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Preface to “Advanced Battery Technologies: New 
Applications and Management Systems” 

1. Introduction

Lithium-ion batteries (LIBs) are ubiquitous in our modern society. We can find them in 
every type of electronic devices, with common examples including mobile phones, laptops, 
smartwatches, and digital cameras. But the range of applications of LIBs has expanded vastly in 
the last years. Nowadays, LIBs are in fact the core power system in electric mobility (i.e., Electric 
and Hybrid Vehicles, Electric Trains, Electric Bikes and Electric Vessels), play a key role in 
large-scale energy storage systems for renewables, and remain essential in niche applications, 
such as aerospace industry and biomedical instruments (pacemakers, defibrillators, etc.). We 
can therefore confirm that LIBs are a key-technology in present and future engineering systems.  

Despite the achievements and applicability of LIBs, there are several features within this 
technology that require further improvements. For instance, measuring the inner state of charge 
(SOC) and state of health (SOH) of a LIB remains challenging today. Advances to better 
evaluate these two figures of merit (i.e., SOC and SOH) are key to improve reliability and 
controllability in the increasingly complex LIB systems. From a system-level perspective, the 
continued improvements in overall system-efficiency are also critical. This area is usually 
explored via Power Electronics. Another key feature, incidentally, less taken into consideration, 
is related to laboratory battery testing. This is indeed an integral part of any study dealing with 
LIBs laboratory-based research. These are just a few examples of key features to be addressed in 
LIBs. Curious readers are encouraged to refer to the state-of-the-art literature of LIBs for further 
study.  

We must also emphasize that the understanding of LIBs encompasses diverse disciplines 
that not only includes Electronic Engineering, but also Control and Computer Engineering, 
Instrumentations and Measurement Engineering, Material Science, Electrochemistry, or Data 
Science. Therefore, to overall improve LIB performance and control, a multidisciplinary team 
(and set of skills) is required. This aspect is central, yet it was often not taken into consideration. 
Fortunately, nowadays multidisciplinary teams are more common in industry, research, and 
academia.  

In this Special Issue, we are pleased to present 10 high-quality papers that cover the 
above-mentioned matters, with a diversity of focus areas of LIBs that include: 

1. Battery testing methodologies and operation procedures [1,2] 
2. Battery state of charge monitoring [3–6] 
3. Battery State of health monitoring [7] 
4. Power Electronics applications in Lithium-ion batteries [8–10] 

In Figure 1, we summarize the organization of this Special Issue to facilitate its study. The
sequence of topics was selected from lower-level, laboratory-oriented topics (1. Battery testing), 
inner, key figures of merit in LIBs (2. State of Charge and 3. State of Health), to final, system-
level applications (4. Power Electronics). Similarly, Figure 1 also includes the paper references 
for quick access, together with the main areas of expertise within the selected topics to help 
readers jump straight into their area of interest. 
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Figure 1. Summary of the topics and disciplines covered in this Special Issue. All 
pictures and graphs are taken from the research papers compiled in this book. 

Another key aspect to highlight in this Special Issue is the variety of experiments and 
experimental set-ups presented. The works include the assembly of prototypes in printed circuit 
boards, battery testing, experimentation and measurements, and the validation of the 
developed mathematical models via experiments. We believe that this variety of conducting 
tests is to be valued by the readers of this Special Issue.  

Finally, it is also worth noting that one paper was selected as a feature paper for the 
Special Issue: 

M. Dubarry, G. Baure, Perspective on commercial Li-ion battery testing, best practices for
simple and effective protocols, Electron. 9 (2020). doi:10.3390/electronics9010152. 

and it is also worth noting that the work reported in another paper was also presented in 
the form of a patent: 

Q. Zhang, Y. Li, Y. Shang, B. Duan, N. Cui, C. Zhang, A fractional-order kinetic battery
model of lithium-ion batteries considering a nonlinear capacity, Electron. 8 (2019). 
doi:10.3390/electronics8040394. 

2. The Present Special Issue

2.1. Battery Testing Methodologies and Operation Procedures 

Laboratory testing is expensive, time-demanding, and a much more complex task than it 
appears. Properly defined testing protocols and standard operating procedures are key to 
further improve the understanding of LIBs in many respects: study and validating modeling, 
development of control algorithms, battery performance, or safety. In [1], the testing approach 
used at the Hawaii Natural Energy Institute (HNEI) and developed for over 15 years is 
described in detail. The HNEI has been in the forefront of the development of methodologies to 
improve non-intrusive characterization of commercial lithium-ion cells to extract maximum 
relevant information from minimum amount of testing and instrumentation. The paper will 
help engineers and researchers, both in industry and academia to improve their battery testing 
capabilities and validation studies. In [2], an investigation of the recovery of damaged batteries 
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via testing is presented. For this purpose, experimental set-up for automated system integrating 
proposed recovery methods were realized and analyzed, attaining a high recovery-rate out of 
damaged cells. 

2.2. Battery State of Charge Monitoring 

State of charge (SOC) accurate estimation is one of the most important functions in a 
battery management system. Several methodologies for SOC estimation are generally explored, 
including adaptive filter algorithms, learning algorithms, nonlinear observers or hybrid 
methods, to name a few. In [3], a fractional-order kinetic model is developed to estimate the 
available capacity of a battery, taking into consideration the battery dynamics of the 
electrochemical materials and properties. In [4], a temperature-dependent, second order RC 
equivalent circuit is developed together with a dual Kalman filter algorithm. The estimation 
results were validated from experiments, attaining high accuracy in the results. Further 
improvements of the unscented Kalman filter were presented in [6], by developing an adaptive 
unscented Kalman filter. The proposed algorithm reduces the system noise and observation 
noise during SOC estimation, which leads to an improve of accuracy than the dual Kalman 
filter algorithm.  

2.3. Battery State of Health Monitoring 

Due to the non-linear physiochemical nature of LIBs, identify the internal changes that 
lead to battery degradation and failure is a complex task. In [7], a novel health monitoring 
method based on ultrasonic techniques is presented. The developed method offers a significant 
improvement over the state-of-the-art ultrasonic techniques, in terms of providing an early 
indication of sudden battery failure. In addition, the monitoring method can be applied to 
batteries during their operation by integrating simple and small equipment (a pulser-receiver 
module and a piezoelectric transducer) into the existing battery management system.  

2.4. Power Electronics Applications in Lithium-Ion Batteries 

System-level management of LIBs is essential to improve performance, protect the 
batteries and maximize the lifespan of the system. One area of key interest within the system-
level management of LIBs is the charging strategy. Improving the charging capabilities of LIBs 
involves both the development of the charging protocol and the electronics to accomplish the 
charging scheme. In [8], a multiphase resonant converter for high-capacity, 48 V LiFePO4 
battery module is presented. The designed converter offers high reliability throughout the 
charging process, improving the charging capabilities of the tested pack. Another application of 
Power Electronics in LIBs is presented in [9]. Here, a bidirectional direct current-direct current 
equalization structure is developed to equalize batteries within a battery pack, without using an 
external energy buffer. With the proposed architecture, a good balance of performance is 
attained in speed, design cost and volume. To close this Special Issue, a hybrid energy 
management system is presented in [10]. The system contained a LIB and supercapacitor 
connected to a DC bus via bidirectional DC-DC converter. The designed prototype validates the 
proposed architecture, attaining improved values in the area of energy efficiency and charging 
time. 
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3. Concluding Remarks 

The Guest Editors were pleased with the quality and breadth of the accepted papers. 
Looking to the future, we believe all research works enclosed in this Special Issue will promote 
further research in Lithium-ion batteries from a multidisciplinary perspective. 
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editorial process of this Special Issue. 
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Abstract: Validation is an integral part of any study dealing with modeling or development of new
control algorithms for lithium ion batteries. Without proper validation, the impact of a study could
be drastically reduced. In a perfect world, validation should involve testing in deployed systems, but
it is often unpractical and costly. As a result, validation is more often conducted on single cells under
control laboratory conditions. Laboratory testing is a complex task, and improper implementation
could lead to fallacious results. Although common practice in open literature, the protocols used are
usually too quickly detailed and important details are left out. This work intends to fully describe,
explain, and exemplify a simple step-by-step single apparatus methodology for commercial battery
testing in order to facilitate and standardize validation studies.

Keywords: commercial Li-ion testing; RPT; CtcV; cell-to-cell variations

1. Introduction

Today’s world relies more and more on energy storage technologies and, with several government
incentives for larger integration of zero-emission electricity storage in electromobility and stationary
applications, the demand will keep increasing in the future [1]. To match this demand, battery
technology must improve year after year. To be more than incremental, such improvement could take
the form of disruptive battery technologies [2,3] and, equally as important, the form of improved battery
management systems with innovative control strategies to enable more efficient and safer battery
packs. The latter topic is attracting enormous amount a research and a wide variety of algorithms
have been proposed in recent years [4–8] for state-of-charge (SOC) and state-of-health (SOH) tracking.
For all these studies, there is a dire need for experimental validation so that the effectiveness of the
proposed methodology can be demonstrated. This is often neglected, and some studies, as promising
as they could be, are disregarded because the work was not properly validated in the laboratory.

Laboratory testing is an expensive and complex task, especially when trying to replicate the
behavior of large deployed battery packs such as the ones in electric vehicles or grid storage systems.
Laboratory results can become non-significant if cells are not handled and characterized properly. In
regard to characterization, laboratory testing at scale is often not possible because of logistical and cost
limitations; most of the testing must then be performed at a much smaller scale and under slightly
different conditions. This raises concerns about the presumptions that the tested cells are representative
of the batch, the duty cycle is relevant to the application, and the pack behaves similarly to single cells
at scale. To address the representativity issue, cell-to-cell variations need to be studied and quantified.
To address the relevance issue, duty cycles must be illustrative of application data. To address the
degradation and state-of-health issue, cells need to be periodically characterized in a non-intrusive
and non-destructive way.

The purpose of this publication is to complement [9,10] and describe, in more detail than typical
publications, a testing strategy to address all these issues together. This is meant to provide newcomers

Electronics 2020, 9, 152; doi:10.3390/electronics9010152 www.mdpi.com/journal/electronics1
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and non-battery specialists some details, definitions, and explanations on how to perform simple
and effective battery testing in order to improve validation studies. This publication does not aim to
compare different approaches to testing protocols nor discuss the complex question of battery SOH,
such discussions can be found in [9,10], respectively, but is intended to describe the Hawaii Natural
Energy Institute (HNEI) methodology. In the past decade and a half, HNEI has been in the forefront of
the development of methodologies to improve non-intrusive characterization of commercial lithium ion
cells to extract maximum relevant information from minimum amount of testing and instrumentation.
In that timeframe, we tested over 1000 commercial cells and published upwards of 50 highly cited
publications on commercial battery testing and modeling.

The HNEI testing strategy consists of five elements, Figure 1. First, a preparation step must
be executed to assure the cells are properly installed, the testers are accurately calibrated, and the
compulsory safety precautions are strictly implemented. Second, a formation protocol must be
performed to verify the cell quality relative to the batch. Third, a reference performance test (RPT)
should be completed at regular intervals to assess the evolution of battery performance over time.
Fourth, a repetitive duty cycle is required to mimic battery usage for a given application. Lastly, an
end-of-test evaluation is undertaken to provide a detailed characterization of cell performance at the
end of life, which includes a final RPT and, if deemed necessary, some post-mortem analyses [11,12].

Figure 1. Testing sequence within proposed protocols.

2. Methods and Discussion

2.1. Test Preparation

A recent study by Taylor et al. [13] showed that, without careful consideration, slight differences
in the experimental setup could induce up to 4% difference in experimental results on similar cells.
This error has environmental and procedural origins [13]. The environmental errors could stem from
the ambient temperature and humidity; the equipment calibration, accuracy, and resolution; or the
different manufacturing tolerances of the equipment and battery used. Procedural errors are induced
during the testing, and include many circumstances such as moving a sample, loosening a connection,
or not allowing batteries to acclimate to a new temperature properly [13].

Such a high error could drastically influence the conclusions of a study. Thus, steps should be
taken to minimize it. First, battery tester calibrations should be verified. Second, battery holder contacts
must be cleaned to avoid the possible impact of oxidation. Third, the placement of the connector cables
and eventual spacers must be consistent. The measurement cables must be as close as possible to the
battery tabs. In case of 4-point connection (2 for voltage, 2 for current), it is recommended that the
current and voltage cables do not touch each other [13]. Fourth, the torque on the connections must be
carefully controlled and kept constant. Taylor et al. [13] found the optimal torque to be 12.5 Nm for
their connectors. If possible, all cells belonging to one set of experiments should be tested on the same
machine and in the same temperature chamber if temperature is not a variable. Finally, thermocouples
must be added, and their placement should also be consistent (same position, same amount of tape,
etc.). With those steps, the experimental error should be limited to below 1% [13].

2
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Another essential aspect to take into consideration while preparing an experiment is safety. Even
if no abusive testing is performed, failure is always an option. Modern batteries pack a lot of energy
as 55Ah worth of batteries is equivalent to the energy of a hand grenade (150 g of TNT) [14]. When
first received, the batteries should be unpacked under a fume hood to prevent any exposure from
potential electrolyte leakage during transport [14]. They should then be thoroughly checked for any
physical damage, leak, or defect. Defective batteries should be disposed according to local health and
environmental safety office recommendations. For storage, batteries should be discharged a low to
mid SOCs, vacuum sealed in non-metallized plastic bag, and frozen to −27 ◦C in a commercial freezer.
This is because low temperatures and SOCs were shown effective to prevent impact of calendar aging
for all the major commercial Li-ion chemistries [15]. A plan should also be in place in case batteries
undergo thermal runaway during testing. A discussion on thermal runaway is out of the scope of
this publication and interested readers should refer to [16–19]. To maximize safety, all cells should
be tested in temperature chambers with significant exhaust ventilation to evacuate fumes quickly in
case of failure. Moreover, temperature should always be monitored as it is an excellent indicator of
failure [16–19]. If cell temperature exceeds 80 ◦C, all testing should be stopped, and the temperature
monitored closely for the next hour. Electrolyte decomposition is an exothermic reaction and if
happening, the temperature of the cell will continue to rise. Therefore, if the cell temperature returns
to room temperature quickly, the risk of dramatic failure is low. Some cooling aid could be applied to
the cells in the form of ice packs [14]. Once cooled, and as precaution, the cell should be transferred
to a sand-filled bucket [14], if possible, made of earthenware. Sand offers the advantage of acting
like a sponge for any leak of boiling electrolyte without the risk of burning or melting. The container
must be kept sealed, outdoor but protected from weather, and temperature monitored for 72 h. If the
temperature keeps increasing, the risk of failure is high. Extreme caution must be exercised as venting
or explosion is possible at any moment without notice. Standard operating procedures and proper
training should be installed to be able to handle such events quickly and safely. These procedures
could include aggressive cooling solutions such as ice packs, dry ice, and CO2 fire extinguishers and
the placement of fire blankets over the overheated cell and on the adjacent cells to prevent propagation.
Personal protective equipment such as heat resistant gloves, a fire-retardant lab-coat, and a full-face
respirator, must be used in all cases. An adapted first aid kit must also be in close proximity [14].

2.2. Formation

Before the start of any cycle-life evaluation, it is extremely important to identify and quantify
the nature of cell-to-cell variations within a batch of cells [20–25]. A discussion on their origins is out
of the scope of this publication and interested readers should refer to an article by Rumpf et al. [26].
The results of the formation tests are not reported often enough. Several strategies are available in
the literature from C/3 discharge and 50% SOC resistance test [27] to protocols such as HNEI’s initial
conditioning characterization test (ICCT) [28–31]. Lasting less than a week, the ICCT consists only of
C/2 and C/5 cycles, Figure 2, and serves two purposes. The first is to verify that the cells are working as
they should be and that the solid electrolyte interphase layers are properly formed [32]. The second
is to calculate the three parameters that were shown to be critical in determining the manufacturing
variability in a batch of cells [28]. For the ICCT and all the other protocols in this publication, data
collection must be controlled to ensure enough information is gathered while limiting file size. We
recommend some variable time steps aiming for 2000 points per step. For the C/5 step that is supposed
to last around 5 h, 1 point should be recorded every 9 s. For the C/2 cycle, that measurement rate is
accelerated to 1 point every 3.6 s.

3
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Figure 2. Initial conditioning characterization test (ICCT) formation test protocol.

Figure 2 details the ICCT protocol. The aim of the first step is capacity stabilization. It is
recommended to start by performing a few charge and discharge cycles (up to 6) to ensure the
SEI layer on the negative electrode is properly formed. Once the capacity is stabilized (less than
0.2% difference between two consecutive cycles), the second step can be started. The second step
consists of C/2 (discharge in 2 h) and C/5 (discharge in 5 h) discharges with 4-h rests and the
manufacturer-recommended charging protocol.

The capacities and rest cell voltages (RCV), i.e., the voltage measured at the end of a resting period,
measured throughout this test are used to calculate the three attributes that are critical in determining
the manufacturing variability in a batch of cells. In order to fully characterize a batch of cells, it is
important to fully compare the capacity vs. rate relationship for each cell. This relationship is not
straightforward and it can be divided into 3 sections, Figure 3a.

Figure 3. (a) Capacity vs. rate relationship and (b–d) the three attributes that quantify
cell-to-cell variations.

4
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In the first section at low rates, the capacity is constant because it is only limited by the amount
of lithium that can be exchanged. This corresponds to the cell maximum capacity and it can be
characterized by calculating the capacity ration (Qr, in mAh/% SOC, Figure 3b). The term capacity
ration refers to the capacity (Ah) obtained for each one percent of SOC. RCV measurements at the
beginning of discharge (BOD) and the end of discharge (EOD) are used to derive a SOC range by
interpolation of the maximum and minimum SOCs (e.g., 99.7%–3.2%) from an open circuit voltage
(OCV) vs. SOC curve. The capacity ration is then calculated by dividing the capacity returned during
discharge by the SOC range variation. The maximum capacity corresponds to 100 x Qr, the capacity
for 100% SOC.

In the second section at medium rates, the capacity becomes also limited by diffusion [33] and starts
decreasing with rate following a power law. This section can be characterized either by the Peukert
coefficient [34] or the rate capability (rC, Figure 3c). The Peukert coefficient [34] can be calculated
by fitting the data in the middle section to a C = Int equation where n is the Peukert coefficient, I
the current, and t the nominal discharge time for a specific C-rate. The rate capability represents a
cell’s ability to deliver capacity when the discharge rate increases. It can be calculated by dividing the
capacities at C/2 by the C/5 ones. Both parameters are unitless and, with only two rates tested in the
ICCT, rC if often more appropriate.

In the last section, at high rates, in addition to being limited by the amount of lithium and diffusion,
the capacity starts to be affected by polarization pushing some capacity outside of the potential window.
This can be characterized by measuring the ohmic resistance (R, in Ohms, Figure 3d) [28]. The ohmic
resistance represents the contact resistance of the cell in the circuit and the conductive resistance of
the cell (which primarily comes from the electrolyte). Although several methods could be used to
estimate the resistance, such as electrochemical impedance spectroscopy (EIS), the resistance estimation
can be obtained simply by using the initial voltage drop associated with the C/2 and C/5 discharges.
The method is based on the linear regime of the Tafel behavior [35] which, for small currents, shares
some formal similarity with Ohm’s law. Figure 4a presents the calculation process that was described
previously in [36]. If the cells were previously charged to the exact same SOC prior to the C/5 and C/2
discharges, i.e., that the RCVs were similar, the initial IR drop can be used to determine the resistance.
To calculate the resistance, the measured voltage must be plotted as a function of rate or current. The
slope of the curve is the resistance, normalized or not. It must be noted that if the data are gathered at
different time steps for different rates, priority must be set on selecting points with similar elapsed time
after the application of current. This approach is also valid to characterize the resistance evolution
with temperature and aging.

Figure 4. (a) Initial voltage vs. rate for the resistance calculation and (b) cell-to-cell variation
representation in a 3D space adapted from [29].

Once the three attributes are calculated for all the cells in a batch, the statistical analysis of
the cell-to-cell variations can be performed, and the normality of the three attributes examined. A
convenient way to report the data is to represent all three attributes in a 3D space of which an example
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is presented in Figure 4b. To help visualize the cell-to-cell variations better, a couple of visual cues can
be added to the plot. First, a full-line rectangle, in which the boundaries correspond to the lower and
upper quartiles (i.e., the 75th and 25th percentiles of the data) for the three attributes of cell-to-cell
variations. Cells located within this rectangle, color-coded in blue, are the closest to batch center
of gravity (the median values for all three attributes) and can be considered the core of the batch.
A second dotted rectangle, three times larger than the first one, was also added. Three times the
interquartile range is often statistically considered as the outliers’ boundaries. Cells located outside
of the outliers’ boundaries were color-coded in red and are excluded from further experimentation.
In the example shown in Figure 4b, most cells were consistent. However, there were three cells that
exhibited resistances higher than normal and, therefore, their use should be discontinued.

2.3. Reference Performance Test

The RPT needs to be performed on a regular interval and at a constant temperature, typically
monthly or every 100 full equivalent cycles and at room temperature, to quantitatively assess battery
performance and SOH. SOH is gauged from the quantification of the degradation modes, the loss of
active material, loss of reactant, and kinetic degradation. A discussion on SOH is out of the scope of
this paper and can be found in [10]. The RPT needs to provide as much information as possible on
SOH without being intrusive [37]. Therefore, the test must be short and not stress the cells, but it needs
to characterize the thermodynamic and kinetic changes. The proposed HNEI RPT protocol is detailed
in Figure 5. It consists of three steps: Conditioning, low-rate cycling, and nominal rate cycling. The
conditioning step ensures that the cells are fully charged before the start of the low-rate cycle. This is
accomplished by performing a standard charge with an additional constant current step typically at
C/50 (discharge in 50 h). The second step is a low-rate cycle, typically C/25 (discharge in 25 h) to assess
thermodynamic aspects. The third step is a nominal rate cycle, typically C/2 (discharge in 2 h) to assess
kinetic aspects. Rate for this step can be adapted to the situation. For example, higher rates can be
applied for high-power cells; while lower rates are used for high-energy cells. The caveat being that
this rate must be less aggressive than the rate used in the duty cycling. The RPT protocol is limited to
two cycles to minimize its toll on the cell SOH but additional rates or procedures (constant power,
electrochemical impedance spectroscopy, full OCV vs. SOC test, different temperatures) [27,38,39]
could be added if necessary. This is often done in the literature for the first RPT only. All regimes are
performed at constant current up to the cutoff voltage with the addition of a residual capacity step at
C/50 in between two rests. This residual capacity step is primarily used to assure that both charges and
discharges start from the same SOC independently of the previous rate. It is also used to calculate the
maximum capacity the cell can deliver.

The data gathered during the RPT test allow the execution of several analyses. First, the same
calculation as that of the ICCT test can be undertaken, specifically, the capacity ration, rate capability,
and resistance can be measured. The main difference is that in this case, the capacity ration can be
deciphered directly by adding the capacity measured during the residual capacity measurements at
C/50 to the recorded capacities to obtain the cell maximum capacity to be divided by 100. Values
calculated for the two rates should be similar and close to the one inferred during the ICCT test. With
only two rates tested during the proposed RPT, the rC method is still recommended over the Peukert
method to characterize rate capability. If more rates are tested, the Peukert curve (capacity vs. rate)
could be used as long as the rates are within the section with diffusion limitation (Figure 3a).
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Figure 5. The reference performance test (RPT) test protocol. EoR stands for end of regime and BoR
stands for beginning of regime.

The second set of information to be gathered from the RPT is the OCV vs. SOC relationship at the
current SOH. A discussion on OCV is out of the scope of this paper and can be found in [9,40]. The
OCV vs. SOC relationship can vary a lot with aging and, since gathering a proper OCV vs. SOC curve
can take weeks of testing [9], it is not feasible to repeat the process on every cell at each RPT. A solution
is to calculate a pseudo-OCV curve at each RPT. It has to be stated that, as discussed in [9], a low-rate
charge or discharge cannot be considered as OCV or pseudo-OCV curves as they are not independent of
the regime. The pseudo-OCV curve can be calculated by averaging the low-rate charge and discharge
curves [9,41,42]. This method is usually accurate, but it is highly recommended to check the validity of
the results. First, the residual capacity measurements for the low-rate cycle must be small, <1% of
the maximum capacity. High residual capacity measurement for the low-rate cycles would suggest
that some SOC was not utilized during the low-rate cycles. If so, no data for this additional capacity
were gathered and thus the corresponding OCV voltage cannot be assessed [31]. In such occurrence,
it is recommended to lower the current of the low-rate cycle and of the residual capacity cycle. The
second verification is to compare the SOC obtained by reporting the RCVs from both cycles on the
pseudo-OCV curve with the SOC calculated from the residual capacity measurements divided by the
maximum capacity. The values should be similar.

Using the SOC calculated at end of charge and end of discharge (either from the residual
capacity measurements or the pseudo-OCV curve), the SOC windows used by the different rates can be
compared and tracked [43] so that differences between rates, temperature, or SOH can be compared
and discussed. An increasing difference between low and high rate implies growing kinetic limitations.
A decreasing difference is possible in case of electrochemical milling enhancing the surface area of the
electrode [44]. This allows the comparison of SOC (the percentage of the maximum lithiation) and the
depth-of-discharge (DOD, the percentage of the maximum lithiation under a given duty cycle) [9]. For
the data collected during the RPT protocol, each charge or discharge corresponds to 100% DOD since
the cells were fully charged or discharged prior to the start of the next regime. More details on the
extremely important question of SOC definition can be found in [9].

An example of the pseudo-OCV calculation and validation is presented in Figure 6 for a commercial
graphite/nickel aluminum cobalt oxide cell. The residual capacities were below 0.5% of the maximum
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capacity, consequently the pseudo-OCV curve was calculated. This pseudo-OCV curve was then used
to infer the SOC from the RCV. For both cycles, the estimated SOCs were within 0.5% from the residual
capacity measurements (highlighted by the vertical bars). In that case, the pseudo-OCV curve could be
deemed accurate enough for use. From the SOC windows, 100% DOD at C/25 corresponds to 99.5%
SOC versus 95% SOC in discharge and 90% SOC in charge at C/3. Examples of results obtainable from
these analyses can be found in our previous work including the SOC range variation with rate [43] and
the RCV and OCV evolution upon aging [45], at different temperatures [46], and for different electrode
architectures [44].

Figure 6. The C/25 charge and discharge curves and associated pseudo-open circuit voltage (OCV)
curve. Black squares and blue circles indicate the state-of-charge (SOC) estimated from C/3 and C/25
rest cell voltages, respectively. Vertical lines indicate the amount of additional capacity added by the
residual capacity steps.

The third set of information that can be gathered from the RPT is the voltage vs. capacity curves
of the low and high-rate cycles. The low-rate cycle provides thermodynamic information; while
the high-rate cycle reveals kinetic information. Since voltage variations are minute, derivatives are
recommended, either incremental capacity (IC, dQ/dV = f(V)) [9,42,45,47–49] or differential voltage
(DV, dV/dQ = f(Q)) [50–52]. Interested readers should refer to [9] for a complete discussion of the
advantages and disadvantages of both these electrochemical voltage spectroscopies (EVS).

As mentioned in [9], there are two levels of analysis for the EVS curves. The qualitative way is
the easiest and involves comparing the curves. Different features of interest (FOI) [53] (Figure 7a) can
be discussed and characterized without a complete understanding of the underlying electrochemical
process. To properly discuss changes, it is extremely important to describe the peaks properly
(Figure 7b). By convention, for IC, discharge peaks are negative and charge peaks are positive.
The peak potential is measured at the base of the peak and not at maximum intensity. Each peak
corresponds to a thermodynamic property, a redox reaction, and thus the potential of the reaction
is the same in charge and discharge. The voltage of the maximum of intensity could be affected by
hysteresis [54], polarization, and kinetics [55]. For example, if a peak is broadening, the position of
the intensity maximum changes, whereas the underlying reaction is still the same and thus starts at
the same potential, Figure 7b. In that case, the slope of the front of the peak would be an interesting
FOI to characterize kinetic changes. Another example is the shifting of all the peaks towards lower
potential during discharge, which is usually a clear indication that the resistance is increasing (not
observable on DV curves [9]). The resolution needed for IC and DV curves depends on the chemistry.
Following common practices from X-ray diffraction studies, having 5 or 6 points above the half-width
of the thinner peak would be considered sufficient resolution to trust peak intensity and position.
Furthermore, 1 mV or 2 mV voltage steps usually provide good enough resolution for single cells, but
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this depends on chemistry and on the quality of the data. If noise filtering techniques are applied to
clean the curves, particular attention must be set on possible peak displacements.

 

Figure 7. (a) Feature of interest (adapted from [53]) and (b) incremental capacity (IC) peak description.

In addition to the traditional IC and DV analysis, with the same dataset, other voltage derivative
techniques can be useful in the study of relaxation curves and the temperature variations. Analysis
of dV/dt = f(t) plots have shown the potential to identify lithium plating from relaxation curves [56].
Differential temperature curves with respect to voltage (dT/dV = f(V)) can also provide additional
information on degradation mechanisms [57].

The quantitative analysis is much more complex, but it determines the magnitudes of the
degradation modes such as loss of active material, loss of reactant, and kinetic degradation [55,58,59].
The methodology concerning the interpretation of the incremental capacity curves is out of the scope of
this paper and was extensively described in previous publications [9,58,59] with the introduction of the
clepsydra analogy that visualized the problem as communicating vessels with the liquid representing
the lithium in the system and the shapes of the vessels defined by the derivative of the voltage responses
for both electrodes (Figure 8a). This step can be bypassed by using one of the publicly available
mechanistic models [59–61] that relies on electrode half-cell data to build a virtual replicate and emulate
the impact of all degradation mechanisms based on simple parameters such as the loading ratio
(LR) between the capacities of the positive and negative electrodes and their offset (OFS), Figure 8b.
Every degradation induces changes to LR and OFS, Figure 8c, and those changes can be related to the
degradation modes via a simple set of equations [59].

The typical way of performing the analysis of IC or DV curves is to first select some FOIs [53,62],
then compare their experimental evolution to predicted ones for individual degradation modes, and
finally validate by simulating the full degradation to match the entire voltage response of the cell. The
full match might only be possible with the exact same positive and negative electrodes as the ones
used in the considered cells. For this reason, we recommend harvesting electrodes from one cell and
test them versus a reference electrode to later be used in the mechanistic model. Discussion on how to
open commercial cells and perform half-cell testing is out of the scope of this paper and more details
can be found in [29,63–69]. Individual electrodes in half-cell should be tested with an RPT protocol
similar to the one presented in Figure 5 but with more rates ranging from twice as low to twice as fast to
enable simulation of loss of active material and kinetic changes [55]. Since only one RPT is performed
on the half-cells and the capacity at each rate is normalized from the RCVs, the residual capacity
measurements and the OCV curve, degradation between cycles is not an issue. Thus, increasing the
number of rates tested improves the accuracy of the simulations. However, some attention needs to
be spent on the procedure to minimize cell-to-cell variations and improve the agreement of the data
from the half-cells and the full cell [66]. With one RPT for the full cell and one RPT for each electrode,
enough information is available to build a virtual cell and use the mechanistic modeling tools. If one of
the electrodes is a blend of several active materials, the best results will be obtained if half-cell data
are available for each individual electrode component. If the cells cannot be opened, or if individual
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components of blended electrodes cannot be gathered, the same analysis can be done using reference
materials [70]. However, in that case, only trends can be used to compare the mechanistic simulations
to the experimental data.

 

Figure 8. (a) Clepsydra analogy, (b) parameterization for mechanistic modeling, and (c) the effect of
changes of loading ratio and electrode offset.

For analysis, the FOI selection must only be made after an exhaustive sensibility analysis [10,53].
It is highly recommended to first simulate a degradation map with the voltage changes and capacity
loss associated with all the individual modes to gain an understanding of which FOI is more sensible
to a degradation mode. Logical deductions from this degradation map usually allow the direct
estimation of at least one of the degradation modes. With one quantified, another is then usually
unambiguously decipherable and so on until only one is remaining. Quantifying the last degradation
mode directly is usually not possible because of combined effects with the others. This quantification
usually necessitates a full fit match. This could be achieved through an automated calculation. Some
algorithms were proposed in the literature based on FOIs but most of them neglected the proper
sensibility analysis and hence should not be trusted to be universal. A detailed discussion on the
necessity for sensibility analysis is presented in [53]. Among the others, examples of degradation maps
can be found in [71] for graphite//nickel cobalt aluminum oxide cells, in [53,59] for graphite//lithium
iron phosphate cells, and in [53,72] for lithium titanate oxide//manganese nickel cobalt oxide. Example
of studies with blended electrodes can be found in [70,73]. In our past IC studies [44,53,59,65,70–75],
we often used different FOIs and entry points for the IC analysis depending on the chemistry and the
experimental trends. This highlights that a step-by-step instruction list on how to perform the analysis
is not possible and that it should always be guided by a sensibility analysis to be repeated for every
new study. It must be noted that IC or DV analysis are usually chemistry specific and, as such, results
should never be extrapolated to other chemistries without careful considerations and verifications.

2.4. Duty Cycle

The definition of the duty cycle test is the most important part of any degradation or validation
study. Battery degradation is path dependent [10,74,76–80] meaning that different conditions are
degrading battery differently, not just increasing or decreasing the rate. Therefore, to be representative
of a given application, the duty cycle to be applied needs to be as close as possible to the real use, which
is most likely stochastic [74,76–80]. Depending on the cells, some cycling profiles could be surprisingly
harsh. For example, our fast charging studies showed no impact of 4C constant-current discharges
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compared to 1C but fast degradation under EV type pulsing discharges in which the average current
was around C/3 and the maximum current 4C [10,65,75]. This stresses that significant time needs
to be allocated to properly define the duty cycle based on the targeted application. If datasets are
available, fuzzy logic [81] and statistical analysis [82] are good options to define a representative usage
cycle. Alternatively, literature might suggest adapted duty cycles, although they might not be fully
representative [74].

Even if a representative usage is determined, real-life conditions can fluctuate significantly.
Therefore, it might be valuable to test conditions around the representative usage to look for optimal
or detrimental conditions for performance or durability. Testing every possible condition is not
possible. Fortunately, some statistical tools allow the sampling of a wide range of values for meaningful
parameters with an optimal number of experiments. This is called design of experiments and it is
effective in battery testing. Interested readers are referred to [83–86] for more details on how to set
them up and how to interpret the results. Such a methodology was already proposed and successfully
applied to battery testing in recent years [30,87–92].

The duty cycle is the center part of any study. The RPT will help diagnosis and enable prognosis on
the cells but these results need to be relevant to different duty cycles. With a well-defined testing plan,
some statistical analyses, such as the analysis of variance (ANOVA), can be executed to establish the
significance of the different factors in the duty cycle (e.g., current, depth of discharge, and temperature).
An example of significance analysis from [70] is presented in Figure 9. It shows the relative significance
of the different factors: The SOC swings, the rate, and the temperature on the different degradation
modes. Such results can then be used to derive the optimal conditions to limit capacity loss or the
effectiveness of a given control algorithm.

Figure 9. Example of a significance analysis taken from [70].

For studies focused on long-term ramifications, it is important to quantify the intrinsic variability
in cycle aging and calendar aging, in other words, how much difference is observed between
several cells performing the exact same duty cycle. Several studies reported a noticeable spread in
cycle-lives [20,23,31,93,94] that could be detrimental to the durability of battery packs. Moreover, as
discussed in [10], for the deployment of algorithms, validation on one duty cycle is not enough. The
entirety of the degradation paths should be tested. If this is not possible experimentally, modeling
solutions should be considered [10,95,96]. In some cases, the capacity is shown to be increased after
performing an RPT compared to the last cycles before the RPT. This could be associated with negative
electrode overhang [97,98] and its impact will usually fade away after a few cycles.

2.5. Post-Mortem

If necessary, and to validate the diagnosis gathered from the analysis of the RPT, some post-mortem
tests can be carried out. This will require multiple apparatus and thus details are out of the scope of

11



Electronics 2020, 9, 152

this publication. The range of post-mortem tests proposed in the literature is wide [11,12,99] and some
techniques might require a lot of resources. They are typically performed by opening the aged cells
to test individual electrodes but some can be performed on full cells [11]. Electrochemical tests on
aged electrodes can verify changes in OFS and LR and validate the loss of reactant and loss of active
material quantifications [64] and other tests can be used to discover the origin of the losses.

3. Conclusions

In summary, laboratory battery testing is a much more complex task than it appears. Properly
defined and executed plans expedites a deeper understanding of the performance and SOH of
commercial batteries. Inadequate validation can delegitimize a good study. This paper presents best
practices for simple and effective testing of batteries. For the most part, execution only requires a
multichannel potentiostat/galvanostat without the need for other complex instrumentation. This will
allow characterization of not only the cell-to-cell variations, but also evolution of SOH throughout the
lifetime of the cells. Although this publication was centered on single cell testing, the same approach
can also be used for modules or packs if safety controls are in place so that no single cell can be
overcharged or overdischarged.
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Abstract: The presented paper discusses the most often damages applying for lithium traction and
non-traction cells. The focus is therefore given on investigation of possibilities related to the recovery
of such damaged lithium-ion batteries, more specifically after long-term short-circuit and deep
discharge. For this purpose, initially, the short-circuit was applied to the selected type of traction
LiFePO4 cell. Also, the deeply discharged cell was identified and observed. Both damaged cells
would exhibit visible damage if electro-mechanical properties were measured. Individual types of
damage require a different approach for battery regeneration to recover cells as much as possible.
For this purpose, experimental set-up for automated system integrating proposed recovery methods
were realized, while battery under test undergone a full-range of regeneration procedure. As a
verification of the proposed regeneration algorithms, the test of delivered Ampere-hours (Ah) for
various discharging currents was realized both for short-circuited as well as deeply discharged cells.
Received results have been compared to the new/referenced cell, which undergoes the same test of
delivered Ah. From the final evaluation is seen, that proposed procedure can recover damaged cell up
to 80% of its full capacity if short-circuit was applied, or 70% if a deeply discharged cell is considered.

