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This special issue on “Smart Sensors for Healthcare and Medical Applications” focuses on new
sensing technologies, measurement techniques, and their applications in medicine and healthcare. We
proposed this topic, being aware of the pivotal role that smart sensors can play for the improvement of
healthcare services in both acute and chronic conditions as well as for prevention towards a healthy life
and active aging. In this editorial we shortly describe the potential of smart sensors in the aforementioned
applications, before moving on providing a general overview of the 24 articles selected and published in
this special issue.

Recent advances in mechatronics, Internet of Things, wearable devices, and the miniaturization of
sensors and electronics have significantly increased the capabilities of smart sensors enlarging the range
of their applications. Among others, healthcare and medical fields have been strongly influenced by the
evolution of these technologies, which are providing substantial contributions in several applications in
the field [1–4]. In fact, smart sensors are increasingly offering novel solutions to several relevant challenges
in healthcare, such as early detection of pathologies, or minimally invasive management and prevention
of high-burden diseases (e.g., cardiovascular diseases and cancer) [5]. Furthermore, the development of
miniaturized and lightweight smart sensors-based systems may be a key player in enabling a more rapid
growth of unobtrusive and unsupervised approaches to home-rehabilitation and continuous monitoring
of patients’ status.

The 24 articles (i.e., 1 review paper, 22 articles, and 1 letter) selected in this special issue cover a variety
of topics related to the design, validation, and application of smart sensors to healthcare. Indeed, the
accepted papers report on different technologies exploited to develop smart sensors, several applications
in diagnostic and/or therapeutic processes, new systems to assess the performance of smart sensors,
wearable systems, and new approaches to analyze biomedical signals.

The only review paper published in this special issue focuses on the principles of work and
technologies used to develop systems for estimating the radiation dose in medical applications [6]. In fact,
the use of radiation is crucial in many radiotherapeutic or imaging procedures, but the absorbed dose
could cause secondary malignancies [7]. Therefore, the accurate monitoring of the exposure to radiation is
mandatory for both patients and clinicians. This work [6] allows the reader to have a global vision of the
current landscape of photonic instruments used for dosimetry.

Five articles investigate new measuring systems and data analysis techniques for monitoring cardiac
and/or respiratory activities, as well as syndromes related to their deficiencies [8–12]. In [8], the respiratory
activity has been investigated as a parameter related to sleep disorders; the authors analyzed respiration
and body movements by a non-contact technique, based on thermal imaging cameras, without disturbing
human sleep. Their analysis was performed on 16 volunteers showing good performances in terms

Sensors 2021, 21, 543; doi:10.3390/s21020543 www.mdpi.com/journal/sensors
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of respiratory rate estimation. In [9], a multi-sensor module to monitor the presence of breath by
accelerometers, ECG, and SpO2 was proposed for monitoring patients affected by obstructive sleep
apnea-hypopnea syndrome. The hardware solution was combined with novel neural network classification
techniques for identifying obstructive sleep apnea. A further non-contact method for estimating the
respiratory rate has been proposed in [10]. The system, consisting of a laptop’s built-in RGB camera and a
custom algorithm, was assessed on 12 healthy volunteers by comparing the results with a gold standard.
The agreement between the proposed method, and the reference one was promising. The importance of
cardio-respiratory monitoring was also investigated in precision sports [11]. The system was proposed
to monitor respiratory rate and heart rate on archers, since the breathing and heartbeat can influence the
stability and, thus, athlete’s performance. A custom wearable system based on fiber optic sensors (i.e.,
fiber Bragg grating, FBG, sensors) was assessed on both 9 volunteers and in a real-life scenario on an archer
during shooting session. The use of FBGs was also exploited for detecting pulse wave and estimating
blood pressure in [12] and assessed on four healthy volunteers. The authors highlighted the importance of
their solution to improve accuracy and repeatability in terms of pulse wave signal.

A second group of five papers propose methods to assess or predict patients’ conditions by monitoring
different parameters (e.g., physiological parameters, physiological behaviors, and motion behaviors) [13–
17]. The first article explores the use of optical sensors for pressure ulcer prevention [13]. Data collected
by the system were used as feedback of an active pressure relief system by regulating the air flow. The
authors demonstrated that the proposed system is able to reduce the pressure in a scenario mimicking the
real condition. The second article focuses on a torsional wave sensor for estimating the cervical elasticity
on pregnant women [14]. This novel technique was evaluated on 18 single-pregnant women showing that
it is safe and allows quantifying cervical shear stiffness. Moreover, results proved that cervical stiffness
can be considered a valuable predictor of gestational age at the moment of evaluation. The third article
proposes a measurement system based on fiber optic sensors to detect grasping actions in newborns [15].
The authors focused on fiber optic technology since it allowed developing an MR compatible system.
This feature is important because the use of the proposed system during functional magnetic resonance
imaging (fMRI) helps to relate the brain activity to the grasping actions. The combination of these two
analyses may provide important insights on how functional outcomes can be improved following cerebral
injury. In [16], authors proposed a novel method based on artificial neural networks to detect epileptic
seizures using data of 30 subjects from a public database. EEG, submentalis and bilateral anterior tibialis
EMG, and an earlobe PPG were used showing promising results in terms of detection of epileptic seizures.
A custom EEG-electrode holder infrastructure is presented in [17]. A low-end consumer 3D printer was
used to manufacture all the elements (e.g., sensor-positioning ring, inter-ring bridge, and bridge shield),
and the practicability of the assembled headset was validated on fifteen volunteers demonstrating the
potential of a cost-efficient electrode-holder assembly infrastructure.

Seven articles focused on patients’ motor functions for potential application in rehabilitation or
in the assessment of their functional impairment [18–23]. The first article proposes a novel contactless
method, based on electrostatic field, for extracting gait features of hemiplegic patients [18], together with
an improved version of the traditional detrended cross-correlation analysis to analyze the signal collected
on 10 hemiparetic patients and 10 healthy volunteers. The authors found that the proposed method
can quantify the gait difference between the hemiparetic patients and the healthy controls. The second
paper proposes a solution to support medical personnel in the assessment of patients with spinal cord
injury [19]. The authors present a system based on 3 RGB-D cameras (Microsoft Kinect v2) to assess
patients’ movements using a wheelchair. The system allows analyzing the pushing cycle, and other key
movements useful to evaluate the patient’s performance, thus, capable of supporting the clinician in the
definition of the rehabilitation process. The system was assessed on patients for a total of 138 acquisitions
showing promising results, also considering the low cost of the proposed system compared to the more
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expensive motion capture systems often used in similar applications. The third article finds its motivation
in the development of a game-based system for upper-limb cerebral palsy [20]. The authors highlighted
the importance of an accurate estimation of patient motor performance in order to have an effective
game-based rehabilitation system. They used a Kinect sensor to monitor arm movements, focusing on the
shoulder joint. The system was assessed on two groups of cerebral palsy and typically developing children
showing good results in the movements evaluation of the right arm during the proposed rehabilitation
sessions. The fourth article investigates a system for monitoring a medical exam (i.e., 30 s chair stand test)
used to assess the functional status of elderly people [21]. The aim was to develop a system able to achieve
the counts of sit-to-stand transitions without the supervision of a physician, and to guide the people
through the whole exam via a home care application. The abovementioned count was performed by a
simple wearable system based on an elastic band worn around the subject’s leg. The system was assessed
on seven elderly subjects showing the capability of the system to identify all the sit-to-stand transitions.
The fifth work proposes a wearable system for monitoring body acceleration and electromyography on
patients affected by multiple sclerosis [22]. The system was tested on 40 patients and 15 healthy volunteers
during the timed 10 min walking test under three different conditions: standard (i.e., wearing shoes),
reduced grip (i.e., wearing socks), and increased cognitive load (i.e., backward-counting dual-task). The
knowledge of both muscle activity and kinematics during walking may be beneficial to monitor the disease
progression and the efficiency of rehabilitation for multiple sclerosis patients. In addition, results showed
that walking tests wearing socks should be discouraged to prevent falls for these patients. The sixth
article of this group focuses on the impact that the simultaneous knowledge of morphology and muscle
activation can have in understanding the impairment status, thus providing a targeted rehabilitation
treatment [23]. The study investigates a method that uses the morphological information contained in the
MRI scan to build an electrical lumped model of the conductive volume to provide an estimation of all
muscles’ activation. The last research paper of this group focuses on monitoring patients’ activity by a
wearable system based on three-axis accelerometer and a triple-axis gyroscope [24]. Data collected on the
patients are intended to be used to adjust the oxygen flow delivered by portable oxygen concentrator in
patients with COPD and respiratory failure. The system was assessed on 18 patients showing a significant
reduction of the number of desaturation events.

A solution for dietary monitoring in terms of food mass and intake (FMI) based on a ring-type sensor
has been proposed in [25]. This evaluation is important since the knowledge of FMI can be important to
assess the physical condition of a person. The proposed solutions allowed the wearable system to optimize
its sensitivity. The authors highlighted the potential of this solution to support the prevention of obesity
and metabolic syndrome.

The development of a system based on multiple sensors (i.e., a magnetic door sensor, a motion
detection sensor, and two time of flight sensors) to estimate the duration of patient-physician contact
(consultation time) is the focus of [26]. The knowledge of this parameter may help in the optimization
of the treatment processes and on the healthcare service. The system was assessed in two scenarios with
preliminary experiments to evaluate the quality of the estimated time.

A mechatronic platform for detection of cancer nodules has been proposed in [27]. The system uses
multi-sensors data providing mechanical stiffness and Ultrasound impedance of the tissue under exam.
The system was assessed using phantoms mimicking diseased tissues showing promising results (the
system correctly identified the tissue in the 90.3% of the cases).

The study reported in [28] grounds its motivation in the reduction of measurements error of a type of
force/pressure sensor (i.e., force sensitive resistors, FSR) largely used in applications related to the pressure
map at the interface of a prosthetic socket and a residual limb. Authors reported a regression-based
method to calibrate these sensors considering different surfaces of contact (i.e., flat or curved surfaces).
Different algorithms were assessed to improve the accuracy of this type of sensor.
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The relevant problem in clinical practice of errors in the placement of ECG electrodes, that can cause
significant signal changes, has been faced in [29]. The study proposed a method to simulate all possible
ECG reversals and applied the proposed novel algebraic transformation in the standard 12-lead ECG
setup.

The unique research paper with a novel system to assess the performance of sensors is reported in [30].
The study explores the development of a novel movement simulator devoted to assessing the performance
of wearable systems for monitoring fetal movements. The rationale behind this study is motivated by
the clinical importance of fetal movements to assess the fetal health and the difficulty of assessing the
performance of the proposed system in preclinical stage.

In summary, the special issue “Smart Sensors for Healthcare and Medical Applications” reports a
wide collection of articles focused on smart sensors and their applications in healthcare. The large part of
the contributions is expected to consolidate the use of smart sensors in medicine and healthcare in order to
support physiological monitoring, to assist rehabilitation processes, to validate medical devices, and to
optimize performance of measuring systems in a variety of fields.
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published version of the manuscript.
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Abstract: Numerous instruments such as ionization chambers, hand-held and pocket dosimeters
of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated
luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications.
Of recent, photonic devices have also been adopted. This article evaluates recent research and
advancements in the applications of photonic devices in medical radiation detection primarily focusing
on four types; photodiodes – including light-emitting diodes (LEDs), phototransistors—including
metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and
charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive
analysis of the operating principles and recent technologies of these devices is performed. Further,
critical evaluation and comparison of their benefits and limitations as dosimeters is done based
on the available studies. Common factors barring photonic devices from being used as radiation
detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally,
the potentials of these devices and the challenges of realizing their applications as quintessential
dosimeters are highlighted for future research and improvements.

Keywords: radiation-induced current; dosimetry; photodiodes; phototransistors (MOSFETs);
photovoltaic sensor; CCD/CMOS

1. Introduction

Radiation can be classified into mainly two, i.e., charged particle radiation that consists of fast
electrons and heavy charged particles, and uncharged radiation that comprises electromagnetic
radiation and neutrons [1]. In radiation spectroscopy, both these radiation types interact with matter
in different ways, hence, the need for radiation measurement and monitoring in order to control
its effects in the matter accordingly. Today, radiation is used for carrying out radiotherapeutic or
imaging procedures like Computed Tomography (CT)—in the field of medicine [2]. However, during
its applications, there has to be precaution since excessive radiation attenuation by human tissue may
result into high absorbed dose values [3,4]. This could be a root cause of secondary malignancies [4].
Therefore, stringent measures to control and manage both intentional and unintentional radiation
exposures through radiation dosimetry is necessary.

Medical radiation dosimetry involves measurement, calculation, and assessment of the quantity
and quality of ionizing radiation exposed to and attenuated by the human body. Various gas, liquid
and solid-state dosimeters are used to quantify radiation; these are predominantly grouped under
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the ionization chamber, semiconductor and diamond detector types [5,6]. These detectors are used to
measure radiation delivered internally (in-vivo)—by ingesting or inhaling radioactive substances, and
externally using external beam radiation therapy.

X-rays are electromagnetic waves with a wavelength shorter than that of ultra violet light but
longer than that of gamma rays. X-rays, and other electromagnetic waves such as visible light, are also
discrete energy packets known as photons/quanta. Quantization of X-rays could therefore make X-ray
photons show characteristics of high-energy particles. In X-ray radiation detection, detection efficiency
is the ratio of the number of counts in the detector’s spectrum to the number of photons emitted by the
radiation source [7]. High density and the atomic number of a radiation detector material imply higher
sensitivity of the detector [8]. Comparing silicon’s density; 2.3 gcm−3 to that of air; 1.3 × 10−3gcm−3,
Romei et al. [9] state that solid-state detectors avail the same overall detection efficiency as that of
gas detectors; for instance, semiconductor detectors need less energy to form an electron-hole pair
compared to ionization chambers [9]. This way, applications of solid-state dosimeters in radiation
detection has become recurrent in recent technologies. At an atomic level, atoms in the solid state
are close to each other. On the other hand, atoms are fairly far apart from each other in gases and
liquids. This makes solids to be with a higher density when compared to liquids and gases. During
radiation detection, if a radiation photon strikes an atom, electrons are excited into the conduction
band-hence a detectable current signal. On the other hand, when the radiation photon strikes the
interatomic spacing, there will be less/no energy absorbed by the atomic electrons, hence low/no
electron excitations. Consequently, there is a low detectable current signal. Therefore, a radiation
photon strikes more atoms in solids than in liquids and gases. This way, solid-state detectors provide a
higher resolution and sensitivity during radiation detection, i.e., if compared to liquid-state detectors
and ionization chambers [2].

In particular, the semiconductor solid-state detectors mainly comprise photonic devices; circuit
board components of electronic gadgets that are used for production and detection of electromagnetic
radiation. Photodiodes, phototransistors, and CCDs are some of the semiconductor-based photonic
devices that have profoundly been used for producing, detecting and manipulating light. Light has
a wavelength range of 440–800 nm [10,11]. Nevertheless, these photonic devices are also sensitive
to other ranges of the electromagnetic spectrum. Therefore, current researches aim to exploit this
capability. For instance, silicon photodiodes can detect radiations having wavelengths shorter than
1.2 μm, i.e., visible and ultraviolet light, and some wavelengths near infrared radiation [12].

Using equations, schematics, and graphs, a detailed explication of the photonic device structure
and physics is presented in the form of benefits and limitations as dosimeters. Further, factors such
as minimum and maximum measurable dose, ability to give real-time measurements, reduction in
sensitivity after radiation exposure, and price among others are examined. This is aimed at providing
a comparative analysis of these photonic devices as medical radiation detectors since there is currently
no study that has addressed this type of contradistinction.

This article, therefore, benchmarks; photodiodes, phototransistors/ MOSFETs, solar cells, and
CCDs for accurate and effective medical radiation detection and measurement. This work is based on
previous and current researches by different authors and ultimately aims at facilitating the development
of alternative dosimeters to improvise for the conventional medical radiation dosimeters that are
quite costly.

2. Photodiodes/LEDs

A photodiode is a semiconductor-based electrical device that converts photonic energy, in the
form of electromagnetic radiation, to a detectable electrical signal in the form of current or voltage
(Figure 1a). LEDs are also semiconductor-based devices. However, LEDs convert electrical energy—in
the form of current, to light (photons); through the electroluminescence process [13]. To a greater
extent, most of the semiconductor-based photodiodes and LEDs consist of silicon PN junctions. Today,
photodiodes are typically used for signal detection [9,14–16] while LEDs are principally used for
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luminescence [13]. However, some novel studies have directly manipulated LEDs for electromagnetic
radiation detection (sensing) [11,17–20].

(a) (b) (c) 

Figure 1. Images of some of the semiconductor-based photonic devices (a) Photodiode [21]; (b) chip
on board light-emitting diode (COB LED) [22]; (c) surface mount diodes light-emitting diode (SMD
LED) [23].

Photodiodes can be broadly classified into four, i.e., PN photodiodes; consisting of a heavily
positive semiconductor (P) affixed to a heavily negative semiconductor (N) to form a junction,
PIN photodiodes; comprising a PN junction with an intrinsic region sandwiched between the P
and N semiconductors in order to increase detection volume [14], Avalanche photodiodes (APDs):
Photodiodes that are very sensitive to relatively low intensity electromagnetic radiation due to their
high precision and gain capability [24], and Schottky photodiodes: Photodiodes associated with
appreciably low operational capacitance [25].

Recent technologies deploy surface mount diodes (SMDs) and chip on board LEDs (COB LEDs).
SMDs and COBs are multiple sole LEDs adhered onto a printed circuit board to form one compatible
unit as shown in Figure 1b,c. COBs have more chips/LEDs, hence, provide more luminescence than
SMDs; they also consume less energy [26].

2.1. Structure

Silicon being a group four element, comprises of four valence electrons in its outer most shell.
This way, a silicon atom makes covalent bonds by sharing electrons with the neighbouring atoms.
The sharing could be among the silicon atoms themselves or even atoms of a different element - through
the doping process [13]. Therefore, pure/intrinsic silicon is almost incapable of conducting current
naturally [13,27]. It has gotten few/no free electrons in the conduction band but has gotten more holes
in the valence band as shown by Figure 2a [13]. Nonetheless, conduction could still occur due to
crystal defects or thermal excitation [27]. Current electronic applications mostly deploy doped silicon.
In doped silicon, the sharing atoms are from either group 3 or group 5. During the bonding process,
electron sharing creates an electron deficiency; if the sharing atoms are from group 3, or an excess of
electrons; if the sharing atoms are from group 5 [13,27]. A deficiency creates holes [13] which are free
and move around just like the excess electrons. After the bonding process, the loss of excess electrons
leaves a positive charge on the impurity atoms while the gain of an electron leaves a negative charge
on the impurity atoms. Therefore, a region where there is an excess of the negatively charged electrons
becomes an N region: N-type doped semiconductor, while a region with an excess of positively charged
holes becomes the P region: P-type doped semiconductor [13,27].
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(a) (b) 

Figure 2. (a) Semiconductor Energy Bands; (b) lattice structure Vacancies and Interstitials.

When the P and N types are in contact, electrons in the N region move across to the P region to
make recombinations with the holes [13]. At this junction, the impurity atoms get depleted of charges
that results in an electric field due to their positive and negative polarization. The electric field has
an associated electric potential that ceases further charge flow across the junction. Therefore, this
results in a necessity for an external potential, bias, for charges to travel across the junction [28]. This
applied potential should be in opposition to the intrinsic region’s electric field potential. Charges are
not only stimulated electrically with the potential bias [13] but also thermally [10,29], and optically [30].
PN junctions are the main components of semiconductor devices as shown in Figure 3a.

 

 
(a) (b) 

(c) (d) 

Figure 3. (a) Cross-section of an NPN transistor (similar to that of a photodiode); (b) an unbiased PN
Junction; (c) a parallel plate capacitor; (d) an NPN transistor circuit diagram.

10



Sensors 2019, 19, 2226

2.2. Functionality and Operational Principle

The operation of LEDs is based on electrical stimulation/ electroluminescence; electrons
gain electrical energy and drift towards holes that results into recombinations [13]. During these
recombinations, energy equivalent to the semiconductor material’s energy band gap is dissipated
off in the form of light photons [13]. There is also a direct proportionality between the electrical
energy applied and the photonic light produced by LEDs, i.e., more current leads to more charge
recombinations, hence, the production of more light and vice versa [13]. Transposition of these
processes explains the working principle of photodiodes. Here, the charges receive energy in the form
of electromagnetic radiation that makes electrons drift towards the holes.

This charge flow creates an internal electric field that ceases the further flow of charge, hence,
establishing an equilibrium in the depletion region of the PN junction. Therefore, an external positive
or negative potential has to be applied against the newly-present internal potential; so that electrons
and holes move across the junction again. This positive or negative potential is also termed as forward
or reverse biasing depending on its orientation. In the forward biasing of a PN junction, the positive
bias voltage repels the holes on the P side. Similarly, the negative bias voltage repels the electrons
on the N side. These repulsions from both the negative and positive bias voltages make the charges
overcome the internal electric field potential in the depletion zone (Figure 3b). This makes charges
eventually flow over the junction, hence, the operation of a PN junction. In contrast, during the reverse
bias, the positive bias voltage attracts the electrons from the N side while the negative bias voltage also
attracts the holes from the P side; that results in no charge flow across the junction.

Despite the reverse bias, some random charges can still overcome the electric field potential in
the depletion zone. This random charge flow over the junction leads to a current flow termed as a
leakage/dark current. This dark current flow during the reverse bias gives a clue to the intuition of
radiation detection by a PN junction, i.e., medical radiation detection using a reversely biased PN
junction. When photons fall on a reversely biased PN junction, their energy is absorbed by the electrons
in the N region. Due to this energy absorption, electrons overcome the depletion region’s electric
field potential thus formulation of recombinations. From Equation (1) [16], an electrical current (I) is a
result of summing up (integrating) all the small charges, (dq), flowing per unit time (dt). The current
(I) can also be defined as the rate of charge flow. An induced measurable photocurrent [31] can be
used to depict the nature of photonic energy that induced it. The generated electrical signal may
be of small magnitude or incompatible to the measuring device (ammeter/ multimeter). Therefore,
a photocurrent may not be directly sensed by a detector device. In this case, amplification has to
be done to produce a measurable electrical current [25,32,33]. Medical radiation detection using PN
junction-based dosimeters exploits this principle to measure and characterize the quality and quantity
of radiation striking the dosimeter; the characterization is based on the induced photocurrent.

I =
dq
dt

(1)

2.3. Present Literature

The ability of PIN photodiodes to detect mammography and radiology clinical beams are examined
in a study by Romei et al. [9]. Here, reproducible linearity, system sensitivity, diode batch-to-batch
reproducibility, and the correlation between diode read-out and absorbed dose are investigated using
an S2506-02 photodiode [9]. A Monte Carlo simulation was also performed to investigate the effect of
the photodiode casing during the measurement of low energy radiations. As highlighted in Section 2.2,
there was a need for an amplification stage in order to acquire the signal in the current mode [9].

PIN diodes were also evaluated for detection of diagnostic radiology clinical beams while using a
standard reference as calibration [34]. A linear correlation between the PIN photodiode read-out and
the dose measured with standard dosimeters was observed [34]. In this study, satisfactory sensitivity;
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in accordance with the read-out dose values, small size, and being cost effective are highlighted as the
advantages of using PIN photodiodes [34].

Further, a BPW34FS photodiode was benchmarked for; angular dependence-variation of the
output signal according to the radiation beam angle of incidence, energy dependence, dose linearity, and
sensitivity degradation (due to accumulated dose) using computed tomography X-rays [35]. Its response
was then compared to those of the OP520 and OP521 phototransistors [35]. Air kerma/energy
dependence response for all of the three devices implied the need for calibration for each device.
All the three device signals were also highly dependent on the angle of incidence of the radiation
beam [35]. The photodiode had low sensitivity that was unaffected by increased X-ray exposure [35].
The transistors’ high sensitivity also considerably plummets with an increased absorbed dose; this
presented a need for calibration in order to obtain accurate results following continued exposures [35].

SFH206, BPW34, SFH205, and BPX90F PIN photodiodes were also examined for application as
radio-protection detectors in radiology [14]. The examination was based on the minimum sensitive
area (5 mm2), half angle (60◦), and low-cost as comparison criteria [14]. This was because these devices
are inexpensive and have a small volume [14]. Photodiodes are also defined as direct-reading real-time
dosimeters, and their responsiveness to x and gamma rays, air kerma/absorbed dose linearity, and
repeatability were analysed [14].

In addition, current mode S1223, BPW34, and PS100-6-CER2 PIN photodiodes were also appraised
as real-time gamma radiation detectors while using photodiodes of different active areas and varying
the number of diodes connected in parallel [15]. The assessment was done by deducing the
photocurrent-dose rate, and accumulated charge-absorbed dose relationship [15]. A customized
computer-based electrometer, that could measure photoinduced currents as low as 50 pA with
considerably low errors, was also used. In this study, the photodiode’s induced current was linear with
the dose rate while the accumulated charge was also linear with the absorbed dose [15]. The current
response of the devices could be estimated with a function that is based on the dose rate and the
photodiode’s detection volume, i.e., the product of the active area and depletion layer width [15].

2.4. Benefits, Limitations and Challenges as Potential dosimeters

Accurate detection and measurement of radiation-induced photocurrent is paramount and the
ability to perform this is termed as sensitivity. Photodiode sensitivity can be enhanced by increasing the
device’s sensitive area; to ensure more accurate results in medical radiation applications. However, this
is related to an adverse effect of increasing the capacitance [14]. From Equation (2) [16], while assuming
a parallel plate capacitor [18] with constant charge, the capacitance is inversely proportional to the
applied voltage. It can also be observed from Equation (3) [15,16] that area-A (sensitive area) is directly
proportional to the capacitance thus an increase in the area increases the capacitance. Therefore, due to
the inverse proportionality between the capacitance and the voltage, there is an output signal-voltage
amplitude drop associated with an increase in the area [14]. In other words, the parameter that
affects the PIN photodiode’s photocurrent most is the active detection volume [28]. The detection
volume is a product of the active area and the depletion region’s width [15]. While the active area is
constant, the depletion layer can be varied by the amount of the reverse bias voltage [15]. This however
increases the leakage/dark current that eventually affects the minimum dose rate (current) that can be
measured [15]. A study by authors [14] also suggests combining the photodiodes in parallel (tiling) to
increase the detection area. However, they further explicate that increasing the sensitivity this way has
a cost of increasing the capacitance; hence a low voltage output signal.

Q = CV (2)

Q-Charge on capacitor plates, C- Capacitance of the capacitor, V-Voltage across the capacitor plates

C =
εA
d

(3)
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C-Capacitance, ε-Dielectric constant, d-Distance between the capacitor plates, A-Area of the
capacitor plates

PIN photodiodes have a higher quantum efficiency over other current read-out sensors [15]. This
infers that a higher fraction of the incident photon beam contributes to the photocurrent [14,36]. The
PIN photodiode’s wide intrinsic region has high charge densities [37] that implies many charge carriers
per photon that strikes this region [14]. There are no electrons filling the outermost energy bands in
this intrinsic region, hence charges prefer filling up these empty energy bands; a phenomenon that
results in a high charge concentration in this region.

Compared to ionization chambers, semiconductor detectors also have a higher signal-to-noise
ratio, i.e., they require lower average energy to create a pair of charge carriers [9]. This could also
imply high sensitivity to low energy radiation thus increase in the measurable range. Although
photodiodes may give a small signal to radiation exposure, they are preferred because accuracy is
crucial in dosimetry; photodiodes produce a pure signal with less noise [35].

Some attributes of an efficient medical radiation dosimeter include; having a wide dose-measurement
range, high accuracy levels, giving a real-time response to radiation exposure, and being user-friendly [9].
The radiation-induced current of photodiodes only flows during radiation exposure, thus giving a
direct measurement/output electric signal [14]. This implies that photodiodes are active and real-time
dosimeters [15]. Therefore, photodiodes are preferred to passive dosimeters like the TLDs [15]. This is
because the absorbed dose of the TLDs could be affected by fading during the time between radiation
exposure and measurement; that leads to inaccuracy in measurements.

Photodiodes can be termed as hard dosimeters because their loss of sensitivity after radiation
exposure is negligible [35]. In other words, they have higher repeatability [15]. In dosimetry,
repeatability refers to the extent to which the dosimeter gives stable/constant results following
successive/consecutive radiation exposures - keeping all parameters constant [16]. This is a key feature
for dosimeters since they are repeatedly used for dose measurements in different sessions. Therefore,
the ability to give unwavering readings is pivotal.

Since dosimeters measure the radiation received by the body, their structural composition relative
to the human body should be taken into consideration. Silicon’s atomic number-14 is different from
that of human tissue-approximately 7.4 [9]; therefore, both silicon and human tissue are associated
with different chemical interactions. However, silicon may still be used for dosimetry of x and gamma
rays, interacting with human tissue, by applying calibration factors [9].

PINs are vulnerable to atomic displacements in their lattice structure [38]. These displacements
are due to absorbed dose/ photon energy of the incident beam as shown in Figure 2b. Increase in
displacements could imply an increase in dark currents [15], but these damages in the PIN’s structure
may be negligible. For instance, the lowest measurable photocurrent level for each sample in [15]’s
study was more than two orders of magnitude higher than the nominal dark current before radiation
exposure [15]. Considerably high dark current levels could, however, limit the minimum measurable
level of radiation-induced photocurrent [15]. This is because the low energy radiations won’t be able
to stimulate electrons and holes from the dosimetric traps [30]. Eventually, the post-recombination
current signal will be weaker/lower than the pre-existing dark current signal: Unmeasurable.

Since an increase in the dark currents leads to a decrease in the photocurrent, periodic recalibration
has to be carried out to ensure long term stability and accuracy. This is supported by the finding that
states that the level of sensitivity loss as a function of radiation damage depends on the photodiode’s
characteristics, the energy of the source, and the total absorbed dose [15].

Increase in ambient temperature also leads to a relative increase in the leakage current; the charge
drift is stimulated by the heat energy. Yukihara [30] also observes a significant charge concentration
(signal) decrease at room temperature. This is because the heat energy could easily stimulate the
charges out of shallow traps. Recombinations of these charges from shallow traps produce dark
currents; shallow traps are situated close to energy levels at the edge of the conduction and valence
bands [30].
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3. Phototransistors

Since photonic devices emit, detect, and manipulate light, devices such as metal–oxide–
semiconductor field-effect transistors (MOSFETs), bipolar joint transistor (BJT), vertical double-diffused
MOSFETs (VDMOSFETs), and transistors are not considered as photonic devices. Although this paper
mainly focuses on photonic devices, this section also includes MOSFETs, BJT, VDMOSFET, RADFETs
and transistors because they have the same structure, operation principles, and are often compared to
photonic devices during medical radiation detection.

3.1. Structure

Phototransistors consist of a PN junction in the NPN format (Figure 3a)-similar to photodiodes and
transistors. The only difference between photodiodes and phototransistors is that the phototransistor
base section (P) is sensitive to the photons of light that strike it [11]. Since transistors are fundamentally
amplifiers, they multiply the base current with a gain factor giving rise to an amplified collector
current. Therefore, if the base of the transistor is photosensitive, amplified photocurrent signals will
be produced as collector currents. Phototransistors are therefore defined as optoelectronic devices
commonly constituting two relatively thick N-type sandwiching a thin P-type semiconductor material
layer [39]. The NPN junction sections are emitter, base, and collector, respectively [16]. These sections
are named according to the roles they play in electron transmission across the junction. In reference to
Figure 3a, both the base and the collector are bigger than the emitter. The base inputs charge into the
junction and on the other hand, the collector gathers charge out of the junction. Further, the collector is
bigger than the base thus collects and takes into account all of the emitted charge without omitting
any; this implies high sensitivity. Andjelković and Ristić also state that the base-collector junction is
the sensitive volume of the phototransistor and is deliberately made longer than the base-emitter to
achieve high sensitivity to the incident radiation [16].

3.2. Functionality and Operational Principle

Exposure of phototransistors to radiation stimulates the flow of a charge/photocurrent in them.
This charge/photocurrent is a record of the type of radiation that induced it. Therefore, accurate
quantification, evaluation and measurement of all collected charge guarantees accurate backtracking
to the radiation that induces this charge/photocurrent. The product of the photocurrent and the time
taken to collect this photocurrent is equivalent to the charge collected by the sensor during this time.
This accumulated charge is proportional to the absorbed dose [15]. In addition, if there is a linear
relationship between the intensity of the radiation-induced current and the dose rate, the intensity of
the radiation-induced current is equivalent to the dose rate [15]. The radiation-induced photocurrent
will be stable and proportional to the dose rate as long as the incident radiation dose rate is high
enough during exposure [16].

3.3. Present Literature

Gamma radiation from a Co-60 source was detected with a collector-emitter biased NPN
phototransistor [16]. The accumulated charge-absorbed dose relationship, dose rate effect on the
induced current, short term repeatability, and stability of induced current were assessed. The radiation-
induced current was stable with a less than 5% uncertainty and the induced charge was considerably
good with a less than 3% uncertainty [16]. A notable current fall after an absorbed dose of 20 Gy was
however observed; this was attributed to the radiation-induced lattice structural damages [16,38].
A non-linear relationship between the absorbed dose and the accumulated charge was also noticed;
this was similarly due to the current gain damages [16]. The results of this study recommended the use
of an NPN phototransistor because of its high sensitivity, linear induced current-dose rate relationship,
and minimal dose rate dependence on charge sensitivity [16].
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Radiation Field Effect Transistors (RADFETs) are p-channel metal oxide semiconductor transistors
purposely manufactured for radiation detection. RADFETs were compared to a p-channel VDMOSFETs
for radiation detection by analysing the radiation-induced threshold voltage alteration; the threshold
voltages change after radiation exposure [40]. Here, the threshold voltage shift and radiation dose
exhibited a linear dependence on each other when a +10v gate bias was applied [40]. The p-channel
power VDMOSFETs responded more to radiation exposures than the RADFETs – there was a higher
threshold voltage shift. This was attributed to more fixed traps that are induced by gamma radiation [40].
Fading was also examined at room temperature and it was more eminent in VDMOSFETs than in
RADFETs [40].

In breast cancer radiotherapy treatment, bipolar junction transistors were tested as radiation
detectors despite the fact that they are affected by accumulated dose structural damages [39]. Similar
to the threshold voltage shift technique used in VDMOSFETs, this study uses the current amplification
factor (β) shift to determine the absorbed dose – radiation absorption alters the value of β. Therefore,
radiation is quantified and characterized according to the change in the value of β. In particular,
a Darlington type BJT was used since it has a higher gain compared to other BJTs; its gain is a product
of two BJTs-β1β2 [41]. This high gain ultimately implies a high response/sensitivity to low energy
radiations [39].

Another study also tested the accuracy of MOSFETs in the detection of radiotherapy absorbed
dose [42]. The MOSFET dose calculations were ascertained by referring to the Monaco and MasterPlan
pre-treatment plans of different anatomical regions; this was aimed at ensuring synchrony between the
planned and actual absorbed dose [42].

RADFETs can’t provide real-time/ online dose information using conventional methods. Therefore,
they were configured as a PN junction, i.e., the gate, drain and source terminals (Figure 4) were
inactivated /grounded. Co-60 gamma radiation-induced current was thereafter measured from the
bulk terminal [28]. The radiation induced-currents were stable and progressively increased with
the increase in the bias voltage of up to 30V [41]. While the current increased with the dose rate in
accordance with the power law, its read-out sensitivity was linear to the applied bias voltage [38,41].
This led to an overall performance that is relatively similar to that of the PN photodiodes; additionally,
the device is unsusceptible to radiation-induced lattice structural damages [38,41].

 

Figure 4. Depletion mode p-channel MOSFET.

While examining reproducibility, dose linearity, energy dependence, and fading, MOSFETs were
investigated for in-vivo applications using an Alderson phantom [43]. The radiation-induced current
signal was linear with applied doses between 0.2 and 2 Gy of the absorbed dose [43]. From the
attained results, there was minimal temperature dependence between 22 and 40 ◦C, and the beam angle
variation was within 5% [43]. The MOSFET’s in-vivo dosimetry was applicable in the 80 kV–250 kV
range, and reproducibility was observed as a function of the absorbed dose [43]. The measured signal
also faded/reduced as the time between radiation exposure and measurement increased [43].
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3.4. Benefits, Limitations and Challenges as Potential Dosimeters

Santos et al. [44] demonstrated that phototransistors have good read-out stability for low energy
radiation (Diagnostic range) [44]. However, they exhibit a high sensitivity loss during high energy
radiation exposure; doses up to 100 Gy [16]. Furthermore, phototransistors have a higher current
gain/higher sensitivity in comparison to PIN photodiodes, but they experience faster sensitivity loss
with respect to the absorbed dose; this is due to the gain degradation [44]. In Figure 3d, the small base
current IB is amplified by the gain factor of the phototransistor-β; β is the ratio of the collector current
IC to the base current IB. Typical current gains for phototransistors range from a hundred to several
thousands [16]. A higher transistor gain factor, therefore, corresponds to the multiplication of the
base current with a bigger value in order to obtain the collector current. This way, the phototransistor
amplifies the small radiation-induced photocurrent, IB, to a greater value, IC, hence, higher sensitivity
and good read-out stability for low energy radiation [44]. The main advantage of phototransistors over
the photodiodes is this inherent current gain which brings the benefit of higher sensitivity to incident
radiation [16].

This sensitivity can even be further augmented by increasing the bias voltage [45], i.e., the
collector-emitter voltage. This consequently enhances the collection efficiency [16]. For investigating
the emitter-collector capacitance, a parallel plate capacitor will be analogized. Since the emitter-base
junction is considerably smaller than the collector-base junction, the emitter-collector capacitance will
be assumed to be the collector-base junction capacitance [16]. The total charge on the parallel plate
capacitor plates in Figure 3c is given by Equation (2) [16].

In Equation (3) [15,16], ε is the dielectric constant of the material between the capacitor plates.
ε is equivalent to εo if the dielectric material between the capacitor plates is air. Substitution of
Equation (3) [15,16] in Equation (2) [16] makes the distance d between the capacitor plates directly
proportional to the applied voltage V; with (εA/Q) as the proportionality constant. An increase in the
voltage across the capacitor, therefore, implies that d increases relatively. This thickness-d is related to
the depletion layer of the capacitor - as stated by Anđelković [16]. In a study by Oliveira [14], this
depletion layer implies the intrinsic region in PIN diodes [14]. Therefore, a wide intrinsic region implies
many charge carriers per photon; this optimizes the device’s sensitivity. However, an increment in
the depletion layer by increasing the voltage [45,46] is associated with an increase in dark currents;
Figure 3 of Anđelković [16] clearly elaborates the dark current increment of various transistors [16].
Despite the fact that the transistors are of different brands, the dark current effects showed the same
trend they appreciably increased with the increase in the collector-emitter voltage. Therefore, the
increase in the bias voltage and structural damages increase dark currents.

Similar to photodiodes, dark currents of phototransistors determine their minimum measurable
dose rate [16]. For higher precision during dose rate and absorbed dose rate measurements,
the difference between the measured current and dark currents should be as large as possible.
This is because the induced current is the difference between the measured and dark currents [16].
Therefore, if the radiation-induced current is low, effectively differentiating it from the already existing
dark currents will involve some inaccuracies. This implies that a phototransistor will measure only
radiations that can produce photocurrents with values above the dark currents. Therefore, low
energy radiations producing photocurrents below the dark current can’t be measured by the device;
the induced currents are calculated by subtracting the dark current from the measured current [16].
Therefore, the difference between the measured and dark currents should be reasonably large to enhance
precise current measurements [16]. A dark current can hence be termed as the “phototransistor’s
induced-current threshold value” since only radiations that can produce currents above the threshold
value can be measured. A phototransistor with a high threshold value has a limited measurable dose
range, i.e., only radiations with enough energy to induce currents above the high threshold value will
be detectable [37]. On the other hand, transistors with a low threshold value have a wide measurable
dose range (high sensitivity). This is because low energy radiations can also induce currents above the
relatively low threshold value, hence, being measurable. In practice, [16] states that the photovoltaic
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mode is preferred since it ensures a low dark current [16]. The low dark currents imply a low threshold
value that increases detectable and measurable energy ranges, hence, high sensitivity.

In comparison to photodiodes, phototransistors are more susceptible to radiation damage.
Therefore, phototransistors have a faster sensitivity degradation with respect to an absorbed dose;
this is because of radiation-induced displacement defects in the Si bulk [16]. A displacement effect
is when an incident radiation or particle dislodges a lattice atom from its normal location through
the Rutherford/nuclear elastic and nuclear inelastic scattering processes. This results into a vacancy;
non-existence of an atom in its lattice vicinity, and an interstitial; the existence of an atom in a
lattice structure vicinity where it is not meant to be (Figure 2b) [36,47]. An increase in these defects
implies an increase in the density of the recombination centres; this reduces the minority carrier
lifetime [36,46]—time taken by a minority carrier to recombine. Consequently, there is a decrease
of the current gain [16] because there was an increase in the leakage current; resulting from an
increase in the density of the generation-recombination centres [48]. In other words, the creation
of more recombination centres in the form of isolated and clustered defects [47] could be assumed
to be diluting the charge concentration. This is because an increase in these centres will make the
constant charges numbers to be less compared to the newly increased number of recombination centres.
Therefore, charges will have more room to easily recombine from anywhere thus reduced minor carrier
lifetime; this finally results into low currents. Despite this degradation due to the absorbed dose,
phototransistors could still be used as dosimeters while applying a correction factor; because they have
a higher sensitivity to radiation [35].

MOSFETs also consist of a PN junction, but they have a metal oxide layer as their sensitive/radiation
detection region [28]. Therefore, MOSFETs with a thick metal oxide layer have more hole-trapping
centres; this implies higher responsivity [49]. When both the MOSFET source and drain terminals
are grounded, the radiation sensitive field effect transistor version of MOSFETs could be considered
as two P+/N junctions connected in parallel [28]. MOSFETs are used in radiation detection, but the
p-channel MOSFETs (RADFETs) are preferred over current mode dosimeters. This is because they are
portable compared to diodes and photodiodes, and their sensitivity could be boosted with bias voltage
applications – just like for diodes and photodiodes [28]. Similar to PN junctions [28], incident radiation
on the metal oxide layer of the MOSFET immediately leads to the formation of electron-hole pairs [45].
This is followed by the attraction of all the electrons to the aluminium gate plate by the positive voltage
bias; a condition that leads to a high hole concentration [40]. This ultimately makes the volume density
of electrons in the inversion layer to be different from that in the substrate layer. The voltage obtained
by application of the charge conservation principle between the gate and substrate semiconductor
interface is termed as threshold voltage-Vth [50]. This voltage can also be defined as the voltage at
which the device operation commences [51]. After radiation exposure, a new equilibrium is established;
this corresponds to a new threshold voltage value. A proper analysis of this threshold voltage shift
could, therefore, be used to investigate the quality and quantity of radiation attenuated in the metal
oxide hence this voltage shift. Applying the same principle, Sedra [52] uses the radiation-induced
lattice damages as a parameter for dosimetry [39]; these damages reduce the gain factor of a transistor.
A BJT Darlington transistor is used in particular due to its higher gain compared to other transistor
types [52]. Here, the limitation of transistors-having high post-radiation exposure lattice structural
damages is a benefit. This is because this limitation is used to depict the amount of radiation that
led to the transistor gain factor drop. Therefore, higher gain drop implies more damages, hence,
more absorbed dose and a low gain factor drop, on the other hand, implies less damage, hence, less
absorbed dose.

4. Photovoltaic sensors/Solar Cells

Photovoltaic sensors are devices whose operating principle is based on the photovoltaic effect.
The photovoltaic effect is a process where incident photons of light excite valence electrons to higher
energy levels/ conduction bands. The flow of these electrons in the conduction bands implies induction
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of a voltage and current in the device [36,53]. In medical radiation applications, it’s not only the light
section of the electromagnetic radiation spectrum that excites these electrons to the conduction bands;
the X-ray section can also stimulate electrons.

4.1. Structure and Operational Principle

In reference to Section 2.1 of this paper, Gallium Nitride (GaN) and Cadmium Telluride (CdTe) are
semiconductor materials. They are deployed in solar cells (Figure 5) to convert sunlight (electromagnetic
radiation) to a current/charge which is stored as an electrical potential difference (voltage). Upon
radiation exposure, semiconductor material electrons absorb the incident radiation energy and are
excited to the conducting band (Figure 2a). Considering an unbiased PN junction of the semiconductor
material in Figure 3b, these excited electrons could be localized in the N region. Therefore, their
possession of radiation-gained energy enables them to drift towards the P section in order to recombine
with the holes. In photovoltaic films, there is a non-equilibrium (free carrier concentration) created
by illumination. This reduces the total volume of the depletion region while increasing the effective
volume of the material where charges can be transported [2]. Photocurrents are also monitored with an
application of a small bias voltage across the terminals of the device [2]. The drift of electrons implying
a flow of a radiation-induced electric current, there is a conversion of radiation to a radiation-induced
current. Therefore, a solar cell converts solar energy (radiation) to a storable form of electrical
energy (charge).

 

Figure 5. Solar Cell.

A flow of 6.2× 1018 electrons in one second implies one unit of current-Ampere. This can also be
defined as the flow of one Coulomb of charge per second. The quantity of induced current being directly
proportional to the amount of radiation induce it, we can depict the type and quantity of the radiation
that is inducing a photocurrent in solar cells – during medical applications today. Solar cells are
grouped into three subgroups, i.e., first-generation wafer-based silicon; consisting of monocrystalline
and polycrystalline solar cells, second-generation thin films; composed of amorphous silicon and CdTe
thin film solar cells, and third-generation new emerging technology; including nanocrystal, polymer,
and perovskite-based solar cells, dye-sensitized, and concentrated solar cells [54].

4.2. Present Literature

A GaN thin film was adopted in the detection of 40–300 kV Bremsstrahlung sourced X-rays while
simulating the X-ray imaging of the index finger and wrist of the human phantom [2]. The film showed
a high current gain, minimal radiation angular dependence, high sensitivity to X-ray intensity and had
a linear total dose response [2]. It could also measure the 1 μGy s−1–10 mGy s−1 air kerma range with a
signal stability of 1% [2]. Additionally, there was no need for geometry/ energy recalibration because
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the results varied with only a percentage of 2 – within the measured range of energy in the study [2].
Further, in this study, the solar cell executed high-resolution X-ray imaging since solar cells normally
have a detection volume smaller than 10−6 cm3 [2]. With some more enhancements, they would also be
used in vivo biosensing [2].

A semiconductor monocrystalline silicon solar cell’s response to cobalt-60 gamma radiation dose
was also studied using the thermal luminescence glow peak technique [10]. To navigate the sources of
errors in gamma radiation dose measurements, both the solar cell and TLDs were used for radiation
detection. According to the results, gamma dose measurements were more accurate while using solar
cells [10].

Because of their low operational power and low cost, thin film sensors connected to data acquisition
electronics and wireless data transmissions were used in kV and MV photon beam detections [33].
Their sensitivity per unit area was compared to that of normal photodiodes, and to that of an Electronic
Portal Image Device (EPID) [33]. The thin films were placed under block sheets of a solid water slab
phantom, and radiation exposures were made while varying parameters such as beam energies, dose
rates, total doses, depths, and radiation exposure angles [33]. Further, IMRT sensitivity and precision
tests like closed Multi-Leaf Collimator (MLC) were performed [33]. The detector’s performance was
not dependent on the amount of the absorbed dose and the dose rate. The sensor’s sensitivity was
also sufficient, i.e., a stable and accurate read-out signal was detected during the radiation exposures;
hence, being a possible quality assurance tool [33].

Photovoltaic CdTe semiconducting thin films were also used for detecting diagnostic radiology
and radiotherapy keV and MeV energies – imaging dosimetry energies associated with image-guided
radiotherapy techniques (IGRT) [8]. The films provided real-time tracking of the tumours in IGRT
treatment delivery [8]. The films further facilitated noise reduction and better image resolution
compared to the commercially available indirect electronic portal imaging devices (EPIDs); these EPIDs
are mainly made of amorphous/non-structured silicon [8,54].

4.3. Benefits, Limitations and Challenges as Potential Dosimeters

GaN thin films are almost independent of the angle of radiation exposure. This implies that the
films will be able to give accurate dose measurements independent of the beam direction; thus, a wide
range of geometric applicability [2]. Therefore, the application of GaN films in radiotherapeutic beam
fields is feasible; the angles of these fields are selected while ensuring maximum dose delivery to the
targets, and at the same time sparing the organs at risk (OAR) [4,55]. Therefore, the ability to efficiently
measure the absorbed dose at all angles doesn’t present a need to alter the radiation field angles in
order to suit the measurable dosimetry angle of the thin film dosimeter. In case beam alteration is done
to suit the film’s dosimetric range, there may be increased radiation exposure to the OARs. These films
could, hence, stage a better performance when compared to ionization chambers that are associated
with a large angular dependence [56]. However, considering the geometrical shape of these films, they
aren’t symmetrical like the ionization chambers. Therefore, there may be a variation in the results
displayed from the different angles and positions of radiation exposure [33].

Even after frequent consecutive radiation exposures, the GaN thin film-based dosimeter’s
radiation-induced current varied within only a 2-percentage range – hence, consistent results. Therefore,
there is no need for GaN film recalibration; a procedure that is normally applicable to dosimeters
in medical radiation [2]. This consistency may be due to fewer vacancies and interstitials [10,47,57]
created in the GaN lattice structure – hence, insusceptibility to radiation-induced damages [58]. In other
words, the films ‘accumulated-dose related errors are minimum, i.e., they produce consistent results.
Due to the radiation hardness of GaN, its usage in tracking detectors affected by luminosity has
also been suggested in space science and astronomical applications [59]. This radiation hardness is
eminent in Figure 3a of Hofstetter [2]. In Hofstetter’s study [2], the photocurrents before and after
radiation exposure are equivalent when plotted on the same graph. This implies that there were trivial
photocurrent degradations due to radiation exposures [2].
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GaN thin films with detection volumes of smaller than 10−6cm3 imply a high spatial precision [2].
These films could be further developed for not only X-ray detection but also other radiotherapy
treatment modalities such as the Stereotactic Body Radiation Therapy/Stereotactic Radiosurgery
(SBRT/SRS) and Intensity Modulated Radiation Therapy (IMRT). These treatment modalities involve
the delivery of high doses to relatively small dynamic fields in a short period of time [4]. SBRT and
SRS volumes are normally small and therefore a correspondingly small volume dosimeter would be
vital in the replication and simulation of these treatment fields during dosimetry. Since these films are
relatively thinner and more flexible than present dosimetric films, they could also be easily applied
in dosimetry applications that involve curved surfaces where normal dosimeters cannot easily be
applied [33].

The band gap energy is proportional to the amount of energy of a photon released after
recombination of an electron and a hole [13]. CdTe’s bandgap being in the 1.44–1.47eV range [8,54], and
that of GaN being 3.4 eV [60], CdTe and GaN-based films can be operated at room temperature [60,61].
Therefore, CdTe-based dosimeters will have less temperature dependence because the room
temperature’s heat energy may not excite electrons from the valence band to the conduction band; the
excitation consequently results into a photocurrent. Therefore, a fairly huge proportion of the induced
current would be as a result of the electromagnetic radiation incident on the detector. This implies
higher accuracy and quantum efficiency levels of the dosimeter. Nevertheless, a large band gap also
insinuates that only radiation whose energy is above this band gap will be measured. This is because
the band gap energy is required to pluck an electron from the valence band to the conduction band; so
that an electron drift occurs in the conduction band, i.e., a photocurrent (Figure 2a). Therefore, low
energy radiation whose energy is below the band gap will have less probability of being accurately
detected. This may limit the dosimeters from measuring low energy radiations that affects their
sensitivities. Contrarily, some studies have reported the detection of some photocurrents induced
by radiations whose energy is below the band gap [60]. For incident radiations whose energies are
above the band gap, 103–104 range gains were observed [60]. In addition, since shallow and deep traps
are situated between the valence and conduction energy bands, a wider band gap may also imply
higher sensitivity because charges will get easily stuck in these multitudinous traps. The magnitude of
the radiation energy used to free these charges is proportional to the number of freed charges; this is
proportional to the induced photocurrent [10]. Presence of these numerous traps could also lead to
fading where the charges can easily be stimulated out of these traps. The stimulations could be by,
for example, heat energy at room temperature. There will thus be inaccuracies in the signal detected.
This is because all the trapped charges are a “record” of the energy used to trap them [10]. Due to
the numerous traps containing charge, less energy would be required to stimulate charge out of any
of these traps. Ultimately, there will be inaccurate backtracking of the amount of energy that was
involved in the trapping of these charges.

GaN thin films are associated with large charge gains where free charge carriers are generated
due to incident radiation. This increases the number of free charge carriers available to transport
charge; a phenomenon known as photoconductivity [60]. Photoconductivity leads to more charge
flow and a high non-linear photocurrent flow [60]. This results into an amplified radiation-induced
current produced by the detector; a slight change in the kerma can readily be observed under typical
operational conditions [2]. This photoconductive model could also be referred to as conductivity
modulation (carrier density) because of the photogenerated carriers [60]. This model produces more
photoconductive gains that are in the order of 103 − 104 for GaN sensors [60]. These gains are high
compared to the detection process where there is direct charge extraction [2]. In addition, there
is a linear relationship between these current gains and the amount of radiation incident on the
dosimeter-thus being linear for the 0.5–2 Gy dose range [10]. Despite blockage of all the ambient light
and operation of the detector at room temperature, photoconductivity produces dark currents, i.e.,
a signal will be detected even before any radiation strikes the dosimeter [2].
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CdTe films are cost-effective [54] and are associated with a direct detection method–thus low
noise effects [8]. GaN films also have a high sensitivity to noise ratio and they are nearly independent
of the air kerma rate [2]. A GaN film detector produced direct signals that were not processed using
any configuration formula/measurements; hence, faster and simpler read-out compared to traditional
detectors [2]. In addition, the induced photocurrent is stable with a standard deviation of ±0.028 μA;
the current varied within a range of 1% during 10 min of radiation exposure [2]. This is as a result of
very slow non-exponential photoconductance decays; these decays are associated with carriers being
trapped in shallow and deep traps [30,60]. The stability of this current could also imply reproducibility;
repeated series of experiments produce the same results while maintaining a constant set-up. GaN
sensors were observed to be reproducible, i.e., there was an average standard deviation of 1.3% in five
repeated series of measurements carried out by Hofstetter [2]. In another study [33], the variation of
results of the individual photocells in a solar cell array-based prototype was within a percentage of
one [33]. However, the reproducibility of the solar cells cannot be compared to that of diodes used in
dosimetry; this could be attributed to errors during manufacturing [33].

5. Charge Couple Devices (CCD)/Charge Metal Oxide Semiconductors (CMOS)

When a capacitor is fully charged, charge flow ceases and there is a static charge stored on the
capacitor plates and in the dielectric material. The capacitor is then referred to as fully charged because
this trapped charge in the dielectric material, and on the capacitor plates, doesn’t flow unless a complete
circuit is connected to it. For the capacitor in Figure 3c, the dielectric material is air, but any other
material could be placed between these plates. This could boost the capacitor’s capacitance since
the dielectric constant is dependent on the dielectric material. The dielectric constant is also directly
proportional to the capacitance as seen in Equation (3) [15,16]. Capacitors, therefore, are energy-banks
since they store charge equivalent to the voltage potential connected across them as observed in
Equation (2) [16]. When the capacitor plates are metal, and the dielectric material is a metal oxide,
a capacitor with a PN junction is formed. Therefore, electromagnetic radiation striking the surface
of the capacitor plate induces an electron-hole pair; thus, conversion of the incident electromagnetic
radiation energy to charge. A Charge Coupled Device (CCDs) is an array of single and independent
metal oxide semiconductor capacitors closely packed in a sole block. The charge on each capacitor
is transferable from one-unit cell/pixel /photo site of this block to another. Ultimately, the Analog to
Digital Converter (ADC) transforms this analog current signal (charge) to digital format [62].

5.1. Structure and Operational Principle

In a CCD, the actual charge transfer takes place in potential energy wells situated in n or p
substrates that are found below electrodes; these electrodes are connected to a multiphase pulsed clock
voltage [62] (Figure 6). Biasing one gate electrode with a positive step potential leaves the adjacent
electrodes at a lower voltage [62]. This, therefore, creates a deep potential well below the biased
electrode [62]. In this potential well, the electron charge is trapped and stored as seen in the first-time
phase t1 of Figure 6 [62]. However, if these adjacent electrodes are also consequently biased with a
higher positive potential, there will be deeper potential wells below the adjacent gate electrode [62].
Since electrode charge carriers prefer lower energy for stability, there will be a drift of charge to the
newly created deeper wells as illustrated in the second time phase t2 of Figure 6 [62]. These wells could
also be filled with electrons, which are not induced by radiation—heat induced electrons. Therefore,
the charge signal can be stored for a short time; this time is much shorter than the thermal relaxation
times for metal oxide capacitors [62]. This time normally ranges from 1 s to several minutes at room
temperature; varies depending on the structure and fabrication process [62].

When the pixels are exposed to electromagnetic radiation, a charge; whose amount is a linear
function of the illumination intensity, is accumulated from the electron-hole pair [62]. This charge is
transferred and converted to a small voltage that is amplified in order to be compatible for analog
to digital conversion by the ADC [62]. The amplified voltage is still susceptible to noise such as heat
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energy that also contributes to the electron-hole pair stimulations [62]. Complementary Metal Oxide
Semiconductor Devices (CMOS) similarly operates under the same principle as the CDDs but their
accumulated charge is amplified at each cell unit/pixel by multiple chip amplifiers, respectively [62].
Advantages of CMOS over CCD include; low power consumption, being inexpensive and easy to
manufacture [63]. On the other hand, CCDs merits have; fast speeds, high dynamic ranges, greater
light sensitivity and produce high-quality low noise images [63]. Factors such as camera size and
noise [64,65] could also be a device preference and selection criteria.

CCD pixel numbers range from 128–16 million [62] and it’s selected by the manufacturer and
hence, they determine the level of sensitivity of the device.

 

Figure 6. Electron Drift to deeper wells.

5.2. Present Literature

Radioactive tracers such as Iondine-131 (131I), Yttrium(90Y), and Fluorodeoxyglucose (FDG) –(18F),
are radionuclides that decay by emitting charged particles like electrons(β−), positrons(β+) [57,66],
and gamma rays at speeds surpassing the speed of light in that particular medium/tissue [66–71]. This
phenomenon polarizes the medium, and photons are emitted after a molecule retains its normal/stable
position [68,69]. In other words, the excited electrons fall back to their ground states due to the
fading of the polarization effect [66,68,69]. The photons are emitted as an electromagnetic radiation
wave front [69]–Cherenkov radiation (λmax ∼180 nm; water [68,72]). When Cherenkov radiation
is accurately quantified and detected using CCD detectors [70], it depicts information regarding its
source. For instance, the Cherenkov radiation could be emitted by anatomical structures, tissues or
even cells [57,73]. The speed at which light travels through a medium is proportional to the refractive
index of the traversed medium; Cherenkov Luminescence (CL) emissions increase as the refractive
index increases [69]. Therefore, different media will produce different CL emissions. The solid state
of matter has particles closely packed together and therefore if radiation or a particle is travelling
through it, there will be more interactions between the photons of the radiation/particle and the solid
particles. Therefore, there are more interactions in solids than in liquids and gases; the speed of
light in fluids is higher than that and in solids. However minimal these interactions may seem, they
reduce the velocity of the light; the reduction in the speed of light has a positive correlation with the
refractive index, η, of the medium [69]. With the η of water being 1.33 [66] and that of biological tissue
being ∼1.36–1.45 [66,74], the velocity of light, vm, in these media is ∼0.75 c and ∼0.7 c, respectively
(Equation (4) [69,71]) [69].

vm =
c
η

(4)

vmVelocity of light in a medium, ηrefractive index of the medium, cSpeed of light in a vacuum
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When a body moves with a speed relatively close to that of light, its kinetic energy will not
be be given by the classical mechanics formula −E = 1/2mv2. The kinetic energy will be given by
Equation (5) [69,71].

E = mc2

⎡⎢⎢⎢⎢⎢⎣ 1√
(1− v2

c2 )
− 1

⎤⎥⎥⎥⎥⎥⎦ (5)

EEnergy of a particle moving at a speed close to that of light, cspeed of light, mmass of the particle,
vvelocity of the particle

If this energy exceeds a certain threshold energy value [75], the Cherenkov radiation will be
produced [69]. We can substitute the threshold kinetic energy (0.511 Mev) [66] into Equation (5) [69,71]
in order to calculate the minimum velocity that has to be possessed by a particle to stimulate Cherenkov
Emissions (CEs). CEs increase with an increase in the refractive index of a medium (Equation (7) [71,75]);
the threshold energy to induce the Cherenkov radiation is inversely proportional to the refractive
index. However, CEs don’t solely depend on the refractive index but rather many other factors such as
the density and geometry of the medium, and the type of radioisotope [66,71]. During radiation-tissue
particle interactions, there may be some Bremsstrahlung radiation. Bremsstrahlung is the radiation that
is dissipated after deceleration of a particle cutting through the Coulomb field of an atomic nucleus [66].
Bremsstrahlung would, however, have no effect on the refractive index of the medium during particle
interactions [69].

The Cherenkov radiation principle has its applications in both diagnostic radiology; Cherenkov
Luminescence Imaging (CLI), and radiotherapy; thyroid and the liver radiotherapy [57,66,68–71].
Despite the use of the Cherenkov radiation in the measurement of beta-emitting radionuclides starting
as early as 1968 [76], CLI is a new modality in the nuclear medicine arena – it was recently initiated in
2009 [69]. Therefore, literature pertaining to CL in medicine is not much compared to other photonic
devices, but it is progressively emerging.

In one study [68], the CLI of β emitters and imaging agents characterized with both radioactive
and a fluorescence emission were examined. First, the medical imaging applications of β emitters
and imaging agents were each investigated separately. Later on, both the β emitters and imaging
agents were combined in a hybrid technology during image-guided surgery [68]. Application of β
emitters and imaging agents separately is associated with both some advantages and disadvantages.
However, in a hybrid technology combining a β emitter and an imaging agent, the shortcomings of
one technique could be compensated by the other. Nonetheless, further research still has to be done to
ensure the accuracy and sensitivity of the attained signal.

Radiotracers emitting high-energy positrons via post-decays were also used to detect CLI.
Radiotracer elements are radioactive and their quantity and number of particles they emit reduce
with time –according to Equation (6) [69]. In this study, CLI in vivo application was validated by
investigating the signal/Cherenkov light emitted by radiotracers injected in mice [69].

t 1
2
=

[
In(2)
τ

]
(6)

t 1
2
Half-life (Time for half the quantity of the radioactive nuclei to decay), τDecay constant

The viability of Cherenkov Emission (CE)-based portal imagers in dynamic and stationary
CyberKnife radiotherapy treatment fields was investigated [70]. Using a half-full water tank and
a circular radiation beam with a diameter of 60 mm, CEs were stimulated in tissue equivalent
materials [70]. CCDs placed behind the tissue equivalent materials were then used to detect CEs
stimulated by both dynamic and stationary radiation [70]. A comparison with the results from an
onboard linac portal imager was done to reveal potential resolution and contrast limits [70]. Results
showed that the CE-based technique’s contrast percentages through both air and water were lower
than those of the linac-based portal imaging system [70]. In all the above applications, Cherenkov
Luminescence was emitted after a particle(s) travelled through a medium. From Equation (5) [69,71],
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the velocity of the particle must exceed the velocity of light in a given medium. Let’s now assume a
particle whose velocity v is just equivalent to the speed of light vm in a particular medium. To attain its
kinetic energy, we shall substitute Equation (4) [69,71] into Equation (5) [69,71] that will give rise to;

E′ = mc2

⎡⎢⎢⎢⎢⎢⎣ 1√
(1− 1

n2 )
− 1

⎤⎥⎥⎥⎥⎥⎦ (7)

Equation (7) [71,75] therefore represents the amount of kinetic energy the particle has if it is
traversing the medium at a speed of light in the medium. Since the particle velocity has to surpass that
of light in the same medium, the particle with energy E′ will not produce the Cherenkov radiation.
This is because the light photons also have this same energy while travelling through the medium.
Therefore, a Cherenkov particle has a velocity v greater than vm i.e., v > vm. Thus, the Cherenkov
particle’s energy ECherenkov is greater than E′(ECherenkov > E′). With this, we could now define E′ as the
minimum energy that a particle must be having above which it will emit Cherenkov radiation. Hence,
E′ = EThreshold which is the minimum energy that a particle is supposed to attain before it emits a
Cherenkov radiation. With the refractive index of water being 1.33, EThreshold is 0.264 MeV and if the
refractive index of tissue is assumed to be 1.4, EThreshold is 0.219 MeV [71].

5.3. Benefits, Limitations and Challenges as Potential Dosimeters

Since CCDs are luminescence-based detectors, they can yield inaccurate results from the
luminescence emitted by the used fluorophore [66,68,71]; the fluorophore brightness affects the
signal intensity. The CE brightness is affected by several signal depletion factors such as excessive
luminescence attenuation by tissues that have chromophore absorbers like hemoglobin; tissues are
also heterogeneous in regard to their refractive indices [66,68,71]. Scattering effects, ambient light,
electrical noise by camera dark currents, and surface reflections could also affect the signal [66,68,71].
All these factors consequently reduce the final signal magnitude and the image resolution. This signal
could, however, be boosted by using liquid scintillators in conjunction with CLI imaging; as one hybrid
technique [66].

CDDs or CMOSs detect the wavelength of CLs close to that of visible light (Ultra Violet (UV)).
This implies that other light sources produce noise effects; CLI should be performed in total darkness
to increase the detection efficiency of CCDs [66,68]. Ambient signal detection could also be eliminated
by synchronizing the linac pulses with the CCD camera capturing time intervals [71].

The signal detected by the CCDs is directly proportional to the CL intensity. Further, the CL
intensity is also directly proportional to the half-life (Equation (6) [69]) of the radioisotopes that stimulate
the luminescence [68]. CLs measured by CCDs are, therefore, of low spatial resolutions compared to
fluorescence luminescence. This is because CL is an indirect (secondary) luminescence; high-speed
moving charged particles polarize molecules of a material–primary CL stimulation stage [68]. Since
different radioisotopes emit decay particles with varying magnitudes of energy, there will also be a
variation in the CEs generated; the radiation intensity reduces due to the half-life effects [66]. Further,
with reference to Equation (7) [71,75] CE luminescence is refractive index dependent. Therefore, CEs
will fluctuate according to the tissue refractive index variation [71]. This implies that there will be no
homogeneity in the intensity of the signals attained. In turn, some regions in the image will appear
brighter and clearer than the others due to more luminescence. Similarly, other regions will appear
darker due to less luminescence in those regions. However, studies have been carried out and results
have shown that CLI imaging could be used to increase the spatial resolution of SPECT images [71].

CCDs have high quantum efficiencies in the ∼570–720 nm spectral range [68]. This makes CCDs
feasible in the imaging of common luminescent molecules [68]. However, CCD efficiency declines
to half when the imaged wavelength is less than 350 nm; yet this is a region where CL is highly
concentrated [68]. Despite the fact that the efficiency decline effect is less in near-infrared dyes, there is
consequently deterioration of the CCD signal [68].
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CCDs are also less likely to take real-time measurements since they involve the use of visible
light [69]. Visible light has a low penetration power because its wavelength is more than 450 nm.
This implies the need for proper exposure of the areas of interest before any imaging is done. This
way, image acquisition could take approximately 5 min [68,69]. However, this operation time is still
quite short compared to other imaging modalities like Positron Emission Tomography (PET) where it
takes about 20 min to acquire the same images [69]. Longer treatment times/data acquisition times
could, however, increase susceptibility to errors resulting from patient movements; hence, the need for
additional patient immobilization procedures. This extra immobilization process is likely to cause
fatigue in patients.

When CE-based images were compared to EPID images [70], CE demonstrated an almost similar
contrast for imaging of an air-water inter-surface lining [70]. On the other hand, EPIDs had a
higher image contrast for the air and water media inter-surface lining—during a real-time video [70].
Cherenkov luminescence-based video imaging during a breast cancer intra-surgery also increased
precision in the patient positioning [71].

Novel techniques like CE-based imaging could also improvise for lack of EPIDs on devices
like CyberKnife®. This would improve patient immobilization/positioning in radiation therapy;
hence, accurate tracking of the targets (tumours)—conventionally achieved using portal imaging
(EPIDs) [66,70]. CE-based imaging would be moderately cheaper compared to the normal imaging
tools that are currently used in medical radiation imaging [66,71].

CL intensity depends on the speed of the particle; this speed is determined by the half-life
(t 1

2
) of the radioisotope [69]. When the quantity of a radioisotope reduces to half its initial amount

(after the half-life), the CCD signal intensity will similarly dwindle [68]. To ensure a low patient
absorbed dose, radionuclides with short half-lives are commonly used. However, larger quantities of
radioisotopes having short half-lives could be administered in order to attain a prolonged stable signal.
This ultimately leads to excessive radiation attenuation by tissues [3,4] and high diagnostic patient
doses [68]. Lack of sensitivity stability over a prolonged duration could limit the application of the CLI
imaging technique to procedures like total body tomography; imaging of the whole body is done—not
only a specific region of interest [69].

Although Cherenkov luminescence emits a very weak signal, if a highly sensitive camera is
used, higher quality images may be obtained; this could be an alternative to the PET and SPECT
scanners [57]. In addition, PET and SPECT scanners are relatively less efficient in the imaging of some
radionuclides like yttrium-90 [66] that are used in radiotherapy [57]. Development of modalities such as
radio-immunotherapy could also be facilitated; these modalities use radionuclides like yttrium-90 [57].
In addition, CLI could be used to validate SPECT images because it has a better spatial resolution
compared to PET; during imaging/ display of positron-sourced proton distributions [66,71]. CLI is also
currently a basis for the development of other novel techniques such as the Integrated Monte Carlo
code; manipulates principles of both ionizing radiation and optical photons, Cherenkov Luminescence
Tomography (CLT), and Cherenkov Luminescence Endoscopy [57,71].

Scatter radiation particles move at slow speeds, i.e., they have low kinetic energies. Therefore, they
do not satisfy Equation (5) [69,71]; hence no CE illuminations will arise from stray particles [70]. This
implies less need for noise filtration procedures [70]. In other words, there would be low noise signals
when the radiation source is due to the Cherenkov luminescence since it doesn’t involve external
optical stimulation [68].

With the promising CCD camera benchmark results as detectors for Cherenkov imaging in Table 1,
we could further expound this phenomenon to estimate the absorbed dose. Cherenkov emissions
were observed during radiotherapeutic radiation exposure of a human phantom with X-ray beams—a
procedure that involved an absorbed dose of 5 Gy [77]. In this case, a specific Cherenkov image
resolution would be correlated to a particular absorbed dose quantity involved in the production of
the Cherenkov image (Table 2). Therefore, CCDs would be applied as indirect dosimeters where an
image resolution would be calibrated to imply an absorbed dose value.
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6. Summary

Although there may be a multitude of photonic devices applied in medical radiation dosimetry, this
paper has focused on mainly photodiodes, phototransistors, photovoltaic sensors and CCD cameras.
This is because they are; currently the most commonly applied in medical radiation detection based
on the literature available, relatively low-cost devices, and there are no complex systems associated
with their applications. CCDs have been in implementation for approximately a decade [69,71].
Therefore, CCDs could have more medical application deficiencies and less literature pertaining to
their usage compared to other photonic devices. Such new technologies: Cherenkov imaging using
CCD cameras, and the margining of fluorescence dyes and Cherenkov radiation exposure as a hybrid
technology (in form of a single-imaging modality) present better results. However, further studies
have to be carried out to increase CCD efficiency while minimizing their related hazardous effects.
This would facilitate a quicker approval by governing and implementation bodies; hence, more animal
and preclinical trials [57]. This will stimulate more clinical trials that will finally improve the results of
these applications [57].

As a discrete analysis, photodiodes and phototransistors have relatively more frequent applications
compared to the CCDs and solar cells; based on the present literature and studies. Photodiodes like
the BPW34 have been associated with more pros as medical radiation detectors in this review-Table 1.
They have a high quantum efficiency, low dark currents, and low radiation-induced structural
damages. These characteristics could be considered to be some of the cornerstone characteristics of
ideal dosimeters [15]. These features further suggest that these devices are durable when applied as
radiation dosimeters. This is because there is less need for correctional/calibrations while using the
BPW34 [35]. This implies that they cannot easily wear out due to repeated usage. Being resistant to
radiation-induced damages is an essential feature in radiation dosimetry that may guarantee accurate
and stable results even after repeated usage; the long-life span of a dosimeter could also imply
durability [35].

On the other hand, phototransistors are susceptible to radiation-induced damages despite having
a relatively high amplification capability [35]. Therefore, calibration and correction procedures will
have to be carried out to maintain the device accuracy; this implies a short lifespan for these devices
since there is degradation and wear out with increased radiation exposure [35]. Users will have to
consequently buy new devices after numerous calibrations on old ones. On the other hand, photodiodes
can be used for quite long durations with less or negligible wear out. Durability could thus also
be considered a key characteristic of dosimeters associated with accurate results even preceding
multiple applications.

This presents photodiodes as fairly more robust compared to phototransistors, solar cells and CCDs.
This is because they produce low dark currents, have fairly higher insusceptibility to radiation-induced
structural damages and are negligible post-radiation sensitivity loss [15]. However, more studies have
to be carried out to further resolve their flaws like low sensitivity to radiation and having a narrow
measurable range. Alternatively, applying a solid-state scintillator in front of the photodiode could
resolve its low sensitivity to the detected radiation [79]. This may perhaps make them to be more
quintessential dosimeters in medical radiation.

The displacement effects of these photonic devices take place in the lattice structure as illustrated
in Figure 2b. Therefore, phototransistors could be fabricated using elements more resistant to
radiation-induced displacements – such as those of solar cells or even better ones. More research
on how to make the lattice structure of semiconductor devices more radiation hard will resolve this
setback. Radiation-induced displacements occur in almost all photonic devices used for radiation
detection; the magnitude of these damages could vary from one device to another. Photodiodes with
inbuilt gains/amplification could also be fabricated. Alternatively, better amplification techniques
could be applied to photodiodes in order to improve their signal magnitude and quality. In Hofstetter’s
Figure 3b [2], solar cells are shown to be radiation-hard. Therefore, further exploitation of this
characteristic may also make them ideal radiation detectors. During photonic-device based radiation
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detections, ambient light and temperature/heat buffers should be applied; an appreciably high spurious
signal may be detected due to these factors.

In medicine, radiation is mainly used in diagnostic radiology and radiation oncology. Diagnostic
procedures such as bone densitometry use significantly low radiation doses to produce X-ray images.
On the other hand, high dose radiotherapeutic treatment modalities such as stereotactic radiosurgery
(SRS) could impart absorbed doses of approximately 8–18 Gy [80,81] in one fraction. This implies that
the photonic devices to be used for medical radiation detection should measure radiation doses from
about 0 to 18 Gy in one exposure/fraction. Table 2, therefore, shows the dosimetric ranges of photonic
devices in order to determine their feasibility for medical radiation dosimetry applications.

From Table 2, photodiodes could measure minimum and maximum air kerma doses of
approximately 0.001 cGy and 8.3 cGy, respectively. In addition, the table illustrates that photodiodes
could be implemented in diagnostic radiology procedures like CT scans and X-ray imaging since
their relative absorbed doses lie in the photodiode’s measurable range. Therefore, radiotherapy
dosimetric procedures involving relatively higher absorbed doses may not be effectively implemented
with photodiodes. Instead, phototransistors (MOSFETS) and photovoltaic sensors could be preferred
since their reviewed dose range is 0.340–18,500 cGy; which is suitable for radiotherapeutic dose
measurements. For a Cherenkov emission to take place, the threshold particle energy (EThreshold)
has to be surpassed. This threshold energy could perhaps be surpassed in applications involving
higher energies and doses. In other words, CLI does not involve low absorbed dosages and energies.
CCD cameras could, therefore, be calibrated and developed to measure absorbed doses in relation
to a specific CLI image resolution. In this aspect, CCDs can be possibly designed to measure high
radiotherapeutic doses.

Solar cells are reasonably hard to absorbed dose-related wearing [2] in addition to their fairly broad
dosimetric range of 0.086–500 cGy as observed in Table 2. Therefore, it would be more appropriate for
dosimetry compared to the phototransistor that are greatly affected by radiation-induced damages.
The phototransistors (MOSFETs) would have been the optimum choice due to their wide measurable
dose of 0.340–18,500 cGy but are impaired by their appreciable displacement damage effects.

Since cost also determines the application/preference of a specific device, Table 3 gives an insight
into the probable prices of some of the photonic devices reviewed in this study.

Fabricating phototransistors using elements more resistant to radiation-induced displacements
would be the principal solution to their radiation-induced damages. This solution can, however, be
implemented by only the device manufacturers. Since signal amplification using scintillators would
perhaps resolve the photodiode’s low measurable dose range, photonic device users/researchers may
resort to using photodiodes for diagnostic radiation detection. Similarly, researchers may enhance
the solar cell’s measurable dose range using scintillators/signal amplifiers. Photodiodes and solar
cells are therefore the most promising devices for detecting diagnostic and radiotherapeutic radiation,
respectively. In nuclear medicine, CLI would be enhanced by mitigating light, heat and other ambient
signals. Alternatively, higher resolution/sensitive cameras would also be used for CLI. However, as
shown in Table 3, these cameras may be costly.

Photonic devices are generally promising radiation detectors, but more research has to be
carried out to resolve or alleviate grave flaws like lattice structure displacements that mainly hinder
their reproducibility and repeatability dosimetric parameters. Execution of more successful studies
addressing the various drawbacks highlighted in this review presents a potential for providing more
resilient, reliable and accurate photonic dosimeters.

In general, these research/development trends could be focused on mainly improving the photonic
device sensitivity to radiation. This is because the photonic devices are purposely fabricated for light
applications. While enhancing the sensitivity of these devices, their measurable dose ranges could
also be expanded. This would, hence, make the photonic devices applicable for both low and high
radiation dose measurements.
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Table 3. Some Photonic Device Retail Price Ranges.

Photonic Device Approximate Unit-Price (USD-$) Online Store

Photodiodes

S2506-02 0.0001–1.5 Alibaba
BPW34 1.6–2.45 Amazon

BPW34FS 1.98 Amazon
SFH206 1.6 Mouser Electronics
SFH205 0.79–1.92 Amazon
BPX90F 0.1–10 Alibaba
S1223 0.1–9.9 Alibaba

PS100-6-CER2PIN 78.38 Mouser Electronics
Phototransistors

OP501 0.10–9.80 Alibaba
OP505A (Optek) 0.84–2.02 Amazon
BPW85 (Vishay) 0.10–18.80 Alibaba

OP521 0.001–10.00 Alibaba
Transistors

BCV47 Darlington type BJT 0.20–0.23 Alibaba
MOSFETs 0.12–113 Mouser Electronics

Photovoltaic Sensors

Solar cell 0.46–1.20 Alibaba
Cameras

CCD 8.42–7000 Amazon
CMOS 9.99–6500 Amazon
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Abstract: Monitoring of respiration and body movements during sleep is a part of screening sleep
disorders related to health status. Nowadays, thermal-based methods are presented to monitor
the sleeping person without any sensors attached to the body to protect privacy. A non-contact
respiration monitoring based on thermal videos requires visible facial landmarks like nostril and
mouth. The limitation of these techniques is the failure of face detection while sleeping with a
fixed camera position. This study presents the non-contact respiration monitoring approach that
does not require facial landmark visibility under the natural sleep environment, which implies an
uncontrolled sleep posture, darkness, and subjects covered with a blanket. The automatic region
of interest (ROI) extraction by temperature detection and breathing motion detection is based on
image processing integrated to obtain the respiration signals. A signal processing technique was used
to estimate respiration and body movements information from a sequence of thermal video. The
proposed approach has been tested on 16 volunteers, for which video recordings were carried out by
themselves. The participants were also asked to wear the Go Direct respiratory belt for capturing
reference data. The result revealed that our proposed measuring respiratory rate obtains root mean
square error (RMSE) of 1.82 ± 0.75 bpm. The advantage of this approach lies in its simplicity and
accessibility to serve users who require monitoring the respiration during sleep without direct contact
by themselves.

Keywords: respiration monitoring; non-contact monitoring; body movements detection; thermal
imaging; natural sleep environments

1. Introduction

The respiratory rate is one of the critical vital signs that indicate health problems. The respiratory
system is the gas exchange process to take in oxygen and expel carbon dioxide, as breathing moves air
in and out of the lungs. The frequency of breaths is defined as a respiratory rate (RR) that is usually
measured by counting the number of breaths a person takes per minute. A clinical staff member can
count the number of times the chest moves up and down for a full minute. In general, the regular
respiratory rate for healthy individuals is 12–20 bpm [1]. A change as little as three to five bpm may
indicate a change in the patient’s condition [2]. A patient suffering a severe adverse event on the
general wards, such as a cardiac arrest or ICU admission, shows an increase in RR of up until 24 h
before the severe events with high specificity [3]. For that reason, respiration monitoring should be
performed continuously for a long time without impressing the patient’s burden.
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Owing to the fact that humans spend almost 30% of the time in sleeping, the respiration monitoring
during sleep, which accurately reflects one’s health condition is an appropriate and reasonable option.
It is generally known that poor sleep significantly affects work productivity, cognitive performance,
and overall life quality. Sleep monitoring can detect sleep disorders associated with cardiovascular
disease, including heart failure, hypertension, and increased arrhythmia [4]. The breathing patterns
during sleeping are utilized to identify the sleep disorder as sleep apnea, including obstructive sleep
apnea (OSA), central sleep apnea, and complex sleep apnea syndrome. Sleep apnea is a cessation of
the airflow that occurs when breathing repeatedly stops and starts during sleep, resulting in decreased
oxygen flow to the brain and the rest of the body. Sleep apnea is generally characterized by cessation
of breath for at least 10 s during sleep [5]. The well-known index used to indicate the severity of sleep
apnea is Apnea–Hypopnoea Index (AHI), which counts the number of apnea events per hour. Harvard
Medical School [6] classifies the severity of OSA as:

• None/Minimal: AHI < 5 per hour
• Mild: AHI ≥ 5, but < 15 per hour
• Moderate: AHI ≥ 15, but < 30 per hour
• Severe: AHI ≥ 30 per hour

Besides, sleep monitoring can detect periodic limb movement disorder (PLMD), which is repetitive
cramping or jerking of the legs during sleep. Patients with PLMD may suffer from daytime sleepiness,
daytime fatigue, trouble falling asleep at night, and difficulty staying asleep throughout the night [7].
Usually, patients with PLMD are unaware of their leg movements unless their bed partner tells them.
It is also reported that movements are repetitive and rhythmic and occur every 20–40 s [8].

It has been demanded for long years to develop a novel technology to monitor respiratory
and body movements without disturbing human sleeping. In recent years, non-contact respiration
monitoring solutions have been proposed, like camera imaging [9], thermal imaging [10],
and microwave Doppler radar [11]. As for camera imaging, a simple camera like a CCD camera,
webcam, digital camera, or smartphone camera is used to detect the respiratory rate from the
breathing motion, whereas for thermal imaging, a thermal camera or infrared camera is used to
detect the temperature changes due to breaths. Respiratory rate often relies on visual observation of
chest movement at periodic intervals [1]; a small movement that is hard to see with the naked eye.
A motion magnification technique was proposed to magnify a baby’s respiratory chest movements
from a digital video camera [12]. Several researchers have analyzed video and image sequences
to detect breath motions and extract vital signs in sleeping positions. For example, Nakajima et al.
and Frigola et al. apply an optical flow technique to image data from a CCD camera and a remote TV
camera, respectively [13,14]. Wiesner et al. monitor respiratory by tracking the motion of a fiducial
marker placed on the patient’s abdomen with a single webcam [15]. However, there are still some
limitations of disturbing the natural sleep environment, such as visible light and privacy issues.

Thermal imaging is a rapidly evolving technology, now turning up in hospitals, airports, and even
smartphones. Respiratory can be monitored through thermal imaging [16–21]. Thermal imaging
cameras rely on microelectromechanical sensors to produce an image from heat; the human body
stands out from the surrounding field because it gives off more heat. The thermal image-based
method has an advantage under conditions of varying illumination and can reduce privacy issues.
Previously, several approaches have been proposed to monitor respiration with a thermal camera by
detecting the temperature change around the nostrils [18,21–28] or the airflow [19,20,29] in seated
positions. They set the nose or the mouth as the region of interest (ROI) that can be defined manually
or automatically by using anatomical features integrated with tracking algorithms [18,21–23,25]. They
performed by simulated breathing following scenarios that the researcher designed, i.e., regular
breathing, fast breathing, and hold breathing [18,21,24–26]. The excellent result showed when they
took the experiments in a controlled room like temperature, humidity, and light. However, the nose
detection during sleep is still unsuccessful at all monitoring times.
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In the sleeping position, the thermal-based method is an effective technique to measure the nasal
airflow patterns [16] and has been utilized to detect sleep apnea [30,31], analyze sleep activity [32],
classify body posture [33] during sleep to assist the diagnosis of sleep disorders or evaluation of the
quality of sleep. The studies using thermal imaging to monitor the respiration in sleeping position are
reviewed in Table 1. Usman et al. [30] adopted thermal imaging to detect sleep apnea and study in a
variety of breathing patterns. They used the Kanade–Lucas–Tomasi tracking algorithm to track the
manual selected nose region. The result has shown that 16% of a subject’s head position did not allow
correct identification of the region of interest at nostrils. Therefore, this method was only possible with
minor head movement without changing position. The automatic ROI selection was used to locate the
nostrils, the tip of the nose, and mouth area [31,34,35]. That ROI requires a tracking algorithm and
works well without large head movement under a controlled environment. Abbas et al. [16] developed
respiration monitoring for neonatal intensive care units by manually select the ROI around the nostrils
of infant. Most techniques work well when the nose is clearly visible in the image. The measurement
was not feasible when the nose is outside the camera’s field of view, a blanket blocks the nose, or the
subject has large head movements. Recent works from Pereira et al. and Lorato et al. [36,37] detected
the respiration signal without the use of anatomical features. They selected the ROI containing the
respiration information by using the Signal Quality Index to analyze the ROIs. However, they took an
experiment in a controlled environment with a short period that is not a real environment. Moreover,
the motion artifacts are still a significant drawback of the proposed algorithm. It was suitable for
monitoring infants in neonatal care who did not have large movements.

The present study aims to develop the measuring system capable of non-contact monitoring of
respiration and body movements in natural sleep environments using a thermal video. The natural
sleep environments imply an uncontrolled sleep posture, darkness, and covered subjects with a blanket.
In the study, the different approaches based on temperature detection and motion detection were
investigated to extract the respiration signal, and then the suitable approach is selected. Our main
contributions of this paper are to present: (1) the respiration monitoring based on ROI detection
combined with breathing motion, which does not require facial landmarks’ visibility; (2) body
movement detection to estimate the numbers of movement during sleeping that affect sleep quality.
We validated the proposed approach by comparing it with the signal obtained from the respiratory belt.

Table 1. A research review of the thermal imaging-based method for respiration monitoring of
sleeping position.

ROI Localization

Authors Subjects Exp Duration Controlled Env
Simulated
Breathing

Selection/
Detection

Area Tracking

Usman et al. [30] Adult 5 min Yes Yes M Nostrils Yes
Fei et al. [31] Adult 60 min Yes No A-S Nostrils Yes
Al-Khalidi et al. [34] Children 2 min Yes No A-S Tip of the nose Yes
Hu et al. [35] Adult 10 min Yes Yes A-S Nose, mouth Yes
Abbas et al. [16] Infant 2 min Yes No M Nostrils No
Pereira et al. [36] Infant 5 min No No A-D N/A No
Lorato et al. [37] Adult 2 min Yes Yes A-D N/A No
Our proposed Adult 60–90 min No No A-D N/A No

M: Manually, A-S: Automatically Selection, A-D: Automatically Detection.

2. Proposed Method

In this section, the proposed method for respiration monitoring and body movements detection is
described. An overview of the proposed method is depicted in Figure 1. The input of the proposed
method is the thermal video obtained under darkness light. The Gaussian filter is applied to the
input images as the pre-processing so as to remove noises from the input. The main part of the
proposed method is composed of respiration monitoring and body movements detection, each of
which utilizes image processing and signal processing techniques in order. Details of these processes
will be written below.
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Figure 1. Proposed method.

2.1. Respiration Monitoring

The respiration monitoring method contains an automatic detection of ROIs by finding the
highest temperature point and the largest portion of the high-temperature area and a breathing motion
detection. The respiration signals extracted by automatic ROI detection and breathing motion detection
are integrated. Then the signal processing is applied to calculate the respiratory rate.

2.1.1. Automatic ROI Detection

We employ the ROI detection to limit the observation area, extracting important information
to raise the accuracy of the respiratory estimation. Determining a suitable ROI position with proper
size is also important. In the sleep monitoring environment, it is not easy to detect a face or nostrils
as an ROI because of the uncontrolled sleep posture, and the fixed camera position may mean that
they could make a face that does not appear in the camera view on some occasions. Besides, when
the subject changes the sleep posture, ROI should be updated to the new location for which some
research applied a tracking algorithm, as summarized in Section 1. The tracking algorithm works well
with an apparent object, but sometimes fails to track the nose or mouth in a sleeping posture. In this
work, we propose an ROI detection on the thermal image in a sleeping position that does not require a
tracking algorithm. Two different ROI detections are considered: (1) The highest temperature point
detection and (2) The largest portion of high-temperature area detection.

(1) The highest temperature point is detected by using minMaxLoc. The minMaxLoc function is one
of the OpenCV [38] libraries that returns minimum and maximum intensities found in an image
with their (x,y) coordinates. It is assumed that the maximum pixel intensities of the thermal
image refer to a human’s heat signature that is not covered by a blanket. The maximum pixel
intensities found in the image correspond to the highest temperature of the body. We set the pixel
to the center of the observation area. Then we draw a rectangle around the pixel, with the size of
the square N × N pixels depending on original frame resolution. In [39], the authors compared
the ROI size of 10 × 10, 25 × 25, 50 × 50, 100 × 100, and 150 × 150 pixels. They found that the size
of the ROIs for respiratory rate estimation is usually smaller than that for heart rate estimation.
Therefore, in this study, we consider the three different ROIh sizes as 10× 10, 25× 25, and 50× 50,
as shown in Figure 2. The result in empirical research has shown that the 50 × 50 pixels provided
the highest accuracy in accordance with the original frame resolution of 640 × 480.
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(2) The largest portion of the high-temperature area is detected by using the thresholding method.
Thresholding is the method of segmenting the object from the background. The threshold image
g(x, y) can be defined as (1) [40]:

g(x, y) =

{
1 i f I(x, y) ≥ TR
0 i f I(x, y) < TR

(1)

This operation replaces each pixel values in an image with a white pixel if the pixel intensity
I(x, y) is greater than or equal to the threshold value (TR), assigned to a black pixel if the pixel intensity
is less than TR. In this work, the white pixels are considered to represent the human skin area.

Figure 2. The sample of three different ROIh sizes as 10 × 10, 25 × 25, and 50 × 50 (red point indicates
the highest temperature point).

To determine the threshold value TR, we coordinated empirical research with varying the value
among 128, 144, 160, 176, 192, 208 and 224. It was confirmed that the TR value 176 is the one that
yielded the best results in all the performed tests.

Figure 3a shows the segmentation of the input image with the thresholding method. Then,
we used the findContours function to find the location of white regions that return the outlines
corresponding to each of the white blobs on the binary image. The bounding box is drawn around
those contours (see Figure 3b). Finally, we find the most prominent contour and bounding box around
that contour, as shown in Figure 3c. In this study, we selected the biggest box as ROIt.

Figure 3. (a) All contours, (b) bounding rectangles around all contours, and (c) bounding rectangle
around the most prominent contour.

Then ROIh and ROIt are cropped for extract signals S̄h( f ) and S̄t( f ) by computing the average
of pixel values (2) within each ROI of each frame, where S(x, y, f ) is the pixel values of the thermal
image at pixel (x, y) in the video frame f , N∗ is the vector of pixel coordinates in ROIh or ROIt, and n∗
is its number.

S̄∗( f ) =
1

n∗ ∑
x,y∈N∗

S(x, y, f ) (2)
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2.1.2. Breathing Motion Detection

Breathing motion detection applies, in the background, a subtraction method for detecting the
motion by calculating the difference between the current frame and previous frame. Specifically,
absolute difference for all pixels between the current frame I(x, y, f ) and the frame one second before
I(x, y, f − s) is calculated (3):

B(x, y, f ) = |I(x, y, f )− I(x, y, f − s)|, (3)

where s is the frame rate.
Then, we extract portions of moved area by using thresholding, erosion, and dilation operations.

Parameters used in these operations are 5 for thresholding pixel value difference is less than 5 and
5 × 5 kernel for opening (i.e., erosion and dilation). Next, bounding boxes are determined by finding
contours with filtering out small movement as noise. Finally, the number of bounding boxes are
counted as the metric of breathing motion (BM).

2.1.3. Respiration Signal Analysis

There are three respiration signals extracted by ROIs detection based on temperature detection
and breathing motion detection. The following are the steps to estimate the respiration signals.

(1) The respiration can be extracted by detecting the chest movements, the breaths airflow, and the
temperature change around the nostrils. However, the detection in a specific method cannot be
guaranteed in the sleep monitoring because of the fixed camera position, and an independent
subject posture may make the region out from the camera view. In such a case, an alternative
method for respiration detection is required. It is reasonable to assume that the respiration can
be detected by blending the temperature change of ROIs and breathing motion. Therefore, we
combine three signals by employing the root mean square (RMS) to calculate the average of the
respiration signals as (4).

Respiration signals =
√

ROIt
2 + ROIh

2 + BM2 (4)

(2) The 3rd order of Butterworth bandpass filter [41] with a lower cutoff frequency of 0.05 Hz and a
higher cutoff frequency of 1.5 Hz was applied. The frequency bound is equivalent to 3–90 bpm,
based on the typical RR for an adult person (12–20 bpm) and monitoring the abnormal RR that is
less than 12 bpm and higher than 20 bpm.

(3) The Savitzky–Golay (SG) filter is a least-square polynomial filter that reduces noises while
retaining the shape and height of waveform peaks [42]. Here, the SG filter was used to smooth the
signal after the bandpass filter. The SG filter’s output increased the precision of the data without
distorting the signal tendency. There are two parameters of the SG filter, including window length
and the filter order, which closely relates to the performance of the filter. In this study, we tested
the parameters and selected the optimal values to get the best-filtered signal, i.e., the window
length of 51 and the polynomial order at 3rd were used. The result of SG filter still includes the
small peaks, and thus a moving average is calculated to detect only the desired peaks and ignore
small ones.

(4) The fusion signal in Figure 4a was smoothed by the SG filter and moving average (see Figure 4b),
and then the number of peaks is counted. Figure 4c depicted the peaks detection of the experiment
signal, followed by the peaks detection of the reference signal in Figure 4d, which are assumed to
correspond to the number of breaths. The findpeaks function is used with adjusting the width as
10 based on empirical research.
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(5) The number of peaks is calculated as breaths per minute (bpm) for each 60 s slice of input video
(1020 samples at 17 fps) and was compared with the reference RR. For performance comparison,
the accuracy of the RR estimation was tested using the RMSE defined as (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(
xexp

i − xre f
i

)2
(5)

where N is the total number of the slices, and xexp
i and xre f

i represent the experimented and
reference RR values obtained for slice.

Figure 4. (a) Sample of fusion signal, (b) filtered and smoothed signals, (c) peak detection of experiment
signal, and (d) peak detection of the reference signal.

2.2. Body Movements Detection

This process aims to determine the more significant action than the respiration representing the
big movement like limb movement, head movement, and full position change during sleep. First,
an absolute difference image B′(x, y, f ) between adjust two thermal images (I(x, y, f ) and I(x, y, f − 1))
is obtained by B′(x, y, f ) = |I(x, y, f ) − I(x, y, f − 1)|. Then, we binarize the difference image by
thresholding method.

In the same manner as the breathing motion detection, we extract portions of the moved area
by erosion and dilation operations. While using 35 for thresholding in order to detect large body
movements, the same parameters are used for erosion and dilation. Then, we apply the findContour
function to examine whether those are a portion of moved area. If any contour is found, the body
movement signal is set to 1. An example output of the body movement is shown in Figure 5, where
the left panel is the movement detection, and the right panel plots the movement signal.

Figure 5. Sample output of the body movements detection.

41



Sensors 2020, 20, 6307

3. Experimental Results

This section analyzes the signal gathered in two experiments. Experiment (1) the respiration
monitoring, and experiment (2) the body movements detection during sleep. The results were
compared with the reference signals obtained by the Go Direct Respiration Belt.

3.1. Experimental Setup

We assessed the performance of our proposed non-contact monitoring of respiration and body
movement detection under natural sleep environments. During the experiments, the thermal videos
were captured using a portable thermal camera (Seek Thermal Compact PRO for iPhone) attached to a
smartphone and fixed on a tripod in front of a participant located at approximately 100 cm. The camera
was set at the proper position so that the upper body of a participant was apparent in the camera’s
field of view. The Seek Thermal Compact PRO is a highly portable thermal imaging camera with a
wide, 32-degree field of view. This thermal camera has a resolution of 640 × 480 pixels and detects
infrared wavelengths in the spectral range of 7.5 to 14 Microns. The camera’s emissivity was set to 0.97,
as this is suitable for human skin temperature measurement [43]. Besides, the videos were recorded
at 17 frames per second (fps). The Go Direct Respiration Belt [44] was used as a reference to collect
human respiratory effort and respiratory rate from a force sensor and an adjustable nylon strap around
the chest during respiration. The measuring parameters were set to 10 samples/s, and the duration is
approximately 5400 s.

The data were collected on different days, from multiple camera positions with volunteers
wearing different clothing. The experiments were conducted on real-life conditions, and volunteers
were invited to record in their room while they were sleeping. They placed a respiratory belt around
their ribs and mounted a thermal camera on a tripod by themselves before they go to bed. Figure 6
illustrates an environment setup. Sixteen healthy volunteers with ages between 25 years old and
37 years old (29.88 ± 3.26 years old), ten females and six males, with height between 151 cm and
180 cm (162.63 ± 7.37 cm), weight between 47 kg and 78 kg (57.38 ± 9.28 kg) and body mass index
(BMI) between 18.65 kg/m2 and 27.64 kg/m2 (21.64 ± 2.98 kg/m2) volunteered for this experiment.
Table 2 shows the participants’ data.

Thermal video monitoring

Ground truth collection

Respiratory Belt Smartphone

Seek Thermal
Camera

Figure 6. Data collection setup.

3.2. Respiratory Rate Estimation and Body Movements Detection

Table 3 contains the results obtained for all subjects, including respiratory rate estimation and
body movement detection. The respiratory rate estimated by our proposed method was compared with
the reference signal obtained by the respiratory belt. The RMSE was calculated by considering all the
breaths in each signal collected during the experiment minute-by-minute. The average respiratory rate
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in the overall subjects is 14.78± 1.93 bpm for the reference signal and 14.47± 0.60 bpm for the proposed
approach. The standard deviation of RMSE for the respiratory rate of all subjects is 0.75 bpm, and the
average is 1.82 bpm. The small RMSE indicates that the proposed approach is robust for subjects
variation. As for body movements detection, we counted the number of movement, the number
of frames including body movement, and the total duration of body movements as summarized
in Table 3.

Table 2. Participants Data.

Subjects Gender Age (years) Height (cm) Weight (kg) BMI (kg/m2)

S01 F 28 162 56 21.34
S02 F 36 167 52 18.65
S03 F 31 162 50 19.05
S04 F 29 163 53 19.95
S05 F 32 158 54 21.63
S06 M 25 161 70 27.01
S07 F 31 151 47 20.61
S08 F 29 160 50 19.53
S09 M 30 168 55 19.49
S10 F 28 159 58 22.94
S11 M 28 180 75 23.15
S12 M 26 169 58 20.31
S13 M 27 168 59 20.90
S14 M 29 168 78 27.64
S15 F 32 153 56 23.92
S16 F 37 153 47 20.08

Table 3. The result of respiratory rate estimation and body movements detection.

Subjects
Respiratory Rate (bpm) Body Movements

Duration (s) Reference Experiment RMSE #Movements #Frames Duration (s) Degree

S01 5371.05 12.71 14.05 1.56 14 269 15.69 1.12
S02 5397.54 13.69 14.22 1.11 15 199 11.65 0.78
S03 5379.37 16.75 14.78 2.20 7 63 3.69 0.53
S04 5192.31 12.23 13.37 2.00 35 642 37.86 1.08
S05 5212.78 17.62 14.39 3.32 9 200 11.72 1.30
S06 5200.51 16.45 14.48 2.23 9 214 12.53 1.39
S07 5332.39 14.38 14.36 1.47 16 218 12.80 0.80
S08 3495.39 14.65 14.29 1.18 15 749 43.48 2.90
S09 5407.22 12.17 14.60 2.68 0 3 0.17 0.00
S10 4520.26 14.91 14.79 0.75 5 91 5.33 1.07
S11 5346.70 13.12 13.76 1.25 16 417 24.42 1.53
S12 5361.45 13.25 15.37 2.35 7 140 8.20 1.17
S13 5399.74 18.61 15.99 2.79 5 20 1.17 0.23
S14 5380.52 15.15 14.32 1.49 16 535 31.14 1.95
S15 5315.23 16.32 14.40 1.99 12 225 13.19 1.10
S16 4287.12 14.43 14.41 0.72 6 250 14.51 2.42

Mean 5100.00 14.78 14.47 1.82 1.21
STD 537.63 1.93 0.60 0.75 0.74

The histogram of the number of body movements in every 40 s is also calculated to check
the symptoms of PLMD. A small movement like a limb or head movement while sleeping takes a
short duration, while significant movements or position changes can take a long time. Therefore,
we calculated the degree of body movements by dividing the movement period with the number of
movements, which is assumed to be closely related to sleep quality. Figure 7 shows the respiratory rate
and body movements of S01–S16. The blue bar represents an occurred body movement. Several times
in the event, in the beginning, refer to difficulty falling asleep like subject 4 and subject 8. The reference
and experiment’s respiratory rates were plotted ‘x’ and ‘o’, respectively. The blue column represents
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the histogram of body movements every 40 s. From this table, we can confirm that there was no regular
and repetitive body movements for all subjects during experiments, which is the typical phenomenon
of PLMD.

Our proposed approach provides respiration and body movements monitoring, which no existing
thermal image based sleep monitoring system presents. We believe that body movement detection
would characterize abnormal movements and behaviors during sleep, and is more comfortable for the
users and completely unobtrusive.

Figure 7. The result of the RMSE (respiratory rate) and body movements of S01–S16.

4. Conclusions

This paper proposed an approach for non-contact respiration monitoring and body movements
detection in a natural sleep environment using a thermal camera. The thermal camera can handle many
viewing angles, which makes installation in the bedroom easy. We have to overcome specific challenges
to acquire non-contact respiration data from participants in their natural sleep environment when the
lights were turned off and they were covered by a blanket. The thermal video sleep monitoring can be
performed in a dark environment to settle privacy concerns. The participants were asked to set up the
system and perform a recording by themselves at their home. This approach aims to use for screening
the irregular respiration before going to the hospital.

The proposed approach consists of automatically computing the ROIs that it can use to acquire
the respiration signal and detecting the body movements of the participant by employing an image
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processing on the continuous thermal image. The signals were obtained in each frame process with
normalizing and smoothing signals. Then, we computed the number of breathing and counted
the number of body movements. The approach has been validated using a respiratory belt as a
reference signal. We evaluate respiration monitoring performance and body movements detection
in different rooms with 16 participants who have independent sleep postures. Our results show that
the proposed approach successfully estimated that the RR was obtaining an RMSE of 1.82 ± 0.75 bpm.
The performed experiments confirmed that a thermal camera is easy to use for respiration monitoring
and body movements during sleeping within various environments. In future work, we will focus on
monitoring a patient who has irregular breathing. Another element of our work that could be improved
is the automatic optimization of the thresholding value. The other limitations of the proposed method,
such as a variation of room temperature, the type of bed cover, blanket, and night sweats (neck or face)
in subjects, rapid eye movement (REM) stage, and heart rate, provide ideas for addressing these issues
in future studies.
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Abstract: Obstructive sleep apnea/hypopnea syndrome (OSAHS) is characterized by repeated airflow
partial reduction or complete cessation due to upper airway collapse during sleep. OSAHS can induce
frequent awake and intermittent hypoxia that is associated with hypertension and cardiovascular
events. Full-channel Polysomnography (PSG) is the gold standard for diagnosing OSAHS; however,
this PSG evaluation process is unsuitable for home screening. To solve this problem, a measuring
module integrating abdominal and thoracic triaxial accelerometers, a pulsed oximeter (SpO2) and
an electrocardiogram sensor was devised in this study. Moreover, a long short-term memory
recurrent neural network model is proposed to classify four types of sleep breathing patterns,
namely obstructive sleep apnea (OSA), central sleep apnea (CSA), hypopnea (HYP) events and normal
breathing (NOR). The proposed algorithm not only reports the apnea-hypopnea index (AHI) through
the acquired overnight signals but also identifies the occurrences of OSA, CSA, HYP and NOR,
which assists in OSAHS diagnosis. In the clinical experiment with 115 participants, the performances
of the proposed system and algorithm were compared with those of traditional expert interpretation
based on PSG signals. The accuracy of AHI severity group classification was 89.3%, and the AHI
difference for PSG expert interpretation was 5.0 ± 4.5. The overall accuracy of detecting abnormal
OSA, CSA and HYP events was 92.3%.

Keywords: abdominal movement signal; hypopnea; LSTM-RNN; neural network; oxygen saturation;
sleep apnea syndrome; sleep–wake detection; synchrosqueezing transform; triaxial accelerometer;
thoracic movement signal

1. Introduction

According to a recent report [1], 13% men and 6% women between the ages of 30 and 70 years are
affected by obstructive sleep apnea-hypopnea syndrome (OSAHS). Patients suffering from OSAHS
have symptoms such as excessive daytime sleepiness, morning headache, hypertension and decreased
libido [2]. However, people are often unaware of OSAHS because apnea/hypopnea events only
occur during sleep. According to the American Academy of Sleep Medicine scoring manual [3],
an apnea event is identified when a drop of 90% respiratory airflow lasts for at least 10 s. Moreover,
a hypopnea event is defined when a drop of over 30% respiratory airflow lasts for at least 10 s with at
least 3% associated decrease in oxygen saturation (SpO2) or arousal from sleep. The apnea-hypopnea
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index (AHI), which is defined as the total number of apnea and hypopnea events per hour of sleep,
is a vital metric to quantize the severity of sleep breathing disorder. Although AHI is recently
criticized and other phenotype information of sleep breathing problems should be considered in clinical
diagnosis [4], it still is a reliable metric for SDB screening at home before the patients are recommended
for other decent testing or diagnosis in hospital. Full-channel polysomnography (PSG) is the traditional
method of diagnosing OSAHS. In PSG, various physical and biological signals containing sleep
information are comprehensively recorded. Although PSG is the standard for diagnosing OSAHS,
it has several drawbacks. Subjects are required to wear numerous sensors (more than 20 channels)
for monitoring the condition of the body during sleep. The PSG examination can be performed only
in the hospital and the sleep quality of the patients can be influenced by several external constraints.
Moreover, to diagnose an OSAHS patient, it usually requires more than 6 h for a doctor or sleep
technician to observe multichannel and overnight PSG signals and to label the sleep breathing events
accordingly. Therefore, PSG measurement and diagnosis are expensive, time consuming and unsuitable
for large-scale home-based screening. Several solutions have been proposed to alleviate this difficulty.
A common solution is reducing the number of sensors. Several issues on the ambulatory monitoring
for obstructive sleep apnea syndrome were raised by [5], and guidelines of using critical channels were
also provided for sleep disorder diagnosis and management. In general, these solutions are classified
into four classes [6]. A Level-III or Level-IV solution is considered in this paper.

