of penetration through matter increases with gamma-ray energies above the energy peak of
Compton scattering.

The simplest physical collimator design is the pinhole collimator, which consists of a single small
aperture. This technique offers excellent angular resolution; however, it limits the geometrical efficiency
of the system. Parallel holes collimator, converging and diverging collimators are arrays of opaque
and transparent photon channels used in imaging where the system scans across the entire field of
view. The technique improves the angular resolution of the system and slightly increases the solid
angle. Figure 4 shows schematics of physical collimators types.
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A coded aperture is an alternative and popular form of physical collimation that was originally
proposed for astrophysics measurements. It was first analytically proven effective for imaging systems
in 1968 [37,38]. Commonly based on a 50% open mask with a large number of randomly distributed
pinholes lying in a parallel plane with the detector, the technique offers higher efficiency compared
to previously mentioned collimation techniques. Figure 5 illustrates the basic parameters of coded
aperture imaging systems.
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Figure 5. A schematic of coded aperture imaging system, with a coded aperture mask that is made with
a pattern of opaque and open cells of highly attenuating materials followed by a radiation sensitive
detector. Incident radiation field is attenuated in the coded aperture mask, with only a fraction of
incident radiation is transmitted and detected on the system (based on reference [37]).

Coded aperture masks have greatly evolved since their inception, and, in most cases, their design
can be tailored to fit the application requirements. There are generally two types of coded apertures:
passive masks and active masks. In the case of passive masks, a highly absorbing material is used to
stop and eliminate non-normally directed radiation quanta from reaching the detector. The choice of
materials in passive masks mainly depends on the type of target radiation. High density/atomic number
materials such as lead, tungsten and depleted uranium are often used to block high energy photons,
while neutron absorbing materials such as high-density polyethylene (HDPE) and Gadolinium are
used in coded apertures for neutron detection [39,40]. Passive physical collimation shows noticeable
drawbacks over a considerable range of the energy spectrum, especially at high energies where
radiation fields have enough energy to penetrate the opaque pattern of the mask [41–43]. On the other
hand, active coded aperture designs use radiation sensitive materials, such as B- and Gd-doped glass
plates for detecting low energy neutrons, as part of the collimation and detection process, which allows
the detection of radiation quanta with a wider energy range [44–47]. Most of these active collimation
examples combine physical collimation and Compton scattering in one system by using a pattern of
large area detectors. Physical collimation is mainly utilised for detection of low gamma-ray energies,
while Compton scattering is utilised for higher energy gamma-rays. Generally, the trade-off between
angular resolution and detection efficiency is unavoidable in physical collimation. Higher activity
sources or longer acquiring times (or both) are usually recommended to improve the efficiency of
these systems.

4.2. Electronic Collimation: Compton Camera and Neutron Scattering Camera

Electronic collimation (widely known as a Compton camera for gamma-ray detection and neutron
scattering camera for fast neutron detection) is a well-studied collimation approach, especially utilised
within gamma-ray detection. Gamma Compton cameras are comprised of two pixelated detectors and
utilise the laws of conservation of momentum and energy to infer the most probable trajectories of
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the scattered and/or absorbed radiation fields. The first detector scatters the gamma photon, which
results in an electron being emitted and its energy measured. The second detector absorbs the scattered
gamma photon and measures its energy. The location of the pixels activated in each detector determines
the angle of scattering and hence the probable origin; the energy of the initial gamma photon can
be calculated from measured energies of the incident and scattered photons [42,48]. The neutron
scattering camera similarly utilises at least two detectors and the conservation of energy and momentum.
However, in this instance, the reaction is between an incident fast neutron and a proton present in the
proton-rich detectors in order to sense and localise the fast neutron source. The time-of-flight data of
the scattered neutron is used to measure the energy of the incident neutron [19,23]. Figure 6 shows the
basic elements in a two pixelated planes imaging system based on electronic collimation.
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5. Passive Detection Systems of Illicit Radioactive Materials

The two modes of detecting nuclear materials and other radioactive sources are mainly active
mode and passive mode. Active detection mode (not part of the work presented here) uses externally
generated neutrons, gamma-rays or X-rays to interrogate radioactive materials. This approach offers
in-depth characterisation of target radioactive material, especially for fissile materials, although the
major drawbacks are that it cannot be used in many circumstances, such as in proximity with humans
and in uncontrolled detection areas [6,49–52].

In passive detection, an imaging system is used to detect and characterise neutrons and gamma-rays
directly emitted from nuclear materials and radioactive sources. In contrast to an active detection
technique, passive detection requires less architecture arrangement and conceivably lower in cost. In
Safeguards Techniques and Equipment series by IAEA, approximately all gamma-ray non-destructive
equipment discussed in the report are in passive mode [31]. In the same report, the ratio of listed
passive to active neutron assay equipment is 4:1. This clearly shows the impact of passive detection
mode at the international level in safeguard and security applications. A common design is the
Radiation Portal Monitor (RPM), which typically consists of several detectors designed in a rectangle
shape located at a fixed site [5]. Some passive imaging systems can characterise the radioactive material,
reject background radiation and estimate the source to system distance. Passive detection systems offer
a safe and simple detection mode, although the drawback is that its absolute efficiency decreases with
increasing shielding around the radioactive material [53]. Since passive detection depends exclusively
on the radioactive source under investigation and the detection system used, the statistical quality
of results and the time to detect a source of specified strength depends mainly on characteristics
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such as intrinsic efficiency, angular resolution, spatial resolution and time resolution, shielding, and
source-detector distance.