Keywords: traction battery; LiFePO4; short-circuit; deep discharge; damage recovery

1. Introduction

Li-ion batteries have successfully penetrated our daily lives, from 3C products to EVs. For example,
the newly developed Lithium Iron Phosphate (LiFePO4) battery of larger energy capacity and safer
chemical characteristics has been considered as an excellent power resource for future EVs. Anxiously,
the capital costs of those Li-ion batteries are not low enough yet to substantially decrease the total
EV cost for attracting numerous customers. Consequently, this fatal bottleneck directly impacts the
universal adaptability of EVs. Some investigations delivered that the Li-ion battery cost needs to be
chopped down around 50% for coming to EVs to compete against conventionally fueled vehicles with
great odds [1–3] fully. Nowadays, in Europe, around 200 million vehicles are registered (approximately
80% are cars and 20% commercial vehicles). Car batteries deteriorate after two to three years, and people
throw them away [4]. If only one battery from a total of five is replaced within a year, 15 million
batteries are collected per year. Nevertheless, more than 15 million batteries are discarded only in
Europe. Unfortunately, only one-third of the total quantity is recycled by manufacturers, and the rest
is either eliminated or dumped in forests, rivers, and other places [5–7]. A significant reason for this
increase in the number of used batteries is the short life cycle of lead-acid batteries. Besides, large-size
batteries used for electric trucks are costly, with costs varying between 300 and 1500 euros, and hence
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involve very high periodic expenses and then, more expensive products. Preventing the damage of
this battery type and extending its life cycle will have a high economic impact [8–10].

Recycling, as well as regeneration/recovery of the used or harmed battery cells is, therefore,
a topic, which must be accepted if sustainability related to environment and costs is considered [11–13].
Currently, the regeneration processes are available mostly for the lead-acid and NiMH batteries
used for large electricity storage systems or hybrid vehicles. Target devices are batteries when
both electrode plates are settled by crystallizes and electrolyte is composed solely of distilled water.
A traditional battery charger will not be able to charge such a battery because it requires regeneration.
The regeneration process consists commonly of a set of high-powered electrical pulses that are breaking
down the crystallized layers. Battery regenerator manufacturers due to company know-how do not
describe regeneration procedures, and each applies a separately developed system. Based on this, it is
difficult to observe and determine the exact methodology used for regeneration [14–16].

Regarding the perspective of lithium-based cells used for e-mobility, the topic of regeneration will
come to the forefront as the price of lithium is still high. Consequently, the manufacturing process of
traction batteries represents an expensive procedure. Nowadays, many analyses, model development,
and estimation algorithms for the state of charge and state of health have been developed, enabling to
precisely estimate the operational life of traction energy storage systems [17–19]. However, there is a
lack of studies dealing with the possibilities of regeneration of damaged cells, which after the correct
capacity recovery process, could be used secondarily in the energy storage process.

Therefore, within the presented paper, the experimental methodology for damaged battery (focus
is given on LiFePO4 traction cells) considering various types of damage are introduced. Initially,
the test with overcharging is provided, in order to verify protection components of investigated cells,
and to verify the fact, whether regeneration on the overcharged battery can be applied. Consequently,
the investigation of long-term short-circuit is presented together with the proposal and evaluation of
the recovery algorithm suited for this type of battery damage. The proposed procedure is derived from
the principles of regeneration of lead-acid batteries. In contrast, individual methods (regeneration
from short-circuiting and regeneration from deep discharge) have been tested experimentally through
variation of amplitudes of pulses, duration of pulses, and repetition (frequency) of pulses.

Similarly, the recovery procedure is proposed on the cells that take inappropriate long-term
storage, where the deep discharge of the cell can apply. This situation is also described, while the
recovery procedure with settings relevant for a deep discharge state was applied to damaged cells
and consequently evaluated through the test of delivered ampere-hours. Received results have been
compared to new cells and also evaluated after continual use (30 days of charging and discharging
under various load) of regenerated pieces.

2. Electrical Types of Damage of Traction Batteries

Regarding the operation of batteries, there are several hazardous conditions related to the electrical
behavior of the circuit, which can cause damage to the battery itself. Consequences coming from the
wrong operation primarily reflect into the loss of the capacity or expressive, open-circuit voltage (OCV)
drop. If the excessive duration of the hazardous operation is lasting, it can cause secondary harm to
the internal structure as well as the mechanical cover of the battery. Here it is discussed long-term
short-circuit operation, overcharging of the battery above permissible voltage level, or excessive deep
discharge during battery operation or/and battery improper storage. Because each of the mentioned
unwanted operational conditions reflects in battery damage, it is valuable to find whether the suitable
procedure can be applied for battery regeneration back to its nominal operational state. In this article,
the attention is focused on the investigation of the impact rate of improper operation, i.e., overcharging
and short-circuit of 40 Ah–128 Wh Sinopoly LiFePO4 3.2 V battery. At the same time, a regeneration
algorithm is applied on long term short-circuited cell. Similarly, deeply discharged cell WINA 60 Ah
LiFePO4 3.2 V was observed and consequently subjected to the application of the proposed regeneration
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procedure in order to restore its capacity and functionality. The main electrical parameters of both
tested cells are listed in Table 1.

Table 1. Technical parameters of investigated cell Sinopoly LiFePO4 3.2 V 40 Ah.

Electrical Parameter Sinopoly LiFePO4 3.2 V 40 Ah WINALiFePO4 3.2 V 60 Ah

Nominal voltage 3.2 3.2 (V)
Maximum charging voltage 4 3.8 (V)

Minimum voltage 2.5 2.5 (V)
Maximum discharge
current(continuous) 3 3 (C)

Optimal discharge current 13 20 (A)
Maximum charging current 80 90 (A)
Optimal charging current 13 20 (A)

Operating temperature −45 to +85 −20 to +50 (◦C)
Capacity 40 60 (Ah)

Shell material (package) plastic aluminum (-)

2.1. Experimental Application of Overcharging

The experimental investigation of the first improper operational condition, i.e., overcharging of
the battery, was realized with the use of test-stand, which is principally shown in Figure 1. The main
device responsible for the simulation of the unwanted conditions is represented by programable
power supply EA PSI 8080 (EA Elektro-Automatik GmbH & Co.KG, Viersen, Germany). It provides
possibilities of programming of its output variables through instruction file, which covers information
related to maximal values of charging voltage, current, and power as well for the predefined time
interval. Recorded data of individual variables are stored in PC. For the analysis of visual damage
observed over time, Canon EOS 6D is capturing images every 5 s, while thermal cameras FLIR E5
(FLIR, Boston, MA, USA). and FLIR SC660 (FLIR, Boston, MA, USA). are serving for detailed analysis
of thermal performance during this experiment.

Figure 1. Block diagram of experimental test set-up for selected battery testing.

At the beginning of the test, the OCV of the battery was 3.43 V; thus, it refers to the charged state.
According to the datasheet of the cell, the value of the charging voltage must not exceed 3.65 V. Initially,
the selected overcharge value was set to 4.25 V, and the charging current was 10 A. CC&CV (Constant
Current and Constant Voltage) charging mode was applied (Figure 2).
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Figure 2. Waveforms of charging current and voltage during overcharging concerning for 4.25 V of
charging voltage level.

The voltage on the battery reached the value of 4.25 V within the 50 s at a constant current of 10 A.
From this point, the battery voltage was 4.25 V while the current was dropping gradually to almost
0 A. During the test, the temperature of the cell was maintained within the safe operating interval.
At the same time, the maximum of 24.2 ◦C was achieved after 18 min and 36 s what represents 2.3 ◦C
compared to the start of the test. During the experiment, no visible damage to the battery package was
observed, and at the same time, no activation of the safety valve occurs. This test has continued with
an increased level of charging voltage and current utilizing the same cell. Initially, for 35 s, 6.25 V/10 A
was applied, while after 35 s, the level of charging current was increased to 30 A (Figure 3). After the
800 s of this test, the voltage on the cell reached 5.2 V. The package of the battery was corrupted,
and the battery was irrefutably damaged because of the consequent electrolyte leak. This state was
also reached due to the inactivation of the safety valve located between battery terminals. Based on
these experiments, the limitations of the given types of traction cells have been verified. Exceeding
allowable charging voltage above 5 V causes non-reversible damage to the battery. Thus, it is not
possible to regenerate it or restore it. The only way is to recycle it for the second use.
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Figure 3. Waveforms of charging current and voltage during overcharging concerning 6.25 V of
charging voltage level.

2.2. Experimental Application of Short-Circuit

The experiment of short-circuiting of selected LiFePO4 3.2 V, 40 Ah, 128 Wh battery cell was
provided due to the requirement on the development of the recovery algorithm. Therefore, it was
required to initially short-circuit selected cells for a given time interval in order to have a reference
sample. From the safety point of view, short-circuit presents the most critical operational condition,
because of the deformation of energy storage component that is caused by primarily—chemical and by
secondarily—thermal issues. The experiment of the short-circuit was realized with the use of set-up
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shown in Figure 4. This configuration uses thermo-vision camera FLIR E5 and thermo-vision camera
FLIR SC 660.

Figure 4. Time-waveform of short-circuit current during the experiment.

The utilization of both types is conditioned by the static and dynamic record of cell temperature.
The measurement of short-circuit current was provided by APPA A18 (APPA Technology Corp.,
New Taipei City, Taiwan). Current meter, while values vs. time have been stored on PC through
LabView measurement cards NI PXI 1031 (National Instruments, Austin, TX, USA). Camera Canon
EOS 6D (Canon, Ota City, Tokio, Japan). was responsible for the acquirement of pictures in given time
steps for the evaluation of cell’s geometry shape changes.

Short-circuit was realized with the use of a new cell while it was initially formatted from the
manufacturing process. Secondary formatting was done within laboratory conditions before the
short-circuit experiment. The value of open-circuit voltage (OCV) before the test achieves 3.24 Vdc.
For the start of the short-circuit test, the mechanical switch with a very high current rating was used.

Figure 4 shows the time-waveform of short-circuit current during the experiment. It is seen that
after immediate shorting, the battery current reached over 430 A. Consequently, for more than 300 s,
the battery was sourcing current over 350 A; its rapid drop is visible after 400 s of the short-circuit
duration. The reduction to the value of 11.5 A and finally to 2.7 A was reached after more than 600 s.
The total duration of this experiment was 25 min.

Together with the record of the value of short-circuit current, the thermal performance was also
captured. At the end of the experiment, the surface temperature of the tested cell was 49.2 ◦C (Figure 5).
The safety pressure valve located between the battery electrodes was not activated.

 

Figure 5. Maximal operational temperature of investigated battery during short-circuit operation.

Figure 6 indicates structural damages after completion of the short-circuit test. It is seen that the
package of the cell is slightly flatulent. Geometrical measurements confirmed a visible increase of the
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width dimension from 46 mm up to 54 mm. The maximum of 54 mm was measured in the middle of
the height of the battery package.

  

Figure 6. Geometrical changes of the cell package after short-circuit test.

After the experiment, the tested cell was left resting for 22 days. Dimensions of the package have
been once checked after this period, while no change was observed compared to immediate evaluation
after the short-circuit experiment.

2.3. Deep Discharge

Within the deep discharge testing, a 3.2 V 60 Ah LiFePO4 cell was selected with significant
damage to the cell’s package. The measurement confirmed a deep discharge condition, while the
open-circuit voltage of this cell was 1.88 V. The minimum voltage range for this cell is also 2.5 V,
according to the datasheet (Table 1). An important fact is that the cell has a metal casing, which is
primarily intended for increased protection against possible damage and heat dissipation. The tested
cell represents an unused device, whereby deep discharge is a result of improper storage that has
reached a critical level of voltage by self-discharge. It is determined by the manufacturer at a value
of 3% of capacity over one month. Observation of the package of this cell discovers visible inflation
within the central part, while the width reached 43.8 mm (Figure 7). The original cell’s width stated by
the manufacturer is 36 mm.

3.2 V 60 Ah 
LiFePO4

43.8 mm

 

Figure 7. Evaluation of geometrical changes valid for center points of the width of deeply discharged
cell (left) and a physical sample of this cell (right).
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3. Regeneration Procedure Proposal for Short-Circuited and Deep Discharged Cells

The device under test is located within a metal box, while required measurements are realized
with the use of laboratory equipment given on Figure 8. The mechanical switch protects the power line
from the source/load to the battery preventing a hazardous situation. The programable electronic load
KIKOSUI PLZ 100 W and programable DC source EA PSI 8080-60 are controlled by LabView interface,
which also provides data logging of the measured values (cell’s—current/voltage/temperature).
Through a developed user guide, it is possible to program various scenarios related to recovery
algorithms, i.e., charging sequences and discharging sequences.

Test box

Measurement of 
surface temperature

NI PXI – 1031
NI PXI – 4070

DIGIT FLEX DMM

BatteryPower Supply / Load
EA PSI 8080 / KIKUSUI PLZ100W

PC

Legenda:

Power Cable
USB 
Data Cable
Ethernet 
Thermistor
Mechanical Switch

Figure 8. Block diagram of test-stand for traction batteries recovery.

3.1. Proposal for Regeneration Algorithm of Short-Circuited Cell

The proposed recovery process is suited for 3.2 V, 40 Ah, LiFePO4, while its use is available for
various Li-Fe phosphate cells. The only change lies in the consequent modification of individual
charging steps, considering maximum allowable charging current and voltage. After the proposed
recovery method is applied, its effect will be evaluated by the test of obtained Ah of the recovered cell.

The initial check of the harmed cell was focused on the evaluation of OCV, whose value was 2.83 V.
This refers to the fully discharged state, while the value of OCV after long-term short circuit is still
between the limits of operational values of the cell defined by the datasheet. For the selected type,
the limits are within 2.5 V ± 3.65 V.

The battery recovery aims to reduce the negative impacts of the short-circuit consequences on the
electrical and mechanical properties of DUT (device under test).

The proposal is based on the charging sequences, which are characterized by the pulsed current
(Figure 9). These charging sequences are split into six groups. After each of the sequences, the resting
period is applied (app. 16 h). The duration of each pulse sequence was lasting 100 min, whereby four
cycles (25 min each) developed one sequence. The main difference between the cycles is the amplitude
of charging current (Table 2).
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Figure 9. Graphical interpretation of proposed regeneration procedure for short-circuited cells including
resting periods of DUT.

Table 2. The setting of individual sequences of regeneration algorithm for short-circuited cell.

Sequence Duration
The Amplitude of
Charging Current

Charging Voltage

1 100 min
4 cycles × 25 min

0.5 A–2 A
each cycle 0.5 A increase 3.65 V

2 100 min
4 cycles × 25 min

2.5 A–4 A
each cycle 0.5 A increase 3.65 V

3 100 min
4 cycles × 25 min

4.5 A–6 A
each cycle 0.5 A increase 3.65 V

4 100 min
4 cycles × 25 min

6.5 A–8 A
each cycle 0.5 A increase 3.65 V

5 100 min
4 cycles × 25 min

8.5 A–10 A
each cycle 0.5 A increase 3.65 V

6 100 min
4 cycles × 25 min

10.5 A–12 A
each cycle 0.5 A increase 3.65 V

Figure 10 shows the time waveform of the battery voltage and temperature during the first
charging sequence. It is seen that the initial OCV value was 2.83 V, while at the end of the charging
sequence, the value reached 2.97 V.
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Figure 10. Time waveform of battery voltage (left) and its surface temperature (right) during the first
regeneration sequence.

After the last 16 h of regeneration, the last sequence was applied, while OCV drops to 3.26 V what
is a difference of 0.11 V compared to the end of the fifth charging sequence (Figure 11). The current
range within the sixth cycle is 10.5 A up to 12 A. The value of the battery voltage at the end was
3.42 V, while after final 16 h of resting period OCV reached 3.31 V. The temperature profile during each
regeneration sequence has shape similar to characteristics shown on Figures 10 and 11 as well.
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Figure 11. Time waveform of battery voltage (left) and its surface temperature (right) during last
regeneration sequence.

DUT has completed six charging sequences. After 18 h of regeneration from the last sixth charging
sequence, the open-circuit voltage reached 3.27 V. From the viewpoint of the safety of cell operation
during the application of the charging sequences, no significant increase in the surface temperature or
change in the dimensions of the external structure was observed.

The main reason for the cycling of each subsequence was to ensure a gradual increase in the
charging current. The pause interval between charging steps is essential for battery recovery. In terms
of reliability, the battery is currently stable and ready for a full charge. The level of its usability will be
evaluated based on the test of delivered ampere-hours.

3.2. Proposal for Regeneration Algorithm of Deeply Discharged Cell

As discussed earlier, the 3.2 V 60 Ah, LiFePO4 cell was selected for the application of a regeneration
algorithm while deep discharge (1.88 V) of the DUT is considered. Compared to the regeneration of the
short-circuited cell, this algorithm is divided into 30 charging cycles and 30 cycles of pause mutually
alternating, whereby one cycle is lasting 1 s (Table 3). After it, 5 min of regeneration is applied to DUT
(Figure 12). One sequence of regeneration algorithm valid for deep discharge was lasting 126 min.
The charging current impulse had an amplitude of 20 A, which refers to 1/3 of the capacity of the
cell. The amplitude of the charging voltage was 3.65 V. For the given battery, the application of six
sequences was realized in order to achieve the required OCV on the device. At the same time, 16 h of
the resting period was applied between individual sequences.

Table 3. The setting of sequences of regeneration algorithm for deeply discharged cell.

Duration
The Amplitude of
Charging Current

Charging Voltage

Sequence
126 min

consists of subsequences
1 and 2

20 A 3.65 V

Subsequence 1

30 charging pulses
30 pause pulses

alternating
one pulse = 1 s

Subsequence 2
Regeneration period

5 min
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Figure 12. Graphical interpretation of the proposed regeneration sequence for deeply discharged cells.

Figure 13 shows the time waveform of battery voltage during the application of the first
regeneration sequence and last (six) regeneration sequence (Table 4). It is seen that voltage raised from
2.04 V up to 3.19 V at the end of the first sequence. During the last sequence, the voltage level on the
cell exceeds 3.3 V. The temperature on the cell during each sequence was within 25.38 ◦C–26.18 ◦C.
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Figure 13. The voltage waveform of initially deeply discharged cell after application of the first
sequence of regeneration algorithm (left) and the last, sixth sequence (right).

Table 4. Voltage levels before and after each regeneration sequence of deeply discharged cell.

Sequence
The Voltage on the Cell before

the Sequence
The Voltage on the Cell after

the Sequence

1 2.04 V 3.19 V
2 3.12 V 3.21 V
3 3.19 V 3.27 V
4 3.21 V 3.28 V
5 3.24 V 3.29 V
6 3.26 V 3.31 V

4. Verification of Recovered Cells Through the Test of Delivered Ampere-Hours

At the beginning of this test, it is required to charge recovered batteries fully. For selected types of
batteries, CC&CV charging (Constant Current and Constant Voltage) is recommended. Both recovered
batteries are verified in the way of delivered ampere-hours test (test of capacity), whereby new
un-damaged cells have been used as reference devices for comparisons and evaluation.

For the test of battery capacity, five discharging scenarios have been verified. Each scenario is
characterized by a different value of discharging current, while the range was selected based on the
operational properties of selected cells (13 A/20 A–120 A). After each test, the cell was re-charged to
full capacity.
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4.1. Verification of Regeneration Algorithm of Short-Circuited Cell

Test of the capacity of the short-circuited cell was realized for five values of discharging currents,
i.e., 13 A, 20 A, 40 A, 80 A, and 120 A. Initially recovered cell was tested. At the same time, consequently,
the reference sample has undergone a similar test. The profiles of battery voltage during individual
discharging states for the recovered and new cell are graphically interpreted on Figures 14–16.
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Figure 14. Voltage profile during discharge by 13 A (left) and 20 A (right) for regenerated (yellow) and
referenced cell (green).
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Figure 15. Voltage profile during discharge by 40 A (left) and 80 A (right) for regenerated (yellow) and
referenced cell (green).
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Figure 16. Voltage profile during discharge by 120 A for regenerated (yellow) and referenced cell (green).

From Figures 14 and 15 is visible that for discharging current between 13 A–80 A recovered cell is
delivering a similar number of ampere-hours compared to the new cell. The visible difference is valid
for the case of 120 A (Figure 16), where the recovered cell provides just half of the capacity of the new
cell. A detailed summary of the results from this test is listed in Table 5.
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Table 5. Summary of the results of the verification test of short-circuited cell.

Battery Cell Model 3.2 V, 40 Ah, LiFePO4 3.2 V, 40 Ah, LiFePO4

Cell Status Recovered after Short-Circuiting New Cell

Discharge CC 20 A

Discharge time 1 h, 52 min, 54 s 1 h, 51 min
Ambient temperature 20.105 ◦C 21.451 ◦C

Maximal surface temperature 28.1 ◦C 30.253 ◦C
Delivered Ah 38.297 Ah 37.752 Ah

Discharge CC 40 A

Discharge time 55 min, 44 s 54 min, 26 s
Ambient temperature 20.677 ◦C 21.054 ◦C

Maximal surface temperature 29.684 ◦C 31.374 ◦C
Delivered Ah 37.812 Ah 37.163 Ah

Discharge CC 60 A

Discharge time 36 min, 48 s 36 min, 52 s
Ambient temperature 21.264 ◦C 21.984 ◦C

Maximal surface temperature 32.86 ◦C 33.036 ◦C
Delivered Ah 37.303 Ah 37.726 Ah

Discharge CC 80 A

Discharge time 27 min, 41 s 27 min, 34 s
Ambient temperature 20.384 ◦C 21.453 ◦C

Maximal surface temperature 34.788 ◦C 34.346 ◦C
Delivered Ah 36.755 Ah 37.482 Ah

Discharge CC 120A

Discharge time 7 min, 47 s 16 min, 44 s
Ambient temperature 21.116 ◦C 20.998 ◦C

Maximal surface temperature 28.186 ◦C 35.027 ◦C
Delivered Ah 15.313 Ah 34.236 Ah

4.2. Verification of Regeneration Algorithm of Deeply Discharged Cell

The second verification test of the recovery algorithm for the deeply discharged cell was realized
for four values of discharging currents, i.e., 20 A, 40 A, 60 A, and 80 A. Recovered cell was compared
with unused (new) cell, which was initially formatted.

Figure 17 shows the voltage profile of recovered and new cells for 20 A and 40 A of discharging
current. For 20 A situation, the new cell delivers an app. 60 Ah, more precisely 60.869 Ah during
3 h 2 min 46 s. The highest temperature on the surface of the cell achieved 35.397 ◦C. On the other
side, the recovered cell delivers just 43.608 Ah what is more than 17 Ah less compared to the new
cell. For the test with 40 A of discharging current, the new cell delivered 59.468 Ah and recovered
42,536 Ah. During both tests, the temperature on the surface of the cell raised to 39.16 ◦C, i.e., 3.46 ◦C
more compared to the recovered cell.

Voltage profiles for the tests with 60 A and 80 A are shown on Figure 18. It is seen that for both
situations, the new cell can deliver approximately 56 Ah (surface temperature 44.168 ◦C). In contrast,
recovered cell behaves similar to previous tests, if 60 A discharge is considered (app. 40 Ah is delivered).
However, if 80 A of discharge is applied to the recovered cell, its voltage drops to the minimum cell
voltage. Thus, this situation almost represents the hazardous case. The amount of delivered Ah
reached 35.886 Ah (surface temperature 40.881 ◦C). The summary of all tests is listed in Table 6.
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Figure 17. Voltage profile during discharge by 20 A (left) and 40 A (right) for regenerated (yellow) and
referenced cell (green).
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Figure 18. Voltage profile during discharge by 60 A (left) and 80 A (right) for regenerated (yellow) and
referenced cell (green).

Table 6. Summary of the results of the verification test of deeply discharged cell.

Battery Cell Model 3.2 V, 60 Ah, LiFePO4 3.2 V, 60 Ah, LiFePO4

Cell Status Recovered after Deep Discharge New Cell

Discharge CC 20 A

Discharge time 2 h, 8 min, 18 s 3 h, 2 min, 46 s
Ambient temperature 21.238 ◦C 22.018 ◦C

Maximal surface temperature 31.293 ◦C 35.397 ◦C
Delivered Ah 43.608 Ah 60.869 Ah

Discharge CC 40 A

Discharge time 1 h, 2 min, 40 s 1 h, 27 min, 18 s
Ambient temperature 21.896 ◦C 21.997 ◦C

Maximal surface temperature 35.703 ◦C 39.158 ◦C
Delivered Ah 42.536 Ah 59.486 Ah

Discharge CC 60 A

Discharge time 38 min, 58 s 57 min, 47 s
Ambient temperature 20.891 ◦C 22.321 ◦C

Maximal surface temperature 38.403 ◦C 41.502 ◦C
Delivered Ah 39.709 Ah 57.826 Ah

Discharge CC 80 A

Discharge time 26 min, 22 s 41 min, 4 s
Ambient temperature 21.574 ◦C 22.054 ◦C

Maximal surface temperature 40.881 ◦C 44.168 ◦C
Delivered Ah 35.886 Ah 55.965 Ah

5. Conclusions

In this paper, the experimental investigation of the recovery algorithms of the traction batteries
with lithium phosphate technology has been studied with selected types of cells. The main focus was
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given on possibilities related to the renewal of initially damaged cells by long-term short-circuit or
deep discharge. For both situations, procedures are based on the charging process. Thus, individual
procedures propose a different approach, i.e., the short-circuited cell requires gradual medium duration
profile of charging sequences (with an increase of charging current), whereby deeply discharged cell
uses short duration peak charging pulses. Both proposals have been experimentally verified in the
way of the test of delivered ampere-hours of restored cells. The comparisons of these tests have been
made with newly formatted cells of the same type. From experiments was found that short-circuited
battery is capable of recovering up to 80% if the proposed recovery procedure is applied. It is valid for
discharge currents within 20 A–80 A (0.5 ◦C–2 ◦C). For higher currents, the recovery represents an app.
55%. From these results can be said, that recovered cell after long-term short-circuit is capable of second
use. At the same time, restrictions must be respected related to the value of continuous discharging
current. A similar result was achieved if the deeply discharged cell was verified. The recovery achieved
almost 70% if discharge currents are within 0.3 ◦C–0.6 ◦C. For higher currents, the voltage drop of the
battery represents limiting parameters as it reaches the minimum allowable operational value.

Batteries were tested with an ampere-hour test after the initial testing sequence ten times in a row
after 28 days of storage. Differences in capacity values between repeated tests were lower than 2%.
From received results, the expectations for long-term regenerated battery use is possible regarding
recovered capacity, which is lower than nominal capacity. Restrictions on discharging currents must
also be accepted, i.e., it is not recommended to use high operating currents. Consequently, it is
proposed to use accelerated pulsed charging instead of the CV/CC method to slow down degradation
lengthening operational life.

It must be said here that the same results have been achieved after 28 days of these tests.
The proposed methodology gives proper way, how to recover damaged lithium cells.
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Abstract: Accurate battery models are integral to the battery management system and safe operation
of electric vehicles. Few investigations have been conducted on the influence of current rate
(C-rate) on the available capacity of the battery, for example, the kinetic battery model (KiBaM).
However, the nonlinear characteristics of lithium-ion batteries (LIBs) are closer to a fractional-order
dynamic system because of their electrochemical materials and properties. The application of
fractional-order models to represent physical systems is timely and interesting. In this paper, a novel
fractional-order KiBaM (FO-KiBaM) is proposed. The available capacity of a ternary LIB module is
tested at different C-rates, and its parameter identifications are achieved by the experimental data.
The results showed that the estimated errors of available capacity in the proposed FO-KiBaM were
low over a wide applied current range, specifically, the mean absolute error was only 1.91%.

Keywords: kinetic battery model; lithium-ion batteries; nonlinear capacity; fractional calculus

1. Introduction

Electric vehicles have the advantages of high fuel economy and zero exhaust emissions [1,2].
As clean and efficient energy sources, power batteries are core components and are critical to the
comprehensive performance of vehicles. Lithium-ion batteries (LIBs) show strong overall advantages
in the field of power batteries because of their high energy density, long life, and excellent cycle
performance [2,3].

Battery states mainly include the state of charge (SOC), state of health (SOH), state of power
(SOP), state of energy (SOE), and state of function (SOF) [4–6]. However, they cannot be measured
directly; they can only be estimated by testing battery voltage, current, and temperature, among other
factors. Battery state estimation is extremely important in battery management systems (BMSs) to
guarantee the safe and reliable operation of batteries, and a multitude of research has investigated
the methods of state estimation of LIBs based on an accurate model [7–14]. Commonly used
battery models include electrochemical models (EchMs) [11,14], analytical models (AMs) [7,12–14],
stochastic models (SMs) [7,12,14], neural network models (NNMs) [14], and equivalent circuit models
(ECMs) [8–11,14]. EchMs are accurate in describing the internal electrochemical reaction using complex,
nonlinear differential equations, but they are difficult to understand. AMs model the major properties
of the battery using only a few equations, and are much easier to use than EchMs. SMs mainly concern
the battery recovery characteristics as a Markov process, in which the pulse discharge characteristics
of the battery can be described, but they are not applicable for variable current. NNMs have fast
parallel processing capabilities as well as strong self-learning and self-organizing abilities, but they
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require a large amount of training data, and errors can arise from the training data and training
methods. ECMs are widely used for electrical design and modelling simulations [9,10] because they
can accurately describe the battery voltage-current (U-I) performance. Many improved models have
been proposed by scholars that not only describe U-I performance (external characteristics) but also the
capacity performance (internal characteristics). For instance, an ECM with a variable effective capacity
for LIBs is proposed in [15], and the model is further optimized using computational intelligence
techniques [16].

However, an accurate and concise battery model is not readily achievable because the models
are highly nonlinear and complex. Few investigations have been conducted on the influence of the
current rate (C-rate) on the available capacity of batteries because the characteristics of LIBs will change
significantly under different conditions in view of its sensitivity to C-rate, temperature, cycle life, etc.
As described in detail in Figure 1, the battery capacity is not similar to water in a bucket. It is mainly
manifested as “capacity nonlinear effect” and “recovery effect” [7,11,12]. The capacity nonlinear effect
is that the available capacity will decline nonlinearly with C-rates; the greater the discharge current,
the less the available capacity. The recovery effect is that the battery’s available capacity will rise up
when discharge is stopped. For instance, a released capacity of 50 A will be much less than that at 5 A,
and the capacity will be restored if the battery rests for a while.

Water in the 
bucket

 Capacity in the 
battery

b. The remaining available volume of water changes 
linearly with flow rate. 
c. The available volume of water has nothing to do 
with the temperature within a certain range.
d. No recovery effect when stop releasing water. 

a. The available volume of water  is a constant, 
nothing to do with flow rate. 

b. The remaining available capacity of battery 
changes nonlinearly with C-rate. 
c. The available capacity of battery is closely related 
to the temperature.
d. Recovery effect when stop discharge battery. 

a. The available capacity of battery is related to 
discharge C-rate, the larger the current, the less the 
available capacity .

Figure 1. Battery capacity is not similar to water in a bucket.

The remaining available battery capacity is critical in electric vehicles, similar to the role of the
remaining fuel in internal combustion vehicles. Thus, the available capacity estimation of a battery
considering C-rate is very important. Overall, commonly used models for available capacity estimation
of the battery mainly include two classic analytical models: Peukert’s law and the kinetic battery
model (KiBaM). Proposed by Wilhelm Peukert, Peukert’s law was used to estimate nonlinear delivered
capacity and predict the battery run time of a rechargeable lead–acid battery at different constant
discharge C-rates from the fully charged state [17]. The nonlinear properties between the available
capacity and the C-rate are considered, and the battery’s run time can be approximated. The model
itself is relatively simple compared to KiBaM. However, it does not consider the recovery effect
of the battery when discharge stops. Fortunately, Manwell and McGowan proposed a kinetic
battery model (KiBaM) to model lead–acid storage batteries in 1993 [13]. It is intuitionistic and
easy to understand based on perceptual knowledge. Moreover, it can be used in modelling and
simulation [7,12–14]. In [14], a widely-used KiBaM was used to capture nonlinear capacity effects
for accurate SOC tracking and runtime predictions of the battery. In [18], KiBaM was extended to
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consider the temperature effect on battery capacity. The proposed temperature-dependent KiBaM
(T-KiBaM) can handle operating temperatures, and it can provide better estimates for battery lifetimes
and voltage behaviors. However, the classic KiBaM is described by regular calculus. A precise
and concise battery model at various conditions has always been challenging for researchers to
create. Using fractional calculus with impedance models is quite common in the modelling of energy
storage and generation elements, including capacitors/super capacitors [19–21] and batteries [19,22,23];
what is more, the fractional calculus has also been used in the state estimation and prediction
of batteries [21,23,24]. Actually, the nonlinear characteristics of lithium-ion batteries are closer to
a fractional-order dynamic system, because the material diffusion and electrochemical properties have
been successfully described using fractional calculus. The application of fractional-order models to
represent physical systems is timely and interesting.

In this paper, a novel fractional-order KiBaM (FO-KiBaM) is proposed to describe the nonlinear
capacity characteristics of LIBs. The research ideas and arrangement of the rest of the paper are as
follows. Firstly, the capacity nonlinear effect and recovery effect of KiBaM are analyzed in Section 2.
The basic principle of fractional calculus and its application in the proposed FO-KiBaM are introduced
in Section 3. In Section 4 the charge and discharge experiments of a LIB module are designed and
conducted under different C-rates. Finally, the results and model error analyses are compared and
illustrated in Section 5, followed by the conclusion in Section 6.

2. Kinetic Battery Model (KiBaM)

As shown in Figure 2, KiBaM uses two wells of different sizes to describe the dynamic changes
in battery capacity. Thus, it is also called a “two-well” model. The two wells represent the “directly
available capacity” and the “temporary capacity” of the battery, respectively [13,14]. The directly
available capacity can be obtained directly at discharge, denoted as y1, and its height is denoted as
h1. The “temporary capacity” cannot be directly obtained at discharge, denoted as y2, and its height
is denoted as h2. It is easy to understand that the sum of y1 and y2 is the total capacity of the battery,
and the sum of y1 and a part of y2 is the available capacity of the battery. The letter k represents the
rate that the charge flow from y2 into y1; and the letter c represents the capacity proportion of the
two wells. The k and c variables affect the nonlinear battery capacity characteristics; notably, they are
closely related to the materials and composition of the battery.

c
-c

yy

k

h

i t

h

hδ

Figure 2. Kinetic battery model (KiBaM).

It is clear that the directly available capacity y1, the temporary capacity y2, and the heights h1 and
h2 in the KiBaM are satisfied by the following:

⎧⎪⎨
⎪⎩

h1(t) =
y1(t)

c ,
h2(t) =

y2(t)
1−c ,

δh(t) =
y2(t)
1−c − y1(t)

c ,

(1)

where δh represents the height difference between the two wells.
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The principle of the KiBaM is as follows. When the battery is discharged, the charge of y1

flows out, simultaneously, the charge of y2 flows into y1 slowly with k. The charge flowing out of
y1 is faster than flowing in, so the height difference between y1 and y2 will increase. The larger the
discharge current, the less capacity that is released, which reflects the nonlinear effect of the battery’s
capacity. Additionally, the unavailable capacity of the battery is the capacity represented by the height
differences of y1 and y2. Once discharging is stopped, the charge of y2 will flow into y1 slowly until the
heights of y1 and y2 are equal, and the charge of y1 will pick up, which reflects the battery’s recovery
effect. From the above intuitive graphical description of KiBaM, the changes of the charges y1 and y2

in the two wells can be expressed as follows:

{
dy1(t)

dt = −i(t) + kδh(t) = −i(t) + k[ y2(t)
1−c − y1(t)

c ],
dy2(t)

dt = −kδh(t) = −k[ y2(t)
1−c − y1(t)

c ].
(2)

From here, the capacity variance of the battery with time can be expressed as follows:
⎧⎪⎨
⎪⎩

Crem(t) = y1(t) + y2(t),
Cunav(t)= (1− c)δh(t),
Cav(t) = Crem(t)− Cunav(t),

(3)

where Crem, Cunav, and Cav represent the remaining capacity of battery, the unavailable capacity of
battery, and the available capacity of battery, respectively.

Take the constant-current discharge for example. As shown in Figure 3, the time course can be
described as follows:

i(t) =

{
I, t0 ≤ t ≤ td,
0, td < t ≤ tr,

(4)

where t0, td, tr represents the initial time, the discharge end time, and the recovery end
time, respectively.

yyh h yy

k

h

i t

yy kh
h yyh

h

t t t t<t

t=t t t t

i t

h

 
Figure 3. Battery capacity changes with the discharge time in the discharge process.

Actually, when the battery is discharged in a time-varying current, the entire process can be
divided into multiple discharge segments in accordance with the time interval. In each segment,
the battery can be considered discharged with a constant current and then set aside for a while.
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By the Laplace transform and inverse Laplace transform of (2), the following expression can be
obtained: ⎧⎨

⎩ y1(t) = y1(t0)e−k′(t−t0) + (y0k′c−I)[1−e−k′(t−t0)]
k′ − Ic[k′(t−t0)−1+e−k′(t−t0)]

k′ ,

y2(t) = y2(t0)e−k′(t−t0) + y0(1 − c)[1 − e−k′(t−t0)]− I(1−c)[k′(t−t0)−1+e−k′(t−t0)]
k′ ,

(5)

where k′ = k
c(1−c) .

The unavailable capacity of battery in (3) can be derived as follows:

Cunav(t) =

{
(1 − c)[δh(t0)e−k′(t−t0) + I

c
1−e−k′(t−t0)

k′ ], t0 ≤ t ≤ td,
(1 − c)δh(td)e−k′(t−td), td < t ≤ tr.

(6)

It can be further expressed as follows:

Cunav(t) =

{
Cunav(t0)e−k′(t−t0) + (1 − c) I

c
1−e−k′(t−t0)

k′ , t0 ≤ t ≤ td,
Cunav(td)e−k′(t−td), td < t ≤ tr.

(7)

As can be seen from (7), in the discharge period t0 ≤ t ≤ td, the battery’s unavailable capacity is
impacted nonlinearly by the discharge time; the longer the time and the larger the current, the larger
the unavailable capacity. In the stationary period td < t ≤ tr, the unavailable capacity decreases with
time, because the charge of y2 flows into y1, which reflects the recovery effect of the battery in an open
circuit state.