In the past decade, several reduced-channel technologies have been developed to evaluate OSAHS
severity. Multiple biological signals, such as electrocardiogram (ECG) [7], ballistocardiography [8],
SpO2 [9], respiratory efforts [10] and snoring sounds [11], have been used to derive statistical or
instantaneous signal features that are highly related with apnea events for sleep event identification.
With the derived features from the selected sensors, various automatic annotation algorithms have
been developed for sleep apnea events. Classification levels are of two types—the AHI level and event
level. At the AHI level, the AHI of the whole night sleep is estimated for diagnosis. At the event level,
each single apnea and hypopnea event is identified and classified and hence the AHI is accordingly
calculated for the diagnosis. For the classification, various machine learning techniques such as support
vector machine (SVM) [12], ensemble classifiers [13], and Bayesian network-based classifier [14] have
been used to identify the sleep apnea events. Recently, a convolutional-neural-network-based deep
learning framework [15] was proposed to detect obstructive sleep apnea events. In another study [7],
the hidden-Markov-model-based deep neural network was used for detecting sleep apnea based on
ECG signals. Raw biological signals without feature extraction have been used in several studies
for detecting sleep apnea events through deep learning [9]. Quiceno-Manrique [16], Mendez [17],
De Chazal [13] and Novak [18] used ECG signal for diagnosing OSAHS. In [10,19], abdominal (ABD)
and thoracic (THO) movements were proven to be excellent parameters for diagnosing OSA occurrence.
In [20], multiple channels, SpO2 and photoplethysmography (PPG) were used to estimate the blood
volume changes for OSA prediction. For other literature works, refer to [21,22]. The primary differences
and contributions of this study are presented as follows:

• This study is the first work to apply two triaxial accelerometers, a single-lead ECG and a finger
oximeter for portable sleep apnea syndrome screening. The clinic experiments were performed
by recording overnight signals of suspected patients under the approval of Institutional Review
Board of hospital. Most works designed new sensing devices without clinic experiments or
developed new detection algorithms by using public database.

• This work proposes a complete systematic framework of sensing devices and algorithms to detect
and identify OSA, central sleep apnea (CSA) and hypopnea (HYP) events. This system can not
only evaluate AHI values but also provide reliable event-level classification results of various
sleep apnea events. Except our previous work [23] based on piezo-electronic bands, most works
can only detect OSA events and evaluate AHI only.

In this study, a hardware solution was combined with a novel neural-network-based classification
technique for identifying OSA, CSA and HYP events and NOR breathing by using two triaxial
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accelerometers (TAA), a pulsed oximeter and ECG. The proposed classification algorithm performs
event level prediction but not the AHI level prediction. The features of the abdominal TAA (ABD-TAA),
thoracic TAA (THO-TAA) and SpO2 signals were extracted from the recorded signals. Then, a modified
long short-term memory recurrent neural network (LSTM-RNN) was proposed to classify the OSA,
CSA and HYP events and NOR breathing in the overnight recorded signals. To avoid underestimation
of the AHI from the predicted apnea and hypopnea events, the sleep–wake status was predicted by
analyzing the ECG signal with a CNN classifier. The AHI severity group classification, AHI difference
and OSA/CSA/HYP event and normal breathing classification were also analyzed to demonstrate the
superiority of the proposed OSAHS screening system.

This study aimed to develop an unattended sleep apnea screening system that can be incorporated
in the personal healthcare services with less labeling labor. The proposed screening system can be
applied to evaluate the long-term sleep breathing performance of the potential subjects. These devices
should be used in patients with a high pretest probability for obstructive sleep apnea/hypopnea
syndrome according to 2007 AASM guideline (Reference 4) for the home-base diagnosis test.
Patients suspected with respiratory, cardiologic and neurologic disorders should be excluded in
this test. Primary care physician or sleep specialist would be the one who arranges this test.

2. Material and Methods

2.1. Material

The THO and ABD movements were recorded using piezo-electric bands at a sampling rate of
100 Hz on the Alice 5 PSG acquisition system (Philips Respironics, Murrysville, PA, USA). The SpO2

signals were also recorded at a sampling rate of 1 Hz in the PSG signals. The OSA, CSA and HYP
events and NOR breathing were identified and labeled by sleep experts in the PSG signals as the
reference classifier. At the same time as the PSG recoding process, the proposed THO-TAA, ABD-TAA
and ECG sensing devices were also attached to the chest and abdomen of the participant for capturing
the signals required for the proposed AHI evaluation system. Polysomnography (Alice 5, Respironics)
was performed on all patients using standard techniques. Sleep stages and arousals were scored
according to the AASM criteria [3]. Respiratory efforts were measured by piezo-electric bands, and
arterial oxygen saturation was measured by pulse oximetry.

Established criteria were used to score respiratory events such as hypopnea, obstructive apnea,
central apnea and mixed type apnea [3] during sleeping time. Apnea was defined as nasal flow
cessation for more than 10 s. It was scored as obstructive (OSA) if the paradoxical respiratory and
abdominal efforts were observed. It was scored as central (CSA) if none of these excursions were
observed. It was scored as mixed if this effort is resumed toward the end of the period of apnea.
The mixed type apnea was classified as OSA in this work because of its similar contribution factors
to OSA. Hypopnea (HYP) was defined as a 30% reduction in nasal pressure transducer followed by
an arousal or more than 3% decrease in SpO2. In this work, a segment signal was scored as normal if
none of the above-mentioned events was identified.

2.2. Integrated Sensing System

Figure 1a depicts the proposed integrated sensing system that captures biomedical signals for
sleep event detection/classification and AHI evaluation. A 27-g sensing device was devised and
fabricated with a nine-axis accelerometer, an ECG sensor, a Bluetooth module and a microcontroller
(Figure 1b). The sensing device included an ultra-low-power microcontroller (MSP430) that controlled
MPU9250 to capture TAA signals, which were then delivered to a mobile device, such as smartphone
or tablet, through Bluetooth module CC2541. The integrated sensing system could continuously sense
and record signals for 34 h with a 300 mAh battery. The signal word-length and sampling rate are
12 bits/500 Hz and 16 bits/50 Hz for the ECG and accelerator, respectively. The transmission baud
rate from a sensor device to iOS device is 115,200 bps. The bandwidth and reliability was verified to be
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sufficient for continuous transmission of the overnight ECG and acceleration signals. The reconnection
procedure was also implemented in the Bluetooth link in case that patients might wake up and leave
the transmission coverage, for example to go to restroom at night.

In the clinical experiment, two integrated TAA/ECG sensing devices were attached on the
chest and abdomen of the participants and the ECG electrode was attached to the chest (Figure 1c).
To record respiratory information, one sensing device was placed from the left parasternal line,
4th or 5th intercostal space to the mid-clavicle line to measure the maximal thoracic movement.
The other sensing device was placed from the left subcostal anterior axillary line to the umbilical area
to measure the maximal abdomen movement. In this way, we not only obtained strong thoracic and
abdomen movement signal but also strong EKG signal. In the proposed recording and storage system,
a prototype app software with graphic user interface on iOS device was built to control the progress of
the data recording. All the sensed physiological signals were transmitted from the sensing devices to
the iOS device through Bluetooth. Then, they were uploaded to the Dropbox cloud data server for the
following data analysis.

(a)

(b) (c)

Figure 1. (a) Block diagram of the integrated sensing device and system; (b) photo of the sensing
device; and (c) devices worn for sensing the ABD-TAA, THO-TAA and ECG signals.

2.3. Signal Preprocessing

Figure 2 displays the processing diagram of the proposed AHI evaluation system. Six channels of
the ABD-TAA and THO-TAA signals were passed through six-order low-pass filters with a 0.8-Hz
cut-off frequency and then converted into two respiratory motion signals, namely THO and ABD.
Subsequently, the THO and ABD signals were segmented by a 10-s window and the SpO2 signal was
segmented by a 20-s window. Nine features in each segment were generated. These features were
used to classify four types of sleep breathing events with an LSTM-RNN classifier. SpO2 desaturation
and sleep–wake detectors were used to improve the results of the LSTM-RNN classifier for the AHI
evaluation. The algorithm is detailed step by step as follows.
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Figure 2. Processing diagram of the proposed AHI evaluation system.

Each TAA sensor sampled a three-axis acceleration vector at a time. Typically, principle component
analysis (PCA) is used to combine the three-dimensional (3D) acceleration vector into 1D signal for
the following analysis. Although PCA is suitable when the recording time is short, this approach is
insufficient for overnight recording. The PCA could possibly distort the useful information of sleep
breathing features because of the nonstationarity, particularly when the selected axis is switched
frequently because of change in the sleep position. Thus, a TAA selection method was proposed
to avoid this problem as shown in Figure 3. Three-dimensional TAA signals were first segmented
by 30-s window with a 10-s time step. The number of periodic peaks was counted in a segment of
an axis. Then, the axis with the most similar number of peaks to the human average respiration
rate (6–9 peaks per 30 s) was selected as the output axis. After determining the selected axes of five
successive segments, the most frequent axis in the previous five segments was selected as the output
signal for the following analysis, as depicted in Figure 3a. If two axes had equal appearances, the axis
with the larger magnitude was selected, as depicted in Figure 3b.

(a) (b)

Figure 3. (a) TAA selection with the most appearances of one axis; and (b) TAA selection with equal
appearances of two axes.

2.4. Feature Extraction

The preprocessed 1D THO and ABD signals were used to generate the features for sleep breathing
event classification. The most obvious feature of the OSA event is the paradox between the THO and
ABD signals. For the CSA event, the signal strengths of the THO and ABD signals are extremely small
and exhibit small frequency deviation (e.g., the cardiogenic artifact). Because distinguishing HYP
events in the ABD and THO signals is difficult, SpO2 is incorporated to detect the HYP events.

2.4.1. Features of the THO and ABD signals

The THO and ABD signals are denoted as Ytho and Yabd, respectively. The THO and ABD signals
were segmented using a 10-s window with a step of 0.5 s for feature extraction. According to the
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aforementioned physiological properties of the OSA, CSA and HYP events, the amplitude ratios (ARs)
and the frequency ratios (FRs) [23] were considered as follows:

ARtho(n) =
Q95(Ãtho(t)χCW(n))

Q95(Ãtho(t)χPW(n))

ARabd(n) =
Q95(Ãabd(t)χCW(n))

Q95(Ãabd(t)χPW(n))
.

(1)

FRtho(n) = log10

(∫ 1.5
0.8 |F (Ytho(t)χCW(n))(ξ)|2dξ∫ 0.8
0.1 |F (Ytho(t)χCW(n))(ξ)|2dξ

)

FRabd(n) = log10

(∫ 1.5
0.8 |F (Yabd(t)χCW(n))(ξ)|2dξ∫ 0.8
0.1 |F (Yabd(t)χCW(n))(ξ)|2dξ

) (2)

where χ is the indicator function (1 or 0) for the windowing segmentation of input signals;
Q95 represents the 95% quantile of the given function; Ãtho(t) and Ãabd(t) are the amplitudes of the
THO and ABD signals, respectively, which were determined using the synchrosqueezing transform;
and F represents the Fourier transform. CW represents the current window, that is, the nth CW is
denoted as CW(n) ⊂ R, where n is the index of segment. PW is the previous 60-s windowed signal
before the current window. PW contains the baseline amplitude for AR. The nth PW associated with
the nth CW is denoted as PW(n) ⊂ R. Consequently, ARtho(n) and ARabd(n) represent the ARs and
FRtho(n) and FRabd(n) represent the FRs of the THO and ABD signals, respectively, over the nth CW.

Synchrosqueezing transform (SST) is a novel nonlinear-type time–frequency analysis technique
aiming to analyze complicated and nonstationary time series. It has been theoretically proved to
enjoy several nice properties [24,25]. For our application, the main benefit of SST is an accurate
estimation of the instantaneous frequency and the amplitude modulation of the respiratory signal.
Moreover, the estimation does not depend on whether or not the oscillatory patter or wave-shape
function is sinusoidal [26]. In addition, the SST is robust to various kinds of noise, including colored or
even nonstationary random process [25].

The AR features were determined from the estimated amplitudes of the THO and ABD signals,
which are denoted as Ãtho(t) and Ãabd(t), respectively, by using the synchrosqueezing transform.
This step is critical because it suppresses the artifacts caused by the sudden change of body posture.
The FR indicates the frequency distributions of the respiration and probably the cardiogenic artifact
caused by heart beats. The integration range from 0.8 to 1.5 Hz in the numerator in (2) is the average
range of heart beat rate. In our algorithm, the heart beat information was taken into account and the
cardiogenic artifact indicates how silent the respiratory signal is. The detailed properties of the ARs
and FRs of the THO and ABD signals can be obtained from [23].

2.4.2. Features of SpO2 signal

SpO2 is the percentage of oxyhemoglobin in hemoglobin. When sleep apnea and hypopnea events
occur, SpO2 decreases gradually until the subject breathes again. According to our data, the average
delay time between an apnea (hypopnea) event and the 3% drop of SpO2 was 19.3 ± 9.6 s. The average
event duration is 20.2 ± 3.4. Figure 4a,b displays the distributions of the desaturation delay times of all
events for the patients with AHI > 30 and AHI < 30, respectively. For patients with severe symptoms
(AHI > 30), the desaturation distribution exhibits a high probability of error in which the previous
respiratory event related to desaturation is labeled as the current event, that is, the desaturation drop of
the previous respiratory event is almost adjacent to the current event. Therefore, features of SpO2 were
generated for every 20-s segment with a 20-s delay from the sampling point, as depicted in Figure 5.
The minimum, maximum, mean and variance of the first derivative were used as the four features,
and the original SpO2 signal was also reserved as the baseline. To eliminate the variation of subjects,
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the SpO2 signal was normalized by subtracting it by its median and dividing the obtained value by its
standard deviation.

(a) (b)

Figure 4. (a) SpO2 desaturation time of patients with AHI lower than 30; and (b) SpO2 delay time of
patients with AHI higher than 30.

Figure 5. The decline of the SpO2 signal occurs 20–40 s after abnormal events according to the
physiological phenomenon.

2.5. Neutral Network Model, Event Classification and AHI Evaluation

2.5.1. Neural Network Model Classifier

The RNN based on the LSTM model, which was first presented by Hochreiter [27],
was instrumental in solving many sequence problems with long-term dependency, such as language
translation, speech recognition, image captioning and genomic information learning [28–31].
The features of the sleep breathing events based on THO/ABD and SpO2 signals are time-varying and
have long-term dependency. Therefore, an LSTM-RNN model was used to classify the sleep breathing
events. The LSTM-RNN is an extension of the RNN and has more complex memory neurons than
the RNN (Figure 6a). Unlike the original neuron with a simple loop in the RNN, every neuron in
the RNN is replaced with an LSTM cell. An LSTM cell has three gates, namely the input, output and
forget gates. These gates are scalars that are trained in every iteration to control the input, output and
memory of every cell. Furthermore, the computation of output is reserved in the LSTM and combined
with the new input. With the aforementioned design, the LSTM can thus deal with the long-term
dependency problem, various desaturation times and many other subject variations for sleep breathing
event classification.

Figure 6b illustrates the LSTM-RNN architecture, which has three layers, namely the input,
LSTM-cell hidden and output layer. The input layer consists of nine neurons corresponding to nine
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extracted features from the THO/ABD and SpO2 signals. The output layer contains four neurons
representing four types of events, namely the OSA, CSA and HYP events and NOR breathing.
The output of the network was normalized by using the softmax function. In total, 80 LSTM cells
were utilized in the hidden layer according to the thumb of rule. The upper bound of the hidden
neuron number was calculated by dividing the number of cases in the training dataset by the sum
of the numbers of input and output layers in the network. The LSTM-RNN model was trained with
500 epochs of 500 batches of Adam gradient descents and a learning rate of 0.001. The activation
function used in each layers was the rectified linear unit (ReLU) because of the benefit of sparsity
and its capability of reducing the vanishing gradient. The loss function was used to compute the
sum of cross entropy and L2 regularization with β = 0.05. Moreover, gradient clipping was added
to the loss function to avoid the exploding gradient. Figure 7 illustrates the event detection results
of 1-h segment for a patient. The PSG labeling results obtained from experts are displayed in the top
panel of Figure 7. The middle panel displays the softmax output results of the LSTM-RNN classifier.
In this panel, the four curves represent the probabilities of the four types of events. The decision rule
of the LSTM-RNN classifier involves selecting the event with the highest probability in every time
step, as depicted in the red line in the bottom panel. The LSTM-RNN classifier generates almost the
same event states as PSG labeling does.

(a) (b)

Figure 6. (a) Xt is the tth input feature, where t = 1, 2, . . . , N. N is the total number of data points;
Ct is the tth memory; ht is the tth output; and σ and tanh represent the sigmoid and hyperbolic
tangent function, respectively [27]. (b) LSTM-RNN architecture with the input layer, hidden layer and
four-neuron output layer for classifying CSA, OSA, HYP and NOR states in every N seconds.

2.5.2. Oxygen Desaturation Detection

According to the 2014 guidelines from the American Academy of Sleep Medicine [3], a 3% drop
of SpO2 is considered as a potential sleep apnea and hypopnea event. Therefore, the proposed sleep
breathing event classifier incorporates a SpO2 desaturation detection scheme to capture every 3% drop
in the SpO2 signal (Figure 8). First, the difference of SpO2 saturation signal was calculated and then
convolved with a 20-s unity window to accumulate the difference. Afterwards, every desaturation
with over 3% drop can be marked as an HYP event, which may not easily be detected using the
LSTM-RNN classifier because limited CSA or OSA features can be extracted for the hypopnea event.
Finally, the remarked signal was moved 20-s forward to compensate the delay of SpO2 desaturation.
Figure 9 illustrates the 1-h classification results of PSG labeling, the softmax outputs of the RNN and
the outputs of the LSTM-RNN classifier with desaturation detection. By adding SpO2 desaturation,
the HYP softmax output exhibits higher probability than the NOR state. Therefore, the HYP events
can be easily (see HYP softmax output) detected.
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Figure 7. Event classification results of the PSG labeling, LSTM-RNN softmax outputs and final results
of the LSTM-RNN classifier during 1-h sleep of a patient.

Figure 8. Processing steps for the oxygen desaturation detection.
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Figure 9. Event classification results of PSG labeling, the LSTM-RNN softmax outputs and the final
results of the LSTM-RNN classifier with desaturation detection during 1-h sleep of a subject.

2.5.3. Sleep–Wake Classification

Because AHI is defined as the number of apnea and hypopnea events that occur during sleep,
heart rate variability (HRV) was used in this study to detect the sleep and wake status during overnight
sleep [32]. According to a previous study [33], a CNN was used to classify the sleep and wake
status by using the instantaneous heart rate (IHR) signal converted from the ECG signal and SpO2.
Finally, the LSTM-RNN classification results and the sleep–wake state are combined to remove false
positive events during the wake state. HRV is quantified by the intervals between successive heartbeats
of ECG signals. HRV is estimated as the IHR per minute as follows:

IHR(ri) =
60

ri − ri−1
i = 2, . . . , n, (3)

where ri denotes time instants in seconds when the ith R peak is detected. The unit of IHR is then
beats per minute (bpm). Subsequently, the IHR signal along with the 20-s-delayed SpO2 signal was
segmented into 30-s epochs for the CNN network.

Figure 10a displays the CNN network used to classify the sleep and wake state. The input is first
passed through five convolution layers and then two fully connected layers. Figure 10b illustrates each
convolution layer. A single convolution layer has ten filters with a kernel size 8, and the stride is equal
to 1 and 2. Each fully connected layer has 20 nodes, and every node is associated with a bias and ReLU
activation function. Finally, a softmax function is applied before the output layer. Five minutes of the
IHR and SpO2 signals were used as inputs, which were normalized by subtracting the median value.
The output was a 2D one-hot code for the sleep and wake states. L2 regularization was applied with
β = 0.3. The CNN network was trained using the Adam gradient descent with a learning rate of 10−3,
a batch size of 100 and cross entropy as the loss function.
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(a) (b)

Figure 10. (a) Architecture of the one-dimensional CNN. The notation 20-Dense denotes that the fully
connected layer possesses 20 nodes. For 5-min input signals, we used five convolution blocks [33].
(b) Architecture of a single convolution block. The notation ( f , k, s)-convolution denotes that the
convolutional layer has f filters with a kernel size k and stride s. The output of the block is half the size
of the input [33]. A bias is added to the output of each filter, and the result is fed into a rectified linear
unit (ReLU) activation function. A dropout with probability 0.5 is applied to the last layer and both
fully-connected layers. The output of the network is normalized by the softmax function. An epoch is
predicted to be wake if the output of the wake node is greater than or equal to that of the sleep node.
We refer readers to Section 2.3 of [33] for more details.

3. Results

The clinic experiments were approved by the Institutional Review Board of the Chang Gung
Memorial Hospital (CGMH: No. 201601576B0). Clinical patients at the sleep center in CGMH, Linkou,
Taoyuan, Taiwan who were suspected of having sleep apnea were considered for this study. In total,
115 participants were examined in the clinical experiments. The demographic details of the participants
are summarized in Table 1. The sleep experts identified the OSA, CSA, mixed sleep apnea (MSA)
and HYP events from the overnight PSG signals of all patients. The remaining signals were NOR
states. The MSA was regarded as the OSA in this study because of the similarity of physiological
features. The training and testing databases had nearly the same distribution over various severity
levels, as presented in Table 2.

Table 1. Demographic details of the 115 participants.

Severity Gender AHI BMI Age * TST ** SE *** REM **** NREM
(times/hr) (kg/m2) (year) (min) (%) (%) (%)

Normal
all (9)

male (6)
female (3)

1.8 ± 1.6 23.2 ± 3.3 30.0 ± 8.2 312.9 ± 37.2 84.4 ± 9.9 15.4 ± 5.7 84.6 ± 5.7

Mild
all (17)

male (13)
female (4)

9.4 ± 2.4 25.6 ± 3.7 49.0 ± 11.3 313.4 ± 28.0 84.3 ± 7.3 17.8 ± 5.8 82.2 ± 5.8

Moderate
all (28)

male (21)
female (7)

21.7 ± 4.1 25.4 ± 2.7 48.5 ± 12.9 311.0 ± 40.7 83.9 ± 11.1 14.9 ± 5.6 85.1 ± 5.6

Severe
all (61)

male (50)
female (11)

61.1 ± 24.0 30.2 ± 6.0 50.3 ± 12.3 291.0 ± 52.6 79.4 ± 13.8 11.0 ± 6.2 89.0 ± 6.2

* TST, Total Sleep Time; ** SE, Sleep Efficiency; *** REM, Rapid Eye Movement Percentage; *** NREM, None
Rapid Eye Movement Percentage.
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Table 2. Distribution of the training and testing participants.

Level of Severity Training Subjects Testing Subjects Total Subjects

Normal 6 3 9
Mild 9 8 17

Moderate 14 14 28
Severe 30 31 61

All levels 59 56 115

In our previous studies [23,34], SVM was used and followed by a state machine for screening
OSAHS. The SVM model is divided into three types. First, the original SVM uses 50% of participants
for training and 50% of participants for testing. Second, in the phenotype-based SVM [34], K = 15
nearest subjects of all data are selected according to gender, BMI and age with weights of 4, 2 and
1, respectively. Third, in the phenotype-based SVM with comorbidity information, the most similar
20 subjects are first selected and then the nearest 15 subjects are selected from these candidates using
the K-nearest neighborhood method. For the LSTM-RNN model, the time step N was first evaluated
for screening OSAHS. The detection performances of various Ns are presented in Table 3. When N
was 20, the largest F1 score was 0.72 ± 0.22 and the AHI difference was 8.1 ± 7.3. As the time step
increased, the performance declined because the average duration of all events (apnea and hypopnea)
was approximately 20 s (Figure 3).

Table 3. Sensitivity, precision, F1 score and AHI difference of LSTM-RNN with different time steps (N).

Time Step (N) Precision Sensitivity F1 Score
AHI

Difference

10 s 0.59 ± 0.25 0.88 ± 0.16 0.68 ± 0.24 9.7 ± 7.2
15 s 0.67 ± 0.23 0.74 ± 0.22 0.68 ± 0.21 8.8 ± 6.6
20 s 0.74 ± 0.22 0.73 ± 0.22 0.72 ± 0.22 8.1 ± 7.3
25 s 0.72 ± 0.22 0.75 ± 0.21 0.71 ± 0.21 8.7 ± 6.3
30 s 0.71 ± 0.21 0.77 ± 0.2 0.71 ± 0.2 8.6 ± 6.5

Precision = # of True Positive/(# of True Positive + # of False Positive); Sensitivity = # of True Positive/(# of
True Positive + # of False Negative); F1 Score = (2 × Precision · Sensitivity)/(Precision + Sensitivity).

LSTM-RNN with Oxygen Desaturation and Sleep–Wake Detection

Using the sleep–wake information of the overnight sleep, the classified sleep breathing events
occurring when subjects were awake were eliminated. Thus, highly accurate sleeping hours for AHI
evaluation could also be obtained in the experiment. Table 4 lists the sensitivity, precision, F1 score
and AHI difference for all subjects at various severity levels. We observed that sensitivity, precision
and F1 increased with the severity. The primary reason for this result was that the database size of the
sleep breathing events for the severe group was considerably larger than that for the normal, mild and
moderate groups. Compared with the generic SVM (F1 score of 65% ± 26%) in Table 5, the proposed
LSTM-RNN with oxygen desaturation and sleep–wake detection had a higher F1 score (71% ± 22%)
with respect to the PSG labeling of the sleep experts. The average AHI difference of the proposed
LSTM-RNN model was 5.0 ± 4.5, which is smaller than that of the generic SVM model. Table 6 lists
the confusion matrix of the classification of the proposed LSTM-RNN model with oxygen desaturation
and sleep–wake detection for different severity levels. The severity classification achieved an accuracy
of 89.3%.

Table 7 presents the confusion matrix of the classification of OSA, CSA and HYP events and
NOR breathing. The overall event-by-event classification accuracy was 83.3%. The NOR breathing
and OSA events could be well identified, whereas the identification of HYP events was difficult
because of the lack of obvious information for HYP events. Some CSA events were classified as
OSA events mainly because the OSA events had more than twice the CSA events in the database.
However, the accuracy of distinguishing abnormal events was still 92.3%. This detection accuracy
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approximates the recommended intra-class correlation (95%) for the reliability of different scorers
by [35]. This difference is very close to traditional subjective interpretation. Therefore, the proposed
portable sensing system and OSAHS event identification algorithm can be reliable for the OSAHS
screening in the home environment.

Table 4. Sensitivities, precisions, F1 scores and AHI differences of LSTM-RNN with oxygen desaturation
and sleep–wake detection for different severity groups.

LSTM-RNN
Model

Sensitivity Precision F1 Score
AHI

Difference

Normal 0.62 ± 0.44 0.16 ± 0.15 0.23 ± 0.2 4.9 ± 4.4
Mild 0.62 ± 0.16 0.48 ± 0.14 0.54 ± 0.13 2.4 ± 1.7
Moderate 0.64 ± 0.2 0.77 ± 0.15 0.68 ± 0.16 5.8 ± 5.7
Severe 0.81 ± 0.13 0.86 ± 0.07 0.83 ± 0.09 5.7 ± 4.0
All levels 0.73 ± 0.2 0.74 ± 0.23 0.71 ± 0.22 5.0 ± 4.5

Table 5. Comparison of the LSTM-RNN and SVM models with oxygen desaturation.

Model + Oxygen
Desaturation

Original
SVM [23]

Phenotype
SVM [34]

Phenotype SVM+
Comoribidity [34]

LSTM-RNN

Precision 0.77 ± 0.25 0.74 ± 0.27 0.74 ± 0.28 0.72 ± 0.22
Sensitivity 0.63 ± 0.27 0.64 ± 0.27 0.65 ± 0.27 0.81 ± 0.2

F1 score 0.65 ± 0.26 0.65 ± 0.26 0.65 ± 0.29 0.72 ± 0.22
AHI difference 10.6 ± 13.4 9.8 ± 10.0 9.0 ± 11.8 6.0 ± 5.2

Table 6. Confusion matrix of the LSTM-RNN model with oxygen desaturation and sleep–wake detection.

LSTM-RNN with Desaturation
and Awake Detection

Expert Label
Normal Mild Moderate Severe

RNN Label

Normal 3 0 0 0
Mild 0 8 3 0

Moderate 0 0 11 3
Severe 0 0 0 28

Accuracy 89.28%

Table 7. Confusion matrix of the OSA, CSA and HYP events and NOR breathing for the LSTM-RNN
model with oxygen desaturation and sleep–wake detection.

Four Events Types
Classification in LSTM-RNN

Expert Label

Normal OSA CSA HYP

RNN Label

Normal 37,788 232 470 1824

OSA 1391 7485 2132 1213

CSA 21 35 1855 32

HYP 556 1703 149 2138

Accuracy 83.34%

4. Discussion

From the clinical perspective, through the proposed LSTM-RNN classifier with the TAA, ECG
and SpO2 signals, the respiratory events (apnea vs. hypopnea) and pattern (obstructive vs. central) can
be effectively detected by the proposed system. Moreover, sleep–wake status be identified by using
a CNN algorithm with instantaneous heart rate derived from ECG and SpO2 signals. According to
the heat rate and rhythm information in the ECG signal, our sensing devices and algorithm fully
meet the requirements of AASM “SCOPER” (sleep, cardiovascular, oximetry, position, effort and
respiratory) criteria for the home-base OSAHS detection. Compared with other Level 3 home-base
equipments for sleep event screening using fewer sensors and channels for reducing sleep interference,
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the proposed sensing system and classification algorithm can provide better sleep quality and higher
accuracy without sacrificing any useful information. The proposed system and algorithm can also
support an effective early diagnosis and early treatment possibility for a clinically vital disease with
high prevalence and low diagnostic and treatment rates.

From the hardware perspective, as suggested by a preliminary result provided in [33],
the sleep–wake classification can be conducted accurately through PPG. This indicates that the ECG
signal can be replaced by the PPG signal. Because only the partial information SpO2 of the PPG signal
was considered, one channel can be reduced in the next-generation sensing device.

From the algorithmic perspective, the following aspects should be considered to further improve
the algorithm. The signal quality was considered in this study. The robustness properties of the feature
extraction algorithm was simply focused on avoiding the impact of the inevitable noise and artifact.
In addition to using the existing signal quality index (SQI) for the ECG or PPG signal, a suitable SQI
should be developed for the ABD-TAA and THO-TAA signals. By incorporating these indices into
the algorithm, the algorithm performance should be improved. This possibility will be explored in
future study.

Limitation

This discussion is not complete without mentioning its limitation. First, the data were collected in
a hospital environment designed for type I sleep screening. Additional data should be collected at
the home-base environment to further confirm the applicability of the proposed model and algorithm.
Another limitation is the database size. According to the encouraging positive results provided by the
phenotype-based SVM, we expect to achieve a superior result if the database size increases. Specifically,
with a larger database, we can have more cases with similar phenotype to build up an accurate model
for each new-arriving patient.

5. Conclusions

In this study, a series of classification and detection algorithms was developed for screening
sleep apnea patients by using a pulse oximeter and a wireless sensing system with TAA and ECG
sensors. The features were extracted from the THO/ABD and SpO2 signals and then used for
training the LSTM-RNN classifier. The proposed system incorporates an SpO2 desaturation detector
and an ECG-based sleep–wake detector to improve the overall classification performance of the
LSTM-RNN classifier. The severity group classification based on the AHI evaluation results of the
proposed algorithm achieved an accuracy of 89.3%, and the sleep breathing event classification
achieved an accuracy of 92.3%. Thus, we believe that the proposed screening system and classification
algorithms can establish a solid foundation for the clinical screening of OSAHS.

This study has some potential future works. The proposed LSTM-based neural network has
been proven to be effective in identifying several sleep apnea event types in this work. Since the
proposed portable sensing system was designed for a homecare screening system, the LSTM-based
neural network can be customized for individual person by using distributed learning techniques,
which can be achieved by adopting phenotype information such as gender, weight, age and other
personal physical information so as to enhance the personalized and high-accuracy sleep disorder
screening system. Moreover, the proposed sensing system and APP software on a smartphone can
record overnight data. To realize home-based screening or monitoring, the off-line data analysis
(detection and event classification algorithms) on the PC can be further replaced by cloud-based
analysis. That is, the user can upload the data by smartphone to a cloud server, and the data are then
analyzed on the cloud server. Accordingly, the results can be easily viewed by the remote users such
as doctors or caregivers.
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Abstract: Among all the vital signs, respiratory rate remains the least measured in several scenarios,
mainly due to the intrusiveness of the sensors usually adopted. For this reason, all contactless
monitoring systems are gaining increasing attention in this field. In this paper, we present a
measuring system for contactless measurement of the respiratory pattern and the extraction of
breath-by-breath respiratory rate. The system consists of a laptop’s built-in RGB camera and
an algorithm for post-processing of acquired video data. From the recording of the chest movements of
a subject, the analysis of the pixel intensity changes yields a waveform indicating respiratory pattern.
The proposed system has been tested on 12 volunteers, both males and females seated in front of the
webcam, wearing both slim-fit and loose-fit t-shirts. The pressure-drop signal recorded at the level of
nostrils with a head-mounted wearable device was used as reference respiratory pattern. The two
methods have been compared in terms of mean of absolute error, standard error, and percentage error.
Additionally, a Bland–Altman plot was used to investigate the bias between methods. Results show
the ability of the system to record accurate values of respiratory rate, with both slim-fit and loose-fit
clothing. The measuring system shows better performance on females. Bland–Altman analysis
showed a bias of −0.01 breaths·min−1, with respiratory rate values between 10 and 43 breaths·min−1.
Promising performance has been found in the preliminary tests simulating tachypnea.

Keywords: measuring system; measurements; contactless; respiratory rate; breathing pattern

1. Introduction

Accurate measurement of vital signs and physiological parameters, such as body temperature,
pulse rate, blood pressure, and respiratory rate, plays a pivotal role in the healthcare sector and
management of patients. Among these, the respiratory rate ( fR) is still considered the neglected
vital sign in both the clinical practice and sports activity monitoring [1,2]. Temporal changes in the
respiratory rate may indicate relevant variations of the physiological status of the subject, even better
than other vital signs (e.g., pulse rate) [2] and it is found to be more discriminatory between stable and
unstable patients than pulse rate [1].

In a clinical setting, the respiratory rate is an early indicator of physiological deterioration [3]
and a predictor of potentially dangerous adverse events [1]. Indeed, respiratory rate is an important
predictor of cardiac arrest and of unplanned intensive care unit admission [1], as well as an independent
prognostic marker for risk assessment after acute myocardial infarction [4]. Besides, it is fundamental
in the early detection and diagnosis of dangerous conditions such as sleep apnea [5], sudden infant
death syndrome, chronic obstructive pulmonary disease, and respiratory depression in post-surgical
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patients [6]. In intensive care units, the respiratory waveform and fR are typically recorded.
In mechanically ventilated patients, such data can be obtained directly by the mechanical ventilator
traces [7] or retrieved by pulse oximetry sensors [8]. However, fR is typically collected at regular
interval by operators (i.e., every 8–10 h) in the clinical setting outside this ward, while is often neglected
in home monitored people and patient [1].

Conventional methods for measuring respiratory parameters require sensing elements in contact
with the patient [9]. These methods are mainly based on the analysis of several parameters sampled
from the inspiratory and/or expiratory flow. Differently, approaches based on the measurement
of respiratory-related chest and abdominal movements have been also adopted [10]. Sensors may
be directly attached on the torso [11] or integrated into clothing fibers. Several sensors have been
used as resistive sensors, capacitive sensors, inductive sensors. Such monitoring systems must be
worn and powered [11]. Additionally, they may cause undesirable skin irritation and discomfort,
especially when long-term monitoring is required or during sleep. Substantial evidence indicates all
these contact-based measurement techniques may influence the underlying physiological parameters
being measured [12].

Contactless monitoring systems may overcome these issues related to placing sensors on
patients and influence the measurand [13]. Mainly, solutions based on the analysis of depth
changes of the torso using time-of-flight sensors [14] during breathing, low-power ultra wideband
impulse radio radar [15,16], and laser Doppler vibrometers [17–19] have been designed and tested.
Principal limitations of such solutions are related to the high cost of the instrumentation, need for
specialized operators, and, in some cases, a low signal-to-noise ratio. Contactless monitoring systems
based on the use of optical sensors are gaining preeminence in the field of respiratory monitoring
mainly because of recent progress in video technology. Commercial and industrial cameras may be
exciting solutions as they provide low-cost and easy-to-use non-contact approaches for measuring and
monitoring physiological signals [4]. Some attempts have been made to record respiratory parameters
from breathing-related movements of thoraco-abdominal area, face area, area at the edge of the
shoulder, pit of the neck [20–25]. Then, different approaches have been also used to post-process the
video to extract the respiratory-related signal mainly based on image subtraction [26], optical flow
analysis [27], Eulerian Video Magnification [24] and Independent Component Analysis (ICA) applied
to pixel intensity changes [28]. By the review of the literature, there is a lack of results about accuracy
of such methods in the monitoring of eupneic respiratory pattern and fR monitoring, since the
majority of the cited studies present proof of concepts and preliminary tests, but accuracy evaluation
is not performed. When available, typically a frequency-domain analysis is carried out to extract
the frequency content of the respiratory-related video signal and to measure the average respiratory
rate. Since analysis with these techniques requires the recording of the torso movement, clothing can
influence the data quality and validity of the methods. However, no studies have focused on such
potential influences on respiratory pattern and fR measurement. Only a preliminary study of our
research group tried to investigate this influencing factor in [29].

In this paper, we present a measuring system capable of non-contact monitoring of respiratory
pattern by using RGB video signal acquired from a single built-in high-definition webcam. The aim of
this study is three-fold: (i) the development of the measuring system and the related algorithm for the
extraction of breath-by-breath fR values; (ii) the evaluation of the error between the breath-by-breath
fR values retrieved by using the proposed measuring system and those recorded with a reference
instrument; and (iii) the analysis of influence of clothing (i.e., slim-fit and loose-fit) and sex on the
performance of the proposed method.

2. Measuring System

The proposed measuring system is composed of a hardware module (i.e., a built-in webcam)
for video recording and an algorithm for (i) preprocessing of the video to obtain a respiratory signal,
and (ii) event detection, segmentation and extraction of breath-by-breath fR values. The working
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principle of the method used to extract respiratory information from a video is explained in the
following section.

2.1. Light Intensity Changes Caused by Respiration

Each video can be considered a series of f frames (i.e., polychromatic images), where f is the
number of the frames collected. Each frame is an image composed of three images in the red (R),
green (G) and blue (B) channels. Each image in the R, G and B channels is a matrix composed of
pixels. The size of the matrix (of dimensions x along the x-axis , and y along the y-axis) depends on
the resolution of the camera used for the data collection. Each pixel assumes a value representing the
color light intensity: the value 0 means black, whereas the maximum value is the white. The numerical
values of each pixel depend on the number of bytes used to represent a given R, G, B channel.
When considering commercial 8-bit/channel cameras (24-bit for RGB colors), the maximum value is 28

(i.e., 255 colors including zero).
When an object is recorded by a video, the pixel of each frame of the video assume

an intensity level caused by the light reflected from the object over a two-dimensional
grid of pixels. In the RGB color model separate intensity signals corresponding to each
channel—VR(x, y, f ),VG(x, y, f ),VB(x, y, f )—can be recorded at each frame f . The measured intensity
of any reflected light (V) can be decomposed into two components: (i) intensity of illumination (I),
and (ii) reflectance of the surface (R):

V(x, y, f ) = I(x, y, f ) · R(x, y, f ). (1)

The respiratory activity causes the periodic movement of the chest wall. During inspiration,
the ribcage widens: it results in an upward movement of the thorax; during expiration, the opposite
occurs. By considering the chest wall covered by clothing as the surface framed by the camera, and the
intensity of illumination almost constant, the changes of intensity of reflected light between two
consecutive frames can be considered caused by the movement of the chest surface. Breathing-related
chest movements are transmitted to the clothing (e.g., t-shirts, sweaters), so the subsequent changes of
V can be used to collect respiratory patterns and events indirectly. Loose- or slim-fit clothing differently
adhere to the skin. In the case of slim-fit clothing, we can hypothesize the complete transfer of chest
wall movement to the side of the t-shirt framed by the camera, whereas only a partial transfer in the
case of loose-fit clothing.

2.2. Hardware for Video Data Recording

The proposed system needs to collect a video of a person seated in front of the camera (Figure 1).
The hardware module consists of a built-in CCD RGB webcam (iSight camera) integrated into
a MacBook Pro laptop (by Apple Inc., California, USA). This camera is used to collect video with a
resolution of 1280·720 pixel. Video images are recorded at 24-bit RGB with three channels, 8 bits per
channel. A bespoke interface was developed in MATLAB (MathWorks, Massachusetts, USA) to record
the video and pre-process the data (i.e., images) collected with the camera. The video is collected for
120 s at a frame rate of 30 Hz, which is enough to register the breathing movements.

2.3. Algorithm for the Preprocessing of the Video

The preprocessing of the recorded video is performed off-line via a bespoke algorithm developed
in MATLAB, which is an upgraded version of the algorithm presented in our previous papers [29,30].
Several steps must be followed as shown in Figure 1.

Basically, after the video is loaded, the user (i.e., the one who is designated to analyze the data) is
asked to select one pixel (with coordinates xP, yP) at the level of the jugular notch (i.e., the anatomical
point near the suprasternal notch) in the first frame of the video. This anatomical marker has been
chosen because it is easily identifiable (see Figure 1).
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Figure 1. Flowchart presenting all the steps carried out to extract the respiratory pattern from video
recorded with the built-in camera (on the left) and from the pressure-drop signal collected at the level
of nostrils with the reference device (on the right). Region Of Interest (ROI) is the red rectangle; the
area recorded by the camera is highlighted with the blue rectangle, the black point is the pixel (with
coordinates xP, yP) at the level of the jugular notch.

Automatically a rectangular region of interest (in short ROI) is delineated, with dimensions
xROI × yROI :

xROI = [xP − 1
100 · 15 · x, xP + 1

100 · 15 · x],

yROI = [yP − 1
100 · 15 · y, yP + 1

100 · 15 · y],
(2)

where x and y are the x-axis and y-axis frame dimensions (related to camera resolution), respectively.
The selected ROI is then split into three same-size images corresponding to the red, green, and

blue channels. At each frame f , the intensity components of each channel I(x, y, c, f ) are obtained,
where c is the color channel (i.e., red (R), green (G), and blue (B)). Then, the intensity components are
averaged for each line y of the ROI according to Equation (3):

v(y, f ) =
1

xROI
·

xROI

∑
x=1

( ∑
c=R,G,B

I(x, y, c, f )), (3)

where y ∈ yROI .
From each v(y, f ), the mean of the signal is removed from the signal itself (i.e., the signal is

detrended). The standard deviation of each v(y, f ) signal is then calculated. The 5% of the v(y, f ) with
the higher standard deviations are selected. The 5% value was selected with an empirical approach
using data from previous experiments carried out on volunteers aimed at calibrating the algorithm.
The 5% of the v(y, f ) are used to calculate the mean value considering the selected lines at each
frame. The v( f ) signal is obtained with this procedure. At that point, filters were applied to the v( f )
signal. For filtering the signal and to emphasize the respiratory content, adequate cut-off frequencies
and bandwidth need to be defined. A bandpass configuration was chosen, by fixing the low cut-off
frequency around 0.05 Hz, to avoid the slow signal variations unrelated to respiratory movements and
a high cut-off frequency around 2 Hz. In this way, the changes generated by the respiratory movements
recorded to the webcam sensor can be adequately isolated and relayed to the subsequent elaboration
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stages. A third order Butterworth digital filter was employed. Finally, the v( f ) signal is normalized to
obtain v̂( f ) as reported in the following Equation (4):

v̂( f ) =
v( f )− μ(v( f ))

σ(v( f ))
(4)

where μ(v( f )) and σ(v( f )) are the mean and standard deviation of signal v( f ), respectively.
The signal v̂( f ) is used for extracting respiratory temporal information (i.e., period duration—TR and

respiratory rate— fR) since v̂( f ) would be proportional to the changes in the intensity component, and thus
to the underlying respiratory signal of interest (Figure 2). A window of 60 s is shown in Figure 2B. In this
figure the apnea phase of about 5 s used for synchronizing reference signal and video-derived signal in the
experimental trials is not shown (see Section 3.1).
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Figure 2. (A) ΔP signal recorded by the reference instrument at the level of the nostrils. In grey,
the signal collected during the inspiration (positive pressure), while in green, the signal recorded
during the expiration (negative pressure). (B) Reference respiratory pattern signal (r̂(t)) obtained from
data processing of ΔP signal. (C) Respiratory pattern signal obtained from the proposed measuring
system (v̂( f )). Figure in (B) and (C) show similar patterns: during the inspiratory phase the signal
increases, while during the expiratory phase they decrease. The duration of one breath (TR(i)) is shown
on both the r̂(t) and v̂( f ) signals.

3. Tests and Experimental Trials

3.1. Participants and Tests

In this study, we enrolled 12 participants (6 males and 6 females) with a mean age 24 ± 4 years
old, mean height of 165 ± 15 cm, mean body mass of 60 ± 10 kg). All the participants provided
informed consent. We have created a data set for evaluation of the proposed system. We aim to cover
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normal breathing (i.e., respiratory frequency in the range 8–25 breaths·min−1), abnormal breathing
(i.e., tachypnea) and apnea stages.

Each participant was invited to sit on a chair in front of the web camera at a distance of about
1.2 m. The user adjusted the screen of the laptop in order to record the trunk area (as shown in Figure 1).
All the experiments were carried out indoor (in a laboratory room) and with a stable amount of light
delivered by neon lights and three windows as sources of illumination. The participants’ shoulders
were turned towards the furnishings of the room. The windows were lateral to the scene recorded by
the camera. Other people were in the room during the data collection but not allowed to pass near the
shooting area.

Participants were asked to keep still and seated, and to breathe spontaneously by facing the
webcam. Each volunteer was called to breathe quietly for around 5 s, simulate an apnea of duration
<10 s, and then to breathe quietly at self-paced fR for all the duration of the trial (120 s). Each volunteer
carried out two trials with the same experimental design: in the first trial, the participant wore a loose-fit
t-shirt; in the second trials, a slim-fit t-shirt. Two volunteers were also invited to simulate abnormal
breathing (i.e., tachypnea) that is characterized by high fR values (>35 bpm).

At the same time, respiratory pattern was recorded with a reference instrument described in the
following Section 3.2.

3.2. Reference Instrument and Signal

For registering reference pattern, a head-mounted wearable device was used. We already used
this system in a similar scenario [31]. This device is based on the recording of the pressure-drop (ΔP)
that occurs during the expiratory/inspiratory phases of respiration at the level of nostrils. The device
consists of a cannula attached to the jaw with tape: one piece of tape at the end of the nostrils in order
to collect part of the nasal flow while the other tap is connected to a static tap of a differential digital
pressure sensor (i.e., Sensirion—model SDP610, pressure range up to ±125 Pa). The pressure data were
recorded with a dedicated printed circuit board described in [31], at 100 Hz of sample rate. Data were
sent to a remote laptop via a wireless connection and archived.

Negative pressure was collected during the expiratory phase and positive pressure during the
inspiratory phase, as can be seen in Figure 2A. Then, a temporal standard cumulative trapezoidal
numerical integration of the ΔP signal was carried out to obtain a smooth respiratory signal for further
analysis (r(t)) and to emphasize the maximum and minimum peaks. Afterward, such integrated r(t)
has been filtered using a bandpass Butterworth filter in the frequency range 0.05–2 Hz and normalized
as in Equation (4) and r̂(t) has been obtained. This r̂(t) is the reference respiratory pattern signal,
then used to extract breath-by-breath fR reference values (i.e., fR(i)).

As shown in Figure 2B, one breath is the portion of the signal between the starting point of the
inspiration and the end of the following expiration. During the inspiratory phase, the ΔP signal
pass from 0 to positive values (grey area in Figure 2A), and r(t) is an increasing signal. During the
expiratory phase, the opposite situation: ΔP signal passes from 0 to negative values (green area in
Figure 2A), and r̂(t) is a decreasing signal.

3.3. Respiratory Rate Calculation

The breathing rate can be extracted from both the reference signal r̂(t) and v̂( f ) either in the
frequency or time domains [21,32]. The analysis in the time domain requires the identification
of specific points on the signal. Mainly, two different approaches may be used: (i) based on the
identification of the maximum and minimum points; or (ii) the zero-crossing point individuation on
the signals. In this work, we used a zero-crossing-based algorithm. We used the same algorithm for
the event detection on both the reference signal r̂(t) and v̂( f ). The algorithm provides the detection of
the zero-crossing points on the signal based on signum function. It allows determining the onset of
each respiratory cycle, characterized by a positive going zero-crossing value. The signum function of
a real number x is defined as in the following Equation (5):
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sgn(x) :

⎧⎪⎪⎨
⎪⎪⎩
−1 if xi < 0,

0 if xi = 0,

1 if xi > 0,

(5)

where xi is the value x of the signal for frame index i corresponding to the onset of a respiratory cycle.
Then, the algorithm provides the location of local minimum points on the signal and their indices
between respiratory cycle onsets determined in the first step.

The duration of each i-th breath—TR(i)—is then calculated as the time elapsed between two
consecutive minima points (expressed in s). Consequently, the i-th breath-by-breath breathing rate
fR(i), expressed in breaths per minute (bpm), is calculated as in Equation (6):

fR(i) =
60

TR(i)
. (6)

3.4. Data Analysis

We recorded the breath-by-breath respiratory rate with our system and the reference instrument
and evaluated the discrepancies coming from their comparison. Signals obtained from the measuring
system have been compared to the reference signals. Firstly the r̂(t) and v̂( f ) were synchronized to be
directly compared. We used the apnea stage to detect a common event on both signals. All the analysis
were carried out on both the r̂(t) and v̂( f ) that occur after the first end expiratory point after the apnea
stage. The breath-by-breath fR values have been compared between instruments by extracting such
values with the time-domain analysis from r̂(t) (i.e., fR(i)) and v̂( f ) (i.e., f̂R(i)).

To compare the values gathered by the reference instrument and computed by the video-based
method, we use the mean absolute error (MAE) as in Equation (7):

MAE =
1
n
·

n

∑
i=1

| f̂R(i)− fR(i)|, (7)

where n is the number of breaths recognized by the algorithm for each subject in the trial.
Then, the standard error of the mean (SE) is calculated as in Equation (8):

SE =
SD√

n
, (8)

where SD is the standard deviation of the absolute difference between estimations and reference data
f̂R(i)− fR(i). Standard error was used to provide a simple estimation of uncertainty.

Lastly, the percentage difference between instruments was calculated as in Equation (9),
per each volunteer:

%E =
1
n
· ∑

n

f̂R(i)− fR(i)
fR(i)

· 100. (9)

Additionally, we used the Bland–Altman analysis to investigate the agreement between the
proposed method and the reference, in the whole range of fR measurement. With this graphical
method we investigated if the differences between the two techniques against the averages of the two
techniques presented a tendency at the different fR collected during the trials. The Bland–Altman
analysis was used to obtain the mean of the Differences (MOD) and the limits of Agreements (LOAs)
values [33] that are typically reported in other studies and extremely useful when comparing our
results with the relevant scientific literature [2].

To fulfill the scope of this paper we carried out three separate analyses using these metrics for
comparisons. Firstly, we used the data collected with slim-fit and loose-fit clothing to investigate the
influence of clothing on the performance of the proposed method, using both male and female data.

71



Sensors 2019, 19, 2758

Then, we separately use the data collected from male and from female to investigate the influence
of sex on performance. Lastly, the overall performance of the proposed measuring system has been
tested considering all the breath-by-breath fR (n = 411). Preliminary tests have been also done using
data collected from two volunteers during tachypnea.

4. Experimental Results

The detection of apnea stages used for synchronizing the signals on r̂(t) and v̂( f ) was always
possible. Therefore, no trials were excluded from the analysis. During the apnea, the signal collected
by the reference instrument is a constant and null ΔP; constant signals were also found in v̂( f ).

Table 1 summaries the number of breaths, average f̂R and fR values, MAE, SE and %E for each
subject, at the two t-shirt fittings. MAE value was always lower than 0.78 bpm, while standard error
was <0.24 bpm in all the volunteers. %E values were both negative and positive: the maximum
value was 0.62%. The performance of the proposed method in the measurement of breath-by-breath
respiratory frequencies can be appreciated in Figure 3.
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Figure 3. Breath-by-breath values of the respiratory rate collected by the reference system (blue dots
and lines) and by the proposed measuring system (orange dots and lines). Data from male (i.e., M1, M2,
M3, M4, M5, M6) and female (F1, F2, F3, F4, F5, F6) volunteers wearing slim-fit and loose-fit clothing
are reported. Details about MAE, SE and %E values per each volunteer with slim-fit and loose-fit
clothing are reported in Table 1. .

4.1. Influence of Clothing Type

The influence of clothing was investigated by analyzing the difference (i.e., f̂R(i) − fR(i))
distribution considering all the data obtained from male and female together. Since the sample
size and bin width of the histograms are different between slim-fit (n = 211) and loose-fit (n = 203) data,
it is difficult to compare them. So, we normalize the histograms so that all the bar heights add to 1, and
we use a uniform bin width (0.1 bpm). With the slim-fit clothing, the 28% of the differences between
the two instruments were in the range ±0.1 bpm (94% of data in the range ±1 bpm), while with the
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loose-fit clothing only 19% of data (94% of data in the range ±1 bpm). For details refers to Figure 4A.
The Bland–Altman showed a bias of −0.02 ± 1.07 bpm and 0.01 ± 0.98 bpm in the case of loose-fit and
slim-fit clothing, respectively. From the Bland–Altman plot, neither proportional error nor magnitude
of measurements dependence were found.

Table 1. Breath-by-breath analysis: average f̂R, average fR, mae, se and %e values per each volunteer
at the different t-shirt fitting. MAE: Mean Absolute Error ; SE: Standard Error of the mean.

Vol. T-Shirt # f̂R fR MAE SE %E

Fitting Breaths [bpm] [bpm] [bpm] [bpm] [%]

M1 slim 24 22.29 22.28 0.76 0.18 −0.52

loose 16 15.33 15.31 0.27 0.05 0.18

M2 slim 17 13.90 13.86 0.58 0.09 0.46

loose 26 22.48 22.39 0.14 0.02 0.28

M3 slim 23 22.21 22.18 0.27 0.04 0.14

loose 27 22.55 22.55 0.35 0.0 0.04

M4 slim 12 17.53 17.55 0.32 0.09 0.19

loose 13 18.57 18.52 0.33 0.09 −0.16

M5 slim 26 22.32 22.46 0.65 0.13 −0.52

loose 16 14.51 14.60 0.43 0.08 −0.62

M6 slim 14 12.49 12.51 0.78 0.14 0.21

loose 13 13.82 13.92 0.60 0.24 −0.10

F1 slim 23 20.62 20.67 0.24 0.04 −0.13

loose 22 15.61 15.57 0.23 0.03 0.26

F2 slim 20 15.08 15.07 0.27 0.04 0.14

loose 16 13.14 13.07 0.60 0.10 0.55

F3 slim 16 12.27 12.30 0.11 0.02 −0.15

loose 19 15.08 15.06 0.25 0.04 0.18

F4 slim 17 16.96 16.95 0.11 0.02 0.07

loose 15 14.85 14.78 0.37 0.10 0.53

F5 slim 12 11.83 11.78 0.35 0.07 0.50

loose 13 12.50 12.55 0.36 0.04 −0.32

F6 slim 8 13.16 13.14 0.23 0.08 0.17

loose 7 12.71 12.69 0.23 0.07 0.16

Overall - 414 - - 0.39 0.02 0.07

-4 -2 0 2 4
0

0.05

0.1

0.15
male
female
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0
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Figure 4. Difference distribution: (A) influence of clothing type (i.e., slim-fit vs loose-fit); (B) influence
of sex (i.e., male vs female).
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4.2. Influence of Sex

The influence of sex on the performance of the measuring system was investigated by analyzing
the difference ( f̂R(i)− fR(i)) distribution considering all the data obtained from data collection carried
out with slim-fit and loose-fit clothing. Normalized histograms with uniform bin widths (0.1 bpm)
were used since the difference sample size between male data (n = 226) and female data (n = 188). In the
male group, 21% of data show difference between instrument in the range ±0.1 bpm (90% of data in
the range ±1 bpm), while in the female group was 27% of the data (98% of data in the range ±1 bpm).
Figure 4B shows the two distributions. The Bland–Altman analysis revealed a bias of 0.01 ± 1.22 bpm
(see Figure 5C) and −0.01 ± 0.73 bpm (see Figure 5D) for male and female volunteers, respectively.
All the fR values recorded by the male volunteers are between 10 and 30 bpm (mean 19.14 bpm,
SD 4.55 bpm). In female volunteers, five fR values over 25 bpm can be observed in Figure 5D, while 96%
of the data are in the range of 10–20 bpm (mean 14.99 bpm, SD 4.47). Bland–Altman analysis shows
the absence of proportional error and magnitude of measurements dependence.

4.3. Overall Performance

All the fR(i) extracted from r̂(t) and v̂( f ) per each subject with slim-fit and loose-fit clothing are
presented in Figure 3. Data extracted from signal collected with the proposed measuring system follow
the data extracted from reference signal in each subject, both a low fR and high fR. Similar variations
in fR estimates can be clearly observed in that figure.

Figure 5A shows the difference distribution of all the 414 breaths collected: the 24% of the
differences are in the interval of ±0.1 bpm, and only 6% of data shows differences higher than ±1 bpm.
Bland–Altman analysis (Figure 5B) demonstrates a bias with a MOD close to 0 (i.e., −0.01 bpm) and
LOAs of 1.02 bpm. Bland–Altman analysis allows us to assess the absence of proportional error and
magnitude of measurements dependence.

4.4. Preliminary Results during Tachypnea

The proposed measuring system has also been preliminarily tested on two subjects during
tachypnea. Figure 6 reports two examples of 30 s data collection on two volunteers. By applying the
algorithm for the fR calculation, we found a MAE of 1.05 bpm, a SE 0.13 bpm and a %E of −0.24% for
the first volunteer; second volunteer data show a MAE of 0.48 bpm, SE of 0.08 bpm and %E of 0.04%.
Due to the small sample size, Bland–Altman was not used to summarize bias between methods.
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Figure 5. (A) Difference distribution between proposed method and reference respiratory rate
values; (B) Bland–Altman plot obtained considering all the data recorded by male and female
volunteers: black line is the MOD, red lines are the LOAs (i.e., ±1.96 times the standard deviation);
(C,B) Bland–Altman plot obtained considering data recorded by male volunteers; (D) Bland–Altman
plot obtained considering data recorded by female volunteers.
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Figure 6. Two patterns collected from two volunteers simulating tachypnea. In blue, the reference
signal r̂(t), in orange the v̂( f ) signal. In the first volunteer (graphs A), the average f̂R is 39.14 bpm
while the average fR is 39.34 bpm. In the second volunteer (graphs B), the average f̂R is 46.44 bpm
while the average fR is 46.28 bpm.

5. Discussion

In this paper, a single built-in camera system is proposed for the extraction of the respiratory
pattern and the estimation of breath-by-breath fR. The built-in camera of a commercial laptop allows
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the non-intrusive, ecological, and low-cost recording of chest wall movement. The algorithm for the
processing of images allows (i) the chest wall video recording at sufficient frame rate (i.e., 30 Hz),
(ii) the selection of a pixel for further semi-automatic selection of a ROI for the measurement of the pixel
intensity change, in order to extract video-based respiratory pattern v̂( f ), and (iii) the post-processing
of the v̂( f ) signal to estimate breath-by-breath fR values. The proposed system has been tested on
healthy participants. Tests were carried out on male and female participants wearing both slim-fit and
loose-fit t-shirts to simulate real respiratory monitoring conditions (e.g., a subject at home, patient in
a medical room, etc.). In the literature, rarely authors take into account the influence of sex and
clothing when camera-based methods are used. Additionally, in this paper, we used an unobtrusive
head-mounted wearable as reference instrument to not compromise the area recorded by the camera.

Signals obtained with the proposed method allow clear identification of the apnea stages,
breathing pattern at quiet pace and during tachypnea in all the trials. Considering the breath-by-breath
fR(i) values, we obtained comparable MAE and SE values in the two groups (slim-fit vs. loose-fit).
From the analysis of the bias revealed by the Bland–Altman plots, we found slightly better results
with volunteers wearing slim-fit clothing (LOAs of ±0.98 bpm against ±1.07 bpm with loose-fit
clothing). These results confirm those obtained in [29]. Considering the sex, results demonstrated good
performance with both males and females with slightly lower bias in females (−0.01 ± 0.73 bpm) than
in males (0.01 ± 1.22 bpm). By considering all 414 breaths, the Bland–Altman analysis demonstrates
a bias of −0.01 ± 1.02 bpm of the proposed method when compared to the fR values gathered by the
reference instrument. The method proposed in [20] achieves bias of −0.32±1.61 bpm when tested in
similar setting and participants. Then, the bias we found is comparable with the one reported in [34]
(i.e., −0.02 ± 0.83 bpm) where the pseudo-Wigner–Villetime frequency analysis was used (with a
fR resolution of 0.7324 bpm). The performances we obtained are better than those obtained in [35]
where the average fR were considered (bias of 0.37 ± 1.04 bpm), and advanced signal and video
processing techniques, including developing video magnification, complete ensemble empirical mode
decomposition with adaptive noise, and canonical correlation analysis were used in the post-processing
phase. When compared to depth sensors used on participant in supine position [16], our method
demonstrates comparable results with simplicity and cost (∼0.01 ± 0.96 bpm in [16]). Despite the
absence of contact with the subject, the proposed method shows overall performance similar to those
obtained with wearable device for fR monitoring requiring direct contact with the torso (e.g., garment
with optical fibers showed bias of −0.02 ± 2.04 bpm in [36], during quiet breathing). In contrast to
other research studies, we did not use a background behind the user to test the system in conditions
resembling real application scenarios. Further tests might be focused on extracting respiratory volumes
by using a more structured environment during video collection as in [37].

One of the main limitations of this study is the limited number of subjects included in the analysis.
For this reason, we did not perform any statistical analysis because population size does not allow any
statistically significative conclusions. Additionally, we tested the proposed method at one distance
between camera and subject (i.e., 1.2 m).

Further effort will be mainly devoted to addressing these points. Tests will be carried out to
investigate the performance of the system in different scenarios at different subject–camera relative
distances, and on many subjects. Furthermore, performance of the method will be tested in a
wide range of atypical respiratory pattern (i.e., tachypnea, deep breaths, Cheyne-Stokes) and in
extracting additional respiratory parameters (e.g., duration of expiratory and inspiratory parameters,
inter-breathing variations). We are already testing the validity of additional techniques based on pixel
flow analysis to remove unrelated breathing movements. Additionally, we are working on feature
selection approaches to use the proposed method for respiratory monitoring when small movements
of the user happen. We hope to use the proposed measuring system for respiratory monitoring even
with undesired subject’ motion, also by implementing a fully automatic process to detect ROI from
video frames. These steps will allow automatic and long-term data collection.
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Abstract: In precision sports, the control of breathing and heart rate is crucial to help the body to
remain stable in the shooting position. To improve stability, archers try to adopt similar breathing
patterns and to have a low heartbeat during each shot. We proposed an easy-to-use and unobtrusive
smart textile (ST) which is able to detect chest wall excursions due to breathing and heart beating.
The sensing part is based on two FBGs housed into a soft polymer matrix to optimize the adherence
to the chest wall and the system robustness. The ST was assessed on volunteers to figure out its
performance in the estimation of respiratory frequency (fR) and heart rate (HR). Then, the system was
tested on two archers during four shooting sessions. This is the first study to monitor cardio-respiratory
activity on archers during shooting. The good performance of the ST is supported by the low mean
absolute percentage error for fR and HR estimation (≤1.97% and ≤5.74%, respectively), calculated
with respect to reference signals (flow sensor for fR, photopletismography sensor for HR). Moreover,
results showed the capability of the ST to estimate fR and HR during different phases of shooting
action. The promising results motivate future investigations to speculate about the influence of fR

and HR on archers’ performance.

Keywords: fiber Bragg gratings; smart textiles; wearable systems; cardiac monitoring; respiratory
monitoring; precision sports; archery

1. Introduction

Archery is a precision sport which requires consistency and stability of movements [1]. A mismatch
of physical, physiological, and psychophysical factors can influence athletic performance and deteriorate
archers’ accuracy and precision [2–5].

In precision sports, both breathing and heart rate (HR) influence the athlete’s performance [5–7].
The control of such physiological activities facilitates the performance of repetitive shots in the same,
stable posture [8]. Lakie et al. demonstrated that high values of HR can cause sway movements,
tremor, and shaking of the body when aiming at the target [8]. Mohammed et al. showed that HR
variations affect breathing capacity, thus inconsistent breathing patterns can also impose a negative
effect on the heart rate, and in general on the athlete’s performance [9].
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In archery, the shooting action can be separated into three main phases: set-up, aiming, and release.
During the set-up phase, shoulders are brought in line with the target, hips are rotated forward, and the
hand position on the bow grip is set-up. During the aiming phase, the focus is completely diverted to
the target and the alignment of bow-sight-target is performed. The shooting of the arrow takes place in
the release phase. It is highly recommended that archers start to inhale during the set-up phase of
shooting, and to either exhale or hold their breath during the aiming phase. This allows for reducing
the level of body rigidity and, simultaneously, preparing the body for the release phase [5,10].

As a result of training, master marksmen know exactly how to time the release of the arrow with
the pattern of their breathing and cardiac cycle, thus minimizing the body jerk caused by the breathing
process and the heart contraction [11]. Expert athletes experience similar breathing patterns and low
HR values during each shot. On the contrary, unskilled archers hold their breath for longer during
the aiming phase. The forced breathing process often leads to sway movements due to muscular
contraction and an increase of ventricular depolarization, compromising body stability during the
aiming phase [12–14]. Thus, comprehensive monitoring of breathing and heart beating during the
shooting phases can improve the scheduling of exercises and optimize the training strategies [9].

Breathing and cardiac activities can be monitored by several solutions [15,16]. Among them,
smart textiles based on fiber Bragg grating sensors (FBGs) have gained broad interest to monitor the
mentioned vital signs in an unobtrusive and comfortable way [17,18]. FBGs can be easily incorporated
into textiles thanks to their small size and lightweight. In addition, the high sensitivity and adequate
bandwidth make these sensors an optimal solution for such an application. Some potential drawbacks
may include the difficulty to handle bare optical fibers, their tiny resistance to mechanical stress, and the
requirement to be connected to an optical spectrum interrogator. The encapsulation of FBGs into soft
and flexible polymer matrices allows for mitigating the mentioned limits [19–21]. This solution makes
easy to handle the fiber and improve the contact compliance with the body, leading to more accurate
measurement of parameters from the chest surface movements. At the same time, recent progress
towards the development of miniature FBG interrogation systems may broaden the application of
FBGs for continuous and remote monitoring [22].

The aim of the present study is the feasibility assessment of a custom ST based on flexible FBG
sensors for cardio-respiratory monitoring in archery. The proposed system was assessed on volunteers
during quiet breathing and apnea, as well as on archers during shooting sessions.

2. Principle of Work of the Custom Smart Textile

Two flexible sensors were used to develop a ST consisting of two elastic bands
(600 mm × 40 mm × 2.1 mm, 10 kgf of maximum load and 100% of polyamide) worn around the
thorax and the abdomen, respectively. The fit of each band was adjusted by VELCRO® fastener to
put the two FBGs in contact to the chest in correspondence of the xiphoid process and the umbilicus.
The use of anatomical landmarks allows the FBGs to be worn on the same measurement points.
Each sensor consists of an FBG (Bragg wavelengths λB of 1541 nm and 1545 nm for the band around
the thorax and the abdomen, grating length of 10 mm and reflectivity of 90%; At Grating Technologies),
previously housed in a flexible polymer packaging (90 mm × 24 mm × 1 mm) made of Dragon Skin®

20 (Smooth-On, Inc. USA) as shown in Figure 1. A detailed description of the manufacturing process
and of the sensors’ metrological properties are reported in [19].

FBGs work as stop band filters of wavelength because they back-reflect a small portion of light
traveling along the fiber at a specific wavelength (i.e., λB). The FBG working principle is well described
by the following equation:

λB = 2 · ηe f f ·Λ (1)

where ηeff, is the effective refractive index of the fiber core and Λ, the grating period. The dependence
of ηeff and Λ from temperature and strain makes FBGs an optimal solution for the development of
measurement systems able to sense these two parameters [23].
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Figure 1. Schematic representation of the sensing element and the smart textile with typical FBG output
changes induced by breathing and heart beating.

Regarding the application of interest, breathing and heart beating cause periodic displacements of
the chest and, in turn, stretch the flexible sensors embedded in the ST, as schematically reported in
Figure 1.

3. Feasibility Assessment of the Smart Textile on Healthy Volunteers

3.1. Population and Experimental Protocol

The ST for cardio-respiratory monitoring was assessed on nine healthy volunteers (four males
and five females) whose age and anthropometric characteristics are shown in Table 1.

Table 1. Population.

Volunteer Age (years) Height (cm) Weight (kg) CT
1 (cm) CA

1 (cm)

1 28 182 70 82 74
2 22 168 74 60 80
3 30 163 81 62 84
4 29 180 82 69 91
5 26 153 69 48 71
6 22 166 67 58 76
7 27 173 82 71 90
8 25 160 74 60 78
9 22 172 67 55 72

1 CT: thoracic circumference; CA: abdominal circumference.

Each participant was asked to perform a protocol consisting of three main phases: i) a short apnea
useful to synchronize the reference instruments (i.e., flowmeter for fR, photopletismography sensor
-PPG- for HR) and the FBG outputs; ii) 16 quiet breaths; iii) a final apnea as long as each volunteer can.
The study was approved by the local ethical committee (protocol number 27/18).

3.2. Experimental Set-Up

The vital signs under investigation were monitored by the ST. The flexible sensors were positioned
corresponding to the xiphoid process and the umbilicus (see Figure 2). Each FBG embedded into ST
(FBGT for the band around the thorax and FBGA for the band around the abdomen, a box in Figure 2)
was connected to an optical spectrum interrogator (si425, Micro Optics Inc., b box) which worked
at the sampling frequency of 250 Hz. The reference signal for the respiratory activity was collected
by a commercial flow sensor (SpiroQuant P, EnviteC, Alter Holzhafen, Wismar, Germany, c box in
Figure 2) connected to a differential pressure sensor (163PC01D75, Honeywell, Minneapolis, MN,
USA). The output of reference system used for the respiratory monitoring was collected by using a
DAQ (NI USB-6009, National Instrument, Rockville, MD, USA, d box in Figure 2) and a custom virtual
instrument developed in LabVIEW®environment, at the sampling frequency of 250 Hz. The reference
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system for the cardiac monitoring was a photopletismography sensor (e box in Figure 2), placed on the
index fingertip of the left hand, as in [24]. The PPG sensor was input into two other analogue ports of
the same DAQ used for the respiratory monitoring and collected at the sampling frequency of 250 Hz.

Figure 2. Experimental set-up: (a) smart textile consisting of two elastic bands instrumented by flexible
FBGs, (b) FBG interrogator, (c) flow sensor, (d) DAQ, and (e) PPG sensor.

3.3. Data Analysis and Results

This paragraph will be grouped into two subsections according to the stages of the protocol (i.e.,
quiet breathing and apnea). Each subsection describes the data analysis performed to estimate fR

(during quiet breathing) and HR (during apnea), and the obtained results.

3.3.1. Respiratory Frequency Estimation During Quiet Breathing

For each volunteer, data were processed following four main steps: i) the outputs of the FBGs and
the flow sensor were synchronized by selecting the first minimum points (i.e., starting points) after the
starting apnea (see Figure 3); ii) the quiet breathing stage was selected by cutting all the synchronized
signals from the mentioned starting points and considering all the 16 breaths performed during the
protocol (see Figure 3); iii) a filtering stage consisting of a second order pass-band filter (lower cut-off
frequency of 0.05 Hz and higher cut-off frequency of 0.5 Hz) was applied on both FBGs and flow sensor
outputs; iv) a custom algorithm was used to select the maximum peaks of each signal (see Figure 4).

The respiratory periods (i.e., TR
A and TR

T for the band around the abdomen and the thorax,
respectively, and TR

FLOW for the flow sensor) were calculated as the time interval between two
consecutive maximum peaks. Then, the fR values estimated by both the FBGs (i.e., fR

A and fR
T) and the

flow sensor (i.e., fR
FLOW) were calculated as the ratio between 60 and the related respiratory periods in

order to express fR in acts per minute (i.e., apm).
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starting points

Figure 3. Outputs of the FBGs embedded into the smart textile and of the flow sensor on a whole
experiment performed by a volunteer: (A) output changes of FBGA, placed in correspondence of the
umbilicus; (B) output changes of FBGT, placed in correspondence of xiphoid process; (C) output of the
flow sensor.

 
Figure 4. Outputs of the FBGs embedded into the smart textile and of the flow sensor during quiet
breathing: (A) filtered output changes of FBGA; (B) filtered output changes of FBGT; (C) filtered output
changes of the flow sensor. The respiratory periods for the band around the abdomen (i.e., TR

A),
around the thorax (i.e., TR

T), and for the flow sensor (i.e., TR
FLOW) were also reported.

The ST was assessed in terms of both breath-by-breath and mean fR values. The Bland-Altman
analysis was performed to describe the agreement between fR values estimated by the proposed system
and the reference one [25]. This analysis considered all the fR values of the enrolled volunteers (i.e.,
a total of 135 fR values for each Bland-Altman analyses) for the calculation of the mean of difference
(MOD) and the limits of agreement (LOA+ =MOD + 1.96·SD and LOA− =MOD − 1.96·SD, where SD
is the standard deviation of the differences between the data collected by the proposed system and the
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reference one). The mentioned analysis was performed considering data provided by each flexible
sensor. The mean absolute percentage error in the fR estimation (i.e., MAPEfR) was used to compare
mean fR values and was calculated as:

MAPE fR =
1
n
·
∑ ∣∣∣ fRsmart_textile − fRre f erence

∣∣∣
fRre f erence

·100 (2)

where fRsmart_textile and fRre f erence denote the values of the fR obtained by the proposed system and the
reference one, respectively.

Results of the breath-by-breath analysis are shown in Figure 5 and in Table 2. The good agreement
between the fR values measured by the proposed system and the reference one is confirmed by the
high value of the correlation coefficient (R2) for both FBGT and FBGA and by the low value of both
MOD and MAPEfR.

Figure 5. Breath-by-breath analysis: (A) and (B) Bland-Altman plots using the FBGs placed on the
umbilicus, FBGA and xiphoid process, FBGT, (C) and (D) linear regression of the results obtained by
the FBGs placed on the umbilicus -FBGA- and xiphoid process -FBGT- vs. the reference system.
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Table 2. Performance of the smart textile in respiratory monitoring: results of Bland-Altman analysis,
linear regression and MAPEfR.

R2 MOD (apm) LOAs (apm) MAPEfR (%)

fR
T 0.99 0.014 −0.804; 0.832 1.92

fR
A 0.98 0.004 −0.811; 0.819 1.97

3.3.2. Heart Rate Estimation During the Apnea.

The HR estimation during the apnea was performed according to the following four main phases:
i) for each trial, the first minimum points after the holding of breath were selected on the FBGs output
to define the starting point of the apnea stage for the FBGs and the PPG sensors; ii) the same time
interval (i.e., 10 s) was chosen to estimate HR of all the volunteers during the apnea (see Figure 6);
iii) a fourth-order Butterworth pass-band filter with a lower cut-off frequency of 0.6 Hz and a higher
cut-off frequency of 20 Hz was applied on the signals. This band of frequency was chosen according to
the frequency components of vibrations induced on the chest wall by the blood flow ejection into the
vascular bed [26]; iv) a custom algorithm was used to select minimum peaks (blue markers in Figure 7)
on each filtered FBG signal. The beat-by-beat cardiac period (TC) from the FBG outputs was calculated
considering the minimum peaks, as the time elapsed between two consecutive minimum peaks (TC

T

and TC
A from the band around the thorax and the abdomen, respectively). Minimum peaks were

chosen because they are easier to detect on the filtered FBG signals, automatically. Beat-by-beat cardiac
periods were calculated considering the time interval between two consecutive maximum peaks on
the filtered PPG signal (TC

PPG). The HR values (i.e., HRA, HRT, and HRPPG) were calculated as the
ratio between 60 and TC

T, TC
A, and TC

PPG, in this way HR is expressed in bpm.

Figure 6. (A) Starting points selected on the synchronized signals and (B) zoom of the 10 s-window of
apnea considering the outputs of FBGA, FBGT, and PPG.

The ST capability of monitoring HR was assessed in terms of beat-by-beat and mean HR values.
The Bland-Altman analysis was performed by comparing HR values estimated by the proposed system
and the reference one, considering all the volunteers for a total number of 149 beats. The mean absolute
percentage error (i.e., MAPEHR) was also calculated as follows:

MAPEHR =
1
n
·
∑ ∣∣∣HRsmart_textile −HRre f erence

∣∣∣
HRre f erence

·100 (3)

where HRsmart_textile and HRre f erence, values estimated by the smart textile and the PPG sensors,
respectively. Results of the beat-by-beat analysis are shown in Figure 8 and Table 3. The good
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agreement between the fR values measured by the proposed system and the reference one is confirmed
by the high value of the R2 for both FBGT and FBGA and by the low value of both MOD and MAPEHR.

Figure 7. Peaks detection on the filtered signal: (A) filtered output changes of FBGA, (B) filtered output
changes of FBGT, and (C) filtered output changes of PPG sensor. The cardiac periods for the band
around the abdomen (i.e., TC

A), around the thorax (i.e., TC
T), and for the flow sensor (i.e., TC

PPG) were
also reported.

Figure 8. (A) and (B) Bland-Altman plots using FBGA and FBGT, (C) and (D) linear regression of the
results obtained by FBGA and FBGT vs. the reference system.
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Table 3. Bland-Altman of beat-by-beat analysis.

R2 MOD (bpm) LOAs (bpm) MAPEHR (%)

HRA 0.76 0.059 −22.54; +22.65 5.74
HRT 0.91 0.664 −11.15; +12.48 3.92

4. Tests on Archers During Shooting Sessions

4.1. Population and Experimental Protocol

The ST was tested on two archers (a male and a female). Their characteristics are listed in Table 4.

Table 4. Archers’ characteristics.

Age
(years)

Height
(cm)

Weight
(kg)

CT

(cm)
CA

(cm)
Experience

(years)
Training Frequency

(days per week)

Archer 1 20 167 65 97 80 3 3
Archer 2 33 165 64 75 60 2 6

1 CT: thoracic circumference; CA: abdominal circumference.

Archers were invited to perform two shooting sessions. Each session consists of six arrows to be
shot in five minutes at designed 70 m targets. The first session is a practice round. In this round the
arrows are shot at the beginning and do not count as part of the score. Instead, the second one is a
scoring round with an awardable maximum score of 60 points (10 points per arrow).

4.2. Experimental Set-Up

During each session of shooting, archers worn the flexible sensors on the same positions
investigated during tests on volunteers (see Figure 9). The optical spectrum interrogator (si425,
Micro Optics Inc. Hackettstown, NJ, USA) for the acquisition of the FBGs output was placed at 3 m of
distance from the archer. The sampling frequency was 250 Hz. Since the assessment of the ST was
performed on volunteers (Section 3), no reference instruments were used during the shooting action to
not impair the archer movements.

Figure 9. Experimental scenario during shooting session: (a) one of the band worn by the archer at
designed 70 m targets and (b) the FBG interrogator at 3 m of distance from the archer.

4.3. Data Analysis and Results

Changes of FBGT and FBGA output of the two practice shooting sessions are plotted in Figure 10.
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shooting actions

shooting actions

Figure 10. Outputs of the two flexible FBG sensors are shown for the four trials (2 shooting sessions for
each archer). By way of example, the shooting actions of the first session are highlighted by dashed
rectangular boxes.

The analysis was performed by selecting FBGT output because the respiratory acts and the
shooting phases are clearly discernible while FBGA output has a more irregular trend (see Figure 10).
FBGT output changes were analyzed following three main phases: i) the six shooting actions were
selected, as shown in Figure 10; ii) for each shooting action, the signal related to the aiming phase was
filtered and its minimum peaks were detected to calculate the HR values (Figure 11); iii) the signal
related to the breathing activity which precedes the shooting actions was filtered and its maximum
peaks were detected to estimate the fR values. Results in terms of fR and HR for all the four trials are
summarized in Table 5.
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Figure 11. Output of the sensor changes during both breathing activity and shooting action.

Table 5. Values of fR and HR during the first and the second shooting sessions.

Shooting Session #1 Shooting Session #2

Shot 1 2 3 4 5 6 1 2 3 4 5 6

fR (apm) fR (apm)

Archer 1 23.9 24.6 20.0 26.5 21.9 20.5 24.1 25.0 20.6 26.5 25.6 23.9

Archer 2 15.2 13.3 9.3 8.6 10.1 8.4 7.4 8.5 7.6 8.8 9.0 7.1

HR (bpm) HR (bpm)

Archer 1 101.8 101.3 97.3 96.7 100.0 94.9 116.4 113.7 108.9 104.7 120.5 115.9

Archer 2 87.6 89.2 94.3 89.3 97.3 94.1 97.2 88.3 92.0 92.3 82.1 90.5

5. Discussion and Conclusions

This work is focused on cardio-respiratory monitoring in archery using a custom ST based on
flexible FBGs.

The feasibility of the system was assessed on nine volunteers during both quiet breathing and
apnea. The system showed promising results in terms of both fR and HR estimation, as shown in
Tables 2 and 3. The position of FBGs does not influence the system performance in the fR estimation,
while FBGT allows a more accurate HR monitoring than FBGA (see Tables 2 and 3).

In a previous work [19], we already characterized the proposed sensing element. The flexible
FBG sensors showed sensitivity to strain of 0.125 nm·mε−1, sensitivity to temperature changes of
0.012 nm·◦C−1 and negligible influence of relative humidity on its response. We were the first group
that used Dragon skin®20 as polymer matrix to improve the sensor robustness and skin adherence for
the cardio-respiratory monitoring. The main novelties of this work were the assessment of the custom
ST on volunteers for the monitoring of both respiratory and cardiac activities and the ST application
on archers during shooting sessions.
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In the literature, FBGs encapsulated into flexible materials for cardio-respiratory monitoring were
mainly proposed for clinical applications (e.g., during magnetic resonance exams). These technological
solutions consist of FBG sensors encapsulated into polydimethylsiloxane, PDMS [27], polyvinyl chloride,
PVC [28], and fiberglass [21]. In [27], an FBG was encapsulated into PDMS matrix (dimensions: 85 mm
× 85 mm × 5 mm). Tests were carried out by positioning the sensing element on the back of two males
and two females during MR examination. Results showed maximum relative errors of 4.41% and 5.86%
for respiratory and cardiac monitoring, respectively. In [28], PVC was used as flexible matrix to house
an FBG for simultaneous respiratory and cardiac monitoring. System showed good performances
in the estimation of fR and HR. In [21], an FBG was housed into fiberglass matrix (dimensions:
30 mm × 10 mm × 0.8 mm). The accuracy of the proposed sensor was characterized by relative error
<4.64% for fR and <4.87% for HR. In the present study, tests performed on volunteers showed promising
results in both the estimation of fR and HR (i.e., MAPEfR ≤ 1.97% and MAPEHR ≤ 5.74%).

Focusing on the shooting sessions, results showed that the proposed ST can detect all the six
shooting actions and, in turn, monitor fR during the breathing activity and HR during the aiming
phase. In the literature, commercially available devices able to monitor only one of these parameters
(fR and HR) were used on archers. Breathing activity and patterns were studied in [9] by using Zephyr
Bio-Harness devices (Model PSM Research version 1.5, single transmitter and receiver, Annapolis,
MD, USA). In [2,5,7] HR values were monitored by using Polar FT4, three silver-silver chloride chest
electrodes, and Fitbit Charge HR (Fitbit, Inc. Boston, MA, USA), respectively.

These studies showed that both fR and HR are important since they influence archers’ performance.
Therefore, the main improvement of the proposed system is the possibility to monitor both fR and HR
with high accuracy during the different phases of the shooting action using the same sensing element.
Since the sensing element can be connected to the optical interrogator by means of long, flexible
and lightweight fiber optic, the proposed system does not impair the shooting action. This feature
encourages further assessment of the proposed system in sports science applications (e.g., during
walking running on treadmill and during cycling).

In future works, a high number of archers will be enrolled to investigate how fR and HR influence
the shooting performance, and how HR can be estimated in the presence of breathing. These findings
will aid the optimization of training strategies according to the experience of each archer and the
maximization of their shooting action and scores.
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Abstract: Fiber Bragg grating (FBG) sensors fabricated in silica optical fiber (Silica-FBG) have been
used to measure the strain of human arteries as pulse wave signals. A variety of vital signs including
blood pressure can be derived from these signals. However, silica optical fiber presents a safety
risk because it is easily fractured. In this research, an FBG sensor fabricated in plastic optical fiber
(POF-FBG) was employed to resolve this problem. Pulse wave signals were measured by POF-FBG
and silica-FBG sensors for four subjects. After signal processing, a calibration curve was constructed
by partial least squares regression, then blood pressure was calculated from the calibration curve. As a
result, the POF-FBG sensor could measure the pulse wave signals with an signal to noise (SN) ratio at
least eight times higher than the silica-FBG sensor. Further, the measured signals were substantially
similar to those of an acceleration plethysmograph (APG). Blood pressure is measured with low error,
but the POF-FBG APG correlation is distributed from 0.54 to 0.72, which is not as high as desired.
Based on these results, pulse wave signals should be measured under a wide range of reference blood
pressures to confirm the reliability of blood pressure measurement uses POF-FBG sensors.

Keywords: fiber Bragg grating; plastic optical fiber; non-invasive measurement; pulse wave signals;
blood pressure; partial least squares regression

1. Introduction

In recent years, the increase of medical expenses and lack of medical workers have become a
social problem due to the aging society [1,2]. Therefore, self-management of health conditions and
prevention of sickness by measuring vital signs continuously in daily life has become more important.
However, current commercial measurement systems are not suitable for continuous measurement
because the majority of them are for stationary use and apply physical constraints. For example,
in the blood pressure measurement, a cuff is usually attached on the upper arm of subject. When the
measurement begins, the cuff is pressured by injected air and then the arm of subject is also pressured.
Thus, the subject feels pain and cannot take any movements during the measurement. To resolve
those problems, various wearable vital sign measurement systems have been used globally [3–7].
For example, it was demonstrated that heart rate could be measured by photoplethysmography (PPG)
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using the Apple WatchTM [3]. Using the PPG method, vital signs such as heart rate or stress can easily
be measured by attaching sensors to the fingertip [4]. In addition, only a light emitting diode (LED)
as the light source, a photodetector, and microcontroller are required to implement a measurement
device. Therefore, it is easy to miniaturize measurement devices. However, there is no report that
blood pressure and blood glucose level can be measured using PPG. Moreover, in the situation such as
perspiration on the skin surface, the light intensity detected by the photodetector will decrease and
measurement becomes difficult.

To resolve those problems, we are developing a non-invasive, wearable, and minimally constraining
multi vital sign measurement system using a fiber Bragg grating (FBG) sensor. An FBG sensor is a
small and light weight strain sensor fabricated in optical fiber, which has high sensitivity. In previous
research, it is demonstrated that vital signs can be determined using pulse wave signals measured
by a silica-FBG sensor [8–13]. However, silica optical fiber is easily broken by bending or extension.
In addition, silica optical fiber produces sharp edges when break, representing a danger for the user,
and prohibiting washing of the fiber and measurements during exercise. Therefore, there is a crucial
need for safe FBG sensors for vital sign measurements.

In this report, an FBG sensor fabricated in plastic optical fiber (POF-FBG) sensor was used to
resolve those problems. The plastic optical fiber is more flexible, resulting in resistance to bending
and extension breaks, and a sharp cross section is not formed when breaks do occur. Furthermore,
the plastic optical fiber is biocompatible because it is made from organic compounds like polymethyl
methacrylate (PMMA) [14]. These features make it suitable for vital sign measurement. In addition,
Bonefacino et al. reported the first demonstration of heartbeats measurements at the brachial artery
location using POF-FBG [14]. It is further reported that use of a POF-FBG sensor results in a 20-fold
sensitivity improvement over silica-FBG sensors. However, no attempt to calculate blood pressure
from wavelength shifts measured by the POF-FBG sensor is made. In this report, we describe the
results of measurement of pulse wave signals and the calculation of blood pressure from these signals.

2. Principle of the FBG Sensor

In this report, the FBG sensor system (SM130: Micron Optics, Inc., Atlanta, GA, USA) was used.
This system is composed of a laser light source and an interrogator. The FBG sensor has a diffraction
grating fabricated in the core of the optical fiber as shown in Figure 1. When broadband light is incident
on the diffraction grating, only the specific wavelength corresponding to the Bragg wavelength is
reflected, and the remaining light is transmitted. The Bragg wavelength is determined by the period of
the diffraction grating and the effective refractive index as described by Equation (1).

λB = 2ne f f Λ (1)

In Equation (1), neff and Λ are the effective refraction index and the period of the diffraction
grating, and λB is the corresponding Bragg wavelength. When pressure is applied to the grating,
the Bragg wavelength shifts because the period of the diffraction grating changes. The FBG sensor
system measures pressure by detecting and calculating the shift of the Bragg wavelength.

Table 1 shows the core diameter, cladding diameter, and Bragg wavelength of the POF-FBG and
silica-FBG sensors used in this report. As shown in Table 1, the Bragg wavelength of the POF-FBG
sensor is in the near infrared. However, POFs have high attenuation in the IR region [14]. Therefore,
a 50 mm POF was used, in which an FBG sensor was fabricated. The POF was attached to an angle-cut
silica optical fiber as shown in Figure 2. One end of the silica fiber was cleaved with angle of≈8◦ to avoid
Fresnel reflection and glued to the POF using UV curable glue (NORLAND 78), ensuring low coupling
losses and strong joint. The other end of the silica fiber was spliced to an ferule connector/angled
physical contact (FC/APC) connector linked to the interrogator. Near infrared light incident on the
silica optical fiber via the FC/APC connector can thus be propagated to the plastic optical fiber with
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low attenuation. As a result, the POF-FBG reflected Bragg wavelength has sufficient light power to be
detected by the interrogator.

Figure 1. Schematic view of the sensor (fiber Bragg grating).

Figure 2. Schematic view of the optical fiber showing the fiber Bragg grating sensor fabricated in plastic
optical fiber (POF-FBG) sensor.

Table 1. Fiber characteristics of silica-FBG and POF-FBG sensors.

Core (μm) Cladding (μm) Bragg Wavelength (nm)

Silica-FBG sensor 8.2 125 1543
POF-FBG sensor 5.5 120 1553

3. Experimental Methods

3.1. Measurement of Pusle Wave Signals and Reference Blood Pressure

Figure 3 shows a photograph of experimental measurement. In this report, both the pulse wave
signals and reference blood pressure were measured simultaneously 120 times for each of four subjects.
Subject A and subject B were healthy males in their 20s, and subject C and subject D were healthy males
in their 30s and 40s, respectively. In previous research, it was shown that FBG sensors could measure
pulse wave signals at various points of the human body because of its high sensitivity [8]. In addition,
when the height of the blood pressure measuring point differs from that of the heart, the blood pressure
was measured with a large error because of the effects of gravity. If the measuring point is higher than
the heart, the blood pressure increases to supply the blood against gravity. Whereas, if the measuring
point is lower than the heart, the blood pressure decreases because the supply of blood is assisted by
gravity. To suppress these effects, the POF-FBG sensor was installed on the brachial artery of the left
elbow in the seated position. In addition, the silica-FBG sensor was installed in close proximity to
the POF-FBG sensor for comparison of the respective SN ratios and waveforms. Both the POF-FBG
and silica-FBG sensors were attached to the brachial artery by surgical tape. Pulse wave signals were
measured at a sampling frequency of 1 kHz, at which it was previously demonstrated that blood
pressure could be measured by an FBG sensor [15].

The FBG sensor cannot measure the blood pressure directly. Therefore, the blood pressure was
calculated using a calibration curve constructed for each pulse wave signal from the signal and a
reference blood pressure [15]. Both systolic blood pressure (SBP) and diastolic blood pressure (DBP)
were measured 120 times as the reference blood pressure at the right upper arm by an electrical
sphygmomanometer (HEM-7510C: OMRON Corporation, Kyoto, Japan), which can measure the blood
pressure with an accuracy of ±3 mmHg.
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Figure 3. Experimental measurement of a subject.

3.2. Processing and Analysis

In the processing and analysis of pulse wave signals, sixth processing was used for blood pressure
prediction. These processing are (1) filtering processing, (2) first differentiation, (3) separation from
peak to peak, (4) averaging, (5) normalization, and (6) blood pressure calculation by partial least
squares regression (PLSR). These processing were performed from (1) to (6) in order.

Raw pulse wave signals include high frequency noise, which decreases the calculation precision
of the blood pressure. Therefore, as in previous research, a band pass filter with a pass band from 0.5 to
5 Hz was used to reduce high frequency noise prior to blood pressure calculation [8–13].

Figure 4 shows the waveform of the acceleration plethysmograph (APG) and the waveform
obtained by differentiation after the filtering process of previous research. APG is obtained by
differentiating the volume plethysmograph, which shows volume fluctuations of the blood vessel.
In addition, it is demonstrated that FBG sensors can measure pulse wave signals, which are similar to
those of volume plethysmographs [15]. Extrema A–E are observed in the APG waveform. It is known
that the heights of the extrema change when the blood pressure changes. Therefore, it is expected
that the blood pressure can be calculated from the changes in height of the extrema. Thus, the first
derivative was taken post-filtering.

After the first differentiation process, pulse wave signals were separated to acquire a single pulse
wave corresponding to one heartbeat. Single pulse wave signals were acquired by cutting pulse
wave signals from peak to the next peak. Next, the averaged pulse wave signals were acquired by
averaging assembled single pulse wave signals. Then, normalized pulse wave signals were acquired by
normalizing the averaged pulse wave signals along the horizontal axis. Each maximum and minimum
value of the vertical axis was normalized to 1 and 0, respectively. The number of sampling points on
the horizontal axis was unified in the fewest number of sampling points.

After normalization process, partial least squares regression (PLSR) was used to construct a
calibration curve and predict the blood pressure from the processed FBG data. PLSR is a multivariate
analysis method, in which the objective variables are regarded as having error. In addition, the reference
blood pressure also has error. Furthermore, PLSR can be used to construct a reasonable calibration
curve with fewer factors than principal components regression (PCR). Therefore, PLSR is suitable.
Firstly, principal components analysis was performed on the pulse wave signals, and the feature vector
called the PLS factor was calculated. Objective variables were represented by the linear combination of
PLS factors acquired from explanatory variables. The optimal number of PLS factors were statistically
tested at the 5% significance level. Finally, the calibration curve represented by the optimal PLS
factors was used for calculation of the blood pressure. In this report, the explanatory variable was the
normalized pulse wave signal, and the objective variable was the reference blood pressure. Four PLS
factors were used to represent the objective variables. In this research, 120 data sets were prepared
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for PLSR by using raw data measured 120 times, which were composed of the normalized pulse
wave signals and reference blood pressure. Eighty data sets were selected randomly and used for the
construction of the calibration curve, and the remaining data sets were used for validation. For the
evaluation of the error in the calibration curve and blood pressure calculation, the standard error
of calibration (SEC) and the standard error of prediction (SEP) were used. SEC can be obtained by
calculating the standard deviation of the difference between the reference blood pressure and calculated
blood pressure by PLSR. In this calculation method, by using not the calculated blood pressure by
PLSR but the calculated blood pressure by the calibration curve, SEP also can be obtained.

 
 

(a) (b) 

Figure 4. Comparison of acceleration plethysmograph (APG) and silica-FBG waveforms: (a) APG
waveform and (b) silica-FBG sensor waveform.

4. Experimental Results and Discussion

4.1. Pulse Wave Signals Measured by POF-FBG

Figures 5–8 show single pulse wave signals measured by both the POF-FBG and Silica-FBG
sensors in one measurement time for each of the four subjects, respectively. These single pulse wave
signals were obtained after filtering, first differentiation, averaging, and the normalization process.
As shown in the pulse wave signals of the silica-FBG sensor, the detailed waveform could not be
determined because of high frequency noise remnants. However, the detailed waveform could be
confirmed without the effect of noise in the pulse wave signals of the POF-FBG sensor. Therefore,
it was demonstrated that the POF-FBG sensor could measure the pulse wave signals with a higher
SN ratio compared to the silica-FBG sensor. In addition, the single pulse wave signals measured
by the POF-FBG sensor were similar to the waveform of the APG shown in Figure 4. Thus, it was
demonstrated that the POF-FBG sensor could also measure a waveform similar to the APG for an
adequate SN ratio.

 
(a) (b) 

Figure 5. The single pulse wave signals of subject A: (a) POF-FBG sensor and (b) silica-FBG sensor.
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(a) (b) 

Figure 6. The single pulse wave signals of subject B: (a) POF-FBG sensor and (b) silica-FBG sensor.

 
(a) (b) 

Figure 7. The single pulse wave signals of subject C: (a) POF-FBG sensor and (b) silica-FBG sensor.

(a) (b) 

Figure 8. The single pulse wave signals of subject D: (a) POF-FBG sensor and (b) silica-FBG sensor.

In this research, both the POF-FBG and silica-FBG sensors were attached to the same measuring
points using surgical tape. Therefore, as shown in previous research, the SN ratio of the pulse wave
signals were improved by at least eight times, due to the difference in sensitivity between the POF-FBG
and silica-FBG sensors [14].

4.2. Calculation of Blood Pressure using Pulse Wave Signals

The data from subjects C and D could not be used because the SN ratio of pulse wave signals
were poor. Therefore, the data from subjects A and B was used for PLSR. Figures 9–12 show the results
of calibration and validation of SBP and DBP. Table 2 shows the detail information of reference blood
pressure in calibration and validation. Table 3 shows the correlation coefficient (R), SEC and SEP. In the
calibration graph, the vertical axis indicates the calculated blood pressure using PLSR. In the validation
graph, vertical axis indicates the blood pressure predicted by the calibration curve. Horizontal axis
indicates the reference blood pressure in both calibration and validation graph.
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(a) (b) 

Figure 9. Result at systolic blood pressure (SBP) by partial least squares regression (PLSR) of subject A:
(a) calibration and (b) validation.

 
(a) (b) 

Figure 10. Result at diastolic blood pressure (DBP) by PLSR of subject A: (a) calibration and (b) validation.

 
(a) (b) 

Figure 11. Result at SBP by PLSR of subject B: (a) calibration and (b) validation.
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(a) (b) 

Figure 12. Result at DBP by PLSR for subject B: (a) calibration and (b) validation.

Table 2. Details of reference blood pressure at calibration and validation.

Subject (Gender) Cardiac Cycle Number of Measurements
Value of Blood Pressure (mmHg)

Maximum Minimum Average

Calibration Data Sets

A (male)
SBP 80 124 99 113
DBP 80 75 52 65

B (male)
SBP 80 117 89 102
DBP 80 77 55 64

Validation Data Sets

A (male)
SBP 40 126 96 112
DBP 40 72 59 66

B (male)
SBP 40 111 93 101
DBP 40 75 58 64

Table 3. Calibration and validation results for each subject.

Calibration Validation

Subject Cardiac Cycle PLS Factor R SEC (mmHg) SEP (mmHg)

A
SBP 4 0.72 5 6
DBP 4 0.58 4 3

B
SBP 4 0.54 4 4
DBP 4 0.63 4 3

For subject A, the correlation coefficient of the calibration curve exceeded 0.7 at SBP. However,
the error exceeded 6 mmHg in validation. The SEC and SEP at DBP were smaller than the values at
SBP. However, the correlation coefficient was only 0.58. For subject B, the SEC and SEP of both SBP
and DBP were almost equal to the error of the electrical sphygmomanometer. However, similarly to
the DBP of subject A, the correlation coefficient was not high for SBP or DBP.

4.3. Adequancy of Blood Pressure Measurement Using a POF-FBG Sensor

Judging from Sections 4.1 and 4.2, pulse wave signals were measured at an adequate SN ratio
by the POF-FBG sensor. However, although the SEC and SEP were adequately small, the correlation
coefficient was poor, with the exception of subject A. For subject A, high correlation was confirmed
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between the reference blood pressure and blood pressure calculated by the calibration curve at SBP.
To discuss these results, we focused on the range of the reference blood pressure and single pulse
wave signals.

For subject A at SBP, the calibration and validation plots of Figure 9 were evenly distributed
over the range of 25 mmHg. However, in the other calibration and validation results, almost all the
plots were distributed over the range of 10 or 15 mmHg. When the range of the reference blood
pressure was narrow, the validation of correlation between the reference blood pressure and calculated
blood pressure over a wide range was difficult. Therefore, as a future task, it is necessary that the
reference blood pressure be measured over a wide range to improve the correlation with the measured
blood pressure.

Figure 13 shows all of the normalized pulse wave signals measured with the silica-FBG sensor
for one subject from previous research. In this graph, a peak (reflected pulse wave signal) could be
observed at approximately 0.22 s as indicated by the circle. Reflected pulse wave signals occur at
points where the blood vessel divides into another vessel, or peripheral blood vessels exist. When the
blood flow reaches these points, a component of the blood flow is reflected and is propagated to the
measuring point, and the strain of blood vessel caused by the reflected pulse wave is detected by the
FBG sensor. In addition, it is demonstrated that the reflected pulse wave signal significantly contributes
to the calculation of the blood pressure in PLSR [16]. Figure 14 shows all of the normalized pulse wave
signals for subjects A and B. As can be seen from these figures, the presence of reflected pulse wave
signals between the first minima and second peak was not obvious. Reflected pulse wave signals had
the characteristic that they were easily measured at points where peripheral vessels exist. Therefore,
as a future task, pulse wave signals should be measured with reflected pulse wave signals so as to
improve the accuracy of the calibration curve and calculation of the blood pressure.

Figure 13. Reflected pulse wave signals (enclosed by circle).

 
(a) (b) 

Figure 14. Normalized pulse wave signals: (a) subject A and (b) subject B.

5. Conclusions

In this paper, we focused on the validity of pulse wave signal measurement and calculation of
blood pressure using a POF-FBG sensor. The pulse wave signals were measured by a POF-FBG sensor,
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and SBP and DBP were calculated by PLSR. In the measurement of pulse wave signals, the POF-FBG
sensor was able to measure the pulse wave signals with SN ratio improved by at least eight times
compared to the silica-FBG sensor for all subjects. Moreover, the single pulse wave signals measured by
the POF-FBG sensor were significantly similar to the waveform of APG. Therefore, it was demonstrated
that the POF-FBG sensor could measure pulse wave signals accurately and with very good repeatability.

On calculation of the blood pressure, a high correlation coefficient was confirmed at SBP for subject
A. However, the correlation result at SBP for subject B was poor, as were the results at DBP for both
subjects A and B. Regarding the accuracy of the calibration curve and the validation of blood pressure,
the SEC and SEP at SBP of subject A were high. At SBP for subject B, and DBP for both subjects A and
B, the SEC and SEP were almost equal to the accuracy of the electrical sphygmomanometer used in
this report. To improve the correlation coefficient of the calibration curve, and accommodate a wide
range of blood pressure measurements, it is necessary that the reference blood pressure be measured
over a wide range in future experiments. In addition, the measurement of pulse wave signals that
take reflected pulse wave signals into account should be performed to improve the accuracy of blood
pressure measurement.

It is demonstrated that FBG sensor system can measure the pulse rate, respiratory rate, and blood
pressure simultaneously and continuously [8–13]. By applying the flexible POF-FBG sensor to our
FBG sensor system, we aimed for real-world implementation of safety FBG sensor system for users.

Author Contributions: Conceptualization, Y.H., S.K. and H.I.; formal analysis, Y.H., S.C. and S.K.; investigation,
Y.H., S.C., J.B. and H.-Y.T.; supervision, S.K. and H.I.; writing—original draft preparation, Y.H.

Funding: This work was supported by JSPS KAKNHI, grant Number JP16H01805 and the Wearable Vital Signs
Measurement System Development Project at Shinshu University. This work was also supported by a Grant-in-Aid
for the Shinshu University Advanced Leading Graduate Program by the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japan. This research is partially supported by the Creation of a development
platform for implantable/wearable medical devices by a novel physiological data integration system of the Program
on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) from the Japan Science
and Technology Agency (JST), grant Number JPMJOP1722. This work was supported by the General Research
Fund Project (PolyU 152207/18E) and PolyU Central Grant project 1-ZVGB.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ministry of Health, Labour and Welfare. Estimated Number of Patients (per Day), 2014 Summary of Patient
Survey. Available online: https://www.mhlw.go.jp/english/database/db-hss/dl/sps_2014_01.pdf (accessed on
10 June 2019).

2. Cabinet Office, Government of Japan. Situation on Aging, Annual Report on the Aging Society
2015. Available online: http://www8.cao.go.jp/kourei/english/annualreport/2015/pdf/c1-1.pdf (accessed on
10 June 2019).

3. Grant, A.; James, B.; Amanda, C.B.; Abbott, D. The validity and inter-device variability of the Apple WatchTM

for measuring maximal heart rate. J. Sports Sci. 2018, 36, 1447–1452.
4. Mallick, B.; Patro, A.K. Heart rate monitoring system using fingertip through arduino and processing

software. Int. J. Sci. Eng. Technol. Res. (IJSETR) 2016, 5, 84–89.
5. Pang, Y.; Tian, H.; Tao, L.; Li, X.; Wang, X.; Deng, N.; Yang, Y.; Ren, T.L. Flexible, Highly Sensitive, and

Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Appl. Mater. Interfaces
2016, 8, 26458–26462. [CrossRef] [PubMed]

6. Lin, H.; Xu, W.; Guan, N.; Ji, D.; Wei, Y.; Yi, W. Noninvasive and Continuous Blood Pressure Monitoring
Using Wearable Body Sensor Networks. IEEE Intell. Syst. 2015, 30, 38–48. [CrossRef]

7. Yilmaz, T.; Foster, R.; Hao, Y. Detecting Vital Signs with Wearable Wireless Sensors. Sensors 2010, 10,
10837–10862. [CrossRef] [PubMed]

8. Chino, S.; Ishizawa, H.; Hosoya, S.; Koyama, S.; Fujimoto, K. Non-invasive Blood Pressure Measurement,
The Study of Measuring Points. In Proceedings of the SICE Annual Conference 2016, Tsukuba, Japan,
20–23 September 2016; pp. 1706–1709.

104



Sensors 2019, 19, 5088

9. Miyauchi, Y.; Ishizawa, H.; Koyama, S.; Sato, S.; Hattori, A. Development of the Pulse Rate Measuring
System by FBG Sensors. In Proceedings of the 10th JSMBE Symposium Nagano district, Nagano, Japan,
2012; pp. 13–14.

10. Miyauchi, Y.; Ishizawa, Z.; Niimura, M. Measurement of Pulse Rate and Respiration Rate Using Fiber Bragg
Grating Sensor. Trans. Soc. Instrum. Control Eng. 2013, 49, 1101–1105. [CrossRef]

11. Koyama, S.; Ishizawa, H.; Fujimoto, K.; Chino, S.; Kobayashi, Y. Influence of Individual Differences on the
Calculation Method for FBG-Type Blood Pressure Sensors. Sensors 2017, 17, 48. [CrossRef] [PubMed]

12. Sato, S.; Kawamura, M.; Miyauchi, Y.; Koyama, S.; Ishizawa, H. Simultaneous Measurement of the Pulse
Rate and Respiratory Rate by Fiber Bragg Gratins Sensors. In Proceedings of the 28th SICE Sensing Forum,
Yokohama, Japan, 13–14 October 2011; pp. 97–100.

13. Katsuragawa, Y.; Ishizawa, H. Non-invasive Blood Pressure Measurement by Pulse Wave Analysis Using FBG
sensor. In Proceedings of the 2015 IEEE International Instrument and Measurement Technology Conference
(I2MTC), Pisa, Italy, 11–14 May 2015; pp. 511–515.

14. Bonefacino, J.; Tam, H.Y.; Glen, T.S.; Cheng, X.; Pun, C.F.J.; Wang, J.; Lee, P.H.; Tse, M.L.V.; Boles, S.T. Ultra-fast
polymer optical fiber Bragg grating inscription for medical devices. Light Sci. Appl. 2018, 7, 1–10. [CrossRef]
[PubMed]

15. Haseda, Y.; Ishizawa, H.; Koyama, S.; Ogawa, K.; Fujita, K.; Chino, S.; Fujimoto, K. Fundamental research of
pulse wave and blood pressure measurement using passive edged filter integrated in Fiber Bragg Grating
measurement system. In Proceedings of the SICE Annual Conference 2018, Nara, Japan, 11–14 September
2018; pp. 1685–1689.