In this work, passive detection and identification systems are categorised based on the target
radiation field: gamma-rays, neutrons and dual systems. In each category, the systems will be
further classified into pocket-type instruments, hand-held instruments and large fixed or vehicle based
instruments [54]. Another equally important classification factor is the purpose of detection instruments
summarised as detection, assessment and localisation, and identification [54]. The following review
attempts to compare and appraise past and present passive detection systems and techniques found in
the literature that have been predominantly designed to detect and deter illicit trafficking, smuggling
and transporting of nuclear materials and other radioactive sources.

5.1. Gamma-Ray Detection Systems

Common single crystal inorganic gamma detectors such as NaI, CsI, SrI2(Eu) and PVT
(polyvinyltoluence organic scintillation detectors) or CdZnTe and HPGe (High Purity Germanium
semiconductor detectors) are popular due to their stable performance, high efficiency and relatively
low price [31,55–58]. NaI(Tl) is by far the most studied and most commercially successful inorganic
scintillator [8]. However, single crystal imaging systems are far more sensitive to background radiation
and are more prone to false alarms [3,59]. Pairing single crystal detector with signal analysers, such
as multichannel analysers, might widen the scope of applications for this group of detectors [31].
However, imaging is almost always desirable, alongside detection, to enhance a system’s sensitivity,
angular resolution, energy resolution and localisation of point-like sources [60,61].

Physical collimation, in particular coded apertures, and Compton scattering techniques have
both been adopted to enhance and improve the detection abilities of gamma imaging systems. Fixed
installation coded aperture systems offer long distance and large area coverage with improved
signal-to-background ratio [62,63]. However, these systems are best implemented at border controls,
as they require fixed or slowly moving targets. Problems and limitations, such as false alarms and
timing issues, as well as proposed solutions for this technology, such as energy windows and baseline
suppression, are frequently discussed in literature [64–70]. Hand-held coded aperture systems offer a
flexible solution for detecting and localising of radioactive materials [71,72]. In addition to the main
goal of detecting and localising radioactive sources while scanning vehicles, people, luggage and
cargo, other applications such as monitoring the extent of nuclear related emergencies have been
suggested. Many mechanically collimated systems have found success in this field [72–75]. Table 3
summarises coded aperture-based gamma imaging systems found in the literature, including their
detection method, their size category and the purpose of application.

Table 3. Coded aperture-based gamma-imaging systems.

System Size Definition Examples and Proposed Application
in Literature Detector/s Industrial Designation

Fixed installation Detection and localisation [62,63] CsI(Na)
Fixed installation Detection, assessment and localisation [76] HPGe & NaI MISTI
Fixed installation Detection, assessment and localisation [75] CdZnTe ORIGAMIX

Fixed installation/hand-held Detection and localisation [77] NaI RMC
Fixed installation/hand-held Detection and localisation [73] CsI(Tl) CARTOGAM

Fixed installation Detection, assessment and localisation [78] (GSO)
Hand-held Detection and localisation [71] CdTe-Medpixi2
hand-held Detection and localisation [74] CsI(Na) RADCAM
hand-held Detection and localisation [79] CsI(Tl)
hand-held Detection and localisation [72] CdZnTe-Timepix GAMPIX

In the energy range of nuclear material gamma-ray sources (60 keV to 3.0 MeV), Compton
scattering is the dominant photon interaction mechanism, which makes the Compton scattering
technique the most appropriate technique compared to other techniques [3]. Compton based systems
feature a wide field of view with improved detection efficiency compared to mechanically collimated
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gamma imaging systems, especially for high-energy gamma-rays [3,80]. In addition, Compton systems
offer the ability to detect, assess and localise a gamma-ray source with an associated reduction in
background radiation [81]. Fixed installation and portable Compton systems are the most common
size categories [82–85]. The performance of these systems varies between detectors with some using
low energy resolution, high sensitivity NaI(Tl) and CsI(Tl) scintillations [82,83], while others use high
resolution Si and HPGe semiconductor detectors [84]. Image reconstruction methods for Compton
systems, such as Maximum Likelihood Expectation Maximization (MLEM), Maximum Likelihood
Ratio (MLR) and stochastic origin ensembles, have been regularly studied and optimised for their
direct impact on the performance of Compton system in this field [86,87]. There are hybrid-imaging
systems that utilise both Compton camera and coded aperture technology; examples include passive
mask [88] and active mask [45,89,90] systems. The duality in imaging techniques aims to utilise the
advantages of both physical collimation and Compton scattering. However, designs need to take into
account the optimum arrangement of layers to avoid negating these advantages. Another promising
technique in gamma-ray imaging are 3D systems that utilise coded apertures or Compton scattering.
The 3D systems are used in assessing and localising smuggled and hidden sources by projecting a 3D
image of the search scene, which allow faster and easier navigation in the area of interest [91,92].

5.2. Neutron Detection Systems

Although most nuclear materials emit either or both neutron and gamma-rays, heavy shielding of
gamma-rays can greatly lower the efficiency of gamma-ray imaging systems, negatively impacting
their efficacy in nuclear materials’ non-proliferation and safeguard applications. Neutrons are highly
penetrating and nuclear materials emitting neutrons require bulky shielding to completely conceal
neutrons. Therefore, neutron imaging systems are extensively used in nuclear materials imaging and
they offer an excellent alternative. Due to their high thermal neutron cross section (5330 barns) and low
gamma-ray sensitivity, 3He gas filled counters have been the standard neutron monitoring technology
for decades [31,93]. Thermal neutrons detection efficiency for 3He gas filled counters is a function of
the amount of 3He gas and increases with increasing pressure. For example, a 72 in in height and 2 in
in diameter 3He tube under 3 atm pressure has efficiency of 3.05 cps/ng 252Cf. The main supply of
3He is the 3H purification process, which has seen a dramatic decrease in the last two decades [93,94].
This has led to a continuous search for alternative neutron detection technologies. Direct gas filled
counter alternatives such as BF3 proportional counters, boron lined proportional counters and fission
chambers have been commercially in use [31,95–97], but they have been shown to be significantly less
efficient [94,97,98].