It can be seen that when y1 = 0 (or h1 = 0), the battery is discharged completely. At this point,
all the remaining capacity is unavailable. Therefore, judging whether the battery is fully discharged is
shown as follows:

Crem(t) = Cunav(t)= (1 − c)δh(t). (8)

The remaining available capacity of the battery can be expressed as follows:

Cav(t) = Ct0 −
∫ t

t0
i(t)dt − Cunav(t) = Ct0 −

∫ t

t0
i(t)dt − (1 − c)δh(t). (9)

If the initial conditions t0 = 0, and the battery is discharged at a constant current I, the initial state
of y1 and y2 of the battery are shown as below:

{
y1(t0) = y1(0) = cC0,
y2(t0) = y2(0) = (1 − c)C0,

(10)

where C0 is the initial total capacity of battery. Then, Formula (3) can be simplified as follows:

⎧⎪⎨
⎪⎩

Crem(t) = C0 − It,

Cunav(t)= (1− c)δh(t) = (1− c) I
c

1−e−k′ t
k′ ,

Cav(t) = C0 − It − (1− c) I
c

1−e−k′ t
k′ .

(11)

3. The Proposed Fractional-Order KiBaM (FO-KiBaM)

3.1. Fractional Calculus Theory

Fractional calculus is not a new concept, in fact, it can be traced back to the discussion of Leibniz
and Hospital’s research work in 1695, but due to a variety of calculation difficulties in practical
applications, it was only a purely theoretical exploration in the early days. However, fractional calculus
attracts great attention in complex engineering applications because of the continuous developments
in natural science and computer technology. In recent decades, theoretical and mathematical tools have
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been used in research in a multitude of disciplines, and they are especially successful in high-energy
physics, fluid mechanics, viscoelastic material mechanics, anomalous diffusion, electronic components
analysis, and system control [20,25]. Fractional calculus has been a research hotspot for its unique and
irreplaceable advantages.

Fractional derivative definitions (FDD) are defined in different ways; the most commonly used
include the Grunwald–Letnikov definition (GL-FDD), the Riemann–Liouville definition (RL-FDD),
and the Caputo definition (Caputo-FDD) [20,25]. The GL-FDD is expressed as:

GDα
t f (t) = lim

h→0
h−α

[
t−t0

h ]

∑
j=0

(−1)−j

(
α

j

)
f (t − jh), (12)

where GDα
t represents the GL-FDD type; f (t) is an arbitrary integrable function; α is an arbitrary real

number; n = [ t−t0
h ] represents the integer part; and

(
α

j

)
= α!

j!(α−j)! represents the coefficient of

recursive function.
In fact, the RL-FDD is obtained on the basis of GL-FDD by simplifying the calculation process.

RL-FDD can be expressed as follows:

RDα
t f (t) =

1
Γ(n − α)

(
d
dt
)

n∫ t

t0

f (τ)

(t − τ)1+α−n dτ, n − 1 < α < n, n ∈ N, (13)

where RDα
t represents the RL-FDD type; n is an integer; and Γ(·) is the Gamma function, a commonly

used basic functions in fractional calculus, defined as follows:

Γ(z) =
∫ ∞

0
tz−1e−tdt, z ∈ C. (14)

The function Γ(·) has the following properties:

Γ(z + 1) = zΓ(z), z ∈ N. (15)

And the Laplace transform will be established by:

L[
tα−1

Γ(α)
H(x)] =

1
sα

, (16)

where H(x) denotes the unit step function, which implies that it only needs x ≥ 0. The formula and its
inverse transformation are often used in fractional calculus.

The Caputo-FDD is expressed as follows:

CDα
t f (t) =

1
Γ(n − α)

∫ t

t0

f (n)(τ)

(t − τ)1+α−n dτ, n − 1 < α < n, n ∈ N, (17)

where CDα
t represents the Caputo-FDD type.

The Laplace transform of the Caputo-FDD is expressed as follows:

L{CDα
t f (t)} = sαF(s)−

n−1

∑
k=0

sα−k−1 f (k)(0). (18)

Thus, the Laplace transform of the Caputo-FDD under the zero initial conditions is:

L
{

C
0 Dα

t f (t)
}
= sαF(s). (19)
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The derivation of constants in the Caputo-FDD is bounded, while the derivation of constants in
the RL-FDD is unbounded. The RL-FDD needs to solve an initial value problem that it is theoretically
feasible but lacks physical meaning. Therefore, the Caputo-FDD is more suitable for solving the initial
value problem of fractional calculus. Thus, it was adopted in this paper.

3.2. Fractional-Order KiBaM

The internal electrochemical reaction of a power battery is extremely complex. The strong
nonlinear characteristics of LIBs shows a fractional-order dynamic behavior [21–23].
Therefore, fractional calculus can be used to model a novel fractional-order KiBaM (FO-KiBaM) with
a higher accuracy [26]. Fractional derivatives can be replaced to describe the battery capacity change
process in (2). ⎧⎨

⎩
dαy1
dtα = −i(t) + kδh(t) = −i(t) + k

(
y2(t)
1−c − y1(t)

c

)
,

dαy2
dtα = −kδh(t) = −k

(
y2(t)
1−c − y1(t)

c

)
,

(20)

where α is the order of fractional derivative equations, and 0 < α < 1.
In the case when the initial time t0 = 0, and the battery is discharged at a constant current I,

the Laplace transform of (20) will be expressed as:
⎧⎨
⎩

sαY1(s) = − I
s + k

(
Y2(s)
1−c − Y1(s)

c

)
,

sαY2(s) = −k
(

Y2(s)
1−c − Y1(s)

c

)
.

(21)

Similarly, assuming that the initial state of y1 and y2 are the same as in (10), the following will
be obtained:⎧⎨

⎩
Y1(s) = ( 1−c

sα+k′ +
c
sα )

(
y1(0)− I

s

)
+ ( c

sα − c
sα+k′ )y2(0) =

cC0
sα − cI

sα+1 − (1−c)I
s(sα+k′) ,

Y2(s) = ( 1−c
sα − 1−c

sα+k′ )
(

y1(0)− I
s

)
+ ( 1−c

sα + c
sα+k′ )y2(0) =

(1−c)C0
sα − (1−c)I

sα+1 + (1−c)I
s(sα+k′) .

(22)

The above inverse Laplace transform of the fractional calculus transfer function can be obtained
using the Mittag-Leffler function, a commonly used basic function in fractional calculus [27–30].
The Mittag-Leffler function has two different definition forms: the single-parameter form and the
two-parameter form. The two-parameter form of the Mittag-Leffler function is defined as shown below:

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, α > 0, β > 0. (23)

If β = 1, the single-parameter form of the Mittag-Leffler function will be obtained:

Eα(z) =
∞

∑
j=0

zj

Γ(αj + 1)
, α > 0. (24)

The exponential function ez is critical in calculus. Similarly, the Mittag-Leffler function equally
plays an important role, and it appears frequently in solutions of fractional differential equations.
Sometimes the Mittag-Leffler function with two parameters is also called a generalized exponential
function. In fact, ez can be seen as a special case of the Mittag-Leffler function, because they are equal
if α = 1.

E1(z) =
∞

∑
j=0

zj

Γ(j + 1)
=

∞

∑
j=0

zj

j!
= ez. (25)

To facilitate the inverse Laplace transform, we defined a new function as shown below:

ε(t, m, α, β) = tβ−1Eα,β(mtα). (26)
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Its Laplace transform can be obtained as follows:

L[ε(t,±m, α, β)] =
sα−β

sα ∓ m
. (27)

According to the above properties of (22), it is clear that β = α + 1 in the transfer function (27),
and its inverse Laplace transform will be obtained as shown below:

⎧⎨
⎩ y1(t) = cC0

tα−1

Γ(α) − cI tα

Γ(α+1) − (1 − c)ItαEα,α+1(−k′tα),

y2(t) = (1 − c)C0
tα−1

Γ(α) − (1 − c)I tα

Γ(α+1) + (1 − c)ItαEα,α+1(−k′tα).
(28)

Similarly, the height difference of two wells can be obtained:

δh(t) =
y2(t)
1 − c

− y1(t)
c

=
I
c

tαEα,α+1(−k′tα). (29)

Therefore, the capacity of the battery with fractional calculus can be expressed as follows:
⎧⎪⎨
⎪⎩

Crem(t) = C0 − It,
Cunav(t)= (1 − c) δh(t) = (1 − c) I

c tαEα,α+1(−k′tα),
Cav(t) = C0 − It − (1 − c) I

c tαEα,α+1(−k′tα).
(30)

The SOC of the battery is similar to the fuel gauge of conventional internal combustion vehicles,
which can be used to estimate the distance the vehicle can travel. The definition of SOC is:

SOC(t) =
Crem(t)

Cmax
·100% =

Ct0 −
∫ t

t0 i(t)dt
Cmax

·100%, (31)

where Crem, Cmax represents the remaining capacity and the maximum available capacity of battery.
The unavailable capacity of the battery is not considered in this definition. Thus, it cannot tell

the driver the actual available battery capacity at different C-rates. To predict the remaining mileage
of electric vehicles more accurately, it is necessary to improve the SOC definition. An improved SOC
definition is shown as below:

SOC(t) =
Cav(t)
Cmax

·100% =
Ct0 −

∫ t
t0 i(t)dt − Cunav(t)

Cmax
·100%. (32)

This definition of SOC takes into account the unavailable capacity of battery. Thus, it is useful
in estimating the run time of the battery, and it can predict the remaining mileage of electric vehicles
more accurately to relieve the “range anxiety” for the drivers. At the same time, by a more accurate
definition of SOC, it can help to determine effective management strategies to avoid overcharging and
over discharging the battery.

Further, we found that the height of y1 in the proposed FO-KiBaM can be expressed as follows:

h1(t) =
y1(t)

c
= C0

(
tα−1

Γ(α)
− 1

)
− I

(
tα

Γ(α + 1)
− t

)
+ Cav(t). (33)

As can be seen from (32) and (33), the height h1 of the left “well” reflects the change in the battery’s
remaining available capacity, and it also explains why the height h1 is an intuitive representation of the
battery SOC.
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4. Parameter Identification and Experiment Verification

4.1. Experimental Platform and Test Results

As shown in Figure 4, the platform of the battery test system consisted of a battery charging and
discharging cycler MKLtech MCT8-100-05Z, a programmable temperature chamber, a LiNiMnCoO
ternary LIB module, and a computer with control software. The voltage and the current range of the
battery cycler was 0–5 V and ±100 A, respectively. The temperature of the chamber was maintained at
30 ◦C. The sampling rate of voltage and current was set at 1 Hz. The tested ternary LIB module had
a capacity of 32.50 Ah, which consisted of 13 battery cells connected in parallel, as shown in Figure 5.
Table 1 shows the specifications of the ternary LIB cells. The available capacity tests at different C-rates
of 0.2, 0.67, 1, 1.5, 2, and 3 C were carried out. Here, 1 C indicated that the rechargeable battery was
continuously discharged for 1 h at a current equal to the battery’s nominal capacity.

 

Figure 4. The battery test experimental platform.

 
Figure 5. Battery module with 13 cells connected in parallel.

Table 1. Specification of the ternary lithium-ion battery (LIB) cell.

Parameter Value Parameter Value

Type LR1865SZ Series-parallel 1S-13P
Nominal voltage 3.6 V Rated capacity 2.5 Ah

End-of-charge voltage 4.2 V End-of-discharge voltage 3.0 V

In the test, first the ternary battery module was fully charged by the constant current,
constant voltage (CCCV) charging strategy. The constant current (CC) was 10 A, and the constant
voltage (CV) was 4.2 V. The cutoff point for the CV charging stage was when the charging current was
less than 1/50 C, or the CV charging time had reached 1 h. Then, the battery was left standing in the
open-circuit state. In the discharging procedure, the battery was fully discharged to the cutoff voltage
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(3.0 V) at 0.2 C. Then, the above test process was repeated to complete the available capacity tests
at different C-rates. Throughout the testing, the discharge time, voltage, current, released capacity,
and energy were monitored and recorded simultaneously. The current of the battery module in the
charge and discharge processes at 2 C is shown in Figure 6.

 
Figure 6. The battery testing currents.

The available capacity of the tested LIB module at different C-rates is shown in Table 2. It can
be seen that the battery released 96.12% of the maximum capacity at 0.2 C; while the battery released
94.52% of the maximum capacity at 1 C. When the current was further increased to 3 C, the battery only
released 84.89%. The result was consistent with the “capacity nonlinear effect”, and the relationship of
the available capacity and current was nonlinear.

Table 2. Available capacity and discharge time at different C-rates.

Discharge Rate
(C)

Discharge Current
(A)

Discharge Time
(min)

Released Capacity
(Ah)

Proportion
(%)

0.2 6.410 292.5 31.24 96.12
0.67 21.26 87.34 30.95 95.23

1 31.88 57.81 30.72 94.52
1.5 47.83 37.56 29.94 92.12
2 63.78 27.39 29.11 89.57
3 95.69 17.30 27.59 84.89

4.2. Parameter Identification

The identification parameters of KiBaM, including capacity distribution ratio c, rate coefficient
k, and fractional order α, were the key in achieving satisfactory accuracy based on the experimental
data [31–33]. The identification parameters were mainly arranged as follows.

Distribution ratio (c): The battery was charged until full, SOC = 1, as the initial state; and then the
battery was discharged at a large constant current, here it was 95.69 A (3 C). The released capacity was
denoted as C1, and as shown in Table 2, C1 = 27.59 Ah. The maximum available capacity of the battery
was 32.50 Ah, denoted as Cmax; then, c = C1/Cmax = 0.849.

Rate coefficient (k): The available capacity of the battery was tested at different C-rates. For the
classic KiBaM, we only needed one set of experimental data, and k′ could be obtained. The data
measured at 1 C were selected here, and the data at other C-rates were used to verify the model’s
accuracy later.

(32.5 − 30.72)·3600 = (1 − 0.849)
31.88
0.849

1 − e−3468.6k′

k′ . (34)
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A new function F(k′) can be defined and modified as follows:

F(k′) = k′ − (1 − 0.849)
31.88
0.849

1 − e−3468.6k′

1.78·3600
. (35)

The change of the function F(k′) with k′ is depicted in Figure 7, and the solution, k′ = 0.000836,
could be confirmed when F(k′) is 0. Thus, the unavailable capacity of the tested battery in KiBaM was
obtained as follows:

Cunav(t) = (1 − 0.849)
I

0.849
1 − e−0.000836t

0.000836
. (36)

Figure 7. The function curve that changes as k′ changes.

As for the FO-KiBaM, k′ and α of the tested battery module could also be identified by using one
set of experimental data at 1 C.

(32.5 − 30.72)·3600 = (1 − 0.849)
31.88
0.849

3468.6αEα,α+1(−k′3468.6α). (37)

And a new function F(α, k′) could be defined and modified as follows:

F(α, k′) = 1.78·3600 − (1 − 0.849)
31.88
0.849

3468.6αEα,α+1(−k′3468.6α). (38)

The change of the function F(α, k′) with k′ and α is shown in Figure 8, where α changed from
0.1 to 0.9. We can see that it tended towards 0 when α was 0.9. Further, its trend was depicted in
Figure 9 when α changed from 0.91 to 0.99. It was revealed that the numerical solution of F(α, k′) was
not unique. The values of k′ and α could be a combination within a suitable range. Here, the parameters
k′ = 0.000689 and α = 0.99 were selected for the FO-KiBaM. Thus, the unavailable capacity of the tested
battery in FO-KiBaM was obtained.

Cunav(t) = (1 − 0.849)
I

0.849
t0.99E0.99,1.99(−0.000689t0.99). (39)
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Figure 8. Trend of the function as k′ and α (0.1 to 0.9) changes.

 
Figure 9. Trend of the function as k′ and α (0.91 to 0.99) changes.

4.3. Experiment Verification

The effect of the C-rate on the available capacity of the battery was verified by experiment.
The variation of the total capacity and unavailable capacity of the battery at different C-rates are
depicted in Figures 10 and 11, in which the discharge was finished when the total capacity of the
battery (black line) intercepted the unavailable capacity (red/blue lines). At this point, all the remaining
capacity of the battery was the unavailable capacity, so the discharge process was over. The prediction
results of the available capacity of the battery are listed in Table 3. It can be seen that compared with the
classic KiBaM, the errors of available capacity in the proposed FO-KiBaM were less, and it performed
well over a wid applied current range. Specifically, its mean absolute error (MAE) was only 1.91%,
with an improvement of 0.44%. Although the accuracy of KiBaM was already high, the proposed
FO-KiBaM still had a smaller fitting error over a wide applied current range. Further study on the
state estimations of LIBs and the high-precision optimization control of energy management will be
useful, especially with the FO-KiBaM.

Figure 10. Battery capacity variance at different C-rates.
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Figure 11. Battery capacity variance at different C-rates (local magnification).

Table 3. Prediction results of the battery’s available capacity at different C-rates.

Discharge Current
(A)

Available Capacity (Ah) Improve Accuracy
(%)Experimental Data KiBaM FO-KiBaM

6.410 31.24 32.12 32.04 0.26
21.26 30.95 31.27 31.03 0.78
47.83 29.94 30.10 29.90 0.67
63.78 29.11 29.66 29.50 0.55
95.69 27.59 29.11 29.04 0.25

It should be pointed out that if the estimation accuracy was higher in some applications, we could
achieve parameter identification according to current interval (segmentation) by using several sets
of the tested data instead of just one set, so that the accuracy of the model could be improved. If we
thought the parameters of the model were related to the current, we could even identify the parameters
under different currents. Thus, that the accuracy of the model can be further improved, but the amount
of calculation would also increase. The whole process of parameter identification is the same, whether
it is how to select the data or how many sets of data will be weighed. However, if the accuracy of
the model identified by only one set of data met the application requirements, it would significantly
reduce the amount of calculation. For a fair comparison and reduction in the number of calculations,
we only selected one set of data to identify the parameters of both the KiBaM and the FO-KiBaM.

5. Conclusions

In recent years, various families of fractional-order systems have been found to be remarkably
important and fruitful. Fractional calculus plays an important role in complex systems and, therefore,
allows us to better describe real-world phenomena. By obtaining more parameters and degrees of
freedom, fractional-order models can describe nonlinear performances of complex systems more
accurately. Due to specific material and chemical properties of batteries, fractional calculus is more
reasonable to describe the nonlinear performance of a battery’s capacity. The proposed FO-KiBaM can
describe the battery’s nonlinear characteristics more accurately, with greater flexibility and novelty
compared to the classic KiBaM. The proposed model can be applied in engineering. The estimation of
the available capacity of LIBs is meaningful with a wide applicable current range, and only a set of data
at one C-rate is needed to accurately estimate the available capacity at different rates, which greatly
reduces the number of calculations. What is more, the proposed FO-KiBaM provides a basic battery
model for further research on SOC estimation methods.

6. Patents

A patent, termed fractional order KiBaM (kinetic battery model) that considers nonlinear
capacity characteristics and parameter identification methods, resulted from the work reported in
this manuscript, which can be seen on academic websites such as Google Patents. The progress

45



Electronics 2019, 8, 394

status of this patent is as follows. Application filed by Shandong University and priority to
CN201710093350.0A on 21 February 2017, publication of CN106855612A on 16 June 2017, and Notice
of First Review on 16 November 2018. PCT/CN2017/106912 application filed by Shandong University
on 19 October 2017, and publication of WO2018153116A1 on 30 August 2018.
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Abbreviations

LIB lithium-ion battery
EchM electrochemical model
AM analytical model
SM stochastic model
NNM neural network model
ECM equivalent circuit model
U-I voltage-current
KiBaM kinetic battery model
T-KiBaM temperature-dependent kinetic battery model
FO-KiBaM fractional-order kinetic battery model
BMS battery management system
Ah ampere hours
SOC state of charge
SOH state of health
SOP state of peak power
SOF state of function
SOE state of energy
C-rate current rate
CCCV constant-current and constant-voltage
CC constant current
CV constant voltage
FDD fractional derivative definition
GL-FDD Grunwald-Letnikov fractional derivative definitions
RL-FDD Riemann-Liouville fractional derivative definitions
MAE mean absolute error
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Nomenclature

y1 directly available capacity
h1 height of directly available capacity
y2 temporary capacity
h2 height of temporary capacity well
δh the height difference of two wells
k rate that the charge flows from y2 into y1
c capacity proportion of two wells
i discharge current
I the constant discharge current
t0 the initial time
td the discharge end time
tr the recovery end time
Cav available capacity of battery
Cunav unavailable capacity of battery
Crem remaining available capacity of battery
Cmax the maximum available capacity of battery
Ct0 initial capacity of battery
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Abstract: Accurate estimation of battery state of charge (SOC) is of great significance for extending
battery life, improving battery utilization, and ensuring battery safety. Aiming to improve the
accuracy of SOC estimation, in this paper, a temperature-dependent second-order RC equivalent
circuit model is established for lithium-ion batteries, based on the battery electrical characteristics at
different ambient temperatures. Then, a dual Kalman filter algorithm is proposed to estimate the
battery SOC, using the proposed equivalent circuit model. The SOC estimation results are compared
with the SOC value obtained from experiments, and the estimation errors under different temperature
conditions are found to be within ±0.4%. These results prove that the proposed SOC estimation
algorithm, based on a temperature-dependent second-order RC equivalent circuit model, provides
accurate SOC estimation performance with high temperature adaptability and robustness.

Keywords: lithium-ion battery; temperature-dependent second-order RC model; SOC estimation;
dual Kalman filter

1. Introduction

One fundamental challenge in the commercialization of electric vehicles is the battery system,
and a safe and efficient battery system hinges on a reliable battery management system (BMS) [1]. At
present, one of the main difficulties that hinder the development of BMS technology is the accurate
estimation of state of charge (SOC). It has been pointed out that accurate SOC information is conducive
to protecting batteries, preventing overcharging and over-discharging, improving battery utilization,
and increasing the cruising range of electric vehicles [2–4].

However, the SOC cannot be directly monitored because of the battery systems’ nonlinearity,
time-varying characteristics, and the complexity of electrochemical reactions [5]. To tackle this problem,
plenty of SOC estimation methods have been proposed in the literature. The existing SOC estimation
methods can be divided into two major categories: non-model-based methods and model-based
methods. The non-model-based methods mainly include the following: ampere hour (Ah) integration
method [6], open circuit voltage (OCV) method [7], internal resistance method [8], and machine learning
algorithms [9]. The model-based methods mainly include the following: particle filter (PF) [10], Kalman
filter (KF) [11], and its improved algorithms [12–14].

Among the non-model-based methods, the Ah integration method is the simplest and most
commonly used. Its implementation is straightforward and its computation load is low [15]. However,
as an open-loop algorithm, the existence of uncertainties, such as noise, temperature, and current
variations, can lead to large errors. The OCV method and internal resistance method rely on the
correlation between the battery SOC and its external static characteristic parameter (i.e., OCV or
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internal resistance), and employ a look-up table to determine the estimated SOC value. However,
the measurement of battery OCV requires even distribution of the electrolyte inside the battery. This
process takes fairly long, which makes real-time measurement of OCV impossible [16]. Similarly,
real-time measurement of battery internal resistance is also very difficult. As a result, neither the OCV
method nor the internal resistance method can be used independently in practical applications. Besides,
the machine learning algorithms are devised based on various mechanisms such as artificial neural
networks [17], fuzzy logic inference [18], and support vector regression (SVR) [19]. These algorithms
require a large amount of training data to establish the nonlinear relationship between the input to
the battery and the output from the battery [20,21]. The performance of these algorithms is highly
dependent on the quantity and quality of the training data, which in turn restricts the applicability and
accuracy of these methods.

The model-based methods are more practical in terms of SOC online estimation. These methods
rely on a high-precision battery model and adopt a closed-loop structure to perform SOC estimation
with an unknown initial SOC value. These methods iteratively correct the SOC estimation error, using
the difference between the measured terminal voltage and the battery model output. The PF [22] can
achieve good results with non-Gaussian white noise; however, it leads to higher computational load
compared with the KF. The KF is widely used owing to its capability of finding the optimal solution of
linear Gaussian systems. In the work of [23], the KF is employed in conjunction with the Ah integration
method, which improves the SOC estimation accuracy for lithium-ion batteries. Various improved
KF algorithms, such as extended Kalman filter (EKF) [11] and double extended Kalman filter [24],
have been extensively studied in battery SOC estimation. In the work of [25], an EKF based on the
second-order RC model is proposed to reduce the influence of noise during the measurement process.

The current literature mainly focuses on the introduction of SOC estimation methods and their
advantages and disadvantages. The SOC estimation errors for the existing methods are normally
investigated under some specific scenarios. Duong et al. [26] proposed a multiple adaptive forgetting
factors recursive least-squares (MAFF-RLS) technique for LiFePO4 battery SOC estimation. The
maximum SOC estimation error is found to be 2.8% in two standard driving cycles, Urban Dynamometer
Driving Schedule (UDDS) and New European Driving Cycle (NEDC). Yang et al. [27] compared the
performances of several algorithms (i.e., EKF, UKF, and PF) for cylindrical-type 18,650 (LiFePO4) battery
SOC estimation under a combined dynamic loading profile, which is composed of the dynamic stress
test, the federal urban driving schedule, and the US06. In most circumstances, the three algorithms
provided satisfactory SOC estimation results, as well as small root mean square errors (RMSEs) (less
than 4%).

In order to further improve the accuracy of SOC estimation, in this paper, the electrical
characteristics of lithium-ion batteries under different ambient temperatures are analyzed, and a
temperature-dependent second-order RC model is established. Then, a dual Kalman filter (DKF)
algorithm is proposed based on the established model, which synthesizes the Ah integration method,
the KF algorithm, and the EKF algorithm. The accuracy and temperature adaptability of the proposed
SOC estimation algorithm are verified through experiments. The proposed battery model and SOC
estimation method have taken into consideration the important effects of ambient temperature, and
the results of this study can assist with the improvement of battery thermal management systems and
enhance the reliability of electric vehicles operating in all climate conditions.

The rest of the paper is organized as follows. Section 2 describes the establishment of the
temperature-dependent second-order RC model after analyzing the characteristics of lithium-ion
batteries, Section 3 introduces the identification of unknown parameters involved in this model,
Section 4 elaborates on the model verification process under different temperature conditions, Section 5
proposes a DKF algorithm for SOC estimation and its verification, and Section 6 concludes the paper.
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2. Temperature-Dependent Second-Order RC Model

The battery characteristics vary greatly at different temperatures. In order to improve the
temperature adaptability of the battery model, temperature variation factors should be taken into
account in the battery modeling process. In this section, the electrical characteristics of lithium-ion
batteries at different ambient temperatures are firstly introduced. Then, a temperature-dependent
second-order RC model is established, taking into account the effects of ambient temperature variations.

2.1. Characteristics of Lithium-Ion Batteries

When the current of the battery external circuit is zero and the internal electrochemical reactions
are in equilibrium, the potential difference between the positive and negative electrodes is called
the OCV [28]. The OCV is closely related to the battery SOC and the ambient temperature, and it is
crucial for lithium-ion battery modeling and SOC estimation. As shown in Figure 1a, the OCV of the
lithium-ion battery gradually decreases as the ambient temperature rises.
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Figure 1. Battery characteristics under different ambient temperature conditions. (a) Relationship
between state of charge (SOC) and open circuit voltage (OCV), (b) battery maximum discharge capacity,
and (c) relationship between SOC and internal resistance.

With a certain discharge rate and a certain cutoff voltage, the amount of electricity that the
battery can discharge is defined as the battery capacity [29]. The battery capacities at different ambient
temperatures are shown in Figure 1b, where we see that the battery capacity increases as the ambient
temperature increases.

Figure 1c shows how the battery internal resistance varies with the ambient temperature and SOC.
We observe that the internal resistance decreases dramatically with the increase of ambient temperature;
however, the influence of SOC on the internal resistance is insignificant.

2.2. Battery Modeling

On the basis of the influence of ambient temperature on lithium-ion batteries introduced in
Section 2.1, a temperature-dependent second-order RC equivalent circuit model is established in this
section, taking into account both model accuracy and model complexity. This model is composed of
three modules: the OCV module, the internal resistance module, and the RC network module. The
structure of the proposed model is shown in Figure 2, where Vt represents the battery terminal voltage,
Vocv indicates the OCV, V1 and V2 denote the voltages generated by the polarization phenomenon, I
stands for the current (positive for charging and negative for discharging), T represents the ambient
temperature, R0 is the ohmic internal resistance, R1 and R2 are the polarization internal resistances, and
C1 and C2 are the polarization capacitances. It must be pointed out that the effects of SOC, temperature,
and current direction changes on the above parameters have been taken into account in the battery
modeling, as we will explain in Section 3.
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Figure 2. Structure of the proposed temperature-dependent second-order RC equivalent circuit model.

According to Kirchhoff’s laws of voltage and current, the polarization voltages V1 and V2 satisfy
the following rules:

.
V1 = − V1

R1C1
+

I
C1

, (1)

.
V2 = − V2

R2C2
+

I
C2

, (2)

where
.

V1 and
.

V2 denote the voltage change rates. The terminal voltage V is given by the following:

V = VOCV + R0I + V1 + V2. (3)

The battery SOC is dependent on the available capacity and current direction, and it can be
expressed as follows:

SOC(t) = SOC(t0) +

∫ t

t0

ηI(τ)
Q

dτ, (4)

where SOC(t) and SOC(t0) are the SOC values at time t and t0, respectively; η denotes the
charging/discharging efficiency (0.98 for charging and 1 for discharging); and Q represents the
maximum available capacity. Assuming that the sampling time is ΔT, discretizing Equations (1), (2)
and (4) yields the following:

V1(k) = exp(
−ΔT
R1C1

)V1(k− 1) + R1I(k)[1− exp(
−ΔT
R1C1

)], (5)

V2(k) = exp(
−ΔT
R2C2

)V2(k− 1) + R2I(k)[1− exp(
−ΔT
R2C2

)], (6)

SOC(k) = SOC(k− 1) +
ηt
Q

I(k). (7)

Equations (3) and (5)–(7) constitute the mathematical representation of the proposed
temperature-dependent second-order RC model for lithium-ion batteries. These equations describe
the dynamic characteristics of lithium-ion batteries at different temperatures, in a simple mathematical
form with limited number of parameters.

Similar to our previous work [30], some parameters in this proposed battery model are not known
a priori and need to be determined for model implementation. The parameters to be identified are R1,
R2, C1, C2, R0, VOCV, and Q. In the following section, we shall explain in detail how these unknown
parameters can be identified.
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3. Model Parameter Identification

As mentioned above, the proposed battery model involves parameters that cannot be directly
measured. Hence, in this section, we explain the detailed process for identifying these unknown
parameters by means of experiments.

3.1. Experiment Specifications

The equipment used in our experimentation includes an incubator (HL404C, Well Test Equipment
Co., Ltd., Chongqing, China), a battery testing device (BTS-5V100A, Neware Co., Ltd., Shenzhen,
China), a set of measurement and control software, and a computer. In this study, a time interval of
0.1 s is used for data acquisition. The complete battery test system is shown in Figure 3. The Panasonic
18,650 ternary lithium-ion battery is used for testing, and its specifications are shown in Table 1.

Testing device

Voltage ,Current TCP/IP

ComputerBattery

Incubator

Figure 3. Battery test system.

Table 1. Specifications of the Panasonic 18,650 ternary lithium-ion battery.

Battery Model Nominal Capacity Rated Voltage
Charge

Cutoff Voltage
Discharge

Cutoff Voltage

18,650 3350 mAh 3.6 V 4.2 V 2.5 V

In order to identify the model parameters, the static capacity test (SCT), hybrid pulse power
characteristic (HPPC) test, and double pulse discharge test were performed in this study, at five
different ambient temperatures (5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C), according to the work of [31]. The
SCT was used for battery capacity (Q) identification, and the double pulse discharge test was utilized
to obtain the OCV (VOCV) under specific SOC values. Parameters such as ohmic internal resistance
(R0), polarization resistances (R1, R2), and polarization capacitances (C1, C2) were obtained by the
HPPC test. The major test steps of the three tests are shown in Table 2.
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Table 2. Major test steps of the static capacity test (SCT), hybrid pulse power characteristic (HPPC),
and double pulse tests.

Test Name Test Steps

SCT Test

1 Battery shelved for 1 h
2 0.2 C constant current charging to charge cut-off voltage
3 Constant voltage charging to charge cut-off current
4 Battery shelved for 2 h
5 0.2 C constant current discharging to discharge cut-off voltage

HPPC Test

1 1 C constant current charging to charge cut-off voltage
2 Constant voltage charging to charge cut-off current
3 1 C constant current constant capacity (0.1 SOC) discharging
4 Battery shelved for 1 h
5 1 C constant current discharging for 10 s, battery shelved for 40 s, 0.75 C

constant current charging for 10 s
6 Repeat steps 3~5 to obtain battery internal resistances and power

characteristics at different SOC values

Double Pulse Test

1 1 C constant current discharging to discharge cut-off voltage
2 Battery shelved for 1 h
3 0.5 C constant current constant capacity (0.1 SOC) charging
4 Battery shelved for 2 min
5 Repeat steps 1 and 2 until the voltage reaches the charge cut-off voltage
6 Battery shelved for 12 h
7 0.5 C constant current constant capacity (0.1 SOC) discharging
8 Battery shelved for 2 min
9 Repeat steps 1 and 2 until the voltage reaches the discharge cut-off voltage

3.2. Identification of OCV

In practice, the battery OCV cannot be directly measured. However, there exists a certain
correspondence between the OCV and SOC, which is crucial for OCV estimation. This relationship can
be expressed by the following empirical equation [32]:

VOCV = K1 + K2SOC + K3SOC2 + K4SOC3 + K5SOC4, (8)

where Ki (i = 1, 2, ... 5) are five coefficients depending on the ambient temperature. The values of Ki

determine the accuracy of the empirical Equation (8), and they can be obtained from the double pulse
discharge test. The obtained coefficients of Equation (8) at different ambient temperatures are shown in
Table 3, and the resulting 3D SOC–Temperature–OCV (SOC–T–OCV) map is shown in Figure 4. This
SOC–T–OCV map is indeed a 3D look-up table, from which we can determine the OCV for certain
values of SOC and ambient temperature.

Table 3. Coefficient values at different ambient temperatures.

Coefficient 5 ◦C 15 ◦C 25 ◦C 35 ◦C
K1 2.7758 2.81055 2.58785 2.4553
K2 1.6295 1.48735 1.78815 1.96495
K3 −0.04675 −0.04095 −0.07095 −0.1013
K4 −0.43585 −0.4026 −0.5894 −0.7354
K5 0.07365 0.02485 0.05735 0.05175
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3.3. Identification of Internal Resistances and Capacitances

In this section, we explain how to identify the internal resistances (R0, R1, and R2) and capacitances
(C1 and C2), by means of the HPPC test. In the HPPC test, the voltage and current vary according to
the patterns shown in Figure 5. In this figure, one of the charge–discharge cycles is enlarged to clearly
show the details.
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Figure 5. Voltage and current in the hybrid pulse power characteristic (HPPC) test.

Considering the discharge relaxation response curve (U4~U5) and the charge relaxation response
curve (U8~U9) in Figure 5, the battery terminal voltage expression (i.e. Equation (3)) can be converted
to the following equation, according to the work of [33]:

V(t) = a + b× exp(−t/τ1) + c× exp(−t/τ2), (9)

where a, b, and c are the fitting coefficients; and τ1 and τ2 are the time constants of the two RCs in
Figure 2. The five coefficients a, b, c, τ1, and τ2 in Equation (9) can be obtained by means of curve
fitting using MATLAB software.

Once the coefficients a and b are determined, the polarization internal resistances R1 and R2 can
be calculated as follows:

R1 = a/I, (10)
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R2 = b/I, (11)

where I is the measured current. The identification results for R1 and R2 are shown in Figure 6. It
should be noted that the identification results for charging and discharging are different.
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Figure 6. Polarization internal resistance identification results: (a) identified internal resistance for
discharging, R1d; (b) identified internal resistance for charging, R1c; (c) identified internal resistance for
discharging, R2d; and (d) identified internal resistance for charging, R2c.

After the internal resistances R1 and R2 are determined, the polarization capacitances C1 and C2

can be computed as follows:
C1 = R1/τ1, (12)

C2 = R2/τ2. (13)

The identification results for C1 and C 2 are shown in Figure 7. Similar to the case of polarization
internal resistances, the capacitance identification results for charging and discharging are different.
It is clearly seen in Figures 6 and 7 that the values of these four parameters, R1, R2, C1, and C 2, are
dependent on SOC, ambient temperature, and direction of current (i.e., charging or discharging).
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Figure 7. Polarization capacitance identification results: (a) identified capacitance for discharging,
C1d; (b) identified capacitance for charging, C1c; (c) identified capacitance for discharging, C2d; and
(d) identified capacitance for charging, C2c.

Substituting the voltage drop values (as shown in Figure 5) in Equations (14) and (15), the ohmic
internal resistance R0 in the battery model is obtained:

R0d = ((U1 −U2) + (U4 −U3))/(2× Id), (14)

R0c = ((U6 −U5) + (U7 −U8))/(2× Ic), (15)

R0 = (R0d + R0c)/2. (16)

where R0d and R0c represent the ohmic internal resistances during discharging and charging,
respectively; and Id and Ic denote the discharging current and charging current, respectively. The
identification results for the ohmic internal resistance R0, at different ambient temperatures, are shown
in Table 4. It is seen that the value of R0 drops as the ambient temperature increases.

Table 4. Identification results for the ohmic internal resistance, R0.

Parameter 5 ◦C 15 ◦C 25 ◦C 35 ◦C 45 ◦C
R0 0.067551 0.056435 0.048624 0.046138 0.043975
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4. Model Verification and Discussion

In this section, the accuracy of the proposed temperature-dependent second-order RC equivalent
circuit model is verified. The schematic of the simulation model used for verification is shown in
Figure 8. The identified parameters obtained from Section 3 are employed in the proposed model,
and the model accuracy is evaluated in terms of the difference (error) between the measured terminal
voltage and that resulting from the proposed model.
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Figure 8. Schematic of the simulation model.