16. Chino, S.; Ishizawa, H.; Koyama, S.; Fujimoto, K. Influence of Installing Method on Pulse Wave Signal in
Blood Pressure Prediction by FBG Sensor. In Proceedings of the 2018 IEEE International Symposium on
Medical Measurements and Applications, Rome, Italy, 11–13 June 2018; pp. 570–575.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

105





sensors

Article

Active Body Pressure Relief System with
Time-of-Flight Optical Pressure Sensors for Pressure
Ulcer Prevention

Kang-Ho Lee 1,†, Yeong-Eun Kwon 1,2,†, Hyukjin Lee 1, Yongkoo Lee 1, Joonho Seo 1,

Ohwon Kwon 1, Shin-Won Kang 2,* and Dongkyu Lee 1,*

1 Daegu Research Center for Medical Devices, Korea institute of Machinery and Materials, Daegu 42994, Korea
2 School of Electronics Engineering, College of IT Engineering, Kyungpook National University,

Daegu 41566, Korea
* Correspondence: swkang@knu.ac.kr (S.-W.K.); dongkyu@kimm.re.kr (D.L.)
† These authors contributed equally to this work.

Received: 14 August 2019; Accepted: 4 September 2019; Published: 6 September 2019

Abstract: A body pressure relief system was newly developed with optical pressure sensors for
pressure ulcer prevention. Unlike a conventional alternating pressure air mattress (APAM), this system
automatically regulates air flow into a body supporting mattress with adaptive inflation (or deflation)
duration in response to the pressure level in order to reduce skin stress due to prolonged high pressures.
The system continuously quantifies the body pressure distribution using time-of-flight (ToF) optical
sensors. The proposed pressure sensor, a ToF optical sensor in the air-filled cell, measures changes
in surface height of mattress when pressed under body weight, thereby indirectly indicating the
interface pressure. Non-contact measurement of optical sensor usually improves the durability and
repeatability of the system. The pressure sensor was successfully identified the 4 different-predefined
postures, and quantitatively measured the body pressure distribution of them. Duty cycle of switches
in solenoid valves was adjusted to 0–50% for pressure relief, which shows that the interface pressure
was lower than 32 mmHg for pressure ulcer prevention.

Keywords: body pressure distribution; air-filled cell; alternating pressure air mattress; time of flight;
air flow; active control system

1. Introduction

Generally, pressure ulcers are caused by a local breakdown of soft tissue due to prolonged high
pressures at the interface of body and contact surface [1–3]. In order to relieve the interface pressure,
manual repositioning of patients or support surfaces such as cushions has been required [1–3]. Recently,
alternating pressure air mattresses (APAMs) have been often used for the prevention and treatment of
pressure ulcers [4–8]. Air cells of APAMs sequentially inflate and deflate to relieve pressure for short
periods. However, commercial available APAMs have a passive control mechanism that simply repeats
inflation and deflation into air cells, which occurs regardless of the pressed regions and pressure level.
It is difficult to show even and lower pressure distributions against different stress regions across
the body.

To maximize the effect of the pressure relief through APAMs, a robust and reliable measurement
of the body pressure is required simultaneously [1,5,8]. Usually, the main types of sensors to measure
the interface pressure are based on the measurement of variations in resistance or capacitance from a
deformable sensing component [9–13]. The capacitive pressure sensor measures changes in thickness
between layers when pressed. Although the sensor has high sensitivity, it is subject to an interference
environment due to the external electric field and requires complex readout circuitry such as a charge
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amplifier, a discharging resistor, and so on [12]. The resistive pressure sensor measures changes in
conductivity of sensing material when pressed. This sensor has thin and flexible structures, and the
sensor needs simple circuitry. However, its output signal is nonlinear with a slow response, and it
shows high power consumption [13,14]. Both capacitive and resistive sensors have been reported that
they have hysteresis limitation of the measured value drifts over time [14,15]. In addition, electric
pressure sensors are usually weak in durability due to the deformation of a sensing element caused
by physical contact force. The transducer placed on the contact surface across the body can also
impose artificially high pressures on the tissues and poor resolution due to the thickness of the
transducer [15,16]. As an alternative to the electric sensor, the optical sensor has provided good
durability and external noise immunity [17–19]. Some device measured the pressure distribution
for foot plantar using optic fiber [20]. In this study, a time-of-flight (ToF) optical sensor was used to
measure the interface pressure. The ToF optical sensor identifies the distance away to the nearest object
by measuring the time that the light takes to travel and reflect [21]. We implemented commercial
ToF optical sensors on the bottom surface of air-filled cells in the mattress rather than the contact
surface with body skin. The ToF optical sensor measures variations in the surface height of mattress
after deformation. For the proof of concept, the optical pressure sensor visualized body pressure
distribution and identified the 4 different postures. Here, we developed the APAM with an active
control mechanism based on the ToF optical pressure sensor. This system has adaptive inflation
(or deflation) duration of air mattress in response to the pressure level for body pressure relief of
patient-specific interface regions. To investigate the performance of active body pressure relief system,
we confirmed the rapid reduction of lower than 32 mmHg pressure using the system. It is expected
that the proposed system can prevent pressure ulcers and improve sleep comfort and quality [22,23].

2. Materials and Methods

2.1. System Structure and Operation Principle

Figure 1 shows a schematic diagram of the proposed active pressure relief system with body
pressure sensors. The system includes a mattress with air-filled cells, ToF optical pressure sensors,
solenoid valves, a main control unit, and a compressor. The top surface of a mattress has a lot of
air-filled cells which directly support the human body. Here, the ToF optical pressure sensors are placed
on the internal bottom surface of the air-filled cells, which means that these sensors are physically
non-contacted from the interface surface of the body. The signals (P_sig) from the ToF optical sensors
are collected together to the main control unit. The main control unit visualizes the body pressure
distribution with the corresponding colors.

Figure 1. The schematic diagram of the proposed active pressure relief system with body pressure sensors.

In the system, air flow is regulated by a negative feedback control mechanism. In other words,
repetitive inflation and deflation duration in air-filled cell are determined by adjusting a duty cycle
of solenoid valve switches in response to the magnitude of the measured pressure. As shown in
Figure 1, if air-filled cells are strongly pressed (red arrows at the hip area), the corresponding solenoid
valves with red color begin to regulate their air flow. Our system updates the pressure data after every
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cycle when air flow is at a steady-state. Therefore, we consider a simple, single-loop feedback system
as shown in Figure 2. The output of the system P_sig is fed back with the unity-feedback gain and
then, compared with the reference value Ref_P. The system periodically calculates error values as the
difference between desired and measured pressure levels. The error value is analogue, classified by the
predefined thresholds, and then duty cycle Don is changed. The Don describes the proportion of ON
time to the regular interval. The Don is a result of pulse-width modulation (PWM) [24]. The output of
the PWM is digital, switches the opening of the solenoid valves while regulating air flow applied by
the compressor. In the system, the control loop uses a distance value as a feed-back variable. Therefore,
the Ref_P means an initial distance without deformation and the measured distance is periodically
compared with the Ref_P to determine the Don of switches in solenoid valves.

Figure 2. The block diagram of the closed-loop control mechanism in the system.

2.2. Design of the ToF Optical Pressure Sensor

Figure 3a,b show pictures of the developed ToF optical pressure sensor and mounting inside
of the air-filled cell, respectively. The ToF optical pressure sensor includes a microcontroller, a ToF
unit and a communication component for external interface. As a ToF unit, we used an off-the-shelf
component, VL6180X (STMicroelectronics, Plan-les-Ouates, Switzerland). In Figure 3c, air-filled
cells on the mattress were closely arranged with a shape of semicircular cover on supporting walls.
Therefore, when air-filled cells were pressed by the body, those were mainly deformed in vertical
direction while leaning by each other. The ToF optical pressure sensor, which is placed on the bottom
surface of air-filled cell, can measure the lowered height by using applied force. Therefore, we used the
ToF optical sensor to indirectly measure the interface pressure under body weight. The ToF optical unit
transfers its data to the microcontroller unit through the inter-integrated circuit bus (I2C bus). And
both ends of the sensor share a common communication line that can be connected to other sensors.
Although parallel sensors in other works may require a number of interface wires [9,11,25], our sensors
are connected serially, minimizing the number of wires. The RS-485 communication technique needs
only differential data lines for external interface [26]. All sensors can be independently separated with
the assigned slave addresses. The sensor has a small size of 20(L) × 20(W) mm, which is suitable for
using at any location as an independent module. It consumes a current of 30 mA from a 5 V supply.

Figure 4 shows the description of mounting pressure sensors in the air-filled cells of the mattress at
a regular distance. The prototype was designed to fit the hip size of body, because the pressure is most
focused on the hip of body parts [1,2]. The air-filled cell was fabricated with PVC (polyvinylchloride)
film, which has a size of 760(L) × 90(W) × 68(H) mm. Total of 18 sensors in 6 air-filled cells of
the prototype system were located. The 6 air-filled cells were arranged longitudinally. The serially
connected 18 sensors have individual slave addresses of index numbers of 0–17 as shown in Figure 4.
Hose pipe connects the side of the air-filled cells into the solenoid valve, as shown in the left inset of
Figure 4.

109



Sensors 2019, 19, 3862

        
(a)                                 (b) 

(c) 

Figure 3. Pictures of (a) the developed ToF optical pressure sensor; (b) mounting the sensor inside of
air-filled cell; (c) description of air-filled cell without and with deformation.

 
Figure 4. Description of pressure sensor location in air-filled cells of the mattress. The right inset shows
the connection diagram of sensors with different addresses from 0 to 17. The left inset shows the hose
pipe connected with the side of the air-filled cell.
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2.3. Design of the Solenoid Valve System and Its Operation

Figure 5 shows pictures of solenoid valves and their control board. The solenoid valve is an
electromechanical device in which the solenoid uses an electric current to generate a magnetic field
and thereby operate by a mechanism which regulates the opening of fluid flow in a valve [27]. In our
system, each of the air-filled cells is connected to the respective solenoid valve. All solenoid valves
were placed together on a common manifold as shown in Figure 5. The valve has the 3-way ports of
dose, release, and distribution for air flow. If the valve is open, then an inlet port from compressor is
connected to a distribution port to mattress air-filled cell, and air is injected to distribution port. If the
valve is closed, then ports are isolated, and air is released through the exhaust port. The valve control
board determines whether the electric current is passed through the solenoid, communicating with the
main control unit. The solenoid valve consumes a current of 200 mA from a 5 V supply.

Figure 5. Pictures of the 3-way solenoid valves and a control board.

Figure 6 shows the timing diagram for a solenoid valve control. In the prototype, the 6 air-filled
cells were alternately controlled during a cycle period. When the valve switch is ON with logic high,
the valve is opened, and then air is injected from the compressor to air-filled cell, thereby inflating the
air-filled cell. When the switch is OFF with logic low, the valve is closed, and the air is released from
air-filled cell. The system sequentially determines the duration of inflation (or deflation) at the entrance
of t1 – t6. For example, if the pressure level is at its lowest, Don of switches in solenoid valves is 50%,
which means that the ON time for inflation is same with the OFF time for deflation, as shown in the
air-filled cell #1-5 of Figure 6. If the higher pressure is detected, then the Don begins to decrease while
at the same time increasing the deflation rate, as shown in the air-filled cell #6 of Figure 6. Therefore,
the system is able to adaptively supply the corresponding air as the interface pressure changes, which
results in the reducing effect in the interface pressure.
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Figure 6. The timing diagram for solenoid valve control.

3. Results and Discussion

3.1. Performance of the TOF Optical Pressure Sensor

The ToF optical pressure sensor is designed by positioning the commercial ToF optical sensor
inside of air-filled cell. The ToF optical sensor can measure distance between bottom and top surface of
air-filled cell. In Figure 7, the signals of the ToF optical sensor were compared with the height (h) of the
air-filled cell after deformation. Figure 7a shows the Z-axis stage equipment that can precisely change
the height of the air-filled cell in the vertical direction. Using the Z-axis stage equipment with a ruler,
the air-filled cell was manually pressed while recording the actual height of air cell. The height of air
cell was compared with the results from the ToF sensor in Figure 7b. The air-filled cell had a maximum
height of 68 mm without deformation. The air cell was gradually pressed to reach the height of 10 mm.
It is verified that the measured distance by the ToF optical sensor had an accuracy of ±0.57% compared
with the actual height of the air-filled cell.

(a)                                   (b) 

Figure 7. Measuring performance of the ToF optical sensor; (a) Setup for pressing the air-filled cell;
(b) comparison of the measured distance by ToF optical sensor with actual height of air-filled cell by
Z-axis stage.
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Figure 8 shows the calibration curve of the relative ratio in the measured distance at different
pressures. The relative ratio in the measured distance is the ratio of the changed distance after
deformation compared with initial distance. This relative value is effective to objectively evaluate
the multiple sensors’ performance, excluding the common noise. Figure 8a shows the picture for
the measurement method to validate the relation between the measured distance and the interface
pressure. The commercial equipment X3Pro (XSENSOR, Calgary, AB, Canada) is placed on air-filled
cells to investigate the interface pressure. And different forces were manually applied in downward
direction using a push-pull gauge (IMADA, Japan). Figure 8b shows the relative ratio of measured
distance as different pressures applied by a push-pull gauge. At the same time, the interface pressures
were measured by X3Pro as shown in Figure 8c. Our system is capable of measuring the minimum
pressure level of 24 mmHg, which is comparable to a commercialized sensor [11]. This system has a
linear response under the interface pressure of 35 mmHg. The slope of the interface pressure to the
applied pressure is calculated to be 0.3 over 35 mmHg.

 
    (a)                               (b)                                  (c) 

Figure 8. (a) Picture for measurement method, (b) the relative ratio in the measured distance and (c)
the interface pressure at pressures applied by manual forces.

3.2. Prototype of Active Body Pressure Relief System with the Optical Pressure Sensor

Figure 9 shows the prototype system including air-filled cells, solenoid valves, a main control
unit, and a compressor. As a proof of concept, 6 air-filled cells were tested under the hip placement.
The air-filled cells have the ToF optical sensors inside them. The main control unit receives the pressure
signal from the ToF optical pressure sensor and regulates air flow by controlling the switches of
solenoid valves. In particular, the main control unit has a 7-inch LCD to use for user’s interface while
visualizing the body pressure distribution in real time. The inset in Figure 9 shows the LCD screen
window. The screen shows sections of (a) valve ON and OFF status, (b) color map responding to the
pressure level and the measured (c) absolute and (d) relative distance values.

 
Figure 9. Picture of the prototype system including air-filled cells, solenoid valves, a main control unit
and a compressor.
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The optical pressure sensor could quantitatively measure the body pressure distribution when a
participant was taking different postures on the mattress. Postures are as follows: (a) a supine position,
(b) a left lateral position, (c) a right lateral position and (d) a sitting position. Table 1 shows the color
visualization and the measured corresponding data at different postures, respectively. The pressure
was defined as red color when the relative distance ratio was larger than 45%. The distance ratio of
0% was expressed with the blue color. The distance ratio was classified with a total of 1024 colors
between the red and the blue color. In a supine position of posture at Table 1a, the sensors of index of
6 to 11 mainly responded to applied pressure. The sensor of index 9 was matched with the coccyx
of the body bones representing the highest pressure with red color. As expected, in the left lateral
position of posture at Table 1b, the left-side sensors of index 12 to 17 showed the largest changes in
color. We could recognize the left pelvic bone from the colors in the sensors of index 15 and 16. In case
of the right lateral position of posture at Table 1c, a participant was lying across the middle and right
regions. Therefore, lower and even pressures were visualized due to the pressure redistribution. In (d)
of Table 1, a participant was sitting on the mattress. Through the color changes in the sensors of index
3, 9 to 11 and 15, the coccyx and pelvic bones of body could be clearly recognized. In these experiments,
the proposed system successfully quantified the body pressure distribution in real time.

Table 1. The color visualization and measured corresponding data when a participant was taking
different postures on the mattress; (a) a supine position, (b) a left lateral position, (c) a right lateral
position and (d) a sitting position.

Posture Color Map Measured Data

(a)

 
 

(b)

 

(c)

 

(d)
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The pressure relieving effect was confirmed by investigating the interface pressure with commercial
equipment X3Pro when a participant was taking a supine posture on the air-filled cells. In Figure 10,
the changes in interface pressure without any flow control, with a passive air-flow control, and an
active control mechanism were investigated, respectively, when the third one of air cells (square dashed
line) is inflated and deflated. The pressure distribution was captured in 50 seconds. The red color
represents the pressure level over than 32 mmHg. This value is the critical pressure level as a criterion
for the occurrence of a pressure ulcer [28,29]. Figure 11a shows the changes of the average pressure
in a length of air cell over time at different air-flow controls. In Figure 11b, the peak pressure values
at ToF sensor position (circle dashed line) were compared (1) without any flow control, (2) with a
passive air-flow control, and (3) an active flow control after 50 seconds. Without any air-flow control
in Figure 10a, the surface area in the dashed line had an average pressure of 34.3 mmHg and peak
pressure of 45 mmHg, which means that the pressure level may lead to the presence of pressure ulcer.
In a passive air-flow control of Figure 10b, which equals to the Don of 50%, the interface pressure
decreased to the average of 26.2 mmHg and peak pressure of 32.4 mmHg after 50 seconds. When
air flow was actively regulated in response to the pressure level in Figure 10c, the interface pressure
was reduced to an average of 20.3 mmHg and peak pressure of 8.4 mmHg. Here, a white spot in the
center of Figure 10c means the pressure level of zero. Also, it is showing a rapid decrease of pressure
compared with passive air-flow control. Consequently, the ability of the active controlled mattress was
to achieve a more even and lower distribution of stress regions across the body. Therefore, the system
successfully performed the active pressure relieving mechanism, maintaining the interface pressure at
a low enough level to prevent the pressure ulcer.

     

     
(a)                           (b)                              (c) 

Figure 10. Description of changes in interface pressure, (a) without any air-flow control, (b) with
a passive air-flow control, and (c) with an active air-flow control. These colors were visualized by
commercial equipment of X3Pro.
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(a)                                       (b) 

Figure 11. (a) The changes of the average pressure in a length of air cell over time and (b) peak pressure
values at ToF sensor position at different air-flow controls of (1) without any air-flow control, (2) with a
passive air-flow control, and (3) with an active air-flow control.

4. Conclusions

In this study, an active body pressure relief system was developed to prevent pressure ulcer.
The system is an alternating pressure air mattress with adaptive control of air flow in response to
the pressure level. The system continuously quantifies the body pressure distribution by indirectly
measuring the interface pressure with the ToF optical pressure sensor. This optical sensor is placed
on the bottom surface of the air-filled cell. Non-contact characteristic of optical sensor contributes
to improved durability and repeatability. Our system can effectively reduce the pressure stress
through active control mechanism based on the negative feedback loop. If the interface pressure is
higher, the body supporting air-filled cell is more deflated, then the pressure decreases again. It was
demonstrated that the system successfully quantified the body pressure distribution at different
postures. We could recognize the bones and bump regions of the body, although the prototype
measured pressures in discrete regions. It was verified that the pressure relief mechanism performed
well keeping the interface pressure low enough to prevent the pressure ulcer. In further work, we will
arrange an array of air cells with high resolution expecting a fully relief of high pressure. The system
can be potentially used for various bedding applications for measuring the body pressure distribution
and relieving the pressure stress.
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Abstract: A torsional wave (TW) sensor prototype was employed to quantify stiffness of the cervix in
pregnant women. A cross-sectional study in a total of 18 women between 16 weeks and 35 weeks +
5 days of gestation was performed. The potential of TW technique to assess cervical ripening was
evaluated by the measurement of stiffness related to gestational age and cervical length. Statistically
significant correlations were found between cervical stiffness and gestational age (R2 = 0.370,
p = 0.0074, using 1 kHz waves and R2 = 0.445, p = 0.0250, using 1.5 kHz waves). A uniform
decrease in stiffness of the cervical tissue was confirmed to happen during the complete gestation.
There was no significant correlation between stiffness and cervical length. A stronger association
between gestational age and cervical stiffness was found compared to gestational age and cervical
length correlation. As a conclusion, TW technique is a feasible approach to objectively quantify the
decrease of cervical stiffness related to gestational age. Further research is required to evaluate the
application of TW technique in obstetric evaluations, such as prediction of preterm delivery and labor
induction failure.

Keywords: torsional wave; cervix; pregnancy; cervical stiffness

1. Introduction

Approximately, 15 million babies are born preterm (before 37 weeks of gestation) per year, i.e.,
more than 1 in 10 newborns, and this number is rising in both developing countries and Europe [1,2].
Worldwide, complications of preterm birth are the main cause of child mortality under five years
of age [1,3]. Prematurity often leads to long-term disabilities such as learning, visual and hearing
problems. Clinical and social risk factors of preterm birth have been identified to develop feasible
and cost-effective care measures to save children [1]. Nonetheless, a high proportion of spontaneous
preterm birth remains unpredictable.

Current models based on cervical length, obstetric history, digital vaginal examination and
echography of the cervix are not able to accurately predict a preterm birth with sufficient anticipation,
and there is a lack of evidence on how to prevent preterm delivery [4,5]. Even though there is an
agreement that cervical ripening plays a fundamental role during pregnancy, histological changes and
biomechanical properties of the cervix are not entirely characterized. The current lack of a clinical
tool for the quantitative evaluation of the biomechanic parameters of the cervix is probably a barrier
to advance in preventing spontaneous preterm birth [6]. Since 2012, the WHO is encouraging to
accelerate research into the causality of preterm birth, and to test effective approaches that would lead
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to save babies. Recently, elastography techniques are being put forward in the literature to assess
quantitatively the stiffness of the cervix as a promising tool to estimate preterm birth risk, as well as to
predict the success of labor induction [7–12].

Quasi-static elastography methods have been used to evaluate the cervical stiffness at different
gestational ages. The result is a qualitative deformation gradient map, called elastogram. However,
all methods have shown unclear results regarding reproducibility and associations between stiffness
and gestational age [13–16]. The measurements are also liable to the sensor pressure applied by the
clinician, which is not accounted for.

In contrast, dynamic elastography techniques have the strength to provide the absolute quantitative
values of stiffness as an objective criterion to evaluate the process of cervical ripening [17,18].
This technology relies on shear ultrasonic waves that travel through the soft tissue. The measurement
of the shear wave propagation speed allows characterizing shear stiffness. The commercially available
dynamic Supersonic Shear Imaging (SSI) technique employs ultrasonics radiation force to generate
shear waves. Shear wave speed in cervix was statistically significant lower in women delivered
preterm and inpatients with preterm uterine dynamics compared to women delivered at term [12].
Peralta et al. [19] evaluated SSI elastography to quantify cervical stiffness in real time and its evolution
in induced labor in ewes, concluding that stiffness decreases during maturation in induced labor.
The Acoustic Radiation Force Imaging (ARFI) is based on displacements generated by an ultrasound
beam using the same imaging probe. ARFI has already been proved to evaluate differences in mature
versus immature cervical tissue ex vivo [20] and in vivo in pre- and post-labor induction [21]. Both
studies agree that shear waves speeds are statistically significantly different in mature versus immature
cervical tissue. Viscoelasticity maps of uterine corpus and cervix were assessed thought magnetic
resonance elatography in nonpregnant women [22]. Results show a higher elasticity in uterine corpus,
and similar viscosity compared with cervix.

The presented measurements data are taken using an alternative dynamic technique: torsional
wave (TW) technique [23]. This is based on the propagation of shear waves through the tissue not
only in depth but also radially, which makes the technique suitable for applications such as cervical
tissue. Axis-symmetric waves allows the precise interrogation of soft tissue mechanical functionality
in cylindrical geometries, which are challenged by current elastography approaches in small organs.

This work was aimed at evaluating the reliability and feasibility of TW technique to provide
consistent data on the changes of the cervical stiffness during pregnancy. Eighteen singleton-pregnant
women were recruited. The hypothesis were: (1) torsional wave technique has the capacity to quantify
cervical stiffness defined by its elastic modulus; and (2) stiffness decreases along pregnancy. The second
hypothesis stems from the fact that the cervical tissue behavior depends on changes in its multi-scale
structure from a mechanical point of view. The cervical stroma microstructure is formed of cross-linked
mesh of collagen immersed into viscous proteoglycan [24]. These biochemical compounds exist on
different scales whose length is variable by several orders of magnitude. They provide a tractive and
compressive strength to the cervical tissue. Despite the fact that cervical architecture changes during
ripening [25], these modifications along pregnancy are still not well studied.

2. Materials and Methods

2.1. Design of the Study

A cross-sectional study in healthy pregnant women was performed to assess stiffness
modifications in cervix.

2.2. Healthcare Settings

The pre-pilot test study was carried out at San Cecilio University Hospital in Granada. The data
were analyzed in the Ultrasonics Laboratory in the University of Granada.
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2.3. Ethical Issues

The study met the principles of the Declaration of Helsinki. Approvals of the Ethical Committee
in Human Research of University of Granada and Ethical Commission and Health Research of San
Cecilio University Hospital in Granada were achieved.

2.4. Subjects

Eighteen healthy women were recruited from their routine medical visits during pregnancy,
and TW technique explorations were performed in the Fetal Medicine Unit. The entire population of
women in the study had pregnancies without any complication with a median of 26.4 (16 weeks to
35 weeks + 5 days) gestation weeks, and there was no twin pregnancy. A statistical power analysis was
designed to estimate the size of the population. A multivariate continuous regression with a power of
80%, estimated significance in a two-tail distribution, and a recommended effect size ES = 0.30, yielded
a sample size of 17 subjects. Exclusion criteria were multiple pregnancies, previous cervical surgeries
and patients with information relative to malignant changes in the cervical tissue. All women enrolled
in the evaluation provided agreement by signing a written consent and reading the information of the
patient report.

For the exploration with TW technique, the participants emptied their bladder before the
exploration and then were placed in the dorsal lithotomy position. The intravaginal device was allocated
in contact with the cervical internal OS (see Figure 1). The measurements of cervical length were obtained
by a transvaginal sonography probe, which was directed in the anterior fornix. A sagital view was
obtained. Three TW technique and cervical length measurements per women were performed.

Emitter

Receiver

Torsional
  Waves

Cervix

Figure 1. Schematic diagram for the exploration with TW technique.

2.5. Torsional Wave Technique

Elastography quantification was achieved by the TW probe [26–28], which generated waves
under safe threshold of energies. The device consisted in three parts: a torsional wave sensor (probe),
an electronic system for generating and receiving the signal, and an interface software (Figure 2).

The probe was manufactured in 2017 and was composed of: (1) an electromechanical actuator
which deleted electronic cross-talk [23]; (2) a receiver based on two polylactic acid rings where the
piezoelectric elements were fitted; and (3) a case to contain the emitter and the receiver. The shear
modulus was obtained assuming an elastic and incompressible medium by the following equation,

μ = ρc2
s (1)

where ρ is the density of the medium and cs is the torsional wave velocity, which is based on shear
wave group velocity.
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The excitation signal was a burst composed of a one-cycle frequency f ranging from 0.5 to 1.5 kHz
with 10× averaging. The frequencies were chosen according to the results obtained in the work carried
out by Callejas et al. [23].

Figure 2. The prototyped TW probe.

An example of three different emitted and received signals is shown in Figure 3. The shear
wave group velocity calculation algorithm was based on dividing the distance by the torsional wave
time-of-flight. The signals were preprocessed by a low-pass filter close to the central frequency of the
received signal. The time of flight was computed using three procedures: (1) searching the first time
the signal raises 30% above zero; (2) subtracting a quarter of the period (inverse of the received signal
central frequency) from the first peak; and (3) subtracting three quarters of the period (inverse of the
received signal central frequency) from the second peak. All three methods provided similar estimates
of the velocity, as shown in the results.
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Figure 3. Example of three emitted and received 1 kHz signals.
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Safety Considerations

A new medical diagnostic equipment needs to follow the specifications described in the Food and
Drug Administration (FDA) guidelines [29] for the application in clinical practice. It is necessary that
the Torsional Wave technique be safe for humans. There are three parameters that should be evaluated
according to the acoustic output in the use of Fetal Imaging and Other (FDA): the mechanical index
(MI < 1.9), the spatial peak pulse average intensity (ISPPA < 190 W/cm2), and the spatial peak
temporal average intensity (ISPTA < 94 mW/cm2). The calculation of these parameters was made
as follows:

MI = PRP/
√

Fc (2)

where PRP is the peak rarefractional pressure of the torsional wave in (MPa) and Fc is the center
frequency (MHz).

ISPPA = P2
0 /(2 ∗ ρ ∗ c) (3)

where P0 is the maximal acoustic pressure generated by the electromechanical actuator, ρ is the density
of the medium, and c is the sound speed in the medium.

ISPTA = ISPPA ∗ Δt/1 (4)

where Δt is the excitation pulse duration.
The three parameters were experimentally estimated. The excitation signal used was a

low-frequency ultrasonic sine-burst at a central frequency of 1 kHz, consisting of one cycle of 1 ms and
16 Vpp amplitude. This excitation signal was generated by a wave generator (Agilent 33220A, Santa
Clara, CA, USA). The response signal was registered using a decibel sensor (YH-610 Environment
Multimeter). The signal traveled through a water layer before arriving to the decibel sensor and
different distances from 5 cm to 0 cm. To convert the pressure recorded by the decibel sensor into water
acoustic pressure, the equation that relates the impedances of the two media (air–water) was used:

T =
2 ∗ Zair

(Zair + Zwater)2 (5)

where T is the transmission coefficient and Zair and Zwater are the acoustic impedance of the air and
water, respectively.

2.6. Statistic Analysis

The evolution of cervical stiffness tissue during pregnancy was quantified. Normal distribution
of the data was checked for each velocity calculation algorithm by the normal quantile–quantile plot
(Q–Q plot) and the Shapiro–Wilk test. The mean values for each velocity calculation procedure were
compared to the normal distribution of these values. The coefficient of determination (R2) for linear
regression analysis was calculated to provide the correlations: (a) between gestational age and cervical
velocity (cs) using 0.5, 1 and 1.5 kHz torsional waves, for the three velocity calculation algorithms;
(b) between gestational age and cervical length; and (c) between stiffness and cervical length. Data were
analyzed using the MATLAB (Release 2014b Mathworks, Natick, MA, USA). T-test was calculated to
estimate p-values. A statistically significance for p < 0.05 was assumed.

3. Results

The experimental results obtained to evaluate the three security parameters according to the Food
and Drug Administration guidelines were as follows.

The maximum pressure registered after converting the pressure recorded by the decibel sensor
into water acoustic pressure was 3.99 × 10−5 MPa. The maximal acoustic pressure and the peak
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rarefractional pressure of the torsional wave in water was P0 = 3.99 × 10−4 bars. The three previous
parameters were obtained with the cited experimental conditions:

MI = 0.0013 < 1.9 (6)

ISPPA = P2
0 /(2 ∗ ρ ∗ c) = 5.3 W/cm2 < 190 W/cm2 (7)

considering the density of the medium ρ = 1000 kg/m3, and the sound speed in the medium 1500 m/s.

ISPTA = ISPPA ∗ Δt/1 = 5.3 mW/cm2 < 94 mW/cm2 (8)

A normal distribution for the three velocity calculation procedures was found through Q–Q test
(Figure 4) and Shapiro–Wilk test. The obstetric characteristics of the population in the study are shown
in Table 1.
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(a) The first velocity calculation procedure
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Figure 4. Cont.
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(c) The third velocity calculation procedure

Figure 4. Normal quantile–quantile plots for the three velocity calculation procedures.

Table 1. Features of the population in the study.

Characteristics Value

Total population (N) 18
Gestational age at test (weeks) 26.4 (16 weeks to 35 weeks + 5 days)
Nulliparous (N) 2 (11 %)
Cervical length (mm) 33 (10–49)

Three measurements of TW stiffness and cervical length per subject were determined from all
women. Box plots of these data observed in each patient were calculated and a linear regression was
fitted with 80% confidence intervals (see Figure 5). In this work, the three frequencies were used to
study the effect of attenuation on the cervical tissue. The selected frequency configuration was 1 kHz,
which was the optimal measure to yield the highest amplitude signals, the best shear wave speed
reconstructions and a significant correlation with gestational age. In some measurements, frequencies
≥ 1.5 kHz, yielded amplitudes of signal similar to the amplitude of noise probably due to attenuation,
and consequently anomalous values of the cervical stiffness were obtained. In contrast, the noise
masked the amplitude of the signal in some data with frequencies ≤ 0.5 kHz. All missing data were
due to signal noise.

The decrease of the stiffness was computed from the data in Figure 5 using Equation (1). The error
bars are estimated from the three velocity estimation algorithms described in the methods. The three
overlapping regressions (continuous and dashed lines in Figures 5–7) correspond to each velocity
estimation algorithms.

Similar correlations are shown in Figures 6 and 7 for 1.5 kHz and 0.5 kHz, respectively, where some
of the measurements were rejected due to noise in the signal. A stronger association between gestational
age and cervical stiffness was found (R2 = 0.370, p = 0.0074, Figure 5) compared to gestational age and
cervical length correlation (R2 = 0.025, p = 0.6043, Figure 8).
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Figure 5. Relationship between cervical stiffness assessed by shear wave speed using 1 kHz waves and
gestational age at time of examination.
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Figure 6. Relationship between cervical stiffness assessed by shear wave speed using 1.5 kHz waves
and gestational age at time of examination.
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Figure 7. Relationship between cervical stiffness assessed by shear wave speed using 0.5 kHz waves
and gestational age at time of examination.
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Figure 8. Relationship between cervical length and gestational age at time of examination.

No high associations (R2 < 0.5 for all cases) and no significant correlation (p > 0.05) were obtained
between stiffness and cervical length (Figure 9).
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Figure 9. Relationship between cervical stiffness and cervical length.

4. Discussion

This study focused on assessing the feasibility of torsional wave technique to quantify the changes
in cervical stiffness during pregnancy, which were measured by shear wave speed. The presented
results show, for the first time in vivo, the viability of torsional waves to objectively measure cervical
elasticity in pregnant women. The observed data therefore support Hypothesis 1 that torsional wave
technique has the capacity to quantify cervical stiffness defined by its elastic modulus.
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The presented observations also support Hypothesis 2 that shear stiffness decreases during
pregnancy. Cervical stiffness was shown to significantly decrease with gestational age, which is
compatible with observations by former researchers that assessed cervical ripening by different
techniques [8,30–32]. A gradual reduction from about 40 kPa at the beginning of pregnancy to close
to zero at delivery was obtained in the study carried out by Peralta et al. [30]. A correction due to
the difference of range of shear wave frequencies of ARFI was considered, about a higher order of
magnitude, which affect the apparent stiffness given the viscoelastic behaviour of cervical tissue. Thus,
cervical ripening is directly related to the time to delivery. Correlation between cervical stiffness and
gestational age assessed by TW technique showed a higher correlation to gestational aged compared
to quantification through shear wave speed (SSI) (R2 = 0.37 vs. R2 = 0.29) [12].

A weaker correlation was found between cervical stiffness and cervical length than with
gestational age, which is compatible with previous studies [11,30], using dynamic and quasi-static
elastography, respectively, but contrary to observations by Hernandez-Andrade et al. [16], who found
that associations between cervical tissue strain and cervical length was higher than with gestational age.
This inconsistency feeds a debate, which could be at least partially explained by the inherent limitations
of the commercially available quasi-static elastography technologies [14–17], as this technique provides
a qualitative estimation of the cervical stiffness through an indirect measurement.

The experiment results support that TW technique is safe to be used in pregnant women. All the
values obtained were far below the thresholds according to the Food and Drug Administration (FDA)
guidelines reference parameters in Fetal Imaging and Other. The mechanical index (MI) was 0.0013
(<1.9), the spatial peak pulse average intensity (ISPPA) was 5.3 W/cm2 (<190 W/cm2), and the spatial
peak temporal average intensity (ISPTA) was 5.3 mW/cm2 (<94 mW/cm2).

The limitations of this research are linked to the nature of propagation of torsional wave in
cervical tissue as well as its complex microarchitecture. Some mechanical hypotheses have been raised
in the literature about the hystologic features of the cervix to estimate the shear stiffness elasticity,
assuming homogeneous, non viscous, isotropic and semi-infinite medium [20,33–36]. The equation
employed in this study to estimate the cervix stiffness is only based on shear wave group velocity.
However, the behavior of cervical tissue is dispersive, that is, the higher are the shear wave frequencies,
the higher are the shear waves speeds and, therefore, phase–velocity-based techniques would lead to a
direct calculation of shear modulus. The time-of-tflight technique measured the shear wave group
velocity, which is dependent on the envelope of the propagating elastic wave.

Finally, due to the exploratory nature of this study about the feasibility of torsional wave technique
to assess cervical maturation, a small population of patients was recruited. To extend the validity
and reliability of the proposed technology, larger complementary studies are needed. The protocol
of measurements by TW technique will be enhanced by applying the optimal contact conditions
between the probe and the cervix [37]. We are positive that torsional waves are a tool with potential to
objectively diagnose early cervical ripening disorders and preterm birth.

5. Conclusions

The presented experimental observations prove that, firstly, cervical stiffness was a valuable
predictor variable of gestational age at the moment of evaluation. Secondly, TW technique is a tool
that allows quantifying cervical shear stiffness during pregnancy. Finally, this technique is safe to be
used in pregnant women.

TW technique might provide clinically relevant data on the cervical ripening in addition to that
obtained from digital exploration and standard sonography. Further research is required to assess
the TW technique feasibility in obstetric evaluations, such as probabilistic inverse problems based on
viscoelastic models for the prediction of preterm delivery and labor induction failure.
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Abstract: Grasping is one of the first dominant motor behaviors that enable interaction of a newborn
infant with its surroundings. Although atypical grasping patterns are considered predictive of
neuromotor disorders and injuries, their clinical assessment suffers from examiner subjectivity,
and the neuropathophysiology is poorly understood. Therefore, the combination of technology with
functional magnetic resonance imaging (fMRI) may help to precisely map the brain activity associated
with grasping and thus provide important insights into how functional outcomes can be improved
following cerebral injury. This work introduces an MR-compatible device (i.e., smart graspable device
(SGD)) for detecting grasping actions in newborn infants. Electromagnetic interference immunity
(EMI) is achieved using a fiber Bragg grating sensor. Its biocompatibility and absence of electrical
signals propagating through the fiber make the safety profile of the SGD particularly favorable for
use with fragile infants. Firstly, the SGD design, fabrication, and metrological characterization are
described, followed by preliminary assessments on a preterm newborn infant and an adult during
an fMRI experiment. The results demonstrate that the combination of the SGD and fMRI can safely
and precisely identify the brain activity associated with grasping behavior, which may enable early
diagnosis of motor impairment and help guide tailored rehabilitation programs.

Keywords: fiber Bragg grating sensors (FBGs); functional magnetic resonance imaging (fMRI);
grasping actions detection; motor assessment; MR-compatible measuring systems
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1. Introduction

Human infants exhibit a range of spontaneous movements and primitive reflexes as they develop
across the first few months following birth. Among these, the grasping reflex is considered a key
behavior that enables their first interactions with their surroundings [1]. The absence of such a reflex
during the first days after birth or its long-lasting persistence after sixth months of age is associated with
underlying brain injury and considered to be predictive of later neuromotor impairment, e.g., cerebral
palsy (CP) [2]. For this reason, clinical assessment tools for neurodevelopment disorders and brain
abnormalities in the infant period (particularly for those born preterm or at high risk of developing
later CP) usually incorporate a component that involves eliciting the grasp reflex [3,4].

Clinical assessment of palmar grasp is currently performed by applying light pressure on the
infant’s palm with an object or the examiner’s finger to induce hand closure. This approach is entirely
qualitative and based on the use of functional scales and the examiner’s expertise [5] and is therefore
potentially affected by inter-rater variability [6]. Furthermore, whilst clinicians and physiotherapists
may develop discriminative experience about the quality of this reflex, they will still lack the
sensitivity to identify subtle features not perceivable by a human observer (e.g., the discrimination
of active/passive touch or the quantitative measurement of grasping strength and holding time).
Therefore, a quantitative measure of grasping actions may provide new and valuable information about
infant motor behavior. Consequently, there is a pressing need for new technologies that could enable
the accurate measurement of grasping behavior and thus objectively evaluate sensorimotor function
in the newborn. The use of such a technology could provide further insights into the relationship
between motor behavior and underlying patterns of brain activity when combined with neuroimaging
techniques [7]. This knowledge may be crucial in the context of early brain injury at a time when there
is a high capacity for compensatory neural plasticity and thus the potential to improve functional
outcome through patient-specific tailored therapies [8,9].

Functional magnetic resonance imaging (fMRI) allows for the non-invasive study of human brain
function and has been successfully applied even with very young subjects [10–13]. In a typical fMRI
experiment, brain responses when performing a task (which can be either an active action or passive
stimulation) are identified by measuring temporal changes in the blood oxygen level dependent (BOLD)
signal. However, a large challenge in performing fMRI studies with newborn infants is designing and
effectively providing a task to this inherently uncooperative population. Technology can potentially
resolve this difficulty and enable fMRI studies by allowing precise patterns of safe stimulation or
accurate measures of spontaneous behavior while the subject is inside the scanner [6,8].

With the advance of sensor technology, several solutions have been proposed to quantitatively
assess grasping behavior in infants and thus remove subjectivity. The majority of these studies have
utilized technologies to assess grasping behavior in terms of strength and holding time, as well as
to investigate the relationship between grasping pattern and intrinsic (e.g., infant gender, weight,
premature births) and extrinsic factors (e.g., object shape and texture) [14,15]. The aforementioned
measuring systems have used pressure transducers based on electrical components which are unusable
inside the MRI scanner [6,16–19]. MR-compatible technology requires unconventional solutions to
ensure safety due to the strong static magnetic field and avoid electromagnetic interference (EMI),
with further attention required for successfully imaging infant subjects. Fiber Bragg gratings (FBGs)
may be a solution to overcome this issue [20]. They are highly sensitive, small-sized, light, non-toxic,
and immune to EMI [21]. Therefore, these features meet the technical and clinical requirements
(e.g., MR-compatibility and safety) of devices for detecting and measuring grasping in preterm and
term neonates both inside and outside the MRI scanner [6].

To date, only a few studies have systematically investigated functional brain activity in newborn
infants using assistive technologies [8,9]. In [16], a customized robotic interface was used to passively
move the limbs of preterm infants and identify the corresponding brain responses within the
sensorimotor cortex. This study showed that the human brain is already functionally organized even
at a very young age and paved the path for future investigations of task-related functional responses
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in preterm infants. Whilst the authors investigated the somatosensory response related to passive
movements, they were unable to detect grasping actions.

The present study aims to develop an FBG-based measuring system (hereinafter called the smart
graspable device (SGD)) to detect grasping actions in newborns. The SGD consists of an FBG sensor
encapsulated into a soft silicone matrix. The FBG ensures that the device has EMI and the ideal
safety profile for working with infants and inside the MRI environment. The device softness and
cylindrical shape mimicking the ones of a finger additionally provides easy affordance and usability.
Assessing grasp with the proposed device is based around the principle of the transduction of external
forces (Fext) applied by an infant’s hand on the device into grating strain (ε) via squeezing and releasing
of the silicone. In this paper we firstly described the design and fabrication of the proposed device
so as to fulfill all technical and clinical requirements according to the target population (i.e., preterm
and term newborns). Then, the sensitivity of the SGD to Fext was estimated. Finally, two preliminary
trials were carried out to investigate the performances of the proposed device when used by a preterm
infant in the neonatal intensive care unit and an adult during an fMRI experiment.

2. Basic Requirements and Components of the Smart Graspable Device

2.1. Technological and Clinical Requirements

Designing a sensing device able to detect natural grasping actions and work simultaneously
within an fMRI experiment is very challenging. Furthermore, there are additional constraints set by
the target population (i.e., preterm and term newborn infants), which are not fulfilled by the majority
of devices currently proposed in the literature [6,22]. In addition, the electromagnetic field inside the
MRI environment can affect the working capability of most electronic devices proposed for grasp
measurements and can induce currents in metal loops leading to infant contact burns [23,24]. In the
same way, ferromagnetic elements widely used as components of electronic graspable devices may
cause artefacts on the MRI images themselves, affecting diagnostic image quality [25].

As newborn infants are inherently uncooperative subjects, a further requirement of the device is
that their natural movements can be safely measured under natural conditions [6,19]. To allow for
handling by a newborn infant, the proposed tool should be small and lightweight, and its shape should
be appropriate to improve engagement and encourage palmar grasping [26]. Moreover, high sensitivity
to a low range of loads is necessary to detect the hand closure of a newborn infant, as well as being
biocompatible and easily cleaned to reduce the risk of cross-infection between subjects [15,27].

To meet all of these technical and clinical requirements, an FBG sensor was chosen as the sensing
element. A flexible and non-toxic silicone rubber (i.e., Dragon Skin™ 10) was used as a squeezable
matrix to encapsulate the FBG sensor [28]. Lastly, a polylactic acid (PLA) structure characterized by
a linkage mechanism filled with the soft silicone was designed according to the index finger dimensions
of an adult human, as this is typically used to insert into the infant’s palm to elicit the grasping reflex.
The proposed solution is highly sensitive, robust, safe, affordable, and infant-friendly.

2.2. Fiber Bragg Gratings Working Principles

An FBG sensor is a distributed Bragg grating inscribed into a short segment of an optical fiber
produced by creating a perturbation of the effective refractive index (ηeff) of the fiber core. In its
simplest form, this periodic perturbation is sinusoidal with Λ, the constant grating pitch.

Generally, an FBG works in reflection as a notch filter; when a broadband spectrum of light is
guided within the core and hits on the grating segment, a smooth Gaussian-shaped narrow spectrum
is reflected and represents the output of the FBG. The center of the reflected Gaussian peak is known as
the Bragg wavelength (λB) and satisfies the Bragg condition [29].

λB = 2 ηeffΛ (1)
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Strain along the fiber longitudinal axis (ε) and temperature changes (ΔT) induce variations of Λ
and ηeff, which result in a λB shift (ΔλB) as in

ΔλB = λB [(1 − Pe) ε + (αΛ + ξ) ΔT] (2)

The first term of Equation (2) represents the ε effect on the grating, with Pe the effective strain-optic
constant; the second term represents the ΔT effect, with αΛ and ξ denoting the thermal expansion
and the thermo-optic coefficients of the fiber, respectively. When the effects of ΔT are negligible,
Equation (2) in [29] can be rewritten as

ΔλB = λB (1 − Pe) ε (3)

In this work, the SGD is able to detect grasping forces applied by a newborn infant through the
compression of the silicone encapsulation that allows transducing loads applied on the device into
longitudinal ε experienced by the FBG.

Based on the need for a physical connection to a dedicated device (i.e., the FBG interrogator) for
enlightening the gratings and reading their outputs, a patch cord can be used to connect the FBG-based
device inside the MRI scanner to the interrogator placed in the control room. This connection allows
separation of the SGD inside the MRI scanner room from the measuring circuitry located in the
control room.

2.3. Dragon Skin™ Silicones

Dragon Skin™ materials (commercialized by Smooth On Inc., Macungie, PA, USA) are
platinum care bicomponent silicone rubbers used in a variety of scenarios, including medical fields
(e.g., in prosthetics as cushioning materials and in physiological monitoring for flexible sensor
development [30,31]). They are highly compliant and highly flexible. Moreover, they are skin safe in
compliance with ISO 10993-10 (Biological evaluation of medical devices—Part 10: Tests for irritation
and skin sensitization) [28,32].

Dragon Skin™ silicones are commercialized as liquid silicone rubbers in the form of an elastomer kit
containing two components (A and B). Part A contains the platinum catalyst, part B the crosslinker [33].
The manufacturer recommends mixing Dragon Skin™ silicones in the proportion of 1A:1B by weight
and thinning the liquid formulation with Silicon Thinner™ to lower the viscosity of the mix for easier
pouring and vacuum degassing [34]. Curing temperature and time are also defined in the technical
bulletin. Dragon Skin™ silicones are commercialized in different hardnesses expressed in terms of
Shore A Scale: 10 (Very Fast, Fast, Medium, Slow), 20, and 30, with curing time ranging from 4 min to
45 min according to the silicone hardness.

In this work, the mechanical properties of Dragon Skin™ 10 Medium, 20, and 30 were investigated
in terms of stress–strain properties. To better quantify the compression behavior of Dragon Skin™
silicones, the Young modulus E (expressed in MPa) was calculated to facilitate the selection of the
material that best satisfies all the requirements mentioned above. Considering the scenario of interest
and target population, the application of low squeezing forces will induce a compression on the silicone
rubber with ε values lower than 10% of the rubber sample (l0). Thus, the stress–strain relationship can
be described by Hooke’s law [33]:

σ = E ε (4)

where σ is the stress (i.e., the external force applied to the sample per its cross-sectional area) and ε is
calculated as (l − l0)/l0.

The standard ISO 7743:2017 (Rubber, vulcanized or thermoplastic—Determination of compression
stress–strain properties) was used for defining the dimensions of the cylindrical pieces used for the
compression tests. The test piece B (method C) with a diameter of 17.8 ± 0.2 mm and a height of
25.0 ± 0.2 mm was chosen [35]. Dragon Skin™ 10 Medium, 20, and 30 were poured into a cylindrical
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mold designed in Solidworks (Dassault Systemes, Waltham, MA, USA) and 3D printed using PLA.
As suggested by the technical bulletin, the curing process was carried out at room temperature for
5 h, 4 h, and 16 h for Dragon Skin™ 10, 20, and 30, respectively. A total of fifteen specimens were
fabricated, five pieces for each hardness level.

Compression tests were carried out using a testing machine (Instron®, Norwood, MA, USA,
model 3365, load cell with a range of measurement of ±10 N, an accuracy of 0.02 N, and a resolution of
10−5 N) to apply controlled ε values (from 0% to 25% of l0 as suggested by the standard ISO 7743:2017)
in a quasi-static condition (at a low displacement rate of 2 mm·min−1). The static assessment of each
specimen was executed by positioning the cylinder-shaped sample between the lower and the upper
plates of the machine, as shown in Figure 1. A total of five repetitive compression tests were carried out
at room temperature for a total of twenty tests per sample. The loads and the displacements applied
by the compression machine to the specimen were recorded at a sampling frequency of 100 Hz using
Instron® Bluehill Universal software.

Figure 1. Set-up of the compression tests (a): the cylinder-shaped sample between the lower and the
upper plates of the Instron machine and the initial sample length before (l0) and during the compression
(l) are illustrated ((b,c), respectively). The top plate moves at constant speed parallel to the x-axis (c).

The stress–strain relationships (σ vs. ε) of each Dragon Skin™material were obtained by processing
the collected data through a custom algorithm. The mean value of experimental σ (σexp) and the
repeatability of the system response were determined by calculating the related uncertainty across the
twenty tests by considering a t-Student reference distribution with 19 degrees of freedom and a level
of confidence of 95% [36]. The best fitting line of the calibration curve was obtained, and its angular
coefficient was calculated to estimate E. Lastly, the linearity error was calculated by using Equation (5)
in terms of the maximum linearity error (% uL

max).

% uL
max = {max [σexp (ε) − σth (ε)] · σfs

exp
−1} · 100 (5)

where σfs
exp is the full-scale output range, σexp(ε) the experimental stress experienced by the sample at

a specific ε, and σth(ε) is the theoretical stress obtained by the linear model at the same ε value.
Results showed E values of 0.24 MPa, 0.47 MPa, and 0.74 MPa for Dragon Skin™ 10, 20, and 30,

respectively (see Figure 2). R-square (R2) values higher than 0.98 were found for all the responses,
and linearity errors of 5.7%, 7.8%, and 8.9% were obtained for Dragon Skin™ 10, 20, and 30, respectively.

Our results quantified the mechanical properties of Dragon Skin™ in terms of compression
behavior. As expected, Dragon Skin™ 10 was found to be more flexible than Dragon Skin™ 20 and
Dragon Skin™ 30. In particular, the E value of Dragon Skin™ 10 was approximately half that of
Dragon Skin™ 20 (i.e., 0.24 MPa vs. 0.47 MPa) and one-third that of Dragon Skin™ 30 (i.e., 0.24 MPa
vs. 0.74 MPa). The high R2 values (for all tests R2 > 0.98) indicated good agreement between the
experimental data and the linear model. Moreover, the Dragon Skin™ 10 response showed the best
linear behavior as testified by the % uL

max value (i.e., 5.7%), which was lower than those of Dragon
Skin™ 20 (i.e., 7.8%) and Dragon Skin™ 30 (i.e., 8.9%), as shown in the respective plots in Figure 2.
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Finally, Dragon Skin™ 10 showed the best results in terms of uncertainty (maximum uncertainty of
0.004 MPa) when compared to Dragon Skin™ 20 (i.e., 0.01 MPa) and Dragon Skin™ 30 (i.e., 0.007 MPa).

Figure 2. The σ–ε relationships for Dragon Skin™ 10, 20, and 30 are shown in blue (a), red (b), and green
(c), respectively. In particular, the continuous lines represent the average σexp values, the shaded
areas the related uncertainties, and the black dotted lines the σth values obtained by the best linear
fitting model.

These findings demonstrated that Dragon Skin™ 10 is best suited to meet the technical requirements
of the SGD, particularly given the expected low ranges of Fext applied by newborn infants, which would
likely require high flexibility; Dragon Skin™ 10 allows the SGD to be easily squeezed by a newborn for
the Fext transduction into grating ε.

3. The Smart Graspable Device

3.1. Design and Manufacturing of the Smart Graspable Device

The idea behind the system design and manufacturing was based on the need for it to be sensitive
enough to detect Fext applied by the infant and able to transduce Fext into grating ε measured by the
FBG sensor. At the same time, the device should be robust and safe enough to be handled and grasped
by a newborn infant in a variety of settings.

The medium consists of a PLA-based structure characterized by a linkage mechanism and filled
by flexible silicone (i.e., Dragon Skin™ 10). The transduction mechanism exploits four-bar linkages
hinged to the PLA structure ends to convert the applied Fext into ε via the silicone squeezing and
releasing. When the newborn infant grasps the device, the silicone is squeezed and the FBG is strained;
it is then unstrained once the SGD is released again (see Figure 3).

Figure 3. The smart graspable device (SGD) principle of working during grasping: squeezing (in red)
and releasing (in blue) phases.

The PLA structure is a hollow cylinder made up of two semi-cylindrical pieces (see Figure 4A,B).
Each piece is constituted of two end parts perpendicularly spaced by two bar linkages (40 mm of length,
4.2 mm of width, and 1 mm of depth). The bar linkages are hinged along the ends with a uniform
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interval of 60◦ to form a symmetrical structure (Figure 4A, top and front views). One semi-cylinder has
a 10-mm long conduit to accommodate the jacket (yellow cable in Figure 4B). The jacket is the last
layer of protection of the optical fiber from the end of the PLA structure to the interrogation unit.

The outer diameter of the PLA structure is 12 mm, and its overall length is 50 mm,
which corresponds roughly to the dimensions of a human finger. The sensing element embedded into
the PLA structure consists of an FBG sensor (λB of 1547 nm and grating length of 10 mm, commercialized
by AtGrating Technologies, Shenzhen, China) configured with the middle part of the optical fiber
encapsulated into a Dragon Skin™ 10 silicone matrix.

The encapsulation was fabricated as follows:

1. the optical fiber was tightly suspended inside the PLA structure by firmly gluing its two ends
inside the small grooves fabricated at the center of the structure ends. This configuration utilized
pre-tension to keep the FBG in a stretched state in order to improve its resolution and sensitivity
(stage 1 in Figure 4B);

2. the PLA structure was placed inside a mold to allow cavity filling without any silicone spilling.
The silicone rubber was synthesized by mixing A and B liquid components of Dragon Skin™
polymer at a ratio of 1:1; the mix was degassed and poured into the cavity (stage 2 in Figure 4B);

3. a curing process of 5 h was carried out at room temperature, as suggested in the technical
bulletin [28], to allow the silicone rubber vulcanization before extracting the SGD from the mold
(stage 3 in Figure 4B).

Figure 4. (A) The geometrical features of an SGD; (B) The main manufacturing steps: the FBG sensor
positioning (step 1), the silicone mixture pouring (step 2), and the SGD removed from the mold after
the rubber vulcanization (step 3).

Two nominally identical SGDs (from now on referred to as SGD1 and SGD2) were developed
following the same manufacturing stages previously described.

To improve the SGDs usability during fMRI, both the devices were designed to also be able to
instrument an already existing fMRI-compatible robotic interface for conducting experiments with
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newborn infants described in [8,9]. This interface was designed to accommodate the infant’s forearm
on a central non-sensitive platform and to passively guide the flexion and extension of the infant wrist
while the hand was wrapped around a bar. The instrumentation of the robotic interface with the
proposed SGD was performed by switching the non-sensorized handlebar with the SGD, thus allowing
the investigation of brain activity related to grasping and spontaneous movements (Figure 5A,B).
To fit the SGD to the robotic interface, two temporary PLA-based anchoring systems were fabricated
(see Figure 5A). The anchoring mechanism was designed to allow quick and easy fitting of the SGD
according to the fMRI investigation being performed.

Figure 5. (A) A detail of the anchoring system elements designed to allow fitting of the SGD within an
already existing robotic interface; (B) the SGD together with the robotic interface.

3.2. Metrological Characterization of the Smart Graspable Device

To estimate SGD sensitivity to Fext (SF), compression tests were performed by using a tensile
testing machine (Instron, model 3365, load cell with a range of measurement of ±10 N, an accuracy of
0.02 N, and a resolution of 10−5 N). The blocking system shown in Figure 6 was designed to avoid
any axial rotation of SGD during the application of loads on the SGD bars. This system consisted of a
support plate with two clamps to securely lock the SGD through M4 fixings.

Each sensor (i.e., SGD1 and SGD2) was placed on the lower base of the machine blocked to the
support place by using the 3D-printed clamps. External loads in the range 0 N–2 N were applied
on each bar of the SGD at a low compression rate of 2 mm·min−1 to simulate quasi-static conditions
(see Figure 6).

Figure 6. The SGD in the blocking system, the load cell, and the mechanical indenter are shown (a).
A schematic representation of the SGD between the lower and the upper plates of the Instron machine
is illustrated (b). The top plate moves at constant speed parallel to the x-axis (c).

The load was applied to the center of each bar by using a mechanical indenter (5 mm diameter).
A total of five compression tests were performed on each of the four bars for a total of 20 tests. Once the

140



Sensors 2020, 20, 6040

five tests related to a single bar ended, the SGD was rotated 90◦ along its longitudinal axis, re-blocked
to the support, and the second bar was loaded. The same procedure was repeated for the remaining
two bars. The SF value of each SGD was found averaging the twenty responses of all the bars to the
applied loads.

During each test, the output from the tensile machine was collected at a sampling frequency of
100 Hz. The ΔλB values were simultaneously recorded using the optical spectrum interrogator (si255,
Hyperion Platform, Micro Optics Inc., Atlanta, GA, USA) at the same sampling frequency.

The calibration curve (ΔλB vs. Fext) was obtained by processing the collected data through a custom
algorithm to evaluate the average value of ΔλB vs. Fext. The first step was the synchronization of the
experimental values of ΔλB and Fext. Then, both the average value and the expanded uncertainty of
ΔλB were calculated across the twenty tests. The expanded uncertainty was calculated by using a
t-Student reference distribution (with 19 degrees of freedom and a level of confidence of 95%). Finally,
a linear regression to find the equation of the line which best fits the experimental data (i.e., ΔλB vs.
Fext) was performed. Its slope represents the SF value for SGD1. The same procedure was followed for
SGD2 (see Figure 7).

Results showed a SF value of ~0.23 nm·N−1 for both devices, suggesting a good reproducibility of
the fabrication process. Moreover, an R2 > 0.99 indicated excellent agreement between the experimental
data and the linear fitting model.

Figure 7. The ΔλB vs. Fext of SGD1 (a) and SGD2 (b): in continuous magenta lines the average ΔλB vs.
Fext responses, in shaded magenta areas the related uncertainties, and in dotted black lines the best
linear fitting.

4. Experimental Validation of the Smart Graspable Device

To assess the proposed SGDs performance in a real scenario, two explorative tests were performed
with a newborn infant and an adult subject. Given the high agreement in SF values between SGD1

and SGD2, SGD1 was used for the following tests and for simplicity is now referred to as SGD. First,
an explorative test was performed on a healthy newborn infant in the neonatal intensive care unit of
St. Thomas Hospital (London, UK) to test compatibility of the SGD and assess its ability to detect a
newborn infant’s grasp. A further explorative trial within an fMRI experiment was then carried out to
validate the device performances inside the MRI scanner and to confirm that activation within the
brain areas associated with the grasping action detected by SGD could be identified with fMRI.

4.1. Experimental Trial on a Newborn: Protocol and Results

To assess the capability of SGD to detect grasping behavior in newborn infants, three healthy
infants were recruited at St Thomas’ Hospital (London, UK). Of them, only one infant (gestational age
at birth: 36 weeks + 6 days, postmenstrual age at the time of recording: 37 weeks + 2 days) was in
a suitable awake state at the time of the recording. The study was approved by the NHS research
ethics committee (REC code: 12/LO/1247), and informed written consent was obtained from parents
prior to participation. A neonatal physiotherapist under the supervision of a physician handled
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the SGD and applied light pressure on the infant’s palm to induce hand closure around the device
and elicit grasping behavior. Data from the SGD were collected using the FBG interrogator (si425,
Micron Optics Inc., Atlanta, GA, USA) at a sampling frequency of 250 Hz, and a video used as reference
was simultaneously recorded using a camera (Handycam, Sony, Minato-ku, Tokyo, Japan).

After data acquisition, the physiotherapist and the physician checked the recorded video to
identify the time windows corresponding to the grasping action performed by the newborn infant.
A total of five grasping events were identified (see Figure 8A).

Figure 8. (A) Video frames of grasping actions identified by the clinicians; (B) the related signals
collected by the SGD. Grasps actions are enumerated from 1 to 5.

Those time windows were then used to highlight changes in the SGD output associated with
grasping actions. The signal showed evident peaks during the specific time windows related to
presumed SGD squeezing and releasing actions (see Figure 8B). Results showed ΔλB values ranging
from 0.04 nm to 0.11 nm that corresponded to forces ranging from ~0.17 N to ~0.48 N.

4.2. Experimental Trial on an Adult during fMRI: Protocol and Results

The second trial was performed on a healthy volunteer (32 years old, adult female volunteer)
inside a 3 Tesla MRI scanner (Philips Achieva, Best, The Netherlands) located at St Thomas Hospital
with a 32-channel receive head coil. High resolution structural T1-weighted and T2-weighted images
were acquired for image registration purposes. BOLD contrast fMRI data with an EPI GRE sequence
with parameters: x/y/z resolution: 3.5 mm × 3.5 mm × 6 mm; TR: 1500 ms; TE: 45 ms; FA 90◦.

The subject was studied with her right hand fitted inside the instrumented robotic interface
described in [8,9] with the right index and middle fingers strapped to the SGD on the handle bar.
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The subject was then asked to use their two fingers to apply a brief force on the SGD at spontaneous
and random times during an acquisition session lasting 225 s (corresponding to 150 images). The SGD
signal was collected using the FBG interrogator (si425, Micron Optics Inc., Atlanta, GA, USA) at
a sampling frequency of 250 Hz, and the recording started synchronously with the fMRI image
acquisition so that the timing of task could be related to the fMRI timeseries. The task was designed
to simulate a situation in which the experimenter is unaware of the timing of the task inside the
scanner, as would be the case when studying spontaneous motor behavior in infants but can obtain this
information from the output of the SGD. The experimental set-up and data flow are shown in Figure 9.

Figure 9. Experimental set-up of fMRI trial with the data flow: the MRI scanner (a), the patient (b),
and the robotic interface instrumented by the SGD (c) in the scanner room, and the workstation (d),
the FBG interrogator (e), and the laptop (f) in the control room. Digital and analogue data flows
between the scanner and control rooms are shown using blue and red arrows, respectively.

The acquisition volume trigger markers (via a TTL pulse) were transmitted to the scanner
workstation and used offline to synchronize the fMRI data with the signal recorded by the SGD.
Data from the SGD were analyzed in the MATLAB R2019b environment (Mathworks, Natick, MA,
USA). As shown in Figure 10A, the device was able to detect the force applied by the subject without
prior knowledge of its timing (i.e., 26 actions in the SGD output across the period of acquisition) from
which the event-related occurrence of the task could be defined for the fMRI data analysis.

In order to identify which voxels of the brain images were active during the task, it is possible
to use a simple general linear model (GLM) to fit the BOLD time series within each voxel with a
temporal model of the predicted activation, and the strength of each fit is used to generate a z-statistics
map across the whole brain (z-score map in Figure 10). The predicted activation used as a model
is built as the convolution of the experimental design (a vector that represents the timing of action
vs. rest) and the hemodynamic response function (HRF) that act as a temporal smoothing kernel.
The SGD-derived task pattern was then expressed in a binary vector form (with 1’s representing
action and 0’s representing rest) where the events were identified using the findpeaks function on the
normalized SGD signal in the MATLAB environment (see Figure 10A). Each event was represented by
8 ms centered at the peak of the action, and the binary vector was then convolved with the canonical
hemodynamic response function (HRF) to generate the design model for the general linear model
fMRI analysis (see Figure 10A). MRI data were processed using tools implemented in the FMRIB
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software library (FSL) in [37] following a standard pipeline which included high pass temporal filtering
(with 0.02 Hz cut-off frequency), MCFLIRT rigid body motion correction, slice timing correction, brain
extraction using BET, spatial smoothing (Gaussian of FWHM 5 mm), univariate general linear model
(GLM) with additional 6 motion parameters derived from the rigid body motion correction as confound
regressors, and cluster correction (p threshold 0.05). As predicted, significant clusters of positive
BOLD activity were located in the primary contralateral (left) somatosensory and motor cortices and
supplementary motor area correlating to the task performed by the subject, and the main cluster of
activation was located at the hand knob on the precentral gyrus (see left (L) and right (R) lateral and
top view on the 3D rendered brain images in Figure 10B).

Figure 10. (A) Flow of data analysis. The peak in ΔλB coming from the SGD were used to infer the
timing of the action and create a boxplot MRI design. This was convolved with the hemodynamic
response function (HRF) to generate the design model for the general linear model (GLM); (B) Significant
cluster of functional response to the task (in red and yellow) overlaid onto the subject’s T1-weighted
brain image with the z-score map.

5. Discussion

The key elements of the present study are the development of a novel smart device (i.e., the SGD),
which can quantitatively measure the grasping behavior of newborn infants even within the MRI
scanner environment. The design of the proposed device was guided by technical and clinical
requirements predicated by the target population and with the intended use including small size,
lightweight, high sensitivity, biocompatibility, and safety. In addition, the SGD was also designed to
easily instrument an existing robotic interface used for fMRI studies of newborn infants.

To the best of our knowledge, the proposed SGD is the first fMRI-compatible device based on
FBG able to detect and measure palmar grasp in preterm and term infants. The SGD is shaped and
sized appropriately to be handled by a newborn infant’s hand, easily squeezed, and able to detect low
grasping Fext. Furthermore, the FBGs’ EMI compatibility ensures safety and working capability both
outside and inside the MRI environment.

Two identical devices were fabricated (i.e., SGD1 and SGD2). Both the responses of SGD1 and SGD2

to Fext showed a linear behavior, which reached an average SF value of ~0.23 nm·N−1. This finding
confirmed the high reproducibility of the manufacturing process as well as the capability of the SGD to
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detect the low ranges of Fext applied by the target infant population. Two pilot tests were carried out
to investigate the performance of the proposed SGD on a newborn infant in the neonatal intensive
care unit and on an adult during an fMRI experiment. These preliminary validation experiments
revealed that the SGD was capable of working in both cases, namely on a non-collaborative subject
(i.e., the newborn infant) and within the MRI environment.

In the literature, pioneering work describing grasping behavior in infants began in the 1930s [38–40].
These first studies were based on functional scales or on the direct observation of infant responses to the
application of light pressure on the palm [41]. These methods suffer from several limitations, including
examiner subjectivity and incapability of quantifying grasping actions in terms of strength and duration.
With the advancement of technological devices, novel methods emerged for assessing motor function
in early infancy [7,14–16,18,19,42,43]. In particular, grasping behavior was studied in infants in terms
of strength and holding time, with some studies proposing novel systems to investigate the relationship
of these variables with intrinsic (e.g., infant sex [15], weight [27], preterm birth [1]) and extrinsic factors
(e.g., object shape and texture [7]). Moreover, systems for objective assessment of grasping actions
were developed to detect early abnormal neuromotor development and based on the premise that
this could guide prompt intervention to improve functional outcome [43,44]. The main findings of
the state-of-the-art showed a higher grasping strength and pronounced handedness symmetry in
males more than females [15]; a decrease in holding time when the same object was repetitively put in
the newborn infant’s hand and an increase when its shape and smoothness changed [7]; and longer
holding times in preterm in comparison to term neonates with significant differences related to sex [15].

Existing technological tools developed for measuring grasping in newborn infants can be
grouped into devices worn on the examiner’s finger [18] or those that are directly handled by
an infant [16,18,19,43]. Very few of these systems were also specifically designed to be used by
newborn infants in the first days following birth. All of these systems are based on pressure
transducers with electrical components (i.e., piezoresistive sensors [16], force sensing resistors (FSR) [19],
capacitive sensors [18], and conductive polymer layers [43]). These features do not allow their
employment inside the MRI scanner. In contrast, our device is designed to be directly handled by
a newborn infant and can be used in fMRI owing to the FBG sensor EMI immunity and the SGD’s
affordable shape.

In [16], as in our study, the device was designed to be directly grasped by a newborn infant
without active involvement from the examiner during the experimental trial. An electrical sensing
element (i.e., a piezoresistive pressure transducer) was used to develop a ring-shaped device consisting
of a silicone-filled chamber hung within a rigid case and connected to the transducer (total diameter of
93 mm). This allowed for the measuring of infant grasping activity generated by chamber internal
pressure changes due to the silicon squeezing. Our device is different, as the proposed SGD is based
on optical technology instead of electrical components, is softer (10 A vs. 50 A), and is considerably
lighter (8 g vs. 115 g). All of these features make our system more suitable for studying a wider range
of infant populations including preterm and term infants.

Future studies will aim to investigate the feasibility of SGD assessment on a wider range of
newborn infants both inside and outside the MRI scanner. Moreover, two SGDs can be used together in
longitudinal studies to study the emergence of hand dominance and (bi)manual grasping to investigate
developmental motor disorders resulting from localized brain injury. Further investigation may also
be focused on optimizing the SGD for use with older infants, for instance across their first year as
the transition to volitional prehension occurs. These studies will require a remodulation of system
requirements (e.g., change in dimensions, FBG numbers, and silicone hardness) to optimize the
SGD measuring properties for a different target population. Lastly, changes in grasping variables
according to age, sex, and object texture could be performed to provide new insights into behavioral
neurophysiology and neuropathology.
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6. Conclusions

This paper described the first fMRI-compatible technological solution (SGD) based on FBG for
detecting grasping actions in newborn infants. The use of such a device in conjunction with fMRI can
shed new light on associated cerebral processes and may provide novel insight into the neuromotor
impairments that result from neonatal brain injury. This knowledge may be crucial in the context of
prompt diagnoses of atypical task-related brain activations and early brain injuries such as CP, at a time
when there is a high capacity for compensatory neural plasticity. Furthermore, the technology-aided
assessment of neurodevelopmental deviation from normal physiological development can provide
useful biomarkers for establishing patient-tailored therapies and optimizing the rehabilitation outcomes.
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Abstract: Predictive observation and real-time analysis of the values of biomedical signals and
automatic detection of epileptic seizures before onset are beneficial for the development of warning
systems for patients because the patient, once informed that an epilepsy seizure is about to start, can
take safety measures in useful time. In this article, Daubechies discrete wavelet transform (DWT)
was used, coupled with analysis of the correlations between biomedical signals that measure the
electrical activity in the brain by electroencephalogram (EEG), electrical currents generated in muscles
by electromyogram (EMG), and heart rate monitoring by photoplethysmography (PPG). In addition,
we used artificial neural networks (ANN) for automatic detection of epileptic seizures before onset.
We analyzed 30 EEG recordings 10 min before a seizure and during the seizure for 30 patients with
epilepsy. In this work, we investigated the ANN dimensions of 10, 50, 100, and 150 neurons, and we
found that using an ANN with 150 neurons generates an excellent performance in comparison to a
10-neuron-based ANN. However, this analyzes requests in an increased amount of time in comparison
with an ANN with a lower neuron number. For real-time monitoring, the neurons number should be
correlated with the response time and power consumption used in wearable devices.

Keywords: EEG; PPG; EMG; epilepsy; signal processing; brain monitoring; artificial neural network;
predictive analysis

1. Introduction

1.1. Aim of the Work

Epilepsy is a disease that affects about 1% of the world’s population. Crisis identification involves
multi-channel EEG monitoring for 24–72 h. Crisis detection (grand mal) is essential for the diagnosis
of epilepsy, the control of the crisis, and warning the patients in sufficient time before the seizure.
Moreover, the observation and investigation of the biomedical signals values before an epileptic seizure
are beneficial for developing prevention and support systems for patients because by informing the
patient that an epilepsy seizure is about to occur, he or she can take his or her safety measures promptly.
The correlations and covariance between the biomedical signals that EEG, PPG, and EMG collect from
sensors are essential because, in the case of the patients with epilepsy, the heart rate increases, and
uncontrolled tremors of the muscles or their stiffening may occur.

In the case of the patients with epilepsy, the real-time monitoring based on wearable devices
with EEG, PPG, EMG integrated, and biomedical signals predictive analysis based on neural network
systems with reduced processing time and low power computing is essential for warning before a
seizure, and patients fall prevention.
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1.2. State-of-the-Art

There are scientific studies that specify the use of artificial intelligence, using methods such as
deep neural networks for patients’ ECG-based authentication [1], ResNet-based signal recognition [2],
arrhythmia detection [3,4], or learning feed-forward and recurrent neural networks [5]. The automatic
signal detection was used in studies based on the discrete wavelet transform (DWT) for automated
detection [4] or automated heartbeat classification [6].

The electrical activity of the brain monitoring by EEG (electroencephalogram) is useful to study
the disease pathologies by analyzing the numerical distribution of data and correlating the brain
signals (EEG) with other types of biomedical signals such as electrical activity of the heart obtained by
electrocardiogram (ECG), heart rate monitoring by photoplethysmograph (PPG), and electrical activity
produced by muscles by electromyography (EMG) [7–9].

To analyze the pathology of chronic diseases, the researchers also used the multivariate analysis
of EEG, ECG, and PPG signals [10,11].

Mainly for predictive analysis of influence factors that generate a pathology or of the biomedical
signal changes that could anticipate the existence of pathology are software applications for signal
acquisition from sensors (EEG, ECG, PPG, or EMG), correlations [12], univariate, bivariate [13–15]
or multivariate analyzes [16,17] of numerical data used, but computational methods [18] based on
mathematical models are also used. Thus, computational models use studies on large populations (e.g.,
274 patients [19]) and a large volume of data (e.g., 183 seizures recorded in 3565 h [20]). These analyses
aim to find valid patterns [21] for a large population with similar independent variables (age, gender).

For the prediction of epileptic seizures, researchers used technologies such as machine
learning, data mining, artificial neural networks [22] (backpropagation algorithm-for recognition
and classification of EEG signals [23,24]), fuzzy systems [25], and predictive analysis statistics
(multivariate [26], bivariate or univariate).

The study of the correlations between various electrical signals captured (e.g., EEG, ECG, PPG,
and EMG) from the human body is essential because, in the case of patients with neurological disorders,
the phenomenon of comorbidity exists and consists of overlapping of several diseases.

The electroencephalogram (EEG) represents a set of fluctuating field potentials produced by
the simultaneous activity of a large number of neurons [27] and captured by electrodes located on
the scalp. The EEG system consists of 10–20 metal electrodes distributed on the skin surface of
the head and connected by 36 wires to the recording device. It measures the electrical potential
detected by each electrode. EEG can be used in monitoring the brain during anesthesia [28], surgical
procedures [29], and investigations of brain disorders (psychoses [30], meningoencephalitis [31],
Parkinson [9], Alzheimer [32–37], dementia [38], epilepsy [39–42], central motor neuron syndrome [43],
cerebral palsy [44–46], and muscular dystrophy [47]). Mainly, EEG systems are used to diagnose and
monitor patients with neuropathology, especially in diagnosis of epilepsy and in studying the seizures,
as well as the monitoring of treatment and evolution.

Electroencephalographic reactivity is evaluated using simple tests: eye-opening, hyperpnea
(slow and full breathing), and intermittent light stimulation obtained with short and intense light
discharges with gradually increasing frequency. The EEG assessment takes approximately 20 min and
does not require hospitalization [48].

In the case of an electroencephalogram, the risks are minimal. Still, intermittent light stimulation
or hyperventilation can produce epileptic seizures. Therefore, the examination is performed under the
supervision of a physician who can recognize the crisis and immediately establish appropriate safety
and therapeutic measures.

Epilepsy is a chronic disease of the brain that manifests through partial (focal) or generalized
seizures due to spontaneous electrical discharges that occur in the brain.

Manifestations consist of involuntary movements of different body segments and abnormal
neuro-vegetative sensations in the body. EEG analysis can be used to diagnose and monitor the patient
in various stages of the disease (focal or generalized seizures, sleep) [38–41].
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1.3. Contribution

In this paper, we present an efficient method for the detection of seizures based on artificial neural
networks and correlations between biomedical signals.

Our study included 30 subjects from the CAP Sleep Database [49,50]. Our selected records were
sampled at 160 Hz. The records consisted of both normal EEG and EEG spikes specific to epileptic
seizures. The signals captured were from 13 EEG channels, submentalis and bilateral anterior tibialis
EMG, and an earlobe PPG sensor. We used the artificial neural network and the Levenberg–Marquardt
backpropagation optimization algorithm in MATLAB for implementing the classification and 3D plots.
Data pre-processing and feature extraction were implemented using MATLAB 2019a (Mathworks,
Santa Clara, CA, USA). All the experiments were carried out in Windows 8.1, 8 GB RAM, and 64-bit
operating system.

The rest of the paper is structured as follows: the methods for signals decomposition, filtering,
EEG biomedical signals, and theoretical methodology are presented in Section 2. Section 3 presents the
predictive analysis of the signals using artificial neural networks. Aspects concerning the biomedical
signals covariance are discussed in Section 4. The conclusions of the work are presented in Section 5.

2. Materials and Methods

The proposed method was tested using the CAP Sleep Database. The CAP Sleep Database
comprises 40 recordings of patients (male and female) diagnosed with nocturnal frontal lobe epilepsy.
The record duration is 8 h, approximately.

Our study included 30 subjects from the CAP Sleep Database. Our selected records were sampled
at 160 Hz. The records consist of both normal EEG and EEG spikes specific to epileptic seizures. We
analyzed 30 EEG recordings 10 min before a seizure and during the seizure in 30 patients with epilepsy.
The signals analyzed are from 13 EEG channels, submentalis and bilateral anterior tibialis EMG, and
an earlobe PPG sensor.

Within this research, the topic has used the detection of electrical signals from the brain using
the EEG head with non-invasive electrodes (for the available biomedical signals in the PhysioNet
databases).

In the discrete-time domain, digital filters (low-pass filter for signals with a frequency lower than
a selected cutoff frequency and a high-pass filter that passes signals with a frequency higher than a
cutoff frequency chosen) have been used for signal analysis.

Discrete wavelet transformation (DWT) [48] is calculated by additional high-pass and successive
low-pass filters and sub-sampling using the Mallat algorithm [51]. Additional filtering applied to a
real EEG signal leads to double the number of data from the original one being requested after each
filtration to reduce the number of samples by sub-sampling of the EEG signal. DWT uses the dyadic
variant. In the wavelet analysis, approximations (a (n)) and details (d (n)) are used (Figures 1 and 2):

1. Approximations (a (n)) are the components at high scales and low frequencies;
2. Details (d (n)) are components at low levels and high rates.

Figure 1. Electroencephalogram (EEG) from a patient with no seizure-signal filtering and decomposition
using the discrete wavelet transform (DWT) method.
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Figure 2. EEG from a patient with epileptic seizure-signal filtering and decomposition using the
DWT method.

To reduce the continuous-time signal to a discrete-time signal, the EEG signals were sampled
with a sampling frequency (f s = 160 Hz). EEG signals were filtered by a low-pass filter (60 Hz) and
a high-pass filter (0.1 Hz) and decomposed using the discrete wavelet transform [52,53] for patients
without epilepsy (Figure 1).

In the case of epilepsy, seizures detection consists of finding EEG segments with seizures and
onset and offset points [53]. For pattern profiling, it is necessary to monitor a large population of
patients with epilepsy for 24–48 h. Because gamma frequency oscillations (30–120 Hz) often precede
interictal epileptiform spike discharges (IEDs) [54], we used DWT with Daubechies function, and we
considered the low-pass filter 120 Hz to observe the gamma wave specific to an epileptic seizure. Some
scientific papers report the values around 100–600 Hz for gamma waves—that is, not associated with
IEDs, but occurring during epileptic seizures [54,55]. However, other researchers [54,56] reported the
fluctuation of gamma wave values.

EEG signals were filtered by a low-pass filter (120 Hz) and a high-pass filter (0.1 Hz) and
decomposed using the discrete wavelet transform for patients with epileptic seizures (Figure 2).

x (n)—signal (0.1–60 Hz), respective for patient with seizure x (n)—signal (0.1–120 Hz);
h(n)—low-pass filter (LPF);
g (n)—high-pass filter (HPF);
d (n)—the signal of the detail produced by HPF, e.g., d1, 1, d2, 1, d3, 1, d4, 1;
a (n)—the signal produced by LPF, is a rough approximation, e.g., a1, 1, a2, 1, a3, 1, a4, 1;
↓2—down sampling by two.

The wavelet transform is a way to implement a particular type of signal representation called
multi-resolution analysis [57,58]. The analyzed signal is described by a succession of details and
approximations that contain more information. Each level of approximation (Figures 1 and 2) contains
information available at the previous level, which is an added component of detail. In Figure 3, the
signal processed by discrete wavelet transform and Daubechies method using four decomposition
levels for a patient before and after a short seizure is presented. In Figure 3, detail d1 represents gamma
waves, detail d2 represents beta waves, detail d3 represents alpha waves, detail d4 represents theta
waves, and the approximation a4 represents delta waves.

In Figure 4, the signal processed by discrete wavelet transform and Daubechies method using
four decomposition levels for a patient with epileptic seizures is presented. In Figure 4, the detail d1
represents gamma waves, detail d2 represents beta waves, detail d3 represents alpha waves, detail d4
represents theta waves, and the approximation a4 represents delta waves. From Figure 4, it is evident
that the presence of the gamma waves with values equal to or greater than 120 shows that a seizure
phase is present. Moreover, the epileptic spikes are very evident in Figure 4.
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Figure 3. Patient before and after the seizure, signal decomposition on four levels using DWT.

Figure 4. Patient with epileptic seizure, signal decomposition on four levels using DWT.
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In Figure 5, the 3D spectrogram of the signals from all 13 channels of electro-cap used for
monitoring a patient with an epileptic seizure is presented. The epileptic gamma waves spikes
(with the yellow-red color market on the graphic) that are over 200 or 400, indicating abnormal
frequencies for gamma waves that occur on seizures, are also evident from Figure 5.

Figure 5. 3D spectrogram of EEG signals from 13 channels.

3. Biomedical Signal Selection

To analyze the correlation and covariance between signals, signals such as EEG (related to the
frontal lobes FP1-F3, FP2-F4), EMG, and PPG from a patient n1 with no epileptic seizures and a patient
n2 with epileptic seizures were selected.

The purpose of using PPG and EMG signals in correlation with EEG was to find a modification of
the biomedical signals collected from wearable devices that could anticipate an epilepsy seizure and to
use a software system to send medical alerts in advance [59–65]. From the CAP Sleep Database, the
biomedical signals taken from 2 patients (n1 and n2) were used for the actual study. In Figures 6 and 7,
the 3D spectrograms for the EEG signals (Fp2-F4, F4-C4, C4-P4, P4-O2, F8-T4, T4-T6, FP1-F3, F3-C3, C3
-P3, P3-O1, F7-T3, T3-T5, C4-A1) taken from patients n1 and n2 are presented. In the case of patient n1,
the epileptic spikes for gamma waves cannot be observed (Figure 6), but in the case of patient n2, these
spikes are evident, marked with yellow-orange in the 3D spectrogram (Figure 7) and being above the
120 Hz threshold.
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Figure 6. 3D spectrogram of signals EEG from 13 channels for patient n1 with no epileptic seizures.

Figure 7. 3D spectrogram signals EEG from 13 channels for patient n2 with epileptic seizures.

4. Results Based on Predictive Analysis of the Signals Using Artificial Neural Networks

For predictive analysis of EEG signals, artificial feed-forward neural networks are used based on
the Levenberg–Marquardt backpropagation optimization algorithm.

The functional units within the neural networks consisted of:

• Input units represented by the values of the EEG matrix for patients with epilepsy seizures.

Hidden groups (data) given by the number of neurons (10, 50, 100, and 150 neurons, respectively).

• Outputs are represented by the values of the EEG matrix for patients who do not have seizures.

For optimization, the Levenberg–Marquardt algorithm was used, which approximates the Hessian
matrix (H) as follows (1):

H = JT J (1)

where:
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• J is the Jacobian matrix containing the derivatives of the error function concerning weights (w)
and biases (b);

• JT is the transposed Jacobian matrix;
• e is the vector of errors.

The Levenberg–Marquardt algorithm uses the following parameter updating rule (Equation (2)):

xk+1 = xk −
[
JT J + μI

]−1
JTe (2)

For this purpose, four neural networks were designed with n hidden neurons (Figure 8), where
n ∈ {10, 50, 100, 150}, to estimate the occurrence of epilepsy seizures, compared with EEG signals
taken from a healthy patient, respectively, with EEG signals received from the patient with no seizures.
The artificial neural network (ANN) architecture models (with 10, 50, 100, and 150 respective hidden
neurons) used for the prediction of the epileptic seizures have a two-layer feed-forward network
with hidden sigmoid neurons and linear output neurons, and allow the training and evaluation of
the performance using mean square error (MSE) and regression analysis (R). The proposed ANNs
structures are based on the principal elements:

• input data (matrix 13 × 5120 samples);
• hidden layer with n neurons, n ∈ {10, 50, 100, 150};
• output (target) data (matrix 13 × 5120 samples);
• train set (70% of samples) that is used to provide an independent measure of network performance

during and after training;
• test set (15% of samples) that is used during training, and the network is adjusted according to

its error;
• validation set (15% of samples) is used to measure network generalization, and to halt training

when generalization stops improving.

Figure 8. Artificial neural network (ANN) with n neurons, n ∈ {10, 50, 100, 150}.

In Table 1, the principal parameters for ANNs with 10, 50, 100, and 150 neurons are presented.

Table 1. ANN parameters.

Neurons No.
Input Data [Samples

EEG3]
Output (Target) Data

[Samples EEG1]
Train Set
[Samples]

Test Set
[Samples]

Validation Set
[Samples]

10 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768
50 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768

100 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768
150 Matrix 13 × 5120 Matrix 13 × 5120 3584 768 768

Prediction and optimization were made with a feed-forward backpropagation multi-layer
neural network.

The input data-independent variables (matrix input) X1 = EEG signal (EEG3) taken when the
patient does not have seizures.
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The target data-dependent variables (matrix target) Y1 = EEG signal (EEG1) taken from a patient
with epilepsy. The target (Y1) represents the desired output for the given input, X1. We consider the
real output matrix (D).

The continuous training of neural networks is based on extensive datasets; 70% (3584 samples) of
the total data generated by the ANNs were used to train the model, while 15% (768 samples) of the
data was used for testing and 15% (768 samples) for validation (Figures 9–12). Regression analysis of
the ANN model showed the R2 (regression) values for training between 0.57316 for the ANN with ten
neurons, 0.65267 for the ANN with 50 neurons, 0.85089 for the ANN with 100 neurons, and 0.81819 for
the ANN with 150 neurons, showing the higher accuracy and significance of the ANN model for the
ANN with 100 neurons, respective to the ANN with 150 neurons.

Figure 9. Regression (R2) for validation, test, and training—ANN with ten neurons.

Figure 10. Regression (R2) for validation, test, and training—ANN with 50 neurons.

Figure 11. Regression (R2) for validation, test, and training—ANN with 100 neurons.
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Figure 12. Regression (R2) for validation, test, and training—ANN with 150 neurons.

MATLAB libraries were used to perform the functions and the code sequences within the neural
networks. The regression plots (9–12) show a regression between network outputs and network targets.
The parameterized linear regression model is given by mathematical relation (3). The R (Equation (3))
value indicates the relationship between the outputs (y) and targets. If R = 1, this indicates that there is
an exact linear relationship between outputs and targets. If the R-value is close to zero, then there is no
linear relationship between the outputs and targets.

R = D =
M∑

j=1

wjxj + ε ⇔ R = wTx + ε (3)

where:

• ε is the error;
• wj is synaptic weight;
• x is the input matrix;
• M is the model order;
• T denotes matrix transposition (Equations (4) and (5)).

w = [w1, w2, . . . , wM]T (4)

x = [x1, x2, . . . , xM]T (5)

From the regression graphs for testing, training, and validation for neural networks with 10, 50,
100, and 150 neurons (Figures 9–12), and from values presented on Table 1, it is evident that the value
of the R regression for training, validation, and testing is in a direct relationship with the number of
neurons of the network. The regression value R close to zero indicates that is no linear relationship
between outputs and targets. Moreover, if R is very close to 1, it shows a good match and an exact
linear relationship between the outputs and targets. From the regression graphs, it is observed that
the value of the regression for test, training, and validation is close to the value 1, which indicates a
good match between inputs, outputs, and objectives. From Figure 9, it can be observed that, in the
case of the neural network with ten hidden neurons, the values of the regression for test, validation,
and training are in the inequality report RTest < RTraining < RValidation, the regression is lower than 1,
and the higher one is the regression for validation (RValidation = 0.63855). From Figure 10, we observed
that, in the case of the neural network with 50 hidden neurons, the values of the regression for test,
validation, and training are in the inequality report RTest < RValidation < RTraining, the regression is lower
than 1, and the higher one is the regression for training (RTraining = 0.65267). In Figure 11, it can be
observed that, in the case of the neural network with 100 hidden neurons, the values of the regression
for test, validation, and training are in the inequality report RValidation < RTest < RTraining, the regression
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is lower than 1, and the higher one is the regression for training (RTraining = 0.85089). From Figure 12, it
is evident that, in the case of the neural network with 150 hidden neurons, the values of the regression
for test, validation, and training are in the inequality report RTest < RValidation < RTraining, the regression
is lower than 1, and the higher one is the regression for training (RTraining = 0.81819).

From the histograms of errors (Figures 13 and 14), it can be observed that the increase in the
number of neurons in the network leads to a decrease in the percentage of errors generated. The error
histograms (Figures 13 and 14) show normal distributions with residuals (errors), indicating that many
of the residuals fall on or near zero in the case of the ANN with 150 neurons. Analyzing Figures 13
and 14, we can conclude that the ANN model with 150 neurons used for the prediction can generate an
excellent prediction of epileptic seizures.

Figure 13. Error histograms—ANN with 10, 50, and 100 neurons.

Figure 14. Error histogram—ANN with 150 neurons.

In Table 2 are presented for each neural network developed, the number of hidden neurons
allocated, the processing time [seconds] of the neural network, and the values of the regression for
training (RTraining), test (RTest), and validation (RValidation). In Table 2, the processing time represents the
total time allocated for training, test, and validation.

In the proposed ANN with n (10, 50, 100, and 150) neurons, we defined the training set, test
set, and validation set to check over-optimization. The validation set was used to measure network
generalization, and to halt training when generalization stopped improving. The evaluation of the
performance was done using mean square error (MSE) and regression analysis (R).
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Table 2. Value R = f (neural network neurons).

Neurons No. R Training R Validation R Test Processing Time [s]

10 0.57316 0.63855 0.49103 42
50 0.65267 0.60571 0.60182 745
100 0.85089 0.74129 0.82255 913
150 0.81819 0.77345 0.67324 2784

In Figures 15 and 16, the performances of the neural networks with 10 and 150 neurons, respectively,
are presented. In Figures 15 and 16, error vs. epoch is plotted for the validation. The best validation is
taken from the epoch with the lowest validation error. On the y axis of the charts, the mean squared
error (MSE) (Equation (6)) is presented. The best validation is taken from the epoch with the lowest
validation error. Mainly, the error reduces after more epochs of training.

MSESE =
1
n

n∑
i=1

(yi − ŷi)
2 (6)

where:

yi is the vector of observed values;
ŷi is the vector of predicted values.

Figure 15. Neural network (10 neurons) best validation performance.

However, the best validation performance was generated in 40 epochs, whereas 47 epochs were
run to confirm the model accuracy for the ANN with ten neurons (Figure 15). The best validation
performance was generated in 9 epochs, whereas 15 epochs were run to confirm the model accuracy
for the ANN with 150 neurons (Figure 16). In comparison with the ANN with ten neurons, the ANN
with 150 neurons shows higher performance.
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Figure 16. Neural network (150 neurons) best validation performance.

5. Discussion

5.1. Biomedical Signals Covariance Analysis

In order to evaluate if the previously presented biomedical signals (EMG, PPG, and EEG) can
be used to predict epileptic seizures, it is necessary to investigate the covariance between all the
analyzed signals. Mainly, for two discrete signals, x(k) and y(k), correlation is a discrete function in
time (Equation (7)), defined by:

rxy(k) =
+∞∑

n=−∞
x(n)y(n− k) (7)

where k = 0, 1, 2, . . . .
Using the correlation function of two signals, the similarity between the signals can be appreciated.

The autocorrelation function has a maximum in origin when k = 0 and can be used to determine the
periodicity of real signals. The autocorrelation function (Equation (8)) is defined by:

rxx(k) =
+∞∑

n=−∞
x(n)y(n− k) (8)

where: k = 0, 1, 2, . . . .
The signals EEG1 (no seizure) and EEG3 (with seizure) collected from patient n1, respective to the

signals EEG2 (with seizure) and EEG4 (no seizure) collected from patient n2, were sampled at a rate
of 160 Hz and filtered using high-pass (0.1 Hz) and low-pass filters (60 Hz for EEG with no seizure
activity, respective to 120 Hz for EEG with seizure).

By analyzing the covariance matrix for EEGi, EEGj (Equations (9), (11), (13), (15), (17) and (19)),
and correlation coefficients (Equations (10), (12), (14), (16), (18) and (20)), we found that:

• between EEG1 and EEG3 is a negative covariance; this means that they are not in a linear
dependence (Equation (9)). Because the correlation coefficient is negative (Equation (10)), it
follows that EEG1 and EEG3 are in an inverse proportionality relationship.

• between EEG2 and EEG4 is a negative covariance, which means that EEG2 and EEG4 are not in a
linear dependence (Equation (11)). Because the correlation coefficient is negative (Equation (12)),
it follows that EEG1 and EEG3 are in an inverse proportionality relationship.
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• between EEG1 and EEG4 is a positive covariance, which means that EEG1 and EEG4 are in a
linear dependence (Equation (13)), and because the correlation coefficient is positive (Equation
(14)), it follows that EEG1 and EEG4 are in a direct proportionality relationship.

• between EEG1 and EEG2 is a negative covariance (Equation (15)), which means that EEG1 and
EEG2 are not in a linear dependence, and because the correlation coefficient is negative (Equation
(16)), it follows that EEG1 and EEG2 are in an inverse proportionality relationship.

• between EEG2 and EEG3 is a positive covariance, which means that EEG2 and EEG3 are in a
linear dependence (Equation (17)), and because the correlation coefficient is positive (Equation
(18)), it follows that EEG1 and EEG4 are in a direct proportionality relationship.

• between EEG3 and EEG4 is a negative covariance (Equation (19)), which means that EEG3 and
EEG4 are not in a linear dependence, and because the correlation coefficient is negative (Equation
(20)), it follows that EEG3 and EEG4 are in an inverse proportionality relationship.

cov(EEG1, EEG3) = 1.0e + 05 ∗
∣∣∣∣∣∣ 0.7206 −0.0369
−0.0369 0.7206

∣∣∣∣∣∣ (9)

REEG1, EEG3 =

∣∣∣∣∣∣ 1.0000 −0.0272
−0.0272 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0272 (10)

cov(EEG2, EEG4) = 1.0e + 05 ∗
∣∣∣∣∣∣ 0.5555 −0.0900
−0.0900 5.7909

∣∣∣∣∣∣, (11)

REEG2,EEG4 =

∣∣∣∣∣∣ 1.0000 −0.0502
−0.0502 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0502, (12)

cov(EEG1, EEG4) = 1.0e + 05 ∗
∣∣∣∣∣∣ 0.7206 0.0196

0.0196 5.7909

∣∣∣∣∣∣, (13)

REEG1, EEG4 =

∣∣∣∣∣∣ 1.0000 0.0096
0.0096 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0096, (14)

cov(EEG1, EEG2) = 1.0e + 04 ∗
∣∣∣∣∣∣ 7.2061 −0.5302
−0.5302 5.5551

∣∣∣∣∣∣, (15)

REEG1, EEG2 =

∣∣∣∣∣∣ 1.0000 −0.0838
−0.0838 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0838, (16)

cov(EEG2, EEG3) = 1.0e + 05 ∗
∣∣∣∣∣∣ 0.5555 0.3163

0.3163 2.5545

∣∣∣∣∣∣, (17)

REEG2,EEG3 =

∣∣∣∣∣∣ 1.0000 0.2655
0.2655 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.2655, (18)

cov(EEG3, EEG4) = 1.0e + 05 ∗
∣∣∣∣∣∣ 2.5545 −0.2580
−0.2580 5.7909

∣∣∣∣∣∣, (19)

REEG3, EEG4 =

∣∣∣∣∣∣ 1.0000 −0.0671
−0.0671 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = −0.0671 (20)

Using the Shapiro–Wilk test (Figure 17) to evaluate the distribution of EEG1, EEG2, EEG3, and
EEG4 signals in the Brainstorm application, it can be seen that the values for WEEG1 = 0.9378, WEEG2 =

0.9236, WEEG3 = 0.9133, and WEEG4 = 0.8299, are very close to 1, which means that the signals have a
distribution close to the normal distribution.
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Figure 17. Distribution probabilities (Shapiro–Wilk test, Brainstorm).

The analysis of the covariances and correlations between EMG2 and EEG2 (Equations (21) and
(22)) and PPG3 and EEG3 (Equations (23) and (24)), respective of those between EMG3 and EEG3
(Equations (25) and (26)), shows that there is a positive correlation and a direct covariance between
signal pairs ((PPG3, EEG3) and (EMG3, EEG3)), respective of those between signal pairs (EMG2, EEG2),
which could be exploited in anticipation of epilepsy seizures by predictive analysis using an ANN and
a support decision system.

cov(EMG2, EEG2) = 1.0e + 04 ∗
∣∣∣∣∣∣ 0.6864 0.0422

0.0422 9.2137

∣∣∣∣∣∣, (21)

REMG2,EEG2 =

∣∣∣∣∣∣ 1.0000 0.0168
0.0168 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0168, (22)

cov(PPG3, EEG3) = 1.0e + 05 ∗
∣∣∣∣∣∣ 0.2690 0.0909

0.0909 4.9304

∣∣∣∣∣∣, (23)

RPPG3, EEG3 =

∣∣∣∣∣∣ 1.0000 0.0789
0.0789 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0789 (24)

cov(EMG3, EEG3) = 1.0e + 05 ∗
∣∣∣∣∣∣ 2.1729 0.0122

0.0122 4.9304

∣∣∣∣∣∣, (25)

REMG3,EEG3 =

∣∣∣∣∣∣ 1.0000 0.0037
0.0037 1.0000

∣∣∣∣∣∣⇔ r1,2 = r2,1 = 0.0037, (26)

In conclusion, the correlations and covariances between the biomedical signals (EEG, PPG, and
EMG) collected from sensors are significant because, in the case of the patients with epilepsy, the heart
rate increases and may generate uncontrolled tremors of the muscles or their stiffening. Furthermore,
to patients having epilepsy, the comorbidity phenomena are present [66–68] and consist of overlapping
of several diseases (diabetes, cardiovascular diseases, etc.)

5.2. Comparative Analysis

To observe the performance of our proposed methodology, we compared our methods (DWT and
ANN), validation, and accuracy of the results with the existing methods based on machine learning

163



Sensors 2020, 20, 3346

from the literature. Comparison is presented in Table 3, which contains the feature extraction methods,
the machine learning methods, the validation methods, and also the classification accuracy.

Table 3. Methodology description of recent state-of-the-art compared with our results.

Literature
Features Extraction

Method
Learning Machine

Method
Validation Classification Accuracy

[69]

Method 1 -
Convolutional neural
network (CNN) with

3 layers
6-fold cross validation 83.8–95%

[70]

Method 2 spectral and spatial
features SVM - 96%

[71]

Method 3 wavelet transform for
decomposition ANN and genetic algorithm - -

[72]

Method 4 wavelet transform for
decomposition

negative correlation
learning (NCL) and a

mixture of experts (ME)

25% of the train
set was randomly

selected for the
validation set

96.92%

[73]
Method 5 Multi-wavelet Transform ANN - 90%

[74]

Method 6 - pyramidal one-dimensional
CNN (P-1D-CNN) 10-fold cross validation 99.1%

[75]
Method 7 - 13-layer CNN 10-fold cross-validation 88.67%

[76]
Method 8 DWT SVM 96%

[77]

Method 9

Minimum redundancy
maximum relevance
(mRMR), Principal

component analysis (PCA)

SVM, k-nearest neighbors
(k-NN), and discriminant

analysis

Leave-one-out
cross-validation

51% (SVM)
80% (k-nn with mRMR)

[78]

Method 10 - CNN 20-fold and 10-fold
cross-validation 84.26%

[79]

Method 11 - U-Time—convolutional
encoder-decoder network 5-fold cross-validation -

Our work DWT ANN
15% of the samples were

selected for the
validation set

91.1%

5.3. Limitation and Future Scope

The proposed methods give significant results, but the ratio between best validation performance
and processing time exhibits an inverse relationship and generates the limitation in real-time data
processing because the neural network with 150 neurons has the best validation performance,
but the increasing the number of neurons in the ANN generates an increase in the time required for
data processing.

The other state-of-the-art methods do not analyze the problem of real-time processing through
the perspective of the ratio between best performance validation and time.

However, an investigation for a new set of parameters and to learn algorithms to improve this is
needed. Moreover, analyzing other physiological signals such as the heart’s electrical activity (ECG)
along with EMG, PPG, and EEG may improve the investigations to detect biomedical parameters
changes before or during the seizures.

6. Conclusions

In this work, we used artificial neural networks (ANN) for automatic detection of epileptic seizures
before onset. We used DWT with Daubechies function for decomposing the signals and analyzing
EEG recordings before onset and during the seizure for patients with epileptic seizures and with no
epileptic seizures. To design the model, we used the predictive analysis of EEG signals, artificial
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feed-forward neural networks based on the Levenberg–Marquardt backpropagation optimization
algorithm. In addition, we analyzed the covariance between biomedical signals (EEG, PPG, and EMG)
to select the signals that can be used on predicting epileptic seizures.

We can conclude that using the ANN with 150 neurons has an excellent performance in comparison
with the ANN with ten neurons. However, this ANN analyzes requests an increased time in comparison
with an ANN with a lower neuron number (e.g., ten neurons). Even if the use of an ANN with a large
number of neurons gives more precision, it requires a very long time for data processing, and it is
preferable to choose neural networks that provide an adequate solution about the issues regarding the
accuracy of the outputs and the time allocated for processing [80].

The analysis of the covariance and correlation between signals allows the identification of
biomedical signals that can be used in the predictive ANN applications for medical alert systems to
send alerts if the regression at time t has a different value from the regression recorded in the analysis
of signals taken from patients with no seizures activity [80].

The proposed methods showed promising results compared to other state-of-the-art methods.
Our method opens new perspectives to the successful automatic detection of epileptic seizures before
onset, enabling a real-time brain monitoring wearable system.

In the future, we plan to apply this method to epileptic signal detection on wearable devices.
Our next research object is to develop a successful seizure forecasting model by analyzing, in addition,
heart electrical activity (ECG).
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Abstract: Mobile electroencephalogram (EEG)-sensing technologies have rapidly progressed and
made the access of neuroelectrical brain activity outside the laboratory in everyday life more realistic.
However, most existing EEG headsets exhibit a fixed design, whereby its immobile montage in
terms of electrode density and coverage inevitably poses a great challenge with applicability and
generalizability to the fundamental study and application of the brain-computer interface (BCI). In this
study, a cost-efficient, custom EEG-electrode holder infrastructure was designed through the assembly
of primary components, including the sensor-positioning ring, inter-ring bridge, and bridge shield.
It allows a user to (re)assemble a compact holder grid to accommodate a desired number of electrodes
only to the regions of interest of the brain and iteratively adapt it to a given head size for optimal
electrode-scalp contact and signal quality. This study empirically demonstrated its easy-to-fabricate
nature by a low-end fused deposition modeling (FDM) 3D printer and proved its practicability of
capturing event-related potential (ERP) and steady-state visual-evoked potential (SSVEP) signatures
over 15 subjects. This paper highlights the possibilities for a cost-efficient electrode-holder assembly
infrastructure with replaceable montage, flexibly retrofitted in an unlimited fashion, for an individual
for distinctive fundamental EEG studies and BCI applications.

Keywords: mobile EEG recordings; montage-replaceable headsets; BCI

1. Introduction

Mobile electroencephalogram (EEG)-sensing technologies has rapidly progressed and made the
access of neuroelectrical brain activity outside the laboratory in everyday life more realistic. The integrity
of mobile systems by various manufacturers has been thoroughly validated and reported [1–3]. Owing
to its interesting advantages of price, usability, and mobility, a considerable number of recent studies has
emerged highlighting the aforementioned advantages to encourage the study of EEG correlates of brain
states and functions in multidisciplinary domains, such as preliminary perception (e.g., visual/auditory
responses [4–6]), cognition capacity (e.g., attention relocation [7,8], face recognition [1], and memory
processing [9,10]), and psychological reaction (e.g., affective response [11,12], mental fatigue [13], and
working stress [14]). The exploited state-/task-related EEG associations can be further leveraged with
machine learning to underpin a mobile brain-computer interface (BCI) for a vast range of applications,
such as rehabilitative exoskeleton control [15], visual function loss [16], attentional responses [17],
lapse mitigation [18], quadcopter control [19], and visual-search games [20]. To this end, a mobile EEG
device that enables a valid and reliable measurement of EEG signals over the brain is highly demanded
and can play a vital role toward mobile BCI applications in real-world scenarios.
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Several research-grade and consumer-oriented mobile EEG devices are available in the market,
such as Quick/Mobile series (Cognionics, Inc., San Diego, CA, USA), ENOBIO series (Neuroelectrics,
Barcelona, Spain), Smarting (mBrainTrain, Inc., Belgrade, Serbia), Ultracortex (OpenBCI, Inc., Brooklyn,
New York, USA), EPOC (Emotiv, Inc., San Francisco, California, USA), and MindWare (NeuroSky, Inc.,
San Jose, CA, USA). Their general technical specifications or other devices can be referred to [2,8,21].
As compared to conventional bulk, tethered systems in laboratory, the mobile system shares common
features with miniaturized light-weight amplifier, wireless telemetry, and/or dry/gel/saline electrodes,
facilitating the applicability of EEG recording with more naturalistic settings (e.g., non-stationary
subjects [5,17]). Aside from commercial products, continuous research effort has been invested in
hardware innovation from the aspects of enhancing signal quality, device usability and mobility, cost
efficiency, and practical applicability. Most endeavors have been directed to the counterparts of dry
electrode [6,22–28], signal amplifier [4,8,22,29–31], and standalone computing [30]. Many commercial
or customized mobile devices can be useful and provide acceptable/promising signal quality for
specific circumstances. Along with signal validity and reliability, the selection of a mobile device
should also consider the electrode montage in terms of the number of electrodes and their positions
on the scalp [21]. It is essential to confirm whether its headset coverage offers signal accessibility to
the brain regions of interest in an EEG study as well as a BCI task that is to be performed. Given the
diversity of manufacturers, electrode density and coverage vary widely, from one single electrode
over a single brain region (e.g., NeuroSky MindWare) to high-density electrodes with a whole-brain
coverage (e.g., Cognionics Mobile-64/-128). A low-density example may constrain usability because of
the sparseness or absence of electrodes over certain brain regions (e.g., Emotiv EPOC does not contain
midline electrodes), whereas a high-density example can provide an ideal setting but inevitably poses a
financial barrier and time-consuming preparation. The most critical issue is that a whole-brain coverage
is plausibly with the presence of a large number of redundant electrodes as long as a specific BCI task
is concerned, such as non-posterior electrodes for steady-state visual-evoke potential (SSVEP) [32]
and non-sensorimotor electrodes for motor imagery (MI) [33]. The electrode placements for both the
low- and high-density headsets are typically designed in an immobile manner. As such, customized
headsets made of auxiliary cables, rack/stripe, headband, or soft/elastic cap have been used to secure
electrodes for a specific application [8,18,20,26,33,34]. Up until recently, OpenBCI Ultracortex Mark
series has gained much attention in the community and can be considered as the state-of-the-art headset
frame. It enables to change the montage to a certain extent by voluntarily placing a desired number of
electrodes on to a fixed, 3D-printed 35-location frame. Yet, the headset may have redundant electrode
holders in use. Moreover, the design of a rigid frame or soft cap in commercial products does not
ideally fit well to distinctive head sizes and shapes of individuals in different age groups. A feasible
remedy is to offer a headset with different sizes, suitable for a desired range of head circumference
(e.g., OpenBCI Ultracortex Mark series and Neuroelectrics ENOBIO series). It is reasonably expected
that an inappropriate headset size may compromise the sensor locations and their contact to the scalp,
thereby downgrading signal quality to a certain extent. Taken together, a headset with an immobile
sensor-holder structure of electrode density and coverage may pose a great challenge with applicability
and generalizability to both commercial and custom mobile EEG devices. To date, headsets in the
market do not offer a flexible headset frame with a customable montage design.