Neutron sensitive scintillation detectors and semiconductor detectors are frequently used in
neutron detection. Neutron sensitive scintillation detectors include liquid and plastic organic
scintillators [99–104], glass scintillators [105–108] scintillating fibres [109] and bubble chambers [110].
Bonner spheres are examples of radiation detectors embedded in a spherical moderator layer. Bonner
spheres are well-established neutron spectrometer instruments in the field of nuclear dosimetry and
inspection non-proliferation [111,112]. However, Bonner spheres have inherently low energy resolution
and inverse relationship between moderator thickness and detection efficiency. Semiconductor based
detectors are a less popular means of neutron detection due to their lower efficiency compared to the
scintillation detection materials in this field and the occasional requirement of having to use foils or
coatings of conversion material to convert neutrons into a detectable signal, usually electrons [13,113].
However, their ruggedness and high-speed response make them an interesting option for safeguarding
and security applications [114,115]. Semiconductor materials such as 4H-SiC, diamond and CdZnTe
have been investigated in literature for their applications in neutron detection [116–119]. 4H-SiC and
SiC semiconductors are promoted for their abilities to work in high temperature and high radiation
environments along with other desirable properties such as high energy band gap and lower production
cost, compared to diamond, which has similar properties [116]. Diamond materials, such as diamond
high pressure, high temperature (HPHT) synthetic diamond or diamond grown using CVD, are
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mechanically durable and inherently radiation hard. Like SiC detectors, diamond detectors have
a wide band gap, which makes them highly appealing for radiation detection applications at high
temperatures [118,120]. CdZnTe with neutron converting layer such as Gd are proposed for portable
thermal neutron detection systems [119,121]. Activation foils were suggested for safeguard applications
such as practical neutron flux measurement tools [122].

As for gamma-ray detection, collimation techniques in neutron detection are deployed to enhance
detection efficiency, angular and energy resolutions, increase the field of view and decrease the
acquisition time. In addition, for screening vehicles, cargo and large containers, the imaging systems
should be accurate with a low probability of false alarms and low sensitivity to gamma-rays [123].
A number of simulation-based studies discuss potential neutron imaging systems with physical
collimation or neutron scattering/ToF (Time of Flight) based collimation [124–127]. An equally
important aspect in nuclear materials detection is the discrimination method used to discriminate
between neutrons and gamma-rays [128]. Because gamma-rays are almost always present in the
background, discrimination methods are crucially important and have been extensively studied in
literature [129–134]. A range of radiation detection and identification systems are commercially
available from vehicle size [135] to handheld size [136–138]. For a more detailed review of portal
radiation monitors, Table 4 lists all neutron-imaging systems discussed and experimentally evaluated
in literature for safeguard and non-proliferation of nuclear materials. The categorisation of proposed
applications and the size definitions are based on those mentioned in Section 4.

5.3. Dual Gamma-Ray and Neutron Detection Systems

Dual particle imaging systems detect gamma-rays and neutrons simultaneously and can
differentiate between the two radiations. This method of imaging has an advantage over single
particle imaging methods because it allows the passive detection and identification of a wide range of
nuclear materials and other radioactive sources.

There are two main groups of systems in the field of dual particle imaging. The first group is
comprised of single materials that are sensitive to both gamma-rays and neutrons. The second group
uses multiple detection materials systems with detectors not necessarily sensitive to both particles.
The latter imaging technique offers a reduction in system complexity as additional discrimination
techniques are not necessarily required. In addition, this category offers higher design flexibility, as the
parameters employed to enhance system response to one radiation field are usually independent of
the other.
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Materials sensitive to both gamma-ray and neutron have been investigated for their dual
detection abilities since the 1950s [159,160]. Examples of the list of detection materials range from
inorganic scintillators [161–163], semiconductor detectors [164–166], glass organic scintillators [167],
some classes of elpasolite scintillators [168,169], some classes of liquid scintillators and plastic
scintillators [170–174]. The common feature between these detection materials is their superior ability
to enable the distinguishing of gamma-ray signals from neutron signals by methods such as pulse
shape discrimination and pulse height discrimination [133,134,170,175]. A handful of fixed installation
and portable monitoring systems are suggested for security and non-proliferation applications are
found in the literature. The scintillation materials used in these systems vary dramatically with
6Li(Eu) and Li-glass detectors, EJ-309 liquid scintillators and CLYC (Cs2LiYCl6:Ce) elpasolite detectors
being popular [162,176–178] with some also utilising coded aperture collimation to enhance imaging
characteristics [179,180]. A number of examples of hand-held and pocket size systems for monitoring
purposes similarly exist; almost all detection materials in this size category are based on plastic
scintillators or elpasolite scintillation materials [99,181–184]. These systems offer flexibility and fast
response, albeit with a limited field of view.

Since 2004, the research on multiple detection materials imaging systems for security and
non-proliferation applications has increased. System abilities vary according to the detection and
collimation method and the size of the system. Table 5 presents a timeline of multiple detectors imaging
systems discussed in literature along with their collimation and detection techniques between 2004
and 2016.