For verification purposes, the model has undergone the discharging test, charging test, and
dynamic stress test (DST) [34], under constant and varying temperature conditions. The voltages
resulting from the model as well as the voltage errors are plotted in Figure 9, under a constant ambient
temperature of 25 ◦C. It is shown that for both the discharging and charging tests, the model output
voltages are very close to the measured terminal voltages, and the voltage errors are maintained
within ±20 mV. As for the DST, the model output voltage follows the measured voltage very well, with
a slightly increased error magnitude compared with the first two cases. Note that the error is still
maintained within a very small range, that is, ±50 mV.
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Figure 9. Model verification results at 25 ◦C: (a) model output voltage and its error for the discharging
test, (b) model output voltage and its error for the charging test, and (c) model output voltage and its
error for the dynamic stress test (DST). The magnified mini-plot is an enlarged view for the time range
of 800 s–1800 s.

The verification results under varying temperature conditions are shown in Figure 10. In the
discharging test, the ambient temperature was gradually increased from 12 ◦C to 20 ◦C. We see from
Figure 10a that the model output voltage is quite close to the experimentally measured battery terminal
voltage, with the voltage error remaining within ±15 mV. Besides, a traditional second-order RC model,
which is independent of ambient temperature, is introduced for comparison purposes, and its output
voltage is represented by an orange curve. It is clearly shown that the purple curve, generated by the
proposed temperature-dependent second-order RC model, is closer to the measured voltage compared
with the orange curve.
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In the charging test, the ambient temperature gradually was decreased from 22 ◦C to 14 ◦C. As
shown in Figure 10b, similar to the previous case, the model output voltage is close to the measured
voltage and the voltage error is maintained within ±30 mV. Again, the purple curve, representing the
proposed model, is closer to the measured voltage compared with the orange curve.

As for the DST, the ambient temperature was gradually increased from 25 ◦C to 40 ◦C. In this
case, the model output voltage is still close to the measured battery terminal voltage, and the voltage
error is kept within ±50 mV. Same as the above two cases, the proposed model outperforms traditional
second-order RC model, as clearly demonstrated by the enlarged curves in Figure 10c.

The above results indicate that the established temperature-dependent second-order RC model
provides not only accurate output voltage, but also good robustness against temperature variations.
This verifies the superiority of the proposed model to the traditional second-order RC model under
varying ambient temperature conditions.
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Figure 10. Model verification results under varying temperature conditions: (a) model output voltage
and its error for the discharging test, (b) model output voltage and its error for the charging test, and (c)
model output voltage and its error for the DST. The magnified mini-plot is an enlarged view for the
time range of 1400 s–2400 s.

5. SOC Estimation Based on Double Kalman Filter Algorithm

It is known that high-precision SOC estimation is crucial for batteries’ safety, power characteristics,
and service life, and the accuracy of SOC estimation is directly dependent on the performance of the
battery model used. In this section, a double Kalman filter (DKF) algorithm is proposed for SOC
estimation, based on the established temperature-dependent second-order RC model. This algorithm
combines the advantages of the Ah integration method, the KF algorithm, and the EKF algorithm, and
its effectiveness is verified through comparisons with the EKF algorithm.

5.1. DKF Algorithm

The schematic that demonstrates the structure of the proposed DKF algorithm is shown in
Figure 11. This algorithm employs a two-layer filtering layout to provide SOC estimation. In the first
layer, the error between the measured terminal voltage (i.e., Vreal) and that resulting from the proposed
battery model (namely V) is employed as the input to an EKF. The output from the EKF is fed to the
proposed battery model to produce a corrected SOC estimate, SOCEKF. The purpose of this EKF is to
deal with the uncertainties caused by modeling imperfections, thereby improving the SOC estimation
performance. In the second layer, the error between SOCEKF and that produced by the Ah integration
method (denoted by SOCAh) is sent to a KF, and the output from this KF is then fed back to the Ah
integration algorithm, which generates a further corrected SOC estimate, that is, the output SOC. The
purpose of this KF is to suppress the cumulative error resulting from the Ah integration method, which
further enhances the SOC estimation accuracy.
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Figure 11. Schematic of the proposed dual Kalman filter (DKF) algorithm for SOC estimation. EKF,
extended Kalman filter.

To implement the DKF algorithm, we first rewrite the proposed temperature-dependent
second-order RC model in a discrete state space form. In this expression, the state vector is x =
[SOC V1 V2]T, the input is u = I (battery current), and the output is y = V (battery terminal voltage). At
time k, this state space equation takes the following form:

{
xk+1 = Axk + Buk +ωk

yk = Cxk + Duk + νk
, (17)

where ωk denotes the process noise; υk represents the measurement noise; and matrices A, B, C, and D
are given by the following:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 exp

( −t
R1C1

)
0

0 0 exp
( −t

R1C1

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ηt
Q

R1
(
1− exp

( −t
R1C1

))
R2
(
1− exp

( −t
R2C2

))
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (19)

C =
[

dOCV
dSOC 1 1

]
, (20)

D = R0. (21)

The detailed implementation process of the proposed DKF algorithm is as follows:
Step 1. Determination of the initial SOC value: Obtain the initial SOC value by means of the

SOC–T–OCV map.
Step 2. State initialization: Determine the SOC error covariance, the process noise variance, and

the measurement noise variance.
Step 3. First layer filtering: Conduct EKF-based filtering using Equations (18)–(21), and produce a

corrected SOC estimate, SOCEKF.
Step 4. Second layer filtering: Conduct KF-based filtering using Equations (18)–(21), and produce

a further corrected SOC estimate, that is, the output SOC.
Step 5. Iteration: Repeat steps 3 and 4 to provide real-time SOC estimation.
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Following the above recursive filtering steps, the uncertainties caused by modeling imperfections,
as well as the cumulative error resulting from the Ah integration method, can both be suppressed.
Through the proposed two-layer filtering mechanism, the overall SOC estimation performance is
greatly improved, as we will show in the following section.

5.2. Algorithm Verification and Discussion

The effectiveness of the proposed DKF algorithm is verified by means of the DST. Similar to
Section 4, the SOC estimation accuracy is evaluated under both constant and varying temperature
conditions. Figure 12 shows the SOC estimation results produced by the proposed DKF algorithm
and the traditional EKF algorithm. We see that for both temperature conditions, the black curve
(representing the DKF) is closer to the real value, with significantly fewer pulses and ripples, compared
with the blue curve produced by the EKF. Besides, it is also shown in this figure that the SOC estimation
errors resulting from the proposed DKF are maintained within a very small range, ±0.4%, for both
temperature conditions. The accuracy of the EKF and the proposed DKF under different working
conditions is shown in Table 5.

Note that the proposed DKF algorithm is robust to the initial SOC error. In other words, the
proposed DKF is able to ensure the convergence of the estimated SOC to the real value, even if an error
exists in the initial SOC value. We see that in Figure 13a, the initial SOC value fed to the DKF is higher
than the real value, while in Figure 13b, the initial SOC value is lower than the real one. In both cases,
the proposed DKF algorithm gradually drives the estimated SOC towards the real values, and the
estimation errors are kept within ±0.5% after convergence.
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Figure 12. Cont.
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Figure 12. Algorithm verification results for the DST: (a) estimated SOC values and estimation error
under constant temperature condition, the magnified mini-plot is an enlarged view for the time range
of 550 s–900 s; and (b) estimated SOC values and estimation error under varying temperature condition.
The magnified mini-plot is an enlarged view for the time range of 550 s–900 s.

Table 5. Accuracy comparison between extended Kalman filter (EKF) and dual Kalman filter (DKF)
under different working conditions.

Working
Conditions

EKF DKF

Constant
temperature

R2 Maximum
error

Average
error R2 Maximum

error
Average

error
0.9978 0.0134 0.0024 0.9998 0.0036 0.0006

Varying
temperature

R2 Maximum
error

Average
error R2 Maximum

error
Average

error
0.9984 0.131 0.0018 0.9999 0.0035 0.0005

The above verification results indicate that the proposed DKF algorithm, constructed based on the
established temperature-dependent second-order RC model, outperforms the traditional and classical
EKF algorithm in terms of SOC estimation, under both constant and varying temperature conditions.
In addition, the proposed DKF provides good robustness against initial SOC errors, which guarantees
the performance of the DKF even if the initial SOC cannot be accurately obtained.

64



Electronics 2019, 8, 1012

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

Es
ti

m
at

io
n 

er
ro

r

Time (s)

0 1000 2000 3000 4000 5000 6000 7000
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

SO
C

SOC (DKF)
SOC (Real)

Time (s)

 

(a) 

0 1000 2000 3000 4000 5000 6000 7000
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05

0

Es
ti

m
at

io
n 

er
ro

r

Time (s)

0 1000 2000 3000 4000 5000 6000 7000

0.5
0.6
0.7
0.8
0.9
1

SO
C

SOC (DKF)
SOC (Real)

Time (s)

 
(b) 

Figure 13. Algorithm verification results with initial SOC errors: (a) estimated SOC and corresponding
estimation error with an initial SOC value of 0.5, (b) estimated SOC and corresponding estimation error
with an initial SOC value of 1.
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6. Conclusions

The battery electrical characteristics are dependent on the ambient temperature; however, most
existing battery equivalent circuit models have not taken into account the influences of ambient
temperature. In this paper, a temperature-dependent second-order RC equivalent circuit model
is established, based on the electrical characteristics of lithium-ion batteries at different ambient
temperatures (5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C). The unknown model parameters are identified
by means of experiments, and the accuracy of the proposed battery model is verified under constant
and varying temperature conditions. It is shown that for both the discharging and charging tests, the
model errors are maintained within ±30 mV. As for the DST, the accuracy of the model is reduced,
but the error is still maintained within a very small range, that is, ±50 mV. These verification results
indicate that the proposed model provides not only accurate output voltage, but also good robustness
against temperature variations. Besides, it is also shown that the proposed model outperforms the
traditional second-order RC model under varying ambient temperature conditions.

On the basis of the proposed temperature-dependent second-order RC model, a DKF algorithm
that combines the Ah integration method, the KF algorithm, and the EKF algorithm is proposed for
SOC estimation. This algorithm employs a two-layer filtering mechanism to enhance SOC estimation
performance, which suppresses the uncertainties caused by modeling imperfections, as well as the
cumulative error resulting from the Ah integration method. The effectiveness of the proposed DKF
algorithm is verified by means of the DST, under both constant and varying temperature conditions.
The verification results indicate that the proposed DKF algorithm outperforms the traditional and
classical EKF algorithm, with the SOC estimation errors under different temperature conditions
maintained within ±0.4%. Besides, it is also proven that the proposed DKF algorithm provides good
robustness against temperature variations and initial SOC errors.

Lithium-ion batteries will age with the increase of the number of cycles. Consequently, the
parameters of the battery model will also change with time. In our future work, the battery lifetime
experiments will be performed to obtain battery aging data, based on which a more advanced battery
model considering battery aging will be investigated and utilized for better battery state estimation.
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Abstract: State of charge (SOC) plays a significant role in the battery management system (BMS),
since it can contribute to the establishment of energy management for electric vehicles. Unfortunately,
SOC cannot be measured directly. Various single Kalman filters, however, are capable of estimating
SOC. Under different working conditions, the SOC estimation error will increase because the battery
parameters cannot be estimated in real time. In order to obtain a more accurate and applicable SOC
estimation than that of a single Kalman filter under different driving conditions and temperatures,
a second-order resistor capacitor (RC) equivalent circuit model (ECM) of a battery was established in
this paper. Thereafter, a dual filter, i.e., an unscented Kalman filter–extended Kalman filter (UKF–EKF)
was developed. With the EKF updating battery parameters and the UKF estimating the SOC,
UKF–EKF has the ability to identify parameters and predict the SOC of the battery simultaneously.
The dual filter was verified under two different driving conditions and three different temperatures,
and the results showed that the dual filter has an improvement on SOC estimation.

Keywords: state of charge; battery parameters identification; equivalent circuit model; dual
Kalman filter

1. Introduction

With the increasing energy crisis, alternative energy vehicles have been given full attention.
Lithium-ion batteries (LIBs) have become the power source of electric vehicles (EVs) because of their
high energy density and long service life [1]. Battery management systems (BMS) can predict the
driving mileage of EVs through the state of charge (SOC) of LIBs, and they can formulate the energy
management strategies of EVs, which can not only extend the life of batteries, but the driving mileage
of cars, as well. The monitoring of SOC also plays a significant role in preventing batteries in EVs from
some dangerous operations, like overcharging or overdischarging.

Unfortunately, unlike other parameters of the battery, such as current and terminal voltage,
SOC cannot be measured directly. Many scholars have studied SOC estimation for a long time;
below are some common methods of SOC estimation:

(i) Although the Coulomb counting method (CCM) is uncomplicated and has been applied in SOC
prediction, in practice, error accumulation will gradually increase due to the influence of uncertain
noise. In addition, the initial value of the SOC will also affect the estimation accuracy, so it is not
appropriate for the SOC estimation of LIBs in EVs.

(ii) Through the open-circuit voltage method (OCVM), a relatively functional relationship between
the open-circuit voltage (OCV) and the SOC can be found; hence, SOC can be estimated according to
the changing OCV at work. It is, however, limited to estimating the SOC in LIBs for the need of long
rest and the neglect of changes in the internal resistance of LIBs during working.

Electronics 2019, 8, 1391; doi:10.3390/electronics8121391 www.mdpi.com/journal/electronics69
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(iii) The improvements in computer computing ability are helpful in the popularization and
application of machine learning (ML). Some ML algorithms, such as neural networks (NN) [2,3],
extreme learning machines (EXL) [4,5], and support vector machines (SVM) [6], only need to train
some input parameters, such as terminal voltage, operating current, resistance, and the temperatures
of LIBs during working, to predict SOC. However, because of the constraints of sample training and
the large amounts of computation required, it is difficult to meet the requirements of BMS to predict
SOC at this time.

(iv) Based on an electrical equivalent circuit model (ECCM), some advanced Kalman filter (KF)
methods, like the extended Kalman filter (EKF) [7,8], the unscented Kalman filter (UKF), [9] and
the cubature Kalman filter (CKF), [10] have demonstrated their abilities to accurately predict SOC.
Moreover, in order to deal with the uncertainties of system noise in SOC estimation, some Kalman
filters improved by adaptive algorithms, such as the adaptive extended Kalman filter (AEKF) [11],
the adaptive unscented Kalman filter (AUKF), [12] and the adaptive cubature Kalman filter (ACKF) [13],
have been used to improve the estimation accuracy of SOC. Nevertheless, the resistances of lithium
batteries vary in different working conditions and temperatures, which are neglected when the SOC is
estimated by a single Kalman filter. As a consequence, the estimation error of SOC will increase. It is a
common approach to identify battery parameters by the hybrid pulse power characteristic (HPPC)
offline test, but the accuracy of this method is not guaranteed, and it does consume a lot of time.

In order to resolve the aforementioned shortcomings of the single Kalman filter, many scholars
have proposed joint estimation methods to simultaneously achieve SOC estimation and battery
parameter identification online. Xiong et al. [14] proposed a joint estimator to predict SOC and state of
power (SOP) capabilities, with recursive least squares (RLS) successfully updating battery parameters
and the AEKF achieving the estimation of the SOC and power capacity. Wei et al. [15] compared three
methods—the dual extended Kalman filter (DEKF), the recursive least squares–extended Kalman filter
(RLS–EKF), and the noise compensating EKF (NC-EKF)—for battery parameter identification and SOC
online estimation. All of them had high accuracy for SOC estimation and parameter identification
under low noise interference, but as the unknown interference increased, they showed their own
weaknesses in calculating cost, number of parameters to be adjusted, and robustness of estimation.
These SOC estimators are only based on the first-order RC ECM, and RLS is not suitable for estimating
nonlinear systems. EKF also suffers from low SOC estimation accuracy for abandoning higher order.
The establishment of UKF–EKF by Zhang et al. [1] has a good ability to predict the SOC and the
parameters of the battery pack, but its stability has not been verified at different temperatures.

In fact, in addition to the unknown noise at work, the estimation of the SOC and identification of
the parameters of the battery are usually influenced by ambient temperature, which is reflected in
the changes of the OCV–SOC function relationship and the battery’s internal resistance. In order to
realize SOC estimation and online parameter identification of the battery simultaneously, this paper
proposes a second-order RC ECM of the battery, and a joint estimation model, i.e., the UKF–EKF is
structured. The UKF is used to predict the SOC, which solves the shortcomings of insufficient accuracy
of the EKF’s SOC estimation, while the EKF updates the battery parameters, which further enhances
the accuracy of the SOC estimation.

2. Battery of the Equivalent Circuit Model

The successful application of the Kalman filter in SOC estimation depends on the accurate model
of the battery. Many studies [16–18] have shown that the ECM can be successfully used in SOC
estimation because it can accurately reflect the physical and chemical changes of the battery, and the
computing cost is low, which conforms to the requirements of a BMS. Considering the accuracy and
computational complexity of the battery model, a second-order ECM is selected and plotted in Figure 1.
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Figure 1. Second-order resistor capacitor (RC) equivalent circuit model (ECM) of a battery.

I is the working current, which is positive when discharging and negative when charging.
R0 represents ohmic resistance. RP1 and CP1 are resistance and capacitance of electrochemical
polarization, respectively, while RP2 and CP2 represent the resistance and capacitance of concentration
polarization, respectively. Uocv and Uout are open-circuit voltage and terminal voltage, respectively.
VP1 and VP2 are polarization voltage, and the state equation of the battery can be expressed by
Equation (1): ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

•
VP1 = − 1

RP1CP1
VP1 +

1
CP1

I
•

VP2 = − 1
RP2CP2

VP2 +
1

CP2
I

Uout = Uocv −VP1 −VP2 − IR0

. (1)

3. Dual Kalman Filter Design

In order to overcome the disadvantages of the traditional single unscented Kalman filter, which
regards internal resistance as a constant, it is an advisable method to apply the dual Kalman filter in
the joint online estimation of battery parameters and SOC. The UKF–EKF consists of two running
parallel KFs, i.e., EKF is employed in the identification of battery parameters, while UKF is applied to
SOC estimation.

The SOC can be expressed by the following formula:

SOC = SOC0 +
Δti(t)

Cp
, (2)

where SOC0 is the initial SOC, and Cp and i(t) represent the rated capacity of the batteries and
current, respectively.

Combine Equations (1) and (2), and a new equation of state with battery parameters can be obtained.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Xk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 e−
Δt

RP1CP1 0

0 0 e−
Δt

RP2CP2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦×Xk +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−Δt/Cp

RP1(1− e
Δt

RP1CP1 )

RP2(1− e
Δt

RP2CP2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦× Ik + wx
k

θk+1 = θk + wθk

(3)

Uout,k = Uocv(SOCk) −VP1,k −VP2,k − IkR0 + vk, (4)

where the state vector Xk= [SOCk VP1,k VP2,k]T, τ1 = RP1CP1, τP2 = RP2CP2, and τP1 and τP2 are time
constants in ECM. OCV can be obtained by fitting the relationship with SOC. wx

k ~N(0, Qx) and wθ
k

~N(0, Qθ) are process noise for state and parameters, respectively, measurement noise is vk ~ N(0, Rx),
and battery parameters are θ = [R0, RP1, CP1, RP2, CP2]T.

To obtain a nonlinear system with state and parameters, Equations (3) and (4) can be rewritten as:

xk+1 = f (xk,θk, uk) + wx
k = θk + wθk (5)
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yk = g(xk,θk, uk) + vk, (6)

where the control variable uk = Ik.
The detailed steps of UKF–EKF are shown below, and the flow chart is shown in Figure 2.

UKF time 
update Eq.(11)-

(13)

UKF 
measurement 

update
Eq.(16)-(20)

EKF time 
update
Eq.(8)

EKF 
measurement 

update
Eq.(21)

x kP−
+

x kP+
+x kP+

kx+
+

kPθ
−

+

kPθ
+

+

kθ +
+

kx−
+

kθ −
+

ku

ku +

ky +

UKF

EKF

Initialization 
Eq.(7)

x+
xP+

θ + P θ
+

kPθ
+

i=k+1

i=k+1

i=k

i=k

 
Figure 2. Flow chart of the unscented Kalman filter–extended Kalman filter (UKF–EKF).

(1) Initialization:
x̂+0 = E[x0]

P+
0,x = E[(x0 − x̂+0 )(x0 − x̂+0 )]

T

θ̂+0 = E[θ̂0]

P+
0,θ = E[(θ0 − θ̂+0 )(θ0 − θ̂+0 )]

T

(7)

(2) Time update for battery parameters in EKF:

θ̂−k+1 = θ̂+k
P−
θ,k+1 = P+

θ,k + Qθ,k
(8)

(3) Sigma sampling point and weight calculate for UKF:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x0

k|k = x̂k|k, i = 0

xi
k|k = x̂k|k + (

√
(n + λ)P+

x,k)i
, i = 1 ∼ n

xi
k|k = x̂k|k − (

√
(n + λ)P+

x,k)i
, i = n + 1 ∼ 2n

(9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ω

(0)
m = λ

n+λ
ω

(0)
c = λ

n+λ + (1− α2 + β)

ω
(i)
m = ω

(i)
c = λ

2(n+λ) , i = 1 ∼ 2n
, (10)

where n is the state dimension of the battery. Λ = α2(n+k)-n, the function of α is to control the
distribution of sampling points, and the parameter k usually guarantees that the variance matrix
is semipositive definite. β is the non-negative weight coefficient; in this study, n = 3, α = 0.01,
k = 0, β = 2.
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(4) State estimation and error covariance time update:

xi
k+1|k = f (xi

k|k) (11)

x̂k+1|k =
2n∑

i=0

ω(i)xi
k+1|k (12)

Pk+1|k =
2n∑

i=0

ω(i)[x̂k+1|k − xi
k+1|k][x̂k+1|k − xi

k+1|k]
T
+ Qx,k. (13)

(5) Update measurement with posteriori estimation:

Zi
k+1|k = g(xi

k+1|k) (14)

Ẑi
k+1|k =

2n∑
i=0

ω(i)Ẑi
k+1|k. (15)

(6) Update measurement covariance:

Py,k =
2n∑

i=0

ω(i)[Zi
k+1|k − Ẑi

k+1|k][Z
i
k+1|k − Ẑi

k+1|k]
T
+ Rx,k (16)

Px,k =
2n∑

i=0

ω(i)[xi
k+1|k − Ẑi

k+1|k][Z
i
k+1|k − Ẑi

k+1|k]
T

. (17)

(7) Calculate UKF gain matrix:
Kk+1 = Px,k(Py,k)

−1. (18)

(8) State estimation and error covariance measurement update:

x̂k+1|k+1 = x̂k+1|k + Kk+1[Zi
k+1 − Ẑi

k+1|k] (19)

Pk+1|k+1 = Pk+1|k −Kk+1Pz,k(Kk+1)
T. (20)

(9) EKF measurement update for battery parameters:

Kk,θ = P−
θ,k+1(Ĥk,θ)

T
(Ĥk,θP−

θ,k+1(Ĥk,θ)
T
+ Rk,θ)

−1

θ̂+k+1 = θ̂−k+1 + Kk,θ(yk − ŷk)

P+
θ,k+1 = (I −Kk,θĤk,θ)P−θ,k+1

(21)

The Jacobian equation of battery parameters is as follows:

Ĥθk =
dg(x̂−k+1, uk+1,θ)

dθ

∣∣∣∣∣∣
θ=θ̂−k+1

=
∂g(x̂−k+1, uk+1,θ)

∂θ
+
∂g(x̂−k+1, uk+1,θ)

∂x̂−k+1

dx̂−k+1

dθ
(22)

dx̂−k+1

dθ
=
∂ f (x̂+k , uk,θ)

∂θ
+
∂ f (x̂+k , uk,θ)

∂x̂+k

dx̂+k
dθ

(23)

dx̂+k
dθ

=
dx̂−k
dθ
−Kx

k

dg(x̂−k , uk,θ)

dθ
, (24)
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where
∂g(x̂−k+1, uk+1,θ)

∂θ
= [−Ik+1, 0, 0, 0, 0] (25)

∂g(x̂−k+1, uk+1,θ)

∂x̂−k+1
= [∂Uocv/∂SOCk+1,−1,−1] (26)

∂ f (x̂+k , uk,θ)

∂θ
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 a2,2 a2,3 0 0
0 0 0 a3,4 a3,5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

a2,2 = V−
P1,k

Δt
R2

P1CP1
exp(−Δt/τP1) − Ik(exp(−Δt/τP1) − 1) − IkΔt

RP1CP1
exp(−Δt/τP1),

a2,3 = (Δt/RP1C2
P1)(V

−
P1,k −RP1Ik) exp(−Δt/τP1),

a3,4 = V−
P2,k

Δt
R2

P2CP2
exp(−Δt/τP2) − Ik(exp(−Δt/τP2) − 1) − IkΔt

RP2CP2
exp(−Δt/τP2),

a3,5 = (Δt/RP2C2
P2)(V

−
P2,k −RP2Ik) exp(−Δt/τP2).

4. Experimental Design

The dataset of the 18650 battery was collected from an experiment conducted by Zheng et al. [19].
Battery data profiles consist of incremental current OCV and dynamic test profiles. The first profile
data can be used to obtain the relationship between OCV and SOC, and Figure 3 plots OCV–SOC in
incremental current OCV at 0, 25, and 45 ◦C, corresponding to low temperature, room temperature,
and high temperature, respectively. It can be seen that at different temperatures, the OCV–SOC
curves are different, which indicates that the electrode characteristics of the battery are influenced
by temperature, which will affect the SOC estimation. The function of dynamic test profiles is to
verify the ability of the UKF–EKF to achieve SOC estimation and parameter identification under
different temperatures. There are two battery test loading profiles, including the highway condition,
Highway Driving Schedule (US06), and the urban condition, Beijing Dynamic Stress Test (BJDST) in
Figure 4. As can be seen from Figure 4, the charging/discharging current under the US06 working
condition is larger; in addition, this working condition is more complex than the BJDST. The prediction
results under different working conditions are shown in Section 5; the detailed parameters of the
battery are shown in Table 1.

Figure 3. The relation diagram of open-circuit voltage (OCV)–state of charge (SOC) at
different temperatures.
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(a) 

 
(b) 

Figure 4. Profiles of battery test loading: (a) Highway Driving Schedule (US06); (b) Beijing Dynamic
Stress Test (BJDST).

Table 1. Battery parameters.

Type 18650

Normal Voltage 3.6 V
Normal Capacity 2 Ah

Upper/lower cut-off voltage 4.2 V/2.5 V
operating temperature 0–55 ◦C

5. Results and Discussion

The estimation of SOC and the identification of battery parameters were verified under two
working conditions (US06 and BJDST), at three different temperatures.

5.1. Results of US06

The results of US06 are plotted in Figures 5 and 6. Figure 5a,c,e plots the voltage of the UKF–EKF
and the real voltage at 0, 25, and 45 ◦C, respectively. Figure 5b,d,f correspondingly compares online
estimated voltage errors and offline estimated voltage errors at different temperatures; the online
estimation is implemented by the UKF–EKF. Figure 6a,c,e describes the results of SOC estimation
between the UKF–EKF and UKF at 0, 25, and 45 ◦C, respectively. It should be noted that at various
temperatures, the initial values of the real SOC are 0.8, but the initial values of the SOC for algorithms
are 0.6. Figure 6b,d,f shows the identification of R0 at different temperatures.

It can be seen from Figure 5 and Table 2, in terms of voltage prediction, the root mean square
errors (RMSEs) of voltage for online estimation and offline estimation at 0 ◦C are 17.6 and 34.1 mV,
respectively, and they are 6.2 and 17.4 mV for online estimation and offline estimation at 25 ◦C, while the
online and offline RMSEs are 16.9 and 23.3 mV at 45 ◦C, respectively.

According to Figure 6 and Table 2, for the identification of R0 at 0 ◦C, the RMSEs of R0 for the
UKF–EKF is 12.1 mΩ, and it is 5.6 mΩ at 25 ◦C, while the figure for RMSE of R0 at 45 ◦C is 7.9 mΩ.
In terms of the SOC estimation, it is clear that at 0 ◦C, the RMSEs of the SOC for the UKF–EKF and
UKF are 1.00% and 2.12%, respectively, and at 25 ◦C, they are 0.76% and 1.72% for the UKF–EKF and
UKF, respectively, while the figures for RMSEs of SOC for the UKF–EKF and UKF are 0.51% and 1.31%
at 45 ◦C, respectively.

75



Electronics 2019, 8, 1391

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5. Results of voltage comparison in US06: (a) comparison between the UKF–EKF model voltage
and real voltage at 0 ◦C; (b) comparison of voltage errors between online and offline estimations at
0 ◦C; (c) comparison between the UKF–EKF model voltage and real voltage at 25 ◦C; (d) comparison of
voltage errors between online and offline estimations at 25 ◦C; (e) comparison between the UKF–EKF
model voltage and real voltage at 45 ◦C; (f) comparison of voltage errors between online and offline
estimations at 45 ◦C.
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Figure 6. Results of the estimation of the SOC and ohmic resistance (R0) in US06: (a) SOC comparison
between the UKF–EKF and UKF at 0 ◦C; (b) R0 identification of the UKF–EKF at 0 ◦C; (c) SOC
comparison between the UKF–EKF and UKF at 25 ◦C; (d) R0 identification of the UKF–EKF at 25 ◦C;
(e) SOC comparison between the UKF–EKF and UKF at 45 ◦C; (f) R0 identification of the UKF–EKF at
45 ◦C.
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Table 2. The estimation of root mean square errors (RMSEs) for the UKF–EKF and UKF under US06.

Temperatures
0 ◦C 25 ◦C 45 ◦C

UKF–EKF UKF UKF–EKF UKF UKF–EKF UKF

SOC (%) 1.00 2.12 0.76 1.72 0.51 1.31

Voltage (mV) 17.6 34.1 6.2 17.4 16.9 23.3

R0 (mΩ) 12.1 - 5.6 - 7.9 -

The results show that the UKF–EKF, which can identify battery parameters online, has a better
performance than the UKF in SOC estimation at different temperatures; in addition, the voltage errors
of online estimation are smaller. It is clear that at 0 ◦C, the differences between estimations of the
SOC and voltage become greater. Moreover, at 25 and 45 ◦C, the UKF–EKF has greater accuracy in
estimating R0 than at 0 ◦C.

5.2. Results of BJDST

The results of BJDST are plotted in Figures 7 and 8. Figure 7a,c,e plots the voltage of the UKF–EKF
and the real voltage at 0, 25, and 45 ◦C, respectively. Figure 7b,d,f correspondingly compares online
estimated voltage errors and offline estimated voltage errors at different temperatures; the online
estimation is implemented by the UKF–EKF. Figure 8a,c,e describes the results of the SOC estimation
between the UKF–EKF and UKF at 0, 25, and 45 ◦C, respectively. It should be noted that at various
temperatures, the initial values of the real SOC are 0.8, but the initial values of the SOC for the
algorithms are 0.6. Figure 8b,d,f shows the identification of R0 at different temperatures.

It can be seen from Figure 7 and Table 3, in terms of voltage prediction, the root mean square
errors (RMSEs) of voltage for online estimation and offline estimation at 0 ◦C are 10.7 and 17.4 mV,
respectively, and 5.8 and 9.1 mV for online estimation and offline estimation at 25 ◦C, while the online
and offline RMSEs are 10.1 and 24.7 mV at 45 ◦C, respectively.

Table 3. The estimation of RMSEs for the UKF–EKF and UKF under BJDST.

Temperatures
0 ◦C 25 ◦C 45 ◦C

UKF–EKF UKF UKF–EKF UKF UKF–EKF UKF

SOC (%) 0.97 1.95 0.61 1.31 0.82 1.75

Voltage (mV) 10.7 17.4 5.8 9.1 10.1 24.7

R0 (mΩ) 7.3 - 3.3 - 6.1 -

According to Figure 8 and Table 3, for the identification of R0 at 0 ◦C, the RMSE of R0 for the
UKF–EKF is 7.3 mΩ, and it is 3.3 mΩ at 25 ◦C, while the figure for RMSE of R0 at 45 ◦C is 6.1 mΩ.
In terms of SOC estimation, it is clear that at 0 ◦C, the RMSEs of SOC for the UKF–EKF and UKF are
0.97% and 1.95%, respectively, and at 25 ◦C, they are 0.61% and 1.31% for the UKF–EKF and UKF,
respectively, while the figures for RMSEs of SOC for the UKF–EKF and UKF are 0.82% and 1.75% at
45 ◦C, respectively.

The results showed that the UKF—EKF, which can identify battery parameters online, has a better
performance than the UKF in SOC estimation at different temperatures, in addition to the voltage
errors of online estimation being smaller. It is clear that at 0 ◦C, the differences in estimation of SOC and
voltage become greater. Moreover, at 25 and 45 ◦C, the UKF–EKF has greater accuracy in estimating R0

than at 0 ◦C.
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Figure 7. Results of voltage comparisons in BJDST: (a) comparison between the UKF–EKF model
voltage and real voltage at 0 ◦C; (b) comparison of voltage errors between online and offline estimations
at 0 ◦C; (c) comparison between the UKF–EKF model voltage and real voltage at 25 ◦C; (d) comparison
of voltage errors between online and offline estimations at 25 ◦C; (e) comparison between the UKF–EKF
model voltage and real voltage at 45 ◦C; (f) comparison of voltage errors between online and offline
estimations at 45 ◦C.
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Figure 8. Results of estimation of the SOC and R0 in BJDST: (a) SOC comparison between the UKF–EKF
and UKF at 0 ◦C; (b) R0 identification of the UKF–EKF at 0 ◦C; (c) SOC comparison between the
UKF–EKF and UKF at 25 ◦C; (d) R0 identification of the UKF–EKF at 25 ◦C; (e) SOC comparison
between the UKF–EKF and UKF at 45 ◦C; (f) R0 identification of the UKF–EKF at 45 ◦C.

In summary, the UKF–EKF established in this study has an accurate and reliable ability to estimate
the SOC and identify parameters of the battery at different temperatures and working conditions.
As can be seen in Tables 2 and 3, the errors of the SOC estimated by the UKF–EKF are within 1.00%,
and the estimated errors of internal resistance are within 15 mΩ. In addition, with the ability to predict
internal resistance in real time, the UKF–EKF can provide a better estimation of voltage, with the
estimated errors of voltage within 20 mV. It is noted that at the same temperature, the predictions of
the SOC, the parameters, and the voltage by the UKF–EKF in the BJDST are better than those in the
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US06, mainly because the load current under the US06 condition is more complex than that under the
BJDST condition. Hence, the RMSEs of the SOC and voltage in the BJDST condition are smaller than
the figures for the US06 condition. In addition, the more complex working conditions influence the
estimations of internal resistance; thus, the identification of R0 in the BJDST condition shows better
results. According to the results, battery parameters are temperature-sensitive, because under the same
working condition, the predictions of the SOC, voltage, and internal resistance are better at 25 and 45
◦C. One of the reasons for this is that at low temperatures (0 ◦C), the battery model is not accurate
enough, which can be reflected in the dynamic hysteresis of OCV in the OCV–SOC curves. At 25
◦C, better results of voltage prediction are obtained with smaller errors of parameter estimation than
those at 45 ◦C, which indicates that the accuracy of the battery model at high temperatures (45 ◦C) is
lower than that at room temperature (25 ◦C). Therefore, compared with other temperatures, the battery
model at room temperature is the least different from the real battery, which results in a better SOC
estimation at room temperature. Although battery parameters change at different temperatures and in
different working conditions, which affects the accuracy of the battery model, the UKF–EKF, with the
ability to update battery parameters in real time, reduces external influences through self-correction,
and obtains satisfactory SOC estimations.

6. Conclusions

SOC estimation is an important factor for BMS in EVs, as it can provide a basis for the energy
management of EVs. In order to obtain an accurate SOC estimation under various conditions, a dual
filter to estimate SOC was established.

(1) SOC estimation is greatly influenced by temperature and working conditions, which can be
reflected by the differences in the OCV–SOC curves at different temperatures and the prediction results
of the two working conditions.

(2) The second-order ECM proposed in this study shows its great performance, since it can
accurately reflect the dynamic changes of batteries and the voltage errors of online and offline
estimations are within 35 mV.

(3) The UKF–EKF, with its ability to identify battery parameters online, is an improvement on
the UKF for SOC estimation, which can be verified in different working conditions (US06 and BJDST)
and at different temperatures (0, 25, and 45 ◦C). Future work will be to verify the feasibility of SOC
estimations of other types of batteries and their feasibility at a wider temperature range.
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Abstract: The state of charge (SOC) estimation of the battery is one of the important functions of
the battery management system of the electric vehicle, and the accurate SOC estimation is of great
significance to the safe operation of the electric vehicle and the service life of the battery. Among the
existing SOC estimation methods, the unscented Kalman filter (UKF) algorithm is widely used for SOC
estimation due to its lossless transformation and high estimation accuracy. However, the traditional
UKF algorithm is greatly affected by system noise and observation noise during SOC estimation.
Therefore, we took the lithium cobalt oxide battery as the analysis object, and designed an adaptive
unscented Kalman filter (AUKF) algorithm based on innovation and residuals to estimate SOC. Firstly,
the second-order RC equivalent circuit model was established according to the physical characteristics
of the battery, and the least square method was used to identify the parameters of the model and
verify the model accuracy. Then, the AUKF algorithm was used for SOC estimation; the AUKF
algorithm monitors the changes of innovation and residual in the filter and updates system noise
covariance and observation noise covariance in real time using innovation and residual, so as to
adjust the gain of the filter and realize the optimal estimation. Finally came the error comparison
analysis of the estimation results of the UKF algorithm and AUKF algorithm; the results prove that
the accuracy of the AUKF algorithm is 2.6% better than that of UKF algorithm.

Keywords: SOC; second-order RC equivalent circuit model; system noise covariance; observation
noise covariance; AUKF

1. Introduction

In recent years, with the escalating energy crisis and environmental problems, low-pollution,
high-efficiency electric vehicles (EVs) have become a hot spot in the automotive industry. Lithium-ion
batteries have the characteristics of small size, light weight, high energy density, large output power
and high safety performance, and have become the first choice for energy storage devices of EVs [1–3].
State of charge (SOC) is used to directly reflect the remaining capacity of the battery, which is an
important basis for the vehicle control system to formulate an optimal energy management strategy.
SOC is an important battery performance parameter; accurate estimation of SOC is of great significance
to improve battery safety performance, extend battery life and ensure reliable operation of battery
system [4,5].