Therefore, in this study, an electrode-holder assembly infrastructure for EEG recordings was
developed, which allows a user to (re)assemble a compact holder grid to accommodate a desired
number of electrodes to the brain regions of interest in an unlimited fashion, in accordance to the EEG
and BCI study of interest to be performed. During the assembly, the formed headset can iteratively
adapt to a given head size and shape, practically ensuring electrode-scalp contact and signal quality.
All the conceived assembly elements (e.g., sensor-positioning ring, inter-ring bridge, and bridge
shield) were manufactured via a low-end consumer 3D printer and the practicability of the assembled
headset was validated through the study of event-related potentials (ERP) and steady-state visual
evoked potential (SSVEP) tasks. This study demonstrated exceptional possibilities for a cost-efficient
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electrode-holder assembly infrastructure with replaceable montage retrofitted for an individual in
unlimited manner, for distinctive fundamental EEG investigations and BCI applications.

2. Materials and Methods

2.1. Design and Practice of Sensor-holder Assembly Infrastructure

The assembly infrastructure developed in this study has the following practical benefits for EEG
recording as well as BCI deployment. First, the infrastructure allows (re)assembling without limit
to accommodate a desired number of electrodes over brain regions of interest, leading to a compact
headset without the need for redundant electrodes attached to the head (i.e., saving cost, weight, and
calibration time, and improving wearability and comfort). In addition, the infrastructure is capable
of optimally retrofitting the headset to a certain head size/circumference for each individual during
assembly. This provides the advantage of not only positioning the sensors over the target brain regions
as consistently as possible for different age groups in the same study or task but also ensuring the
attached electrodes to be in good contact with the scalp for better signal quality. As such, the proposed
infrastructure can be considered a design of multi-purpose, with a montage-replaceable headset to
record EEG signals from only the brain regions of interest.

The assembled infrastructure was conceived to compose of three primary components including
sensor positioning ring, inter-ring bridge, and bridge shield (as shown in Figure 1A). The positioning
ring is used to place an EEG electrode, whereas the inter-ring bridge is utilized to assemble a plurality
of the rings in a desired montage. The bridge shield covers an assembled junction of the ring and
bridge, thereby fastening the connection (i.e., prevent them from falling apart in use). The positioning
ring can be fabricated to the required shape and size to comply with the specifications of different
EEG sensors. The present form was designed to better accommodate the adopted dry flex electrodes
(Cognionics, Inc., San Diego, CA, USA). Analogously, the inter-ring bridge can work in different lengths
and curvatures, such that the assembly holders naturally form a desired 3D grid to fit the head size.
The bridge and shield were designed empirically to be able to quickly assemble positioning rings to
be connected or disassemble them. By leveraging supplementary counterparts of ear and chin strips
and holders, a user can easily wear an assembled headset on his/her head or disassemble it. Figure 1B
illustrates four plausible embodiments of the proposed holder assembly (simulated by 3D design
software) to measure the EEG signals from the entire scalp or individual brain regions of interest, e.g.,
frontal, sensorimotor, and occipital parts.

To demonstrate the practicality, an 8-electrode holder grid was implemented to accommodate EEG
electrodes over the fronto-central midline and parieto-occipital regions (four for each region, as shown
in Figure 2A), in accordance with the signal amplifier and experimental tasks employed in this study
(described in the later subsections). Note that a supplementary component of tiny bridge extender
(blue) was also implemented for the assembly demonstration. The extender shows the capability to
prolong a bridge by concatenating multiples bridges if the bridge in a desired length is unavailable.
All the assembled components were fabricated by a low-end fused deposition modeling (FDM) 3D
printer (layer resolution of 0.3–0.4 mm applied with 100% infill) using polylactide (PLA) or ethylene
vinyl acetate (EVA) filaments. The PLA was used to print the stiff positioning ring, whereas the EVA
was used to print the bridge and shield in a bendable/flexible manner. The printed components could
work supposedly as long as possible in normal use. The Cognionics dry flex electrodes, which were
made by Ag/AgCl-covered elastomer, were adopted for EEG measurement. Referring to Figure 2B,
the midline locations include Fz, FCz, Cz, and CPz (orange rings), whereas the posterior counterparts
include Pz, O1, Oz, and O2 (blue rings). A few auxiliary rings (black), embedding non-conductive
comfort pads, were also assembled to further improve wearability. Figure 2C demonstrates the practice
of the assembled 8-ch EEG headset wore on an adult head at different view angles. In the present
demonstration, the positioning ring inserted a supplementary component of electrode adapter to snap
the dry electrode via snap fastener. That is, the adaptor can be made in various forms to accommodate
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desired electrodes in the market. In detail, the 8-electrode grid was assembled within around 15 minutes
by 16 rings (electrode: 8, comfort pad: 8), 27 bridges (11 mm: 14, 13 mm: 9, 40 mm: 2, 50 mm: 2), and
54 shields, which cost less than 5 USD for the filaments.

 
Figure 1. Illustration of the developed electrode-holder assembly infrastructure. (A) Three primary
components and their assembly procedures. The sizes are in millimeter (N = 11, 13, 40, and 50 used in
this work); (B) four assembly embodiments with coverages of the entire scalp and individual regions of
interest (simulated by 3D design software).

 

Figure 2. Implementation of an 8-electrode holder assembly grid. (A) Assembled headset embedded
with Cognionics dry electrodes; (B) 8-channel montage; (C) headset wore on the head at different
view angles.

2.2. EEG Recording

In this study, a portable, custom 8-ch EEG-sensing device [8] was employed to wire the assembled
headset to measure the EEG signals. This device had been systematically validated by conducting a
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simultaneous EEG recording of three subjects in 10 day sessions. Successful measurement of weak,
time-locked, and phase-locked ERP signals demonstrated its proficiency in terms of signal quality,
reliability, and data-event synchronization. Briefly, its major technical specifications are as follows.
This device was designed to measure up to eight channels of analog signal input, filter the signals in
a bandwidth of 0.6–56.5 Hz, sample and quantize the signals at 250 Hz with a resolution of 10 bits,
and wirelessly transmit the digitized streams (synchronized with events if any) via a typical Bluetooth
communication protocol. More details can be found in [8] regarding hardware implementation
and verification. The left and right earlobes were set to reference and ground sites, respectively,
during recording.

2.3. Participants and Experimental Paradigms

Fifteen healthy participants (six males and nine females; age 22.4 ± 1.4 years.) were recruited to
validate the practicability of the assembled electrode-holder grid. They were all students from the
Colleges of Science and of Engineering and had normal hearing and normal or corrected-to-normal
vision. Participants gave their written informed consent approved by Human Research Protections
Program of the local ethics committee and received monetary compensation.

In this study, two stereotypical paradigms were conducted underpinning different modalities of
visual perception and cognitive processing through SSVEP and oddball ERP protocols, respectively.
These two tasks allowed us to assess the signal quality in terms of time- and phase-locked temporal
(i.e., ERP amplitude) and spectral (i.e., SSVEP amplitude) context while wearing the assembled headset.
The four central midline electrodes were intended to capture not only the N100 ERP (i.e., negative
deflection in the voltage around 100–170 ms after stimulation onset) of early sensory perception but also
the P300 ERP (i.e., positive deflection peak by 300–500 ms) for the endogenous process of attentional
relocation, engaging in an oddball paradigm [8,35,36]. On the other hand, the four parieto-occipital
electrodes attempted to capture frequency-coded responses of SSVEPs originating from the visual cortex
that are synchronized to continuous, repetitive visual stimulation [32]. The rationale for performing
both tasks was that if the assembled electrode-holder grid cannot integrate its numerous components
of the positioning rings, inter-ring bridge, and bridge shields in a proficient structure and position the
desired electrodes in a non-uniform curved surface across the head (e.g., fronto-central midline and
posterior parts), poor contact for the attached electrodes will result, barely returning the prominent ERP
and SSVEP characteristics from the group of 15 participants. The detailed parameters and procedures
for the ERP and SSVEP task are depicted as follows.

2.3.1. Auditory Oddball ERP Paradigm

The oddball paradigm consisted of two pure tones in different occurrences. A high-pitched tone
(1000 Hz) was infrequently formed (30%, called target tone) as compared to the frequently presented
low-pitched tone (500 Hz, called standard tone). Both these tones lasted for 500 ms and were played
through the speakers. Each participant was instructed to focus their gaze at the fixation cross located
at the center on a 27” LCD monitor, attentively responding to the target tone by pressing a handheld
button as fast as possible, while ignoring the frequent standard tone. The paradigm was composed of
four blocks; each contained 100 trials with both tones in random order and with an inter-trial jitter of
0.5–1.5 s. The oddball paradigm for each participant corresponded to a total of 120 target trials versus
280 standard trials for sequential ERP analysis.

2.3.2. SSVEP Paradigm

Three repetitive black/white visual flickers (frequency: 10, 12, and 14 Hz; size 5.5 cm × 5.5 cm)
located at the vertices of a triangle were presented on a 27-inch LCD monitor. A fixation cross at
the triangle center (no flickering) was also presented as control. The participant was instructed to
attentively gaze at the fixation cross or at one of the three flickers for four seconds in turn. The paradigm
contained four 20-trial blocks; each block presented one of four visual targets five times in a random
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order. An auditory cure guided the participant to shift their gaze to the next target within an inter-trial
duration of 2.5 s. The SSVEP task collected 80 trials (20 per target) from each participant.

During the recording, each participant sat comfortably on a chair in a dimly lit room. They
underwent both the aforementioned tasks on different days in a random order. Each task lasted
approximately 30 min, which comprised experiment briefing, headset capping, and data recording.
The assembled headset was cleaned simply by a wet wipe with a bit of sanitizer before the capping.
During the capping, the initial inter-ring bridges with respect to certain positioning rings could be
replaced by different lengths for certain individuals because of a distinctive head size. In the meanwhile,
the participant was informed about mild to moderate pressure needed for attaching dry electrodes
well to the scalp. This procedure typically took 5–10 min to confirm the comfort and ensure the contact
between the fronto-central midline and/or parieto-occipital electrodes and the scalp.

2.4. EEG Analysis

This study employed the following procedures to pre-process and analyze the collected ERP and
SSVEP sessions, including (1) bandpass filtering (ERP: 1–30 Hz, SSVEP: 7–17 Hz), (2) trial segmentation
(ERP: −0.2 to 1 s, SSVEP: 0 to 4 s), (3) trial analysis (ERP: synchronized averaging calculation, SSVEP:
power spectral density (PSD) estimation, and (4) signal-to-noise (SNR) calculation on the peaks of
interest (ERP: P300 amplitude, SSVEP: 10-, 12-, and 14-Hz amplitude). Other signal modality-specific
parameters or steps are depicted below. Data preprocessing, analysis, and visualization were performed
using the open source EEGLab toolbox/scripts [37] and self-custom scripts in MATLAB (The Mathworks,
Inc., MA, USA).

2.4.1. ERP Analysis

Following trial segmentation, the trials containing extreme amplitudes (>±100 μV) or
corresponding to erroneous behavioral responses were removed from further analysis (6.5 ± 0.1%
trials discarded on average). In addition, the z-score standardization was applied to the averaged ERP
profile of each individual prior to calculate the grand average ERP. The P300 SNR was derived by
dividing the P300 peak amplitude (300–500 ms) by the standard deviation of the prestimulus baseline
(−200 to 0 ms) as the procedure in [8,38]. Finally, a paired t-test was applied to assess the statistical
difference in P300 SNR between the target versus non-target events.

2.4.2. SSVEP Analysis

Synchronized averaging calculation was also applied to the 4-s SSVEP trials corresponding to
each of the visual targets after trial segmentation. The short-time Fourier transform (STFT) with 1-s
Hamming window (with 80% overlap) was subsequently employed to estimate the EEG spectrogram
with a frequency resolution of 1 Hz and yield the averaged PSDs across all time windows. Lastly,
SSVEP SNR was defined by the ratio of spectral amplitude in the target frequency (10, 12, or 14 Hz)
versus the mean amplitude of its six neighboring frequencies (i.e., three frequencies to each side),
as referred to [39].

3. Results

Figure 3 presents the ERP outcome in terms of its temporal profile and P300 SNR for the
auditory oddball paradigm. Figure 3A shows the ERP image from the representative subject, whereas
Figure 3B,C summarize the ERP profile and P300 SNR of the 15 participants. Note that the ERP image
visualizes single ERP trials and sorts them by button-press response time (RT) in ascending order.
From the representative target ERP image (see Figure 3A), the salient P300 peak closely followed the
RT (black trace) with a distinct amplitude. A longer RT tended to accompany a weaker amplitude and
prolonged latency. On the contrary, the non-target ERP image did not exhibit the P300 peak. For the
group analysis (see Figure 3B), the target event (red profile) exclusively and reliably elicited the P300
peak (at ~400 ms) against the non-target event (blue profile) for 15 participants, leading to a statistical
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significance in P300 SNR (p < 0.01). The N100 peak (at ~170 ms) time-locked to the stimulus onset
was also seen for both events. The topographic mapping of P300 SNR further showed that the highest
value was located at Pz as compared to other electrodes for the target event only (see Figure 3C).

Figure 4 shows the measured SSVEP signatures as exposed to frequency-coded visual flickers.
Figure 4A,B present the temporal and spectral profiles from the representative subject, where Figure 4C
presents the topographic mapping of SNR values over the 15 participants. The single-subject temporal
profile was clearly associated with neural activity synchronized to the onset of the visual flickers at 10,
12, and 14 Hz (see Figure 4A). Their spectral profiles also exhibited salient peaks dominated at the
corresponding frequencies (see Figure 4B). Furthermore, the topographic SNR mapping in Figure 4C
showed that the occipital electrodes accompanied higher SNR values reactive to each of the visual
flickers as compared to other electrodes, especially at Oz. Unlike the frequency-modulated flickers,
the eye-gaze at the fixation cross barely led to frequency-synchronized neural modulation.

Figure 3. The ERP outcomes recorded in an auditory oddball ERP paradigm. (A) ERP images of Pz
from a representative subject; (B) ERP profiles and P300 SNR (i.e., 300–500 ms) of Pz summarized by
15 participants; (C) averaged topographic mapping of P300 SNR using the adopted eight electrodes.

 
Figure 4. The SSVEP outcomes corresponding to frequency-coded visual flickers against fixation
cross. (A) Temporal profiles of Oz from a representative subject; (B) spectral profiles of Oz from the
same representative subject; (C) averaged 8-ch topographic mapping of SSVEP SNR using 4-s trials by
15 participants.
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4. Discussion

In this study, an electrode-holder infrastructure was developed for EEG recordings through the
assembly of three primary components, including sensor positioning ring, inter-ring bridge, and bridge
shield. Given one assembly set, a user is able to self-assemble a headset with a desired montage to
position electrodes at the brain regions of interest in unlimited manner for fundamental research as
well as BCI applications. Whereas most existing headsets exhibit an immobile design, the proposed
headset assembly accommodates the use of a compact set of electrodes placed over certain regions
but removes other redundant electrodes or counterparts that are used for different purposes. During
assembly, the formed 3D structure grid can be retrofitted iteratively to a given head size or shape of
individuals in different age groups. In this way, the electrode-scalp contact can be optimized to ensure
the signal quality accordingly as compared to that of an immobile headset with an unsuitable size. Most
practically, this study demonstrated that the fabrication of the assembly structures can be accomplished
using a low-cost FDM 3D printer, which is cheaper to custom manufacture than injection molding.
Although the state-of-the-art OpenBCI Ultracortex Mark series is also a 3D-printed design and allows
voluntarily placing the electrodes over default 35 locations, its headset frame is fixed (i.e., having
redundant electrode holders in use) and only available in three head circumference sizes. Our assembly
holder departed from the Ultracortex frame substantially with respect to unlimitedly (re)assembling
of a compact holder grid for different purposes or even head sizes given one assembly set of the
primary components (i.e., a LEGO-like headset) without additional cost. In addition, as assembling an
Ultracortex-like headset frame, our design will cost only about 10 USD (using 35 rings, 58 bridges,
and 116 shields) by PLA and EVA filaments. Aside from continuous innovation for electrode and
amplifier technologies [4,6,8,22–31], this study contributed to a cost-efficient, montage-customable
headset assembly infrastructure for a range of applications. It is worth noting that the proposed
assembly grid has the capability of inserting a variety of commercial electrodes (i.e., electrode adaptor
required) and wiring them to a commercial amplifier if a direct connection is feasible (e.g., OpenBCI
Ganglion/Cyton biosensing board).

To validate the practicability of the conceived electrode-holder assembly, this study implemented an
8-ch electrode-holder grid embedded with Cognionics dry electrodes for incorporation with a portable,
custom EEG amplifier [8] for EEG recordings. Its electrode coverage over the fronto-central midline and
parieto-occipital regions was intended to capture the prominent ERP P300 and frequency-modulated
signal peaks while engaging in the auditory oddball and SSVEP tasks, respectively. Given the EEG
recordings of the 15 participants, the resultant ERP and SSVEP outcomes were in line with those found
in the literature. From the ERP perspective (c.f., Figure 3), the target tones predominantly aroused
the attention-related P300 amplitude, with the highest SNR over the parietal region at Pz [8,35,36].
The single-subject example further demonstrated a clear RT-modulated P300 profile consistently
in [8]. In addition, both auditory tones corresponded to the N100 component, early component
of exogenous stimulus detection [8,36]. From the SSVEP perspective (c.f., Figure 4), the occipital
electrodes exclusively recorded strong SSVEP amplitudes corresponding to the targeted frequencies
(Oz with the highest SNR), as SSVEP responses originate from the visual cortex and are synchronized
to frequency-coded visual stimulation [5,13]. Taken together, the replication of the time-locked and
phase-locked ERP and SSVEP signatures empirically demonstrated the satisfactory electrode-scalp
contact and signal quality while wearing the proposed headset assembly for EEG recordings.

There are several possibilities or advantages far beyond the current demonstration of EEG
recording. First, the sensor-holder ring can be fabricated with different specifications to organize either
homogeneous/heterogeneous sensors or sensors and stimulators on the same headset, e.g., comparing
EEG electrodes made by different materials at very adjacent sites [1,5,35,40], facilitating a simultaneous
EEG and functional near-infrared spectroscopy (fNIR) recording over the brain regions of interest [31],
and monitoring EEG activity while applying transcranial alternating current (TAC) stimulation [41].
In addition, the assembly structure is surely capable of being retrofitted to a head-mounted display
system (e.g., AR/VR goggle), worn on the head for stand-alone application [16,19,42]. In contrast,
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a headset with an immobile design to an end user may make the above applications difficult
to implement.

Although this study presented a promising start to a cost-efficient, montage-replaceable headset
assembly in mobile EEG technologies, future effort should be devoted to further demonstrating and
improving its robustness and generalizability. First, EEG recordings can be replicated on non-stationary
subjects (e.g., walking on treadmill [5]). This will be a rigorous yet realistic setting to evaluate the
behavior of the electrode-scalp contact under head movement conditions (e.g., bobbing or swaying)
in walking. Furthermore, in constructing a truly multi-purpose assembly set with considerable
wearability and comfort, it is essential to pay more attention to the mechanical properties of each of
the assembled components, such as size, length, curvature, shape, material, and weight, and what
should be included, at least for the capacity of retrofitting a desired montage from sparse to high-dense
settings over distinct brain regions of interest. It is also helpful to have a guideline following the
international 10–20 system of electrode placement. A holder grid can then be customized by selecting
suitable components efficiently (e.g., inter-ring bridge noted with length) for distinctive brain regions
of interest during assembly.

5. Conclusions

In this study, a cost-efficient, custom EEG-electrode holder infrastructure was developed through
the assembly of primary components, including sensor positioning ring, inter-ring bridge, and bridge
shield. For different studies or BCI tasks, the user can (re)assemble a compact holder grid in an
unlimited fashion to accommodate a desired number of electrodes only to the brain regions of interest
and iteratively adapt it to a given head size for optimal electrode-scalp contact and signal quality.
This study empirically demonstrated the easy-to-fabricate nature of the infrastructure through a
low-cost 3D printer and its practicability in measuring ERP and SSVEP signals was proven over studies
with 15 participants. Through this study, a montage-replaceable headset tailored to be applicable for a
variety of purposes was explored.
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Abstract: Hemiparesis is one of the common sequelae of neurological diseases such as strokes,
which can significantly change the gait behavior of patients and restrict their activities in daily
life. The results of gait characteristic analysis can provide a reference for disease diagnosis and
rehabilitation; however, gait correlation as a gait characteristic is less utilized currently. In this study,
a new non-contact electrostatic field sensing method was used to obtain the electrostatic gait signals
of hemiplegic patients and healthy control subjects, and an improved Detrended Cross-Correlation
Analysis cross-correlation coefficient method was proposed to analyze the obtained electrostatic gait
signals. The results show that the improved method can better obtain the dynamic changes of the
scaling index under the multi-scale structure, which makes up for the shortcomings of the traditional
Detrended Cross-Correlation Analysis cross-correlation coefficient method when calculating the
electrostatic gait signal of the same kind of subjects, such as random and incomplete similarity in
the trend of the scaling index spectrum change. At the same time, it can effectively quantify the
correlation of electrostatic gait signals in subjects. The proposed method has the potential to be
a powerful tool for extracting the gait correlation features and identifying the electrostatic gait of
hemiplegic patients.

Keywords: gait analysis; gait correction; electrostatic gait signal; improved Detrended
Cross-Correlation Analysis cross-correlation coefficient

1. Introduction

With the aging of the global population, strokes and other neurological diseases are occurring more
frequently. Hemiparesis is one of the common sequelae of these diseases. Hemiplegic patients with
body motor dysfunction often show a hemiplegic gait, among other symptoms. Assessing and restoring
the walking ability of patients is the main objective of rehabilitation treatment for hemiplegic patients.
The literature shows that the use of a variety of sensing methods to obtain hemiplegic gait information
in clinical manifestations of hemiparesis [1,2], in order to study the kinematics and mechanics of gait
signals and to objectively and quantitatively evaluate the pathological gait characteristics of hemiplegic
patients, can provide effective support for the diagnosis and rehabilitation of hemiplegic patients [3,4].

At present, there are two main methods of gait measurement; one is the contact measurement
method, which is usually obtained through the subject wearing an inertial unit sensor [5,6] or
photoelectric sensor [7,8]; the other is the non-contact method, in which a video analysis system is
used [9]. However, these common methods have some limitations. For example, wearing a sensor will
affect the natural gait of the subject, while a video system compromises the privacy of the subject and
is associated with data processing difficulties. Because of its non-contact, non-intrusive, and long-term
continuous monitoring of gait signals, electrostatic detection has gradually become a research focus in
the field of gait measurement [10,11]. In Chen’s work [12], the equivalent capacitance model of the
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human body was established by theoretical deduction, and the correctness of the model was verified by
simulations and measured signals. In the paper by Li [13], the gait parameters of the “gold standard”
plantar pressure system were compared with the electrostatic measurement system, and this proved
that the gait time parameters can be effectively measured by the electrostatic field sensing method.
The electrostatic gait signal is a non-stationary time series, which contains various motion parameters
of the human body, including time, frequency and nonlinear parameters, among others. The related
research on feature extraction of the gait signal not only helps explain gait signal fluctuations, obtaining
more gait parameters, but also helps to analyze the physiological health status of the human body.

Correlation is an important feature of the non-stationary time series. Correlation analysis of the
electrostatic gait signal can demonstrate the inherent characteristics of the signal, and the implicit
correlation between the signals. Detrended fluctuation analysis (DFA), first proposed by Peng, is used
to study the long-range fluctuation of DNA sequences [14]. After that, DFA was widely used in
financial time series [15], meteorological time series [16], and physiological signal series [17,18].
However, the traditional DFA cannot describe a complex biological signal sequence accurately because
of its single scale index. In order to better describe the correlation of non-stationary time series,
the bi-index analysis method and local index derivation method are studied in the works by Peng and
Castiglioni [19,20]; however, there is a limitation in that they cannot describe in detail the dynamic
correlation of the signal. Xia Jianan et al. [21] proposed a local moving window combined multiscale
detrended fluctuation analysis (MSDFA) method in order to study the dynamics of the correlation of
signals, wherein the scale index spectrum is obtained by fitting logF(n) and log(n) in a local moving
window to distinguish the ECG signals of healthy and pathological groups, and effectively avoid
the influence of extreme values with this method. The correlation expansion of a non-stationary
time series can obtain the cross-correlation between two non-stationary time series. The Detrended
Cross-Correlation Analysis (DCCA) method proposed by Podobnik and Stanley [22] was first used
to calculate the cross-correlation between two non-stationary time series. It has been widely used in
financial [23,24], atmospheric [25], physiological, and other fields [26]. However, the single scaling
index in the DCCA results still has similar inadequacies to DFA; that is, only a single parameter is used
to describe the sequence characteristics. In order to solve this problem, Yin Yi et al. [27] applied the
improved multiscale detrended cross-correlation analysis (MSDCCA) method in order to obtain the
scaling index spectrum. This method can better show the dynamic changes of the scaling index in
different scaling windows, and effectively avoid the influence of outliers, so it has good robustness.

In order to quantitatively analyze the correlation of non-stationary signals, Zebende proposed a
DCCA cross-correlation coefficient method based on DFA and DCCA [28]. However, we found that
when this method was used to calculate electrostatic gait signals, the results would fluctuate abnormally
near the crossover point [29,30]. Further, the traditional DCCA cross-correlation coefficient spectrum
of electrostatic gait signals of the same type of subjects has random and incomplete similarity, so it was
difficult to distinguish hemiplegic patients from healthy control subjects by the DCCA cross-correlation
coefficient. In order to solve this problem, an improved DCCA cross-correlation coefficient method
is proposed in this paper. Local moving windows are used instead of the fixed scales in the original
algorithm. The results of the improved algorithm show a uniform and regular single peak structure at
the crossover points, and have a stable curve structure; moreover, the results of different electrostatic
gait signals for hemiplegic patients showed a relatively consistent trend. This method can effectively
improve the stability of the DCCA cross-correlation coefficient, and quantify the correlation level of
electrostatic gait signals under different scales.

The rest of this paper is arranged as follows: The second part will introduce the principle of
electrostatic sensing method and the experimental process of electrostatic gait signal acquisition, as well
as how to obtain electrostatic gait signals of hemiplegic patients and healthy control subjects; the third
part will introduce in detail the improvement of the traditional DCCA cross-correlation coefficient
method; and the fourth part uses the traditional method to analyze the electrostatic gait signals of
subjects, from which we find that the traditional method has some shortcomings in the analysis of
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electrostatic gait signals. Then, we use the improved method to analyze the electrostatic gait signals.
Through a comparison between the traditional method and the improved method, it can be concluded
that the improved method is more suitable for the correlation analysis of electrostatic gait signals.
This method can be better applied to the correlation analysis of human electrostatic gait signals.

2. Methods

2.1. Principle of Electrostatic Field Induction in the Human Foot

The electrostatic phenomenon is a ubiquitous physical phenomenon. The human body is charged
with electrostatic energy during movement due to friction between the body and the clothes, as well as
friction between the sole and the ground [31,32]. Therefore, with the movement of the foot during
walking, the electric field around the human body will change [33]. In Chen’s research [12], based on
the principle of the electrostatic field, the equivalent model of the human body was established. Because
the human body has a certain charge, it will produce equivalent capacitance with the surrounding
environment, including the direct coupling capacitance Cf generated by human feet contacting the
ground through the sole, and other capacitance Cr (i = 1, 2 ...). The two capacitors are connected in
parallel to form the total capacitance of the human body (Formula (1)). The equivalent capacitance
model of the human body is shown in Figure 1.

Ch = C f +
∞∑

i = 1

Cri (1)

Figure 1. Sketch of the human body equivalent capacitance model.

The left and right feet alternately leave the ground when walking. The capacitance between the
foot and the ground is equivalent to a variable capacitance which connected to the height of the foot
from the ground in series with Cf. The capacitance value becomes C, resulting in dynamic changes of
electrostatic field around the human body. As in the literature [12], assuming that the charge of the
human body is QB, the induced current I placed on the sensing electrode at a certain distance from the
subject is shown in Formula (2).

I =
dQB

dt
= C

dUB

dt
∝ 1

Ss

d
dt
(h(t)) − h(t)

Ss2
dSs

dt
(2)

UB is the induced potential generated during human walking, h(t) is the height function of human
feet leaving the ground when walking, and Ss is the effective bottom area of h(t) from the ground
height. The first item in Formula (2) represents the current generated by the foot movement before
the foot leaves the ground, and the second item in Formula (2) represents the current caused by the
foot and leg movement after the foot leaves the ground completely. Therefore, when the tester moves
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near the electrodes, we can obtain the electrostatic induction current caused by human motion under
non-contact conditions, and then obtain the relevant parameters of the gait by analyzing the current
waveform obtained.

2.2. Human Electrostatic Gait Measurement System

The electrostatic signal sensing system includes the induction electrode, electrostatic sensing
circuit, signal acquisition and processing circuit. The system schematic diagram is shown in Figure 2.
In this system, a copper foil planar electrode is used as the electrode material. The shape of the
electrode is a circle with a diameter of 90 mm. The electrostatic sensing circuit allows the amplification
and filtering of the electrostatic signal, and realizes the conversion and amplification from the induced
charge to the current to the voltage, thereby converting the weak induced charge amount into a voltage
signal that can be processed. A low-pass filter with a cut-off frequency of 20 Hz was added before
A/D conversion in order to prevent the measured signal from being disturbed by the power frequency
signal of the power grid. The signal acquisition and processing circuit converts the amplified and
filtered analog signals into digital signals using an A/D conversion with high precision and a wide
voltage input, and then processes the collected signals using a microcontroller unit. The sampling
frequency of the system is 1 kHz, and the sampled data is sent to a personal computer for storage and
processing. According to [13], the current intensity of the induced current is inversely proportional to
the distance between the human body and the induction electrode, and the maximum induced current
can be generated when the human body directly faces the induction electrode. Therefore, in order to
obtain a better gait electrostatic signal, the subject is required to tread 1 m in front of the electrostatic
induction electrode.

Figure 2. Schematic of the electrostatic sensing system.

2.3. Gait Measurement Experiment

In this experiment, 10 hemiparetic patients and 10 healthy control subjects participated in data
collection. The experiment recruited 10 hemiparetic patients (six males and four females) from the
Zhongshan People’s Hospital of Guangdong Province, China, as the pathological group. Their average
height was 1.68 m (height range: 1.58~1.76 m), the average weight was 68.7 kg (56~78 kg), and the
average age was 46 years (age range: 31~60 years old). The selection criteria for the hemiparetic
patients was: (1) Unilateral hemiparesis after their first stroke, and the condition has been confirmed
by computed tomography (CT) or nuclear magnetic resonance (MRI) imaging; (2) able to continuously
step or walk for at least three minutes without any help or auxiliary equipment; (3) understands the
external orders and follows the experimental procedures; (4) suffers no other diseases known to affect
the gait [34]. This research was approved by the Ethics Committee of Zhongshan People’s Hospital,
and an informed consent form was signed by each subject.
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The healthy control group had no neurological damage (six males and four females). Their average
height was 1.73 m (height range: 1.58~1.81 m) and the average weight was 61.7 kg (45~78 kg).
The average age was 28 years (age range: 24–33 years old).

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Zhongshan People’s Hospital.

In the experiment, the electrostatic testing equipment was placed on a triangle stand at a height of
1 m from the ground. The healthy control group and the hemiplegic patients wore ordinary rubber
sole shoes, and they were required to tread at a distance of 1 m in front of the electrostatic induction
electrode. The subjects were required to tread in situ at a normal pace. Two groups of signals from the
hemiplegic patients and healthy controls were obtained; that is, a total of 40 groups of electrostatic gait
signals were collected, each of which was about 60 s in length. The ambient temperature and humidity
ranged from 20 to 25 ◦C, and from 50% to 60%, respectively.

2.4. Preprocessing of the Experimental Data

Figure 3a,b shows the original gait signals of a healthy control person and a hemiplegic patient.
The signals are digitally filtered and normalized to intercept 50 s of data from the complete signals.
From the figure, we can see that the amplitude of the healthy control is more stable than that of the
hemiplegic patient, and the gait cycle of the healthy control is shorter than that of the hemiplegic patient.

 
(a) (b) 

Figure 3. Schematic diagram of the original electrostatic gait signal. (a) Preprocessed electrostatic gait
signals of a healthy control; (b) Preprocessed electrostatic gait signals of a hemiplegic patient.

2.5. Improved DCCA Cross-Correlation Coefficient Method

The DCCA cross-correlation coefficient method has the characteristic of quantifying the
cross-correlation level between two non-stationary time series. The DCCA cross-correlation coefficients
of two non-stationary time series x(i) and y(i) are defined as:

ρDCCA(n) =
f 2
DCCA(n)

fDFAx(n)· fDFAy(n)
(3)

The DCCA cross-correlation coefficient is calculated from the DFA and DCCA of the sequence.
When dealing with electrostatic gait signals, this method is sensitive to the fluctuations of fDFA and
fDCCA; it cannot accurately and quantitatively reflect the correlation level. The local moving window
can display the details of physiological signal dynamic change and has good robustness. This paper
proposes an improved DCCA cross-correlation coefficient algorithm based on the local moving window.
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The improved DCCA cross-correlation coefficient method is described as follows: calculate the
sample sequence to get the detrended variance function fDFAx(n) and fDFAy(n), and detrended covariance
function fDCCA(n), where n is the scale. The fluctuation function curves are divided by the local moving
window, then the data in each window is fitted. The expression of the fitted line can be expressed
as (α·n + b), where α is the slope of the line, which can also be regarded as the scale index in each
local window, while b is the only parameter of the currently fitted straight line in the correlation
analysis [21,27]. We are only focused on using the scale index to quantify the correlation, so parameter
b is not discussed. Therefore, every window DCCA cross-correlation coefficient can be represented as:

ρDCCA(n) =
(αDCCA·n)2

(αDFAx·n)·
(
αDFAy·n

) , (n ∈ wi = [c, d], i = 1, 2, . . . , m) (4)

The method for dividing the local moving window is described as follows: For the sample data
with the data length N, set the range of n as (5 < n < N/10), then the partial moving window is divided.
wi = [c, d] (i = 1, 2, . . . , m) is expressed as each local moving window, c is the starting value, d is the
ending value, the starting value interval is 5, and the ending value is five times the starting value,
m is the number of local moving window. swi indicates the scaled median value of each window,
αwi indicates the scale index in the corresponding window, and αw = {αw1, αw2, . . . , αwm} is the scale
index spectrum.

After calculating all the window data, the above formula can be improved to Formula (5):

ρMSDCCA(swi) =
(αwi,DCCA)

2

(αwi,DFA)·(αwi,DFA)
, (i = 1, 2, . . . , m) (5)

We call ρMSDCCA the multi-scale detrended cross-correlation coefficient. In the results,
ρMSDCCA > 0 indicates that there is positive cross-correlation between sequences, while ρMSDCCA
< 0 indicates that there is an anti-cross-correlation between sequences. The dynamics of the sequence
and the inherent complex structure of the sequence can be observed from the curve of ρMSDCCA
changing with swi.

3. Results

In this part, we analyzed the electrostatic gait signal of the hemiplegic patients and the healthy
control subjects with the traditional method. We found that the traditional method had some
deficiencies in the analysis of the electrostatic gait signal correlation. Then, the electrostatic gait signal
was analyzed by the improved method proposed in this paper. The results showed that the improved
method improved the stability and accuracy of the data results compared with the traditional method,
and helped to better identify the electrostatic gait signal of hemiparesis.

3.1. Analysis of the Electrostatic Gait Signal with the Traditional Method

DCCA is used to analyze the correlation between two non-stationary time series, and has been
widely used in finance, atmosphere, physiology, and other fields [23–26]. In this paper, the electrostatic
gait signals of hemiplegic patients and healthy control subjects are analyzed with the DCCA method,
and the logarithmic curve of the cross-correlation fluctuation function and the scale of the electrostatic
gait signals are obtained, as shown in Figure 4. From graph (a), we can see that all the cross-correlation
wave functions of healthy controls have good consistency, and the curves have a crossover point (n= 500).
The cross-correlation index spectrum of the electrostatic gait signals of the healthy controls is obviously
divided into two sections, with a single index (αDCCA = 1.84). From graph (b), we can see that the
cross-correlation wave function curves of all hemiplegic patients are scattered. There are two crossover
points (n1 = 60, n2 = 1200). The cross-correlation index spectrum of the electrostatic gait signals of
hemiplegic patients is obviously divided into three segments. There are two indices for the electrostatic
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gait signals of hemiplegic patients (αDCCA1 = 1.22, αDCCA2 = 1.54). In Figure 4b, the waveform functions
of different samples of hemiplegic patients show chaotic waveform characteristics after the first
crossover point. This phenomenon is related to the difference of walking ability between hemiplegic
patients, but the waveform characteristics cannot be explained by a single index.

 
(a) (b) 

Figure 4. DCCA analysis of healthy controls (a) and hemiplegia patients (b).

Although the cross-correlation wave function spectrogram of the electrostatic gait signals of
subjects calculated by the DCCA method can show the difference between them, the long-range
cross-correlation of the electrostatic gait signals of hemiplegic patients can be seen from a single
index that is weaker than that of the healthy controls. However, this difference is small, and the
cross-correlation index cannot quantify the strength of cross-correlation between signals.

DCCA cannot quantify the correlation of electrostatic gait signals. In this paper, the DCCA
cross-correlation coefficient method is used to analyze the electrostatic gait signals quantitatively.
This method is also widely used in physiological signals [35]. The DCCA cross-correlation coefficient
method is defined by DFA and DCCA to quantitatively study the cross-correlation between
non-stationary time series. The electrostatic gait signals of hemiplegic patients and healthy controls
were calculated and analyzed by the DCCA cross-correlation coefficient method. Figure 5 shows
the analyzed electrostatic gait signals of hemiplegic patient 5 (hemi 5) and healthy control 1 (control
1). We can see from the graph that the spectrum of ρDCCA in hemiplegic patient 5 fluctuates greatly.
The first peak (ρDCCA = 0.69) appears at the scale n1 = 54, and then the curve shows a downward
trend and a disorderly fluctuation trend. The second peak (ρDCCA = 0.68) appears at the scale n2 = 967,
and then the curve decreases and produces two small peaks. The scales corresponding to wave peaks
are similar to those of crossover points in DCCA, and on all scales, ρDCCA = 0.54 ± 0.06. For healthy
control 1, the fluctuation of the spectrogram of ρDCCA was relatively stable, but there was a peak
fluctuation on scale n = 540 (ρDCCA = 0.83) and ρDCCA = 0.69 ± 0.06 on all scales.

The DCCA cross-correlation coefficient can quantify the correlation of the electrostatic gait signals
in hemiplegic patients and healthy controls. After DCCA cross-correlation coefficient analysis of data
from all hemiplegic patients and healthy controls, we found that the fluctuation of ρDCCA near the
crossover point was a common phenomenon, showing a chaotic fluctuation of one main peak and
several sub-peaks. The trend of the DCCA cross-correlation coefficient spectrum of electrostatic gait
signals of the same type of test population was random and similar.

189



Sensors 2019, 19, 2529

Figure 5. Spectrum of ρDCCA in healthy control 1 and hemiplegic patient 5.

Due to the different fluctuation characteristics of time series on different time scales, the crossover
point phenomenon appears in the DFA and DCCA results, and the complex fluctuation phenomenon
appears near the crossover point of the cross-correlation index spectrum, which will affect the
quantitative judgment of the cross-correlation. The traditional method has some limitations in the
analysis of electrostatic gait signals, so we need to improve the traditional method for better analysis
of electrostatic gait signals.

3.2. Improved DCCA Cross-Correlation Coefficient Method for Electrostatic Gait Signal Analysis

Because the traditional DCCA cross-correlation coefficient method has some limitations,
the improved method is used to analyze hemiplegic patient 5 and healthy control 1. As shown
in Figure 6, we can see from the graph that the spectrum of ρMSDCCA in hemiplegic patient 5 first
decreases, then rises, and finally tends to be stable. The scale window sw1 = 160 has a trough,
the correlation coefficient spectrum in the 160 < sw < 589 interval shows an increasing trend, the scale
window sw2 = 589 has a peak, and the correlation coefficient of sw > 589 first decreases to a stable trend.
The correlation coefficients near the peak and trough did not fluctuate significantly in the results of
ρMSDCCA. In contrast, the spectral line of healthy control 1 was relatively stable and showed no obvious
fluctuation in the whole scale window, and the range of healthy control 1 was ρMSDCCA = [1.4, 1.6].

Figure 6. ρMSDCCA spectrograms of healthy control 1 and hemiplegic patient 5.
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Finally, the improved method was used to analyze the electrostatic gait signals of all subjects,
and the correlation coefficient spectra of ρMSDCCA of hemiplegic patients and healthy controls were
obtained, as shown in Figure 7. The red bold line in the figure represents the average of all data changes.
Figure 7a is a spectrogram of the coefficients of ρMSDCCA of the healthy control group. The curve tends
to be stable in the window scale range. The range of ρMSDCCA is [1.3, 1.8], and the mean and standard
deviation are 1.45 ± 0.12. The gait signals of the healthy control group have a better correlation.
The coefficient curve of ρMSDCCA in the hemiplegic patient group is shown in Figure 7b. From the
graph, we can see that the curve first has a downward trend and then an upward trend, and tends to be
stable. The fluctuation of the ρMSDCCA curve in the hemiplegic patients is closely related to the crossing
point. The stability range of ρMSDCCA is [0.6, 1.6], and the mean and standard deviation are 0.93 ± 0.26.

 
(a) (b) 

Figure 7. Result curve of ρMSDCCA. (a) Analytical curves of ρMSDCCA of all healthy controls with respect
to the change of moving windows; (b) Analytical curves of ρMSDCCA with the moving window in all
hemiplegic patients.

From the spectrum of hemiplegic patients and healthy controls calculated by the improved
method, we can clearly see the difference between them, meaning it is possible to effectively distinguish
the hemiplegic patient from the healthy control easily. In addition, it can be seen from the spectrum of
ρMSDCCA that the local variation trend of correlation coefficients near the crossover point is identical,
with many similarities and good stability. Moreover, the improved method can quantitatively show
the difference between the correlation of the gait signals of two groups of subjects, and it can also
reflect the differences of walking ability between individual hemiplegic patients.

4. Conclusions

This study analyzes the correlation between the electrostatic gait signals of hemiparetic patients
and healthy controls by using an improved method which combines the local moving window method
and traditional DCCA cross-correlation coefficient method. Using the improved method to analyze the
electrostatic gait signal can mitigate the weaknesses of the traditional method, such as the random trend
changes and incomplete similarity. In this paper, the electrostatic gait signals of hemiparetic patients
and healthy controls were collected, and the improved method was used for gait analysis. Compared
with the ρMSDCCA coefficient of the healthy control group, the mean value of the ρMSDCCA coefficient of
the hemiparetic patients was smaller, and the trend of change was more complicated, reflecting that
the gait stability of the hemiparetic patients was weaker than that of the healthy controls, additionally,
a poor correlation was obtained. The improved method can obtain the dynamic changes of the scale
index under the multi-scale structure, and quantify the gait difference between the hemiparetic patients
and the healthy controls.
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We only collected one minute of the patients’ gait signal data due to their weakened mobility.
This paper does not consider the difference in the gait signal between individual patients due to different
rehabilitation stages, which can be considered a limitation. In future research, we will obtain more
abundant experimental data, and conduct more in-depth research based on the different rehabilitation
stages of hemiparetic patients, and then obtain more accurate and effective characteristic parameters.
In the future, multiple characteristic parameters could be used to analyze various abnormal gaits,
such as the hemiparesis and Parkinson gaits.
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Abstract: In physical rehabilitation, motion capture solutions are well-known but not as widespread
as they could be. The main limit to their diffusion is not related to cost or usability but to the fact
that the data generated when tracking a person must be elaborated according to the specific context
and aim. This paper proposes a solution including customized motion capture and data elaboration
with the aim of supporting medical personnel in the assessment of spinal cord-injured (SCI) patients
using a wheelchair. The configuration of the full-body motion capturing system is based on an
asymmetric 3 Microsoft Kinect v2 sensor layout that provides a path of up to 6 m, which is required
to properly track the wheelchair. Data elaboration is focused on the automatic recognition of the
pushing cycles and on plotting any kinematic parameter that may be interesting in the assessment.
Five movements have been considered to evaluate the wheelchair propulsion: the humeral elevation,
the horizontal abduction of the humerus, the humeral rotation, the elbow flexion and the trunk
extension along the sagittal plane. More than 60 volunteers with a spinal cord injury were enrolled for
testing the solution. To evaluate the reliability of the data computed with SCI APPlication (APP) for
the pushing cycle analysis, the patients were subdivided in four groups according to the level of the
spinal cord injury (i.e., high paraplegia, low paraplegia, C7 tetraplegia and C6 tetraplegia). For each
group, the average value and the standard deviation were computed and a comparison with similar
acquisitions performed with a high-end solution is shown. The measurements computed by the
SCI-APP show a good reliability for analyzing the movements of SCI patients’ propulsion wheelchair.

Keywords: markerless motion capture; automatic pushing analysis; SCI patients; RGB-D sensors

1. Introduction

Spinal cord injury is caused by one or more lesions of the spinal cord. Inside the spinal cord,
there is a complex network of neural and vascular connections which can be affected by pathologies
and traumatic injuries. In particular, 50% of them are due to road accident, 24% to fall, 17% to other
causes, 6% to sports and 3% to extreme sports [1]. The most important classification of spinal cord
injury is the International Standard for the Neurological Classification of SCI (ISNCSCI) created by
the American Spinal Injury Association (ASIA) [2]. This classification permits us to evaluate the type
of injury and the rehabilitation program in order to improve patients’ quality of life. Lesions are
grouped into levels according to their position along the spinal cord, and each level is correlated to a
specific loss of functionality. If the subject loses motor and/or sensitive functions because of a lesion of
the spinal cord in the cervical segment, the patient’s disability is called tetraplegia. The disability is
called paraplegia if the spinal cord-affected areas are the thoracic, lumbar, or sacral segments. When a
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person is subjected to a spinal cord injury, the wheelchair is the basic support to start the rehabilitation
process and recover personal autonomy. The first step of the process with a wheelchair requires a
setup made according to the patient’s stature and conditions (e.g., muscular force, comorbidities or
other impairments). The setup can be also changed according to the level of ability of the user who
is learning how to sit and act on the handrims. For the posture analysis and propulsion evaluation,
the assessment is still based on direct and qualitative observation, with no standard instruments to
measure the improvements in wheelchair use. The observational approach has some limits; in fact, it is
subjective and depends on physicians’ and physiotherapists’ experience. Moreover, data are not stored
and only evaluation related to functional scales is recorded. Thus, even if the medical personnel are
qualified, a patient’s medical history results may be incomplete and accurate monitoring over time is
almost impossible.

To overcome these drawbacks, digital technologies for tracking patient’s movements can be
adopted. Motion capture (Mocap) systems have the potential to track and record real human motion.
They allow recognizing, reproducing and analyzing the motion of specific districts or of the entire
body. The kinematic data of any action performed during a rehabilitation process can be the basis
of an improved way to assess a patient’s condition and monitor his/her evolution in the long term.
However, Mocap systems require specific technological skills that are challenging for medical personnel,
who prefer to continue with the standard and traditional approach based on visual assessment instead
of investing resources to introduce new technologies.

The aim of this paper is the creation of a novel procedure to analyze the motion of spinal
cord-injured patients using a wheelchair by means of a motion capture system based on inexpensive
sensors that is easily usable by physicians and physiotherapists. The design of the procedure has
been defined in collaboration with the medical staff of the hospital ASST Papa Giovanni XXIII in
Bergamo, which is one of the most important public hospital in Italy. A software application has
been developed to automatically execute the pushing cycle analysis and find the key measurements
of specific movements which are useful in assessing the patient’s performance in a simple way and
supporting the medical personnel with objective data during the decision process. The application
allows physicians to collect medical information during the patient’s rehabilitation process.

For evaluating the reliability of the proposed solution, the research work compares the acquired
motion data with those obtained with a professional high-level Mocap solution found in the literature.

In the first part, this paper introduces the state of the art relative to the use of innovative
technologies as a new frontier for medical rehabilitation; then, the methodology for developing the
whole procedure based on the use of a low-cost Mocap system is described. Finally, the outcomes are
discussed and a quantitative analysis is presented comparing the results reached so far with the data
available in the literature.

2. State of the Art

The analysis of the propulsion of a wheelchair allows us to assess the correctness of the upper
limb movements and loads in spinal cord-injured patients. Actually, the measurement of the upper
limb, shoulder and back performance may prevent the risk of patient injury caused by a wrong use of
a wheelchair. The correct approach for safe and energy-saving pushing is based on the kinematic data
of patient’s movements and the forces generated during the propulsion.

Nowadays, rehabilitation centers adopt observational methods to assess the propulsion of a
wheelchair. In the scientific literature, several standard protocols have been defined to obtain assessment
methods that are as objective as possible for both intra-operator and inter-operator. For example,
Gowran et al. [3] propose a list of existing visual standard protocols for the evaluation of wheelchair
propulsion. The claimed aim is to find key factors supporting the physiotherapists in defining the
best setting of the wheelchair, preventing injury and postural diseases. However, this approach is
mainly static and does not consider the movements of patients during the use of the wheelchair.
Smith et al. [4] define a specific method, the Wheelchair Propulsion Test (WPT), which relies on the
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observation of a patient using the wheelchair along a straight path that is 10 m long. The data acquired
are the time required, the number of pushes, the identification of the pushing style and a pushing cycle
analysis. Even if WPT guarantees an objective approach, still no data about the patient’s movements
are considered. Other research works have developed the assessment protocol, Wheelchair Skills Test
(WST). This defines a set of tasks that the patient has to perform with the wheelchair while one or more
physiotherapists visually assess the way the patient performs pushing cycles according to capacity,
confidence, performance and training goal. In some research works, such as Lindquist et al. [5] and
Askari et. al. [6], physiotherapists use video recordings of the patients’ performances for consulting
previous assessments. Additionally, WST allows an objective inter-operator and intra-operator
approach, but no patient movements are directly measured.

Other research works combine the use of video recording with biomedical signals of muscles
using electromyography. The aim is to study what happens to the upper arms during wheelchair
propulsion. In particular, Chow et al. [7] use electromyography with recorded video during wheelchair
propulsion on a sloped ramp. The result is the correlation of muscular activity of the upper limb with
each phase of the pushing cycle. Additionally, in this case no kinematic data are available.

With the aim of detecting and recording the movements and forces generated by the patients
during wheelchair usage, innovative technologies have been introduced as tools for assessing the
wheelchair propulsion by considering patients’ performance.

Some researchers have exploited sensorized wheelchairs. For example, the commercial solution
Smartwheel [8] allows measuring the forces and torsions on a wheelchair directly from the wheels.
While forces are acquired on the wheels, patients’ kinematic data are monitored adding a motion
capture (Mocap) system [9,10].

A Mocap system tracks and recognizes the human body shape to reconstruct a virtual skeleton
that follows the recorded movements. The virtual skeleton allows directly evaluating the kinematic
data of the movement and correlating them to the medical assessment. Three main types of Mocap
system can be used: inertial systems and optical marker-based or markerless solutions.

Inertial Mocap systems are based on inertial measurement units (IMUs) applied along the human
body to record movements during wheelchair propulsion. Leving et al. [11] show how it is possible to
track and record upper limb movements by applying IMUs on patient’s shoulders, elbows and wrists.
This technology is able to register the position, velocity and acceleration of each IMU sensor; however,
no data are directly available that describe the kinematic behaviors of the whole patient’s body on
the wheelchair. Similarly, Slikke et al. [12,13] show the high accuracy of an IMU motion acquisition
system for assessing the wheelchair propulsion of SCI patients in sports. Additionally, in this case
data only correlate to a single point along the upper arms. Moreover, IMU sensors can be considered
slightly invasive from the patients’ point of view, and the eventual slipping of the sensors along the
arms during acquisition may affect the final results.

Marker-based Mocap systems are usually expensive but they guarantee a high accuracy and
precision. For example, Boninger et al. [14] used the Optitrack system [15] to analyze the kinematics
of the upper limb and Smartwheel to measure the forces generated during wheelchair propulsion;
this is performed on a propulsion platform in order to execute a large number of pushing cycles in a
room. The achieved results show that the main causes of injuries are due to the asymmetry between
the right and left upper arm during the pushing cycles. Vegter et al. [10] used a marker-based Mocap
system and a sensorized wheelchair for evaluating the mechanical efficiency and the overload of the
shoulder articulation. The evaluation takes place during the first part of the rehabilitation process,
during which patients learn how to use the wheelchair. The results demonstrate how the kinematic
data permit one to optimize the symmetry of the propulsion to reduce the overload on the shoulder
and prevent inflammation for a long-lasting period after the initial rehabilitation. Due to their high
accuracy and precision, marker-based Mocap systems are usually considered as a reference by which
to evaluate other Mocap solutions. Newsam et al. [16] exploited a Vicon system to analyze how
SCI patients perform the propulsion step. In particular, the aim was to evaluate a set of specific
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parameters of arm movements during the pushing cycles to investigate the main differences in
performance among patient groups with different levels of spinal cord injury. Eight movements were
measured: humeral elevation, horizontal abduction of the humeral, humeral rotation, elbow flexion,
forearm pronation, trunk extension, wrist flexion and wrist ulnar deviation. They have been measured
in degrees at five specific steps of the pushing cycle: the initial contact of the hand on the pushrim,
the hand on the top center of the wheel, the hand off the pushrim, the end of the follow through and the
end of the arm return. The results reached can be used as a reference to validate similar research works.

The use of this technology is costly, time-consuming and requires a dedicate room; thus, it is not
so widespread in rehabilitation centers.

Markerless Mocap systems instead exploit a set of low-cost portable sensors. The most diffused
solutions in the literature adopt RGB-D sensors that combine a standard RGB video with the depth
data of the scene. Rammer et al. [17] propose a propulsion platform on which children on a wheelchair
perform many pushing cycles. The patient’s movements on the wheelchair are acquired by a system
composed of three Microsoft Kinect v2 sensors positioned around the wheelchair. The system can
detect kinematic metrics relevant in manual wheelchair propulsion. The obtained data are relevant
but hardly usable by a medical staff because they are not directly usable for pushing cycle analysis.
Furthermore, even if using a platform reduces the volume of acquisition, which is positive, it also
obliges the wheels to move on straight binaries, and the pushing movements may be distorted.

Literature contributions are generally focused on the technical feasibility while neglecting the
final users’ requirements and background. Actually, physicians and physiotherapists must be able at
least to set up the hardware devices to track the patients and obtain results in a readable format with
a few simple steps. In the last five years, the authors have designed a solution that is patient- and
physician-driven to perform pushing cycle analysis by means of a low-cost Mocap system based on
three Microsoft Kinect v2 devices. The layout of the Mocap system was optimized to be easily usable,
fast to mount and easily replicable in a rehabilitation center [18,19]. Furthermore, a specific application
was developed to automatically extrapolate from the acquired data the motion parameters needed to
assess the pushing cycle [20].

Concerning the performance of markerless Mocap systems, several research works have compared
them with professional marker-based systems. Galna et al. [21] compared the use of a single Microsoft
Kinect v1 with the Vicon system [22] to track movements of the upper limbs of patients with Parkinson’s
disease. The results demonstrate that the Kinect device is an adequate system for acquiring wide
movements of the arms with a good accuracy (e.g., abduction, adduction and rotation). Instead, it is
not suitable to acquire fine movements of the hands, such as hand clasping. Concerning the use of a
wheelchair, Milgrom et al. [23] compared a markerless Mocap system composed of the Microsoft Kinect
device with a software development kit (SDK) [24] to acquire the wheelchair propulsion executed by
patients on a platform. The results highlight the good accuracy obtained with a Kinect-based Mocap
system which is suitable for measuring the key features of pushing cycles.

3. Method

In order to define a technological solution applicable in the medical field, a methodology has been
developed by the authors and refined through many years of experience [19]. First, a preliminary
study allowed the design of a Mocap layout with 3 Microsoft Kinect v2 sensors to assess the wheelchair
propulsion of an SCI patient along a straight path approximatively 6 m long [18]. Then, by involving
healthy people, the kinematic data were analyzed in collaboration with medical personnel in order
to find a correlation between the movements and the patients’ assessment. Starting from medical
information described in [19], the goal of the SCI patient analysis was to simplify and organize the
acquired biomechanical data in order to make available to medical staff only the information needed
for the patient’s rehabilitation.

A pushing cycle is subdivided in two main movements of the arms (Figure 1):

• Push: this occurs when the hands grab the wheelchair handrims and move the wheels forward.
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• Recovery: this starts when the hands let the handrims go and finishes when the position of
pushing is reached.

Figure 1. Example of a pushing cycle highlighting the recovery (red line) and push (blue line)
movements as well as the considered key points.

The beginning and the end of the push and recovery are very important because they correspond
to the extreme reachable positions of the hands and determine the quality and effectiveness of the
movements. According to the virtual skeleton describing the human, the hand joint corresponds to
the real human wrist. It is connected to the forearm joint that is connected, in turn, to the shoulder
joint. This kinematic chain, composed of only two links, is essential for the description of the hand
propulsion trajectory. According to the physicians’ needs, an optimal pushing cycle analysis can be
assessed if the patients can be tracked on a straight path at least 6 m long. Along the propulsion cycle,
there are five key points (see Figure 1) that are used to compare the proposed solution with the data
available in the literature:

• Top center (TC): the hand reaches the top center position of the pushrim during the push.
• Initial contact (IC): the hand touches the pushrim to start the push.
• Hand off (HO): the hand leaves the pushrim and then the push finishes.
• End of follow through (End FT): the hand finishes going forward before starting the

recovery movement.
• End of arm return (End AR): the recovery movement finishes before starting a new pushing cycle.

Table 1 reports the measurements relative to the specific positions of arms, shoulders, and trunk
useful for the assessment and also used for comparison with the results found in the literature.
Each posture is described by the specific angles that are also shown graphically to permit an easy
description and define the orientation.

Figure 2 shows the main phases of the implemented solution. The first is relative to the design of
the Mocap procedure to acquire the patient on the wheelchair along the straight path. The second
phase is relative to the use of iPiSoft to elaborate the motion-captured data according to the movements
useful for the pushing cycles analysis and the final assessment. The third phase is focused on the
application named the Spinal Cord Injury APPlication (SCI-APP) that automatically analyzes the
acquired data and generates information to support the medical personnel’s decisions.
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Table 1. Main movements characterizing a patient’s posture during wheelchair propulsion.
The description is based on four pieces of information: the plane on which the movement is performed,
the human articulation performing the movement, an image to visually understand how the movement
is assessed and a description of the biomechanics of the movement considered.

Plane Considered Human Articulation Requested Position/Movement Biomechanics Joint Analyzed

Median Plane Trunk Flection

 

It contributes to determining the patient
stability during wheelchair propulsion.

As the angle decreases, the stability
increases, but over a threshold angle the

wheelchair can overturn during the
pushing phase.

Median Plane Humeral Elevation

The humeral elevation describes the
rotation of the shoulder along the median

plane during the propulsion of
the wheelchair.

Median Plane Humeral Rotation The humeral rotation is the rotation around
the axes of the humerus.

Transverse Plane Humeral Horizontal Abduction

The horizontal abduction of the humerus
describes the rotation of the shoulder

around the transverse plane during the
propulsion of the wheelchair.

Median Plane Elbow Flexion/Extension

The maximum and minimum values of this
angle have to stay in an optimum range in
order to prevent a problem with the elbow
articulation. This angle depends on the seat
translation compared to the wheel rotation
axle. Right and left angles are compared to

assess the symmetric propulsion.
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Figure 2. Main technological phases of the developed solution.

3.1. Phase 1: Mocap Acquisition

According to the results reached in previous research works [18,20], the default settings have been
modified to improve the maximum performance and give better frame rate parameters. A commercial
software solution developed by iPi Soft [25] is used to record the human motion and to extract
avatar joint information. The tracked movements and relative skeleton animation have been stored in
BVH format.

According to the requirements of the medical staff and the technological limits of the adopted
solution, the standard multiple depth sensor configuration of the Mocap software needs to be modified
to allow a 5.85 m-long acquisition track and to record three complete propulsion cycles for almost
any patient.

The Mocap acquisition was designed in order to establish a checklist to reduce accidental oversights
and human errors. In this way, all the patient’s actions are taken with the same environmental conditions,
hardware setup and software performance. This protocol was developed thanks to the experience
gathered with a number of tests at the university laboratory and acquisition sessions. Table 2 describes
the sequence of actions grouped according to the three main steps. The first foresees the layout
assembly and all the PC connections, the second includes all the actions needed to calibrate the Mocap
system and the last concerns how to use iPiSoft recorder.
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Table 2. The action checklist for a correct Mocap acquisition of the SCI patients.

To Do List for SCI Patients’ Acquisitions

 

LAYOUT To repeat once a day

1.1 Lay out the three-vertex carpet
1.2 Check Kinect 1.20 m in height
1.3 Check Kinect horizontal inclination of −13◦
1.4 Check vertical orientation of Kinect RGB camera field of view
1.5 Check ambient light source to darken (windows, lamps)
1.6 Check Kinect - PC USB cable link
1.7 Check ethernet cable link
1.8 Setup iPi Soft Recorder Master and Slaves computers
1.9 Setup new folder of the acquisition day “YYYY-MM-DD”

CALIBRATION
120 [sec]

To repeat for each calibration
approx. every 30 min

2.1 Background iPi Soft Recorder 10 sec (with carpet on the floor), the Kinect
field of view must be without anyone

2.2 Setup Kinect with glass filter
2.3 Spiral movements with light marker + Recording using iPi Soft Recorder
2.4 Delete PC slave videos -> Button “Merge video” in iPi Soft Recorder
2.5 Calibration using iPi Soft Studio
2.6 Take off glass filter from Kinect
2.7 Take off carpet from the floor

2.8 Background iPi Soft Recorder 10 [sec] (without carpet on the floor),
the Kinect field of view must be without anyone

VIDEO
RECORDING

To repeat
for each
patient

3.1 Setup new patient’s folder “No. - Patient Surname”
3.2 Change folder directory in iPi Soft Recorder

To repeat for each
acquisition

3.3 Registration using iPi Soft Recorder
3.4 Delete PC slave videos -> Button “Merge video” in iPi Soft Recorder

Further documentation, not reported in this paper, was created to help users in managing files
(e.g., about calibration or wheelchair specifications), to check that the lights and patient’s clothes are
suitable and to properly inform patients about the procedure.

3.2. Phase 2: Data Extraction

This phase has the goal to extract from the acquired data the set of information required by
physicians to evaluate the patient and his/her rehabilitation process. A set of correlations was defined
between the raw data and the medical evaluation parameters. The adopted human avatar is composed
of 29 joints with their associated positions, velocities and accelerations. The evaluated movements
are associated with the kinematic data of the virtual joints. Table 3 depicts how medical parameters
are quantified according to the tracked data. For the sake of the evaluation, it is also relevant to
determine the entire trajectory of the hands during the pushing cycle. The beginning and end of any
cycle are automatically identified by the ad hoc developed application. Furthermore, the movements
are automatically measured according to the key points of each detected pushing cycle in order to
obtain a complete analysis.

3.3. Phase 3: SCI-APP

By starting from the BVH file exported by iPisoft, SCI-APP automatically performs the analysis of
the pushing cycles executed by the patients and makes available both linear and angular measurements
of the upper limbs. All the information can be automatically exported in PDF and Microsoft Excel
file format.
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Table 3. Correlations between human articulations and virtual joints. The left column reports the
measured human articulations by considering a specific set of virtual joints highlighted in green in the
images depicted in the right column. The central column describes how to measure the movements
using the virtual joints.

Human Articulation Data and Information Virtual Joints and Segments

Elbow Flection

Joints Lower spine, neck.
Angle [◦] X-axis rotations.

Description

The bending of the trunk is
measured as the angle between
the vertical line and the segment
passing between the lower spine

and neck.

 

Humeral Elevation

Joints R/L shoulder, R/L forearm.
Angle [◦] X-axis rotations.

Description
The humeral elevation is

measured as the rotation of the
shoulder joint around the X-axis.

 

Humeral Rotation

Joints R/L shoulder.
Angle [◦] X-axis rotations.

Description

The humeral rotation is
measured as the rotation of the
shoulder joint around the axis
defined as the vector between
the shoulder position and the

forearm position.

 

Humeral Horizontal
Abduction

Joints R/L shoulder, R/L forearm.
Angle [◦] Y-axis rotations.

Description

The humeral horizontal
abduction is measured as the
rotation of the shoulder joint

around the X-axis.

 

Elbow
Flexion/Extension

Joints L/R forearm.
Angle [◦] X-axis rotations.

Description

During the propulsion phase,
the angles considered have

periodic movements. Max and
min extensions are significant

data by which to assess the
upper limbs’ performance.

The whole application was developed in Python and is composed of four main modules:

• Computation of pushing analysis. This requires as input the kinematic data of the virtual
skeleton to automatically detect all the instants relative to the beginning of both phases of the
pushing cycle. It automatically checks if there are asymmetries between the left and the right
pushing cycles.
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• Data extrapolation of each pushing cycles. This makes available all the data of a specific pushing
cycle. It is used to generate the graphs needed to compare the position of the hand with the
position of the handrim and visually evaluates each type of pushing cycle.

• Measurements of specific patient movements. This computes the measurements of the human
body articulations according to the medical reference system. The computed data are the linear
and angular measurements described in Table 3.

• Generation of the medical reports. This permits us to automatically generate a report and save
the computed data and measurements in a PDF or Excel file.

The medical personnel can access all these data through a user-friendly interface developed by
means of Qt [26]. Figure 3 shows the SCI-APP user interface. The upper part is dedicated to the patients’
data that have to be filled in by the medical personnel. The bottom part includes three main tabs related
to the main system functionalities, each with its graphical area, to show the computed outcomes.

 

Figure 3. User interface of SCI-APP with an example of pushing analysis with the left and right hand
trajectories with an asymmetry warning on the right side.

The first tab, named “Pushing Analysis”, contains the data computed using the first module
related to the propulsion analysis and its relative key points. In particular, the following information is
shown:

• Number of right and left pushing phases made by the patient during wheelchair propulsion.
• Length covered by the patient during the wheelchair propulsion.
• A warning when the application detects symmetry loss during one or more propulsion phases.

Furthermore, it portrays two graphs about the right and left hand trajectory according to the
position of the handrim profile (Figure 3). The beginning and the end of the detected pushing phases
are highlighted for both the right and left sides. In this way, it is possible to show the extreme positions
of upper limbs relative to the handrim during propulsion.

The second tab, entitled “View All Pushes”, exploits the second module and shows the graphs
of each right and left pushing cycle. Supported by these data, the operator can easily classify each
pushing cycle according to the performed trajectory and easily find the difference between the right
and left hand gesture during each propulsion movement (Figure 4).
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Figure 4. Examples of a trajectory analysis of two pushing cycles for both the left and right hands
automatically calculated by SCI-APP.

The third tab, named “Body Posture”, makes available graphs plotting the key parameters that
describe the patient’s motion (Table 2) for the entire acquisition. Furthermore, each graph shows the
minimum, maximum and average values of relative parameters; the start and end pushing frames are
highlighted in different colors to correlate the pushing cycle phases with the behavior of the evaluated
movement (Figure 5). Finally, the operator can generate a pdf report with all the information needed
for the medical assessment, as shown in Figure 6.

 

Figure 5. Example of an “Elbow flection” analysis with two graphs related to the specific movements
measured according to the median, frontal and transverse planes and a graphical representation.
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Figure 6. An example of a PDF report generated by SCI-APP including the main patient’s data,
information about the acquired pushing cycles (upper part) and the results of the analysis with
graphical representations (lower part).

In order to evaluate the reliability of the data and the measurements computed with SCI-APP,
a comparison must be carried out with similar acquisitions performed with a high-end solution. In this
research study, the results of Newsam et al. [16] were chosen as reference data for the comparison.
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SCI-APP exports the useful data in Excel file format for each acquisition. In particular, for each
pushing cycle the 5 key points shown in Figure 1 are computed and for each of them are shown the
measurements of the 5 movements to evaluate the wheelchair propulsion: the humeral elevation,
the horizontal abduction of the humerus, the humeral rotation, the elbow flexion and the trunk
extension along the sagittal plane. These movements are measured in degrees using the kinematic
data of the virtual joints, as depicted in Table 3.

The goal is to investigate if low-cost sensors can track the wheelchair propulsion with an accuracy
that can be considered from good to excellent. According to [21–27], a markerless Mocap system can be
considered good for the evaluation of medical parameters relative to the movements if the measured
movement has either an overestimation or underestimation reasonably smaller than 10◦, and excellent
when either the overestimation or underestimation is reasonably smaller than 5◦.

4. Campaign of Acquisition

The acquisition of the SCI patients was performed at the rehabilitation center of the Hospital ASST
Papa Giovanni XXIII, the main public hospital in Bergamo, Italy. Sixty volunteers with spinal cord
injury were recorded. They were divided in four groups according to the level of the injury lesion:
high paraplegia (n = 15 patients), low paraplegia (n = 15 patients), C6 tetraplegia (n = 13 patients) and
C7 tetraplegia (n = 15 patients). Concerning gender, 80% of the patients were male and 20% female.

Figure 7 shows the distribution of the patients by age and height, and Figure 8 shows the
distribution of the patients by how many years since the injury occurred and the height of the
spinal lesion.

The exclusion criteria are centered on the functional evaluation of patients; age, sex, height or
kind of lesion do not limit the patients from being enrolled, but only their ability to use a wheelchair.

Figure 9 shows the rehabilitation gym of the hospital where the experiment was carried out.
To avoid variation in the light during long test sessions, artificial lights were preferred to natural light.
The three Kinect V2 sensors were placed according to the defined layout using the positioning carpet.
Each vertex of the carpet corresponds to the position of a sensor.

 
Figure 7. Distribution of patients by age (a) and height (b).
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(a) (b) 

Figure 8. Distribution of patients by how many years since the injury occurred (a) and height of the
spine lesion (b).

 

Figure 9. Rehabilitation gym and sensors layout with three-vertex carpet and wheelchair path. This tool
allows a faster preparation of the layout of the Mocap system and a reference surface to correctly
calibrate the multiple Microsoft Kinect sensors.

Patients are asked to practice on the path before being tracked. Each patient was acquired twice.
The generated virtual avatar was exported by iPiSoft in a BVH file (Figure 10), which was used to
automatically perform the pushing analysis with the SCI-APP and export the patient’s body motions
(Table 3) at each key position (i.e., IC, TC, HO, end FT and end AR).

In total, 138 acquisitions have been accomplished. Even if patients have been trained and
informed to wear tight clothes, it happened that some acquisitions failed when the data were processed.
Unfortunately, it is not possible to check all the parameters in real time and, thus, some acquisitions may
fail. Anyway, this could be easily solved if the procedure becomes a routine activity in a rehabilitation
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center. A total of 116 acquisitions out of 138 (85%) are correct and have been automatically processed
by the SCI-APP application.

 
Figure 10. Respectively, RGB image, IR acquisitions and the virtual avatar of the acquired patient.

The average duration of the video acquisition was 105 frames, corresponding to 3.5 s at 30 fps;
eventual differences due to slow movements or other conditions can be easily handled. For each
acquisition, the SCI-APP application is able to identify, from an average of 4.30 m net acquisition
path length, two complete cycles (51%) or three complete cycles (24%). The number of single pushes
(i.e., without recovery) goes from two to five in 96% of the cases analyzed. In 9% of the acquisitions
analyzed, the SCI-APP detected asymmetric movements between the right and left upper limbs,
which involves a different number of pushing phases between the right and the left hands.

There are some drawbacks regarding the use of an optical system to track part of the body—e.g.,
the pelvis and hips—because they are occluded by the presence of the wheelchair even if these parts
are not crucial for patients’ assessment.

5. Results and Discussion

In the next subsections, the results reached so far are presented and discussed as follows. For each
patient group, the average value and the standard deviation have been computed for each of the five
considered movements in each key point and compared with data reported in Newsam et al. [16].

A table is presented for each movement. The table has three rows for each patient group; the first
reports the reference data (i.e., the data reported in Newsam et al. [16]), the data computed by the
SCI APP and the difference between them. The columns are relative to the five key points of the
pushing cycle.

5.1. Humeral Elevation

Table 4 shows the parameters relative to the humeral elevation. The Δ rows show average values
very good compared to the reference values for all the key instants in all the groups of patients. In detail,
IC, TC and end AR present an optimal measurement using Kinect sensors. This result confirms that
the Kinect sensors can track wide movements of the human body as the humeral elevation with a high
quality [28,29].
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Table 4. Values of the humeral elevation in degrees for each group of patients.

Humeral Elevation
IC TC HO End FT End AR

Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D.

Low paraplegic (Ref. Val.) 55.1 4.4 48.8 4.3 24.2 4.6 22.1 3.9 56.9 4.7
Low paraplegic (Sci App) 52.0 7.3 46.7 8.2 16.7 15.1 11.8 6.5 54.3 9.1

Δ −3.1 −2.1 −7.5 −10.3 −2.6

High paraplegic (Ref. Val.) 53.8 7.8 47.1 7.9 23.7 4.3 22.1 4.0 55.7 7.2
High paraplegic (Sci App) 51.3 8.7 45.7 10.4 17.2 14.7 10.0 8.7 50.5 10.2

Δ −2.5 −1.4 −6.5 −12.1 −5.2

C7-tetraplegic (Ref. Val.) 49.0 8.9 42.6 9.7 22.1 4.4 21.5 4.2 52.5 7.9
C7-tetraplegic (Sci App) 44.8 6.9 37.7 6.8 7.8 6.6 10.9 8.5 43.4 8.9

Δ −4.2 −4.9 −14.3 −10.6 −9.1

C6-tetraplegic (Ref. Val.) 45.4 8.3 41.1 9.2 23.8 6.9 21.6 5.5 49.5 8.0
C6-tetraplegic (Sci App) 41.3 6.8 38.6 5.3 15.0 9.4 13.8 5.7 40.8 5.5

Δ −4.1 −2.5 −8.8 −7.8 −8.7

The key points HO and the end FT have the highest Δ. The difference could be due to the fact
that Newsam et al. performed the acquisition with a shorter path of 4 m. This may affect the way the
patient pushes the wheelchair propulsions [28,29].

5.2. Horizontal Abduction of Humerus

Table 5 shows the parameters relative to the horizontal abduction of the humerus. The Δ rows
show the average values optimal for the key points IC, TC, end FT and end AR for all the groups of
patients. Additionally, in this case the high similarity confirms the potentialities of Kinect sensors to
track wide movements.

Table 5. Values of the abduction of humerus in degrees for each group of patients.

Horizontal Abduction
IC TC HO End FT End AR

Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D.

Low paraplegic (Ref. Val.) −53.6 8.1 −41.8 8.5 6.8 12.5 21.8 14.8 −55.3 8.3
Low paraplegic (Sci Lab) −51.7 10.1 −46.7 10.8 −13.9 21.1 22.8 18.8 −51.2 10.2

Δ 1.9 −4.9 −20.7 1.0 4.1

High paraplegic (Ref. Val.) −55.5 8.9 −44.8 6.8 0.8 20.7 15.6 24.0 −56.5 8.8
High paraplegic (Sci Lab) −54.2 9.1 −46.4 9.2 −18.2 18.1 15.1 18.4 −52.1 8.8

Δ 1.3 −1.6 −19.0 −0.5 4.4

C7-tetraplegic (Ref. Val.) −58.3 7.7 −48.8 6.8 8.6 17.9 19.6 21.1 −59.3 6.7
C7-tetraplegic (Sci Lab) −59.2 8.3 −52.8 10.2 −5.4 20.3 23.4 18.7 −57.0 6.1

Δ −0.9 −4.0 −14.0 3.8 2.3

C6-tetraplegic (Ref. Val.) −54.6 8.4 −43.5 13.3 8.2 14.2 9.9 15.4 −55.1 8.4
C6-tetraplegic (Sci Lab) −56.2 8.3 −51.1 7.8 −9.9 29.3 17.9 11.0 −52.1 7.1

Δ −1.6 −7.6 −18.1 8.0 3.0

The key points HO has a very high Δ value. Additionally in this case, the difference could
reasonably depend on the length of the acquired path.

5.3. Humeral Rotation

Table 6 shows the parameters relative to the humeral rotation. The Δ rows show average values
that are very good for the key points IC, TC and end AR for all groups of patients. Very high Δ values
have been computed for HO and end FT. In this case, it is very difficult to understand if the high
difference can be correlated with a lower propulsion or if there is a loss of the correct humeral rotation
by the Mocap system during tracking in the second part of the propulsion. The loss of tracking may be
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caused by a type of movement (i.e., the rotation of the humerus around own axis) that can be very
hard to detect using optical sensors.

Table 6. Values of the humeral rotation in degrees for each group of patients.

Humeral Rotation
IC TC HO End FT End AR

Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D.

Low paraplegic (Ref. Val.) 78.0 14.8 69.9 14.6 37.0 18.7 24.4 22.2 77.7 14.5
Low paraplegic (Sci Lab) 74.0 3.6 70.6 4.1 53.1 10.4 36.6 10.3 75.0 5.0

Δ −4.0 0.7 16.1 12.2 −2.7

High paraplegic (Ref. Val.) 75.6 14.5 67.8 14.4 35.5 26.4 22.4 31.6 76.0 14.2
High paraplegic (Sci Lab) 75.7 4.6 71.8 4.3 57.1 8.5 43.2 7.0 75.5 5.0

Δ 0.1 4.0 21.6 20.8 −0.5

C7-tetraplegic (Ref. Val.) 73.6 12.9 70.7 12.6 27.2 22.4 17.3 27.5 72.0 12.9
C7-tetraplegic (Sci Lab) 68.7 6.0 63.5 5.2 43.0 9.3 34.6 7.1 67.6 5.8

Δ −4.9 −7.2 15.8 17.3 −4.4

C6-tetraplegic (Ref. Val.) 74.6 10.4 69.3 15.2 27.6 18.9 19.1 23.1 72.6 10.2
C6-tetraplegic (Sci Lab) 70.6 5.0 68.1 5.2 52.1 10.6 37.5 8.4 70.3 3.4

Δ −4.0 −1.2 24.5 18.4 −2.3

5.4. Elbow Flexion

The evaluation of the elbow flexion/extension is shown in Table 7. The Δ rows show average
values good for the key points IC, TC, end FT and end AR for all the groups of patients. There are higher
Δ values only for the group with low paraplegia, but the values of their standard deviation permit us
to consider the differences negligible. The possibility of shorter propulsions is further confirmed by
the Δ values of HO of the elbow flexion/extension. Additionally in this case, the HO values are higher
than the reference data and the reason for this could be the same as for the previous cases.

Table 7. Values of the elbow flexion/extension in degrees for each group of patients.

Elbow Flexion
IC TC HO End FT End AR

Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D

Low paraplegic (Ref. Val.) 59.4 10.9 76.4 8.9 43.1 9.8 34.8 9.0 54.3 9.8
Low paraplegic (Sci Lab) 68.2 12.0 72.7 10.1 58.1 19.0 33.6 13.2 64.4 15.1

Δ 8.8 −3.7 15.0 −1.2 10.1

High paraplegic (Ref. Val.) 59.8 11.6 77.1 11.1 46.1 11.7 37.4 12.7 55.0 11.1
High paraplegic (Sci Lab) 64.2 12.7 74.0 9.5 63.8 14.8 41.8 12.3 57.5 15.1

Δ 4.4 −3.1 17.7 4.4 2.5

C7-tetraplegic (Ref. Val.) 65.5 8.1 77.1 8.1 42.4 10.1 35.4 10.1 62.9 9.2
C7-tetraplegic (Sci Lab) 62.9 12.4 72.7 6.3 51.7 14.7 35.6 11.8 55.9 17.5

Δ −2.6 −4.4 9.3 0.2 −7.0

C6-tetraplegic (Ref. Val.) 62.8 10.0 69.8 10.7 42.8 9.3 41.8 9.3 61.3 10.6
C6-tetraplegic (Sci Lab) 60.9 15.0 71.3 10.0 54.0 15.5 33.4 10.8 58.2 14.4

Δ −1.9 1.5 11.2 −8.4 −3.1

5.5. Trunk Flexion/Extension

The trunk flexion/extension along the sagittal plane is very similar for each group of patients.
In this case, the data from the literature [16] make available a general average value for all the key
instants that have a value between 1 and 7 degrees. According to this range, the values measured with
the SCI-APP are very good (Table 8). Furthermore, Newsam et al. highlighted that the subjects with
C6 tetraplegia have a total excursion of trunk motion significantly greater than all the other groups
(i.e., an average value of 11◦), which is confirmed by the data we acquired.
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Table 8. Values of the trunk flexion/extension rotation in degrees for each group of patients.

Trunk Extension
IC TC HO End FT End AR

Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D

Low paraplegic −3.4 4.9 −3.8 5.0 −3.9 5.3 −2.6 5.2 −2.6 5.1
High paraplegic 0.0 7.7 0.0 7.8 0.1 6.8 0.9 6.3 0.3 7.1
C7-tetraplegic 0.7 9.4 0.0 9.1 −0.9 8.7 −0.9 8.8 0.9 8.9
C6-tetraplegic 12.4 5.1 11.0 5.0 9.1 5.1 9.6 5.5 12.4 5.4

5.6. Final Considerations

Concerning the information available in the scientific literature [16,21,27–29], the outcomes reached
with the SCI-APP are consistent. Moreover, the long path we are using allows tracking more pushing
cycles for each acquisition, making the average values more robust. Actually, tracking patients on a
short path, even with top-quality sensors, can influence the way patients behave. This condition may
be one of the reasons why the values of movements at key points HO and end FT are not similar to
those available in the literature.

The comparison performed so far has been shown to the involved medical personnel and their
feedback is positive. Thus, we are confident that the presented markerless Mocap system can be easily
adopted as a tool for the medical assessment of pushing cycles.

Further investigations have been planned to analyze in detail the movement of the humerus,
since it is the most relevant contribution to the entire pushing. The main weakness of the presented
solution seems to be the measurements of the rotations along the axes of virtual bones, as described in
§ 5.3.

Future developments will be dedicated to tracking the movements of wrists, hands and fingers,
which have been neglected in this research work.

6. Conclusions

Paraplegia is mainly due to injuries to the spinal cord and may cause paralysis of the lower limbs;
the wheelchair is the best moving solution for most people with this disability. The assessment of
posture and the way the wheelchair is used is essential during the rehabilitation process to avoid further
ailments or excessive energy expenditure. A structured method has been provided to support the
complex issue of evaluating the way a person moves on a wheelchair. The method has been used with
60 patients, whose data have been elaborated by an ad hoc developed application to obtain the required
medical parameters. As a result, a simple but flexible user interface allows plotting any translation or
rotation of the involved articulations that may be relevant for the assessment. Physiotherapists are
provided with automatic alerts to highlight critical conditions, such as asymmetry of the movements,
and reports are generated automatically to keep track of the outcomes. The medical knowledge
collected and formalized allowed developing a solution that not only provides medical personnel with
the exact information they need, but that is also suitable for easy use.

The data generated have been compared with the few references available in the literature,
which use costly Mocap systems for tracking. The comparison was conducted on the key movements
of the trunk and arms in five specific instants of the pushing cycle. These data were evaluated by
subdividing the patients into four groups according to the level of spinal cord injury. The comparison
has highlighted mean values very similar to those in the scientific literature. A systematic error for
the parameters HO and end-FT was highlighted and the most probable cause is correlated with the
procedure of acquisition, which required patients to execute a possible pushing cycle along a straight
path. This approach generated a pushing cycle shorter than the natural performance. In general,
the results reached confirm that SCI-APP and the proposed markerless solution are useful for an
adequate evaluation of propulsion.
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Further works will be dedicated to performing a usability test involving personnel who did not
participate to the development of the solution in order to highlight the eventual limits. Moreover,
a validation campaign will be carried out considering the possibility of using more precise and accurate
sensors. After this, the proposed solution will be ready for broad use in rehabilitation centers.
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Abstract: Game-based rehabilitation systems provide an effective tool to engage cerebral palsy
patients in physical exercises within an exciting and entertaining environment. A crucial factor
to ensure the effectiveness of game-based rehabilitation systems is to assess the correctness of the
movements performed by the patient during the game-playing sessions. In this study, we propose
a game-based rehabilitation system for upper-limb cerebral palsy that includes three game-based
exercises and a computerized assessment method. The game-based exercises aim to engage the
participant in shoulder flexion, shoulder horizontal abduction/adduction, and shoulder adduction
physical exercises that target the right arm. Human interaction with the game-based rehabilitation
system is achieved using a Kinect sensor that tracks the skeleton joints of the participant. The
computerized assessment method aims to assess the correctness of the right arm movements during
each game-playing session by analyzing the tracking data acquired by the Kinect sensor. To evaluate
the performance of the computerized assessment method, two groups of participants volunteered to
participate in the game-based exercises. The first group included six cerebral palsy children and the
second group included twenty typically developing subjects. For every participant, the computerized
assessment method was employed to assess the correctness of the right arm movements in each
game-playing session and these computer-based assessments were compared with matching gold
standard evaluations provided by an experienced physiotherapist. The results reported in this study
suggest the feasibility of employing the computerized assessment method to evaluate the correctness
of the right arm movements during the game-playing sessions.

Keywords: cerebral palsy; game-based rehabilitation exercises; computerized assessment methods;
motion tracking sensors; Kinect sensor

1. Introduction

Cerebral palsy refers to a group of non-progressive neurological disorders that begin at early
childhood and can lead, among other limitations, to various degrees of motor impairments, physical
disability, postural control, and coordination deficits [1,2]. The worldwide rate of cerebral palsy is
around 1 per 500 live births, which makes cerebral palsy the most frequent cause of motor disability in
childhood [3]. In fact, many children with cerebral palsy suffer from motor impairments in their upper
limbs, which lead to significant impact on their independence in activities of daily living, quality of
life, social interaction, and functional abilities [4].

Presently, no cure has been discovered for cerebral palsy [5]. Therefore, the treatment of cerebral
palsy is often focused on avoiding complications, enhancing functional independence, managing
symptoms, improving motor capabilities, and strengthening weak muscles [6]. One of the most
effective and common rehabilitation treatment approaches for patients with cerebral palsy is to

Sensors 2020, 20, 2416; doi:10.3390/s20082416 www.mdpi.com/journal/sensors215



Sensors 2020, 20, 2416

participate in task-specific, intensive, and repetitive physical exercises to improve the motor capabilities
and reduce the potential of further complications [7,8]. Nevertheless, boredom, lack of motivation,
the limited available resources, and high costs are among the key barriers that prevent patients
with cerebral palsy from participating in rehabilitation physical exercises as recommended [9,10].
To address the aforementioned limitations, many research groups proposed the use of computer games
as a complementary tool for conventional cerebral palsy rehabilitation therapy, with particular focus
on children patients [11–16]. The use of computer games in the rehabilitation process has the potential
to motivate the patients and increase the frequency and duration of the exercises [9,17,18].

Studies that investigated the use of computer games for cerebral palsy rehabilitation can be
broadly classified into two main groups [13,19]. The first group is focused on using off-the-shelf
computer games in cerebral palsy rehabilitation, while the second group proposed the use of bespoke
computer games that are specifically designed for cerebral palsy rehabilitation [13,19]. Several studies
from the first group employed off-the-shelf games that run on the Nintendo Wii game playing
system (Nintendo Co., Kyoto, Japan), such as [11,20,21], the Microsoft Kinect system (Microsoft
Corporation, Redmond, WA, USA), such as [10,16,22,23], and the Sony PlayStation system (Sony
Interactive Entertainment, San Mateo, CA, USA), such as [24]. The use of off-the-shelf games has
the advantage of offering high-quality gaming experience for cerebral palsy children at low cost.
Nevertheless, such games are designed for typically developing subjects rather than persons with
limited motor abilities [11,21]. Hence, the use of off-the-shelf games for cerebral palsy rehabilitation
might be limited due to their high complexity and difficulty, the restricted customization options that
prevent their adaptation for the rehabilitation process, and the lack of specialized assessment tools to
evaluate the performance of the cerebral palsy children during the game-playing sessions [13,19].

Bespoke computer games that are specifically developed for cerebral palsy rehabilitation provide
several advantages, including the ability to target physical rehabilitation exercises and the capability
of customizing the games to meet the needs of the patients. In fact, one of the widely used commercial
bespoke game-based rehabilitation systems is the Immersive Rehabilitation Exercise system (IREX
system, GestureTek Health Inc., Toronto, ON, Canada) [25]. The IREX system employs a camera
to capture real-time pictures of the patient and embeds the pictures into virtual reality gaming
environment. The patient interacts with the virtual reality environment using motion tracking sensors.
The study by Bryanton et al. [17] evaluated the use of the IREX system for cerebral palsy rehabilitation,
and the results indicated the potential of employing the system to engage children with cerebral palsy
in physical exercises within an exciting environment. Despite the improved capability of the IREX
system, the high costs associated with the system might restrict its deployment at home as well as
therapy centers that have limited budget [26].

Several previous studies investigated the development of non-commercial, low-cost, and effective
bespoke computer games to support the rehabilitation of cerebral palsy children. Detailed review about
these previous studies is presented in [25]. In fact, a large group of these non-commercial bespoke
rehabilitation games employed the Microsoft Kinect sensor for tracking the skeleton joints of the
participant to enable him/her to interact with the games [25]. For example, the study in [27] presented
a set of Kinect-based games that are developed to engage patients with motor disabilities, including
cerebral palsy patients, in physical exercises. Furthermore, several recent studies, such as [13,19,28],
proposed Kinect-based games for training the limbs, particularly the upper limbs, of cerebral palsy
children. The results reported in these studies suggested the feasibility of using non-commercial,
low-cost, bespoke rehabilitation games as adjunct to conventional rehabilitation programs to actively
engage cerebral palsy children in physical exercises. Nevertheless, a crucial requirement to enable the
use of bespoke computer games as an effective complementary tool for cerebral palsy rehabilitation
is to assess the correctness of the movements performed by the patients during the game-playing
sessions [13].

The current study contributes to the ongoing efforts to improve the rehabilitation of cerebral
palsy by proposing a non-commercial, low-cost, bespoke rehabilitation system. The proposed system
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aims to engage patients with upper-limb cerebral palsy in game-based physical exercises that target
the right arm and assess the correctness of the right arm movements performed during the playing
sessions. In particular, the proposed system includes three game-based rehabilitation exercises that
are designed under the supervision of a specialized physiotherapist. Human interaction with the
game-based exercises is enabled using the Microsoft Kinect sensor (particularly the Kinect v2 sensor).
The correctness of the right arm movements during each game-playing session is evaluated using a
custom-made computerized assessment method that analyzes the tracking data acquired by the Kinect
sensor. To evaluate the performance of the proposed computerized assessment method, two groups
of participants volunteered to participate in the three game-based rehabilitation exercises, where
the first group included six cerebral palsy children and the second group included twenty typically
developing subjects. For every participant, the computerized assessment method was employed to
assess the correctness of the right arm movements in each game-playing session and the obtained
computer-based assessment was compared with matching gold standard evaluation that is provided
by an experienced physiotherapist. The results reported in the current study demonstrate the capability
of the proposed assessment method to achieve effective evaluation of the right arm movements during
the game-playing sessions.

The remainder of the paper is organized as follows. Section 2 provides an overview of the
proposed rehabilitation system as well as detailed description of the three game-based rehabilitation
exercises and the computerized assessment method. Section 3 describes the experimental evaluations
and results, including the two groups of participants, the experimental protocol, the performance
evaluation metrics, and the results obtained for both the cerebral palsy children and the typically
developing subjects. The discussion and conclusion are provided in Section 4.

2. Materials and Methods

2.1. Overview of the Proposed Rehabilitation System

The hardware component of our proposed bespoke game-based rehabilitation system consists of
a personal computer connected to a 19” liquid crystal display (LCD) and a Microsoft Kinect sensor.
The personal computer is employed to perform the computational tasks, the LCD is used to display
the game-based rehabilitation exercises, and Kinect sensor is employed to track the skeleton joints
of the participant during each game-playing session. The participant was asked to perform the
game-based rehabilitation exercises while seating on a chair or a wheelchair. Moreover, the LCD and
the Kinect sensor were placed on a table with adjustable height to enable the participant to perform the
game-based rehabilitation exercises in a comfortable manner. Figure 1 shows a cerebral palsy patient
playing one of the game-based rehabilitation exercises provided by the proposed system.

The Kinect sensor used in the current study is the Kinect for Windows v2 sensor. In fact, this sensor
provides a low-cost and effective alternative for high cost reference motion tracking systems, such as
the Qualisys motion capture system (Qualisys Inc., Gothenburg, Sweden) [29]. The Kinect v2 sensor is
equipped with an RGB camera that has a resolution of 1920 × 1080 pixels and an infrared camera that
has a resolution of 512 × 424 pixels. Moreover, the sensor can track the 3D positions of twenty five
body skeleton joints with a frame rate up to 30 Hz, where each joint position is expressed in the 3D
Cartesian coordinate system.
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Figure 1. A cerebral palsy patient playing one of the game-based rehabilitation exercises provided by
our proposed system.

The software component of our proposed system consists of a set of three game-based
rehabilitation exercises that target the right arm and a computerized assessment method that
assists the correctness of the right arm movements during the game-playing sessions. In fact, the
game-based rehabilitation exercises are developed using the C# programming language and the Unity
game development platform (Unity Technologies ApS, San Francisco, CA, USA). The computerized
assessment method was implemented using MATALB (MathWorks Inc., Natick, MA, USA) and run
offline after completing the playing sessions of the game-based rehabilitation exercises to evaluate the
correctness of the right arm movements.

The architecture of the proposed bespoke game-based rehabilitation system is illustrated in
Figure 2. As shown in the figure, the system is composed of four phases. The first phase allows
the participant, under the supervision of the specialized physiotherapist, to select the game-based
rehabilitation exercise. After selecting the game-based exercise, the system proceeds to the second
phase. In the second phase, the participant performs the selected game-based exercise under
the supervision and vocal guidance of the physiotherapist. In fact, the vocal guidance of the
physiotherapist aims to help the participant to perform the game-based exercise in a correct manner.
At the beginning of the game-playing session of the selected game-based exercise, the participant starts
the exercise with his/her arms relaxed on his/her side and his/her palms facing towards his/her
body. Then, the participant moves his/her right arm to perform the movements needed to play the
game-based exercise as described in Section 2.2. It is worth noting that the game-playing session
refers to the sequence of right arm movements performed by the participant to play the game-based
exercise for a single iteration. During the game-playing session, the skeleton joints of the participant
are tracked using the Kinect sensor to enable the participant to interact with the game. Moreover, the
physiotherapist is asked to monitor the performance of the participant. The second phase ends when
the participant completes the game-playing session of the selected game-based exercise. In the third
phase, the tracking data of the participant’s skeleton joints are recorded. Moreover, the physiotherapist
is asked to label the right arm movements during the game-playing session as correct or incorrect
based on the evaluation criterion described in Section 3.2. In the fourth phase, the recorded tracking
data of the participant’s skeleton joints are analyzed using the computerized assessment method,
which is described in Section 2.3, to provide a computer-based evaluation of the correctness of the
right arm movements during the game-playing session.

218



Sensors 2020, 20, 2416

Figure 2. The architecture of the proposed bespoke game-based rehabilitation system.

2.2. The Game-Based Rehabilitation Exercises

The proposed bespoke rehabilitation system includes three game-based exercises that target
the right arm. The three game-based exercises are designed under the supervision of a specialized
physiotherapist with more than 12 years of experience to increase the range of motion and improve the
stability of the right arm. In particular, the three game-based exercises aim to implement the shoulder
flexion, shoulder horizontal abduction/adduction, and shoulder adduction physical exercises. Below
is a summary of the three game-based exercises.

2.2.1. The Shoulder Flexion Game-Based Exercise

The first game-based exercise aims to engage the participant in the shoulder flexion physical
exercise, which is illustrated in Figure 3a. The game-based exercise that is employed to realize the
shoulder flexion physical exercise is illustrated in Figure 3b. In this game, a set of nine stars are placed
along the central, vertical axis of the screen. The participant is asked to collect the stars using a virtual
hand that is controlled using the participant’s right hand through the Kinect sensor. In particular, the
participant is asked to lift his/her right arm up from the resting position by his/her side (position
A in Figure 3a) to his/her front in which the arm is parallel to the floor (position C in Figure 3a).
The participant continues the game by lifting his/her arm up from the front position (position C in
Figure 3a) to the straight position above the head (position E in Figure 3a). These movements allow
the participant to collect the stars located at the screen. The participant maintains his/her arm in the
straight position above the head for a predefined time period, which is between 1 and 2 s. At the end
of the game, the participant is asked to move his/her arm down from the straight position above the
head (position E in Figure 3a) to the resting position by his/her side (position A in Figure 3a), where
this movement allows him/her to collect any remaining stars in the screen. The participant is asked to
perform all these movements slowly and in a controllable manner in which the arm is kept straight.
Moreover, the trunk should be kept straight during the exercise.

To engage the participant in the game in an enjoyable and fun environment, we have added sound
effects to the game, such that a cling sound is played each time a star is collected by the participant.
In addition, the score of the game is incremented by one point when the participant collects a star.
The sound effect and the process of assigning one point for each collected star is applied for the two
game-based exercises described below.
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Figure 3. (a,b): (a) The shoulder flexion physical exercise and (b) the corresponding shoulder flexion
game-based exercise. (c,d): (c) The shoulder horizontal abduction physical exercise followed by
the shoulder horizontal adduction physical exercise and (d) the corresponding shoulder horizontal
abduction/adduction game-based exercise. (e,f): (e) The shoulder adduction physical exercise and (f)
the corresponding shoulder adduction game-based exercise.

2.2.2. The Shoulder Horizontal Abduction/Adduction Game-Based Exercise

This game-based exercise aims to engage the participant in the shoulder horizontal abduction and
shoulder horizontal adduction physical exercises, which are illustrated in Figure 3c. The game-based
exercise that is employed to realize these two physical exercises is shown in Figure 3d. In this game,
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a set of nine stars are placed along the central, horizontal axis of the screen. The participant is asked to
collect the stars using a virtual hand that is controlled using the participant’s right hand through the
Kinect sensor. At the beginning of the game, the participant is asked to lift his/her arm up from the
resting position by his/her side to his/her front in which the arm is parallel to the floor (position C in
Figure 3c). The participant maintains his/her arm in the front position for a predefined time period,
which is between 1 and 2 s. Then, the participant starts playing the game by moving his/her arm to
perform the shoulder horizontal abduction movement (positions C to A in Figure 3c), which allows
him/her to collect the stars located at the right half of the screen. After that, the participant is asked
to move his/her arm to perform the shoulder horizontal adduction movement (position A to D in
Figure 3c), which allows him/her to collect any missing star in the right half of the screen and all stars
in the left half of the screen. In fact, the participant is asked to perform all these movements slowly and
in a controllable manner in which the arm is kept straight and at the height of the shoulder. Moreover,
the trunk should be kept straight during the exercise.

2.2.3. The Shoulder Adduction Game-Based Exercise

This game-based exercise aims to engage the participant in the shoulder adduction physical
exercise, which is illustrated in Figure 3e. The game-based exercise that is employed to realize the
shoulder adduction physical exercise is illustrated in Figure 3f. In this game, a set of thirteen stars
are placed along an arc that is located at the right side of the screen and spans 180◦. The participant
is asked to collect the stars using a virtual hand that is controlled using the participant’s right arm
through the Kinect sensor. At the beginning of the game, the participant is asked to lift his/her arm
up from the resting position by his/her side to a straight position above the head (position A in
Figure 3e). The participant maintains his/her arm at this position for a predefined time period, which
is between 1 and 2 s. Then, the participant starts playing the game by moving his/her arm to perform
the shoulder adduction movement (positions A to E in Figure 3e), which allows him/her to collect
the stars located in the arc. In fact, the participant is asked to perform this movement slowly and in a
controllable manner in which the arm is kept straight. Moreover, the trunk should be kept straight
during the exercise.

2.3. The Computerized Assessment Method

This subsection describes the computerized assessment method that we have developed to
achieve automatic evaluation of the right arm movements during the game-based rehabilitation
exercises. In fact, this assessment method is based on spatial-temporal analysis of the 3D tracking data
of the participant’s skeleton joints that is acquired by the Kinect sensor during each game-playing
session. To develop the computerized assessment method, the Motion-Pose Geometric Descriptor
(MPGD), which was originally introduced by Alazrai et al. to model human movements during
human-to-human interactions [30] as well as to detect and predict the fall of elderly people [31,32],
is extended in the current study to obtain a view-invariant representation of the pose and motion of the
right arm. The extended MPGD, denoted by E-MPGD, aims to extract a set of time-varying features
that quantify the pose and motion of the participant’s right arm during each game-playing session of
the game-based rehabilitation exercises. The extracted features are processed using feature selection
and classification analysis to obtain computer-based assessment of the correctness of the right arm
movements. In the following subsections, we provide detailed descriptions of the E-MPGD as well as
the feature selection and classification analyses employed in the current study.

2.3.1. The Extended Motion-Pose Geometric Descriptor (E-MPGD)

The original formulation of the MPGD [30] used a body-attached 3D coordinate system to compute
a set of time-varying features that quantify the pose and motion of the body parts. The body-attached
coordinate system is a reference 3D coordinate system that is centered at one of the body joints, denoted

221



Sensors 2020, 20, 2416

by the origin, and includes three orthogonal anatomical planes. These anatomical planes are based on
the anatomical planes concept described in [33]. A major advantage of the body-attached coordinate
system is the capability to obtain view-invariant representation of the 3D positions and movements
of the tracked skeleton joints, independently of the location and orientation of the Kinect sensor.
Therefore, the locations of the skeleton joints that are tracked by the Kinect sensor are transformed
to the body-attached coordinate system to achieve view-invariant analysis of the body movements.
The transformed tracking data is then processed to extract a set of time-varying features that describe
the pose and motion of the human body.

In the current study, all subjects who participated in the game-based rehabilitation exercises were
asked to use their right hands to perform the exercises. Hence, the extended MPGD, denoted by
E-MPGD, that we have developed in the current study aims to extend the body-attached coordinate
system and the time-varying features of the MPGD to achieve effective representation of the pose
and movement of the right arm during the game-based rehabilitation exercises. In the following,
we provide detailed description of the body-attached coordinate system and the time-varying features.

E-MPGD: The Body-Attached Coordinate System

The Kinect for Windows v2 sensor employed in the current study has the ability to track the 3D
positions of twenty five skeleton joints, which are shown in Figure 4a as red and blue points. In fact, the
eight skeleton joints shown as red points, which include the left shoulder (lS) joint, the right shoulder
(rS) joint, the spine shoulder (SS) joint, the right hip (rHI) joint, the spine base (SB) joint, the right elbow
(rE) joint, the right wrist (rW) joint, and the right hand (rH) joint, are used by the E-MPGD to model
the pose and motion of the right arm. The remaining seventeen skeleton joints, which are shown in
Figure 4a as blue points, are not considered in the current study as they are not required to model the
pose and motion of the right arm.

Figure 4. (a) The twenty five skeleton joints that are tracked by the Kinect for Windows v2
sensor. (b) The body-attached coordinate system of the Extended Motion-Pose Geometric Descriptor
(E-MPGD).
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The body-attached coordinate system of the E-MPGD is configured such that its origin is located
at the rS skeleton joint, as shown in Figure 4b. Hence, the 3D locations of the eight skeleton joints
considered in the current study, which are shown in Figure 4a as red points, are expressed with respect
to the rS joint. In addition, three orthogonal anatomical planes, namely the coronal plane, transverse
plane, and sagittal plane, are defined such that these three planes intercept at the origin, as shown in
Figure 4b. Each one of these three planes is defined using three non-collinear joints, i.e., joints that are
not located along the same line, as described below:

• The coronal plane (CP): This plane is defined using the rS, lS, and SB skeleton joints.
• The transverse plane (TP): This plane is defined using the rS and lS skeleton joints as well as

the ŜS virtual joint. The ŜS virtual joint is obtained by shifting the SS skeleton joint along the
direction orthogonal to the coronal plane, denoted by the positive z direction, by a distance of
0.2 m to ensure that the z coordinate of the ŜS joint is different than the rS and lS joints.

• The sagittal plane (SP): This plane is defined using the rS skeleton joint as well as the r̂S and ˆ̂rS
virtual joints. The r̂S virtual joint is obtained by shifting the rS skeleton joint along the positive
z direction by a distance of 0.2 m. The ˆ̂rS virtual joints is obtained by shifting the rS skeleton
joint along the direction orthogonal to the transverse plane, denoted by the negative y direction,
to match the y coordinate of the rHI joint.

E-MPGD: The Time-Varying Features

For all game-based rehabilitation exercises, the tracking data acquired by the Kinect v2 sensor
during a particular game-playing session is composed of a series of acquisition frames, where each
frame includes the x, y, and z coordinates of the twenty five tracked skeleton joints. For every
acquisition frame, which is assumed to have a temporal index k, the coordinates of the skeleton joints
are analyzed to synthesize the body-attached coordinate system, as described before. Moreover, the 3D
coordinates of the skeleton joints are transformed to the body-attached coordinate system. After that,
the coordinates of the rS (i.e., origin), rE, rW, and rH skeleton joins at frame k are analyzed to extract
eleven angle-based features and twenty seven joint-based features to quantify the pose and motion
of the right arm at that frame. The extraction of the angle-based features is performed by computing
three vectors that correspond to the main parts of the right arm. These vectors are the vector that
extends from the rS to the rE skeleton joints (

−→
SE), the vector that extends from the rE to the rW skeleton

joints (
−→
EW), and the vector that extends from the rW to the rH skeleton joints (

−→
WH). The first nine

angle-based features are extracted by computing the angles between each one of these three vectors
and the three anatomical planes, i.e., the CP, TP, and SP, at frame k. These nine features are denoted

by θ
−→
SE
CP

(k), θ
−→
SE
TP

(k), θ
−→
SE
SP

(k), θ
−−→
EW
CP

(k), θ
−−→
EW
TP

(k), θ
−−→
EW
SP

(k), θ
−−−→
WH
CP

(k), θ
−−−→
WH
TP

(k), and θ
−−−→
WH
SP

(k). The descriptions
and mathematical formulations of these nine features are provided in Table 1. The remaining two

angle-based features are the angle between the vectors
−→
SE and

−→
EW, denoted by θ

−−→
EW−→
SE

(k), and the angle

between the vectors
−→
EW and

−→
WH, denoted by θ

−−−→
WH−→
EW

(k), at frame k. Table 1 provides the descriptions
and mathematical formulations of these two features.
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Table 1. The angle- and joint-based features of the E-MPGD.

Type Features Description Mathematical Formulation

A
ng

le
-b

as
ed

fe
at

ur
es

θ
−→
SE
CP

(k), θ
−→
SE
TP

(k), θ
−→
SE
SP

(k) The angles between the vector
−→
SE

and the CP, TP, and SP at frame k.
θ
−→
V
P
(k) = sin−1

( |−→V .−→nP |
||−→V ||

)
, where θ

−→
V
P is the angle between

the vector
−→
V and the plane P at frame k, and −→nP is the

normal vector to the plane P.θ
−−−→
EW
CP

(k), θ
−−−→
EW
TP

(k), θ
−−−→
EW
SP

(k) The angles between the vector
−→
EW

and the CP, TP, and SP at frame k.