Table 5. Timeline of dual particle multiple detectors imaging system in security and
non-proliferation applications.

Year Author and Reference Collimation Main Detection Materials

2004 Aryaeinejad and Spencer [185] None 6Li and 7Li-loaded glass scintillators
2007 Baker et al. [186] None NaI(Tl) and LiI(Eu)
2008 Enqvist et al. [187] None Cross correlation BC-501A
2009 Runkle et al. [188] None NaI(Tl) and 3He
2011 Polack et al. [189] Compton and neutron scattering NaI(Tl) and EJ-309
2012 Cester et al. [190] None LaBr(Ce), NaI(Tl), NE-213 and 3He
2013 Ayaz-Maierhafer et al. [191] Coded aperture CsI and EJ-309
2014 Poitrasson-Rivière et al. [192] Compton and neutron scattering NaI(Tl) and EJ-309
2016 Cester et al. [193] Null EJ-420, EJ-560 and EJ-299-33A

A number of research papers have been undertaken and investments have been made into large
area coverage using a network of detectors. This concept has been around for over a decade [194–196];
however, the realisation of the advantages of this technique along with the advances in network and
communication fields will lead to new developments in this area. Examples of network systems
and algorithms in this field are the RAdTrac network system for gamma detectors, the particle filter
algorithm for a network of gamma counters and the ROSD-RSD (Ratio of Squared Distance-Radiation
Source Distance) algorithm method [197–200]. Other systems like identiFINDER S900 [201] and
SmartShieldTM v2.0 [202] are commercially available for radionuclides identification and tracking.

6. Conclusions

Illicit trafficking of nuclear materials and radioactive materials is a cross-border problem that
must be tackled globally. Robust and efficient detection equipment and radiation detection systems
stand on the front line of defence against the acts of illicit trafficking. However, understanding the
different parameters that affect the choice of detection equipment and/or radiation detection systems
can greatly help with installing the most effective detection techniques. The parameters that have the
most effect are (more details in Section 3):

• Security agencies and legislation bodies requirements,
• Areas under surveillance and place of implementation,
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• Image quality requirement,
• Timing and speed requirements.

Once the main requirements are established, the options can then be investigated within detection
and/or imaging techniques of gamma-ray sensitive systems, neutron sensitive systems or dual
gamma-ray and neutron sensitive systems. Each technique has its advantages over the others and the
main stage in planning to install a detection system that will positively contribute in deterring illicit
trafficking is to investigate and study each implementation site individually.
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Vervisch, V. Detection of 14 MeV neutrons in high temperature environment up to 500 ◦C using 4H-SiC
based diode detector. In Proceedings of the 2015 4th International Conference on Advancements in Nuclear
Instrumentation Measurement Methods and their Applications (ANIMMA), Lisbon, Portugal, 20–24 April
2015; pp. 1–6.

117. Ha, J.H.; Kang, S.M.; Park, S.H.; Kim, H.S.; Lee, N.H.; Song, T.-Y. A self-biased neutron detector based on an
SiC semiconductor for a harsh environment. Appl. Radiat. Isot. 2009, 67, 1204–1207. [CrossRef] [PubMed]

140



Sensors 2019, 19, 2638

118. Balmer, R.S.; Brandon, J.R.; Clewes, S.L.; Dhillon, H.K.; Dodson, J.M.; Friel, I.; Inglis, P.N.; Madgwick, T.D.;
Markham, M.L.; Mollart, T.P.; et al. Chemical vapour deposition synthetic diamond: Materials, technology
and applications. J. Phys. Condens. Matter 2009, 21, 364221. [CrossRef] [PubMed]

119. Dumazert, J.; Coulon, R.; Kondrasovs, V.; Boudergui, K. Compensation scheme for online neutron detection
using a Gd-covered CdZnTe sensor. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect.
Assoc. Equip. 2017, 857, 7–15. [CrossRef]

120. Obraztsova, O.; Ottaviani, L.; Klix, A.; Döring, T.; Palais, O.; Lyoussi, A. Comparison between Silicon-Carbide
and diamond for fast neutron detection at room temperature. EPJ Web Conf. 2018, 170. [CrossRef]

121. Streicher, M.; Goodman, D.; Zhu, Y.; Brown, S.; Kiff, S.; He, Z. Fast Neutron Detection Using Pixelated
CdZnTe Spectrometers. IEEE Trans. Nucl. Sci. 2017, 64, 1920–1926. [CrossRef]

122. Janssens-Maenhout, G.; De Roo, F.; Janssens, W. Contributing to shipping container security: Can passive
sensors bring a solution? J. Environ. Radioact. 2010, 101, 95–105. [CrossRef]

123. Kouzes, R.T.; Ely, J.H.; Lintereur, A.T.; Mace, E.K.; Stephens, D.L.; Woodring, M.L. Neutron detection gamma
ray sensitivity criteria. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
2011, 654, 412–416. [CrossRef]

124. Stave, S.; Bliss, M.; Kouzes, R.; Lintereur, A.; Robinson, S.; Siciliano, E.; Wood, L. LiF/ZnS neutron multiplicity
counter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784,
208–212. [CrossRef]

125. Oakes, T.M.; Bellinger, S.L.; Miller, W.H.; Myers, E.R.; Fronk, R.G.; Cooper, B.W.; Sobering, T.J.; Scott, P.R.;
Ugorowski, P.; McGregor, D.S.; et al. An accurate and portable solid state neutron rem meter. Nucl. Instrum.
Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 719, 6–12. [CrossRef]