At present, the commonly used SOC estimation methods for lithium batteries include the
ampere-hour integration method, the open circuit voltage method, the neural network method,
the particle filter algorithm and the Kalman Filter (KF) method. Among them, the ampere-hour
integration method estimates the SOC of the battery by accumulating the amounts of charge and
discharge, and at the same time compensates the estimated SOC according to the self-discharge
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rate [6,7]. The ampere-hour integration method is relatively simple; it can dynamically estimate the
battery SOC, but the current integration needs to obtain the initial SOC value, and the battery current
must be accurately collected, which leads to the accumulation of SOC estimation errors over time.
In practical applications, the ampere-hour integration method is usually used in combination with
other methods to improve the estimation accuracy.

The open circuit voltage method is to indirectly fit the corresponding relationship between the
open circuit voltage and the battery SOC, according to the relationship between the open circuit voltage
of the battery and the lithium ion concentration in the battery [8,9]. The open circuit voltage method
requires the battery to be placed statically for a long time to obtain a stable terminal voltage. Therefore,
the open circuit voltage method cannot be used to estimate the SOC of the battery online in real time.

The neural network method is an algorithm for simulating the human brain and its neurons to
deal with nonlinear systems, without in-depth study of the internal structure of the battery. The neural
network method only needs to extract a large number of input and output samples from the target
battery in accordance with its working characteristics in advance, and input it into the system established
by using this method, and the SOC of the battery can be obtained [10,11]. The neural network method
has high operational complexity, and it needs to extract a large amount of comprehensive target sample
data to train the system. The input training data and training method will affect the accuracy of SOC
estimation to a large extent.

The particle filtering is a process of approximating the probability density function by finding
a set of random samples propagating in the state space, replacing the integral operation with the
sample mean and then obtaining the minimum variance estimation process of the system state [12,13].
The particle filter algorithm is suitable for nonlinear non-Gaussian systems. The more particles
used, the more accurate the SOC estimation value. However, as the number of particles increases,
the calculation load increases. Additionally, particle degradation and insufficient particle diversity will
seriously affect the SOC estimation results.

The KF algorithm is a type of optimized autoregressive data filtering algorithm. The essence of
the algorithm is to make an optimal estimate of complex dynamic systems according to the principle
of least mean square error [14–18]. KF algorithm overcomes the serious shortcoming of the current
integration dependence on the initial value, and does not require a large number of sample data,
and can be used to estimate the battery SOC online. In the SOC estimation of electric vehicle power
batteries with complex operating conditions, the KF algorithm has a significant application value, and
has become a hot spot in the research of battery SOC estimation algorithms in recent years [19,20].
The KF is an algorithm that uses the linear system state equation to observe the system input and
output data to optimally estimate the state of the system.

Since KF cannot solve the problem of nonlinear systems, study [21] used the extended Kalman
filter (EKF) to expand nonlinear systems into linear systems using Taylor series. EKF is an extended
form of the standard Kalman filter in non-linear situations, and it is a highly efficient recursive filter.
The basic idea of EKF is to use Taylor series expansion to linearize the nonlinear system, and then use
the Kalman filter framework to filter the signal, so it is a sub-optimal filter. EKF algorithm is used
for SOC estimation in battery management systems (BMSs), and has achieved good results in SOC
estimation based on equivalent circuit model [22–24]. Although this method solves the nonlinear
problem, it ignores high-order terms and increases linear errors, which may cause the filter to diverge.

Reference [25] used the unscented Kalman filter (UKF) to perform an unscented transformation
on a nonlinear system without ignoring higher-order terms, which improved the accuracy of the
estimation. UKF is a combination of unscented transform and standard Kalman filter system. Through
unscented transform, the nonlinear system equation is suitable for the standard Kalman system under
the linear assumption. The basic idea of UKF is Kalman filtering and unscented transform, which can
effectively overcome the problems of low accuracy and poor stability of EKF estimation. As high-order
terms are not ignored, the calculation accuracy of nonlinear distribution statistics is high. However,
the uncertainty of the battery model and system noise is not considered. Uncertainty of model noise and
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system noise will lead to increased error, slow convergence speed and filter divergence. Reference [26]
introduces adaptive filtering on the basis of UKF, and replaces system noise covariance and observation
noise covariance of UKF with adaptive-filter-estimated system noise covariance and observation noise
covariance, respectively. In order to update the system error and the observation error in real time, the
filtering effect is relatively good, but the adaptive filtering cannot truly reflect the system noise and the
observation noise error, so it can be further improved.

In the traditional UKF algorithm [27,28], the system noise covariance and the observation noise
covariance are usually set as constants, which cannot truly reflect the dynamic characteristics of noise,
and have a certain influence on the accuracy of SOC estimation. In view of the shortcomings of the
traditional UKF algorithm in the case of low model accuracy and uncertain noise, we designed an
adaptive unscented Kalman filter (AUKF). The AUKF algorithm monitors the dynamic changes of
innovation and residual in the filter in real time; corrects the system noise covariance and observation
noise covariance in real time; and adjusts the filter gain to improve the estimation accuracy.

The organizational structure of this paper is as follows. In Section 1, the common methods for
battery SOC estimation are introduced, and the methods designed in this paper are briefly introduced.
In Section 2, the second-order RC equivalent circuit model is established, the parameters are identified
and the accuracy of the model is verified. In Section 3, the traditional UKF algorithm and the AUKF
algorithm designed in this paper are introduced. In Section 4, the convergence speed and estimation
accuracy of the UKF algorithm and AUKF algorithm are compared through experiments. In Section 5,
the work and research results of this paper are summarized.

2. Lithium Battery Model

2.1. The Second-Order RC Equivalent Circuit Model of a Lithium-Ion Battery

An accurate battery model is the basis for SOC estimation. Battery models can be roughly divided
into electrochemical models [29,30], mathematical models [31] and equivalent circuit models [32,33].
Although the accuracy of the electrochemical model is high, the structure is complex and difficult to
implement, and it is not suitable for modeling actual working conditions. The mathematical model has
a simple structure and is easy to calculate, but it is difficult to describe the external characteristics of the
battery. Considering the complexity and accuracy of the battery model, this paper uses a second-order
RC equivalent circuit model [34]; the schematic diagram is shown in Figure 1.

 
Figure 1. Schematic diagram of the second-order RC equivalent circuit.

In Figure 1, UOC(SOC) represents the battery open circuit voltage related to SOC; Ibat represents
the open circuit current of the battery, and the discharge current is a positive value; Ubat represents
the battery terminal voltage; Rsi represents the ohmic internal resistance of the battery; Rt f and Ct f
represent the polarization resistance and polarization capacitance of the battery respectively; Rts and Cts
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represent concentration polarization resistance and concentration polarization capacitance respectively;
Ut f and Uts represent the voltage across the polarization capacitance and the concentration polarization
capacitance, respectively. According to Kirchhoff’s law, the state equation and output equation of the
equivalent circuit can be obtained:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dUt f

dt = − Ut f
Rt f Ct f

+
Ibat
Ct f

dUts
dt = − Uts

RtsCts
+

Ibat
Cts

dSOC
dt = − Ibat

Qbat

(1)

Ubat = UOC(SOC) −RsiIbat −Ut f −Uts (2)

where Qbat is the rated capacity of the battery.

2.2. Parameter Identification

Parameter identification technology is a technology that combines theoretical models and
experimental data for prediction. Parameter identification determines the parameter values of a
group of models based on the model established by the experimental data, so that the numerical results
calculated by the model can better fit the test data, so that the unknown process can be predicted.

In this section, we identify the parameters through the voltage response curve of battery discharge
and combine Equations (1) and (2); the parameters to be identified are Rsi, Rt f , Ct f , Rts, Cts and function
relationship UOC(SOC).

The cell model used in the experiment in this paper was the SAMSUNG 30Q INR18650 power
lithium cell. The specific parameters of the cell are shown in Table 1. The experimental object of this
paper is a battery composed of 10 parallel lithium cobalt oxide cells. The battery was discharged by 1 C
pulsed for 3 min, placed statically for 2 h and discharged to the cut-off voltage in cycles. The pulsed
discharge voltage is shown in Figure 2a, and the pulsed discharge current is shown in Figure 2b.

Table 1. Power lithium cell parameters.

Parameter Value

Cell model SAMSUNG 30Q INR18650
Rated capacity 3000 mA h
Rated voltage 3.6 V

Discharge cut-off voltage 2.5 V
Weight 48.1 ± 1.5 g

Size 18.2 mm (D) × 65.0 mm (H)

 
(a) (b) 

Figure 2. Pulsed discharge current and voltage of the battery. (a) Battery pulsed discharge voltage.
(b) Battery pulsed discharge current.
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2.2.1. Parameter Identification of the Functional Relationship between Uoc and SOC

The battery SOC and open circuit voltage Uoc were obtained by the static method [35], and the
corresponding values of SOC and open circuit voltage Uoc are shown in Table 2.

Table 2. Uoc and SOC corresponding relationship value.

UOC (V) SOC UOC (V) SOC

4.1617 1 3.7317 0.5034
4.0913 0.9503 3.6892 0.4537
4.0749 0.9007 3.6396 0.4040
4.0606 0.8510 3.5677 0.3543
4.0153 0.8013 3.5208 0.3046
3.9592 0.7517 3.4712 0.2550
3.9164 0.7020 3.3860 0.2053
3.8687 0.6524 3.2880 0.1556
3.8163 0.6027 3.2037 0.1059
3.7735 0.5530 3.0747 0.0563

Use MATLAB to perform the least squares fitting of the data in Table 2 to obtain the equation of
the functional relationship between Uoc and SOC; the equation is shown in Equation (3). The fitted
relationship curve between Uoc and SOC is shown in Figure 3.

UOC(SOC) = 122.4786 ∗ SOC8 − 401.4734 ∗ SOC7 + 485.6818 ∗ SOC6

−239.2806 ∗ SOC5 + 3.7304 ∗ SOC4 + 44.9020 ∗ SOC3 − 19.8057 ∗ SOC2

+5.0932 ∗ SOC + 2.8341
(3)

Figure 3. Uoc–SOC fitting curve.

2.2.2. Parameter Identification of Resistance and Capacitance

This paper combines the characteristics of resistance and capacitance, and analyzes the voltage
response curve of the battery pulsed discharge to identify the resistance and capacitance. The partial
discharge voltage diagram of the battery pulsed discharge is shown in Figure 4, and the battery voltage
response curve can be divided into four stages:
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Figure 4. Partial enlargement of pulsed discharge voltage.

Section A-B: The battery turns from a static state to a discharged state, and the terminal voltage
drops abruptly. From the second-order equivalent circuit diagram, it can be seen that Ut f and Uts

cannot be abruptly changed. The sudden drop in the voltage of section A-B is caused by the ohmic
internal resistance Rsi.

Section B-C: During the continuous discharge, electrochemical polarization and concentration
polarization work together to make the voltage drop in the form of exponential changes. Before section
B-C, Ut f and Uts are zero, so section B-C can be regarded as a zero state response.

Section C-D: The battery discharge current disappears and the battery terminal voltage rises
rapidly. It is the same as the section A-B. It can be considered that it is caused by the ohmic internal
resistance Rsi.

Section D-E: The battery is at rest. Due to the electrochemical polarization and concentration
difference, the voltage is slowly increased. At this time, there is no current discharge, which can be
regarded as zero input response.

According to the sections A-B and C-D in Figure 4, the ohmic internal resistance can be obtained:

Rsi =
(UA −UB) + (UD −UC)

2Ibat
(4)

where UA, UB, UC, UD are the battery terminal voltages corresponding to points A, B, C and D in
Figure 4 respectively; Ibat is the discharge current of the battery.

Solving the differential equation according to Equation (1) gives Equation (5):

⎧⎪⎪⎨⎪⎪⎩ Ut f (t) = Ut f (0)e
−t/τt f + IbatRt f (1− e

−t/τt f
)

Uts(t) = Uts(0)e−t/τts + IbatRts(1− e
−t/τts )

(5)

where τt f = Rt f Ct f , τts = RtsCts are the fast time constant and slow time constant respectively; Ut f (0)
and Uts(0) are the initial voltages across Ct f , Cts, respectively.

According to Figure 4, the discharge current is zero in the DE segment, as a zero input response
state. Taking point D as the starting moment, the zero input response expression of the RC loop can be
obtained as shown in Equation (6):

{
Ut f = Ut f (0)e

−t/τt f

Uts = Uts(0)e−t/τts
(6)
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Combined with Equation (2), the battery output equation at zero input response is:

Ubat(t) = UOC(SOC) −Ut f (0)e
−t/τt f −Uts(0)e−t/τts (7)

Equation (7) can be simplified:

Ubat(t) = UOC(SOC) − b1e−λ1t − b2e−λ2t (8)

where τt f =
1
λ1

, τts =
1
λ2

, Ut f (0) = b1, Uts(0) = b2.
By using Equation (8) as the fitting function, and using MATLAB to perform the least squares

fitting on the DE segment in Figure 4, the value of b1, b2,λ1,λ2 can be obtained.
According to the BC segment in Figure 4, it can be regarded as a zero state response. Taking point

B as the initial moment, the expression of the zero state response of the RC loop can be obtained as
shown in Equation (9): {

Ut f (t) = IbatRt f (1− e−t/τt f )

Uts(t) = IbatRts(1− e−t/τts)
(9)

Combined with Equation (2), the battery output equation at zero state response is:

Ubat(t) = UOC(SOC) − IbatRsi − IbatRt f (1− e−t/τt f ) − IbatRts(1− e−t/τts) (10)

Take τt f , τts obtained by the Equation (8) fitting into Equation (10), use Equation (10) as the fitting
function and use MATLAB to perform the least squares fitting of the BC segment in Figure 4; that will
provide the values of a1, a2, and then the value of Rt f , Rts is obtained:

⎧⎪⎪⎨⎪⎪⎩ Rt f =
a1
Ibat

Rts =
a2
Ibat

(11)

According to τt f = Rt f Ct f , τts = RtsCts, the value of Ct f , Cts can be obtained.
According to the battery discharge voltage curve and battery characteristics, the results of

identifying the parameters of the battery model by using the least square method in MATLAB are
shown in Figure 5.

 
(a) (b) 

Figure 5. Result of parameter identification. (a) The value of the resistance. (b) The value of
the capacitor.

Figure 5 shows the change of battery resistance and capacitance with SOC when the battery is
discharged with constant current pulsed at a constant temperature of 25 ◦C. When the battery SOC
value is between 0% and 20%, the resistance and capacitance values change greatly, and when the
battery SOC value is between 20% and 100%, the resistance and capacitance values change relatively
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little. Considering that the lower limit SOC value of battery in the actual working environment is 20%,
this paper takes the average value of the resistance and capacitance of the battery’s SOC in the range of
20–100% as the battery parameters for the subsequent SOC estimation experiment.

The average value of the resistance and capacitance of the battery with SOC in the range of
20–100% is shown in Table 3.

Table 3. Lithium-ion battery parameter identification results.

Rsi (Ω) Rtf (Ω) Rts (Ω) Ctf (F) Cts(F)

0.0037 0.0019 0.0035 23,340 501,270

2.2.3. Verifying the Battery Model

Take the battery parameters identified in Table 3 into Equations (1) and (2), use the pulsed
discharge current as input and compare the output terminal voltage with the actual terminal voltage.
The comparison between the true value of the battery terminal voltage and the model value is shown
in Figure 6; the model error value of the battery terminal voltage is shown in Figure 7; and the relevant
parameters of the model error are shown in Table 4.

Figure 6. True value and modeled values of terminal voltage.

Figure 7. Terminal voltage error.

Table 4. Model error parameters.

Error Type MAE RMSE

Value 0.51% 0.8%

In Figure 6, the actual value of the battery terminal voltage is compared with the model value of
the battery terminal voltage; the terminal voltage curve of the battery model is basically consistent
with the true terminal voltage curve of the battery. In Figure 7, the terminal voltage error of the battery
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model is shown; the terminal voltage error value of the battery model fluctuates around ±0.05 V.
In Table 4, the terminal voltage error value of the battery model is calculated; the mean absolute error
(MAE) of the terminal voltage of the battery model is 0.51%; the root mean square error (RMSE) of
the terminal voltage of the battery model is 0.8%. The above results prove that the second-order RC
equivalent circuit model of the battery designed in this paper is reasonable and reliable, and the battery
model was able to be used in subsequent experiments.

3. Design of the SOC Estimation Algorithm

For a nonlinear system, the state equation and observation equation considering the system noise
and observation noise are as shown in Equation (12):

{
xk = F(xk−1, uk) + w
yk = G(xk−1, uk) + v

(12)

where k is the current moment, F(xk−1, uk) is the nonlinear system state transition equation, G(xk−1, uk)

is the nonlinear observation equation, xk is the state variable, uk is the known input, yk is the observation
signal, w is the system noise and v is the observation noise.

According to the second-order equivalent circuit model of the battery, combining Equations (1)
and (2), the discretized state equation and observation equation of the equivalent circuit model of the
battery can be shown in Equation (13):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ut f (k)
Uts(k)

SOC(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
− Δt
τt f 0 0

0 e−
Δt
τts 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ut f (k− 1)
Uts(k− 1)

SOC(k− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rt f (1− e
− Δt
τt f )

Rts(1− e−
Δt
τts )

− Δt
Qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ibat(k)

Ubat(k) = UOC(SOC) + [−1 − 1 0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ut f (k)
Uts(k)

SOC(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦− Ibat(k)Rsi

(13)

Equations (13) can be simplified to Equations (14):

{
xk = Akxk−1 + Bkuk

yk = UOC(SOC) + Cxk −Rsiuk
(14)

where

xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ut f (k)
Uts(k)

SOC(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
− Δt
τt f 0 0

0 e−
Δt
τts 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rt f (1− e

− Δt
τt f )

Rts(1− e−
Δt
τts )

− Δt
Qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Ibat(k) = uk, Ubat(k) =

y(k), C = [ −1 −1 0 ], Rsi is the ohmic internal resistance of the battery.
According to the KF principle, combining Equations (12) and (14), the first derivative of the

nonlinear observation equation is calculated at the current state value, and the observation matrix can
be obtained as Equation (15).

Hk =
∂G(xk, uk)

∂xk
=
[
−1 −1 ∂Uoc(SOC)

∂x

]
(15)

3.1. Design of the Unscented Kalman Filter Algorithm

The unscented Kalman filter (UKF) is a combination of the unscented transform (UT) and
the standard Kalman filter system, and uses the unscented transform to adapt the nonlinear system

91



Electronics 2020, 9, 1425

equations to the standard Kalman system under the linear assumption. UKF uses statistical linearization
technology, which mainly linearizes the nonlinear function of random variables through linear
regression of n Sigma points collected in the prior distribution. This linearization is more accurate than
Taylor series linearization. The basic idea of UKF is Kalman filtering and unscented transform. Since
UKF does not ignore high-order terms, it can effectively overcome the problems of low accuracy and
poor stability of EKF estimation.

We conducted simulation experiments in MATLAB, and used the UKF algorithm to perform SOC
estimation experiments under urban dynamometer driving schedule (UDDS) conditions, where the
initial value x0 = [0 0 0.6]T, P0 = diag([10−5, 10−5, 10−3]), Q = 10−7 × eye(3), R = 1.

The UDDS operating conditions are shown in Figure 8. The estimation terminal voltage of the
battery using the UKF algorithm for SOC estimation is shown in Figure 9. The SOC estimation results
of the battery using the UKF algorithm for SOC estimation are shown in Figure 10.

 
(a) (b) 

Figure 8. UDDS operating conditions. (a) UDDS operating voltage. (b) UDDS operating current.

 
(a) (b) 

Figure 9. The terminal voltage result of the battery was estimated using the UKF algorithm. (a) Estimated
value and true value of terminal voltage of the battery. (b) Estimated error value of the terminal voltage
of the battery.

 
(a) (b) 

Figure 10. The battery SOC estimation result was estimated using the UKF algorithm. (a) Estimated
value and true value of SOC of the battery. (b) Estimated error value of SOC of the battery.
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In Figure 9, the battery terminal voltage estimated by the UKF algorithm is shown. In Figure 9a,
the estimated terminal voltage is compared with the true terminal voltage, and the estimated terminal
voltage is not much different from the true terminal voltage. In Figure 9b, the terminal voltage error
value of the battery fluctuates greatly. In Figure 10, the SOC of the battery estimated by UKF is shown.
In Figure 10a, the estimated SOC of the battery differs greatly from the true value before 5000 seconds.
In Figure 10b, the SOC estimation error of the battery just approached zero after 5000 seconds, and the
convergence speed of the filter is slow.

3.2. Design of the Adaptive Unscented Kalman Filter Algorithm

The UKF algorithm uses UT to replace Taylor series expansion to transform a nonlinear system into
a linear system, improving the accuracy of the algorithm. However, in the UKF algorithm, the system
model noise and observation noise are set as constants, which cannot reflect the effect of real noise
on the filter, which causes the SOC estimation error to increase or even diverge. In order to solve the
above problems, we designed an AUKF algorithm; the algorithm is improved on the basis of the UKF
algorithm; the algorithm monitors the change of innovation and residual in the filter in real time, and
calculates the variance of innovation and residual by the moving window method. The system noise
covariance is corrected in real time by the innovation variance, and the observation noise covariance is
corrected in real time by the residual variance.

The AUKF algorithm process is as follows:
(1) Determine the initial value of state value x̂0 and the initial value of state error covariance P0:

x̂0 = E[x0] (16)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(17)

(2) Calculate Sigma point:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0

k = x̂k−1

xi
k−1 = x̂k−1 +

√
(L + λ)Pk−1, i = 1, 2 . . .L

xi
k−1 = x̂k−1 −

√
(L + λ)Pk−1, i = L + 1, L + 2, . . . 2L

(18)

where L is the length of the state vector, the length of the state vector in this paper is 3 and the weight
value calculation is shown in Equation (19):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ = α2(L + ki) − L

W0
m = λ

L+λ , Wi
m = 1

2(L+λ) , i = 1, 2 . . . 2L

W0
c = λ

L+λ + 1− α2 + β, Wi
c =

1
2(L+λ) , i = 1, 2 . . . 2L

(19)

where α = 0.01, ki = 0, β = 2.
(3) Time update.
Update predicted status value xk:

xi
k|k−1 = F(xi

k−1) (20)

xk =
2L∑

i=0

Wi
mxi

k (21)

Update predicted observation yk.

yi
k|k−1 = G(xi

k|k−1) (22)
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yk =
2L∑

i=0

Wi
m[G(xi

k|k−1) + v] =
2L∑

i=0

Wi
myi

k|k−1 (23)

Update system covariance prediction value Pxx|k.

Pxx|k =
2L∑

i=0

(Wi
c(x

i
k|k−1 − xk)(xi

k|k−1 − xk)
T
) + Qk−1 (24)

Calculate innovation value dk and innovation variance value Cdk
.

dk = yk − yk (25)

Cdk
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k−1

k Cdk−1
+ 1

k dkdk
T k ≤W

1
W

k∑
i=k−W+1

didi
T k >W

(26)

Update system noise covariance Qk.

Qk = Kk−1Cdk
Kk−1

T (27)

(4) Status update.
Update observation covariance prediction value Pyy|k.

Pyy|k =
2L∑

i=0

(Wi
c(yi

k|k−1 − yk)(yi
k|k−1 − yk)

T
) + Rk−1 (28)

Update covariance Pxy|k.

Pxy|k =
2L∑

i=0

Wi
c(x

i
k|k−1 − xk)(yi

k|k−1 − yk)
T

(29)

Calculate Kalman gain Kk.

Kk =
Pxy|k
Pyy|k

(30)

Update estimated state value x̂k.

x̂k = xk + Kk(yk − yk) (31)

Update estimated observation ŷk.
ŷk = Hkx̂k (32)

Update error covariance Pk.
Pk = Pxx|k −KkPyy|kKT (33)

Calculate the residual value rk and the residual variance value Crk .

rk = yk − ŷk (34)

Crk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k−1

k Cdr−1 +
1
k rkrk

T k ≤W

1
W

k∑
i=k−W+1

riri
T k >W

(35)
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Update the observation noise covariance Rk.

Rk = Crk + HkPkHk
T (36)

The AUKF algorithm flow is shown in Figure 11.

 

x P Q R

kQ

kR

kPkK

k kx y

k kx y

Figure 11. The flow of the AUKF algorithm.

3.2.1. Adaptive System Noise Covariance Qk

From Equations (18), (21), (24), (27) and (33), it can be seen that when the Qk value is too large,
system covariance prediction Pxx|k increases, so that the next predicted state value xk+1 becomes larger,
which eventually leads to the estimated state value x̂k+1 being too large, which increases the SOC
estimation error. Therefore, the system noise covariance Qk can be updated in real time to correct the
influence of the system error on the estimation result.

The innovation dk at time k is defined as the difference between the actual observation value yk
and the predicted observation value yk. The expression of innovation is shown in Equation (37):

dk = yk − yk (37)

According to the moving window method, the variance of innovation Cdk
is calculated as:

Cdk
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k−1

k Cdk−1
+ 1

k dkdk
T k ≤W

1
W

k∑
i=k−W+1

didi
T k >W

(38)
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where W is the length of the moving window. Through the innovation variance Cdk
, the system noise

covariance Qk can be calculated [36] as shown in Equation (39),

Qk = Kk−1Cdk−1
Kk−1

T (39)

Since the system state variable has a dimension of 3, Qk is a 3 × 3 symmetric matrix. This paper

will represent Qk as Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, where Q12 = Q21, Q13 = Q31, Q23 = Q32. The Qk value

when using the AUKF algorithm to estimate the SOC in MATLAB is shown in Figure 12.

Figure 12. Q value of AUKF algorithm.

It can be seen from Figure 12 that since the initial value of SOC is uncertain, the system error is
relatively large at this time, so the system noise covariance Qk is relatively large. By calculating the
value of innovation dk, and then updating Qk in real time to correct the error covariance Pk in time, the
system noise is corrected in time, and the value of Qk approaches to zero.

3.2.2. Adaptive Observation Noise Covariance Rk

From Equations (28), (30) and (33), it can be seen that the value of Rk determines the weight
of the observation value to the estimated result. When the Rk value increases, the filter gain Kk
decreases, resulting in the effect of the observation value on the estimated state value becoming smaller.
Conversely, when the value of Rk decreases, the filter gain Kk will increase, which will increase the
proportion of the observation value in the estimated state value. Therefore, the observation noise
covariance Rk adjusts the Kalman gain Kk in real time to change the proportion of the predicted
observation value in the estimation result, thereby reducing the influence of the observation noise on
the estimation result.

The residual rk at time k is defined as the difference between the actual observation value yk and
the estimated observation value ŷk. The expression of the residual is shown in Equation (40):

rk = yk − ŷk (40)

According to the moving window method, the variance of residual Crk is calculated as:

Crk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k−1

k Crk−1 +
1
k rkrk

T k ≤W

1
W

k∑
i=k−W+1

riri
T k >W

(41)
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Through the residual variance Crk , the observation noise covariance Rk can be calculated [37] as
shown in Equation (42),

Rk = Crk + HkPk−1Hk
T (42)

The Rk value when using the AUKF algorithm to estimate the SOC in MATLAB is shown in the
Figure 13.

Figure 13. R value of AUKF algorithm.

It can be seen from Figure 13 that the value of Rk fluctuates in a small range. The residual rk
calculates the difference between the actual observation value and the estimated observation value,
and then realizes the real-time update of Rk, and then adjusts the Kalman gain Kk to achieve the
optimal estimation.

4. Comparison of SOC Estimation Algorithms

The battery SOC was estimated using the unscented Kalman filter algorithm; Qk and Rk in the
adaptive unscented Kalman filter algorithm were analyzed and simulated—see Section 3. In this
section, we describe how the AUKF algorithm was used to estimate the battery SOC under different
load cycles and different initial SOC values. The results of SOC estimation using AUKF algorithm and
the results of SOC estimation using UKF algorithm are compared and analyzed.

4.1. Under Pulsed Discharge Conditions

We carried on the simulation experiment in MATLAB, using the AUKF algorithm to carry on
the SOC estimation experiment under the pulsed discharge condition. Firstly, the initial values of
the AUKF algorithm were set as follows: x0 = [0 0 SOC]T,P0 = diag([10−5, 10−5, 10−3]), W = 1180,
Q = 10−7 × eye(3), R = 1. Then, the AUKF algorithm was used to estimate the SOC under pulsed
discharge conditions. The robustness of the proposed AUKF algorithm was tested under different
initial SOC conditions. Finally, the results of SOC estimation using UKF algorithm and AUKF algorithm
were compared and analyzed.

Experiments and analyses were performed under pulsed discharge conditions. For the initial
SOC = 0.4, the comparison between the results estimated using the UKF algorithm and the AUKF
algorithm is shown in Figure 14. For the initial SOC = 0.6, the comparison between the results estimated
using the UKF algorithm and the AUKF algorithm is shown in Figure 15. For the initial SOC = 0.8,
the comparison of the results estimated using the UKF algorithm and the AUKF algorithm is shown in
Figure 16.
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(a) (b) 

 
(c) (d) 

Figure 14. For the initial SOC = 0.4, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under pulsed discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

 
(a) (b) 

 
(c) (d) 

Figure 15. For the initial SOC = 0.6, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under pulsed discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

From Figures 14a, 15a and 16a, it can be seen that under pulsed discharge conditions, the value of
the battery terminal voltage estimated by the AUKF algorithm is closer to the true value than the value
estimated by the UKF algorithm value. From Figures 14b, 15b and 16b, it can be seen that under pulsed
discharge conditions, the terminal voltage error value estimated by the AUKF algorithm is smaller
than the terminal voltage error value estimated by the UKF algorithm. Additionally, the error value of
the terminal voltage estimated by the AUKF algorithm is relatively small. According to Figures 14c,
15c and 16c, it can be seen that the SOC value estimated using the AUKF algorithm is closer to the true
value. From Figures 14d, 15d and 16d, it can be seen that the SOC estimation error of AUKF is smaller
than that of UKF, and the convergence speed of AUKF algorithm is faster. In summary, under pulsed
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discharge conditions and different initial SOC conditions, the robustness of the AUKF algorithm for
estimating the SOC of the battery is better than that of the UKF algorithm.

 
 

(a) (b) 

 
(c) (d) 

Figure 16. For the initial SOC = 0.8, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under pulsed discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

4.2. Under UDDS Discharge Conditions

We carried on the simulation experiment in MATLAB, using AUKF algorithm to carry on the
SOC estimation experiment under the UDDS discharge condition. Firstly, the initial values of the
AUKF algorithm were set as follows: x0 = [0 0 SOC]T, P0 = diag([10−5, 10−5, 10−3]), W = 1180,
Q = 10−7 × eye(3), R = 1. Then, the AUKF algorithm was used to estimate the SOC under UDDS
discharge conditions. The robustness of the proposed AUKF algorithm was tested under different
initial SOC conditions. Finally, the results of SOC estimation using UKF algorithm and AUKF algorithm
were compared and analyzed.

Experiments and analyses were performed under UDDS discharge conditions. For the initial
SOC = 0.4, the comparison between the results estimated using the UKF algorithm and the AUKF
algorithm is shown in Figure 17. For the initial SOC = 0.6, the comparison between the results estimated
using the UKF algorithm and the AUKF algorithm is shown in Figure 18. For the initial SOC = 0.8,
the comparison of the results estimated using the UKF algorithm and the AUKF algorithm is shown in
Figure 19.

From Figures 17a, 18a and 19a, it can be seen that under UDDS discharge conditions, the value
of the battery terminal voltage estimated by the AUKF algorithm is closer to the true value than the
value estimated by the UKF algorithm. From Figures 17b, 18b and 19b, it can be seen that under UDDS
discharge conditions, the terminal voltage error value estimated by the AUKF algorithm is smaller
than the terminal voltage error value estimated by the UKF algorithm. Additionally, the error value of
the terminal voltage estimated by the AUKF algorithm is relatively stable. According to Figures 17c,
18c and 19c, it can be concluded that the SOC value estimated using the AUKF algorithm is closer to
the true value. From Figures 17d, 18d and 19d, it can be seen that the SOC estimation error of AUKF is
smaller than that of UKF, and the convergence speed of AUKF algorithm is faster. In summary, under
UDDS discharge conditions and under different initial SOC conditions, the robustness of the AUKF
algorithm for estimating the SOC of the battery is better than the UKF algorithm.
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(a) (b) 

 
(c) (d) 

Figure 17. For the initial SOC = 0.4, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under UDDS discharge conditions. (a) Comparison of terminal voltage. (b)
Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

 
(a) (b) 

 
(c) (d) 

Figure 18. For the initial SOC = 0.6, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under UDDS discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.
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(a) (b) 

 
(c) (d) 

Figure 19. For the initial SOC = 0.8, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under UDDS discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

In order to further verify the accuracy of the SOC estimation by the AUKF algorithm, the terminal
voltage value and the SOC value estimated by the UKF algorithm and the AUKF algorithm were
subjected to error analysis. The error results of the battery SOC estimation under different load cycles
and different initial SOC values were averaged. The error analysis results of the terminal voltage are
shown in Table 5. The error analysis results of the estimated SOC are shown in Table 6.

Table 5. Terminal voltage error.

Algorithm

Error Type
MAE RMSE

UKF 1.33% 1.95%
AUKF 0.54% 0.9%

Table 6. SOC error.

Algorithm

Error Type
MAE RMSE

UKF 2.9% 3.3%
AUKF 0.63% 0.7%

The mean absolute error (MAE) can avoid the problem of the deviations cancelling each other out,
and can well describe the degree of data dispersion. The root mean square error (RMSE) measures the
deviation between the observation value and the true value, and can well reflect the accuracy of the
measurement. Table 5 shows that the MAE of the terminal voltage estimated by AUKF was smaller,
indicating that the terminal voltage estimated by AUKF is less discrete than that of UKF algorithm;
the RMSE of terminal voltage estimated by AUKF algorithm was smaller than that of UKF algorithm.
Table 6 shows that the SOC value estimated by the AUKF algorithm had a smaller MAE than that of
UKF algorithm. The RMSE of SOC estimated by AUKF algorithm was 2.6% smaller than that of UKF
algorithm. The above error analysis results indicate that the accuracy of SOC estimation using AUKF
algorithm is better than that of UKF algorithm.
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5. Conclusions

In this paper, an adaptive unscented Kalman filter algorithm was designed to estimate the SOC of
a lithium cobalt oxide battery. The second-order RC equivalent circuit model was used for nonlinear
modeling of batteries. The least square method was used to identify the parameters of the battery
model and for simulations in MALAB according to the battery voltage characteristics. The established
model was verified under pulsed discharge conditions; the model error is 0.8%, which provides an
accurate model for SOC estimation using AUKF algorithm. The system noise covariance Q value
and observation noise covariance R value in the unscented Kalman filter algorithm were analyzed in
this paper. The AUKF algorithm updates the system noise covariance Q and the observation noise
covariance R in real time by monitoring the changes of the innovation and residual in the filter to
adjust the filter gain and achieve the optimal estimate. The AUKF algorithm and UKF algorithm were
used for SOC estimation under different load cycles and different initial SOC values. The estimated
result of AUKF algorithm was more accurate, and the convergence rate of filtering was faster than that
of UKF algorithm. To further verify the effectiveness of the AUKF algorithm, the estimated error of the
terminal voltage and the estimated error of the SOC were analyzed. The error results show that the
error of SOC estimation using AUKF algorithm was 0.7%, which was 2.6% smaller than that of SOC
estimation using UKF algorithm.
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Abstract: Because of the complex physiochemical nature of the lithium-ion battery, it is difficult to
identify the internal changes that lead to battery degradation and failure. This study develops an
ultrasonic sensing technique for monitoring the commercial lithium-ion pouch cells and demonstrates
this technique through experimental studies. Data fusion analysis is implemented using the ultrasonic
sensing data to construct a new battery health indicator, thus extending the capabilities of traditional
battery management systems. The combination of the ultrasonic sensing and data fusion approach is
validated and shown to be effective for degradation assessment as well as early failure indication.

Keywords: lithium-ion battery; ultrasonic sensing; health monitoring; state of health; failure indication;
data fusion

1. Introduction

Lithium-ion batteries are widely used as the power supply for products ranging from portable
consumer products to transportation power sources. However, they are prone to experience gradual
degradation (capacity fade and resistance increase) or catastrophic failures during usage. The gradual
degradation is driven by complex electrochemical side reactions (e.g., active material dissolution,
electrode particle cracking, and deterioration of electrode adhesion) over the long period of normal
cycling [1]. The catastrophic failures of a battery include a sudden drop in battery capacity, a sudden
increase in battery temperature, swelling due to gas generation, and even fire/explosion [2]. A battery
can fail catastrophically due to manufacturing defects, mechanical abuse (e.g., shock, or puncture),
electrical abuse (e.g., overcharge, or over-discharge), or thermal abuse (e.g., external heating) [3].

Battery degradation and failures result in poor operational availability and, in some cases, safety
issues [4–7]. Monitoring battery performance and health is a means to improve the safety and reliability
of battery-powered devices. Conventional battery management systems (BMSs) evaluate the health
state of a battery by tracking the state of health (SOH, typically defined as the ratio of the maximum
deliverable capacity to the initial capacity) using complex state estimation algorithms [8]. However,
early detection of battery failure is somewhat difficult based on these SOH estimation techniques
because the SOH changes over long periods of time, which makes estimation conservative and slow to
react to sudden failures. Furthermore, the conventional BMSs are limited to monitoring the extrinsic
parameters (e.g., current, voltage, and temperature) and do not provide insight into the changes inside
the battery [9–13].

Due to the complex physiochemical nature of batteries, it is difficult to employ sensors that directly
probe the internal chemical properties of the battery (e.g., lithium concentration and electrode properties).
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Nevertheless, several state-of-the-art sensors have been developed to monitor the internal physical
states of batteries. Fiber optic sensors have been used for internal temperature [14] and strain [15,16]
detection. An integrated microsensor has been developed using a micro-electro-mechanical system,
which can in situ monitor internal temperature in a coin cell [17]. Although these cutting-edge
techniques are promising, they are too costly to be implemented and the effect of these built-in sensors
on battery reliability and safety has not been assessed.

Ultrasonic inspection is one of the most widely used approaches in the context of structural health
monitoring [18] and nondestructive evaluation [19]. Ultrasonic waves are propagated through the
test object, allowing the material properties, internal damage, and structural integrity to be accurately
monitored in real time. Hence, ultrasonic inspection can potentially be used to probe the underlying
material properties changes inside batteries, and thus provide an early indication of failures.