θ
−−−→
WH
CP

(k), θ
−−−→
WH
TP

(k), θ
−−−→
WH
SP

(k) The angles between the vector−−→
WH and the CP, TP, and SP at
frame k.

θ
−−−→
EW−→
SE

(k) The angle between the vectors
−→
SE

and
−→
EW at frame k.

θ
−→
V−→
U
(k) = cos−1

( |−→U .−→V |
||−→U ||.||−→V ||

)
, where θ

−→
V−→
U
(k) is the angle

between the vectors
−→
U and

−→
V at frame k.

θ
−−−→
WH−→
EW

(k) The angle between the vectors
−→
EW

and
−−→
WH at frame k.

Jo
in

t-
ba

se
d

fe
at

ur
es

prE
x (k), prE

y (k), prE
z (k) The x, y, and z components of the

rE joint velocity at frame k.
The locations of the rE. rW, and rH skeleton joints at
frame k are provided by the Kinect sensor and
transformed to the body-attached coordinate system.

prW
x (k), prW

y (k), prW
z (k) The x, y, and z components of the

rW joint location at frame k.

prH
x (k), prH

y (k), prH
z (k) The x, y, and z components of the

rH joint location at frame k.

vrE
x (k), vrE

y (k), vrE
z (k) The x, y, and z components of the

rE joint velocity at frame k. vp
d(k) =

pp
d (k)−pp

d (k−1)
Δt , where vp

d(k) is the velocity
of skeleton joint p along direction d at frame k,
pp

d(k) and pp
d(k − 1) are the locations of p along

direction d at frames k and k − 1, respectively, and
Δt is the time step between frames k and k − 1.

vrW
x (k), vrW

y (k), vrW
z (k) The x, y, and z components of the

rW joint velocity at frame k.

vrH
x (k), vrH

y (k), vrH
z (k) The x, y, and z components of the

rH joint velocity at frame k.

arE
x (k), arE

y (k), arE
z (k) The x, y, and z components of the

rE joint acceleration at frame k. ap
d(k) =

vp
d (k)−vp

d (k−1)
Δt , where ap

d(k) is the
acceleration of skeleton joint p along direction d at
frame k, vp

d(k) and vp
d(k − 1) are the velocities of p

along direction d at frames k and k − 1, respectively,
and Δt is the time step between frames k and k − 1.

arW
x (k), arW

y (k), arW
z (k) The x, y, and z components of the

rW joint acceleration at frame k.

arH
x (k), arH

y (k), arH
z (k) The x, y, and z components of the

rH joint acceleration at frame k.

The twenty seven joint-based features aim to quantify the motion of the rE, rW, and rH skeleton
joints at frame k. In particular, nine of these features, which are denoted by prE

x (k), prE
y (k), prE

z (k),
prW

x (k), prW
y (k), prW

z (k), prH
x (k), prH

y (k), prH
z (k), evaluate the x, y, and z components of the positions of

the rE, rW, and rH skeleton joints at frame k. Moreover, nine joint-based features, which are denoted
by vrE

x (k), vrE
y (k), vrE

z (k), vrW
x (k), vrW

y (k), vrW
z (k), vrH

x (k), vrH
y (k), and vrH

z (k), quantify the x, y, and z
components of the velocities of the rE, rW, and rH skeleton joints at frame k. The last nine joint-based
features, which are denoted by arE

x (k), arE
y (k), arE

z (k), arW
x (k), arW

y (k), arW
z (k), arH

x (k), arH
y (k), and arH

z (k),
evaluate the x, y, and z components of the accelerations of the rE, rW, and rH skeleton joints at frame k.
The descriptions and mathematical formulations of the joint-based features are provided in Table 1.

2.3.2. Features Extraction, Selection, and Classification

Assuming that the tracking data acquired by the Kinect v2 sensor during the game-playing session
of a particular participant and a particular game-based exercise is composed of L frames and the
goal is to classify the right arm movements during this game-playing session as correct or incorrect.
Then, for each frame, we extract a feature vector composed of the eleven angle-based features and the
twenty seven joint-based features that are summarized in Table 1. This extraction process generates
a series of L feature vectors, where each vector is composed of the angle- and joint-based features.
The series of L feature vectors of the game-playing session under consideration is classified to identify
if the right arm movements during the game-playing session are performed correctly or incorrectly.
The classification process is performed by comparing the series of L feature vectors of the game-playing
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session under consideration with a set of correct and incorrect gold standard game-playing sessions
that are performed by the same participant for the same game-based rehabilitation exercise. Based on
this comparison, the game-playing session under consideration can be considered similar to the correct
gold standard game-playing sessions, and hence the right arm movements during the game-playing
session are classified as correct. Otherwise, the game-playing session under consideration is considered
similar to the incorrect gold standard game-playing sessions, and hence the right arm movements
during the game-playing session are classified as incorrect.

The comparison process is performed as follows. For the participant and the game-based
rehabilitation exercise under consideration, we assume that there is a set of gold standard game-playing
sessions, where this set includes N1 game-playing sessions that are labeled as correct and N2

game-playing sessions that are labeled as incorrect. The subset of feature vectors series computed for
the correct gold standard game-playing sessions is denoted by GSC = {C_SFV1, C_SFV2, ..., C_SFVN1},
where C_SFVi represents the feature vector of the ith correct gold standard game-playing session.
Moreover, the subset of feature vectors series computed for the incorrect gold standard game-playing
sessions is denoted by GSIC = {IC_SFV1, IC_SFV2, ..., IC_SFVN2}, where IC_SFVi represents the
feature vector of the ith incorrect gold standard game-playing session. Assume that the series of
feature vectors of the game-playing session under consideration is denoted as SFV. Then, the average
distance, dist(SFV, GSC), between SFV and GSC can be calculated as follows:

dist(SFV, GSC) =

N1

∑
i=1

dist(SFV, C_SFVi)

N1
, (1)

where dist(SFV, C_SFVi) is the distance between SFV and C_SFVi. The computation of
dist(SFV, C_SFVi) should consider that fact that the temporal lengths of the game-playing sessions
performed by the same participant for a particular game-based rehabilitation exercise varies from time
to time due to the intra-personal variations. Hence, the lengths of SFV and C_SFVi might be different.
Moreover, the frames of SFV and C_SFVi are most likely asynchronous. To address these limitations,
the distance between the feature vectors series SFV and the feature vectors series C_SFVi is computed
using the Multidimensional Dynamic Time Warping (MD-DTW) algorithm [34]. In the same manner,
the average distance, dist(SFV, GSIC), between SFV and GSIC is computed as follows:

dist(SFV, GSIC) =

N2

∑
i=1

dist(SFV, IC_SFVi)

N2
. (2)

where dist(SFV, IC_SFVi) is the distance between SFV and IC_SFVi and it is calculated using the
MD-DTW algorithm. If the value of dist(SFV, GSC) is greater than or equal to dist(SFV, GSIC), then
the right arm movements of the game-playing session under consideration are labeled as correct.
Otherwise, the right arm movements of the game-playing session under consideration are labeled
as incorrect.

The performance of the classification algorithm described above depends on the capability of
the eleven angle-based features and the twenty seven joint-based features, i.e., thirty eight features
in total, to differentiate between the correct and incorrect right arm movements. However, not all
angle- and joint-based features described in Table 1 can be considered effective to classify the right
arm movements. Moreover, the importance of these features varies depending the participant and the
game-based exercises under consideration. To improve the performance of the classification algorithm,
the recursive backward elimination procedure [35] is employed to select the features combination that
optimizes the capability of classifying the right arm movements. In the first iteration of the recursive
backward elimination procedure, one of the features is eliminated, and the remaining features are
used to classify the right arm movements. Then, the feature that is eliminated in the previous step is
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returned and another feature is eliminated before running the classification. This elimination process
is repeated until each individual feature of the thirty eight features is eliminated before running the
classification. The feature that its elimination leads to the highest improvement in the classification
performance is permanently removed to achieve thirty seven features with improved classification
performance. In the second iteration of the recursive backward elimination procedure, each individual
feature of the thirty seven features is eliminated and the classification is run using the remaining
features. This process is repeated until identifying the feature that its removal leads to the highest
improvement in the classification performance. The recursive iterations of the backward elimination
procedure continue until reaching an optimized features combination in which the removal of any
feature leads to a reduction in the classification performance. In the current study, the recursive
backward elimination procedure is applied in a participant-specific, game-specific manner, in which
the process of selecting the features has been performed for each participant and each game-based
exercise. Hence, the right arm movements associated with a particular participant and a particular
game-based exercise could be classified using the combination of optimized features that is computed
specifically for the participant and game-based exercise under consideration.

3. Experimental Evaluation and Results

3.1. Participants

Two groups of participants volunteered to participate in the experiments to evaluate the
performance of the proposed computerized assessment method. The first group included children that
are diagnosed with cerebral palsy. These children were recruited from the Model School for Cerebral
Palsy, Amman, Jordan to participate in the study during the period between October 2018 and January
2019. The following inclusion criteria have been employed: the participant should be diagnosed with
cerebral palsy and his/her age should be 10 years or more. Also, the following exclusion criteria have
been applied: the participant cannot perform and interact with the three game-based exercises, he/she
do not have the potential to achieve the range of motion targeted by the three game-based exercises as
illustrated in Figure 3, and his/her cerebral palsy severity level is classified as severe. Based on these
inclusion and exclusion criteria, six cerebral palsy children were selected to participate in the study.
The mean ± standard deviation age of the children was 12.7 ± 1.2 years. The gender, the cerebral palsy
category, and the cerebral palsy severity of these children are summarized in Table 2. The second
group of participants included 20 typically developing subjects (10 females and 10 males) who are
undergraduate students at the German Jordanian University, Amman, Jordan. The aim of the second
group is to generate additional correct and incorrect game-playing sessions for each one of the three
game-based rehabilitation exercises. The typically developing subjects volunteered to participate in the
study during the period between August 2018 and September 2018. The mean ± standard deviation
age of the typically developing subjects is 20.2 ± 1.2 years. The game-based rehabilitation exercises,
which are presented in Section 2.2, and the experimental protocol, which is described below, were
explained to the participants in both groups. For the cerebral palsy children, which are younger that
18 years, a signed consent form was collected from the parents of the participants. For the typically
developing subjects, which are elder than 18 years, a signed consent form was collected from each
subject before participating in the experiments. The experimental protocol employed in the current
study was approved by the Ethics Committee at the German Jordanian University, Amman, Jordan
and the Ethics Committee at the Model School for Cerebral Palsy, Amman, Jordan.
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Table 2. The gender, cerebral palsy category, and cerebral palsy severity of the children included in the
first group of participants.

Cerebral Palsy Cerebral Palsy
Participant Gender Category Severity

Child 1 Male Spastic diplegic Mild
Child 2 Male Spastic diplegic Mild
Child 3 Female Spastic diplegic Moderate
Child 4 Male Spastic himiplegic Moderate
Child 5 Female Ataxia Moderate
Child 6 Male Ataxia Moderate

3.2. Experimental Protocol

The participants from both groups were asked to perform the three game-based rehabilitation
exercises under the supervision of a specialized physiotherapist. For the cerebral palsy children,
every participant was asked to play each one of the three game-based rehabilitation exercises
and the physiotherapist guided him/her vocally during the game-playing session to do the right
arm movements in a correct manner. For both the correct and incorrect game-playing sessions,
the participants maintained the trunk straight throughout the game-playing sessions. In each
game-playing session, the physiotherapist evaluated the participant’s performance and labeled each
session as correct or incorrect based on the following subject-specific evaluation criteria:

• The participant should perform the movements associated with the game-based exercise, as
described in Section 2.2 and illustrated in Figure 3, in a correct manner. In particular, compensatory
movements should be avoided as much as possible.

• The participant should cover the range of motion targeted by the game-based exercise, which is
illustrated in Figure 3, as much as possible.

• The participant should perform the movements associated with the game-based exercise slowly
and in a controllable and stable manner in which the right arm is kept straight as much as possible.

For the group of typically developing subjects, every participant was asked to perform the
game-based rehabilitation exercises both correctly and incorrectly and at various speeds. In particular,
the incorrect movements performed by the typically developing subjects were focused on replicating
the motion limitations of the cerebral palsy children, which mainly include the limited range of motion,
the unstable movement of the right arm, and performing the right arm movements associated with
the game-based rehabilitation exercise in wrong manners. At the end of each game-playing session,
the physiotherapist evaluated the performance of the typically developing subjects using the same
evaluation criterion employed for the cerebral palsy children to label the game-playing session as
correct or incorrect.

For every participant, including the cerebral palsy children and the typically developing subjects,
we have collected 30 correct game-playing sessions and 30 incorrect game-playing sessions for each
one of the three game-based rehabilitation exercises. Hence, the total number of game-playing
sessions that have been collected for each participant is equal to 180. The mean ± standard deviation
temporal lengths of the game-playing sessions performed by the six cerebral palsy children during
their participation in the shoulder flexion, shoulder horizontal abduction/adduction, and shoulder
adduction game-based exercises are equal to 6.8 ± 5.1 s, 7.6 ± 4.4 s, and 11.4 ± 5.0 s, respectively.
Moreover, the mean ± standard deviation temporal lengths of the game-playing sessions performed
by the twenty typically developing subjects during their participation in the shoulder flexion, shoulder
horizontal abduction/adduction, and shoulder adduction game-based exercises are equal to 4.4 ± 1.2 s,
4.9 ± 1.6 s, and 6.2 ± 1.5 s, respectively. For each cerebral palsy child, the process of acquiring the
180 game-playing sessions was carried out over 12 to 16 recording periods, where in each period
the participant performed 10 to 15 game-playing sessions. For the typically developing subjects, the
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process of acquiring the 180 game-playing sessions was carried out over 3 recording periods, where
in each recording period the participant performed 60 game-playing sessions. For all participants,
the game-playing sessions were separated by relaxation periods with a minimum length of 2 min.
Moreover, the recording periods of each participant were performed on different days. The acquisition
rate of the Kinect v2 sensor was set to 15 frames per second for all game-playing sessions.

3.3. Performance Evaluation

In the current study, we have employed a participant-specific, game-specific approach to evaluate
the performance of the proposed computerized assessment method. In this approach, a tenfold cross
validation procedure is used to evaluate the capability of the computerized assessment method to
classify the right arm movements of every participant during the sixty game-playing sessions that
are recorded for each game-based rehabilitation exercise. To carry out the tenfold cross validation
procedure, the sixty game-playing sessions are sorted randomly and divided into 10 uniform subsets,
such that each subset includes 3 correct and 3 incorrect game-playing sessions. One of these subsets
is selected as a testing subset. Moreover, the remaining 9 subsets are combined and employed for
constructing the correct and incorrect gold standard game-playing sessions, which are denoted in
Section 2.3.2 as GSC and GSIC, respectively. The proposed computerized assessment method was
used to classify the 3 correct and 3 incorrect game-playing sessions included in the testing subset
based on GSC and GSIC, as illustrated in Section 2.3.2. Moreover, the process of selecting one of
the subsets as a testing subset and the remaining nine subsets as GSC and GSIC subsets has been
repeated for nine folds to enable the computerized assessment method to classify each one of the
sixty game-playing sessions. After applying the tenfold cross validation procedure, the classifications
obtained by the proposed computerized assessment method for the sixty game-playing sessions were
compared with the matching gold standard labels using four performance metrics. The first three
metrics are the classification accuracy, specificity, and sensitivity [36]. The last metric is Cohen’s kappa
coefficient [37,38]. The kappa coefficient evaluates the agreement between the classifications obtained
by the proposed computerized assessment method and the gold standard labels provided by the
experienced physiotherapist after considering the agreement occurring by chance. The value of kappa
coefficient can be interpreted as follows to quantify the agreement level [39]: (0.8 − 1] = almost perfect
agreement, (0.6 − 0.8] = substantial agreement, (0.4 − 0.6] = moderate agreement, (0.2 − 0.4] = fair
agreement, (0 − 0.2] = slight agreement, and < 0 = poor agreement.

For every participant and each game-based rehabilitation exercise, the evaluation process
described above, which includes randomly sorting the sixty game-playing sessions performed by
the participant, applying the tenfold cross validation procedure, and evaluating the capability of the
proposed computerized assessment method to classify the sixty game-playing sessions, was repeated
for ten evaluation repetitions. The mean ± standard deviation values of the accuracy, specificity,
sensitivity, and kappa coefficient are computed for the proposed computerized assessment method
across the ten evaluation repetitions that are carried out for every participant and each game-based
rehabilitation exercise. Furthermore, for every game-based exercise, the mean ± standard deviation
values of the four metrics are computed for all subjects in each one of the two groups of participants.

In addition to evaluating the classification performance of the proposed computerized assessment
method, we have analyzed the combinations of angle- and joint-based features that are selected using
the features selection approach described in Section 2.3.2 to optimize the classification performance.
Particularly, for the first group of participants, which includes six cerebral palsy children, we have
computed two metrics: the combination-based occurrence frequency of the features (CBOFF) and
the participant-based occurrence frequency of the important features (PBOFIF). For a particular
game-based exercise, the two metrics are computed by considering the sixty features combinations
that are obtained by combining the optimized features combinations of the ten performance evaluation
repetitions performed for each one of the six cerebral palsy children. For each feature, the CBOFF
is defined as the number of times the feature appears in the sixty optimized features combinations.
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The PBOFIF aims to evaluate the importance of the features with respect to the six cerebral palsy
children. To compute the PBOFIF, we have developed a custom-made criterion to determine if a given
feature is important to classify the ten performance evaluation repetitions performed for a particular
participant and a particular game-based rehabilitation exercise. In this criterion, if the feature appears
more than two times in the optimized features combinations that are obtained for the ten performance
evaluation repetitions, then the feature is considered important to classify the game-playing sessions
associated with the participant and game-based rehabilitation exercise under consideration. For a
particular game-based exercise, the PBOFIF is computed by individually considering each one of the
angle- and joint-based features listed in Table 1 and counting the number of participants in which
the feature is considered important. The metrics CBOFF and PBOFIF have also been computed for
the second group of participants, which includes twenty typically developing subjects. However,
the computation was based on the ten performance evaluation repetitions that are carried out for
each one of the twenty typically developing subjects. Hence, the total number of optimized features
combinations that are obtained for all typically developing subjects is equal to 200.

3.4. Results of the Cerebral Palsy Children

The mean ± standard deviation values of the classification accuracy, specificity, and sensitivity as
well as kappa coefficient that are obtained using the optimized combinations of angle- and joint-based
features for each one of the six cerebral palsy children during their participation in the three game-based
exercises are presented in Table 3. As shown in the table, the mean classification accuracy, specificity,
and sensitivity values are between 88% and 95% for child 1 and child 2, between 84% and 88% for
child 3 and child 4, and between 71% and 80% for child 5 and child 6. The mean kappa coefficient
values are between 0.80 and 0.86 for child 1 and child 2, between 0.70 and 0.74 for child 3 and child 4,
and between 0.45 and 0.57 for child 5 and child 6. In addition, Table 3 shows that the mean ± standard
deviation values of the accuracy, specificity, sensitivity, and kappa coefficient that are obtained for the
three game-based exercises by considering all six cerebral palsy children are within the ranges of 83%
to 85%, 83% to 86%, 83% to 84%, and 0.66 to 0.70, respectively.

Table 3. The mean ± standard deviation accuracy, specificity, sensitivity, and kappa coefficient values
obtained by the computerized assessment method for the six cerebral palsy children.

Shoulder Flexion Shoulder Horizontal Abduction/Adduction Shoulder Adduction

Accuracy Specificity Sensitivity Kappa Accuracy Specificity Sensitivity Kappa Accuracy Specificity Sensitivity Kappa
Participant (%) (%) (%) (%) (%) (%) (%) (%) (%)

Child 1 93 ± 3 91 ± 4 95 ± 3 0.86 ± 0.06 92 ± 4 91 ± 4 92 ± 5 0.83 ± 0.07 90 ± 4 89 ± 6 90 ± 4 0.80 ± 0.09

Child 2 91 ± 3 90 ± 4 91 ± 5 0.81 ± 0.05 92 ± 3 93 ± 3 91 ± 4 0.84 ± 0.05 90 ± 3 88 ± 4 92 ± 6 0.81 ± 0.07

Child 3 87 ± 4 87 ± 6 88 ± 3 0.74 ± 0.07 86 ± 3 85 ± 5 87 ± 5 0.72 ± 0.06 86 ± 2 87 ± 3 84 ± 4 0.72 ± 0.05

Child 4 85 ± 3 86 ± 5 84 ± 4 0.70 ± 0.06 87 ± 4 88 ± 5 85 ± 4 0.73 ± 0.07 85 ± 4 85 ± 5 86 ± 6 0.71 ± 0.09

Child 5 78 ± 4 80 ± 6 76 ± 5 0.57 ± 0.08 77 ± 4 79 ± 5 75 ± 5 0.54 ± 0.08 72 ± 4 73 ± 5 71 ± 6 0.45 ± 0.07

Child 6 75 ± 3 78 ± 4 73 ± 4 0.51 ± 0.06 76 ± 3 80 ± 4 73 ± 4 0.53 ± 0.06 73 ± 2 73 ± 4 72 ± 3 0.46 ± 0.05

All children 85 ± 7 85 ± 7 84 ± 9 0.70 ± 0.14 85 ± 7 86 ± 7 84 ± 9 0.70 ± 0.14 83 ± 8 83 ± 8 83 ± 10 0.66 ± 0.16

The results reported in Table 3 indicate that the performance of the computerized assessment
method can be related to the cerebral palsy category and severity of the six cerebral palsy children,
which are provided in Table 2. In particular, the first four children (child 1, child 2, child 3, and child 4)
have spastic cerebral palsy that is associated with contracted and stiff muscles [40]. The right arms of
these four children do not suffer from shaky or uncoordinated movements. However, child 1, child 2,
and child 3 have spastic diplegic cerebral palsy that mainly affects the muscles of the legs, with lower
effect on the arms [40]. The disorder severity of child 1 and child 2 is lower than child 3. Moreover,
child 4 is diagnosed with moderate spastic hemiplegia cerebral palsy that mainly affects one side of
the body [40]. For child 4, the disorder involves both the right arm and right leg, but the right arm is
more affected. The last two children, i.e., child 5 and child 6, have ataxia cerebral palsy with moderate
severity. The ataxia cerebral palsy disorder is characterized by shaky and uncoordinated movements
as well as poor balance that affects all body parts [40]. The shaky and uncoordinated movements of
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the right arm and the poor balance increase the difficulty of differentiating the correct game-playing
sessions from the incorrect ones. Therefore, the classification results reported for child 1 and child 2 are
higher than the results obtained for child 3. Moreover, the results obtained for child 3 and child 4 have
comparable values. Furthermore, the lowest classification results are reported for child 5 and child 6.

Figure 5a–c present the CBOFF values computed for the shoulder flexion game-based exercise,
the shoulder horizontal abduction/adduction game-based exercise, and the shoulder adduction
game-based exercise, respectively. As described in Section 3.3, for a particular game-based exercise,
the CBOFF represents the number of times the feature appears in the sixty optimized features
combinations that are obtained by combining the optimized features combinations of the ten evaluation
repetitions performed for each one of the six cerebral palsy children. Hence, the highest possible CBOFF
value is equal to 60. For the three game-based rehabilitation exercises, the CBOFF results indicate
that the commonly selected features in the sixty optimized features combinations include mainly the
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. In addition, the commonly selected features include some position-based

features that quantify the acceleration of the skeleton joints. In particular, the acceleration features
arW

y (k) and arW
z (k) are among the commonly selected features for the shoulder flexion game-based

exercise, the acceleration feature arW
z (k) is among the features that are commonly selected for

the shoulder horizontal abduction/adduction game-based exercise, and the acceleration features
arE

z (k), arW
x (k), and arW

z (k) are commonly selected for the shoulder adduction game-based exercise.
All optimized features combinations obtained for the three game-based rehabilitation exercises do not
include any position-based features related to the position or velocity of the skeleton joints.

The PBOFIF values obtained for the shoulder flexion game-based exercise, the shoulder horizontal
abduction/adduction game-based exercise, and the shoulder adduction game-based exercise are
presented in Figure 5d–f, respectively. In fact, the PBOFIF quantifies the number of cerebral palsy
children in which the feature is considered important. Hence, the highest possible PBOFIF value is
equal to 6. As described in Section 3.3, for each game-based exercise, the importance of a given feature
for a particular cerebral palsy child is determined by analyzing the optimized features combinations of
the ten evaluation repetitions performed for the child under considerations. For the three game-based
rehabilitation exercises, the important features obtained by considering the PBOFIF metric, which are
shown in Figure 5d–f, are close to the commonly selected features obtained by considering the CBOFF
metric, which are presented in Figure 5a–c.
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Figure 5. (a–c) The combination-based occurrence frequency of the features (CBOFF) values computed
for the six cerebral palsy children during their participation in (a) the shoulder flexion, (b) the shoulder
horizontal abduction/adduction, and (c) the shoulder adduction game-based exercises. (d–f) The
participant-based occurrence frequency of the important features (PBOFIF) values computed for the six
cerebral palsy children during their participation in (d) the shoulder flexion, (e) the shoulder horizontal
abduction/adduction, and (f) the shoulder adduction game-based exercises.

3.5. Results of the Typically Developing Subjects

For the second group of participants that includes twenty typically developing subjects, the values
of the performance metrics computed for the computerized assessment method using the optimized
combinations of angle- and joint-based features are presented in Table 4. As shown in the table, the
mean classification accuracy, specificity, and sensitivity values that are obtained for the individual
typically developing subjects are within the range of 96% to 99%. Moreover, the mean kappa coefficient
values achieved for the individual typically developing subjects are between 0.93 and 0.99. When all
twenty typically developing subjects are considered, the mean classification accuracy, specificity, and
sensitivity values, which are obtained for the three games-based exercises, are within the range of 97%
and 98%. Moreover, the mean kappa coefficient values, which are achieved for the three games-based
exercises, are between 0.95 and 0.96. These results indicate that the classification performance obtained
by the computerized assessment method for the typically developing subjects is higher than the
classification performance reported for the cerebral palsy children. This can be attributed to the fact
that the typically developing subjects have high control of their right arm movements compared with
the cerebral palsy children.
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Table 4. The mean ± standard deviation accuracy, specificity, sensitivity, and kappa coefficient values
obtained by the computerized assessment method for the twenty typically developing subjects.

Shoulder Flexion Shoulder Horizontal Abduction/Adduction Shoulder Adduction

Accuracy Specificity Sensitivity Kappa Accuracy Specificity Sensitivity Kappa Accuracy Specificity Sensitivity Kappa
Participant (%) (%) (%) (%) (%) (%) (%) (%) (%)

Subject 1 98 ± 2 98 ± 2 98 ± 2 0.96 ± 0.03 98 ± 2 99 ± 2 98 ± 2 0.97 ± 0.03 97 ± 2 98 ± 2 97 ± 3 0.95 ± 0.04

Subject 2 98 ± 2 98 ± 2 97 ± 3 0.96 ± 0.04 99 ± 1 99 ± 1 99 ± 1 0.99 ± 0.03 98 ± 2 97 ± 2 99 ± 2 0.96 ± 0.03

Subject 3 99 ± 1 99 ± 1 99 ± 2 0.98 ± 0.03 99 ± 1 99 ± 1 99 ± 2 0.98 ± 0.03 99 ± 1 99 ± 1 99 ± 1 0.99 ± 0.02

Subject 4 98 ± 2 98 ± 2 98 ± 2 0.97 ± 0.04 99 ± 1 99 ± 2 99 ± 1 0.98 ± 0.03 98 ± 2 97 ± 3 98 ± 3 0.95 ± 0.04

Subject 5 98 ± 2 97 ± 3 99 ± 2 0.96 ± 0.05 98 ± 1 98 ± 2 98 ± 3 0.95 ± 0.03 97 ± 2 97 ± 2 97 ± 2 0.94 ± 0.03

Subject 6 98 ± 2 99 ± 2 98 ± 3 0.96 ± 0.05 98 ± 2 98 ± 2 98 ± 2 0.96 ± 0.04 97 ± 1 97 ± 2 98 ± 2 0.95 ± 0.03

Subject 7 99 ± 2 98 ± 3 99 ± 2 0.97 ± 0.04 99 ± 2 99 ± 2 99 ± 2 0.98 ± 0.03 98 ± 2 98 ± 2 97 ± 3 0.95 ± 0.05

Subject 8 99 ± 1 99 ± 1 99 ± 1 0.99 ± 0.03 99 ± 2 99 ± 2 98 ± 2 0.97 ± 0.04 97 ± 3 97 ± 3 98 ± 3 0.95 ± 0.06

Subject 9 98 ± 3 97 ± 3 98 ± 2 0.95 ± 0.05 97 ± 2 97 ± 3 97 ± 2 0.94 ± 0.04 97 ± 3 96 ± 3 97 ± 3 0.94 ±0.06

Subject 10 97 ± 3 98 ± 2 97 ± 3 0.95 ± 0.05 97 ± 3 97 ± 2 97 ± 3 0.94 ± 0.05 97 ± 1 96 ± 2 97 ± 2 0.93 ± 0.02

Subject 11 98 ± 2 99 ± 2 97 ± 3 0.96 ± 0.04 98 ± 1 97 ± 2 98 ± 2 0.95 ± 0.03 97 ± 2 97 ± 2 97 ± 3 0.94 ± 0.04

Subject 12 99 ± 2 99 ± 1 98 ± 2 0.98 ± 0.04 99 ± 2 98 ± 3 99 ± 1 0.97 ± 0.04 98 ± 2 97 ± 3 98 ± 2 0.95 ± 0.04

Subject 13 98 ± 3 97 ± 3 98 ± 3 0.95 ± 0.05 98 ± 2 98 ± 2 97 ± 2 0.95 ± 0.04 97 ± 2 97 ± 3 97 ± 3 0.94 ± 0.05

Subject 14 98 ± 1 98 ± 2 99 ± 2 0.96 ± 0.02 98 ± 2 99 ± 2 98 ± 2 0.97 ± 0.03 98 ± 2 98 ± 2 98 ± 3 0.96 ± 0.04

Subject 15 97 ± 2 97 ± 3 97 ± 2 0.95 ± 0.04 98 ± 2 98 ± 2 98 ± 3 0.96 ± 0.05 98± 2 97 ± 3 98 ± 2 0.95 ± 0.05

Subject 16 99 ± 1 99 ± 2 98 ± 2 0.97 ± 0.03 98 ± 1 99 ± 2 98 ± 2 0.96 ± 0.02 98 ± 1 98 ± 2 98 ± 2 0.96 ± 0.03

Subject 17 98 ± 2 99 ± 2 98 ± 3 0.97 ± 0.04 99 ± 1 99 ± 2 99 ± 1 0.98 ± 0.02 98 ± 2 97 ± 2 98 ± 3 0.95 ± 0.04

Subject 18 96 ± 2 97 ±3 96 ± 3 0.93 ± 0.05 98 ± 2 97 ± 3 98 ± 2 0.95 ± 0.05 96 ± 2 97 ± 3 96 ± 3 0.93 ± 0.05

Subject 19 97 ± 3 97 ± 3 96 ± 3 0.94 ± 0.06 97 ± 2 97 ± 3 97± 3 0.94 ± 0.05 96 ± 2 97 ± 2 96 ± 3 0.93 ± 0.03

Subject 20 98 ± 1 98 ± 2 97 ± 2 0.95 ± 0.03 98 ± 3 98 ± 3 97 ± 4 0.95 ± 0.06 97 ± 2 97 ± 2 97 ± 3 0.93 ± 0.04

All subjects 98 ± 2 98 ± 2 98 ± 3 0.96 ± 0.04 98 ± 2 98 ± 2 98 ± 2 0.96 ± 0.04 97 ± 2 97 ± 2 97 ± 3 0.95 ± 0.04

Figure 6a–c show the CBOFF values computed for the twenty typically developing subjects
during their participation in the shoulder flexion game-based exercise, the shoulder horizontal
abduction/adduction game-based exercise, and the shoulder adduction game-based exercise,
respectively. As described in Section 3.3, for a particular game-based exercise, the CBOFF represents
the number of times the feature appears in the 200 optimized features combinations that are obtained
by combining the optimized features combinations of the ten evaluation repetitions performed for
each one of the twenty typically developing subjects. Hence, the highest possible CBOFF value is
equal to 200. Moreover, the PBOFIF values obtained for the shoulder flexion game-based exercise,
the shoulder horizontal abduction/adduction game-based exercise, and the shoulder adduction
game-based exercise are presented in Figure 6d–f, respectively. Both the commonly selected features
obtained by considering the CBOFF metric and the important features obtained by considering the
PBOFIF metric indicate that the right arm movements of the typically developing subjects can be
classified using the angle-based features only. This finding is different from the results reported in
Figure 5, which indicate that both the angle- and joint-based features are needed to classify the right
arm movements of the cerebral palsy children. The difference between the combinations of optimized
features of the typically developing subjects and the combinations of optimized features of the cerebral
palsy children can be attributed to the fact that the typically developing subjects do not suffer from
shaky and uncontrolled right arm movements. Despite this difference, the results in Figure 6 show
that the commonly selected features and the important features obtained by considering the CBOFF
metric and the PBOFIF metric, respectively, for the twenty typically developing subjects are dominated
by angle-based features related to the
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Figure 6. (a–c) The CBOFF values computed for the twenty typically developing subjects during their
participation in (a) the shoulder flexion, (b) the shoulder horizontal abduction/adduction, and (c) the
shoulder adduction game-based exercises. (d–f) The PBOFIF values computed for the twenty typically
developing subjects during their participation in (d) the shoulder flexion, (e) the shoulder horizontal
abduction/adduction, and (f) the shoulder adduction game-based exercises.

4. Discussion and Conclusions

The contributions of the current study are three folds. First, a participant-specific, game-specific
computerized assessment method is developed to assess the correctness of the right arm movements
that are performed during game-based rehabilitation exercises. Second, three game-based rehabilitation
exercises, which are designed to target the right arm, have been implemented to evaluate the
performance of the proposed computerized assessment method. Third, two groups of participants,
which include cerebral palsy children and typically developing subjects, are recruited to perform the
game-based rehabilitation exercises and the computerized assessment method is used to assess the
correctness of the participants’ right arm movements during the game-playing sessions. For the first
group of participants that includes six cerebral palsy children, the classification accuracy, specificity,
and sensitivity values achieved by the computerized assessment method are within the range of 71% to
95% and the kappa coefficient values are between 0.45 and 0.86, as shown in Table 3. The classification
performance of the computerized assessment method varies based on the cerebral palsy category
and severity of the cerebral palsy children. For the second group of participants that includes twenty
typically developing subjects, the classification accuracy, specificity, and sensitivity values are within
the range of 96% to 99% and the kappa coefficient values are between 0.93 and 0.99, as shown in Table 4.
The high classification performance results that are obtained for the typically developing subjects
can be attributed to the fact that these subjects have high control of their right arm movements. The
results reported in the current study suggest the potential of employing the computerized assessment
method to assess the correctness of the movements performed by cerebral palsy patients during their
engagement in game-based rehabilitation exercises.
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Literature reveals that many previous studies that used game-based rehabilitation for cerebral
palsy patients evaluated the effectiveness of the game-based exercises using outcome measures that
compare the body structure and function, such as range of motion and weakness of muscles, and
the level of activity, such as the ability to perform activities of daily living, before and after the
game-based rehabilitation [12]. For instance, the study by Hung et al. [19], which employed a set of
Kinect-based games to train the upper limbs of cerebral palsy children, evaluated the improvement in
the body structure and function and the activity level using the Quality of Upper Extremities Skills
Test (QUEST) [41], the Box and Block Test (BBT) [42], the Melbourne Assessment 2 (MA2) [43], and
the ABILHAND-kids score [44] outcome measures. In another study, Zoccolillo et al. [10] employed
a group of Kinect-based games for the rehabilitation of cerebral palsy patients and used the QUEST
and ABILHAND-kids score measures to compare the body structure and function and the activity
level before and after the game-based rehabilitation. Acar et al. [45] have also used the QUEST
and ABILHAND-Kids score measures as well as the Jebsen Taylor Hand Function Test [46] and
the Functional Independence Measure (WeeFIM) [47] to evaluate the enhancement in the body
structure and function and the activity level achieved by using a set of Nintendo Wii games as
rehabilitation tools for cerebral palsy patients. Compared with these previous studies, the current study
is characterized by the use of a computerized assessment method to achieve automatic evaluation
of the movements performed by cerebral palsy patients during their engagement in game-based
rehabilitation exercises. Such an automatic, computerized assessment approach can be integrated
with the outcome measures that evaluate the improvement in the body structure and function and the
activity level to analyze the effectiveness of the game-based rehabilitation exercises and improve their
utilization as a complementary tool for conventional cerebral palsy rehabilitation therapy.

Despite the promising classification results that are reported in the current study, further
studies are required to improve the capabilities of the proposed computerized assessment method.
For example, the performance of the computerized assessment method can be improved by employing
machine learning technology to classify the movements performed by cerebral palsy patients.
For instance, a support vector machine classifier can be used to classify the angle- and joint-based
features extracted using the E-MPGD in a manner similar to the procedure proposed by Alazrai
et al. [31] to predict the fall of elderly people. The computerized assessment method can also
be extended to support the evaluation of the movements performed by the left arm and the legs.
In addition, the computerized assessment method can be expanded to provide kinematic-based
evaluation metrics to quantify the movements performed by cerebral palsy patients, such as quantifying
the smoothness and range of motion of the movements. In fact, such kinematic-based evaluation
metrics have been employed by Ding et al. [48] to quantify the smoothness of the movements carried
out by stroke patients and Gaillard et al. [49] to quantify the movements performed by unilateral
cerebral palsy children based on the “Be an Airplane Pilot” motion analysis protocol.

Although all six cerebral palsy children included in the current feasibility study had the potential
to achieve the range of motion targeted by the three game-based exercises as shown in Figure 3, our
proposed game-based rehabilitation system can be adapted to support participants that have higher
limitations in the range of motion. In particular, the range of motion targeted by the three game-based
exercises can be configured to meet the capability of the participant. Moreover, the subject-specific
evaluation criteria employed by the physiotherapist to label the game-playing sessions can be adapted
to classify the game-playing sessions as correct or incorrect based on the range of motion and physical
skills of the participant. This in turn will enable the computerized assessment method, which is
trained based on the physiotherapist’s labeling of the game-playing sessions, to adapt to the range
of motion that can be achieved by the participant. Furthermore, for participants that cannot perform
the three game-based exercises included in the current study, the proposed game-based rehabilitation
system can be expanded to include additional game-based exercises that meet the capabilities of these
participants and the computerized assessment method can be extended to support the additional
exercises. However, despite the potential of expanding the proposed game-based rehabilitation system
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to support a wider range of cerebral palsy cases, the system might not be applied for cerebral palsy
cases that have high limitations in their physical skills, such as the severe cases in which the participants
cannot move their limbs independently.

The analysis reported in the current feasibility study did not investigate the relationship between
the age of the participants and the performance of the computerized assessment method. Such
analysis, which requires a large number of participants with different age groups, is planned in the
future. Moreover, the current study did not investigate the effect of the clinical or motor function
outcome changes of the participant, which might occur due to conventional rehabilitation therapy as
well as game-based rehabilitation exercises, on the classification performance of the computerized
assessment method. Such analysis requires the recruitment of a large number of cerebral palsy
children that participate in the study for an extended period. In fact, we are planning to perform
such analysis in the future. Another future direction is to extend the experimental evaluations of
the proposed computerized assessment method to include a wider range of cerebral palsy types and
severity levels. Furthermore, the computerized assessment method proposed in this study has been
implemented using MATLAB, which affects the capability to achieve real-time assessment of the
participant’s movements during the game-playing sessions. Hence, we are planning to implement
the computerized assessment method using the C# programming language or the C++ programming
language to achieve real-time, computer-based assessment of the participant’s performance.

Despite the fact that our proposed game-based rehabilitation system is configured to use the
Kinect for Windows v2 sensor, the system can be easily reconfigured to employ other motion tracking
sensors that track the skeleton joints. For example, our game-based system can be easily reconfigured
to use the Azure Kinect sensor (Microsoft Corporation, Redmond, WA, USA) that is launched recently
as a new generation of the Kinect sensing technology but with improved tracking capabilities. Our
system can also be configured to use motion tracking sensors produced by other manufacturers, such
as the Orbbec Astra sensor (Orbbec 3D Technology International Inc., Troy, MI, USA).

Author Contributions: Funding acquisition, M.I.D. and R.A.; Investigation, M.I.D. and A.A.; Methodology,
M.I.D., A.A., and R.A.; Project administration, M.I.D.; Software, M.I.D. and A.A.; Validation, A.A. and M.I.D.;
Visualization, M.I.D., A.A., and M.Z.A.; Writing—original draft preparation, M.I.D.; Writing—review and editing,
M.I.D. and R.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Scientific Research and Innovation Support Fund—grant
number ENG/1/9/2015.

Acknowledgments: The authors would like to acknowledge the physiotherapist, Arwa Al-Otaibi, form the Model
School for Cerebral Palsy, Amman, Jordan for her great efforts to acquire the Kinect data of the participants as
well as evaluate and guide the participants during their participation in the game-based rehabilitation exercises.
Moreover, the authors would like to thank the director of the Model School for Cerebral Palsy, Eiman Bader, for
her efforts to recruit the cerebral palsy children to volunteer in this study. This research was partially supported
by the Scientific Research and Innovation Support Fund—grant number ENG/1/9/2015.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report:
The Definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 2007, 49, 8–14.

2. Aisen, M.L.; Kerkovich, D.; Mast, J.; Mulroy, S.; Wren, T.A.; Kay, R.M.; Rethlefsen, S.A. Cerebral palsy:
Clinical care and neurological rehabilitation. Lancet Neurol. 2011, 10, 844–852. [CrossRef]

3. Cerebral Palsy Foundation. Key Facts. Available online: http://www.yourcpf.org/statistics/ (accessed on
23 January 2020)

4. Eunson, P. Aetiology and epidemiology of cerebral palsy. Paediatr. Child Health 2016, 26, 367–372. [CrossRef]
5. Cadwgan, J.; Goodwin, J.; Fairhurst, C. Fifteen-minute consultation: Modern-day art and science of

managing cerebral palsy. Arch. Dis. Childhood Educ. Pract. 2019, 104, 66–73. [CrossRef] [PubMed]
6. Papavasiliou, A.S. Management of motor problems in cerebral palsy: A critical update for the clinician.

Eur. J. Paediatr. Neurol. 2009, 13, 387–396. [CrossRef] [PubMed]

235



Sensors 2020, 20, 2416

7. Lewis, G.N.; Rosie, J.A. Virtual reality games for movement rehabilitation in neurological conditions:
How do we meet the needs and expectations of the users? Disabil. Rehabil. 2012, 34, 1880–1886. [CrossRef]

8. Novak, I. Evidence-Based Diagnosis, Health Care, and Rehabilitation for Children With Cerebral Palsy.
J. Child Neurol. 2014, 29, 1141–1156. [CrossRef]

9. Green, D.; Wilson, P.H. Use of virtual reality in rehabilitation of movement in children with
hemiplegia—A multiple case study evaluation. Disabil. Rehabil. 2012, 34, 593–604. [CrossRef]

10. Zoccolillo, L.; Morelli, D.; Cincotti, F.; Muzzioli, L.; Gobbetti, T.; Paolucci, S.; Iosa, M. Video-game
based therapy performed by children with cerebral palsy: A cross-over randomized controlled trial and a
cross-sectional quantitative measure of physical activity. Eur. J. Phys. Rehabil. Med. 2015, 51, 669–676.

11. Gordon, C.; Roopchand-Martin, S.; Gregg, A. Potential of the Nintendo WiiTM as a rehabilitation tool
for children with cerebral palsy in a developing country: A pilot study. Physiotherapy 2012, 98, 238–242.
[CrossRef]

12. Chen, Y.; Fanchiang, H.D.; Howard, A. Effectiveness of virtual reality in children with cerebral palsy:
A systematic review and meta-analysis of randomized controlled trials. Phys. Ther. 2018, 98, 63–77.
[CrossRef] [PubMed]

13. Daoud, M.I.; Alazrai, R.; Alhusseini, A.; Shihan, D.; Alhwayan, E.; Abou-Tair, D.I.; Qadoummi, T. ICTs
for Improving Patients Rehabilitation Research Techniques. In Communications in Computer and Information
Science; Chapter Interactive Kinect-Based Rehabilitation Framework for Assisting Children with Upper Limb
Cerebral Palsy; Springer: Cham, Switzerland, 2017.

14. Daoud, M.I.; Qadoummi, T.; Abou-Tair, D.I. An interactive rehabilitation framework for assisting people
with cerebral palsy. In Proceedings of the 3rd Workshop on ICTs for Improving Patients Rehabilitation
Research Techniques (REHAB 15), Lisbon, Portugal, 1–2 October 2015; pp. 46–49.

15. Chang, Y.J.; Han, W.Y.; Tsai, Y.C. A Kinect-based upper limb rehabilitation system to assist people with
cerebral palsy. Res. Dev. Disabil. 2013, 34, 3654–3659. [CrossRef]

16. Luna-Oliva, L.; Ortiz-Gutierrez, R.M.; Cano-de la Cuerda, R.; Piedrola, R.M.; Alguacil-Diego, I.M.;
Sanchez-Camarero, C.; Martinez Culebras, M. Kinect Xbox 360 as a therapeutic modality for children
with cerebral palsy in a school environment: A preliminary study. NeuroRehabilitation 2013, 33, 513–521.
[CrossRef]

17. Bryanton, C.; Bosse, J.; Brien, M.; Mclean, J.; McCormick, A.; Sveistrup, H. Feasibility, motivation, and
selective motor control: Virtual reality compared to conventional home exercise in children with cerebral
palsy. Cyberpsychol. Behav. 2006, 9, 123–128. [CrossRef]

18. Bonnechere, B.; Jansen, B.; Omelina, L.; Da Silva, L.; Mougeat, J.; Heymans, V.; Vandeuren, A.; Rooze, M.;
Van Sint Jan, S. Use of serious gaming to increase motivation of cerebral palsy children during rehabilitation.
Eur. J. Paediatr. Neurol. 2013, 17, S12. [CrossRef]

19. Hung, J.; Chang, Y.; Chou, C.; Wu, W.; Howell, S.; Lu, W. Developing a suite of motion-controlled games for
upper extremity training in children with cerebral palsy: A proof-of-concept study. Games Health J. 2018,
7, 327–334. [CrossRef] [PubMed]

20. Jelsma, J.; Pronk, M.; Ferguson, G.; Jelsma-Smit, D. The effect of the Nintendo Wii Fit on balance control and
gross motor function of children with spastic hemiplegic cerebral palsy. Dev. Neurorehabil. 2013, 16, 27–37.
[CrossRef]

21. Winkels, D.G.M.; Kottink, A.I.R.; Temmink, R.A.J.; Nijlant, J.M.M.; Buurke, J.H. WiiTM-habilitation of upper
extremity function in children with cerebral palsy. An explorative study. Dev. Neurorehabil. 2013, 16, 44–51.
[CrossRef] [PubMed]

22. Sevick, M.; Eklund, E.; Mensch, A.; Foreman, M.; Standeven, J.; Engsberg, J. Using free internet videogames
in upper extremity motor training for children with cerebral palsy. Behav. Sci. 2016, 6, 10. [CrossRef]

23. Machado, F.R.C.; Antunes, P.P.; Souza, J.; Dos Santos, A.C.; Levandowski, D.C.; De Oliveira, A.A. Motor
improvement using motion sensing game devices for cerebral palsy rehabilitation. J. Motor Behav. 2017,
49, 273–280. [CrossRef]

24. Sandlund, M.; Domellof, E.; Grip, H.; Ronnqvist, L.; Hager, C.K. Training of goal directed arm
movements with motion interactive video games in children with cerebral palsy—A kinematic evaluation.
Dev. Neurorehabil. 2014, 17, 318–326. [CrossRef] [PubMed]

236



Sensors 2020, 20, 2416

25. Ayed, I.; Ghazel, A.; Jaume-I-Capo, A.; Moyà-Alcover, G.; Varona, J.; Martínez-Bueso, O. Vision-based
serious games and virtual reality systems for motor rehabilitation: A review geared toward a research
methodology. Int. J. Med. Inform. 2019, 131, 103909. [CrossRef] [PubMed]

26. Huber, M.; Rabin, B.; Docan, C.; Burdea, G.; Nwosu, M.E.; Abdelbaky, M.; Golomb, M.R. PlayStation 3-based
tele-rehabilitation for children with hemiplegia. In Proceedings of the 2008 Virtual Rehabilitation Conference,
Vancouver, BC, Canada, 25–27 August 2008; pp. 105–112.

27. Roy, A.K.; Soni, Y.; Dubey, S. Enhancing effectiveness of motor rehabilitation using kinect motion sensing
technology. In Proceedings of the IEEE Global Humanitarian Technology Conference: South Asia Satellite
(GHTC-SAS), Trivandrum, India, 23–24 August 2013; pp. 298–304.

28. Sinpithakkul, C.; Kusakunniran, W.; Bovonsunthonchai, S.; Wattananon, P. Game-based enhancement for
rehabilitation based on action recognition using kinect. In Proceedings of the IEEE Region 10 Conference
(TENCON 2018), Jeju, Korea, 28–31 Octorber 2018; pp. 303–308.

29. Vilas-Boas, M.D.C.; Choupina, H.M.P.; Rocha, A.P.; Fernandes, J.M.; Cunha, J.P.S. Full-body motion
assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during
gait. J. Biomech. 2019, 87, 189–196. [CrossRef] [PubMed]

30. Alazrai, R.; Mowafi, Y.; Lee, G. Anatomical-plane-based representation for human-human interactions
analysis. Pattern Recognit. 2015, 48, 2346–2363. [CrossRef]

31. Alazrai, R.; Momani, M.; Daoud, M.I. Fall detection for elderly from partially observed depth-map video
sequences based on view-invariant human activity representation. Appl. Sci. 2017, 7, 316. [CrossRef]

32. Alazrai, R.; Mowafi, Y.; Hamad, E. A fall prediction methodology for elderly based on a depth camera.
In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4990–4993.

33. Snell, R.S. Clinical Anatomy by Regions, 9th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2011.
34. Wöllmer, M.; Al-Hames, M.; Eyben, F.; Schuller, B.; Rigoll, G. A multidimensional dynamic time warping

algorithm for efficient multimodal fusion of asynchronous data streams. Neurocomputing 2009, 73, 366–380.
[CrossRef]

35. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector
machines. Mach. Learn. 2002, 46, 389–422. [CrossRef]

36. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Elsevier: Amsterdam,
The Netherlands, 2012.

37. Sim, J.; Wright, C.C. The kappa statistic in reliability studies: Use, interpretation, and sample size
requirements. Phys. Ther. 2005, 85, 257–268. [CrossRef]

38. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
39. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977,

33, 159–174. [CrossRef]
40. Cameron, M.H.; Monroe, L. Physical Rehabilitation for the Physical Therapist Assistant; Elsevier: Amsterdam,

The Netherlands, 2011.
41. DeMatteo, C.; Law, M.; Russell, D.; Pollock, N.; Rosenbaum, P.; Walter, S. The reliability and validity of the

quality of upper extremity skills test. Phys. Occup. Ther. Pediatr. 1993, 13, 1–18. [CrossRef]
42. Mathiowetz, V.; Federman, S.; Wiemer, D. Box and block test of manual dexterity: Norms for 6–19 year olds.

Can. J. Occup. Ther. 1985, 52, 241–245. [CrossRef]
43. Randall, M.; Johnson, L.; Reddihough, D. The Melbourne Assessment of Unilateral Upper Limb Function: Test

Administration Manual; Royal Children’s Hospital: Melbourne, Australia, 1999.
44. Arnould, C.; Penta, M.; Renders, A.; Thonnard, J. ABILHAND-Kids: A measure of manual ability in children

with cerebral palsy. Neurology 2004, 63, 1045–1052. [CrossRef] [PubMed]
45. Acar, G.; Altun, G.P.; Yurdalan, S.; Polat, M.G. Efficacy of neurodevelopmental treatment combined with the

Nintendo© Wii in patients with cerebral palsy. J. Phys. Ther. Sci. 2016, 28, 774–780. [CrossRef]
46. Jebsen, R.H.; Taylor, N.; Trieschmann, R.B.; Trotter, M.J.; Howard, L.A. An objective and standardized test of

hand function. Arch. Phys. Med. Rehabil. 1969, 50, 311–319.
47. Msall, M.E.; DiGaudio, K.; Duffy, L.C.; LaForest, S.; Braun, S.; Granger, C.V. WeeFIM: Normative sample of

an instrument for tracking functional independence in children. Clin. Pediatr. 1994, 33, 431–438. [CrossRef]

237



Sensors 2020, 20, 2416

48. Ding, W.L.; Zheng, Y.Z.; Su, Y.P.; Li, X.L. Kinect-based virtual rehabilitation and evaluation system for upper
limb disorders: A case study. J. Back Musculoskel. Rehabil. 2018, 31, 611–621. [CrossRef]

49. Gaillard, F.; Cacioppo, M.; Bouvier, B.; Bouzille, G.; Newman, C.J.; Pasquet, T.; Cretual, A.; Rauscent, H.;
Bonan, I. Assessment of bimanual performance in 3-D movement analysis: Validation of a new clinical
protocol in children with unilateral cerebral palsy. Ann. Phys. Rehabil. Med. in Press. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

238



sensors

Article

Automatic and Real-Time Computation of the
30-Seconds Chair-Stand Test without Professional
Supervision for Community-Dwelling Older Adults

Antonio Cobo 1,2, Elena Villalba-Mora 1,2,*, Rodrigo Pérez-Rodríguez 3, Xavier Ferre 1,

Walter Escalante 1, Cristian Moral 1 and Leocadio Rodriguez-Mañas 4,5

1 Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Pozuelo de Alarcón,
28223 Madrid, Spain; antonio.cobo@ctb.upm.es (A.C.); xavier.ferre@ctb.upm.es (X.F.);
walter.escalante@ctb.upm.es (W.E.); cristian.moral@ctb.upm.es (C.M.)

2 Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN),
28029 Madrid, Spain

3 Fundación para la Investigación Biomédica, Hospital de Getafe, Getafe, 28905 Madrid, Spain;
rprodrigo@salud.madrid.org

4 Servicio de Geriatría, Hospital de Getafe, Getafe, 28905 Madrid, Spain; leocadio.rodriguez@salud.madrid.org
5 Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBER-FES),

28029 Madrid, Spain
* Correspondence: elena.villalba@ctb.upm.es; Tel.: +34-910-679-275

Received: 15 September 2020; Accepted: 13 October 2020; Published: 14 October 2020

Abstract: The present paper describes a system for older people to self-administer the 30-s chair
stand test (CST) at home without supervision. The system comprises a low-cost sensor to count
sit-to-stand (SiSt) transitions, and an Android application to guide older people through the procedure.
Two observational studies were conducted to test (i) the sensor in a supervised environment (n = 7;
m = 83.29 years old, sd = 4.19; 5 female), and (ii) the complete system in an unsupervised one (n = 7;
age 64–74 years old; 3 female). The participants in the supervised test were asked to perform a
30-s CST with the sensor, while a member of the research team manually counted valid transitions.
Automatic and manual counts were perfectly correlated (Pearson’s r = 1, p = 0.00). Even though
the sample was small, none of the signals around the critical score were affected by harmful noise;
p (harmless noise) = 1, 95% CI = (0.98, 1). The participants in the unsupervised test used the system
in their homes for a month. None of them dropped out, and they reported it to be easy to use,
comfortable, and easy to understand. Thus, the system is suitable to be used by older adults in their
homes without professional supervision.

Keywords: frailty syndrome; sit-to-stand; 30-s chair stand test; wearable sensors; signal processing

1. Introduction

The present paper describes a system for older people to self-administer the 30-s chair stand
test (CST) at home without supervision. The system comprises a low-cost sensor that automatically
detects and counts sit-to-stand (SiSt) transitions in real-time, and a home care application that guides
older people through the whole procedure. Since using novel technologies is not a trivial issue for
older adults, we studied whether such a system would be able to match older people’s abilities and
expectations, so they can use it without supervision. The 30-s CST is a medical exam used to assess older
adults’ lower-limb strength [1]. It requires a subject to spend thirty seconds repeatedly standing up
from, and sitting down on, a chair, with his arms folded on his chest, as fast as possible [1]. The number
of times the said subject reached an upright position is then taken as a proxy to lower-limb strength [1].
It is used in combination with other medical exams to assess the functional status of older people.
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Depending on the results of such a functional assessment, older people may be diagnosed as robust,
pre-frail, or frail [2]. Frailty is a state of increased vulnerability to low power stressors, leading to
difficulties in maintaining homeostasis that increases the risk of disability and other adverse outcomes,
such as falls, hospitalization, permanent institutionalization, and death [3–6]. In fact, frailty is a
major predictor of disability, with frail elders showing twice the risk of disability than non-frail older
adults [7].

Disability is one of the major challenges for elderly care, because improvements in life expectancy
are not coming together with similar improvements in impairment-free life expectancy (IFLE); on the
contrary, a decline in the latter has even been observed in some countries [8]. Disability imposes
a heavy psychological and economic burden on older people and their relatives over a long
time; fortunately, frailty, which may precede the development of disability by several years [2],
can be reversed [9–11]. Hence the paramount role of frailty detection in the prevention of disability.
Several models have been proposed to explain frailty, with two of them prevailing as major approaches,
namely, Rockwood’s deficit accumulation model [12–14] and Fried’s phenotypic model [2]. The latter
is the most widespread, and identifies the following markers of frailty: (i) weight loss, (ii) exhaustion,
(iii) weakness, (iv) slowness, and (v) low physical activity [2]. An older adult is classified as pre-frail if
he tests positive to one or two of the frailty components in the phenotypic model, and as frail if he tests
positive to three or more of them; otherwise he is classified as robust [2] (see Table 1).

Table 1. The phenotypic model for frailty involves the assessment of five different components (weight loss,
exhaustion, weakness, slowness, and low physical activity); and then diagnosing the subject as robust,
pre-frail, or frail, according to the number of components that resulted positive in the tests: robust
(green rows) for zero components, pre-frail (yellow rows) for 1 or 2 components, or frail (red rows) for 3, 4,
or 5 components.

If a Subject Tests Positive to: He is Diagnosed as:

0 components Robust.
1 component
2 components Pre-frail.

3 components
4 components
5 components

Frail.

Frail older adults can reduce their levels of frailty, and even be restored back to robustness,
with exercise-based interventions, especially if combined with early diagnosis and continuity of
care [9,11,15]. Many different instruments are currently involved in the diagnosis and assessment of
frailty. For instance, hand grip strength is used to assess weakness, in fact, the data in the original
study of Fried et al. came from hand grip strength measurements [2], but it has also been explored as a
measurement of overall frailty on its own; just as the stand up and go (TUG) test, which is a standard
test for gait speed [6]. On the other hand, other sources of weakness measurements, such as those
based on lower-limb strength, have been observed to be associated with either hand grip strength,
gait speed, and even overall frailty [16]. In fact, instruments to assess lower-limb strength, such as
the 30-s CST [1], and the STS5 (measuring how long it takes for an older person to repeatedly stand
up from a chair five times) [17], are usually included as part of a comprehensive geriatric assessment
(CGA). Both early diagnosis and continuity of care require frailty to be frequently assessed in search of
early signs of functional decline. For instance, if two consecutive measurements of lower-limb strength
taken two weeks apart with the 30-s CST show a decrease bigger that a given threshold, an alarm
should be raised. However, it is not feasible to assess every older adult at risk of developing frailty
every two weeks with the currently available means to conduct the functional assessment exams.
Most of them require the involvement of a specifically trained professional in a geriatrics department to
supervise their execution, and compute their corresponding scores. Obviously, a geriatrics department
in specialized care cannot afford to undertake such a screening task. In fact, they should be focusing
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on taking care of the most severe cases. As a result, older people do not have their functional capacity
assessed for early signs of frailty very often.

Automatic sensors that do not require the involvement of any specifically trained personnel could
help to alleviate this problem. On the one hand, a single staffmember in a geriatrics department could
supervise several tests on multiple patients simultaneously. On the other hand, and probably involving a
bigger potential impact, general practitioners or nurses in primary care could add functional assessment
to routine follow-ups of their older adult patients. The potential benefits of such automatic sensors
become even more remarkable within the current context of the COVID-19 pandemic. Olde people are
at greater risk of developing severe complications and dying from COVID-19 [18]. Therefore, they have
been advised to carefully comply with distancing measures to lower the risk of transmission. However,
distancing measures favor social isolation and sedentary behaviors. Such sedentary behaviors increase
the risk of developing frailty [19], and have been hypothesized to persist and become habits, based on
observations from previous natural disasters, in particular, from the three years following the 2011
earthquake and tsunami in East Japan [20]. In such a scenario (i.e., fewer visits to the doctor and
increased risk of frailty due to sedentary behavior) older adults would benefit from having automatic
sensors to conduct functional assessment exams at home, on their own or helped by their care givers.
In the particular case of the 30-s CST, the setup is rather simple; it just requires a regular rigid chair to
repeatedly stand-up and sit-down, and a timer to control the duration of the test [1]. Nevertheless,
a trained professional is required to judge which SiSt transitions are valid and must be added to the
final score. Valid SiSt transitions occur when the subject reaches an upright position [1]. However,
some older adults suffer from mobility constraints, and upright positions might differ from one subject
to another.

A 30-s CST is not a transparent procedure embedded into people’s daily lives. It requires older
adults to interrupt their daily activities and go through a specific sequence of actions. Our approach
involves a system that comprises an automatic sensor and a home care application to guide older adults
through the procedure. One of the determinant factors of such a system is the specifics of the sensing
device. According to Millor et al., the study of SiSt and stand-to-sit (StSi) transitions with inertial
sensors can be traced back to the mid-1990s [21]; in particular to Kerr et al., in 1994 [22]. Over half
of the works that Millor et al. reviewed were based on the assessment of daily life activities [21].
Only a few of them involved the assessment of repeated SiSt/StSi cycles in traditional tests for frailty
assessment [21]. While some works relied on the use of multiple devices on different parts of the
body, a low number of devices is recommendable to simplify the setup, lower the cost, and eventually
improve acceptance and adoption. A very popular approach is to place a single inertial measurement
unit (IMU) on the subject’s lower back (L3–L5 region), close to the body center of mass, and take
advantage of the quasi-periodic nature of the body movement [23,24]. This approach is exemplified in
the works of van Lummel et al. (where the authors apply it to the STS5) [23] and Millor et al. (where the
authors apply it to the 30-s CST) [24].

In particular, van Lummel et al. developed a fully automated method of processing repeated
sit-to-stand-to-sit (STS) cycles [23]. They used triaxial acceleration and triaxial angular velocity signals
from a single IMU device (dynaport) on the lower back to compute trunk pitch-angle and vertical
velocity signals. They used the morphological properties of the trunk pitch-angle signal to identify and
delimit the sub-phases and transitions in repeated STS cycles. They used the vertical velocity signal to
spot and discard failed attempts. However, they do not explain which features of the vertical velocity
and which criteria were used to classify an attempt as a failure.

On the other hand, Millor et al. developed a fully automated method to process repeated STS
cycles in a 30-s CST [24]. They computed vertical velocity and vertical position from the vertical
acceleration signal, from a single IMU device (MTx Orientation Tracker—Xsens Technologies B.V.
Enschede, Netherlands) on the lower back. They applied double integration, combined with fourth-level
polynomial curve adjustment and cubic splines interpolation. They used the morphological properties
of the vertical position signal to identify and delimit complete STS cycles. A complete STS cycle can be
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found between two minima in the vertical position signal. They also used the MTx’s onboard Kalman
filter estimation for the X-orientation, and combined it with the vertical acceleration, the vertical
velocity, and the vertical position signals to identify the sub-phases (i.e., impulse, stand up, and sit
down) within each STS cycle. In a subsequent paper Millor, Lecumberri, Gómez, Martínez-Ramírez,
and Izquierdo argued that they automatically detected failed attempts “... based on a threshold
applied to both the time elapsed between a maximum and a minimum of the Z-position and to their
difference.” [25], (p. 4). However, they did not clarify what the values for these thresholds were nor
how they were computed.

In both cases, the authors complemented their studies by computing multiple kinematic parameters,
such as transition duration (TD), maximum and minimum values of the vertical acceleration
(max., min., V-acc.), Area Under the Curve (AUC) of V-acc., and roll range, and processed them
to obtain additional information beyond the test score [25]. van Lummel et al. were able to identify
seat-off and seat-on instants [26], establish a relationship between the subjects’ stand up strategies and
their overall muscle strength [27], and compare the sensitivity of stair ascending (SA) and Leg-Extension
Power (LEP) to detect age-related changes [28]. When they analyzed the associations between clinical
outcomes (both health and functional outcomes) and the functional tests results, they observed
stronger associations for their instrumented STS5 test than for manual records [29]. On the other hand,
Millor et al. were able to detect differences in frailty status (robust, pre-frail, frail) across different
subjects directly from their kinematic parameters [25]. They even identified the set of most informative
parameters (i.e., anterior-posterior (AP) orientation range during the Imp phase, maximum vertical
acceleration and vertical power peaks during SiSt phase, and total impulse during the StSi phase) [30].
In fact, they claimed that these parameters outperformed the number of completed cycles in the 30-s
CST, as a criterion for frailty classification [30].

Other locations for the sensing devices, such as the chest, have also been explored [31]. Recently,
in that line, Jovanov, Wrigth, and Ganegoda presented some preliminary results from their automated
30-s CST [32]. Instead of attaching a sensor directly to the subject’s chest, they took advantage of the
fact that the 30-s CST requires the subject to fold his arms over his chest, and used the inertial sensors
onboard a smartwatch. They used 3D acceleration signals from two different models (Fossil Gen 4 and
Polar M600). They obtained excellent reliability between automated and manual counts, with little
processing load. However, their experimental subjects were not older adults (12 subjects, mean age:
39.1 y.o.). They did not provide any explanation of the STS cycle identification and delimitation criteria
and algorithms, and they did not mention any mechanism to spot and dismiss failed attempts.

Lately, we have explored a different approach ourselves by using an ambient sensor instead of
a body-worn sensor [33]. In our study we explored “ . . . the feasibility of using the quasi-periodic
nature of the distance between a subject’s back and the chair backrest during a 30-s CST to carry
out unsupervised measurements based on readings from a low-cost ultrasound sensor” [33], (p. 3).
Our sensor comprised an ultrasound sensing module, an Arduino controller board, and a wireless
communications module. All three of them were integrated into our own design for a portable device
that the end-users could attach to the backrest of any regular rigid chair. We observed older people
to generate very noisy signals. We applied a moving minimum filter to cancel the effects of said
noise and an adaptable threshold to tell the difference between sitting and standing regions in the
signal. Even though intra-class correlation coefficients showed good levels of reliability between the
sensor outcomes and the trained professional’s manual counts, the differences between these outcomes
resulted in the performance of some subjects not being correctly classified as average, better than
average, or worse than average.

In the present paper we come back to the body-worn sensor approach. We propose to measure
the thigh angle with respect to a horizontal plane perpendicular to the direction of gravity (i.e., tilt)
with a single device on the subject’s thigh itself, and to use the variation of the angle as the subject
stands up and down over time to identify SiSt and StSi transitions. Measurements of the thigh
angle from a single device have already been used in previous literature to study SiSt and StSi
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transitions, mostly to identify different postures and activities (sitting, standing, walking, ramp or
stair ascending, etc.) while performing activities of daily living (either in controlled lab settings or
in free-living conditions) [34–37]. However, we have not found any descriptions of an instrumented
version of the 30-s CST based on this approach. The accurate estimation of tilt based on IMU readings
relies on the fusion of accelerometer and gyroscope data [38]. Smartphones come equipped with
IMUs and relatively high computing power. However, smartphone adoption among the geriatric
population (i.e., people over 70 years old) is low, especially among low-income and low-education
elders, because they use much simpler and cheaper mobile phones. Smartphones would be too
expensive, and oversize, for the single purpose of being used as a sensor; since a home kit for frailty
monitoring usually comprises multiple sensors, devices of a much lower cost are required. Kalman and
complementary filters are the most widespread data fusion methods for IMU-based applications [38].
Kalman filters are computationally expensive and, as stated by Abhayasinghe, Murray, and Sharif
Bidabadi, 32-bit microcontrollers with a digital signal processor (DSP) are necessary to run them in real
time [39]. Conversely, the algorithm for the complementary filter is much simpler and, even though it
involves the computation of an arc tangent, can be run on much cheaper 8-bit microcontrollers in real
time [39]. According to Tognetti et al., making use of a simple accelerometer instead of a complete
IMU may contribute to further decreasing the complexity and cost of the sensing device [40]; however,
the complementary filter still relies on fusing accelerometer and gyroscope data. Fortunately, tilt can
be estimated solely from accelerometry if the main contributor to the accelerometer readings is gravity.
During a 30-s CST, however, an accelerometer will be exposed to sudden acceleration and deceleration
forces when reaching the upright and sitting positions. Thus, the question remains whether the
resulting noise will harm the correct identification of valid transitions.

On the other hand, using novel technologies is not a trivial issue for older adults. Moreover,
the sensors described above have been tested in controlled settings, under the supervision of their
corresponding research teams. We have found no works reporting older adult’s performance when
using this kind of automatic sensors on their own. Our approach involves a system that comprises
an automatic sensor and a home care application to guide older adults through the procedure. Thus,
the question remains whether such a system will match older people’s abilities and expectations so they
can use it without supervision. We implemented our own design for a low-cost sensor for counting
SiSt transitions, which estimates the thigh angle solely form the readings of a single accelerometer.
In addition, we implemented a home care app for Android that guides the older adults throughout
the whole procedure. We first tested the sensor in a supervised environment, and then we tested
the complete system in an unsupervised one. To test the sensor, we studied the impact of noise by
analyzing the statistical significance of the estimated probability of finding harmless noise in a valid
SiSt transition. We observed the noise in all the valid transitions in the critical scenario (i.e., test scores
around the value used to spot patients not fit enough to remain independent) to be harmless. We then
delivered the complete system to seven older adults’ homes for a month, and conducted an acceptability
study. The participants reported finding it easy to use, feeling comfortable using it, understanding the
features and functionalities of the app, and feeling able to use it on their own.

2. Materials and Methods

The sensor was tested in an observational study, described in Section 2.1, where the participants
used it while taking a 30-s CST, under the supervision of a trained member of the research team.
The home care system was tested in another observational study, described in Section 2.2, where the
participants used it to take several 30-s CSTs over the course of a month, at their own homes and
without any kind of supervision.

243



Sensors 2020, 20, 5813

2.1. Supervised Validation of the Sensor

2.1.1. Participants

Seven older subjects (age: m = 83.29 years old, sd = 4.19; gender: 5 female and 2 male) were
recruited from a pool of participants that expressed a general interest in participating in research
studies from the University Hospital of Getafe.

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the Universidad Politécnica de Madrid on 9 May 2019
(POSITIVE: Maintaining and improving the intrinsic capacity involving primary care and caregivers).

The following inclusion and exclusion criteria were applied:

• A subject COULD ENTER the study if ALL the following INCLUSION CRITERIA applied:

◦ The subject is willing and able to give written informed consent for participation in
the study.

◦ The subject is 70 years old or older.
◦ The subject is able to perform the 30-s CST in a safe way.
◦ The subject has not been diagnosed with cognitive impairment.

• A subject COULD NOT ENTER the study if ANY of the following EXCLUSION CRITERIA applied:

◦ Subjects suffering from any major disability.
◦ Subjects suffering from cognitive impairment.

2.1.2. Apparatus

The overall setup is depicted in Figure 1, and consisted of a regular rigid chair with a backrest,
an instance of the wearable device under study, and a tablet device. The chair played the same role as
usual in any regular 30-s CST. The subjects wore the sensing device on one of their thighs. The sensor
is longitudinally aligned with the subject’s femur and tightly attached to her thigh with a Velcro strap
as shown in Figure 2. Since the sensor is sensitive to orientation, a green sticker was attached to one of
its ends to signal which one has to remain closer to the knee. However, it is not visible in Figure 2,
because once the sensor is put in place and secured, the Velcro strap covers it. The tablet hosts an app
to control the sensor, and it is paired to the latter via Bluetooth. A member of the research team used
the app to switch the sensor into either calibration or measurement mode, and to visualize the sensor
automatic count at the end of each 30-s CST. In calibration mode, the readings from the accelerometer
in the device are used to compute the thigh angle in both a sitting and an upright static posture,
as a measurement of the subject’s mobility constraints; then, the parameters in the automatic count
algorithm are set accordingly to a personalized value. In measurement mode, the subject takes the 30-s
CST itself, and the accelerometer readings are processed by the automatic count algorithm (aka STS
analysis algorithm). Finally, the sensor sends the automatic count to the tablet via Bluetooth once the
test is over. Further details about the sensor hardware, the automatic count algorithm, and the tablet
app can be found in Sections 2.1.2.1 to 2.1.2.3, respectively.
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Figure 1. Depiction of the overall experimental setup: The subject stands up from and sits down on a
regular rigid chair with the sensing device on one of his thighs; the sensing device is paired with a
tablet via Bluetooth; a member of the research team uses the app on board the tablet device to switch
the sensor into either calibration or measurement modes, and to visualize the sensor automatic count
once the 30-s chair stand test (CST) is over.

Figure 2. Position and alignment of the sensing device on a subject’s thigh. (a) The wearable sensor is
placed on the subject’s thigh longitudinally aligned with her femur. The sensor is tightly attached to
the subject’s thigh with a Velcro strap to prevent it from sliding. The LED in the sensor is turned off
when the subject is sitting; (b) and it is turned on every time a valid SiSt transition is detected.

2.1.2.1. The Wearable Sensor Device

The device consists of three main building blocks, as shown in Scheme 1. These blocks are,
from left to right:
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Scheme 1. Schematic block diagram of the interconnection between the device components. The Arduino
Nano board (center) acts as the control and processing unit, collecting readings from the accelerometer
(SparkFun block on the left), computing the estimations of the thigh angle over time, and analyzing the
resulting signal. The Arduino Nano board also makes use of the Bluetooth module (HC-06 block on the right)
to exchange messages with the external mobile device over a wireless communication channel. The whole
device was powered by a 9V 6LP3146 battery. While the Arduino Nano board was directly powered by
the battery, the accelerometer and the Bluetooth boards were indirectly powered by connecting them to the
Arduino’s 5V and 3.3V DC outputs, respectively. The battery was omitted in this scheme for the sake of clarity.

• An accelerometer (a SparkFun 9DoF Sensor Stick board with an LSM9DS1 IMU chip). This SparkFun
board comes with a nine degrees of freedom IMU (i.e., it comprises a triaxial accelerometer,
a triaxial gyroscope, and a triaxial magnetometer). However, we did not use the gyroscope and the
magnetometer because, as explained in Section 2.1.2.2, acceleration readings are enough to compute
an estimation of the thigh angle.

• A control and processing unit (an Arduino Nano board with an ATmega328P microcontroller).
The Arduino board acts as the processing unit in the device thanks to its onboard micro-controller.
Our processing algorithm runs on board the Arduino, and is responsible for collecting the
accelerometer readings, computing the estimations of the thigh angle over time, and analyzing
the resulting signal to automatically detect and count SiSt and StSi transitions in real time,
without storing or transmitting the individual samples.

• A communications unit: (HC-06 Bluetooth 2.0 + EDR module). End users (in this case, the researcher
conducting the experiment) control the behavior of the sensing device by interacting with a mobile
app in an external tablet device. This communication unit enables wireless communication between
the two devices via Bluetooth. The researcher can issue calibration and measurements commands to
the sensing device, and the latter automatically sends the results to the tablet once a 30s-CST is over.

The device is powered by a 9 V battery (6LP3146). However, only the Arduino Nano board
was directly powered by this battery. The accelerometer board was powered by connecting it to the
Arduino’s 5 V DC output, and the Bluetooth board was indirectly powered via the Arduino as well,
by connecting the Bluetooth board to the Arduino’s 3.3V DC output. The device also has an on/off
switch, a LED, and a vibrator. The color of the LED helps to tell the difference between calibration
mode and measurement mode. Once the device enters into measurement mode, the vibrator tells the
subject when to start and stop the test. All these additional elements (the battery and its corresponding
case, the on/off switch, the LED, and the vibrator) were omitted in Scheme 1 for the sake of clarity.

246



Sensors 2020, 20, 5813

2.1.2.2. The STS Analysis Algorithm

The STS analysis algorithm itself involves two steps. First, the thigh angle is estimated in real-time
as the acceleration samples arrive. The thigh angle in the 30-s CST was defined as the angle between
the subject’s thigh and a horizontal plane perpendicular to gravity (e.g., the seat of the chair), as shown
in Figure 3b. During a 30-s CST, this angle is expected to vary over time between 0◦ in the sitting
position (Figure 3a) and 90◦ in the upright position (Figure 3c).

Figure 3. Definition of the thigh angle for the 30-s CST. It is defined as the angle between the subject’s
thigh and a horizontal plane perpendicular to gravity (e.g., the seat of the chair). It is depicted as the
angle (alfa) between the red line along the longitudinal direction of the subject’s thigh and the red line
on the seat of the chair; therefore, (a) the expected value of the thigh angle in the sitting position is 0;
(b) the value of the thigh angle at any time during SiSt and StSi transitions is bigger than 0 and lower
than 90◦; and (c) the expected value of the thigh angle in the upright position is 90◦.

The thigh angle can then be computed from the gravity readings of the accelerometer on the
subject’s thigh, as demonstrated in Figure 4. The thigh angle (red angle, dubbed as alfa) is equal to the
angle between gravity itself and the Z-gravity component of the accelerometer readings (green angle,
dubbed as beta) because the gravity is always perpendicular to the horizontal plane (the seat of the
chair), and the Z-gravity component is always perpendicular to the thigh.

Figure 4. Computation of the thigh angle from the decomposition of gravity into orthogonal components
along the axis of the reference system (blue lines) of an accelerometer on the subject’s thigh. According to
the convention applied in the preceding figure the thigh angle is represented by the red angle (alfa).
Gravity and its components are depicted in green. The green angle (beta) between gravity itself and its
Z-component is equal to the thigh angle (alfa), because gravity is always perpendicular to the horizontal
plane, and the Z-gravity component is always perpendicular to the thigh.

247



Sensors 2020, 20, 5813

Thus, if the Y-axis of the accelerometer is aligned with the thigh itself, as it is in the case of our
experimental setting, the angle value at any given moment can be computed from the accelerometer
Z-gravity and Y-gravity readings according to the following expression:

α = arctan
(
−gy/gz

)
(1)

Obtaining the gravity components from the accelerometer readings would require filtering the
raw acceleration signals. However, in order to lower the computational complexity of our algorithm
we estimated the thigh angle directly from raw acceleration samples as:

α̂= arctan
(
−ay/az

)
(2)

where ay (i.e., the Y-acceleration component) and az (i.e., the Z-acceleration component) include the
contribution of both gravity and the forces exerted by the subject to execute the SiSt and StSi transitions.
The outcome of the expression above is limited by the fact that the tangent function is a periodic
function, and the arc tangent function only returns values for the first period of the angle values,
i.e., values between −p/2 and p/2. Theoretically, this should not be a problem because, as stated before,
the value of the thigh angle is expected to oscillate within that range (between 0 and p/2 radians,
i.e., between 0◦ and 90◦). However, when the subject is close to the upright position, there are some
non-ideal behaviors that should result in an angle estimation bigger than 90◦, but will not if we applied
Equation (2). For instance, the value of the Z-acceleration component is expected to always have a
negative sign, except at the upright position where it is expected to be zero. Nevertheless, nearby the
upright position, the noise from the acceleration and deceleration forces exerted by the older adult
could alter the Z-acceleration sign, and turn it into a positive value. In that case, Equation (2) does not
return a value bigger than p/2 but a negative value between −p/2 and zero. In order to make a correct
estimation of the angle, the sign of the accelerometer readings must be taken into account according to
the following expression:

α̂ =

⎧⎪⎪⎨⎪⎪⎩ −arctan
(
ay/az

)
, ifaz � 0

π− arctan
(
ay/az

)
, ifaz > 0

⎫⎪⎪⎬⎪⎪⎭ (3)

Please note that the sign of the Y-acceleration component cannot be negative while the sign of
the Z-acceleration component is positive, unless the device is upside down, because gravity always
points downwards.

While the variation of the actual thigh angle over time, and even an estimation based on gravity
components, are smooth quasi-periodic signals like the blue line in Figure 5, the values of the thigh
angle estimated from raw acceleration readings, and their variation over time, result in a noisy signal
like the green line in Figure 5. The said noise is particularly strong close to the maxima and minima of
the actual angle, due to the abrupt deceleration forces applied to the sensor upon reaching the upright
and sitting positions. Consequently, while the blue signal shows smoothly and clearly defined maxima
that can be used to identify the end of a SiSt transition into the upright position, the local maxima
and minima in the noisy green signal do not serve that purpose anymore. Which brings us to the
second step in the STS analysis algorithm. In the second step, hysteresis thresholding was applied to
the signal to remove the effect of the noise in the green signal. The output of such a filter was a binary
signal (standing vs. sitting) like the red line in Figure 5. The threshold values and the computational
algorithm described below were defined to filter the signal and spot valid SiSt transitions in real time.
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Figure 5. Graphical representation of the outcomes of a 30-s CST. The blue line represents the evolution
of the thigh angle over time, computed from the estimation of the gravity components (it is not
computed by the device). The green line represents the estimation of the thigh angle used in the device;
it is directly computed from raw readings from the accelerometer. The red line represents the output of
applying hysteresis thresholding to the green signal.

The output of the hysteresis thresholding algorithm switches between two different states
(i.e., sitting and standing) as follows: The estimated value of the thigh angle is compared to two
values configured in a previous stage (see the next paragraph). These two values are known as the
sitting-threshold and the standing-threshold. If the previous sample was in a standing state and the
current estimated thigh angle reaches a value greater than 0◦, and lower than the sitting-threshold,
the subject is considered to have completed a StSi transition, the state changes to sitting, and the
subsequent SiSt transition is an eligible candidate to count as a valid attempt; otherwise the subsequent
SiSt transition will not count as a valid attempt no matter what. On the other hand, if the previous
sample was in a sitting state and the extension angle reaches a value greater than the standing-threshold,
and lower than 90◦ during an eligible SiSt transition, the state changes to standing, and the transition
counts as a valid attempt; otherwise it is dismissed as a failure.

The rationale behind using the sitting-threshold and the standing-threshold comes from the fact
that even though the expected angle values theoretically range from 0◦ (sitting) to 90◦ (standing),
there are two sources of non-ideal behavior that require the definition of more flexible threshold values.
First, mobility constraints may narrow this range for some older subjects. A subject’s readings whose
default standing position does not exceed 80◦, will never reach the theoretical 90◦ standing-angle.
Thus, valid standing attempts would be dismissed and the automatic count of valid SiSt transitions
would result in a wrong score. Analogously, a subject’s readings whose default sitting position does
not fall down below 10◦, will never reach the theoretical 0◦ sitting-angle. Thus, subsequent valid
standing attempts would be dismissed and the automatic count of valid SiSt transitions would result
in a wrong score as well.

The other source of non-ideal behavior is the non-ideal nature of the sensor readings themselves.
Even if a subject reaches his default standing position, the sensor might provide a reading slightly
lower than the subject’s default standing angle. In such a case a valid attempt would be dismissed as
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a failure, and the automatic count of SiSt transitions would result in a wrong score. The analogous
situation applies to the sitting position and the subject’s default sitting angle.

To avoid the negative impact of these situations on the sensor performance, the sensor is calibrated
before initiating a 30-s CST. The subject’s thigh angle in a static sitting position is measured and
recorded. In particular, the sitting angle is computed as the mean value of the angle readings collected
while the subject is sitting in a static position for four seconds. Then, a correction is applied to allow
for some error tolerance. The sitting-threshold is set to its final value by adding 10º to the subject’s
default sitting angle. Analogously, the subject’s thigh angle in a static upright position is measured and
recorded, and then the standing-threshold is set to its final value by subtracting 10º from the subject’s
default standing angle.

2.1.2.3. The Tablet App

The application was developed in Java for Android. The tablet device was a Huawei M2-A01L
with Android 5.1.1. The application is used to configure the personalized parameters in the sensor
algorithm (i.e., the sitting-threshold and the standing-threshold), to issue a command to the sensor for
it to begin the measurement process, and to visualize the test results after completion. The application
home screen shows a list of all the sensor devices paired with the tablet so the end-user gets to
pick which one to configure. In the case of the data collection stage in the present study, only one
device was paired with the tablet. The application has two operation modes, namely, calibration
mode and measurement mode. In calibration mode, the values for the sitting-threshold and the
standing-threshold are computed and set according to the following process:

1. The researcher puts the sensor into calibration mode by issuing the corresponding command
with the app.

2. The researcher asks the sensor to compute sitting angle readings for four seconds and send them
back to the app by issuing the corresponding command with the app.

3. The app computes the mean value of these sitting-angle readings and stores them as the subject’s
default sitting-angle.

4. The researcher asks the sensor to compute standing-angle readings for four seconds and send
them back to the app by issuing the corresponding command with the app.

5. The app computes the mean value of these standing-angle readings and stores them as the
subject’s default standing-angle.

6. The researcher enters an error tolerance value for each default angle.
7. The researcher asks the sensor to set the value of the sitting-threshold and the standing-threshold

by issuing the corresponding command with the app. The sitting-threshold is computed as the
sum of the subject’s default sitting-angle and the error tolerance value for the sitting position.
On the other hand, the standing-threshold is computed as the subtraction of the error tolerance
value for the standing position from the subject’s default standing-angle.

In measurement mode the application waits for the sensor to send the results of the 30-s CST
according to the following process:

1. The researcher puts the sensor into measurement mode by issuing the corresponding command
with the app.

2. The researcher asks the sensor to start the 30-s CST measurement sequence by issuing the
corresponding command with the app.

3. The application waits idle for the results of the 30-s CST.
4. The application shows the results of the 30-s CST on screen.
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2.1.3. Procedure

Seven older subjects were administered a 30-s CST each, in accordance with the following
procedure. A member of the research team gave instructions to the subjects to guide them through
the process. First, a member of the research team paired the wearable sensor with the tablet device
via Bluetooth, and asked the subject to put on the wearable device. The subject was then asked to sit
down on the chair to calibrate the sensor sitting-threshold. Next, the subject was asked to stand up to
calibrate the sensor standing-threshold. After the calibration stage, the subject was asked to repeatedly
stand up from, and sit down on, the chair as fast as possible for 30 s. The subject was asked to do so
with his arms folded over his chest, and starting from a sitting position. The sensor emitted a short
vibration to indicate to the subject when to start. A trained member of the research team manually
counted SiSt transitions. Once the 30 s were over, the sensor emitted another short vibration to signal
the subject to stop. Then, the sensor sent the outcomes of the automatic count algorithm to the mobile
app, which showed them on screen. A member of the research team took note of the values for the
manual and automatic counts.

2.1.4. Analysis

The correlation between the manual and the automatic counts were studied. These two variables are
of the interval type, therefore we decided to compute their correlation with Pearson’s moment-product
correlation coefficient. Before applying Pearson’s r to the data, the normality of the two data sets
(manual vs. automatic counts) was tested. Due to the size of the sample, normality was studied with
a Shapiro–Wilk test that resulted not statistically significant in both cases. Therefore, both data sets
could be considered to be normally distributed, and we proceeded with Pearson’s r. The Shapiro–Wilk
test was calculated using the shapiro.test function, and Pearson’s r was calculated using the cor.test
function; in both cases R statistical software, version 3.6.3, was used. The 95% CI for the Pearson’s r
estimate was computed by applying Fisher’s transformation.

To further characterize the impact of noise on the sensor performance we studied the statistical
significance of our estimation for the probability of finding harmless noise levels in a valid SiSt
transition. This situation was modeled as a binomial experiment, where each SiSt transition in the data
set corresponds to a binomial event, a correct SiSt identification means harmless noise and, therefore,
success, and an incorrect SiSt identification means harmful noise and, therefore, failure. The probability
of harmless noise was estimated as the number of correct identifications in the data set divided by the
total number of SiSt transitions in the data set. The 95% CI for the probability of success was calculated
by applying a binomial test with the binom.test function in the R statistical software, version 3.6.3.

2.2. Unsupervised Validation of the Home Care System

2.2.1. Participants

Seven older subjects (3 female and 4 male), between 64 and 74 years old, participated in the
unsupervised validation of the home care system. All subjects gave their informed consent for inclusion
before they participated in the study. The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ethics Committee of the Universidad Politécnica
de Madrid on 9 May 2019 (POSITIVE: Maintaining and improving the intrinsic capacity involving
primary care and caregivers).

The following inclusion and exclusion criteria were applied:

• A subject COULD ENTER the study if ALL the following INCLUSION CRITERIA applied:

◦ The subject is willing and able to give written informed consent for participation in
the study.

◦ The subject is 64 years old or older.
◦ The subject is able to perform the 30-s CST in a safe way.
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◦ The subject has not been diagnosed with cognitive impairment.

• A subject COULD NOT ENTER the study if ANY of the following EXCLUSION CRITERIA applied:

◦ Subjects suffering from any major disability.
◦ Subjects suffering from cognitive impairment.

2.2.2. Apparatus

2.2.2.1. The Sensor

The sensor hardware was ported to a more ergonomic case which included a sticker with clear
instructions about the proper orientation of the ends of the device, with the help of two tags, namely,
“Rodilla”, which is the Spanish word for knee, and “Cabeza”, which is the Spanish word for head
(see Figure 6).

Figure 6. Second version of the sensor casing. The sticker on the sensor reports the correct orientation
of the sensor with the help of two tags: “Rodilla”, which is the Spanish word for knee, and “Cabeza”,
which is the Spanish word for head.

2.2.2.2. The Home Care Application

The home care application was developed in Java for Android and was a user friendly evolution
of the application in Section 2.1.2.3. The application included a user-friendly interface specifically
designed for older adults. Once the default and the threshold values of the participants sitting and
standing angles were calibrated for the first time, the application recorded the outcomes so it was not
necessary to re-calibrate every time the participant took a test. The app provided explanatory pictures,
audio, and video to help the participant in preparing for taking a test, and audio instructions were also
available to guide him through the whole procedure.

2.2.2.3. The Acceptability and General Impressions Questionnaires

In order to assess the system acceptability, a semi-structured interview comprising the questions
in the second column in Table 2 was conducted. Furthermore, the participants’ general impressions
were also collected by conducting another semi-structured interview, comprising the questions in the
third column in Table 2. The first three questions in each questionnaire are related to the participant’s
opinions on the sensor. The remaining ones are related to the participant’s opinions on the application
in the tablet.
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Table 2. List of questions in the acceptability and general impressions questionnaires. The first three
questions in each questionnaire ask about the participant’s experience while using the sensor. Whereas,
the remaining ones ask about the participant’s experience while using the home care application on
the tablet.

Type of Question Acceptability Questionnaire General Impressions Questionnaire

Related to the
sensor

1. What difficulties did you find while using the sensor? 1. Was the device easy to put on?
2. What is your opinion on the sensor? 2. Do you find the device comfortable?

3. How did you feel while using the sensor? 3. Do you think you would be able to use the device
at home on your own?

Related to the
application

4. What difficulties did you find while using the tablet? 4. Which activities did you find the most difficult to
achieve while using the tablet?

5. What is your opinion on the tablet? 5. Which features did you find the hardest to
understand in the tablet?

6. How did you feel while using the tablet? 6. What are your general impressions on the tablet?
7. Do you think you would be able to use the app at
home on your own?

2.2.3. Procedure

A trained technician went to the participants’ homes to set up the system and explain to them
how to use it (only one user per home was configured). The technician delivered a tablet device with
the home care application pre-installed. Once in the participant’s dwelling, the technician paired the
sensor and the tablet via Bluetooth and proceeded to calibrate the participant’s default sitting and
standing angles as described in Section 2.1.2.3. The application recorded the values so the participant
did not have to repeat this step every time he took a 30-s CST. The participants could contact the
technician to get help to fix any technical issues that could arise over the course of the study.

The participants used the system for a month. The participant initiates a test by entering into
the “My medical tests” in the app. The participants had to follow the instructions of the home care
application to complete a 30-s CST, without any supervision or further assistance, and according to
the following procedure. The participant put the tablet on a nearby surface. The participant then had
to put the device on over his knee, secure it with the strap, and click next on the tablet. Then the
participant had to switch on the device and click next on the tablet. After that, the participant had
to fold his arms over his chest and wait for the start signal. Then he had to stand up and sit down
repeatedly until the stop signal. After that, the participant could switch the device off and take it off.
Once the 30-days period of study was over, a member of the research team went to the participants’
homes to pick up the equipment and to conduct an interview to evaluate acceptability and general
impressions by administering the corresponding questionnaires.

2.2.4. Analysis

The results of the acceptability and general impressions questionnaires were qualitatively assessed.

3. Results

3.1. Supervised Validation of the Sensor

Table 3 summarizes the outcomes from the data collection process. Most of the people in older
populations are female, and this pattern was also reflected in the composition of the sample of
volunteers recruited for the present study (5 female and 2 male).
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Table 3. Data collected during the experimental procedure. Each row in the table holds the data for one
of the seven older adults in the experiment (age: m = 83.29 years old, sd = 4.19; gender: 5 female and
2 male). Each participant took a single 30-s CST. The outcomes from the sensor automatic count match
the outcomes from the trained professional’s manual count for all the seven participants. All the 67 SiSt
transitions that took place were correctly identified, and the mean absolute error was equal to zero.

Participant
ID

Gender Age
Default

Sitting-Angle
Default

Standing-Angle
30 s CST Result
(Manual Count)

30 s CST Result
(Automatic Count)

1 male 88 25◦ 55◦ 5 5
2 female 87 25◦ 70◦ 6 6
3 male 81 27◦ 87◦ 13 13
4 female 79 25.5◦ 84◦ 8 8
5 female 79 18.7◦ 85◦ 8 8
6 female 81 44◦ 81◦ 9 9
7 female 88 19◦ 82◦ 18 18

The mean absolute error for the automatic count of SiSt transitions was computed, as usual,
according to the following expression:

error =
1
7
·
∑7

i=1
|manualCounti − autoCounti|. (4)

The mean absolute error was equal to zero because the sensor output was error-free in all the seven
30-s CSTs, i.e., all the 67 SiSt transitions were correctly identified. This means the high frequency noise
in the estimated angle signal was not larger than the gap between the sitting and the standing thresholds
for any of the SiSt transitions in the data set. Therefore, the hysteresis thresholding mechanism had not
been affected by said noise and no spurious transitions between states had taken place.

Additionally, the correlation between the manual and the automatic counts was studied to test
the statistical significance of the perfect match in our observations. Being two variables of the interval
type, we chose Pearson’s r to study their correlation. Before computing Pearson’s r, the normality of
the two variables (manual count vs. automatic count) was studied with a Shapiro–Wilk test, as shown
in Table 4.

Table 4. Results of the normality test for the manual count data set (left) and the automatic count data
set (right). None of the tests were statistically significant. Thus, we did not find statistical significance
to state that any of the data sets were not normally distributed. Therefore, we considered that they
complied with the bivariate normality assumption, and proceeded to study their correlation with
Pearson’s r.

Manual Count Automatic Count

W = 0.88227, p-value = 0.2367 W = 0.88227,
p-value = 0.2367

The data set complies with the bivariate normality assumption because the Shapiro–Wilk test
resulted not statistically significant for both variables. Therefore, we proceeded to study their correlation
with Pearson’s moment–product correlation (r = 1, p = 0.00). This correlation estimate showed full
correlation between the sensor automatic count and the manual count. The 95% CI was computed
as a means to measure the accuracy of our estimation. The cor.test function in R computes the CI
by applying Fisher’s transformation, and returned a 95% CI = (1, 1). This result suggests that our
observation was indistinguishable from a perfect correlation. However, the Fisher transformation
defines the lower and upper limits of the 95% CI as:

tanh
(
artanh(ρ) ± 1.96/

√
(n− 3)

)
, (5)
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where r is the Pearson correlation coefficient and n is the sample size, which in this case equals the
number of participants recruited for the study. The hyperbolic arc tangent function is defined only
within the open interval (−1, 1), but not for the case when r equals one. Since the hyperbolic arc tangent
function tends to infinity as r tends to one, the contribution of the sample size to the value of the upper
and lower values in Fisher’s expression becomes irrelevant. Therefore, we think we are not getting
much information about the impact of our sample size on the accuracy of our estimation.

In order to tackle this issue and study the accuracy of our sensor, we studied the probability of
finding a SiSt transition with harmless levels of noise; because the higher the number of transitions with
harmless levels of noise, the more accurate the sensor outcomes will be. The situation was modeled
as a binomial experiment (as described in Section 2.1.4), which resulted in an estimated probability
of success p = 1 with a 95% CI = (0.96, 1). Therefore, the older adults in our sample are expected to
produce SiSt transitions with harmless levels of noise at least 96% of the time. Therefore, our sensor
would need to observe 25 SiSt transitions in order to make a mistake due to a high level of noise.
Since the mean number of SiSt transitions per 30-s CST in our sample is 9.57, the sensor would make a
mistake once every 2.61 tests; thus, in order to observe one wrong score, you need to conduct three
tests. In other words, according to our estimated 95% CI, in the worst case scenario, our sensor would
provide an error free score for at least 67% of the tests conducted, while the remaining 33% would miss
the correct score by one SiSt transition. These results show our sensor to be very accurate, however,
it could be argued that a sample of seven older adults is too small to be representative of the many
interpersonal differences in the general older population and, therefore, the results might have been
poorer if the device had been tested on a wider variety of cases.

A larger sample might have shown cases with higher levels of noise; so we analyzed under which
conditions angle signals would be noisier, and tested our algorithm behavior in those conditions.
The noise in the angle signal is the result of the acceleration and deceleration forces applied to the
sensor, especially upon reaching the upright and sitting positions. The faster, and the more sudden,
the stand up and sit down moves are, the stronger these forces will be. On the one hand, subjects would
have moved faster if they have completed a higher number of SiSt transitions within the 30 s in the test.
On the other hand, given a fixed number of transitions, subjects need a larger momentum for those
transitions with a wider range. Therefore, the angle signal is expected to be noisier for 30-s CSTs with a
higher number of SiSt transitions and a wider range for the thigh angle. Rikli and Jones identified the
normative standard values to use the 30-s CST outcomes to compare an older adult’s performance with
the average population [41]. According to these standards, a subject’s performance might be considered
to be (i) within, (ii) below, or (iii) over the reference range of the average population [41]. However,
the reference ranges have different values depending on gender and age [41]. Thus, two people of the
same gender with the same test score but belonging to different age groups need not be considered to
have the same level of physical decline; and the same applies to two people of different gender but
belonging to the same age group. According to these standards 90% of the men in the younger age
group (between 60 and 64 years old) score below 22 [41]. The analogous scores for the remaining age
groups in the case of men are lower than 22; as they are in the case of women of all age groups. On the
other hand, Rikli and Jones also identified the critical values that predict physical independence until
late in life [42]. An older adult scoring above the critical value is considered to be fit enough to remain
independent until late in life; conversely an older adult scoring below the critical value is considered to
be at risk of becoming dependent and requires taking action. These critical values depend on gender
and age as well [42]. The critical value for men in the younger group (between 60 and 64 years old) is
17 [42]. The critical values for the remaining age groups in the case of men are lower than 17; as they
are in the case of women for all age groups. Thus, we took 22 SiSt transitions as a reference value for
an extreme and highly demanding scenario, and 17 SiSt transitions for a critical and likely scenario.
Then, we conducted an exploratory study to inquire about the performance of our approach under
those two scenarios.
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A member of the research team took ten 30-s CSTs scoring 22 or above (highly demanding
scenario) and another ten 30-s CSTs scoring around 17 (critical scenario). The data for this exploratory
study were collected with a smartphone (Nokia 6 TA-1021 with Android 9) on the subject’s thigh
and were processed with GNU Octave 5.2.0; this was because the researchers were locked down at
their homes, due to the COVID-19 pandemic, and did not have access to the prototypes of the sensor
devices. The experiment in the highly demanding scenario resulted in a total of 230 SiSt transitions.
Of which, 15 showed harmful noise. All 15 behaved like the transitions depicted around Time = 20 and
Time = 25 s in Figure 7. Both transitions show a strong and narrow inverse peak of noise (green line in
Figure 7) that tricks the algorithm into detecting a spurious StSi transition, and another spurious SiSt
transition (red line in Figure 7). Thus, an extra SiSt transition was detected for each valid transition
affected by this kind of noise; in the case of Figure 7, the final score was overestimated by two points,
i.e., 25 SiSt transitions were reported instead of 23. All the signals collected, and the code to process
and visualize them, are available as Supplementary Materials.

Figure 7. Graphical representation of the outcomes of a 30-s CST in the presence of some transitions
with harmful levels of noise. The green line represents the estimation of the thigh angle over time,
while the red line represents the transitions detected by the hysteresis algorithm. The transitions around
Time = 20 and Time = 25 show a strong and narrow inverse peak of noise that tricks the algorithm
into detecting a spurious StSi transition, and then another spurious SiSt transition. Thus, an extra SiSt
transition was detected for each of them, and the final score was overestimated by two points; 25 SiSt
transitions were reported instead of 23.

Like in the case of the older adults’ data set, we studied the probability of finding a SiSt transition
with harmless levels of noise. Again, it was modeled as a binomial experiment (as described in
Section 2.1.4) and the experiment resulted in an estimated probability of success p = 0.93, with a 95%
CI = (0.89, 0.96). According to the lower limit of this CI, it would be necessary to observe 10 SiSt
transitions in order to observe one of them with a high level of noise. The mean number of SiSt
transitions per 30-s CST in our sample is 23; thus, between two and three high level noise transitions
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would be observed per test. On the other hand, according to the upper limit of the 95% CI, i.e.,
p (harmless noise) = 0.96, only one in two tests would miss the correct score, and would do so by a
single point.

Finally, the experiment in the critical scenario resulted in a total of 173 SiSt transitions.
The algorithm successfully identified all of them. In this case, the estimated probability of success is
p = 1 with a 95% CI = (0.98, 1). Therefore in the worst case (lower limit of the CI), it is necessary to
observe 50 SiSt transitions in order to observe one error. Since the mean number of SiSt transitions in
our sample is 17.3, an error would be observed every 2.89 tests. Thus, in order to observe one wrong
score, you need to conduct three tests. Therefore, according to the 95% CI, the noise pattern around the
critical value would result in a single wrong transition in only one in three tests. Under such a noise
pattern our sensor would remain very accurate around the target critical value.

3.2. Unsupervised Validation of the Home Care System

3.2.1. The Acceptability Questionnaire

3.2.1.1. Question #1: What Difficulties Did You Find While Using the Sensor?

All but one of the participants declared they did not find any major problems while using the
device. One participant declared having experienced some pain in his knee due to osteoarthritis.
The same participant also declared being worried about the possibility of the device falling out during
the course of the 30-s CST.

3.2.1.2. Question #2: What is Your Opinion on the Sensor?

All the participants provided favorable answers to this question. They highlighted that the sensor
is comfortable and easy to use. They also remarked that the labels on the sensor sticker were easy to
follow and helped them to know how to correctly put the device on the leg.

3.2.1.3. Question #3: How Did You Feel While Using the Sensor?

The participants declared that they felt comfortable using the device, and that they felt motivated
to improve their performance over time. In line with the answers to Question #1, one participant
declared to be worried about the possibility of the device falling out during the course of the tests.

3.2.1.4. Question #4: What Difficulties Did You Find While Using the Tablet?

Some participants struggled to understand the video instructions, and some participants faced a
few technical issues, however, they declared not to have experienced any major problems once those
issues were fixed.

3.2.1.5. Question #5: What is Your Opinion on the Tablet?

Most users reported satisfactory experiences and good opinions on the tablet.

3.2.1.6. Question #6: How Did You Feel While Using the Tablet?

Some participants experienced some technical issues that made them feel uncomfortable. However,
their experience and feelings became more satisfactory once these issues were solved.

3.2.2. The General Impressions Questionnaire

3.2.2.1. Question #1: Was the Device Easy to Put on?

Six participants reported they found the device easy to put on. None of the participants reported
that they did not find it easy, however, one of them reported the strap did not fit very well around
his leg.
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3.2.2.2. Question #2: Do You Find the Device Comfortable?

Six participants reported they found the device comfortable. In line with the answers to Question
#1, one of them reported some issues regarding the length of the strap.

3.2.2.3. Question #3: Do You Think You Would Be Able to Use the Device at Home on Your Own?

All the participants felt able to use the device at home on their own.

3.2.2.4. Question #4: What Activities Did You Find the Most Difficult to Achieve While Using
the Tablet?

Some participants detected some discrepancies between the explanatory videos and the textual
description of the exercise, which made them have some doubts. The rest of the application features
were reported to be easy to understand.

3.2.2.5. Question #5: Which Features Did You Find the Hardest to Understand in the Tablet?

In line with the answers to Question #4, all of the application functionality was reported to be
easy to understand.

3.2.2.6. Question #6: What are Your General Impressions on the Tablet?

All the participants reported favorable opinions about the tablet. They highlighted the motivating
potential of such an app and the subsequent health benefits.

3.2.2.7. Question #7: Do You Think You Would Be Able to Use the App at Home on Your Own?

All the participants felt able to use the app at home on their own. However, one of them
highlighted that he would be able to do so as long as the application did not become more complex,
and another one highlighted that technical support would be required.

4. Discussion

Our sensor took advantage of the quasiperiodic variation of the thigh angle over time (i.e., the angle
between the longitudinal axis of the subject’s thigh and a horizontal plane perpendicular to gravity,
e.g., the seat of the chair). The thigh angle was computed from acceleration readings from an
accelerometer on the subject’s thigh. Previous works found in the literature have taken advantage
of the quasiperiodic variation of some other variables such as the trunk pitch-angle [23], vertical
velocity [23,24], and vertical position [24] to study repetitive STS cycles in STS5 and 30-s CST tests.
They estimated the values of these variables from the readings of an IMU on the L3 region of the
subject’s lumbar spine. We think the thigh angle is a more convenient approach for two reasons.
On the one hand, we think that older people might find it easier to correctly place the sensor on their
thighs than on their lower backs, especially if they do not have any help to put them on. However,
none of the papers studied their algorithm’s sensitivity to misplacing of the sensor. The procedure
for the estimation of the thigh angle described in the present paper (i.e., estimating the angle from
the Y-acceleration and Z-acceleration components) requires the sensor X-axis to be aligned with the
knee rotation axis. However, this constraint is easy to overcome by extending the angle estimation
expression to its three-dimensional form. On the other hand, computing trunk pitch-angle, vertical
velocity, and vertical position require integration and even double integration of the IMU readings.
Due to the noisy nature of the latter, the result is distorted by drift and requires a lot of effort to
estimate the original signal with computationally complex algorithms. Millor et al., for instance,
applied double integration, combined with fourth-level polynomial curve adjustment and cubic splines
interpolation [24]. Conversely, it is not necessary to integrate the acceleration readings to make an
estimation of the thigh angle. Such an estimation can be computed from the values of the different
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components of gravity in the accelerometer reference system; and these values can be estimated by
filtering raw acceleration readings.

We did not include any Kalman or complementary filters in our design to avoid the extra hardware
and computational load. Instead, we estimated the thigh angle directly from raw acceleration readings;
which resulted in noisy but drift-free angle estimations. In spite of the noisy nature of the angle
estimations, the device showed an excellent performance. All the SiSt transitions were correctly
identified in real time, and the device provided error-free outcomes for all the seven 30-s CST conducted
with older adults. The narrow CI returned by the cor.test function in R suggests this observation is
indeed statistically indistinguishable from a perfect correlation. However, the limitations described for
the Fisher transformation in Section 3, to accommodate such an extreme value for Pearson’s r, make us
think we are not getting much information about the impact of our sample size on the accuracy of our
estimated correlation.

Looking at the results of our study from a different perspective, we studied the accuracy of our
device based on the probability of observing noise levels high enough to exceed the gap between their
personalized upper and lower thresholds in the hysteresis stage. Since all the transitions were correctly
identified in real time, we concluded that the participants in the study did not generate any transitions
with such high levels of noise. According to the narrow 95% CI in our estimation, low levels of noise
are expected to happen at least 96% of the time. Which would result in very accurate sensor outcomes.
This result can be generalized to the SiSt transitions generated by any population represented by our
sample. However, our sample is limited because it could be argued that seven older adults are too
few to be representative of the many interpersonal differences in the general older population and,
therefore, signals with a higher level of noise might have been observed if the device had been tested
on a wider variety of cases. Nevertheless, we did not find any SiSt transitions with harmful levels of
noise in our exploratory study for the critical scenario (around 17 transitions with high momentum).
According to the narrow 95% CI obtained for that critical scenario (0.98, 1), even if any high noise
transitions were to be observed, a single wrong transition would be observed in only one in three tests.
Since the 30-s CST is expected to be scheduled to be taken once or twice a week in a home care scenario,
we did not observe any risks of missing anyone not fit enough due to sustained overestimated scores
over time. We observed that a frequent overestimation of the scores is likely to happen in the highly
demanding scenario (over 22 transitions with high speed and high momentum). However, we think
that this result does not have a strong impact on the utility of our approach for two reasons. First,
less than 10% of the older population are able to reach such high scores, and second, even in case
of overestimation, people scoring over 22 are far away from the critical threshold, and therefore are
undoubtedly fit enough not to require any immediate intervention. Anyway, further experiments may
be useful to characterize the noise profile between the scores of 17 and 22.