126. Kouzes, R.T.; Ely, J.H.; Lintereur, A.T.; Siciliano, E.R. Boron-10 based neutron coincidence counter for
safeguards. IEEE Trans. Nucl. Sci. 2014, 61, 2608–2618. [CrossRef]

127. Littell, J.; Lukosi, E.; Hayward, J.; Milburn, R.; Rowan, A. Coded moderator approach for fast neutron source
detection and localization at standoff. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect.
Assoc. Equip. 2015, 784, 364–369. [CrossRef]

128. Runkle, R.C. Neutron sensors and their role in nuclear nonproliferation. Nucl. Instrum. Methods Phys. Res.
Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 37–40. [CrossRef]

129. Gamage, K.A.A.; Joyce, M.J.; Adams, J.C. Combined digital imaging of mixed-field radioactivity with a
single detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 635,
74–77. [CrossRef]

130. Flaska, M.; Pozzi, S.A. Digital pulse shape analysis for the capture-gated liquid scintillator BC-523A. Nucl.
Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2009, 599, 221–225. [CrossRef]

131. Pausch, G.; Stein, J. Application of6LiI(Eu) scintillators with photodiode readout for neutron counting in
mixed gamma-neutron fields. IEEE Trans. Nucl. Sci. 2008, 55, 1413–1419. [CrossRef]

132. Joyce, M.J.; Gamage, K.A.A. Real-time, digital imaging of fast neutrons and γ rays with a single fast liquid
scintillation detector. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Honolulu,
HI, USA, 26 October–3 November 2007; pp. 602–606.

133. Payne, C.; Sellin, P.J.; Ellis, M.; Duroe, K.; Jones, A.; Joyce, M.; Randall, G.; Speller, R. Neutron/gamma pulse
shape discrimination in EJ-299-34 at high flux. In Proceedings of the 2015 IEEE Nuclear Science Symposium
and Medical Imaging Conference, NSS/MIC, San Diego, CA, USA, 31 October–7 November 2015.

134. Liu, G.; Joyce, M.J.; Ma, X.; Aspinall, M.D. A digital method for the discrimination of neutrons and γ rays
with organic scintillation detectors using frequency gradient analysis. IEEE Trans. Nucl. Sci. 2010, 57,
1682–1691. [CrossRef]

135. Unsurpassed Mobile Primary Screening. Available online: http://www.symetrica.com/mobile-rpm (accessed
on 28 January 2019).

136. Fission Meter Portable Neutron Source Identification System. Available online: https://www.ortec-
online.com/products/nuclear-security-and-safeguards/neutron-fission-systems/fission-meter (accessed on
28 January 2019).

137. Smiths Detection Radseeker. Available online: http://www.symetrica.com/oem-sub-systems (accessed on
28 January 2019).

138. Flat Panel Backpack Neutron Detection (3HE Free). Available online: http://www.symetrica.com/backpack
(accessed on 26 October 2018).

141



Sensors 2019, 19, 2638

139. Miller, R.S.; Macri, J.R.; McConnell, M.L.; Ryan, J.M.; Flückiger, E.; Desorgher, L. SONTRAC: An imaging
spectrometer for MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc.
Equip. 2003, 505, 36–40. [CrossRef]

140. Bravar, U.; Bruillard, P.J.; Flckiger, E.O.; Macri, J.R.; McConnell, M.L.; Moser, M.R.; Ryan, J.M.; Woolf, R.S.
Design and Testing of a Position-Sensitive Plastic Scintillator Detector for Fast Neutron Imaging. IEEE Trans.
Nucl. Sci. 2006, 53, 3894–3903. [CrossRef]

141. Vanier, P.E.; Forman, L.; Dioszegi, I.; Salwen, C.; Ghosh, V.J. Calibration and testing of a large-area fast-neutron
directional detector. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record,
Honolulu, HI, USA, 26 October–3 November 2007; pp. 179–184.

142. Mascarenhas, N.; Brennan, J.; Krenz, K.; Marleau, P.; Mrowka, S. Results with the Neutron Scatter Camera.
IEEE Trans. Nucl. Sci. 2009, 56, 1269–1273. [CrossRef]

143. Siegmund, O.H.W.; Vallerga, J.V.; Tremsin, A.S.; Feller, W.B. High spatial and temporal resolution neutron
imaging with microchannel plate detectors. IEEE Trans. Nucl. Sci. 2009, 56, 1203–1209. [CrossRef]

144. Herbach, C.; Pausch, G.; Kreuels, A.; Kong, Y.; Lentering, R.; Plettner, C.; Roemer, K.; Scherwinski, F.;
Schotanus, P.; Stein, J.; et al. Neutron detection by measuring capture gammas in a calorimetric approach. In
Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, USA,
30 October–6 November 2010; pp. 1827–1834.

145. Ryzhikov, V.D.; Grinyov, B.V.; Onyshchenko, G.M.; Piven, L.A.; Lysetska, O.K.; Nagornaya, L.L.; Pochet, T.
The Use of Fast and Thermal Neutron Detectors Based on Oxide Scintillators in Inspection Systems for
Prevention of Illegal Transportation of Radioactive Substances. IEEE Trans. Nucl. Sci. 2010, 57, 2747–2751.
[CrossRef]

146. Marleau, P.; Brennan, J.; Brubaker, E.; Steele, J. Results from the Coded Aperture Neutron Imaging System.
In Proceedings of the 2010 IEEE Nuclear Science Symposium Conference Record, Knoxville, TN, USA, 30
October–6 November 2010; pp. 1640–1646.