Studies on ultrasonic sensing of batteries, including those by the Ultran Group [20], Sood et al. [21],
and Li et al. [22] have reported detection of gas voids, electrolyte nonuniformity, and cracks within
the electrode layer of batteries. Ladpli et al. [23–25] and Hsieh et al. [26] studied ultrasonic trends
associated with the change of the state of charge (SOC, the charge remaining in the battery with respect
to the capacity) and the SOH over charge/discharge cycles. Gold et al. [27] developed a linear model
between the ultrasonic transmission signal and the SOC for the SOC determination over one cycle.
Similarly, Davies et al. [28] developed a support vector regression (SVR) model to predict the battery
SOC and SOH using a combination of ultrasonic and voltage data. These studies focused on battery
performance evaluation and did not consider the sudden failure scenario during operation. However,
early prediction of battery sudden failures is crucial for improving battery safety because sudden
failures often induce catastrophic events, such as fire or explosion.

This study enhances the state of the art by expanding the use of ultrasonic sensing for early
indication of battery sudden failure. Two types of battery tests were conducted to investigate the
evolution of the ultrasonic waves—a cycling test and an abusive test (overcharge test). During the
cycling test, batteries were cycled under different conditions, and correlations between the ultrasonic
features and the health state of the battery were identified using the Spearman correlation. During the
abusive test, the ultrasonic signal was continuously monitored, and the evolution of the ultrasonic
features within the overcharge process was analyzed. Then, a data fusion approach and a health
indicator (HI) were developed to quantify the battery health state and indicate catastrophic failure
induced by overcharge. Section 2 describes the theoretical background for battery ultrasonic sensing,
Section 3 presents the battery cycling and abusive tests, and Section 4 discusses the ultrasonic test
results. Section 5 describes the developed battery health monitoring method with one case study.
Conclusions are presented in Section 6.

2. Ultrasonic Sensing for Lithium-Ion Batteries

There are two modes for the ultrasonic inspection. The first is the pulse-echo mode, where the
ultrasonic signal is sent and received by the same transducer, and the second is the through-transmission
mode, where the ultrasonic signal transmits through the object and is received by the second
transducer [21]. The through-transmission mode needs two transducers that are placed on opposite
sides of the battery, which requires more access to the battery than the pulse-echo mode and increases
the cost. Thus, the ultrasonic testing of the batteries in this study was conducted in the pulse-echo
mode as shown in Figure 1a.

To conduct the ultrasonic test, the transducer sends a compressional pulse through the battery.
The signal propagates through the battery, which consists of many layers stacked together, e.g., positive
electrode/separator/negative electrode/separator [29]. The ultrasonic velocity in each layer depends on
the material properties. For an isotropic elastic material, the ultrasonic velocity is:

V =

√
4
3 G + K
ρ

(1)
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where G is the material shear modulus, K is the bulk modulus, and ρ is the material density.
At the interface between two different layers, part of the ultrasonic signal is transmitted through

the interface, while the rest is reflected. The greater the ultrasonic impedance (Z) mismatch between
two layers, the greater the percentage of energy reflected at the interface. The ultrasonic impedance (Z)
of a material is defined as the product of its density (ρ) and ultrasonic velocity (V).

Z = ρ×V (2)

Figure 1b shows a typical ultrasonic response signal for a commercial lithium-ion battery.
The ultrasonic signal travels through the battery. Part of the signal reflects different interfaces inside the
battery, which forms the oscillation in the first 6 μs, while the other part of the signal reaches the bottom
of the battery and then reflects back to the top, which is highlighted as the first echo signal. Note
that the reflected signal causes a secondary reflection when reaching the top, and thus forms repeated
echoes, as labeled in Figure 1b. These echoes have similar shapes and time intervals. The amplitude of
the echo peak decreases as the travel time increases because the ultrasonic signal attenuates when it
propagates through the layers inside the battery due to reflections and viscoelastic losses.

 
(a) 

 
(b) 

Figure 1. (a) Schematic for battery ultrasonic sensing and (b) representative ultrasonic response signal
of a lithium-ion battery.

Two features of interest, i.e., the maximum amplitude of the first echo (defined as PA) and
the time-of-flight (TOF), are extracted from the ultrasonic response signal and used to analyze the
performance of the battery. The essence of battery degradation is the change of battery material properties
(density and modulus), which leads to the change of both ultrasonic impedance and ultrasonic velocity.
To indicate the change of ultrasonic impedance, the amplitude of the reflected ultrasonic signal is used
because they are closely related. Specifically, we chose the maximum amplitude of the first echo (PA) to
represent the ultrasonic amplitude due to its uniqueness and representativeness. Regarding the change
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of ultrasonic velocity, we chose the TOF as the ultrasonic velocity indicator. The TOF (time between the
actuation signal and the PA) reflects the travel time of the ultrasonic signal inside the battery, and thus
represents the change of ultrasonic velocity and/or thickness.

3. Experimental Setup

Experiments were performed on two types of commercial LiCoO2/graphite pouch batteries to
study the evolution of ultrasonic signals. The first battery type (type A) had a rated capacity of 1.8 Ah,
and the second type (type B) had a rated capacity of 0.7 Ah. The voltage range for both types was the
same, from 2.75 V to 4.2 V. Two samples were tested for each type.

In the experiment (see Figure 2), a thermocouple and a piezoelectric transducer (PZT-5A, 1 MHz)
were mounted on the surface of the batteries with epoxy, instead of the glycerin. This provided clean
signals and reduced signal variability. No extra pressure was applied to the batteries. The charge/discharge
test was conducted using an Arbin BT2000 battery tester, and the current and voltage of the batteries
were recorded. The battery surface temperature was recorded with an Agilent 34970A (Santa Clara,
CA, USA) data logger. A Lecoeur ultrasonic device (pulser-receiver) was used to send and receive the
ultrasonic signal. The piezoelectric transducer was actuated with a 50 ns pulse. The amplitude of the
actuation signal was 100 V. The sampling frequency for the received signal was 80 MHz.

Figure 2. Battery test bench.

To investigate the feasibility of ultrasonic sensing, several cycling tests and an overcharge test were
designed and conducted at 45 ◦C in a temperature chamber to induce the accelerated aging and failure
of the batteries. A test temperature of 45 ◦C was chosen because it is higher than room temperature but
does not cause catastrophic failure during normal cycling conditions based on our previous experience.
The purpose of these tests was to find the relationship between the battery degradation and ultrasonic
signal in a short testing time. The test procedures are summarized in Table 1.

Table 1. Battery test methods.

Test Type Test Method Test Description

Cycling test

Normal cycling

CC charge at 0.5C until 4.2 V, then CV charge until current <0.05C
Rest 10 min

Discharge at 1C to 2.75 V
Rest 10 min

Overcharge
cycling

CC charge at 0.5C until 4.5 V, then CV charge until current <0.05C
Rest 10 min

Discharge at 1C to 2.75 V
Rest 10 min

Abusive test Overcharge CC charge at 0.5C until 5 V
CV charge until the battery swells
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For the cycling test, all the batteries were discharged using 1C (C/x is a current rate at which the
battery will be fully charged in x hours) to 2.75 V, whereas, different charge profiles were applied
to different types of batteries. Type A batteries (A1/A2) were charged using normal charge profiles,
i.e., they were charged using 0.5C constant current (CC) to 4.2 V and kept at 4.2 V constant voltage
(CV) until the current dropped to 0.05C. Type B batteries (B1/B2) were charged using overcharge
profiles, i.e., they were charged using 0.5C to 4.5 V and kept at 4.5 V until the current dropped to 0.05C.
The ultrasonic signal was measured at 0% SOC after every cycle.

After a period of cycling test, a forced overcharge test was conducted on battery A1 to understand
the change in the ultrasonic signal when it came across a sudden abuse. Battery A1 was charged using
0.5C to 5 V, then maintained at 5 V until the battery swelled. The ultrasonic measurement was taken
every 30 s during testing. In addition, the X-ray images for battery A1 before and after overcharge
were measured to provide visualizations for the structural changes inside the battery.

4. Ultrasonic Results for Lithium-Ion Batteries

The ultrasonic results for both the cycling tests and abusive test are presented in this section.

4.1. Ultrasonic Results for the Cycling Tests

Since the SOH is widely used as a way to represent the degree of degradation, the relationships
between the SOH and the ultrasonic features were investigated for the cycling tests. Battery A1 was
cycled under normal charge/discharge conditions. Figure 3a shows the SOH of battery A1 over the
cycle number. The initial capacity of battery A1 was 1.88 Ah. The average capacity fading rate was
about 0.02% per cycle. After 100 cycles and 210 cycles, the remaining capacity was 97.69% and 96.02%
of the initial capacity, respectively. Because of the regeneration phenomena of lithium-ion batteries
during the rest time [30], battery A1 recovered some capacity when the ultrasonic measurement was
conducted. The evolution of the ultrasonic signal over the cycle number, in Figure 3b, shows that the
waveform of the signal shifts over cycles. The ultrasonic signal at cycle 100 deviates from the signal at
cycle 1, which was considered as the baseline signal. The deviation at cycle 210 is more prominent as
compared with that at cycle 100.

To further analyze the ultrasonic features (i.e., TOF and PA), they are extracted from each cycle,
respectively. Figure 3c shows that the TOF basically increases as the battery degrades. Increasing of
TOF indicates decreasing of the ultrasound velocity, which is a result of the changes in the electrode
densities and modulus (i.e., the lithium content changes in each electrode) as a battery degrades [28,31].
Note that an increase of TOF could also indicate an increase in the thickness. However, changes of
thickness are ignored in this case as they are not the main contributor to TOF changes according to [28].
In addition, the signal amplitude, in Figure 3c, generally increases before cycle 50, followed by a
fluctuation after cycle 50. A sharp decrease of signal amplitude occurs at cycle 136, which indicates
possible gas generation inside the battery [21].

To determine the capability of the signal to indicate the battery SOH, the Spearman correlation
coefficient was employed to calculate the correlation between the ultrasonic features (TOF and PA) and
the battery SOH [32]. The Spearman correlation coefficient, rs, is computed as follows:

rs =
cov(xi, yi)

σxi, σyi
(3)

where cov(xi, yi) is the covariance of the rank variables xi and yi for the original data xi and yi, and σxi,
σyi are the standard deviations of the rank variables. The rs ranges from −1 to +1 and rs = −1 (+1)
indicates that one of the variables is monotonically decreasing (increasing) with the other.

Figure 3d shows the Spearman correlation coefficients between the ultrasonic features and the
SOH from the initial cycle to different cycles. The negative correlation coefficient values between the
SOH and the TOF show that the TOF increases with the decreasing SOH. In addition, the absolute
values of the correlation coefficients are always larger than 0.94, which indicates that the TOF is highly
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correlated with the SOH over cycles. However, as shown in Figure 3d, a strong correlation (<−0.75)
between the PA and the SOH is only seen before cycle 100 but not after that.

Figure 3e shows the SOH versus the TOF for battery A1. A linear model is established by fitting
the experimental data. A “closer-to-1” adjusted R-square (R2) and a “closer-to-0” root mean square
error (RMSE) show a better goodness-of-fit of the model. In this case, the R2 of 0.949 and the RMSE of
0.002677 indicate that there is a linear relationship between the SOH and the TOF for battery A1.

  

(a)  (b) 
 

(c)  (d) 

(e) 

Figure 3. Cycling test results for battery A1: (a) cycling performance, (b) ultrasonic signals, (c) ultrasonic
features, (d) Spearman correlations between the ultrasonic features and state of health (SOH), and (e)
plot of SOH as a function of time-of-flight (TOF).

110



Electronics 2019, 8, 751

Battery A2 underwent the same cycling test as A1. Figure 4a shows the cycling performance for
battery A2. The capacity at cycle 63 is 98.35% of the initial capacity. Figure 4b,c shows the evolution
of the TOF and PA, respectively, and their corresponding correlations with the battery SOH were
also calculated. Both of these features show high correlations with the SOH. Figure 4d exhibits the
relationship between the TOF and SOH of this battery. We observe that the TOF-SOH curve can also be
well fitted using a linear model as battery A1.

 
(a) (b) 

 
(c) (d) 

Figure 4. Cycling test results for battery A2: (a) cycling performance, (b) time-of-flight, (c) amplitude
of the first echo peak, and (d) plot of SOH as a function of TOF.

Batteries B1 and B2 were cycled under overcharge conditions to accelerate battery degradation
with more severe physical changes shown than batteries A1 and A2. Figure 5a shows the average
capacity fading rates for batteries B1 and B2 were 0.48% and 0.52%, respectively, which are higher as
compared with batteries A1 and A2 under normal cycling conditions. Similar to the analysis of batteries
A1 and A2, Figure 5b shows the evolution of the TOF for batteries B1 and B2 and the correlation
between the TOF and the SOH for each battery is calculated. Figure 5c plots the change in the PA with
the cycle number for both these batteries and shows that both these features are highly correlated
with the SOH. However, the TOF shows a negative correlation with the SOH, while the PA shows a
positive correlation.

According to the ultrasonic analysis from the cycling tests, the evolution of the PA does not appear
to be a reliable indicator to characterize the battery SOH because it does not indicate the SOH properly
for battery A1 after 100 cycles. In addition, the PA shows a negative correlation with SOH for batteries
A1 and A2 and a positive correlation for batteries B1 and B2. Such inconsistent behavior of the PA
under different cycling conditions is likely caused by the complex interplay of multiple layers inside
the battery because each interface offers the possibility for the ultrasonic signal to split [26]. However,
the TOF always shows a strong and consistent correlation with the battery SOH in both the normal and
overcharge cycling tests. Therefore, the TOF is a more reliable indicator of battery health than the PA.
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(a) 

 
(b) (c) 

Figure 5. Cycling test results for batteries B1 and B2: (a) cycling performance, (b) time-of-flight, (c)
amplitude of the first echo peak.

To further explain the change in the TOF with the battery SOH, Figure 6 shows the evolution of
the TOF during a single cycle. As we can see, the TOF decreased during the charging process, while
the TOF increased during the discharging process. Referring to [28], as the battery discharges, lithium
de-intercalates from the graphite and intercalates into LiCoO2, which decreases the elastic moduli for
both graphite and LiCoO2. According to Equation (1), this will decrease the ultrasonic velocity and
cause the increase of TOF during the discharging process.

Figure 6. (a) Voltage data during a C/2 charging and discharging cycle, (b) corresponding evolution of
TOF taken every 20 s.
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Similarly, active lithium is consumed by side reactions (such as deposition of metallic lithium)
when the battery ages. Therefore, at 0% cell SOC, the degree of the cathode lithiation (cathode SOC)
may decrease with battery degradation, which may be the possible reason for the increase of TOF with
battery degradation.

4.2. Ultrasonic Results for the Abusive Test

As mentioned in Section 3, an overcharge test (up to 5 V) was forced onto battery A1 after a period
of cycling test (210 cycles) to investigate the feasibility of the ultrasonic signal under a more severe
abusive condition than the previous one. The voltage and current for battery A1 during the overcharge
process are shown in Figure 7a. Figure 7b shows the battery surface temperature and temperature
change rate. Battery A1 was charged using a constant current of 0.5C (0.9 A) to 5 V, then maintained at
5 V. During the constant current charging period, the temperature varied between 45 ◦C and 50 ◦C,
but started to rise when the voltage exceeded 4.709 V. After that, both the voltage and temperature
increased sharply. During the constant voltage charging period (holding at 5 V), the current did not
keep decreasing as expected, but increased rapidly at 3.697 h. At the same time, swelling of this battery
was visually observed. The temperature at 3.697 h was 62.19 ◦C. For safety concerns, the test was
eventually stopped. At that time, the current of the battery reached 1C (1.8 A).

Figure 7c shows the top view of the battery before and after overcharge. Figure 7d shows the
X-ray images (the side view) of the battery. The thickness of the swollen battery increased as compared
with the battery before overcharge. In addition, there was electrode ruffling after the battery was
overcharged. This result is different from the situation before overcharge which shows the aligned
electrode layers. The changes in the thickness and the interlayers are mainly attributed to gas generation
under overcharge. Some gases, such as carbon dioxide (CO2) and methane (CH4), have been identified
in batteries operating under overcharge conditions [33]. As the result and a product of electrolyte
decomposition, the gas species are beyond the scope of this paper.

The ultrasonic features during the overcharge test are shown in Figure 7e,f. Figure 7e shows that
the TOF shifts towards the lower value before 2.5 h, which is in agreement with [26] (due to the change
of SOC). The TOF begins to increase at about 2.8 h. One possible interpretation of this increase is
that the TOF has already indicated a tiny amount of gas generated inside the battery. In addition, an
increase of the thickness of battery layers may also increase the value of TOF. Then, the TOF increases
sharply in a similar time range as the temperature increases. Subsequently, the TOF shows the same
decreasing trend as the temperature when the test is stopped. Figure 7f shows the change in the
PA during the overcharge process. Similar to the cycling test results, the PA does not show a stable
indication of the overcharge-induced battery failure.

 
(a) (b) 

Figure 7. Cont.
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(c) (d) 

 
(e) (f) 

Figure 7. Overcharge test results for battery A1: (a) voltage and current profiles, (b) temperature profile,
(c) photos of the battery (top view), (d) X-ray images of the battery (side view), (e) evolution of TOF,
and (f) evolution of PA.

5. Ultrasonic Health Monitoring for Lithium-Ion Batteries

As summarized in the ultrasonic test results, the TOF was found to be highly related to the
underlying degradation and failure process for the batteries, and therefore can be used for battery
health monitoring. However, evaluation of battery degradation and failure will be arbitrary if a unique
sensor is used because one sensor can have large uncertainties. Other than the ultrasonic signal,
temperature is indicative of the health status of a battery, especially for some catastrophic failures such
as thermal runaway. Therefore, to enhance the reliability of battery health monitoring, a data fusion
method was developed that fuses the temperature with the ultrasonic signal.

5.1. Methodology

Mahalanobis distance (MD) is a distance measure with multivariate data that determine the
similarity between an unknown sample and a collection of known samples [34]. It is sensitive to
changes in different parameters because it considers the correlation among parameters, and it eliminates
the scale problem by normalizing different parameters [35]. Due to these advantages, the MD approach
was used as the data fusion method in this study. The MD values were calculated based on the
temperature and ultrasonic features and used as the health indicators (HIs).
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Figure 8 shows a flowchart of the MD-based battery health monitoring method. A dataset from
the pristine battery (i.e., the healthy battery) was used as the training data to construct the baseline and
determine the testing thresholds. Then, the MD value of the data from the test battery was calculated
and compared with the thresholds to determine the health of the test battery.

Figure 8. Developed battery health monitoring method.

The data collected from the healthy battery are denoted Xij, where i = 1, . . . , m; j = 1, . . . , n; m is
the dimension of the feature vector; and n denotes the number of the observations. Each observation
is normalized using the mean (Xi) and the standard deviation (Si) of the feature calculated from the
healthy data. Thus, a parameter’s normalized value is:

Zij =

(
Xij −Xi

)
Si

(4)

where

Xi =
1
n

n∑
j=1

Xij (5)

Si =

√√√∑n
j=1

(
Xij −Xi

)2
(n− 1)

(6)

Then, the MD value for the healthy data is calculated by the following equation:

MDj = ZT
j C−1Zj (7)

where C is the correlation matrix.

C =
1

(n− 1)

n∑
j=1

ZjZT
j (8)

Two types of test data were used to calculate the HIs for the purpose of health monitoring. To
assess degradation, the HI was calculated based on the features at a specific state (the same SOC
level) in order to eliminate the effect of SOC on the features. For the indication of early failure,
the HI was obtained using the features, which were continuously monitored during the operating
process, in order to provide an immediate response to a sudden failure. For different types of test data,
different thresholds were established. For a battery, a degradation threshold is determined based on its
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degradation criterion. Generally, it is suggested to replace a battery if the capacity is less than 80% of
its initial value [36]. Thus, the MD value, which corresponded to SOH = 80%, was set as the threshold
for the battery degradation assessment.

Determination of the early failure threshold is an important step in order to have advanced
warning of failure. A fixed threshold is defined based on expert knowledge. However, this approach
may not be able to indicate early failure when knowledge of failure is not available. Therefore, it is
useful to implement the generalized probabilistic approach to determine the threshold. The MD values
are always positive and do not follow a normal distribution. A Box–Cox transformation transforms
the data with these kinds of characteristics into a normal distribution. Then the mean (μ) and standard
deviation (σ) of the transformed data are obtained. Since the intervals (−∞, μ + 3σ) contain 99.9%
of the MD data, the three standard deviation limit (μ + 3σ) was chosen as the threshold for failure
indication, which has been demonstrated for various electronic products [35,37,38].

The Box–Cox transformation is defined as follows [39]:

y(λ) =

⎧⎪⎪⎨⎪⎪⎩
(yλ−1)
λ , λ � 0

ln(y), λ = 0
(9)

where y = y1, y2, . . . , yn is the original MD value and y(λ) is the transformed MD value. The power λ
is obtained by maximizing the log-likelihood function.

f (y,λ) = −n
2

ln

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

(yi(λ) − y(λ))2

n

⎤⎥⎥⎥⎥⎥⎦+ (λ− 1)
n∑

i=1

ln(yi) (10)

where

y(λ) =
1
n

n∑
i=1

yi(λ) (11)

The mean (μ) and standard deviations (σ) of the transformed healthy MD values are used
to determine the failure threshold. The upper bound (μ + 3σ) is used as a threshold for failure
indication [38].

For a test battery, each observation is normalized using the mean and standard deviation from the
healthy data. Then, the MD value for each observation is calculated using Equation (7) and transformed
using Equation (9). When the transformed test MD values cross the thresholds, a failure is considered
to occur.

5.2. Battery Health Monitoring Results

As shown in Section 4, battery A1 underwent a period of cycling test and an overcharge test,
sequentially. It is used as a case study to evaluate the developed health monitoring method. Figure 9a
shows a scatter plot of the TOF and temperature for battery A1. First, the baseline data correspond to
the first 10 data points from the cycling test. They refer to 100% to 98% SOH and are all measured at 0%
SOC. Then, the test data 1 are extracted from the subsequent cycling test. They are also measured at 0%
SOC but used for degradation assessment. Finally, the test data 2 correspond to the data measured
during the 5 V overcharge process after 210 cycles. They are used for failure indication. Here, since
tests were conducted under the well-controlled lab conditions, the data are used without a denoising
process. In practice, the measured data may contain noise, these data are denoised before calculating
the MD values.

The MD values corresponding to the training (baseline) data and the test data 1 for degradation
assessment are shown in Figure 9b. These MD values were transformed into normally distributed
variables using Box–Cox. To set the degradation threshold (DT), a linear model between the SOH and
TOF was built based on the training data. Then, the estimated TOF value (TOF_DT) corresponding to
SOH = 80% was obtained based on the linear model. In addition, the average value of the temperatures
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(T_DT) from the training data was calculated. The MD value between (TOF_DT and T_DT) and the
baseline was calculated and set as the DT. In order to quantify the degree of degradation, the MD
values were normalized using the DT value. The range of the normalized MD value is from zero to one.
A larger MD value indicates greater degradation, i.e., one means the battery degrades severely and is not
able to be used and zero means the battery is healthy. According to Figure 9b, the normalized MD value
shows an increasing tendency with the increasing cycle number, which means the battery degrades
with the increasing cycle number. The MD value does not reach the degradation threshold until the end
of the cycling test. The battery capacity is 96% of the initial capacity at the end of the cycling test, which
also indicates the battery does not reach its degradation criterion (80% of its initial capacity). Therefore,
the degradation assessment based on the proposed HI is consistent with the capacity test result.

 
(a) (b) 

(c) (d) 

Figure 9. Health monitoring for battery A1: (a) scatter plot of the TOF and temperature, (b) degradation
assessment result based on Mahalanobis distance (MD) values, (c) failure indication result based on
MD values, and (d) failure indication result based on the temperature change rate.

The transformed MD values corresponding to test data 2 for failure indication are shown in
Figure 9c. The failure threshold (FT) is plotted as the dashed line in Figure 9c. The temperature change
rate (dT/dt) is plotted in Figure 9d. These two figures compare the indication time of failure by using
the MD values and the temperature change rate, respectively. As shown in Figure 9c, when the MD
value exceeded the failure threshold, the failure was indicated at 2.825 h. This time corresponds to
the battery voltage at 4.564 V and the surface temperature at 46.86 ◦C. However, if the failure time is
determined only in terms of the first peak of dT/dt, the battery failure was only identified at 3.642 h,
which corresponds to close to 5 V voltage and a temperature of 55.65 ◦C. After that point, the temperature
increased sharply, which means there was little time to prevent the battery from swelling. Therefore,
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the MD-based HI provides earlier failure indication time and a longer time margin for countermeasures
to prevent further catastrophic failure as compared with monitoring only the temperature.

6. Conclusions

This paper developed an ultrasonic health monitoring method for lithium-ion batteries. To begin
with, the feasibility of using ultrasonic sensing to probe the health status of a lithium-ion battery was
demonstrated through battery cycling tests and an overcharge abusive test (up to 5 V). The ultrasonic
results from the cycling test showed a strong dependence between the ultrasonic TOF and battery
degradation. The overcharge test results showed that the ultrasonic TOF is sensitive to the battery
swelling, which offers the potential for battery failure indication.

More importantly, an effective method for battery health monitoring was developed, which offers
a significant improvement over the state-of-the-art ultrasonic techniques in terms of providing an
early indication of sudden failure. A new data fusion MD-based health indicator was constructed
by integrating the data from the temperature sensor and the ultrasonic transducer. The effectiveness
of the health indicator was verified by the case study of battery A1, which underwent a cycling test
followed by an overcharge test. The cycling test showed that the MD value increases with the battery
aging. This means it can be used to determine battery degradation straightforwardly without the
information on the battery’s discharge capacity. The overcharge test (up to 5 V) showed that the health
indicator can indicate battery failure 0.872 h ahead of battery swelling and 0.817 h earlier than the
temperature-based method. In comparison to the temperature-based method, the developed method
provides earlier warning of catastrophic failure and a longer time margin for failure prevention.

The developed ultrasonic health monitoring method can assess battery degradation as well as
indicate battery sudden failure without needing the battery to be fully charged/discharged. This health
monitoring method can be applied to batteries during their operation by integrating simple and
small equipment (a pulser-receiver module and a piezoelectric transducer) into the existing battery
management system. Similar techniques can be extended and applied to batteries with different
chemistries, scales, and form factors. In future research, we will investigate the feasibility of using an
ultrasonic inspection method to identify different aging mechanisms of the lithium-ion batteries.
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Abstract: A new battery charger, based on a multiphase resonant converter, for a high-capacity 48 V
LiFePO4 lithium-ion battery is presented. LiFePO4 batteries are among the most widely used today
and offer high energy efficiency, high safety performance, very good temperature behavior, and
a long cycle life. An accurate control of the charging current is necessary to preserve the battery
health. The design of the charger is presented in a tight correlation with a battery model based on
experimental data obtained at the laboratory. With the aim of reducing conduction losses, the general
analysis of the inverter stage obtained from the parallel connection of N class D LCpCs resonant
inverters is carried out. The study provides criteria for proper selection of the transistors and diodes
as well as the value of the DC-link voltage. The effect of the leakage inductance of the transformer
on the resonant circuit is also evaluated, and a design solution to cancel it is proposed. The output
stage is based on a multi-winding current-doubler rectifier. The converter is designed to operate in
open-loop operation as an input voltage-dependent current source, but in closed-loop operation, it
behaves as a voltage source with an inherent maximum output current limitation, which provides
high reliability throughout the whole charging process. The curve of efficiency of the proposed
charger exhibits a wide flat zone that includes light load conditions.

Keywords: lithium-ion battery; battery modeling; battery chargers; power supplies; resonant inverters;
phase control

1. Introduction

Lithium iron phosphate (LiFePO4) batteries have a great electrochemical performance
and a good thermal stability, which makes them safer and more robust. This lithium-based
technology exhibits a very low internal resistance offering a high current rating. Their
cycle life is significantly longer compared to other technologies [1,2]. The applications
of LiFePO4 batteries are, among others, for storage systems in renewable energy facili-
ties, powering electric vehicles and uninterruptible power supplies (UPS) in data centers,
telecommunications, and hospitals. A battery model is an important tool for designing the
charger allowing the study of the dynamic response of the battery-charger system along
the whole charging process, wherein the converter load, i.e., the equivalent resistance of
the battery, varies from almost short-circuit to open-circuit values. Most of the battery
models are aimed to improve the battery management system (BMS) performance, pro-
viding information about important parameters of the battery such as the state of charge
(SOC) [3]. The estimation of the battery SOC and power capacity is usually solved by
applying three methods, i.e., the look-up table method, the model-based method, and the
artificial intelligence method [4–7]. In addition to that, the BMS is responsible for ensuring
the battery operation within safety margins of temperature and sets the overvoltage and
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under voltage protection limits. In this work, the battery modeling is presented in a tight
correlation with the battery charger design.

The technology of resonant converters is chosen to implement the proposed battery
charger. The advantages of the resonant conversion of energy, such as high frequency of
operation, sinusoidal waveforms, and low switching losses are well known [8]. Among all
possible configurations of resonant converters, the series resonant converter and the LLC
converter have been widely used [9–12]. Usually, the converter is designed to operate as a
voltage source with some kind of control to limit the charging current. In this work, the
converter is designed as a voltage-dependent current source. In this approach, the circuit
presents an inherent maximum current limitation, which is a safer operation mode. The
LiFePO4 technology reaches current rates as high as hundreds of amps. In circuit design
for high-current applications, conduction losses are a major design limitation [13,14]. In
high-current resonant converters, increasing the dc-link voltage, Vdc, and using a step-
down transformer (n > 1) reduces the amplitude of the resonant currents in the inverter
stage, minimizing the conduction loss in transistors and resonant inductors. New Wide
Band Gap (WBG) devices enable the operation at an 800 V to 1700 V dc-link voltages
range [15]. WBG devices achieve high performance at high current levels with important
simplifications in the power circuit. However, the cost of WBG devices limits their use for
certain applications.

In this work, a generalized design method aimed at minimizing the conduction loss
is presented for multiphase resonant converters [16]. The number of parallel branches
and therefore phases, N, in the inverter stage is calculated according to the maximum
output power and the expected efficiency. This alternative offers another degree of freedom
for achieving efficiencies higher than 90% even at relatively low values of Vdc and using
low-cost transistors. Moreover, the multi-phase structure makes it possible to regulate
the charging current at constant switching frequency by shifting the phase of the output
voltages of each class D section of the inverter.

This paper is organized as follows: After the introduction, Section 2 describes the
charging profile of the target LiFePO4 battery, which is oriented to obtain a fast charge
without reducing its lifetime. The battery model is presented in Section 3. The analysis of
the proposed charger and main design equations are developed in Section 4. The efficiency
of the charger is studied in Section 5. A detailed step-by-step design sequence of the
proposed charger is explained in Section 6. In Sections 7 and 8, the results obtained for
the modeling of the battery and experimental waveforms to verify the performance of
the prototype are presented, ending with a discussion about Si vs. SiC solutions and
concluding remarks.

2. Charging Method

The main characteristics of the commercial 48NPFC50 LiFePO4 battery (Narada Power
Source Co., Ltd., Hangzhou, China) [17] used in this work are 48 V nominal voltage and
50 Ah nominal capacity (Cn) i.e., 2.4 kWh of power capacity. The battery consists of fifteen
(Ns = 15) stacked cells in series and incorporates a BMS that guarantees the right balance-
of-charge of all cells. Thus, the voltage across each cell is assumed identical to any other.
The battery charger is designed to meet all operational limits settled by the BMS.

The charging protocol recommended for LiFePO4 batteries is the well-known [18]
constant current (CC)–constant voltage (CV) method (i.e., CC–CV). During the CC stage,
the battery is charged at the maximum current rate, which depends on the battery capacity
and technology. Once the battery voltage reaches its maximum charging voltage specified
in the battery data sheet, the CV stage begins. At this point, the power drawn from the
charger is the maximum, which happens at 90% of the SOC approximately. During the CV
stage, the charging current diminishes. Three experimental charging profiles are carried on
at the battery laboratory facility shown in Figure 1. They are evaluated at room temperature
(25 ◦C) using the battery test equipment PEC SBT-10050 (PEC, Leuven, Belgium) and taking
into account that the battery is fully discharged as the initial condition.
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Figure 1. (Left) Laboratory facility for battery testing. (Right) Battery connected to SBT-10050
test equipment.

Those profiles correspond to the battery charge at current rates equal to Cn/5, Cn/2,
and Cn during the CC stage. The results are shown in Figure 2.

 

Figure 2. Experimental charging profiles at 10, 25, and 50 A for a 48NPFC50 LiFePO4 battery.

The temperature is observed by the BMS during the whole charging process, and it
implements the corresponding protection (maximum value 55 ◦C for charging) to prevent
the battery aging. Electro-thermal models for studying the temperature of a lithium-ion cell
as a function of the charging/discharging current have been reported in [19,20]. The user
manual recommends a conservative value, Cn/5, for the charging current rate; however,
LiFePO4 technology tolerates fast-charging protocols [21–24]. In this work, in order to
shorten the charging time, a maximum charging current rate of 20 A (approximately Cn/2)
is chosen the charger design. According to the experimental characterization of the battery,
charging at Cn/2 keeps the temperature of the battery well below 55 ◦C.

3. Battery Model

Although the LiFePO4 cell is a complex physical system with several variables in-
volved, a good trade-off among simplicity, accuracy, and insight information is obtained
with the electrical parameters-based models [25], as shown in Figure 3. The single cell
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model is generalized by affecting all parameters by the total number of cells, Ns, under the
assumption that all cells are identical, as shown in Figure 3.

Figure 3. Battery model considering Ns stacked cells in series.

The state of charge (SOC) [26] of the battery is defined as the ratio of the battery charge,
Q, to the nominal capacity, Cn.

SOC =
Q
Cn

·100% (1)

The model calculates the SOC [26], integrating the battery current-dependent current
source, ibat, which charges/discharges the capacitor Cn. The SOC is equal to the voltage
across the capacitor Cn, vCn varying from zero to one corresponding to exhausted to fully
charged battery, respectively.

SOC(t) = SOC(to) +
1

Cn

t∫
to

ibat(t)dt (2)

The voltage-controlled voltage source, Nsvqoc(SOC), dependent on the voltage vCn,
represents the quasi-open-circuit battery voltage, where vqoc, is the quasi-open-circuit
voltage across one single cell. The experimental measurement of vqoc as a function of the
SOC is a time-consuming task because it should be obtained while keeping the cell in
electrochemical equilibrium [27], charging and discharging the cell at a very low current
rate. From the experimental study of one single cell, the vqoc as a function of the SOC was
obtained by charging and discharging the cell at Cn/50. This test required 100 h. The result
is shown in Figure 4.

Figure 4. Quasi-open-circuit voltage of the cell as a function of the state of charge (SOC) ob-
tained at Cn/50 for a complete charge/discharge cycle. Solid line: Charge trajectory. Dashed line:
Discharge trajectory.
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As it is observed in Figure 4, the quasi-open-circuit cell voltage, vqoc, incorporates
the effect of the voltage hysteresis caused by the battery structure [27]. The maximum
hysteresis is about ≈ 40 mV within the 30% SOC region, and the average is ≈ 20 mV within
the 40% to 80% SOC region. The experimental test results show a cell capacity Cn = 50 Ah,
which is represented in the model by a capacitance Cn = 180,000 F.

The electrolyte and electrode resistance are modeled by RΩ. In addition to that,
the model also includes two time constants, which are modeled by networks RtCt and
RdCd. The time constant RtCt is associated to chemical reactions and charge transportation
phenomenon in the electrodes. This time constant is within the range from milliseconds
to a few seconds. In contrast, the time constant RdCd governs the mass diffusion in the
electrolyte and electrodes and is within the tens of seconds range [27]. From the point of
view of the battery charger design, the electrical parameters of the battery at the end of the
CC stage are of interest. At this point, the power supplied by the charger is the maximum.
For a given SOC, the battery model can be simplified to a resistance, rBat, in series with a
voltage source equal to the quasi-open-circuit voltage NsVqoc. Assuming the battery is in
steady state, rbat is obtained from the model shown in Figure 3 as

rBat = Ns·(RΩ + Rt + Rd). (3)

The specific values Rt and Rd for a given SOC should be obtained from the dynamic
study of the battery, once the time constants associated with transport and diffusion
phenomena were obtained. Finally, the battery voltage is obtained as:

VBat = NsVqoc + IBatrBat. (4)

4. Multiphase LCpCs Resonant Converter

The proposed battery charger is a multiphase resonant converter. The general form of
the circuit is shown in Figure 5, where the battery is modeled in steady state by its internal
impedance, rBat, in series with the quasi-open-circuit battery voltage NsVqoc.

i1

Cp

L

Vdc

Li2 L i3

tRac

L iN

IBat

C rBat

NsVqoc

n

iac
-  vac  

LM

Cs

Lkp

LksL L

D D

L L

D D

L L

D D

Lks Lks

Figure 5. General architecture of the battery charger based on an N-phase LCpCs resonant inverter
with an M-winding current-doubler rectifier as output stage. Multiple configurations are possible
according to the N and M values.
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The AC side is a multiphase resonant inverter, which consists of N paralleled LCpCs
class D sections [16,28]. Among the possible configurations of the resonant network, the
configuration LCpCs of the LCC family is chosen to achieve a current source behavior while
preserving the zero voltage switching (ZVS) mode of transistors [8,29]. Unlike the LLC
converter, the proposed LCpCs does not require a gapped-core transformer [30], so the
magnetizing inductance, LM, is high enough to neglect its impact in the later analysis.

The DC side consists of an M-winding current multiplier, which is derived from the
parallel connection of an M current-doubler rectifier [31,32]. The low output voltage of
this application recommends the use of Schottky diodes without any control circuit in the
secondary side, which is a simplification in comparison to solutions based on synchronous
rectification (SR).

4.1. Resonant Inverter Stage

The converter is analyzed considering the general case, where each midpoint voltage
vi of all class D sections has associated a phase-angle Ψ0, Ψ1, . . . , Ψi−1. To illustrate this
assumption, the midpoint voltages, vi, are shown in Figure 6.

Figure 6. Output voltages of each inverter section obtained in the midpoint of the transistors leg.