We integrated the sensor into a home care app that guides the user throughout the process of
taking a 30-s CST, and conducted an acceptability study with older adults in free-living conditions
(i.e., using a home care app at home for several weeks to interact with the device without any assistance).
All the participants kept using the system throughout the course of the study and none of them
dropped out. This observation is in line with their favorable opinions about both the sensor and the
application; and, in particular, corroborates the participants’ positive answers to whether they feel
able to use the system at home on their own. Despite the excellent results of this acceptability study,
further studies will be necessary to test, on the one hand, the long-term acceptability and adoption by
older adults and their caregivers, and, on the other hand, to test the feasibility of this novel home care
model for frailty in accommodating end-users’ needs and expectations, not just on the older adults’
side, but also on the health care professionals’ side.

5. Conclusions

We developed a system for older people to self-administer the 30-s chair stand test (CST) at home
without supervision. The system comprises a low-cost sensor that automatically detects and counts
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sit-to-stand (SiSt) transitions in real time, and a home care application that guides older people through
the whole procedure. We studied whether such a system was able to match older people’s abilities and
expectations so they can use it at home on their own without any supervision. The sensor automatic
counts were perfectly correlated to the researcher’s manual count, so we concluded that the signals
generated by the participants did not push the device to its operational limits. This observation is
supported by a very narrow 95% CI for the probability of finding a SiSt transition with a low level
of noise. The small size of our sample limits our ability to generalize this result to the general older
population because more demanding signals might have been observed if the device had been tested
on a larger sample. However, we did not find harmful levels of noise in any of the signals in our
exploratory study around the critical score. Thus, we did not observe any risks of missing anyone not fit
enough due to sustained overestimated scores over time. None of the participants in the unsupervised
study of the complete system dropped out, and at the end of the study none of them reported any major
problems in understanding the system and interacting with it. They declared they felt comfortable
using it, and felt able to use it on their own. Thus, the system is suitable to be used by older adults in
their homes without professional supervision.

Supplementary Materials: The data collected for the exploratory study on the demanding and the critical
scenarios, together with the code used to process and plot the corresponding signals, are available online at
http://www.mdpi.com/xxx/s1.
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Abstract: Multiple sclerosis (MS) is characterized by gait impairments and severely impacts the quality
of life. Technological advances in biomechanics offer objective assessments of gait disabilities in
clinical settings. Here we employed wearable sensors to measure electromyography (EMG) and body
acceleration during walking and to quantify the altered gait pattern between people with progressive
MS (PwPMS) and healthy controls (HCs). Forty consecutive patients attending our department as
in-patients were examined together with fifteen healthy controls. All subjects performed the timed
10 min walking test (T10MW) using a wearable accelerator and 8 electrodes attached to bilateral thighs
and legs so that body acceleration and EMG activity were recorded. The T10MWs were recorded under
three conditions: standard (wearing shoes), reduced grip (wearing socks) and increased cognitive
load (backward-counting dual-task). PwPMS showed worse kinematics of gait and increased muscle
coactivation than controls at both the thigh and leg levels. Both reduced grip and increased cognitive
load caused a reduction in the cadence and velocity of the T10MW, which were correlated with
one another. A higher coactivation index at the thigh level of the more affected side was positively
correlated with the time of the T10MW (r = 0.5, p < 0.01), Expanded Disability Status Scale (EDSS)
(r = 0.4, p < 0.05), and negatively correlated with the cadence (r = −0.6, p < 0.001). Our results suggest
that excessive coactivation at the thigh level is the major determinant of the gait performance as the
disease progresses. Moreover, demanding walking conditions do not influence gait in controls but
deteriorate walking performances in PwPMS, thus those conditions should be prevented during
hospital examinations as well as in homecare environments.

Keywords: multiple sclerosis; gait analysis; kinematics; surface EMG; accelerator; inertial sensor;
T10MW

1. Introduction

Multiple sclerosis (MS) is a complex autoimmune disease characterized by multifocal and recurrent
formation of demyelinating plaques possibly involving every area of the central nervous system
(CNS) [1]. The disease usually affects multiple domains, but the motor pathway is constantly involved
and usually it follows a disto-proximal gradient of severity with lower limbs being more precariously
and severely impaired than the upper limbs [2]. Gait is one of the most disabling neurological
symptoms in people with MS [3]. In the most advanced phases of the disease, gait dysfunction is
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typically due to pyramidal deficits, and sensory and cerebellar disturbances also coexist with variable
extents [4].

Technological advances in biomechanics offer possibilities to objectively estimate gait disabilities
such as joint kinematics, kinetics, and patterns of muscle activations during walking [5]. Non-invasive
wireless wearable devices for the recording of surface electromyography and kinematics are
commercially available [6]. These devices can be placed on different parts of the body based on
clinical needs and they are capable of measuring gait quality in an everyday environment. For example,
belt-mounted devices are used routinely in the clinical setting as they provide information on gait
parameters such as cadence and velocity. The results of these simple techniques are highly consistent
with more sophisticated laboratory equipment used in the research setting [7]. However, for people
with MS the ideal conditions under which gait should be tested need to be better explored. Although for
one of the most widely used walking tests, the 25 foot walk test, it is recommended to use comfortable
shoes, in the clinical setting it can be useful to observe gait patterns without shoes in order to better
appreciate subtle abnormalities in ankle or toe movements, and in order to reduce variability at
longitudinal assessments due to changes of shoes. Even in research settings, gait parameters are
collected during barefoot walking [8]. Sometimes, the barefoot condition is not fully reached and the
patient is allowed to wear socks for better comfort. However, walking while wearing socks may be
dangerous. Walking in socks without shoes or in slippers without a sole has been associated with
falls in women [9]. Being barefoot or wearing socks without shoes may also increase the risk of falls
from slipping or trauma from unexpected contact [10]. Older people going barefoot, wearing socks
without shoes, or wearing slippers have an increased risk of serious injury at home due to a fall [11].
Falls are a common cause of harm in people with MS; it has been described that 50% of patients report
falls in a 3-month period [12]. Walking under more demanding conditions, such as during cognitive
loads, greatly influences motor performance [13]. Worsening of gait during a dual-task situation is
also associated with an increased risk of falls in people with MS [8]. The aim of the current study was
to explore whether walking with socks may be associated with a worsening in gait performance in
people with progressive MS (PwPMS), similarly to what was already described for cognitive load.

2. Materials and Methods

2.1. Subjects

We examined gait performance in 40 consecutive patients attending the Department of
Neurorehabilitation of San Raffaele Hospital (Milan, Italy), with a confirmed diagnosis of MS based on
the 2017 McDonald criteria [14], age 18–65 years old, Expanded Disability Status Scale (EDSS) up to
6.5 (able to walk for at least 10 min safely with or without aids), absence of orthopedic pathologies
that might influence walking performances, without depression nor cognitive involvements as per
routine neurological and cognitive examinations at entry (token test, symbol digit modalities test,
Beck Depression Inventory-II). All patients’ data were collected as part of their clinical care according
to the Guideline of Good Clinical Practice [15]; all patients provided written informed consent to
the use of their data for research. Fifteen healthy subjects were enrolled as the control group with
similar age and sex distribution; they first provided written informed consent to participate in the
study, that was approved by our Institutional Ethics Committee (approval number: N13/2017) and all
data were anonymized prior to analysis.

2.2. Gait Analysis

Gait analysis was assessed using a G-Walk (BTS bioengineering, Italy), an inertial sensor which
measures tri-axial accelerations, while performing a timed 10 min walking test (T10MW). The subject
was asked to walk straight for 10 min with the sensor attached to the waist with a belt, covering the
lower lumbar area (L4–L5). Body accelerations along the anterior-posterior, medio-lateral, and vertical
axes during the T10MW were recorded with a sampling frequency of 100 Hz. According to standard
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T10MW procedure, patients were asked to complete the test at the maximum speed they could safely
walk. A counting dual-task (DT) condition was also tested by adding a mental tracking cognitive task
in which the subject was asked to count backward by 3 from 100 while performing the T10MW. As the
dual task is routinely performed to test interference on gait by cognitive load, it was performed only in
the more frequently used condition, while wearing shoes. Therefore, the T10MW was assessed in three
different conditions: (1) walking with shoes on (2) walking with only socks on and (3) walking with
shoes on while performing DT.

The acceleration data were analyzed with G-Studio (G-Studio software, BTS bioengineering,
Milan, Italy) for the three conditions. Time, cadence, velocity, and step length were calculated for
further analyses.

2.3. sEMG Recording

Surface EMG was used to record muscular activity simultaneously with the acceleration
measurement. Eight wireless electrodes (FREEEMG-1000, BTS bioengineering, Milan, Italy) were
attached directly to the skin overlying the Rectus Femoris (RF), long head of Biceps Femoris (BF),
Tibialis Anterior (TA) and Medial Gastrocnemius (GM) bilaterally. EMG data were sampled at a rate of
1000 Hz and signals were remotely transferred to a USB receiver.

The sEMG data were processed with self-developed Matlab scripts (Matlab 2016b, MathWorks,
Natickm, MA). The raw sEMG data were first band-pass filtered between 10 to 500 Hz, full-wave
rectified, then smoothed with a low pass filter (3.5 Hz cut-off frequency). The averaged amplitude
of the resting EMG (before the subject started walking) was subtracted from the smoothed EMG for
each muscle. This subtracted data were then normalized to the largest recorded value of each muscle
(max. EMG). Coactivation between each agonistic-antagonistic muscle pairs (RF-BF and TA-GM) were
quantified as the coactivation index (CoI). The CoI was calculated as the overlap areas of the normalized
EMG data divided by the duration of the overlapping, a higher CoI indicates more coactivation
between the muscle pairs [16]. However, the length of the EMG data differs between subjects since
it depends on the walking speed. In order to obtain a more stable CoI and enable the comparisons
between subjects, CoI was calculated from five consecutive steps of the T10MW.

2.4. Clinical Assessment

The EDSS score was evaluated by the treating neurologist at hospital admissions. All patients
also underwent a clinical evaluation of spasticity according to the Modified Ashworth Scale (MAS)
on bilateral RF, BF, TA and GM. On the same muscular groups, strength was measured with Medical
Research Council Scale (MRC) [17,18]. These scores were used to define the less affected (LA) and more
affected (MA) side in each patient. Static balance performance was assessed with the Berg Balance
Scale (BBS) [19].

Patient reported outcomes were also added to the clinical evaluation. The walking status of
PwPMS was measured with a 12-Item MS Walking Scale (MSWS-12) [20]; fatigue was assessed with the
Fatigue Severity Scale (FSS) [21]; the MS Spasticity Scale-88 (MSSS-88) and the Numeric Rating Scale of
Spasticity (NRS) were used for estimating the impact of spasticity [22] on physical performances [23].
The risk of falls was evaluated with Conley scale [24]. The disability is evaluated using the Functional
Independence Measure (FIM) [25] and the Barthel Index [26].

2.5. Statistics

For data demographics, the data are expressed in mean and standard deviations (SD). Independent
t-test and chi-square tests were used to compare age, gender, and body mass index (BMI) distributions
between PwPMS and healthy controls (HCs) respectively.

The spatiotemporal parameters and CoI from both PwPMS and HCs for all three conditions
(shoes, socks, DT) were used for further statistics. Mixed two-way ANOVA (group x conditions)
were employed to test significant differences between PwPMS and HCs under the three conditions.
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The analyses of CoI were performed in less and more affected side (LA/MA), respectively. If the
ANOVA model was significant, turkey post-hoc analysis with Bonferroni correction (p < 0.01) was
used to search the difference between (1) shoes and socks condition and (2) shoes and the DT condition,
while the difference between PwPMS and HCs were tested with the independent t-test.

Correlations were performed among the kinematic parameters, sEMG recording, and clinical
assessments. The alpha-level was corrected with Bonferroni correction and set at 0.017 for two tails
as the correlations were performed in three major categories. Spearman’s correlation was used to
explore the relationship between the quantitative data (spatiotemporal parameters and CoI) and the
clinical assessment (EDSS, MSWS-12, FSS, MSSS-88, Conley, Barthel, FIM, BBS, and NRS). Pearson’s
correlation was used to examine the relationship between spatiotemporal parameters and CoI. All the
statistical analyses were performed with Prism 5 (GraphPad Software, Inc., San Diego, CA).

3. Results

3.1. Subjects Demographics

Forty people with progressive MS (20 males; mean age: 51.0 ± 9.8 years; mean BMI = 24.0 ± 4.6)
with a mean EDSS score of 5.5 ± 1 (ranging from 1.5 to 6.5) were examined and fifteen HCs (4 males;
mean age: 52.7 ± 4.4 years; mean BMI = 24.0 ± 2.2) were enrolled. The characteristics and results of
clinical assessments of the two groups are shown in Table 1. No significant difference was found in age
(p = 0.4971), sex (p = 0.3381), nor BMI (p = 0.9448) distributions between the groups.

Table 1. Data demographics of the subjects and clinical assessments. No significant difference was
found in gender (p = 0.3381), age (p = 0.4971) nor in body mass index (BMI, p = 0.9448) between groups.
Data are shown in mean ± standard deviation format. PwPMS: patients with progressive multiple
sclerosis; HCs: healthy controls. MAS: Modified Ashworth Scale; MRC Scale: Medical Research Council
Scale; MSWS-12: 12-Item MS Walking Scale; FSS: Fatigue Severity Scale; MSSS-88: MS Spasticity
Scale-88; FIM: Functional Independence Measure; BBS: Berg Balance Scale; NRS: Numeric Rating Scale
of Spasticity.

Characteristics PwPMS (n = 40) HC (n = 15)

Gender (M/F) 20 / 20 4 / 9
Age (years) 50.9 ± 9.8 52.7 ± 4.4

BMI 24.0 ± 4.6 24.0 ± 2.2
EDSS 5.5 ± 1.1 -

More Affected Side (R/L) 23 / 17 -
MAS (more affected side) 2.4 ± 2.0 -

MRC scale (more affected side) 13.1 ± 3.2 -
MSWS-12 38.6 ± 9.7 -

FSS 39.5 ± 15.0 -
MSSS-88 188.6 ± 52.7 -

Conley scale 2.9 ± 1.8 -
Barthel scale 88.4 ± 10.3 -

FIM 112.5 ± 9.0 -
BBS 40.5 ± 7.7 -
NRS 3.9 ± 2.6 -

3.2. Comparisons of Spatiotemporal Parameters

Significant differences in both groups (PwPMS and HCs) and conditions (shoes, socks, and DT)
were found in time (group: p < 0.0001; condition: p = 0.0032), cadence (group: p < 0.0001; condition:
p = 0.0032), velocity (both p < 0.0001) and step length (both p < 0.0001). Interactions between group
and conditions were only significant in time (p = 0.0277) and step length (p = 0.0105). Post-hoc analyses
revealed that compared with the HCs, the PwPMS showed longer time, lower cadence, slower velocity,
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and shorter step length while performing T10MW in all three conditions (p < 0.01 for all post-hoc
comparisons).

For intra-group comparisons, when wearing shoes, PwPMS showed shorter time (p < 0.0001),
higher cadence (p = 0.0005), higher velocity (p < 0.0001), and longer step length (p < 0.0001) than
walking with socks. On the other hand, HCs showed only smaller step size when wearing socks
compared to shoes (p = 0.0142).

For the comparison between single and dual tasks, longer time (p < 0.0001), lower velocity
(p = 0.0002), and shorter step length (p = 0.0003) was found in PwPMS while performing a counting
DT, while cadence was not significantly different (p = 0.09). Interestingly, significantly reduced cadence
during the DT compared to a single task was found in HCs (p = 0.014).

The results of spatiotemporal parameters are shown in Figure 1.

Figure 1. Inter- and intra group comparisons of spatiotemporal parameters. Significant group
differences in time (a), cadence (b), velocity (c) and step size (d) were found in all three conditions.
Intra-group comparison between shoes and socks conditions also showed significant differences in time
(e), cadence (f), velocity (g), and step length (h) in PwPMS, while only step length in the HCs. For the
comparison of single and dual tasks, longer time (i), lower velocity (k), and shorter step length (l) was
found when PwPMS were performing a DT compared to performing a single task, while in the HCs
only significantly reduced cadence (j) was found. *: p < 0.01 in post hoc analysis ((a–d): between-group
comparison; (j–l): within-group comparisons).
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3.3. Comparisons of Coactivation Index

Two-way ANOVA showed significant group differences of coactivation in both the MA and LA
side in RF-BF (p = 0.0007 for both) and GM-TA (MA: p = 0.0144; LA: p = 0.0047) pairs, while no
significant difference were found among conditions. Post-hoc analyses revealed that compared with
HCs, PwPMS showed higher coactivation in the MA and LA sides for both antagonistic pairs among
all three conditions (p < 0.01 for all).

For intra-group comparisons, in both PwPMS and the HC, no difference of the CoI was found
when comparing between shoes and socks conditions, nor in shoes and with DT conditions. The results
are shown in Figure 2.

Figure 2. The inter-group difference of the coactivation index. Two-way ANOVA showed significant
group difference of coactivation in both the MA and LA side in RF-BF (a,b) and GM-TA (c,d), while no
significant difference was found among conditions. *: p < 0.01 in posthoc analyses.

3.4. Correlations among Measurements

For correlation between clinical assessments and spatiotemporal parameters, the EDSS score
was correlated with time (shoes: r = 0.4785, p = 0.0018; socks: r = 0.4984, p = 0.0011; DT: r = 0.4006,
p = 0.0104), cadence (shoes: r = −0.4932, p = 0.0012; socks: r = −0.4995, p = 0.0010; DT: r = −0.4270,
p = 0.0060), and velocity (shoes: r = −0.4790, p = 0.0018; socks: r = −0.4967, p = 0.0011; DT: r = −0.4225,
p = 0.0066) in all three conditions. On the other hand, with EMG results, the EDSS correlated with the
CoI in the RF-BF pair of the MA side in socks (r = 0.4237, p = 0.0169) and with DT (r = 0.4761, p = 0.0078)
conditions, also a trend correlation was found in the shoes condition (r = 0.3828, p = 0.0368). The FSS
was correlated with the CoI in the RF-BF pair in both the MA and LA side in the socks condition
(MA: r = −0.4953, p = 0.0054; LA: r = −0.5457, p = 0.0105). The FIM scores was correlated with time
in shoes (r = −0.4026, p = 0.0100) and with the DT (r = −0.3875, p = 0.0135), and with velocity in all
three conditions (shoes: r = 0.4080, p = 0.0090; socks: r = 0.4011, p = 0.0103; DT: r = 0.4235, p = 0.0065).
The BBS correlated with time (r = −0.3961, p = 0.0126) and velocity (r = 0.3957, p = 0.0127) in shoes
condition. The correlation results are summarized in Tables 2 and 3.
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Finally, when we compared the changes from the standard shoe condition to the two challenging
conditions (i.e., socks or DT), we found significant positive correlations between the reduction in
velocity (r = 0.3662, p = 0.0141) and cadence (r = 0.4158, p = 0.0076) when walking with socks versus
shoes and when performing the dual versus simple task for PwPMS. A negative correlation was found
between lower score of the BBS and the time increases from shoe condition to the socks condition
(r = −0.3901, p = 0.0141) and a trend of negative correlation with the time increases from a single to a
DT condition (r = −0.3247, p = 0.0437). The results are shown in Figure 3. No such correlations were
found in HCs.

Figure 3. The correlations among kinematics and clinical assessments when the walking conditions
changed for PwPMS. (a,b): x-axis: the difference between the shoes and the socks conditions (socks
minus shoes); y-axis: the difference between the single task and DT conditions (single minus DT,
both performed with shoes). Positive correlations were found in velocity (r = 0.3662, p = 0.0141) and
cadence (r = 0.4158, p = 0.0076) between the differences of the shoes vs. socks condition and the single
vs. DT conditions. (c,d): A significant negative correlation was found between the BBS scores and the
time increases from shoe to sock conditions (r = −0.3901, p = 0.0141), and a trend correlation was found
with time increases of single versus dual tasks (r = −0.3247, p = 0.0437).

4. Discussion

In the present study we employed wireless wearable devices to examine changes in gait control in
demanding conditions. The T10MW was tested under three conditions (shoes, socks, and the counting
DT) with the combined use of an accelerator and sEMG monitoring. As expected, PwPMS showed
worse gait performance in kinematics and higher coactivation in antagonistic muscle pairs at thigh
and leg levels than HCs. We found that only in the PwPMS, the kinematic measures changed when
walking was performed under demanding conditions, while the pattern of coactivation remained
the same. Further, the kinematic changes between the socks versus shoes conditions were positively
correlated with those found between the single versus dual task condition. This result indicates that
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for PwPMS, the impact on gait performance when walking with socks without shoes, is correlated with
that introduced by a cognitive load; similar findings were not present in the HC group. Both walking
with socks and with a cognitive load were associated with increased risk of falls in women, elder people,
or in people with MS [8–11].

A score of less than 45 in the Berg Balance Scale exposes one to a greater risk of falling [27].
We found that in the PwPMS group, lower scores of the Berg Balance Scale were related to worse gait
control when walking in socks or performing a counting DT. No difference nor correlation was found
regarding gender, age, nor BMI in different conditions. Therefore, for tests such as the T10MW or the
timed 25 foot walk test, performing with socks should be avoided for all PwPMS.

The sEMG results showed increased coactivation in both the MA and LA side of the lower limbs
during total stance in PwPMS compared with the HCs. However, due to the limitation of the devices
used, the stance cannot be further separated into sub-phases. Boudarham et al. reported higher
coactivation during the whole stance at the leg level, while at the thigh level only during the single
support phase [28]. Compared with their group, our PwPMS group has a higher disability (mean
EDSS: 5.5 vs. 3.8) and worse spasticity (MAS of MA side: 2.2 vs. 1), which could explain why we
found excessive coactivation in the whole lower limbs. Also, in Budarham’s study, no correlation
between the EDSS and the CoI was found, while in our study the CoI of RF-BF at the MA side was
correlated with the EDSS in more challenging walking conditions (i.e., with socks or the counting DT).
Furthermore, the CoI of RF-BF at both the MA and LA side were correlated with worsening of most
kinematic measurements. These results suggest that as the disease progresses, higher coactivation at
the thigh level is the major source of the increasing walking impairment.

It is important to combine the information regarding muscle activation and joint kinematics to
have a more comprehensive view of gait performance, which is fundamental for the clinicians to
design more tailored rehabilitation protocols [29]. Thanks to the advance of technology, both sEMG
and kinematics can be measured with wearable devices in the clinical setting. Additionally, wireless
communication allows the remote transfer of data to laboratories and clinics for further analysis.
This approach paves the way for remote assessment, as it is able to provide real-time information for
both the patient and the clinician [6]. The costs for wearable devices used routinely in the clinical setting
are usually lower compared with more sophisticated non-wearable equipment reserved to research
laboratory environment [6]. These potential advantages make wearable devices a good candidate to be
incorporated into home care and remote medicine, besides the hospital settings.

There are some limitations of the current study. First, the inertial sensor is not sensitive enough to
reliably distinguish sub-phases of the stance cycle. All the data were reported as the performance of
a whole gait cycle. However, for patients with a milder disability, the differences may only appear
during the sub-phases. Second, as our cohort of patients was already characterized by moderate
EDSS severity already indicating involvement of gait, we could not test whether kinematic parameters
in the present study may be more sensitive than a clinical examination. Third, as the dual task has
been performed with shoes, it is not possible to explore possible further worsening of gait measures
under the combination of the two more difficult conditions (i.e., dual task with socks). Last, as the
majority of our cohort included subjects with normal BMI, our results may not fully reflect the whole
BMI variability.

5. Conclusions

Walking tests wearing socks should be discouraged to prevent falls for PwPMS. This concern
should be embedded into guidelines for future remote medicine when these measurements can be
performed during home care instead of hospital settings. The combined use of wearable accelerators
and sEMG provide quantitative measurements of muscle activity and kinematics during walking,
which can benefit future remote medicine programs, offering the opportunity to monitor disease
progression and evaluate the efficiency of rehabilitation for PwPMS remotely.
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Abstract: Muscle functional MRI (mfMRI) is an imaging technique that assess muscles’ activity,
exploiting a shift in the T2-relaxation time between resting and active state on muscles. It is
accompanied by the use of electromyography (EMG) to have a better understanding of the muscle
electrophysiology; however, a technique merging MRI and EMG information has not been defined yet.
In this paper, we present an anatomical and quantitative evaluation of a method our group recently
introduced to quantify its validity in terms of muscle pattern estimation for four subjects during
four isometric tasks. Muscle activation pattern are estimated using a resistive network to model the
morphology in the MRI. An inverse problem is solved from sEMG data to assess muscle activation.
The results have been validated with a comparison with physiological information and with the
fitting on the electrodes space. On average, over 90% of the input sEMG information was able to be
explained with the estimated muscle patterns. There is a match with anatomical information, even
if a strong subjectivity is observed among subjects. With this paper we want to proof the method’s
validity showing its potential in diagnostic and rehabilitation fields.

Keywords: MRI; EMG; graph theory; electrical network; muscle activity; forearm

1. Introduction

In the study of neuromuscular degenerative disease and in the development of rehabilitation
therapies to treat them, monitoring the activity of muscles is crucial to better understand the nature of
the impairment and to have a feedback about the changes occurring after applied treatments. As a
consequence of pathological conditions, it is also not so uncommon to observe changes occurring in
the physical structure and in the behaviour of muscles of impaired individuals [1–3]. It is, therefore,
crucial to have a full vision that simultaneously encloses the underlying morphology and the muscle
activation pattern, in order to have a full understanding of the impairment status. This overall vision
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would allow clinicians to have a wider picture of the pathological status, potentially being able to
provide a targeted treatment.

The gold standard method to acquire morphological information is to use Magnetic Resonance
Imaging (MRI). MRI is a diagnostic imaging technique that is widely used to depict the anatomy
and the dynamics of physiological processes happening in the body. For muscle studies in particular,
a prolongation in T2 relaxation time between rest and intensive muscle activity has been reported
to be useful for a quantitative evaluation of muscle activity [1]. This technique is referred as muscle
functional MRI (mfMRI) and has been used in studies on lower back [3–6], lower limbs [7,8], upper
limbs [9,10], shoulder [11], hip abductors [12] and plantar flexion movements [13]. It allowed the
estimation of the activity of all muscles in the considered field of view with a single scan, showing
particular advantage for the study of deeper muscles that have usually prohibitive access with
other methods.

However, since a considerable time span is necessary between two T2-relaxation time
measurements, the temporal resolution of mfMRI is low and therefore it is not possible to have
reliable information about the activation dynamics of contracting muscles. Additionally, mfMRI has
shown limitation in the evaluation of task at low level force [1], because of a lower activity threshold
compared to other technique used to study muscle activity such as electromyography (EMG). EMG is
a medical signal acquisition technique that read the potential variation caused by contracting muscles
and it can be invasive (needle EMG) or non invasive (surface EMG). Usually surface EMG (sEMG)
is collected with single or bipolar electrodes placed above the target muscles; however, the recent
introduction of High Density sEMG (HD-sEMG) [14] allowed the collection of a significantly higher
volume of data with the use of electrodes matrices placed above an area covering multiple muscles.
Due to the higher number of electrodes however, the information is highly redundant and noisy and
therefore a burdening post processing is usually needed.

Estimation of muscle activation using only sEMG was proposed and several works were presented
with the use of HD-sEMG [15–17]. However, an important limitation of these studies relies on the fact
that deep muscle activation cannot be estimated. Furthermore, these methods estimate the motor units’
activity ignoring morphological information about the person’s anatomy.

To cope with the limitations of mfMRI and sEMG, studies tried to merge the two techniques [5,9].
However, the outcomes were not always in agreement, and a direct relationship between increase in T2
value and in muscle activity was not always observable [1]. The reason for this discrepancy is alleged
to reside in the nature of the information that is collected by the MRI and the sEMG, respectively.
The information reflects the metabolic activity within the muscle for the MRI and records the neural
electrical activity for the EMG. Thus, the need for a better merging of the two techniques to obtain
significant information has emerged while overcoming the underlying conflict. Alternative hybrid
MRI-EMG approaches in the literature are lacking and only a few works could be found [18,19].
However, these solutions required the use of discretized models and of heavy optimization which
make them not suitable for clinical application due to the processing and computational time required.

To find a better symbiosis of the information provided by MRI and EMG, our group recently
proposed an alternative methodology that provides an estimation of the forearm muscle activity.
The method exploits the morphological information contained in the MRI scan to build an electrical
lumped model of the conductive volume. Such model is then used to solve an inverse problem starting
from the sEMG collected from a dense array of electrodes around the forearm [20,21]. The method,
unlike previously proposed methods, provide an estimation of all muscles’ activation with a value for
each muscle that lump its activity. With this paper, we evaluate the method on a group of participants
performing different tasks involving different muscles, in order to observe how the method perform.
An electromyographic dataset of four healthy subjects performing wrist and finger isometric tasks, has
been studied. Since a direct validation of the estimated activities via needle EMG is impossible due
to the difficulties and discomfort that it would entail for the subject, the performance was evaluated
using specialized literature and quantifying the fitting of the sEMG with the projection of the estimated
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currents on the electrodes space. The study was conducted on the average muscles behaviour, therefore
any time dynamics has been ignored and the root mean square (RMS) of the sEMG data was considered
during each of the contraction tasks.

The results shows that, for four isometric contractions at different force level, our method is able to
provide sets of muscles’ current that explain over 90% of the average sEMG information. The currents’
time profiles have a physiological explanation in most of the studied case and the method highlights
subjective difference in the activation pattern for each subject given the same task. Furthermore,
different level of force do not change the muscle activation profile in accordance to what is reported in
the literature.

The details of the method in all its parts along with the description of the experimental setup is
reported in the Material and Methods section. In particular, how the MRI and the EMG are collected
and how the model is constructed from this information is described. The results are reported and
discussed in the Results and Discussion section, respectively. Final comments and considerations
about possible development and future application are then described in the Conclusion section.

2. Experimental Procedure

2.1. Subjects

Four healthy subjects (2 males and 2 females, average age = 27.3 ± 2.3 years old) volunteered for
this study. All the subjects gave their consent to take part to the experiment. The experimental protocol
was approved by ethics committee of the University of Tokyo. None of the subject had any reported
history of neuromuscular impairment at the time of the experiment.

2.2. MRI Acquisition

A T1-weighted MRI of the forearm has been acquired for all the subjects with a 3T Siemens
Verio (Siemens, Germany) scanner at the National Center of Neurology and Psychiatry (Tokyo, Japan).
The slice resolution was set to 0.2 × 0.2 mm while the resolution along the longitudinal axis i.e., slice
thickness, has been set to 3 mm. Repetition time was 11 ms, Echo time was 4.92 ms and a 448 × 448
matrix has been considered. The forearm was held in supinated position for consistency with the setup
during sEMG data. Vitamin E capsules were attached to bony reference point on the wrist and on the
elbow as contrast markers for subsequent registration purposes.

2.3. Experimental Setup and HD-sEMG Acquisition

The experimental setup is depicted in Figure 1. The subject lay supine. A real time visual feedback
of the exerted force was given with a monitor mounted over the subject’s face. The right forearm of
the subject was then positioned on a custom made alloy frame that sustained the forearm and the
hand horizontally aligned along the body. The wrist was in supinated position with the hand facing
upwards in order to avoid crossing between the ulna and radius bone.

The hand was sustained with a 3D printed cage connected to force sensors in lateral and palmar
position to measure the lateral and vertical forces, respectively. During the finger contractions the setup
was slightly changed. The target finger was constrained inside an additional 3D printed structure
connected to another force sensor to measure the exerted force along the direction normal to the surface
of the finger tip (Figure 1a,b). Forces were measured with an Arduino board sampling at 10 Hz.

Each subject had to perform five different isometric tasks at two levels of force, 25% and 50% of
maximum voluntary contraction (MVC). The isometric tasks executed were the following:

1. Middle finger metacarpophalangeal joint (MCP) extension
2. Wrist flexion
3. Wrist extension
4. Ulnar deviation
5. Index finger MCP extension
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Each of the listed tasks was repeated 15 times. Each repetition consisted of a 2 s force raising, 5 s
force holding, 2 s release and 15 s of rest. For the purpose of this analysis, the first two and the last
two contractions has not been considered to avoid effect of adaptation and fatigue, therefore all the
analysis was conducted on 11 repetitions. An additional contraction at maximum force has been done
prior to each type of task, in order to set the MVC force value.

Since the main responsible for index finger MCP extension, extensor indicis muscle, is located in
a more distal section of the forearm compared to the muscles involved in the other considered task,
in this work, the index finger MCP extension was not considered.

The HD-sEMG has been acquired with four custom designed electrodes’ sheets wrapped around
the forearm at different lengths around the forearm, so to cover as much of it as possible. The forearm
skin was cleaned with alcohol previous to attach the HD-sEMG sheets. Each electrodes’ sheet had
16 × 4 electrodes and a total of 256 channels were acquired on the forearm. Two different sized sheets
were used depending on the size of the subject’s forearm: a shorter sheet of 195 mm × 52 mm size
with 10 mm × 19.5 mm inter-electrode spacing, and a longer sheet of 270 mm × 52 mm size with
15 mm × 19.5 mm inter-electrode spacing. For the purpose of this work a single row of electrode
properly selected around the forearm was considered.

The signal was acquired with a RHD2000 Evaluation System (Intan Technology, Los Angeles,
CA, USA) with a 2500 Hz sampling frequency with no prior analog filtering. Additional adhesive
electrodes were placed on the radial styloid and at the metacarpophalangeal joint level of the thumb
as, respectively, ground and reference (Figure 1).

The position of the electrodes and of the anatomical references marked in the MRI were recorded
with a Polhemus Fastrak 3D digitizer system (Polhemus, Colchester, VT, USA). The forearm was
susequently wrapped with an elastic bandage to keep the electrodes sheet adherent to the skin.

The sEMG measurements were collected for all tasks in a single session, a few days after the
MRI acquisition.

Figure 1. Left : Top and bottom view of electrodes positioning on the forearm. Four sheets of
64 electrodes were wrapped around the forearm in order to cover the maximum amount of its surface.
A reference electrode was positioned on the metacarpophalangeal joint of the thumb. A ground
electrode was sticked to the radial styloid. Right : Experimental setup. (a) Position of the subject during
data acquisition. The subject was lying down facing a monitor through which a visual feedback was
given of the applied force. The forearm was held in supine position, with the hand palm facing upward.
(b) Force measuring structure for wrist movements (i) and for finger tasks (ii). The hand/finger was
enclosed in a custom 3D printed structured coupled with a load cell to measure the force amplitude.

3. Proposed Method

We propose a method that allows the estimation of the muscle activation pattern from a selected
MRI slice and the EMG signals collected from electrodes around the selected section. The conductive
volume and the interaction between the different tissues is described with a lumped parameter model
that can be represented with a graph.

The method simplify the solution of the inverse problem for the identification and the
quantification of the activity of muscles involved. The conductive properties in a selected section of the
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arm is described with a resisitive network connecting the different tissue elements and the electrodes.
The MRI section is chosen in order to include the muscles responsible for the target movements.

Muscles are identified with a segmentation step and, along with the electrodes, identify the nodes
of a graph which edges are defined based on the anatomy observable from the MRI slice. The model is
then solved assuming the muscles as current generators placed on muscle nodes to obtain an estimation
of muscles activity.

The model construction process can be separated into three main sections (Figure 2) which will be
explained in detail within the next subsections:

1. MRI segmentation and electrodes’ registration
2. Construction of the electrical Network
3. Muscle currents estimation.

Figure 2. Diagram of the proposed approach. Three main parts can be identified, MRI segmentation
and electrodes’ registration, Construction of the electrode network and muscle currents estimation.
From the left, the MRI segmentation and electrodes’ registration block process the information in the
MRI and about the electrodes’ position to estimate the distance between the elements (muscles and
electrodes) in the MRI and the muscles’ cross section areas. This information is then used to create and
weight the edges of a graph describing the interaction between the nodes representing muscles and
electrodes. In the Muscle current estimation block, the EMG is exploited to obtain an estimation of the
muscle activation patterns solving an inverse problem using the conductance matrix that describes the
graph and the related electrical network.

3.1. MRI Segmentation and Electrodes Registration

To discriminate the different tissues and the different muscles within the selected MRI slice,
a segmentation process is necessary. Segmentation is the imaging process through which the different
anatomical structures are identified on a diagnostic image. In the forearm it is possible to mainly
identify four types of tissues: bone, skin, fat, and muscular tissue.

While the skin, fat and bones can be easily identified due to their different contrast in the
T1-weighted MRI image, muscle tissue needs to be subdivided into the different muscles that compose
it. The forearm contains about 20 muscles which are responsible for forearm pronation/supination,
wrist radial/ulnar deviation and flexion/extension, and for finger flexion/extension. It is possible
to roughly divide the forearm’s muscles into two groups based on their function: extensors along
the posterior side and flexors on the anterior side. Additionally, extensor and flexors can be further
divided into superficial and deep muscles depending on their positioning in the cross-section. Muscles
delineate complex paths along the forearm. Cross sections at different longitudinal coordinate of the
forearm can therefore be identified as different muscle sets. The segmentation process allows for the
identification and definition of the muscle’s position, cross sectional areas, and boundaries (Figure 3).

For all subjects a single slice was selected. The selected slice contains for every subject the
same set of muscles, which were identified using the imaging software ImageJ [22]. The considered
set of muscles was the following: Abductor Pollicis Longus (APL), Extensor Pollicis Longus (EPL),
Brachioradialis (BR), Extensor Digitorum (ED), Extensor Carpi Radialis Longus (ECRL), Extensor
Carpi Radialis Brevis (ECRB), Extensor Carpi Ulnaris (ECU), Extensor Digiti Minimi (EDM), Flexor
Digitorum Profundis (FDP), Flexor Digitorum Superficialis (FDS), Flexor Carpi Ulnaris (FCU), Flexor
Carpi Radialis (FCR).
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The skin layer has been ignored for the purpose of this work and its thickness has been included
into fat layer thickness. Fat layer thickness is estimated as the average value of electrode-muscle
distance along the arm circumference.

Figure 3. Example of segmentation on an MRI slice. On the left the original MRI is depicted, on
the right its segmentation is reported. Muscles are represented with different colors, the radius and
ulna bones are reported in gray. It is possible to observe the interosseus membrane connecting ulna
and radius and dividing the posterior and the anterior side muscles. Skin and fat layers are colored
respectively in pink and brown.

To correctly place the electrodes on the MRI volume a registration step has been done prior to
the creation of the model, since electrodes’ coordinates and MRI anatomy have been acquired with
different reference frames. Registration estimates the optimal transformation to match the coordinate
system of the electrodes to the coordinate system of the MRI. The registration has been done using 3D
slicer [23,24], minimizing the distance between the anatomical markers on the MRI and the markers
acquired with the electrodes coordinates using the digitizer. The electrodes around the arm that were
closest to the chosen slice were selected and their 2D projection on the MRI section was calculated
(Figure 4a). The position of the electrodes on the slice was set as the closest point on the skin of the
projected electrodes (Figure 4b). The mean and the maximum distance error made during electrodes’
projections steps are reported in Table 1 for all subjects. On the upper rows the errors for the projection
on the selected slice are reported while on lower rows the errors on the projection on the skin surface
are reported. On average the error during the projection on the selected slice is between 3 and 4.2 mm,
with maximum values ranging from 7.5 to 11 mm. The distance errors on the projection on the skin
surface was lower, with an average error smaller than 1 mm for all subjects and maximum values
going from 1.5 to 3 mm.
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(a)

(b)

Figure 4. (a) The projection of the electrodes closest to the selected slice plane. The real electrodes
position is indicated with a red sphere, the MRI plane is indicated with a red line and the projected
position is indicated with a light blue sphere. The projection is depicted with a green arrow. (b) Section
of the MRI with the position and the number of the electrodes. The projection of the electrode 3D
position on the 2D slice is represented with a red cross. Such points are further projected on the skin
(green cross) to find the closest position on the forearm surface.

Table 1. Distance error in the projection of the electrodes’ positions. The distance errors in the projection
on the selected slice as shown in Figure 4a are reported on first two rows of the table. The distance
errors during the projection of the position on the skin surface as shown in Figure 4b are reported on
the bottom two rows. For each of the subjects, the mean and the maximum distance errors are reported.

Subject 1 Subject 2 Subject 3 Subject 4

On the slice
Mean distance [mm] 4.121 3.848 3.167 3.540

Max distance [mm] 11.829 9.029 8.818 7.521

On the skin
Mean distance [mm] 0.890 0.862 0.789 0.620

Max distance [mm] 2.217 1.980 3.085 1.570

Once muscles and electrodes are correctly positioned and identified on the MRI slice plane, it is
possible to measure the relative distance between muscles and electrodes. In particular, it is possible to
identify three type of distance:

• electrode-electrode (e-e) distance
• muscle- electrode (m-e) distance
• muscle-muscle (m-m) distance

Distances have been calculated from the centroid of the segmented cross sectional area for muscles.
Electrodes’ distances were calculated from the projection of the electrode position on the skin. In an
MRI slice it is possible to identify nm muscles and ne electrodes on the skin surface.

3.2. Construction of the Electrical Network

The anatomical information extracted with the segmentation can be described with a topology.
A topology can define the connections between the different elements identified in the segmentation.
One of the most common way to describe a topology is a graph, a mathematical discrete structure
constructed with a set of nodes and a set of edges. A node represent an object of the structure that
carry a different meaning depending on the application. Edges describe a relationship between a pair
of nodes. To describe the anatomical information contained in the MRI slice it is possible to model
muscles and electrodes as nodes of a graph, with edges that describe connections that are defined with
a set of custom rules based on several assumptions and prior anatomical information. The rules used
in this work are listed as follows:
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i. Each electrode defines a sector of the forearm section bounded by the lines going from the
centroid of the MRI section to the two adjacent electrodes as shown in Figure 5.

ii. All muscles included in a sector with a fraction of their area greater than 5% of their cross
sectional area are connected to the electrode that defines that sector.

iii. If between the fraction of the muscle in a sector and the electrode defining that sector there is a
bone structure, that edge is not considered.

iv. In general a muscle node is connected to another muscle node only if they are adjacent on the
segmented image. Exception are considered to take into account specific anatomical structure
that are known to alter the currents flow in the volume. In particular the effect of the interosseus
membrane between the ulna and the radius has been considered.

v. The fat layer is assumed to be of constant thickness around the section circumference. Such
thickness is set to be the average obtained from the segmentation and it includes the skin
thickness.

vi. Since it is an electrical network and additional node has to be added to model the ground.

This set of rules allows the definition of a graph with N nodes and E edges that specifically
describes the anatomy of the subject and the electrodes setup for a specific cross section of the forearm.
Each edge is weighted based on the nodes pair (n1, n2) that defines it. The weight is set to be the
electric conductivity Gn1n2 between the nodes pair obtained as

Gn1n2 = g · r(n1, n2) (1)

where g is the conductance of the tissue interposed between the 2 nodes and r(n1, n2) is the distance
between the nodes n1 and n2. The conductance for the considered tissues (i.e., muscle, fat and skin)
are those reported by Lowery et al. in [25]: gskin = 4.3 · 10−1S/m for the skin, g f at = 0.04S/m for the fat
and gmuscle = 0.09S/m for muscle along the transverse direction.

Figure 5. Example of one step of the graph creation. (a) Sector belonging to one of the electrodes,
indicated with a green dot. The muscles that are included (ED, EDM, ECU, APL, and EPL) are
highlighted with the area that is accounted for. (b) Graph created from the section considered in (a).
e-e edges are indicated in blue, e-m edges are indicated in purple and m-m edges are indicated with
green lines.

The nature of the node pair in the edges define the type of conductance that is chosen. As described
for the measured distance, it is possible to identify electrode-electrode(e-e), muscle-muscle(m-m) and
electrode-muscle(e-m) type of edges. For (e-e) and (m-m) edges, they can be directly weighted using
Equation (1), assuming that the current between two adjacent electrodes flow through the skin and
that the current between two muscles flow through only muscle tissue:
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Gee = gskin · dee

Gmm = gmuscle · dmm.
(2)

In the case of (e–m) edges the conductance to weight the edge has been set to the series of two
resistive elements in order to consider that current flow from muscle to electrode passing through
muscle and fat tissue:

Gem =
Gf at · gmuscle(dem − Df at)

Gf at + gmuscle(dem − Df at)
. (3)

To consider the effect of partial inclusion in the sector, the conductance of the (e-m) edges were
weighted with the normalized area:

Ĝem = Gem ∗
(

Aem

Am

)
(4)

where Aem indicates the area of the muscle m included in the sector defined by the electrode e, and Am

is the total area of the muscle m.
Each of the muscle nodes was modelled as a current generator to represent the active muscle

behaviour. Finally, all the nodes were connected to the ground node with a shunt resistance. The shunt
resistance has been set to Dskin · Gel−el and Dmuscle−bone · Gmuscle, respectively for electrode nodes and
muscle nodes, where Dskin is the average distance between electrodes and Dmuscle−bone is the average
distance between the centroid of muscles and the closest bone (ulna or tibia).

The electrical model so built can be described exploiting the principles of graph theory. Under the
assumption of no external power injection and in static condition the current of the generators can be
described with the following relationship [26]:

III = (LRLRLR +GGG)VVV (5)

where III ∈ R
N×1 is the vector of currents, VVV ∈ R

N×1 is the vector of node potentials, LRLRLR ∈ R
N×N is the

conductance matrix and GGG ∈ R
N×N is the shunt conductance matrix. If G has at least one non-negative

element, Equation (5) can be inverted:

VVV = (LRLRLR +GGG)−1III = FFFIII (6)

where FFF = (LRLRLR +GGG)−1 is the matrix describing the system. Using Equation (6) it is possible to estimate
the potential of the nodes with respect to the reference value, which is usually set to V0 = 0V.

3.2.1. Muscle Currents Estimation

Using the built model, the muscle activities are estimated solving an inverse problem.
Equations (5) and (6) describe the linear relationship that relate the currents and the voltages in
the network. Equation (5) describes the relationship from the potentials and the currents on the node.
Since we are only interested in how the muscles’ current are reflected on the electrodes potentials it is
possible to further simplify the problem reducing the dimension of the system matrix, i.e., selecting the
row corresponding to electrodes nodes and columns corresponding to muscle nodes from the matrix
F. The resulting matrix is a matrix F̃̃F̃F ∈ R

ne×nm where the ith column is the potential that would be
present on the ne electrodes if the ith muscle is activated with unitary current.

With this notation it is possible to describe the transformation from muscles currents to electrodes’
potentials as follows

VeVeVe = F̃̃F̃FImImIm (7)

where VeVeVe is the ne × 1 electrode potential vector and ImImIm is the nm × 1 muscle current vector.
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Since the number of electrodes is always higher than the number of muscles, the problem is
over-determined. A minimum norm approach would therefore lead to unstable solutions. To find a
unique solution, a regularization is needed. We assumed that the voltage measured at the sEMG is
caused mainly by the activities of big muscles, therefore the regularization is penalizing the activation
of muscles with small cross sectional area. The resulting estimated muscles current ˆIm̂Im̂Im has been
therefore calculated as follows:

ˆIm̂Im̂Im = F̃̃F̃FT(F̃̃F̃FF̃̃F̃FT +λλλIII)−1VeVeVe (8)

where λλλ is a regularization vector that has been set to the inverse of the cross sectional area of all
the muscles.

3.2.2. Validation

A direct evaluation of forearm’s muscle activity would entail the use of invasive probe directly
inserted on each of the considered muscles. This is obviously practically impossible because of the
pain and the discomfort that it would cause to the subject. Therefore, to validate the results indirect
methods must be used. In this work we considered two criteria, one qualitatively based on functional
prior knowledge and the other quantitatively measuring the fitting on the measured sEMG data on
the electrodes’ space. To qualitatively evaluate the results from an anatomical point of view, the
muscles involved in the examined motor task has been compared to those reported in the literature. In
particular the muscles involved in each of the movements are the following:

− Middle finger extension : ED, EDM
− Wrist flexion : FCU, FCR, APL, EDM
− Wrist extension: ECU, ECRL, ECRB, ED
− Ulnar deviation: FCR, FCU, ECR, ECU

The method was evaluated comparing the estimated active muscles with those reported as main
responsible by specialized literature [27,28]. A quantitative performance evaluation of the method is
conducted comparing the projection of the estimated muscle on the electrode space with the measured
sEMG, to express the amount of the sEMG information that is explained by the estimated activity.
The Goodness of Fit (GOF) is evaluated using the Normalized Root Mean Square Error (NRMSE)
defined as follows:

GOF = 1 − NRMSE =
RMSE

max − min
. (9)

With this definition, a value of GOF close to 1 indicates a higher fitting on the experimental sEMG
data, with 1 indicating a perfect fit. Lower values indicates lower fitting performance.

4. Results

The results of the segmentation and registration process are represented in Figure 6. Each muscle
is represented with a different color and the projection of the electrodes on the skin is represented with
a dot and a number indicating the sequential order of the electrodes.

The RMS profile of the sEMG for the studied isometric tasks at 50% of the MVC are depicted
with polar plots in Figure 7. Each tasks is shown with different line color. For the sake of clarity the
polar plots were created assuming that the arm section is circular and that it is divided into ne + 1
sectors by ne electrodes arranged with equal space between each other. The value of the RMS voltage
is represented with a circle on the line. Each subject has a different number of electrodes depending
on the size of the forearm. To better identify the position of the electrodes, the portion of the cross
section area with extensor muscles (posterior side) and flexor muscles (anterior side) are depicted with
a different background color on the section, respectively with in red and green.
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Figure 6. Results of the segmentation on muscles and registration of electrodes position on the 2D image
plane of the MRI slice. In each MRI slice the following muscles can be identified: Abductor Pollicis
Longus (APL), Extensor Pollicis Longus (EPL), Brachioradialis (BR), Extensor Digitorum (ED), Extensor
Carpi Radialis Longus (ECRL), Extensor Carpi Radialis Brevis (ECRB), Extensor Carpi Ulnaris (ECU),
Extensor Digiti Minimi (EDM), Flexor Digitorum Profundis (FDP), Flexor Digitorum Superficialis
(FDS), Flexor Carpi Ulnaris (FCU), Flexor Carpi Radialis (FCR).

Figure 7. sEMG RMS profile for the four considered tasks at 50% MVC for all the subjects. Each
isometric task profile is represented with a different color with a circle indicating the local value
measured on the electrode. The electrodes are assumed to be equally distributed around the
circumference of the cross section of the forearm. The posterior and anterior side, corresponding to the
sectors where extensor and flexors muscles are located, are represented with different background color.

The first two subjects have similar RMS values with similar RMS sEMG profiles along the
circumference, while subject 3 and 4 have a higher RMS value for the middle finger extension. For
each of the tasks it is possible to observe a subjective sEMG profile around the arm.

The results of the current estimation procedure and the relative voltages reprojected on the
electrodes’ space are reported in Figure 8 and in Figure 9 for tasks at 25% MVC and 50% MVC,
respectively. For each subject and given task, the top graph represents the estimated currents generated
by each of the muscle node, while the lower graph represents the reprojected voltage on the electrode
space compared to the measured sEMG. The bar on the top graph represents the average current
estimated for the generators on each muscle node for all the 11 contractions considered and are
coloured based on their function. On the lower plot, the black dotted line represents the projection
of the estimated currents on the voltage space whereas the measured sEMG is represented with a
dashed red line. The background color is represented with red for electrodes on the anterior side,
i.e., electrodes over flexor muscles, and green for electrodes on the posterior side, i.e., electrodes over
extensor muscles. The number of electrodes is different for each subject and the number of electrodes
of the anterior or posterior side changes depending on the subject.
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Figure 8. Estimated currents and voltage fitting on the electrodes space for all the tasks considered
at 25% of MVC. Each bar represents the average current estimated for a muscle for 11 repetitions.
The bar is coloured in green for extensors and in red for flexors. Muscles that are not mainly involved
in the considered movements according to anatomy are colored in blue. On the electrodes space, the
measured sEMG is represented with a red dotted line, whereas one example of the estimated value is
represented with a solid black line. The background color is green for electrodes over the posterior
side of the forearm (extensors) and is red for electrodes over the anterior side of the forearm (flexors).
For further information on the meaning of the abbreviation of the muscles and their position refer to
Figure 6.
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Figure 9. Estimated currents and voltage fitting on the electrodes space for all the tasks considered
at 50% of MVC. Each bar represents the average current estimated for a muscle for 11 repetitions.
The bar is coloured in green for extensors and in red for flexors. Muscles that are not mainly involved
in the considered movements according to anatomy are colored in blue. On the electrodes space, the
measured sEMG is represented with a red dotted line, whereas one example of the estimated value is
represented with a solid black line. The background color is green for electrodes over the posterior
side of the forearm (extensors) and is red for electrodes over the anterior side of the forearm (flexors).
For further information on the meaning of the abbreviation of the muscles and their position refer to
Figure 6.
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A quantitative evaluation of the voltage fitting onto the electrodes space is reported with GOF
values in Table 2 with the average value and the standard deviations over the 11 tasks considered.

Table 2. Goodness of Fit (GOF) value of the reconstructed sEMG value on the electrode space in terms
of Normalized Root Mean Square Error (NRMSE).

Subject 01 Subject 02 Subject 03 Subject 04

middle fing. ext (25% MVC) 96.64 ± 0.41% 95.95 ± 0.39% 96.22 ± 1.27% 97.90 ± 0.17%
middle fing. ext (50% MVC) 97.06 ± 0.55% 95.81 ± 0.34% 98.18 ± 0.26% 98.01 ± 0.09%
ulnar deviation (25% MVC) 94.18 ± 0.57% 94.32 ± 1.60% 90.51 ± 0.43% 95.45 ± 0.53%
ulnar deviation (50% MVC) 96.27 ± 1.34% 95.45 ± 0.84% 89.63 ± 0.67% 96.80 ± 0.53%

wrist ext (25% MVC) 88.94 ± 0.73% 96.43 ± 0.74% 94.55 ± 1.42% 96.27 ± 0.23%
wrist ext (50% MVC) 92.48 ± 0.67% 96.37 ± 0.60% 95.11 ± 1.73% 97.00 ± 0.40%
wrist flex (25% MVC) 93.05 ± 1.67% 95.45 ± 0.44% 91.25 ± 0.45% 90.91 ± 0.90%
wrist flex (50% MVC) 92.91 ± 1.08% 94.78 ± 0.50% 89.25 ± 0.96% 91.46 ± 0.72%

5. Discussion

Observing the plots in Figures 8 and 9 for each of the tasks, the inter-subject and inter-task
differences can be seen [29–31]. For a given task, however, the group of muscles involved is not
significantly changing between subjects, but it is possible to observe subjective characteristics in
muscle activation. No significant changes can be observed in the activation pattern between different
force level.

Each of the tasks shows specific muscle activation pattern that are in most of the case in agreement
with what is reported in the anatomical literature. Each of the subject shows a subjective variation on
the task activation pattern, especially for middle finger extension, (MFE), wrist extension (WE) and
wrist flexion (WF) (Figures 8 and 9). Ulnar deviation (UD) shows a higher variability among subjects
in both the estimated muscle pattern and in the input sEMG. UD could have a marked variability
between subject depending upon the prono-supination and wrist flexion extension angle at which the
subject have their neutral position. For a slightly flexed wrist, activation of the flexor muscles will be
higher during ulnar deviation when compared to slightly extended wrist.

During middle finger extension (MFE), for all subjects and in both force conditions a clear peak
activity was registered on one or two extensor muscles, and for all subjects there was at least one
muscle active among ED and EDM, indicated in the literature as major responsible for that task. In
particular, looking at both Figures 8 and 9, for subject 1 there is a peak on ED with a lower peak on
ECRB, on subject 2 there are peaks on EDM and EPL and a negative peak also on ECU, on subject
3 there is a clear peak on EDM, while on subject 4 the peaks are on ED and EPL, with this last one
negative. During WE it is possible to observe a general activation of extensor muscles on all subject,
with subject 1 showing a peak activation of ECRL and ED, subjects 2 showing a more homogenous
activation among all extensors and subject 3 and 4 showing a sparse activation with clear peaks on,
respectively ED for subject 3 and on ED and EDM for subject 4. On subject 2 a peak on APL can be
observed as well. APL is not actively involved in the extension task but its activation can be due to
the fact that the subject tried to spread the hand fingers, including the thumb, during the extension of
the wrist. The fact that the activation pattern for subject 2, unlike the other subjects, is homogeneous
among all extensors might indicates that the subject extended the fingers while trying to extend
the wrist.

During WF, it is possible to observe a peak activation on FDS on subject 1, peaks on FCR, FCU, and
FPL on subject 2, peaks on FCR and FCU for subject 3 while for subject 4 there is only a peak on FCR
and FPD. These results are in accordance to the anatomical knowledge, and each of the subject uses
a different muscle among the possible ones to perform the same task. Subject 2 shows an additional
significant activation of BR, indicating that, probably, during the flexion of the wrist the subject also
tried to flex the forearm around the elbow joint.
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For ulnar deviation (UD) results are according to anatomical knowledge in the case of subject 1, 2,
and 3. In fact it is possible to observe peaks on either one or both of ECU and FCU. Subject 4 presents
an activation on ED, EPL and FDP, while muscles that are indicated as main responsible for UD i.e.,
ECU, FCU, FCR, ECRL, ECRB, show a lower activation level. Observing the measured sEMG of UD
for subject 4, it shows a different shape compared to the other subjects, indicating that the difference
might be due to a subjective muscle activation pattern characteristic of that subject.

Observing both the estimated muscle activation profile (Figures 8 and 9) and the measured sEMG
profile (Figure 7) around the forearm, each of the subjects perform each of the task in a characteristic
way. Observing the input sEMG profiles it can be noted that for a chosen task there are important
differences among subjects. The difference in the morphology of the forearm could explain different
muscle patterns estimation. In the case of MFE, observing the sEMG profiles in Figure 7, it can be
noticed that a similar profile shape among subjects is shared, where a single peak in the posterior side
of the forearm muscles is present. For subject 2 the activation peak is shifted more toward the muscles
on the anterior side, which might justify higher peaks on EDM and EPL. This means that all subjects
performed the MFE in approximately the same way, activating either the same muscles or group of
muscles around the same section of the forearm. On the other hand, a different relative activation is
present, based on how the neural system of each subject adapted to perform that specific task. In the
case of WE and WF, subject 1 and 2 show a measured voltage with a smoother profile around the arm,
whereas subject 3 and subject 4 present a more irregular profile with a biphasic behaviour. An even
bigger difference can be observed for UD, where subject 1 and 2 present a rather smooth and flat sEMG
with a peak on the flexor side of the arm, while subject 3 and 4 presents clear peaks. In particular
subject 4 showed a biphashic sEMG profile with voltage peaks measured around electrodes 5 and 10
(Figures 8 and 9). Since UD, due to the nature of the movement, involves both extensor and flexor
muscles, it can be seen that in general the peaks in the sEMG profiles are around the boundary area
between extensor and flexors. However, each of the subjects present a characteristic shape, indicating
that for this movement the muscle pattern might change significantly between subjects. The reason
behind this apparent difference in the sEMG profile might be the position of the forearm with respect to
the neutral position of each subject during the experiment. The supination angle of the forearm during
the data collection might not have been perfectly horizontal causing a different activation of muscles.

Comparing the muscle signal patterns between 25% and 50% MVC conditions (Figures 8 and 9),
they remain almost unchanged. This means that each subject maintain their specific muscle activation
strategy among different force conditions. Each of the subjects therefore keeps activating the same
muscles with the same strategy at different force levels, increasing the overall muscle activity of the
involved muscles, without using other muscles or changing activation pattern. The method is therefore
robust to different force conditions for the same task. However, it is important to notice that the force
conditions and the choice of ignoring the first and the last repetition were meant to minimize the
risk of having adaptation and fatigue effects. In fact, in case of adaptation and fatigue conditions the
activated muscle pattern might undergo changes due to a varying muscle recruitment pattern from
the CNS [32–35].

The projection of the estimated current on the electrodes potential space fits the measured sEMG
with a GOF over 90% for almost all of the task considered in both force conditions (Table 2). Thus,
the currents estimated with the proposed model are able to explain on average more than 90% of the
information enclosed in the RMS of the measured sEMG. Exceptions are WE for subject 1 at 25% MVC
and WF and UD at 50%MVC for subject4, where GOF is slightly under 90%.

In different cases it is possible to observe a simultaneous activation of both agonistic and
antagonistic muscles, i.e., flexors and extensors, thus co-contraction is happening. Furthermore,
it is worth noting that in several cases, such as MFE, WE, UD for subject 4, MFE and WE for subject 1
or WE, WF, and UD for subject 3, currents with opposite signals are estimated for antagonistic muscles.
Therefore, we hypothesised that the sign of the current is indicating the direction of the power exerted
by the muscles. That would mean that the sign of the current is giving mechanical information of
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the system, such as the type of contraction of the muscles, which can be concentric or eccentric. The
estimated voltages at the muscles nodes were all positive, therefore the sign of the electrical power
of the network was defined by the sign of the currents. This is however, does not seem to be valid in
general, probably because of the fact that for this work only an average behaviour has been considered.
A study on the time series estimation of muscle pattern would help supporting this hypothesis and it
will be further considered in the future.

Overall the results show that, for a chosen task, a small signal variance is estimated among tasks
repetition. Thus, on average, each of the task has been performed in the same manner by the subject.
However, such as for UD at 50% MVC for subject 2 or WF at 50% MVC for subject 4, the estimated
patterns show a higher variability, indicating that at each of the repetition significant differences in the
contraction were happening.

The number of electrodes was different for all the subjects because of the different circumferences
of each of the subject’s forearms. The electrode sheets were therefore able to cover a different amount
of the forearm circumference as it can be observed in Figure 6. Subject 1 and subject 3 show a uniform
coverage of the forearm surface with 15 and 16 electrodes respectively. Subject 2 and subject 4 present
regions that are not covered with electrodes. In particular, for subject 2 the density of electrodes is
lower over the extensor side of the forearm, while for subject 4 there were fewer than two electrodes
directly over BR, ECRL, and ECRB. For subject 2, the lower electrode density over the extensor side of
the forearm might be responsible for the higher activation of APL observed during WE. The fact that
only one electrode is collecting the information above ED and APL might have mislead the inverse
algorithm in the estimation of the activation pattern. On subject 4, the width of the area not covered
with electrodes is bigger than that of other subjects. In particular, between the electrodes 1 and 16, no
electrodes is directly over ECRL. This does not seem to influence too much the estimation of the results
for MFE, WF and UD, since, observing Figures 8 and 9, the sEMG values on electrodes 1 and 16 are
low and of similar values. Since anatomically BR, ECRB and ECRL are not involved in these tasks,
we can assume that the sEMG values in the electrode missing would be similar to that measured on
electrodes 1 and 16. However, in the case of WE, ECRB and ECRL are muscles involved in the task.
Observing the sEMG values on electrodes 1 and 16, they show a different amplitude. Therefore, it may
be presumed that between electrode 1 and 16 the sEMG value is not low. As a consequence, the lack of
electrodes in that forearm portion might have caused a loss of information that influenced the muscle
pattern estimation for WE.

Finally, it is important to notice that in this work, the role of the skin conductance was ignored.
Skin is known to have a strong low-pass filtering effect on the sEMG signal. Since only the average
behaviour was considered, we think that for the purpose of this paper, this did not have a big influence
on the results. However, it is important to notice that it might have an influence on the general
amplitude of the estimated currents, since the conductivity value of the skin is significantly lower
than that of muscles and of fat tissue. For this reason, the value of the single muscle current cannot be
considered a precise estimation of the muscle activity. However, the relative activation among muscles
remain unvaried in the estimation process. With this work, we rather want to show new simple way to
estimate the activation pattern of a set of muscles rather than focusing on the single muscles.

6. Conclusions

We presented a novel method for the estimation of muscle activity. The activity was quantified
using the muscle current estimated in an electrical system created from subject specific MRI images.
The model is able to provide an estimation of the relative activation for a set of muscles identified
within an MRI section of the forearm, through the construction of a purely resistive electrical model of
the conductive volume depicted in the slice. The results highlighted some interesting properties of the
method in the estimation of subject muscle activation patterns for potential rehabilitation applications.
For the same task the estimated pattern were similar among subjects, but subjective activation features
can still be observed among subjects, showing that the proposed method is able to capture anatomically
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valid muscle activation maintaining a subjectivity in the results that allows a comparison between
different subjects. The input sEMG profiles changed with subject, reflecting the fact that each of the
subject has a personal signature in the activation pattern, even if each of the single muscle maintain
its properties and role. The proposed method is able to cope with this variability rearranging the
muscle activation pattern to explain the input sEMG with a valid current pattern. Furthermore, the
muscle patterns are not changing between different force levels, indicating that changes in the signal
amplitude are not perturbing the estimated pattern. The estimated currents are able to explain over
90% of the input sEMG and the results have an anatomical meaning based on specialized literature
and physiological consideration. The number of electrodes and their distribution might have had
an influence in the estimation results. For two of the subjects the electrode density was lower in
particular sections and this might have lead to different interpretation of the sEMG in the solution of
the inverse problem.

With this work we wanted to introduce a novel idea for solving the problem of estimating deep
muscle activities. We used a simple electrical model, providing results obtained using a dataset
acquired from healthy subjects. The proposed model inherently includes information about each of
the subject inner morphology described in a simple and intuitive way. Furthermore, the rules defined
for the model construction and for the estimation can be easily automatized making the translation of
the presented logic into a software routine with a low number of parameters.

The results shows that, for most of the task considered, the estimated muscle patterns are
anatomically plausible. For simple static tasks, such as MFE, the estimated pattern, even if with
a clear difference among subjects, provides an activation pattern that matches what is reported in the
literature. In case of WE and WF, most of the case considered are anatomically consistent. However,
some isolated results are uncertain. For UD, subject 1 and 2 shows valid results, while subject 4 shows
different results, most likely due to a different sEMG profile around the arm, which indicate a different
overall muscle activation, or an insufficient number of electrodes.

Several aspects of the model can still be improved, starting from the modeling to the estimation
algorithm. In this work, we rather wanted to focus on the presentation of a different approach to
exploits both information from MRI and sEMG to build a model able to solve the problem of muscle
activity estimation, with a validation on a pool of healthy subject and with different movements in order
to assess the performance that can be achieved with a simple and intuitive modeling. The impossibility
to have a ground truth remain a challenging part for the validation of the method and it will be
addressed in subsequent works with the aid of tools such as musculoskeletal modeling and simulations,
even if the strong subjectivity of the muscle pattern activation is a point that makes the problem of
a solid validation very challenging. A possible solution would be the use of ultrasound imaging
during the execution of tasks. Using the ultrasounds it would be in fact possible to capture the
thickness changes in all muscles, including deep ones. The thickness of muscles is related to its
activation [36,37] providing a direct mean to validate the results. The RMS of the sEMG during
contraction was considered for this work in order to give an average estimation of the behaviour of
the muscles during the selected tasks. The introduction of the study on the time dimension would
allow observing the contraction strategies of the muscles during the task execution. Furthermore,
the subject pool was limited to four participants in this work. All these issues will be addressed in
future developments of the proposed method.

We believe that this method can be a valid way for overcoming the limitations of the mfMRI,
allowing the estimation of muscle activation with a temporal resolution that would improve the
information quality for clinicians in the diagnostic process. In particular, we believe that the
proposed method can make an important contribution in the field of rehabilitation allowing to
track muscle activation pattern on impaired subject during rehabilitative cycles considering the
underlying morphology of the patient and eventual changes that might happen over time due to
a pathological situation. The proposed model relies completely on anatomical and physiological
information and is therefore easy to understand for clinical personnel, providing results that are giving
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a direct quantification of the muscle activation. The dimensions of the model are low and this allow
a fast estimation process, potentially allowing a real time tracking of the muscle activity, once the
model is created from the subject MRI. For this reason, it is a suitable method to acheive a general
overview of the neuromuscular system activation status during rehabilitative exercises and therapies,
potentially allowing therapists to assess the reaction and the effectiveness of the rehabilitation strategy
on the patients.
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Abstract: Long-term oxygen therapy (LTOT) has become standard care for the treatment of patients
with chronic obstructive pulmonary disease (COPD) and other severe hypoxemic lung diseases.
The use of new portable O2 concentrators (POC) in LTOT is being expanded. However, the issue
of oxygen titration is not always properly addressed, since POCs rely on proper use by patients.
The robustness of algorithms and the limited reliability of current oximetry sensors are hindering the
effectiveness of new approaches to closed-loop POCs based on the feedback of blood oxygen saturation.
In this study, a novel intelligent portable oxygen concentrator (iPOC) is described. The presented
iPOC is capable of adjusting the O2 flow automatically by real-time classifying the intensity of a
patient’s physical activity (PA). It was designed with a group of patients with COPD and stable chronic
respiratory failure. The technical pilot test showed a weighted accuracy of 91.1% in updating the O2

flow automatically according to medical prescriptions, and a general improvement in oxygenation
compared to conventional POCs. In addition, the usability achieved was high, which indicated a
significant degree of user satisfaction. This iPOC may have important benefits, including improved
oxygenation, increased compliance with therapy recommendations, and the promotion of PA.

Keywords: COPD; oxygen concentrator; oxygen therapy; automatic oxygen concentrator; physical
activity; machine learning; respiratory medicine; portable oxygen concentrator; oxygen delivery

1. Introduction

Oxygen is a substantial element in the sustenance of human life. Of the hundreds of tasks that
oxygen performs in the human body, two stand out for their importance: detoxification and energy
production. However, some diseases affect the ability of the lungs to perform the gas exchange
necessary to incorporate oxygen into the bloodstream and to release carbon dioxide. In many situations,
extra oxygen is needed when the respiratory system cannot maintain an adequate pulmonary exchange
of physiological gases. This therapeutic use of supplemental oxygen is defined as oxygen therapy
and it aims at increasing the inspired oxygen fraction (FiO2). Therefore, when medically prescribed,
oxygen is a drug. Oxygen therapy is an established treatment, and it continues to be one of the most
important measures in the management patients with progressing chronic respiratory disease. In this
case, the main objective of oxygen therapy is to improve tissue oxygenation and to correct the severe
hypoxemia that these patients usually present with in the advanced stages of the disease [1,2]. The goal
is to maintain oxygenation levels above the range of respiratory failure, defined by an O2 blood partial
pressure [PaO2] > 60 mmHg, and an oxygen saturation measured by pulse oximetry [SpO2] > 90%.
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Currently, clinical applications for the use of oxygen have extended beyond the hospital setting.
When patients receive oxygen supplementation at home, the therapy is referred to as home oxygen
therapy (HOT). HOT provided as long-term oxygen therapy (LTOT), that is, used on a daily basis and
at least by 15 h per day, is recommended by current treatment guidelines since it has been shown to be
effective in increasing survival in patients with chronic obstructive pulmonary disease (COPD) and
respiratory failure [3–6]. In addition, ambulatory oxygen therapy improves physical performance in
patients with COPD [7].

Despite all these benefits of HOT for patients with respiratory failure, evidence that supports
the prescription of HOT in other chronic conditions associated with hypoxemia is limited [8].
While supplemental oxygen is valuable in clinical situations such as those aforementioned,
the inappropriate use of this therapy can be detrimental. Hypoxemia is defined as the decrease
in PaO2 below the normal limits, variable for the subject’s age (normal PaO2 ranges from 80 to
100 mmHg [9]). There is evidence that both hypoxemia and hyperoxemia, which results from exposure
to excessive O2 flows for a prolonged period of time, can have serious consequences for patients with
acute and chronic respiratory failure [10,11]. Although the risks for hypoxemia are well known [12],
there is growing evidence that excessive oxygen flow can be potentially harmful. In this regard,
hyperoxemia has been associated with increased hospital mortality among patients admitted to
intensive care units (ICUs) following cardiac arrest resuscitation [13]. In this regard, hyperoxemia
may be especially problematic in patients with COPD in the acute phase of exacerbation, because of
its association with hypercapnia [14,15] and its potential to mask the onset of a worsening in lung
function [10]. In addition, toxicity caused by hyperoxemia in some patients with COPD receiving
LTOT has received attention from researchers [16].

Notwithstanding this, all the scientific evidence supports the idea that the proper use of
supplemental oxygen therapy is an important factor that can positively influence clinical outcomes in
patients with respiratory failure and severe hypoxemia [17].

The administration of LTOT requires devoted delivery devices. The source of oxygen and the
equipment for its administration, which will depend on the patient’s profile, his/her movability, the
flow required, the time needed for oxygen therapy sessions, and above all, the proper correction of
SpO2 both at rest and during sleep or effort are also important factors [18].

Until recently, the most common way to deliver LTOT to patients has been by using static sources,
such as stationary oxygen concentrators or high-pressure cylinders. The shortcoming of such devices
is that they prevent the patient from wandering or leaving home while therapy is being received.
The heightened mobility and physical activity of these patients have resulted in the need for smaller,
lighter, and more autonomous portable oxygen devices [19]. For those reasons, a new generation of
portable, lightweight devices has emerged in recent years. These devices, known as portable oxygen
concentrators (POCs), have sufficient autonomy to enable the patient to live an active life outside
the home. Unlike classical gaseous or liquid oxygen devices, POCs produce their own oxygen by
removing nitrogen from atmospheric air. Before it goes into the concentrator through the inlet filter,
air is composed of 80% nitrogen and 20% oxygen. Firstly, the POC compresses the oxygen using a
compressor. The compressed air moves to a sieve bed of filters that separate the nitrogen from the
oxygen. Then, the oxygen, now at around 90%–95% purity, is stored in a product tank within the
device and is delivered to the patient via a delivery device (i.e., a nasal cannula).

POCs can deliver oxygen via continuous flow or pulse flow. Continuous flow units put out a
specific adjustable dose measured in litres per minute. Pulse units pulse air through a cannula with
each breath and their output is determined by the size of the individual pulse (millilitres per pulse)
and the patient’s respiratory rate.

It is accepted that the oxygen flow, normally delivered in fixed doses to patients in oxygen therapy,
is not always optimized [19]. In fact, the oxygen requirements of patients under LTOT vary depending
on the type, intensity and duration of the physical activity that is being carried out. Low blood oxygen
levels may cause short-term symptoms, such as dyspnoea, and physio-pathological organic changes,
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such as tachycardia, increased respiratory rate, arterial hypertension and, in the long term, serious
problems such as pulmonary hypertension and cor pulmonale, among others. On the other hand,
excessive levels of blood oxygen can cause hypercapnic encephalopathy in some patients. In this
regard, the patients receiving LTOT are generally instructed to adjust the oxygen flow according to
the activities of daily living. Oxygen flow is therefore routinely targeted to maintaining the desired
oxygenation range. However, this task places a burden on patients that often affects adherence to
therapy, and the existing methods of oxygen delivery may not be sufficient when the patient’s activity,
and therefore the demand of oxygen, increases [20]. It has been reported that patients with COPD and
moderate hypoxemia have frequent and eventually significant desaturations during activities of daily
living and at night [21].

Adapting oxygen therapy to dynamic patients’ needs appears to be a key challenge. Among the
primary goals of the dynamic and adaptive oxygen flow adjustment are: (a) the optimization of therapy
and safety by minimizing the number of desaturation episodes, preventing periods of hyperoxia and
hyperoxia [12]; (b) the customization of the oxygen flow to the individual needs of patients; and (c)
oxygen consumption optimization.

In traditional flow oxygen delivery, the titration of oxygen therapy is generally performed
manually by selecting the level of oxygen flow [22]. In LTOT, this manual adjustment of oxygen flow is
carried out by patients themselves to meet their changing needs. The current POCs have a manual flow
regulator that is adjusted by prescription to a specific level of flow measured in litres or pulses. Existing
flow regulators modify the flow mechanically, by manipulating a valve, or electronically, by means of a
keypad integrated into the device. However, the manually continuous adjustment of the oxygen flow
rate is a time-consuming task that requires experienced and trained patients [23], and this can lead to
the improper use of the device and consequently to a poor quality flow adjustment during the changing
daily activities, which is usually linked to unintended delays and periods of desaturation [24,25].
Given the advanced average age of patients with COPD under LTOT [26], the probability of inadequate
use of the device is significant.

Very recently, the abovementioned limitations led to the search for new physiological closed-loop
devices (PCLC) that timely adjust oxygen flow rates to the needs of patient automatically [22].
PCLC medical devices use one or several physiological sensors to manipulate a physiological variable
autonomously according to the guidelines given by clinicians [27]. Exponents of PCLC in respiratory
medicine are the novel intelligent portable oxygen concentrators. Most of the published articles on
technologies for PCLC in oxygen therapy for adults are from post-2010, indicating that these devices
are a relatively new field in the respiratory speciality. These devices may potentially optimize oxygen
therapy, reduce the workload of health professionals, minimise medical error, shorten health care costs,
and decrease mortality and morbidity [28,29].

Intelligent POCs include three main components: a system for monitoring the patient’s
oxygenation, an algorithm to estimate the O2 flow settings to achieve the targeted oxygenation
level, and an O2 source [20]. Figure 1 depicts the global architecture of a PCLC oxygen therapy device.

Figure 1. Common architecture of mostly proposed closed-loop portable oxygen concentrators.

In the most common approach, the process variable is selected to be SpO2, since it is a non-invasive
measure that does not require calibration. A recent systematic review reported that SpO2 (pulse
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oximeter) was used in 100% of studies on PCLC systems for automatic oxygen delivery in patients with
COPD [25]. Concerning the algorithms, the review concluded that continuous control by applying
conventional classical proportional-integral-derivative (PID), proportional-integral (PI), and rule-based
controllers have been proposed in the context of LTOT systems [30–33]. In these studies, the most
significant findings were related to the shortening of hypoxemia and hyperoxemia episodes when
PCLCs were used. However, a challenge in these algorithms is related to stability and robustness,
associated with the system capacity to discriminate between real abnormal oxygenation events and
ghost episodes caused by motion artefacts or a poor-quality oximetry signal. This major challenge has
not been overcome, and, at present, there are only a few commercial systems available (i.e., Optisat
AccuO2® [34], the O2 Flow Regulator® [33], and the FreeO2® [19]). The existing systems require
the patients to be continuously connected to a pulse oximeter, which becomes the primary source of
information for the algorithm. Current pulse oximetry technology is marked by the instability of the
sensor relating to movements or by the physiological delay in the measurements, which may reduce
its clinical effectiveness. Additionally, this technology presents very limited effectiveness in assessing
hyperoxia and promptly detecting respiratory depression [22]. Moreover, pulse oximeters are known
to be inaccurate in conditions that decrease arterial blood perfusion or cause the presence of elevated
concentrations of carboxyhaemoglobin (CoHb) and methaemoglobin (metHb).

As a consequence, the development of innovative physiological sensors and predictors of oxygen
desaturations to enable autonomous therapy and support its clinical validity is still an on-going
challenge [35].

In addition to technological matters, patient perceptions on usability and adequacy of POCs is an
issue. In a recent study, 51% of the patients under LTOT consulted reported oxygen problems related
to equipment malfunction, a lack of physically manageable portable systems, and a lack of portable
systems with high flow rates [36]. In that study, 44% of respondents referred to the limitations in
activities outside the home imposed by inadequate portable oxygen systems.

In summary, despite their potential and the existing end-users (patients) demand, PCLC oxygen
therapy devices are scarcely found in real clinical applications. The robustness of control algorithms,
the limited reliability of sensors, safety and usability issues, among others, can underlie this lack of
clinical implementation [25].

In this work, we propose an alternative approach that enables a POC to be transformed into
an intelligent POC (iPOC) to adjust the oxygen flow automatically in patients with COPD and
respiratory failure that receive LTOT. The proposed system is based on the automatic classification of
the intensity of the patient’s physical activity and can adjust the oxygen flow to individual real-time
needs autonomously. It is a transdisciplinary work, rooted in the field of respiratory medicine, with
contributions from electronics, control theory, computer science and artificial intelligence.

An external portable electronic system was designed and integrated into a commercially available
POC. The system comprised two units: 1) a sensor unit attached to the patient, that classifies the
physical activity in real-time; and 2) a receiver unit, interfaced to the POC, that adjusts the oxygen flow
according to the input from the sensor unit automatically. The algorithm for the automatic recognition
of physical activity was trained and validated using machine learning techniques. A circuit was
designed to gather data for personalizing models and to evaluate the system performance in a group
of patients with COPD and respiratory failure receiving LTOT.

The rest of the paper is organised as follows. Section 2 details the participants, materials, devices
and methodology applied to develop the iPOC system and to conduct the experiments. In Section 3,
the results achieved are presented and discussed. Finally, Section 4 captures the conclusions and
future works.
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2. Materials and Methods

2.1. System Architecture and Working Principle

Figure 2 shows the general outline of the proposed iPOC. The closed-loop control was implemented
using a SISO (Single Input - Single Output) controller [37]. The control law is defined by a lookup-table
controller. The oxygen flow level (output) corresponding to each state of physical activity intensity
(yn) was defined by the pulmonologists and personalised to the needs of each patient according to
conventional clinical assessment procedures [38]. The system automatically identifies the intensity
of the patient’s physical activity by classifying it into one of a 3-class scheme (sedentary, light, and
moderate). The intensity of physical activity detected in real-time is communicated to a control unit
connected to the POC, which is responsible for adapting the oxygen flow to the level previously
calibrated by the physician for each situation. Therefore, when an increase in the intensity of the
patient’s physical activity is detected, the system manages the automatic increase in oxygen flow.
Conversely, when the patient lowers the intensity of the physical activity, the device orders the flow to
be decreased to the predetermined level for that new condition. In addition, the automatic dosing
device can be deactivated by switching the system to the conventional manual mode. The proposed
system comprises a unit for estimating the intensity of the patient’s physical activity (sensor unit) and
unit for controlling the oxygen supplied flow (control unit). These units where designed iteratively
using a patient-centred approach. Each of these elements will be described in more detail in the
next subsections.

 

Figure 2. The architecture of the proposed intelligent closed-loop portable oxygen concentrator (iPOC).

2.1.1. Sensor Unit

The sensor unit is a portable module placed on the patient’s chest. Accelerometer- and
gyroscope-based physical monitoring systems have been shown to be able to discriminate between
different daily activities [39–42]. Each of these physical activities leads to a different level of energy
expenditure, and in patients under LTOT, to different oxygen flow requirements. For the estimation
of the intensity of physical activity, an inertial measurement unit (IMU) based on MEMs technology
was used. This IMU included a three-axis accelerometer, a triple-axis gyroscope, and a barometer.
The signals acquired by the IMU were processed using a microcontroller (MCU) and digital signal
processing techniques to extract features useful for discrimination. A classification model, trained and
validated using machine learning algorithms, automatically classified the intensity of the activity and
transmitted this information wirelessly to the control unit.

The sensor unit incorporated a Mealy finite-state machine (FSM) after the classification stage as a
safety mechanism (Figure 3) to prevent abrupt changes in the flow of oxygen (e.g., change of state from
a sedentary level to a moderate one or vice versa).
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Figure 3. The Mealy finite-state machine included as output layer to provide a supplementary safety
mechanism in the automatic delivery of oxygen flow. PS: Previous state; POC_S: Portable Oxygen
Concentrator State; CS: Current state.

In order to conduct the research, two prototypes of the sensor unit were developed, each with
different purposes and requirements. The first prototype was designed to perform raw-data collection
using a μSD card during the training and internal validation of the machine learning models (Figure 4).
It was equipped with a SAM-D21 (ARM M0+ 32bits, 256KB Flash, 32KB RAM) microcontroller. An RGB
LED was added to show the device state (e.g., error state, standing state, starting data recording state
and recording data state).

Figure 4. The sensor unit implemented for data logging in the first design stage.

The second prototype was implemented to host the final trained classification model including the
FSM. It featured an ARM M0 (32bits, 128KB Flash and 24KB RAM) and wireless Bluetooth Low Energy
(BLE) communications. Both prototypes were equipped with the 9-axis MEMS sensor LSM9DS1,
which includes 3 digital acceleration channels (±2/±4/±8/±16 g linear acceleration full scale), 3 angular
rate channels (±245/±500/±2000 dps angular rate full scale), SPI/I2C serial interfaces, 16-bit data output
and programmable interrupt generators. In addition, an LPS25HB MEMS piezo-resistive pressure
sensor was used. The PS25HB barometer measurement range is from 260 to 1260 hPa. Pressure sensor
information showed poor sensitivity for real-time classification purposes and was not used in the
study. Both PCBs incorporated a 600 mAh lithium polymer (LiPo) battery, management connectors
and circuits. The housing of the final prototype was designed with a double patient fixation option:
nasal cannula tube fixation (Figure 5a) and thoracic elastic band fixation (Figure 5b).
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(a)                                          (b) 

Figure 5. Three-dimensional design of the embodiment of the final prototype of the sensor unit
including: (a) an adapter to the nasal cannula; (b) an adapter for a chest-band.

The sensor unit draws around 10 mA with 60 mA peaks when Bluetooth communications are used.
In the worst scenario, considering an average consumption of 30 mA and the 600 mAh battery, the unit
performs monitoring for about 14 h using the 600 mAh battery. This operating time is significantly
longer than that of the oxygen concentrator, which ranges from 2 to 5 h.

The sensor unit was placed in the chest of the user, just at the end of the sternum. It has been
reported that this location generates fewer motion artefacts due to movements compared to systems
placed on the wrist, ankle or the belt [43]. The unit was mounted to ensure that the Y-axis of the IMU
pointed at the head of the subject, and the Z-axis in the walking course. (Figure 6).

 
Figure 6. Preferred placement of the sensor unit on the subject’s body.

2.1.2. Control Unit

The control unit receives the estimate of the intensity of the patient’s physical activity and
is responsible for adjusting the oxygen flow supplied to the patient according to the instructions
established during the process of tuning of the therapy. The control unit includes an MCU and wireless
communication capabilities, and interfaces directly with the POC. It was equipped with an ARM M0
(32bits, 128KB Flash and 24KB RAM), wireless BLE communications, an RGB LED, and a push-button
to activate the automatic mode in the POC (Figure 7). The unit was directly powered from the POC.

301



Sensors 2020, 20, 1178

 

Figure 7. The control unit implemented for communication with the sensor unit and for controlling the
portable oxygen concentrator. Header jumpers were used to personalize oxygen therapy settings and
push button to switch the portable oxygen concentrator operating mode (manual or automatic).

The control of the concentrator by the control unit was carried out by simulating physical pulses
to the increase and decrease buttons in the touch keyboard of the POC. As a consequence, the interface
between the control unit and the POC was implemented using a 5-pin connector that enabled the
power supply of the unit and the switching of the signals to increase or decrease the flow. In addition,
a 6-pin male connector was included to enable the personalisation of different oxygen levels settings
using header jumpers (see Table 1 and Section 2.1.2). As an example, the setting number 2 should be
selected (jumper P2 on) for a patient who requires, at 15 breaths per minute, a bolus volume of 12 mL at
rest, of 36 mL while doing light intensity activity, and of 60 mL when doing moderate intensity activity.

Table 1. Personalisation of oxygen therapy in the control unit. Seven different options were available.
Bolus volume (pulse setting 1 to 5) delivered to patient depending on the intensity of physical activity
ranges from 180 mL (pulse setting 1) to 900 mL (pulse setting 5).

Setting Pulse Setting according to Physical Activity Jumpers Setting

Sedentary Light Moderate P3 P2 P1
1 1 2 4 X
2 1 3 5 X
3 1 4 5 X X
4 2 4 5 X
5 3 4 5 X X
6 0 2 5 X X
7 0 1 4 X X X

The control unit presents the same power consumption as the sensor unit. It is powered from
the POC and causes a battery drain of 214 mAh, what supposes a decrease of about 12 min in the
concentrator operating time.

2.1.3. Portable Oxygen Concentrator

Inogen One G2 POC was used in the study (Figure 8). The Inogen One G2 delivers up to
900 mL/min of 90% oxygen and supports pulsed dose delivery [44]. This concentrator has five levels
for the adjustment of the oxygen needs. The oxygen dose applied to each patient in each situation
depended on the previous titration by the specialist.
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Figure 8. Inogen One G2 Portable Oxygen Concentrator used in the study.

In general, this POC delivers 12 mL per bolus per flow setting at 15 breaths per minute (180 mL/min
per-flow setting). Table 2 summarizes the bolus volumes delivered at reference environmental
conditions. Slower breathing patients will receive larger boluses, and faster breathing patients will
receive smaller boluses.

Table 2. Bolus volumes delivered by Inogen One G2 at 20 ◦C at sea level at different breathing frequencies.

Pulse Setting
Pulse Volume (ml ± 10%)

15 Breaths per Minute 20 Breaths per Minute 25 Breaths per Minute

1 12 9 7.2
2 24 18 14.4
3 36 27 21.6
4 48 36 28.8
5 60 45 36.0

2.1.4. Communication Protocol

The units were programmed using the Arduino Integrated Development Environment (IDE).
The bidirectional communication between the sensor unit and the control unit takes place using
low-latency Bluetooth 4.0 (BLE) with 128-bit AES CCM (counter with cypher block chaining message
authentication code CBC-MAC) encryption/decryption without pairing. The messages are sent
encrypted with the serial number of the sending microcontroller and it is the receiver that uses the
serial number to decrypt the messages. The wireless control can be authenticated through toasts for
the confirmation of the desired operations and also tracked through timestamps. BLE remains in
sleep mode at all times, except when participating in a data exchange, which reduces overall energy
consumption. In this manner, the sensor unit only sends messages when there is a change in physical
activity intensity.

2.2. Study Design and Participants

A total of 18 volunteers (Table 3) were recruited for this study at the Pneumology, Allergy,
and Thoracic Surgery Unit of the University Hospital Puerta del Mar de Cadiz (Spain) (14 male,
average age 66.9 ± 12.8 years, range 60–93 years, average body mass index (BMI) 27.00 ± 3.6 kg/m2).
The participants selected had a diagnosis of COPD and stable chronic respiratory failure, and were
receiving LTOT and using a POC.
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Table 3. Demographic and clinical data for patients in the internal validation group.

Characteristics Data *

N 18
Male/Female 14/4 (77.7%/22.3%)

Age (years) 66.9 ± 12.8 (60–93)
51–60 5.6% (1)
61–70 44.4% (8)
71–80 16.7% (3)
81–90 33.3% (6)

BMI (Kg/cm2) 27.0 ± 3.6
LTOT history (months) 22.1 ± 18.1
POC history (months) 19.5 ± 13.2
Daily hours using the POC 2.3 ± 1.0
mMRC dyspnoea baseline level 2.6 ± 0.5
FEV1/FVC 0.5 ± 0.2

BMI: Body mass index; LTOT: long term oxygen therapy; POC: portable oxygen concentrator; mMRC: Modified
Medical Research Council scale; FEV1/FVC: forced expiratory volume in 1-s to forced vital capacity ratio. * Results
expressed as mean ± SD, except where otherwise indicated.

Exclusion criteria included any organic comorbidity that could cause or contribute to exertional
dyspnoea that would hinder the realization of the circuit (cardiovascular diseases, metabolic or other
associated respiratory diseases), COPD exacerbation within the six weeks before the enrolment or any
disease that could limit the physical activity of the patient (e.g., neuromuscular or skeletal diseases).
The general fragility (i.e., difficulty in walking or lack of autonomy) that could substantially prevent the
patient’s participation in the study was also considered an exclusion criterion, as well as the diagnosed
mental incapacity. Prior to enrolment, all participants signed an informed consent form. The local
ethics committee approved the study protocol.

In order to train and validate the machine learning models, an accurate reference (gold standard)
was required. For this reason, the experiments were carried out in the hospital, where it was
possible to observe participants closely, perform accurate references and do it under medical and
technical supervision.

During a single visit to the hospital, participants were first interviewed. The Mini-Mental state
examination (MMSE) was conducted and dyspnoea was measured before and after the test using the
Modified Medical Research Council scale (mMRC). Then, subjects were fitted with the designed sensor
unit and the Inogen One G2 portable oxygen concentrator. The participants followed the designed
study protocol that started with an initial period of three minutes at rest, in a seated position. Next,
participants were asked to walk, following the circuit illustrated in Figure 9, for 12 min.

Figure 9. Walk-through circuit designed to acquire data for training and system validation.
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The circuit included sections for walking, climbing and descending stairs. Participants were
asked to exercise a gait pattern similar to that maintained in their daily activity in order to capture
representative conditions of the activities performed in daily free-living conditions. Along the route,
chairs were arranged for the subject to make stops when he/she considered necessary. Throughout
the experiment, there were no restrictions on the participant’s body movements. The final activity
consisted of sitting for three minutes.

During each test, the stop and start times of each activity were noted and a label was assigned to
each period of time. In addition, the number of user interactions with the POC, the flow level selected
by the patient in each section of the circuit, the number of rest episodes (seated) of the participant, the
oxygen saturation and the heart rate (measured using a Nonin WristOx2

® Model 3150 pulse-oximeter),
and the distance walked were recorded.

2.3. Automatic Classification of the Intensity of Physical Activity

2.3.1. Daily Activities in Patients with COPD

The metabolic equivalent of tasks (MET) expresses the energy cost of physical activities and is
defined as the ratio of the work metabolic rate to the resting metabolic rate, expressed in kcal/kg/hour.
One MET is considered to be equivalent to the energy cost during quiet sitting. In addition, a MET
can also be defined as the amount of oxygen consumed while sitting at rest, measured in ml/kg/min.
In this case, one MET is equal to the oxygen cost of sitting quietly, equivalent to 3.5 mL/kg/min. A third
definition relates MET to the rate of energy produced per unit surface area of an average person seated
at rest, expressed in W/m2 [45].

Different intensity physical activities entail different energy costs and therefore require varying
levels of oxygen consumption. Table 4 describes the physical activities considered in this study. High
intensity physical activities were not addressed since they are not expected in patients with COPD and
respiratory failure. As described above, the amount of oxygen supplement required for each patient
according to the intensity of the physical activity is titrated by the specialist at the initiation of therapy.
A change in the intensity of the physical activity performed by the patient poses a need for updating
the amount of oxygen provided by the POC [46].

Table 4. Activities, grouped by intensity, associated MET, and the number of instances.

Intensity Activity METs (W/kg) Number of Instances

Sedentary
Sitting

Standing
Lying

1.3 2160

Light Walking 2 3115

Moderate Walking upstairs
Walking downstairs 3.5–5 550

Total 5825

MET: The metabolic equivalent of task.

2.3.2. Data Processing and Features Extraction

The data from the accelerometer and from the gyroscope (X, Y and Z axes) were collected at a
sampling rate of 25 Hz. The acceleration signals were divided into windows of 3 s (75 samples) without
overlap, which was considered enough to capture significant properties of the signal. Activities of
different intensity were identified from annotated labels.

In order to remove the DC component in the IMU signals, a high-pass filter with a cut-off frequency
of 0.15 Hz was applied. The filtering was implemented using a low-pass IIR filter whose output was
subtracted from the original signal.
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For each of the time windows, 98 time-domain features were extracted from the six filtered
acceleration and gyroscope signals. The explored features are detailed in Table 5. Features from
the frequency and non-linear domains were excluded to reduce the computational burden in the
microprocessor when implementing the real-time classification model.

Table 5. Initial feature set.

Feature Set (Accelerometer +Gyroscope) Features

RMS, standard deviation, absolute mean 18
Mean of the derivative 6
Pairwise correlations 6
Simplified energy 6
Moments (skewness, kurtosis, median) 18
Min, max, difference between max and min 18
Interquartile range 6
Signal magnitude vector (mean, standard deviation, median,
skewness, kurtosis) 10

Signal magnitude vector (interquartile range, max, min, the
difference between max and min) 8

Signal magnitude area 2
Total 98

RMS: Root mean squared.

2.3.3. Features Selection

In order to improve the computational efficiency and reduce the generalization error of the model
by removing irrelevant features, a wrapper feature selection approach was followed. The space of
attribute subsets was searched by greedy hill-climbing augmented with a backtracking facility [47].
The search started with an empty set of attributes and search forward. The number of consecutive
non-improving nodes allowed before terminating the search was 5. The feature selection algorithm
operated in tandem with different machine learning classifiers and classification accuracy at each step
was compared. The entire training-internal validation process is shown in Figure 10.

Figure 10. Wrapper approach to feature subset selection. A search algorithm was used through the
space of possible features and evaluate each subset by training and cross-validation a model.

2.3.4. Classification and Internal Validation

A binary hierarchical classification structure (BHC) with two classifiers was chosen due to its
computational simplicity [48]. Figure 11 shows the proposed architecture of a hierarchical classifier
that requires two pairwise classifiers arranged as a binary tree with three leaf nodes, one for each class,
and two internal nodes, each with its own feature space. Each of the two internal nodes consisted of a
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classifier and a set of features specific to it. The coarse separation between classes (sedentary vs active
intensity of physical activity) occurred at the upper level in the hierarchy and a finer classification
decision (light vs moderate intensity) at a lower level [49]. The architecture had a balanced binary
hierarchical structure, in which the two meta-classes at each node had the same number of classes.
For this study, decision trees (DT), Linear Discriminant Analysis (LDA), Logistic Regression Classifier
(LR), Support Vector Machines (SVM), and Radial Basis Function (RBF) classifiers were evaluated as
candidates for each of the internal nodes.

 

1

1

1={0,1}

2

2

2={1,2}

4={1} 5={2}3={0}

Figure 11. The proposed binary hierarchical classifier (BHC) applied to the classification of the intensity
of physical activity. Given that the classifier operates with three classes, its structure has 2 internal
nodes and 3 leaf nodes. Each internal node is comprised of a set of features (ψi) and a classifier (φi).
Each node n is associated with a set of classes. In this study, classes are defined as: 0 = sedentary
physical activity; 1 = light-intensity physical activity; and 3 =moderate-intensity physical activity.

The FSM machine described in Section 2.1.1 was added to the BHC as an output layer to enhance
safety. Each classifier was trained with leave-one-subject-out cross-validation (LOSO-CV) scheme,
where data from 17 participants were used for training the classifier, and the remaining participant
data for evaluating the model performance. This process was repeated 18 times so that each participant
was used once for validation.

Several weighted metrics were used to measure model performance: precision, recall, and
F1-measure, defined as the weighted average of precision and recall. Additionally, sensitivity (Se),
specificity (Sp), and the geometric mean of sensitivity and specificity (G) were estimated. Finally, the
receiver operating characteristic (ROC) curve was computed and the area under the curve (AUC) for
each class was estimated. Signal processing and model training and validation were performed using
MATLAB software (Mathworks Inc., Natick, MA, USA) and DTREG predictive modelling software.

2.4. Technical Pilot Test

In the final stage, five participants went through the circuit designed during the previous phase,
using the POC in automatic mode (iPOC). Demographic and clinical data for these patients are shown
in Table 6.
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Table 6. Demographic and clinical data for patients in the technical pilot test.

Characteristics Data *

N 5
Male 5 (100 %)

Age (years) 72.2 ± 6.5
BMI (Kg/cm2) 28.4 ± 6.0
LTOT history (months) 27.6 ± 25.7
POC history (months) 22.8 ± 15.5
Daily hours using the POC 4.2 ± 2.4
mMRC (baseline dyspnoea index) 2.6 ± 0.5
FEV1/FVC 0.5 ± 0.2

BMI: Body mass index; LTOT: long term oxygen therapy; POC: portable oxygen concentrator; mMRC: Modified
Medical Research Council scale; FEV1/FVC: forced expiratory volume in 1-s to forced vital capacity ratio. * Results
expressed as mean ± SD, except where otherwise indicated.

This feasibility pilot was conducted with the purpose of examining technical and usability issues,
and the differences in the changes in blood oxygen saturation with respect to the circuit performed in
manual mode. Special attention was paid to the number of oxygen desaturation episodes and to the
maximum and minimum SpO2 values during the test.

2.5. Usability

After each experiment, a semi-structured interview was conducted with the involved patient,
in order to obtain information regarding the usefulness, ease of use and expectations of the participant.

In addition to the 18 patients enrolled, 15 additional patients under LTOT were interviewed by
phone, in order to have a more significant sample.

Three main questions were asked in the interview:

1. Do you consider a system such as the one proposed to be necessary?
2. Would the automatic concentrator promote your out-of-home activities?
3. In your daily use of the concentrator, do you forget to adjust the recommended dose of O2 when

the intensity of your physical activity varies?

In questions 1 and 2, the subject was asked to describe his/her degree of agreement on a Likert
scale from 1 through to 5, with the strongest positive agreement being 5. To assess usability, the System
Usability Scale (SUS) was used in the technical pilot test. SUS is a 10-item questionnaire with 5 response
options ranging from strong agreement to strong disagreement. The SUS possible values range from 0
to 100 [50].

3. Results and Discussion

3.1. Model Training and Internal Validation

The dataset used in this study phase included 18 patients, and three different classes with 2160
epochs of sedentary, 3115 epochs of light activity and 550 epochs of moderate activity. Figure 12
illustrates the signals acquired in a time window during different activities along with a test.
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Figure 12. Signals acquired during one of the experiments in the hospital, with the patient walking
the circuit designed for the physical test. (a) 3-axis accelerometer signals; (b) 3-axis gyroscope signals;
(c) barometer signal. Red vertical lines indicate changes in activity (walking on level, going upstairs,
going downstairs).

Table 7 shows the dimensions of the feature set that resulted from the wrapper-based Sequential
Feature Selection (SFS) approach for each of the explored models and classifiers.

Table 7. The optimal feature set obtained from Wrapper-based feature selection for the classifiers φ1

and φ2.

Method Selected Features for φ1 Selected Features for φ2

LR 8 17
J48 4 14
SVM 15 14
LDA 9 20
MLP 11 12

LR: logistic regression; J48: C4.5 decision tree; SVM: support vector machines; LDA: linear discriminant analysis;
MLP: multilayer perceptron.

Table 8 shows the model performance achieved by classifiers φ1 and φ2, respectively, using
the selected feature set for each trained and validated algorithm. In the case of φ2, and given the
large imbalance between classes, instances of light activity were weighted in order to balance target
categories. The weights were adjusted so that the sum of the weights for the instances within each
target category was the same.
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Table 8. Performance metrics of classifiers φ1 and φ2 for each cross-validated machine
learning algorithm.

Method Accuracy F1-Measure Se Sp G AUC

φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2 φ1 φ2
LR 94.54 91.86 95.60 64.71 95.70 51.16 93.38 98.81 94.53 71.10 0.98 0.85
J48 96.45 74.72 96.98 74.15 96.76 72.55 95.97 76.89 96.36 74.69 0.98 0.74
SVM 97.13 88.49 97.92 61.18 97.44 35.82 96.62 97.78 97.03 59.18 0.99 0.81
LDA 95.30 84.01 95.93 79.25 93.87 75.09 97.36 85.59 95.60 80.17 0.99 0.88
MLP 96.02 77.24 96.62 77.58 96.31 78.73 95.60 75.76 95.95 77.23 0.99 0.85

LR: logistic regression; J48: C4.5 decision tree; SVM: support vector machines; LDA: linear discriminant analysis;
MLP: multilayer perceptron; Se: Sensitivity; Sp: specificity; G: geometric mean of sensitivity and specificity; AUC:
area under the receiver operating characteristic curve (ROC) curve.

The results show that the φ1 classifier implemented using SVM was able to discriminate between
sedentary and active physical activity with a maximum value of F1-measure, G, and AUC of 97.92%,
97.03% and 0.99 respectively. In the case of the φ2 classifier, designed to discriminate between light
and moderate-intensity physical activities, maximum F1-measure, G and AUC were 79.25% (LDA),
97.13% (SVM) and 0.99 (SVM, LDA, MLP) respectively. The lower performance shown by classifier
φ2 is explained by the difficulty in discriminating between up and downstairs activities, which has
already been reported in other studies.

According to the results found, the LDA model, which demonstrated a better compromise between
sensitivity and specificity, and the higher AUC, was chosen for implementing the classifier φ2 in the
hardware. For classifier φ1, the J48 decision tree was chosen for the hardware deployment. Although
the SVM algorithm obtained better results in terms of G, it was discarded given that the differences in
performance were minimal and the computational cost of the SVM and its associated feature space
was significantly higher.

Figure 13 shows the Receiver Operation Characteristics (ROC) curves for each class and both
classifications approaches.
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Figure 13. Receiver Operating Characteristics (ROC) Curves for selected models. The blue line
represents the ROC curve for the J48 model. The green line shows the ROC curve for the J48 classifier.

Table 9 illustrates the confusion matrix and the performance metrics for the build two stages of
classification procedure (BHC). The BHC was able to achieve a weighted-F1 measure of 85.9% with
weighted-precision and weighted-recall of 85.9%, and 86.1%, respectively.

During the completion of the circuit, the participants had to manually adjust the oxygen flow
several times during the route. The total number of adjustments required for the rounds completed
was 96. By contrast, participants only manipulated the oxygen concentrator to suit the needs of
O2 demanded by the physical activity performed on 17 occasions, which showed underuse (only
17.7% of needed adjustments were carried out) of the device that could potentially lead to oxygen
desaturation events.
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Table 9. Performance metrics for the binary hierarchical classification structure for each of the levels of
intensity of physical activity.

Predicted Performance

True

S Other Precision Recall Accuracy F1-Measure
S 2073 77

95.4% 96.4% 97.0% 95.9%Other 101 3666
L Other

L 1569 335
76.1% 82.4% 85.9% 79.1%Other 493 3466

M Other
M 1393 470

82.9% 74.8% 86.9% 78.6%Other 288 3642
S: Sedentary; L: light intensity of physical activity; M: moderate intensity of physical activity.

3.2. Technical Pilot Test

The technical pilot test was carried out in a controlled environment in the hospital. The participants
walked the same circuit designed for data collection for model training and internal validation.

Figure 14 shows one of the participants during the test carrying the POC and the auxiliary units
designed for its automation.

 

Figure 14. A participant using the automatic portable oxygen concentrator during the technical
pilot test.

Table 10 synthesizes the results obtained by the BHC using the same performance metrics applied
for internal validation.

Table 10. Weighted performance metrics of the binary hierarchical classification structure in the
technical pilot test.

Accuracy F1-Measure Precision Recall

91.1% 76.6% 74.9% 83.6%

Again, the accuracy achieved is high (91.1%) but conditioned by the errors in the classification
of the activities up/downstairs. These errors are caused by the inherent difficulty in classifying these
tasks, and by the different pattern in each patient’s gait, which depends on their physical condition.
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As a general rule, patients with COPD and respiratory failure who are receiving LTOT avoid using
long flights of stairs, thus errors made in this regard cannot be considered critical in a real-life scenario.

Table 11 shows a comparison of the results for changes in blood oxygen saturation for each of
the five participants during manual mode (conventional use of the device) and automatic mode tests
(proposed iPOC).

Table 11. Changes in blood oxygen saturation levels during the tests performed using the conventional
portable oxygen concentrator (POC) and the proposed intelligent POC (iPOC).

Mode Automatic POC (iPOC) Manual POC

Subject S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
SpO2 events 2 1 1 2 3 3 3 6 1 2
Mean SpO2 89.5 92.2 89.1 94.7 87.1 88.6 90.4 86.1 91.5 89.5
min (SpO2) 77.0 87.0 85.0 89.0 81.0 80.0 86.0. 75.0 81.0 93.0
CT90 50.1 18.8 70.9 8.4 73 62.9 33.1 91.7 20.9 60.6
CT85 34.9 0.0 0.0 0.0 27.6 17.4 0.0 33.9 2.8 6.3

CTxx: time spent with SpO2 < xx%.

An overall reduction in the number of desaturation events can be appreciated in four out of the
five subjects. In the same four patients, the average blood oxygen saturation values were increased
with respect to the POC test in manual mode. In the same way, the minimum blood saturation values
were also improved. The cumulative time spent with SpO2 below 90% (CT90) and 85% (CT85) again
showed a generally better response when the iPOC was used.

Subject 5 deserves a special mention. He went around the circuit with reduced mobility due to the
use of a crutch as a result of an episode of low back pain. Additionally, he showed signs of exacerbation
within few days after the test. Some authors have detected significantly decreased saturation in the
period of seven days preceding exacerbation [51], so we think that the result of the test could have
been biased by these factors.