147. Nakae, L.F.; Chapline, G.F.; Glenn, A.M.; Kerr, P.L.; Kim, K.S.; Ouedraogo, S.A.; Prasad, M.K.; Sheets, S.A.;
Snyderman, N.J.; Verbeke, J.M.; et al. Recent developments in fast neutron detection and multiplicity
counting with liquid scintillator. AIP Conf. Proc. 2011, 1412, 240–248.

148. Bellinger, S.L.; Fronk, R.G.; Sobering, T.J.; McGregor, D.S. High-efficiency microstructured semiconductor
neutron detectors that are arrayed, dual-integrated, and stacked. Appl. Radiat. Isot. 2012, 70, 1121–1124.
[CrossRef] [PubMed]

149. Ide, K.; Becchetti, M.F.; Flaska, M.; Poitrasson-Riviere, A.; Hamel, M.C.; Polack, J.K.; Lawrence, C.C.;
Clarke, S.D.; Pozzi, S.A. Analysis of a measured neutron background below 6MeV for fast-neutron imaging
systems. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 694, 24–31.
[CrossRef]

150. Joyce, M.J.; Gamage, K.A.A.; Aspinall, M.D.; Cave, F.D.; Lavietes, A. Real-Time, Fast Neutron Coincidence
Assay of Plutonium With a 4-Channel Multiplexed Analyzer and Organic Scintillators. IEEE Trans. Nucl. Sci.
2014, 61, 1340–1348. [CrossRef]

151. Brennan, J.; Brubaker, E.; Gerling, M.; Marleau, P.; McMillan, K.; Nowack, A.; Galloudec, N.R.-L.; Sweany, M.
Demonstration of two-dimensional time-encoded imaging of fast neutrons. Nucl. Instrum. Methods Phys.
Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 802, 76–81. [CrossRef]

152. Fronk, R.G.; Bellinger, S.L.; Henson, L.C.; Huddleston, D.E.; Ochs, T.R.; Rietcheck, C.J.; Smith, C.T.;
Shultis, J.K.; Sobering, T.J.; McGregor, D.S. Advancements on dual-sided microstructured semiconductor
neutron detectors (DSMSNDs). In Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical
Imaging Conference (NSS/MIC), San Diego, CA, USA, 31 October–7 November 2015; pp. 1–4.

153. Ianakiev, K.D.; Hehlen, M.P.; Swinhoe, M.T.; Favalli, A.; Iliev, M.L.; Lin, T.C.; Bennett, B.L.; Barker, M.T.
Neutron detector based on Particles of 6Li glass scintillator dispersed in organic lightguide matrix. Nucl.
Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 189–193. [CrossRef]

154. Hoshor, C.B.; Oakes, T.M.; Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R.;
Miller, W.H.; Bellinger, S.L.; et al. A portable and wide energy range semiconductor-based neutron
spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 803,
68–81. [CrossRef]

155. Goldsmith, J.E.M.; Gerling, M.D.; Brennan, J.S. A compact neutron scatter camera for field deployment.
Rev. Sci. Instrum. 2016, 87, 083307. [CrossRef] [PubMed]

142



Sensors 2019, 19, 2638

156. Di Fulvio, A.; Shin, T.H.; Jordan, T.; Sosa, C.; Ruch, M.L.; Clarke, S.D.; Chichester, D.L.; Pozzi, S.A. Passive
assay of plutonium metal plates using a fast-neutron multiplicity counter. Nucl. Instrum. Methods Phys. Res.
Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 855, 92–101. [CrossRef]

157. Cowles, C.; Behling, S.; Baldez, P.; Folsom, M.; Kouzes, R.; Kukharev, V.; Lintereur, A.; Robinson, S.;
Siciliano, E.; Stave, S.; et al. Development of a lithium fluoride zinc sulfide based neutron multiplicity
counter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 887, 59–63.
[CrossRef]

158. Ochs, T.R.; Beatty, B.L.; Bellinger, S.L.; Fronk, R.G.; Gardner, J.A.; Henson, L.C.; Huddleston, D.E.;
Hutchins, R.M.; Sobering, T.J.; Thompson, J.L.; et al. Wearable detector device utilizing microstructured
semiconductor neutron detector technology. Radiat. Phys. Chem. 2019, 155, 164–172. [CrossRef]

159. Brooks, F.D. A scintillation counter with neutron and gamma-ray discriminators. Nucl. Instrum. Methods
1959, 4, 151–163. [CrossRef]

160. Adams, J.M.; White, G. A versatile pulse shape discriminator for charged particle separation and its
application to fast neutron time-of-flight spectroscopy. Nucl. Instrum. Methods 1978, 156, 459–476. [CrossRef]

161. Yang, K.; Menge, P.R.; Ouspenski, V. Li Co-Doped NaI:Tl (NaIL)-A Large Volume Neutron-Gamma Scintillator
with Exceptional Pulse Shape Discrimination. IEEE Trans. Nucl. Sci. 2017, 64, 2406–2413. [CrossRef]

162. Mukhopadhyay, S.; McHugh, H.R. Portable gamma and thermal neutron detector using 6LiI(Eu) crystals. In
Proceedings of the Proceedings of SPIE-The International Society for Optical Engineering, San Diego, CA,
USA, 20 January 2004; pp. 73–82.

163. Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; Loef, E.V.; Shah, K. Lithium Alkaline
Halides—Next Generation of Dual Mode Scintillators. IEEE Trans. Nucl. Sci. 2016, 63, 490–496. [CrossRef]

164. McGregor, D.S.; Lindsay, J.T.; Olsen, R.W. Thermal neutron detection with cadmium1-x zincx telluride
semiconductor detectors. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip.
1996, 381, 498–501. [CrossRef]

165. Martín-Martín, A.; Iñiguez, M.P.; Luke, P.N.; Barquero, R.; Lorente, A.; Morchón, J.; Gallego, E.; Quincoces, G.;
Martí-Climent, J.M. Evaluation of CdZnTe as neutron detector around medical accelerators. Radiat. Prot.
Dosim. 2009, 133, 193–199. [CrossRef]

166. Tupitsyn, E.; Bhattacharya, P.; Rowe, E.; Matei, L.; Groza, M.; Wiggins, B.; Burger, A.; Stowe, A. Single crystal
of LiInSe2 semiconductor for neutron detector. Appl. Phys. Lett. 2012, 101, 202101. [CrossRef]

167. Coceva, C. Pulse-shape discrimination with a glass scintillator. Nucl. Instrum. Methods 1963, 21, 93–96.
[CrossRef]

168. Combes, C.M.; Dorenbos, P.; van Eijk, C.W.E.; Kramer, K.W.; Gudel, H.U. Optical and scintillation properties
of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6: Ce3+ crystals. J. Lumin. 1999, 82, 299–305. [CrossRef]

169. Glodo, J.; Wang, Y.; Shawgo, R.; Brecher, C.; Hawrami, R.H.; Tower, J.; Shah, K.S. New Developments in
Scintillators for Security Applications. Phys. Procedia 2017, 90, 285–290. [CrossRef]

170. Bell, Z.W. Tests on a digital neutron-gamma pulse shape discriminator with NE213. Nucl. Instrum. Methods
Phys. Res. 1981, 188, 105–109. [CrossRef]

171. Kaschuck, Y.; Esposito, B. Neutron/γ-ray digital pulse shape discrimination with organic scintillators. Nucl.
Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 551, 420–428. [CrossRef]

172. Pozzi, S.A.; Bourne, M.M.; Clarke, S.D. Pulse shape discrimination in the plastic scintillator EJ-299-33. Nucl.
Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2013, 723, 19–23. [CrossRef]

173. Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G. Neutron detection in a high gamma-ray background with
EJ-301 and EJ-309 liquid scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect.
Assoc. Equip. 2012, 690, 96–101. [CrossRef]

174. Al Hamrashdi, H.; Cheneler, D.; Monk, S.D. Material optimization in dual particle detectors by comparing
advanced scintillating materials using two Monte Carlo codes. Nucl. Instrum. Methods Phys. Res. Sect. A
Accel. Spectrometers Detect. Assoc. Equip. 2017, 869, 163–171. [CrossRef]

175. Bell, Z.W.; Hornback, D.E.; Hu, M.Z.; Neal, J.S. Wavelength-based neutron/gamma ray discrimination in
CLYC. In Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), Seattle, WA, USA, 8–15 November 2014; pp. 1–8.

176. Cester, D.; Nebbia, G.; Stevanato, L.; Pino, F.; Sajo-Bohus, L.; Viesti, G. A compact neutron–gamma
spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 719,
81–84. [CrossRef]

143



Sensors 2019, 19, 2638

177. Paff, M.G.; Ruch, M.L.; Poitrasson-Riviere, A.; Sagadevan, A.; Clarke, S.D.; Pozzi, S. Organic liquid scintillation
detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation
portal monitor. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 789,
16–27. [CrossRef]

178. Soundara-Pandian, L.; Tower, J.; Hines, C.; O’Dougherty, P.; Glodo, J.; Shah, K. Characterization of Large
Volume CLYC Scintillators for Nuclear Security Applications. IEEE Trans. Nucl. Sci. 2017, 64, 1744–1748.
[CrossRef]

179. Gamage, K.A.A.; Joyce, M.J.; Taylor, G.C. A digital approach to neutron–γ imaging with a narrow tungsten
collimator aperture and a fast organic liquid scintillator detector. Appl. Radiat. Isot. 2012, 70, 1223–1227.
[CrossRef] [PubMed]

180. Soundara-Pandian, L.; Whitney, C.; Christian, J.; Glodo, J.; Gueorgiev, A.; Hawrami, R.; Squillante, M.R.;
Shah, K.S. CLYC in gamma -Neutron imaging system. In Proceedings of the IEEE Nuclear Science Symposium
Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; pp. 101–105.

181. McDonald, B.S.; Myjak, M.J.; Zalavadia, M.A.; Smart, J.E.; Willett, J.A.; Landgren, P.C.; Greulich, C.R. A
wearable sensor based on CLYC scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers
Detect. Assoc. Equip. 2016, 821, 73–80. [CrossRef]

182. Budden, B.S.; Stonehill, L.C.; Dallmann, N.; Baginski, M.J.; Best, D.J.; Smith, M.B.; Graham, S.A.; Dathy, C.;
Frank, J.M.; McClish, M. A Cs2LiYCl6: Ce-based advanced radiation monitoring device. Nucl. Instrum.
Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 97–104. [CrossRef]

183. Glodo, J.; Brys, W.; Entine, G.; Higgins, W.M.; Loef, E.V.D.v.; Squillante, M.R.; Shah, K.S. CS2LiYCl6: Ce
Neutron gamma detection system. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference
Record, Honolulu, HI, USA, 26 October–3 November 2007; pp. 959–962.