Using the fundamental approximation, the input voltages, vi, are represented with the
exponential form given in (5),

Vi =
2Vdc

π
·e−jΨi−1 , (5)

where i ∈ [1, 2, . . . , N] is the phase number. In steady state and using the low ripple
approximation, the M-winding output rectifier is reduced to an equivalent impedance
Rac [8,29]. The resonant inverter stage is analyzed using the simplified circuit model shown
in Figure 7.

Figure 7. Simplified model using the fundamental approximation for circuit analysis purposes of the
inverter stage.

The parallel parameters of the resonant inverter are defined in Table 1.
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Table 1. Parameters of the LCpCs resonant inverter.

Parallel Resonant Frequency Parallel Characteristic Impedance Parallel Quality Factor

ωp = 1√
LCp/N

Zp = ωpL = N
ωpCp

Qp = NRac
Zp

4.1.1. AC Side Output Current

During the CC stage of the charging process, the converter provides an inherent
current limitation, protecting the battery and extending its life. The current source behavior
of the resonant converter is achieved by fixing the switching frequency at ω = ωp, where
ωp is the parallel resonant frequency, as given in Table 1. Once the switching frequency
is fixed at ω = ωp, the output current, seen from the primary side of the transformer, i.e.,
through Cs, Iac, is calculated by (6).

Iac = −2Vdc
πZp

{
N

∑
m=1

sin Ψm−1 + j
N

∑
m=1

cos Ψm−1

}
(6)

From (6), the current source behavior is verified, given that Iac has no dependence on
the load.

4.1.2. Switching Mode

The switching losses are minimized by ensuring the zero voltage switch (ZVS) on the
primary side of the converter [8,29]. The ZVS mode requires sufficient phase-delay of the
resonant current with respect to the input voltage. A high value of Qp reduces the reactive
energy in the resonant converter, which is beneficial from the point of view of reducing the
conduction loss. However, some reactive energy must be accepted for ensuring the ZVS
mode of all transistors. The complex form, Ii, of each resonant current is given in (7) as a
function of the angles Ψ0, Ψ1, . . . , ΨN−1.

Ii =
2Vdc
πZp

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qp
N

N
∑

m=1
cos Ψm−1 −

(
Cp

NCs
− Lk

L

) N
∑

m=1
sin Ψm−1 − sin Ψi−1

−j
[

Qp
N

N
∑

m=1
sin Ψm−1 +

(
Cp

NCs
− Lk

L

) N
∑

m=1
cos Ψm−1 + cos Ψi−1

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

In order to determine the power factor angle, φi, of each transistor’s leg, the input
impedance Zi = Vi/Ii, of each phase is calculated. The power factor angle, φi is obtained
using φi = angle(Zi) as a function of the control angles, Ψ0, Ψ1, . . . , ΨN−1, the number of
phases, N, and the quality factor, Qp. Upon substitution of Ψ0 = Ψ1 = . . . ΨN−1 = 0◦ in (5)
and (7), φi at the maximum output current is obtained:

φi = arctan

⎛
⎝1 + Cp

Cs
− N Lk

L

Qp

⎞
⎠. (8)

From (8), it can be observed that the effect of leakage inductance referred to the
primary side of the transformer, Lk, is more significant for high-power as well as for high-
frequency designs, where the value of inductance of the resonant circuit, L, is usually
low, and a high value of leakage inductance could produce the loss of the ZVS mode.
However, the series disposition of Lk and Cs enables the cancelation of the Lk effect on the
AC side by calculating Cs to achieve, at the switching frequency, the series resonance with
Lk. According to this proposal, Cs is obtained from (9).

Cs =
L

NLk
Cp (9)
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With the cancellation of the Lk effect, the value of the power factor angle, φi, depends
essentially on the value of the quality factor Qp, which is set during the design process of
the converter. The minimum value of power factor angle for achieving ZVS, φzvs, depends
on the dead time, td, of the transistors’ driver and the switching frequency ωp [33].

ϕzvs =
tdωp

2π
·360

◦
(10)

As design criteria, a value of power factor angle φi = 2φzvs is assumed at nominal
conditions for achieving a reliable operation of the converter. This is the most restrictive
design condition for operating in ZVS mode for the whole range of variation of the control
angle Ψ. From (8) to (10), the value of the quality factor at nominal conditions, QpN, is obtained:

QpN =
1

tan 2ϕzvs
(11)

4.1.3. Variation of the Quality Factor and Transformer Turns Ratio

During the charging process, the equivalent impedance of the battery, RBat, changes
depending on VBat and IBat, whose relationship is given by the charging profile of the
battery, as shown in Figure 1. At the end of the CC stage, VBat = VBat(Max) and the power
supplied to the battery reaches the maximum, PBat = VBat(Max)IBat(Max). The specifications of
the point of maximum output power are used for defining the nominal value of the quality
factor, QpN. Thus, during the CC stage of the charging profile, the converter works with a
quality factor lower than the nominal one, which strengthens the inductive behavior of the
resonant tank, assuring the ZVS mode.

During the CV stage, the reduction of the charging current leads to a significant
increment in the equivalent resistance RBat and consequently, the reflected impedance on
the AC side, Rac, and the quality factor Qp also increase. Assuming that VBat(Max) is constant
and working with (6), the quality factor as a function of Ψ is obtained in (12),

Qp =
nπ2VBat(Max)

2Vdc

N√(
N
∑

m=1
sinΨm−1

)2

+

(
N
∑

m=1
cos Ψm−1

)2
(12)

The increment of Qp, as a consequence of the reduction of the charging current during
the CV stage could put at risk the ZVS mode of the transistors of the converter. However,
it is beneficial from the point of view of achieving waveforms with low distortion and
increases the converter efficiency. The nominal value of quality factor is obtained by
evaluating (12) for Ψ0 = Ψ1 = ΨN−1 = 0◦.

QpN =
nπ2VBat(Max)

2Vdc
(13)

From (13) and (11), the transformer’s turns ratio (n:1) can be obtained:

n =
2Vdc

π2VBat(Max) tan 2ϕzvs
. (14)

4.2. Output Current Multiplier

In order to analyze the output current multiplier stage, first, a single-winding current-
doubler rectifier with an ideal transformer, as seen in Figure 8, is considered. The quasi-
sinusoidal voltage vac at parallel capacitor Cp drives the current multiplier stage. The diodes
D1 and D2 turn on alternatively according the positive or negative cycle of vac, respectively.
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Figure 8. (Left) Current-doubler rectifier considering the positive semi-cycle of the drive voltage vac. (Right) Theoretical
voltage waveform at the filter inductors.

The diodes conduction time, t1, is obtained from the volts–seconds balance across the
inductors. The areas are calculated according to the approximation shown in Figure 8 right.

t1 =
nπ

1 + nπ
T (15)

The average current through each inductor, Lo1,2, is equal to one-half of the charging
current IBat. The amplitude of the current ripple in each inductor is determined by

ΔiL =
nπ2VBat(Max)

(1 + nπ)ωpLo
. (16)

The total ripple current through the filter capacitor Co is calculated considering M
parallel rectifiers and taking into account the ripple cancellation effect due to the 180◦ phase
displacement between the current through each inductor [31,32] in the current-doubler
structure; thus,

ΔiC =
nπ2MVBat(Max)

2(1 + nπ)ωpLo
(17)

The output voltage ripple is

ΔvBat =
nπ3MVBat(Max)

16(1 + nπ)ω2
pLoCo

(18)

From (18), the ripple of the charging current is a function of the switching frequency,
output filter components, and battery parameters.

ΔiBat =
nπ3MVBat(Max)

16(1 + nπ)rBatω2
pLoCo

(19)

The limitation of the output current ripple, ΔiBat, is mandatory in order to avoid the
battery degradation [12].

Reflected Impedance on the Primary Side of the Transformer

Since the output filter removes the high-frequency ripple, the low ripple approxima-
tion [29] is used to study the proposed rectifier in steady state. Considering the total current
in the primary side and using the first harmonic of the square waveform, the relationship
between the AC and DC currents is given in (20).

Îac =
2IBat
nπ

(20)
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where Îac is the amplitude of the transformer’s primary current. From (20) and (6), the
charging current is obtained as a function of the angles Ψ0, Ψ1, . . . , ΨN−1,

IBat =
nVdc
Zp

√√√√(
N

∑
m=1

sinΨm−1

)2

+

(
N

∑
m=1

cos Ψm−1

)2

(21)

The normalized amplitude of the charging current, IBat, is depicted in Figure 9 as a
function of the control angle, Ψ, and considering the modulation pattern where all phases
are evenly shifted.

Figure 9. Amplitude of the normalized charging current, IBat, as a function of the control angle, Ψ,
for N = 2, 3, and 4. All phases are evenly shifted, Ψ0 = 0◦, Ψ1 = Ψ, Ψ2 = 2Ψ, . . . , ΨN−1 = (N–1)Ψ.

Working with (21), the maximum charging current is achieved at Ψ0 = Ψ1 = ΨN−1 =
0◦ and is given by

IBat(Max) =
nVdc
Zp

·N (22)

From (22), it can be observed that the output current capability of the multiphase
converter is enhanced by increasing the number, N, of paralleled phases. An accurate
acquisition of the modulation angle, covering the whole range over the entire battery
charging process, facilitates the computation of ampere-hours in order to calculate the
supplied capacity.

The amplitude of the voltage in the primary side of the transformer is obtained from
the power balance in the windings. Assuming a lossless transformer,

Pac = PBat =
ÎacV̂ac

2
= IBatVBat (23)

and substituting (20) into (23),

V̂ac = nπVBat = nπrBat·IBat + nπ·VBat. (24)

From (20) and (24), the battery is modeled from the AC side by

V̂ac =
n2π2

2
rBat· Îac + nπ·VBat. (25)

The reflected impedance of the current multiplier and load, Rac, into the AC side of the
converter defines important characteristics of the resonant inverter, such as the switching
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mode of the transistors, the distortion of the waveforms, and the efficiency [11]. From (25),
the rectifier stage is reflected into the AC side as the equivalent resistance Rac in (26),

Rac =
π2

2
n2RBat =

π2

2
n2

(
rBat +

VBat
IBat

)
(26)

Assuming an ideal transformer, where the leakage inductance reflected in the sec-
ondary side is Lks = 0, the maximum voltage across the diodes is VB = −nπVBat. However,
in practice, Lks is in series with the junction capacitance of the reverse-biased diode, Cj,
causing a high-frequency oscillation or ringing. The selection of the Schottky devices takes
into account the minimization of this effect.

5. Efficiency of the Multiphase LCpCs Resonant Converter

The overall efficiency of the converter is calculated by

η = ηI·ηR, (27)

where ηI is the efficiency of the resonant inverter stage and ηR is the efficiency of the output
current multiplier stage.

5.1. Efficiency of the Inverter Stage

Taking into account the ZVS mode operation of the converter, the switching loss is
considered negligible in comparison to the conduction loss. The efficiency of the resonant
inverter stage, ηI, considering the conduction loss only [16] is

ηI =
1

1 + r
Rac

·
N
∑

k=1
Î2
i

Î2
ac

(28)

where Îi is the amplitude of each resonant current given in (7). The resistance r represents the
rdson of the transistors as well as the ESR of the inductors. The highest efficiency, ηI(Max), is
achieved with Ψ0 = Ψ1 = . . . = ΨN−1 = 0◦. Upon substitution of Ψ0 = Ψ1 = . . . = ΨN−1 = 0◦ in
(28) and under the assumption that Cs is calculated according to (9), the maximum efficiency
as a function of the ratio r/Rac, the nominal value of the quality factor, QpN, and the number
of phases, N, is obtained.

ηI(Max) =
1

1 + r
NRac

·
[
1 + Q2

pN

] (29)

From (28), it is observed that ηI(Max) is improved by increasing Rac. The straightforward
way to increase Rac is through the larger transformer turns ratio, n. However, it should
be considered that QpN increases with n, according to (12), which could jeopardize the
ZVS mode of the converter transistors. Taking into account the tight correlation among, N,
QpN, n, and r/Rac, the design process oriented to find a suitable value of these parameters
involves iterative cycles. Upon the substitution of (12) and (20) into (29), ηI(Max) is obtained
as a function of the converter parameters,

ηI(Max) =
1

1 +
π2rIBat(Max)VBat(Max)

2NV2
dc

+
2rIBat(Max)

n2π2 NVBat(Max)

≈ 1

1 +
2rIBat(Max)

n2π2 NVBat(Max)

(30)

The maximum efficiency of the resonant inverter stage, ηI(Max), improves, approaching
one asymptotically as the number of phases, N, increases.

5.2. Efficiency of the Output Current Multiplier

Limiting the current level through the output rectifier stage is a major design challenge
oriented to reduce the conduction loss. The proposed M-windings output current multiplier
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lowers the amplitude of the current through diodes by a factor M and the average current
through filters inductors by a factor 2M. An expression for the rectifier efficiency, ηR, only
including the conduction loss, is obtained from the analysis of the current paths shown in
Figure 7. Considering a lossless transformer, the total power, PT, in the secondary side of
the current multiplier is

PT = PBat + M

(
VD IBat

M
+

I2
BatrD

M2 +
I2
BatrLF

4M2

)
, (31)

where PBat is the output power, PBat = VBat·IBat, VD and rD are the voltage and dynamic
resistance of the linear model of the diode, and rLF is the ESR of the filter inductor Lo. The
efficiency, ηR, is calculated with ηR = PBat/PT,

ηR =
1

1 + VD
VBat

+
( rD

M +
rLF
2M )IBat

VBat

. (32)

The efficiency of the output current multiplier, ηR, is improved by increasing the
number of secondary windings, M. The theoretical limit ηR(Max) of ηR is obtained letting
M→∞,

ηR(Max) =
1

1 + VD
VBat(Max)

. (33)

From (32) and (33), it can be observed that the ratio VD/VBat(Max) should be minimized,
which confirms the benefit of using Schottky diodes or sync rectifiers to improve the
efficiency of the rectifier stage.

5.3. Optimum N and M of Parallelized Stages

The expressions (30) to (33) are used as a criterion to define the appropriate number of
phases, N, of the resonant inverter stage as well as the number of secondary windings, M, of
the output current multiplier. The maximum efficiency of the inverter section, ηI(Max), and the
efficiency of the current multiplier, ηR, are depicted in Figure 10 as a function of N and M.

Figure 10. Maximum efficiency of the resonant inverter stage, ηI(Max), and efficiency of the output
current multiplier, ηR, as a function of the number of phases, N, and secondary windings M. The
following typical values are assumed: n = 2, r = 1.7 Ω, IBat(Max) = 20 A, 2rIBat(Max)/π2VBat(Max) = 0.5,
VD/VBat(Max) = 0.05 and rD = rLF = 0.1.

From a practical point of view, the asymptotic variation of ηR and ηI(Max), shown in
Figure 10, limits the maximum values of M and N. The criterion for choosing the suitable
values of M and N is a tradeoff between the increment of the efficiency and the circuit
complexity. It is assumed that if the increment of efficiency achieved is barely 1%, a higher
number of secondary windings M or phases, N, is not justified.
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6. Design of the Multiphase LCpCs Resonant Converter

(1) The maximum battery voltage is set at VBat(Max) = 53.5 V, which is below the overvolt-
age protection limit (54.7 V) defined by the BMS. The output current capability of the
circuit is set to IBat = 20 A in order to shortening the charging time. The equivalent
impedance of the battery is RBat = 2.67 Ω. The peak power that must be supplied by
the charger is PBat = 1.07 kW. The converter supply voltage is Vdc = 400 V, which is
the output voltage of a previous front-end PFC stage. The switching frequency is set
at ωp = 2π(125 kHz).

(2) The drive signals of the transistors are obtained from an integrated circuit IR2111 with
a dead time, td = 650 ns. From (10), the minimum value of the power factor angle for
each class D section is φzvs = 29.25◦. Using the design constrain ϕi = 2φzvs = 58◦ from
(11), the nominal value of the quality factor is obtained, QpN = 0.624. The transformer
turns ratio, n, is calculated from (14), approximating to the nearest entire value, n = 1.

(3) The number of phases, N, is calculated taking into account that transistors are low-cost
CoolMOSTM SPA11N60C3 (Infineon, Neubiberg, Germany) with rds(on) = 0.38 Ω. Con-
sidering the equivalent series resistant (ESR) of the resonant inductors and tracks of
the printed circuit board (PCB), a worst case of r = 1 Ω is assumed. Upon substitution
in (30), the pair n = 1 and N = 4 yields ηI(Max) = 0.98. This value of efficiency means
21 W power loss in the resonant inverter stage at full load conditions.

(4) The expected efficiency of the rectifier stage is calculated using the conduction loss model
of the Schottky diode STPS30M60S (STMicroelectronics, Geneva, Switzerland) from ST
with VD = 0.395 V and rD = 0.0047 Ω. The filter inductors are Vishay IHLP−8787MZ
(Vishay Intertechnology, Malvern, USA) with Lo = 75 μH and rLF = 30 mΩ at 25◦ C.
Taking into account the temperature effect, the value rLF = 90 mΩ is assumed. Upon
substitution of VD, rD, VBat(Max), rLF, and IBat = 20 A in (32), the value M = 1 yields an
efficiency of the rectifier stage at maximum load, ηR = 0.97. This value of efficiency
means 32 W power loss in the current-doubler rectifier at full load. In this way, the
configuration of a four-phases (N = 4) resonant inverter with a single (M = 1) current-
doubler rectifier as output stage achieves an overall efficiency at full load equal to
η = ηI·ηR = 0.95.

(5) From (16), the amplitude of the current ripple in each inductor is ΔiL = 2.16 A. The
rBat is estimated at 40 mΩ. The output capacitor, Co, is calculated to achieve a
maximum current ripple equal to 0.1% of the charging current, ΔiBat = 20 mA. From
(19), Co = 680 μF.

(6) The characteristic impedance is obtained from (22), Zp = 80 Ω. In Table 1, the reactive
components are L = Zp/ωp = 100 μH and Cp = 4/ωpZp = 64 nF.

(7) The transformer has been built with an ETD49 core of material N87. The primary and
secondary are 16 single-layer turns of 40 strands of litz wire. The resulting magnetizing
inductance is LM = 800 μH and the leakage inductance from the primary and secondary
sides are Lkp = Lks = 1.4 μH. The total leakage inductance is Lk = Lkp + n2·Lks = 2.8 μH.

(8) Once Lk is known, the series capacitor Cs is calculated with (9) to cancel out the effect
of Lk, Cs = 571 nF.

7. Control Circuit and Battery Modeling

During the CV stage, the charging current must be regulated to avoid the voltage of
the battery exceeding VBat(Max). The current is modulated through the phase-angles Ψ0, Ψ1,
and ΨN−1, while keeping the switching frequency constant. Different patterns are possible
for adjusting Ψ1, Ψ2, and ΨN−1. For any value of N, the full control of the charging current
is achieved if the phase shift is evenly distributed among all N phases, e.g., Ψ0 = 0◦, Ψ1 = Ψ,
Ψ2 = 2Ψ . . . ΨN–1 = (N–1)Ψ. In this case, the minimum current IBat = 0 A is achieved at
Ψ = 360◦/N. This pattern requires N control signals. For this design, where N = 4, the
control angles are adjusted as follows: Ψ0 = Ψ1 = 0◦ and Ψ2 = Ψ3 = Ψ. For this approach,
the minimum IBat = 0 A is achieved at Ψ = 180◦, and only two control signals are required,
which implies a simplification of the control circuit.
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Once the converter is designed, the battery-charger system is completed with a control
loop to limit the output voltage of the charger to the maximum value recommended for
the battery. The action of the control loop transforms the circuit’s open-loop current source
behavior into a voltage source. A type I error amplifier is enough for this action. The scheme
of the charger-battery system, modeled in Simulink, is shown in Figure 11. In the voltage
mode, the battery imposes the dynamic response of the converter-battery system [27].

Figure 11. Control loop for limiting the maximum battery voltage, VBat(Max).

The Simulink® model of the battery [34,35] is shown in Figure 12. The look-up tables
include the quasi-open circuit voltage of a basic cell for the charge and discharge trajectories
as a function of the SOC.

Figure 12. Simulink® model of the battery.

The different parameters of the model can be tuned using curve fitting. The data used
as reference for adjusting the model were obtained from the experimental characterization
of the battery charging at 25 A, which has been shown in Figure 1. The time constant
for charge transportation and diffusion phenomena are 1 s and 100 s, respectively. The
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impedance for the charge transport is Rt = 0.7 mΩ and the capacitance is Ct = 1428 F.
The impedance of the diffusion is Rd = 0.6 mΩ and the corresponding capacitance is
Cd = 166,000 F. The impedance due to electrodes and electric connections is RΩ = 1 mΩ.
The impedance of the battery pack is obtained from (4), rbat = 34.5 mΩ. This value of rBat
includes the impedance of connectors and cables, which is used to conform to the battery
by the series connection of the 15 cells.

The variation of the battery voltage, obtained from the simulation of the system in
Figure 11, is shown in Figure 13. It can be observed that simulation and experimental results are
in good agreement for the three charging profiles in Figure 2 that were evaluated experimentally.

 

Figure 13. Charging profiles at 10, 25, and 50 A. Solid lines: Experimental battery voltage. Dashed
lines: Simulation result. Dot lines: Charging current.

8. Results of the Experimental Prototype

An experimental prototype, shown in Figure 14, has been built to validate the theoret-
ical proposal.

  
Figure 14. Details of the experimental prototype of the charger. (Left) Four-phase resonant inverter stage. (Right) Current-
doubler rectifier.

When connecting the battery to the charger, an initial frequency sweep is programmed
to ensuring the gradual growth of the charging current to prevent the occurrence of an
overvoltage across the discharged battery. The experimental waveforms in different circuit
sections are shown in Figures 15–17. In order to demonstrate the charger performance at
different operation points, the waveforms for full load and 70% of full load operation are
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shown. In Figure 15, it is observed that the resonant current has a phase lag with respect to
the input voltage. At full load condition, ϕi1,2 = ϕi3,4 = 54◦, which is in good agreement
with the theoretical value, and at 70% of the full load condition, ϕi1,2 = 54◦, ϕi3,4 = 72◦. The
ZVS mode operation was verified for all phases of the resonant inverter section.

  

Figure 15. From top to bottom: Midpoint voltages of phases 1 and 2, v1,2. Midpoint voltages of phases 3 and 4, v3,4. Resonant
current of phases 1 and 2, i1,2. Resonant current of phases 3 and 4, i3,4. (Left) Full load condition (Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0◦).
(Right) 70% of full load condition (Ψ0 = Ψ1 = 0◦, Ψ2 = Ψ3 = 90◦).

  

Figure 16. From top to bottom: Output current through the primary side of the transformer, iac. Output voltage applied
to the primary side of the transformer, vac. (Left) Full load condition (Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0◦). (Right) 70% of full load
condition (Ψ0 = Ψ1 = 0◦, Ψ2 = Ψ3 = 90◦).

In Figure 16, the current and voltage at the primary side of the transformer are shown.
The amplitude of the current square waveform is half (10 A) of the battery charging current.
In Figure 17, the charging current at full load (20 A) and at 70% of full load are shown.
The results are in good agreement with the theoretical value according to the control angle
Ψ. It can be observed that the charging current ripple is negligible as it is required for
this application. The experimental efficiency of the prototype measured at the point of
maximum load (IBat = 20 A, PBat = 1.07 kW) was η = 91.3%. The efficiency at 70% and 50%
of the full load was η = 90.2% and η = 88%, respectively. The experimental efficiency is
slightly lower than the theoretical due to the switching losses, the power dissipation at the
transistors drive circuit, and the auxiliary power supply loss.
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Figure 17. From top to bottom: Midpoint voltages of phases 1 and 2, v1,2. Midpoint voltages of phases 3 and 4, v3,4.
Charging current iBat. (Left) Full load condition (Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0◦). (Right) 70% of full load condition (Ψ0 = Ψ1 = 0◦,
Ψ2 = Ψ3 = 90◦).

9. Discussion

In this work, the general design method of the proposed charger has been explained,
but the particular configuration of the final solution depends on the chosen technology.
One key decision is the most suitable value of the dc-link voltage. The solution for an
dc-link voltage Vdc = 400 V, which was obtained from a single-phase power factor corrector
(PFC) based on a Boost Converter, and using the CoolMOSTM SPA11N60C3 MOSFET
transistor and the STPS30M60S Schottky diode has been fully developed. As alternative,
a solution with Vdc = 800 V, obtained from a three-phase PFC and using silicon carbide
(SiC) components is also assessed. For this case, the third-generation C3M0065100K
MOSFET transistor (Wolfspeed, Research Triangle Park, USA) with the CGD15SG00D2
driver (Wolfspeed, Research Triangle Park, USA) is used in the inverter section. As the
voltage, current, and power at the circuit output are the same, the silicon (Si) Schottky diode
STPS30M60S is used in both cases. For a better comparison, both designs are summarized
in Table 2.

Table 2. Designs comparison.

Vdc n N M Zp QpN η IBat(Max) PBat(Max)

400 V 1 4 1 80 Ω 0.624 0.95 20 A 1.07 kW

800 V 2 2 1 160 Ω 0.624 0.966 20 A 1.07 kW

As it can be seen in Table 2, both designs achieve a similar theoretical efficiency, but
the SiC technology uses only two phases for the resonant inverter stage.

Considerations about the Solution Cost

SiC technology for power devices is becoming more competitive in technical perfor-
mance and cost. Important advances have been reported in terms of increasing the wafer
diameter and minimization of the defect density [36], which contribute to lowering the
cost of the devices, so it is worth comparing the cost of the proposed alternatives. Focusing
on the inverter section of the described designs, i.e., Vdc = 400 V for the four-phase Si
inverter and Vdc = 800 V for the two-phase SiC inverter, the cost assessment reveals that at
present, the solution based on SiC components is more expensive despite requiring fewer
transistors. The cost of the third-generation SiC MOSFET C3M0065100K is five times (5 ×)
that of the SPA11N60C3 Si MOSFET. On the other hand, in contrast to the simplicity of
the half-bridge driver, based on the integrated circuit IR2111, the complexity and cost of
the selected driver CGD15SG00D2 for SiC MOSFETS are also significantly higher [37]. In
addition, the PFC section adds a cost difference in favor of the Vdc = 400 V four-phase Si
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design. For illustrating the analysis, in Tables 3 and 4, the cost of the SiC components and
its Si counterparts are summarized [38]. Differences in the magnetic elements, capacitors,
and control circuit have less impact on cost.

Table 3. SiC resonant inverter.

Component Quantity
Cost

(Retail Sale)

MOSFET
C3M0065100K 4 40€

Driver
CGD15SG00D2 4 200€

Table 4. Si resonant inverter.

Component Quantity
Cost

(Retail Sale)

MOSFET
SPA11N60C3 8 16€

Driver
IR2111 4 8€

Nowadays, for a given architecture, the use of SiC MOSFETs could be recommended if
the maximum current, voltage, and temperature limits of the Si MOSFETs are compromised,
e.g., for charging currents and powers higher than 50 A and 2.5 kW, respectively.

10. Conclusions

The general design procedure of a multiphase resonant converter for battery charger
applications has been presented. Since the output current on the AC side is shared among
N equal inverter sections, the circuit presents high output current capability using low-cost
power MOSFETs, and the design of the resonant inductors is simplified. The proposed
output rectifier is based on an M-winding current-doubler rectifier that also diminishes
the conduction loss by using passive components. The efficiency curve of the proposed
charger exhibits a wide flat zone, assuring a constant value of efficiency even at light load
conditions. This feature is very interesting for the battery charger applications, taking
into account that high efficiency is desirable along the whole charging process, despite the
heavy load variation. The effect on the AC side of the leakage inductance of the transformer
Lk is canceled out by the series capacitor Cs. The maximum charging current is limited
by the circuit in an inherent manner, without the necessity of any control. However, the
output voltage is limited to the maximum value recommended for the battery by a voltage
control loop with a type I error amplifier. The control action is performed keeping constant
the switching frequency by adjusting the control angle, Ψ, while maintaining the ZVS
mode at any operation point. The general proposal has been validated by implementing
an experimental prototype for charging a commercial 48 V LiFePO4 battery with 50 Ah of
capacity. The achieved efficiency of the N = 4 inverter with Vdc = 400 V using Si MOSFETs
is similar to the predicted with an N = 2 inverter with Vdc = 800 V using SiC MOSFETs.
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Abstract: Large-scale battery cells are connected in series, which inevitably leads to a phenomenon
that the cell voltage is unbalanced. With a conventional equalizer, it is challenging to maintain
excellent characteristics in terms of its size, design cost, and equalization efficiency. In order to
improve the defects in the above equalization circuit, a novel voltage equalization circuit is designed,
which can work in two modes. A bidirectional direct current–direct current (DC–DC) equalization
structure is adopted, which can quickly equalize two high or low-power batteries without using an
external energy buffer. In order to verify the effectiveness of the proposed circuit, a 12-cell battery
2800-MAh battery string was applied for experimental verification. Computer monitoring (LabVIEW)
was adopted in the whole system to intelligently adjust the energy imbalance of the battery pack.
The experimental results showed excellent overall performance in terms of equalization was achieved
through the newly proposed method. That is, the circuit equalization speed, design cost, and volume
have a good balance performance.

Keywords: battery equalization; flyback transformer; topology

1. Introduction

Lithium-ion batteries have been widely used in the field of electric vehicles due to their high
charging–discharging times and high energy efficiency. Since the battery pack in a pure electric vehicle
is connected in series and in parallel through a large number of battery cells, some of the battery cells
may be unbalanced during the continuous charging and discharging process of the battery. The overall
performance of the battery pack will be restricted by the battery cells with the lowest battery capacity,
which will seriously affect the service life of the battery pack and reduce the battery life of the electric
vehicle [1,2]. Battery equalization technology can suppress imbalance in the battery pack, leading to
improved work consistency. The battery management system is able to operate well, which can ensure
safe driving of new energy vehicles, and the working principle is shown in Figure 1. Excess energy
(Converted Energy in the legend) can be transferred from cell 1 to cell 2 through the energy converter.
A relatively balanced state is achieved between the two cells, and so on, resulting in consistent energy
obtained by the entire battery pack.

In recent years, plenty of battery pack equalization methods have been proposed [3–6].
The equalization method has been divided into different categories according to various criteria.
The energy dissipation has two types [7,8]: switch shunt and fixed shunt. This equalization circuit
with a simple structure was easy to control. However, the converted heat will result in increased
temperature in the entire battery pack, and the system will require extra energy. Compared with the
energy dissipation type, a peripheral energy conversion circuit was applied to balance the voltage of the
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battery through the non-energy dissipation equalization method. Although the circuit is more complex,
it is more efficient and safe according to the different means of energy transmission. These methods
are further subdivided into four types: cell-to-cell equalization methods, cell-to-pack equalization
methods, pack-to-cell equalization methods, and cell-to-pack to cell equalization methods, as shown in
Figure 2.

Figure 1. Battery balance diagram.

In the above equalization method, the monomer-to-monomer equalization method and the
monomer-to-battery equalization method can effectively prevent overcharging and over-discharging
of the battery. Even if the energy overlap and high-pressure stress in the equilibrium process are
considered, the equilibrium efficiency cannot be guaranteed. In contrast, cell-to-cell equalization
methods with short and efficient transmission paths are ideal choices. These methods are further
subdivided into three types: transmission equalization methods, a non-isolated direct current–direct
current (DC–DC) equalization method [9], and an isolated DC–DC equalization method [10]. One of
the most conventionally used topologies of the transmission equalization methods is the bidirectional
buck-boost converter [11]. Every two adjacent cells have a common buck-boost converter to achieve
energy transfer. However, when the positions of the unbalanced batteries are not adjacent, the path
of energy transfer becomes long. In order to compensate for the shortcomings of such equalization
methods, Li, Y proposed a structure of an equalization method [12].

 

Figure 2. Battery balance-type diagram.
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This circuit transfers energy from the most charged unit to the least charged unit to have higher
equalization efficiency, but at the expense of lower equalization speed. Another direct cell-to-cell
equalization method which uses an inductor as the energy storage component has fast equalization.
However, each battery has two directional transmission channels, which require a large number of
switches and diodes. Similarly, the direct inter-cell equalization method using a transformer ensures
a fast equalization speed [13], but the use of a large number of transformers is costly. Obviously,
the aforementioned direct cell-to-cell equalization method cannot achieve fast equalization speed and
high efficiency, and relatively low cost.

In order to improve the deficiencies of these defects, a dual-winding battery equalizer with energy
bidirectional flow was proposed. The advantage is that the cells with low energy are supplemented,
and the cells with high electric quantity are effectively weakened. The principle of operation is an
equalization structure using bidirectional forward and flyback equalization. Any two high-energy cells
or low-energy cell in the battery pack was quickly equalized without external energy buffer. To realize
the effective balance of the whole battery pack.

2. Proposed Equalization Topology

2.1. Proposed Equalizer

The proposed voltage equalizer is composed of a left and right sides interleaved switching network
and an isolated double winding DC–DC converter. Figure 3 shows an equalization structure based on
a flyback coaxial multi-winding output, which is mainly composed of a flyback transformer T1 and a
battery pack B1-Bn circuit. The battery pack as a whole and single cells form a loop through the output
winding of each channel. Energy is transmitted to the battery cell from one direction.

 

Figure 3. Coaxial multi-winding equalizer.

The equilibrium method proposed in this paper could be extended from the original single-to-single
equilibrium to the multi-to-two equilibrium structure. The staggered switching network is combined
with the two operation modes. Bidirectional equalization is realized in the energy-transfer process
as shown in Figure 4. The left and right sides are staggered control switches by the application of a
two-winding flyback transformer for output isolation. The bidirectional equalization equivalent circuit
is shown in Figure 5.
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Figure 4. New voltage equalizer.

 

Figure 5. Equalization equivalent circuit.

Each cell is connected with a control switch. The control switch K1-K2n+1 is on the left side of the
battery pack. The corresponding cell is A1-A2n+1. The control switch K0-K2n is on the right side of the
battery pack and the corresponding cell is A0-A2n. The control switch network on the left is connected
to the output side winding A2N−1 of the flyback transformer. The control switch network on the right
side is connected to the output side winding A2, the battery pack is integrally connected to the L0 end
of the flyback transformer.

The flyback mode was applied when the number of unbalanced battery cells in the battery pack
increased, which indicated that the energy of the battery pack and the battery cells are directly subjected
to two-way energy transfer. There are two kinds of equilibrium situations. One is that the excess
energy in the high-power battery cell was transferred to the positive battery pack, eliminating the
effect of excessive power. The other is that the energy was provided by the battery cell with low battery
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capacity, so that the damage of the battery itself induced by over flushing or over discharging of an
individual cell can be avoided.

When the energy difference between the individual cells in the battery pack is large, and the
equalization mode will adopt forward operation mode, the cell can be directly connected to the A2N−1

and A2 windings on the output side for fast equalization.
The new battery equalizer uses the two modes of operation to work together. Flyback mode is

“rough-tuning” and Forward mode is “fine-tuning” synergism, which achieves the goal of efficient and
balanced, making efficient use of energy.

2.2. Equilibrium Process Analysis

According to the voltage difference in different single cells as the judgment basis. The equalization
method was proposed in this paper to select forward operation mode or flyback operation mode.
Finally, efficient and fast equalization of the battery pack was realized, and the specific balancing
strategy will be discussed in detail as follows.

Case 1: when the batteries in the group are unbalanced and the voltage difference is large (less
than 0.4 V), the operation flyback mode timing is as shown in Figure 6a. In a work cycle, the working
process of the flyback transformer can be divided into two stages according to the difference between
the control signal and the current path in the circuit. During the process of charging, the energy was
transferred from the primary side L0 of the transformer to the secondary sides L1 and L2. The drop of
conduction voltage in the control switch is VD1 and VD2. The overall primary side voltage VL0 of the
battery pack and the output side voltage are VL1, VL2. The energy was transferred from the secondary
side of the transformer to the primary side during discharge.

 
Figure 6. Flyback transition timing diagram. (a) Flyback converter energy forward flow timing diagram;
(b) Flyback converter energy reverse flow timing diagram.

The following circuit workings in detail were defined as follows: the leakage inductance of the
multi-winding transformer is Lk, the magnetizing inductance denotes Lm. In the primary winding of
the transformer, the voltage at the input port is VL0, the output port voltage is VL1 and VL2.

VL1 = −(NL0

NL0
)VL0 (1)
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VL2 = −(NL2

NL0
)VL0 (2)

The coefficient of leakage inductance for VL0 is K, which can be expressed as:

K =
Lk
Lm

(3)

The energy is transmitted from the primary side to the secondary side, which was shown in
Figure 6b. It is divided into the following two modes.

Model 1 (t0~t1): the Q1 switch is turned on, the current Ip in the primary side L0 of the transformer
increases. When t = toff, IQ reaches the maximum value. The energy is stored in the magnetizing
inductance Lm of the transformer. Where in the exciting inductor current iLM is:

iLm = iLk =
VL0 −VD

Lm + Lk
ton (4)

The peak value of the inductor current at the time of ton is:

ipk = iLKIt=ton =
(VL0 −VD)DT

Lm(K + 1)
(5)

where D is the duty cycle of the control switch. T is the turn-on switching period of the flyback
converter, the energy stored E in the transformer is:

E =
1
2

Lmi2pk =
(VL0 −VD)

2D2T2

2Lm(K + 1)2 (6)

In this process, the iron core of the transformer is magnetized. Wherein the increase in the
magnetic flux Φ is:

ΔΦ(+) =
VL0

NL0
Dton (7)

Model 2 (t1~t2): the Q1 switch is turned off, the secondary side switches Q2 and Q3 are both
open. Its current is slowly reduced to Ismin, iD2 and iD3, charge capacitors C1 and C2. The energy in
the stored primary side is transferred to the low-energy cell for charge equalization. The secondary
inductor current gradually decreases and the falling slope is:

diL1k
dt

= −VL1 + VD1

L1 + L1k
(8)

diL2k
dt

= −VL2 + VD2

L2 + L2k
(9)

In this process, the core of the transformer is demagnetized. The magnetic flux Φ is also linearly
reduced, where the reduction Φ is:

ΔΦ(−) =
UL1

NL0
(1−D)ton (10)

The process of turning on and off the energy from the secondary side to the primary side, in
principle, is the same as the above process. Therefore, the description is not repeated.