Figure 15 illustrates the change in blood oxygen saturation pattern on exertion for one of the
participants. The stabilization of SpO2 values, the reduction in the number of desaturation events,
and the higher mean value obtained with the use of the proposed system can be clearly observed.

Figure 15. SpO2 patterns of a participant during the technical pilot test. The blue line refers to SpO2

values while using the portable oxygen concentrator with the proposed automatic mode. The green
line refers to SpO2 values using the POC in manual (conventional) mode.

Improvement in oxygenation is attributable to the fact that the adjustment of oxygen flow during
daily living activities in response to higher oxygen demand is done, in conventional POCs, manually
by the patient. Incorrect use in the oxygen flow adjustment or adjustment made with a delay relative
to the change in physical activity intensity often leads to desaturation episodes [24].
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3.3. Usability

Table 12 presents a synthesis of the results obtained in the semi-structured interview with the
participants in the initial phase.

Table 12. Results from the semi-structured interview.

Question Average Likert Score

1. Do you consider a system such as the one proposed to be necessary? 5 ± 0 (33)
2. Would you the automatic concentrator promote your out-of-home activities? 5 ± 0 (33)
3. In your daily use of the concentrator, did you forget to adjust the
recommended dose of O2 when your degree of physical activity varies?

• Yes
• The patient consciously does not adapt the flow
• The patient ignores that he has to adjust it

51.5% (17)
30.3% (10)
18.2% (6)

All the patients interviewed considered that a system capable of automatically regulating the
oxygen flow in the concentrator was necessary. They also felt that such a system would help increase
physical activity outside the home. The high percentage of patients who admit to forgetting to adjust
the concentrator when faced with changes in physical activity intensity (51.5%) is noteworthy. Similarly,
the percentage of patients who consciously skip the adjustment of the oxygen flow is outstanding.
Finally, the average SUS score calculated after the technical pilot test was 79 ± 11.4. There was one
participant that had an average SUS score of 95, followed by scores of 85 (1/5), 75 (2/5), and 65 (1/5).
In the research, the average SUS value is 68, which can be considered a benchmark. The achieved value
of 79 indicates significantly better usability than average [52].

4. Conclusions

The long-term benefits of oxygen have been proven since the 1980s in certain respiratory conditions
such as COPD. Very recently, future research in oxygen therapy has been pointed at developing and
evaluating new models for therapeutic oxygen patient education and improving portable oxygen
devices [53]. It has been reported that, when compared to the conventional POCs, the closed-loop
POCs can maintain higher saturation levels, spend less time below the target saturation, and save
O2 resources [25]. The correction of exercise hypoxemia in lung diseases like COPD is crucial and
challenging [54], and automatic POCs can contribute to the individualized adjustment of oxygen flow.

Currently, the challenge of designing closed-loop portable devices which are able to adjust O2

flow automatically is being faced by mainly using indirectly measured blood oxygen saturation as
a process variable to close the loop. However, the robustness of control algorithms and the limited
reliability of current oximetry sensors are hindering the effectiveness of this approach.

In line with all the above-mentioned factors, this study presents the proof of concept of an
alternative approach: a system to transform a conventional POC into a closed-loop controlled device
capable of automatically self-adjusting, in real time, the oxygen flow supplied to the patient according
to the intensity of the physical activity carried out by the user under LTOT.

A sensor unit capable of detecting the physical intensity developed by the patient (in real time)
has been developed and evaluated. This sensor unit can wirelessly connect to the POC for the
self-adjustment of the oxygen flow. The system has been designed with the flexibility to customize
up to seven different oxygen therapy profiles. The developed iPOC was tested with a widely used
commercial POC unit. For this purpose, a treadmill circuit was designed that included basic physical
activities most common in the daily practice of elderly patients with respiratory disorders. Different
models were trained and validated using artificial intelligence techniques, a wrapper approach,
98 time-domain features, and data from 18 patients with COPD and respiratory failure. A final
meta-classifier (BHC) was designed and deployed in the sensor unit to operate in real-time. A weighted
accuracy of 91.1% was achieved in the technical pilot test with five patients. A reduction in the number
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of desaturation events was achieved in 80% of patients as well as improved minimum and average
blood oxygen saturation values compared to the POC in manual operating mode. In these cases, CT90
and CT85 also showed a promising better response when the iPOC was used. Finally, all interviewed
patients (N = 33) considered that the proposed iPOC satisfied them, and could promote their physical
activity outside the home.

Among the limitations of this study were those related to hypoxia. In this regard, the combination
of the proposed system with the novel oxygen reserve index (ORI) included in the new generation of
pulse oximeters that use multi-wavelength pulse co-oximetry might improve oxygen titration and
enable the prevention of unintended hyperoxia [55].

A closed-loop control system, like the proposed iPOC, has clear potential benefits, including
improved oxygenation regardless of physical activity and enhanced patient follow-up and compliance
with therapy recommendations. In addition, closed-loop oxygen supply systems have shown that they
can potentially reduce medical error, improve morbidity and mortality, and reduce care costs [22].

Future research steps include the miniaturization of the sensor unit, expanding the study sample,
and the home monitoring of the patients while using IPOC during daily tasks in an unsupervised
environment, in order to obtain clinical evidence of the impact that this approach may have on the
targeted patient population.
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Abstract: Dietary monitoring is vital in healthcare because knowing food mass and intake (FMI)
plays an essential role in revitalizing a person’s health and physical condition. In this study, we report
the development of a highly sensitive ring-type biosensor for the detection of FMI for dietary
monitoring. To identify lightweight food on a spoon, we enhance the sensing system’s sensitivity with
three components: (1) a first-class lever mechanism, (2) a dual pad sensor, and (3) a force focusing
structure using a ring surface having protrusions. As a result, we confirmed that, as the food arm’s
length increases, the force detected at the sensor is amplified by the first-class lever mechanism.
Moreover, we obtained 1.88 and 1.71 times amplification using the dual pad sensor and the force
focusing structure, respectively. Furthermore, the ring-type biosensor showed significant potential
as a diagnostic indicator because the ring sensor signal was linearly proportional to the food mass
delivered in a spoon, with R2 = 0.988, and an average F1 score of 0.973. Therefore, we believe that
this approach is potentially beneficial for developing a dietary monitoring platform to support the
prevention of obesity, which causes several adult diseases, and to keep the FMI data collection process
automated in a quantitative, network-controlled manner.

Keywords: dietary monitoring; healthcare; ring-type biosensor; personalized digital medicine

1. Introduction

The intake amount of food is a critical factor in determining the state of the body’s health because
overeating can cause obesity, diabetes, and high blood pressure [1–3]. Patients who die from diseases
such as cardiovascular disease, diabetes, and cancer account for more than 70% of deaths worldwide.
The WHO reports that obesity due to an unhealthy diet and lack of physical activity is one of the
leading causes of death [4]. In particular, obesity in children leads to obesity in adults and causes
hyperinsulinemia, hyperlipidemia, glucose intolerance, and decreased growth hormone [5]. Moreover,
the increase in social costs due to obesity is an economic burden for every country. Therefore, dietary
monitoring is necessary for societal, economic and public health reasons. The need for food mass and
intake (FMI) information has been increasing because of the knowledge that FMI plays an essential
role in revitalizing a person’s health and physical condition.

A wearable type of sensing system is required to detect and analyze intake in real-time throughout
the day. In previous research, devices such as a mouthpiece, a skin patch, a wristband, a neckband,
a microphone, a camera, and smart glasses were used. Among the previous studies, there was a study
to detect food intake patterns using an accelerometer mounted on a mouthpiece [6]. There was also a
dietary monitoring method using a skin attachment sensor [7]. Moreover, monitoring FMI has been
analyzed using an attachment on a tooth. Although the attachment had an ultra-thin design, it still
gave the user a negative perception due to the electrical current flowing in the mouth [8]. Additionally,
rejection of the attachment by the body is also a problem to be solved. Separately, there is an indirect
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dietary monitoring method that measures the freshness of food by the detection of bacteria in tuna
broth [9]. Dietary monitoring has also been attempted by sound discrimination using a microphone in
a headset. In this case, the reduction of accuracy caused by ambient noise can be an issue [10,11]. In a
different example, a sensing method was developed that monitored the swallowing motion using a
piezoelectric element or an EGG (electroglottography) sensor in the neckband. This sensor approach
focused on only intake pattern, limiting the use of the actual dietary monitoring [12,13].

Dietary monitoring may also be performed by using a smartphone camera to detect the food
volume and pattern of intake. However, there is the inconvenience of carrying a camera and the
requirement of taking an accurate picture according to instructions in a manual [14–20]. The eating
pattern can also be detected through a wrist-type inertial sensor, such as a watch [21]. There is also a
method for detecting the movement of facial muscles, including the oral cavity, with a piezoelectric
sensor attached to the side of eyeglasses. However, that system has a problem in that it is difficult
to identify the correct pattern because the force recognized by the sensor is insensitive. There is
also an issue that the volume of the glasses at the temple increase [22,23]. In summary, the existing
dietary monitoring studies had limitations in accurately measuring FMI, which is the core of dietary
monitoring. In addition, there was an issue of users not wanting to wear the sensors due to the
non-compact form factor.

In this study, we present a new dietary monitoring method using a compact, ring-type sensor
on the hands, the final body part involved in eating prior to intake. We develop a highly sensitive
finger sensing system using a ring-type flexible force sensor, with data connectivity via Bluetooth.
We introduce three factors to enhance the sensitivity of the sensing system for detecting lightweight
food. We validate our sensing system via experiments focused on the usability and accuracy of the
device. Our results indicate that a wireless, ring-type finger sensing system can measure FMI with
high sensitivity and accuracy for dietary monitoring.

2. Materials and Methods

2.1. Design and Fabrication of the Ring Sensing System

The composition layers of the ring sensing system and the flexible sensor are shown in Figure 1A.
The layers of the sensing system start from the bottom, consisting of the ring, and include a flexible
sensor, a printed circuit board, a battery in a holder, and the housing. The flexible sensor is composed of a
cover lens, a polyethylene terephthalate (PET) substrate, a conductive polymer, an electrode, a substrate,
and a pressure-sensitive adhesive (PSA). The layer on the top of the electrodes is a high-resistance
material in which conductive particles are dispersed in a polymer such as polycarbonate (PC) or poly
(methyl methacrylate)(PMMA), and pressure is detected by the contact area’s change with the electrode
according to the applied force. The cover lens protects the sensor. The electrodes and conductive
polymers are deposited and patterned with a screen printing process.

As shown in Figure 1B, the ring sensor is placed on the bottom of the thumb, the typical contact
point when holding a spoon. Here, the ring sensor uses a flexible force-sensing resistor, which detects
the resistance change caused by the contact area’s change when pressure is applied. We used a ring
apparatus with a unique pattern that can focus the pressure from the spoon contact. The structure is
made from polylactic acid and is fabricated using a 3D-printed, fused deposition method. The flexible
force sensor is then placed on the structure. The driving voltage, 3 V, is applied to the sensor through
two coin LR44 batteries in the battery holder layer, and the system communicates wirelessly with a
smartphone via a field-programmable gate array (FPGA) board with a Bluetooth module. We used the
compact module, Steval stlcs01v1 by STMicronics(Geneva, Switzerland), for Bluetooth low energy
connectivity and pressure sensing. For the smartphone operating system, we used Android version
9(Mountain View, CA, USA). Finally, we confirmed the signal of no spoon mass by taking a new
baseline using filtering, and then monitored the signal generated by food mass on the spoon using the
wireless system, as shown in Figure 1C,D.
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Figure 1. Schematic illustration and photograph of the ring-type biosensor for dietary monitoring
via a smartphone. (A) Composition layer of ring sensing system: ring, sensor, printed circuit
board, battery and housing, and flexible sensor: cover lens, substrate, conductive polymer, electrode,
substrate, and pressure-sensitive adhesive. (B) Ring-type biosensing system mounted on the thumb
and component unit: flexible tactile sensor, 3D-printed ring, power component and circuit board for
wireless communication and battery. (C) Establishment of a baseline signal for a spoon with no food
mass, taken using filtering. (D) Signal generated by food mass on the spoon.

2.2. Principle and Theory

The actual weight of the food placed on the spoon is minuscule, so highly sensitive detecting
sensors and systems are absolutely required. The sensing mechanism of the ring sensor is shown
in Figure 2a. When the sensor is pressed, contact between the pressure-sensitive material and the
electrode occurs. As the pressure increases, the contact area increases, and the total resistance decreases.
This resistance change is detected through the voltage distribution principle. The overall mechanism
for sensor operation is described as shown in the flowchart in Figure 2b.

We enhance the sensitivity of the sensing system with three mechanical factors: (1) a first-class
lever modified mechanism; (2) a force focusing structure consisting of protrusions of the ring surface;
and (3) a dual pad sensor. First, the lever effect can improve the sensitivity of the system [24–26].
There are three classes of levers, and among them, we use the first-class lever mechanism to enhance
the sensitivity. The first-class lever is used to create a large force at the load point by applying a small
force to the effort point on the other side of the fulcrum. The advantage of the general lever law is that
a small force can be used at the effort point. In the case of the ring sensor, when lightweight food is
placed at the effort point, a large force is applied to the ring sensor, which corresponds to the load

321



Sensors 2020, 20, 5623

force position of the first-class lever. Thus, we can amplify the force applied to the ring sensor via the
first-class lever mechanism.

 

Figure 2. Schematic illustration of the ring-type sensing system’s principle. (a) Schematic illustration of
the force-sensitive layers of the ring sensor with voltage in-and-out relation. (b) Flow chart of the operation
mechanism. (c) Schematic diagram of the ring-type biosensor using the first-class lever mechanism: Linput

means the length of food arm (LFA) and Loutput means the length of the sensor arm (LSA).

The specific details of the force amplification are shown in Figure 2c. The food mass is the input
force and the force detected by the ring sensor is the output force. Here, Linput is the length of the
food arm (LFA), and Loutput is the length of the sensor arm (LSA). Also, the position where the spoon is
pressed and fixed by the thumb serves as a support point. The magnitude of the force amplification is
calculated by the lever equation, Foutput = Finput (Linput/Loutput). This lever effect depends on where the
spoon is held. We also use a dual pad sensor, and it is expected that the dual effect will be obtained
by applying the dual pad sensor in the same limited area. We use a unique structure that focuses the
force on the sensor node by using protrusions on the ring. On a flat surface, force is dispersed globally,
so there is a loss of force at the sensor node, whereas protrusions concentrate the force on the sensor
node. We anticipate that the pressing region is limited to an active area, so it generates high pressure
even if the force is the same.

3. Results

3.1. Characteristic Analysis of Sensor Signals to Spoon Arm Ratios for Different Sensor Grip Positions

We experimentally validated the influence of the three components that provided sensitivity
enhancement. First, we verified the effects of the first-class lever mechanism. For proof-of-concept,
the sensor was wound and tested as a sticker directly on the finger without the ring apparatus.
Before loading food, the baseline was reset to take into account the spoon’s own weight. The distance
of the food arm, which is the distance between the middle finger of fulcrum and food that acts as the
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input force, was set to 4.5, 6, 7.5, and 9 cm. The sensor arm’s length, which is the distance between the
fulcrum and the sensor of the output force point, was fixed at 1.5 cm. The mass of food was set at 5 g.
As shown in the graph of Figure 3, we confirmed that, as the food arm increased, the signal of the sensor
was amplified by the first-class lever mechanism. It was confirmed that the minuscule mass of the
food could be sensed through the amplified signal provided by the first-class lever mechanism using a
sensing system located on the thumb. The reason the amplification was larger in the real environment
than the ratio from the lever formula is that the inclination of the spoon naturally increases as the
fulcrum point moves toward the ring sensor. Therefore, even with the same food mass on the spoon,
the ring sensor is stimulated with a greater force when the spoon is tilted.

 

Figure 3. Experimental verification result of the first-class lever mechanism through ring sensor signals
according to the gripped position of the spoon (n = 15). The sensor signal increases in proportion to the
arm ratio, where the sensor position is the position of the thumb when holding the spoon and LSA is
fixed at 1.5 cm.

3.2. Effect of the Number of Ring Sensor Pads on Ring Sensor Signals: Single Versus Dual

Here we aimed to show the effect of the number of ring sensor pads. The sensor was overlapped
and wound directly on the finger to show only pure pad number effects in the limited area. The food
mass and arm ratio were set at 5 g and 6.0, respectively. The dual pad’s signal intensity was significantly
different from that of the single pad (p-value = 2.0 × 10–10). We confirmed the ring sensor signal on the
dual pad was 1.88 times that of the single pad, as shown in Figure 4.
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Figure 4. Experimental results for the ring sensor signals according to the number of sensor pads (n= 15).
The sensor’s signal strength of the dual pad was almost twice that of the single pad. Asterisks are
denoting the statistical significance, ranging from significant (*) to extremely significant (****).

3.3. Effect of the Ring Surface Structure on Ring Sensor Signals: Plain Versus Protrusions

We also confirmed the effect of protrusions relative to a flat structure. First, as shown in Figure 5A
we simulated the protrusion effect with finite element analysis using the Ansys mechanical tool
(Canonsburg, PA, USA). The simulations suggested a 1.88 times performance increase of the protrusion
structure compared to the flat structure. To verify this, we experimentally compared the protrusion
structure and planar structure on the ring apparatus. The protrusion structure on the ring surface
consisted of seven protrusion arrays that were 5 × 4 mm2 in size with an array pitch of 7.45 mm,
which is the pitch of the sensor node. The protrusion size was set based on force propagation and the
sensor node size (5 × 6 mm2).

 

Figure 5. Numerical simulations and experimental results for the effect of the protrusion structure
on ring sensor signals (n = 10). (A) Analysis of the finite element simulation of the protrusion and
plain structures, where the white dashed line denotes the size of the protrusion. (B) The effect of the
protrusion structure in comparison to the planar surface, with a p-value of 1.5 × 10–5.
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The food mass and arm ratio were set at 10 g and 6.0, respectively. As shown in Figure 5B,
the sensor’s signal strength of the protrusion and plain structure was significantly different, with a
p-value of 1.5 × 10–5. The sensitivity of the protrusion structure was 1.71 times that of the flat structure.
The increased sensitivity was caused by protrusions locally concentrating the force on the sensor node.

3.4. Ring Sensor’s Performance Analysis for Food Detection Using the F1 Score

We checked the classification results on the eating behavior using a confusion matrix to grasp the
ring sensor system’s performance. For the test, we used a mass of 5 g. Accuracy was computed as the
following Equation (1), and the F1 score was calculated using a harmonic mean of Precision and Recall
from Equations (2)–(4).

Accuracy = (TP + TN)/(TP + FN + TN + FP) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1 = (2 Precision · Recall)/(Precision + Recall) (4)

where TP (true positive) means that when there was a 5 g mass on the spoon, a signal above the
threshold was generated, and the FP (false positive) was defined as when a signal above the threshold
was generated when there was no mass on the spoon. The experiment was conducted by dividing it
into a vertical movement and a circular movement on a plane, a typical case where the spoon moves
without food. As shown in Table 1, an accuracy of 0.963 and an F1 score of 0.962 were calculated for
vertical movement. Accuracy of 0.983 and an F1 score of 0.983 were obtained for circular motion on a
plane. In the case of food with vertical movement, the rate of misrecognition, that is, the frequency in
which actual food was present but not detected was relatively high. It was determined that in case
of vertical motion without mass on the spoon, the spoon’s weight stimulates the sensor of the finger
when the vertical motion stops, due to effect of acceleration. For this reason, an error occurred even
when there was no mass on the spoon.

Table 1. Confusion matrix for accuracy and F1 score analysis of food detection.

Movement Categories
Actual Activities

Food on Spoon No Food on Spoon

Category I (Vertical movement)

Food on spoon 141 2

No food on spoon 9 148

Accuracy 0.963

F1 score 0.962

Category II (Circular movement
on the plane)

Food on spoon 148 3

No food on spoon 2 147

Accuracy 0.983

F1 score 0.983

3.5. Correlation Analysis between Food Mass and Signal of the Ring Sensor

We confirmed the device’s accuracy with the dual-padded sensor and the protrusion structures
using a correlation of the ring sensor signal and the food mass. When masses of 3, 6, 9, 12, 15, 18, or 21 g
were placed on a spoon, the corresponding analog signal of the sensor was measured. The experiment
was performed for three users, with the results shown in the graph in Figure 6. We believe that
the difference between the graphs occurred due to the sensors’ deviation and the users’ proficiency.
However, the R2 values were very high, with an average value of 0.988. Finally, we verified the
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detection of a signal proportional to the mass of food on a spoon and showed the feasibility of a
personalized digital medicine solution capable of quantitative intake sensing.

 

Figure 6. Correlation between the sensor signal and food mass on spoon using a ring sensor system
(n = 15). The experiment was conducted by three users, and ring sensor signals increase proportionally
according to the mass placed on the spoon. For A, B, and C the R2 values were 0.986, 0.989, and 0.990,
respectively. The spoon arm ratio was set to 6.0. The error bar indicates the standard error of the mean.

4. Discussion

4.1. Supplementary Needs of the Ring Sensor System as a Food Mass and Intake Detector

A few complementary additions could add to the quality of the ring sensor as a useful healthcare
application for real-life dietary monitoring. In the protrusion structure experiment, complete contact
between the spoon and the ring sensor was not possible due to the ring’s thickness and the ring’s
and spoon’s rigidity. Therefore, if the modulus of the ring material was tuned, it is expected that
improved results could be obtained. Also, in the current system, it is necessary to locate the finger grip
position manually. Therefore, it is also necessary to insert the touch sensor so that the position of the
spoon grip can be automatically known. Through the finger’s gripping position, the signal intensity as
it is changed by the lever law could be calculated to determine the actual FMI. Furthermore, in the
future it will be necessary to determine the amount of food when using different tools, such as forks
and chopsticks.

4.2. Synergy Effect of Combining the Ring Sensor with Different Fields

The ring sensor system has the attractive ability to measure accurately the mass of food consumed
with a spoon. To achieve the ultimate goal of dietary monitoring, a hybrid approach is required that will
combine different fields beyond the mixture of sensors to identify the types and mass of foods ingested.
For example, in the case of liquid and solid foods, a sensing error can occur due to the difference in
the center of mass when placed on a spoon even when the weight is the same. This difference can
be compensated by merging the spoon sensor with smart glasses to analyze intake patterns such as
chewing and drinking [24–26]. The combination with smart glasses would make it possible to reduce
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the error through mass calibration based on the spoon shape and the center of gravity by determining
whether the form of the ingested food is solid or liquid. Smart glasses will also be useful for continuous
monitoring. Using smart glasses makes it possible to clearly distinguish whether or not the actual
food is ingested. Through this, it is possible to continuously monitor the intake amount through an
automatic baseline adjustment and calculation process when food intake is completed.

5. Conclusions

The essence of this study is that it provided a direct and objective measurement method for FMI.
Moreover, we developed a highly sensitive dual-padded ring-type sensor with a protrusion structure
to detect and monitor FMI. The improved sensitivity of the system was based in part on its use of a
lever mechanism. The sensitivity could be increased by 1.88 and 1.71 times by using a double layer
and protrusion structures, respectively. The sensor accuracy shows a high correlation of ring sensor
signal to food mass, with R2 = 0.988 and an average F1 score of 0.973.

The previous method only determined the intake pattern and the amount of chewing, so there
was a limit to the practical dietary information that could be obtained. However, we demonstrated
the feasibility of FMI analysis using a ring-type bio-sensing system for actual dietary monitoring.
Therefore, we believe that this approach is potentially beneficial for developing a wearable platform to
support the prevention of obesity, which causes a number of adult diseases. Furthermore, metabolic
syndrome can be prevented, and physical activity can be revitalized through dietary monitoring.
Therefore, a dietary monitoring system using a ring sensor is expected to be useful as a diagnostic
indicator that identifies physiological signals based on the individual’s dietary behavior.
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Nomenclature

FMI Food mass and intake
EGG Electroglottography
PET Polyethylene terephthalate
PC Polycarbonate
PMMA Poly(methyl methacrylate)
PSA Pressure-sensitive adhesive
FPGA Field-programmable gate array
LFA Length of the food arm
LSA Length of the sensor arm
TP True positive
FN False negatives
FP False positive
TN True negative
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Abstract: The duration of patient–physician contact is an important factor for the optimisation of
treatment processes in healthcare systems. Available methods can be labour-intensive and the quality
is, in many cases, poor. A part of this research project is to develop a sensor system, which allows the
detection of people passing through a door, including the direction. For this purpose, two time of
flight sensors are combined with a door sensor and a motion detection sensor (for redundancy) on
one single side of the door frame. The period between two single measurements could be reduced to
50 ms, which allows the measurement of walking speed up to 2 ms−1. The accuracy of the time stamp
for each event is less than one second and ensures a precise documentation of the consultation time.
This paper presents the development of the sensor system, the miniaturisation of the installation and
first measurement results, as well as the measurement’s concept of quality analysis, including multiple
door applications. In future steps, the sensor system will be deployed at different medical practices
to determine the exact duration of the patient–physician interaction over a longer time period.

Keywords: people counting; bi-directional; motion detection; time of flight sensor

1. Introduction

Demographic changes around the world bring new challenges to healthcare systems. People now
live longer and their healthy years increase, especially in higher- and middle-income countries.
However, a longer life expectancy can also mean that individuals have to live longer with illness [1].
The treatment of chronic illnesses and accompanying comorbidities is a primary healthcare system
issue, as it leads to continuous public health monitoring through healthcare professionals and an
increase of patient–physician contacts.

In 2017, Irving et al. [2] presented the results of an international survey on variations in primary
care physicians’ consultation times. The results show a wide range of consultation periods: from 48 s
in Bangladesh, through 15 min in Australia, to 22.5 min in Sweden. Eighteen countries, which hold
more than 50 percent of the world’s population, needed less than 5 min to treat a patient. However,
the main finding was the lack of continuous data collection. A majority of countries were not able
to provide adequate data on measurement methods, the person measuring time, the study design,
the general duration in min, the number of consultations, and the quality of data sets. The paper
at hand introduces actual standard measurement methods and presents a possible new solution for
direct and automated gross patient–physician interaction duration measurement. This new sensor-led
collection method aims to exclude biased data collection and the feared “Hawthorne”-effect to a
certain extent.
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The primarily used measurement methods can be categorised as (a) self-reported, (b) video,
(c) audio, (d) stopwatch, (e) SMS (short message service), (f) International Network for the Rational
Use of Drugs (INRUD), and (g) calculation-centred. Each method is introduced and discussed below:

(a) Self-reported means that a member of the healthcare staff (mostly the treating physician) answered
a survey or provided a collection of duration times. These self-reported figures can, however,
be categorised as biased.

(b) Video means that a video recording of the activities in the treatment room were evaluated.
This approach needs the patient’s recruitment and consent and is highly problematic regarding
the General Data Protection Regulation (GDPR).

(c) Audio recordings are used to verify the duration of patient–physician interactions; however,
similarly to the video method, audio recordings are problematic regarding GDPR.

(d) As part of the stopwatch method, a member of the healthcare staff (mostly the treating physician)
timed the consultation period. This method is more reliable, as the net results can be evaluated.
However, a comparison to gross results is not possible.

(e) A short message (SMS) is sent by a member of the healthcare staff or the physician to a certain
phone number, deriving the consultation duration time from the received message.

(f) World Health Organisation/International Network for the Rational Use of Drugs (WHO/INRUD)
means using data provided by the drug use indicators for health facilities, which contain a set
of patient care indicators including the average consultation time. The number is evaluated by
“dividing the total time for a series of consultations by the number of consultations”.

(g) Calculation means that certain time parameters were collected and average consultation duration
times were derived. Most of the data sets used to do the calculations cannot be verified.

Irving et al. [2] found that the quality of studies using these methods were good in 40%, poor
in 36%, and fair in 24%, leaving a ratio of 40% to 60% with regard to trustworthiness (good) versus
dubiousness (poor/fair).

Knowing how long a patient–physician consultation lasts is not only a matter of improving the
patient’s journey, but also a business administration factor. Taking the project management triangle
(time, costs, scope, and quality) into account, time is the only factor that can neither be regained nor
changed. However, costs can be derived from time. Scope and quality are functions of cost and time.
A direct, automated time measurement method that excludes biases as far as possible, therefore allows
a more substantial and sustaining documentation of treatment processes and the development of lean
organisational systems for business administration, human resource departments, and healthcare
staff interaction.

The paper presents a novel sensor system to automatically measure the interaction time between
patient and physician in a single and multi-room configuration. Especially the latter requires a
documentation of the time period individuals take to pass through a door and in which direction
they are headed. Existing methods are often either strongly dependent on possibly biased, sometimes
imprecise self-reporting, or they are problematic in regard to GDPR (video and/or audio recordings),
and are also likely to be very labour-intensive. The novel sensors system aims to overcome those
weaknesses, and allows the combination of the individual treatment period with anonymous patient
data to verify the provided services, and additionally develop optimised operation methods in medical
practices. The development of the proposed solution is summarised and discussed. Exemplary results
are presented and a long term deployment of five sensors is currently ongoing.

2. Materials and Methods

2.1. Overview and Objectives

Sensors that count and track people are commercially available and deliver a wide
range of applications in airports, museums, libraries, or any other type of (public) buildings.
Possible applications are crowd management, transport systems, heating as well as air conditioning,
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and optimisation of evacuation planning [3]. Significant user groups are retailers and shopping centres.
These can deploy available products to track the behaviour of costumers in different zones, identify
specific targeted groups (children, families, and adults) and also combine those data with further
available sales information. This helps to allocate staff and optimise marketing tools. An advanced
application such as this requires stereo/video capturing, covering a wider area and specific analysis
methods [4–6]. Li et al. [7] added a near-infrared stereo camera system for application in low light levels.
Consequently, this method is available for nearly every condition but raises significant privacy issues.

The deployment of such a sensor system in a medical practice includes specific restrictions and
ethical considerations. Patients and the content of the consultation with the physician need to stay
fully anonymous. Each analysis based on video, which would be used in the previously mentioned
commercially available solutions, can be stored and is subject to a potentially unauthorised access.
Nevertheless, a video system can be used under specific conditions. An example is presented by
Mousavi et al. [8], who recorded an operating room. Based on a manual analysis, he tracked how long
and why the door was opened in relation to the different stages of the operation. The main objective of
the presented development of a novel sensor system is to reduce risks regarding GDPR as well as the
potential risk of abuse. The aim is to reduce these concerns in order to increase the patient’s as well as
the physician’s trust and acceptance.

Hence, the instrumentation should only be capable of recording specific data needed for the
research project. This restriction has to be included in the design and should not depend on filters,
processing, or storing. Consequently, all video surveillance solutions are excluded and the choice of
commercially available solutions are limited to light barrier. Various available products also include
detection of direction (leaving or entering the door), but all found solutions are limited regarding the
time resolutions. The internal data processing in the device sums up the detection and only adds up
values for a time period of typically 15 min. This is absolutely sufficient for the above mentioned
applications but is not enough for the detailed analysis of the time the patient interacts with the
physician. Those interactions are typically in the range of minutes [2]. An extended search and the
contact with various manufacturers and service providers brought the authors to the conclusion that no
product allows access to the raw data or the needed resolution time. Consequently, the development
of a specific instrumentation is required. An additional benefit is that it can be custom-made for the
specific needs of the research project.

Door sensors, based on a magnetic contact, can deliver a basic evaluation of the time in which the
patient or the physician enters the room. Each closing and opening of the door can be captured with a
time stamp. However, there is no specification regarding the number of people passing through a door
at once or whether they are entering or leaving a room. This results in an uncertainty and makes it
hard to analyse the captured data. The deployment of a single beam switch improves the situation
significantly and allows for counting of the number of individuals entering or leaving. A double
beam approach is needed to determine the direction of motion as it is used in commercially available
products. Alternative methods would have to face the motion direction, which can potentially distract
from the movement of the person through the door. Bi-directional detection and the limitation to the
door frame are key objectives for the development.

In addition to the mentioned requirements concerning ethical aspects, as well as the time
resolution (a few seconds), the installation should be straightforward, unobtrusive, and not limited to
specific conditions. This includes the requirement to contain the entire instrumentation in one unit and
the elimination of a mirror, a reflector, or a (light) source on the other side of the door. The utilisation
and combination of standardised components allow the minimisation of costs and ensure the durability
of the system. A redundant documentation based on different methods helps to validate the results and
reduces uncertainties. Furthermore, both temporary observation (a few days to weeks) and also the
potential for a long time observation over months should be given. The developed sensor combination
meets all those objectives and based on the presented analysis method an objective documentation of
the duration of patient and physician interaction can be delivered.
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2.2. Combination of the Sensors

Based on the objectives (Section 2.1) a combination of three different sensors was chosen for
the final design: (a) magnetic door sensor (DS), (b) one additional motion detection (MD) sensor
(RCWL 0516), and (c) two time of flight (ToF) sensors (VL53L0X). All three different components are
available from various suppliers and in a wide range of options (size, colour, and connections). The first
tests were conducted with an Arduino Uno (Figure 1a), which has been replaced by an Arduino Nano
for the final version due to the smaller dimensions (Figure 1d,e).

Figure 1. Development of the sensor system (a) desk version; (b,c) prototype installation to test the
concept; (d,e) final design. Door (1), door sensor (2), time of flight (3), motion detection (4), Arduino (5),
Micro SD card module (6), support structure (7), and power supply (8).

The door sensor is a magnetic surface contact. For the presented application a product was chosen,
which is commonly used in alarm circuits (supplier CQR Security). This guarantees a high reliability
and durability. It would also include a tamper alarm, which is unused. The operation distance between
the switch and the magnet housing is dependant on the direction as well as the mounting position.
It ranges from 5 mm to 35 mm for non-ferrous surfaces and is reduced in combination with ferrous
components (door frame or panel). This information is provided in the operation and installation
instructions by the supplier [9]. The DS delivers the basic information of if the door is open or closed
and the Arduino logs the time stamp as soon as a change in the status occurs.

Initially different passive infrared sensors (PIR) were tested, which also allowed sensitivity and
delay adjustments. Those motion sensors are commonly used as a light switch and typically deliver
an output signal as long as motion is detected (including a further delay). The exact limitation of the
activation range was not easy to achieve and the sensor system did not trigger precisely. Issues in
collecting precise data are encountered if a person just steps into the room and immediately walks
out again or if a person passes by on the door. An approach based on a line observation is more
sensible and precise in comparison to a comparable big region, in which the sensor is the trigger.
Consequently, PIR sensors were discarded in an early design state. Nevertheless, one single radar
module RCWL 0516 [10] is still used in the presented instrumentation. This sensor detects motion
with comparable accuracy to a PIR system but works through plastic. Hence, it can be very easy
added to the systems and allows an additional independent motion detection as validation for the
other systems.
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Both previously mentioned methods are not capable of detecting the direction of motion. Therefore
a delay between two lines (vertical planes) has to be measured. Huang et al. [11] showed a successful
installation of a bi-directional system, which provides additional inputs for the building automation
system. Therefore, infrared sources are mounted on one side of the door and the detector is mounted on
the other side. An exact alignment is needed as well as devices on both sides of the door. Alternatively,
the emitter and detector can be installed on one side and only a reflector is added opposite to the
instrument. The previously mentioned objectives of the research include that the installation effort
should be reduced. Different range finding devices are available, which allow the measurement of the
distance without a specific arrangement on the target. As part of the discovery phase, commercially
available small ultrasonic sensors and infrared distance meters were investigated. They were tested to
determine if they are suitable to work in a pair and in close range. The investigated lower price devices
did not deliver the needed quality nor reliability and those techniques were not further studied.

Far better results could be reached with a time of flight (ToF) distance sensor, which is typically
used as a scanning device [12–15] rang finder [16–18] and gesture detection sensor [19]. The used
VL53L0X module is capable of capturing distances up to a maximum range of 2 m with a very
high accuracy. This specific device includes a Class 1 laser, which is integrated with the collector
on the chip. The beam is invisible to the human eye and the spreading is comparatively small [20].
The communication with the Arduino is based on the I2C (Inter-Integrated Circuit) interface. For the
current application, two devices are installed in parallel. This requires that as part of every power up
the XSHUT pin (Rest or interrupt the communication) is activated to change the default address of the
device. Two parallel distance measurements are captured, which allow us to identify the direction of
the motion. Further details are presented in Section 3.1.

The motion detector as well as the two ToF sensors allow a clear identification, even when the door
is kept open—if, for example, the physician switches between two rooms (Section 3.2). Under regular
conditions, the combination of all three different types of sensors delivers an exact recording of the
door state, an additional motion detection and two distances, which allows us to determine the motion
direction of the person passing through the door.

2.3. Prototype Development

The development of the sensor system was done in three phases. For the initial desk version
(Figure 1a), different sensor types and combinations were tested. Based on this, it was decided to use
the final combination of sensors, which are installed (Section 2.2). Furthermore, the Arduino code was
developed and tested (Section 3.1).

In a second step, a realistic configuration was built up and tested. Figure 1 b,c shows the set-up
at one door at FloWave Ocean Energy Research Facility (University of Edinburgh). It is a fire door
with a door closer, which connects the main office with the wave tank area. A piece of paper is used
to limit the distance measurement of the ToF sensors on the opposing side as there is a big window.
This construction provides a high flexibility of heights for the ToF sensors and the location is ideal to
deploy a generously designed box. The presented results in Section 3 are captured with this set-up.

Finally, an additional step in the development is made to further miniaturise the instrumentation
(Figure 1). A vital part of this is the change from an Arduino Uno SMD R3 to a Nano (HiLetgo Mini
USB Nano V3.0 ATmega328P CH340G), which has nearly the same capability but is far smaller in
size. Figure 2 shows the circuit and how the sensors are connected to the Arduino. In the final design,
the magnetic door contact remains as a separate unit and is connected via cable to the main unit. Thus,
an independent installation as well as an optimal usage of the available space in the door frame is
possible. It was noticed that the distance from the door to a wall socket is in the range of a few meters
for all the physicians’ offices, where the sensor will be deployed in the next project phase. Hence,
the power supply based on batteries was considered, however a direct power supply is preferred. This
decision was made to secure a long term deployment of the system.
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Figure 2. Shematic representation of the circuit including the Arduino Nano: power (red), ground
(black) and all further colours mark connections to input/output pins.

Different cases and boxes were investigated to enclose the system. The best fit and usability could
be gained with a cable trunking as shown in Figure 1d,e. This provides protection of the electrical
parts and a good accessibility. The distance between the two holes for the ToF sensor is 100 mm and
all sensors are mounted to the cover piece. The needed cable feed-through can be included in the
other part, which is attached to the door frame with double sided adhesive tape. This back part can be
easily replaced and custom-made for each specific location. The dimensions are 38 mm by 16 mm and
120 mm in length. Both ends are closed with caps and can further be sealed with tape. Only a weak
extraction-proof could be included in the casing and the cables have to be further secured with tape.

The captured data is stored for each individual sensor in one txt-file on a Micro SD card, which
is included in the case. A wide range of different applications successfully included a real-time
transmission of the measurement data ranging from traffic systems [21], displacement sensors of piles
and columns [22], or weather stations [23]. For the current research project, reliable storage is more
important than immediate transmission hence the analyses are conducted after the test. This also
gives the opportunity to eventually combine the findings with anonymous treatment categories, which
include factors like a patient’s age, gender, and main diagnosis. Consequently, a transmission of the
data is not needed but is considered for future applications, hence the device also allows for remote
management. The simultaneous observation of more than one door requires a synchronisation of
several installed sensor systems. This is conducted as part of the installation and the possible time
offset is acceptable.

3. Results

3.1. Single Door

In this first section, the data capturing of the sensor system is described in general as well as the
processing for one door. Figure 3 presents the exemplary set-up, which is similar to the one presented
in Figure 1b. For the following consideration, it is assumed that the door solely gives access to one
single room, in which the time of the interaction between physician and patient has to be measured.
Therefore, the full data set is captured and the analysis is conducted as a post processing. Section 3.2
expands this to further doors and more than one room.

Figure 3. Exemplary sketch of the set-up of sensors and definition of the motion direction.

The processing tasks done on the Arduino are tried to keep as low as possible. This allows to
go through the loops efficiently and to reduce the time step between two readings. Status changes
of the motion detector (MD) as well as the door sensors (DS) are simplified to 0 and 1. This coded
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information is written in separate files including a time stamp. In this process, the time values for
changes of the MD and DS are rounded to full seconds.

A different approach is implemented for the time of flight (ToF) sensors. In an initial step
the distance between the sensors and the opposing wall is adapted. This allows us to define a
location-specific criterion (it includes the measurements of both sensors) to trigger the recording of the
two sensors. Each device measures the distance between the sensor and the next object individually,
and the results is only stored when the criterion is fulfilled. Finally, the analysis method for the ToF
data is presented.

The first 10 s after the initialisation of the Arduino (power is switched on) are used to adapt the
code to the specific circumstances of the deployment location. An initial distance d0 is defined in the
code (typically 900 mm for the door width) and is adapted to the specific locations as follows:

dj+1 = (dj + s1 + s2)/3 with dj = d0 for j = 1. (1)

Based on Equation (1), the measured distance of each sensor s1 and s2 is average with the distance
to define the suitable distance d0, which is set equal to dj at the end of the 10 s. The index j indicates
one loop and each step of this iteration is documented in a separate text file. For the test deployment
shown in Figure 1b the distance d0 was 1110 mm. After this adaptation, the results of both ToF sensors
are written in a further file only if the following criterion is fulfilled:

s1 + s2 < d0 · 2 − 200 mm. (2)

This allows us to limit the file size by not recording the ToF sensor data if nothing happens.
The 200 mm are based on the first tests and allow us to introduce a certain threshold before the
values are written into the file so that the file size is not unnecessarily increased. Each line further
includes the time in milliseconds. A typical time difference between two measurements is close to
50 ms (milliseconds). It can vary depending what else has to be done in the specific loop (for example
the documentation of a change at the MD or DS). Theoretically, a walking speed of up to 2 m s−1

(=10 cm/50 ms) or 7.2 km h−1 can be captured. This is in an acceptable range [24–28], especially as the
operation of the door reduces the walking speed.

The durability of the measurement system was proven with a continuous deployment over three
weeks under comparable high traffic (approximately 10 people working in the office). The detected
errors could be clearly associated with deliberate behaviour of colleagues. In a future step of the
research project, the sensor system will be installed in different healthcare settings and tested under
those specific conditions. Each installation will initially be paired with a further validation by
observation (using the stopwatch method).

As part of the post processing, the file is imported into Matlab and the difference between both
measured values is calculated:

Δs = s2 − s1. (3)

Significant for the analysis of the direction is the algebraic sign of the Δs value. Figure 4 presents
exemplary single events of only one person passing (a and b) as well as more complex events (c to e).
In those cases, Δs was standardised by the adapted distance d0, but this could be further extracted with
a sign function. The presented time was set individually to 0 for the first found result based on the
ToF sensor. This allows a direct comparison of the duration of the event. Depending on the speed of
the person, the first two to five values of Δs define the direction. Further quality controls are possible,
based on the availability of the full measurements of both sensors. An obvious check is to look for the
zero crossing of Δs and the following changed algebraic sign when a person leaves the sensor area.
Errors caused by person standing in front of the sensor can be detected and have to be either manually
corrected or when it happens more, the algorithm can adapt. Passing of more than one person can also
be detected as presented in Figure 4c, which can also be in different directions (Figure 4e).
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(a) (b)

(c) (d)

(e)
Figure 4. Exemplary result for different events. Results of MD and DS as well as the direction arrow
are plotted with a constant offset (0.5, 0.6, and ± 0.8) for a better visualisation. (a) Outgoing event.
(b) Incoming event. (c) Detection of two person entering the room. (d) Error detection caused by
waiting person. (e) Outgoing person opens the door, which keeps open for an incoming and following
outgoing event—MD stays up as long as motion happens and reacts again caused by the closing door.

The conducted test showed a very high reliability of this measurement concept and especially of
the ToF sensors. Based on this experience, the hierarchy of the analysis is chosen as following: (1) ToF
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sensor as main indicator and (2) door contact as well as (3) motion detector to further validate the
event detection.

The first event detection is based on the analysis of the ToF sensors. The time stamp of the first
trigger measurement is stored in a vector ti as well as ΔPi for the direction (values ± 1). The index
i represents the number of events in the total observation time. A new event is defined, when the
previous documented value is more than Δtevent apart (typically 150 milliseconds, depending on
the specific location). Those events are filters in a first step based on the difference between each
event. Therefore, the time difference is calculated based on Δt = ti−1 − ti. All events in which
Δt is smaller a location specific threshold ΔtmultiPers (for example 2 s) is interpreted as multiple
persons. The comparison between the two events presented in Figure 4c,d show potential problems.
Those examples represent a real event and an error measurement caused by a person standing in front
of the sensor. In the current version of the analysis algorithm such multi events are simplified and
analysed assuming that up to three people moving close to each other go through the door shortly
after each other. The event presented in Figure 4d was flagged for an additional check and had to be
interpreted separately. The exact analysis method will be further developed based on the initial tests
under real conditions, which will not contain such a slow automatic door closer. An additional value
Δtassistant can be introduced, which allows to filter short-term stays of assisting personnel, additional
physicians, or a patient’s attendants.

Those filtered events are further checked for plausibility. Firstly, the door has to be opened
or be still open in a time window of ± Δtdoor. Furthermore should the motion detector indicate a
movement, however, this is not mandatory hence an error in this sensor is comparably more likely.
Based on this, an actual event with a moving person is stated and a ΔP with ± the number of moving
persons—depending on the direction shown in Figure 3—defined. After those checks, the value of ti is
similar to the other sensors rounded to full seconds.

The exemplary results in Figure 4 also clearly show that the closing door also indicates the motion
sensor (door is closed by an automatic closer). An additional plausibility check is conducted for all
door opening events, which are not connected to a motion detection based on the ToF sensors in the
previous step. Those are manually checked. Further combinations of results and the conclusions are
presented in Table 1.

Table 1. Decision matrix for time of flight measurement (ToF), door sensor (DS) and motion detector
(MD), motion detection (mD), no detection (nD), opening (o) and closing (c) of the door, open (O) and
closed (C) door. * Depending on the exact location of the sensor.

ToF DS MD ΔP Conclusion Event

mD o + c mD ±1 incoming or outgoing person
mD O mD ±1 incoming or outgoing person (open door)
mD o + c nD ±1 incoming or outgoing person (MD error)
mD O nD ±1 incoming or outgoing person (MD error)
mD C mD 0 passing by inside * or error
nD O or C mD 0 passing by outside * or error
nD c mD 0 door closed only (typical for automatic door closer)
nD o mD 0 door is opend but nobody comes in
nD o + c nD 0 error DS

The full data set is further split into separate days and the number of people in the room R is
calculated by adding up the vector ΔP after each event. An obvious control is to find cases in which R
is smaller than 0. Such an error can be caused for example by the following occurrence: Two persons
enter the room together side by side (due to the support of a walking impediment) or one person enters
directly behind the other (wheelchair). In those cases, the sensor system cannot detect a clear difference
from a single (slow walking) person. When they leave separately, which will be correctly detected,
such a problem can occur. The solution is to check the previous event manually or refine the algorithm
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depending on the specific location of the sensor. It is further advisable to match the total number of
patient–physician interactions with the records of the day. The involved physicians are also asked to
document unexpected circumstances, which could influence the measurements. They further note
down the time and if they are currently talking to a patient or not (in a range of 1 or 2 h). This allows
validation of the record of the sensors, as well as, in extreme cases, a reset of R.

3.2. Multi Door and Room Set-Up

In the previous section only the scenario of one single door into one room was covered. If there
are two doors, obviously an additional sensor is needed. The more interesting case is a multi room
set-up, as it is shown for example in Figure 5. This allows either to host two physicians or to give the
opportunity of one physician switching between two rooms. In this case, the door D4 connects both
rooms and does not necessarily have to be closed. If the person leaves one room, he or she enters the
other room. The calculation can be either done for each event, which includes changing the length of
the vectors, or based on a fixed time resolution. In the latter case, the vectors R and ΔP for each door
are initially zero vector. The specific values of the detected event are added to the entry of the vector
closest to ti. The evaluation for each time step can be calculated as following:

R1,t+1 = R1,t + ΔPD1
1 + ΔPD3

1 + ΔPD4
1 (4)

R2,t+1 = R2,t + ΔPD2
1 + ΔPD4

2 (5)

with ΔPD4
1 = ΔPD4

2 · −1. (6)

Figure 5. Example of a multiroom set-up. ΔP indicates the changes of the number of people in the
room R.

It has to be assumed that only the physicians use the door D3 and D4 and the patients enter and
leave through the same door. All cases in which R is bigger than two persons have to be checked,
hence it is possible that a patient and an accompanying person enter the room separately and the
physician enters later. It is inevitable that the specific analysis has to be adapted to each setting and the
given circumstances.

There is also the possibility of installing a sensor at the main entrance door to the medical practice.
This allows for evaluation of the total traffic, however, it has to be mentioned that the usage of these
values is limited. With the current sensor system it is not possible to identify the person and so the
calculation of the individual waiting time until the patient enters the physician’s room is not possible.
More suitable is the comparison of the predicted appointment to the actual entering of the patient into
the room. This evaluation can be used to optimise the appointment allocation. Further applications are
evaluated in the following project phase for which five of the presented sensors systems are installed
in different medical practices.

4. Discussion

As part of the initial desk model, different measurement methods were investigated. The tested
ultrasonic range finders needed too large a spacing and the infrared light sensor was not as fast and
accurate as needed. Both types are comparably large in relation to the time of flight (ToF) sensor.
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A further significant advantage of the ToF is that it can operate through a single small hole and has
a very small observation footprint. In contrast to this, motion sensors based on the PIR technology
are more suitable to observe a larger area/volume. Nevertheless, the chosen radar based MD allows
independent verification of the motion detection, and in combination with the magnetic door switch,
a workable combination was found.

In the literature, further detection approaches based on impulse radio ultra-wideband radar
sensors are available. Choi et al. [29] showed that using this technique, a complete passage at a subway
station in Seoul with a counting accuracy of less than 10% can be covered. Specific arrangements with
WiFi signals can be also used to detect bi-directional motion [30,31]. Very promising is the expansion
from a single point measurement to a scanning range [17,18], which also includes an increased effort
in the post processing. Nevertheless, the inclusion of a further sensor type will be considered as part
of the future work.

The distance of 10 cm between the two ToF sensors was chosen as similar to the commercially
available products with infrared light sensors. Based on the prototype testing, the choice was proven
functional and no further iteration was needed. A bigger distance would be desirable in principle.
This would make the measurement clearer and would allow it to capture even faster movements.
However, this would subsequently make it harder or even impossible to fit the device into the door
frame, which increases the risk of the device being damaged or being a potential safety hazard.
For locations, in which a mounting on the door frame is not possible, temporary boxes or other
structures can be placed close to the door. It has to be ensured that the opposing side is rigid to avoid
errors. Furthermore, the sensor is limited to 2 m and it is highly recommended not to make use of the
full range. It should also be kept in mind that the area should be kept clear—objects such as umbrella
stands or coat hooks can potentially trigger the measurement.

Two different heights of the ToF sensors were tested, namely 60 cm and 75 cm from the ground.
Both installations showed good results but the lower one delivered slightly better results. The main
concern is that the location is high enough to detect the body of the passing person but not too close to
the doorknob, which could potentially lead to an incorrect measurement of a hand. For usage of this
sensors in settings with mainly children the exact positioning should be evaluated.

The door contacts are at the moment only used opposite of the door hinges (Figures 1 and 3).
In this location the needed distance for releasing the magnetic contact is reached with a small opening
angle. A mounting of the sensors on the same side as the hinges brings the advantage that the sensor
is better protected as the persons are more likely to move closer to the doorknob through the door.
This has to be tested as part of the further installation of the final version of the sensor.

The presented analysis is focused on the detection of one person passing through the door. It is
not possible to detect the entrance of two people side by side or to distinguish between two people in
direct physical contact at the height of the sensor system. The latter can occur for wheelchair users.
Those cases can lead to a misinterpretation of the sensor readings if the supporting person leaves the
room for the consultation. The involved physician will be informed of this and a manual correction
will be needed, which can further be used to refine the analysis. Nevertheless, multiple persons can be
registered separately if the time between them is larger than a defined threshold as shown in Figure 4c.
The exact value for this threshold will be evaluated in the next step of the research project, however,
delivered good results with the current setting. In the actual application this is more likely to be used
in a multi-room setting in which the physician is switching between two rooms.

At state of the current project, each individual unit operates separately and no time module
is included. Consequently, only a relative time beginning with the initialisation of the Arduino is
available. The synchronisation is done manually, which is sufficient for the current applications.
An additional time module would allow the exclusion of out-of-office time periods, in which the
current sensors continues to observe. The data is currently stored only locally, which ensures that
a potential interference with medical instruments is negligible but has the disadvantage that the
operation cannot be controlled as long as the sensor is deployed. In a future step of the project, the final
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version of the sensor system will be installed in medical practices under authentic conditions. In the
course of this, a direct comparison of the sensor system with an observation (similar to the stopwatch
method) will be conducted. The recordings will be further checked with the total number of patients
per day. Also, the acceptance and the need for a real time data transmission will be evaluated as well
as the need for the integration of a battery.

5. Conclusions

Based on the specific requirements of healthcare applications, a novel sensor system was
developed. The paper discusses the different investigated approaches which led to the final
combination of three different types: (a) time of flight, (b) door sensor, and (c) motion detection.
This combination allows the documentation of motion, including the direction of the person passing
through the door, as well as a high reliability based on the different sensor types. The time resolution
of the output has an accuracy of less than one second and allows the capture of the duration of
the interaction between patient and physician. The limitation to one side of the door frame is an
achieved goal and reduces the effort for the installation, as well as possible errors throughout a longer
deployment, significantly.

The paper includes exemplary results based on the initial test and the developed concept for the
quality control of the measurement. An expansion of the system for multiple doors, as well as rooms,
is described. In a next step of the project, the sensor system is installed at different medical practices to
measure the duration of patient–physician interactions. This will also include a direct comparison to
an observation outside the door and also focus on possible problems with simultaneously entering
persons (wheelchairs). The gained experiences will allow us to optimise the analysis and further
reduce the needed manual work.
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Notation

d distance sensor to opposing wall (mm)

i index numbering of detected events at the door (-)

j index numbering the loops (-)
s1,2 measured value of the ToF sensor (mm)
Δs difference (mm)
t time (sec)
Δt time step (sec)
ΔP change (Person)
R persons in the room (Person)
D door
DS door sensor
GDPR General Data Protection Regulation
INRUD International Network for the Rational Use of Drugs
MD motion detector
PIR passive infrared sensor
ToF Time of Flight
WHO World Health Organisation
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Abstract: This study presents a platform for ex-vivo detection of cancer nodules, addressing
automation of medical diagnoses in surgery and associated histological analyses. The proposed
approach takes advantage of the property of cancer to alter the mechanical and acoustical properties
of tissues, because of changes in stiffness and density. A force sensor and an ultrasound probe were
combined to detect such alterations during force-regulated indentations. To explore the specimens,
regardless of their orientation and shape, a scanned area of the test sample was defined using shape
recognition applying optical background subtraction to the images captured by a camera. The
motorized platform was validated using seven phantom tissues, simulating the mechanical and
acoustical properties of ex-vivo diseased tissues, including stiffer nodules that can be encountered in
pathological conditions during histological analyses. Results demonstrated the platform’s ability to
automatically explore and identify the inclusions in the phantom. Overall, the system was able to
correctly identify up to 90.3% of the inclusions by means of stiffness in combination with ultrasound
measurements, paving pathways towards robotic palpation during intraoperative examinations.

Keywords: cancer nodules detection; phantom; stiffness analysis; ultrasound analysis; visual analysis;
automatic robotic platform; remote support for pathologists

1. Introduction

Cancer is an abnormal and uncontrolled cell growth that invades healthy tissues, and that can
spread via metastases to other locations in the body [1]. Various cancer treatments involve chemical
and radiation therapies or surgery [2–4]. Following surgical intervention, biopsy is performed on the
lymph nodes excised from the tissue to properly characterize cancer spread and examine whether it
has developed the ability to spread to other lymph nodules or organs too. The accuracy in estimating
the amount of spread of cancer is extremely important to avoid complications caused by an extensive
resection of healthy lymph nodes and tissues. Accurate localization of tumors in tissues resected
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during surgery can also allow the surgeon to decide and modify in itinere the planned intervention so
to remove malignant tissues missed in pre-operative imaging. Stiffness of human tissue is higher for
tumor nodules with respect to healthy tissues [5–10]. Hence, inspecting the mechanical properties of
cancerous tissues can contribute to the detection of nodules. Intraoperative palpations of the resected
malignant tissue provide essential information about the presence of abnormalities [11]. Indeed, such
investigation is part of the general practice performed by a specialist through manual palpation to
retrieve several information about cancer nodules [12]. The reliable confidence of medical practitioners
to detect tumors is achieved with rigorous training before they reach proper expertise in examining
various organs and detecting abnormalities [13]. The human capability to detect lumps in the tissues,
however, degrades with increasing lump depth, decreased compliance of the tissue, deformation of
the finger pad induced by the lump itself, and the finger indentation velocity [14,15]. Ultrasound
analysis [16] can complement stiffness data because of the different acoustic properties of cancer
nodules, as demonstrated by intraoperative ultrasonography recordings having reported influence
(varying from 2.7% up to 73%) on the surgical procedures that were preoperatively planned [17–20].
Elastography is also used for the investigation of many diseases in tissues (liver, breast, thyroid, kidney,
prostate, and lymph nodes) [21]. The elastographic equipment is of two types depending on the US
sensors arrangement: Strain imaging and shear wave imaging. In both cases a US array probe is
gel coupled to tissues; the latter requirement represents a limiting factor for the anatomo-pathology
examinations for which any contamination of tissue samples must be avoided and only the natural
wetness of excised tissues is allowed.

In this study, we combined stiffness and ultrasound data to aid the intraoperative histological
exams performed on tissues excised during surgery by the identification of regions with different
stiffness and US impedance characteristics. Such an examination is crucial in case of misdiagnosis or in
case of unforeseeable diagnostic queries that might arise during surgery. Results from the examination
may be used as a guide for surgical resection and decision-making to modify the common surgical
procedure (see Figure 1). Initially, the surgeon gets a small tissue specimen (2–3 cm) from patient in
order to get information about the presence of pathological patterns. Then, this specimen is placed on
an automated system able to move and scan the material in order to get the data. The system proposed
in this work is based on a precision mechanical scanner that provides a map of the tissue sample with
inclusions. Data were derived from a sensor designed with a load cell for stiffness measurements,
which also ensures the contact force on the sample to a vertically supported needle-type ultrasonic
transducer provided for US measurements. In this way, two types of data (mechanical stiffness and
US impedance) are measured at the same time in each position providing in practice two maps with
well-correlated information regarding the positions of inclusions within the scanned area. Finally, with
the position of the inclusion the pathology lab technician is able to sample the material and create
a precise number of slices for microscopy analysis. Directly from the operating theatre the images
are sent to the pathologist for the remote diagnosis. The time between the initial part of the process
(excision) and the final part (medical report) should be contained within 20–30 min.

With instrumented tools, automatic classification of tumors in tissues can be addressed by
machine learning techniques: Supervised–unsupervised classification, clustering and learnt neural
networks [22,23]. The proposed system aims at reproducing the activity of pathologists in intraoperative
tumor identification using feedback from vision, stiffness [24] and ultrasound measurements [25].
Using a robotic platform, and machine learning techniques for classification, the focus of this work is
to detect and localize nodules buried in phantoms mimicking the elastic and ultrasound properties
of excised human tissues. Specifically, the experimental evaluation was carried out by means of
Agar-based phantoms suited to mimic liver, cardiac, brain and soft tissues [26–28], either in their
acoustic and mechanical properties and temperature dependency [29,30].

The paper is organized as follows. Section 2 describes the experimental setup, the technical
specifications of the used phantoms, the experimental protocol and data analysis methods. Results are
presented in Section 3, showing the results of stiffness and ultrasound data analyses both separately
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and merging them together. The last section concludes with the discussion of the entire work and
presents potential future investigations.

Figure 1. Block diagram of the histological procedure. On the left the traditional process is shown,
whereas the proposed process is depicted on the right.

2. Materials and Methods

2.1. Platform Design

A platform was developed to detect embedded rigid inclusions surrounded by a soft matrix. The
automated system consists of the following components (Figure 2):

(i) Three motorized translational stages and one rotational stage allowing to move the sample.
A commercial stage (8MTF-102LS05, STANDA, Vilnius, Lithuania) with 10 cm of travel range
and a resolution of 2.5 μm was used for the X and Y axes, while another translational stage
(8MVT120-25-4247, STANDA, Vilnius, Lithuania) was used to indent the sample along the Z
axis, having a travel range of 2.5 cm and a resolution of 5 μm. Additionally, a fourth stage was
mounted on the mechatronic platform (8MR190-2-28, STANDA, Vilnius, Lithuania) in order to
enable the rotation of the sample. Such stage had 360◦ rotation range with 0.01◦ resolution.

(ii) An ultrasound probe (Sonomed, mod. 2014059, Warsaw, Poland) with 16 MHz central frequency
and a fractional bandwidth equal to 0.25 at −6 dB used in pulse-echo mode. The needle-type
probe, 3 mm in diameter, was selected for directly contacting and indenting the sample. A 30 Vpp
pulsed excitation was delivered to the probe via a transmitter (US-Key, Lecoeur-Electronique,
Chuelles, France) connected to a PC via USB2. The experimental setup was completed with the
ultrasound data acquisition device, NI FlexRIO (National Instruments Corp., Austin, TX, USA),
for acquisitions at high frequency (1.6 GHz).

(iii) A load cell (Nano 43, ATI Industrial Automation, Apex, NC, USA) to collect interaction forces, up
to 18 N with 0.004 N resolution along normal axis, arising at the interface between the ultrasound
probe and the sample, also used in the control loop of the translation stages in order to operate
force-controlled indentations. The developed software used this force data to calculate the stiffness
and to trigger the high frequency US data collection at the threshold point of contact (0.2 N).

347



Sensors 2019, 19, 2512

(iv) A waterproof HD-camera (Hero5 Session, GoPro, San Mateo, CA, USA) with 10 MP and 4 K
resolution, integrated to perform the sample shape recognition and to create a matrix of points to
be indented.

(v) A stainless-steel disk fixed on the top of the motorized stages for the positioning of the sample, but
also to permit the reflection of the ultrasound signal back to the probe. The disk had a diameter
of 16 cm and a thickness of 1 cm.

Figure 2. (A) Block diagram of the experimental setup. (B) Experimental setup showing the
different components.

The software routines for controlling the platform and the automatic scan of the samples and
for performing data acquisition, as well as the graphical user interfaces were developed in LabVIEW,
LabVIEW Real-Time and LabVIEW FPGA (National Instruments Corp., Austin, TX, USA), while the
data analyses were performed using MATLAB (The MathWorks, Inc., Natick, MA, USA).

2.2. Phantom of Healthy Tissue and Inclusions

Tests were performed on seven Agar block-shaped phantoms, realized to mimic both the
mechanical and the acoustic properties of diseased human tissues. Each phantom had a soft surrounding
matrix representing the human healthy tissue and hard inclusions embedded inside to represent tumor
nodules. Each fabricated phantom was nominally 60 mm wide, 100 mm long and 15 mm thick, while
the buried spherical inclusions had different diameters ranging from 3 mm to 12 mm. The volume of
the phantom was large enough to introduce up to 8 inclusions, 2 per each diameter, in different X–Y
positions with adequate separation distance (Figure 3) in order to execute computer-aided detection
trials. It is worth to mention that the Agar phantom did not need any pre-treating before performing
the automatic scan process. However, also in case of biological tissues, it is not necessary any further
pre-treatments apart from the one required within custom histological evaluations.

Agar-based phantoms were prepared using a predefined concentration of Agar in distilled water.
Changing the concentration of Agar resulted in a variation of both the mechanical and acoustic
properties. A concentration of 2 g of Agar in 100 mL of water was used to represent a healthy human
tissue (fabricating a phantom entirely with this concentration results in 1.59 MRayl acoustic impedance,
1457 m/s speed of sound and 0.33 N/mm mechanical impedance). A concentration of 8 g of Agar in
100 mL of water was used for simulating a tumor tissue (fabricating a phantom entirely with this
concentration results in 1.92 MRayl acoustic impedance, 1534 m/s speed of sound and 4.6 N/mm
mechanical impedance) [28,30–32].
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Figure 3. Rendering of the Agar phantom used during the experimental acquisition. The spherical
inclusions are marked in yellow (∅ 12–9–6–3 mm). The volume of the phantom is 100 × 60 × 15 mm3.

2.3. Experimental Protocol

The experimental protocol consisted in an automatic scan of the sample. The procedure was
divided in two steps:

(i) Visual analysis;
(ii) Stiffness and ultrasound analysis.

The purpose of the automatic visual analysis was to recognize the shape of the sample by acquiring
its boundaries and to create the indentation matrix, namely the points to be analyzed. Such analysis is
crucial when dealing with real tissues, where the shape and size is unknown or irregular, so that the
scan can be defined automatically. The visual part (Figure 4) consisted in subtracting the background
image from the sample image, thus obtaining the shape, the size and the orientation. Starting from
this new image (Figure 4C), a set of indentation points was created with a 2 mm step along the X and
Y-axes.

Figure 4. Visual part: Positioning of the sample, boundary detection and creation of the indentation
matrix. (A) Background. (B) Sample in an arbitrary position. (C) Background subtraction. (D)
Positioning by rotation of the sample and creation of the indentation matrix.

Once the visual analysis was completed, it was possible to start the acquisition of the compression
force and ultrasound signals. Per each X–Y point of the indentation matrix, the phantom was indented
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along the Z-axis at constant speed (0.5 mm/s). The compression force was recorded and, at a low
threshold (0.2 N, to avoid damaging the phantom), a trigger signal was generated for ultrasonic pulse
transmission and reflected signal reception for recording (Figure 5). In a nutshell, the robotic platform
control was fully automatic from the placement of the tissue onto the platform up to the localization of
the inclusions. However, the system provided the user interface for an operator to supervise the scan
according to the physician’s requirements.

Figure 5. (A) Experimental protocol involving indentation of the ultrasound probe under regulation of
the contact force. (B) Normal force. (C) Position along Z-axis. (D) Ultrasound signal reflected from the
steel metal plate. (E) Zoom of the ultrasonic signal shown in panel D reflected at the tissue sample
bottom in contact with the steel plate.

2.4. Data Analysis

The detection and localization of the different inclusions was based on the elaboration of indentation
force (FZ), vertical position (Z) and ultrasound signals. The stiffness parameter k is the ratio between the
change in force and the change in Z displacement and for each indentation was calculated according to
Equation (1). Here, Fzmax refers to the force threshold of the indentation and Fz0 refers to force measured
by the load cell following the first contact.

k =
ΔFz

ΔZ
=

Fzmax − Fz0

ZFzmax
− ZFz0

(1)

The ultrasound technique used for the detection of the inclusions was based on the reflectometric
method. In fact, we considered more reliable to work with the variation of the signal reflected from the
interface created by the bottom of the phantom and the steel plate. This signal has a higher amplitude
than the back scattered or reflected signal from the inclusion embedded into the tissue-like matrix.
For our phantoms, according to the selected acoustic parameters mimicking healthy and cancerous
tissues [31], we can estimate a reflection coefficient generated by the acoustic impedance difference at a
planar interface less than 1%. The ultrasonic analysis consisted in the processing of the signal detected
in each point of the indentation matrix defining a Correlation Index Amplitude (CIA) parameter
derived from [33], as reported in Equation (2):

CIA = 1−
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min
(√∑

S2
re f ,

√∑
S2

i

)
max

(√∑
S2

re f ,
√∑

S2
i

)
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In Equation (2), Si is the signal acquired in each point and Sref is the reference signal. The CIA
assumed values between 0 and 1: For two identical signals the CIA is zero, while for very different
amplitude signals the CIA approaches to 1. We assume that a reference signal can be acquired in a
position where neither inclusions nor other inhomogeneity have been detected; under this assumption
the transmitted signal from the US probe is only attenuated by the two-way travel path defined by the
steel plate interface. Due to low tissue sample thickness (typically from 5 mm to 20 mm) and moderate
attenuation of the US at the operating frequency (1.25 dB/cm @16 MHz) this signal has an amplitude
that is greater than the amplitude of the echo signals obtained in the probe positions over an inclusion;
in our test samples, we found an amplitude variation of about 10% and 60% for the echo signal at the
steel plate interface over and outside the inclusions, respectively. A high CIA indicates the detection of
an inclusion since the two signals become poorly correlated.

For each indented point, a colour map was created both for stiffness and for correlation index
amplitude. An unsupervised classifier, called Fuzzy C-mean (FCM) clustering [34], was used to classify
each indentation of the scan on the phantom. Such unsupervised classification system, starting from
the elaborated data, enabled the categorization of the point and the subsequent organization into
different clusters. In this way, it was possible to divide the data into two classes: (a) Tumor class,
which were the sites classified as inclusions, and (b) healthy class, which were the sites classified as
non-inclusions. From the wrong classification prediction, we obtained the number of false positive,
i.e., soft matrix points classified as inclusions, and the false negative number, i.e., inclusions classified
as soft matrix. Furthermore, new datasets were obtained and classified by merging the stiffness and
the ultrasound data using AND–OR logics. In the AND case, we considered tumor only the points
identified as inclusion in both the datasets simultaneously, thus we expected an increase in the total
number of false negatives. In the OR case, we considered tumor all the points classified as inclusion in
either the stiffness dataset or the ultrasound dataset, thus we expected an increase of the number of
false positives and reduced false negatives. The results of the OR logics are crucial to include all of
the cancerous tissues. Through a confusion matrix, the accuracy and the misclassification rate were
calculated for all the datasets and methods.

3. Results

All the experimental results presented in this section have been repeated over seven replicas of
the developed phantoms.

3.1. Results from Stiffness Measurements

An elaboration example of the stiffness analysis, for one of the seven phantoms, is shown in
the top parts of Figure 6. The bottom part of Figure 6A shows the positions of the inclusions inside
the indentation matrix. Since the inclusions were embedded into a soft matrix, their stiffness was
depending not only on the materials properties, like the elasticity, but also on their dimensions. The
stiffness parameter recorded at the location of indentation is the complex homogenized combination
of the inclusion below and the surrounding soft “healthy” tissue. Hence, the stiffness parameter, k
from Equation (1), was found to increase with the dimension. Stiffness analysis was clearly capable to
detect the bigger inclusions, namely 12 mm and 9 mm. Figure 6B, showing the results for the whole
indentation matrix, confirmed this trend. A visual inspection of the image allows discriminating big
inclusions compared to the soft surrounding matrix.

The results of the identification based on stiffness measurements are shown in Figure 7A, obtained
by the Fuzzy C-mean (FCM) clustering. The results of this unsupervised classification system confirmed
the ability of the stiffness measurement system to recognize all the points belonging to the big inclusions,
thus without false negatives. Such performances were evident from the high number of true positive
(green points) for 12 mm and 9 mm inclusions. However, stiffness analysis was not able to reliably
identify the smallest inclusions, as pointed out by the high number of false negatives (red points) for
6 mm and 3 mm inclusions (Figure 7A).
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Figure 6. (A) (top) graph showing stiffness as a function of position, calculated as ΔFz/ΔZ, for the
central row; (bottom) graph showing ultrasound signal processing of CIA index. (B) (top) 3D graph
showing stiffness across the whole indentation matrix; (bottom) 3D graph showing ultrasound signal
processing of Correlation Index Amplitude (CIA) index.

Figure 7. Classification (TP–TN–FP–FN) of all the points of the indentation matrix for the analyses
with stiffness (A) and ultrasound (B) measurements.

3.2. Results from Ultrasound Measurements

According to the ultrasound data analysis, shown in Figure 6 (bottom part), we can observe in
Figure 6A that the CIA index increases consistently in correspondence of the inclusions. However,
unlike the stiffness measurements, higher CIA values were observed also for the smaller inclusions.
Thanks to the high CIA peak recorded for each inclusion, this approach led to the detection of all the
inclusions buried in the phantom. Figure 6B, showing the results for the whole indentation matrix,
confirmed this trend. As for the stiffness measurement part, Figure 7B shows the results of the FCM
clustering, highlighting the ability of the ultrasound system to detect each inclusion. The trend is
visible in Figure 7B where true positives (in green) are present in each inclusion. Remarkably, false
positives (in yellow) and false negatives (in red) were obtained in the area at the boundary between the
inclusion and the soft matrix, confirming the high specificity in identifying the area to focus on for
histological analyses. At such boundaries, the ultrasonic beam, coming from the source and returning
to the source upon reflection on the stainless steel plate, could have experienced diffraction effects
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that produced an apparent enlargement of the real dimensions of the spherical inclusions thus giving
origin to false positives.

3.3. AND–OR Logics to Merge Stiffness and Ultrasound Measurements

With the aim to improve the detection performance (true positives vs. false negatives), new
datasets were obtained and classified by merging stiffness and ultrasound measurements using
AND–OR logics and the corresponding results are shown in Figure 8. The AND logics (Figure 8A)
turned out in an increase of false negatives and decrease of false positives. The growth of false negative
predictions can lead to the worst-case scenario, since might bring to a loss of identified tumors. Instead,
the OR logics demonstrated to be a safer approach since it turned out in an acceptable increase of false
positives and a consistent decrease of false negatives. As shown in Figure 8B, the OR logics between
stiffness and ultrasound measurements was able to correctly discriminate all the inclusions, even the
smaller ones. Such results were achieved thanks to the complementarity of the two systems. It was
observed that the stiffness analysis was better in localizing bigger inclusions, whereas the ultrasound
analysis was better for the detection of smaller inclusions (compare Figure 7A,B).

Figure 8. Classification (TP–TN–FP–FN) for all the points of the indentation matrix following the AND
(A) and OR (B) logics of stiffness- and ultrasound-based classifications shown in Figure 7.

This behavior was further confirmed by the confusion matrices obtained with the seven
experimented phantoms and with all the identification techniques, i.e., based on just stiffness
measurements, just ultrasound, and with the AND–OR logics (Figure 9).

Figure 9. Confusion Matrix with classification based on (A) stiffness measurements; (B) ultrasound
measurements; (C) stiffness or ultrasound measurements; (D) stiffness and ultrasound measurements.

4. Discussion

In this work we present a platform aiming at identifying cancer nodules in ex-vivo tissues. Such
tool, oriented towards the automation of diagnostic procedures during surgery, has the scope of
increasing the effectiveness of histopathological evaluations. Such exams need to be performed as
correctly as possible because the report may lead in a modification of the surgical procedure. The
human capability to detect these lumps with characteristic dimension of few mm, depends on the
pathologist expertise and tactile capabilities. To achieve this goal, the presented platform combines
three different measurements, such as camera vision, stiffness calculations via force-position sensing
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and ultrasound recordings to perform an automatic scan and evaluation of the indented tissue. In this
paper the tests were performed in a laboratory environment using seven Agar phantoms that mimicked
the mechanical and acoustic properties of human ex-vivo tissues. The phantoms integrated eight
spherical inclusions with different diameters (from 3 mm up to 12 mm) to reproduce tumors inside
healthy tissues. The results, for all phantoms, summarized in the confusion matrices, demonstrated
the ability of the platform to automatically identify the inclusions, particularly when complementing
stiffness with ultrasound measurements via OR logics. In particular, as reported in the confusion
matrix, the tactile analysis presents valuable classification results in detecting the inclusions as reflected
from the 78.73% of TP and 90.26% of TN. Moreover, it shows a low percentage of FP and FN, 9.74%
and 21.27%, respectively. We observe that the tactile analysis provides satisfactory shape recognition
and tumor detection for inclusions above 6 mm in diameter. On the other hand, it missed the smaller
inclusions that were buried deeper into the softer matrix. The ultrasound analysis can be a very
good guiding tool for localization and detection of tumors, including the smaller ones, because the
ultrasound resolution is much higher than the size of the inclusion and the difference in the acoustic
impedance along the z-axis is sufficient to generate an amplitude variation than can be detected from
noise. The ultrasound data presents high amount of TN of 92.41% and a low FP of 7.59%. However, the
ultrasound alone shows a high number of FN of 43.72%. To improve the performance, the classified
datasets were logically merged using the OR and AND logics. As expected, the results of OR logics
gave evidence of a higher rate of inclusions recognition (i.e., 90.3% of TP and 84.56% TN), while
maintaining low error rates (i.e., 9.68% FN and 15.44% FP). Such a result is a direct consequence of the
implementation of this logics, since we considered all the points classified as inclusion, in either the
stiffness dataset or the ultrasound dataset, as tumor. This entails a better localization and reconstruction
of the buried inclusions. Interestingly, the AND logics localizes the bigger inclusions with an increased
TN rate of 98.10%and reduced the FP rate to 1.90%, but the TP rate of 44.70% and FN rate of 55.30%
missed the correct shape and smaller tumors entirely.

In addition, we found that the ultrasound method was also sensitive to the presence of air bubbles
formed in the agar inclusions as the surface of such bubbles might introduce a significant impedance
contrast for the ultrasound signals. This could create amplitude variation in the reflected signal that
resembled to the “healthy tissue”. Thanks to the good spatial resolution of our system, the positions
around the air bubbles provide faithful data that can reduce the impact of this constraint; moreover,
the biological tissues are expected to not have air bubbles. However, the tactile data were not sensitive
to these air bubbles inside the inclusions, reproducing their shape a more faithfully in the OR logics.
Within the present work, we adopted a scan resolution with step of 2 mm inspired by the 16 MHz
needle probe diameter (i.e., 3 mm). To keep a balance between the scan speed and area, we decided to
scan with step of 2 mm. Lesser resolution values lead to insufficient data points in the scanned area,
while higher values would introduce unaffordable scan time and oversampling.

The phantoms we used were the simplistic versions of the biological tissues. Hence, further
developments will address the experimentation of the robotic platform on ex-vivo tissues. After this
validation step, we can envisage that the sensorized platform placed in the operating theatre will
enable the pathologist to access data remotely with the purpose of assisting the surgeon in adapting
the procedures during surgery. Information obtained from the platform can also be used to provide
haptic feedback to the pathologist by means of wearable interfaces [35–38]. The analysis of vision data,
now used only for detecting the boundary of the tissue and thus to define the indentation matrix, can
be improved to provide a visual report too. Such a new procedure will target the extraction of several
features from the pictures of both healthy and tumorous tissues to learn their differences via artificial
intelligence methods and thus complement stiffness and ultrasound measurements. Finally, the results
will be translated in an electronic report and integrated with the management software (e.g., HL7) of
the healthcare system.
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Abstract: The pressure map at the interface of a prosthetic socket and a residual limb contains
information that can be used in various prosthetic applications including prosthetic control and
prosthetic fitting. The interface pressure is often obtained using force sensitive resistors (FSRs).
However, as reported by multiple studies, accuracies of the FSR-based pressure sensing systems
decrease when sensors are bent to be positioned on a limb. This study proposes the use of
regression-based methods for sensor calibration to address this problem. A sensor matrix was
placed in a pressure chamber as the pressure was increased and decreased in a cyclic manner. Sensors’
responses were assessed when the matrix was placed on a flat surface or on one of five curved
surfaces with various curvatures. Three regression algorithms, namely linear regression (LR), general
regression neural network (GRNN), and random forest (RF), were assessed. GRNN was selected
due to its performance. Various error compensation methods using GRNN were investigated and
compared to improve instability of sensors’ responses. All methods showed improvements in results
compared to the baseline. Developing a different model for each of the curvatures yielded the best
results. This study proved the feasibility of using regression-based error compensation methods to
improve the accuracy of mapping sensor readings to pressure values. This can improve the overall
accuracy of FSR-based sensory systems used in prosthetic applications.

Keywords: force myography; prosthetic fitting; regression; calibration; error reduction; linear
regression; random forest; general regression neural network; cross-talk; force sensitive resistor

1. Introduction

The pressure profile at the interface of the prosthetic socket and the residual limb contains
important information that can be used for various applications in the field of prostheses. Some of the
most common prosthetic applications for which the use of this pressure map has been explored include
control of powered prostheses using Force Myography (FMG) [1–3] and prosthetic fitting [4–6].

FMG for prosthetic control has been explored for both upper extremity and lower extremity
prostheses [7,8] . For the upper limb, FMG has been mostly used for gesture classification to control
externally-powered prosthetic hands [9,10]. The feasibility of using FMG for continuous finger
movement control has also been investigated [8,11]. In lower limb prostheses, the use of FMG
has been mainly focused on locomotion mode detection. Information about the mode of locomotion
can be used for the ankle’s angle correction as the user walks over ramps, flat surfaces, or stairs [7,12].
Moreover, studies have shown promising results using FMG for gait phase detection [13] which can
potentially be used for lower limb prostheses control [14].

Another application for which the interface pressure can be used is prosthetic fitting. Correct
shaping of the socket is a critical and complex part of the prostheses design process [15]. Poor socket fit
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can cause various problems such as pain and discomfort [16], skin problems such as edema, dermatitis
and ulcer [17] which can lead to abandonment of the prosthesis or even further surgery. These problems
may also drive users to put more load on their intact limb which can cause other problems such as
osteoarthritis of the knee and/or the hip joints of the intact limb [18]. Moreover, insufficient loading of
the residual limb may lead to osteopenia and subsequent osteoporosis [18]. Using the aforementioned
interface pressure, location of high pressure areas and the value of pressure in these areas can be
determined. This information can enhance the accuracy of the prosthetic fitting process and prevent
some of the problems associated with a poor socket fit.

Various force/pressure measurement techniques are used in biomedical applications. Strain
gauges and load cells are used in different forms and for various applications such as measurement of
ground reaction forces for gait analysis using instrumented shoes [19] and prosthetic interface pressure
measurement [17]. Force plates are also commonly used in such applications due to their accuracy of
measurement [19–21]. Other force/pressure measurement methods for biomedical applications include
the use of piezoelectric sensors for measurement of normal forces in shoe insoles [19], instrumented
implants for telemetric measurement of forces [22], dynamometers [23], and electromyography for
measurement of muscle activation forces [21].

The measurement method is determined based on the application for which the results are to
be used. For example, despite the high accuracy of measurements by a shoe insole instrumented
with strain gauge transducers, it is not a suitable measurement system for gait analysis due to the
interference of the thickness of the sensors with parameters of the experiment [19]. For pressure
measurement within prosthetic sockets, various techniques are investigated including the use of strain
gauge transducers, capacitive sensors, and piezoresistive sensors [6]. The use of strain gauge-based
sensors are amongst the most accurate methods that can measure both normal and shear forces.
However, factors such as the high cost of these sensors and their dimensions limit their practicality for
the real use case of the applications considered in this study. The use of such sensors for prosthetic
pressure measurement requires modification of the prosthetic socket to make embedment of the sensors
possible. Such alterations to the prosthetic socket may affect the interface pressure distribution [24–26].

Capacitive sensors are used both in single point form and as sensor arrays for prosthetic pressure
measurement. The rigid substrates of the single point capacitive sensors prevented them from
complying with the geometry of the socket, which in addition to their costly fabrication prevented
them from being an optimal technique for prosthetic pressure measurement [6]. The Pliance system by
Novel Electronics (Minneapolis, MN, USA) uses capacitive sensor arrays for this application, however,
the measurements are limited to direct pressure and are uni-directional [27,28].

Design and development of sensors that are thin, less costly, and can measure shear forces have
been investigated in the research community. Chase et al. fabricated and tested a flexible capacitive
force sensor that was able to measure normal and shear forces [29]. Razian et al. designed and
developed a miniature triaxial piezoelectric copolymer film pressure transducer with thickness of
2.7 mm that can be embedded in shoe insoles [30]. Although these sensory systems can potentially be
used for prosthetic pressure map registration, their development methods are still in their early stages
and are bound to the research laboratories.

FSR-based pressure measurement systems are amongst the most common methods for prosthetic
pressure map registration as well as a multitude of other biomedical application [31]. Despite their
inability to measure shear forces which is undesirable for some prosthetic applications, their thin
profile, flexibility, cost effectiveness, computationally affordable signal pre-processing [17,27,32] ,
and commercially established development have made them a practical solution for prosthetic pressure
measurement. The F-scoket system by Tekscan (Boston, MA, USA) has been one of the most commonly
preferred solutions for pressure measurement inside prosthetic sockets [5,6,17,26,28,32].

Despite availability of FSR-based prosthetic pressure measurement systems in the market and
their wide use in research communities, when these systems are evaluated in practical situations,
higher errors are reported compared to their performance in constrained environments of the labs.
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In prostheses control using FMG, higher errors are reported for inter-subject and inter-trial cases [13,33].
In prosthetic fitting systems, higher errors are reported when FSR sensors are placed on moulds of the
limbs [4,27,28].

Factors affecting stability of FSR responses have been investigated in multiple studies.
Chegani et al. assessed the effect of sensor placement and spatial coverage on stability of FMG
signals used for gesture classification through studying their effect on obtained classification accuracy.
It was determined that increasing spatial coverage improved accuracy when two custom FMG bands
were used instead of one. However, increasing spatial coverage beyond that did not further improve
the results. They also reported that optimal placement of sensors can potentially compensate for the
lower spatial coverage [8]. Delva et al. investigated the effect of anthropometry and grip strength on
stability of FMG signals and determined that these factors do not contribute to variability in FMG
signals. They also demonstrated that FMG signal’s stability was not decreased in non-stationary
tasks [34].

Another factor that can decrease the stability of FSR signals is the curvature of sensors. In the use
of FSR-based pressure sensing systems for prosthetic applications, as sensors are embedded inside a
prosthetic socket, they are inevitably bent. When FSRs are bent, their neutral value changes and as the
sensor responses are usually non-linear, this could considerably affect sensors’ responses.

Multiple studies have assessed the effect of bending on stability of FSR readings by studying
the effect of placement of FSR sensor arrays on moulds of the limb on the sensors’ error compared
with when they were laid flat [4,28]. These assessments showed that when the sensors were placed on
moulds of residual limbs, their errors increased significantly compared with when they were laid flat.
Three off-the-shelf FSR-based pressure sensing systems were assessed in these studies: the Rincoe SFS
system, the F-Socket, and the Pliance system. Their reported accuracy error increased from 24.7% to
32.9% for the Rincoe SFS system [4], 8.5% to 11.2% for the F-Socket [4], and from 2.42% to 9.96% for the
Pliance system [28].

To the best of authors’ knowledge, no study has been conducted to solve the problem of instability
of FSR-based pressure sensing systems due to bending. The objective of this study is to determine
feasibility of reducing errors introduced in sensor matrix readings due to the matrix being bent
using information about the values of curvature of the sensors. This is a preliminary study using an
off-the-shelf matrix of FSRs and five values of curvature that are uniform across the matrix. Proposed
methods in this study can be applied to any system of sensor matrices that are prone to decreased
accuracy when bent, including pressure measurement systems for prosthetic fitting that are available
in the market. Since sensor bending affects the physical characteristic of the sensors, it could also affect
other aspects of sensors’ response in addition to what was assessed in this study such as creep and
hysteresis. Moreover, when sensors are placed on a residual limb, they might be bent in multiple
planes. This study assessed the effect of bending in one plane. The effect of bending on creep and
hysteresis in addition to multi-plane curvature of sensors should be investigated in future work.

The proposed approach for this study was to test sensor readings in a chamber with varying
pressure when sensors were laid flat or when they were bent with known curvatures. Recorded data
was then analyzed offline. In order to reduce the error due to bending, four regression-based error
compensation methods were investigated. These error compensation methods required the use of a
regression algorithm to form a model for pressure prediction based on FSR data and sensors’ curvatures.
To determine which regression algorithm to use in these error compensation methods, three algorithms,
namely linear regression (LR), general regression neural network (GRNN), and random forest (RF),
were assessed on the data collected from the sensors in the pressure chamber. The data that were used
for assessment of the three regression algorithms was the combination of sensor data in all curved
conditions in addition to the flat condition. Data were split to 5 repetitions and Leave-one-out cross
validation was used to chose one of the regression algorithms be used in the four regression-based
error compensation methods proposed in this study. The assessment was performed based on two
outcome measures: R2 and RMSE%.
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The three regression algorithms that were assessed for this study are amongst the most vastly
used for regression purposes for FSR signals used in biomedical applications [8,35–37]. Linear machine
learning algorithms are commonly used for various types of signals for a multitude of applications due
to their capability of prediction and their computational efficiency [9,35,38,39]. These characteristics
make LR suitable for applications that are sensitive to processing time such as the ones that require
repetitions of data processing, and the applications that require real-time data processing.

GRNN is a probabilistic, memory-based neural network with a highly parallel structure.
This algorithm learns in a single pass through available data and converges to the optimal regression
surfaces with availability of more samples. It is capable of forming acceptable regression surfaces
based on limited data and is known to work with sparse data in real-time environments. GRNN
is fast learning and computationally efficient as it does not need back propagation. Moreover,
its implementation is relatively simple and easy to use [36,40]. These characteristics of GRNN make it
suitable for the analysis of this study, especially considering sparsity of curvature values.

RF is a non-conventional machine learning algorithm that is commonly used for classification and
regression of FSR signals. It improves on individual decision trees by using an aggregation of weakly
pruned trees to prevent over-fitting to training data. This enhances generalization of the models
created by RF [41]. These characteristics of the three aforementioned algorithms, common application
of them to FSR signals, and their performance for the baseline condition of this study, which is when
data from the flat condition and various curved conditions were combined, are the reasons they were
chosen for assessment of the dataset of this study.

The selected regression algorithm was used in the four regression-based error compensation
methods that were investigated. The objective of the error compensation methods was to take into
account the variability introduced in the sensors’ responses due to their bending. A common method
to account for such variability in different conditions is to calibrate sensors separately for each
condition [31]. Method1 does so by separating data based on the curvature of the sensors and
making a separate model for each condition using the selected regression algorithm. To predict
pressure for test data using this method, the model associated with the curvature of test data would
be used. Method2 uses the selected regression algorithm to make a single model for all data. In this
method, the value of curvature is used as an input channel for model training and pressure prediction.
Findings of method2 motivated implementation of method3 and method4. More explanation on this
is provided in the “Discussion” section. Method3 splits the data to flat and curved. It then uses the
selected regression algorithm to make a separate model for each of these two conditions. Pressure
prediction for test data using this method is similar to the first method. Method4 is similar to method2
except that the curvature input channel in this method has binary values of 0 and 1 representing
whether the sensor is curved or flat. For comparison of performance of these methods, data were split
to 5 partitions and Leave-one-out cross validation was used with the two aforementioned outcome
measures (R2 and RMSE%).

2. Materials and Methods

To assess the effect of bending on accuracy of the response of FSRs, sensors’ responses to known
pressure values were examined as they were placed on structures that were flat or were curved
with various curvatures. Regression methods were used to map sensor responses to pressure values.
To assess whether bending the sensors significantly affected their response accuracy, two conditions
were first compared: sensors’ responses when only the flat condition was considered and sensors’
responses when all six conditions were considered. Multiple error compensation methods were then
used to decrease the errors introduced due to the bending of the sensors and their performances
were compared.

To collect required data for this study, a test setup was needed that could apply pressure on
sensors in the matrix while measuring the value of the applied pressure, that is, true pressure value.
The measured value would then be used to produce the regression model.
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For all statistical tests, normality of data was determined using the Shapiro-Wilk test. When data
were from a normal distribution, depending on the number of populations being compared, either the
Student’s paired t-test at significance level of 5% or a repeated measures ANOVA was employed.
For these tests, 70 samples were used, each representing the outcome measure for one of the sensors in
the matrix.

For cases where the assumption of normality was violated, non-parametric tests were used.
When more than two populations were being compared, the Friedman test was used. For post hoc
analysis in these cases, or in cases where two populations were being compared, depending on
symmetry of the distribution of differences between paired variables, either the Wilcoxon signed-rank
test or the paired-samples sign test with a Bonferroni correction was used. All tests were conducted
with the IBM SPSS Statistics v24 software.

2.1. Sensor Matrices

To explore the extent of the effect of bending on accuracy of the response of FSRs, an off-the-shelf
sensor matrix of FSRs was chosen for this study: the TPE-900 Series multi-touch resistive evaluation
sensor by Tangio Printed Electronics. This sensor matrix was chosen due to its independence on specific
hardware or electronics. The FSR matrix used in this study was comprised of 7 rows and 10 columns
of individual FSR sensors and its dimensions were approximately 7 cm × 10 cm. The sensor matrix
is shown in Figure 1. For this experiment, the sensor matrix was sealed using Polydimethylsiloxane
(PDMS) to prevent the pressurized air inside the chamber from filling the air channel that was
integrated in the design of the matrix. If the air channel was filled with pressurized air, the pressure
difference between the environment and the sensor matrix’s air channel would be zero. This would
prevent the sensors from sensing the air pressure in their surrounding environment.

Figure 1. FSR matrix and the data acquisition printed circuit board (PCB) used in this study.

2.2. Data Acquisition

Two-dimensional (2D) networks of matrices are used in variety of applications such as tactile
sensing, pressure distribution measurements, temperature sensing, gas detection, and so forth [42].
Shared signal and power lines between sensors in a row and sensors in a column allow for smaller
number of traces which simplifies hardware and electronics. However, an inherent problem with the
row-column fashion of these matrices is the cross-talk between adjacent elements of the matrix.

Various circuits are proposed and used in the literature for the scanning of piezoresistive sensor
arrays that reduce the interference of unwanted paths [42–44]. Two of the commonly used cross-talk
suppression circuits are based on the Voltage Feedback method and the Zero-potential method [43].

In this study, a printed circuit board (PCB) was designed for data acquisition that used the
Zero-potential circuitry shown in Figure 2. The data acquisition PCB used a Cypress PSoC 4 (model
CY8C4247AXI-M485) microcontroller, op-amps, switches, a voltage regulator chip, a voltage reference
chip, and multiplexers. Outputs of the circuit were transferred to a computer using universal
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asynchronous receiver-transmitter (UART) communication and were then saved on the computer
for offline data analysis. The PCB could acquire data from sensor matrices of up to 10 columns and
16 rows. The PCB is shown in Figure 1.

Figure 2. Cross talk compensation circuit used in this study.

True pressure values also needed to be measured and recorded. This was done using a digital
pressure transducer by Omega Engineering (model PX309) whose data was acquired using a National
Instrument (NI) Data Acquisition Unit (DAQ)(model USB-6001). Recordings of sensor readings and
pressure sensor values were synchronized using NI LabVIEW software.

2.3. Test Setup

Sensors’ responses were assessed in six conditions—when sensors were laid flat and when they
were placed on each of the five structures that were designed with varying curvatures. The curved
structures were 3D printed and are shown in Figure 3. Each structure was part of a cylinder with
a different radius, namely 5, 7, 9, 11, and 13 cm, with corresponding curvatures of approximately
0.20, 0.14, 0.11, 0.091, and 0.077 m−1, respectively. As transtibial amputations account for majority of
the major lower limb amputations [45,46], and transhumeral amputations account for majority of the
upper limb amputations [45], chosen curvatures are based on measurements of the lower transtibial
residual limb reported by Persson et al. [47] and the average circumference of the arm reported by
Holzbaur et al. [48].
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Figure 3. Curved structured used to bend sensor matrix with known curvatures. From left to right, top
to bottom, 5, 7, 9, 11, 13 cm.

Persson et al. studied dimensions of 93 lower residual limbs to construct a standard formula
of their classification into cylindrical (ordinary), conical, and club-shaped as well as short, ordinary
(breadth < length < 2 ∗ breadth), or long. In this study, they tested the constructed classification
formula on 96 residual limbs of 86 volunteers in 135 examinations and determined that 80% of them
were ordinary in both size and shape. Measurements of the breadth of the residual limbs were not
reported, however, considering the ordinary length of the majority of the residual limbs and the range
reported for their length, breadth of the stump of majority of participants can be approximated to be
larger than 9 cm which corresponds to the curvature of about 0.2 m−1 [47].

Holzbaur et al. used magnetic resonance imaging for measurement of the features of 32 upper
limbs and reported an average of approximately 31 cm for the circumference of the arm which
corresponds to the curvature of about 0.2 m−1. Based on the measurements reported by the
aforementioned studies, the highest curvature used in this study was 0.2 m−1. The rest of the curvatures
were chosen with 2 cm variations in the radius of the cylinders up to the radius of 13 cm. The reason
lower curvatures were not considered is that they were not expected to have considerable effects on
sensors’ responses [48]. As this was a preliminary study, it did not consider double curvatures which
would be more important for the conical and club-shaped stumps which account for about 20% of the
stumps according to the above study [47]. This should be considered in future work.

Design of the curved structures included fixtures to assure fixed placement of sensor matrices that
was normal to the horizontal cross section of the cylinders. Fixtures were also added to the structures
to ensure their mechanical stability under pressure. For the experiments in this study, to bend sensor
matrices to specific, known curvatures, they were placed on these structures.

A test setup was required to apply and measure known values of pressure to the sensor matrix as
it was bent. The setup included an air pressure chamber rated at 793 kPa built to American Society of
Mechanical Engineers’ specifications, a pressure transducer with ±0.25% best straight-line accuracy
and range of approximately −103 to 1034 kPa, and an electrical feed-through to allow for powering
the system and reading output values. This setup was similar to the one used in literature to evaluate
sensory systems for prosthetic fitting [4,28]. The test setup is shown in Figure 4.
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Figure 4. Experimental setup using a pressure chamber.

2.4. Data Collection

The sensor matrix was placed on a flat or curved surface and was placed inside the chamber.
Sensors were then tested by increasing air pressure inside the chamber up to about 620 kPa and
decreasing it back to room pressure in a cyclic manner. This was repeated for each condition (five
curved surfaces and the flat surface) for up to 10 cycles. This method was similar to what has been
done in literature for assessment of accuracy of similar systems [4].

Frequency of data collection was 10 Hz. At each frame, both sensor values and the pressure inside
the chamber were recorded. Total number of data samples (observations) for the 6 sets combined was
about 45,000.

2.5. Regression Methods

To determine which regression algorithm to use in this study, three algorithms, GRNN, LR, and RF,
were applied to collected data and their performance was compared using two outcome measures.

Linear regression uses a linear combination of input data to create the regression model as shown
in the equation below [49]:

y = ω0 +
N

∑
i=1

ωixi, (1)

where ωi represents the weight of input feature i, xis are the input features, N is the number of
features, y is the predicted value, and ω0 is the intercept of the linear model. In this study Matlab’s
implementation of LR was used. No parameter turning was required.

GRNN functions based on two layers other than the input and output layers: a pattern layer
and a summation layer. First, the pattern layer assesses the relationship between each input feature
and the corresponding prediction value. Then, the summation layer performs a dot product of a
vector containing produced signals in the previous layer and a weight vector. This layer consists
of two neurons: a numerator neuron that is the summation of weighted target values; and the
denominator neuron which is the summation of weight values. The mathematical representation is
the following [36,40]:
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Y(x) =
∑N

j=1 YjL(x, xj)

∑N
j=1 L(x, xj)

L(x, xj) = exp[
−D2

j

2σ2 ],

(2)

where Y(x) is the prediction value, x is the new input, xjs are the training samples, D2
j is the

Euclidean distance between x and xj, and σ is the spread constant that was tuned to 2−7 using a grid
search. The smaller the distance between new test data x and the training sample Xj is, the larger the
value of L(x, xj) becomes. This makes the effect of training samples that are more similar to the new
test data greater on its predicted value.

The RF algorithm functions based on a modified version of decision trees. It creates an ensemble
of weakly pruned trees. In a standard decision tree, each split is based on all available features while in
RF trees, decision splits are based on comparisons of guesses among randomly selected input features.
To perform prediction on a data point after the RF model is learned, the aggregation of prediction of
all decision trees are used. In the implementation used in this study, the mean of prediction of trees are
used as the predicted pressure [8,41]. Matlab’s implementation of RF was used in this study. A grid
search was performed to tune the number of trees to 150. The default option was used for the number
of features used for each decision split which is one third of the number of variables.

The two outcome measures used in this study were: coefficient of determination (R2) and Root
Mean Square Error Percentage (RMSE%) that are calculated using the following formulas:

R2 = 1 − ∑n
k=1(yk − y′k)

2

∑n
k=1(yk − yk)2 (3)

RMSE% =

√
1
n ∑n

k=1(yk − y′k)2

rangey
∗ 100, (4)

where yk is the expected value of the reading, y′k is the predicted value, yk is the mean of expected
values, n is the number of observations, and rangey is the range of values in observations of expected
values. R2 and RMSE% are commonly used for assessment of performance of regression methods [50].
Based on these outcome measures, one of the regression algorithms was chosen to be used in this study.

Four different regression-based error compensation methods were examined to reduce the error
caused in sensors’ responses due to their bending. These methods were compared with each other
and the baseline results based on the two aforementioned outcome measures. Baseline values were
obtained by combining data from all 6 conditions (flat and curved). In the baseline method, one
regression model was created and used for the combined data. In order to eliminate any bias based on
the number of samples used in different regression methods, data were down-sampled in any of the
methods that were using data from multiple conditions. The four error compensation methods are
described in Table 1:
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Table 1. Regression-based error compensation methods used to reduce the errors introduced due to
bending of the sensors.

Method1
A separate model was made for each curvature and data for each curve was assessed separately.
A total of 6 models were used in this method.

Method2
The value of curvature for each of the curved or flat structures was inputted as an extra channel
to the model. Data was down sampled to 1/6 of total observations so that the number of
observations was comparable to the one for Method1.

Method3
All curved structures were grouped together, and two models were made in total: one for when
the matrix was laid flat, and one for all the curved conditions. Data was down sampled so that
the total amount of data for each of the two groups was comparable to the one in method1.

Method4
Similar to method2, an input was added for curvature values. However, value of curvature was
set to 0 for flat, and 1 for all the curved conditions. Data was down sampled similar to method3.

In all methods data were normalized based on the mean and the standard deviation of training
data before model was made. This was done since in practice, test data is unknown and cannot affect
these factors. Each sensor was analyzed separately in all methods and the means of outcome measures
for the 70 sensors were reported to represent the outcome measures for each method.

Leave-one-out cross validation method was used for all assessments done in this study. Data
were split to 5 sections. Five repetitions of the assessment were done, in each, one of the 5 sections of
data was held out as test data and the rest was used as training data. Obtained values of the outcome
measures for each sensor was the average of the five repetitions.

3. Results

Figure 5 illustrates how the curvature of an FSR sensor affects its response to applied force or
pressure. Since such variations can negatively impact the stability of sensor readings in practical
situations, we propose a regression-based calibration system that takes into account the information
about the curvature of a sensor in addition to its pressure measurements. In this section, results of our
proposed method are explained in detail.

Figure 5. Comparison of the response of one of the FSRs when sensor was laid flat vs. when it was
placed on the curved structure with radius of 13 cm.
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3.1. Algorithm Selection

Results of the two outcome measures using the three regression algorithms assessed in this study
are shown in Figure 6.

Statistical analysis showed significant differences between results of the three algorithms in terms
of both R2 (χ2(2) = 107.31, p < 0.001) and RMSE% (χ2(2) = 109.83, p < 0.001). Post hoc analysis
determined that LR had significantly worse performance in terms of both outcome measures. Means
of R2 values obtained using GRNN and RF were also significantly different. However, significance of
the difference between GRNN’s and RF’s performances in terms of RMSE% was not determined.

GRNN was chosen as the regression algorithm to be used moving forward due to its better
performance, lower standard deviations of errors and ease of use.

Figure 6. Comparison of performance of three regression algorithms: general regression neural network
(GRNN), linear regression (LR), and random forest (RF). The results of the two outcome measures are
shown in this figure: R2 in the right figure and RMSE% in the left one.

3.2. Method Selection

The comparison of when only the flat condition was considered versus when data from all six
conditions were combined yielded results shown in Table 2.

Table 2. Comparison of when sensors were laid flat vs. when all 6 conditions were considered.

Method R2 RMSE%

Flat 0.99 ± 0.0012 3.51 ± 0.19
All Curvatures 0.94 ± 0.013 6.93 ± 0.81

These results determined that inclusion of varying curvatures statistically reduced accuracy of
prediction based on both outcome measures. To compensate for this effect, the four error compensation
methods explained in Table 1 were used. Results obtained using these methods are shown in Figure 7
and Table 3.

Table 3. Results of method selection.

Method R2 RMSE%

Baseline 0.94 ± 0.013 6.93 ± 0.81
Method1 0.98 ± 0.0014 4.26 ± 0.18
Method2 0.96 ± 0.0027 5.03 ± 0.20
Method3 0.97 ± 0.0055 4.66 ± 0.40
Method4 0.98 ± 0.0060 4.96 ± 0.64
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Figure 7. Outcome measures for the four proposed methods. The results of the two outcome measures
are shown in this figure: RMSE% in the top figure and R2 in the bottom one.

The baseline method had the worst performance compared to all the other methods. Method1
yielded the best results. Method2 made significant improvement compared to the baseline results,
however, its performance was significantly worse than method1. Method3 showed improvement over
both the baseline and method2 with significant difference for both R2 and RMSE% outcome measures.
Yet it did not achieve as much improvement as method1. Method4 also showed improvement over
method2 but could not reach the amount of improvement obtained using method1. Means of the
average values for both outcome measures for this method were statistically significantly different
from both method2 and method3. This method performed better in terms of R2 but worse in terms of
RMSE% compared with method3 with significant difference.

Statistical analysis using the Friedman test determined significant differences between results
of all methods including the baseline in terms of both R2 (χ2(4) = 270.09, p < 0.001) and RMSE%
(χ2(4) = 246.83, p < 0.001). Post hoc analysis of means of both outcome measures showed significant
differences between all methods.

4. Discussion

As mentioned in the ‘Introduction’ section, bending FSR sensors can affect their neutral state
value which is their response in the minimum pressure of the system. The effect of bending on the
neutral state value of sensors is shown in Figure 8 by comparing the response of one of the sensors in a
low range of pressure when the sensor matrix was laid flat versus when it was placed on the structure
with the radius of 13 cm. This phenomenon, in addition to other factors such as the non-linearity
of sensors’ response to applied pressure, can considerably affect the response of FSRs when they

370



Sensors 2019, 19, 5519

are positioned with various curvatures. To better highlight this point, Figure 9 shows how applied
pressure can be inaccurately interpreted from FSR readings if the sensor’s curvature is not taken into
account. Figure 9 also shows how a regression-based calibration method can resolve this issue.

Figure 8. Comparison of the response of one of the FSRs when sensors were laid flat vs. when they
were placed on the curved structure with radius of 13 cm. Response of the sensors in low pressure
values is shown.

Figure 9. Comparison of predicting pressure from output of one of the sensors without and with
considering sensor’s curvature information. Sensor was curved with a curvature of approximately
0.77 m−1. GRNN regression algorithm was applied to predict pressure values from the measurements
of one of the sensors.

The goodness of fit of the regression models was compared in two cases—when only the flat
condition was considered versus when varying curvatures were also included. This comparison
determined that the effect of variation in curvatures of the sensors on their responses was statistically
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significant. In this step of the experiment, statistical significance was determined using the Student’s
paired t-test.

Four regression-based error compensation methods were used to compensate for this effect.
These methods were compared with the baseline. The baseline method yielded values for errors
without any attempt to compensate for the bending errors in the sensor matrix. As expected, this
method had the worst performance compared to all the other methods.

Method1 classified data to six classes of matrix positioning: one for flat and five for bent with
different curvatures and created a separate model for each class. This method resulted in the best
accuracy of prediction based on both of the outcome measures used in this study. This was likely
because in this method, data from each condition was considered separately without any effect from
data from other conditions. In this method, variation of data used for training and testing of each
model was minimal compared to other methods. The main disadvantage of this method was its
difficulty of implementation in practice. This is because, in practice, curvature values are continuous
while this method requires classification of data into discrete curvature conditions. A solution for this
is to classify data based on ranges of curvatures and to use separate models for each of the classes of
curvature range.

Method2 used values of curvatures of the sensor matrix as an added input channel to the
regression algorithm. Compared to method1, this method performed significantly worse. A closer
look at the data indicated that similarities between the data when sensors were curved with different
curvatures was much more than similarity of the data between any of the curved conditions and the
flat condition. This can be seen in Figure 10.

Looking at the physics and operation of FSRs may help in understanding why their behaviour
changes when they are curved. It may also clarify the reason for similarity of sensors’ responses
when curved with various curvatures. Force sensitive resistors are resistive polymer-thick-film (RPTF)
sensors comprised of multiple layers including semi-conductive layers and electrode layers. These
sensors often employ a spacer mechanism such as spacer layers or air channels to control the spacing
between the substrates of the sensors. This layer ensures high resistance of the sensors in the absence
of external forces. When force is applied to the sensors, their resistance decreases due to two main
factors. The first factor is the comprising layers of the sensors becoming in contact with each other.
The other factor is variation in the geometry of the semi-conductive layer in a way that reduces sensors’
resistance [35].