184. Aryaeinejad, R.; Reber, E.L.; Spencer, D.F. Development of a handheld device for simultaneous monitoring
of fast neutrons and gamma rays. IEEE Trans. Nucl. Sci. 2002, 49, 1909–1913. [CrossRef]

185. Aryaeinejad, R.; Spencer, D.F. Pocket dual neutron/gamma radiation detector. IEEE Trans. Nucl. Sci. 2004, 51,
1667–1671. [CrossRef]

186. Baker, J.H.; Galunov, N.Z.; Seminozhenko, V.P.; Tarasenko, O.A.; Martynenko, E.V. A combined
NaI(Tl)+LiI(Eu) detector for environmental, geological and security applications. Radiat. Meas. 2007, 42,
937–940. [CrossRef]

187. Enqvist, A.; Flaska, M.; Pozzi, S. Measurement and simulation of neutron/gamma-ray cross-correlation
functions from spontaneous fission. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect.
Assoc. Equip. 2008, 595, 426–430. [CrossRef]

188. Runkle, R.C.; Myjak, M.J.; Kiff, S.D.; Sidor, D.E.; Morris, S.J.; Rohrer, J.S.; Jarman, K.D.; Pfund, D.M.;
Todd, L.C.; Bowler, R.S.; et al. Lynx: An unattended sensor system for detection of gamma-ray and neutron
emissions from special nuclear materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers
Detect. Assoc. Equip. 2009, 598, 815–825. [CrossRef]

189. Polack, J.K.; Poitrasson-Rivière, A.; Hamel, M.C.; Ide, K.; McMillan, K.L.; Clarke, S.D.; Flaska, M.; Pozzi, S.A.
Dual-particle imager for standoff detection of special nuclear material. In Proceedings of the 2011 IEEE
Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 1494–1500.

190. Cester, D.; Nebbia, G.; Stevanato, L.; Viesti, G.; Neri, F.; Petrucci, S.; Selmi, S.; Tintori, C.; Peerani, P.;
Tomanin, A. Special nuclear material detection with a mobile multi-detector system. Nucl. Instrum. Methods
Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 663, 55–63. [CrossRef]

191. Ayaz-Maierhafer, B.; Hayward, J.P.; Ziock, K.P.; Blackston, M.A.; Fabris, L. Angular resolution study of a
combined gamma-neutron coded aperture imager for standoff detection. Nucl. Instrum. Methods Phys. Res.
Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 712, 120–125. [CrossRef]

192. Poitrasson-Riviere, A.; Hamel, M.C.; Polack, J.K.; Flaska, M.; Clarke, S.D.; Pozzi, S.A. Dual-particle imaging
system based on simultaneous detection of photon and neutron collision events. Nucl. Instrum. Methods
Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 760, 40–45. [CrossRef]

193. Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.
A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays. Nucl. Instrum.
Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 830, 191–196. [CrossRef]

144



Sensors 2019, 19, 2638

194. Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D.M.; Priedhorsky, W.; Raby, E.Y. SNM-DAT: Simulation of
a heterogeneous network for nuclear border security. Nucl. Instrum. Methods Phys. Res. Sect. A Accel.
Spectrometers Detect. Assoc. Equip. 2007, 579, 414–417. [CrossRef]

195. Cooper, D.A.; Ledoux, R.J.; Kamieniecki, K.; Korbly, S.E.; Thompson, J.; Ryan, M.; Roza, N.; Perry, L.;
Hwang, D.; Costales, J.; et al. Intelligent radiation sensor system (IRSS) advanced technology demonstration
(ATD). In Proceedings of the 2010 IEEE International Conference on Technologies for Homeland Security,
HST, Waltham, MA, USA, 13–15 November 2010; pp. 414–420.

196. Vilim, R.; Klann, R. RadTrac: A System for Detecting, Localizing, and Tracking Radioactive Sources in Real
Time. Nucl. Technol. 2009, 168, 61–73. [CrossRef]

197. Rao, N.S.V.; Sen, S.; Prins, N.J.; Cooper, D.A.; Ledoux, R.J.; Costales, J.B.; Kamieniecki, K.; Korbly, S.E.;
Thompson, J.K.; Batcheler, J.; et al. Network algorithms for detection of radiation sources. Nucl. Instrum.
Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 326–331. [CrossRef]

198. Wu, C.Q.; Berry, M.L.; Grieme, K.M.; Sen, S.; Rao, N.S.V.; Brooks, R.R.; Temples, C. Network detection of
radiation sources using ROSD localization. In Proceedings of the 2015 IEEE Nuclear Science Symposium
and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, 31 October–7 November 2015; pp. 1–2.

199. Hite, J.; Mattingly, J. Bayesian Metropolis methods for source localization in an urban environment. Radiat.
Phys. Chem. 2019, 155, 271–274. [CrossRef]

200. Wu, C.Q.; Berry, M.L.; Grieme, K.M.; Sen, S.; Rao, N.S.; Brooks, R.R.; Cordone, G. Network Detection of
Radiation Sources Using Localization-based Approaches. IEEE Trans. Ind. Inform. 2019, 15, 2308–2320.
[CrossRef]

201. identiFINDER S900 Radionuclide Detection Systems. Available online: https://www.southernscientific.co.
uk/products-by-manufacturer/flir/radiation/stride-systems#overview (accessed on 28 April 2019).

202. Passport Releases SmartShield™ v2.0. Available online: https://www.passportsystems.com/pg/products/
smartshield (accessed on 28 April 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

145





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-1439-0 


	Radiation Sensing web-f.pdf
	Radiation Sensing_Design and Deployment of Sensors and Detectors.pdf
	Radiation Sensing web-b.pdf
	Blank Page