Case 2: when the cells in the group are unbalanced, the voltage difference becomes large (no less
than 0.4 V). A forward operating mode was applied in the topology without the output of inductance,
considering that the selected battery cells A2N−1 and A2 are monomers with a large difference in power.
The circuit topology is shown with the dotted line in Figure 5. The specific working process of this
model is analyzed as follows. The working sequence diagram is shown in Figure 7.
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Figure 7. Forward transition timing diagram.

(1) Model 1(to~t1): when t= 0, the switch tubes Q2 and Q3 are turned on. The voltages of the battery
cells A2n−1 and A2 are applied across the output windings L1 and L2 of the flyback converter, respectively.
Battery A2n−1 charges the primary winding Lm1 through Q2 as shown in Figure 5. The voltage across
Lm is VA2n−1-VD2 where the direction is up and down. Meanwhile, the induced voltage across the
winding Lm2 is VA2n-1-VD2 due to the coupling relationship of the voltage transformation, its direction
is up and down. A peak current of I0 was produced from the secondary winding circuit under the
turn-on instant. The core is magnetized and the magnetic flux is maximized during this process.
The current on winding L1 and winding L2 increases and the voltage across the battery is directly
parallel balanced.

I0 =
VL1 −VD1 −VA2

Req
(11)

where Req denotes the equivalent resistance of the battery A2 loop, then the voltage across the secondary
winding L2 is clamped at VA2 + VD2. The inductance current in the circuit decreases linearly.

Its slope is:
diL2k

dt
= −VA2 + VD2

L2 + L2k
(12)

During the period of t0-t1, the currents of windings L1 is:

iL1(t) = I0 − VA2N−1 + VD1

L1 + L1K
(t− t0) (13)

At time t1, the bidirectional switches Q1 and Q2 are turned off. The mode ends and the current of
the winding L1 at time t1 is:

iL1(t1) = I0 − VA2N−1 + VD1

L1 + L1K
DT (14)

The current of the primary winding at time t1 is:

iL1k(t1) = Imax +
VA2N−1 −VD1

L1m(1 + K)
DT (15)

147



Electronics 2019, 8, 1426

The energy stored in the transformer at this time is:

WL1m =
(VA2N−1 −VD)

2

2L1M(1 + K)2 D2T2 (16)

(2) Model 2 (t1~t2): at t = ton time. Turn off the switch tubes Q2 and Q3. Switch tubes Q2 and Q3 is
turned offwhen t is at ton. There is no current flowing through the winding L1 and L2. At this point,
the transformer conducts magnetic reset through the reset winding. The excitation current is fed back
to the whole battery pack through the primary side. Finally, the reset of the magnetic flux is realized.

diL2k
dt

= −VA2 + VD2

L2 + L2k
(17)

iL2(t) = IL2(t1) − VA2 + VD2

L2 + L2K
(t− t1) (18)

At this point, the energy is completely transferred at time t2. The current iL2(t) becomes zero and
the transformer completes the magnetic reset.

2.3. Design Consideration of the Main Circuit

This article uses a two-winding bidirectional flyback converter. Whether energy is from Vin to Vout,
or energy is from Vout to Vin, the switch Q1 is turned on when the diode D1 opposite to it is energized.
The switch tube Q2 is turned on. When the D2 is energized and all the zero-voltage switching (ZVS)
are turned on. In the bidirectional flyback converter, the current alternates and the current work
continuously. Let Q1 have a duty cycle of DQ1. When the energy flows Vin to Vout1, the input voltage
and output port voltage are expressed as:

VIN

Vout1
=

L2

L1
× DQ1

1−DQ2
(19)

If DQ2 is the duty cycle of Q2, when energy flows from Vout1 to Vin1:

Vout1
Vin1

=
L1
L2
× DQ2

1−DQ1
(20)

Assuming that the input voltage Vin is 30–45 V, the output voltage Vout is 3.8–5 V and the
switching period T is 40 μs. And then the duty ratio D can be derived to be 68%. The average
equalization current Ipk is calculated to be 1.52 A.

The peak equalization current is expressed as follows:

Ipk =
2Pin

DmaxVinmin
(21)

The input power is expressed as follows:

Pin =
p0

E f f
=

Uout1 × Iw1 + Uout2 × Iw2

E f f
(22)

Considering the energy storage and conversion of the flyback converter. The primary inductance
is expressed as follows:

Lm =
Vinmin ×Dmax

Ipk × fsKRF
=

Vinmin ×Dmax( 2Pin
DmaxVinmin

)
× fsKRF

=
(Vinmin ×Dmax)

2

2Pin fSKRF
(23)
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The flyback transformer is equivalent to a coupled inductor. In the process of transferring energy
from the primary side to the secondary side, because the coil has magnetic flux leakage the magnetic flux
leakage energy cannot be transferred to the secondary party thereby causing the switching tube voltage
to rise further. The clamp circuit connected to the primary and secondary sides of the bidirectional
flyback transformer. This limits the switching tube voltage to the maximum value. This article uses the
RCD (Resistance Capacitance Diode) absorption circuit, as shown in Figure 8.

RC =
V2

C
PR

=
2×VC

2

LiKI2
P fs

(24)

CC ≥ VC
ΔVCRC fs

(25)

 

Figure 8. RCD absorption circuit.

The clamp capacitor C has the same voltage as the resistor R. The relationship between R and C can
be obtained by the relationship between voltage and power transition. According to the above analysis,
during the working process of the clamp circuit, the energy stored in the capacitor is consumed by the
resistor. That is, the power consumed by the resistor is equal to the energy stored by the capacitor.

2.4. Equalization Strategy

The new voltage equalization structure was proposed in this paper. During the process of
equalizing the battery pack, it is necessary to control the DC–DC converter in different operating
modes. This can become an essential basis for working mode matching by the amount of cell voltage
difference. Meanwhile, the corresponding control method was adopted to control the equalization
switch network. The balancing strategy is shown in Figure 9. The strategy of equalization control
should pay attention to the following points:

A. Selected battery port voltage as a criterion for equalization.
B. In the process of energy transfer, when the current is not zero, it will cause irreversible losses to

the elements of the switch array in the long-term equalization process.
C. Balanced operation modes are divided into two types, which are switched according to the

distribution of different battery voltages.
For A: the equalization control uses the battery port voltage as a reference. The equalization

mode is selected according to the voltage dispersion degree of different unit cells. The highest voltage
and the lowest voltage of the battery cells are Vmax and Vmin, and the difference between them is Vd.
The difference between the voltages is:

Vd = Vmax −Vmin (26)
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For B: when the switch network is switching. It is necessary to keep the flyback isolation converter
off. Prevents damage to circuit components, which is caused by inrush current during switching.

For C: when the allowable difference Vd set by Vd is equalized, the balance is stopped until Vd
is less than Vd. The specific equalization process is played by two working modes, which will be
described in detail below as follows.

 

Figure 9. Equalization strategy flow chart.

Flyback mode: the problem of the voltage difference Vd has been addressed when this difference
of each battery in the battery pack is no less than 0.4V. The battery pack as a whole was applied
as energy input and only the battery pack was used as energy output through the flyback mode of
operation. Due to the special two-winding output structure. The battery pack can simultaneously
charge balance two low-power batteries, or two high-energy batteries can be fed as energy input for
the entire battery pack.

Forward mode: when the pressure difference Vd of each cell in the battery pack is less than 0.4V,
in forward mode select two low-power battery cells by connecting the two output windings of the
transformer. Point-to-point supplementation of energy for fast balancing purposes.

3. Experimental Results

3.1. Voltage Equalization System

Figure 10 shows the structure of the voltage equalization system designed by the new voltage
equalization structure proposed in this paper. Because the car power battery pack is composed of series
batteries. Therefore, this article uses 12 battery cells in series for voltage equalization experiments.
the battery voltage of the series can be monitored in real-time using the battery detection chip LTC6803.
The main control unit communicates with the LTC6803 through SPI (Serial Peripheral Interface) to
obtain the voltage of the battery cells of the battery pack and control the LTC6803. The master passes the
output control signal. The LTC6803 controls the two-sided interleaved switching network through the
S1, S2, S3...S12 pins. The master provides control and drives signals for the flyback isolation converter.

150



Electronics 2019, 8, 1426

 
Figure 10. Voltage equalization system.

3.2. Main Circuit Design

In the new voltage equalization system, real-time acquisition and analysis for parameters of
battery voltage and temperature parameters were performed by the main controller and voltage
detection chip LTC6803. Different equalization modes are selected according to the number of
unbalanced monomers, thus the equalization control was efficiently implemented. The switch array
has a function of selecting a path, and the battery cells are connected to the double-winding flyback
isolating converter by the switches on the left and right sides. The switch consists of a bidirectional
MOS (Metal-Oxide-Semiconductor) tube. The six cells A1, A2, A3, A4, A5 and A6 at the bottom of
the pool group are connected to the N-MOS (N-Metal-Oxide-Semiconductor) switch tube respectively.
The left battery cells A7–A12 are connected to the P-MOS (P-Metal-Oxide-Semiconductor) switch tube,
the specific working circuit is shown in Figure 11. The battery cell is connected to the switch tube
through the optocoupler, the switch is connected to the gate of four MOS transistors, the first four
switches of the battery pack are Sa12, Sb12, Sa11, Sb11, the gate of each set of switches is connected to
the c-pole of the phototransistor in the optocoupler, the e pole is connected to the negative electrode of
the battery cell, which possessed the lower three positions of the battery cell. For example, the switch
corresponding to the battery unit A12 is Sa12. The gate of the four PMOS transistors is connected to
the c pole of the optocoupler OPa12, and the e pole is connected to the negative electrode of the battery
unit A9. The switch corresponding to the A1 battery cell is OPb1 on the right side in the switch array,
the gates of the four N-MOS transistors are connected to the e-pole of the optocoupler OPb. The c pole
is connected to the battery cell A4. The connection method is the same as the above discussion when
the control switches of the remaining battery units are applied. An additional complicated switch
drive circuit is not required for the structure, the driving voltage of MOS is directly provided by the
battery pack, the optocoupler is connected to the left and right switch arrays for signal control, which
acts as a signal isolation function, the battery structure is simple and efficient.

The circuit of the flyback isolation converter is shown in Figure 12. The output winding of
the flyback converter is connected to two battery cells of different potentials in the battery pack.
The corresponding equalization mode was adopted through different modes. The isolation between
the battery pack and battery can be realized by the flyback transformer T. The optocoupler OPT, MOS
transistor S3 and S4 formed an isolation driver. The 5V power supply was provided by an isolated
power supply. Current is detected by current sensor ACS712. The control switches in the circuit are
Q1, Q2, Q3 respectively. If switch Q1 is turned on, meanwhile Q2 and Q3 are off, and the duty cycle
PWM pulse can be adjusted by the main controller according to the output of the equalization circuit.
The signal that controls the output was divided three ways: one way was to control Vg1 and the
two external signals were connected to one inverter to control the opposite signals of Vg2 and Vg3.
The driving circuits of Q2 and Q3 shown in Figure 12 are the same as the working principle, which
thus was simplified in the circuit diagram.
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When the input signal Vg is high, the LED (Light Emitting Diode) in the optocoupler did not work.
The phototransistor is turned off, resulting in a high-level output of optocoupler. Drive control MOS
tube S3 is turned on, and S4 is turned off. The output voltage of the isolated power supply is applied
for the gate level of the switch Q1 through the resistor R3. When it turns off, a small amount of charge
left to generate a voltage difference with the S4 gate voltage, S4 is turned on due to the influence of
the Q1 gate capacitance. Then the Q1 gate is discharged, and Q1 is turned off. The main component
parameters of the system are shown in Table 1.

 

Figure 11. Switching network diagram.

Table 1. Main component parameters of equalizing circuit system.

Parameter Value

Primary DC–DC
Converter

Mosfect Switch IPB200N

Rectifier Diode IN5822

Transfor-mer

Core EP20

N1:N2:N3 33:3:3

Lm 367 uH

Primary RCD
R 38 kΩ

C 21 nF

Secondary DC–DC
converter

Mosfect Switch AUIRF3504

Rectifier diode SR560

Secondary RCD
R 803 Ω

C 1 uF

Selection Switich

P-MOS AOD409

N-MOS AUIRF3504

Optocupler PC817
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Figure 12. Flyback switch drive circuit.

3.3. Experimental Verification

To verify the performance of the proposed voltage equalizer, a prototype was built and
tested. Figure 13 shows a photograph of the experimental prototype and associated instruments.
The experiment uses a “DELI PU BATTERY” 18650 Li-ion Battery with a capacity of 2800-mAh,
a rated voltage of 3.7 V, a discharge cut-off voltage of 2.75 V, and an equivalent series resistance of
80 mΩ. The standard charging voltage is 0.5 C (1400 mA), the operating temperature is 0–45 ◦C in
the state of charge, and the discharge state is −(20–60) ◦C. the battery pack consists of 12 batteries of
2800-mAh battery strings which can store 10.36 Ah and 124.32 Wh. When the experiment is carried
out, the voltage detection frequency is 50 Hz. The switching frequency of the left and right switches is
1 Hz, the operating frequency of the bidirectional winding flyback converter is 25 kHz and the voltage
difference between the beginning and the ending equalization is 30 mV.

 

(a) 

 

(b) 

Figure 13. (a) Voltage acquisition circuit; (b) experimental prototype and associated instruments.

Figure 14 shows the voltage variation of the battery cells during the overall equalization process
of the battery pack. It can seem that the highest and lowest voltage of the single battery was 3.98 V and
2.78 V respectively. The entire energy transfer and conversion process can be realized by bidirectional
transfer, and a gradual reduction in high voltage cells was achieved. The low voltage gradually rises
and cycles in sequence until all voltages were up to the set equilibrium voltage.
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Figure 14. Voltage curve during forward go equalization.

Figure 15 shows a schematic diagram of voltage changes during battery pack equalization. In this
mode of operation, 12 cells with large energy differences are selected for direct equalization. From the
analysis of the graph, a relatively balanced state can be gradually obtained between the highest-energy
battery cells and the lowest-connected battery cells, and the remaining energy was also in accordance
with this equalization mode.

 
Figure 15. Voltage curve during equalization process.

Figure 16 shows the voltage distribution before and after the battery voltage equalization.
The horizontal axis represents different monomers and the vertical axis denotes the cell voltage. It
can be noted clearly that the voltage of each cell in the battery pack is unbalanced. The voltages tend
to be consistent upon equalization, which indicates that the new voltage equalization structure can
effectively realize the function of voltage equalization.
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Figure 16. Voltage distributions of the battery pack.

4. Discussion

A comparative study of the proposed equalization method is shown in Table 2. Through comparing
and analyzing the new equalizer with other equalization networks, the proposed equalizer has relative
advantages in size, cost and equalization rate. The output structure of double windings is utilized to
realize efficient operation in two working modes of forward and reverse excitation. It is suitable for a
large-scale battery

A pack-to-cell equalization mode was formed, which has great potential in promotion and
application [14]. With the coaxial winding structure, the equalization function can be realized without
additional control in the whole process, but the disadvantage is that it is difficult to accurately adjust
the voltage of the battery pack in actual work. The parasitic inductance and mutual inductance of
the circuit cannot be accurately controlled, which influenced the operation of the circuit. This leads
to the difficult consistency of battery packs for the battery management system (BMS). Additionally,
this structure is not suitable for a large number of battery cells. It is challenging to wind too many
windings on the same core. Finally, the true energy balance of the battery pack made it difficult to
achieve balance from the battery pack to the single unit [15]. It cannot directly reduce the monomer
with the highest energy and directly supplement the monomer with the lowest energy. Energy can
only be transferred from the whole battery pack.

Energy can only be transferred in the whole battery pack one by one during the equalization
process. However, the equalization speed is relatively slow for most batteries connected in series.
A point-to-point balanced supplement can be realized by the proposed point-to-point balanced
structure, but the number of switch groups is huge. If a small pressure difference has existed between
the two equalization monomers in the equalization process, the equalization time is not dominant.
The equalizer is based on the equalization of coaxial windings. At the same time, the advantages of
a high-frequency switch of the forward converter and the small volume of flyback converter were
retained. The number of switches was relatively small and the control method was flexible. In addition,
in order to prevent the surge impact of high voltage and high current on the cells during the charging
and discharging process of the pack, a Zener diode with an anti-parallel protection function on every
single cell was applied in the new equalization structure, and the battery pack module was also
equipped with fuses to ensure the safe operation of the battery pack. the proposed equalizer exhibited
higher stability and better equalization by this method.
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5. Conclusions

In order to solve the problem of inconsistency between the single cell in the actual use process
of the power lithium-ion battery pack, this paper displays a new type of voltage equalization circuit.
Comparing with the traditional equilibrium structure, the balanced mode adopted was divided into
two working modes. The control method is flexible and the volume occupied by the space volume is
relatively small. The balanced structure of the two windings could allow the fast equalization of two
battery cells simultaneously. Meanwhile, the designed switch array circuit has a simple control mode
with low energy loss. In this paper, the working principle and equalization control strategy of the
voltage equalization circuit was introduced in detail and analyzed. A voltage equalization system for
12 batteries of 2800-mAh battery strings was designed in a targeted manner and a voltage equalization
experiment was performed. The results show that voltage equalization of series battery packs can be
realized efficiently and quickly by the proposed equalizer. The circuit became simple and efficient
using a flexible control mode. It is beneficial to improve the overall performance of the battery pack,
meanwhile guaranteeing the healthy operation of the battery pack.
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Abstract: Many disabled people use electric wheelchairs (EWs) in their daily lives. EWs take a
considerable amount of time to charge and are less efficient in high-power-demand situations.
This paper addresses these two problems using a semiactive hybrid energy storage system (SA-HESS)
with a smart energy management system (SEMS). The SA-HESS contained a lithium-ion battery (LIB)
and supercapacitor (SC) connected to a DC bus via a bidirectional DC–DC converter. The first task
of the proposed SEMS was to charge the SA-HESS rapidly using a fuzzy-logic-controlled charging
system. The second task was to reduce the stress of the LIB. The proposed SEMS divided the
discharging operation into starting-, normal-, medium-, and high-power currents. The LIB was
used in normal conditions, while the SC was mostly utilized during medium-power conditions,
such as starting and uphill climbing of the EW. The conjunction of LIB and SC was employed to
meet the high-power demand for smooth and reliable operation. A prototype was designed to
validate the proposed methodology, and a comparison of the passive hybrid energy management
system (P-HESS) and SA-HESS was performed under different driving tracks and loading conditions.
The experimental results showed that the proposed system required less charging time and effectively
utilized the power of the SC compared with P-HESS.

Keywords: electric wheelchair; lithium-ion battery; supercapacitor; semiactive hybrid energy storage
system; smart energy management system

1. Introduction

Currently, there are an estimated 600 million people aged 60 years or older in the world [1].
In addition, people disabled due to traffic and lower-limb accidents add another 9 million to the count,
with an increasing rate of 500,000 per year. The quality of life of elderly or disabled people is restricted.
However, advancements in different assistive devices, such as wheelchairs, has led to an increase in
their range of activities [2]. While using electric wheelchairs (EWs), people want to travel greater
distances and reduce the amount of time it takes to charge the battery [3].

Various technologies have been employed for EWs, but their efficiency greatly depends on the
characteristics of their energy storage system (ESS) [4,5]. Various ESSs, including lithium-ion batteries
(LIBs), lead–acid batteries, and nickel metal hydride batteries, are used in vehicular applications [6,7].
Among these, LIBs are a widely used energy source due to their attractive properties such as high
energy density, low self-discharge rate, and long lifecycle [8–10]. A comparison of different properties
of batteries is shown in Figure 1. On the other hand, in vehicular applications, the battery faces many
challenges, such as the need for high power demand during acceleration or uphill climbing modes.
Although a high-power battery is possible to tackle this problem, these batteries are quite bulky and
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expensive [11,12]. The power specifications of the LIB are very low, and the peak-to-average-power
ratio ranges between 0.5 to 2 [13], which makes LIBs unpromising in high-power-demand situations.
Therefore, supercapacitors (SCs) can be used as a secondary ESS.

Figure 1. Comparison of different battery storage systems [14,15].

The power and energy density of SCs range from 1000 to 5000 W/kg and 1 to 10 Wh/kg,
respectively [16]. SCs have charging and discharging capabilities of 10–20 times more than LIBs [17].
SCs are not a replacement for LIBs but provide the power needed for EW systems when accelerating
up a slope. In addition, they have a longer lifecycle and a wider range of operating temperatures
(−4 to +70 ◦C) than LIBs, although they do have low energy density [18]. In electric vehicles (EVs),
the stress on the battery is higher than that in a hybrid electric vehicle (HEV) due to deep discharging
(~80% for EVs and ~10% for HEVs) [19]. A hybrid energy storage system (HESS) is a combination
of SC and LIB, which combines the advantages of both devices to fulfill the requirements of high
energy and power densities. SCs are normally used for high power storage, and LIBs are used as a
high-energy-storage unit. The SC is utilized for the high power demand of the powertrain, while the
LIB is used in low-power situations [20].

An energy management system (EMS) is required to fully utilize the energy of both storage units
effectively [21]. The EMS presented in [22,23] is based on the frequency decoupling method to protect
the battery from abrupt changes in the load. HESSs can be easily divided into three main topologies:
passive HESS (P-HESS), semiactive HESS (SA-HESS), and fully active HESS [24]. A P-HESS is the
direct coupling of two or more energy storage devices without a power converter [25]. This has several
benefits over a standalone LIB as a power source (e.g., higher peak power capability, higher efficiency,
and long battery lifecycle) [26]. Although it is simple to implement, there are some limitations. Power
sharing is uncontrollable because the two storage systems are not decoupled [27,28]. Napoli et al. [17]
used an ultracapacitor connected in parallel to a battery with no power converter between the two
sources. In a P-HESS, power sharing between the LIB and SC is determined by their respective
resistance, and the resulting terminal voltage follows the discharge curve of a battery [16]. The energy
storage device should be decoupled for efficient operations with respect to its characteristics [29].
In contrast, the degree of controllability is increased using a fully active HESS, but there are some
disadvantages, such as increased system losses, weight, and cost. In addition, efficiency also decreases
because of the additional converter [20]. Similarly, a modular multilevel fully active HESS also adds
complexity and cost. This will also affect the sensitivity of the system, with a failure of one DC–DC
converter causing system failure [30]. The SA-HESS is a tradeoff between cost and performance.
This system employs only one DC–DC converter and most control strategies can be implemented on
this topology [31].
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The cell voltage of an LIB is very low. Therefore, a string of batteries is generally used. An imbalanced
cell voltage because of the series connection of LIBs causes an increase in temperature, deep discharging,
overcharging, and reduced lifecycle and capacity of the battery [32]. Different engineering techniques
have been used to control and monitor battery parameters (e.g., state of charge (SOC), voltage, current,
and temperature) [33]. For voltage balancing, a special type of charging circuit is required [34,35].
Various fast-charging techniques are used to charge LIBs, such as constant current and constant voltage
(CC/CV), a multistage current charging algorithm, model-based charging, a pulse charging algorithm,
and a fuzzy logic controller (FLC) [36–38]. The CC/CV technique is simple and computationally
efficient [39]. This method has two modes. First, it reaches the defined voltage level while providing
a CC to the battery. In the second step, a CV is supplied, and the battery current begins to decrease
exponentially [40]. This procedure requires a high current if the battery needs to be charged in a short
time, but this increases the battery temperature dramatically, which reduces the lifecycle. In contrast, it
takes more time to charge a battery if the current is lower. Huang et al. introduced different intervals
to determine the optimal current using FLC [41].

This paper proposes a semiactive hybrid energy management system comprised of SA-HESS and
a smart energy management system (SEMS). The proposed methodology charges the HESS smartly
using an FLC. The temperature is used as a feedback, which is thermally and electrically favorable to
achieve a long lifetime for the ESS. The proposed SEMS discharges the SA-HESS smartly according to
the desired load current. Several experiments have been performed to compare the proposed technique
with P-HESS.

The rest of the paper is organized into five sections. Section 2 describes an overview and the
methodology of the proposed system. Section 3 presents the experimental installation. Section 4
reports the results from the experimental study. Section 5 is the discussion of the results, and Section 6
concludes the paper.

2. Methodology

2.1. Overview of the Proposed Methodology

This section provides an overview of the proposed SA-HESS for EWs. At high power/current
demand, the use of only an LIB is ineffective and the LIB discharges very rapidly because of the lower
power density. Therefore, in the proposed technique, an SC was used as a parallel controlled power
source in the SA-HESS. The required power was determined according to the SOC/voltage of the
SC and LIB. Figure 2 presents the proposed system for EWs. In the SA-HESS, the LIB was used as
a high energy unit, which was connected in parallel to the load via a bus link. The SC was used as
a high-power unit, which was connected to the DC bus via a bidirectional converter. The CC/CV
charging system was replaced with a temperature (Tbat) feedback FLC charging system. The controlled
current (Icontrolled) was supplied as the optimal charging current to the LIB. The SC and LIB provided
the desired current to the load, which was controlled using an Arduino microcontroller. A bidirectional
converter was used in boost mode, whereas discharging and buck mode were used in charging
mode [42]. The output voltage of SC (VSC) varied according to its state of charge, while the battery
voltage (Vbat) remained almost constant. The boost converter was used to maintain the VSC relative
to the reference (bus/battery) voltage. The converter generated the pulse width modulation (PWM)
signal according to the reference value [43]. The load current (IL) was sensed using a current sensor and
applied as a feedback signal for the SC (ISC) and LIB (Ibat) current. The ISC and Ibat smartly contributed
according to the requirement of IL.
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Figure 2. Overview of the proposed methodology. Battery voltage (VBat), controlled current (Icontrolled),
battery temperature (Tbat), lithium-ion battery (LIB), electric wheelchair (EW), pulse width modulation
(PWM) and supercapacitor (SC).

2.2. Fast-Charging System for EW

FLC is well suited to anticipating a battery’s nonlinear behavior because it is robust, easily
adaptive, and does not require any mathematical model. The FLC is classified into four parts [44]:
Fuzzifier—in the fuzzifier, linguistic fuzzy sets are obtained from the truth value of the membership
function. Fuzzy rule base—the fuzzy rule base is designed from professional experience and controls
the system operation. Fuzzy interface engine—the fuzzy linguistic input is transformed into a fuzzy
linguistic output with respect to the controlled law stated in the fuzzy rule set. Defuzzifier—this maps
the fuzzy output from the inference engine to a crisp or real value by using membership functions.
The fast-charging methodology was designed using the same rule base as discussed in a previous
study [45]. However, in this work, the FLC-based, fast-charging methodology was designed for a
series and parallel cell combination of an LIB pack. The lowest single-cell voltage and the highest
voltage difference between the two cells of the string were the inputs of the FLC to find the optimal
value of the charging current. When the voltage difference between the two cells was high, then a high
current was inserted to charge the LIB pack in less time.

However, at the same time, it was essential to control the temperature in order to ensure that this
high current value did not affect the battery life. The threshold value and operation of the temperature
control unit are shown in Figure 3. The temperature threshold value was set to 39 ◦C. If the temperature
was below the threshold value, Icontrolled was supplied to the battery. When it crossed the threshold
value, then the controller compared Ibat with the range defined in the flowchart. The value of the
charging current changed according to the value shown in the flowchart.

Figure 3. Flowchart for temperature control.
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2.3. Smart Energy Management System for the SA-HESS

The power requirement for EWs motion is totally different when traveling on a flat surface
than when moving on an inclined surface. A SEMS was designed to overcome the power demand.
Two tracks were taken into consideration to implement the SEMS on the SA-HESS. Figure 4a,b present
the normal plain track-AB and inclination track-ABCD, respectively. On track-AB, the motor of the
EW did not require much power and current; however, for track-ABCD, the motor required high
current/power.

 
(a) (b) 

Figure 4. The logic for the smart energy management system (SEMS): (a) normal plaint track-AB;
(b) uphill climbing steep track-ABCD.

The load on the EW’s motor can be calculated by using the following equations [46,47]:

F = ma − fx − mg sin Θ (1)

P =
F × v

η
(2)

I =
P

Vbus
(3)

where F and fx are the propulsion and friction force, respectively; m is the mass of the person and EW;
and v and I are the values of the velocity and current of the EW, respectively. These equations correlated
the load/power of the EW motor with the electrical current, as the bus voltage of the SA-HESS almost
remains constant. So, the proposed algorithm mainly depended upon electrical current values. Figure 5
shows a flowchart of the proposed algorithm. This methodology was implemented in the Arduino
MEGA 2560 interface with MATLAB (R2017a, MathWorks, Natick, MA, USA). The microcontroller,
which works as a SEMS, decided the operation mode based on the sensing and analyzing HESS and
load parameters (currents, SOC, and voltage). When the EW motor started, most of the power/current
was supplied by the SC. VSC and IL were monitored and analyzed. If the SEMS sensed a small current
that was less than the first threshold value (ITH1 = 2.5 A), it switched on the LIB circuitry to supply
the required current to the load. This condition occurred when the EW was traveling along track-AB.
When EW reached point B (see Figure 4b), the SEMS controller sensed a higher value of current
compared with ITH1 and one lower than a second threshold current (ITH2 = 3.5 A). Soon after, SEMS
would check VSC. If VSC was higher than the threshold (VTH =10 V) value, the SC supplied power to
the load; otherwise, the LIB and SC supplied power together to the EW motor. Similarly, when EW
was at point C (i.e., the current required to the load was more than the ITH2), the controller would
switch on both the LIB and SC to fulfill the desired power demands of the load.
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Figure 5. Algorithm for the SEMS.

Figure 6 presents a simplified block of a hardware implementation for the SEMS algorithm. Solid
lines represent energy flow lines, and dotted lines show the control signal flow lines. The microcontroller
sent a control signal to the switch based on the condition provided by the algorithm and opened a
path for the storage system to supply the desired power to the load. Three switches that connected
HESS to the EW motor were used: switch SW1 connected the SC and LIB to the motor, SW2 was the
interface between the SC and load, and SW3 was between the LIB and load, as shown in Figure 6.

 
Figure 6. Hardware implementation of the SEMS algorithm.

The voltage requirement and maximum power demand determined the number of series and
parallel connected branches of the devices in the storage system. The number of cells in series (Nbat_s)
and parallel (Nbat_p) of the LIB was computed using Equations (4) and (5) [48]:

Nbat_s =
Vbus
Vbat

(4)

Nbat_p =
Total Ah
cell Ah

(5)
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Similarly, the number of series and parallel SCs was calculated as [48]

NSC_s =
Vbus
VSC

(6)

NSC_p =
I.NSC_s

ΔV

(
Δt
C

+ ESR
)

(7)

where NSC_s and NSC_p are the number of supercapacitors connected in series and parallel, respectively,
and VSC is the voltage of the supercapacitor. ESR represents the equivalent series resistance, where ΔV
and Δt are the voltage drop and discharging time of the supercapacitor depending upon the
output current.

3. Experimental Setup

Figure 7 presents the experimental setup of the proposed SA-HESS prototype for an EW. A Samsung
18650 LIB (Samsung, Yongin-si, South Korea) was used in the current experiment. An SC bank with a
capacitance of 350 F was used. A liquid crystal display (20 × 4 dimension) was used to indicate the
mode of the HESS. The SEMS algorithm implemented in Arduino Mega 2560 was connected to the
monitoring system. Different sensors were used to measure and monitor the parameters, such as the
HESS temperature, current, and voltage. ACS712-20A hall effect current sensors were used for current
sensing. An F30S60S power diode (ON Semiconductor, Phoenix, AZ, USA) was used. A DC motor
was used as a load in this prototype.

 
Figure 7. Experimental setup of the prototype.

4. Results

4.1. Performance Evaluation of Smart Energy Management System

4.1.1. Charging System Using SEMS

Figure 8 shows the voltages and temperature profiles of an LIB pack, where V1, V2, V3, V4, and
Vt are the first, second, third, fourth, and overall voltages of the LIB pack, respectively. T1, T2, T3, T4,
T5, T6, and T7 denote the value of different temperature sensors. The voltage and temperature were
monitored to obtain the optimal value of the charging current for an LIB. At 3498 s, the temperature (T2)
increased from the threshold value. To compensate for this effect, the current was reduced, as described
in Section 2.2 and shown in the magnified graph.
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Figure 8. Voltage and temperature profile of the Li-ion battery (LIB).

4.1.2. Discharging System Using SEMS

Two tracks were used to validate the SEMS methodology for SA-HESS, as shown in Figure 9.
The EW needed a high current value to start, which was provided by the SC at the time (t) = 9 s.
At t = 11 s, the EW started moving on a flat surface. On a normal surface, the EW motor required
less current, which was supplied by the LIB at t = 11–50 s. At t = 51 s, the EW started to climb uphill.
The EW drew more current, which was provided by the SC. Here, the stress on the LIB was reduced
using the SC instead of the LIB. At t = 100 s, the EW reached the middle of the inclined surface and
required more power to reach the top surface. In this case, both the LIB and SC supplied power to
the load. These timeframes are discussed in detail below in the test cases considering the proposed
algorithm, as described in Section 2.3.

 
Figure 9. Experimental results of the SEMS on the electric wheelchair (EW) motor.

Case—EW Start (t = 0–11 s)

At the start, the EW motor required a high current for a small amount of time. The current profile
in Figure 10 shows a spike at t = 10 s, indicating that the EW motor drew 6 A. The SC supplied this
high pulse current. The voltage of the SC showed small variations (0.6 V), but the DC–DC converter
maintained a constant voltage for smooth power transfer.
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Figure 10. The experimental results at the start of the EW movement.

Case—Plain Track (t = 11–50 s)

From t = 11 to 50 s, the EW traveled on track-AB (from Figure 4a). The EW motor drew a 1.9-A
current. SEMS enabled the LIB to supply this small amount of power to the load. The current profile in
Figure 11 reveals the SC to have had an almost zero current, while the current of the LIB was 1.3 A.
This confirms that only the LIB supplied a small amount of power to the load.

Figure 11. Experimental results for track-AB.

Case—Climbing Uphill (t = 51–150 s)

As shown in Figure 12, from t = 51 to 100 s, the EW traveled from points B to C (as described
in Figure 4b). On this track, a 3-A current was drawn by the load. The proposed system enabled
SC to supply a high power/current to the load. The SC current increased to 3 A to fulfill the power
requirement of the load shown in the current of a supercapacitor in Figure 12. The voltage of the SC
started decreasing, but the DC–DC converter maintained a constant voltage to fully utilize the SC.
The current profile of the LIB confirmed that the LIB supplied an almost zero current, even at a high
load current.

Figure 12. Experimental results for track-ABCD (points B–C).
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Figure 13 shows the current and voltage profile of the EW traveling from points C to D from t = 100
to 150 s. At the peak load, the proposed system supplied power from both sources. The experimental
results showed that at point C, the LIB supplied approximately 1–1.7 A and the SC supplied 4 A,
as shown in the current profile of the LIB and SC in Figure 13. The terminal voltage of the SC decreased
from 12.9 to 11.9 V, but the DC–DC converter provided a constant voltage to the load. Regardless of
acceleration, the proposed system supplied a constant LIB voltage to the load and less current, which
improved the LIB lifecycle. This should also increase the traveling range of the EW.

Figure 13. Experimental results for track-ABCD (points C–D).

4.2. Performance Evaluation of P-HESS

The same tests were performed on a P-HESS for track-ABCD. Figure 14 shows the experimental
results of the P-HESS. At t = 11 s, the EW motor started, and an approximately 3.5-A current was
supplied by the LIB and 3.1 A was supplied by the SC, as shown in the current profiles of the LIB and
SC, respectively, in Figure 14. From t = 12 to 50 s, the passive system traveled on a flat surface. The EW
motor drew an average of 1.9 A, which was supplied by the LIB, whereas the SC current was almost
zero. From t = 51 to 101 s, when it started traveling on an inclined surface, it drew 4.5 A. The LIB and
SC supplied 3- and 1.5-A currents, respectively. Similarly, at t = 101–150 s, the passive system traveling
on an inclined surface required more current, which was again supplied by the LIB. The current profile
of the EW motor increased from 5 to 6 A. The LIB current also increased from 4 to 5 A. The SC supplied
1 A, as shown in the graph of the current of a supercapacitor (Figure 14).

Figure 14. Experimental results of the passive hybrid energy storage system (P-HESS).

5. Discussion

To validate the proposed technique, several experiments were performed to compare the result
of SA-HESS and P-HESS under different conditions. The average current values of different track
experiments are presented in Figure 15. It can be noted that by adopting the proposed technique,
the stress of the LIB was reduced. In high-power-demanding conditions, the proposed technique
effectively used the SC as compared with P-HESS to enhance the lifecycle of the LIB. Some of the
results of real-time testing under different tracks are shown in Figure A1 of Appendix A.
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Figure 15. Comparison of the proposed semiactive (SA)-HESS and P-HESS.

The validation of the proposed system was also done under different load conditions. Figure 16
shows some of the experimental results of the proposed system and the P-HESS under different
loading conditions. The superiority of the proposed algorithm under different loading conditions can
be seen in Figure 16. The efficiency of the SA-HESS was 97.6% in the EW application. The proposed
methodology does not have any significant effect on the cost of the system.

(a) (b)

Figure 16. Comparison of the proposed SA-HESS and P-HESS during different loads: (a) 35-W load;
(b) 25-W load.

Renewable energy resources can be used to charge the HESS. The installation of a regenerative
braking system in EWs is a good option to charge the SC during the downslope. The discharging
efficiency of the HESS can be enhanced by using a smart controller such as an FLC.

6. Conclusions

This paper introduced a new hybrid energy management system for EWs. The SA-HESS was
implemented using a smart energy management system algorithm. The proposed system ensured
effective use of the SC and decreased the stress of the LIB to extend the battery life under demanding
conditions. Five different tracks and two different loads were used to ensure the practicability
of the proposed hybrid energy management system and to compare it with the passive system.
The experimental results confirmed that the proposed system provided a more effective charging and
discharging management system at high power demand compared with the conventional P-HESS.
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Appendix A

Figure A1 shows the current profiles of the proposed system and P-HESS while traveling in
different surface conditions.

(a) (b) 

(c) 

 

(d) 

Figure A1. Comparison of the proposed SEMS and P-HESS during different modes: (a) start–high
climbing–low climbing–plain; (b) start–low climbing–plain–high climbing; (c) start–low climbing–high
climbing–plain; (d) start–plain–high climbing–low climbing.
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