When sensors are bent, their physics that play an important role in their responses to pressure
also change. Curving FSRs causes their comprising layers to become closer to each other which
can be considered similar to pre-loading the sensors. Moreover, since the forces due to bending are
not distributed evenly across the sensors [40], their curvature affects their responses not only by
pre-loading the sensors, but also by changing the rate of the change of their responses to increasing
pressure. It is likely that the similarity of the responses of curved sensors regardless of the value of
their curvatures is because of the similarity in distribution of bending forces across sensors in these
conditions compared to when they are laid flat.

The reason method2 did not make as much improvement as expected is likely that the differences
between curvature values are not good representatives of the variation in data in corresponding
conditions. The model likely assumes that the difference between the value of the curvatures of two
conditions determines the difference between the sensors’ responses in those conditions. However,
this is not the case according to the data collected for this study. For example, the difference between
the curvatures of the flat condition and the curved condition with the radius of 13 cm is about 0.08 m−1

and the difference between the curvatures of the curved condition with the radius of 13 cm and the
one with the radius of 7 cm is about 0.07 m−1. The differences between the value of curvatures in these
cases are comparable, so the model likely assumes that the variations of the sensors’ responses in these
cases would also be similar. However, looking at the graph in Figure 10, it can be seen that the sensors’
responses are much more different in the former case compared to the latter one.
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Figure 10. Comparison of the response of one of FSRs when sensors are positioned on structures with
varying curvatures.

A solution for this could be to use binary inputs for curvatures. This would imply using 6 extra
input channels for model creation. In each of the 6 conditions, a unique binary sequence consisting
of a single 1 and five 0s would be used. This solution was implemented for the dataset of this
experiment. Obtained results were 0.96 ± 0.003 and 5.05% ± 0.19% for the R2 and RMSE% respectively.
Both outcome measures were improved compared to method2, however, significant improvement was
not determined using the Student’s t-test for either of the outcome measures. To further improve on
this, categorical inputs could be used for curvature. However, in that case, curvature values would
need to be classified to curvature ranges which would entail similar problems as the ones explained
for method1.

Another solution to improve on method2 would be to determine a mapping of curvatures to
continuous values that would be able to accurately represent the extent of their effect on variation of
FSR responses. This should be investigated in future work.

The similarity between all curved conditions compared to the flat condition brought up the
possibility of grouping all curved data and simply separating the two situations when the sensor
matrix was laid flat and when it was curved, regardless of the amount of its curvature. This led
to method3 and method4. Both method3 and method4 improved on the results obtained using
method2 significantly.

Method3 made two different models, one for flat and one for curved. This method yielded
improvement over method2 with significant statistical difference for both R2 and RMSE% outcome
measures. This is likely because the error caused by ignoring variations in data when sensors were
bent with various curvatures is smaller than the error caused by assuming that the value of curvatures
were accurate representatives of the amount of variation introduced in data as sensors were bent.
This was expected as discussed before. Method3 did not achieve as much improvement as method1
since, in method1 the error caused by assuming no variation in data from various curvatures was
also omitted.

Method3 is easier to implement in practical situations compared to both previous methods. This is
because there is no need to know the exact or even approximate value of curvatures, as long as it is
known that the matrix is curved. It is reasonable to assume that sensors are bent in most locations
when the matrix is embedded in a prosthetic socket.
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Method4 inputted an extra channel to the algorithm. The value of this channel was 0 when
the sensors were laid flat, and it was 1 when they were curved regardless of the amount of bend.
This method, similar to method3 groups all curved data together. Method4 also showed improvement
over method2 but could not reach the amount of improvement obtained using method1 for the same
reasons explained for method3.

It is worth noting that, since only two values, 0 and 1, were used as the second input for method4,
this method is similar to binary curvature inputs that was discussed for method2. This is likely the
reason why method3 and method4 have comparable performances (each outperforms the other based
on one of the outcome measures). Method3 performed significantly better than method4 in terms of
RMSE%, however, it performed significantly worse than method4 in terms of R2. In comparison of
the last two methods, that is, method3 and method4, it was determined that method3 outperformed
method4 based in RMSE% while method4 outperformed method3 based on the other outcome
measure (R2). Because we only considered two outcome measures in this study, neither of which was
considered more important than the other, and due to the fact that each of these methods performed
better that the other based on one of these outcome measures, we cannot conclude superiority of one
of these methods compared with the other. As a result, we cannot consider one of them to have had
better overall performance for the dataset of this study.

In terms of computing power and running time, variations for testing using these methods are not
considerable. This is because in all methods, the model is produced using offline data. In online testing,
at each sample and for each sensor, one prediction is performed using the pre-built model. The main
difference among different methods would be in the training time. However, this is not an important
factor in applications considered in this study since model production would be performed offline.

In order to use the proposed methods of this study, information about curvature of the limb is
required. Various methods are used for geometric assessments of a residual limb that can be used for
this purpose. Some possible methods include circumferential measurements and contacting methods
utilizing digitizing methods of the cast of the limb or the residual limb itself [51,52]. Since, in common
practice for the fabrication of prosthetic sockets, casts are made in one of the initial steps, cast of the
limb is available and can be used for geometric assessment of the limb [53]. Three-dimensional (3D)
scanning is another method that has recently gained attention in the field of prosthesis for various
applications. 3D scans of the limb can be used for extraction of information required for the methods
proposed in this study. Another option would be to place sensors on the cast of the limb and calibrate
them as they are curved and placed on the location of the limb that they would later be positioned on
for measurements.

Bend sensors can also potentially be used to measure the value of curvature of sensors. Compared
to the aforementioned methods, the use of bend sensors can be faster and easier but less accurate.
Another method that could be valuable for this purpose in the settings similar to the one used in this
study, is to use the value of FSRs in specific states to determine their curvature value. To achieve this,
values of sensors in room pressure or another known state could be considered. Another option would
be to determine the curvature value based on the response of sensors to cyclic variations of pressure.
In either of these cases, features should be extracted from time windows with optimized lengths.
For more reliable prediction of curvatures, values of multiple adjacent sensors can be considered.
This method should be investigated in future work.

5. Conclusions

In this study, it was determined that when FSR sensors were bent, the error in their mapping to
pressure values significantly increased compared to when they were laid flat.

Four regression-based error compensation methods were proposed to solve the problem of
instability of FSR sensor matrices when placed on a curved structure. All proposed methods
significantly improved the accuracy of mapping of sensor readings to pressure values. It was
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determined that by just knowing when the sensor was curved without any knowledge about the value
of its curvature, results could be improved using proposed methods in this study.

The best performance was achieved by making separate models based on the value of curvature of
sensors. The second best performance was obtained by grouping all curved conditions and separating
them from the flat condition. The former method would require classifying curvature values to
pre-defined ranges. This is to be investigated in future work. The latter method is simpler and more
practical since no knowledge about the value of the curvature is required, however, the amount of
improvement obtained using this method is significantly less than the former method.

Based on findings of this study, for practical use of the proposed methods, method1 is
recommended due to its better performance in terms of both outcome measures. To use this method
with continuous curvature values, curvatures would be grouped into classes of different ranges and
a model would be made for each group. Then, depending on the range that the sensor’s curvature
falls into when placed on the limb, the regression model for its calibration would be selected. More
investigation is required to determine the optimum ranges of curvatures.

6. Limitations and Future Work

This was a preliminary study that demonstrated feasibility of using the proposed methods to
increase robustness of FSR-based systems for prosthetic applications. Some of the limitations of this
study and future work are explained in this section.

Experimental conditions such as sensor sealing with PDMS may have affected the reported results.
This reduces generality of the findings of this study. Various types of FSR sensors, for example sensors
that do not need to be sealed, should be tested in different experimental conditions to confirm findings
of this study in future work.

In order to fully control the experiments carried out in this study, the sensors were not removed
in between tests. Next steps in future work, should assess the effect of removing and re-positioning
sensors between multiple repetitions of data collection. This would be to assess the effect of variability
of data due to re-positioning on accuracy of pressure prediction using the methods proposed in this
study. The use of proposed methods for sensors incorporated into prosthetic systems should also be
investigated and clinical tests of these systems should be conducted.

In future studies, more curvature values need to be tested to determine whether even with
very low values of curvature, these methods would prove useful. Continuous curvatures need to be
examined to obtain a more generalized dataset. Moreover, more complex shapes need to be tested in
future work that would cause different sensors in a matrix to have different amounts of bend. This
would be to mimic the scenario when sensor matrices are placed on a residual limb. An experiment
should be conducted in which sensors are placed on a mould of the residual limb inside the pressure
chamber and models are built according to data recorded in this situation. Moreover, these methods
should be examined using a variety of sensor matrices and single FSRs.

To further build on findings of this study, the effect of hysteresis and creep on FSRs should also
be investigated. Compensation methods should be proposed to enhance stability of these sensors in
practical and prolonged prosthetic applications.
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FSR Force Sensitive Resistor
FMG Force Myography
PDMS Polydimethylsiloxane
GRNN General Regression neural network
LR Linear Regression
RF Random Forest
RMSE Root Mean Square Error
PCB Printed Circuit Board
UART Universal Asynchronous Receiver-transmitter
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Abstract: Electrode reversal errors in standard 12-lead electrocardiograms (ECG) can produce
significant ECG changes and, in turn, misleading diagnoses. Their detection is important but
mostly limited to the design of criteria using ECG databases with simulated reversals, without
Wilson’s central terminal (WCT) potential change. This is, to the best of our knowledge, the first
study that presents an algebraic transformation for simulation of all possible ECG cable reversals,
including those with displaced WCT, where most of the leads appear with distorted morphology.
The simulation model of ECG electrode swaps and the resultant WCT potential change is derived
in the standard 12-lead ECG setup. The transformation formulas are theoretically compared to
known limb lead reversals and experimentally proven for unknown limb–chest electrode swaps
using a 12-lead ECG database from 25 healthy volunteers (recordings without electrode swaps and
with 5 unicolor pairs swaps, including red (right arm—C1), yellow (left arm—C2), green (left leg
(LL) —C3), black (right leg (RL)—C5), all unicolor pairs). Two applications of the transformation
are shown to be feasible: ‘Forward’ (simulation of reordered leads from correct leads) and ‘Inverse’
(reconstruction of correct leads from an ECG recorded with known electrode reversals). Deficiencies
are found only when the ground RL electrode is swapped as this case requires guessing the unknown
RL electrode potential. We suggest assuming that potential to be equal to that of the LL electrode.
The ‘Forward’ transformation is important for comprehensive training platforms of humans and
machines to reliably recognize simulated electrode swaps using the available resources of correctly
recorded ECG databases. The ‘Inverse’ transformation can save time and costs for repeated ECG
recordings by reconstructing the correct lead set if a lead swap is detected after the end of the
recording. In cases when the electrode reversal is unknown but a prior correct ECG recording of the
same patient is available, the ‘Inverse’ transformation is tested to detect the exact swapping of the
electrodes with an accuracy of (96% to 100%).

Keywords: ECG electrode swaps; ECG electrode potentials; WCT potential change; reconstructing
correct ECG leads; MSMinv transformation; unicolor limb–chest electrodes

1. Introduction

The routine use of the standard 12-lead electrocardiogram (ECG) for noninvasive clinical
investigation of acute and chronic cardiovascular diseases makes it very important to ensure the
generation of diagnostically interpretable ECG leads [1]. An essential problem in the recording of
multilead ECGs is the improper placing of the electrodes on the patient’s body [2], reported to be as
frequent as 0.8% and 7.5% for limb lead reversals in 12-lead ECG and Holter devices, respectively [3];
0.4% and 4% for 12-lead ECG interchanges in clinical and intensive care settings, respectively [4].
Errors in electrode placement can lead to significant ECG changes that could confuse physicians and
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affect the clinical diagnosis. Studies and case reports dedicated to this problem are further grouped in
the following three categories according to the affected ECG electrodes:

• Reversals between limb electrodes are reported to provoke deep QS complexes and inverted T waves
in leads (II, III, aVF) that could be misdiagnosed as old myocardial infarctions (MI) involving the
inferior heart wall [5]. Right arm (RA) and left arm (LA) interchange is associated with inverted T
waves in leads (I, aVL) suggestive of lateral wall MI [6] as well as indicative of ECG features of
dextrocardia [7]. RA and right leg (RL) swap results in low-amplitude QRS complexes in lead
II [7,8] and all other frontal leads resembling scaled variations of lead III and changed QRS axes
in the frontal plane [8]. LA and left leg (LL) reversal creates suspicions of inferior-wall MI [7].
RA and LL swap could be confused for the combined features of lateral wall MI and low atrial
rhythm [7].

• Reversals between chest electrodes have been found to provoke erroneous diagnosis in 17% to 24%
of cases involving wrongly placed C1 electrodes [9]. Generally, when another precordial lead
is substituted for V1, the result is a tall R wave in V1, which could be taken as a sign of right
bundle branch block, left ventricular ectopy, right ventricular hypertrophy, acute right ventricular
dilation, Type A Wolff-Parkinson-White syndrome, posterior MI, hypertrophic cardiomyopathy,
progressive muscular dystrophy or dextrocardia [10].

• Reversals between limb and chest electrodes are a possible scenario due to the matching colors of the
two ECG cables [11] or the incorrect attachment of the cable connectors to the junction box of the
ECG machine [12]. C2/LA (yellow) cable interchange is described in two case reports [13,14] to
have produced right axis deviation and Q waves in (III, aVF), accompanied by an inverted T wave
in both leads, together with a quick transition in V2 with qR complex and an inverted T wave.
The ECGs are interpreted as an inferior MI with residual ischemia in [13] or recent inferior and a
posterior MI [14]. Limb/precordial cable interchange has been observed to result in tall R waves in
aVR, negative QRS complexes in the other five limb leads and inverted ST elevation/depression in
some of the leads. Thus, inferior, anterior, and lateral MI could be erroneously diagnosed [12].
In another study [15], the authors suspect the same interchange to have resulted in ST-segment
elevation in the inferior leads; however, their thesis has been impugned by [16], who have
explained the wandering ST elevation with medical reasons.

Such studies indicate that special measures should be taken to ensure the correct placement of
ECG electrodes, e.g., staff training has been reported to improve electrode placement by 50% [17],
while combined training and technical improvements have succeeded to reduce the rate of electrode
cable reversals from 4.8 % down to 1.2 % [18]. ECG changes induced by ECG cable reversals have
been analyzed in a number of studies [19–24]. Methods for the automatic detection of ECG electrode
reversals within the limb and precordial set have been proposed, such as:

• Limb leads: LA and LL reversal is indicated by P wave amplitude [25] and QRS, P-axes [26]; RA and
RL interchange is detected when lead II presents as a flat line [27] or with peak-to-peak amplitude
less than 185 μV [8]; LA-RA and RA-LL swaps are recognized by analysis of P and QRS frontal
axes and clockwise vector loop rotation direction, R and T wave amplitudes in leads (I, II) [28];
various LA/RA/LL/RL combinations are detected by a number of analytical approaches based on
the assessment of the QRS axis [29,30], together with P wave amplitudes [31], direction of P-loop
inscription and/or frontal P-axis [32]; lead reconstruction using redundancy of information in
eight independent leads [33]; morphological measurements of QRS, P-wave amplitudes, frontal
axis and clockwise vector loop rotation, combined with redundancy features [34]; maximal and
minimal QRS, T-wave amplitudes in leads (I, II, III) [35]; correlation coefficients of limb leads
vs. V6 [36,37]; combining the features described in [26] and [33] for a more robust and accurate
performance [36].

• Chest leads: Different reversal sets have been examined, such as five reversals of adjacent leads
(V1/V2, V2/V3, V3/V4, V4/V5, V5/V6), analyzed by P, QRS and ST-T measurements [26] and PQ-RS
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amplitude distances [31]; nine reversals (five adjacent leads, V1/V3, V4/V6, V4/V5/V6/V1/V2/V3,
V6/V5/V4/V3/V2/V1) are evaluated via correlations between measured and reconstructed leads [33];
seven reversals (five adjacent leads, V1/V3, V4/V6) are handled by processing of both morphology
and redundancy features [34]; 15 reversals, including all possible pairwise V1–V6 swaps, have
been tested in our previous study by applying analysis of inter-lead correlation coefficients [38].

• Limb and chest leads: Interchanges between limb and C2 precordial electrodes specific for a
telemonitoring system are detected by correlation to a previously recorded ECG [39]. This early
work, together with our recent publication on the unicolor electrode interchange detection [11],
are the only studies dealing with recognition of reversals between limb and precordial leads.

The methods for the detection of ECG cable reversals should be designed/tested using dedicated
databases. Only a few of the mentioned studies [7,19,27,35,39,40] use real ECG recordings with
erroneous electrode placements, which are, however, small-sized and proprietary. Typically, reversal
detection algorithms are trained and validated using databases with correctly recorded 12-lead
ECGs and simulated reversals within the limb lead set [11,26,28–34,36,38] or the precordial lead
set [11,26,31,33,34,38], where the Wilson’s central terminal (WCT) is not changed. All other reversals
modifying the WCT, such as swaps between the limb and precordial electrodes, have not been simulated,
although they are quite possible and should be detected due to the distorted morphology of most
leads [6,8,21]. For example, the interactive web-based tool [41] for the rendering of ECG leads from
body surface potential maps (BSPM) separately simulates two effects—precordial lead misplacement
(by linear interpolation from neighboring BSPM leads) or limb lead interchange. However, considering
that this tool uses bulky BSPM data and does not allow for electrode misplacements that change WCT
potential, it has restricted application for machine learning on large arrhythmia datasets with arbitrary
ECG electrode reversals.

We have not found in the literature an algebraic transformation that can simulate all possible ECG
electrode reversals. This paper presents the formula of such a transformation and its application in
the standard 12-lead ECG setup, computing reordered leads and the WCT potential change from the
correctly recorded leads. Additionally, we show the applicability of this method for reconstructing the
correct leads from an ECG recorded with known electrode reversals, as well as for detection of the
exact electrodes that were swapped, provided there are at least two ECGs from the same patient.

2. Methods

2.1. Derivation of the Transformation Formula

The presented transformation formula can be used to simulate reversals between arbitrary ECG
electrodes in the standard 12-lead ECG, although the final transformation formula can be extended to
an arbitrary number of leads.

According to the fundamental principles of electrocardiography [42], standard 12-lead ECG
systems (Figure 1) use 10 electrodes on the LA, RA, LL, RL and 6 precordial positions (C1-C6), and
acquire 8 independent signals (e.g. leads I, II, V1-V6):∣∣∣∣∣∣∣∣∣

I = PE(LA) − PE(RA)

II = PE(LL) − PE(RA)

VX = PE(CX) − PWCT = PE(CX)−PE(LL)+PE(RA)+PE(LA)
3

(1)

where:

• PE denotes the electrical potential of the respective electrodes, also referred to as the raw
electrode biopotential.

• (I, II) are the bipolar leads measuring the potential differences between limbs (LA-RA, LL-RA),
forming the Einthoven’s triangle.
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• VX represents any of the unipolar chest leads (V1-V6) measuring the potential of the chest
electrodes against the reference WCT potential (PWCT), which is defined to be the average of the
RA, LA and LL electrodes.

• Note that the ground electrode placed on the RL is used for technical reasons (driven right leg)
and does not have direct influence on any ECG leads.

Figure 1. Acquisition of 12-lead ECG via a 10-electrode cable with standard IEC color coding, recording
8 independent leads I, II, V1-V6 (denoted as Vx) in the ECG device. The flow diagram shows the
simulation of reversals between LL, RA, LA and one chest electrode (denoted as Cx) by conversion of

the recorded leads (I, II, Vx) to reordered leads (Î, ÎI,V̂X) using the matrix transformations
~

Minv, S, M .
The specific example shows an identity S matrix that corresponds to the correct order of LL, RA, LA, Cx
electrodes. Other estimates of the S matrix are presented on Figure 2 and Section 4.1 in the description
of different examples for electrode reversals.

The calculations in (1) are usually performed by the input circuits in ECG devices. As soon as
an electrode swap can lead to a change in the WCT potential, it becomes difficult to imagine the
changes in the standard 12-lead ECG. Therefore, the derivation and handling of the electrode potentials
corresponding to the nine active ECG electrodes with respect to a common reference point is the main
target of further mathematical transformations.

The basic 12-lead ECG computations (1) can also be presented using the matrix notation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1 0
1 −1 0 0
− 1

3 − 1
3 − 1

3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PE(LL)
PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where M is the matrix that converts the raw electrode potentials PE(LL), PE(RA), PE(LA) and PE(Cx)
into leads I, II, Vx. Formula (2) shows the setting (PE(LL) = 0), which defines our choice that PE(LL)
is the reference potential. This is an arbitrary choice because we can set any electrode as the reference
one without changing the final outcome of our derivations. We can further simplify (2):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 1 0
−1 0 0
− 1

3 − 1
3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = MF

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where MF is a full-rank matrix that is further inverted (M−1
F ) for solving of the opposite task for the

conversion of leads into body electrode potentials:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = MF
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0
1 −1 0
1
3 − 2

3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)
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Further, M−1
F is extended so that (4) is able to reproduce the electrical potential of the left leg,

using the definition (PE(LL) = 0):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
PE(LL)
PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[

0 0 0
MF
−1

]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 −1 0
1 −1 0
1
3 − 2

3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = ~
Minv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where
~

Minv is the matrix that allows the computation of the raw body electrode potentials in the
order

{
PE(LL), PE(RA), PE(LA), PE(CX)

}
using the recorded leads {I, II, Vx}. Once the body electrode

potentials are known, they can be reordered to simulate an arbitrary reversal between ECG electrodes.
The simulated electrode order can be algebraically described by a binary swap matrix (S), which equals
an identity matrix for the correct order:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PS
(
L̂L

)
PS

(
R̂A

)
PS

(
L̂A

)
PS

(
ĈX

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PE(LL)
PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
PE(LL)
PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

where PS denotes the simulated electrical potential at the respective electrode
{
L̂L, R̂A, L̂A, ĈX

}
.

Different examples of matrix S are further given in Section 4.1 upon the description of the performed
theoretical simulations of electrode reversals.

The correspondence between the leads recorded by the ECG device (I, II, Vx) and the reordered
leads (Î, ÎI, V̂X) after the simulation of ECG electrode reversals can be calculated by substituting
successively (6) and (5) into (2):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Î
ÎI

V̂X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
PS

(
L̂L

)
PS

(
R̂A

)
PS

(
L̂A

)
PS

(
ĈX

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = MS

~
Minv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

The flow diagram of (7), further denoted as ‘MSMinv’ transformation, which is presented on
Figure 1, clearly indicates the embedded logic of matrix operations that have a general applicability
to simulate arbitrary configurations of electrode swaps. It is just necessary to adapt the values of

the matrices M, S,
~

Minv to the specific lead configuration, assuming that the derived mathematical
proof shows the full set of two independent bipolar limb leads in 12-lead ECG (can be reduced) and
one unipolar lead (can be deleted or extended to multiple unipolar leads by copy of the row (Cx) in

M,
~

Minv and expand S accordingly).
Note that the matrices in the ‘MSMinv’ transformation (7) take into account only the potentials of

the active input electrodes, excluding the grounded RL. The result of a swap of an arbitrary active
electrode with RL can be, however, approximated by setting the potential of the swapped active
electrode equal to the LL potential in the matrix S (6):

PS(swapped electrode to RL) = PE(RL) ≈ PE(LL) (8)

The assumption for equipotential legs can be considered from an anatomical perspective because
the leg recording sites are sufficiently distant and similarly oriented to the heart, thus attaining the
same electrical signal generated by the myocardium [24]. Generally, both (RL, LL) potentials are
essentially very similar that is typically adopted in the known ECG lead transformations of rotated RL
with other peripheral electrodes [7,8,21,22].
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Another application of the derived mathematical transformations is the calculation of the WCT
potential change due to ECG electrode swaps:

ΔPWCT = P̂WCT − PWCT, (9)

where PWCT and P̂WCT are the WCT potentials before and after the electrode swap, respectively. Both
can be derived as a function of the recorded leads (I, II, Vx) with a reference to a zero LL potential
(PE(LL) = 0), as assumed in Equations (2) and (5):

PWCT = W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
PE(LL)
PE(RA)

PE(LA)

PE(CX)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = W
~

Minv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

P̂WCT = W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
PS

(
L̂L

)
PS

(
R̂A

)
PS

(
L̂A

)
PS

(
ĈX

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = WS

~
Minv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

where W =
[

1/3 1/3 1/3 0
]

is the matrix that transforms electrode potentials into WCT potential,
taking the potentials for the correct electrode position

{
PE(LL), PE(RA), PE(LA), PE(CX)

}
from (5) and

for the swapped position
{
PS

(
L̂L

)
, PS

(
R̂A

)
, PS

(
L̂A

)
, PS

(
ĈX

)}
from (6) and (5). Although WCT potential

is calculated only from the potentials of the three limb electrodes
(

ˆLL, R̂A, L̂A
)
, Equation (11) covers

the general option for a swap between some of them and the unipolar electrode
(
ĈX

)
.

Substituting (10) and (11) in (9) gives the generalized notation of the ‘WSMinv’ transformation that
is further used for estimating of the relative WCT potential change during different simulated swaps:

ΔPWCT = (WS−W)
~

Minv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I
II

VX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

2.2. Verification of ‘MSMinv’ Transformation

The correctness of the ‘MSMinv’ transformation (7) is verified by two approaches, depending on
the kind of simulated ECG electrode reversals:

• ECG electrode reversals with known lead transforms are theoretically studied. For this purpose, the
formula for computation of the reordered leads (Î, ÎI, V̂X) is directly compared to the published
lead transformations. This simple approach is applicable only to reversals between peripheral
electrodes, widely analyzed in the literature [5,7,12,21,24,36–38,43].

• ECG electrode reversals with unknown lead transformations (such as reversals between limb and chest
electrodes) are experimentally studied with a dedicated database (described in Section 3). For this
purpose, the 8 independent leads LR = (IR, IIR, V1R −V6R) of 2 recordings from the same person
(RC, taken with correct electrode position; RS, taken with real electrode swap) are compared in
three different scenarios:

◦ (LRC vs. LRS): No transformation is applied to study the lead-specific differences between
recordings with correct vs. swapped electrodes.

◦ (L̂RC vs. LRS): Forward ‘MSMinv’ transformation is applied on the recording with correct lead

set to simulate lead swap
(
L̂RC = MS

~
MinvLRC

)
and to study the lead-specific differences

of simulated vs. recorded electrode reversals (LRS).

384



Sensors 2019, 19, 2920

◦ (LRC vs. L̂RS): Inverse ‘MSMinv’ transformation is applied on the recording with reversed

lead set to simulate correct electrode positions (L̂RS = MS
~

MinvLRS) and to study the
lead-specific differences of simulated vs. recorded, correctly placed electrodes (LRC).

The lead-specific differences in each of the above 3 scenarios (denoted as L̃RC vs. L̃RS) are estimated
for the average beat (BEATi), indexed within a window of 500ms (i = QRS f − 150ms to QRS f + 350ms,
where QRS f denotes the QRS fiducial point), using three quantitative measures:

◦ Root-mean-square error:

RMS Error =

√
1

500ms ∗ Fs

∑
(BEATi

(
L̃RC

)
− BEATi

(
L̃RS

)
)

2
, (13)

where Fs denotes the sampling frequency of the average beat.
◦ Peak error:

Peak Error = max(
∣∣∣∣BEATi

(
L̃RC

)
− BEATi

(
L̃RS

)∣∣∣∣. (14)

◦ Correlation coefficient:

CorCoe f =

∑
BEATi

(
L̃RC

)
.BEATi

(
L̃RS

)
√∑

BEAT2
i

(
L̃RC

)
.
∑

BEAT2
i

(
L̃RS

)
.

(15)

Statistical results of all quantitative measurements over the whole ECG database are reported
as a mean value and standard deviation (std). The level of significant differences between different
scenarios is measured with paired Student’s t-test and one-tailed p-value < 0.05.

3. Database

The database used for verification of the ‘MSMinv’ transformation contains 10s recordings of
standard 12-lead resting ECGs taken from 25 volunteers with no history of heart diseases—gender:
28% (male), age: 49 ± 11 years (mean value ± standard deviation), 28–67 years (range). The ECGs are
acquired via a 10-electrode cable with standard IEC color coding [44]. Six ECG recordings per subject
are collected, applying prospective electrode cable reversals at the time of the recording, including:

• Correct positions of the electrodes (no electrode is swapped);
• Swap of red electrodes (RA-C1);
• Swap of yellow electrodes (LA-C2);
• Swap of green electrodes (LL-C3);
• Swap of black electrodes (RL-C5);
• Swap of all unicolor electrodes (RA-C1, LA-C2, LL-C3, RL-C5).

The ECG signals are recorded at 1 kHz sampling rate, 1 μV resolution, and pre-filtered in a
bandwidth (0.5 to 25 Hz). Each 10s ECG recording is processed by a commercial ECG measurement
and interpretation module (ETM, Schiller AG, Switzerland) for the extraction of a 12-lead average
beat [45]. The average beats are commonly used for the measurement of ECG features with diagnostic
precision because they provide higher signal-to-noise ratio and are more robust to respiration induced
morphology changes than the single beats.

4. Results and Discussion

4.1. Theoretical Simulations of Electrode Reversals

This section simulates three major types of ECG electrode reversals (reversals of peripheral
electrodes involving RL; not involving RL; reversals of peripheral and chest electrodes ), applying
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‘WSMinv’ transformation (12) for the calculation of WCT potential change (Table 1) and ‘MSMinv’
transformation (7) for the calculation of the reordered leads (Tables 2–4). Several general examples are
shown on Figure 2. Details will be further discussed in Sections 4.1.1–4.1.3

Figure 2. Classic depiction of the Einthoven’s triangle, WCT and lead vectors (I, II, Vx), projected
in the frontal plane for correct electrode position (a) and their displacement (Î, ÎI,V̂X) in case of four
types of limb electrode reversals: (b) CW rotation of 3 active limb electrodes (R̂A→L̂A→L̂L→R̂A);
(c) CW rotation of 4 limb electrodes, including RL (R̂L→R̂A→L̂A→L̂L→R̂L); (d) swap of an active
limb electrode and chest electrode, illustrated for the green couple (L̂L↔Ĉ3); (e) swap of the grounded
and chest electrode, illustrated for the black couple (R̂L↔Ĉ5). The text with red font color highlights
the electrodes in wrong geometrical positions, and the swap matrix entries different from the identity
matrix in (a).

Table 1. Calculation of the WCT potential change from the recorded leads via the ‘WSMinv’
transformation (12), applying the swap matrices S in Tables 2–4.

Reversed Electrodes  PWCT 

Reversals of 
peripheral 

electrodes not 
involving RL 

RA  ↔LA  0 * RA  ↔LL 0 * LA ↔LL 0 * 
CW rotation RA  →LA→LL→RA    0 * 

CCW rotation RA  →LL→LA→RA  0 * 

Reversals of 
peripheral 
electrodes 

involving RL 

RL↔RA RL↔LA ܫܫ1/3  ܫܫ)1/3  −  * RL↔LL 0 (ܫ
CW rotation with RL RL→RA→LA→LL→RL  ܫܫ1/3 

CCW rotation with RL RL→LL→LA→RA→RL  0 * 
Bilateral arm–leg rotation RL↔RA , LA ↔LL 1/3ܫܫ 

Cross rotation RL→RA→LL→LA→RL ܫܫ)1/3  −  (ܫ

Reversals of 
unicolor 

peripheral and 
chest electrodes 

Red electrodes RA↔C1 ܫ1/9  + ܫܫ1/9 + 1/3 ଵܸ 
Yellow electrodes LA↔C2 ܫ2/9−  + ܫܫ1/9 + 1/3 ଶܸ 
Green electrodes LL↔C3 ܫ1/9  − ܫܫ2/9 + 1/3 ଷܸ 
Black electrodes RL↔C5  0 * 
All unicolor electrodes  RA↔C1 , LA↔C2 , LL↔C3 , RL↔C5  

1/3( ଵܸ + ଶܸ+ ଷܸ) 

Note: For comprehension purposes of various electrode combinations, the reversed electrodes are depicted with
their respective colors according to the IEC color coding [44]. * ΔPWCT = 0 corresponds to the correct position of the
active limb electrodes (L̂L, R̂A, L̂A).

4.1.1. Reversals of Peripheral Electrodes Not Involving RL

All 5 possible rotations of the 3 active limb electrodes (L̂L, R̂A, L̂A) are simulated (Table 2) and
none of them is related to the displacement of WCT, as illustrated in the example of clockwise (CW)
electrode rotation (Figure 2b), where the Einthoven’s triangle remains geometrically unaffected. This
is theoretically proven by the ‘WSMinv’ transformation (12), where all swap matrices S (Table 2) are
consequently applied, and zero WCT potential differences to the correct electrode position (ΔPWCT = 0)
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are detected (Table 1). The rearranged limb leads (Î, ÎI) obtained by the ‘MSMinv’ transformation
(Table 2) match the expressions in other studies, applying geometrical perspectives between leads (I, II,
III) [5,12,21,24,36–38]. Furthermore, the unipolar chest lead V̂X is unchanged for all simulated swap
matrices S that corresponds to the real case scenario of unchanged WCT (Figure 2a,b).

Table 2. Reversals of peripheral electrodes not involving RL.

Reversed Electrodes ۻ܁ۻ ܁෩ Reordered Leads RA ܞܖܑ  ↔LA  

൦ ܮܮ = ܣܴܮܮ = ܣܮܣܮ = ܥܣܴ = ܥ
൪ ൦1 0 0 00   00   00 0 0 1൪ −1 0 0−1 1 00 0 1 

መܫ = ܫܫ   ܫ− = ܫ− + ܫܫ = ܸ  ܫܫܫ = ܸ  RA  ↔LL 

൦ܮܮ = ܣܴܣܴ = ܣܮܮܮ = ܥܣܮ = ܥ
൪ ൦  0 0  0 00 0 1 00 0 0 1൪ 1 −1 00 −1 00 0 1 

መܫ = ܫ − ܫܫ = ܫܫ   ܫܫܫ− = ܸ  ܫܫ− = ܸ  LA ↔LL 

൦ ܮܮ = ܣܴܣܮ = ܣܮܣܴ = ܥܮܮ = ܥ
൪ ൦ 0  00 1 0 0 0  00 0 0 1൪ 0 1 01 0 00 0 1 

መܫ = ܫܫ   ܫܫ = ܸ  ܫ = ܸ  

CW rotation RA  →LA→LL→RA    

൦ܮܮ = ܣܴܣܴ = ܣܮܣܮ = ܥܮܮ = ܥ
൪ ൦  0 00   0 0  00 0 0 1൪ −1 1 0−1 0 00 0 1 

መܫ = ܫ− + ܫܫ = ܫܫ   ܫܫܫ = ܸ  ܫ− = ܸ  

CCWrotation RA  →LL→LA→RA  

൦ܮܮ = ܣܴܣܮ = ܣܮܮܮ = ܥܣܴ = ܥ
൪ ൦ 0  0  0 00   00 0 0 1൪ 0 −1 01 −1 00 0 1 

መܫ = ܫܫ   ܫܫ− = ܫ − ܫܫ = ܸ  ܫܫܫ− = ܸ  

Note: For comprehension purposes of various electrode combinations, the reversed electrodes are depicted with their
respective colors according to the IEC color coding [44], - 1st column: The simulated placement of ECG electrodes{
L̂L, R̂A, L̂A, ĈX

}
referring to their geometrical positions {LL, RA, LA, CX}. The electrodes which are assumed to be

in the wrong geometrical positions are indicated with red font color as being reversed. - 2nd column: The values of
the swap matrix S, where red font colored entries indicate the difference to the identity matrix as defined in (6) for

the correct electrode placement. - 3rd column: The result of matrix multiplication MS
~

Minv, considering M and
~

Minv
equal to their definitions in (2) and (5), respectively. - 4th column: The formula for calculation of the reordered leads

(Î, ˆII, V̂X) using the recorded leads (I, II, Vx) that is obtained after substituting MS
~

Minv in (7). For simplification,
the substitution (III = II − I) is applied in some formulas.

4.1.2. Reversals of Peripheral Electrodes Involving RL

Seven rotations of the 4 limb electrodes (L̂L, R̂A, L̂A, R̂L) are simulated (Table 3) and normally
they should be related to the displacement of WCT, as illustrated in the example (Figure 2c), where the
Einthoven’s triangle is transformed to a thin ‘slice’.

Table 1 shows that all electrode reversals present WCT potential change, depending only on the
position of the neutral electrode RL, such that:

• RL is in the position of RA: ΔPWCT = 1/3II
• RL is in the position of LA: ΔPWCT = −1/3I + 1/3II
• RL is in the position of LL: ΔPWCT = 0, where PWCT is equal to the correct electrode placement.
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Table 3. Reversals of peripheral electrodes involving RL.

Reversed Electrodes ۻ܁ۻ ܁෩ Reordered Leads RL↔RA ܞܖܑ  

൦ ܮܮ = ܣܴܮܮ = ܣܮܮܴ = ܥܣܴ = ܥ
൪ ൦1 0 0 0  0 00 0 1 00 0 0 1൪ 1 −1 00 0 00 −1/3 1 

መܫ = − ܫ ܫܫ = ܫܫ ܫܫܫ− = 0 ܸ = ܸ − RL↔LA ܫܫ1/3  

൦ ܮܮ = ܣܴܮܮ = ܣܮܣܴ = ܥܮܴ = ܥ
൪ ൦1 0 0 00 1 0 0 0  00 0 0 1൪  0 1 00 1 01/3 −1/3 1 

መܫ = ܫܫ ܫܫ = ܸ ܫܫ = ܸ − ܫܫ)1/3 −  RL↔LL (ܫ

൦ ܮܮ = ܣܴܮܴ = ܣܮܣܴ = ܥܣܮ = ܥ
൪ ൦1 0 0 00 1 0 00 0 1 00 0 0 1൪ 1 0 00 1 00 0 1 

መܫ = ܫܫ ܫ = ܸ ܫܫ = ܸ 

CW rotation with RL RL→RA→LA→LL→RL  

൦ܮܮ = ܣܴܮܴ = ܣܮܣܮ = ܥܮܮ = ܥ
൪ ൦1 0 0 00   0 0  00 0 0 1൪ −1 1 0−1 1 00 −1/3 1 

መܫ = ܫ− + ܫܫ = ܫܫ  ܫܫܫ = ܫ− + ܫܫ = ܸ  ܫܫܫ = ܸ −  ܫܫ1/3

CCW rotation with RL RL→LL→LA→RA→RL  

൦ܮܮ = ܣܴܣܮ = ܣܮܮܴ = ܥܣܴ = ܥ
൪ ൦ 0  0  0 00   00 0 0 1൪ 0 −1 01 −1 00 0 1 

መܫ = ܫܫ  ܫܫ− = ܫ − ܫܫ = ܸ ܫܫܫ− = ܸ 
 

Bilateral arm–leg rotation RL↔RA , LA ↔LL 

൦ܮܮ = ܣܴܣܮ = ܣܮܮܴ = ܥܮܮ = ܥ
൪ ൦ 0  0  0 0 0  00 0 0 1൪ 0 0 01 −1 00 −1/3 1 

መܫ = ܫܫ 0 = ܫ − ܫܫ = ܸ ܫܫܫ− = ܸ −  ܫܫ1/3

Cross rotation RL→RA→LL→LA→RL  

൦ܮܮ = ܣܴܣܴ = ܣܮܮܴ = ܥܮܮ = ܥ
൪ ൦  0 0  0 0 0  00 0 0 1൪  0 0 00 −1 01/3 −1/3 1 

መܫ = ܫܫ 0 = ܸ ܫܫ− = ܸ − ܫܫ)1/3 −  (ܫ

Note: All columns correspond to the description in the footer of Table 2.

These results and the ‘MSMinv’ transformation (Table 3) are obtained with the general
approximation for equipotential legs that is coded in the swap matrix S with an entry of ‘1’ in
the position of LL (first column) for both cases:

{
X̂ = LL, X̂ = RL

}
, whereas X̂ denotes an arbitrary

ECG electrode. Thus, all electrode reversals leading to a ‘sliced’ Einthoven’s triangle with two tips on
both legs appear with two ‘1’ entries in the first column of matrix S (Table 3), while ‘1’ is deficient in the
second (RA) or third (LA) columns (equal to ‘0’). Only two reversals (RL-LL and the counter-clockwise
(CCW) rotation with RL) have ‘1’ entries in each of the first three columns of matrix S (corresponding
to the three active limb electrodes in the Einthoven’s triangle tips). Just for them, the WCT potential is
correctly found to be unchanged (Table 1), although the reordered limb leads (Î, ÎI) in CCW rotation
appear to be different (Table 3). Generally, all simulated reversals show that (Î, ÎI) leads, resulting
from the ‘MSMinv’ transformation, are matching the expressions in other studies that have been
derived by geometrical analysis of the leads, assuming “0” [6,12,19,21,22,24,35,36] or “near zero” signal
<100 μV [5,7,8,38] for the lead between the active electrodes on both legs.

Considering the chest lead VX, we find a correspondence between ‘MSMinv’ and ‘WSMinv’
transformations so that the reordered lead V̂X = VX − ΔPWCT (Table 3) is corrected exactly with the
term ΔPWCT (Table 1). Generally, no chest lead VX is considered in case of limb leads reversals, so we
cannot compare the derived V̂X expressions to published studies. We can justify the unchanged V̂X in
both aforementioned reversals with WCT not being displaced (RL-LL and CCW rotation), as well as
V̂X = VX − 1/3II for the RL-RA reversal. This reversal has been analytically described in Haisty et
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al. [8], who explained that WCT potential difference is equal to one third of the difference between RA
and RL potentials that approximates one third of the standard lead II.

Table 4. Reversals of unicolor chest and peripheral electrodes.

Reversed 
Electrodes 

෩ۻ܁ۻ ܁  Reordered Leads ܞܖܑ

Red electrodes RA ↔C1  

⎣⎢⎢⎢
ܮܮ⎡⎢ = ܣܴܮܮ = ܣܮଵܥ = ଵܥܣܮ = ܥܣܴ = ܥ ⎦⎥⎥⎥

⎥⎤
 ⎣⎢⎢⎢

⎡1 0 0 0 00  0  00 0 1 0 00  0  00 0 0 0 1⎦⎥⎥⎥
⎤
 ⎣⎢⎢

⎢⎡ 2/3 −1/3 −1 0−1/3 2/3 −1 0−4/9 −4/9 −1/3 0−1/9 −1/9 −1/3 1⎦⎥⎥
⎥⎤ 

መܫ = ܫ) − 3/(ܫܫܫ − ଵܸ ܫܫ = ܫܫ) + 3/(ܫܫܫ − ଵܸ ܸଵ = − 49 ܫ) + (ܫܫ − 13 ଵܸ ܸ = ܸ − 19 ܫ) + (ܫܫ − 13 ଵܸ 

Yellow electrodes LA ↔C2  

⎣⎢⎢⎢
⎢⎡ ܮܮ = ܣܴܮܮ = ܣܮܣܴ = ଶܥଶܥ = ܥܣܮ = ܥ ⎦⎥⎥⎥

⎥⎤
 ⎣⎢⎢⎢

⎡1 0 0 0 00 1 0 0 00 0   00 0   00 0 0 0 1⎦⎥⎥⎥
⎤
 ⎣⎢⎢

⎢⎡1/3 1/3 1 00 1 0 08/9 −4/9 −1/3 02/9 −1/9 −1/3 1⎦⎥⎥
መܫ ⎤⎥ = 13 ܫ) + (ܫܫ + ଶܸ ܫܫ = ܸଶ ܫܫ = 49 ܫ) − (ܫܫܫ − 13 ଶܸ ܸ = ܸ + 19 ܫ) − (ܫܫܫ − 13 ଵܸ 

Green electrodes LL↔C3  

⎣⎢⎢⎢
⎢⎡ ܮܮ = ܣଷܴܥ = ܣܮܣܴ = ଷܥܣܮ = ܥܮܮ = ܥ ⎦⎥⎥⎥

⎥⎤
 ⎣⎢⎢⎢

⎡ 0 0  00 1 0 0 00 0 1 0 0 0 0  00 0 0 0 1⎦⎥⎥⎥
⎤
 ⎣⎢⎢⎢

⎡ 1 0 0 01/3 1/3 1 0−4/9 8/9 −1/3 0−1/9 2/9 −1/3 1⎦⎥⎥⎥
⎤
 

መܫ = ܫܫ ܫ = 13 ܫ) + (ܫܫ + ଷܸ ܸଷ = 49 ܫܫ) + (ܫܫܫ − 13 ଷܸ ܸ = ܸ + 19 ܫܫ) + (ܫܫܫ − 13 ଵܸ 

Black electrodes RL↔C5  

⎣⎢⎢
⎢⎡ ܮܮ = ܣܴܮܮ = ܣܮܣܴ = ହܥܣܮ = ܥܮܴ = ܥ ⎦⎥⎥

⎥⎤
 ⎣⎢⎢⎢

⎡1 0 0 0 00 1 0 0 00 0 1 0 0 0 0  00 0 0 0 1⎦⎥⎥⎥
⎤
 ⎣⎢⎢⎢

⎡ 1 0 0 00 1 0 0−1/3 2/3 0 00 0 0 1⎦⎥⎥⎥
⎤
 

መܫ = ܫܫ ܫ = ܸହ ܫܫ = ܫܫ) + ܸ 3/(ܫܫܫ = ܸ 

All unicolor electrode pairs RA ↔C1 , LA ↔C2 , LL↔C3 , RL↔C5  

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
ܮܮ⎡⎢ = ܣଷܴܥ = ܣܮଵܥ = ଵܥଶܥ = ଶܥܣܴ = ଷܥܣܮ = ସܥܮܮ = ହܥସܥ = ܥܮܴ = ܥ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ 0 0 0 0  0 0 00  0  0 0 0 0 00 0  0  0 0 0 00  0  0 0 0 0 00 0  0  0 0 0 0 0 0 0 0  0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0  00 0 0 0 0 0 0 0 1⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡

0 0 −1 1 0 0 0 00 0 −1 0 1 0 0 0− 13 − 13 − 13 − 13 − 13 0 0 023 − 13 − 13 − 13 − 13 0 0 0− 13 23 − 13 − 13 − 13 0 0 00 0 − 13 − 13 − 13 1 0 0− 13 23 − 13 − 13 − 13 0 0 00 0 − 13 − 13 − 13 0 0 1⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤

 

መܫ = ଶܸ − ଵܸ ܫܫ = ଷܸ − ଵܸ ܸଵ = − ܫ + 3ܫܫ − ଵܸ + ଶܸ + ଷܸ3  ܸଶ = ܫ − 3ܫܫܫ − ଵܸ + ଶܸ + ଷܸ3  ܸଷ = ܫܫ + 3ܫܫܫ − ଵܸ + ଶܸ + ଷܸ3  ܸସ = ସܸ − ଵܸ + ଶܸ + ଷܸ3  ܸହ = ܫܫ + 3ܫܫܫ − ଵܸ + ଶܸ + ଷܸ3  ܸ = ܸ − ଵܸ + ଶܸ + ଷܸ3  

Note: All columns correspond to the description in the footer of Table 2. Cx represents all chest electrodes with
unchanged positions, Vx denotes their unipolar leads.

4.1.3. Reversals of Chest and Peripheral Electrodes

Five swaps are simulated (Table 4) involving the matching-color electrode pairs in the peripheral
and precordial cables (IEC color coding standard [44]), i.e., red (RA-C1), yellow (LA-C2), green (LL-C3),
black (RL-C5) and all pairs (RA-C1, LA-C2, LL-C3, RL-C5).

Figure 2d,e illustrates the two principal types of reversals where the unipolar chest electrode is
swapped either with an active limb electrode (WCT is displaced in Figure 2d) or with the grounded
electrode (WCT is not displaced in Figure 2e). In both cases, we highlight two types of unipolar leads:
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• V̂x for the precordial electrodes Ĉx, which keep their position unchanged on the chest;
• V̂n for the precordial electrodes Ĉn, where n = 1,2,3,5 is substituting the chest electrode number,

which changes its position to some of the limbs.

The calculation of two different unipolar leads is achieved by an extension of the swap matrix S

(4 × 4) to (5 × 5) to include 3 limb electrodes and 2 chest electrodes (L̂L, R̂A, L̂A, Ĉn, Ĉx), as shown in
Table 4 and Figure 2d,e. The last row of Table 4 presents the most complex example for simulation
of swaps between all unicolor electrode pairs, which requires the use of a swap matrix S (9 × 9),
configured for the full set of electrodes (L̂L, R̂A, L̂A, Ĉ1− Ĉ6). All expressions of the rearranged leads
(Î, ÎI, V̂x, V̂n) in Table 4 are further verified in the experimental study of Section 4.2 because they have
not been investigated in any other study. The respective WCT potential changes (Table 1) cannot be
compared to examples in the literature either. We can only justify the result for the RL-C5 reversal,
which corresponds to non-displaced WCT, exactly as shown in the example (Figure 2e).

4.2. Experimental Verification of Simulated Swaps Between Unicolor Chest and Peripheral Electrodes

The experimental study is used to verify the ‘MSMinv’ transformation for simulation of reversals
between unicolor chest and peripheral electrodes (using the expressions in Table 4), according to the
concept in Section 2.2 (ECG electrode reversals with unknown lead transformations). For this purpose, all
ECG recordings in the database are analyzed and the three measurements (RMS Error, Peak Error,
CorCoef) are calculated to estimate the average beat waveform differences in 3 scenarios (Table 5):

• No transformation, showing the largest differences between correct vs. swapped electrode recordings
for all leads because WCT is considerably displaced in most chest-limb reversals (except RL-C5).
We note the greatest mean value differences for the unipolar lead with a chest electrode placed on
the limbs:

◦ V1 (120 μV, 529 μV, 0.832) for RA-C1,
◦ V2 (246 μV, 1121 μV, 0.456) for LA-C2,
◦ V3 (206 μV, 868 μV, 0.512) for LL-C3,
◦ V5 (131 μV, 639 μV, 0.785) for RL-C5,
◦ V1-V3 (225-289 μV, 967-1235 μV, 0.365-0.652) for all unicolor pairs.

• Forward ‘MSMinv’ transformation, simulating electrode reversals which have significantly reduced
differences when compared to the recordings with really swapped electrodes (p < 0.05). We
measure mean values (RMS Error, Peak Error, CorCoef) in the range (<20 μV, <60 μV, ≥0.995),
assuming they represent negligible average beat differences mainly due to rhythm variation and
signal acquisition noises in the compared recordings. We have noticed one exception for both
reversals involving RL (RL-C5, all unicolor pairs), where the Forward ‘MSMinv’ transformation
introduces a slight error in the calculation of the swapped lead V5 (≤26 μV, ≤104 μV, ≥0.986),
assuming the C5 potential to be equal to LL, while C5 is placed on the RL (approximation error
from the equipotential legs).

• Inverse ‘MSMinv’ transformation, recovering the correct electrode order, which has significantly
reduced differences when compared to the recordings with really correct electrodes (p < 0.05),
estimated within the above outlined range of negligible errors (<20 μV, <60 μV, ≥0.995). We
have again found an exception for both reversals involving RL (RL-C5, all unicolor pairs), where
the Inverse ‘MSMinv’ transformation fails to reconstruct the correct lead V5 (<142 μV, <660 μV,
≥0.792) from a recording with RL electrode in the position of C5 electrode. As soon as RL stops
being an input to the ECG device, the potential of V5 electrode is lost and not reproduced by
any active electrode in the swap matrix S (Table 4, all S entries are equal to ‘0’ for the column,
corresponding to C5).
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Figure 3 illustrates the average ECG beats in leads (I, II, V1-V6) recorded with all types of
swapped unicolor chest and peripheral electrodes. This ECG trace is almost fully overlapping with
the simulated electrode reversals from the ECG raw data with correct electrode positions, applying
Forward ‘MSMinv’ transformation. This once again validates the derived algebraic transformations in
Table 4, which are able to exactly reproduce the diversity of lead-specific morphologies (amplitudes,
polarities and durations) that each swap introduces to any lead via change of its electrode position
and/or WCT potential.

Figure 3. The average beat of 8 independent leads (I, II, V1-V6) taken from the same subject in two
scenarios: (1) Red trace: Recorded ECG with swapped unicolor electrodes; (2) Blue trace: Simulated
ECG with swapped unicolor electrodes, applying Forward ‘MSMinv’ transformation on the ECG
recorded with the correct lead set.

4.3. Application of the ‘MSMinv’ Transformation for Automatic Detection of the Exact ECG Electrode Reversals

We further show an important practical application of the Inverse ‘MSMinv’ transformation for
the detection of the exact reversals between ECG electrodes. This application is relevant to the case
when two ECG recordings in a patient are available:

(1) an ECG recording with correct lead set (LRC);
(2) an ECG recording with an unknown/suspected lead swap (LRS).
The ‘MSMinv’ transformation is applied to the swapped ECG recording, iteratively simulating all

possible permutations of the nine active ECG electrodes (i = 9! = 362 880):

L̂RS(i) = MSi
~

MinvLRS (16)
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The swap matrix Si, which produces the lead set reconstruction L̂RS(i) with the minimal difference
d(·) to the correct lead set can indicate the true lead swap (TLS):

TLS = arg min
1≤i≤9!

(
d
(
L̂RS(i) − LRC

))
(17)

We test this swap detection criterion using our ECG database under the following conditions:

• All 25 patients are considered, comparing the available pairs of recordings (LRC, LRS ) per patient,
where LRC is the recording without electrode reversals, and LRS represents one of the recorded 3
lead swaps (RA-C1, LA-C2, LL-C3), not involving the RL.

• The minimal difference rule (17) is applied on the average beat of each recording.
• The minimal difference rule (17) is evaluated with 3 distance metrics d(·) – min(RMS Error)

(Equation (13)), min(Peak Error) (Equation (14)), max(CorCoef) (Equation (15)).
• The accuracy for detection of the TLS is evaluated as the true positive (TP) rate, considering the

tested population of N subjects:

Accuracy =
N∑

p=1

TPp

N
, (18)

where TP = f (x) =
{

1, correct lead swap detected
0, otherwise

Table 6 presents the experimental verification of the Inverse ‘MSMinv’ transformation, applied
for automatic detection of the exact ECG electrode reversals. We have achieved 100% accuracy in the
detection of (RA-C1) and (LL-C3) reversals, and 96% for the detection of (LA-C2) reversal when the
decision rule (17) uses a minimal difference metric equal to the minimal RMS Error or the maximal
correlation between the reconstructed swap and the correct recording. All false negatives are observed
to present TLS with either the 2nd or the 3rd ranked minimal differences, while the decision rule (17) is
presently adjusted to simply report the exact lead swap with the 1st ranked minimal difference. For
example, the lowest LA-C2 accuracy is due to one case, where the true LA-C2 is 2nd ranked, while the
true LA-C2 in combination with RA-C1 is 1st ranked. Obviously, the detection of the exact electrode
swap among many electrodes with close geometrical positions might include a portion of uncertainty
due to indistinguishable geometrical perspectives of the heart vector in neighboring leads. Further
updates of the decision rule (17) could potentially improve the accuracy for TLS detection, e.g., by
majority voting of many distance metrics after exclusion of those with the lowest accuracy (i.e., the
peak Error with 88% to 96%).

Table 6. Accuracy for the detection of the exact lead swaps, applying the ‘MSMinv’ transformation on
3 swapped recordings (RA-C1), (LA-C2), (LL-C3) from 25 patients in our database. Color of electrodes
follows IEC standard [44];

Accuracy

Unicolor
Lead

Swaps

RMS Error
(%)

Peak
Error
(%)

Cor
Coef
(%)

RA-C1 100 96 * 100
LA-C2 96 * 88 # 96 *
LL-C3 100 88 # 100

* 1 false negative case due to TLS with the 2nd ranked minimal difference in the decision rule (17). # 3 false negative
cases due to TLS with either the 2nd or the 3rd ranked minimal differences in (17).

The presented rules are easily applicable in a warning system that can alert the medical staff
to check the electrodes suggested for reversal within the first seconds of 12-lead ECG acquisition.
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Principally, the analysis is not fixed exactly to 10 s but can take a single beat or an average beat
over ECGs with an arbitrary duration. It is important to note that the results reported in this section
represent the best-case results, because they are based on resting ECG recordings that were taken
within a short window of time and with exactly the same electrode positions (only the electrode cables
were swapped). In a clinically relevant application, the ECGs under question will most likely have
a substantially different recording date (leading to possible physiological changes in the ECG), and
they will most likely be recorded with slightly different electrode positions. Although the average beat
pattern of the same individual has been shown to have a long-term stability independent of recording
sessions and physiological factors (age, gender, heart rate) [46,47], the reliable clinical application
should always consider a final approval of the alarmed electrode reversals by the medical staff and
electrode correction at the time of the recording.

5. Conclusions

This study derives a novel algebraic transformation which converts the standard 12-lead ECG
leads from a correct to reordered set in case of arbitrary reversals between ECG electrodes. The formula
of the ‘MSMinv’ transformation (7) is generalized to the calculation of all kinds of electrode reversals,
giving the exact lead reordering for:

• Limb electrode swaps that have been previously drawn from anatomical perspectives (Tables 2
and 3);

• Limb–chest electrode swaps with WCT potential change which, to the best of our knowledge,
have never been simulated in the literature (Table 4). The formulas are exhibited for the most
probable reversals of unicolor electrode pairs in the peripheral and precordial ECG cables.

The validity of the ‘MSMinv’ transformation is proven in our experimental study for two bilateral
applications with a certain practical significance:

• The ‘Forward’ application computing the reordered lead set from an ECG recorded with correctly
placed electrodes is important for educational purposes of both humans and machines to reliably
recognize and warn of electrode swaps before potentially erroneous diagnostic interpretation
has been made. In this respect, ‘MSMinv’ transformation is applicable to the available immense
databases of correctly recorded ECGs (from normal and abnormal heart conditions) for reproducing
the vast diversity of distorted ECG leads that can be observed in arbitrary swaps within the limb
and precordial electrode set (such as the examples in Figure 3). This is an indispensable tool
for the comprehensive training platforms to visualize and study the effects of electrode swaps
(e.g. online cardiology courses for physicians, researchers, and instructors) or software design
platforms (training the automatic detection algorithms) on abundant ECG electrode reversals.

• The ‘Inverse’ application reconstructing the correct lead set from an ECG recorded with known
electrode reversals can save time and the cost of having to repeat ECG recordings in case of
follow-up detection of electrode reversals and error-screening of clinical databases. The possibility
for straightforward visualization of the correct lead set and its interpretation can easily uncover
diagnostic errors or answer dilemmas for suspected or mistrusted electrode swaps (such as the
dispute between [15] and [16]). In the general case when the electrode reversal is unknown but a
prior correct ECG recording of the same patient is available, the Inverse ‘MSMinv’ transformation
is able to solve the non-trivial task of detecting which electrodes have been exactly swapped.
For this purpose, all possible swapped reconstructions can be simulated to ultimately determine
the one which yields the minimal RMS difference or the highest correlation with the known
recording. We have achieved a detection accuracy of 96% to 100% for this simple criterion,
which has been tested with available recordings of three electrode swaps (RA-C1, LA-C2, LL-C3,
not involving the RL) from 25 healthy persons. One should consider, however, the limitations
for the validation of such an application which should be tested against the functional and
physiological ECG instability between the two ECG sessions (e.g., the criterion validated on a

394



Sensors 2019, 19, 2920

specific population with “normal” ECG during rest could fail on cardiac patients or patients under
environmental stress with lead-wise ECG morphology change). As this work is focused only on
the problem of simulating all possible ECG cable reversals, the design and validation of criteria
for a self-consistency check for detection of the ECG cable reversals is an extensive problem for a
future study.

Another important derivation of the present study is the ‘WSMinv’ transformation (12), which
computes WCT potential change for all kinds of electrode reversals. It quantifies the common distortion
that all unipolar leads would meet while their reference potential is changed, regardless of whether or
not they maintain their correct position. Table 1 shows that WCT distortion is proportional to leads I, II,
and the displaced unipolar leads (V1-V3 in the simulation) with fractions, which are hardly envisaged
without the derived transformation. The overall influence of WCT change on all unipolar leads is also
reproduced by the ‘MSMinv’ transformation in Tables 3 and 4.

This study provides the means for calculation of the potentials of the ECG electrodes and WCT
toward a common reference potential using Equations (5) and (10), respectively. These mathematical
transformations can be applied to any standard 12-lead ECG for deriving the ‘true’ unipolar ECG
leads and WCT measurements that have recently been experimentally acquired via special ECG
machines [43,47]. The experimental studies have considered the position of the reference potential on

the right leg, while this study shows the values of the matrix
~

Minv for the reference left leg leading
to the same global observations (WCT measured with respect to the left leg does not have a stable
voltage and is correlated to the limb leads (I, II), exhibiting all ECG waves). Although both legs have
essentially insignificant potential difference, its value is the only unknown and approximated to be a
zero measurement while applying our transformation equations.
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Abstract: Fetal movements (FM) are an important factor in the assessment of fetal health. However,
there is currently no reliable way to monitor FM outside clinical environs. While extensive research
has been carried out using accelerometer-based systems to monitor FM, the desired accuracy of
detection is yet to be achieved. A major challenge has been the difficulty of testing and calibrating
sensors at the pre-clinical stage. Little is known about fetal movement features, and clinical trials
involving pregnant women can be expensive and ethically stringent. To address these issues, we
introduce a novel FM simulator, which can be used to test responses of sensor arrays in a laboratory
environment. The design uses a silicon-based membrane with material properties similar to that of a
gravid abdomen to mimic the vibrations due to fetal kicks. The simulator incorporates mechanisms
to pre-stretch the membrane and to produce kicks similar to that of a fetus. As a case study, we
present results from a comparative study of an acoustic sensor, an accelerometer, and a piezoelectric
diaphragm as candidate vibration sensors for a wearable FM monitor. We find that the acoustic sensor
and the piezoelectric diaphragm are better equipped than the accelerometer to determine durations,
intensities, and locations of kicks, as they have a significantly greater response to changes in these
conditions than the accelerometer. Additionally, we demonstrate that the acoustic sensor and the
piezoelectric diaphragm can detect weaker fetal movements (threshold wall displacements are less
than 0.5 mm) compared to the accelerometer (threshold wall displacement is 1.5 mm) with a trade-off
of higher power signal artefacts. Finally, we find that the piezoelectric diaphragm produces better
signal-to-noise ratios compared to the other two sensors in most of the cases, making it a promising
new candidate sensor for wearable FM monitors. We believe that the FM simulator represents a key
development towards enabling the eventual translation of wearable FM monitoring garments.

Keywords: fetal movement simulator; fetal movement monitor; maternal abdomen model; acoustic
sensor; accelerometer; piezoelectric diaphragm

1. Introduction

Monitoring of fetal movements (FM) has long been a subject of interest to medical and research
communities due to the association between reduced FM and several fetal health conditions, such as
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fetal distress, placental dysfunction, fetal growth restriction, and hypoxia [1–6]. A reduction in FM often
provides an early warning of fetal health complications [7–10]. For example, in a study on 305 pregnant
volunteers with reduced FM after 28 weeks of gestation, 22.1% reported poor outcomes at birth, such as
preterm or small-for-gestational-age births [9]. Another study on 161 singleton pregnancies resulting
in stillbirths at Nottingham City Hospital from 1991 to 1997 stated that reductions in FM were reported
in 54.7% of the cases [10]. A recent study on 409,175 pregnancies in the UK and Ireland found that
the awareness of reduced FM through maternal sensation does not significantly reduce the risk of
stillbirth [11], but this does not negate the value and impact of a method for objectively quantifying FM.

The oldest and most commonly used method of quantifying FM is through maternal sensation.
Despite being a very common screening method followed by a large portion of pregnant women around
the world, this method has largely been set aside by medical professionals [12]. Studies have shown that
this method is highly patient dependent, especially with subtle or gentle movements [13]. Results from
recent studies propose that only around 40% of the movements observed in ultrasonography are
detected by maternal sensation [14,15]. While pregnant women are always counseled to report any
perceived decrease in fetal movements, formal “kick counting” is actively discouraged in many
contemporary guidelines for antenatal care [16,17]. Additionally, there is a lack of clear guidance on
a “safe” number of perceived movements [12]. Other common methods of quantifying fetal activity
include ultrasonography [18,19], MRI scanning [20], and cardiotocography [21]. Such methods need
expert operators and can only be performed for short periods in clinical environments. Additionally,
ultrasonography (and especially MRI) may not be available in the majority of the rural areas in
low-income countries. Current clinical methods are, therefore, unsuitable for regular monitoring of
fetuses and have failed to determine a reliable quantitative guideline for a normal or safe level or
frequency of FM.

Building upon advances in electronics and sensor technology, several attempts to develop a
low-cost, wearable, non-transmitting system for detecting FM have been reported in recent years.
Most of these attempts have used accelerometer-based systems to detect low-frequency vibrations
of maternal abdomens created by fetal movements. For example, Thomas et al. [22] used a single
accelerometer to record FM from 27 pregnant women and achieved average true and false detection
rates of 62% and 40%, respectively, compared to concurrent ultrasound scans. Using two custom-made
capacitive acceleration sensors, Roy et al. [23] found 79% positive agreement with concurrent ultrasound
recordings from 14 pregnant women for gross movement of fetal trunks. However, their positive
detection rates for the isolated limb and breathing movements were only 36% and 21%, respectively.
Mesbah et al. [24] presented a fetal activity monitor that uses three accelerometers to detect fetal
activities and an additional accelerometer, placed on the mother’s chest, to detect artefacts from
maternal activities. Considering the data recorded by one of the accelerometers only, they obtained
positive agreements of 50%, 52%, and 76% with concurrent ultrasound detections for three different
recordings. A complete analysis of the data obtained from all four accelerometers was presented by
Boashash et al. [15], where special time-frequency based techniques were used to improve the detection
rate by removing signal artefacts. Analyzing the data from six pregnant women, they reported overall
true detection rates of 78% and 72% for two different methods; the corresponding false detection rates
were 17% and 15%, respectively. By experimenting with six accelerometers, Altini et al. [25] reported
that the addition of accelerometers after two does not improve the detection accuracy significantly,
while the addition of a reference accelerometer to remove artefacts due to maternal activity consistently
improves the detection accuracy for any number and arrangement of sensors. In a recent work from
our group, Lai et al. [26] presented a new design of FM monitor based on a combination of six acoustic
sensors and an inertial measurement unit (IMU). The IMU mainly consisted of an accelerometer,
which was used to detect maternal body movements. The system was validated against concurrent
ultrasound tests on a cohort of 44 pregnant women. It achieved a promising true positive detection
rate of 78% in detecting startle movements (vigorous, whole-body movements) but performed poorly
in the cases of general and breathing movements (true positive detection rates were 53% and 41%,
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respectively). Additionally, the average ratio of sensor-detected movements to ultrasound-detected
movements was 2.4, which demonstrates a high number of false-positive detections by this system.

Although extensive efforts have been made to design FM monitors using accelerometers, the
desired accuracy of detection has not been achieved and translation remains negligible. Our recent study
indicates that while acoustic sensing is promising, the false-positive detection remains unacceptably
high [26]. Therefore, it is important now to quantify the limitations of these sensors, look for new
candidate sensors, and consider a combination of different types of sensors to further improve the
accuracy of detection. This is very challenging to achieve through clinical studies on pregnant women.
The “ground truth” for FM can only be provided (partially) with ultrasound testing, and repeated
testing of multiple sensors against ultrasound is not feasible ethically or logistically in human studies.
We, therefore, approach this problem by enabling extensive testing of sensors and their combinations,
prior to a clinical testing phase, through the development of an FM simulator. The only effort towards
the development of an FM simulator to date has been reported by Sazali et al. [27], who proposed
a very simple design consisting of a servo-controlled kicking mechanism and a flat rubber sheet as
a maternal abdomen model. However, to be able to test sensors for an FM monitor, the vibration
characteristics of a maternal abdomen due to fetal kicks need to be replicated by the simulator.

In the present study, we design and fabricate a novel FM simulator considering the geometrical
and material properties of a maternal abdomen to imitate its vibration characteristics. The design also
includes a stretching mechanism to simulate the pre-stress present in a gravid uterus and a kicking
mechanism to replicate fetal kicks in terms of the speed, duration, and reaction force from the abdomen
wall. To run the simulator, we develop a software application that allows the design of simulated kicks
using wide-ranging features. Finally, as a case study, we investigate performances of three vibration
sensors, namely an accelerometer, an acoustic sensor, and a piezoelectric diaphragm, analyzing their
relative performances when used on the simulator under various input conditions.

2. Design of the Fetal Movement Simulator

The mechanical design of the FM simulator consists of three main components—maternal
abdomen model, support structure and stretching mechanism, and kicking mechanism (Figure 1).
Detailed descriptions of these components along with the data acquisition and software systems used
in the simulator are provided in this section.

(a)

Figure 1. Fully assembled fetal movement (FM) simulator: (a) maternal abdomen model, and support
structure and stretching mechanism, (b) kicking mechanism beneath the abdomen membrane.

2.1. Design of the Maternal Abdomen Model

A single layer membrane with clamped edges was assumed to model the vibrations of the
gravid abdomen due to fetal kicks. To understand which material and geometrical properties
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influence vibration characteristics, a mathematical model of the membrane vibration was studied.
The approximate analytical formula for the natural frequency of vibration of a curved rectangular
membrane with clamped edges (Figure 2), as derived by P. J. Palmer [28] using the Rayleigh’s method,
is given as follows:

fn =
1

2π

√
D
ρh

{
72

( 7
a4

+
7
b4

+
4

a2b2

)
+

12
h2

(
1

A2 +
1

B2 +
2μ
AB

)}
, (1)

where
fn = natural frequency of vibration (Hz) D = Eh3

12(1−μ2)
= flexure rigidity (Pa·m3)

A, B = radii of curvature (m) E =modulus of elasticity (Pa)
a, b = length of sides (m) μ = Poisson’s ratio
h =membrane thickness (m) ρ = density (kg/m3)

Figure 2. Geometry and boundary conditions of the curved single-layer membrane model of a
maternal abdomen.

The region between the fetus and the exterior surface of the maternal abdomen consists of three
layers, namely fetal membrane, uterine wall, and abdominal wall. Table 1 lists the previously reported
material and geometrical property values of these layers relevant to the formula for the natural
frequency of vibration of the membrane (Equation (1)).

Table 1. Previously reported values of material and geometrical properties of maternal abdomens.

Layer

Material Properties,
Mean (Min–Max)

Geometrical Properties,
Mean (Min–Max)

Young’s
Modulus,

(kPa)
Poisson’s Ratio

Density
(Kg/m3)

Thickness
(mm)

Radius
(mm)

Fetal
membrane

[29–31]

7100
(3200–13,700) 0.40 – 0.19

(0.14–0.28) –

Uterine wall
(30 week

gestational age)
[30–35]

586 0.40 1052 6.90
(5.0–10.50)

99
(89–117)

Abdominal
wall [36–38]

21
(13.6–28.4) 0.50 973.61

(970.13–976.75)
31.40

(7.80–63.0) –
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Table 1. Cont.

Layer

Material Properties,
Mean (Min–Max)

Geometrical Properties,
Mean (Min–Max)

Young’s
Modulus,

(kPa)
Poisson’s Ratio

Density
(Kg/m3)

Thickness
(mm)

Radius
(mm)

Total (mean) – – – 38.49
(12.94–73.78) –

Weighted
average

151.37
(132–224) 0.48 982.86

(980.02–985.42) – –

In the cases where explicit mentions of the range of property values were not found, the minimum
and maximum values of the properties presented in Table 1 were calculated using “mean ± 2 ×
standard deviation” formula. The properties of the fetal membrane were obtained from the literature by
considering it as a single layer of chorioamniotic material, whose outer surface is attached to the uterine
wall. The intrauterine radius was calculated using the previously reported values of intrauterine
volume [34] and assuming the spherical shape of the uterus [35]. The thickness of the abdominal wall
was calculated by adding the thicknesses of the abdominal muscle and fat tissues [36]. The density
of the abdominal muscle was taken from the values reported by Rachel et al. [38]. Using computer
tomography images of the abdomen of nearly 2000 subjects, they obtained the density values in the
Hounsfield unit (HU), which represents the attenuation of X-ray by the material and is proportional
to the physical density of the material. To convert the HU value into Kg/m3, the linear fitting of the
experimental data of the density (Kg/m3) and the corresponding HU value for soft human tissues
presented by Uwe et al. [37] were used. Finally, the weighted average of the abdominal muscle and fat
densities [37] with respect to the corresponding mean thicknesses [36] was considered as the abdominal
wall density.

Weighted average values of the material properties with respect to the mean thicknesses of
the corresponding layers were considered to model the single-layer maternal abdomen. Since the
density of the fetal membrane was not found in the literature, only uterine and abdominal walls were
considered to calculate the weighted average density of the single-layer abdomen model. For simplicity
of modeling, equal radii of curvature and equal lengths of sides in both directions were considered.
The inner radius of the fetal membrane was calculated by deducting its thickness from the intrauterine
radius. The mean radius of curvature of the abdomen was calculated to be 118.1 mm by adding half of
the overall thickness of the fetal membrane, uterine wall, and abdominal wall with the inner radius of
the fetal membrane. Finally, the lengths of the sides of the membrane were considered as equal to the
circumference of a semicircle with a radius equal to the radius of the abdomen. With the mean values
of the above mentioned geometrical and material properties, the natural frequency of undamped free
vibration of the single-layer curved model of a maternal abdomen was calculated as 33.46 Hz using
Equation (1).

After a preliminary comparison of relevant characteristics of some suitable candidate materials
(e.g., silicone, thermoplastic elastomer, alginate gel, etc.) for modeling the maternal abdomen, silicone
was selected due to its durability, ease of manufacturing, and availability of variants with required
material properties. The uniaxial tensile test was performed on three variants of silicone, namely
Dragon skin FX-pro, Dragon Skin 10 NV, and Dragon Skin 10 medium, obtained from the Smooth-on,
Inc. (Macungie, PA, USA), following the ASTM D412 standard. The modulus of elasticity was
determined from the stress vs. strain curve at 100% elongation (Figure 3a), and the Poisson’s ratio was
determined by analyzing images of the specimens before and after the elongation (Figure 3b).
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(a) (b)

Figure 3. Uniaxial tensile test results for the silicon materials: (a) stress-strain diagram, (b) pixel values
of the longitudinal and lateral dimensions of a specimen before and after applying a tensile load to
calculate the Poisson’s ratio of the material. ASTM D412 standard was followed to perform the tests.

The uniaxial tensile test was performed on three samples for each of the silicone variants, and the
median value was considered as the average property value for that variant (Table 2). Based on the
material properties of different variants of silicone (Table 2) and the property requirements for the
maternal abdomen model (Table 1), Dragon Skin 10 NV was selected for modeling the abdomen.

Table 2. Material properties of three variants of silicone. Moduli of elasticity and the Poisson’s ratios
were determined from the uniaxial tensile tests, and the densities were determined by measuring the
weights of known volumes of the materials.

Material

Modulus of Elasticity, E100% (KPa) Poisson’s Ratio, μ
Density, ρ

(Kg/m3)Sample
1

Sample
2

Sample
3

Median
Sample

1
Sample

2
Sample

3
Median

Dragon Skin
FX-Pro 81.3 90.9 148.3 90.9 0.47 0.51 0.52 0.51 1120

Dragon Skin
10 NV 207.4 185.5 189.4 185.5 0.45 0.49 0.48 0.48 1030

Dragon Skin
10 Medium 189.4 182.7 196.1 189.4 0.41 0.46 0.46 0.46 1210

For design simplification of the support structure and stretching mechanism, a flat rectangular
membrane (Figure 4) with the natural frequency of vibration equal to the natural frequency of vibration
of the curved abdomen model (i.e., 33.46 Hz) was used in the simulator. For a flat rectangular membrane
with clamped edges, the approximate analytical solution for the natural frequency of free damped
vibration, as derived by Milomir M. S. by using the Galerkin’s method [39], is given as

fnd =
1

2π

√
∧D
ρha3b

−
(

k
2ρh

)2

, (2)

where
fnd = natural frequency of free damped vibration (Hz)
∧ = 36.112 (square membrane, 1st mode of vibration)
k = coefficient of damping (N·s/m).
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Figure 4. Geometry and boundary conditions of the single-layer flat rectangular model of a
maternal abdomen.

Neglecting the effect of damping (k = 0), the natural frequency of undamped free vibration of the
flat membrane can be obtained from Equation (2) as

fn =
1

2π

√
∧D
ρha3b

. (3)

For the selected silicone material (Dragon Skin 10 NV), the length of the sides of a square membrane
with the natural frequency of vibration equal to the natural frequency of the curved abdomen model
(= 33.46 Hz) was calculated to be 171 mm using Equation (3).

Expressions for the damping ratio (ζ) and the time constant (τ) were also derived from the solution
of Milomir M. S. [39] to investigate the transient characteristics of the membrane vibration, which are
given as follows

ζ =

√
1 − ρha3b

∧D
(2π fnd)

2, (4)

τ =
2ρh

k
. (5)

2.2. Design of the Support Structure and Stretching Mechanism

The support structure consists of four clamping mechanisms to hold the silicone membrane from
four sides and an aluminum Rexroth frame to support the clamps and provide the required elevation
for the kicking mechanism to fit beneath the membrane (Figure 5). To assemble the frame, three-way
connectors with self-tapping screws were used at each of the four corners of the frame. Each clamp is
attached to the frame using two T-nuts to allow for the clamp attachment piece to slide along the strut
and provide added flexibility in the positioning of the clamp. The clamp components are made of
aluminum bars and are connected through mild steel rods. The upper jaw of the clamp is connected
to the attachment piece through a 10 mm lead screw at the middle and two 10 mm non-threaded
stabilizing rods at two sides. G-clamps were used to secure the upper and lower jaws tightly after
connecting them through two 8 mm non-threaded vertical rods.

Figure 5. Fully assembled CAD design of the support structure and stretching mechanism.
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To simulate the strained condition of a gravid abdomen, the membrane was stretched by rotating
the lead screw after clamping. The tensile load was assumed to be uniform throughout the membrane
and was calculated from the elongation of the membrane. For this purpose, the relation between the
elongation and the tensile stress was derived. Considering isotropic material property and obeyance
to Hooke’s law, the relationship between stresses and strains for biaxial loading can be given as

εx =
1
E

(
σx − μσy

)
, (6a)

εy =
1
E

(
σy − μσx

)
, (6b)

where
εx, εy = normal strains along X and Y axes, respectively
σx, σy = normal stresses along X and Y axes, respectively (Pa).

For a square membrane with the length of side a and equal tensile stress (σ) along both axes, the
formula for the elongation (δ) can be derived from Equations (6a) & (6b) as

δ =
aσ
E
(1− μ). (7)

Uterine wall tensions for different gestational ages (obtained from the literature review) and the
elongations of the membrane required to produce the corresponding tensions, which were calculated
by using Equation (7) and the material properties of the membrane (Table 2), are listed in Table 3.
Applying these elongations, the stretched condition of the maternal abdomen for different gestational
ages can be created in the FM simulator.

Table 3. Uterine wall tensions at different gestational ages and the corresponding elongations required
along both axes (X, Y) simultaneously to create that tension in the membrane.

Property
Gestational Age (Week)

20 25 30

Maximum uterine wall tensile stress,
mean (range) (KPa) [34]

11.9
(5.8–19.5)

16.3
(9.5–24.2)

22.8
(14.2–33.3)

Elongation necessary to apply the stress,
mean (range) (mm)

0.033 a
(0.017–0.059) a

0.046 a
(0.017–0.059) a

0.0639 a
(0.043–0.1) a

2.3. Design of the Kicking Mechanism

The kicking mechanism consists of two sets of actuators, sensor holders, kicking probes, and
actuator holders along with a base to support the whole mechanism (Figure 6a). Actuonix (Victoria, BC,
Canada) L16-R linear servo actuator (Model No.: L16-50-63-6-R) was used to simulate the fetal kicks in
the simulator. The position of the servo was controlled by 5V pulse-width modulated (PWM) signals
from an Arduino Mega board (from Arduino, Torino, Italy). The whole process was automated via
MATLAB’s “writePosition ()” function, which takes the position of the actuator as a position variable
that varies between 0 (fully retracted) and 1 (fully extended). To accurately control the position, the
actuators were calibrated by measuring their stroke length for different values of the position variable.
When connected to a 5V dc supply, the maximum stroke length and the no-load speed of the actuators
were found to be 146 mm and 12.43 mm/s, respectively.
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(a) (b)

Figure 6. CAD design of the (a) fully assembled kicking mechanism, (b) sensor holder.

The actuator holder is a 3D-printed structure to hold the actuator in proper position and orientation
beneath the silicone membrane (Figure 6a). The holes in the vertical and horizontal planes of the
actuator holder serve as the points of attachment for the actuator and the base, respectively. The actuator
can be positioned along three different angular orientations in a holder relative to the horizontal plane,
namely 90◦ (perpendicular), 60◦, and 55◦, to generate kicks with different angles of impact. The base of
the kicking mechanism is made of a 250 mm × 250 mm × 5 mm acrylic sheet with 4 mm diameter holes
distributed along the whole horizontal plane to ensure multiple arrangements of kicking positions
when both the actuators run simultaneously.

The sensor holder consists of a two-part sandwich-like structure that encloses a force sensor in the
middle (Figure 6b) to measure the reaction force due to kicking. Piezoresistive force sensor FlexiForce
A401 from Tekscan Inc. (South Boston, MA, USA, 2019) was selected to be used for this purpose due to
its suitability of dimension (25.4 mm diameter), good repeatability (< ±2.5%), and appropriate range of
measurement (0–111 N) [40]. Two force sensors were used with two actuators, and their calibrations
were performed using a set of known calibration weights.

The kicking probe is located on the top of the sensor holder and is 3D printed as an integrated
structure with the sensor holder (Figure 6b). A 10 mm diameter cylindrical probe was used to represent
the geometry of a 20-week old fetal foot [31], and a 30 mm diameter hemispherical probe was used to
characterizes the geometry of an older (30 weeks) fetal foot.

2.4. Data Acquisition System

USB 6212, a multifunction I/O device from National Instruments (Austin, TX, USA), was used as
the data acquisition (DAQ) system for the FM simulator. It has 16 analog input channels, which can
sample data at a maximum rate of 400 kHz for a single channel with a resolution of 16 bit. The output
pins of the force sensors were connected to a voltage divider circuit followed by a voltage follower
circuit (LM 358 op-amp), and the output from the voltage follower was connected to the analog input
channel of the DAQ system as shown in Figure 7. A sampling rate of 2 kHz was used for recording the
data during the experiments.

The recorded data from the force sensors were first passed through a low pass filter (4th order
zero-phase Butterworth filter, 50 Hz cut-off frequency) and then converted into force values based
on the calibration results of the corresponding force sensor. Additionally, the offset error in the
sensor output due to the initial compression of the sensor in the sensor holder was subtracted from
the readings.
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Figure 7. Diagram of the circuit used between the sensor output and the DAQ input in the cases of
the force sensors and the piezoelectric diaphragm. LM 358 op-amp was used to design the voltage
follower circuit.

2.5. Software for the Simulator

A MATLAB (MathWorks, Natick, MA, USA) -based software application (Fetal Kick Simulator)
was developed to run the simulator and record data from the sensors (Figure 8). The application
controls the actuators by sending PWM signals from an Arduino Mega board based on a user-defined
kick profile. Several parameters, such as the number of kicks, desired wall displacement, pause at
the peak, etc., are inputted by the user. Additionally, users can select one of four defined kick modes
from a drop-down list in the graphical user interface (GUI) of the software to specify the sequence of
movements of the actuators (Table 4).

Figure 8. The graphical user interface of the software application developed to run the FM simulator.
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Table 4. Description of different “Kick Mode” available in the “Fetal Kick Simulator” software.

Kick Mode Description

Single Only one actuator operates in this mode.

Dual: Simultaneous
Two actuators operate simultaneously in this mode. The number of kicks for
both the actuators must be equal, and they will start simultaneously at the
beginning of each kick.

Dual: Consecutive Actuators run consecutively one after another.
Dual: Random Actuators start randomly based on the respective user-defined kick profile.

The sensor data are recorded by the DAQ system in the background and are sent to the computer
via serial communication in every 0.25 s. The software updates the data and plots them instantaneously
to display almost real-time changes in sensor outputs. At the end of the recording, the user can save the
data before starting the next recording. A video recording of the hardware and the software systems
running simultaneously is added as Supplementary Material with the paper.

3. Characteristics of the Simulator

After holding the silicone membrane with the gripping mechanism, the area of the flat abdomen
model was found as 167 × 167 mm. For simulating the stretched condition of a 30 weeks pregnant
abdomen, a bi-axial loading of 22.8 kPa was applied to the membrane through elongations of 11 mm
along both axes of the membrane, which was calculated using the formula mentioned in Table 3.
The thickness of the membrane was measured as 39 mm. With these geometrical properties and the
material properties mentioned in Table 2, the natural frequency of undamped free vibration of the
silicone membrane was calculated to be 31.24 Hz (by using Equation (3)), which is very close to the
calculated frequency of vibration of the curved abdomen model (33.46 Hz). However, because of
the effect of damping, the natural frequency of free vibration of the membrane, as measured by the
acoustic sensor and the accelerometer, was found to be 18.7 Hz (Table 5), which is much lower than the
calculated natural frequency.

Table 5. Vibration characteristics of the testbed abdomen model. Ten sets of data were used to obtain
the natural frequency of the abdomen model.

Property Value

Natural frequency obtained from the accelerometer, (mean ± SD) (Hz) 18.70 ± 0.10
Natural frequency obtained from the acoustic sensor, (mean ± SD) (Hz) 18.75 ± 0.17

Damping ratio, ζ 0.80
Time constant, τ (ms) 6.40

To understand the transient characteristics of the membrane vibration, the damping ratio was
calculated as 0.80 using Equation (4), and the time constant was calculated as 6.4 ms using Equation (5).
This value of the damping ratio signifies that the vibration of the abdomen membrane is an underdamped
case (as ζ < 1), and it will decay rapidly (as ζ is close to 1). The time constant of 6.4 ms signifies that
in the case of free damped vibration, the amplitude will decay by more than 99% of its initial value
within a period of 32 ms (= 5τ).

Table 6 shows the comparison of the characteristics of real fetal kicks as reported by
Verbruggen et al. [30] with the simulated kicks obtained from the simulator with the cylindrical
and the hemispherical kicking probes. For the simulated kicks, the durations presented in this table are
the minimum kick durations obtained by running the actuators at their maximum speeds (12.43 mm/s
at the no-load condition), which can be easily increased by slowing down the actuators. As the reaction
force from the membrane depends on the location of the kick impact point relative to the clamped
edges, 40 measurements were taken at different locations of the membrane to calculate the average kick
reaction force for each value of the wall displacement. These results demonstrate that for the higher

409



Sensors 2020, 20, 6020

value of the wall displacement (close to the upper limit of the range), the cylindrical kicking probe
produces reaction forces similar to 20-week old fetuses, and the hemispherical kicking probe produces
reaction forces similar to 30-week old fetuses. However, for the lower value of the wall displacement
(close to the lower limit of the range), the hemispherical kicking probe produces reaction forces more
similar to 20-week old fetuses.

Table 6. Comparison of the characteristics of real and simulated fetal kicks. Forty sets of measurements
at different locations of the membrane were used to calculate the average kick reaction force for each
wall displacement.

Kicking Entity
Uterine Wall

Displacement,
(Mean ± SD) (mm)

Kick Duration,
(Mean ± SD) (s)

Kick Reaction,
(Mean ± SD) (N)

20-week old fetus [30] 11.78 ± 4.72 2.65 ± 0.35 28.85 ± 1.88

30-week old fetus [30] 11.52 ± 1.47 2.95 ± 0.74 46.64 ± 5.30

Cylindrical probe, 10 mm diameter 10 1.63 14.84 ± 1.76
15 2.45 33.15 ± 3.92

Hemispherical probe, 30 mm diameter 10 1.69 26.01 ± 1.66
15 2.53 44.20 ± 2.37

To verify the reliability of the current FM simulator in producing repeatable and consistent
simulations of abdominal vibrations due to fetal kicks, multiple measurements were used to obtain the
simulator characteristics as reported in Tables 5 and 6. Table 5 shows that the measurements of the
natural frequency of vibration of the simulator abdomen model obtained independently from two
different sensors (accelerometer and acoustic sensor) are very close to each other (18.70 Hz for the
accelerometer and 18.75 Hz for the acoustic sensor), and the standard deviations (SD) (obtained from
10 measurements) are very small (0.10 for the accelerometer and 0.17 for the acoustic sensor). Similarly,
the standard deviations of the kick reaction forces (obtained from 40 sets of measurements) are also
quite reasonable (ranges from 1.66 to 3.92 N) considering the mean value of the forces (ranges from
14.84 to 44.2 N) and the variation of the membrane resistance due to the location of the kick impact
point (Table 6). These results show that the performance of the simulator is consistent and repeatable
under the experimental conditions reported in this paper.

4. Testing of the Sensors on the Simulator

The developed FM simulator can be used to test any kind of candidate sensors for FM monitors to
evaluate their ability to detect abdominal vibrations due to fetal kicks. In this study, three types of
passive vibration sensors, namely an accelerometer, an acoustic sensor, and a piezoelectric diaphragm
(Figure 9), were tested, and the outputs from these sensors were stored for post-processing. A sampling
rate of 2 kHz was used for recording the data during the experiments.

Figure 9. Vibration sensors that were tested on the FM simulator as a case study in this research.
The detailed specification of the accelerometer breakout board and the piezoelectric diaphragm can be
found in [41,42], respectively. The design of the acoustic sensor is adopted from [43].
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4.1. Selection of the Sensors

The breakout board for ADXL335 from SparkFun Electronics (Niwot, CO, USA, 2014) was selected
as a suitable accelerometer for testing. ADXL335 is a 3-axis MEMS accelerometer from Analog Devices
Inc. (Norwood, MA, USA, 2009), which has a range and sensitivity of ±3 g and 300 mV/g, respectively,
with extremely low noise and power consumption rate [41]. The breakout board includes 0.1 μF
capacitors connected to the output pins of the sensor axes to limit their bandwidth to 50 Hz [41].

The acoustic sensor tested on the FM simulator is similar to the sensors used by Lai et al. [26] in
their wearable FM monitor. The design of this sensor was originally adapted from the design first
presented by Posatskiy and Chau [43]. It consists of a diaphragm covering a sealed chamber and
a microphone (SPU1410LR5H-QB, Knowles Acoustics, Itasca, IL, USA, 2012). The chamber is a 3D
printed structure, which is dimensioned to capture low-frequency vibrations. The microphone is
positioned at the opposite end of the chamber to record the pressure changes when the diaphragm is
disturbed. A frequency sweep using a custom-made vibration rig has shown that the sensor can detect
low-frequency vibrations ranging from 1 Hz to 100 Hz with the peak response lying below 50 Hz [44].

A 20 mm diameter piezoelectric diaphragm from Murata Electronics (manufacturer part no.
7BB-20-6L0, Kyoto, Japan, 2009) was selected as the third type of vibration sensor to be tested on
the FM simulator. This sensor consists of a 14 mm diameter piezoelectric ceramic plate glued to a
20 mm diameter brass plate [42]. Two lead wires are soldered to the plates, which are used to measure
the voltage difference between them. Similar to the force sensors used in the kicking mechanism,
the output from the piezoelectric diaphragm was connected to the analog input channel of the DAQ
system through a voltage divider and a voltage follower circuit (LM 358 op-amp), as shown in Figure 7.
Output ports of the rest of the sensors were directly connected to the analog input channels of the
DAQ system.

4.2. Processing of Sensor Data

Recorded data from the sensors were first passed through a bandpass filter (4th order zero-phase
Butterworth filter) with a suitable passband frequency of 1–40 Hz, which was selected based on the
expected frequency of vibration of the membrane due to kicking as calculated in Section 2.1. In the
case of the accelerometer, further processing of data was done on the magnitude (Euclidian norm) of
the acceleration, A, which was calculated as

A =
√

A2
x + A2

y + A2
z , (8)

where Ax, Ay, and Az represent the components of acceleration along the X, Y, and Z axes, respectively.
Matrices that were used to compare the performance of different sensors are sensor response,

signal energy, signal-to-noise ratio (SNR), and the dominant frequency mode in the output signal.
The following steps were performed to calculate the signal energy and the SNR:

1. A noise estimate, e, was determined by taking the average of the absolute value of sensor response
(Vi) for a window of time w (=2 s) during a period when no kick action was going on.

e =
1

Fsw

∑
Fsw
i=1 |Vi|, (9)

where Fs is the frequency of data sampling. The time window was taken at a period sufficiently
away (= 6 s) from the previous kick action to ensure the complete decay of oscillation due to the
previous kick.

2. The signal due to kick, S, was defined as the part of sensor response that exceeds the threshold
level h = me, where m is a multiplier evaluated from trial and error:

S = {x ∈ |V| |x > h}. (10)
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m = 5 was found to generate the most suitable threshold value for the majority of the cases, and
this value was, therefore, used for all the datasets. Figure 10 demonstrates the application of this
algorithm in the case of acoustic sensor response due to a simulated kick.

3. The rest of the data were considered as noise N:

N = {x ∈ V | x ≤ h}. (11)

4. Energy, E, of the signal and the noise were calculated as

EW =
∑

x∈W |xi|2, (12)

where W = S for signal and W = N for noise.
5. Finally, the SNR was calculated as

SNR = 10 log10

(
ES/nS − EN/nN

EN/nN

)
(dB), (13)

where nS and nN are the number of elements in the signal and the noise data, respectively.
The noise power was assumed to be constant throughout the whole sensor response. It was,
therefore, subtracted from the overall signal power to determine the power due to the kick
action alone.

Figure 10. Determination of the part of the sensor response that is considered as the signal due to
kicking based on the condition mentioned in Equation (10). Response from the acoustic sensor due to a
simulated kick of 10 mm wall displacement using the cylindrical kicking probe is used in this figure.
The distance between the sensor and the kick impact point was 5 cm.

5. Results and Discussion

This section describes the results obtained from the performance testing of three vibration sensors,
namely an accelerometer, an acoustic sensor, and a piezoelectric diaphragm, using the FM simulator.
All the sensors were attached tightly to the exterior surface of the simulator membrane using adhesive
tapes, and the center of the membrane was maintained as the middle point between the sensor and the
kick impact point. All kicks were produced at the maximum actuator speed.

5.1. Comparative Responses from Different Sensors

To study the comparative responses, all the sensors were placed at a distance of 5 cm from the
kick impact point. Simulated kicks of 14 mm wall displacement were applied using the hemispherical
probe to replicate kick characteristics of a 30-week old fetus (Table 6). Kicks of a 30-week old fetus
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were chosen here, because this time point provided the best match between actual and simulated fetal
kicks, as shown in Table 6. Sensor performances are displayed in Figure 11 in terms of sensor response,
spectrogram, and power spectral density (PSD) distribution. Hann window of length 0.5 s and 80%
overlap between the segments were used to obtain the spectrograms, which resulted in frequency and
time resolutions of 2 Hz and 100 ms, respectively. The PSD distributions were obtained using the
Welch method and a dataset of 10 similar kicks. Hann window of length 1s and 50% overlap between
segments were used to generate the PSD distributions.

Figure 11. Comparison of signal characteristics of the sensors due to simulated fetal kicks in terms
of: (a1,a2,a3) sensor response, (b1,b2,b3) spectrogram, and (c1,c2,c3) power spectral density (PSD)
distribution. The abdomen model was subjected to simulated kicks of a 30-week fetus and the sensors
were attached to a distance of 5 cm from the kick impact point. Datasets of 10 repeated kicks were used
to generate the PSD distributions.

Figure 11a shows that the acoustic sensor and the piezoelectric diaphragm were responsive to
the kick during the majority of the kick duration. Though the accelerometer detected the starting of
the kick, it was mainly responsive near the end of the return stroke, which is the period when the
membrane starts vibrating freely. This demonstrates the accelerometer’s inability to detect membrane
vibrations during the period of forced movements by the kicking probe. This can also be observed
from the spectrograms of the sensor responses (Figure 11b), which show that after the 4th second
(near the end of kick) the membrane was vibrating at around 19 Hz, which is equal to the natural
frequency of vibration of the membrane. Both the acoustic sensor and the accelerometer picked up
this vibration, but the piezoelectric diaphragm did not show any response. This characteristic of the
sensors is further observed in the PSD distribution curves (Figure 11c), which show that the power
of the piezoelectric signal was completely concentrated below 10 Hz. In the cases of the acoustic
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sensor and the accelerometer, concentrations of signal power around 2 Hz and 19 Hz were observed.
However, the main peak occurred around 2 Hz in the case of the acoustic sensor and around 19 Hz in
the case of the accelerometer. This PSD distribution of the acoustic signal also conforms with the PSD
distribution obtained from the acoustic signals due to the real fetal kicks, as reported by Lai et al. [26].

5.2. Effect of Wall Displacement and Kick Distance on the Sensor Response

To study the effect of wall displacement on the sensor performance, all sensors were placed 5 cm
away from the kick impact point and were subjected to kicks of wall displacements ranging from
2–14 mm using the hemispherical kicking probe. Each kick was repeated 10 times to evaluate the
mean and the standard deviation of the output signal parameters, and the obtained results are shown
in Figure 12 in terms of SNR, signal energy, and the dominant frequency mode. It can be seen from
this figure that in the cases of the acoustic sensor and piezoelectric diaphragm, both SNR and signal
energy increased with the increase in wall displacement (Figure 12(a1,c1)). For the accelerometer,
SNR decreased with the increase in wall displacement, and signal energy initially decreased and
then increased with the increase in wall displacement (Figure 12(b1)). Additionally, changes in these
parameters (SNR and signal energy) were comparatively smaller in the case of the accelerometer
compared to the other two sensors. This happened because the accelerometer is mainly responsive to
the free vibration of the membrane (at around 19 Hz), which is much less affected by the change in
wall displacement compared to the vibrations during the forced movement of the membrane. This is
also evident from the consistent dominant mode of acceleration signal around 19 Hz (Figure 12(b2))
with the increase in wall displacement. The increase in wall displacement also did not affect the
dominant mode in the case of the piezoelectric diaphragm, which maintained a value between 1–2 Hz
(Figure 12(c2)). Finally, in the case of the acoustic sensor, the dominant mode changed from around
19 Hz to a lower frequency value below 3 Hz with the increase in wall displacement (Figure 12(a2)),
which demonstrates the acoustic sensor’s ability to respond effectively to both the frequency ranges
and the fact that the duration of the low-frequency vibration increases more with the increase in the
wall displacement compared to the duration of the free vibration of the membrane.

Figure 12. Effect of wall displacement on the sensor performance in terms of: (a1,b1,c1) SNR and signal
energy, and (a2,b2,c2) the dominant frequency mode. The sensors were attached to the model abdomen
membrane at 5 cm away from the kick impact point, and the wall displacement due to kicking was
varied from 2 to 14 mm using the hemispherical kicking probe. Ten sets of data were taken for each
wall displacement and the results are shown in terms of the mean values as the data points on the
graph and the standard deviations as the error bars.
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To study the effect of the distance between the sensor and the kick impact point (i.e., kick
distance) on the sensor performance, the kick distance was varied from 0–15 cm, while keeping the
wall displacement fixed at 10 mm. Again, the hemispherical kicking probe was used, and each kick
was repeated 10 times to evaluate the mean and the standard deviation of output signal parameters.
The results of the tests are shown in Figure 13 in terms of SNR, signal energy, and the dominant
frequency mode. As expected, both SNR and signal energy decreased gradually with the increase
in kick distance for all three sensors as the vibration of the membrane becomes weaker with the
increase in the sensor’s distance from the kick impact point. There was no significant effect of the
kick distance on the dominant signal mode for any of the sensors. Again, changes in SNR and signal
energy were much smaller in the case of the accelerometer compared to the acoustic sensor and the
piezoelectric diaphragm.

Figure 13. Effect of kick distance (i.e., the distance between the sensor and the kick impact point) on
the sensor performance in terms of: (a1,b1,c1) SNR and signal energy, and (a2,b2,c2) the dominant
frequency mode. The kick distance was varied from 0–15 cm while the abdomen was subjected to kicks
of 10 mm wall displacement using the hemispherical kicking probe. Ten sets of data were taken for
each kick distance, and the results are shown in terms of the mean values as the data points on the
graph and the standard deviations as the error bars.

Finally, the best SNR was achieved from the piezoelectric diaphragm in most of the cases, as shown
in both Figures 12 and 13, meaning that the piezoelectrical diaphragm produced better signal quality
compared to the other two sensors. The accelerometer signal was found to be least affected by the
changes in wall displacement and kick distance, which indicates that it will be difficult to predict the
location and intensity of kicks accurately using a fully accelerometer-based FM monitor.

5.3. The Input Thresholds for the Sensors

The input threshold values of the sensors, i.e., the minimum input value recognized by the sensors,
are expressed in terms of the minimum wall displacements due to kicking required by the sensors to
recognize the kick. These values were determined by placing the sensors at the maximum possible
kick distance (for the simulator) and subjecting them to the minimum possible wall displacement
(for the simulator) by the weakest (in terms of the produced kick impact) available kicking probe for
the current FM simulator. A length of 20 cm was the maximum possible consistent distance between
the sensor and the kick impact point for the simulator to avoid attaching sensors close to the gripping
mechanisms at the boundaries. Due to the 0.4 mm repeatability of the actuators [45], 0.5 mm was
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considered as the lowest reliable wall displacement that can be produced by the current kicking
mechanism. The cylindrical kicking probe was considered as the weaker kicking probe as it produces
less kick reaction force for any specific wall displacement compared to the hemispherical kicking probe
(Table 6). All the sensors were, therefore, attached to a distance of 20 cm away from the kick impact
point along a diagonal of the membrane and were subjected to a kick of 0.5 mm wall displacement
using the cylindrical kicking probe. The obtained results are shown in Figure 14a, which shows that,
while the acoustic sensor and the piezoelectric diaphragm recognized the kick clearly, the accelerometer
did not have any noticeable change in its response. By gradually increasing the wall displacement by
the steps of 0.5 mm, the threshold wall displacement for the accelerometer was found to be 1.5 mm
(Figure 14c). The significance of this finding is that, while the smaller input threshold values of the
acoustic sensor and the piezoelectric diaphragm make them more suitable for detecting weaker fetal
activities compared to the accelerometer, they also make the acoustic sensor and the piezoelectric
diaphragm more prone to signal artefacts compared to the accelerometer.

Figure 14. Determination of the minimum input threshold wall displacements for the sensors. Sensor
responses were determined for kicks of wall displacements of: (a1,a2,a3) 0.5 mm, (b1,b2,b3) 1 mm, and
(c1,c2,c3) 1.5 mm using the cylindrical kicking probe. The sensors were attached to a distance of 20 cm
away (maximum possible for the current simulator) from the kick impact point.

The input threshold values may change based on the size of the maternal abdomen. In the case
of a larger maternal abdomen, or later in gestation, two sensors on two sides of the abdomen may
be needed to reduce the maximum possible distance between the sensor and the kick impact point.
The results presented by Altini et al. [25] showed that using two accelerometers instead of one led to
substantial improvement in the detection accuracy. In their case, any further increase in the number of
sensors did not lead to any significant improvement in the detection accuracy.

416



Sensors 2020, 20, 6020

5.4. Summary of Results

The main results can be summarized into four key findings regarding the response characteristics
of the sensors when subjected to simulated fetal kicks. The first key finding is the differences between
the sensors in terms of their responsiveness to different frequency ranges of membrane vibrations
during the simulated kicks. While the acoustic sensor and the piezoelectric diaphragm responded
strongly to low-frequency vibrations below 10 Hz, the accelerometer mainly responded to the free
vibration of the membrane at around 19 Hz. This characteristic makes the acoustic sensor and the
piezoelectric diaphragm better equipped to determine the kick duration compared to the accelerometer.
Additionally, the acoustic sensor also responded effectively to the free vibration of the membrane.
The second key finding is the differences between the sensors in terms of their responses to the changes
in the wall displacement (or the reaction force) due to kicking, and the distance between the sensor
and the kick impact point. The accelerometer output was found to be significantly less affected by
alterations to these parameters compared to the acoustic sensor and the piezoelectric diaphragm, which
makes the accelerometer relatively less capable of determining the intensity and location of a kick
compared to the other two sensors. The third key finding is the differences between the sensors in terms
of their minimum input threshold wall displacement values. The acoustic sensor and the piezoelectric
diaphragm had a lower input threshold value compared to the accelerometer, which makes the acoustic
sensor and the piezoelectric diaphragm more capable of detecting weaker fetal movements and more
prone to signal artefacts compared to the accelerometer. Finally, the piezoelectric diaphragm had
the best SNR for most of the input conditions, which signifies its superiority in terms of the signal
quality and makes it a promising candidate sensor for fetal movement monitors. While these results
establish the baseline performance of these sensors, more tests are needed to statistically compare the
performance of the sensors.

6. Conclusions

This paper presents the most comprehensive attempt to simulate vibrations of a maternal abdomen
due to fetal kicks in a laboratory set-up to date, fulfilling the unmet need for a pre-clinical facility for
testing and calibration of vibration sensors for fetal movement (FM) monitors. We have designed the
membrane (representing a gravid abdomen) of the simulator by incorporating relevant material and
geometrical properties of gravid abdomens. We have analytically calculated the natural frequency
of undamped free vibration of a curved model of gravid abdomens as 33.5 Hz and experimentally
determined the actual natural frequency of an equivalent flat model of the abdomen in our simulator
as 19 Hz, due to damping effects. The simulator imitates the stretched condition of a gravid abdomen
by applying a biaxial tensile load on the membrane. By comparing with the available data for real fetal
kicks, we have demonstrated that the designed kicking mechanism can replicate the kicks of 20 and
30-week old fetuses by using 10 mm diameter cylindrical and 30 mm diameter hemispherical kicking
probes, respectively, in terms of wall displacement, kicking force, and kick duration.

As a case study, we have tested three candidate sensors for wearable FM monitors, namely an
accelerometer, an acoustic sensor, and a piezoelectric diaphragm, on the simulator to investigate their
performance. Analysis of the responses has revealed some novel characteristics of these sensors. For
example, the acoustic sensor and the piezoelectric diaphragm were responsive to kicks during the
whole kick duration because of their ability to respond to the low-frequency vibrations (<10 Hz)
due to the forced movement of the membrane. Additionally, the acoustic sensor also effectively
detected the free vibration of the membrane (at 19 Hz), which mainly happened at the end of the
kick. However, the piezoelectric diaphragm was not responsive to the free vibration of the membrane
at all. Conversely, the accelerometer was mainly responsive to the free vibration of the membrane,
and therefore, although it recognized the start of the kicks, it mainly responded to inputs near the
end of the kicks. These findings have also been supported by their respective spectrograms and PSD
distributions. The accelerometer was significantly less responsive to the changes in wall displacement
and kick distance than the other two sensors. These results indicate that it will be easier to obtain the

417



Sensors 2020, 20, 6020

duration, intensity, and location of the kicks from FM monitoring systems based on acoustic sensors
and piezoelectric diaphragms compared to a fully accelerometer-based system. The piezoelectric
diaphragm was found to produce the best SNR for most of the input conditions, which signifies its
superiority in terms of the signal quality. Finally, the threshold wall displacements for the acoustic
sensor and the piezoelectric diaphragm were found to be smaller compared to the acoustic sensor.
This signifies that the acoustic sensor and the piezoelectric diaphragm have better abilities to detect
weaker fetal activities compared to the accelerometer, but they are more prone to signal artefacts
compared to the accelerometer. All these findings indicate that a combination of different types of
sensing modalities will be more suitable to detect and characterize fetal activities compared to systems
based on a single type of sensor.

In summary, we have created a facility for preclinical testing of sensors for FM monitors for the
first time and demonstrated its capability. We have revealed novel characteristics of the responses of
acoustic sensors, accelerometers, and piezoelectric diaphragm sensors to simulated fetal movements,
providing valuable insights into optimally designing novel FM monitors. Future studies will involve
the optimization of the number and arrangement of sensors and the study of the effect of other input
conditions, such as the speed, duration, and simultaneous occurrence of kicks. Once the sensor
combination is selected based on the test results from the simulator, they can be embedded in a
wearable garment along with a miniaturized DAQ system and used for the clinical testing of the
system. We, therefore, believe that the FM simulator presented in this study will be a major addition to
the design cycle of the FM monitors.

Supplementary Materials: The following is available online at http://www.mdpi.com/1424-8220/20/21/6020/s1.
A video of the FM simulator in action.
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